btrfs: Remove devid parameter from btrfs_rmap_block
[linux-block.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
5d4f98a2 54static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 55 struct btrfs_fs_info *fs_info,
c682f9b3 56 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
57 u64 root_objectid, u64 owner_objectid,
58 u64 owner_offset, int refs_to_drop,
c682f9b3 59 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
60static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 struct extent_buffer *leaf,
62 struct btrfs_extent_item *ei);
63static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 64 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
65 u64 parent, u64 root_objectid,
66 u64 flags, u64 owner, u64 offset,
67 struct btrfs_key *ins, int ref_mod);
68static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 69 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
70 u64 parent, u64 root_objectid,
71 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 72 int level, struct btrfs_key *ins);
6a63209f 73static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 74 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 75 int force);
11833d66
YZ
76static int find_next_key(struct btrfs_path *path, int level,
77 struct btrfs_key *key);
ab8d0fc4
JM
78static void dump_space_info(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 80 int dump_block_groups);
5d80366e
JB
81static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
82 u64 num_bytes);
957780eb
JB
83static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
84 struct btrfs_space_info *space_info,
85 u64 num_bytes);
86static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
87 struct btrfs_space_info *space_info,
88 u64 num_bytes);
6a63209f 89
817d52f8
JB
90static noinline int
91block_group_cache_done(struct btrfs_block_group_cache *cache)
92{
93 smp_mb();
36cce922
JB
94 return cache->cached == BTRFS_CACHE_FINISHED ||
95 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
96}
97
0f9dd46c
JB
98static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
99{
100 return (cache->flags & bits) == bits;
101}
102
758f2dfc 103void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
104{
105 atomic_inc(&cache->count);
106}
107
108void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
109{
f0486c68
YZ
110 if (atomic_dec_and_test(&cache->count)) {
111 WARN_ON(cache->pinned > 0);
112 WARN_ON(cache->reserved > 0);
0966a7b1
QW
113
114 /*
115 * If not empty, someone is still holding mutex of
116 * full_stripe_lock, which can only be released by caller.
117 * And it will definitely cause use-after-free when caller
118 * tries to release full stripe lock.
119 *
120 * No better way to resolve, but only to warn.
121 */
122 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 123 kfree(cache->free_space_ctl);
11dfe35a 124 kfree(cache);
f0486c68 125 }
11dfe35a
JB
126}
127
0f9dd46c
JB
128/*
129 * this adds the block group to the fs_info rb tree for the block group
130 * cache
131 */
b2950863 132static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
133 struct btrfs_block_group_cache *block_group)
134{
135 struct rb_node **p;
136 struct rb_node *parent = NULL;
137 struct btrfs_block_group_cache *cache;
138
139 spin_lock(&info->block_group_cache_lock);
140 p = &info->block_group_cache_tree.rb_node;
141
142 while (*p) {
143 parent = *p;
144 cache = rb_entry(parent, struct btrfs_block_group_cache,
145 cache_node);
146 if (block_group->key.objectid < cache->key.objectid) {
147 p = &(*p)->rb_left;
148 } else if (block_group->key.objectid > cache->key.objectid) {
149 p = &(*p)->rb_right;
150 } else {
151 spin_unlock(&info->block_group_cache_lock);
152 return -EEXIST;
153 }
154 }
155
156 rb_link_node(&block_group->cache_node, parent, p);
157 rb_insert_color(&block_group->cache_node,
158 &info->block_group_cache_tree);
a1897fdd
LB
159
160 if (info->first_logical_byte > block_group->key.objectid)
161 info->first_logical_byte = block_group->key.objectid;
162
0f9dd46c
JB
163 spin_unlock(&info->block_group_cache_lock);
164
165 return 0;
166}
167
168/*
169 * This will return the block group at or after bytenr if contains is 0, else
170 * it will return the block group that contains the bytenr
171 */
172static struct btrfs_block_group_cache *
173block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174 int contains)
175{
176 struct btrfs_block_group_cache *cache, *ret = NULL;
177 struct rb_node *n;
178 u64 end, start;
179
180 spin_lock(&info->block_group_cache_lock);
181 n = info->block_group_cache_tree.rb_node;
182
183 while (n) {
184 cache = rb_entry(n, struct btrfs_block_group_cache,
