btrfs: handle errors while updating refcounts in update_ref_for_cow
[linux-2.6-block.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
f361bf4a 19#include <linux/sched/signal.h>
edbd8d4e 20#include <linux/pagemap.h>
ec44a35c 21#include <linux/writeback.h>
21af804c 22#include <linux/blkdev.h>
b7a9f29f 23#include <linux/sort.h>
4184ea7f 24#include <linux/rcupdate.h>
817d52f8 25#include <linux/kthread.h>
5a0e3ad6 26#include <linux/slab.h>
dff51cd1 27#include <linux/ratelimit.h>
b150a4f1 28#include <linux/percpu_counter.h>
69fe2d75 29#include <linux/lockdep.h>
74493f7a 30#include "hash.h"
995946dd 31#include "tree-log.h"
fec577fb
CM
32#include "disk-io.h"
33#include "print-tree.h"
0b86a832 34#include "volumes.h"
53b381b3 35#include "raid56.h"
925baedd 36#include "locking.h"
fa9c0d79 37#include "free-space-cache.h"
1e144fb8 38#include "free-space-tree.h"
3fed40cc 39#include "math.h"
6ab0a202 40#include "sysfs.h"
fcebe456 41#include "qgroup.h"
fd708b81 42#include "ref-verify.h"
fec577fb 43
709c0486
AJ
44#undef SCRAMBLE_DELAYED_REFS
45
9e622d6b
MX
46/*
47 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
50 *
0e4f8f88
CM
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
56 *
9e622d6b
MX
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 *
0e4f8f88
CM
59 */
60enum {
61 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
62 CHUNK_ALLOC_LIMITED = 1,
63 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
64};
65
5d4f98a2 66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 67 struct btrfs_fs_info *fs_info,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 76 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 81 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 86 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
ab8d0fc4
JM
90static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 92 int dump_block_groups);
5d80366e
JB
93static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 u64 num_bytes);
957780eb
JB
95static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 struct btrfs_space_info *space_info,
97 u64 num_bytes);
98static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_space_info *space_info,
100 u64 num_bytes);
6a63209f 101
817d52f8
JB
102static noinline int
103block_group_cache_done(struct btrfs_block_group_cache *cache)
104{
105 smp_mb();
36cce922
JB
106 return cache->cached == BTRFS_CACHE_FINISHED ||
107 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
108}
109
0f9dd46c
JB
110static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111{
112 return (cache->flags & bits) == bits;
113}
114
758f2dfc 115void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
116{
117 atomic_inc(&cache->count);
118}
119
120void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121{
f0486c68
YZ
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
0966a7b1
QW
125
126 /*
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
131 *
132 * No better way to resolve, but only to warn.
133 */
134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 135 kfree(cache->free_space_ctl);
11dfe35a 136 kfree(cache);
f0486c68 137 }
11dfe35a
JB
138}
139
0f9dd46c
JB
140/*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
b2950863 144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
145 struct btrfs_block_group_cache *block_group)
146{
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
a1897fdd
LB
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
0f9dd46c
JB
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178}
179
180/*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184static struct btrfs_block_group_cache *
185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187{
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
a1897fdd 216 if (ret) {
11dfe35a 217 btrfs_get_block_group(ret);
a1897fdd
LB
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
0f9dd46c
JB
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224}
225
2ff7e61e 226static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 227 u64 start, u64 num_bytes)
817d52f8 228{
11833d66 229 u64 end = start + num_bytes - 1;
0b246afa 230 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 231 start, end, EXTENT_UPTODATE);
0b246afa 232 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 233 start, end, EXTENT_UPTODATE);
11833d66
YZ
234 return 0;
235}
817d52f8 236
2ff7e61e 237static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
238 struct btrfs_block_group_cache *cache)
239{
240 u64 start, end;
817d52f8 241
11833d66
YZ
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
0b246afa 245 clear_extent_bits(&fs_info->freed_extents[0],
91166212 246 start, end, EXTENT_UPTODATE);
0b246afa 247 clear_extent_bits(&fs_info->freed_extents[1],
91166212 248 start, end, EXTENT_UPTODATE);
817d52f8
JB
249}
250
2ff7e61e 251static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 252 struct btrfs_block_group_cache *cache)
817d52f8 253{
817d52f8
JB
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
06b2331f
YZ
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
2ff7e61e 262 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 263 stripe_len);
835d974f
JB
264 if (ret)
265 return ret;
06b2331f
YZ
266 }
267
817d52f8
JB
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
0b246afa 270 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 271 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
272 if (ret)
273 return ret;
11833d66 274
817d52f8 275 while (nr--) {
51bf5f0b
JB
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
2ff7e61e 296 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
817d52f8 301 }
11833d66 302
817d52f8
JB
303 kfree(logical);
304 }
817d52f8
JB
305 return 0;
306}
307
11833d66
YZ
308static struct btrfs_caching_control *
309get_caching_control(struct btrfs_block_group_cache *cache)
310{
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
dde5abee
JB
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
11833d66
YZ
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
1e4f4714 320 refcount_inc(&ctl->count);
11833d66
YZ
321 spin_unlock(&cache->lock);
322 return ctl;
323}
324
325static void put_caching_control(struct btrfs_caching_control *ctl)
326{
1e4f4714 327 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
328 kfree(ctl);
329}
330
d0bd4560 331#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 332static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 333{
2ff7e61e 334 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 338 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349}
350#endif
351
0f9dd46c
JB
352/*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
a5ed9182
OS
357u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 359{
817d52f8 360 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
361 int ret;
362
363 while (start < end) {
11833d66 364 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 365 &extent_start, &extent_end,
e6138876
JB
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
0f9dd46c
JB
368 if (ret)
369 break;
370
06b2331f 371 if (extent_start <= start) {
0f9dd46c
JB
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
817d52f8 375 total_added += size;
ea6a478e
JB
376 ret = btrfs_add_free_space(block_group, start,
377 size);
79787eaa 378 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
817d52f8 387 total_added += size;
ea6a478e 388 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 389 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
390 }
391
817d52f8 392 return total_added;
0f9dd46c
JB
393}
394
73fa48b6 395static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 396{
0b246afa
JM
397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 struct btrfs_fs_info *fs_info = block_group->fs_info;
399 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 400 struct btrfs_path *path;
5f39d397 401 struct extent_buffer *leaf;
11833d66 402 struct btrfs_key key;
817d52f8 403 u64 total_found = 0;
11833d66
YZ
404 u64 last = 0;
405 u32 nritems;
73fa48b6 406 int ret;
d0bd4560 407 bool wakeup = true;
f510cfec 408
e37c9e69
CM
409 path = btrfs_alloc_path();
410 if (!path)
73fa48b6 411 return -ENOMEM;
7d7d6068 412
817d52f8 413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 414
d0bd4560
JB
415#ifdef CONFIG_BTRFS_DEBUG
416 /*
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
419 * the free space.
420 */
2ff7e61e 421 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
422 wakeup = false;
423#endif
5cd57b2c 424 /*
817d52f8
JB
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
5cd57b2c
CM
429 */
430 path->skip_locking = 1;
817d52f8 431 path->search_commit_root = 1;
e4058b54 432 path->reada = READA_FORWARD;
817d52f8 433
e4404d6e 434 key.objectid = last;
e37c9e69 435 key.offset = 0;
11833d66 436 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 437
52ee28d2 438next:
11833d66 439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 440 if (ret < 0)
73fa48b6 441 goto out;
a512bbf8 442
11833d66
YZ
443 leaf = path->nodes[0];
444 nritems = btrfs_header_nritems(leaf);
445
d397712b 446 while (1) {
7841cb28 447 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 448 last = (u64)-1;
817d52f8 449 break;
f25784b3 450 }
817d52f8 451
11833d66
YZ
452 if (path->slots[0] < nritems) {
453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 } else {
455 ret = find_next_key(path, 0, &key);
456 if (ret)
e37c9e69 457 break;
817d52f8 458
c9ea7b24 459 if (need_resched() ||
9e351cc8 460 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
461 if (wakeup)
462 caching_ctl->progress = last;
ff5714cc 463 btrfs_release_path(path);
9e351cc8 464 up_read(&fs_info->commit_root_sem);
589d8ade 465 mutex_unlock(&caching_ctl->mutex);
11833d66 466 cond_resched();
73fa48b6
OS
467 mutex_lock(&caching_ctl->mutex);
468 down_read(&fs_info->commit_root_sem);
469 goto next;
589d8ade 470 }
0a3896d0
JB
471
472 ret = btrfs_next_leaf(extent_root, path);
473 if (ret < 0)
73fa48b6 474 goto out;
0a3896d0
JB
475 if (ret)
476 break;
589d8ade
JB
477 leaf = path->nodes[0];
478 nritems = btrfs_header_nritems(leaf);
479 continue;
11833d66 480 }
817d52f8 481
52ee28d2
LB
482 if (key.objectid < last) {
483 key.objectid = last;
484 key.offset = 0;
485 key.type = BTRFS_EXTENT_ITEM_KEY;
486
d0bd4560
JB
487 if (wakeup)
488 caching_ctl->progress = last;
52ee28d2
LB
489 btrfs_release_path(path);
490 goto next;
491 }
492
11833d66
YZ
493 if (key.objectid < block_group->key.objectid) {
494 path->slots[0]++;
817d52f8 495 continue;
e37c9e69 496 }
0f9dd46c 497
e37c9e69 498 if (key.objectid >= block_group->key.objectid +
0f9dd46c 499 block_group->key.offset)
e37c9e69 500 break;
7d7d6068 501
3173a18f
JB
502 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
504 total_found += add_new_free_space(block_group,
505 fs_info, last,
506 key.objectid);
3173a18f
JB
507 if (key.type == BTRFS_METADATA_ITEM_KEY)
508 last = key.objectid +
da17066c 509 fs_info->nodesize;
3173a18f
JB
510 else
511 last = key.objectid + key.offset;
817d52f8 512
73fa48b6 513 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 514 total_found = 0;
d0bd4560
JB
515 if (wakeup)
516 wake_up(&caching_ctl->wait);
11833d66 517 }
817d52f8 518 }
e37c9e69
CM
519 path->slots[0]++;
520 }
817d52f8 521 ret = 0;
e37c9e69 522
817d52f8
JB
523 total_found += add_new_free_space(block_group, fs_info, last,
524 block_group->key.objectid +
525 block_group->key.offset);
11833d66 526 caching_ctl->progress = (u64)-1;
817d52f8 527
73fa48b6
OS
528out:
529 btrfs_free_path(path);
530 return ret;
531}
532
533static noinline void caching_thread(struct btrfs_work *work)
534{
535 struct btrfs_block_group_cache *block_group;
536 struct btrfs_fs_info *fs_info;
537 struct btrfs_caching_control *caching_ctl;
b4570aa9 538 struct btrfs_root *extent_root;
73fa48b6
OS
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
b4570aa9 544 extent_root = fs_info->extent_root;
73fa48b6
OS
545
546 mutex_lock(&caching_ctl->mutex);
547 down_read(&fs_info->commit_root_sem);
548
1e144fb8
OS
549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 ret = load_free_space_tree(caching_ctl);
551 else
552 ret = load_extent_tree_free(caching_ctl);
73fa48b6 553
817d52f8 554 spin_lock(&block_group->lock);
11833d66 555 block_group->caching_ctl = NULL;
73fa48b6 556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 557 spin_unlock(&block_group->lock);
0f9dd46c 558
d0bd4560 559#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 560 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
561 u64 bytes_used;
562
563 spin_lock(&block_group->space_info->lock);
564 spin_lock(&block_group->lock);
565 bytes_used = block_group->key.offset -
566 btrfs_block_group_used(&block_group->item);
567 block_group->space_info->bytes_used += bytes_used >> 1;
568 spin_unlock(&block_group->lock);
569 spin_unlock(&block_group->space_info->lock);
2ff7e61e 570 fragment_free_space(block_group);
d0bd4560
JB
571 }
572#endif
573
574 caching_ctl->progress = (u64)-1;
11833d66 575
9e351cc8 576 up_read(&fs_info->commit_root_sem);
2ff7e61e 577 free_excluded_extents(fs_info, block_group);
11833d66 578 mutex_unlock(&caching_ctl->mutex);
73fa48b6 579
11833d66
YZ
580 wake_up(&caching_ctl->wait);
581
582 put_caching_control(caching_ctl);
11dfe35a 583 btrfs_put_block_group(block_group);
817d52f8
JB
584}
585
9d66e233 586static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 587 int load_cache_only)
817d52f8 588{
291c7d2f 589 DEFINE_WAIT(wait);
11833d66
YZ
590 struct btrfs_fs_info *fs_info = cache->fs_info;
591 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
592 int ret = 0;
593
291c7d2f 594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
595 if (!caching_ctl)
596 return -ENOMEM;
291c7d2f
JB
597
598 INIT_LIST_HEAD(&caching_ctl->list);
599 mutex_init(&caching_ctl->mutex);
600 init_waitqueue_head(&caching_ctl->wait);
601 caching_ctl->block_group = cache;
602 caching_ctl->progress = cache->key.objectid;
1e4f4714 603 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 caching_thread, NULL, NULL);
291c7d2f
JB
606
607 spin_lock(&cache->lock);
608 /*
609 * This should be a rare occasion, but this could happen I think in the
610 * case where one thread starts to load the space cache info, and then
611 * some other thread starts a transaction commit which tries to do an
612 * allocation while the other thread is still loading the space cache
613 * info. The previous loop should have kept us from choosing this block
614 * group, but if we've moved to the state where we will wait on caching
615 * block groups we need to first check if we're doing a fast load here,
616 * so we can wait for it to finish, otherwise we could end up allocating
617 * from a block group who's cache gets evicted for one reason or
618 * another.
619 */
620 while (cache->cached == BTRFS_CACHE_FAST) {
621 struct btrfs_caching_control *ctl;
622
623 ctl = cache->caching_ctl;
1e4f4714 624 refcount_inc(&ctl->count);
291c7d2f
JB
625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 spin_unlock(&cache->lock);
627
628 schedule();
629
630 finish_wait(&ctl->wait, &wait);
631 put_caching_control(ctl);
632 spin_lock(&cache->lock);
633 }
634
635 if (cache->cached != BTRFS_CACHE_NO) {
636 spin_unlock(&cache->lock);
637 kfree(caching_ctl);
11833d66 638 return 0;
291c7d2f
JB
639 }
640 WARN_ON(cache->caching_ctl);
641 cache->caching_ctl = caching_ctl;
642 cache->cached = BTRFS_CACHE_FAST;
643 spin_unlock(&cache->lock);
11833d66 644
d8953d69 645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 646 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
647 ret = load_free_space_cache(fs_info, cache);
648
649 spin_lock(&cache->lock);
650 if (ret == 1) {
291c7d2f 651 cache->caching_ctl = NULL;
9d66e233
JB
652 cache->cached = BTRFS_CACHE_FINISHED;
653 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 654 caching_ctl->progress = (u64)-1;
9d66e233 655 } else {
291c7d2f
JB
656 if (load_cache_only) {
657 cache->caching_ctl = NULL;
658 cache->cached = BTRFS_CACHE_NO;
659 } else {
660 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 661 cache->has_caching_ctl = 1;
291c7d2f 662 }
9d66e233
JB
663 }
664 spin_unlock(&cache->lock);
d0bd4560
JB
665#ifdef CONFIG_BTRFS_DEBUG
666 if (ret == 1 &&
2ff7e61e 667 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
668 u64 bytes_used;
669
670 spin_lock(&cache->space_info->lock);
671 spin_lock(&cache->lock);
672 bytes_used = cache->key.offset -
673 btrfs_block_group_used(&cache->item);
674 cache->space_info->bytes_used += bytes_used >> 1;
675 spin_unlock(&cache->lock);
676 spin_unlock(&cache->space_info->lock);
2ff7e61e 677 fragment_free_space(cache);
d0bd4560
JB
678 }
679#endif
cb83b7b8
JB
680 mutex_unlock(&caching_ctl->mutex);
681
291c7d2f 682 wake_up(&caching_ctl->wait);
3c14874a 683 if (ret == 1) {
291c7d2f 684 put_caching_control(caching_ctl);
2ff7e61e 685 free_excluded_extents(fs_info, cache);
9d66e233 686 return 0;
3c14874a 687 }
291c7d2f
JB
688 } else {
689 /*
1e144fb8
OS
690 * We're either using the free space tree or no caching at all.
691 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
692 */
693 spin_lock(&cache->lock);
694 if (load_cache_only) {
695 cache->caching_ctl = NULL;
696 cache->cached = BTRFS_CACHE_NO;
697 } else {
698 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 699 cache->has_caching_ctl = 1;
291c7d2f
JB
700 }
701 spin_unlock(&cache->lock);
702 wake_up(&caching_ctl->wait);
9d66e233
JB
703 }
704
291c7d2f
JB
705 if (load_cache_only) {
706 put_caching_control(caching_ctl);
11833d66 707 return 0;
817d52f8 708 }
817d52f8 709
9e351cc8 710 down_write(&fs_info->commit_root_sem);
1e4f4714 711 refcount_inc(&caching_ctl->count);
11833d66 712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 713 up_write(&fs_info->commit_root_sem);
11833d66 714
11dfe35a 715 btrfs_get_block_group(cache);
11833d66 716
e66f0bb1 717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 718
ef8bbdfe 719 return ret;
e37c9e69
CM
720}
721
0f9dd46c
JB
722/*
723 * return the block group that starts at or after bytenr
724 */
d397712b
CM
725static struct btrfs_block_group_cache *
726btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 727{
e2c89907 728 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
729}
730
0f9dd46c 731/*
9f55684c 732 * return the block group that contains the given bytenr
0f9dd46c 733 */
d397712b
CM
734struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 struct btrfs_fs_info *info,
736 u64 bytenr)
be744175 737{
e2c89907 738 return block_group_cache_tree_search(info, bytenr, 1);
be744175 739}
0b86a832 740
0f9dd46c
JB
741static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 u64 flags)
6324fbf3 743{
0f9dd46c 744 struct list_head *head = &info->space_info;
0f9dd46c 745 struct btrfs_space_info *found;
4184ea7f 746
52ba6929 747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 748
4184ea7f
CM
749 rcu_read_lock();
750 list_for_each_entry_rcu(found, head, list) {
67377734 751 if (found->flags & flags) {
4184ea7f 752 rcu_read_unlock();
0f9dd46c 753 return found;
4184ea7f 754 }
0f9dd46c 755 }
4184ea7f 756 rcu_read_unlock();
0f9dd46c 757 return NULL;
6324fbf3
CM
758}
759
0d9f824d
OS
760static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 u64 owner, u64 root_objectid)
762{
763 struct btrfs_space_info *space_info;
764 u64 flags;
765
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 else
770 flags = BTRFS_BLOCK_GROUP_METADATA;
771 } else {
772 flags = BTRFS_BLOCK_GROUP_DATA;
773 }
774
775 space_info = __find_space_info(fs_info, flags);
55e8196a 776 ASSERT(space_info);
0d9f824d
OS
777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778}
779
4184ea7f
CM
780/*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785{
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793}
794
1a4ed8fd 795/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
797{
798 int ret;
799 struct btrfs_key key;
31840ae1 800 struct btrfs_path *path;
e02119d5 801
31840ae1 802 path = btrfs_alloc_path();
d8926bb3
MF
803 if (!path)
804 return -ENOMEM;
805
e02119d5
CM
806 key.objectid = start;
807 key.offset = len;
3173a18f 808 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 810 btrfs_free_path(path);
7bb86316
CM
811 return ret;
812}
813
a22285a6 814/*
3173a18f 815 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 824 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 825 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
826{
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
3173a18f
JB
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
0b246afa
JM
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
3173a18f
JB
844 metadata = 0;
845 }
846
a22285a6
YZ
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
a22285a6
YZ
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
639eefc8
FDBM
855
856search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
0b246afa 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
865 if (ret < 0)
866 goto out_free;
867
3173a18f 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 875 key.offset == fs_info->nodesize)
74be9510
FDBM
876 ret = 0;
877 }
3173a18f
JB
878 }
879
a22285a6
YZ
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
889#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 struct btrfs_extent_item_v0 *ei0;
891 BUG_ON(item_size != sizeof(*ei0));
892 ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 struct btrfs_extent_item_v0);
894 num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 /* FIXME: this isn't correct for data */
896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897#else
898 BUG();
899#endif
900 }
901 BUG_ON(num_refs == 0);
902 } else {
903 num_refs = 0;
904 extent_flags = 0;
905 ret = 0;
906 }
907
908 if (!trans)
909 goto out;
910
911 delayed_refs = &trans->transaction->delayed_refs;
912 spin_lock(&delayed_refs->lock);
f72ad18e 913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
914 if (head) {
915 if (!mutex_trylock(&head->mutex)) {
d278850e 916 refcount_inc(&head->refs);
a22285a6
YZ
917 spin_unlock(&delayed_refs->lock);
918
b3b4aa74 919 btrfs_release_path(path);
a22285a6 920
8cc33e5c
DS
921 /*
922 * Mutex was contended, block until it's released and try
923 * again
924 */
a22285a6
YZ
925 mutex_lock(&head->mutex);
926 mutex_unlock(&head->mutex);
d278850e 927 btrfs_put_delayed_ref_head(head);
639eefc8 928 goto search_again;
a22285a6 929 }
d7df2c79 930 spin_lock(&head->lock);
a22285a6
YZ
931 if (head->extent_op && head->extent_op->update_flags)
932 extent_flags |= head->extent_op->flags_to_set;
933 else
934 BUG_ON(num_refs == 0);
935
d278850e 936 num_refs += head->ref_mod;
d7df2c79 937 spin_unlock(&head->lock);
a22285a6
YZ
938 mutex_unlock(&head->mutex);
939 }
940 spin_unlock(&delayed_refs->lock);
941out:
942 WARN_ON(num_refs == 0);
943 if (refs)
944 *refs = num_refs;
945 if (flags)
946 *flags = extent_flags;
947out_free:
948 btrfs_free_path(path);
949 return ret;
950}
951
d8d5f3e1
CM
952/*
953 * Back reference rules. Back refs have three main goals:
954 *
955 * 1) differentiate between all holders of references to an extent so that
956 * when a reference is dropped we can make sure it was a valid reference
957 * before freeing the extent.
958 *
959 * 2) Provide enough information to quickly find the holders of an extent
960 * if we notice a given block is corrupted or bad.
961 *
962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963 * maintenance. This is actually the same as #2, but with a slightly
964 * different use case.
965 *
5d4f98a2
YZ
966 * There are two kinds of back refs. The implicit back refs is optimized
967 * for pointers in non-shared tree blocks. For a given pointer in a block,
968 * back refs of this kind provide information about the block's owner tree
969 * and the pointer's key. These information allow us to find the block by
970 * b-tree searching. The full back refs is for pointers in tree blocks not
971 * referenced by their owner trees. The location of tree block is recorded
972 * in the back refs. Actually the full back refs is generic, and can be
973 * used in all cases the implicit back refs is used. The major shortcoming
974 * of the full back refs is its overhead. Every time a tree block gets
975 * COWed, we have to update back refs entry for all pointers in it.
976 *
977 * For a newly allocated tree block, we use implicit back refs for
978 * pointers in it. This means most tree related operations only involve
979 * implicit back refs. For a tree block created in old transaction, the
980 * only way to drop a reference to it is COW it. So we can detect the
981 * event that tree block loses its owner tree's reference and do the
982 * back refs conversion.
983 *
01327610 984 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
985 *
986 * The reference count of the block is one and the tree is the block's
987 * owner tree. Nothing to do in this case.
988 *
989 * The reference count of the block is one and the tree is not the
990 * block's owner tree. In this case, full back refs is used for pointers
991 * in the block. Remove these full back refs, add implicit back refs for
992 * every pointers in the new block.
993 *
994 * The reference count of the block is greater than one and the tree is
995 * the block's owner tree. In this case, implicit back refs is used for
996 * pointers in the block. Add full back refs for every pointers in the
997 * block, increase lower level extents' reference counts. The original
998 * implicit back refs are entailed to the new block.
999 *
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1003 *
1004 * Back Reference Key composing:
1005 *
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1009 * of back refs.
1010 *
d8d5f3e1
CM
1011 * File extents can be referenced by:
1012 *
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1014 * - different files inside a single subvolume
d8d5f3e1
CM
1015 * - different offsets inside a file (bookend extents in file.c)
1016 *
5d4f98a2 1017 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1018 *
1019 * - Objectid of the subvolume root
d8d5f3e1 1020 * - objectid of the file holding the reference
5d4f98a2
YZ
1021 * - original offset in the file
1022 * - how many bookend extents
d8d5f3e1 1023 *
5d4f98a2
YZ
1024 * The key offset for the implicit back refs is hash of the first
1025 * three fields.
d8d5f3e1 1026 *
5d4f98a2 1027 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1028 *
5d4f98a2 1029 * - number of pointers in the tree leaf
d8d5f3e1 1030 *
5d4f98a2
YZ
1031 * The key offset for the implicit back refs is the first byte of
1032 * the tree leaf
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
d8d5f3e1 1036 *
5d4f98a2 1037 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1038 *
5d4f98a2
YZ
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1041 *
5d4f98a2 1042 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1043 *
5d4f98a2 1044 * Btree extents can be referenced by:
d8d5f3e1 1045 *
5d4f98a2 1046 * - Different subvolumes
d8d5f3e1 1047 *
5d4f98a2
YZ
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
d8d5f3e1 1052 *
5d4f98a2
YZ
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
d8d5f3e1 1056 */
31840ae1 1057
5d4f98a2
YZ
1058#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1060 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1061 struct btrfs_path *path,
1062 u64 owner, u32 extra_size)
7bb86316 1063{
87bde3cd 1064 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1065 struct btrfs_extent_item *item;
1066 struct btrfs_extent_item_v0 *ei0;
1067 struct btrfs_extent_ref_v0 *ref0;
1068 struct btrfs_tree_block_info *bi;
1069 struct extent_buffer *leaf;
7bb86316 1070 struct btrfs_key key;
5d4f98a2
YZ
1071 struct btrfs_key found_key;
1072 u32 new_size = sizeof(*item);
1073 u64 refs;
1074 int ret;
1075
1076 leaf = path->nodes[0];
1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_extent_item_v0);
1082 refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084 if (owner == (u64)-1) {
1085 while (1) {
1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 ret = btrfs_next_leaf(root, path);
1088 if (ret < 0)
1089 return ret;
79787eaa 1090 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1091 leaf = path->nodes[0];
1092 }
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0]);
1095 BUG_ON(key.objectid != found_key.objectid);
1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 path->slots[0]++;
1098 continue;
1099 }
1100 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 struct btrfs_extent_ref_v0);
1102 owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 break;
1104 }
1105 }
b3b4aa74 1106 btrfs_release_path(path);
5d4f98a2
YZ
1107
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 new_size += sizeof(*bi);
1110
1111 new_size -= sizeof(*ei0);
1112 ret = btrfs_search_slot(trans, root, &key, path,
1113 new_size + extra_size, 1);
1114 if (ret < 0)
1115 return ret;
79787eaa 1116 BUG_ON(ret); /* Corruption */
5d4f98a2 1117
87bde3cd 1118 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1119
1120 leaf = path->nodes[0];
1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 btrfs_set_extent_refs(leaf, item, refs);
1123 /* FIXME: get real generation */
1124 btrfs_set_extent_generation(leaf, item, 0);
1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 btrfs_set_extent_flags(leaf, item,
1127 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 bi = (struct btrfs_tree_block_info *)(item + 1);
1130 /* FIXME: get first key of the block */
b159fa28 1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1132 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 } else {
1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135 }
1136 btrfs_mark_buffer_dirty(leaf);
1137 return 0;
1138}
1139#endif
1140
167ce953
LB
1141/*
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145 */
1146int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 struct btrfs_extent_inline_ref *iref,
1148 enum btrfs_inline_ref_type is_data)
1149{
1150 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1152
1153 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 type == BTRFS_SHARED_DATA_REF_KEY ||
1156 type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1158 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1159 return type;
64ecdb64
LB
1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 ASSERT(eb->fs_info);
1162 /*
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1166 */
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1170 }
167ce953 1171 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1172 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1173 return type;
64ecdb64
LB
1174 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 ASSERT(eb->fs_info);
1176 /*
1177 * Every shared one has parent tree
1178 * block, which must be aligned to
1179 * nodesize.
1180 */
1181 if (offset &&
1182 IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 return type;
1184 }
167ce953
LB
1185 } else {
1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 return type;
1188 }
1189 }
1190
1191 btrfs_print_leaf((struct extent_buffer *)eb);
1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 eb->start, type);
1194 WARN_ON(1);
1195
1196 return BTRFS_REF_TYPE_INVALID;
1197}
1198
5d4f98a2
YZ
1199static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200{
1201 u32 high_crc = ~(u32)0;
1202 u32 low_crc = ~(u32)0;
1203 __le64 lenum;
1204
1205 lenum = cpu_to_le64(root_objectid);
14a958e6 1206 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1207 lenum = cpu_to_le64(owner);
14a958e6 1208 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1209 lenum = cpu_to_le64(offset);
14a958e6 1210 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1211
1212 return ((u64)high_crc << 31) ^ (u64)low_crc;
1213}
1214
1215static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 struct btrfs_extent_data_ref *ref)
1217{
1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 btrfs_extent_data_ref_objectid(leaf, ref),
1220 btrfs_extent_data_ref_offset(leaf, ref));
1221}
1222
1223static int match_extent_data_ref(struct extent_buffer *leaf,
1224 struct btrfs_extent_data_ref *ref,
1225 u64 root_objectid, u64 owner, u64 offset)
1226{
1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 return 0;
1231 return 1;
1232}
1233
1234static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1235 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1236 struct btrfs_path *path,
1237 u64 bytenr, u64 parent,
1238 u64 root_objectid,
1239 u64 owner, u64 offset)
1240{
87bde3cd 1241 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref;
31840ae1 1244 struct extent_buffer *leaf;
5d4f98a2 1245 u32 nritems;
74493f7a 1246 int ret;
5d4f98a2
YZ
1247 int recow;
1248 int err = -ENOENT;
74493f7a 1249
31840ae1 1250 key.objectid = bytenr;
5d4f98a2
YZ
1251 if (parent) {
1252 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 key.offset = hash_extent_data_ref(root_objectid,
1257 owner, offset);
1258 }
1259again:
1260 recow = 0;
1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 if (ret < 0) {
1263 err = ret;
1264 goto fail;
1265 }
31840ae1 1266
5d4f98a2
YZ
1267 if (parent) {
1268 if (!ret)
1269 return 0;
1270#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1272 btrfs_release_path(path);
5d4f98a2
YZ
1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 if (ret < 0) {
1275 err = ret;
1276 goto fail;
1277 }
1278 if (!ret)
1279 return 0;
1280#endif
1281 goto fail;
31840ae1
ZY
1282 }
1283
1284 leaf = path->nodes[0];
5d4f98a2
YZ
1285 nritems = btrfs_header_nritems(leaf);
1286 while (1) {
1287 if (path->slots[0] >= nritems) {
1288 ret = btrfs_next_leaf(root, path);
1289 if (ret < 0)
1290 err = ret;
1291 if (ret)
1292 goto fail;
1293
1294 leaf = path->nodes[0];
1295 nritems = btrfs_header_nritems(leaf);
1296 recow = 1;
1297 }
1298
1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 if (key.objectid != bytenr ||
1301 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 goto fail;
1303
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset)) {
1309 if (recow) {
b3b4aa74 1310 btrfs_release_path(path);
5d4f98a2
YZ
1311 goto again;
1312 }
1313 err = 0;
1314 break;
1315 }
1316 path->slots[0]++;
31840ae1 1317 }
5d4f98a2
YZ
1318fail:
1319 return err;
31840ae1
ZY
1320}
1321
5d4f98a2 1322static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1323 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid, u64 owner,
1327 u64 offset, int refs_to_add)
31840ae1 1328{
87bde3cd 1329 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
5d4f98a2 1332 u32 size;
31840ae1
ZY
1333 u32 num_refs;
1334 int ret;
74493f7a 1335
74493f7a 1336 key.objectid = bytenr;
5d4f98a2
YZ
1337 if (parent) {
1338 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 key.offset = parent;
1340 size = sizeof(struct btrfs_shared_data_ref);
1341 } else {
1342 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 key.offset = hash_extent_data_ref(root_objectid,
1344 owner, offset);
1345 size = sizeof(struct btrfs_extent_data_ref);
1346 }
74493f7a 1347
5d4f98a2
YZ
1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 if (ret && ret != -EEXIST)
1350 goto fail;
1351
1352 leaf = path->nodes[0];
1353 if (parent) {
1354 struct btrfs_shared_data_ref *ref;
31840ae1 1355 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1356 struct btrfs_shared_data_ref);
1357 if (ret == 0) {
1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 } else {
1360 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 num_refs += refs_to_add;
1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1363 }
5d4f98a2
YZ
1364 } else {
1365 struct btrfs_extent_data_ref *ref;
1366 while (ret == -EEXIST) {
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (match_extent_data_ref(leaf, ref, root_objectid,
1370 owner, offset))
1371 break;
b3b4aa74 1372 btrfs_release_path(path);
5d4f98a2
YZ
1373 key.offset++;
1374 ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 size);
1376 if (ret && ret != -EEXIST)
1377 goto fail;
31840ae1 1378
5d4f98a2
YZ
1379 leaf = path->nodes[0];
1380 }
1381 ref = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_data_ref);
1383 if (ret == 0) {
1384 btrfs_set_extent_data_ref_root(leaf, ref,
1385 root_objectid);
1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 } else {
1390 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 num_refs += refs_to_add;
1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1393 }
31840ae1 1394 }
5d4f98a2
YZ
1395 btrfs_mark_buffer_dirty(leaf);
1396 ret = 0;
1397fail:
b3b4aa74 1398 btrfs_release_path(path);
7bb86316 1399 return ret;
74493f7a
CM
1400}
1401
5d4f98a2 1402static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1403 struct btrfs_fs_info *fs_info,
5d4f98a2 1404 struct btrfs_path *path,
fcebe456 1405 int refs_to_drop, int *last_ref)
31840ae1 1406{
5d4f98a2
YZ
1407 struct btrfs_key key;
1408 struct btrfs_extent_data_ref *ref1 = NULL;
1409 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1410 struct extent_buffer *leaf;
5d4f98a2 1411 u32 num_refs = 0;
31840ae1
ZY
1412 int ret = 0;
1413
1414 leaf = path->nodes[0];
5d4f98a2
YZ
1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 struct btrfs_extent_data_ref);
1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_shared_data_ref);
1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 struct btrfs_extent_ref_v0 *ref0;
1428 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_ref_v0);
1430 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431#endif
1432 } else {
1433 BUG();
1434 }
1435
56bec294
CM
1436 BUG_ON(num_refs < refs_to_drop);
1437 num_refs -= refs_to_drop;
5d4f98a2 1438
31840ae1 1439 if (num_refs == 0) {
87bde3cd 1440 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1441 *last_ref = 1;
31840ae1 1442 } else {
5d4f98a2
YZ
1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 else {
1449 struct btrfs_extent_ref_v0 *ref0;
1450 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 struct btrfs_extent_ref_v0);
1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453 }
1454#endif
31840ae1
ZY
1455 btrfs_mark_buffer_dirty(leaf);
1456 }
31840ae1
ZY
1457 return ret;
1458}
1459
9ed0dea0 1460static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1461 struct btrfs_extent_inline_ref *iref)
15916de8 1462{
5d4f98a2
YZ
1463 struct btrfs_key key;
1464 struct extent_buffer *leaf;
1465 struct btrfs_extent_data_ref *ref1;
1466 struct btrfs_shared_data_ref *ref2;
1467 u32 num_refs = 0;
3de28d57 1468 int type;
5d4f98a2
YZ
1469
1470 leaf = path->nodes[0];
1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 if (iref) {
3de28d57
LB
1473 /*
1474 * If type is invalid, we should have bailed out earlier than
1475 * this call.
1476 */
1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 } else {
1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485 }
1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_extent_data_ref);
1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 struct btrfs_shared_data_ref);
1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 struct btrfs_extent_ref_v0 *ref0;
1497 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 struct btrfs_extent_ref_v0);
1499 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1500#endif
5d4f98a2
YZ
1501 } else {
1502 WARN_ON(1);
1503 }
1504 return num_refs;
1505}
15916de8 1506
5d4f98a2 1507static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1508 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1509 struct btrfs_path *path,
1510 u64 bytenr, u64 parent,
1511 u64 root_objectid)
1f3c79a2 1512{
87bde3cd 1513 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1514 struct btrfs_key key;
1f3c79a2 1515 int ret;
1f3c79a2 1516
5d4f98a2
YZ
1517 key.objectid = bytenr;
1518 if (parent) {
1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 key.offset = parent;
1521 } else {
1522 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 key.offset = root_objectid;
1f3c79a2
LH
1524 }
1525
5d4f98a2
YZ
1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 if (ret > 0)
1528 ret = -ENOENT;
1529#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 if (ret == -ENOENT && parent) {
b3b4aa74 1531 btrfs_release_path(path);
5d4f98a2
YZ
1532 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret > 0)
1535 ret = -ENOENT;
1536 }
1f3c79a2 1537#endif
5d4f98a2 1538 return ret;
1f3c79a2
LH
1539}
1540
5d4f98a2 1541static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1542 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1543 struct btrfs_path *path,
1544 u64 bytenr, u64 parent,
1545 u64 root_objectid)
31840ae1 1546{
5d4f98a2 1547 struct btrfs_key key;
31840ae1 1548 int ret;
31840ae1 1549
5d4f98a2
YZ
1550 key.objectid = bytenr;
1551 if (parent) {
1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 key.offset = parent;
1554 } else {
1555 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 key.offset = root_objectid;
1557 }
1558
87bde3cd
JM
1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 path, &key, 0);
b3b4aa74 1561 btrfs_release_path(path);
31840ae1
ZY
1562 return ret;
1563}
1564
5d4f98a2 1565static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1566{
5d4f98a2
YZ
1567 int type;
1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 if (parent > 0)
1570 type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 else
1572 type = BTRFS_TREE_BLOCK_REF_KEY;
1573 } else {
1574 if (parent > 0)
1575 type = BTRFS_SHARED_DATA_REF_KEY;
1576 else
1577 type = BTRFS_EXTENT_DATA_REF_KEY;
1578 }
1579 return type;
31840ae1 1580}
56bec294 1581
2c47e605
YZ
1582static int find_next_key(struct btrfs_path *path, int level,
1583 struct btrfs_key *key)
56bec294 1584
02217ed2 1585{
2c47e605 1586 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1587 if (!path->nodes[level])
1588 break;
5d4f98a2
YZ
1589 if (path->slots[level] + 1 >=
1590 btrfs_header_nritems(path->nodes[level]))
1591 continue;
1592 if (level == 0)
1593 btrfs_item_key_to_cpu(path->nodes[level], key,
1594 path->slots[level] + 1);
1595 else
1596 btrfs_node_key_to_cpu(path->nodes[level], key,
1597 path->slots[level] + 1);
1598 return 0;
1599 }
1600 return 1;
1601}
037e6390 1602
5d4f98a2
YZ
1603/*
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1606 *
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1609 *
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1612 *
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 * items in the tree are ordered.
1615 */
1616static noinline_for_stack
1617int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1618 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1619 struct btrfs_path *path,
1620 struct btrfs_extent_inline_ref **ref_ret,
1621 u64 bytenr, u64 num_bytes,
1622 u64 parent, u64 root_objectid,
1623 u64 owner, u64 offset, int insert)
1624{
87bde3cd 1625 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1626 struct btrfs_key key;
1627 struct extent_buffer *leaf;
1628 struct btrfs_extent_item *ei;
1629 struct btrfs_extent_inline_ref *iref;
1630 u64 flags;
1631 u64 item_size;
1632 unsigned long ptr;
1633 unsigned long end;
1634 int extra_size;
1635 int type;
1636 int want;
1637 int ret;
1638 int err = 0;
0b246afa 1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1640 int needed;
26b8003f 1641
db94535d 1642 key.objectid = bytenr;
31840ae1 1643 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1644 key.offset = num_bytes;
31840ae1 1645
5d4f98a2
YZ
1646 want = extent_ref_type(parent, owner);
1647 if (insert) {
1648 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1649 path->keep_locks = 1;
5d4f98a2
YZ
1650 } else
1651 extra_size = -1;
3173a18f
JB
1652
1653 /*
1654 * Owner is our parent level, so we can just add one to get the level
1655 * for the block we are interested in.
1656 */
1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 key.type = BTRFS_METADATA_ITEM_KEY;
1659 key.offset = owner;
1660 }
1661
1662again:
5d4f98a2 1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1664 if (ret < 0) {
5d4f98a2
YZ
1665 err = ret;
1666 goto out;
1667 }
3173a18f
JB
1668
1669 /*
1670 * We may be a newly converted file system which still has the old fat
1671 * extent entries for metadata, so try and see if we have one of those.
1672 */
1673 if (ret > 0 && skinny_metadata) {
1674 skinny_metadata = false;
1675 if (path->slots[0]) {
1676 path->slots[0]--;
1677 btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 path->slots[0]);
1679 if (key.objectid == bytenr &&
1680 key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 key.offset == num_bytes)
1682 ret = 0;
1683 }
1684 if (ret) {
9ce49a0b 1685 key.objectid = bytenr;
3173a18f
JB
1686 key.type = BTRFS_EXTENT_ITEM_KEY;
1687 key.offset = num_bytes;
1688 btrfs_release_path(path);
1689 goto again;
1690 }
1691 }
1692
79787eaa
JM
1693 if (ret && !insert) {
1694 err = -ENOENT;
1695 goto out;
fae7f21c 1696 } else if (WARN_ON(ret)) {
492104c8 1697 err = -EIO;
492104c8 1698 goto out;
79787eaa 1699 }
5d4f98a2
YZ
1700
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 if (item_size < sizeof(*ei)) {
1705 if (!insert) {
1706 err = -ENOENT;
1707 goto out;
1708 }
87bde3cd 1709 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1710 extra_size);
1711 if (ret < 0) {
1712 err = ret;
1713 goto out;
1714 }
1715 leaf = path->nodes[0];
1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717 }
1718#endif
1719 BUG_ON(item_size < sizeof(*ei));
1720
5d4f98a2
YZ
1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 flags = btrfs_extent_flags(leaf, ei);
1723
1724 ptr = (unsigned long)(ei + 1);
1725 end = (unsigned long)ei + item_size;
1726
3173a18f 1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1728 ptr += sizeof(struct btrfs_tree_block_info);
1729 BUG_ON(ptr > end);
5d4f98a2
YZ
1730 }
1731
3de28d57
LB
1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 needed = BTRFS_REF_TYPE_DATA;
1734 else
1735 needed = BTRFS_REF_TYPE_BLOCK;
1736
5d4f98a2
YZ
1737 err = -ENOENT;
1738 while (1) {
1739 if (ptr >= end) {
1740 WARN_ON(ptr > end);
1741 break;
1742 }
1743 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 if (type == BTRFS_REF_TYPE_INVALID) {
1746 err = -EINVAL;
1747 goto out;
1748 }
1749
5d4f98a2
YZ
1750 if (want < type)
1751 break;
1752 if (want > type) {
1753 ptr += btrfs_extent_inline_ref_size(type);
1754 continue;
1755 }
1756
1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 struct btrfs_extent_data_ref *dref;
1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 if (match_extent_data_ref(leaf, dref, root_objectid,
1761 owner, offset)) {
1762 err = 0;
1763 break;
1764 }
1765 if (hash_extent_data_ref_item(leaf, dref) <
1766 hash_extent_data_ref(root_objectid, owner, offset))
1767 break;
1768 } else {
1769 u64 ref_offset;
1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 if (parent > 0) {
1772 if (parent == ref_offset) {
1773 err = 0;
1774 break;
1775 }
1776 if (ref_offset < parent)
1777 break;
1778 } else {
1779 if (root_objectid == ref_offset) {
1780 err = 0;
1781 break;
1782 }
1783 if (ref_offset < root_objectid)
1784 break;
1785 }
1786 }
1787 ptr += btrfs_extent_inline_ref_size(type);
1788 }
1789 if (err == -ENOENT && insert) {
1790 if (item_size + extra_size >=
1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 err = -EAGAIN;
1793 goto out;
1794 }
1795 /*
1796 * To add new inline back ref, we have to make sure
1797 * there is no corresponding back ref item.