185 cache_node);
186 end = cache->key.objectid + cache->key.offset - 1;
187 start = cache->key.objectid;
188
189 if (bytenr < start) {
190 if (!contains && (!ret || start < ret->key.objectid))
191 ret = cache;
192 n = n->rb_left;
193 } else if (bytenr > start) {
194 if (contains && bytenr <= end) {
195 ret = cache;
196 break;
197 }
198 n = n->rb_right;
199 } else {
200 ret = cache;
201 break;
202 }
203 }
a1897fdd 204 if (ret) {
11dfe35a 205 btrfs_get_block_group(ret);
a1897fdd
LB
206 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
207 info->first_logical_byte = ret->key.objectid;
208 }
0f9dd46c
JB
209 spin_unlock(&info->block_group_cache_lock);
210
211 return ret;
212}
213
2ff7e61e 214static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 215 u64 start, u64 num_bytes)
817d52f8 216{
11833d66 217 u64 end = start + num_bytes - 1;
0b246afa 218 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 219 start, end, EXTENT_UPTODATE);
0b246afa 220 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 221 start, end, EXTENT_UPTODATE);
11833d66
YZ
222 return 0;
223}
817d52f8 224
2ff7e61e 225static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
226 struct btrfs_block_group_cache *cache)
227{
228 u64 start, end;
817d52f8 229
11833d66
YZ
230 start = cache->key.objectid;
231 end = start + cache->key.offset - 1;
232
0b246afa 233 clear_extent_bits(&fs_info->freed_extents[0],
91166212 234 start, end, EXTENT_UPTODATE);
0b246afa 235 clear_extent_bits(&fs_info->freed_extents[1],
91166212 236 start, end, EXTENT_UPTODATE);
817d52f8
JB
237}
238
2ff7e61e 239static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 240 struct btrfs_block_group_cache *cache)
817d52f8 241{
817d52f8
JB
242 u64 bytenr;
243 u64 *logical;
244 int stripe_len;
245 int i, nr, ret;
246
06b2331f
YZ
247 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
248 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
249 cache->bytes_super += stripe_len;
2ff7e61e 250 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 251 stripe_len);
835d974f
JB
252 if (ret)
253 return ret;
06b2331f
YZ
254 }
255
817d52f8
JB
256 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
257 bytenr = btrfs_sb_offset(i);
0b246afa 258 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 259 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
260 if (ret)
261 return ret;
11833d66 262
817d52f8 263 while (nr--) {
51bf5f0b
JB
264 u64 start, len;
265
266 if (logical[nr] > cache->key.objectid +
267 cache->key.offset)
268 continue;
269
270 if (logical[nr] + stripe_len <= cache->key.objectid)
271 continue;
272
273 start = logical[nr];
274 if (start < cache->key.objectid) {
275 start = cache->key.objectid;
276 len = (logical[nr] + stripe_len) - start;
277 } else {
278 len = min_t(u64, stripe_len,
279 cache->key.objectid +
280 cache->key.offset - start);
281 }
282
283 cache->bytes_super += len;
2ff7e61e 284 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
285 if (ret) {
286 kfree(logical);
287 return ret;
288 }
817d52f8 289 }
11833d66 290
817d52f8
JB
291 kfree(logical);
292 }
817d52f8
JB
293 return 0;
294}
295
11833d66
YZ
296static struct btrfs_caching_control *
297get_caching_control(struct btrfs_block_group_cache *cache)
298{
299 struct btrfs_caching_control *ctl;
300
301 spin_lock(&cache->lock);
dde5abee
JB
302 if (!cache->caching_ctl) {
303 spin_unlock(&cache->lock);
11833d66
YZ
304 return NULL;
305 }
306
307 ctl = cache->caching_ctl;
1e4f4714 308 refcount_inc(&ctl->count);
11833d66
YZ
309 spin_unlock(&cache->lock);
310 return ctl;
311}
312
313static void put_caching_control(struct btrfs_caching_control *ctl)
314{
1e4f4714 315 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
316 kfree(ctl);
317}
318
d0bd4560 319#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 320static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 321{
2ff7e61e 322 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
323 u64 start = block_group->key.objectid;
324 u64 len = block_group->key.offset;
325 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 326 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
327 u64 step = chunk << 1;
328
329 while (len > chunk) {
330 btrfs_remove_free_space(block_group, start, chunk);
331 start += step;
332 if (len < step)
333 len = 0;
334 else
335 len -= step;
336 }
337}
338#endif
339
0f9dd46c
JB
340/*
341 * this is only called by cache_block_group, since we could have freed extents
342 * we need to check the pinned_extents for any extents that can't be used yet
343 * since their free space will be released as soon as the transaction commits.
344 */
a5ed9182
OS
345u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 347{
817d52f8 348 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
349 int ret;
350
351 while (start < end) {
11833d66 352 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 353 &extent_start, &extent_end,
e6138876
JB
354 EXTENT_DIRTY | EXTENT_UPTODATE,
355 NULL);
0f9dd46c
JB
356 if (ret)
357 break;
358
06b2331f 359 if (extent_start <= start) {
0f9dd46c
JB
360 start = extent_end + 1;
361 } else if (extent_start > start && extent_start < end) {
362 size = extent_start - start;
817d52f8 363 total_added += size;
ea6a478e
JB
364 ret = btrfs_add_free_space(block_group, start,
365 size);
79787eaa 366 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
367 start = extent_end + 1;
368 } else {
369 break;
370 }
371 }
372
373 if (start < end) {
374 size = end - start;
817d52f8 375 total_added += size;
ea6a478e 376 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 377 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
378 }
379
817d52f8 380 return total_added;
0f9dd46c
JB
381}
382
73fa48b6 383static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 384{
0b246afa
JM
385 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
386 struct btrfs_fs_info *fs_info = block_group->fs_info;
387 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 388 struct btrfs_path *path;
5f39d397 389 struct extent_buffer *leaf;
11833d66 390 struct btrfs_key key;
817d52f8 391 u64 total_found = 0;
11833d66
YZ
392 u64 last = 0;
393 u32 nritems;
73fa48b6 394 int ret;
d0bd4560 395 bool wakeup = true;
f510cfec 396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
73fa48b6 399 return -ENOMEM;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
d0bd4560
JB
403#ifdef CONFIG_BTRFS_DEBUG
404 /*
405 * If we're fragmenting we don't want to make anybody think we can
406 * allocate from this block group until we've had a chance to fragment
407 * the free space.
408 */
2ff7e61e 409 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
410 wakeup = false;
411#endif
5cd57b2c 412 /*
817d52f8
JB
413 * We don't want to deadlock with somebody trying to allocate a new
414 * extent for the extent root while also trying to search the extent
415 * root to add free space. So we skip locking and search the commit
416 * root, since its read-only
5cd57b2c
CM
417 */
418 path->skip_locking = 1;
817d52f8 419 path->search_commit_root = 1;
e4058b54 420 path->reada = READA_FORWARD;
817d52f8 421
e4404d6e 422 key.objectid = last;
e37c9e69 423 key.offset = 0;
11833d66 424 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 425
52ee28d2 426next:
11833d66 427 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 428 if (ret < 0)
73fa48b6 429 goto out;
a512bbf8 430
11833d66
YZ
431 leaf = path->nodes[0];
432 nritems = btrfs_header_nritems(leaf);
433
d397712b 434 while (1) {
7841cb28 435 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 436 last = (u64)-1;
817d52f8 437 break;
f25784b3 438 }
817d52f8 439
11833d66
YZ
440 if (path->slots[0] < nritems) {
441 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
442 } else {
443 ret = find_next_key(path, 0, &key);
444 if (ret)
e37c9e69 445 break;
817d52f8 446
c9ea7b24 447 if (need_resched() ||
9e351cc8 448 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
449 if (wakeup)
450 caching_ctl->progress = last;
ff5714cc 451 btrfs_release_path(path);
9e351cc8 452 up_read(&fs_info->commit_root_sem);
589d8ade 453 mutex_unlock(&caching_ctl->mutex);
11833d66 454 cond_resched();
73fa48b6
OS
455 mutex_lock(&caching_ctl->mutex);
456 down_read(&fs_info->commit_root_sem);
457 goto next;
589d8ade 458 }
0a3896d0