1798 * For simplicity, we just do not add new inline back
1799 * ref if there is any kind of item for this block
1800 */
2c47e605
YZ
1801 if (find_next_key(path, 0, &key) == 0 &&
1802 key.objectid == bytenr &&
85d4198e 1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1804 err = -EAGAIN;
1805 goto out;
1806 }
1807 }
1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809out:
85d4198e 1810 if (insert) {
5d4f98a2
YZ
1811 path->keep_locks = 0;
1812 btrfs_unlock_up_safe(path, 1);
1813 }
1814 return err;
1815}
1816
1817/*
1818 * helper to add new inline back ref
1819 */
1820static noinline_for_stack
87bde3cd 1821void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1822 struct btrfs_path *path,
1823 struct btrfs_extent_inline_ref *iref,
1824 u64 parent, u64 root_objectid,
1825 u64 owner, u64 offset, int refs_to_add,
1826 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1827{
1828 struct extent_buffer *leaf;
1829 struct btrfs_extent_item *ei;
1830 unsigned long ptr;
1831 unsigned long end;
1832 unsigned long item_offset;
1833 u64 refs;
1834 int size;
1835 int type;
5d4f98a2
YZ
1836
1837 leaf = path->nodes[0];
1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841 type = extent_ref_type(parent, owner);
1842 size = btrfs_extent_inline_ref_size(type);
1843
87bde3cd 1844 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1845
1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 refs = btrfs_extent_refs(leaf, ei);
1848 refs += refs_to_add;
1849 btrfs_set_extent_refs(leaf, ei, refs);
1850 if (extent_op)
1851 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853 ptr = (unsigned long)ei + item_offset;
1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 if (ptr < end - size)
1856 memmove_extent_buffer(leaf, ptr + size, ptr,
1857 end - size - ptr);
1858
1859 iref = (struct btrfs_extent_inline_ref *)ptr;
1860 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 struct btrfs_extent_data_ref *dref;
1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 struct btrfs_shared_data_ref *sref;
1870 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 } else {
1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877 }
1878 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1879}
1880
1881static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1882 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1883 struct btrfs_path *path,
1884 struct btrfs_extent_inline_ref **ref_ret,
1885 u64 bytenr, u64 num_bytes, u64 parent,
1886 u64 root_objectid, u64 owner, u64 offset)
1887{
1888 int ret;
1889
87bde3cd 1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1891 bytenr, num_bytes, parent,
1892 root_objectid, owner, offset, 0);
1893 if (ret != -ENOENT)
54aa1f4d 1894 return ret;
5d4f98a2 1895
b3b4aa74 1896 btrfs_release_path(path);
5d4f98a2
YZ
1897 *ref_ret = NULL;
1898
1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 parent, root_objectid);
5d4f98a2 1902 } else {
87bde3cd
JM
1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 parent, root_objectid, owner,
1905 offset);
b9473439 1906 }
5d4f98a2
YZ
1907 return ret;
1908}
31840ae1 1909
5d4f98a2
YZ
1910/*
1911 * helper to update/remove inline back ref
1912 */
1913static noinline_for_stack
87bde3cd 1914void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1915 struct btrfs_path *path,
1916 struct btrfs_extent_inline_ref *iref,
1917 int refs_to_mod,
fcebe456
JB
1918 struct btrfs_delayed_extent_op *extent_op,
1919 int *last_ref)
5d4f98a2
YZ
1920{
1921 struct extent_buffer *leaf;
1922 struct btrfs_extent_item *ei;
1923 struct btrfs_extent_data_ref *dref = NULL;
1924 struct btrfs_shared_data_ref *sref = NULL;
1925 unsigned long ptr;
1926 unsigned long end;
1927 u32 item_size;
1928 int size;
1929 int type;
5d4f98a2
YZ
1930 u64 refs;
1931
1932 leaf = path->nodes[0];
1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 refs = btrfs_extent_refs(leaf, ei);
1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 refs += refs_to_mod;
1937 btrfs_set_extent_refs(leaf, ei, refs);
1938 if (extent_op)
1939 __run_delayed_extent_op(extent_op, leaf, ei);
1940
3de28d57
LB
1941 /*
1942 * If type is invalid, we should have bailed out after
1943 * lookup_inline_extent_backref().
1944 */
1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1947
1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 refs = btrfs_extent_data_ref_count(leaf, dref);
1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 refs = btrfs_shared_data_ref_count(leaf, sref);
1954 } else {
1955 refs = 1;
1956 BUG_ON(refs_to_mod != -1);
56bec294 1957 }
31840ae1 1958
5d4f98a2
YZ
1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 refs += refs_to_mod;
1961
1962 if (refs > 0) {
1963 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 else
1966 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 } else {
fcebe456 1968 *last_ref = 1;
5d4f98a2
YZ
1969 size = btrfs_extent_inline_ref_size(type);
1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 ptr = (unsigned long)iref;
1972 end = (unsigned long)ei + item_size;
1973 if (ptr + size < end)
1974 memmove_extent_buffer(leaf, ptr, ptr + size,
1975 end - ptr - size);
1976 item_size -= size;
87bde3cd 1977 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1978 }
1979 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1980}
1981
1982static noinline_for_stack
1983int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1984 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1985 struct btrfs_path *path,
1986 u64 bytenr, u64 num_bytes, u64 parent,
1987 u64 root_objectid, u64 owner,
1988 u64 offset, int refs_to_add,
1989 struct btrfs_delayed_extent_op *extent_op)
1990{
1991 struct btrfs_extent_inline_ref *iref;
1992 int ret;
1993
87bde3cd 1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1995 bytenr, num_bytes, parent,
1996 root_objectid, owner, offset, 1);
1997 if (ret == 0) {
1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1999 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2000 refs_to_add, extent_op, NULL);
5d4f98a2 2001 } else if (ret == -ENOENT) {
87bde3cd 2002 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
2003 root_objectid, owner, offset,
2004 refs_to_add, extent_op);
2005 ret = 0;
771ed689 2006 }
5d4f98a2
YZ
2007 return ret;
2008}
31840ae1 2009
5d4f98a2 2010static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2011 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2012 struct btrfs_path *path,
2013 u64 bytenr, u64 parent, u64 root_objectid,
2014 u64 owner, u64 offset, int refs_to_add)
2015{
2016 int ret;
2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 BUG_ON(refs_to_add != 1);
87bde3cd 2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2020 parent, root_objectid);
2021 } else {
87bde3cd 2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2023 parent, root_objectid,
2024 owner, offset, refs_to_add);
2025 }
2026 return ret;
2027}
56bec294 2028
5d4f98a2 2029static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2030 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2031 struct btrfs_path *path,
2032 struct btrfs_extent_inline_ref *iref,
fcebe456 2033 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2034{
143bede5 2035 int ret = 0;
b9473439 2036
5d4f98a2
YZ
2037 BUG_ON(!is_data && refs_to_drop != 1);
2038 if (iref) {
87bde3cd 2039 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2040 -refs_to_drop, NULL, last_ref);
5d4f98a2 2041 } else if (is_data) {
87bde3cd 2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 2043 last_ref);
5d4f98a2 2044 } else {
fcebe456 2045 *last_ref = 1;
87bde3cd 2046 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2047 }
2048 return ret;
2049}
2050
86557861 2051#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2052static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 u64 *discarded_bytes)
5d4f98a2 2054{
86557861
JM
2055 int j, ret = 0;
2056 u64 bytes_left, end;
4d89d377 2057 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2058
4d89d377
JM
2059 if (WARN_ON(start != aligned_start)) {
2060 len -= aligned_start - start;
2061 len = round_down(len, 1 << 9);
2062 start = aligned_start;
2063 }
d04c6b88 2064
4d89d377 2065 *discarded_bytes = 0;
86557861
JM
2066
2067 if (!len)
2068 return 0;
2069
2070 end = start + len;
2071 bytes_left = len;
2072
2073 /* Skip any superblocks on this device. */
2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 u64 sb_start = btrfs_sb_offset(j);
2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 u64 size = sb_start - start;
2078
2079 if (!in_range(sb_start, start, bytes_left) &&
2080 !in_range(sb_end, start, bytes_left) &&
2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 continue;
2083
2084 /*
2085 * Superblock spans beginning of range. Adjust start and
2086 * try again.
2087 */
2088 if (sb_start <= start) {
2089 start += sb_end - start;
2090 if (start > end) {
2091 bytes_left = 0;
2092 break;
2093 }
2094 bytes_left = end - start;
2095 continue;
2096 }
2097
2098 if (size) {
2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 GFP_NOFS, 0);
2101 if (!ret)
2102 *discarded_bytes += size;
2103 else if (ret != -EOPNOTSUPP)
2104 return ret;
2105 }
2106
2107 start = sb_end;
2108 if (start > end) {
2109 bytes_left = 0;
2110 break;
2111 }
2112 bytes_left = end - start;
2113 }
2114
2115 if (bytes_left) {
2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2117 GFP_NOFS, 0);
2118 if (!ret)
86557861 2119 *discarded_bytes += bytes_left;
4d89d377 2120 }
d04c6b88 2121 return ret;
5d4f98a2 2122}
5d4f98a2 2123
2ff7e61e 2124int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2125 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2126{
5d4f98a2 2127 int ret;
5378e607 2128 u64 discarded_bytes = 0;
a1d3c478 2129 struct btrfs_bio *bbio = NULL;
5d4f98a2 2130
e244a0ae 2131
2999241d
FM
2132 /*
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are discarding.
2135 */
0b246afa 2136 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2137 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 &bbio, 0);
79787eaa 2140 /* Error condition is -ENOMEM */
5d4f98a2 2141 if (!ret) {
a1d3c478 2142 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2143 int i;
2144
5d4f98a2 2145
a1d3c478 2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2147 u64 bytes;
d5e2003c
JB
2148 if (!stripe->dev->can_discard)
2149 continue;
2150
5378e607
LD
2151 ret = btrfs_issue_discard(stripe->dev->bdev,
2152 stripe->physical,
d04c6b88
JM
2153 stripe->length,
2154 &bytes);
5378e607 2155 if (!ret)
d04c6b88 2156 discarded_bytes += bytes;
5378e607 2157 else if (ret != -EOPNOTSUPP)
79787eaa 2158 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2159
2160 /*
2161 * Just in case we get back EOPNOTSUPP for some reason,
2162 * just ignore the return value so we don't screw up
2163 * people calling discard_extent.
2164 */
2165 ret = 0;
5d4f98a2 2166 }
6e9606d2 2167 btrfs_put_bbio(bbio);
5d4f98a2 2168 }
0b246afa 2169 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2170
2171 if (actual_bytes)
2172 *actual_bytes = discarded_bytes;
2173
5d4f98a2 2174
53b381b3
DW
2175 if (ret == -EOPNOTSUPP)
2176 ret = 0;
5d4f98a2 2177 return ret;
5d4f98a2
YZ
2178}
2179
79787eaa 2180/* Can return -ENOMEM */
5d4f98a2 2181int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2182 struct btrfs_root *root,
5d4f98a2 2183 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2184 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2185{
84f7d8e6 2186 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2187 int old_ref_mod, new_ref_mod;
5d4f98a2 2188 int ret;
66d7e7f0 2189
5d4f98a2
YZ
2190 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2191 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2192
fd708b81
JB
2193 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2194 owner, offset, BTRFS_ADD_DELAYED_REF);
2195
5d4f98a2 2196 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2197 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2198 num_bytes, parent,
2199 root_objectid, (int)owner,
2200 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2201 &old_ref_mod, &new_ref_mod);
5d4f98a2 2202 } else {
66d7e7f0 2203 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2204 num_bytes, parent,
2205 root_objectid, owner, offset,
d7eae340
OS
2206 0, BTRFS_ADD_DELAYED_REF,
2207 &old_ref_mod, &new_ref_mod);
5d4f98a2 2208 }
d7eae340
OS
2209
2210 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2211 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2212
5d4f98a2
YZ
2213 return ret;
2214}
2215
2216static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2217 struct btrfs_fs_info *fs_info,
c682f9b3 2218 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2219 u64 parent, u64 root_objectid,
2220 u64 owner, u64 offset, int refs_to_add,
2221 struct btrfs_delayed_extent_op *extent_op)
2222{
2223 struct btrfs_path *path;
2224 struct extent_buffer *leaf;
2225 struct btrfs_extent_item *item;
fcebe456 2226 struct btrfs_key key;
c682f9b3
QW
2227 u64 bytenr = node->bytenr;
2228 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2229 u64 refs;
2230 int ret;
5d4f98a2
YZ
2231
2232 path = btrfs_alloc_path();
2233 if (!path)
2234 return -ENOMEM;
2235
e4058b54 2236 path->reada = READA_FORWARD;
5d4f98a2
YZ
2237 path->leave_spinning = 1;
2238 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2239 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2240 num_bytes, parent, root_objectid,
2241 owner, offset,
5d4f98a2 2242 refs_to_add, extent_op);
0ed4792a 2243 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2244 goto out;
fcebe456
JB
2245
2246 /*
2247 * Ok we had -EAGAIN which means we didn't have space to insert and
2248 * inline extent ref, so just update the reference count and add a
2249 * normal backref.
2250 */
5d4f98a2 2251 leaf = path->nodes[0];
fcebe456 2252 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2253 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2254 refs = btrfs_extent_refs(leaf, item);
2255 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2256 if (extent_op)
2257 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2258
5d4f98a2 2259 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2260 btrfs_release_path(path);
56bec294 2261
e4058b54 2262 path->reada = READA_FORWARD;
b9473439 2263 path->leave_spinning = 1;
56bec294 2264 /* now insert the actual backref */
87bde3cd
JM
2265 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2266 root_objectid, owner, offset, refs_to_add);
79787eaa 2267 if (ret)
66642832 2268 btrfs_abort_transaction(trans, ret);
5d4f98a2 2269out:
56bec294 2270 btrfs_free_path(path);
30d133fc 2271 return ret;
56bec294
CM
2272}
2273
5d4f98a2 2274static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2275 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
56bec294 2279{
5d4f98a2
YZ
2280 int ret = 0;
2281 struct btrfs_delayed_data_ref *ref;
2282 struct btrfs_key ins;
2283 u64 parent = 0;
2284 u64 ref_root = 0;
2285 u64 flags = 0;
2286
2287 ins.objectid = node->bytenr;
2288 ins.offset = node->num_bytes;
2289 ins.type = BTRFS_EXTENT_ITEM_KEY;
2290
2291 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2292 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2293
5d4f98a2
YZ
2294 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2295 parent = ref->parent;
fcebe456 2296 ref_root = ref->root;
5d4f98a2
YZ
2297
2298 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2299 if (extent_op)
5d4f98a2 2300 flags |= extent_op->flags_to_set;
2ff7e61e 2301 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2302 parent, ref_root, flags,
2303 ref->objectid, ref->offset,
2304 &ins, node->ref_mod);
5d4f98a2 2305 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2306 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2307 ref_root, ref->objectid,
2308 ref->offset, node->ref_mod,
c682f9b3 2309 extent_op);
5d4f98a2 2310 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2311 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2312 ref_root, ref->objectid,
2313 ref->offset, node->ref_mod,
c682f9b3 2314 extent_op);
5d4f98a2
YZ
2315 } else {
2316 BUG();
2317 }
2318 return ret;
2319}
2320
2321static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2322 struct extent_buffer *leaf,
2323 struct btrfs_extent_item *ei)
2324{
2325 u64 flags = btrfs_extent_flags(leaf, ei);
2326 if (extent_op->update_flags) {
2327 flags |= extent_op->flags_to_set;
2328 btrfs_set_extent_flags(leaf, ei, flags);
2329 }
2330
2331 if (extent_op->update_key) {
2332 struct btrfs_tree_block_info *bi;
2333 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2334 bi = (struct btrfs_tree_block_info *)(ei + 1);
2335 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2336 }
2337}
2338
2339static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2340 struct btrfs_fs_info *fs_info,
d278850e 2341 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2342 struct btrfs_delayed_extent_op *extent_op)
2343{
2344 struct btrfs_key key;
2345 struct btrfs_path *path;
2346 struct btrfs_extent_item *ei;
2347 struct extent_buffer *leaf;
2348 u32 item_size;
56bec294 2349 int ret;
5d4f98a2 2350 int err = 0;
b1c79e09 2351 int metadata = !extent_op->is_data;
5d4f98a2 2352
79787eaa
JM
2353 if (trans->aborted)
2354 return 0;
2355
0b246afa 2356 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2357 metadata = 0;
2358
5d4f98a2
YZ
2359 path = btrfs_alloc_path();
2360 if (!path)
2361 return -ENOMEM;
2362
d278850e 2363 key.objectid = head->bytenr;
5d4f98a2 2364
3173a18f 2365 if (metadata) {
3173a18f 2366 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2367 key.offset = extent_op->level;
3173a18f
JB
2368 } else {
2369 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2370 key.offset = head->num_bytes;
3173a18f
JB
2371 }
2372
2373again:
e4058b54 2374 path->reada = READA_FORWARD;
5d4f98a2 2375 path->leave_spinning = 1;
0b246afa 2376 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2377 if (ret < 0) {
2378 err = ret;
2379 goto out;
2380 }
2381 if (ret > 0) {
3173a18f 2382 if (metadata) {
55994887
FDBM
2383 if (path->slots[0] > 0) {
2384 path->slots[0]--;
2385 btrfs_item_key_to_cpu(path->nodes[0], &key,
2386 path->slots[0]);
d278850e 2387 if (key.objectid == head->bytenr &&
55994887 2388 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2389 key.offset == head->num_bytes)
55994887
FDBM
2390 ret = 0;
2391 }
2392 if (ret > 0) {
2393 btrfs_release_path(path);
2394 metadata = 0;
3173a18f 2395
d278850e
JB
2396 key.objectid = head->bytenr;
2397 key.offset = head->num_bytes;
55994887
FDBM
2398 key.type = BTRFS_EXTENT_ITEM_KEY;
2399 goto again;
2400 }
2401 } else {
2402 err = -EIO;
2403 goto out;
3173a18f 2404 }
5d4f98a2
YZ
2405 }
2406
2407 leaf = path->nodes[0];
2408 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2409#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2410 if (item_size < sizeof(*ei)) {
87bde3cd 2411 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2412 if (ret < 0) {
2413 err = ret;
2414 goto out;
2415 }
2416 leaf = path->nodes[0];
2417 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2418 }
2419#endif
2420 BUG_ON(item_size < sizeof(*ei));
2421 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2422 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2423
5d4f98a2
YZ
2424 btrfs_mark_buffer_dirty(leaf);
2425out:
2426 btrfs_free_path(path);
2427 return err;
56bec294
CM
2428}
2429
5d4f98a2 2430static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2431 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2432 struct btrfs_delayed_ref_node *node,
2433 struct btrfs_delayed_extent_op *extent_op,
2434 int insert_reserved)
56bec294
CM
2435{
2436 int ret = 0;
5d4f98a2
YZ
2437 struct btrfs_delayed_tree_ref *ref;
2438 struct btrfs_key ins;
2439 u64 parent = 0;
2440 u64 ref_root = 0;
0b246afa 2441 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2442
5d4f98a2 2443 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2444 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2445
5d4f98a2
YZ
2446 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2447 parent = ref->parent;
fcebe456 2448 ref_root = ref->root;
5d4f98a2 2449
3173a18f
JB
2450 ins.objectid = node->bytenr;
2451 if (skinny_metadata) {
2452 ins.offset = ref->level;
2453 ins.type = BTRFS_METADATA_ITEM_KEY;
2454 } else {
2455 ins.offset = node->num_bytes;
2456 ins.type = BTRFS_EXTENT_ITEM_KEY;
2457 }
2458
02794222 2459 if (node->ref_mod != 1) {
2ff7e61e 2460 btrfs_err(fs_info,
02794222
LB
2461 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2462 node->bytenr, node->ref_mod, node->action, ref_root,
2463 parent);
2464 return -EIO;
2465 }
5d4f98a2 2466 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2467 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2468 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2469 parent, ref_root,
2470 extent_op->flags_to_set,
2471 &extent_op->key,
b06c4bf5 2472 ref->level, &ins);
5d4f98a2 2473 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2474 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2475 parent, ref_root,
2476 ref->level, 0, 1,
fcebe456 2477 extent_op);
5d4f98a2 2478 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2479 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2480 parent, ref_root,
2481 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2482 } else {
2483 BUG();
2484 }
56bec294
CM
2485 return ret;
2486}
2487
2488/* helper function to actually process a single delayed ref entry */
5d4f98a2 2489static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2490 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2491 struct btrfs_delayed_ref_node *node,
2492 struct btrfs_delayed_extent_op *extent_op,
2493 int insert_reserved)
56bec294 2494{
79787eaa
JM
2495 int ret = 0;
2496
857cc2fc
JB
2497 if (trans->aborted) {
2498 if (insert_reserved)
2ff7e61e 2499 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2500 node->num_bytes, 1);
79787eaa 2501 return 0;
857cc2fc 2502 }
79787eaa 2503
5d4f98a2
YZ
2504 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2505 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2506 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2507 insert_reserved);
2508 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2509 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2510 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2511 insert_reserved);
2512 else
2513 BUG();
2514 return ret;
56bec294
CM
2515}
2516
c6fc2454 2517static inline struct btrfs_delayed_ref_node *
56bec294
CM
2518select_delayed_ref(struct btrfs_delayed_ref_head *head)
2519{
cffc3374
FM
2520 struct btrfs_delayed_ref_node *ref;
2521
0e0adbcf 2522 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2523 return NULL;
d7df2c79 2524
cffc3374
FM
2525 /*
2526 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2527 * This is to prevent a ref count from going down to zero, which deletes
2528 * the extent item from the extent tree, when there still are references
2529 * to add, which would fail because they would not find the extent item.
2530 */
1d57ee94
WX
2531 if (!list_empty(&head->ref_add_list))
2532 return list_first_entry(&head->ref_add_list,
2533 struct btrfs_delayed_ref_node, add_list);
2534
0e0adbcf
JB
2535 ref = rb_entry(rb_first(&head->ref_tree),
2536 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2537 ASSERT(list_empty(&ref->add_list));
2538 return ref;
56bec294
CM
2539}
2540
2eadaa22
JB
2541static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2542 struct btrfs_delayed_ref_head *head)
2543{
2544 spin_lock(&delayed_refs->lock);
2545 head->processing = 0;
2546 delayed_refs->num_heads_ready++;
2547 spin_unlock(&delayed_refs->lock);
2548 btrfs_delayed_ref_unlock(head);
2549}
2550
b00e6250
JB
2551static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2552 struct btrfs_fs_info *fs_info,
2553 struct btrfs_delayed_ref_head *head)
2554{
2555 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2556 int ret;
2557
2558 if (!extent_op)
2559 return 0;
2560 head->extent_op = NULL;
2561 if (head->must_insert_reserved) {
2562 btrfs_free_delayed_extent_op(extent_op);
2563 return 0;
2564 }
2565 spin_unlock(&head->lock);
d278850e 2566 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2567 btrfs_free_delayed_extent_op(extent_op);
2568 return ret ? ret : 1;
2569}
2570
194ab0bc
JB
2571static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2572 struct btrfs_fs_info *fs_info,
2573 struct btrfs_delayed_ref_head *head)
2574{
2575 struct btrfs_delayed_ref_root *delayed_refs;
2576 int ret;
2577
2578 delayed_refs = &trans->transaction->delayed_refs;
2579
2580 ret = cleanup_extent_op(trans, fs_info, head);
2581 if (ret < 0) {
2582 unselect_delayed_ref_head(delayed_refs, head);
2583 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2584 return ret;
2585 } else if (ret) {
2586 return ret;
2587 }
2588
2589 /*
2590 * Need to drop our head ref lock and re-acquire the delayed ref lock
2591 * and then re-check to make sure nobody got added.
2592 */
2593 spin_unlock(&head->lock);
2594 spin_lock(&delayed_refs->lock);
2595 spin_lock(&head->lock);
0e0adbcf 2596 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2597 spin_unlock(&head->lock);
2598 spin_unlock(&delayed_refs->lock);
2599 return 1;
2600 }
194ab0bc
JB
2601 delayed_refs->num_heads--;
2602 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2603 RB_CLEAR_NODE(&head->href_node);
194ab0bc 2604 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2605 spin_unlock(&head->lock);
2606 atomic_dec(&delayed_refs->num_entries);
2607
d278850e 2608 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2609
2610 if (head->total_ref_mod < 0) {
2611 struct btrfs_block_group_cache *cache;
2612
d278850e 2613 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
c1103f7a
JB
2614 ASSERT(cache);
2615 percpu_counter_add(&cache->space_info->total_bytes_pinned,
d278850e 2616 -head->num_bytes);
c1103f7a
JB
2617 btrfs_put_block_group(cache);
2618
2619 if (head->is_data) {
2620 spin_lock(&delayed_refs->lock);
d278850e 2621 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2622 spin_unlock(&delayed_refs->lock);
2623 }
2624 }
2625
2626 if (head->must_insert_reserved) {
d278850e
JB
2627 btrfs_pin_extent(fs_info, head->bytenr,
2628 head->num_bytes, 1);
c1103f7a 2629 if (head->is_data) {
d278850e
JB
2630 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2631 head->num_bytes);
c1103f7a
JB
2632 }
2633 }
2634
2635 /* Also free its reserved qgroup space */
2636 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2637 head->qgroup_reserved);
2638 btrfs_delayed_ref_unlock(head);
d278850e 2639 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2640 return 0;
2641}
2642
79787eaa
JM
2643/*
2644 * Returns 0 on success or if called with an already aborted transaction.
2645 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2646 */
d7df2c79 2647static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2648 struct btrfs_fs_info *fs_info,
d7df2c79 2649 unsigned long nr)
56bec294 2650{
56bec294
CM
2651 struct btrfs_delayed_ref_root *delayed_refs;
2652 struct btrfs_delayed_ref_node *ref;
2653 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2654 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2655 ktime_t start = ktime_get();
56bec294 2656 int ret;
d7df2c79 2657 unsigned long count = 0;
0a2b2a84 2658 unsigned long actual_count = 0;
56bec294 2659 int must_insert_reserved = 0;
56bec294
CM
2660
2661 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2662 while (1) {
2663 if (!locked_ref) {
d7df2c79 2664 if (count >= nr)
56bec294 2665 break;
56bec294 2666
d7df2c79
JB
2667 spin_lock(&delayed_refs->lock);
2668 locked_ref = btrfs_select_ref_head(trans);
2669 if (!locked_ref) {
2670 spin_unlock(&delayed_refs->lock);
2671 break;
2672 }
c3e69d58
CM
2673
2674 /* grab the lock that says we are going to process
2675 * all the refs for this head */
2676 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2677 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2678 /*
2679 * we may have dropped the spin lock to get the head
2680 * mutex lock, and that might have given someone else
2681 * time to free the head. If that's true, it has been
2682 * removed from our list and we can move on.
2683 */
2684 if (ret == -EAGAIN) {
2685 locked_ref = NULL;
2686 count++;
2687 continue;
56bec294
CM
2688 }
2689 }
a28ec197 2690
2c3cf7d5
FM
2691 /*
2692 * We need to try and merge add/drops of the same ref since we
2693 * can run into issues with relocate dropping the implicit ref
2694 * and then it being added back again before the drop can
2695 * finish. If we merged anything we need to re-loop so we can
2696 * get a good ref.
2697 * Or we can get node references of the same type that weren't
2698 * merged when created due to bumps in the tree mod seq, and
2699 * we need to merge them to prevent adding an inline extent
2700 * backref before dropping it (triggering a BUG_ON at
2701 * insert_inline_extent_backref()).
2702 */
d7df2c79 2703 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2704 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2705 locked_ref);
ae1e206b 2706
d1270cd9
AJ
2707 /*
2708 * locked_ref is the head node, so we have to go one
2709 * node back for any delayed ref updates
2710 */
2711 ref = select_delayed_ref(locked_ref);
2712
2713 if (ref && ref->seq &&
097b8a7c 2714 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2715 spin_unlock(&locked_ref->lock);
2eadaa22 2716 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2717 locked_ref = NULL;
d1270cd9 2718 cond_resched();
27a377db 2719 count++;
d1270cd9
AJ
2720 continue;
2721 }
2722
c1103f7a
JB
2723 /*
2724 * We're done processing refs in this ref_head, clean everything
2725 * up and move on to the next ref_head.
2726 */
56bec294 2727 if (!ref) {
194ab0bc
JB
2728 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2729 if (ret > 0 ) {
b00e6250
JB
2730 /* We dropped our lock, we need to loop. */
2731 ret = 0;
d7df2c79 2732 continue;
194ab0bc
JB
2733 } else if (ret) {
2734 return ret;
5d4f98a2 2735 }
c1103f7a
JB
2736 locked_ref = NULL;
2737 count++;
2738 continue;
2739 }
02217ed2 2740
c1103f7a
JB
2741 actual_count++;
2742 ref->in_tree = 0;
0e0adbcf
JB
2743 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2744 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2745 if (!list_empty(&ref->add_list))
2746 list_del(&ref->add_list);
2747 /*
2748 * When we play the delayed ref, also correct the ref_mod on
2749 * head
2750 */
2751 switch (ref->action) {
2752 case BTRFS_ADD_DELAYED_REF:
2753 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2754 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2755 break;
2756 case BTRFS_DROP_DELAYED_REF:
d278850e 2757 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2758 break;
2759 default:
2760 WARN_ON(1);
22cd2e7d 2761 }
1ce7a5ec
JB
2762 atomic_dec(&delayed_refs->num_entries);
2763
b00e6250
JB
2764 /*
2765 * Record the must-insert_reserved flag before we drop the spin
2766 * lock.
2767 */
2768 must_insert_reserved = locked_ref->must_insert_reserved;
2769 locked_ref->must_insert_reserved = 0;
2770
2771 extent_op = locked_ref->extent_op;
2772 locked_ref->extent_op = NULL;
d7df2c79 2773 spin_unlock(&locked_ref->lock);
925baedd 2774
2ff7e61e 2775 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2776 must_insert_reserved);
eb099670 2777
78a6184a 2778 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2779 if (ret) {
2eadaa22 2780 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2781 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2782 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2783 ret);
79787eaa
JM
2784 return ret;
2785 }
2786
093486c4
MX
2787 btrfs_put_delayed_ref(ref);
2788 count++;
c3e69d58 2789 cond_resched();
c3e69d58 2790 }
0a2b2a84
JB
2791
2792 /*
2793 * We don't want to include ref heads since we can have empty ref heads
2794 * and those will drastically skew our runtime down since we just do
2795 * accounting, no actual extent tree updates.
2796 */
2797 if (actual_count > 0) {
2798 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2799 u64 avg;
2800
2801 /*
2802 * We weigh the current average higher than our current runtime
2803 * to avoid large swings in the average.
2804 */
2805 spin_lock(&delayed_refs->lock);
2806 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2807 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2808 spin_unlock(&delayed_refs->lock);
2809 }
d7df2c79 2810 return 0;
c3e69d58
CM
2811}
2812
709c0486
AJ
2813#ifdef SCRAMBLE_DELAYED_REFS
2814/*
2815 * Normally delayed refs get processed in ascending bytenr order. This
2816 * correlates in most cases to the order added. To expose dependencies on this
2817 * order, we start to process the tree in the middle instead of the beginning
2818 */
2819static u64 find_middle(struct rb_root *root)
2820{
2821 struct rb_node *n = root->rb_node;
2822 struct btrfs_delayed_ref_node *entry;
2823 int alt = 1;
2824 u64 middle;
2825 u64 first = 0, last = 0;
2826
2827 n = rb_first(root);
2828 if (n) {
2829 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2830 first = entry->bytenr;
2831 }
2832 n = rb_last(root);
2833 if (n) {
2834 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2835 last = entry->bytenr;
2836 }
2837 n = root->rb_node;
2838
2839 while (n) {
2840 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2841 WARN_ON(!entry->in_tree);
2842
2843 middle = entry->bytenr;
2844
2845 if (alt)
2846 n = n->rb_left;
2847 else
2848 n = n->rb_right;
2849
2850 alt = 1 - alt;
2851 }
2852 return middle;
2853}
2854#endif
2855
2ff7e61e 2856static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2857{
2858 u64 num_bytes;
2859
2860 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2861 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2862 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2863 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2864
2865 /*
2866 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2867 * closer to what we're really going to want to use.
1be41b78 2868 */
0b246afa 2869 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2870}
2871
1262133b
JB
2872/*
2873 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2874 * would require to store the csums for that many bytes.
2875 */
2ff7e61e 2876u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2877{
2878 u64 csum_size;
2879 u64 num_csums_per_leaf;
2880 u64 num_csums;
2881
0b246afa 2882 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2883 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2884 (u64)btrfs_super_csum_size(fs_info->super_copy));
2885 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2886 num_csums += num_csums_per_leaf - 1;
2887 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2888 return num_csums;
2889}
2890
0a2b2a84 2891int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2892 struct btrfs_fs_info *fs_info)
1be41b78
JB
2893{
2894 struct btrfs_block_rsv *global_rsv;
2895 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2896 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2897 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2898 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2899 int ret = 0;
2900
0b246afa 2901 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2902 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2903 if (num_heads > 1)
0b246afa 2904 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2905 num_bytes <<= 1;
2ff7e61e
JM
2906 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2907 fs_info->nodesize;
0b246afa 2908 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2909 num_dirty_bgs);
0b246afa 2910 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2911
2912 /*
2913 * If we can't allocate any more chunks lets make sure we have _lots_ of
2914 * wiggle room since running delayed refs can create more delayed refs.
2915 */
cb723e49
JB
2916 if (global_rsv->space_info->full) {
2917 num_dirty_bgs_bytes <<= 1;
1be41b78 2918 num_bytes <<= 1;
cb723e49 2919 }
1be41b78
JB
2920
2921 spin_lock(&global_rsv->lock);
cb723e49 2922 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2923 ret = 1;
2924 spin_unlock(&global_rsv->lock);
2925 return ret;
2926}
2927
0a2b2a84 2928int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2929 struct btrfs_fs_info *fs_info)
0a2b2a84 2930{
0a2b2a84
JB
2931 u64 num_entries =
2932 atomic_read(&trans->transaction->delayed_refs.num_entries);
2933 u64 avg_runtime;
a79b7d4b 2934 u64 val;
0a2b2a84
JB
2935
2936 smp_mb();
2937 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2938 val = num_entries * avg_runtime;
dc1a90c6 2939 if (val >= NSEC_PER_SEC)
0a2b2a84 2940 return 1;
a79b7d4b
CM
2941 if (val >= NSEC_PER_SEC / 2)
2942 return 2;
0a2b2a84 2943
2ff7e61e 2944 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2945}
2946
a79b7d4b
CM
2947struct async_delayed_refs {
2948 struct btrfs_root *root;
31b9655f 2949 u64 transid;
a79b7d4b
CM
2950 int count;
2951 int error;
2952 int sync;
2953 struct completion wait;
2954 struct btrfs_work work;
2955};
2956
2ff7e61e
JM
2957static inline struct async_delayed_refs *
2958to_async_delayed_refs(struct btrfs_work *work)
2959{
2960 return container_of(work, struct async_delayed_refs, work);
2961}
2962
a79b7d4b
CM
2963static void delayed_ref_async_start(struct btrfs_work *work)
2964{
2ff7e61e 2965 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2966 struct btrfs_trans_handle *trans;
2ff7e61e 2967 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2968 int ret;
2969
0f873eca 2970 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2971 if (btrfs_transaction_blocked(fs_info))
31b9655f 2972 goto done;
31b9655f 2973
0f873eca
CM
2974 trans = btrfs_join_transaction(async->root);
2975 if (IS_ERR(trans)) {
2976 async->error = PTR_ERR(trans);
a79b7d4b
CM
2977 goto done;
2978 }
2979
2980 /*
01327610 2981 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2982 * wait on delayed refs
2983 */
2984 trans->sync = true;
0f873eca
CM
2985
2986 /* Don't bother flushing if we got into a different transaction */
2987 if (trans->transid > async->transid)
2988 goto end;
2989
2ff7e61e 2990 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
2991 if (ret)
2992 async->error = ret;
0f873eca 2993end:
3a45bb20 2994 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2995 if (ret && !async->error)
2996 async->error = ret;
2997done:
2998 if (async->sync)
2999 complete(&async->wait);
3000 else
3001 kfree(async);
3002}
3003
2ff7e61e 3004int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 3005 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
3006{
3007 struct async_delayed_refs *async;
3008 int ret;
3009
3010 async = kmalloc(sizeof(*async), GFP_NOFS);
3011 if (!async)
3012 return -ENOMEM;
3013
0b246afa 3014 async->root = fs_info->tree_root;
a79b7d4b
CM
3015 async->count = count;
3016 async->error = 0;
31b9655f 3017 async->transid = transid;
a79b7d4b
CM
3018 if (wait)
3019 async->sync = 1;
3020 else
3021 async->sync = 0;
3022 init_completion(&async->wait);
3023
9e0af237
LB
3024 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3025 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3026
0b246afa 3027 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3028
3029 if (wait) {
3030 wait_for_completion(&async->wait);
3031 ret = async->error;
3032 kfree(async);
3033 return ret;
3034 }
3035 return 0;
3036}
3037
c3e69d58
CM
3038/*
3039 * this starts processing the delayed reference count updates and
3040 * extent insertions we have queued up so far. count can be
3041 * 0, which means to process everything in the tree at the start
3042 * of the run (but not newly added entries), or it can be some target
3043 * number you'd like to process.
79787eaa
JM
3044 *
3045 * Returns 0 on success or if called with an aborted transaction
3046 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3047 */
3048int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 3049 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
3050{
3051 struct rb_node *node;
3052 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3053 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3054 int ret;
3055 int run_all = count == (unsigned long)-1;
d9a0540a 3056 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 3057
79787eaa
JM
3058 /* We'll clean this up in btrfs_cleanup_transaction */
3059 if (trans->aborted)
3060 return 0;
3061
0b246afa 3062 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3063 return 0;
3064
c3e69d58 3065 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3066 if (count == 0)
d7df2c79 3067 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3068
c3e69d58 3069again:
709c0486
AJ
3070#ifdef SCRAMBLE_DELAYED_REFS
3071 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3072#endif
d9a0540a 3073 trans->can_flush_pending_bgs = false;
2ff7e61e 3074 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 3075 if (ret < 0) {
66642832 3076 btrfs_abort_transaction(trans, ret);
d7df2c79 3077 return ret;
eb099670 3078 }
c3e69d58 3079
56bec294 3080 if (run_all) {
d7df2c79 3081 if (!list_empty(&trans->new_bgs))
2ff7e61e 3082 btrfs_create_pending_block_groups(trans, fs_info);
ea658bad 3083
d7df2c79 3084 spin_lock(&delayed_refs->lock);
c46effa6 3085 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3086 if (!node) {
3087 spin_unlock(&delayed_refs->lock);
56bec294 3088 goto out;
d7df2c79 3089 }
d278850e
JB
3090 head = rb_entry(node, struct btrfs_delayed_ref_head,
3091 href_node);
3092 refcount_inc(&head->refs);
3093 spin_unlock(&delayed_refs->lock);
e9d0b13b 3094
d278850e
JB
3095 /* Mutex was contended, block until it's released and retry. */
3096 mutex_lock(&head->mutex);
3097 mutex_unlock(&head->mutex);
56bec294 3098
d278850e 3099 btrfs_put_delayed_ref_head(head);
d7df2c79 3100 cond_resched();
56bec294 3101 goto again;
5f39d397 3102 }
54aa1f4d 3103out:
d9a0540a 3104 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3105 return 0;
3106}
3107
5d4f98a2 3108int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3109 struct btrfs_fs_info *fs_info,
5d4f98a2 3110 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3111 int level, int is_data)
5d4f98a2
YZ
3112{
3113 struct btrfs_delayed_extent_op *extent_op;
3114 int ret;
3115
78a6184a 3116 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3117 if (!extent_op)
3118 return -ENOMEM;
3119
3120 extent_op->flags_to_set = flags;
35b3ad50
DS
3121 extent_op->update_flags = true;
3122 extent_op->update_key = false;
3123 extent_op->is_data = is_data ? true : false;
b1c79e09 3124 extent_op->level = level;
5d4f98a2 3125
0b246afa 3126 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3127 num_bytes, extent_op);
5d4f98a2 3128 if (ret)
78a6184a 3129 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3130 return ret;
3131}
3132
e4c3b2dc 3133static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3134 struct btrfs_path *path,
3135 u64 objectid, u64 offset, u64 bytenr)
3136{
3137 struct btrfs_delayed_ref_head *head;
3138 struct btrfs_delayed_ref_node *ref;
3139 struct btrfs_delayed_data_ref *data_ref;
3140 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3141 struct btrfs_transaction *cur_trans;
0e0adbcf 3142 struct rb_node *node;
5d4f98a2
YZ
3143 int ret = 0;
3144
e4c3b2dc
LB
3145 cur_trans = root->fs_info->running_transaction;
3146 if (!cur_trans)
3147 return 0;
3148
3149 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3150 spin_lock(&delayed_refs->lock);
f72ad18e 3151 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3152 if (!head) {
3153 spin_unlock(&delayed_refs->lock);
3154 return 0;
3155 }
5d4f98a2
YZ
3156
3157 if (!mutex_trylock(&head->mutex)) {
d278850e 3158 refcount_inc(&head->refs);
5d4f98a2
YZ
3159 spin_unlock(&delayed_refs->lock);
3160
b3b4aa74 3161 btrfs_release_path(path);
5d4f98a2 3162
8cc33e5c
DS
3163 /*
3164 * Mutex was contended, block until it's released and let
3165 * caller try again
3166 */
5d4f98a2
YZ
3167 mutex_lock(&head->mutex);
3168 mutex_unlock(&head->mutex);
d278850e 3169 btrfs_put_delayed_ref_head(head);
5d4f98a2
YZ
3170 return -EAGAIN;
3171 }
d7df2c79 3172 spin_unlock(&delayed_refs->lock);
5d4f98a2 3173
d7df2c79 3174 spin_lock(&head->lock);
0e0adbcf
JB
3175 /*
3176 * XXX: We should replace this with a proper search function in the
3177 * future.