JB
459
460 ret = btrfs_next_leaf(extent_root, path);
461 if (ret < 0)
73fa48b6 462 goto out;
0a3896d0
JB
463 if (ret)
464 break;
589d8ade
JB
465 leaf = path->nodes[0];
466 nritems = btrfs_header_nritems(leaf);
467 continue;
11833d66 468 }
817d52f8 469
52ee28d2
LB
470 if (key.objectid < last) {
471 key.objectid = last;
472 key.offset = 0;
473 key.type = BTRFS_EXTENT_ITEM_KEY;
474
d0bd4560
JB
475 if (wakeup)
476 caching_ctl->progress = last;
52ee28d2
LB
477 btrfs_release_path(path);
478 goto next;
479 }
480
11833d66
YZ
481 if (key.objectid < block_group->key.objectid) {
482 path->slots[0]++;
817d52f8 483 continue;
e37c9e69 484 }
0f9dd46c 485
e37c9e69 486 if (key.objectid >= block_group->key.objectid +
0f9dd46c 487 block_group->key.offset)
e37c9e69 488 break;
7d7d6068 489
3173a18f
JB
490 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
491 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
492 total_found += add_new_free_space(block_group,
493 fs_info, last,
494 key.objectid);
3173a18f
JB
495 if (key.type == BTRFS_METADATA_ITEM_KEY)
496 last = key.objectid +
da17066c 497 fs_info->nodesize;
3173a18f
JB
498 else
499 last = key.objectid + key.offset;
817d52f8 500
73fa48b6 501 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 502 total_found = 0;
d0bd4560
JB
503 if (wakeup)
504 wake_up(&caching_ctl->wait);
11833d66 505 }
817d52f8 506 }
e37c9e69
CM
507 path->slots[0]++;
508 }
817d52f8 509 ret = 0;
e37c9e69 510
817d52f8
JB
511 total_found += add_new_free_space(block_group, fs_info, last,
512 block_group->key.objectid +
513 block_group->key.offset);
11833d66 514 caching_ctl->progress = (u64)-1;
817d52f8 515
73fa48b6
OS
516out:
517 btrfs_free_path(path);
518 return ret;
519}
520
521static noinline void caching_thread(struct btrfs_work *work)
522{
523 struct btrfs_block_group_cache *block_group;
524 struct btrfs_fs_info *fs_info;
525 struct btrfs_caching_control *caching_ctl;
526 int ret;
527
528 caching_ctl = container_of(work, struct btrfs_caching_control, work);
529 block_group = caching_ctl->block_group;
530 fs_info = block_group->fs_info;
531
532 mutex_lock(&caching_ctl->mutex);
533 down_read(&fs_info->commit_root_sem);
534
1e144fb8
OS
535 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
536 ret = load_free_space_tree(caching_ctl);
537 else
538 ret = load_extent_tree_free(caching_ctl);
73fa48b6 539
817d52f8 540 spin_lock(&block_group->lock);
11833d66 541 block_group->caching_ctl = NULL;
73fa48b6 542 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 543 spin_unlock(&block_group->lock);
0f9dd46c 544
d0bd4560 545#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 546 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
547 u64 bytes_used;
548
549 spin_lock(&block_group->space_info->lock);
550 spin_lock(&block_group->lock);
551 bytes_used = block_group->key.offset -
552 btrfs_block_group_used(&block_group->item);
553 block_group->space_info->bytes_used += bytes_used >> 1;
554 spin_unlock(&block_group->lock);
555 spin_unlock(&block_group->space_info->lock);
2ff7e61e 556 fragment_free_space(block_group);
d0bd4560
JB
557 }
558#endif
559
560 caching_ctl->progress = (u64)-1;
11833d66 561
9e351cc8 562 up_read(&fs_info->commit_root_sem);
2ff7e61e 563 free_excluded_extents(fs_info, block_group);
11833d66 564 mutex_unlock(&caching_ctl->mutex);
73fa48b6 565
11833d66
YZ
566 wake_up(&caching_ctl->wait);
567
568 put_caching_control(caching_ctl);
11dfe35a 569 btrfs_put_block_group(block_group);
817d52f8
JB
570}
571
9d66e233 572static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 573 int load_cache_only)
817d52f8 574{
291c7d2f 575 DEFINE_WAIT(wait);
11833d66
YZ
576 struct btrfs_fs_info *fs_info = cache->fs_info;
577 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
578 int ret = 0;
579
291c7d2f 580 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
581 if (!caching_ctl)
582 return -ENOMEM;
291c7d2f
JB
583
584 INIT_LIST_HEAD(&caching_ctl->list);
585 mutex_init(&caching_ctl->mutex);
586 init_waitqueue_head(&caching_ctl->wait);
587 caching_ctl->block_group = cache;
588 caching_ctl->progress = cache->key.objectid;
1e4f4714 589 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
590 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
591 caching_thread, NULL, NULL);
291c7d2f
JB
592
593 spin_lock(&cache->lock);
594 /*
595 * This should be a rare occasion, but this could happen I think in the
596 * case where one thread starts to load the space cache info, and then
597 * some other thread starts a transaction commit which tries to do an
598 * allocation while the other thread is still loading the space cache
599 * info. The previous loop should have kept us from choosing this block
600 * group, but if we've moved to the state where we will wait on caching
601 * block groups we need to first check if we're doing a fast load here,
602 * so we can wait for it to finish, otherwise we could end up allocating
603 * from a block group who's cache gets evicted for one reason or
604 * another.
605 */
606 while (cache->cached == BTRFS_CACHE_FAST) {
607 struct btrfs_caching_control *ctl;
608
609 ctl = cache->caching_ctl;
1e4f4714 610 refcount_inc(&ctl->count);
291c7d2f
JB
611 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
612 spin_unlock(&cache->lock);
613
614 schedule();
615
616 finish_wait(&ctl->wait, &wait);
617 put_caching_control(ctl);
618 spin_lock(&cache->lock);
619 }
620
621 if (cache->cached != BTRFS_CACHE_NO) {
622 spin_unlock(&cache->lock);
623 kfree(caching_ctl);
11833d66 624 return 0;
291c7d2f
JB
625 }
626 WARN_ON(cache->caching_ctl);
627 cache->caching_ctl = caching_ctl;
628 cache->cached = BTRFS_CACHE_FAST;
629 spin_unlock(&cache->lock);
11833d66 630
d8953d69 631 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 632 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
633 ret = load_free_space_cache(fs_info, cache);
634
635 spin_lock(&cache->lock);
636 if (ret == 1) {
291c7d2f 637 cache->caching_ctl = NULL;
9d66e233
JB
638 cache->cached = BTRFS_CACHE_FINISHED;
639 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 640 caching_ctl->progress = (u64)-1;
9d66e233 641 } else {
291c7d2f
JB
642 if (load_cache_only) {
643 cache->caching_ctl = NULL;
644 cache->cached = BTRFS_CACHE_NO;
645 } else {
646 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 647 cache->has_caching_ctl = 1;
291c7d2f 648 }
9d66e233
JB
649 }
650 spin_unlock(&cache->lock);
d0bd4560
JB
651#ifdef CONFIG_BTRFS_DEBUG
652 if (ret == 1 &&
2ff7e61e 653 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
654 u64 bytes_used;
655
656 spin_lock(&cache->space_info->lock);
657 spin_lock(&cache->lock);
658 bytes_used = cache->key.offset -
659 btrfs_block_group_used(&cache->item);
660 cache->space_info->bytes_used += bytes_used >> 1;
661 spin_unlock(&cache->lock);
662 spin_unlock(&cache->space_info->lock);
2ff7e61e 663 fragment_free_space(cache);
d0bd4560
JB
664 }
665#endif
cb83b7b8
JB
666 mutex_unlock(&caching_ctl->mutex);
667
291c7d2f 668 wake_up(&caching_ctl->wait);
3c14874a 669 if (ret == 1) {
291c7d2f 670 put_caching_control(caching_ctl);
2ff7e61e 671 free_excluded_extents(fs_info, cache);
9d66e233 672 return 0;
3c14874a 673 }
291c7d2f
JB
674 } else {
675 /*
1e144fb8
OS
676 * We're either using the free space tree or no caching at all.