3178 */
3179 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3180 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3181 /* If it's a shared ref we know a cross reference exists */
3182 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3183 ret = 1;
3184 break;
3185 }
5d4f98a2 3186
d7df2c79 3187 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3188
d7df2c79
JB
3189 /*
3190 * If our ref doesn't match the one we're currently looking at
3191 * then we have a cross reference.
3192 */
3193 if (data_ref->root != root->root_key.objectid ||
3194 data_ref->objectid != objectid ||
3195 data_ref->offset != offset) {
3196 ret = 1;
3197 break;
3198 }
5d4f98a2 3199 }
d7df2c79 3200 spin_unlock(&head->lock);
5d4f98a2 3201 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3202 return ret;
3203}
3204
e4c3b2dc 3205static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3206 struct btrfs_path *path,
3207 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3208{
0b246afa
JM
3209 struct btrfs_fs_info *fs_info = root->fs_info;
3210 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3211 struct extent_buffer *leaf;
5d4f98a2
YZ
3212 struct btrfs_extent_data_ref *ref;
3213 struct btrfs_extent_inline_ref *iref;
3214 struct btrfs_extent_item *ei;
f321e491 3215 struct btrfs_key key;
5d4f98a2 3216 u32 item_size;
3de28d57 3217 int type;
be20aa9d 3218 int ret;
925baedd 3219
be20aa9d 3220 key.objectid = bytenr;
31840ae1 3221 key.offset = (u64)-1;
f321e491 3222 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3223
be20aa9d
CM
3224 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3225 if (ret < 0)
3226 goto out;
79787eaa 3227 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3228
3229 ret = -ENOENT;
3230 if (path->slots[0] == 0)
31840ae1 3231 goto out;
be20aa9d 3232
31840ae1 3233 path->slots[0]--;
f321e491 3234 leaf = path->nodes[0];
5d4f98a2 3235 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3236
5d4f98a2 3237 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3238 goto out;
f321e491 3239
5d4f98a2
YZ
3240 ret = 1;
3241 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3242#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3243 if (item_size < sizeof(*ei)) {
3244 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3245 goto out;
3246 }
3247#endif
3248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3249
5d4f98a2
YZ
3250 if (item_size != sizeof(*ei) +
3251 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3252 goto out;
be20aa9d 3253
5d4f98a2
YZ
3254 if (btrfs_extent_generation(leaf, ei) <=
3255 btrfs_root_last_snapshot(&root->root_item))
3256 goto out;
3257
3258 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3259
3260 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3261 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3262 goto out;
3263
3264 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3265 if (btrfs_extent_refs(leaf, ei) !=
3266 btrfs_extent_data_ref_count(leaf, ref) ||
3267 btrfs_extent_data_ref_root(leaf, ref) !=
3268 root->root_key.objectid ||
3269 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3270 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3271 goto out;
3272
3273 ret = 0;
3274out:
3275 return ret;
3276}
3277
e4c3b2dc
LB
3278int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3279 u64 bytenr)
5d4f98a2
YZ
3280{
3281 struct btrfs_path *path;
3282 int ret;
3283 int ret2;
3284
3285 path = btrfs_alloc_path();
3286 if (!path)
3287 return -ENOENT;
3288
3289 do {
e4c3b2dc 3290 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3291 offset, bytenr);
3292 if (ret && ret != -ENOENT)
f321e491 3293 goto out;
80ff3856 3294
e4c3b2dc 3295 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3296 offset, bytenr);
3297 } while (ret2 == -EAGAIN);
3298
3299 if (ret2 && ret2 != -ENOENT) {
3300 ret = ret2;
3301 goto out;
f321e491 3302 }
5d4f98a2
YZ
3303
3304 if (ret != -ENOENT || ret2 != -ENOENT)
3305 ret = 0;
be20aa9d 3306out:
80ff3856 3307 btrfs_free_path(path);
f0486c68
YZ
3308 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3309 WARN_ON(ret > 0);
f321e491 3310 return ret;
be20aa9d 3311}
c5739bba 3312
5d4f98a2 3313static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3314 struct btrfs_root *root,
5d4f98a2 3315 struct extent_buffer *buf,
e339a6b0 3316 int full_backref, int inc)
31840ae1 3317{
0b246afa 3318 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3319 u64 bytenr;
5d4f98a2
YZ
3320 u64 num_bytes;
3321 u64 parent;
31840ae1 3322 u64 ref_root;
31840ae1 3323 u32 nritems;
31840ae1
ZY
3324 struct btrfs_key key;
3325 struct btrfs_file_extent_item *fi;
3326 int i;
3327 int level;
3328 int ret = 0;
2ff7e61e 3329 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3330 struct btrfs_root *,
b06c4bf5 3331 u64, u64, u64, u64, u64, u64);
31840ae1 3332
fccb84c9 3333
0b246afa 3334 if (btrfs_is_testing(fs_info))
faa2dbf0 3335 return 0;
fccb84c9 3336
31840ae1 3337 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3338 nritems = btrfs_header_nritems(buf);
3339 level = btrfs_header_level(buf);
3340
27cdeb70 3341 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3342 return 0;
31840ae1 3343
5d4f98a2
YZ
3344 if (inc)
3345 process_func = btrfs_inc_extent_ref;
3346 else
3347 process_func = btrfs_free_extent;
31840ae1 3348
5d4f98a2
YZ
3349 if (full_backref)
3350 parent = buf->start;
3351 else
3352 parent = 0;
3353
3354 for (i = 0; i < nritems; i++) {
31840ae1 3355 if (level == 0) {
5d4f98a2 3356 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3357 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3358 continue;
5d4f98a2 3359 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3360 struct btrfs_file_extent_item);
3361 if (btrfs_file_extent_type(buf, fi) ==
3362 BTRFS_FILE_EXTENT_INLINE)
3363 continue;
3364 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3365 if (bytenr == 0)
3366 continue;
5d4f98a2
YZ
3367
3368 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3369 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3370 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3371 parent, ref_root, key.objectid,
b06c4bf5 3372 key.offset);
31840ae1
ZY
3373 if (ret)
3374 goto fail;
3375 } else {
5d4f98a2 3376 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3377 num_bytes = fs_info->nodesize;
84f7d8e6 3378 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3379 parent, ref_root, level - 1, 0);
31840ae1
ZY
3380 if (ret)
3381 goto fail;
3382 }
3383 }
3384 return 0;
3385fail:
5d4f98a2
YZ
3386 return ret;
3387}
3388
3389int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3390 struct extent_buffer *buf, int full_backref)
5d4f98a2 3391{
e339a6b0 3392 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3393}
3394
3395int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3396 struct extent_buffer *buf, int full_backref)
5d4f98a2 3397{
e339a6b0 3398 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3399}
3400
9078a3e1 3401static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3402 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3403 struct btrfs_path *path,
3404 struct btrfs_block_group_cache *cache)
3405{
3406 int ret;
0b246afa 3407 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3408 unsigned long bi;
3409 struct extent_buffer *leaf;
9078a3e1 3410
9078a3e1 3411 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3412 if (ret) {
3413 if (ret > 0)
3414 ret = -ENOENT;
54aa1f4d 3415 goto fail;
df95e7f0 3416 }
5f39d397
CM
3417
3418 leaf = path->nodes[0];
3419 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3420 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3421 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3422fail:
24b89d08 3423 btrfs_release_path(path);
df95e7f0 3424 return ret;
9078a3e1
CM
3425
3426}
3427
4a8c9a62 3428static struct btrfs_block_group_cache *
2ff7e61e 3429next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3430 struct btrfs_block_group_cache *cache)
3431{
3432 struct rb_node *node;
292cbd51 3433
0b246afa 3434 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3435
3436 /* If our block group was removed, we need a full search. */
3437 if (RB_EMPTY_NODE(&cache->cache_node)) {
3438 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3439
0b246afa 3440 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3441 btrfs_put_block_group(cache);
0b246afa 3442 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3443 }
4a8c9a62
YZ
3444 node = rb_next(&cache->cache_node);
3445 btrfs_put_block_group(cache);
3446 if (node) {
3447 cache = rb_entry(node, struct btrfs_block_group_cache,
3448 cache_node);
11dfe35a 3449 btrfs_get_block_group(cache);
4a8c9a62
YZ
3450 } else
3451 cache = NULL;
0b246afa 3452 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3453 return cache;
3454}
3455
0af3d00b
JB
3456static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3457 struct btrfs_trans_handle *trans,
3458 struct btrfs_path *path)
3459{
0b246afa
JM
3460 struct btrfs_fs_info *fs_info = block_group->fs_info;
3461 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3462 struct inode *inode = NULL;
364ecf36 3463 struct extent_changeset *data_reserved = NULL;
0af3d00b 3464 u64 alloc_hint = 0;
2b20982e 3465 int dcs = BTRFS_DC_ERROR;
f8c269d7 3466 u64 num_pages = 0;
0af3d00b
JB
3467 int retries = 0;
3468 int ret = 0;
3469
3470 /*
3471 * If this block group is smaller than 100 megs don't bother caching the
3472 * block group.
3473 */
ee22184b 3474 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3475 spin_lock(&block_group->lock);
3476 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3477 spin_unlock(&block_group->lock);
3478 return 0;
3479 }
3480
0c0ef4bc
JB
3481 if (trans->aborted)
3482 return 0;
0af3d00b 3483again:
77ab86bf 3484 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3485 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3486 ret = PTR_ERR(inode);
b3b4aa74 3487 btrfs_release_path(path);
0af3d00b
JB
3488 goto out;
3489 }
3490
3491 if (IS_ERR(inode)) {
3492 BUG_ON(retries);
3493 retries++;
3494
3495 if (block_group->ro)
3496 goto out_free;
3497
77ab86bf
JM
3498 ret = create_free_space_inode(fs_info, trans, block_group,
3499 path);
0af3d00b
JB
3500 if (ret)
3501 goto out_free;
3502 goto again;
3503 }
3504
3505 /*
3506 * We want to set the generation to 0, that way if anything goes wrong
3507 * from here on out we know not to trust this cache when we load up next
3508 * time.
3509 */
3510 BTRFS_I(inode)->generation = 0;
3511 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3512 if (ret) {
3513 /*
3514 * So theoretically we could recover from this, simply set the
3515 * super cache generation to 0 so we know to invalidate the
3516 * cache, but then we'd have to keep track of the block groups
3517 * that fail this way so we know we _have_ to reset this cache
3518 * before the next commit or risk reading stale cache. So to
3519 * limit our exposure to horrible edge cases lets just abort the
3520 * transaction, this only happens in really bad situations
3521 * anyway.
3522 */
66642832 3523 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3524 goto out_put;
3525 }
0af3d00b
JB
3526 WARN_ON(ret);
3527
8e138e0d
JB
3528 /* We've already setup this transaction, go ahead and exit */
3529 if (block_group->cache_generation == trans->transid &&
3530 i_size_read(inode)) {
3531 dcs = BTRFS_DC_SETUP;
3532 goto out_put;
3533 }
3534
0af3d00b 3535 if (i_size_read(inode) > 0) {
2ff7e61e 3536 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3537 &fs_info->global_block_rsv);
7b61cd92
MX
3538 if (ret)
3539 goto out_put;
3540
77ab86bf 3541 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3542 if (ret)
3543 goto out_put;
3544 }
3545
3546 spin_lock(&block_group->lock);
cf7c1ef6 3547 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3548 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3549 /*
3550 * don't bother trying to write stuff out _if_
3551 * a) we're not cached,
1a79c1f2
LB
3552 * b) we're with nospace_cache mount option,
3553 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3554 */
2b20982e 3555 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3556 spin_unlock(&block_group->lock);
3557 goto out_put;
3558 }
3559 spin_unlock(&block_group->lock);
3560
2968b1f4
JB
3561 /*
3562 * We hit an ENOSPC when setting up the cache in this transaction, just
3563 * skip doing the setup, we've already cleared the cache so we're safe.
3564 */
3565 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3566 ret = -ENOSPC;
3567 goto out_put;
3568 }
3569
6fc823b1
JB
3570 /*
3571 * Try to preallocate enough space based on how big the block group is.
3572 * Keep in mind this has to include any pinned space which could end up
3573 * taking up quite a bit since it's not folded into the other space
3574 * cache.
3575 */
ee22184b 3576 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3577 if (!num_pages)
3578 num_pages = 1;
3579
0af3d00b 3580 num_pages *= 16;
09cbfeaf 3581 num_pages *= PAGE_SIZE;
0af3d00b 3582
364ecf36 3583 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3584 if (ret)
3585 goto out_put;
3586
3587 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3588 num_pages, num_pages,
3589 &alloc_hint);
2968b1f4
JB
3590 /*
3591 * Our cache requires contiguous chunks so that we don't modify a bunch
3592 * of metadata or split extents when writing the cache out, which means
3593 * we can enospc if we are heavily fragmented in addition to just normal
3594 * out of space conditions. So if we hit this just skip setting up any
3595 * other block groups for this transaction, maybe we'll unpin enough
3596 * space the next time around.
3597 */
2b20982e
JB
3598 if (!ret)
3599 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3600 else if (ret == -ENOSPC)
3601 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3602
0af3d00b
JB
3603out_put:
3604 iput(inode);
3605out_free:
b3b4aa74 3606 btrfs_release_path(path);
0af3d00b
JB
3607out:
3608 spin_lock(&block_group->lock);
e65cbb94 3609 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3610 block_group->cache_generation = trans->transid;
2b20982e 3611 block_group->disk_cache_state = dcs;
0af3d00b
JB
3612 spin_unlock(&block_group->lock);
3613
364ecf36 3614 extent_changeset_free(data_reserved);
0af3d00b
JB
3615 return ret;
3616}
3617
dcdf7f6d 3618int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3619 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3620{
3621 struct btrfs_block_group_cache *cache, *tmp;
3622 struct btrfs_transaction *cur_trans = trans->transaction;
3623 struct btrfs_path *path;
3624
3625 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3626 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3627 return 0;
3628
3629 path = btrfs_alloc_path();
3630 if (!path)
3631 return -ENOMEM;
3632
3633 /* Could add new block groups, use _safe just in case */
3634 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3635 dirty_list) {
3636 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3637 cache_save_setup(cache, trans, path);
3638 }
3639
3640 btrfs_free_path(path);
3641 return 0;
3642}
3643
1bbc621e
CM
3644/*
3645 * transaction commit does final block group cache writeback during a
3646 * critical section where nothing is allowed to change the FS. This is
3647 * required in order for the cache to actually match the block group,
3648 * but can introduce a lot of latency into the commit.
3649 *
3650 * So, btrfs_start_dirty_block_groups is here to kick off block group
3651 * cache IO. There's a chance we'll have to redo some of it if the
3652 * block group changes again during the commit, but it greatly reduces
3653 * the commit latency by getting rid of the easy block groups while
3654 * we're still allowing others to join the commit.
3655 */
3656int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3657 struct btrfs_fs_info *fs_info)
9078a3e1 3658{
4a8c9a62 3659 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3660 struct btrfs_transaction *cur_trans = trans->transaction;
3661 int ret = 0;
c9dc4c65 3662 int should_put;
1bbc621e
CM
3663 struct btrfs_path *path = NULL;
3664 LIST_HEAD(dirty);
3665 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3666 int num_started = 0;
1bbc621e
CM
3667 int loops = 0;
3668
3669 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3670 if (list_empty(&cur_trans->dirty_bgs)) {
3671 spin_unlock(&cur_trans->dirty_bgs_lock);
3672 return 0;
1bbc621e 3673 }
b58d1a9e 3674 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3675 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3676
1bbc621e 3677again:
1bbc621e
CM
3678 /*
3679 * make sure all the block groups on our dirty list actually
3680 * exist
3681 */
2ff7e61e 3682 btrfs_create_pending_block_groups(trans, fs_info);
1bbc621e
CM
3683
3684 if (!path) {
3685 path = btrfs_alloc_path();
3686 if (!path)
3687 return -ENOMEM;
3688 }
3689
b58d1a9e
FM
3690 /*
3691 * cache_write_mutex is here only to save us from balance or automatic
3692 * removal of empty block groups deleting this block group while we are
3693 * writing out the cache
3694 */
3695 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3696 while (!list_empty(&dirty)) {
3697 cache = list_first_entry(&dirty,
3698 struct btrfs_block_group_cache,
3699 dirty_list);
1bbc621e
CM
3700 /*
3701 * this can happen if something re-dirties a block
3702 * group that is already under IO. Just wait for it to
3703 * finish and then do it all again
3704 */
3705 if (!list_empty(&cache->io_list)) {
3706 list_del_init(&cache->io_list);
afdb5718 3707 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3708 btrfs_put_block_group(cache);
3709 }
3710
3711
3712 /*
3713 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3714 * if it should update the cache_state. Don't delete
3715 * until after we wait.
3716 *
3717 * Since we're not running in the commit critical section
3718 * we need the dirty_bgs_lock to protect from update_block_group
3719 */
3720 spin_lock(&cur_trans->dirty_bgs_lock);
3721 list_del_init(&cache->dirty_list);
3722 spin_unlock(&cur_trans->dirty_bgs_lock);
3723
3724 should_put = 1;
3725
3726 cache_save_setup(cache, trans, path);
3727
3728 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3729 cache->io_ctl.inode = NULL;
0b246afa 3730 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3731 cache, path);
1bbc621e
CM
3732 if (ret == 0 && cache->io_ctl.inode) {
3733 num_started++;
3734 should_put = 0;
3735
3736 /*
3737 * the cache_write_mutex is protecting
3738 * the io_list
3739 */
3740 list_add_tail(&cache->io_list, io);
3741 } else {
3742 /*
3743 * if we failed to write the cache, the
3744 * generation will be bad and life goes on
3745 */
3746 ret = 0;
3747 }
3748 }
ff1f8250 3749 if (!ret) {
2ff7e61e
JM
3750 ret = write_one_cache_group(trans, fs_info,
3751 path, cache);
ff1f8250
FM
3752 /*
3753 * Our block group might still be attached to the list
3754 * of new block groups in the transaction handle of some
3755 * other task (struct btrfs_trans_handle->new_bgs). This
3756 * means its block group item isn't yet in the extent
3757 * tree. If this happens ignore the error, as we will
3758 * try again later in the critical section of the
3759 * transaction commit.
3760 */
3761 if (ret == -ENOENT) {
3762 ret = 0;
3763 spin_lock(&cur_trans->dirty_bgs_lock);
3764 if (list_empty(&cache->dirty_list)) {
3765 list_add_tail(&cache->dirty_list,
3766 &cur_trans->dirty_bgs);
3767 btrfs_get_block_group(cache);
3768 }
3769 spin_unlock(&cur_trans->dirty_bgs_lock);
3770 } else if (ret) {
66642832 3771 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3772 }
3773 }
1bbc621e
CM
3774
3775 /* if its not on the io list, we need to put the block group */
3776 if (should_put)
3777 btrfs_put_block_group(cache);
3778
3779 if (ret)
3780 break;
b58d1a9e
FM
3781
3782 /*
3783 * Avoid blocking other tasks for too long. It might even save
3784 * us from writing caches for block groups that are going to be
3785 * removed.
3786 */
3787 mutex_unlock(&trans->transaction->cache_write_mutex);
3788 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3789 }
b58d1a9e 3790 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3791
3792 /*
3793 * go through delayed refs for all the stuff we've just kicked off
3794 * and then loop back (just once)
3795 */
2ff7e61e 3796 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3797 if (!ret && loops == 0) {
3798 loops++;
3799 spin_lock(&cur_trans->dirty_bgs_lock);
3800 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3801 /*
3802 * dirty_bgs_lock protects us from concurrent block group
3803 * deletes too (not just cache_write_mutex).
3804 */
3805 if (!list_empty(&dirty)) {
3806 spin_unlock(&cur_trans->dirty_bgs_lock);
3807 goto again;
3808 }
1bbc621e 3809 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3810 } else if (ret < 0) {
2ff7e61e 3811 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3812 }
3813
3814 btrfs_free_path(path);
3815 return ret;
3816}
3817
3818int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3819 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3820{
3821 struct btrfs_block_group_cache *cache;
3822 struct btrfs_transaction *cur_trans = trans->transaction;
3823 int ret = 0;
3824 int should_put;
3825 struct btrfs_path *path;
3826 struct list_head *io = &cur_trans->io_bgs;
3827 int num_started = 0;
9078a3e1
CM
3828
3829 path = btrfs_alloc_path();
3830 if (!path)
3831 return -ENOMEM;
3832
ce93ec54 3833 /*
e44081ef
FM
3834 * Even though we are in the critical section of the transaction commit,
3835 * we can still have concurrent tasks adding elements to this
3836 * transaction's list of dirty block groups. These tasks correspond to
3837 * endio free space workers started when writeback finishes for a
3838 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3839 * allocate new block groups as a result of COWing nodes of the root
3840 * tree when updating the free space inode. The writeback for the space
3841 * caches is triggered by an earlier call to
3842 * btrfs_start_dirty_block_groups() and iterations of the following
3843 * loop.
3844 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3845 * delayed refs to make sure we have the best chance at doing this all
3846 * in one shot.
3847 */
e44081ef 3848 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3849 while (!list_empty(&cur_trans->dirty_bgs)) {
3850 cache = list_first_entry(&cur_trans->dirty_bgs,
3851 struct btrfs_block_group_cache,
3852 dirty_list);
c9dc4c65
CM
3853
3854 /*
3855 * this can happen if cache_save_setup re-dirties a block
3856 * group that is already under IO. Just wait for it to
3857 * finish and then do it all again
3858 */
3859 if (!list_empty(&cache->io_list)) {
e44081ef 3860 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3861 list_del_init(&cache->io_list);
afdb5718 3862 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3863 btrfs_put_block_group(cache);
e44081ef 3864 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3865 }
3866
1bbc621e
CM
3867 /*
3868 * don't remove from the dirty list until after we've waited
3869 * on any pending IO
3870 */
ce93ec54 3871 list_del_init(&cache->dirty_list);
e44081ef 3872 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3873 should_put = 1;
3874
1bbc621e 3875 cache_save_setup(cache, trans, path);
c9dc4c65 3876
ce93ec54 3877 if (!ret)
2ff7e61e
JM
3878 ret = btrfs_run_delayed_refs(trans, fs_info,
3879 (unsigned long) -1);
c9dc4c65
CM
3880
3881 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3882 cache->io_ctl.inode = NULL;
0b246afa 3883 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3884 cache, path);
c9dc4c65
CM
3885 if (ret == 0 && cache->io_ctl.inode) {
3886 num_started++;
3887 should_put = 0;
1bbc621e 3888 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3889 } else {
3890 /*
3891 * if we failed to write the cache, the
3892 * generation will be bad and life goes on
3893 */
3894 ret = 0;
3895 }
3896 }
ff1f8250 3897 if (!ret) {
2ff7e61e
JM
3898 ret = write_one_cache_group(trans, fs_info,
3899 path, cache);
2bc0bb5f
FM
3900 /*
3901 * One of the free space endio workers might have
3902 * created a new block group while updating a free space
3903 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3904 * and hasn't released its transaction handle yet, in
3905 * which case the new block group is still attached to
3906 * its transaction handle and its creation has not
3907 * finished yet (no block group item in the extent tree
3908 * yet, etc). If this is the case, wait for all free
3909 * space endio workers to finish and retry. This is a
3910 * a very rare case so no need for a more efficient and
3911 * complex approach.
3912 */
3913 if (ret == -ENOENT) {
3914 wait_event(cur_trans->writer_wait,
3915 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3916 ret = write_one_cache_group(trans, fs_info,
3917 path, cache);
2bc0bb5f 3918 }
ff1f8250 3919 if (ret)
66642832 3920 btrfs_abort_transaction(trans, ret);
ff1f8250 3921 }
c9dc4c65
CM
3922
3923 /* if its not on the io list, we need to put the block group */
3924 if (should_put)
3925 btrfs_put_block_group(cache);
e44081ef 3926 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3927 }
e44081ef 3928 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3929
1bbc621e
CM
3930 while (!list_empty(io)) {
3931 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3932 io_list);
3933 list_del_init(&cache->io_list);
afdb5718 3934 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3935 btrfs_put_block_group(cache);
3936 }
3937
9078a3e1 3938 btrfs_free_path(path);
ce93ec54 3939 return ret;
9078a3e1
CM
3940}
3941
2ff7e61e 3942int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3943{
3944 struct btrfs_block_group_cache *block_group;
3945 int readonly = 0;
3946
0b246afa 3947 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3948 if (!block_group || block_group->ro)
3949 readonly = 1;
3950 if (block_group)
fa9c0d79 3951 btrfs_put_block_group(block_group);
d2fb3437
YZ
3952 return readonly;
3953}
3954
f78c436c
FM
3955bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3956{
3957 struct btrfs_block_group_cache *bg;
3958 bool ret = true;
3959
3960 bg = btrfs_lookup_block_group(fs_info, bytenr);
3961 if (!bg)
3962 return false;
3963
3964 spin_lock(&bg->lock);
3965 if (bg->ro)
3966 ret = false;
3967 else
3968 atomic_inc(&bg->nocow_writers);
3969 spin_unlock(&bg->lock);
3970
3971 /* no put on block group, done by btrfs_dec_nocow_writers */
3972 if (!ret)
3973 btrfs_put_block_group(bg);
3974
3975 return ret;
3976
3977}
3978
3979void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3980{
3981 struct btrfs_block_group_cache *bg;
3982
3983 bg = btrfs_lookup_block_group(fs_info, bytenr);
3984 ASSERT(bg);
3985 if (atomic_dec_and_test(&bg->nocow_writers))
3986 wake_up_atomic_t(&bg->nocow_writers);
3987 /*
3988 * Once for our lookup and once for the lookup done by a previous call
3989 * to btrfs_inc_nocow_writers()
3990 */
3991 btrfs_put_block_group(bg);
3992 btrfs_put_block_group(bg);
3993}
3994
3995static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3996{
3997 schedule();
3998 return 0;
3999}
4000
4001void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4002{
4003 wait_on_atomic_t(&bg->nocow_writers,
4004 btrfs_wait_nocow_writers_atomic_t,
4005 TASK_UNINTERRUPTIBLE);
4006}
4007
6ab0a202
JM
4008static const char *alloc_name(u64 flags)
4009{
4010 switch (flags) {
4011 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4012 return "mixed";
4013 case BTRFS_BLOCK_GROUP_METADATA:
4014 return "metadata";
4015 case BTRFS_BLOCK_GROUP_DATA:
4016 return "data";
4017 case BTRFS_BLOCK_GROUP_SYSTEM:
4018 return "system";
4019 default:
4020 WARN_ON(1);
4021 return "invalid-combination";
4022 };
4023}
4024
2be12ef7
NB
4025static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4026 struct btrfs_space_info **new)
4027{
4028
4029 struct btrfs_space_info *space_info;
4030 int i;
4031 int ret;
4032
4033 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4034 if (!space_info)
4035 return -ENOMEM;
4036
4037 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4038 GFP_KERNEL);
4039 if (ret) {
4040 kfree(space_info);
4041 return ret;
4042 }
4043
4044 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4045 INIT_LIST_HEAD(&space_info->block_groups[i]);
4046 init_rwsem(&space_info->groups_sem);
4047 spin_lock_init(&space_info->lock);
4048 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4049 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4050 init_waitqueue_head(&space_info->wait);
4051 INIT_LIST_HEAD(&space_info->ro_bgs);
4052 INIT_LIST_HEAD(&space_info->tickets);
4053 INIT_LIST_HEAD(&space_info->priority_tickets);
4054
4055 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4056 info->space_info_kobj, "%s",
4057 alloc_name(space_info->flags));
4058 if (ret) {
4059 percpu_counter_destroy(&space_info->total_bytes_pinned);
4060 kfree(space_info);
4061 return ret;
4062 }
4063
4064 *new = space_info;
4065 list_add_rcu(&space_info->list, &info->space_info);
4066 if (flags & BTRFS_BLOCK_GROUP_DATA)
4067 info->data_sinfo = space_info;
4068
4069 return ret;
4070}
4071
d2006e6d 4072static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4073 u64 total_bytes, u64 bytes_used,
e40edf2d 4074 u64 bytes_readonly,
593060d7
CM
4075 struct btrfs_space_info **space_info)
4076{
4077 struct btrfs_space_info *found;
b742bb82
YZ
4078 int factor;
4079
4080 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4081 BTRFS_BLOCK_GROUP_RAID10))
4082 factor = 2;
4083 else
4084 factor = 1;
593060d7
CM
4085
4086 found = __find_space_info(info, flags);
d2006e6d
NB
4087 ASSERT(found);
4088 spin_lock(&found->lock);
4089 found->total_bytes += total_bytes;
4090 found->disk_total += total_bytes * factor;
4091 found->bytes_used += bytes_used;
4092 found->disk_used += bytes_used * factor;
4093 found->bytes_readonly += bytes_readonly;
4094 if (total_bytes > 0)
4095 found->full = 0;
4096 space_info_add_new_bytes(info, found, total_bytes -
4097 bytes_used - bytes_readonly);
4098 spin_unlock(&found->lock);
4099 *space_info = found;
593060d7
CM
4100}
4101
8790d502
CM
4102static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4103{
899c81ea
ID
4104 u64 extra_flags = chunk_to_extended(flags) &
4105 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4106
de98ced9 4107 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4108 if (flags & BTRFS_BLOCK_GROUP_DATA)
4109 fs_info->avail_data_alloc_bits |= extra_flags;
4110 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4111 fs_info->avail_metadata_alloc_bits |= extra_flags;
4112 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4113 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4114 write_sequnlock(&fs_info->profiles_lock);
8790d502 4115}
593060d7 4116
fc67c450
ID
4117/*
4118 * returns target flags in extended format or 0 if restripe for this
4119 * chunk_type is not in progress
c6664b42
ID
4120 *
4121 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4122 */
4123static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4124{
4125 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4126 u64 target = 0;
4127
fc67c450
ID
4128 if (!bctl)
4129 return 0;
4130
4131 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4132 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4133 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4134 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4135 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4136 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4137 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4138 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4139 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4140 }
4141
4142 return target;
4143}
4144
a46d11a8
ID
4145/*
4146 * @flags: available profiles in extended format (see ctree.h)
4147 *
e4d8ec0f
ID
4148 * Returns reduced profile in chunk format. If profile changing is in
4149 * progress (either running or paused) picks the target profile (if it's
4150 * already available), otherwise falls back to plain reducing.
a46d11a8 4151 */
2ff7e61e 4152static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4153{
0b246afa 4154 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4155 u64 target;
9c170b26
ZL
4156 u64 raid_type;
4157 u64 allowed = 0;
a061fc8d 4158
fc67c450
ID
4159 /*
4160 * see if restripe for this chunk_type is in progress, if so
4161 * try to reduce to the target profile
4162 */
0b246afa
JM
4163 spin_lock(&fs_info->balance_lock);
4164 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4165 if (target) {
4166 /* pick target profile only if it's already available */
4167 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4168 spin_unlock(&fs_info->balance_lock);
fc67c450 4169 return extended_to_chunk(target);
e4d8ec0f
ID
4170 }
4171 }
0b246afa 4172 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4173
53b381b3 4174 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4175 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4176 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4177 allowed |= btrfs_raid_group[raid_type];
4178 }
4179 allowed &= flags;
4180
4181 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4182 allowed = BTRFS_BLOCK_GROUP_RAID6;
4183 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4184 allowed = BTRFS_BLOCK_GROUP_RAID5;
4185 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4186 allowed = BTRFS_BLOCK_GROUP_RAID10;
4187 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4188 allowed = BTRFS_BLOCK_GROUP_RAID1;
4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4190 allowed = BTRFS_BLOCK_GROUP_RAID0;
4191
4192 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4193
4194 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4195}
4196
2ff7e61e 4197static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4198{
de98ced9 4199 unsigned seq;
f8213bdc 4200 u64 flags;
de98ced9
MX
4201
4202 do {
f8213bdc 4203 flags = orig_flags;
0b246afa 4204 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4205
4206 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4207 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4208 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4209 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4210 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4211 flags |= fs_info->avail_metadata_alloc_bits;
4212 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4213
2ff7e61e 4214 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4215}
4216
1b86826d 4217static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4218{
0b246afa 4219 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4220 u64 flags;
53b381b3 4221 u64 ret;
9ed74f2d 4222
b742bb82
YZ
4223 if (data)
4224 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4225 else if (root == fs_info->chunk_root)
b742bb82 4226 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4227 else
b742bb82 4228 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4229
2ff7e61e 4230 ret = get_alloc_profile(fs_info, flags);
53b381b3 4231 return ret;
6a63209f 4232}
9ed74f2d 4233
1b86826d
JM
4234u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4235{
4236 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4237}
4238
4239u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4240{
4241 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4242}
4243
4244u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4245{
4246 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4247}
4248
4136135b
LB
4249static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4250 bool may_use_included)
4251{
4252 ASSERT(s_info);
4253 return s_info->bytes_used + s_info->bytes_reserved +
4254 s_info->bytes_pinned + s_info->bytes_readonly +
4255 (may_use_included ? s_info->bytes_may_use : 0);
4256}
4257
04f4f916 4258int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4259{
04f4f916 4260 struct btrfs_root *root = inode->root;
b4d7c3c9 4261 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4262 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4263 u64 used;
94b947b2 4264 int ret = 0;
c99f1b0c
ZL
4265 int need_commit = 2;
4266 int have_pinned_space;
6a63209f 4267
6a63209f 4268 /* make sure bytes are sectorsize aligned */
0b246afa 4269 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4270
9dced186 4271 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4272 need_commit = 0;
9dced186 4273 ASSERT(current->journal_info);
0af3d00b
JB
4274 }
4275
6a63209f
JB
4276again:
4277 /* make sure we have enough space to handle the data first */
4278 spin_lock(&data_sinfo->lock);
4136135b 4279 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4280
4281 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4282 struct btrfs_trans_handle *trans;
9ed74f2d 4283
6a63209f
JB
4284 /*
4285 * if we don't have enough free bytes in this space then we need
4286 * to alloc a new chunk.
4287 */
b9fd47cd 4288 if (!data_sinfo->full) {
6a63209f 4289 u64 alloc_target;
9ed74f2d 4290
0e4f8f88 4291 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4292 spin_unlock(&data_sinfo->lock);
1174cade 4293
1b86826d 4294 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4295 /*
4296 * It is ugly that we don't call nolock join
4297 * transaction for the free space inode case here.
4298 * But it is safe because we only do the data space
4299 * reservation for the free space cache in the
4300 * transaction context, the common join transaction
4301 * just increase the counter of the current transaction
4302 * handler, doesn't try to acquire the trans_lock of
4303 * the fs.
4304 */
7a7eaa40 4305 trans = btrfs_join_transaction(root);
a22285a6
YZ
4306 if (IS_ERR(trans))
4307 return PTR_ERR(trans);
9ed74f2d 4308
2ff7e61e 4309 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4310 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4311 btrfs_end_transaction(trans);
d52a5b5f
MX
4312 if (ret < 0) {
4313 if (ret != -ENOSPC)
4314 return ret;
c99f1b0c
ZL
4315 else {
4316 have_pinned_space = 1;
d52a5b5f 4317 goto commit_trans;
c99f1b0c 4318 }
d52a5b5f 4319 }
9ed74f2d 4320
6a63209f
JB
4321 goto again;
4322 }
f2bb8f5c
JB
4323
4324 /*
b150a4f1 4325 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4326 * allocation, and no removed chunk in current transaction,
4327 * don't bother committing the transaction.
f2bb8f5c 4328 */
c99f1b0c
ZL
4329 have_pinned_space = percpu_counter_compare(
4330 &data_sinfo->total_bytes_pinned,
4331 used + bytes - data_sinfo->total_bytes);
6a63209f 4332 spin_unlock(&data_sinfo->lock);
6a63209f 4333
4e06bdd6 4334 /* commit the current transaction and try again */
d52a5b5f 4335commit_trans:
c99f1b0c 4336 if (need_commit &&
0b246afa 4337 !atomic_read(&fs_info->open_ioctl_trans)) {
c99f1b0c 4338 need_commit--;
b150a4f1 4339
e1746e83
ZL
4340 if (need_commit > 0) {
4341 btrfs_start_delalloc_roots(fs_info, 0, -1);
6374e57a 4342 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4343 (u64)-1);
e1746e83 4344 }
9a4e7276 4345
7a7eaa40 4346 trans = btrfs_join_transaction(root);
a22285a6
YZ
4347 if (IS_ERR(trans))
4348 return PTR_ERR(trans);
c99f1b0c 4349 if (have_pinned_space >= 0 ||
3204d33c
JB
4350 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4351 &trans->transaction->flags) ||
c99f1b0c 4352 need_commit > 0) {
3a45bb20 4353 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4354 if (ret)
4355 return ret;
d7c15171 4356 /*
c2d6cb16
FM
4357 * The cleaner kthread might still be doing iput
4358 * operations. Wait for it to finish so that
4359 * more space is released.
d7c15171 4360 */
0b246afa
JM
4361 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4362 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4363 goto again;
4364 } else {
3a45bb20 4365 btrfs_end_transaction(trans);
94b947b2 4366 }
4e06bdd6 4367 }
9ed74f2d 4368
0b246afa 4369 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4370 "space_info:enospc",
4371 data_sinfo->flags, bytes, 1);
6a63209f
JB
4372 return -ENOSPC;
4373 }
4374 data_sinfo->bytes_may_use += bytes;
0b246afa 4375 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4376 data_sinfo->flags, bytes, 1);
6a63209f 4377 spin_unlock(&data_sinfo->lock);
6a63209f 4378
237c0e9f 4379 return ret;
9ed74f2d 4380}
6a63209f 4381
364ecf36
QW
4382int btrfs_check_data_free_space(struct inode *inode,
4383 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4384{
0b246afa 4385 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4386 int ret;
4387
4388 /* align the range */
0b246afa
JM
4389 len = round_up(start + len, fs_info->sectorsize) -
4390 round_down(start, fs_info->sectorsize);
4391 start = round_down(start, fs_info->sectorsize);
4ceff079 4392
04f4f916 4393 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4394 if (ret < 0)
4395 return ret;
4396
1e5ec2e7 4397 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4398 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4399 if (ret < 0)
1e5ec2e7 4400 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4401 else
4402 ret = 0;
4ceff079
QW
4403 return ret;
4404}
4405
4ceff079
QW
4406/*
4407 * Called if we need to clear a data reservation for this inode
4408 * Normally in a error case.
4409 *
51773bec
QW
4410 * This one will *NOT* use accurate qgroup reserved space API, just for case
4411 * which we can't sleep and is sure it won't affect qgroup reserved space.
4412 * Like clear_bit_hook().
4ceff079 4413 */
51773bec
QW
4414void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4415 u64 len)
4ceff079 4416{
0b246afa 4417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4418 struct btrfs_space_info *data_sinfo;
4419
4420 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4421 len = round_up(start + len, fs_info->sectorsize) -
4422 round_down(start, fs_info->sectorsize);
4423 start = round_down(start, fs_info->sectorsize);
4ceff079 4424
0b246afa 4425 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4426 spin_lock(&data_sinfo->lock);
4427 if (WARN_ON(data_sinfo->bytes_may_use < len))
4428 data_sinfo->bytes_may_use = 0;
4429 else
4430 data_sinfo->bytes_may_use -= len;
0b246afa 4431 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4432 data_sinfo->flags, len, 0);
4433 spin_unlock(&data_sinfo->lock);
4434}
4435
51773bec
QW
4436/*
4437 * Called if we need to clear a data reservation for this inode
4438 * Normally in a error case.
4439 *
01327610 4440 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4441 * space framework.
4442 */
bc42bda2
QW
4443void btrfs_free_reserved_data_space(struct inode *inode,
4444 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4445{
0c476a5d
JM
4446 struct btrfs_root *root = BTRFS_I(inode)->root;
4447
4448 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4449 len = round_up(start + len, root->fs_info->sectorsize) -
4450 round_down(start, root->fs_info->sectorsize);
4451 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4452
51773bec 4453 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4454 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4455}
4456
97e728d4 4457static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4458{
97e728d4
JB
4459 struct list_head *head = &info->space_info;
4460 struct btrfs_space_info *found;
e3ccfa98 4461
97e728d4
JB
4462 rcu_read_lock();
4463 list_for_each_entry_rcu(found, head, list) {
4464 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4465 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4466 }
97e728d4 4467 rcu_read_unlock();
e3ccfa98
JB
4468}
4469
3c76cd84
MX
4470static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4471{
4472 return (global->size << 1);
4473}
4474
2ff7e61e 4475static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4476 struct btrfs_space_info *sinfo, int force)
32c00aff 4477{
0b246afa 4478 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4479 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4480 u64 thresh;
e3ccfa98 4481
0e4f8f88
CM
4482 if (force == CHUNK_ALLOC_FORCE)
4483 return 1;
4484
fb25e914
JB
4485 /*
4486 * We need to take into account the global rsv because for all intents
4487 * and purposes it's used space. Don't worry about locking the
4488 * global_rsv, it doesn't change except when the transaction commits.
4489 */
54338b5c 4490 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4491 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4492
0e4f8f88
CM
4493 /*
4494 * in limited mode, we want to have some free space up to
4495 * about 1% of the FS size.
4496 */
4497 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4498 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4499 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4500
8d8aafee 4501 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4502 return 1;
4503 }
0e4f8f88 4504
8d8aafee 4505 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4506 return 0;
424499db 4507 return 1;
32c00aff
JB
4508}
4509
2ff7e61e 4510static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4511{
4512 u64 num_dev;
4513
53b381b3
DW
4514 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4515 BTRFS_BLOCK_GROUP_RAID0 |
4516 BTRFS_BLOCK_GROUP_RAID5 |
4517 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4518 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4519 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4520 num_dev = 2;
4521 else
4522 num_dev = 1; /* DUP or single */
4523
39c2d7fa 4524 return num_dev;
15d1ff81
LB
4525}
4526
39c2d7fa
FM
4527/*
4528 * If @is_allocation is true, reserve space in the system space info necessary
4529 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4530 * removing a chunk.
4531 */
4532void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4533 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4534{
4535 struct btrfs_space_info *info;
4536 u64 left;
4537 u64 thresh;
4fbcdf66 4538 int ret = 0;
39c2d7fa 4539 u64 num_devs;
4fbcdf66
FM
4540
4541 /*
4542 * Needed because we can end up allocating a system chunk and for an
4543 * atomic and race free space reservation in the chunk block reserve.
4544 */
0b246afa 4545 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4546
0b246afa 4547 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4548 spin_lock(&info->lock);
4136135b 4549 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4550 spin_unlock(&info->lock);
4551
2ff7e61e 4552 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4553
4554 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4555 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4556 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4557
0b246afa
JM
4558 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4559 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4560 left, thresh, type);
4561 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4562 }
4563
4564 if (left < thresh) {
1b86826d 4565 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4566
4fbcdf66
FM
4567 /*
4568 * Ignore failure to create system chunk. We might end up not
4569 * needing it, as we might not need to COW all nodes/leafs from
4570 * the paths we visit in the chunk tree (they were already COWed
4571 * or created in the current transaction for example).
4572 */
2ff7e61e 4573 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4574 }
4575
4576 if (!ret) {
0b246afa
JM
4577 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4578 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4579 thresh, BTRFS_RESERVE_NO_FLUSH);
4580 if (!ret)
4581 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4582 }
4583}
4584
28b737f6
LB
4585/*
4586 * If force is CHUNK_ALLOC_FORCE:
4587 * - return 1 if it successfully allocates a chunk,
4588 * - return errors including -ENOSPC otherwise.
4589 * If force is NOT CHUNK_ALLOC_FORCE:
4590 * - return 0 if it doesn't need to allocate a new chunk,
4591 * - return 1 if it successfully allocates a chunk,
4592 * - return errors including -ENOSPC otherwise.
4593 */
6324fbf3 4594static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4595 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4596{
6324fbf3 4597 struct btrfs_space_info *space_info;
6d74119f 4598 int wait_for_alloc = 0;
9ed74f2d 4599 int ret = 0;
9ed74f2d 4600
c6b305a8
JB
4601 /* Don't re-enter if we're already allocating a chunk */
4602 if (trans->allocating_chunk)
4603 return -ENOSPC;
4604
0b246afa 4605 space_info = __find_space_info(fs_info, flags);
593060d7 4606 if (!space_info) {
2be12ef7
NB
4607 ret = create_space_info(fs_info, flags, &space_info);
4608 if (ret)
4609 return ret;
9ed74f2d
JB
4610 }
4611
6d74119f 4612again:
25179201 4613 spin_lock(&space_info->lock);
9e622d6b 4614 if (force < space_info->force_alloc)
0e4f8f88 4615 force = space_info->force_alloc;
25179201 4616 if (space_info->full) {
2ff7e61e 4617 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4618 ret = -ENOSPC;
4619 else
4620 ret = 0;
25179201 4621 spin_unlock(&space_info->lock);
09fb99a6 4622 return ret;
9ed74f2d
JB
4623 }
4624
2ff7e61e 4625 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4626 spin_unlock(&space_info->lock);
6d74119f
JB
4627 return 0;
4628 } else if (space_info->chunk_alloc) {
4629 wait_for_alloc = 1;
4630 } else {
4631 space_info->chunk_alloc = 1;
9ed74f2d 4632 }
0e4f8f88 4633
25179201 4634 spin_unlock(&space_info->lock);
9ed74f2d 4635
6d74119f
JB
4636 mutex_lock(&fs_info->chunk_mutex);
4637
4638 /*
4639 * The chunk_mutex is held throughout the entirety of a chunk
4640 * allocation, so once we've acquired the chunk_mutex we know that the
4641 * other guy is done and we need to recheck and see if we should
4642 * allocate.
4643 */
4644 if (wait_for_alloc) {
4645 mutex_unlock(&fs_info->chunk_mutex);
4646 wait_for_alloc = 0;
4647 goto again;
4648 }
4649
c6b305a8
JB
4650 trans->allocating_chunk = true;
4651
67377734
JB
4652 /*
4653 * If we have mixed data/metadata chunks we want to make sure we keep
4654 * allocating mixed chunks instead of individual chunks.
4655 */
4656 if (btrfs_mixed_space_info(space_info))
4657 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4658
97e728d4
JB
4659 /*
4660 * if we're doing a data chunk, go ahead and make sure that
4661 * we keep a reasonable number of metadata chunks allocated in the
4662 * FS as well.
4663 */
9ed74f2d 4664 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4665 fs_info->data_chunk_allocations++;
4666 if (!(fs_info->data_chunk_allocations %
4667 fs_info->metadata_ratio))
4668 force_metadata_allocation(fs_info);
9ed74f2d
JB
4669 }
4670
15d1ff81
LB
4671 /*
4672 * Check if we have enough space in SYSTEM chunk because we may need
4673 * to update devices.
4674 */
2ff7e61e 4675 check_system_chunk(trans, fs_info, flags);
15d1ff81 4676
2ff7e61e 4677 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4678 trans->allocating_chunk = false;
92b8e897 4679
9ed74f2d 4680 spin_lock(&space_info->lock);
a81cb9a2
AO
4681 if (ret < 0 && ret != -ENOSPC)
4682 goto out;
9ed74f2d 4683 if (ret)
6324fbf3 4684 space_info->full = 1;
424499db
YZ
4685 else
4686 ret = 1;
6d74119f 4687
0e4f8f88 4688 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4689out:
6d74119f 4690 space_info->chunk_alloc = 0;
9ed74f2d 4691 spin_unlock(&space_info->lock);
a25c75d5 4692 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4693 /*
4694 * When we allocate a new chunk we reserve space in the chunk block
4695 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4696 * add new nodes/leafs to it if we end up needing to do it when
4697 * inserting the chunk item and updating device items as part of the
4698 * second phase of chunk allocation, performed by
4699 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4700 * large number of new block groups to create in our transaction
4701 * handle's new_bgs list to avoid exhausting the chunk block reserve
4702 * in extreme cases - like having a single transaction create many new
4703 * block groups when starting to write out the free space caches of all
4704 * the block groups that were made dirty during the lifetime of the
4705 * transaction.
4706 */
d9a0540a 4707 if (trans->can_flush_pending_bgs &&
ee22184b 4708 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
2ff7e61e 4709 btrfs_create_pending_block_groups(trans, fs_info);
00d80e34
FM
4710 btrfs_trans_release_chunk_metadata(trans);
4711 }
0f9dd46c 4712 return ret;
6324fbf3 4713}
9ed74f2d 4714
c1c4919b 4715static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4716 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4717 enum btrfs_reserve_flush_enum flush,
4718 bool system_chunk)
a80c8dcf 4719{
0b246afa 4720 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4721 u64 profile;
3c76cd84 4722 u64 space_size;
a80c8dcf
JB
4723 u64 avail;
4724 u64 used;
4725
957780eb
JB
4726 /* Don't overcommit when in mixed mode. */
4727 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4728 return 0;
4729
c1c4919b
JM
4730 if (system_chunk)
4731 profile = btrfs_system_alloc_profile(fs_info);
4732 else
4733 profile = btrfs_metadata_alloc_profile(fs_info);
4734
4136135b 4735 used = btrfs_space_info_used(space_info, false);
96f1bb57 4736
96f1bb57
JB
4737 /*
4738 * We only want to allow over committing if we have lots of actual space
4739 * free, but if we don't have enough space to handle the global reserve
4740 * space then we could end up having a real enospc problem when trying
4741 * to allocate a chunk or some other such important allocation.
4742 */
3c76cd84
MX
4743 spin_lock(&global_rsv->lock);
4744 space_size = calc_global_rsv_need_space(global_rsv);
4745 spin_unlock(&global_rsv->lock);
4746 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4747 return 0;
4748
4749 used += space_info->bytes_may_use;
a80c8dcf 4750
a5ed45f8 4751 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4752
4753 /*
4754 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4755 * space is actually useable. For raid56, the space info used
4756 * doesn't include the parity drive, so we don't have to
4757 * change the math
a80c8dcf
JB
4758 */
4759 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4760 BTRFS_BLOCK_GROUP_RAID1 |
4761 BTRFS_BLOCK_GROUP_RAID10))
4762 avail >>= 1;
4763
4764 /*
561c294d
MX
4765 * If we aren't flushing all things, let us overcommit up to
4766 * 1/2th of the space. If we can flush, don't let us overcommit
4767 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4768 */
08e007d2 4769 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4770 avail >>= 3;
a80c8dcf 4771 else
14575aef 4772 avail >>= 1;
a80c8dcf 4773
14575aef 4774 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4775 return 1;
4776 return 0;
4777}
4778
2ff7e61e 4779static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4780 unsigned long nr_pages, int nr_items)
da633a42 4781{
0b246afa 4782 struct super_block *sb = fs_info->sb;
da633a42 4783
925a6efb
JB
4784 if (down_read_trylock(&sb->s_umount)) {
4785 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4786 up_read(&sb->s_umount);
4787 } else {
da633a42
MX
4788 /*
4789 * We needn't worry the filesystem going from r/w to r/o though
4790 * we don't acquire ->s_umount mutex, because the filesystem
4791 * should guarantee the delalloc inodes list be empty after
4792 * the filesystem is readonly(all dirty pages are written to
4793 * the disk).
4794 */
0b246afa 4795 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4796 if (!current->journal_info)
0b246afa 4797 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4798 }
4799}
4800
6374e57a 4801static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4802 u64 to_reclaim)
18cd8ea6
MX
4803{
4804 u64 bytes;
6374e57a 4805 u64 nr;
18cd8ea6 4806
2ff7e61e 4807 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4808 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4809 if (!nr)
4810 nr = 1;
4811 return nr;
4812}
4813
ee22184b 4814#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4815
9ed74f2d 4816/*
5da9d01b 4817 * shrink metadata reservation for delalloc
9ed74f2d 4818 */
c1c4919b
JM
4819static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4820 u64 orig, bool wait_ordered)
5da9d01b 4821{
0019f10d 4822 struct btrfs_space_info *space_info;
663350ac 4823 struct btrfs_trans_handle *trans;
f4c738c2 4824 u64 delalloc_bytes;
5da9d01b 4825 u64 max_reclaim;
6374e57a 4826 u64 items;
b1953bce 4827 long time_left;
d3ee29e3
MX
4828 unsigned long nr_pages;
4829 int loops;
08e007d2 4830 enum btrfs_reserve_flush_enum flush;
5da9d01b 4831
c61a16a7 4832 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4833 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4834 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4835
663350ac 4836 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4837 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4838
963d678b 4839 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4840 &fs_info->delalloc_bytes);
f4c738c2 4841 if (delalloc_bytes == 0) {
fdb5effd 4842 if (trans)
f4c738c2 4843 return;
38c135af 4844 if (wait_ordered)
0b246afa 4845 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4846 return;
fdb5effd
JB
4847 }
4848
d3ee29e3 4849 loops = 0;
f4c738c2
JB
4850 while (delalloc_bytes && loops < 3) {
4851 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4852 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4853 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4854 /*
4855 * We need to wait for the async pages to actually start before
4856 * we do anything.
4857 */
0b246afa 4858 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4859 if (!max_reclaim)
4860 goto skip_async;
4861
4862 if (max_reclaim <= nr_pages)
4863 max_reclaim = 0;
4864 else
4865 max_reclaim -= nr_pages;
dea31f52 4866
0b246afa
JM
4867 wait_event(fs_info->async_submit_wait,
4868 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4869 (int)max_reclaim);
4870skip_async:
08e007d2
MX
4871 if (!trans)
4872 flush = BTRFS_RESERVE_FLUSH_ALL;
4873 else
4874 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4875 spin_lock(&space_info->lock);
957780eb
JB
4876 if (list_empty(&space_info->tickets) &&
4877 list_empty(&space_info->priority_tickets)) {
4878 spin_unlock(&space_info->lock);
4879 break;
4880 }
0019f10d 4881 spin_unlock(&space_info->lock);
5da9d01b 4882
36e39c40 4883 loops++;
f104d044 4884 if (wait_ordered && !trans) {
0b246afa 4885 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4886 } else {
f4c738c2 4887 time_left = schedule_timeout_killable(1);
f104d044
JB
4888 if (time_left)
4889 break;
4890 }
963d678b 4891 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4892 &fs_info->delalloc_bytes);
5da9d01b 4893 }
5da9d01b
YZ
4894}
4895
996478ca
JB
4896struct reserve_ticket {
4897 u64 bytes;
4898 int error;
4899 struct list_head list;
4900 wait_queue_head_t wait;
4901};
4902
663350ac
JB
4903/**
4904 * maybe_commit_transaction - possibly commit the transaction if its ok to
4905 * @root - the root we're allocating for
4906 * @bytes - the number of bytes we want to reserve
4907 * @force - force the commit
8bb8ab2e 4908 *
663350ac
JB
4909 * This will check to make sure that committing the transaction will actually
4910 * get us somewhere and then commit the transaction if it does. Otherwise it
4911 * will return -ENOSPC.
8bb8ab2e 4912 */
0c9ab349 4913static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4914 struct btrfs_space_info *space_info)
663350ac 4915{
996478ca 4916 struct reserve_ticket *ticket = NULL;
0b246afa 4917 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4918 struct btrfs_trans_handle *trans;
996478ca 4919 u64 bytes;
663350ac
JB
4920
4921 trans = (struct btrfs_trans_handle *)current->journal_info;
4922 if (trans)
4923 return -EAGAIN;
4924
996478ca
JB
4925 spin_lock(&space_info->lock);
4926 if (!list_empty(&space_info->priority_tickets))
4927 ticket = list_first_entry(&space_info->priority_tickets,
4928 struct reserve_ticket, list);
4929 else if (!list_empty(&space_info->tickets))
4930 ticket = list_first_entry(&space_info->tickets,
4931 struct reserve_ticket, list);
4932 bytes = (ticket) ? ticket->bytes : 0;
4933 spin_unlock(&space_info->lock);
4934
4935 if (!bytes)
4936 return 0;
663350ac
JB
4937
4938 /* See if there is enough pinned space to make this reservation */
b150a4f1 4939 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4940 bytes) >= 0)
663350ac 4941 goto commit;
663350ac
JB
4942
4943 /*
4944 * See if there is some space in the delayed insertion reservation for
4945 * this reservation.
4946 */
4947 if (space_info != delayed_rsv->space_info)
4948 return -ENOSPC;
4949
4950 spin_lock(&delayed_rsv->lock);
996478ca
JB
4951 if (delayed_rsv->size > bytes)
4952 bytes = 0;
4953 else
4954 bytes -= delayed_rsv->size;
b150a4f1 4955 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4956 bytes) < 0) {
663350ac
JB
4957 spin_unlock(&delayed_rsv->lock);
4958 return -ENOSPC;
4959 }
4960 spin_unlock(&delayed_rsv->lock);
4961
4962commit:
a9b3311e 4963 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4964 if (IS_ERR(trans))
4965 return -ENOSPC;
4966
3a45bb20 4967 return btrfs_commit_transaction(trans);
663350ac
JB
4968}
4969
e38ae7a0
NB
4970/*
4971 * Try to flush some data based on policy set by @state. This is only advisory
4972 * and may fail for various reasons. The caller is supposed to examine the
4973 * state of @space_info to detect the outcome.
4974 */
4975static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4976 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4977 int state)
96c3f433 4978{
a9b3311e 4979 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4980 struct btrfs_trans_handle *trans;
4981 int nr;
f4c738c2 4982 int ret = 0;
96c3f433
JB
4983
4984 switch (state) {
96c3f433
JB
4985 case FLUSH_DELAYED_ITEMS_NR:
4986 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4987 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4988 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4989 else
96c3f433 4990 nr = -1;
18cd8ea6 4991
96c3f433
JB
4992 trans = btrfs_join_transaction(root);
4993 if (IS_ERR(trans)) {
4994 ret = PTR_ERR(trans);
4995 break;
4996 }
2ff7e61e 4997 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
3a45bb20 4998 btrfs_end_transaction(trans);
96c3f433 4999 break;
67b0fd63
JB
5000 case FLUSH_DELALLOC:
5001 case FLUSH_DELALLOC_WAIT:
7bdd6277 5002 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
5003 state == FLUSH_DELALLOC_WAIT);
5004 break;
ea658bad
JB
5005 case ALLOC_CHUNK:
5006 trans = btrfs_join_transaction(root);
5007 if (IS_ERR(trans)) {
5008 ret = PTR_ERR(trans);
5009 break;
5010 }
2ff7e61e 5011 ret = do_chunk_alloc(trans, fs_info,
1b86826d 5012 btrfs_metadata_alloc_profile(fs_info),
ea658bad 5013 CHUNK_ALLOC_NO_FORCE);
3a45bb20 5014 btrfs_end_transaction(trans);
eecba891 5015 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
5016 ret = 0;
5017 break;
96c3f433 5018 case COMMIT_TRANS:
996478ca 5019 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
5020 break;
5021 default:
5022 ret = -ENOSPC;
5023 break;
5024 }
5025
7bdd6277
NB
5026 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5027 ret);
e38ae7a0 5028 return;
96c3f433 5029}
21c7e756
MX
5030
5031static inline u64
c1c4919b
JM
5032btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5033 struct btrfs_space_info *space_info,
5034 bool system_chunk)
21c7e756 5035{
957780eb 5036 struct reserve_ticket *ticket;
21c7e756
MX
5037 u64 used;
5038 u64 expected;
957780eb 5039 u64 to_reclaim = 0;
21c7e756 5040
957780eb
JB
5041 list_for_each_entry(ticket, &space_info->tickets, list)
5042 to_reclaim += ticket->bytes;
5043 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5044 to_reclaim += ticket->bytes;
5045 if (to_reclaim)
5046 return to_reclaim;
21c7e756 5047
e0af2484 5048 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5049 if (can_overcommit(fs_info, space_info, to_reclaim,
5050 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5051 return 0;
5052
0eee8a49
NB
5053 used = btrfs_space_info_used(space_info, true);
5054
c1c4919b
JM
5055 if (can_overcommit(fs_info, space_info, SZ_1M,
5056 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5057 expected = div_factor_fine(space_info->total_bytes, 95);
5058 else
5059 expected = div_factor_fine(space_info->total_bytes, 90);
5060
5061 if (used > expected)
5062 to_reclaim = used - expected;
5063 else
5064 to_reclaim = 0;
5065 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5066 space_info->bytes_reserved);
21c7e756
MX
5067 return to_reclaim;
5068}
5069
c1c4919b
JM
5070static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5071 struct btrfs_space_info *space_info,
5072 u64 used, bool system_chunk)
21c7e756 5073{
365c5313
JB
5074 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5075
5076 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5077 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5078 return 0;
5079
c1c4919b
JM
5080 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5081 system_chunk))
d38b349c
JB
5082 return 0;
5083
0b246afa
JM
5084 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5085 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5086}
5087
957780eb 5088static void wake_all_tickets(struct list_head *head)
21c7e756 5089{
957780eb 5090 struct reserve_ticket *ticket;
25ce459c 5091
957780eb
JB
5092 while (!list_empty(head)) {
5093 ticket = list_first_entry(head, struct reserve_ticket, list);
5094 list_del_init(&ticket->list);
5095 ticket->error = -ENOSPC;
5096 wake_up(&ticket->wait);
21c7e756 5097 }
21c7e756
MX
5098}
5099
957780eb
JB
5100/*
5101 * This is for normal flushers, we can wait all goddamned day if we want to. We
5102 * will loop and continuously try to flush as long as we are making progress.
5103 * We count progress as clearing off tickets each time we have to loop.
5104 */
21c7e756
MX
5105static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5106{
5107 struct btrfs_fs_info *fs_info;
5108 struct btrfs_space_info *space_info;
5109 u64 to_reclaim;
5110 int flush_state;
957780eb 5111 int commit_cycles = 0;
ce129655 5112 u64 last_tickets_id;
21c7e756
MX
5113
5114 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5115 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5116
957780eb 5117 spin_lock(&space_info->lock);
c1c4919b
JM
5118 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5119 false);
957780eb
JB
5120 if (!to_reclaim) {
5121 space_info->flush = 0;
5122 spin_unlock(&space_info->lock);
21c7e756 5123 return;
957780eb 5124 }
ce129655 5125 last_tickets_id = space_info->tickets_id;
957780eb 5126 spin_unlock(&space_info->lock);
21c7e756
MX
5127
5128 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5129 do {
e38ae7a0 5130 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5131 spin_lock(&space_info->lock);
5132 if (list_empty(&space_info->tickets)) {
5133 space_info->flush = 0;
5134 spin_unlock(&space_info->lock);
5135 return;
5136 }
c1c4919b
JM
5137 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5138 space_info,
5139 false);
ce129655 5140 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5141 flush_state++;
5142 } else {
ce129655 5143 last_tickets_id = space_info->tickets_id;
957780eb
JB
5144 flush_state = FLUSH_DELAYED_ITEMS_NR;
5145 if (commit_cycles)
5146 commit_cycles--;
5147 }
5148
5149 if (flush_state > COMMIT_TRANS) {
5150 commit_cycles++;
5151 if (commit_cycles > 2) {
5152 wake_all_tickets(&space_info->tickets);
5153 space_info->flush = 0;
5154 } else {
5155 flush_state = FLUSH_DELAYED_ITEMS_NR;
5156 }
5157 }
5158 spin_unlock(&space_info->lock);
5159 } while (flush_state <= COMMIT_TRANS);
5160}
5161
5162void btrfs_init_async_reclaim_work(struct work_struct *work)
5163{
5164 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5165}
5166
5167static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5168 struct btrfs_space_info *space_info,
5169 struct reserve_ticket *ticket)
5170{
5171 u64 to_reclaim;
5172 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5173
5174 spin_lock(&space_info->lock);
c1c4919b
JM
5175 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5176 false);
957780eb
JB
5177 if (!to_reclaim) {
5178 spin_unlock(&space_info->lock);
5179 return;
5180 }
5181 spin_unlock(&space_info->lock);
5182
21c7e756 5183 do {
7bdd6277 5184 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5185 flush_state++;
957780eb
JB
5186 spin_lock(&space_info->lock);
5187 if (ticket->bytes == 0) {
5188 spin_unlock(&space_info->lock);
21c7e756 5189 return;
957780eb
JB
5190 }
5191 spin_unlock(&space_info->lock);
5192
5193 /*
5194 * Priority flushers can't wait on delalloc without
5195 * deadlocking.
5196 */
5197 if (flush_state == FLUSH_DELALLOC ||
5198 flush_state == FLUSH_DELALLOC_WAIT)
5199 flush_state = ALLOC_CHUNK;
365c5313 5200 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5201}
5202
957780eb
JB
5203static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5204 struct btrfs_space_info *space_info,
5205 struct reserve_ticket *ticket, u64 orig_bytes)
5206
21c7e756 5207{
957780eb
JB
5208 DEFINE_WAIT(wait);
5209 int ret = 0;
5210
5211 spin_lock(&space_info->lock);
5212 while (ticket->bytes > 0 && ticket->error == 0) {
5213 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5214 if (ret) {
5215 ret = -EINTR;
5216 break;
5217 }
5218 spin_unlock(&space_info->lock);
5219
5220 schedule();
5221
5222 finish_wait(&ticket->wait, &wait);
5223 spin_lock(&space_info->lock);
5224 }
5225 if (!ret)
5226 ret = ticket->error;
5227 if (!list_empty(&ticket->list))
5228 list_del_init(&ticket->list);
5229 if (ticket->bytes && ticket->bytes < orig_bytes) {
5230 u64 num_bytes = orig_bytes - ticket->bytes;
5231 space_info->bytes_may_use -= num_bytes;
5232 trace_btrfs_space_reservation(fs_info, "space_info",
5233 space_info->flags, num_bytes, 0);
5234 }
5235 spin_unlock(&space_info->lock);
5236
5237 return ret;
21c7e756
MX
5238}
5239
4a92b1b8
JB
5240/**
5241 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5242 * @root - the root we're allocating for
957780eb 5243 * @space_info - the space info we want to allocate from
4a92b1b8 5244 * @orig_bytes - the number of bytes we want
48fc7f7e 5245 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5246 *
01327610 5247 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5248 * with the block_rsv. If there is not enough space it will make an attempt to
5249 * flush out space to make room. It will do this by flushing delalloc if
5250 * possible or committing the transaction. If flush is 0 then no attempts to
5251 * regain reservations will be made and this will fail if there is not enough
5252 * space already.
8bb8ab2e 5253 */
c1c4919b 5254static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5255 struct btrfs_space_info *space_info,
5256 u64 orig_bytes,
c1c4919b
JM
5257 enum btrfs_reserve_flush_enum flush,
5258 bool system_chunk)
9ed74f2d 5259{
957780eb 5260 struct reserve_ticket ticket;
2bf64758 5261 u64 used;
8bb8ab2e 5262 int ret = 0;
9ed74f2d 5263
957780eb 5264 ASSERT(orig_bytes);
8ca17f0f 5265 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5266
8bb8ab2e 5267 spin_lock(&space_info->lock);
fdb5effd 5268 ret = -ENOSPC;
4136135b 5269 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5270
8bb8ab2e 5271 /*
957780eb
JB
5272 * If we have enough space then hooray, make our reservation and carry
5273 * on. If not see if we can overcommit, and if we can, hooray carry on.
5274 * If not things get more complicated.
8bb8ab2e 5275 */
957780eb
JB
5276 if (used + orig_bytes <= space_info->total_bytes) {
5277 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5278 trace_btrfs_space_reservation(fs_info, "space_info",
5279 space_info->flags, orig_bytes, 1);
957780eb 5280 ret = 0;
c1c4919b
JM
5281 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5282 system_chunk)) {
44734ed1 5283 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5284 trace_btrfs_space_reservation(fs_info, "space_info",
5285 space_info->flags, orig_bytes, 1);
44734ed1 5286 ret = 0;
2bf64758
JB
5287 }
5288
8bb8ab2e 5289 /*
957780eb
JB
5290 * If we couldn't make a reservation then setup our reservation ticket
5291 * and kick the async worker if it's not already running.
08e007d2 5292 *
957780eb
JB
5293 * If we are a priority flusher then we just need to add our ticket to
5294 * the list and we will do our own flushing further down.
8bb8ab2e 5295 */
72bcd99d 5296 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5297 ticket.bytes = orig_bytes;
5298 ticket.error = 0;
5299 init_waitqueue_head(&ticket.wait);
5300 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5301 list_add_tail(&ticket.list, &space_info->tickets);
5302 if (!space_info->flush) {
5303 space_info->flush = 1;
0b246afa 5304 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5305 space_info->flags,
5306 orig_bytes, flush,
5307 "enospc");
957780eb 5308 queue_work(system_unbound_wq,
c1c4919b 5309 &fs_info->async_reclaim_work);
957780eb
JB
5310 }
5311 } else {
5312 list_add_tail(&ticket.list,
5313 &space_info->priority_tickets);
5314 }
21c7e756
MX
5315 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5316 used += orig_bytes;
f6acfd50
JB
5317 /*
5318 * We will do the space reservation dance during log replay,
5319 * which means we won't have fs_info->fs_root set, so don't do
5320 * the async reclaim as we will panic.
5321 */
0b246afa 5322 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5323 need_do_async_reclaim(fs_info, space_info,
5324 used, system_chunk) &&
0b246afa
JM
5325 !work_busy(&fs_info->async_reclaim_work)) {
5326 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5327 orig_bytes, flush, "preempt");
21c7e756 5328 queue_work(system_unbound_wq,
0b246afa 5329 &fs_info->async_reclaim_work);
f376df2b 5330 }
8bb8ab2e 5331 }
f0486c68 5332 spin_unlock(&space_info->lock);
08e007d2 5333 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5334 return ret;
f0486c68 5335
957780eb 5336 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5337 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5338 orig_bytes);
08e007d2 5339
957780eb 5340 ret = 0;
0b246afa 5341 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5342 spin_lock(&space_info->lock);
5343 if (ticket.bytes) {
5344 if (ticket.bytes < orig_bytes) {
5345 u64 num_bytes = orig_bytes - ticket.bytes;
5346 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5347 trace_btrfs_space_reservation(fs_info, "space_info",
5348 space_info->flags,
5349 num_bytes, 0);
08e007d2 5350
957780eb
JB
5351 }
5352 list_del_init(&ticket.list);
5353 ret = -ENOSPC;
5354 }
5355 spin_unlock(&space_info->lock);
5356 ASSERT(list_empty(&ticket.list));
5357 return ret;
5358}
8bb8ab2e 5359
957780eb
JB
5360/**
5361 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5362 * @root - the root we're allocating for
5363 * @block_rsv - the block_rsv we're allocating for
5364 * @orig_bytes - the number of bytes we want
5365 * @flush - whether or not we can flush to make our reservation
5366 *
5367 * This will reserve orgi_bytes number of bytes from the space info associated
5368 * with the block_rsv. If there is not enough space it will make an attempt to
5369 * flush out space to make room. It will do this by flushing delalloc if
5370 * possible or committing the transaction. If flush is 0 then no attempts to
5371 * regain reservations will be made and this will fail if there is not enough
5372 * space already.
5373 */
5374static int reserve_metadata_bytes(struct btrfs_root *root,
5375 struct btrfs_block_rsv *block_rsv,
5376 u64 orig_bytes,
5377 enum btrfs_reserve_flush_enum flush)
5378{
0b246afa
JM
5379 struct btrfs_fs_info *fs_info = root->fs_info;
5380 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5381 int ret;
c1c4919b 5382 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5383
c1c4919b
JM
5384 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5385 orig_bytes, flush, system_chunk);
5d80366e
JB
5386 if (ret == -ENOSPC &&
5387 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5388 if (block_rsv != global_rsv &&
5389 !block_rsv_use_bytes(global_rsv, orig_bytes))
5390 ret = 0;
5391 }
cab45e22 5392 if (ret == -ENOSPC)
0b246afa 5393 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5394 block_rsv->space_info->flags,
5395 orig_bytes, 1);
f0486c68
YZ
5396 return ret;
5397}
5398
79787eaa
JM
5399static struct btrfs_block_rsv *get_block_rsv(
5400 const struct btrfs_trans_handle *trans,
5401 const struct btrfs_root *root)
f0486c68 5402{
0b246afa 5403 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5404 struct btrfs_block_rsv *block_rsv = NULL;
5405
e9cf439f 5406 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5407 (root == fs_info->csum_root && trans->adding_csums) ||
5408 (root == fs_info->uuid_root))
f7a81ea4
SB
5409 block_rsv = trans->block_rsv;
5410
4c13d758 5411 if (!block_rsv)
f0486c68
YZ
5412 block_rsv = root->block_rsv;
5413
5414 if (!block_rsv)
0b246afa 5415 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5416
5417 return block_rsv;
5418}
5419
5420static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5421 u64 num_bytes)
5422{
5423 int ret = -ENOSPC;
5424 spin_lock(&block_rsv->lock);
5425 if (block_rsv->reserved >= num_bytes) {
5426 block_rsv->reserved -= num_bytes;
5427 if (block_rsv->reserved < block_rsv->size)
5428 block_rsv->full = 0;
5429 ret = 0;
5430 }
5431 spin_unlock(&block_rsv->lock);
5432 return ret;
5433}
5434
5435static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5436 u64 num_bytes, int update_size)
5437{
5438 spin_lock(&block_rsv->lock);
5439 block_rsv->reserved += num_bytes;
5440 if (update_size)
5441 block_rsv->size += num_bytes;
5442 else if (block_rsv->reserved >= block_rsv->size)
5443 block_rsv->full = 1;
5444 spin_unlock(&block_rsv->lock);
5445}
5446
d52be818
JB
5447int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5448 struct btrfs_block_rsv *dest, u64 num_bytes,
5449 int min_factor)
5450{
5451 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5452 u64 min_bytes;
5453
5454 if (global_rsv->space_info != dest->space_info)
5455 return -ENOSPC;
5456
5457 spin_lock(&global_rsv->lock);
5458 min_bytes = div_factor(global_rsv->size, min_factor);
5459 if (global_rsv->reserved < min_bytes + num_bytes) {
5460 spin_unlock(&global_rsv->lock);
5461 return -ENOSPC;
5462 }
5463 global_rsv->reserved -= num_bytes;
5464 if (global_rsv->reserved < global_rsv->size)
5465 global_rsv->full = 0;
5466 spin_unlock(&global_rsv->lock);
5467
5468 block_rsv_add_bytes(dest, num_bytes, 1);
5469 return 0;
5470}
5471
957780eb
JB
5472/*
5473 * This is for space we already have accounted in space_info->bytes_may_use, so
5474 * basically when we're returning space from block_rsv's.
5475 */
5476static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5477 struct btrfs_space_info *space_info,
5478 u64 num_bytes)
5479{
5480 struct reserve_ticket *ticket;
5481 struct list_head *head;
5482 u64 used;
5483 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5484 bool check_overcommit = false;
5485
5486 spin_lock(&space_info->lock);
5487 head = &space_info->priority_tickets;
5488
5489 /*
5490 * If we are over our limit then we need to check and see if we can
5491 * overcommit, and if we can't then we just need to free up our space
5492 * and not satisfy any requests.
5493 */
0eee8a49 5494 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5495 if (used - num_bytes >= space_info->total_bytes)
5496 check_overcommit = true;
5497again:
5498 while (!list_empty(head) && num_bytes) {
5499 ticket = list_first_entry(head, struct reserve_ticket,
5500 list);
5501 /*
5502 * We use 0 bytes because this space is already reserved, so
5503 * adding the ticket space would be a double count.
5504 */
5505 if (check_overcommit &&
c1c4919b 5506 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5507 break;
5508 if (num_bytes >= ticket->bytes) {
5509 list_del_init(&ticket->list);
5510 num_bytes -= ticket->bytes;
5511 ticket->bytes = 0;
ce129655 5512 space_info->tickets_id++;
957780eb
JB
5513 wake_up(&ticket->wait);
5514 } else {
5515 ticket->bytes -= num_bytes;
5516 num_bytes = 0;
5517 }
5518 }
5519
5520 if (num_bytes && head == &space_info->priority_tickets) {
5521 head = &space_info->tickets;
5522 flush = BTRFS_RESERVE_FLUSH_ALL;
5523 goto again;
5524 }
5525 space_info->bytes_may_use -= num_bytes;
5526 trace_btrfs_space_reservation(fs_info, "space_info",
5527 space_info->flags, num_bytes, 0);
5528 spin_unlock(&space_info->lock);
5529}
5530
5531/*
5532 * This is for newly allocated space that isn't accounted in
5533 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5534 * we use this helper.
5535 */
5536static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5537 struct btrfs_space_info *space_info,
5538 u64 num_bytes)
5539{
5540 struct reserve_ticket *ticket;
5541 struct list_head *head = &space_info->priority_tickets;
5542
5543again:
5544 while (!list_empty(head) && num_bytes) {
5545 ticket = list_first_entry(head, struct reserve_ticket,
5546 list);
5547 if (num_bytes >= ticket->bytes) {
5548 trace_btrfs_space_reservation(fs_info, "space_info",
5549 space_info->flags,
5550 ticket->bytes, 1);
5551 list_del_init(&ticket->list);
5552 num_bytes -= ticket->bytes;
5553 space_info->bytes_may_use += ticket->bytes;
5554 ticket->bytes = 0;
ce129655 5555 space_info->tickets_id++;
957780eb
JB
5556 wake_up(&ticket->wait);
5557 } else {
5558 trace_btrfs_space_reservation(fs_info, "space_info",
5559 space_info->flags,
5560 num_bytes, 1);
5561 space_info->bytes_may_use += num_bytes;
5562 ticket->bytes -= num_bytes;
5563 num_bytes = 0;
5564 }
5565 }
5566
5567 if (num_bytes && head == &space_info->priority_tickets) {
5568 head = &space_info->tickets;
5569 goto again;
5570 }
5571}
5572
69fe2d75 5573static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5574 struct btrfs_block_rsv *block_rsv,
62a45b60 5575 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5576{
5577 struct btrfs_space_info *space_info = block_rsv->space_info;
69fe2d75 5578 u64 ret;
f0486c68
YZ
5579
5580 spin_lock(&block_rsv->lock);
5581 if (num_bytes == (u64)-1)
5582 num_bytes = block_rsv->size;
5583 block_rsv->size -= num_bytes;
5584 if (block_rsv->reserved >= block_rsv->size) {
5585 num_bytes = block_rsv->reserved - block_rsv->size;
5586 block_rsv->reserved = block_rsv->size;
5587 block_rsv->full = 1;
5588 } else {
5589 num_bytes = 0;
5590 }
5591 spin_unlock(&block_rsv->lock);
5592
69fe2d75 5593 ret = num_bytes;
f0486c68
YZ
5594 if (num_bytes > 0) {
5595 if (dest) {
e9e22899
JB
5596 spin_lock(&dest->lock);
5597 if (!dest->full) {
5598 u64 bytes_to_add;
5599
5600 bytes_to_add = dest->size - dest->reserved;
5601 bytes_to_add = min(num_bytes, bytes_to_add);
5602 dest->reserved += bytes_to_add;
5603 if (dest->reserved >= dest->size)
5604 dest->full = 1;
5605 num_bytes -= bytes_to_add;
5606 }
5607 spin_unlock(&dest->lock);
5608 }
957780eb
JB
5609 if (num_bytes)
5610 space_info_add_old_bytes(fs_info, space_info,
5611 num_bytes);
9ed74f2d 5612 }
69fe2d75 5613 return ret;
f0486c68 5614}
4e06bdd6 5615
25d609f8
JB
5616int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5617 struct btrfs_block_rsv *dst, u64 num_bytes,
5618 int update_size)
f0486c68
YZ
5619{
5620 int ret;
9ed74f2d 5621
f0486c68
YZ
5622 ret = block_rsv_use_bytes(src, num_bytes);
5623 if (ret)
5624 return ret;
9ed74f2d 5625
25d609f8 5626 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5627 return 0;
5628}
5629
66d8f3dd 5630void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5631{
f0486c68
YZ
5632 memset(rsv, 0, sizeof(*rsv));
5633 spin_lock_init(&rsv->lock);
66d8f3dd 5634 rsv->type = type;
f0486c68
YZ
5635}
5636
69fe2d75
JB
5637void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5638 struct btrfs_block_rsv *rsv,
5639 unsigned short type)
5640{
5641 btrfs_init_block_rsv(rsv, type);
5642 rsv->space_info = __find_space_info(fs_info,
5643 BTRFS_BLOCK_GROUP_METADATA);
5644}
5645
2ff7e61e 5646struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5647 unsigned short type)
f0486c68
YZ
5648{
5649 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5650
f0486c68
YZ
5651 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5652 if (!block_rsv)
5653 return NULL;
9ed74f2d 5654
69fe2d75 5655 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5656 return block_rsv;
5657}
9ed74f2d 5658
2ff7e61e 5659void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5660 struct btrfs_block_rsv *rsv)
5661{
2aaa6655
JB
5662 if (!rsv)
5663 return;
2ff7e61e 5664 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5665 kfree(rsv);
9ed74f2d
JB
5666}
5667
cdfb080e
CM
5668void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5669{
5670 kfree(rsv);
5671}
5672
08e007d2
MX
5673int btrfs_block_rsv_add(struct btrfs_root *root,
5674 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5675 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5676{
f0486c68 5677 int ret;
9ed74f2d 5678
f0486c68
YZ
5679 if (num_bytes == 0)
5680 return 0;
8bb8ab2e 5681
61b520a9 5682 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5683 if (!ret) {
5684 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5685 return 0;
5686 }
9ed74f2d 5687
f0486c68 5688 return ret;
f0486c68 5689}
9ed74f2d 5690
2ff7e61e 5691int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5692{
5693 u64 num_bytes = 0;
f0486c68 5694 int ret = -ENOSPC;
9ed74f2d 5695
f0486c68
YZ
5696 if (!block_rsv)
5697 return 0;
9ed74f2d 5698
f0486c68 5699 spin_lock(&block_rsv->lock);
36ba022a
JB
5700 num_bytes = div_factor(block_rsv->size, min_factor);
5701 if (block_rsv->reserved >= num_bytes)
5702 ret = 0;
5703 spin_unlock(&block_rsv->lock);
9ed74f2d 5704
36ba022a
JB
5705 return ret;
5706}
5707
08e007d2
MX
5708int btrfs_block_rsv_refill(struct btrfs_root *root,
5709 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5710 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5711{
5712 u64 num_bytes = 0;
5713 int ret = -ENOSPC;
5714
5715 if (!block_rsv)
5716 return 0;
5717
5718 spin_lock(&block_rsv->lock);
5719 num_bytes = min_reserved;
13553e52 5720 if (block_rsv->reserved >= num_bytes)
f0486c68 5721 ret = 0;
13553e52 5722 else
f0486c68 5723 num_bytes -= block_rsv->reserved;
f0486c68 5724 spin_unlock(&block_rsv->lock);
13553e52 5725
f0486c68
YZ
5726 if (!ret)
5727 return 0;
5728
aa38a711 5729 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5730 if (!ret) {
5731 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5732 return 0;
6a63209f 5733 }
9ed74f2d 5734
13553e52 5735 return ret;
f0486c68
YZ
5736}
5737
69fe2d75
JB
5738/**
5739 * btrfs_inode_rsv_refill - refill the inode block rsv.
5740 * @inode - the inode we are refilling.
5741 * @flush - the flusing restriction.
5742 *
5743 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5744 * block_rsv->size as the minimum size. We'll either refill the missing amount
5745 * or return if we already have enough space. This will also handle the resreve
5746 * tracepoint for the reserved amount.
5747 */
5748int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5749 enum btrfs_reserve_flush_enum flush)
5750{
5751 struct btrfs_root *root = inode->root;
5752 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5753 u64 num_bytes = 0;
5754 int ret = -ENOSPC;
5755
5756 spin_lock(&block_rsv->lock);
5757 if (block_rsv->reserved < block_rsv->size)
5758 num_bytes = block_rsv->size - block_rsv->reserved;
5759 spin_unlock(&block_rsv->lock);
5760
5761 if (num_bytes == 0)
5762 return 0;
5763
5764 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5765 if (!ret) {
5766 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5767 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5768 btrfs_ino(inode), num_bytes, 1);
5769 }
5770 return ret;
5771}
5772
5773/**
5774 * btrfs_inode_rsv_release - release any excessive reservation.
5775 * @inode - the inode we need to release from.
5776 *
5777 * This is the same as btrfs_block_rsv_release, except that it handles the
5778 * tracepoint for the reservation.
5779 */
5780void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5781{
5782 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5783 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5784 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5785 u64 released = 0;
5786
5787 /*
5788 * Since we statically set the block_rsv->size we just want to say we
5789 * are releasing 0 bytes, and then we'll just get the reservation over
5790 * the size free'd.
5791 */
5792 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5793 if (released > 0)
5794 trace_btrfs_space_reservation(fs_info, "delalloc",
5795 btrfs_ino(inode), released, 0);
5796}
5797
2ff7e61e 5798void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5799 struct btrfs_block_rsv *block_rsv,
5800 u64 num_bytes)
5801{
0b246afa
JM
5802 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5803
17504584 5804 if (global_rsv == block_rsv ||
f0486c68
YZ
5805 block_rsv->space_info != global_rsv->space_info)
5806 global_rsv = NULL;
0b246afa 5807 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5808}
5809
8929ecfa
YZ
5810static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5811{
5812 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5813 struct btrfs_space_info *sinfo = block_rsv->space_info;
5814 u64 num_bytes;
6a63209f 5815
ae2e4728
JB
5816 /*
5817 * The global block rsv is based on the size of the extent tree, the
5818 * checksum tree and the root tree. If the fs is empty we want to set
5819 * it to a minimal amount for safety.