677 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
678 */
679 spin_lock(&cache->lock);
680 if (load_cache_only) {
681 cache->caching_ctl = NULL;
682 cache->cached = BTRFS_CACHE_NO;
683 } else {
684 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 685 cache->has_caching_ctl = 1;
291c7d2f
JB
686 }
687 spin_unlock(&cache->lock);
688 wake_up(&caching_ctl->wait);
9d66e233
JB
689 }
690
291c7d2f
JB
691 if (load_cache_only) {
692 put_caching_control(caching_ctl);
11833d66 693 return 0;
817d52f8 694 }
817d52f8 695
9e351cc8 696 down_write(&fs_info->commit_root_sem);
1e4f4714 697 refcount_inc(&caching_ctl->count);
11833d66 698 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 699 up_write(&fs_info->commit_root_sem);
11833d66 700
11dfe35a 701 btrfs_get_block_group(cache);
11833d66 702
e66f0bb1 703 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 704
ef8bbdfe 705 return ret;
e37c9e69
CM
706}
707
0f9dd46c
JB
708/*
709 * return the block group that starts at or after bytenr
710 */
d397712b
CM
711static struct btrfs_block_group_cache *
712btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 713{
e2c89907 714 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
715}
716
0f9dd46c 717/*
9f55684c 718 * return the block group that contains the given bytenr
0f9dd46c 719 */
d397712b
CM
720struct btrfs_block_group_cache *btrfs_lookup_block_group(
721 struct btrfs_fs_info *info,
722 u64 bytenr)
be744175 723{
e2c89907 724 return block_group_cache_tree_search(info, bytenr, 1);
be744175 725}
0b86a832 726
0f9dd46c
JB
727static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
728 u64 flags)
6324fbf3 729{
0f9dd46c 730 struct list_head *head = &info->space_info;
0f9dd46c 731 struct btrfs_space_info *found;
4184ea7f 732
52ba6929 733 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 734
4184ea7f
CM
735 rcu_read_lock();
736 list_for_each_entry_rcu(found, head, list) {
67377734 737 if (found->flags & flags) {
4184ea7f 738 rcu_read_unlock();
0f9dd46c 739 return found;
4184ea7f 740 }
0f9dd46c 741 }
4184ea7f 742 rcu_read_unlock();
0f9dd46c 743 return NULL;
6324fbf3
CM
744}
745
0d9f824d 746static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 747 bool metadata, u64 root_objectid)
0d9f824d
OS
748{
749 struct btrfs_space_info *space_info;
750 u64 flags;
751
29d2b84c 752 if (metadata) {
0d9f824d
OS
753 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
754 flags = BTRFS_BLOCK_GROUP_SYSTEM;
755 else
756 flags = BTRFS_BLOCK_GROUP_METADATA;
757 } else {
758 flags = BTRFS_BLOCK_GROUP_DATA;
759 }
760
761 space_info = __find_space_info(fs_info, flags);
55e8196a 762 ASSERT(space_info);
0d9f824d
OS
763 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
764}
765
4184ea7f
CM
766/*
767 * after adding space to the filesystem, we need to clear the full flags
768 * on all the space infos.