5820 */
5821 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5822 btrfs_root_used(&fs_info->csum_root->root_item) +
5823 btrfs_root_used(&fs_info->tree_root->root_item);
5824 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5825
8929ecfa 5826 spin_lock(&sinfo->lock);
1f699d38 5827 spin_lock(&block_rsv->lock);
4e06bdd6 5828
ee22184b 5829 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5830
fb4b10e5 5831 if (block_rsv->reserved < block_rsv->size) {
4136135b 5832 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5833 if (sinfo->total_bytes > num_bytes) {
5834 num_bytes = sinfo->total_bytes - num_bytes;
5835 num_bytes = min(num_bytes,
5836 block_rsv->size - block_rsv->reserved);
5837 block_rsv->reserved += num_bytes;
5838 sinfo->bytes_may_use += num_bytes;
5839 trace_btrfs_space_reservation(fs_info, "space_info",
5840 sinfo->flags, num_bytes,
5841 1);
5842 }
5843 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5844 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5845 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5846 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5847 sinfo->flags, num_bytes, 0);
8929ecfa 5848 block_rsv->reserved = block_rsv->size;
8929ecfa 5849 }
182608c8 5850
fb4b10e5
JB
5851 if (block_rsv->reserved == block_rsv->size)
5852 block_rsv->full = 1;
5853 else
5854 block_rsv->full = 0;
5855
8929ecfa 5856 spin_unlock(&block_rsv->lock);
1f699d38 5857 spin_unlock(&sinfo->lock);
6a63209f
JB
5858}
5859
f0486c68 5860static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5861{
f0486c68 5862 struct btrfs_space_info *space_info;
6a63209f 5863
f0486c68
YZ
5864 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5865 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5866
f0486c68 5867 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5868 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5869 fs_info->trans_block_rsv.space_info = space_info;
5870 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5871 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5872
8929ecfa
YZ
5873 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5874 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5875 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5876 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5877 if (fs_info->quota_root)
5878 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5879 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5880
8929ecfa 5881 update_global_block_rsv(fs_info);
6a63209f
JB
5882}
5883
8929ecfa 5884static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5885{
8c2a3ca2
JB
5886 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5887 (u64)-1);
8929ecfa
YZ
5888 WARN_ON(fs_info->trans_block_rsv.size > 0);
5889 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5890 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5891 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5892 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5893 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5894}
5895
a22285a6 5896void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2ff7e61e 5897 struct btrfs_fs_info *fs_info)
6a63209f 5898{
bf2681cb
JB
5899 if (!trans->block_rsv) {
5900 ASSERT(!trans->bytes_reserved);
0e721106 5901 return;
bf2681cb 5902 }
0e721106 5903
a22285a6
YZ
5904 if (!trans->bytes_reserved)
5905 return;
6a63209f 5906
bf2681cb 5907 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
0b246afa 5908 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 5909 trans->transid, trans->bytes_reserved, 0);
2ff7e61e
JM
5910 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5911 trans->bytes_reserved);
a22285a6
YZ
5912 trans->bytes_reserved = 0;
5913}
6a63209f 5914
4fbcdf66
FM
5915/*
5916 * To be called after all the new block groups attached to the transaction
5917 * handle have been created (btrfs_create_pending_block_groups()).
5918 */
5919void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5920{
64b63580 5921 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5922
5923 if (!trans->chunk_bytes_reserved)
5924 return;
5925
5926 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5927
5928 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5929 trans->chunk_bytes_reserved);
5930 trans->chunk_bytes_reserved = 0;
5931}
5932
79787eaa 5933/* Can only return 0 or -ENOSPC */
d68fc57b 5934int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5935 struct btrfs_inode *inode)
d68fc57b 5936{
8ed7a2a0
NB
5937 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5938 struct btrfs_root *root = inode->root;
40acc3ee
JB
5939 /*
5940 * We always use trans->block_rsv here as we will have reserved space
5941 * for our orphan when starting the transaction, using get_block_rsv()
5942 * here will sometimes make us choose the wrong block rsv as we could be
5943 * doing a reloc inode for a non refcounted root.
5944 */
5945 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5946 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5947
5948 /*
fcb80c2a
JB
5949 * We need to hold space in order to delete our orphan item once we've
5950 * added it, so this takes the reservation so we can release it later
5951 * when we are truly done with the orphan item.
d68fc57b 5952 */
0b246afa
JM
5953 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5954
8ed7a2a0
NB
5955 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5956 num_bytes, 1);
25d609f8 5957 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5958}
5959
703b391a 5960void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5961{
703b391a
NB
5962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5963 struct btrfs_root *root = inode->root;
0b246afa
JM
5964 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5965
703b391a
NB
5966 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5967 num_bytes, 0);
2ff7e61e 5968 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5969}
97e728d4 5970
d5c12070
MX
5971/*
5972 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5973 * root: the root of the parent directory
5974 * rsv: block reservation
5975 * items: the number of items that we need do reservation
5976 * qgroup_reserved: used to return the reserved size in qgroup
5977 *
5978 * This function is used to reserve the space for snapshot/subvolume
5979 * creation and deletion. Those operations are different with the
5980 * common file/directory operations, they change two fs/file trees
5981 * and root tree, the number of items that the qgroup reserves is
5982 * different with the free space reservation. So we can not use
01327610 5983 * the space reservation mechanism in start_transaction().
d5c12070
MX
5984 */
5985int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5986 struct btrfs_block_rsv *rsv,
5987 int items,
ee3441b4
JM
5988 u64 *qgroup_reserved,
5989 bool use_global_rsv)
a22285a6 5990{
d5c12070
MX
5991 u64 num_bytes;
5992 int ret;
0b246afa
JM
5993 struct btrfs_fs_info *fs_info = root->fs_info;
5994 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5995
0b246afa 5996 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5997 /* One for parent inode, two for dir entries */
0b246afa 5998 num_bytes = 3 * fs_info->nodesize;
003d7c59 5999 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
6000 if (ret)
6001 return ret;
6002 } else {
6003 num_bytes = 0;
6004 }
6005
6006 *qgroup_reserved = num_bytes;
6007
0b246afa
JM
6008 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6009 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6010 BTRFS_BLOCK_GROUP_METADATA);
6011 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6012 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6013
6014 if (ret == -ENOSPC && use_global_rsv)
25d609f8 6015 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 6016
7174109c
QW
6017 if (ret && *qgroup_reserved)
6018 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
6019
6020 return ret;
6021}
6022
2ff7e61e 6023void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6024 struct btrfs_block_rsv *rsv)
d5c12070 6025{
2ff7e61e 6026 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6027}
6028
69fe2d75
JB
6029static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6030 struct btrfs_inode *inode)
9e0baf60 6031{
69fe2d75
JB
6032 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6033 u64 reserve_size = 0;
6034 u64 csum_leaves;
6035 unsigned outstanding_extents;
9e0baf60 6036
69fe2d75
JB
6037 lockdep_assert_held(&inode->lock);
6038 outstanding_extents = inode->outstanding_extents;
6039 if (outstanding_extents)
6040 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6041 outstanding_extents + 1);
6042 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6043 inode->csum_bytes);
6044 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6045 csum_leaves);
9e0baf60 6046
69fe2d75
JB
6047 spin_lock(&block_rsv->lock);
6048 block_rsv->size = reserve_size;
6049 spin_unlock(&block_rsv->lock);
0ca1f7ce 6050}
c146afad 6051
9f3db423 6052int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6053{
9f3db423
NB
6054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6055 struct btrfs_root *root = inode->root;
69fe2d75 6056 unsigned nr_extents;
08e007d2 6057 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6058 int ret = 0;
c64c2bd8 6059 bool delalloc_lock = true;
6324fbf3 6060
c64c2bd8
JB
6061 /* If we are a free space inode we need to not flush since we will be in
6062 * the middle of a transaction commit. We also don't need the delalloc
6063 * mutex since we won't race with anybody. We need this mostly to make
6064 * lockdep shut its filthy mouth.
bac357dc
JB
6065 *
6066 * If we have a transaction open (can happen if we call truncate_block
6067 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6068 */
6069 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6070 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6071 delalloc_lock = false;
bac357dc
JB
6072 } else if (current->journal_info) {
6073 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 6074 }
c09544e0 6075
08e007d2 6076 if (flush != BTRFS_RESERVE_NO_FLUSH &&
0b246afa 6077 btrfs_transaction_in_commit(fs_info))
0ca1f7ce 6078 schedule_timeout(1);
ec44a35c 6079
c64c2bd8 6080 if (delalloc_lock)
9f3db423 6081 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6082
0b246afa 6083 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6084
6085 /* Add our new extents and calculate the new rsv size. */
9f3db423 6086 spin_lock(&inode->lock);
69fe2d75 6087 nr_extents = count_max_extents(num_bytes);
8b62f87b 6088 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6089 inode->csum_bytes += num_bytes;
6090 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6091 spin_unlock(&inode->lock);
57a45ced 6092
0b246afa 6093 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 6094 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 6095 nr_extents * fs_info->nodesize, true);
88e081bf
WS
6096 if (ret)
6097 goto out_fail;
6098 }
c5567237 6099
69fe2d75 6100 ret = btrfs_inode_rsv_refill(inode, flush);
88e081bf 6101 if (unlikely(ret)) {
da17066c 6102 btrfs_qgroup_free_meta(root,
0b246afa 6103 nr_extents * fs_info->nodesize);
88e081bf 6104 goto out_fail;
9e0baf60 6105 }
25179201 6106
c64c2bd8 6107 if (delalloc_lock)
9f3db423 6108 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6109 return 0;
88e081bf
WS
6110
6111out_fail:
9f3db423 6112 spin_lock(&inode->lock);
8b62f87b
JB
6113 nr_extents = count_max_extents(num_bytes);
6114 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6115 inode->csum_bytes -= num_bytes;
6116 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6117 spin_unlock(&inode->lock);
88e081bf 6118
69fe2d75 6119 btrfs_inode_rsv_release(inode);
88e081bf 6120 if (delalloc_lock)
9f3db423 6121 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6122 return ret;
0ca1f7ce
YZ
6123}
6124
7709cde3
JB
6125/**
6126 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6127 * @inode: the inode to release the reservation for.
6128 * @num_bytes: the number of bytes we are releasing.
7709cde3
JB
6129 *
6130 * This will release the metadata reservation for an inode. This can be called
6131 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6132 * reservations, or on error for the same reason.
7709cde3 6133 */
691fa059 6134void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6135{
691fa059 6136 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6137
0b246afa 6138 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6139 spin_lock(&inode->lock);
69fe2d75
JB
6140 inode->csum_bytes -= num_bytes;
6141 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6142 spin_unlock(&inode->lock);
0ca1f7ce 6143
0b246afa 6144 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6145 return;
6146
69fe2d75 6147 btrfs_inode_rsv_release(inode);
0ca1f7ce
YZ
6148}
6149
8b62f87b
JB
6150/**
6151 * btrfs_delalloc_release_extents - release our outstanding_extents
6152 * @inode: the inode to balance the reservation for.
6153 * @num_bytes: the number of bytes we originally reserved with
6154 *
6155 * When we reserve space we increase outstanding_extents for the extents we may
6156 * add. Once we've set the range as delalloc or created our ordered extents we
6157 * have outstanding_extents to track the real usage, so we use this to free our
6158 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6159 * with btrfs_delalloc_reserve_metadata.
6160 */
6161void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6162{
6163 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6164 unsigned num_extents;
8b62f87b
JB
6165
6166 spin_lock(&inode->lock);
6167 num_extents = count_max_extents(num_bytes);
6168 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6169 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6170 spin_unlock(&inode->lock);
6171
8b62f87b
JB
6172 if (btrfs_is_testing(fs_info))
6173 return;
6174
69fe2d75 6175 btrfs_inode_rsv_release(inode);
8b62f87b
JB
6176}
6177
1ada3a62 6178/**
7cf5b976 6179 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6180 * delalloc
6181 * @inode: inode we're writing to
6182 * @start: start range we are writing to
6183 * @len: how long the range we are writing to
364ecf36
QW
6184 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6185 * current reservation.
1ada3a62 6186 *
1ada3a62
QW
6187 * This will do the following things
6188 *
6189 * o reserve space in data space info for num bytes
6190 * and reserve precious corresponding qgroup space
6191 * (Done in check_data_free_space)
6192 *
6193 * o reserve space for metadata space, based on the number of outstanding
6194 * extents and how much csums will be needed
6195 * also reserve metadata space in a per root over-reserve method.
6196 * o add to the inodes->delalloc_bytes
6197 * o add it to the fs_info's delalloc inodes list.
6198 * (Above 3 all done in delalloc_reserve_metadata)
6199 *
6200 * Return 0 for success
6201 * Return <0 for error(-ENOSPC or -EQUOT)
6202 */
364ecf36
QW
6203int btrfs_delalloc_reserve_space(struct inode *inode,
6204 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6205{
6206 int ret;
6207
364ecf36 6208 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6209 if (ret < 0)
6210 return ret;
9f3db423 6211 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6212 if (ret < 0)
bc42bda2 6213 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6214 return ret;
6215}
6216
7709cde3 6217/**
7cf5b976 6218 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6219 * @inode: inode we're releasing space for
6220 * @start: start position of the space already reserved
6221 * @len: the len of the space already reserved
8b62f87b 6222 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6223 *
6224 * This function will release the metadata space that was not used and will
6225 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6226 * list if there are no delalloc bytes left.
6227 * Also it will handle the qgroup reserved space.
6228 */
bc42bda2 6229void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b
JB
6230 struct extent_changeset *reserved,
6231 u64 start, u64 len)
1ada3a62 6232{
691fa059 6233 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
bc42bda2 6234 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6235}
6236
ce93ec54 6237static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6238 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6239 u64 num_bytes, int alloc)
9078a3e1 6240{
0af3d00b 6241 struct btrfs_block_group_cache *cache = NULL;
db94535d 6242 u64 total = num_bytes;
9078a3e1 6243 u64 old_val;
db94535d 6244 u64 byte_in_group;
0af3d00b 6245 int factor;
3e1ad54f 6246
5d4f98a2 6247 /* block accounting for super block */
eb73c1b7 6248 spin_lock(&info->delalloc_root_lock);
6c41761f 6249 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6250 if (alloc)
6251 old_val += num_bytes;
6252 else
6253 old_val -= num_bytes;
6c41761f 6254 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6255 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6256
d397712b 6257 while (total) {
db94535d 6258 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6259 if (!cache)
79787eaa 6260 return -ENOENT;
b742bb82
YZ
6261 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6262 BTRFS_BLOCK_GROUP_RAID1 |
6263 BTRFS_BLOCK_GROUP_RAID10))
6264 factor = 2;
6265 else
6266 factor = 1;
9d66e233
JB
6267 /*
6268 * If this block group has free space cache written out, we
6269 * need to make sure to load it if we are removing space. This
6270 * is because we need the unpinning stage to actually add the
6271 * space back to the block group, otherwise we will leak space.
6272 */
6273 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6274 cache_block_group(cache, 1);
0af3d00b 6275
db94535d
CM
6276 byte_in_group = bytenr - cache->key.objectid;
6277 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6278
25179201 6279 spin_lock(&cache->space_info->lock);
c286ac48 6280 spin_lock(&cache->lock);
0af3d00b 6281
6202df69 6282 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6283 cache->disk_cache_state < BTRFS_DC_CLEAR)
6284 cache->disk_cache_state = BTRFS_DC_CLEAR;
6285
9078a3e1 6286 old_val = btrfs_block_group_used(&cache->item);
db94535d 6287 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6288 if (alloc) {
db94535d 6289 old_val += num_bytes;
11833d66
YZ
6290 btrfs_set_block_group_used(&cache->item, old_val);
6291 cache->reserved -= num_bytes;
11833d66 6292 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6293 cache->space_info->bytes_used += num_bytes;
6294 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6295 spin_unlock(&cache->lock);
25179201 6296 spin_unlock(&cache->space_info->lock);
cd1bc465 6297 } else {
db94535d 6298 old_val -= num_bytes;
ae0ab003
FM
6299 btrfs_set_block_group_used(&cache->item, old_val);
6300 cache->pinned += num_bytes;
6301 cache->space_info->bytes_pinned += num_bytes;
6302 cache->space_info->bytes_used -= num_bytes;
6303 cache->space_info->disk_used -= num_bytes * factor;
6304 spin_unlock(&cache->lock);
6305 spin_unlock(&cache->space_info->lock);
47ab2a6c 6306
0b246afa 6307 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6308 cache->space_info->flags,
6309 num_bytes, 1);
d7eae340
OS
6310 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6311 num_bytes);
ae0ab003
FM
6312 set_extent_dirty(info->pinned_extents,
6313 bytenr, bytenr + num_bytes - 1,
6314 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6315 }
1bbc621e
CM
6316
6317 spin_lock(&trans->transaction->dirty_bgs_lock);
6318 if (list_empty(&cache->dirty_list)) {
6319 list_add_tail(&cache->dirty_list,
6320 &trans->transaction->dirty_bgs);
6321 trans->transaction->num_dirty_bgs++;
6322 btrfs_get_block_group(cache);
6323 }
6324 spin_unlock(&trans->transaction->dirty_bgs_lock);
6325
036a9348
FM
6326 /*
6327 * No longer have used bytes in this block group, queue it for
6328 * deletion. We do this after adding the block group to the
6329 * dirty list to avoid races between cleaner kthread and space
6330 * cache writeout.
6331 */
6332 if (!alloc && old_val == 0) {
6333 spin_lock(&info->unused_bgs_lock);
6334 if (list_empty(&cache->bg_list)) {
6335 btrfs_get_block_group(cache);
6336 list_add_tail(&cache->bg_list,
6337 &info->unused_bgs);
6338 }
6339 spin_unlock(&info->unused_bgs_lock);
6340 }
6341
fa9c0d79 6342 btrfs_put_block_group(cache);
db94535d
CM
6343 total -= num_bytes;
6344 bytenr += num_bytes;
9078a3e1
CM
6345 }
6346 return 0;
6347}
6324fbf3 6348
2ff7e61e 6349static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6350{
0f9dd46c 6351 struct btrfs_block_group_cache *cache;
d2fb3437 6352 u64 bytenr;
0f9dd46c 6353
0b246afa
JM
6354 spin_lock(&fs_info->block_group_cache_lock);
6355 bytenr = fs_info->first_logical_byte;
6356 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6357
6358 if (bytenr < (u64)-1)
6359 return bytenr;
6360
0b246afa 6361 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6362 if (!cache)
a061fc8d 6363 return 0;
0f9dd46c 6364
d2fb3437 6365 bytenr = cache->key.objectid;
fa9c0d79 6366 btrfs_put_block_group(cache);
d2fb3437
YZ
6367
6368 return bytenr;
a061fc8d
CM
6369}
6370
2ff7e61e 6371static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6372 struct btrfs_block_group_cache *cache,
6373 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6374{
11833d66
YZ
6375 spin_lock(&cache->space_info->lock);
6376 spin_lock(&cache->lock);
6377 cache->pinned += num_bytes;
6378 cache->space_info->bytes_pinned += num_bytes;
6379 if (reserved) {
6380 cache->reserved -= num_bytes;
6381 cache->space_info->bytes_reserved -= num_bytes;
6382 }
6383 spin_unlock(&cache->lock);
6384 spin_unlock(&cache->space_info->lock);
68b38550 6385
0b246afa 6386 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6387 cache->space_info->flags, num_bytes, 1);
4da8b76d 6388 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6389 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6390 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6391 return 0;
6392}
68b38550 6393
f0486c68
YZ
6394/*
6395 * this function must be called within transaction
6396 */
2ff7e61e 6397int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6398 u64 bytenr, u64 num_bytes, int reserved)
6399{
6400 struct btrfs_block_group_cache *cache;
68b38550 6401
0b246afa 6402 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6403 BUG_ON(!cache); /* Logic error */
f0486c68 6404
2ff7e61e 6405 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6406
6407 btrfs_put_block_group(cache);
11833d66
YZ
6408 return 0;
6409}
6410
f0486c68 6411/*
e688b725
CM
6412 * this function must be called within transaction
6413 */
2ff7e61e 6414int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6415 u64 bytenr, u64 num_bytes)
6416{
6417 struct btrfs_block_group_cache *cache;
b50c6e25 6418 int ret;
e688b725 6419
0b246afa 6420 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6421 if (!cache)
6422 return -EINVAL;
e688b725
CM
6423
6424 /*
6425 * pull in the free space cache (if any) so that our pin
6426 * removes the free space from the cache. We have load_only set
6427 * to one because the slow code to read in the free extents does check
6428 * the pinned extents.
6429 */
f6373bf3 6430 cache_block_group(cache, 1);
e688b725 6431
2ff7e61e 6432 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6433
6434 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6435 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6436 btrfs_put_block_group(cache);
b50c6e25 6437 return ret;
e688b725
CM
6438}
6439
2ff7e61e
JM
6440static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6441 u64 start, u64 num_bytes)
8c2a1a30
JB
6442{
6443 int ret;
6444 struct btrfs_block_group_cache *block_group;
6445 struct btrfs_caching_control *caching_ctl;
6446
0b246afa 6447 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6448 if (!block_group)
6449 return -EINVAL;
6450
6451 cache_block_group(block_group, 0);
6452 caching_ctl = get_caching_control(block_group);
6453
6454 if (!caching_ctl) {
6455 /* Logic error */
6456 BUG_ON(!block_group_cache_done(block_group));
6457 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6458 } else {
6459 mutex_lock(&caching_ctl->mutex);
6460
6461 if (start >= caching_ctl->progress) {
2ff7e61e 6462 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6463 } else if (start + num_bytes <= caching_ctl->progress) {
6464 ret = btrfs_remove_free_space(block_group,
6465 start, num_bytes);
6466 } else {
6467 num_bytes = caching_ctl->progress - start;
6468 ret = btrfs_remove_free_space(block_group,
6469 start, num_bytes);
6470 if (ret)
6471 goto out_lock;
6472
6473 num_bytes = (start + num_bytes) -
6474 caching_ctl->progress;
6475 start = caching_ctl->progress;
2ff7e61e 6476 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6477 }
6478out_lock:
6479 mutex_unlock(&caching_ctl->mutex);
6480 put_caching_control(caching_ctl);
6481 }
6482 btrfs_put_block_group(block_group);
6483 return ret;
6484}
6485
2ff7e61e 6486int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6487 struct extent_buffer *eb)
6488{
6489 struct btrfs_file_extent_item *item;
6490 struct btrfs_key key;
6491 int found_type;
6492 int i;
6493
2ff7e61e 6494 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6495 return 0;
6496
6497 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6498 btrfs_item_key_to_cpu(eb, &key, i);
6499 if (key.type != BTRFS_EXTENT_DATA_KEY)
6500 continue;
6501 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6502 found_type = btrfs_file_extent_type(eb, item);
6503 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6504 continue;
6505 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6506 continue;
6507 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6508 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6509 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6510 }
6511
6512 return 0;
6513}
6514
9cfa3e34
FM
6515static void
6516btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6517{
6518 atomic_inc(&bg->reservations);
6519}
6520
6521void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6522 const u64 start)
6523{
6524 struct btrfs_block_group_cache *bg;
6525
6526 bg = btrfs_lookup_block_group(fs_info, start);
6527 ASSERT(bg);
6528 if (atomic_dec_and_test(&bg->reservations))
6529 wake_up_atomic_t(&bg->reservations);
6530 btrfs_put_block_group(bg);
6531}
6532
6533static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6534{
6535 schedule();
6536 return 0;
6537}
6538
6539void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6540{
6541 struct btrfs_space_info *space_info = bg->space_info;
6542
6543 ASSERT(bg->ro);
6544
6545 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6546 return;
6547
6548 /*
6549 * Our block group is read only but before we set it to read only,
6550 * some task might have had allocated an extent from it already, but it
6551 * has not yet created a respective ordered extent (and added it to a
6552 * root's list of ordered extents).
6553 * Therefore wait for any task currently allocating extents, since the
6554 * block group's reservations counter is incremented while a read lock
6555 * on the groups' semaphore is held and decremented after releasing
6556 * the read access on that semaphore and creating the ordered extent.
6557 */
6558 down_write(&space_info->groups_sem);
6559 up_write(&space_info->groups_sem);
6560
6561 wait_on_atomic_t(&bg->reservations,
6562 btrfs_wait_bg_reservations_atomic_t,
6563 TASK_UNINTERRUPTIBLE);
6564}
6565
fb25e914 6566/**
4824f1f4 6567 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6568 * @cache: The cache we are manipulating
18513091
WX
6569 * @ram_bytes: The number of bytes of file content, and will be same to
6570 * @num_bytes except for the compress path.
fb25e914 6571 * @num_bytes: The number of bytes in question
e570fd27 6572 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6573 *
745699ef
XW
6574 * This is called by the allocator when it reserves space. If this is a
6575 * reservation and the block group has become read only we cannot make the
6576 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6577 */
4824f1f4 6578static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6579 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6580{
fb25e914 6581 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6582 int ret = 0;
79787eaa 6583
fb25e914
JB
6584 spin_lock(&space_info->lock);
6585 spin_lock(&cache->lock);
4824f1f4
WX
6586 if (cache->ro) {
6587 ret = -EAGAIN;
fb25e914 6588 } else {
4824f1f4
WX
6589 cache->reserved += num_bytes;
6590 space_info->bytes_reserved += num_bytes;
e570fd27 6591
18513091
WX
6592 trace_btrfs_space_reservation(cache->fs_info,
6593 "space_info", space_info->flags,
6594 ram_bytes, 0);
6595 space_info->bytes_may_use -= ram_bytes;
e570fd27 6596 if (delalloc)
4824f1f4 6597 cache->delalloc_bytes += num_bytes;
324ae4df 6598 }
fb25e914
JB
6599 spin_unlock(&cache->lock);
6600 spin_unlock(&space_info->lock);
f0486c68 6601 return ret;
324ae4df 6602}
9078a3e1 6603
4824f1f4
WX
6604/**
6605 * btrfs_free_reserved_bytes - update the block_group and space info counters
6606 * @cache: The cache we are manipulating
6607 * @num_bytes: The number of bytes in question
6608 * @delalloc: The blocks are allocated for the delalloc write
6609 *
6610 * This is called by somebody who is freeing space that was never actually used
6611 * on disk. For example if you reserve some space for a new leaf in transaction
6612 * A and before transaction A commits you free that leaf, you call this with
6613 * reserve set to 0 in order to clear the reservation.
6614 */
6615
6616static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6617 u64 num_bytes, int delalloc)
6618{
6619 struct btrfs_space_info *space_info = cache->space_info;
6620 int ret = 0;
6621
6622 spin_lock(&space_info->lock);
6623 spin_lock(&cache->lock);
6624 if (cache->ro)
6625 space_info->bytes_readonly += num_bytes;
6626 cache->reserved -= num_bytes;
6627 space_info->bytes_reserved -= num_bytes;
6628
6629 if (delalloc)
6630 cache->delalloc_bytes -= num_bytes;
6631 spin_unlock(&cache->lock);
6632 spin_unlock(&space_info->lock);
6633 return ret;
6634}
8b74c03e 6635void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6636{
11833d66
YZ
6637 struct btrfs_caching_control *next;
6638 struct btrfs_caching_control *caching_ctl;
6639 struct btrfs_block_group_cache *cache;
e8569813 6640
9e351cc8 6641 down_write(&fs_info->commit_root_sem);
25179201 6642
11833d66
YZ
6643 list_for_each_entry_safe(caching_ctl, next,
6644 &fs_info->caching_block_groups, list) {
6645 cache = caching_ctl->block_group;
6646 if (block_group_cache_done(cache)) {
6647 cache->last_byte_to_unpin = (u64)-1;
6648 list_del_init(&caching_ctl->list);
6649 put_caching_control(caching_ctl);
e8569813 6650 } else {
11833d66 6651 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6652 }
e8569813 6653 }
11833d66
YZ
6654
6655 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6656 fs_info->pinned_extents = &fs_info->freed_extents[1];
6657 else
6658 fs_info->pinned_extents = &fs_info->freed_extents[0];
6659
9e351cc8 6660 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6661
6662 update_global_block_rsv(fs_info);
e8569813
ZY
6663}
6664
c759c4e1
JB
6665/*
6666 * Returns the free cluster for the given space info and sets empty_cluster to
6667 * what it should be based on the mount options.
6668 */
6669static struct btrfs_free_cluster *
2ff7e61e
JM
6670fetch_cluster_info(struct btrfs_fs_info *fs_info,
6671 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6672{
6673 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6674
6675 *empty_cluster = 0;
6676 if (btrfs_mixed_space_info(space_info))
6677 return ret;
6678
c759c4e1 6679 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6680 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6681 if (btrfs_test_opt(fs_info, SSD))
6682 *empty_cluster = SZ_2M;
6683 else
ee22184b 6684 *empty_cluster = SZ_64K;
583b7231
HK
6685 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6686 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6687 *empty_cluster = SZ_2M;
0b246afa 6688 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6689 }
6690
6691 return ret;
6692}
6693
2ff7e61e
JM
6694static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6695 u64 start, u64 end,
678886bd 6696 const bool return_free_space)
ccd467d6 6697{
11833d66 6698 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6699 struct btrfs_space_info *space_info;
6700 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6701 struct btrfs_free_cluster *cluster = NULL;
11833d66 6702 u64 len;
c759c4e1
JB
6703 u64 total_unpinned = 0;
6704 u64 empty_cluster = 0;
7b398f8e 6705 bool readonly;
ccd467d6 6706
11833d66 6707 while (start <= end) {
7b398f8e 6708 readonly = false;
11833d66
YZ
6709 if (!cache ||
6710 start >= cache->key.objectid + cache->key.offset) {
6711 if (cache)
6712 btrfs_put_block_group(cache);
c759c4e1 6713 total_unpinned = 0;
11833d66 6714 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6715 BUG_ON(!cache); /* Logic error */
c759c4e1 6716
2ff7e61e 6717 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6718 cache->space_info,
6719 &empty_cluster);
6720 empty_cluster <<= 1;
11833d66
YZ
6721 }
6722
6723 len = cache->key.objectid + cache->key.offset - start;
6724 len = min(len, end + 1 - start);
6725
6726 if (start < cache->last_byte_to_unpin) {
6727 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6728 if (return_free_space)
6729 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6730 }
6731
f0486c68 6732 start += len;
c759c4e1 6733 total_unpinned += len;
7b398f8e 6734 space_info = cache->space_info;
f0486c68 6735
c759c4e1
JB
6736 /*
6737 * If this space cluster has been marked as fragmented and we've
6738 * unpinned enough in this block group to potentially allow a
6739 * cluster to be created inside of it go ahead and clear the
6740 * fragmented check.
6741 */
6742 if (cluster && cluster->fragmented &&
6743 total_unpinned > empty_cluster) {
6744 spin_lock(&cluster->lock);
6745 cluster->fragmented = 0;
6746 spin_unlock(&cluster->lock);
6747 }
6748
7b398f8e 6749 spin_lock(&space_info->lock);
11833d66
YZ
6750 spin_lock(&cache->lock);
6751 cache->pinned -= len;
7b398f8e 6752 space_info->bytes_pinned -= len;
c51e7bb1
JB
6753
6754 trace_btrfs_space_reservation(fs_info, "pinned",
6755 space_info->flags, len, 0);
4f4db217 6756 space_info->max_extent_size = 0;
d288db5d 6757 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6758 if (cache->ro) {
6759 space_info->bytes_readonly += len;
6760 readonly = true;
6761 }
11833d66 6762 spin_unlock(&cache->lock);
957780eb
JB
6763 if (!readonly && return_free_space &&
6764 global_rsv->space_info == space_info) {
6765 u64 to_add = len;
92ac58ec 6766
7b398f8e
JB
6767 spin_lock(&global_rsv->lock);
6768 if (!global_rsv->full) {
957780eb
JB
6769 to_add = min(len, global_rsv->size -
6770 global_rsv->reserved);
6771 global_rsv->reserved += to_add;
6772 space_info->bytes_may_use += to_add;
7b398f8e
JB
6773 if (global_rsv->reserved >= global_rsv->size)
6774 global_rsv->full = 1;
957780eb
JB
6775 trace_btrfs_space_reservation(fs_info,
6776 "space_info",
6777 space_info->flags,
6778 to_add, 1);
6779 len -= to_add;
7b398f8e
JB
6780 }
6781 spin_unlock(&global_rsv->lock);
957780eb
JB
6782 /* Add to any tickets we may have */
6783 if (len)
6784 space_info_add_new_bytes(fs_info, space_info,
6785 len);
7b398f8e
JB
6786 }
6787 spin_unlock(&space_info->lock);
ccd467d6 6788 }
11833d66
YZ
6789
6790 if (cache)
6791 btrfs_put_block_group(cache);
ccd467d6
CM
6792 return 0;
6793}
6794
6795int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6796 struct btrfs_fs_info *fs_info)
a28ec197 6797{
e33e17ee
JM
6798 struct btrfs_block_group_cache *block_group, *tmp;
6799 struct list_head *deleted_bgs;
11833d66 6800 struct extent_io_tree *unpin;
1a5bc167
CM
6801 u64 start;
6802 u64 end;
a28ec197 6803 int ret;
a28ec197 6804
11833d66
YZ
6805 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6806 unpin = &fs_info->freed_extents[1];
6807 else
6808 unpin = &fs_info->freed_extents[0];
6809
e33e17ee 6810 while (!trans->aborted) {
d4b450cd 6811 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6812 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6813 EXTENT_DIRTY, NULL);
d4b450cd
FM
6814 if (ret) {
6815 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6816 break;
d4b450cd 6817 }
1f3c79a2 6818
0b246afa 6819 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6820 ret = btrfs_discard_extent(fs_info, start,
5378e607 6821 end + 1 - start, NULL);
1f3c79a2 6822
af6f8f60 6823 clear_extent_dirty(unpin, start, end);
2ff7e61e 6824 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6825 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6826 cond_resched();
a28ec197 6827 }
817d52f8 6828
e33e17ee
JM
6829 /*
6830 * Transaction is finished. We don't need the lock anymore. We
6831 * do need to clean up the block groups in case of a transaction
6832 * abort.
6833 */
6834 deleted_bgs = &trans->transaction->deleted_bgs;
6835 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6836 u64 trimmed = 0;
6837
6838 ret = -EROFS;
6839 if (!trans->aborted)
2ff7e61e 6840 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6841 block_group->key.objectid,
6842 block_group->key.offset,
6843 &trimmed);
6844
6845 list_del_init(&block_group->bg_list);
6846 btrfs_put_block_group_trimming(block_group);
6847 btrfs_put_block_group(block_group);
6848
6849 if (ret) {
6850 const char *errstr = btrfs_decode_error(ret);
6851 btrfs_warn(fs_info,
913e1535 6852 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6853 ret, errstr);
6854 }
6855 }
6856
e20d96d6
CM
6857 return 0;
6858}
6859
5d4f98a2 6860static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6861 struct btrfs_fs_info *info,
c682f9b3 6862 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6863 u64 root_objectid, u64 owner_objectid,
6864 u64 owner_offset, int refs_to_drop,
c682f9b3 6865 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6866{
e2fa7227 6867 struct btrfs_key key;
5d4f98a2 6868 struct btrfs_path *path;
1261ec42 6869 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6870 struct extent_buffer *leaf;
5d4f98a2
YZ
6871 struct btrfs_extent_item *ei;
6872 struct btrfs_extent_inline_ref *iref;
a28ec197 6873 int ret;
5d4f98a2 6874 int is_data;
952fccac
CM
6875 int extent_slot = 0;
6876 int found_extent = 0;
6877 int num_to_del = 1;
5d4f98a2
YZ
6878 u32 item_size;
6879 u64 refs;
c682f9b3
QW
6880 u64 bytenr = node->bytenr;
6881 u64 num_bytes = node->num_bytes;
fcebe456 6882 int last_ref = 0;
0b246afa 6883 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6884
5caf2a00 6885 path = btrfs_alloc_path();
54aa1f4d
CM
6886 if (!path)
6887 return -ENOMEM;
5f26f772 6888
e4058b54 6889 path->reada = READA_FORWARD;
b9473439 6890 path->leave_spinning = 1;
5d4f98a2
YZ
6891
6892 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6893 BUG_ON(!is_data && refs_to_drop != 1);
6894
3173a18f 6895 if (is_data)
897ca819 6896 skinny_metadata = false;
3173a18f 6897
87bde3cd 6898 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6899 bytenr, num_bytes, parent,
6900 root_objectid, owner_objectid,
6901 owner_offset);
7bb86316 6902 if (ret == 0) {
952fccac 6903 extent_slot = path->slots[0];
5d4f98a2
YZ
6904 while (extent_slot >= 0) {
6905 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6906 extent_slot);
5d4f98a2 6907 if (key.objectid != bytenr)
952fccac 6908 break;
5d4f98a2
YZ
6909 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6910 key.offset == num_bytes) {
952fccac
CM
6911 found_extent = 1;
6912 break;
6913 }
3173a18f
JB
6914 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6915 key.offset == owner_objectid) {
6916 found_extent = 1;
6917 break;
6918 }
952fccac
CM
6919 if (path->slots[0] - extent_slot > 5)
6920 break;
5d4f98a2 6921 extent_slot--;
952fccac 6922 }
5d4f98a2
YZ
6923#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6924 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6925 if (found_extent && item_size < sizeof(*ei))
6926 found_extent = 0;
6927#endif
31840ae1 6928 if (!found_extent) {
5d4f98a2 6929 BUG_ON(iref);
87bde3cd
JM
6930 ret = remove_extent_backref(trans, info, path, NULL,
6931 refs_to_drop,
fcebe456 6932 is_data, &last_ref);
005d6427 6933 if (ret) {
66642832 6934 btrfs_abort_transaction(trans, ret);
005d6427
DS
6935 goto out;
6936 }
b3b4aa74 6937 btrfs_release_path(path);
b9473439 6938 path->leave_spinning = 1;
5d4f98a2
YZ
6939
6940 key.objectid = bytenr;
6941 key.type = BTRFS_EXTENT_ITEM_KEY;
6942 key.offset = num_bytes;
6943
3173a18f
JB
6944 if (!is_data && skinny_metadata) {
6945 key.type = BTRFS_METADATA_ITEM_KEY;
6946 key.offset = owner_objectid;
6947 }
6948
31840ae1
ZY
6949 ret = btrfs_search_slot(trans, extent_root,
6950 &key, path, -1, 1);
3173a18f
JB
6951 if (ret > 0 && skinny_metadata && path->slots[0]) {
6952 /*
6953 * Couldn't find our skinny metadata item,
6954 * see if we have ye olde extent item.
6955 */
6956 path->slots[0]--;
6957 btrfs_item_key_to_cpu(path->nodes[0], &key,
6958 path->slots[0]);
6959 if (key.objectid == bytenr &&
6960 key.type == BTRFS_EXTENT_ITEM_KEY &&
6961 key.offset == num_bytes)
6962 ret = 0;
6963 }
6964
6965 if (ret > 0 && skinny_metadata) {
6966 skinny_metadata = false;
9ce49a0b 6967 key.objectid = bytenr;
3173a18f
JB
6968 key.type = BTRFS_EXTENT_ITEM_KEY;
6969 key.offset = num_bytes;
6970 btrfs_release_path(path);
6971 ret = btrfs_search_slot(trans, extent_root,
6972 &key, path, -1, 1);
6973 }
6974
f3465ca4 6975 if (ret) {
5d163e0e
JM
6976 btrfs_err(info,
6977 "umm, got %d back from search, was looking for %llu",
6978 ret, bytenr);
b783e62d 6979 if (ret > 0)
a4f78750 6980 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6981 }
005d6427 6982 if (ret < 0) {
66642832 6983 btrfs_abort_transaction(trans, ret);
005d6427
DS
6984 goto out;
6985 }
31840ae1
ZY
6986 extent_slot = path->slots[0];
6987 }
fae7f21c 6988 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6989 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6990 btrfs_err(info,
6991 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6992 bytenr, parent, root_objectid, owner_objectid,
6993 owner_offset);
66642832 6994 btrfs_abort_transaction(trans, ret);
c4a050bb 6995 goto out;
79787eaa 6996 } else {
66642832 6997 btrfs_abort_transaction(trans, ret);
005d6427 6998 goto out;
7bb86316 6999 }
5f39d397
CM
7000
7001 leaf = path->nodes[0];
5d4f98a2
YZ
7002 item_size = btrfs_item_size_nr(leaf, extent_slot);
7003#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7004 if (item_size < sizeof(*ei)) {
7005 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
7006 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7007 0);
005d6427 7008 if (ret < 0) {
66642832 7009 btrfs_abort_transaction(trans, ret);
005d6427
DS
7010 goto out;
7011 }
5d4f98a2 7012
b3b4aa74 7013 btrfs_release_path(path);
5d4f98a2
YZ
7014 path->leave_spinning = 1;
7015
7016 key.objectid = bytenr;
7017 key.type = BTRFS_EXTENT_ITEM_KEY;
7018 key.offset = num_bytes;
7019
7020 ret = btrfs_search_slot(trans, extent_root, &key, path,
7021 -1, 1);
7022 if (ret) {
5d163e0e
JM
7023 btrfs_err(info,
7024 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7025 ret, bytenr);
a4f78750 7026 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 7027 }
005d6427 7028 if (ret < 0) {
66642832 7029 btrfs_abort_transaction(trans, ret);
005d6427
DS
7030 goto out;
7031 }
7032
5d4f98a2
YZ
7033 extent_slot = path->slots[0];
7034 leaf = path->nodes[0];
7035 item_size = btrfs_item_size_nr(leaf, extent_slot);
7036 }
7037#endif
7038 BUG_ON(item_size < sizeof(*ei));
952fccac 7039 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7040 struct btrfs_extent_item);
3173a18f
JB
7041 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7042 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7043 struct btrfs_tree_block_info *bi;
7044 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7045 bi = (struct btrfs_tree_block_info *)(ei + 1);
7046 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7047 }
56bec294 7048
5d4f98a2 7049 refs = btrfs_extent_refs(leaf, ei);
32b02538 7050 if (refs < refs_to_drop) {
5d163e0e
JM
7051 btrfs_err(info,
7052 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7053 refs_to_drop, refs, bytenr);
32b02538 7054 ret = -EINVAL;
66642832 7055 btrfs_abort_transaction(trans, ret);
32b02538
JB
7056 goto out;
7057 }
56bec294 7058 refs -= refs_to_drop;
5f39d397 7059
5d4f98a2
YZ
7060 if (refs > 0) {
7061 if (extent_op)
7062 __run_delayed_extent_op(extent_op, leaf, ei);
7063 /*
7064 * In the case of inline back ref, reference count will
7065 * be updated by remove_extent_backref
952fccac 7066 */
5d4f98a2
YZ
7067 if (iref) {
7068 BUG_ON(!found_extent);
7069 } else {
7070 btrfs_set_extent_refs(leaf, ei, refs);
7071 btrfs_mark_buffer_dirty(leaf);
7072 }
7073 if (found_extent) {
87bde3cd 7074 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7075 iref, refs_to_drop,
fcebe456 7076 is_data, &last_ref);
005d6427 7077 if (ret) {
66642832 7078 btrfs_abort_transaction(trans, ret);
005d6427
DS
7079 goto out;
7080 }
952fccac 7081 }
5d4f98a2 7082 } else {
5d4f98a2
YZ
7083 if (found_extent) {
7084 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7085 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7086 if (iref) {
7087 BUG_ON(path->slots[0] != extent_slot);
7088 } else {
7089 BUG_ON(path->slots[0] != extent_slot + 1);
7090 path->slots[0] = extent_slot;
7091 num_to_del = 2;
7092 }
78fae27e 7093 }
b9473439 7094
fcebe456 7095 last_ref = 1;
952fccac
CM
7096 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7097 num_to_del);
005d6427 7098 if (ret) {
66642832 7099 btrfs_abort_transaction(trans, ret);
005d6427
DS
7100 goto out;
7101 }
b3b4aa74 7102 btrfs_release_path(path);
21af804c 7103
5d4f98a2 7104 if (is_data) {
5b4aacef 7105 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7106 if (ret) {
66642832 7107 btrfs_abort_transaction(trans, ret);
005d6427
DS
7108 goto out;
7109 }
459931ec
CM
7110 }
7111
0b246afa 7112 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7113 if (ret) {
66642832 7114 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7115 goto out;
7116 }
7117
0b246afa 7118 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7119 if (ret) {
66642832 7120 btrfs_abort_transaction(trans, ret);
005d6427
DS
7121 goto out;
7122 }
a28ec197 7123 }
fcebe456
JB
7124 btrfs_release_path(path);
7125
79787eaa 7126out:
5caf2a00 7127 btrfs_free_path(path);
a28ec197
CM
7128 return ret;
7129}
7130
1887be66 7131/*
f0486c68 7132 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7133 * delayed ref for that extent as well. This searches the delayed ref tree for
7134 * a given extent, and if there are no other delayed refs to be processed, it
7135 * removes it from the tree.
7136 */
7137static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7138 u64 bytenr)
1887be66
CM
7139{
7140 struct btrfs_delayed_ref_head *head;
7141 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7142 int ret = 0;
1887be66
CM
7143
7144 delayed_refs = &trans->transaction->delayed_refs;
7145 spin_lock(&delayed_refs->lock);
f72ad18e 7146 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7147 if (!head)
cf93da7b 7148 goto out_delayed_unlock;
1887be66 7149
d7df2c79 7150 spin_lock(&head->lock);
0e0adbcf 7151 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7152 goto out;
7153
5d4f98a2
YZ
7154 if (head->extent_op) {
7155 if (!head->must_insert_reserved)
7156 goto out;
78a6184a 7157 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7158 head->extent_op = NULL;
7159 }
7160
1887be66
CM
7161 /*
7162 * waiting for the lock here would deadlock. If someone else has it
7163 * locked they are already in the process of dropping it anyway
7164 */
7165 if (!mutex_trylock(&head->mutex))
7166 goto out;
7167
7168 /*
7169 * at this point we have a head with no other entries. Go
7170 * ahead and process it.
7171 */
c46effa6 7172 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7173 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7174 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7175
7176 /*
7177 * we don't take a ref on the node because we're removing it from the
7178 * tree, so we just steal the ref the tree was holding.
7179 */
c3e69d58 7180 delayed_refs->num_heads--;
d7df2c79 7181 if (head->processing == 0)
c3e69d58 7182 delayed_refs->num_heads_ready--;
d7df2c79
JB
7183 head->processing = 0;
7184 spin_unlock(&head->lock);
1887be66
CM
7185 spin_unlock(&delayed_refs->lock);
7186
f0486c68
YZ
7187 BUG_ON(head->extent_op);
7188 if (head->must_insert_reserved)
7189 ret = 1;
7190
7191 mutex_unlock(&head->mutex);
d278850e 7192 btrfs_put_delayed_ref_head(head);
f0486c68 7193 return ret;
1887be66 7194out:
d7df2c79 7195 spin_unlock(&head->lock);
cf93da7b
CM
7196
7197out_delayed_unlock:
1887be66
CM
7198 spin_unlock(&delayed_refs->lock);
7199 return 0;
7200}
7201
f0486c68
YZ
7202void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7203 struct btrfs_root *root,
7204 struct extent_buffer *buf,
5581a51a 7205 u64 parent, int last_ref)
f0486c68 7206{
0b246afa 7207 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7208 int pin = 1;
f0486c68
YZ
7209 int ret;
7210
7211 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7212 int old_ref_mod, new_ref_mod;
7213
fd708b81
JB
7214 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7215 root->root_key.objectid,
7216 btrfs_header_level(buf), 0,
7217 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7218 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7219 buf->len, parent,
0b246afa
JM
7220 root->root_key.objectid,
7221 btrfs_header_level(buf),
7be07912 7222 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7223 &old_ref_mod, &new_ref_mod);
79787eaa 7224 BUG_ON(ret); /* -ENOMEM */
d7eae340 7225 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7226 }
7227
0a16c7d7 7228 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7229 struct btrfs_block_group_cache *cache;
7230
f0486c68 7231 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7232 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7233 if (!ret)
37be25bc 7234 goto out;
f0486c68
YZ
7235 }
7236
4da8b76d 7237 pin = 0;
0b246afa 7238 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7239
f0486c68 7240 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7241 pin_down_extent(fs_info, cache, buf->start,
7242 buf->len, 1);
6219872d 7243 btrfs_put_block_group(cache);
37be25bc 7244 goto out;
f0486c68
YZ
7245 }
7246
7247 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7248
7249 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7250 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7251 btrfs_put_block_group(cache);
71ff6437 7252 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7253 }
7254out:
b150a4f1 7255 if (pin)
0b246afa 7256 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7257 root->root_key.objectid);
7258
0a16c7d7
OS
7259 if (last_ref) {
7260 /*
7261 * Deleting the buffer, clear the corrupt flag since it doesn't
7262 * matter anymore.
7263 */
7264 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7265 }
f0486c68
YZ
7266}
7267
79787eaa 7268/* Can return -ENOMEM */
2ff7e61e 7269int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7270 struct btrfs_root *root,
66d7e7f0 7271 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7272 u64 owner, u64 offset)
925baedd 7273{
84f7d8e6 7274 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7275 int old_ref_mod, new_ref_mod;
925baedd
CM
7276 int ret;
7277
f5ee5c9a 7278 if (btrfs_is_testing(fs_info))
faa2dbf0 7279 return 0;
fccb84c9 7280
fd708b81
JB
7281 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7282 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7283 root_objectid, owner, offset,
7284 BTRFS_DROP_DELAYED_REF);
7285
56bec294
CM
7286 /*
7287 * tree log blocks never actually go into the extent allocation
7288 * tree, just update pinning info and exit early.
56bec294 7289 */
5d4f98a2
YZ
7290 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7291 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7292 /* unlocks the pinned mutex */
2ff7e61e 7293 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7294 old_ref_mod = new_ref_mod = 0;
56bec294 7295 ret = 0;
5d4f98a2 7296 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7297 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7298 num_bytes, parent,
7299 root_objectid, (int)owner,
7300 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7301 &old_ref_mod, &new_ref_mod);
5d4f98a2 7302 } else {
66d7e7f0 7303 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7304 num_bytes, parent,
7305 root_objectid, owner, offset,
7306 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7307 &old_ref_mod, &new_ref_mod);
56bec294 7308 }
d7eae340
OS
7309
7310 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7311 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7312
925baedd
CM
7313 return ret;
7314}
7315
817d52f8
JB
7316/*
7317 * when we wait for progress in the block group caching, its because
7318 * our allocation attempt failed at least once. So, we must sleep
7319 * and let some progress happen before we try again.
7320 *
7321 * This function will sleep at least once waiting for new free space to
7322 * show up, and then it will check the block group free space numbers
7323 * for our min num_bytes. Another option is to have it go ahead
7324 * and look in the rbtree for a free extent of a given size, but this
7325 * is a good start.
36cce922
JB
7326 *
7327 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7328 * any of the information in this block group.
817d52f8 7329 */
36cce922 7330static noinline void
817d52f8
JB
7331wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7332 u64 num_bytes)
7333{
11833d66 7334 struct btrfs_caching_control *caching_ctl;
817d52f8 7335
11833d66
YZ
7336 caching_ctl = get_caching_control(cache);
7337 if (!caching_ctl)
36cce922 7338 return;
817d52f8 7339
11833d66 7340 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7341 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7342
7343 put_caching_control(caching_ctl);
11833d66
YZ
7344}
7345
7346static noinline int
7347wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7348{
7349 struct btrfs_caching_control *caching_ctl;
36cce922 7350 int ret = 0;
11833d66
YZ
7351
7352 caching_ctl = get_caching_control(cache);
7353 if (!caching_ctl)
36cce922 7354 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7355
7356 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7357 if (cache->cached == BTRFS_CACHE_ERROR)
7358 ret = -EIO;
11833d66 7359 put_caching_control(caching_ctl);
36cce922 7360 return ret;
817d52f8
JB
7361}
7362
31e50229 7363int __get_raid_index(u64 flags)
b742bb82 7364{
7738a53a 7365 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7366 return BTRFS_RAID_RAID10;
7738a53a 7367 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7368 return BTRFS_RAID_RAID1;
7738a53a 7369 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7370 return BTRFS_RAID_DUP;
7738a53a 7371 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7372 return BTRFS_RAID_RAID0;
53b381b3 7373 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7374 return BTRFS_RAID_RAID5;
53b381b3 7375 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7376 return BTRFS_RAID_RAID6;
7738a53a 7377
e942f883 7378 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7379}
7380
6ab0a202 7381int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7382{
31e50229 7383 return __get_raid_index(cache->flags);
7738a53a
ID
7384}
7385
6ab0a202
JM
7386static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7387 [BTRFS_RAID_RAID10] = "raid10",
7388 [BTRFS_RAID_RAID1] = "raid1",
7389 [BTRFS_RAID_DUP] = "dup",
7390 [BTRFS_RAID_RAID0] = "raid0",
7391 [BTRFS_RAID_SINGLE] = "single",
7392 [BTRFS_RAID_RAID5] = "raid5",
7393 [BTRFS_RAID_RAID6] = "raid6",
7394};
7395
1b8e5df6 7396static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7397{
7398 if (type >= BTRFS_NR_RAID_TYPES)
7399 return NULL;
7400
7401 return btrfs_raid_type_names[type];
7402}
7403
817d52f8 7404enum btrfs_loop_type {
285ff5af
JB
7405 LOOP_CACHING_NOWAIT = 0,
7406 LOOP_CACHING_WAIT = 1,
7407 LOOP_ALLOC_CHUNK = 2,
7408 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7409};
7410
e570fd27
MX
7411static inline void
7412btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7413 int delalloc)
7414{
7415 if (delalloc)
7416 down_read(&cache->data_rwsem);
7417}
7418
7419static inline void
7420btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7421 int delalloc)
7422{
7423 btrfs_get_block_group(cache);
7424 if (delalloc)
7425 down_read(&cache->data_rwsem);
7426}
7427
7428static struct btrfs_block_group_cache *
7429btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7430 struct btrfs_free_cluster *cluster,
7431 int delalloc)
7432{
89771cc9 7433 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7434
e570fd27 7435 spin_lock(&cluster->refill_lock);
6719afdc
GU
7436 while (1) {
7437 used_bg = cluster->block_group;
7438 if (!used_bg)
7439 return NULL;
7440
7441 if (used_bg == block_group)
e570fd27
MX
7442 return used_bg;
7443
6719afdc 7444 btrfs_get_block_group(used_bg);
e570fd27 7445
6719afdc
GU
7446 if (!delalloc)
7447 return used_bg;
e570fd27 7448
6719afdc
GU
7449 if (down_read_trylock(&used_bg->data_rwsem))
7450 return used_bg;
e570fd27 7451
6719afdc 7452 spin_unlock(&cluster->refill_lock);
e570fd27 7453
e321f8a8
LB
7454 /* We should only have one-level nested. */
7455 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7456
6719afdc
GU
7457 spin_lock(&cluster->refill_lock);
7458 if (used_bg == cluster->block_group)
7459 return used_bg;
e570fd27 7460
6719afdc
GU
7461 up_read(&used_bg->data_rwsem);
7462 btrfs_put_block_group(used_bg);
7463 }
e570fd27
MX
7464}
7465
7466static inline void
7467btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7468 int delalloc)
7469{
7470 if (delalloc)
7471 up_read(&cache->data_rwsem);
7472 btrfs_put_block_group(cache);
7473}
7474
fec577fb
CM
7475/*
7476 * walks the btree of allocated extents and find a hole of a given size.
7477 * The key ins is changed to record the hole:
a4820398 7478 * ins->objectid == start position
62e2749e 7479 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7480 * ins->offset == the size of the hole.
fec577fb 7481 * Any available blocks before search_start are skipped.
a4820398
MX
7482 *
7483 * If there is no suitable free space, we will record the max size of
7484 * the free space extent currently.
fec577fb 7485 */
87bde3cd 7486static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7487 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7488 u64 hint_byte, struct btrfs_key *ins,
7489 u64 flags, int delalloc)
fec577fb 7490{
80eb234a 7491 int ret = 0;
0b246afa 7492 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7493 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7494 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7495 u64 search_start = 0;
a4820398 7496 u64 max_extent_size = 0;
c759c4e1 7497 u64 empty_cluster = 0;
80eb234a 7498 struct btrfs_space_info *space_info;
fa9c0d79 7499 int loop = 0;
b6919a58 7500 int index = __get_raid_index(flags);
0a24325e 7501 bool failed_cluster_refill = false;
1cdda9b8 7502 bool failed_alloc = false;
67377734 7503 bool use_cluster = true;
60d2adbb 7504 bool have_caching_bg = false;
13a0db5a 7505 bool orig_have_caching_bg = false;
a5e681d9 7506 bool full_search = false;
fec577fb 7507
0b246afa 7508 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7509 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7510 ins->objectid = 0;
7511 ins->offset = 0;
b1a4d965 7512
71ff6437 7513 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7514
0b246afa 7515 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7516 if (!space_info) {
0b246afa 7517 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7518 return -ENOSPC;
7519 }
2552d17e 7520
67377734 7521 /*
4f4db217
JB
7522 * If our free space is heavily fragmented we may not be able to make
7523 * big contiguous allocations, so instead of doing the expensive search
7524 * for free space, simply return ENOSPC with our max_extent_size so we
7525 * can go ahead and search for a more manageable chunk.
7526 *
7527 * If our max_extent_size is large enough for our allocation simply
7528 * disable clustering since we will likely not be able to find enough
7529 * space to create a cluster and induce latency trying.
67377734 7530 */
4f4db217
JB
7531 if (unlikely(space_info->max_extent_size)) {
7532 spin_lock(&space_info->lock);
7533 if (space_info->max_extent_size &&
7534 num_bytes > space_info->max_extent_size) {
7535 ins->offset = space_info->max_extent_size;
7536 spin_unlock(&space_info->lock);
7537 return -ENOSPC;
7538 } else if (space_info->max_extent_size) {
7539 use_cluster = false;
7540 }
7541 spin_unlock(&space_info->lock);
fa9c0d79 7542 }
0f9dd46c 7543
2ff7e61e 7544 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7545 if (last_ptr) {
fa9c0d79
CM
7546 spin_lock(&last_ptr->lock);
7547 if (last_ptr->block_group)
7548 hint_byte = last_ptr->window_start;
c759c4e1
JB
7549 if (last_ptr->fragmented) {
7550 /*
7551 * We still set window_start so we can keep track of the
7552 * last place we found an allocation to try and save
7553 * some time.
7554 */
7555 hint_byte = last_ptr->window_start;
7556 use_cluster = false;
7557 }
fa9c0d79 7558 spin_unlock(&last_ptr->lock);
239b14b3 7559 }
fa9c0d79 7560
2ff7e61e 7561 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7562 search_start = max(search_start, hint_byte);
2552d17e 7563 if (search_start == hint_byte) {
0b246afa 7564 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7565 /*
7566 * we don't want to use the block group if it doesn't match our
7567 * allocation bits, or if its not cached.
ccf0e725
JB
7568 *
7569 * However if we are re-searching with an ideal block group
7570 * picked out then we don't care that the block group is cached.
817d52f8 7571 */
b6919a58 7572 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7573 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7574 down_read(&space_info->groups_sem);
44fb5511
CM
7575 if (list_empty(&block_group->list) ||
7576 block_group->ro) {
7577 /*
7578 * someone is removing this block group,
7579 * we can't jump into the have_block_group
7580 * target because our list pointers are not
7581 * valid
7582 */
7583 btrfs_put_block_group(block_group);
7584 up_read(&space_info->groups_sem);
ccf0e725 7585 } else {
b742bb82 7586 index = get_block_group_index(block_group);
e570fd27 7587 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7588 goto have_block_group;
ccf0e725 7589 }
2552d17e 7590 } else if (block_group) {
fa9c0d79 7591 btrfs_put_block_group(block_group);
2552d17e 7592 }
42e70e7a 7593 }
2552d17e 7594search:
60d2adbb 7595 have_caching_bg = false;
a5e681d9
JB
7596 if (index == 0 || index == __get_raid_index(flags))
7597 full_search = true;
80eb234a 7598 down_read(&space_info->groups_sem);
b742bb82
YZ
7599 list_for_each_entry(block_group, &space_info->block_groups[index],
7600 list) {
6226cb0a 7601 u64 offset;
817d52f8 7602 int cached;
8a1413a2 7603
14443937
JM
7604 /* If the block group is read-only, we can skip it entirely. */
7605 if (unlikely(block_group->ro))
7606 continue;
7607
e570fd27 7608 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7609 search_start = block_group->key.objectid;
42e70e7a 7610
83a50de9
CM
7611 /*
7612 * this can happen if we end up cycling through all the
7613 * raid types, but we want to make sure we only allocate
7614 * for the proper type.
7615 */
b6919a58 7616 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7617 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7618 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7619 BTRFS_BLOCK_GROUP_RAID5 |
7620 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7621 BTRFS_BLOCK_GROUP_RAID10;
7622
7623 /*
7624 * if they asked for extra copies and this block group
7625 * doesn't provide them, bail. This does allow us to
7626 * fill raid0 from raid1.
7627 */
b6919a58 7628 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7629 goto loop;
7630 }
7631
2552d17e 7632have_block_group:
291c7d2f
JB
7633 cached = block_group_cache_done(block_group);
7634 if (unlikely(!cached)) {
a5e681d9 7635 have_caching_bg = true;
f6373bf3 7636 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7637 BUG_ON(ret < 0);
7638 ret = 0;
817d52f8
JB
7639 }
7640
36cce922
JB
7641 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7642 goto loop;
0f9dd46c 7643
0a24325e 7644 /*
062c05c4
AO
7645 * Ok we want to try and use the cluster allocator, so
7646 * lets look there
0a24325e 7647 */
c759c4e1 7648 if (last_ptr && use_cluster) {
215a63d1 7649 struct btrfs_block_group_cache *used_block_group;
8de972b4 7650 unsigned long aligned_cluster;
fa9c0d79
CM
7651 /*
7652 * the refill lock keeps out other
7653 * people trying to start a new cluster
7654 */
e570fd27
MX
7655 used_block_group = btrfs_lock_cluster(block_group,
7656 last_ptr,
7657 delalloc);
7658 if (!used_block_group)
44fb5511 7659 goto refill_cluster;
274bd4fb 7660
e570fd27
MX
7661 if (used_block_group != block_group &&
7662 (used_block_group->ro ||
7663 !block_group_bits(used_block_group, flags)))
7664 goto release_cluster;
44fb5511 7665
274bd4fb 7666 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7667 last_ptr,
7668 num_bytes,
7669 used_block_group->key.objectid,
7670 &max_extent_size);
fa9c0d79
CM
7671 if (offset) {
7672 /* we have a block, we're done */
7673 spin_unlock(&last_ptr->refill_lock);
71ff6437 7674 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7675 used_block_group,
7676 search_start, num_bytes);
215a63d1 7677 if (used_block_group != block_group) {
e570fd27
MX
7678 btrfs_release_block_group(block_group,
7679 delalloc);
215a63d1
MX
7680 block_group = used_block_group;
7681 }
fa9c0d79
CM
7682 goto checks;
7683 }
7684
274bd4fb 7685 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7686release_cluster:
062c05c4
AO
7687 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7688 * set up a new clusters, so lets just skip it
7689 * and let the allocator find whatever block
7690 * it can find. If we reach this point, we
7691 * will have tried the cluster allocator
7692 * plenty of times and not have found
7693 * anything, so we are likely way too
7694 * fragmented for the clustering stuff to find
a5f6f719
AO
7695 * anything.
7696 *
7697 * However, if the cluster is taken from the
7698 * current block group, release the cluster
7699 * first, so that we stand a better chance of
7700 * succeeding in the unclustered
7701 * allocation. */
7702 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7703 used_block_group != block_group) {
062c05c4 7704 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7705 btrfs_release_block_group(used_block_group,
7706 delalloc);
062c05c4
AO
7707 goto unclustered_alloc;
7708 }
7709
fa9c0d79
CM
7710 /*
7711 * this cluster didn't work out, free it and
7712 * start over
7713 */
7714 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7715
e570fd27
MX
7716 if (used_block_group != block_group)
7717 btrfs_release_block_group(used_block_group,
7718 delalloc);
7719refill_cluster:
a5f6f719
AO
7720 if (loop >= LOOP_NO_EMPTY_SIZE) {
7721 spin_unlock(&last_ptr->refill_lock);
7722 goto unclustered_alloc;
7723 }
7724
8de972b4
CM
7725 aligned_cluster = max_t(unsigned long,
7726 empty_cluster + empty_size,
7727 block_group->full_stripe_len);
7728
fa9c0d79 7729 /* allocate a cluster in this block group */
2ff7e61e 7730 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7731 last_ptr, search_start,
7732 num_bytes,
7733 aligned_cluster);
fa9c0d79
CM
7734 if (ret == 0) {
7735 /*
7736 * now pull our allocation out of this
7737 * cluster
7738 */
7739 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7740 last_ptr,
7741 num_bytes,
7742 search_start,
7743 &max_extent_size);
fa9c0d79
CM
7744 if (offset) {
7745 /* we found one, proceed */
7746 spin_unlock(&last_ptr->refill_lock);
71ff6437 7747 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7748 block_group, search_start,
7749 num_bytes);
fa9c0d79
CM
7750 goto checks;
7751 }
0a24325e
JB
7752 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7753 && !failed_cluster_refill) {
817d52f8
JB
7754 spin_unlock(&last_ptr->refill_lock);
7755
0a24325e 7756 failed_cluster_refill = true;
817d52f8
JB
7757 wait_block_group_cache_progress(block_group,
7758 num_bytes + empty_cluster + empty_size);
7759 goto have_block_group;
fa9c0d79 7760 }
817d52f8 7761
fa9c0d79
CM
7762 /*
7763 * at this point we either didn't find a cluster
7764 * or we weren't able to allocate a block from our
7765 * cluster. Free the cluster we've been trying
7766 * to use, and go to the next block group
7767 */
0a24325e 7768 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7769 spin_unlock(&last_ptr->refill_lock);
0a24325e 7770 goto loop;
fa9c0d79
CM
7771 }
7772
062c05c4 7773unclustered_alloc:
c759c4e1
JB
7774 /*
7775 * We are doing an unclustered alloc, set the fragmented flag so
7776 * we don't bother trying to setup a cluster again until we get
7777 * more space.
7778 */
7779 if (unlikely(last_ptr)) {
7780 spin_lock(&last_ptr->lock);
7781 last_ptr->fragmented = 1;
7782 spin_unlock(&last_ptr->lock);
7783 }
0c9b36e0
LB
7784 if (cached) {
7785 struct btrfs_free_space_ctl *ctl =
7786 block_group->free_space_ctl;
7787
7788 spin_lock(&ctl->tree_lock);
7789 if (ctl->free_space <
7790 num_bytes + empty_cluster + empty_size) {
7791 if (ctl->free_space > max_extent_size)
7792 max_extent_size = ctl->free_space;
7793 spin_unlock(&ctl->tree_lock);
7794 goto loop;
7795 }
7796 spin_unlock(&ctl->tree_lock);
a5f6f719 7797 }
a5f6f719 7798
6226cb0a 7799 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7800 num_bytes, empty_size,
7801 &max_extent_size);
1cdda9b8
JB
7802 /*
7803 * If we didn't find a chunk, and we haven't failed on this
7804 * block group before, and this block group is in the middle of
7805 * caching and we are ok with waiting, then go ahead and wait
7806 * for progress to be made, and set failed_alloc to true.
7807 *
7808 * If failed_alloc is true then we've already waited on this
7809 * block group once and should move on to the next block group.
7810 */
7811 if (!offset && !failed_alloc && !cached &&
7812 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7813 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7814 num_bytes + empty_size);
7815 failed_alloc = true;
817d52f8 7816 goto have_block_group;
1cdda9b8
JB
7817 } else if (!offset) {
7818 goto loop;
817d52f8 7819 }
fa9c0d79 7820checks:
0b246afa 7821 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7822
2552d17e
JB
7823 /* move on to the next group */
7824 if (search_start + num_bytes >
215a63d1
MX
7825 block_group->key.objectid + block_group->key.offset) {
7826 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7827 goto loop;
6226cb0a 7828 }
f5a31e16 7829
f0486c68 7830 if (offset < search_start)
215a63d1 7831 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7832 search_start - offset);
7833 BUG_ON(offset > search_start);
2552d17e 7834
18513091
WX
7835 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7836 num_bytes, delalloc);
f0486c68 7837 if (ret == -EAGAIN) {
215a63d1 7838 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7839 goto loop;
0f9dd46c 7840 }
9cfa3e34 7841 btrfs_inc_block_group_reservations(block_group);
0b86a832 7842
f0486c68 7843 /* we are all good, lets return */
2552d17e
JB
7844 ins->objectid = search_start;
7845 ins->offset = num_bytes;
d2fb3437 7846
71ff6437 7847 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7848 search_start, num_bytes);
e570fd27 7849 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7850 break;
7851loop:
0a24325e 7852 failed_cluster_refill = false;
1cdda9b8 7853 failed_alloc = false;
b742bb82 7854 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7855 btrfs_release_block_group(block_group, delalloc);
14443937 7856 cond_resched();
2552d17e
JB
7857 }
7858 up_read(&space_info->groups_sem);
7859
13a0db5a 7860 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7861 && !orig_have_caching_bg)
7862 orig_have_caching_bg = true;
7863
60d2adbb
MX
7864 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7865 goto search;
7866
b742bb82
YZ
7867 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7868 goto search;
7869
285ff5af 7870 /*
ccf0e725
JB
7871 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7872 * caching kthreads as we move along
817d52f8
JB
7873 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7874 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7875 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7876 * again
fa9c0d79 7877 */
723bda20 7878 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7879 index = 0;
a5e681d9
JB
7880 if (loop == LOOP_CACHING_NOWAIT) {
7881 /*
7882 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7883 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7884 * full search through.
7885 */
13a0db5a 7886 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7887 loop = LOOP_CACHING_WAIT;
7888 else
7889 loop = LOOP_ALLOC_CHUNK;
7890 } else {
7891 loop++;
7892 }
7893
817d52f8 7894 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7895 struct btrfs_trans_handle *trans;
f017f15f
WS
7896 int exist = 0;
7897
7898 trans = current->journal_info;
7899 if (trans)
7900 exist = 1;
7901 else
7902 trans = btrfs_join_transaction(root);
00361589 7903
00361589
JB
7904 if (IS_ERR(trans)) {
7905 ret = PTR_ERR(trans);
7906 goto out;
7907 }
7908
2ff7e61e 7909 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7910 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7911
7912 /*
7913 * If we can't allocate a new chunk we've already looped
7914 * through at least once, move on to the NO_EMPTY_SIZE
7915 * case.
7916 */
7917 if (ret == -ENOSPC)
7918 loop = LOOP_NO_EMPTY_SIZE;
7919
ea658bad
JB
7920 /*
7921 * Do not bail out on ENOSPC since we
7922 * can do more things.
7923 */
00361589 7924 if (ret < 0 && ret != -ENOSPC)
66642832 7925 btrfs_abort_transaction(trans, ret);
00361589
JB
7926 else
7927 ret = 0;
f017f15f 7928 if (!exist)
3a45bb20 7929 btrfs_end_transaction(trans);
00361589 7930 if (ret)
ea658bad 7931 goto out;
2552d17e
JB
7932 }
7933
723bda20 7934 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7935 /*
7936 * Don't loop again if we already have no empty_size and
7937 * no empty_cluster.
7938 */
7939 if (empty_size == 0 &&
7940 empty_cluster == 0) {
7941 ret = -ENOSPC;
7942 goto out;
7943 }
723bda20
JB
7944 empty_size = 0;
7945 empty_cluster = 0;
fa9c0d79 7946 }
723bda20
JB
7947
7948 goto search;
2552d17e
JB
7949 } else if (!ins->objectid) {
7950 ret = -ENOSPC;
d82a6f1d 7951 } else if (ins->objectid) {
c759c4e1
JB
7952 if (!use_cluster && last_ptr) {
7953 spin_lock(&last_ptr->lock);
7954 last_ptr->window_start = ins->objectid;
7955 spin_unlock(&last_ptr->lock);
7956 }
80eb234a 7957 ret = 0;
be744175 7958 }
79787eaa 7959out:
4f4db217
JB
7960 if (ret == -ENOSPC) {
7961 spin_lock(&space_info->lock);
7962 space_info->max_extent_size = max_extent_size;
7963 spin_unlock(&space_info->lock);
a4820398 7964 ins->offset = max_extent_size;
4f4db217 7965 }
0f70abe2 7966 return ret;
fec577fb 7967}
ec44a35c 7968
ab8d0fc4
JM
7969static void dump_space_info(struct btrfs_fs_info *fs_info,
7970 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7971 int dump_block_groups)
0f9dd46c
JB
7972{
7973 struct btrfs_block_group_cache *cache;
b742bb82 7974 int index = 0;
0f9dd46c 7975
9ed74f2d 7976 spin_lock(&info->lock);
ab8d0fc4
JM
7977 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7978 info->flags,
4136135b
LB
7979 info->total_bytes - btrfs_space_info_used(info, true),
7980 info->full ? "" : "not ");
ab8d0fc4
JM
7981 btrfs_info(fs_info,
7982 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7983 info->total_bytes, info->bytes_used, info->bytes_pinned,
7984 info->bytes_reserved, info->bytes_may_use,
7985 info->bytes_readonly);
9ed74f2d
JB
7986 spin_unlock(&info->lock);
7987
7988 if (!dump_block_groups)
7989 return;
0f9dd46c 7990
80eb234a 7991 down_read(&info->groups_sem);
b742bb82
YZ
7992again:
7993 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7994 spin_lock(&cache->lock);
ab8d0fc4
JM
7995 btrfs_info(fs_info,
7996 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7997 cache->key.objectid, cache->key.offset,
7998 btrfs_block_group_used(&cache->item), cache->pinned,
7999 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
8000 btrfs_dump_free_space(cache, bytes);
8001 spin_unlock(&cache->lock);
8002 }
b742bb82
YZ
8003 if (++index < BTRFS_NR_RAID_TYPES)
8004 goto again;
80eb234a 8005 up_read(&info->groups_sem);
0f9dd46c 8006}
e8569813 8007
18513091 8008int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8009 u64 num_bytes, u64 min_alloc_size,
8010 u64 empty_size, u64 hint_byte,
e570fd27 8011 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8012{
ab8d0fc4 8013 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8014 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8015 u64 flags;
fec577fb 8016 int ret;
925baedd 8017
1b86826d 8018 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8019again:
0b246afa 8020 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8021 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8022 hint_byte, ins, flags, delalloc);
9cfa3e34 8023 if (!ret && !is_data) {
ab8d0fc4 8024 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8025 } else if (ret == -ENOSPC) {
a4820398
MX
8026 if (!final_tried && ins->offset) {
8027 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8028 num_bytes = round_down(num_bytes,
0b246afa 8029 fs_info->sectorsize);
9e622d6b 8030 num_bytes = max(num_bytes, min_alloc_size);
18513091 8031 ram_bytes = num_bytes;
9e622d6b
MX
8032 if (num_bytes == min_alloc_size)
8033 final_tried = true;
8034 goto again;
ab8d0fc4 8035 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8036 struct btrfs_space_info *sinfo;
8037
ab8d0fc4 8038 sinfo = __find_space_info(fs_info, flags);
0b246afa 8039 btrfs_err(fs_info,
5d163e0e
JM
8040 "allocation failed flags %llu, wanted %llu",
8041 flags, num_bytes);
53804280 8042 if (sinfo)
ab8d0fc4 8043 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8044 }
925baedd 8045 }
0f9dd46c
JB
8046
8047 return ret;
e6dcd2dc
CM
8048}
8049
2ff7e61e 8050static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8051 u64 start, u64 len,
8052 int pin, int delalloc)
65b51a00 8053{
0f9dd46c 8054 struct btrfs_block_group_cache *cache;
1f3c79a2 8055 int ret = 0;
0f9dd46c 8056
0b246afa 8057 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8058 if (!cache) {
0b246afa
JM
8059 btrfs_err(fs_info, "Unable to find block group for %llu",
8060 start);
0f9dd46c
JB
8061 return -ENOSPC;
8062 }
1f3c79a2 8063
e688b725 8064 if (pin)
2ff7e61e 8065 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8066 else {
0b246afa 8067 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8068 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8069 btrfs_add_free_space(cache, start, len);
4824f1f4 8070 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8071 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8072 }
31193213 8073
fa9c0d79 8074 btrfs_put_block_group(cache);
e6dcd2dc
CM
8075 return ret;
8076}
8077
2ff7e61e 8078int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8079 u64 start, u64 len, int delalloc)
e688b725 8080{
2ff7e61e 8081 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8082}
8083
2ff7e61e 8084int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8085 u64 start, u64 len)
8086{
2ff7e61e 8087 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8088}
8089
5d4f98a2 8090static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8091 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8092 u64 parent, u64 root_objectid,
8093 u64 flags, u64 owner, u64 offset,
8094 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8095{
8096 int ret;
e6dcd2dc 8097 struct btrfs_extent_item *extent_item;
5d4f98a2 8098 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8099 struct btrfs_path *path;
5d4f98a2
YZ
8100 struct extent_buffer *leaf;
8101 int type;
8102 u32 size;
26b8003f 8103
5d4f98a2
YZ
8104 if (parent > 0)
8105 type = BTRFS_SHARED_DATA_REF_KEY;
8106 else
8107 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8108
5d4f98a2 8109 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8110
8111 path = btrfs_alloc_path();
db5b493a
TI
8112 if (!path)
8113 return -ENOMEM;
47e4bb98 8114
b9473439 8115 path->leave_spinning = 1;
5d4f98a2
YZ
8116 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8117 ins, size);
79787eaa
JM
8118 if (ret) {
8119 btrfs_free_path(path);
8120 return ret;
8121 }
0f9dd46c 8122
5d4f98a2
YZ
8123 leaf = path->nodes[0];
8124 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8125 struct btrfs_extent_item);
5d4f98a2
YZ
8126 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8127 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8128 btrfs_set_extent_flags(leaf, extent_item,
8129 flags | BTRFS_EXTENT_FLAG_DATA);
8130
8131 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8132 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8133 if (parent > 0) {
8134 struct btrfs_shared_data_ref *ref;
8135 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8136 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8137 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8138 } else {
8139 struct btrfs_extent_data_ref *ref;
8140 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8141 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8142 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8143 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8144 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8145 }
47e4bb98
CM
8146
8147 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8148 btrfs_free_path(path);
f510cfec 8149
1e144fb8
OS
8150 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8151 ins->offset);
8152 if (ret)
8153 return ret;
8154
6202df69 8155 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8156 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8157 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8158 ins->objectid, ins->offset);
f5947066
CM
8159 BUG();
8160 }
71ff6437 8161 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8162 return ret;
8163}
8164
5d4f98a2 8165static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8166 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8167 u64 parent, u64 root_objectid,
8168 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8169 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8170{
8171 int ret;
5d4f98a2
YZ
8172 struct btrfs_extent_item *extent_item;
8173 struct btrfs_tree_block_info *block_info;
8174 struct btrfs_extent_inline_ref *iref;
8175 struct btrfs_path *path;
8176 struct extent_buffer *leaf;
3173a18f 8177 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8178 u64 num_bytes = ins->offset;
0b246afa 8179 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8180
8181 if (!skinny_metadata)
8182 size += sizeof(*block_info);
1c2308f8 8183
5d4f98a2 8184 path = btrfs_alloc_path();
857cc2fc 8185 if (!path) {
2ff7e61e 8186 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8187 fs_info->nodesize);
d8926bb3 8188 return -ENOMEM;
857cc2fc 8189 }
56bec294 8190
5d4f98a2
YZ
8191 path->leave_spinning = 1;
8192 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8193 ins, size);
79787eaa 8194 if (ret) {
dd825259 8195 btrfs_free_path(path);
2ff7e61e 8196 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8197 fs_info->nodesize);
79787eaa
JM
8198 return ret;
8199 }
5d4f98a2
YZ
8200
8201 leaf = path->nodes[0];
8202 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8203 struct btrfs_extent_item);
8204 btrfs_set_extent_refs(leaf, extent_item, 1);
8205 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8206 btrfs_set_extent_flags(leaf, extent_item,
8207 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8208
3173a18f
JB
8209 if (skinny_metadata) {
8210 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8211 num_bytes = fs_info->nodesize;
3173a18f
JB
8212 } else {
8213 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8214 btrfs_set_tree_block_key(leaf, block_info, key);
8215 btrfs_set_tree_block_level(leaf, block_info, level);
8216 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8217 }
5d4f98a2 8218
5d4f98a2
YZ
8219 if (parent > 0) {
8220 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8221 btrfs_set_extent_inline_ref_type(leaf, iref,
8222 BTRFS_SHARED_BLOCK_REF_KEY);
8223 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8224 } else {
8225 btrfs_set_extent_inline_ref_type(leaf, iref,
8226 BTRFS_TREE_BLOCK_REF_KEY);
8227 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8228 }
8229
8230 btrfs_mark_buffer_dirty(leaf);
8231 btrfs_free_path(path);
8232
1e144fb8
OS
8233 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8234 num_bytes);
8235 if (ret)
8236 return ret;
8237
6202df69
JM
8238 ret = update_block_group(trans, fs_info, ins->objectid,
8239 fs_info->nodesize, 1);
79787eaa 8240 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8241 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8242 ins->objectid, ins->offset);
5d4f98a2
YZ
8243 BUG();
8244 }
0be5dc67 8245
71ff6437 8246 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8247 fs_info->nodesize);
5d4f98a2
YZ
8248 return ret;
8249}
8250
8251int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8252 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8253 u64 offset, u64 ram_bytes,
8254 struct btrfs_key *ins)
5d4f98a2 8255{
84f7d8e6 8256 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8257 int ret;
8258
84f7d8e6 8259 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8260
fd708b81
JB
8261 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8262 root->root_key.objectid, owner, offset,
8263 BTRFS_ADD_DELAYED_EXTENT);
8264
0b246afa 8265 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8266 ins->offset, 0,
8267 root->root_key.objectid, owner,
7be07912
OS
8268 offset, ram_bytes,
8269 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8270 return ret;
8271}
e02119d5
CM
8272
8273/*
8274 * this is used by the tree logging recovery code. It records that
8275 * an extent has been allocated and makes sure to clear the free
8276 * space cache bits as well
8277 */
5d4f98a2 8278int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8279 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8280 u64 root_objectid, u64 owner, u64 offset,
8281 struct btrfs_key *ins)
e02119d5
CM
8282{
8283 int ret;
8284 struct btrfs_block_group_cache *block_group;
ed7a6948 8285 struct btrfs_space_info *space_info;
11833d66 8286
8c2a1a30
JB
8287 /*
8288 * Mixed block groups will exclude before processing the log so we only
01327610 8289 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8290 */
0b246afa 8291 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8292 ret = __exclude_logged_extent(fs_info, ins->objectid,
8293 ins->offset);
b50c6e25 8294 if (ret)
8c2a1a30 8295 return ret;
11833d66
YZ
8296 }
8297
0b246afa 8298 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8299 if (!block_group)
8300 return -EINVAL;
8301
ed7a6948
WX
8302 space_info = block_group->space_info;
8303 spin_lock(&space_info->lock);
8304 spin_lock(&block_group->lock);
8305 space_info->bytes_reserved += ins->offset;
8306 block_group->reserved += ins->offset;
8307 spin_unlock(&block_group->lock);
8308 spin_unlock(&space_info->lock);
8309
2ff7e61e 8310 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8311 0, owner, offset, ins, 1);
b50c6e25 8312 btrfs_put_block_group(block_group);
e02119d5
CM
8313 return ret;
8314}
8315
48a3b636
ES
8316static struct extent_buffer *
8317btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8318 u64 bytenr, int level)
65b51a00 8319{
0b246afa 8320 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8321 struct extent_buffer *buf;
8322
2ff7e61e 8323 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8324 if (IS_ERR(buf))
8325 return buf;
8326
65b51a00 8327 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8328 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8329 btrfs_tree_lock(buf);
7c302b49 8330 clean_tree_block(fs_info, buf);
3083ee2e 8331 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8332
8333 btrfs_set_lock_blocking(buf);
4db8c528 8334 set_extent_buffer_uptodate(buf);
b4ce94de 8335
d0c803c4 8336 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8337 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8338 /*
8339 * we allow two log transactions at a time, use different
8340 * EXENT bit to differentiate dirty pages.