769 */
770void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
771{
772 struct list_head *head = &info->space_info;
773 struct btrfs_space_info *found;
774
775 rcu_read_lock();
776 list_for_each_entry_rcu(found, head, list)
777 found->full = 0;
778 rcu_read_unlock();
779}
780
1a4ed8fd 781/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 782int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
783{
784 int ret;
785 struct btrfs_key key;
31840ae1 786 struct btrfs_path *path;
e02119d5 787
31840ae1 788 path = btrfs_alloc_path();
d8926bb3
MF
789 if (!path)
790 return -ENOMEM;
791
e02119d5
CM
792 key.objectid = start;
793 key.offset = len;
3173a18f 794 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 795 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 796 btrfs_free_path(path);
7bb86316
CM
797 return ret;
798}
799
a22285a6 800/*
3173a18f 801 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
802 *
803 * the head node for delayed ref is used to store the sum of all the
804 * reference count modifications queued up in the rbtree. the head
805 * node may also store the extent flags to set. This way you can check
806 * to see what the reference count and extent flags would be if all of
807 * the delayed refs are not processed.
808 */
809int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 810 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 811 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
812{
813 struct btrfs_delayed_ref_head *head;
814 struct btrfs_delayed_ref_root *delayed_refs;
815 struct btrfs_path *path;
816 struct btrfs_extent_item *ei;
817 struct extent_buffer *leaf;
818 struct btrfs_key key;
819 u32 item_size;
820 u64 num_refs;
821 u64 extent_flags;
822 int ret;
823
3173a18f
JB
824 /*
825 * If we don't have skinny metadata, don't bother doing anything
826 * different
827 */
0b246afa
JM
828 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
829 offset = fs_info->nodesize;
3173a18f
JB
830 metadata = 0;
831 }
832
a22285a6
YZ
833 path = btrfs_alloc_path();
834 if (!path)
835 return -ENOMEM;
836
a22285a6
YZ
837 if (!trans) {
838 path->skip_locking = 1;
839 path->search_commit_root = 1;
840 }
639eefc8
FDBM
841
842search_again:
843 key.objectid = bytenr;
844 key.offset = offset;
845 if (metadata)
846 key.type = BTRFS_METADATA_ITEM_KEY;
847 else
848 key.type = BTRFS_EXTENT_ITEM_KEY;
849
0b246afa 850 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
851 if (ret < 0)
852 goto out_free;
853
3173a18f 854 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
855 if (path->slots[0]) {
856 path->slots[0]--;
857 btrfs_item_key_to_cpu(path->nodes[0], &key,
858 path->slots[0]);
859 if (key.objectid == bytenr &&
860 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 861 key.offset == fs_info->nodesize)
74be9510
FDBM
862 ret = 0;
863 }
3173a18f
JB
864 }
865
a22285a6
YZ
866 if (ret == 0) {
867 leaf = path->nodes[0];
868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 if (item_size >= sizeof(*ei)) {
870 ei = btrfs_item_ptr(leaf, path->slots[0],
871 struct btrfs_extent_item);
872 num_refs = btrfs_extent_refs(leaf, ei);
873 extent_flags = btrfs_extent_flags(leaf, ei);
874 } else {
875#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
876 struct btrfs_extent_item_v0 *ei0;
877 BUG_ON(item_size != sizeof(*ei0));
878 ei0 = btrfs_item_ptr(leaf, path->slots[0],
879 struct btrfs_extent_item_v0);
880 num_refs = btrfs_extent_refs_v0(leaf, ei0);
881 /* FIXME: this isn't correct for data */
882 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883#else
884 BUG();
885#endif
886 }
887 BUG_ON(num_refs == 0);
888 } else {
889 num_refs = 0;
890 extent_flags = 0;
891 ret = 0;
892 }
893
894 if (!trans)
895 goto out;
896
897 delayed_refs = &trans->transaction->delayed_refs;
898 spin_lock(&delayed_refs->lock);
f72ad18e 899 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
900 if (head) {
901 if (!mutex_trylock(&head->mutex)) {
d278850e 902 refcount_inc(&head->refs);
a22285a6
YZ
903 spin_unlock(&delayed_refs->lock);
904
b3b4aa74 905 btrfs_release_path(path);
a22285a6 906
8cc33e5c
DS
907 /*
908 * Mutex was contended, block until it's released and try
909 * again
910 */
a22285a6
YZ
911 mutex_lock(&head->mutex);
912 mutex_unlock(&head->mutex);
d278850e 913 btrfs_put_delayed_ref_head(head);
639eefc8 914 goto search_again;
a22285a6 915 }
d7df2c79 916 spin_lock(&head->lock);
a22285a6
YZ
917 if (head->extent_op && head->extent_op->update_flags)
918 extent_flags |= head->extent_op->flags_to_set;
919 else
920 BUG_ON(num_refs == 0);
921
d278850e 922 num_refs += head->ref_mod;
d7df2c79 923 spin_unlock(&head->lock);
a22285a6
YZ
924 mutex_unlock(&head->mutex);
925 }
926 spin_unlock(&delayed_refs->lock);
927out:
928 WARN_ON(num_refs == 0);
929 if (refs)
930 *refs = num_refs;
931 if (flags)
932 *flags = extent_flags;
933out_free:
934 btrfs_free_path(path);
935 return ret;
936}
937
d8d5f3e1
CM
938/*
939 * Back reference rules. Back refs have three main goals:
940 *
941 * 1) differentiate between all holders of references to an extent so that
942 * when a reference is dropped we can make sure it was a valid reference
943 * before freeing the extent.