8341 */
656f30db 8342 if (buf->log_index == 0)
8cef4e16
YZ
8343 set_extent_dirty(&root->dirty_log_pages, buf->start,
8344 buf->start + buf->len - 1, GFP_NOFS);
8345 else
8346 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8347 buf->start + buf->len - 1);
d0c803c4 8348 } else {
656f30db 8349 buf->log_index = -1;
d0c803c4 8350 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8351 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8352 }
64c12921 8353 trans->dirty = true;
b4ce94de 8354 /* this returns a buffer locked for blocking */
65b51a00
CM
8355 return buf;
8356}
8357
f0486c68
YZ
8358static struct btrfs_block_rsv *
8359use_block_rsv(struct btrfs_trans_handle *trans,
8360 struct btrfs_root *root, u32 blocksize)
8361{
0b246afa 8362 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8363 struct btrfs_block_rsv *block_rsv;
0b246afa 8364 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8365 int ret;
d88033db 8366 bool global_updated = false;
f0486c68
YZ
8367
8368 block_rsv = get_block_rsv(trans, root);
8369
b586b323
MX
8370 if (unlikely(block_rsv->size == 0))
8371 goto try_reserve;
d88033db 8372again:
f0486c68
YZ
8373 ret = block_rsv_use_bytes(block_rsv, blocksize);
8374 if (!ret)
8375 return block_rsv;
8376
b586b323
MX
8377 if (block_rsv->failfast)
8378 return ERR_PTR(ret);
8379
d88033db
MX
8380 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8381 global_updated = true;
0b246afa 8382 update_global_block_rsv(fs_info);
d88033db
MX
8383 goto again;
8384 }
8385
0b246afa 8386 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8387 static DEFINE_RATELIMIT_STATE(_rs,
8388 DEFAULT_RATELIMIT_INTERVAL * 10,
8389 /*DEFAULT_RATELIMIT_BURST*/ 1);
8390 if (__ratelimit(&_rs))
8391 WARN(1, KERN_DEBUG
efe120a0 8392 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8393 }
8394try_reserve:
8395 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8396 BTRFS_RESERVE_NO_FLUSH);
8397 if (!ret)
8398 return block_rsv;
8399 /*
8400 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8401 * the global reserve if its space type is the same as the global
8402 * reservation.
b586b323 8403 */
5881cfc9
MX
8404 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8405 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8406 ret = block_rsv_use_bytes(global_rsv, blocksize);
8407 if (!ret)
8408 return global_rsv;
8409 }
8410 return ERR_PTR(ret);
f0486c68
YZ
8411}
8412
8c2a3ca2
JB
8413static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8414 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8415{
8416 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8417 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8418}
8419
fec577fb 8420/*
f0486c68 8421 * finds a free extent and does all the dirty work required for allocation
67b7859e 8422 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8423 */
4d75f8a9 8424struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8425 struct btrfs_root *root,
8426 u64 parent, u64 root_objectid,
8427 const struct btrfs_disk_key *key,
8428 int level, u64 hint,
8429 u64 empty_size)
fec577fb 8430{
0b246afa 8431 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8432 struct btrfs_key ins;
f0486c68 8433 struct btrfs_block_rsv *block_rsv;
5f39d397 8434 struct extent_buffer *buf;
67b7859e 8435 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8436 u64 flags = 0;
8437 int ret;
0b246afa
JM
8438 u32 blocksize = fs_info->nodesize;
8439 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8440
05653ef3 8441#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8442 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8443 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8444 level);
faa2dbf0
JB
8445 if (!IS_ERR(buf))
8446 root->alloc_bytenr += blocksize;
8447 return buf;
8448 }
05653ef3 8449#endif
fccb84c9 8450
f0486c68
YZ
8451 block_rsv = use_block_rsv(trans, root, blocksize);
8452 if (IS_ERR(block_rsv))
8453 return ERR_CAST(block_rsv);
8454
18513091 8455 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8456 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8457 if (ret)
8458 goto out_unuse;
55c69072 8459
fe864576 8460 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8461 if (IS_ERR(buf)) {
8462 ret = PTR_ERR(buf);
8463 goto out_free_reserved;
8464 }
f0486c68
YZ
8465
8466 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8467 if (parent == 0)
8468 parent = ins.objectid;
8469 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8470 } else
8471 BUG_ON(parent > 0);
8472
8473 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8474 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8475 if (!extent_op) {
8476 ret = -ENOMEM;
8477 goto out_free_buf;
8478 }
f0486c68
YZ
8479 if (key)
8480 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8481 else
8482 memset(&extent_op->key, 0, sizeof(extent_op->key));
8483 extent_op->flags_to_set = flags;
35b3ad50
DS
8484 extent_op->update_key = skinny_metadata ? false : true;
8485 extent_op->update_flags = true;
8486 extent_op->is_data = false;
b1c79e09 8487 extent_op->level = level;
f0486c68 8488
fd708b81
JB
8489 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8490 root_objectid, level, 0,
8491 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8492 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8493 ins.offset, parent,
8494 root_objectid, level,
67b7859e 8495 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8496 extent_op, NULL, NULL);
67b7859e
OS
8497 if (ret)
8498 goto out_free_delayed;
f0486c68 8499 }
fec577fb 8500 return buf;
67b7859e
OS
8501
8502out_free_delayed:
8503 btrfs_free_delayed_extent_op(extent_op);
8504out_free_buf:
8505 free_extent_buffer(buf);
8506out_free_reserved:
2ff7e61e 8507 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8508out_unuse:
0b246afa 8509 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8510 return ERR_PTR(ret);
fec577fb 8511}
a28ec197 8512
2c47e605
YZ
8513struct walk_control {
8514 u64 refs[BTRFS_MAX_LEVEL];
8515 u64 flags[BTRFS_MAX_LEVEL];
8516 struct btrfs_key update_progress;
8517 int stage;
8518 int level;
8519 int shared_level;
8520 int update_ref;
8521 int keep_locks;
1c4850e2
YZ
8522 int reada_slot;
8523 int reada_count;
66d7e7f0 8524 int for_reloc;
2c47e605
YZ
8525};
8526
8527#define DROP_REFERENCE 1
8528#define UPDATE_BACKREF 2
8529
1c4850e2
YZ
8530static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8531 struct btrfs_root *root,
8532 struct walk_control *wc,
8533 struct btrfs_path *path)
6407bf6d 8534{
0b246afa 8535 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8536 u64 bytenr;
8537 u64 generation;
8538 u64 refs;
94fcca9f 8539 u64 flags;
5d4f98a2 8540 u32 nritems;
1c4850e2
YZ
8541 struct btrfs_key key;
8542 struct extent_buffer *eb;
6407bf6d 8543 int ret;
1c4850e2
YZ
8544 int slot;
8545 int nread = 0;
6407bf6d 8546
1c4850e2
YZ
8547 if (path->slots[wc->level] < wc->reada_slot) {
8548 wc->reada_count = wc->reada_count * 2 / 3;
8549 wc->reada_count = max(wc->reada_count, 2);
8550 } else {
8551 wc->reada_count = wc->reada_count * 3 / 2;
8552 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8553 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8554 }
7bb86316 8555
1c4850e2
YZ
8556 eb = path->nodes[wc->level];
8557 nritems = btrfs_header_nritems(eb);
bd56b302 8558
1c4850e2
YZ
8559 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8560 if (nread >= wc->reada_count)
8561 break;
bd56b302 8562
2dd3e67b 8563 cond_resched();
1c4850e2
YZ
8564 bytenr = btrfs_node_blockptr(eb, slot);
8565 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8566
1c4850e2
YZ
8567 if (slot == path->slots[wc->level])
8568 goto reada;
5d4f98a2 8569
1c4850e2
YZ
8570 if (wc->stage == UPDATE_BACKREF &&
8571 generation <= root->root_key.offset)
bd56b302
CM
8572 continue;
8573
94fcca9f 8574 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8575 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8576 wc->level - 1, 1, &refs,
8577 &flags);
79787eaa
JM
8578 /* We don't care about errors in readahead. */
8579 if (ret < 0)
8580 continue;
94fcca9f
YZ
8581 BUG_ON(refs == 0);
8582
1c4850e2 8583 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8584 if (refs == 1)
8585 goto reada;
bd56b302 8586
94fcca9f
YZ
8587 if (wc->level == 1 &&
8588 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8589 continue;
1c4850e2
YZ
8590 if (!wc->update_ref ||
8591 generation <= root->root_key.offset)
8592 continue;
8593 btrfs_node_key_to_cpu(eb, &key, slot);
8594 ret = btrfs_comp_cpu_keys(&key,
8595 &wc->update_progress);
8596 if (ret < 0)
8597 continue;
94fcca9f
YZ
8598 } else {
8599 if (wc->level == 1 &&
8600 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8601 continue;
6407bf6d 8602 }
1c4850e2 8603reada:
2ff7e61e 8604 readahead_tree_block(fs_info, bytenr);
1c4850e2 8605 nread++;
20524f02 8606 }
1c4850e2 8607 wc->reada_slot = slot;
20524f02 8608}
2c47e605 8609
f82d02d9 8610/*
2c016dc2 8611 * helper to process tree block while walking down the tree.
2c47e605 8612 *
2c47e605
YZ
8613 * when wc->stage == UPDATE_BACKREF, this function updates
8614 * back refs for pointers in the block.
8615 *
8616 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8617 */
2c47e605 8618static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8619 struct btrfs_root *root,
2c47e605 8620 struct btrfs_path *path,
94fcca9f 8621 struct walk_control *wc, int lookup_info)
f82d02d9 8622{
2ff7e61e 8623 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8624 int level = wc->level;
8625 struct extent_buffer *eb = path->nodes[level];
2c47e605 8626 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8627 int ret;
8628
2c47e605
YZ
8629 if (wc->stage == UPDATE_BACKREF &&
8630 btrfs_header_owner(eb) != root->root_key.objectid)
8631 return 1;
f82d02d9 8632
2c47e605
YZ
8633 /*
8634 * when reference count of tree block is 1, it won't increase
8635 * again. once full backref flag is set, we never clear it.
8636 */
94fcca9f
YZ
8637 if (lookup_info &&
8638 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8639 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8640 BUG_ON(!path->locks[level]);
2ff7e61e 8641 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8642 eb->start, level, 1,
2c47e605
YZ
8643 &wc->refs[level],
8644 &wc->flags[level]);
79787eaa
JM
8645 BUG_ON(ret == -ENOMEM);
8646 if (ret)
8647 return ret;
2c47e605
YZ
8648 BUG_ON(wc->refs[level] == 0);
8649 }
5d4f98a2 8650
2c47e605
YZ
8651 if (wc->stage == DROP_REFERENCE) {
8652 if (wc->refs[level] > 1)
8653 return 1;
f82d02d9 8654
2c47e605 8655 if (path->locks[level] && !wc->keep_locks) {
bd681513 8656 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8657 path->locks[level] = 0;
8658 }
8659 return 0;
8660 }
f82d02d9 8661
2c47e605
YZ
8662 /* wc->stage == UPDATE_BACKREF */
8663 if (!(wc->flags[level] & flag)) {
8664 BUG_ON(!path->locks[level]);
e339a6b0 8665 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8666 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8667 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8668 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8669 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8670 eb->len, flag,
8671 btrfs_header_level(eb), 0);
79787eaa 8672 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8673 wc->flags[level] |= flag;
8674 }
8675
8676 /*
8677 * the block is shared by multiple trees, so it's not good to
8678 * keep the tree lock
8679 */
8680 if (path->locks[level] && level > 0) {
bd681513 8681 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8682 path->locks[level] = 0;
8683 }
8684 return 0;
8685}
8686
1c4850e2 8687/*
2c016dc2 8688 * helper to process tree block pointer.
1c4850e2
YZ
8689 *
8690 * when wc->stage == DROP_REFERENCE, this function checks
8691 * reference count of the block pointed to. if the block
8692 * is shared and we need update back refs for the subtree
8693 * rooted at the block, this function changes wc->stage to
8694 * UPDATE_BACKREF. if the block is shared and there is no
8695 * need to update back, this function drops the reference
8696 * to the block.
8697 *
8698 * NOTE: return value 1 means we should stop walking down.
8699 */
8700static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8701 struct btrfs_root *root,
8702 struct btrfs_path *path,
94fcca9f 8703 struct walk_control *wc, int *lookup_info)
1c4850e2 8704{
0b246afa 8705 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8706 u64 bytenr;
8707 u64 generation;
8708 u64 parent;
8709 u32 blocksize;
8710 struct btrfs_key key;
8711 struct extent_buffer *next;
8712 int level = wc->level;
8713 int reada = 0;
8714 int ret = 0;
1152651a 8715 bool need_account = false;
1c4850e2
YZ
8716
8717 generation = btrfs_node_ptr_generation(path->nodes[level],
8718 path->slots[level]);
8719 /*
8720 * if the lower level block was created before the snapshot
8721 * was created, we know there is no need to update back refs
8722 * for the subtree
8723 */
8724 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8725 generation <= root->root_key.offset) {
8726 *lookup_info = 1;
1c4850e2 8727 return 1;
94fcca9f 8728 }
1c4850e2
YZ
8729
8730 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8731 blocksize = fs_info->nodesize;
1c4850e2 8732
0b246afa 8733 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8734 if (!next) {
2ff7e61e 8735 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8736 if (IS_ERR(next))
8737 return PTR_ERR(next);
8738
b2aaaa3b
JB
8739 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8740 level - 1);
1c4850e2
YZ
8741 reada = 1;
8742 }
8743 btrfs_tree_lock(next);
8744 btrfs_set_lock_blocking(next);
8745
2ff7e61e 8746 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8747 &wc->refs[level - 1],
8748 &wc->flags[level - 1]);
4867268c
JB
8749 if (ret < 0)
8750 goto out_unlock;
79787eaa 8751
c2cf52eb 8752 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8753 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8754 ret = -EIO;
8755 goto out_unlock;
c2cf52eb 8756 }
94fcca9f 8757 *lookup_info = 0;
1c4850e2 8758
94fcca9f 8759 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8760 if (wc->refs[level - 1] > 1) {
1152651a 8761 need_account = true;
94fcca9f
YZ
8762 if (level == 1 &&
8763 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8764 goto skip;
8765
1c4850e2
YZ
8766 if (!wc->update_ref ||
8767 generation <= root->root_key.offset)
8768 goto skip;
8769
8770 btrfs_node_key_to_cpu(path->nodes[level], &key,
8771 path->slots[level]);
8772 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8773 if (ret < 0)
8774 goto skip;
8775
8776 wc->stage = UPDATE_BACKREF;
8777 wc->shared_level = level - 1;
8778 }
94fcca9f
YZ
8779 } else {
8780 if (level == 1 &&
8781 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8782 goto skip;
1c4850e2
YZ
8783 }
8784
b9fab919 8785 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8786 btrfs_tree_unlock(next);
8787 free_extent_buffer(next);
8788 next = NULL;
94fcca9f 8789 *lookup_info = 1;
1c4850e2
YZ
8790 }
8791
8792 if (!next) {
8793 if (reada && level == 1)
8794 reada_walk_down(trans, root, wc, path);
2ff7e61e 8795 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8796 if (IS_ERR(next)) {
8797 return PTR_ERR(next);
8798 } else if (!extent_buffer_uptodate(next)) {
416bc658 8799 free_extent_buffer(next);
97d9a8a4 8800 return -EIO;
416bc658 8801 }
1c4850e2
YZ
8802 btrfs_tree_lock(next);
8803 btrfs_set_lock_blocking(next);
8804 }
8805
8806 level--;
4867268c
JB
8807 ASSERT(level == btrfs_header_level(next));
8808 if (level != btrfs_header_level(next)) {
8809 btrfs_err(root->fs_info, "mismatched level");
8810 ret = -EIO;
8811 goto out_unlock;
8812 }
1c4850e2
YZ
8813 path->nodes[level] = next;
8814 path->slots[level] = 0;
bd681513 8815 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8816 wc->level = level;
8817 if (wc->level == 1)
8818 wc->reada_slot = 0;
8819 return 0;
8820skip:
8821 wc->refs[level - 1] = 0;
8822 wc->flags[level - 1] = 0;
94fcca9f
YZ
8823 if (wc->stage == DROP_REFERENCE) {
8824 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8825 parent = path->nodes[level]->start;
8826 } else {
4867268c 8827 ASSERT(root->root_key.objectid ==
94fcca9f 8828 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8829 if (root->root_key.objectid !=
8830 btrfs_header_owner(path->nodes[level])) {
8831 btrfs_err(root->fs_info,
8832 "mismatched block owner");
8833 ret = -EIO;
8834 goto out_unlock;
8835 }
94fcca9f
YZ
8836 parent = 0;
8837 }
1c4850e2 8838
1152651a 8839 if (need_account) {
33d1f05c
QW
8840 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8841 generation, level - 1);
1152651a 8842 if (ret) {
0b246afa 8843 btrfs_err_rl(fs_info,
5d163e0e
JM
8844 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8845 ret);
1152651a
MF
8846 }
8847 }
84f7d8e6 8848 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8849 parent, root->root_key.objectid,
8850 level - 1, 0);
4867268c
JB
8851 if (ret)
8852 goto out_unlock;
1c4850e2 8853 }
4867268c
JB
8854
8855 *lookup_info = 1;
8856 ret = 1;
8857
8858out_unlock:
1c4850e2
YZ
8859 btrfs_tree_unlock(next);
8860 free_extent_buffer(next);
4867268c
JB
8861
8862 return ret;
1c4850e2
YZ
8863}
8864
2c47e605 8865/*
2c016dc2 8866 * helper to process tree block while walking up the tree.
2c47e605
YZ
8867 *
8868 * when wc->stage == DROP_REFERENCE, this function drops
8869 * reference count on the block.
8870 *
8871 * when wc->stage == UPDATE_BACKREF, this function changes
8872 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8873 * to UPDATE_BACKREF previously while processing the block.
8874 *
8875 * NOTE: return value 1 means we should stop walking up.
8876 */
8877static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8878 struct btrfs_root *root,
8879 struct btrfs_path *path,
8880 struct walk_control *wc)
8881{
0b246afa 8882 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8883 int ret;
2c47e605
YZ
8884 int level = wc->level;
8885 struct extent_buffer *eb = path->nodes[level];
8886 u64 parent = 0;
8887
8888 if (wc->stage == UPDATE_BACKREF) {
8889 BUG_ON(wc->shared_level < level);
8890 if (level < wc->shared_level)
8891 goto out;
8892
2c47e605
YZ
8893 ret = find_next_key(path, level + 1, &wc->update_progress);
8894 if (ret > 0)
8895 wc->update_ref = 0;
8896
8897 wc->stage = DROP_REFERENCE;
8898 wc->shared_level = -1;
8899 path->slots[level] = 0;
8900
8901 /*
8902 * check reference count again if the block isn't locked.
8903 * we should start walking down the tree again if reference
8904 * count is one.
8905 */
8906 if (!path->locks[level]) {
8907 BUG_ON(level == 0);
8908 btrfs_tree_lock(eb);
8909 btrfs_set_lock_blocking(eb);
bd681513 8910 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8911
2ff7e61e 8912 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8913 eb->start, level, 1,
2c47e605
YZ
8914 &wc->refs[level],
8915 &wc->flags[level]);
79787eaa
JM
8916 if (ret < 0) {
8917 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8918 path->locks[level] = 0;
79787eaa
JM
8919 return ret;
8920 }
2c47e605
YZ
8921 BUG_ON(wc->refs[level] == 0);
8922 if (wc->refs[level] == 1) {
bd681513 8923 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8924 path->locks[level] = 0;
2c47e605
YZ
8925 return 1;
8926 }
f82d02d9 8927 }
2c47e605 8928 }
f82d02d9 8929
2c47e605
YZ
8930 /* wc->stage == DROP_REFERENCE */
8931 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8932
2c47e605
YZ
8933 if (wc->refs[level] == 1) {
8934 if (level == 0) {
8935 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8936 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8937 else
e339a6b0 8938 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8939 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8940 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8941 if (ret) {
0b246afa 8942 btrfs_err_rl(fs_info,
5d163e0e
JM
8943 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8944 ret);
1152651a 8945 }
2c47e605
YZ
8946 }
8947 /* make block locked assertion in clean_tree_block happy */
8948 if (!path->locks[level] &&
8949 btrfs_header_generation(eb) == trans->transid) {
8950 btrfs_tree_lock(eb);
8951 btrfs_set_lock_blocking(eb);
bd681513 8952 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8953 }
7c302b49 8954 clean_tree_block(fs_info, eb);
2c47e605
YZ
8955 }
8956
8957 if (eb == root->node) {
8958 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8959 parent = eb->start;
8960 else
8961 BUG_ON(root->root_key.objectid !=
8962 btrfs_header_owner(eb));
8963 } else {
8964 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8965 parent = path->nodes[level + 1]->start;
8966 else
8967 BUG_ON(root->root_key.objectid !=
8968 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8969 }
f82d02d9 8970
5581a51a 8971 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8972out:
8973 wc->refs[level] = 0;
8974 wc->flags[level] = 0;
f0486c68 8975 return 0;
2c47e605
YZ
8976}
8977
8978static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8979 struct btrfs_root *root,
8980 struct btrfs_path *path,
8981 struct walk_control *wc)
8982{
2c47e605 8983 int level = wc->level;
94fcca9f 8984 int lookup_info = 1;
2c47e605
YZ
8985 int ret;
8986
8987 while (level >= 0) {
94fcca9f 8988 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8989 if (ret > 0)
8990 break;
8991
8992 if (level == 0)
8993 break;
8994
7a7965f8
YZ
8995 if (path->slots[level] >=
8996 btrfs_header_nritems(path->nodes[level]))
8997 break;
8998
94fcca9f 8999 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9000 if (ret > 0) {
9001 path->slots[level]++;
9002 continue;
90d2c51d
MX
9003 } else if (ret < 0)
9004 return ret;
1c4850e2 9005 level = wc->level;
f82d02d9 9006 }
f82d02d9
YZ
9007 return 0;
9008}
9009
d397712b 9010static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9011 struct btrfs_root *root,
f82d02d9 9012 struct btrfs_path *path,
2c47e605 9013 struct walk_control *wc, int max_level)
20524f02 9014{
2c47e605 9015 int level = wc->level;
20524f02 9016 int ret;
9f3a7427 9017
2c47e605
YZ
9018 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9019 while (level < max_level && path->nodes[level]) {
9020 wc->level = level;
9021 if (path->slots[level] + 1 <
9022 btrfs_header_nritems(path->nodes[level])) {
9023 path->slots[level]++;
20524f02
CM
9024 return 0;
9025 } else {
2c47e605
YZ
9026 ret = walk_up_proc(trans, root, path, wc);
9027 if (ret > 0)
9028 return 0;
bd56b302 9029
2c47e605 9030 if (path->locks[level]) {
bd681513
CM
9031 btrfs_tree_unlock_rw(path->nodes[level],
9032 path->locks[level]);
2c47e605 9033 path->locks[level] = 0;
f82d02d9 9034 }
2c47e605
YZ
9035 free_extent_buffer(path->nodes[level]);
9036 path->nodes[level] = NULL;
9037 level++;
20524f02
CM
9038 }
9039 }
9040 return 1;
9041}
9042
9aca1d51 9043/*
2c47e605
YZ
9044 * drop a subvolume tree.
9045 *
9046 * this function traverses the tree freeing any blocks that only
9047 * referenced by the tree.
9048 *
9049 * when a shared tree block is found. this function decreases its
9050 * reference count by one. if update_ref is true, this function
9051 * also make sure backrefs for the shared block and all lower level
9052 * blocks are properly updated.
9d1a2a3a
DS
9053 *
9054 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9055 */
2c536799 9056int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9057 struct btrfs_block_rsv *block_rsv, int update_ref,
9058 int for_reloc)
20524f02 9059{
ab8d0fc4 9060 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9061 struct btrfs_path *path;
2c47e605 9062 struct btrfs_trans_handle *trans;
ab8d0fc4 9063 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9064 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9065 struct walk_control *wc;
9066 struct btrfs_key key;
9067 int err = 0;
9068 int ret;
9069 int level;
d29a9f62 9070 bool root_dropped = false;
20524f02 9071
ab8d0fc4 9072 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9073
5caf2a00 9074 path = btrfs_alloc_path();
cb1b69f4
TI
9075 if (!path) {
9076 err = -ENOMEM;
9077 goto out;
9078 }
20524f02 9079
2c47e605 9080 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9081 if (!wc) {
9082 btrfs_free_path(path);
cb1b69f4
TI
9083 err = -ENOMEM;
9084 goto out;
38a1a919 9085 }
2c47e605 9086
a22285a6 9087 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9088 if (IS_ERR(trans)) {
9089 err = PTR_ERR(trans);
9090 goto out_free;
9091 }
98d5dc13 9092
3fd0a558
YZ
9093 if (block_rsv)
9094 trans->block_rsv = block_rsv;
2c47e605 9095
9f3a7427 9096 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9097 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9098 path->nodes[level] = btrfs_lock_root_node(root);
9099 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9100 path->slots[level] = 0;
bd681513 9101 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9102 memset(&wc->update_progress, 0,
9103 sizeof(wc->update_progress));
9f3a7427 9104 } else {
9f3a7427 9105 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9106 memcpy(&wc->update_progress, &key,
9107 sizeof(wc->update_progress));
9108
6702ed49 9109 level = root_item->drop_level;
2c47e605 9110 BUG_ON(level == 0);
6702ed49 9111 path->lowest_level = level;
2c47e605
YZ
9112 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9113 path->lowest_level = 0;
9114 if (ret < 0) {
9115 err = ret;
79787eaa 9116 goto out_end_trans;
9f3a7427 9117 }
1c4850e2 9118 WARN_ON(ret > 0);
2c47e605 9119
7d9eb12c
CM
9120 /*
9121 * unlock our path, this is safe because only this
9122 * function is allowed to delete this snapshot
9123 */
5d4f98a2 9124 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9125
9126 level = btrfs_header_level(root->node);
9127 while (1) {
9128 btrfs_tree_lock(path->nodes[level]);
9129 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9130 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9131
2ff7e61e 9132 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9133 path->nodes[level]->start,
3173a18f 9134 level, 1, &wc->refs[level],
2c47e605 9135 &wc->flags[level]);
79787eaa
JM
9136 if (ret < 0) {
9137 err = ret;
9138 goto out_end_trans;
9139 }
2c47e605
YZ
9140 BUG_ON(wc->refs[level] == 0);
9141
9142 if (level == root_item->drop_level)
9143 break;
9144
9145 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9146 path->locks[level] = 0;
2c47e605
YZ
9147 WARN_ON(wc->refs[level] != 1);
9148 level--;
9149 }
9f3a7427 9150 }
2c47e605
YZ
9151
9152 wc->level = level;
9153 wc->shared_level = -1;
9154 wc->stage = DROP_REFERENCE;
9155 wc->update_ref = update_ref;
9156 wc->keep_locks = 0;
66d7e7f0 9157 wc->for_reloc = for_reloc;
0b246afa 9158 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9159
d397712b 9160 while (1) {
9d1a2a3a 9161
2c47e605
YZ
9162 ret = walk_down_tree(trans, root, path, wc);
9163 if (ret < 0) {
9164 err = ret;
20524f02 9165 break;
2c47e605 9166 }
9aca1d51 9167
2c47e605
YZ
9168 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9169 if (ret < 0) {
9170 err = ret;
20524f02 9171 break;
2c47e605
YZ
9172 }
9173
9174 if (ret > 0) {
9175 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9176 break;
9177 }
2c47e605
YZ
9178
9179 if (wc->stage == DROP_REFERENCE) {
9180 level = wc->level;
9181 btrfs_node_key(path->nodes[level],
9182 &root_item->drop_progress,
9183 path->slots[level]);
9184 root_item->drop_level = level;
9185 }
9186
9187 BUG_ON(wc->level == 0);
3a45bb20 9188 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9189 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9190 ret = btrfs_update_root(trans, tree_root,
9191 &root->root_key,
9192 root_item);
79787eaa 9193 if (ret) {
66642832 9194 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9195 err = ret;
9196 goto out_end_trans;
9197 }
2c47e605 9198
3a45bb20 9199 btrfs_end_transaction_throttle(trans);
2ff7e61e 9200 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9201 btrfs_debug(fs_info,
9202 "drop snapshot early exit");
3c8f2422
JB
9203 err = -EAGAIN;
9204 goto out_free;
9205 }
9206
a22285a6 9207 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9208 if (IS_ERR(trans)) {
9209 err = PTR_ERR(trans);
9210 goto out_free;
9211 }
3fd0a558
YZ
9212 if (block_rsv)
9213 trans->block_rsv = block_rsv;
c3e69d58 9214 }
20524f02 9215 }
b3b4aa74 9216 btrfs_release_path(path);
79787eaa
JM
9217 if (err)
9218 goto out_end_trans;
2c47e605 9219
1cd5447e 9220 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9221 if (ret) {
66642832 9222 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9223 goto out_end_trans;
9224 }
2c47e605 9225
76dda93c 9226 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9227 ret = btrfs_find_root(tree_root, &root->root_key, path,
9228 NULL, NULL);
79787eaa 9229 if (ret < 0) {
66642832 9230 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9231 err = ret;
9232 goto out_end_trans;
9233 } else if (ret > 0) {
84cd948c
JB
9234 /* if we fail to delete the orphan item this time
9235 * around, it'll get picked up the next time.
9236 *
9237 * The most common failure here is just -ENOENT.
9238 */
9239 btrfs_del_orphan_item(trans, tree_root,
9240 root->root_key.objectid);
76dda93c
YZ
9241 }
9242 }
9243
27cdeb70 9244 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9245 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9246 } else {
9247 free_extent_buffer(root->node);
9248 free_extent_buffer(root->commit_root);
b0feb9d9 9249 btrfs_put_fs_root(root);
76dda93c 9250 }
d29a9f62 9251 root_dropped = true;
79787eaa 9252out_end_trans:
3a45bb20 9253 btrfs_end_transaction_throttle(trans);
79787eaa 9254out_free:
2c47e605 9255 kfree(wc);
5caf2a00 9256 btrfs_free_path(path);
cb1b69f4 9257out:
d29a9f62
JB
9258 /*
9259 * So if we need to stop dropping the snapshot for whatever reason we
9260 * need to make sure to add it back to the dead root list so that we
9261 * keep trying to do the work later. This also cleans up roots if we
9262 * don't have it in the radix (like when we recover after a power fail
9263 * or unmount) so we don't leak memory.
9264 */
897ca819 9265 if (!for_reloc && !root_dropped)
d29a9f62 9266 btrfs_add_dead_root(root);
90515e7f 9267 if (err && err != -EAGAIN)
ab8d0fc4 9268 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9269 return err;
20524f02 9270}
9078a3e1 9271
2c47e605
YZ
9272/*
9273 * drop subtree rooted at tree block 'node'.
9274 *
9275 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9276 * only used by relocation code
2c47e605 9277 */
f82d02d9
YZ
9278int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9279 struct btrfs_root *root,
9280 struct extent_buffer *node,
9281 struct extent_buffer *parent)
9282{
0b246afa 9283 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9284 struct btrfs_path *path;
2c47e605 9285 struct walk_control *wc;
f82d02d9
YZ
9286 int level;
9287 int parent_level;
9288 int ret = 0;
9289 int wret;
9290
2c47e605
YZ
9291 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9292
f82d02d9 9293 path = btrfs_alloc_path();
db5b493a
TI
9294 if (!path)
9295 return -ENOMEM;
f82d02d9 9296
2c47e605 9297 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9298 if (!wc) {
9299 btrfs_free_path(path);
9300 return -ENOMEM;
9301 }
2c47e605 9302
b9447ef8 9303 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9304 parent_level = btrfs_header_level(parent);
9305 extent_buffer_get(parent);
9306 path->nodes[parent_level] = parent;
9307 path->slots[parent_level] = btrfs_header_nritems(parent);
9308
b9447ef8 9309 btrfs_assert_tree_locked(node);
f82d02d9 9310 level = btrfs_header_level(node);
f82d02d9
YZ
9311 path->nodes[level] = node;
9312 path->slots[level] = 0;
bd681513 9313 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9314
9315 wc->refs[parent_level] = 1;
9316 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9317 wc->level = level;
9318 wc->shared_level = -1;
9319 wc->stage = DROP_REFERENCE;
9320 wc->update_ref = 0;
9321 wc->keep_locks = 1;
66d7e7f0 9322 wc->for_reloc = 1;
0b246afa 9323 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9324
9325 while (1) {
2c47e605
YZ
9326 wret = walk_down_tree(trans, root, path, wc);
9327 if (wret < 0) {
f82d02d9 9328 ret = wret;
f82d02d9 9329 break;
2c47e605 9330 }
f82d02d9 9331
2c47e605 9332 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9333 if (wret < 0)
9334 ret = wret;
9335 if (wret != 0)
9336 break;
9337 }
9338
2c47e605 9339 kfree(wc);
f82d02d9
YZ
9340 btrfs_free_path(path);
9341 return ret;
9342}
9343
6202df69 9344static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9345{
9346 u64 num_devices;
fc67c450 9347 u64 stripped;
e4d8ec0f 9348
fc67c450
ID
9349 /*
9350 * if restripe for this chunk_type is on pick target profile and
9351 * return, otherwise do the usual balance
9352 */
6202df69 9353 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9354 if (stripped)
9355 return extended_to_chunk(stripped);
e4d8ec0f 9356
6202df69 9357 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9358
fc67c450 9359 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9360 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9361 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9362
ec44a35c
CM
9363 if (num_devices == 1) {
9364 stripped |= BTRFS_BLOCK_GROUP_DUP;
9365 stripped = flags & ~stripped;
9366
9367 /* turn raid0 into single device chunks */
9368 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9369 return stripped;
9370
9371 /* turn mirroring into duplication */
9372 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9373 BTRFS_BLOCK_GROUP_RAID10))
9374 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9375 } else {
9376 /* they already had raid on here, just return */
ec44a35c
CM
9377 if (flags & stripped)
9378 return flags;
9379
9380 stripped |= BTRFS_BLOCK_GROUP_DUP;
9381 stripped = flags & ~stripped;
9382
9383 /* switch duplicated blocks with raid1 */
9384 if (flags & BTRFS_BLOCK_GROUP_DUP)
9385 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9386
e3176ca2 9387 /* this is drive concat, leave it alone */
ec44a35c 9388 }
e3176ca2 9389
ec44a35c
CM
9390 return flags;
9391}
9392
868f401a 9393static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9394{
f0486c68
YZ
9395 struct btrfs_space_info *sinfo = cache->space_info;
9396 u64 num_bytes;
199c36ea 9397 u64 min_allocable_bytes;
f0486c68 9398 int ret = -ENOSPC;
0ef3e66b 9399
199c36ea
MX
9400 /*
9401 * We need some metadata space and system metadata space for
9402 * allocating chunks in some corner cases until we force to set
9403 * it to be readonly.
9404 */
9405 if ((sinfo->flags &
9406 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9407 !force)
ee22184b 9408 min_allocable_bytes = SZ_1M;
199c36ea
MX
9409 else
9410 min_allocable_bytes = 0;
9411
f0486c68
YZ
9412 spin_lock(&sinfo->lock);
9413 spin_lock(&cache->lock);
61cfea9b
W
9414
9415 if (cache->ro) {
868f401a 9416 cache->ro++;
61cfea9b
W
9417 ret = 0;
9418 goto out;
9419 }
9420
f0486c68
YZ
9421 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9422 cache->bytes_super - btrfs_block_group_used(&cache->item);
9423
4136135b 9424 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9425 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9426 sinfo->bytes_readonly += num_bytes;
868f401a 9427 cache->ro++;
633c0aad 9428 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9429 ret = 0;
9430 }
61cfea9b 9431out:
f0486c68
YZ
9432 spin_unlock(&cache->lock);
9433 spin_unlock(&sinfo->lock);
9434 return ret;
9435}
7d9eb12c 9436
5e00f193 9437int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9438 struct btrfs_block_group_cache *cache)
c286ac48 9439
f0486c68
YZ
9440{
9441 struct btrfs_trans_handle *trans;
9442 u64 alloc_flags;
9443 int ret;
7d9eb12c 9444
1bbc621e 9445again:
5e00f193 9446 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9447 if (IS_ERR(trans))
9448 return PTR_ERR(trans);
5d4f98a2 9449
1bbc621e
CM
9450 /*
9451 * we're not allowed to set block groups readonly after the dirty
9452 * block groups cache has started writing. If it already started,
9453 * back off and let this transaction commit
9454 */
0b246afa 9455 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9456 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9457 u64 transid = trans->transid;
9458
0b246afa 9459 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9460 btrfs_end_transaction(trans);
1bbc621e 9461
2ff7e61e 9462 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9463 if (ret)
9464 return ret;
9465 goto again;
9466 }
9467
153c35b6
CM
9468 /*
9469 * if we are changing raid levels, try to allocate a corresponding
9470 * block group with the new raid level.
9471 */
0b246afa 9472 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9473 if (alloc_flags != cache->flags) {
2ff7e61e 9474 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9475 CHUNK_ALLOC_FORCE);
9476 /*
9477 * ENOSPC is allowed here, we may have enough space
9478 * already allocated at the new raid level to
9479 * carry on
9480 */
9481 if (ret == -ENOSPC)
9482 ret = 0;
9483 if (ret < 0)
9484 goto out;
9485 }
1bbc621e 9486
868f401a 9487 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9488 if (!ret)
9489 goto out;
2ff7e61e
JM
9490 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9491 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9492 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9493 if (ret < 0)
9494 goto out;
868f401a 9495 ret = inc_block_group_ro(cache, 0);
f0486c68 9496out:
2f081088 9497 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9498 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9499 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9500 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9501 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9502 }
0b246afa 9503 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9504
3a45bb20 9505 btrfs_end_transaction(trans);
f0486c68
YZ
9506 return ret;
9507}
5d4f98a2 9508
c87f08ca 9509int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9510 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9511{
2ff7e61e
JM
9512 u64 alloc_flags = get_alloc_profile(fs_info, type);
9513
9514 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9515}
9516
6d07bcec
MX
9517/*
9518 * helper to account the unused space of all the readonly block group in the
633c0aad 9519 * space_info. takes mirrors into account.
6d07bcec 9520 */
633c0aad 9521u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9522{
9523 struct btrfs_block_group_cache *block_group;
9524 u64 free_bytes = 0;
9525 int factor;
9526
01327610 9527 /* It's df, we don't care if it's racy */
633c0aad
JB
9528 if (list_empty(&sinfo->ro_bgs))
9529 return 0;
9530
9531 spin_lock(&sinfo->lock);
9532 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9533 spin_lock(&block_group->lock);
9534
9535 if (!block_group->ro) {
9536 spin_unlock(&block_group->lock);
9537 continue;
9538 }
9539
9540 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9541 BTRFS_BLOCK_GROUP_RAID10 |
9542 BTRFS_BLOCK_GROUP_DUP))
9543 factor = 2;
9544 else
9545 factor = 1;
9546
9547 free_bytes += (block_group->key.offset -
9548 btrfs_block_group_used(&block_group->item)) *
9549 factor;
9550
9551 spin_unlock(&block_group->lock);
9552 }
6d07bcec
MX
9553 spin_unlock(&sinfo->lock);
9554
9555 return free_bytes;
9556}
9557
2ff7e61e 9558void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9559{
f0486c68
YZ
9560 struct btrfs_space_info *sinfo = cache->space_info;
9561 u64 num_bytes;
9562
9563 BUG_ON(!cache->ro);
9564
9565 spin_lock(&sinfo->lock);
9566 spin_lock(&cache->lock);
868f401a
Z
9567 if (!--cache->ro) {
9568 num_bytes = cache->key.offset - cache->reserved -
9569 cache->pinned - cache->bytes_super -
9570 btrfs_block_group_used(&cache->item);
9571 sinfo->bytes_readonly -= num_bytes;
9572 list_del_init(&cache->ro_list);
9573 }
f0486c68
YZ
9574 spin_unlock(&cache->lock);
9575 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9576}
9577
ba1bf481
JB
9578/*
9579 * checks to see if its even possible to relocate this block group.
9580 *
9581 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9582 * ok to go ahead and try.
9583 */
6bccf3ab 9584int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9585{
6bccf3ab 9586 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9587 struct btrfs_block_group_cache *block_group;
9588 struct btrfs_space_info *space_info;
0b246afa 9589 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9590 struct btrfs_device *device;
6df9a95e 9591 struct btrfs_trans_handle *trans;
cdcb725c 9592 u64 min_free;
6719db6a
JB
9593 u64 dev_min = 1;
9594 u64 dev_nr = 0;
4a5e98f5 9595 u64 target;
0305bc27 9596 int debug;
cdcb725c 9597 int index;
ba1bf481
JB
9598 int full = 0;
9599 int ret = 0;
1a40e23b 9600
0b246afa 9601 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9602
0b246afa 9603 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9604
ba1bf481 9605 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9606 if (!block_group) {
9607 if (debug)
0b246afa 9608 btrfs_warn(fs_info,
0305bc27
QW
9609 "can't find block group for bytenr %llu",
9610 bytenr);
ba1bf481 9611 return -1;
0305bc27 9612 }
1a40e23b 9613
cdcb725c 9614 min_free = btrfs_block_group_used(&block_group->item);
9615
ba1bf481 9616 /* no bytes used, we're good */
cdcb725c 9617 if (!min_free)
1a40e23b
ZY
9618 goto out;
9619
ba1bf481
JB
9620 space_info = block_group->space_info;
9621 spin_lock(&space_info->lock);
17d217fe 9622
ba1bf481 9623 full = space_info->full;
17d217fe 9624
ba1bf481
JB
9625 /*
9626 * if this is the last block group we have in this space, we can't
7ce618db
CM
9627 * relocate it unless we're able to allocate a new chunk below.
9628 *
9629 * Otherwise, we need to make sure we have room in the space to handle
9630 * all of the extents from this block group. If we can, we're good
ba1bf481 9631 */
7ce618db 9632 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9633 (btrfs_space_info_used(space_info, false) + min_free <
9634 space_info->total_bytes)) {
ba1bf481
JB
9635 spin_unlock(&space_info->lock);
9636 goto out;
17d217fe 9637 }
ba1bf481 9638 spin_unlock(&space_info->lock);
ea8c2819 9639
ba1bf481
JB
9640 /*
9641 * ok we don't have enough space, but maybe we have free space on our
9642 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9643 * alloc devices and guess if we have enough space. if this block
9644 * group is going to be restriped, run checks against the target
9645 * profile instead of the current one.
ba1bf481
JB
9646 */
9647 ret = -1;
ea8c2819 9648
cdcb725c 9649 /*
9650 * index:
9651 * 0: raid10
9652 * 1: raid1
9653 * 2: dup
9654 * 3: raid0
9655 * 4: single
9656 */
0b246afa 9657 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9658 if (target) {
31e50229 9659 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9660 } else {
9661 /*
9662 * this is just a balance, so if we were marked as full
9663 * we know there is no space for a new chunk
9664 */
0305bc27
QW
9665 if (full) {
9666 if (debug)
0b246afa
JM
9667 btrfs_warn(fs_info,
9668 "no space to alloc new chunk for block group %llu",
9669 block_group->key.objectid);
4a5e98f5 9670 goto out;
0305bc27 9671 }
4a5e98f5
ID
9672
9673 index = get_block_group_index(block_group);
9674 }
9675
e6ec716f 9676 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9677 dev_min = 4;
6719db6a
JB
9678 /* Divide by 2 */
9679 min_free >>= 1;
e6ec716f 9680 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9681 dev_min = 2;
e6ec716f 9682 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9683 /* Multiply by 2 */
9684 min_free <<= 1;
e6ec716f 9685 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9686 dev_min = fs_devices->rw_devices;
47c5713f 9687 min_free = div64_u64(min_free, dev_min);
cdcb725c 9688 }
9689
6df9a95e
JB
9690 /* We need to do this so that we can look at pending chunks */
9691 trans = btrfs_join_transaction(root);
9692 if (IS_ERR(trans)) {
9693 ret = PTR_ERR(trans);
9694 goto out;
9695 }
9696
0b246afa 9697 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9698 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9699 u64 dev_offset;
56bec294 9700
ba1bf481
JB
9701 /*
9702 * check to make sure we can actually find a chunk with enough
9703 * space to fit our block group in.
9704 */
63a212ab
SB
9705 if (device->total_bytes > device->bytes_used + min_free &&
9706 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9707 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9708 &dev_offset, NULL);
ba1bf481 9709 if (!ret)
cdcb725c 9710 dev_nr++;
9711
9712 if (dev_nr >= dev_min)
73e48b27 9713 break;
cdcb725c 9714
ba1bf481 9715 ret = -1;
725c8463 9716 }
edbd8d4e 9717 }
0305bc27 9718 if (debug && ret == -1)
0b246afa
JM
9719 btrfs_warn(fs_info,
9720 "no space to allocate a new chunk for block group %llu",
9721 block_group->key.objectid);
9722 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9723 btrfs_end_transaction(trans);
edbd8d4e 9724out:
ba1bf481 9725 btrfs_put_block_group(block_group);
edbd8d4e
CM
9726 return ret;
9727}
9728
6bccf3ab
JM
9729static int find_first_block_group(struct btrfs_fs_info *fs_info,
9730 struct btrfs_path *path,
9731 struct btrfs_key *key)
0b86a832 9732{
6bccf3ab 9733 struct btrfs_root *root = fs_info->extent_root;
925baedd 9734 int ret = 0;
0b86a832
CM
9735 struct btrfs_key found_key;
9736 struct extent_buffer *leaf;
9737 int slot;
edbd8d4e 9738
0b86a832
CM
9739 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9740 if (ret < 0)
925baedd
CM
9741 goto out;
9742
d397712b 9743 while (1) {
0b86a832 9744 slot = path->slots[0];
edbd8d4e 9745 leaf = path->nodes[0];
0b86a832
CM
9746 if (slot >= btrfs_header_nritems(leaf)) {
9747 ret = btrfs_next_leaf(root, path);
9748 if (ret == 0)
9749 continue;
9750 if (ret < 0)
925baedd 9751 goto out;
0b86a832 9752 break;
edbd8d4e 9753 }
0b86a832 9754 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9755
0b86a832 9756 if (found_key.objectid >= key->objectid &&
925baedd 9757 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9758 struct extent_map_tree *em_tree;
9759 struct extent_map *em;
9760
9761 em_tree = &root->fs_info->mapping_tree.map_tree;
9762 read_lock(&em_tree->lock);
9763 em = lookup_extent_mapping(em_tree, found_key.objectid,
9764 found_key.offset);
9765 read_unlock(&em_tree->lock);
9766 if (!em) {
0b246afa 9767 btrfs_err(fs_info,
6fb37b75
LB
9768 "logical %llu len %llu found bg but no related chunk",
9769 found_key.objectid, found_key.offset);
9770 ret = -ENOENT;
9771 } else {
9772 ret = 0;
9773 }
187ee58c 9774 free_extent_map(em);
925baedd
CM
9775 goto out;
9776 }
0b86a832 9777 path->slots[0]++;
edbd8d4e 9778 }
925baedd 9779out:
0b86a832 9780 return ret;
edbd8d4e
CM
9781}
9782
0af3d00b
JB
9783void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9784{
9785 struct btrfs_block_group_cache *block_group;
9786 u64 last = 0;
9787
9788 while (1) {
9789 struct inode *inode;
9790
9791 block_group = btrfs_lookup_first_block_group(info, last);
9792 while (block_group) {
9793 spin_lock(&block_group->lock);
9794 if (block_group->iref)
9795 break;
9796 spin_unlock(&block_group->lock);
2ff7e61e 9797 block_group = next_block_group(info, block_group);
0af3d00b
JB
9798 }
9799 if (!block_group) {
9800 if (last == 0)
9801 break;
9802 last = 0;
9803 continue;
9804 }
9805
9806 inode = block_group->inode;
9807 block_group->iref = 0;
9808 block_group->inode = NULL;
9809 spin_unlock(&block_group->lock);
f3bca802 9810 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9811 iput(inode);
9812 last = block_group->key.objectid + block_group->key.offset;
9813 btrfs_put_block_group(block_group);
9814 }
9815}
9816
5cdd7db6
FM
9817/*
9818 * Must be called only after stopping all workers, since we could have block
9819 * group caching kthreads running, and therefore they could race with us if we
9820 * freed the block groups before stopping them.
9821 */
1a40e23b
ZY
9822int btrfs_free_block_groups(struct btrfs_fs_info *info)
9823{
9824 struct btrfs_block_group_cache *block_group;
4184ea7f 9825 struct btrfs_space_info *space_info;
11833d66 9826 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9827 struct rb_node *n;
9828
9e351cc8 9829 down_write(&info->commit_root_sem);
11833d66
YZ
9830 while (!list_empty(&info->caching_block_groups)) {
9831 caching_ctl = list_entry(info->caching_block_groups.next,
9832 struct btrfs_caching_control, list);
9833 list_del(&caching_ctl->list);
9834 put_caching_control(caching_ctl);
9835 }
9e351cc8 9836 up_write(&info->commit_root_sem);
11833d66 9837
47ab2a6c
JB
9838 spin_lock(&info->unused_bgs_lock);
9839 while (!list_empty(&info->unused_bgs)) {
9840 block_group = list_first_entry(&info->unused_bgs,
9841 struct btrfs_block_group_cache,
9842 bg_list);
9843 list_del_init(&block_group->bg_list);
9844 btrfs_put_block_group(block_group);
9845 }
9846 spin_unlock(&info->unused_bgs_lock);
9847
1a40e23b
ZY
9848 spin_lock(&info->block_group_cache_lock);
9849 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9850 block_group = rb_entry(n, struct btrfs_block_group_cache,
9851 cache_node);
1a40e23b
ZY
9852 rb_erase(&block_group->cache_node,
9853 &info->block_group_cache_tree);
01eacb27 9854 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9855 spin_unlock(&info->block_group_cache_lock);
9856
80eb234a 9857 down_write(&block_group->space_info->groups_sem);
1a40e23b 9858 list_del(&block_group->list);
80eb234a 9859 up_write(&block_group->space_info->groups_sem);
d2fb3437 9860
3c14874a
JB
9861 /*
9862 * We haven't cached this block group, which means we could
9863 * possibly have excluded extents on this block group.
9864 */
36cce922
JB
9865 if (block_group->cached == BTRFS_CACHE_NO ||
9866 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9867 free_excluded_extents(info, block_group);
3c14874a 9868
817d52f8 9869 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9870 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9871 ASSERT(list_empty(&block_group->dirty_list));
9872 ASSERT(list_empty(&block_group->io_list));
9873 ASSERT(list_empty(&block_group->bg_list));
9874 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9875 btrfs_put_block_group(block_group);
d899e052
YZ
9876
9877 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9878 }
9879 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9880
9881 /* now that all the block groups are freed, go through and
9882 * free all the space_info structs. This is only called during
9883 * the final stages of unmount, and so we know nobody is
9884 * using them. We call synchronize_rcu() once before we start,
9885 * just to be on the safe side.
9886 */
9887 synchronize_rcu();
9888
8929ecfa
YZ
9889 release_global_block_rsv(info);
9890
67871254 9891 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9892 int i;
9893
4184ea7f
CM
9894 space_info = list_entry(info->space_info.next,
9895 struct btrfs_space_info,
9896 list);
d555b6c3
JB
9897
9898 /*
9899 * Do not hide this behind enospc_debug, this is actually
9900 * important and indicates a real bug if this happens.
9901 */
9902 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9903 space_info->bytes_reserved > 0 ||
d555b6c3 9904 space_info->bytes_may_use > 0))
ab8d0fc4 9905 dump_space_info(info, space_info, 0, 0);
4184ea7f 9906 list_del(&space_info->list);
6ab0a202
JM
9907 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9908 struct kobject *kobj;
c1895442
JM
9909 kobj = space_info->block_group_kobjs[i];
9910 space_info->block_group_kobjs[i] = NULL;
9911 if (kobj) {
6ab0a202
JM
9912 kobject_del(kobj);
9913 kobject_put(kobj);
9914 }
9915 }
9916 kobject_del(&space_info->kobj);
9917 kobject_put(&space_info->kobj);
4184ea7f 9918 }
1a40e23b
ZY
9919 return 0;
9920}
9921
c434d21c 9922static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9923{
c434d21c 9924 struct btrfs_space_info *space_info = cache->space_info;
b742bb82 9925 int index = get_block_group_index(cache);
ed55b6ac 9926 bool first = false;
b742bb82
YZ
9927
9928 down_write(&space_info->groups_sem);
ed55b6ac
JM
9929 if (list_empty(&space_info->block_groups[index]))
9930 first = true;
9931 list_add_tail(&cache->list, &space_info->block_groups[index]);
9932 up_write(&space_info->groups_sem);
9933
9934 if (first) {
c1895442 9935 struct raid_kobject *rkobj;
6ab0a202
JM
9936 int ret;
9937
c1895442
JM
9938 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9939 if (!rkobj)
9940 goto out_err;
9941 rkobj->raid_type = index;
9942 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9943 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9944 "%s", get_raid_name(index));
6ab0a202 9945 if (ret) {
c1895442
JM
9946 kobject_put(&rkobj->kobj);
9947 goto out_err;
6ab0a202 9948 }
c1895442 9949 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9950 }
c1895442
JM
9951
9952 return;
9953out_err:
ab8d0fc4
JM
9954 btrfs_warn(cache->fs_info,
9955 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9956}
9957
920e4a58 9958static struct btrfs_block_group_cache *
2ff7e61e
JM
9959btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9960 u64 start, u64 size)
920e4a58
MX
9961{
9962 struct btrfs_block_group_cache *cache;
9963
9964 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9965 if (!cache)
9966 return NULL;
9967
9968 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9969 GFP_NOFS);
9970 if (!cache->free_space_ctl) {
9971 kfree(cache);
9972 return NULL;
9973 }
9974
9975 cache->key.objectid = start;
9976 cache->key.offset = size;
9977 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9978
0b246afa 9979 cache->fs_info = fs_info;
e4ff5fb5 9980 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
9981 set_free_space_tree_thresholds(cache);
9982
920e4a58
MX
9983 atomic_set(&cache->count, 1);
9984 spin_lock_init(&cache->lock);
e570fd27 9985 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9986 INIT_LIST_HEAD(&cache->list);
9987 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9988 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9989 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9990 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9991 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9992 btrfs_init_free_space_ctl(cache);
04216820 9993 atomic_set(&cache->trimming, 0);
a5ed9182 9994 mutex_init(&cache->free_space_lock);
0966a7b1 9995 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9996
9997 return cache;
9998}
9999
5b4aacef 10000int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10001{
10002 struct btrfs_path *path;
10003 int ret;
9078a3e1 10004 struct btrfs_block_group_cache *cache;
6324fbf3 10005 struct btrfs_space_info *space_info;
9078a3e1
CM
10006 struct btrfs_key key;
10007 struct btrfs_key found_key;
5f39d397 10008 struct extent_buffer *leaf;
0af3d00b
JB
10009 int need_clear = 0;
10010 u64 cache_gen;
49303381
LB
10011 u64 feature;
10012 int mixed;
10013
10014 feature = btrfs_super_incompat_flags(info->super_copy);
10015 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10016
9078a3e1 10017 key.objectid = 0;
0b86a832 10018 key.offset = 0;
962a298f 10019 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10020 path = btrfs_alloc_path();
10021 if (!path)
10022 return -ENOMEM;
e4058b54 10023 path->reada = READA_FORWARD;
9078a3e1 10024
0b246afa
JM
10025 cache_gen = btrfs_super_cache_generation(info->super_copy);
10026 if (btrfs_test_opt(info, SPACE_CACHE) &&
10027 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10028 need_clear = 1;
0b246afa 10029 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10030 need_clear = 1;
0af3d00b 10031
d397712b 10032 while (1) {
6bccf3ab 10033 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10034 if (ret > 0)
10035 break;
0b86a832
CM
10036 if (ret != 0)
10037 goto error;
920e4a58 10038
5f39d397
CM
10039 leaf = path->nodes[0];
10040 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10041
2ff7e61e 10042 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10043 found_key.offset);
9078a3e1 10044 if (!cache) {
0b86a832 10045 ret = -ENOMEM;
f0486c68 10046 goto error;
9078a3e1 10047 }
96303081 10048
cf7c1ef6
LB
10049 if (need_clear) {
10050 /*
10051 * When we mount with old space cache, we need to
10052 * set BTRFS_DC_CLEAR and set dirty flag.
10053 *
10054 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10055 * truncate the old free space cache inode and
10056 * setup a new one.
10057 * b) Setting 'dirty flag' makes sure that we flush
10058 * the new space cache info onto disk.
10059 */
0b246afa 10060 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10061 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10062 }
0af3d00b 10063
5f39d397
CM
10064 read_extent_buffer(leaf, &cache->item,
10065 btrfs_item_ptr_offset(leaf, path->slots[0]),
10066 sizeof(cache->item));
920e4a58 10067 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10068 if (!mixed &&
10069 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10070 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10071 btrfs_err(info,
10072"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10073 cache->key.objectid);
10074 ret = -EINVAL;
10075 goto error;
10076 }
0b86a832 10077
9078a3e1 10078 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10079 btrfs_release_path(path);
34d52cb6 10080
3c14874a
JB
10081 /*
10082 * We need to exclude the super stripes now so that the space
10083 * info has super bytes accounted for, otherwise we'll think
10084 * we have more space than we actually do.
10085 */
2ff7e61e 10086 ret = exclude_super_stripes(info, cache);
835d974f
JB
10087 if (ret) {
10088 /*
10089 * We may have excluded something, so call this just in
10090 * case.
10091 */
2ff7e61e 10092 free_excluded_extents(info, cache);
920e4a58 10093 btrfs_put_block_group(cache);
835d974f
JB
10094 goto error;
10095 }
3c14874a 10096
817d52f8
JB
10097 /*
10098 * check for two cases, either we are full, and therefore
10099 * don't need to bother with the caching work since we won't
10100 * find any space, or we are empty, and we can just add all
10101 * the space in and be done with it. This saves us _alot_ of
10102 * time, particularly in the full case.
10103 */
10104 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10105 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10106 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10107 free_excluded_extents(info, cache);
817d52f8 10108 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10109 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10110 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10111 add_new_free_space(cache, info,
817d52f8
JB
10112 found_key.objectid,
10113 found_key.objectid +
10114 found_key.offset);
2ff7e61e 10115 free_excluded_extents(info, cache);
817d52f8 10116 }
96b5179d 10117
0b246afa 10118 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10119 if (ret) {
10120 btrfs_remove_free_space_cache(cache);
10121 btrfs_put_block_group(cache);
10122 goto error;
10123 }
10124
0b246afa 10125 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10126 update_space_info(info, cache->flags, found_key.offset,
10127 btrfs_block_group_used(&cache->item),
10128 cache->bytes_super, &space_info);
8c579fe7 10129
6324fbf3 10130 cache->space_info = space_info;
1b2da372 10131
c434d21c 10132 link_block_group(cache);
0f9dd46c 10133
0b246afa 10134 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10135 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10136 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10137 } else if (btrfs_block_group_used(&cache->item) == 0) {
10138 spin_lock(&info->unused_bgs_lock);
10139 /* Should always be true but just in case. */
10140 if (list_empty(&cache->bg_list)) {
10141 btrfs_get_block_group(cache);
10142 list_add_tail(&cache->bg_list,
10143 &info->unused_bgs);
10144 }
10145 spin_unlock(&info->unused_bgs_lock);
10146 }
9078a3e1 10147 }
b742bb82 10148
0b246afa 10149 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10150 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10151 (BTRFS_BLOCK_GROUP_RAID10 |
10152 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10153 BTRFS_BLOCK_GROUP_RAID5 |
10154 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10155 BTRFS_BLOCK_GROUP_DUP)))
10156 continue;
10157 /*
10158 * avoid allocating from un-mirrored block group if there are
10159 * mirrored block groups.
10160 */
1095cc0d 10161 list_for_each_entry(cache,
10162 &space_info->block_groups[BTRFS_RAID_RAID0],
10163 list)
868f401a 10164 inc_block_group_ro(cache, 1);
1095cc0d 10165 list_for_each_entry(cache,
10166 &space_info->block_groups[BTRFS_RAID_SINGLE],
10167 list)
868f401a 10168 inc_block_group_ro(cache, 1);
9078a3e1 10169 }
f0486c68
YZ
10170
10171 init_global_block_rsv(info);
0b86a832
CM
10172 ret = 0;
10173error:
9078a3e1 10174 btrfs_free_path(path);
0b86a832 10175 return ret;
9078a3e1 10176}
6324fbf3 10177
ea658bad 10178void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 10179 struct btrfs_fs_info *fs_info)
ea658bad
JB
10180{
10181 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10182 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10183 struct btrfs_block_group_item item;
10184 struct btrfs_key key;
10185 int ret = 0;
d9a0540a 10186 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10187
d9a0540a 10188 trans->can_flush_pending_bgs = false;
47ab2a6c 10189 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10190 if (ret)
c92f6be3 10191 goto next;
ea658bad
JB
10192
10193 spin_lock(&block_group->lock);
10194 memcpy(&item, &block_group->item, sizeof(item));
10195 memcpy(&key, &block_group->key, sizeof(key));
10196 spin_unlock(&block_group->lock);
10197
10198 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10199 sizeof(item));
10200 if (ret)
66642832 10201 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10202 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10203 key.offset);
6df9a95e 10204 if (ret)
66642832 10205 btrfs_abort_transaction(trans, ret);
0b246afa 10206 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10207 /* already aborted the transaction if it failed. */
c92f6be3
FM
10208next:
10209 list_del_init(&block_group->bg_list);
ea658bad 10210 }
d9a0540a 10211 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10212}
10213
6324fbf3 10214int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10215 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10216 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10217{
6324fbf3 10218 struct btrfs_block_group_cache *cache;
0b246afa 10219 int ret;
6324fbf3 10220
0b246afa 10221 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10222
2ff7e61e 10223 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10224 if (!cache)
10225 return -ENOMEM;
34d52cb6 10226
6324fbf3 10227 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10228 btrfs_set_block_group_chunk_objectid(&cache->item,
10229 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10230 btrfs_set_block_group_flags(&cache->item, type);
10231
920e4a58 10232 cache->flags = type;
11833d66 10233 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10234 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10235 cache->needs_free_space = 1;
2ff7e61e 10236 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10237 if (ret) {
10238 /*
10239 * We may have excluded something, so call this just in
10240 * case.
10241 */
2ff7e61e 10242 free_excluded_extents(fs_info, cache);
920e4a58 10243 btrfs_put_block_group(cache);
835d974f
JB
10244 return ret;
10245 }
96303081 10246
0b246afa 10247 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10248
2ff7e61e 10249 free_excluded_extents(fs_info, cache);
11833d66 10250
d0bd4560 10251#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10252 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10253 u64 new_bytes_used = size - bytes_used;
10254
10255 bytes_used += new_bytes_used >> 1;
2ff7e61e 10256 fragment_free_space(cache);
d0bd4560
JB
10257 }
10258#endif
2e6e5183 10259 /*
2be12ef7
NB
10260 * Ensure the corresponding space_info object is created and
10261 * assigned to our block group. We want our bg to be added to the rbtree
10262 * with its ->space_info set.
2e6e5183 10263 */
2be12ef7
NB
10264 cache->space_info = __find_space_info(fs_info, cache->flags);
10265 if (!cache->space_info) {
10266 ret = create_space_info(fs_info, cache->flags,
10267 &cache->space_info);
10268 if (ret) {
10269 btrfs_remove_free_space_cache(cache);
10270 btrfs_put_block_group(cache);
10271 return ret;
10272 }
2e6e5183
FM
10273 }
10274
0b246afa 10275 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10276 if (ret) {
10277 btrfs_remove_free_space_cache(cache);
10278 btrfs_put_block_group(cache);
10279 return ret;
10280 }
10281
2e6e5183
FM
10282 /*
10283 * Now that our block group has its ->space_info set and is inserted in
10284 * the rbtree, update the space info's counters.
10285 */
0b246afa 10286 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10287 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10288 cache->bytes_super, &cache->space_info);
0b246afa 10289 update_global_block_rsv(fs_info);
1b2da372 10290
c434d21c 10291 link_block_group(cache);
6324fbf3 10292
47ab2a6c 10293 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10294
0b246afa 10295 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10296 return 0;
10297}
1a40e23b 10298
10ea00f5
ID
10299static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10300{
899c81ea
ID
10301 u64 extra_flags = chunk_to_extended(flags) &
10302 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10303
de98ced9 10304 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10305 if (flags & BTRFS_BLOCK_GROUP_DATA)
10306 fs_info->avail_data_alloc_bits &= ~extra_flags;
10307 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10308 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10309 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10310 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10311 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10312}
10313
1a40e23b 10314int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10315 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10316 struct extent_map *em)
1a40e23b 10317{
6bccf3ab 10318 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10319 struct btrfs_path *path;
10320 struct btrfs_block_group_cache *block_group;
44fb5511 10321 struct btrfs_free_cluster *cluster;
0b246afa 10322 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10323 struct btrfs_key key;
0af3d00b 10324 struct inode *inode;
c1895442 10325 struct kobject *kobj = NULL;
1a40e23b 10326 int ret;
10ea00f5 10327 int index;
89a55897 10328 int factor;
4f69cb98 10329 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10330 bool remove_em;
1a40e23b 10331
6bccf3ab 10332 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10333 BUG_ON(!block_group);
c146afad 10334 BUG_ON(!block_group->ro);
1a40e23b 10335
9f7c43c9 10336 /*
10337 * Free the reserved super bytes from this block group before
10338 * remove it.
10339 */
2ff7e61e 10340 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10341 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10342 block_group->key.offset);
9f7c43c9 10343
1a40e23b 10344 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10345 index = get_block_group_index(block_group);
89a55897
JB
10346 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10347 BTRFS_BLOCK_GROUP_RAID1 |
10348 BTRFS_BLOCK_GROUP_RAID10))
10349 factor = 2;
10350 else
10351 factor = 1;
1a40e23b 10352
44fb5511 10353 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10354 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10355 spin_lock(&cluster->refill_lock);
10356 btrfs_return_cluster_to_free_space(block_group, cluster);
10357 spin_unlock(&cluster->refill_lock);
10358
10359 /*
10360 * make sure this block group isn't part of a metadata
10361 * allocation cluster
10362 */
0b246afa 10363 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10364 spin_lock(&cluster->refill_lock);
10365 btrfs_return_cluster_to_free_space(block_group, cluster);
10366 spin_unlock(&cluster->refill_lock);
10367
1a40e23b 10368 path = btrfs_alloc_path();
d8926bb3
MF
10369 if (!path) {
10370 ret = -ENOMEM;
10371 goto out;
10372 }
1a40e23b 10373
1bbc621e
CM
10374 /*
10375 * get the inode first so any iput calls done for the io_list
10376 * aren't the final iput (no unlinks allowed now)
10377 */
77ab86bf 10378 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10379
10380 mutex_lock(&trans->transaction->cache_write_mutex);
10381 /*
10382 * make sure our free spache cache IO is done before remove the
10383 * free space inode
10384 */
10385 spin_lock(&trans->transaction->dirty_bgs_lock);
10386 if (!list_empty(&block_group->io_list)) {
10387 list_del_init(&block_group->io_list);
10388
10389 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10390
10391 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10392 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10393 btrfs_put_block_group(block_group);
10394 spin_lock(&trans->transaction->dirty_bgs_lock);
10395 }
10396
10397 if (!list_empty(&block_group->dirty_list)) {
10398 list_del_init(&block_group->dirty_list);
10399 btrfs_put_block_group(block_group);
10400 }
10401 spin_unlock(&trans->transaction->dirty_bgs_lock);
10402 mutex_unlock(&trans->transaction->cache_write_mutex);
10403
0af3d00b 10404 if (!IS_ERR(inode)) {
73f2e545 10405 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10406 if (ret) {
10407 btrfs_add_delayed_iput(inode);
10408 goto out;
10409 }
0af3d00b
JB
10410 clear_nlink(inode);
10411 /* One for the block groups ref */
10412 spin_lock(&block_group->lock);
10413 if (block_group->iref) {
10414 block_group->iref = 0;
10415 block_group->inode = NULL;
10416 spin_unlock(&block_group->lock);
10417 iput(inode);
10418 } else {
10419 spin_unlock(&block_group->lock);
10420 }
10421 /* One for our lookup ref */
455757c3 10422 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10423 }
10424
10425 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10426 key.offset = block_group->key.objectid;
10427 key.type = 0;
10428
10429 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10430 if (ret < 0)
10431 goto out;
10432 if (ret > 0)
b3b4aa74 10433 btrfs_release_path(path);
0af3d00b
JB
10434 if (ret == 0) {
10435 ret = btrfs_del_item(trans, tree_root, path);
10436 if (ret)
10437 goto out;
b3b4aa74 10438 btrfs_release_path(path);
0af3d00b
JB
10439 }
10440
0b246afa 10441 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10442 rb_erase(&block_group->cache_node,
0b246afa 10443 &fs_info->block_group_cache_tree);
292cbd51 10444 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10445
0b246afa
JM
10446 if (fs_info->first_logical_byte == block_group->key.objectid)
10447 fs_info->first_logical_byte = (u64)-1;
10448 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10449
80eb234a 10450 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10451 /*
10452 * we must use list_del_init so people can check to see if they
10453 * are still on the list after taking the semaphore
10454 */
10455 list_del_init(&block_group->list);
6ab0a202 10456 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10457 kobj = block_group->space_info->block_group_kobjs[index];
10458 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10459 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10460 }
80eb234a 10461 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10462 if (kobj) {
10463 kobject_del(kobj);
10464 kobject_put(kobj);
10465 }
1a40e23b 10466
4f69cb98
FM
10467 if (block_group->has_caching_ctl)
10468 caching_ctl = get_caching_control(block_group);
817d52f8 10469 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10470 wait_block_group_cache_done(block_group);
4f69cb98 10471 if (block_group->has_caching_ctl) {
0b246afa 10472 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10473 if (!caching_ctl) {
10474 struct btrfs_caching_control *ctl;
10475
10476 list_for_each_entry(ctl,
0b246afa 10477 &fs_info->caching_block_groups, list)
4f69cb98
FM
10478 if (ctl->block_group == block_group) {
10479 caching_ctl = ctl;
1e4f4714 10480 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10481 break;
10482 }
10483 }
10484 if (caching_ctl)
10485 list_del_init(&caching_ctl->list);
0b246afa 10486 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10487 if (caching_ctl) {
10488 /* Once for the caching bgs list and once for us. */
10489 put_caching_control(caching_ctl);
10490 put_caching_control(caching_ctl);
10491 }
10492 }
817d52f8 10493
ce93ec54
JB
10494 spin_lock(&trans->transaction->dirty_bgs_lock);
10495 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10496 WARN_ON(1);
10497 }
10498 if (!list_empty(&block_group->io_list)) {
10499 WARN_ON(1);
ce93ec54
JB
10500 }
10501 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10502 btrfs_remove_free_space_cache(block_group);
10503
c146afad 10504 spin_lock(&block_group->space_info->lock);
75c68e9f 10505 list_del_init(&block_group->ro_list);
18d018ad 10506
0b246afa 10507 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10508 WARN_ON(block_group->space_info->total_bytes
10509 < block_group->key.offset);
10510 WARN_ON(block_group->space_info->bytes_readonly
10511 < block_group->key.offset);
10512 WARN_ON(block_group->space_info->disk_total
10513 < block_group->key.offset * factor);
10514 }
c146afad
YZ
10515 block_group->space_info->total_bytes -= block_group->key.offset;
10516 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10517 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10518
c146afad 10519 spin_unlock(&block_group->space_info->lock);
283bb197 10520
0af3d00b
JB
10521 memcpy(&key, &block_group->key, sizeof(key));
10522
34441361 10523 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10524 if (!list_empty(&em->list)) {
10525 /* We're in the transaction->pending_chunks list. */
10526 free_extent_map(em);
10527 }
04216820
FM
10528 spin_lock(&block_group->lock);
10529 block_group->removed = 1;
10530 /*
10531 * At this point trimming can't start on this block group, because we
10532 * removed the block group from the tree fs_info->block_group_cache_tree
10533 * so no one can't find it anymore and even if someone already got this
10534 * block group before we removed it from the rbtree, they have already
10535 * incremented block_group->trimming - if they didn't, they won't find
10536 * any free space entries because we already removed them all when we
10537 * called btrfs_remove_free_space_cache().
10538 *
10539 * And we must not remove the extent map from the fs_info->mapping_tree
10540 * to prevent the same logical address range and physical device space
10541 * ranges from being reused for a new block group. This is because our
10542 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10543 * completely transactionless, so while it is trimming a range the
10544 * currently running transaction might finish and a new one start,
10545 * allowing for new block groups to be created that can reuse the same
10546 * physical device locations unless we take this special care.
e33e17ee
JM
10547 *
10548 * There may also be an implicit trim operation if the file system
10549 * is mounted with -odiscard. The same protections must remain
10550 * in place until the extents have been discarded completely when
10551 * the transaction commit has completed.
04216820
FM
10552 */
10553 remove_em = (atomic_read(&block_group->trimming) == 0);
10554 /*
10555 * Make sure a trimmer task always sees the em in the pinned_chunks list
10556 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10557 * before checking block_group->removed).
10558 */
10559 if (!remove_em) {
10560 /*
10561 * Our em might be in trans->transaction->pending_chunks which
10562 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10563 * and so is the fs_info->pinned_chunks list.
10564 *
10565 * So at this point we must be holding the chunk_mutex to avoid
10566 * any races with chunk allocation (more specifically at
10567 * volumes.c:contains_pending_extent()), to ensure it always
10568 * sees the em, either in the pending_chunks list or in the
10569 * pinned_chunks list.
10570 */
0b246afa 10571 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10572 }
10573 spin_unlock(&block_group->lock);
04216820
FM
10574
10575 if (remove_em) {
10576 struct extent_map_tree *em_tree;
10577
0b246afa 10578 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10579 write_lock(&em_tree->lock);
8dbcd10f
FM
10580 /*
10581 * The em might be in the pending_chunks list, so make sure the
10582 * chunk mutex is locked, since remove_extent_mapping() will
10583 * delete us from that list.
10584 */
04216820
FM
10585 remove_extent_mapping(em_tree, em);
10586 write_unlock(&em_tree->lock);
10587 /* once for the tree */
10588 free_extent_map(em);
10589 }
10590
34441361 10591 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10592
0b246afa 10593 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10594 if (ret)
10595 goto out;
10596
fa9c0d79
CM
10597 btrfs_put_block_group(block_group);
10598 btrfs_put_block_group(block_group);
1a40e23b
ZY
10599
10600 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10601 if (ret > 0)
10602 ret = -EIO;
10603 if (ret < 0)
10604 goto out;
10605
10606 ret = btrfs_del_item(trans, root, path);
10607out:
10608 btrfs_free_path(path);
10609 return ret;
10610}
acce952b 10611
8eab77ff 10612struct btrfs_trans_handle *
7fd01182
FM
10613btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10614 const u64 chunk_offset)
8eab77ff 10615{
7fd01182
FM
10616 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10617 struct extent_map *em;
10618 struct map_lookup *map;
10619 unsigned int num_items;
10620
10621 read_lock(&em_tree->lock);
10622 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10623 read_unlock(&em_tree->lock);
10624 ASSERT(em && em->start == chunk_offset);
10625
8eab77ff 10626 /*
7fd01182
FM
10627 * We need to reserve 3 + N units from the metadata space info in order
10628 * to remove a block group (done at btrfs_remove_chunk() and at
10629 * btrfs_remove_block_group()), which are used for:
10630 *
8eab77ff
FM
10631 * 1 unit for adding the free space inode's orphan (located in the tree
10632 * of tree roots).
7fd01182
FM
10633 * 1 unit for deleting the block group item (located in the extent
10634 * tree).
10635 * 1 unit for deleting the free space item (located in tree of tree
10636 * roots).
10637 * N units for deleting N device extent items corresponding to each
10638 * stripe (located in the device tree).
10639 *
10640 * In order to remove a block group we also need to reserve units in the
10641 * system space info in order to update the chunk tree (update one or
10642 * more device items and remove one chunk item), but this is done at
10643 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10644 */
95617d69 10645 map = em->map_lookup;
7fd01182
FM
10646 num_items = 3 + map->num_stripes;
10647 free_extent_map(em);
10648
8eab77ff 10649 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10650 num_items, 1);
8eab77ff
FM
10651}
10652
47ab2a6c
JB
10653/*
10654 * Process the unused_bgs list and remove any that don't have any allocated
10655 * space inside of them.
10656 */
10657void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10658{
10659 struct btrfs_block_group_cache *block_group;
10660 struct btrfs_space_info *space_info;
47ab2a6c
JB
10661 struct btrfs_trans_handle *trans;
10662 int ret = 0;
10663
afcdd129 10664 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10665 return;
10666
10667 spin_lock(&fs_info->unused_bgs_lock);
10668 while (!list_empty(&fs_info->unused_bgs)) {
10669 u64 start, end;
e33e17ee 10670 int trimming;
47ab2a6c
JB
10671
10672 block_group = list_first_entry(&fs_info->unused_bgs,
10673 struct btrfs_block_group_cache,
10674 bg_list);
47ab2a6c 10675 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10676
10677 space_info = block_group->space_info;
10678
47ab2a6c
JB
10679 if (ret || btrfs_mixed_space_info(space_info)) {
10680 btrfs_put_block_group(block_group);
10681 continue;
10682 }
10683 spin_unlock(&fs_info->unused_bgs_lock);
10684
d5f2e33b 10685 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10686
47ab2a6c
JB
10687 /* Don't want to race with allocators so take the groups_sem */
10688 down_write(&space_info->groups_sem);
10689 spin_lock(&block_group->lock);
10690 if (block_group->reserved ||
10691 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10692 block_group->ro ||
aefbe9a6 10693 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10694 /*
10695 * We want to bail if we made new allocations or have
10696 * outstanding allocations in this block group. We do
10697 * the ro check in case balance is currently acting on
10698 * this block group.
10699 */
10700 spin_unlock(&block_group->lock);
10701 up_write(&space_info->groups_sem);
10702 goto next;
10703 }
10704 spin_unlock(&block_group->lock);
10705
10706 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10707 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10708 up_write(&space_info->groups_sem);
10709 if (ret < 0) {
10710 ret = 0;
10711 goto next;
10712 }
10713
10714 /*
10715 * Want to do this before we do anything else so we can recover
10716 * properly if we fail to join the transaction.
10717 */
7fd01182
FM
10718 trans = btrfs_start_trans_remove_block_group(fs_info,
10719 block_group->key.objectid);
47ab2a6c 10720 if (IS_ERR(trans)) {
2ff7e61e 10721 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10722 ret = PTR_ERR(trans);
10723 goto next;
10724 }
10725
10726 /*
10727 * We could have pending pinned extents for this block group,
10728 * just delete them, we don't care about them anymore.
10729 */
10730 start = block_group->key.objectid;
10731 end = start + block_group->key.offset - 1;
d4b450cd
FM
10732 /*
10733 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10734 * btrfs_finish_extent_commit(). If we are at transaction N,
10735 * another task might be running finish_extent_commit() for the
10736 * previous transaction N - 1, and have seen a range belonging
10737 * to the block group in freed_extents[] before we were able to
10738 * clear the whole block group range from freed_extents[]. This
10739 * means that task can lookup for the block group after we
10740 * unpinned it from freed_extents[] and removed it, leading to
10741 * a BUG_ON() at btrfs_unpin_extent_range().
10742 */
10743 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10744 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10745 EXTENT_DIRTY);
758eb51e 10746 if (ret) {
d4b450cd 10747 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10748 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10749 goto end_trans;
10750 }
10751 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10752 EXTENT_DIRTY);
758eb51e 10753 if (ret) {
d4b450cd 10754 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10755 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10756 goto end_trans;
10757 }
d4b450cd 10758 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10759
10760 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10761 spin_lock(&space_info->lock);
10762 spin_lock(&block_group->lock);
10763
10764 space_info->bytes_pinned -= block_group->pinned;
10765 space_info->bytes_readonly += block_group->pinned;
10766 percpu_counter_add(&space_info->total_bytes_pinned,
10767 -block_group->pinned);
47ab2a6c
JB
10768 block_group->pinned = 0;
10769
c30666d4
ZL
10770 spin_unlock(&block_group->lock);
10771 spin_unlock(&space_info->lock);
10772
e33e17ee 10773 /* DISCARD can flip during remount */
0b246afa 10774 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10775
10776 /* Implicit trim during transaction commit. */
10777 if (trimming)
10778 btrfs_get_block_group_trimming(block_group);
10779
47ab2a6c
JB
10780 /*
10781 * Btrfs_remove_chunk will abort the transaction if things go
10782 * horribly wrong.
10783 */
5b4aacef 10784 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10785 block_group->key.objectid);
e33e17ee
JM
10786
10787 if (ret) {
10788 if (trimming)
10789 btrfs_put_block_group_trimming(block_group);
10790 goto end_trans;
10791 }
10792
10793 /*
10794 * If we're not mounted with -odiscard, we can just forget
10795 * about this block group. Otherwise we'll need to wait
10796 * until transaction commit to do the actual discard.
10797 */
10798 if (trimming) {
348a0013
FM
10799 spin_lock(&fs_info->unused_bgs_lock);
10800 /*
10801 * A concurrent scrub might have added us to the list
10802 * fs_info->unused_bgs, so use a list_move operation
10803 * to add the block group to the deleted_bgs list.
10804 */
e33e17ee
JM
10805 list_move(&block_group->bg_list,
10806 &trans->transaction->deleted_bgs);
348a0013 10807 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10808 btrfs_get_block_group(block_group);
10809 }
758eb51e 10810end_trans:
3a45bb20 10811 btrfs_end_transaction(trans);
47ab2a6c 10812next:
d5f2e33b 10813 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10814 btrfs_put_block_group(block_group);
10815 spin_lock(&fs_info->unused_bgs_lock);
10816 }
10817 spin_unlock(&fs_info->unused_bgs_lock);
10818}
10819
c59021f8 10820int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10821{
10822 struct btrfs_space_info *space_info;
1aba86d6 10823 struct btrfs_super_block *disk_super;
10824 u64 features;
10825 u64 flags;
10826 int mixed = 0;
c59021f8 10827 int ret;
10828
6c41761f 10829 disk_super = fs_info->super_copy;
1aba86d6 10830 if (!btrfs_super_root(disk_super))
0dc924c5 10831 return -EINVAL;
c59021f8 10832
1aba86d6 10833 features = btrfs_super_incompat_flags(disk_super);
10834 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10835 mixed = 1;
c59021f8 10836
1aba86d6 10837 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10838 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10839 if (ret)
1aba86d6 10840 goto out;
c59021f8 10841
1aba86d6 10842 if (mixed) {
10843 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10844 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10845 } else {
10846 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10847 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10848 if (ret)
10849 goto out;
10850
10851 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10852 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10853 }
10854out:
c59021f8 10855 return ret;
10856}
10857
2ff7e61e
JM
10858int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10859 u64 start, u64 end)
acce952b 10860{
2ff7e61e 10861 return unpin_extent_range(fs_info, start, end, false);
acce952b 10862}
10863
499f377f
JM
10864/*
10865 * It used to be that old block groups would be left around forever.
10866 * Iterating over them would be enough to trim unused space. Since we
10867 * now automatically remove them, we also need to iterate over unallocated
10868 * space.
10869 *
10870 * We don't want a transaction for this since the discard may take a
10871 * substantial amount of time. We don't require that a transaction be
10872 * running, but we do need to take a running transaction into account
10873 * to ensure that we're not discarding chunks that were released in
10874 * the current transaction.
10875 *
10876 * Holding the chunks lock will prevent other threads from allocating
10877 * or releasing chunks, but it won't prevent a running transaction
10878 * from committing and releasing the memory that the pending chunks
10879 * list head uses. For that, we need to take a reference to the
10880 * transaction.
10881 */
10882static int btrfs_trim_free_extents(struct btrfs_device *device,
10883 u64 minlen, u64 *trimmed)
10884{
10885 u64 start = 0, len = 0;
10886 int ret;
10887
10888 *trimmed = 0;
10889
10890 /* Not writeable = nothing to do. */
10891 if (!device->writeable)
10892 return 0;
10893
10894 /* No free space = nothing to do. */
10895 if (device->total_bytes <= device->bytes_used)
10896 return 0;
10897
10898 ret = 0;
10899
10900 while (1) {
fb456252 10901 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10902 struct btrfs_transaction *trans;
10903 u64 bytes;
10904
10905 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10906 if (ret)
10907 return ret;
10908
10909 down_read(&fs_info->commit_root_sem);
10910
10911 spin_lock(&fs_info->trans_lock);
10912 trans = fs_info->running_transaction;
10913 if (trans)
9b64f57d 10914 refcount_inc(&trans->use_count);
499f377f
JM
10915 spin_unlock(&fs_info->trans_lock);
10916
10917 ret = find_free_dev_extent_start(trans, device, minlen, start,
10918 &start, &len);
10919 if (trans)
10920 btrfs_put_transaction(trans);
10921
10922 if (ret) {
10923 up_read(&fs_info->commit_root_sem);
10924 mutex_unlock(&fs_info->chunk_mutex);
10925 if (ret == -ENOSPC)
10926 ret = 0;
10927 break;
10928 }
10929
10930 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10931 up_read(&fs_info->commit_root_sem);
10932 mutex_unlock(&fs_info->chunk_mutex);
10933
10934 if (ret)
10935 break;
10936
10937 start += len;
10938 *trimmed += bytes;
10939
10940 if (fatal_signal_pending(current)) {
10941 ret = -ERESTARTSYS;
10942 break;
10943 }
10944
10945 cond_resched();
10946 }
10947
10948 return ret;
10949}
10950
2ff7e61e 10951int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10952{
f7039b1d 10953 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10954 struct btrfs_device *device;
10955 struct list_head *devices;
f7039b1d
LD
10956 u64 group_trimmed;
10957 u64 start;
10958 u64 end;
10959 u64 trimmed = 0;
2cac13e4 10960 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10961 int ret = 0;
10962
2cac13e4
LB
10963 /*
10964 * try to trim all FS space, our block group may start from non-zero.
10965 */
10966 if (range->len == total_bytes)
10967 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10968 else
10969 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10970
10971 while (cache) {
10972 if (cache->key.objectid >= (range->start + range->len)) {
10973 btrfs_put_block_group(cache);
10974 break;
10975 }
10976
10977 start = max(range->start, cache->key.objectid);
10978 end = min(range->start + range->len,
10979 cache->key.objectid + cache->key.offset);
10980
10981 if (end - start >= range->minlen) {
10982 if (!block_group_cache_done(cache)) {
f6373bf3 10983 ret = cache_block_group(cache, 0);
1be41b78
JB
10984 if (ret) {
10985 btrfs_put_block_group(cache);
10986 break;
10987 }
10988 ret = wait_block_group_cache_done(cache);
10989 if (ret) {
10990 btrfs_put_block_group(cache);
10991 break;
10992 }
f7039b1d
LD
10993 }
10994 ret = btrfs_trim_block_group(cache,
10995 &group_trimmed,
10996 start,
10997 end,
10998 range->minlen);
10999
11000 trimmed += group_trimmed;
11001 if (ret) {
11002 btrfs_put_block_group(cache);
11003 break;
11004 }
11005 }
11006
2ff7e61e 11007 cache = next_block_group(fs_info, cache);
f7039b1d
LD
11008 }
11009
0b246afa
JM
11010 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11011 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
11012 list_for_each_entry(device, devices, dev_alloc_list) {
11013 ret = btrfs_trim_free_extents(device, range->minlen,
11014 &group_trimmed);
11015 if (ret)
11016 break;
11017
11018 trimmed += group_trimmed;
11019 }
0b246afa 11020 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11021
f7039b1d
LD
11022 range->len = trimmed;
11023 return ret;
11024}
8257b2dc
MX
11025
11026/*
ea14b57f 11027 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11028 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11029 * data into the page cache through nocow before the subvolume is snapshoted,
11030 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11031 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11032 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11033 */
ea14b57f 11034void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11035{
11036 percpu_counter_dec(&root->subv_writers->counter);
11037 /*
a83342aa 11038 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11039 */
11040 smp_mb();
11041 if (waitqueue_active(&root->subv_writers->wait))
11042 wake_up(&root->subv_writers->wait);
11043}
11044
ea14b57f 11045int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11046{
ea14b57f 11047 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11048 return 0;
11049
11050 percpu_counter_inc(&root->subv_writers->counter);
11051 /*
11052 * Make sure counter is updated before we check for snapshot creation.
11053 */
11054 smp_mb();
ea14b57f
DS
11055 if (atomic_read(&root->will_be_snapshotted)) {
11056 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11057 return 0;
11058 }
11059 return 1;
11060}
0bc19f90 11061
ea14b57f 11062static int wait_snapshotting_atomic_t(atomic_t *a)
0bc19f90
ZL
11063{
11064 schedule();
11065 return 0;
11066}
11067
11068void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11069{
11070 while (true) {
11071 int ret;
11072
ea14b57f 11073 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11074 if (ret)
11075 break;
ea14b57f
DS
11076 wait_on_atomic_t(&root->will_be_snapshotted,
11077 wait_snapshotting_atomic_t,
0bc19f90
ZL
11078 TASK_UNINTERRUPTIBLE);
11079 }
11080}