944 *
945 * 2) Provide enough information to quickly find the holders of an extent
946 * if we notice a given block is corrupted or bad.
947 *
948 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
949 * maintenance. This is actually the same as #2, but with a slightly
950 * different use case.
951 *
5d4f98a2
YZ
952 * There are two kinds of back refs. The implicit back refs is optimized
953 * for pointers in non-shared tree blocks. For a given pointer in a block,
954 * back refs of this kind provide information about the block's owner tree
955 * and the pointer's key. These information allow us to find the block by
956 * b-tree searching. The full back refs is for pointers in tree blocks not
957 * referenced by their owner trees. The location of tree block is recorded
958 * in the back refs. Actually the full back refs is generic, and can be
959 * used in all cases the implicit back refs is used. The major shortcoming
960 * of the full back refs is its overhead. Every time a tree block gets
961 * COWed, we have to update back refs entry for all pointers in it.
962 *
963 * For a newly allocated tree block, we use implicit back refs for
964 * pointers in it. This means most tree related operations only involve
965 * implicit back refs. For a tree block created in old transaction, the
966 * only way to drop a reference to it is COW it. So we can detect the
967 * event that tree block loses its owner tree's reference and do the
968 * back refs conversion.
969 *
01327610 970 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
971 *
972 * The reference count of the block is one and the tree is the block's
973 * owner tree. Nothing to do in this case.
974 *
975 * The reference count of the block is one and the tree is not the
976 * block's owner tree. In this case, full back refs is used for pointers
977 * in the block. Remove these full back refs, add implicit back refs for
978 * every pointers in the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * the block's owner tree. In this case, implicit back refs is used for
982 * pointers in the block. Add full back refs for every pointers in the
983 * block, increase lower level extents' reference counts. The original
984 * implicit back refs are entailed to the new block.
985 *
986 * The reference count of the block is greater than one and the tree is
987 * not the block's owner tree. Add implicit back refs for every pointer in
988 * the new block, increase lower level extents' reference count.
989 *
990 * Back Reference Key composing:
991 *
992 * The key objectid corresponds to the first byte in the extent,
993 * The key type is used to differentiate between types of back refs.
994 * There are different meanings of the key offset for different types
995 * of back refs.
996 *
d8d5f3e1
CM
997 * File extents can be referenced by:
998 *
999 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1000 * - different files inside a single subvolume
d8d5f3e1
CM
1001 * - different offsets inside a file (bookend extents in file.c)
1002 *
5d4f98a2 1003 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1004 *
1005 * - Objectid of the subvolume root
d8d5f3e1 1006 * - objectid of the file holding the reference
5d4f98a2
YZ
1007 * - original offset in the file
1008 * - how many bookend extents
d8d5f3e1 1009 *
5d4f98a2
YZ
1010 * The key offset for the implicit back refs is hash of the first
1011 * three fields.
d8d5f3e1 1012 *
5d4f98a2 1013 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1014 *
5d4f98a2 1015 * - number of pointers in the tree leaf
d8d5f3e1 1016 *
5d4f98a2
YZ
1017 * The key offset for the implicit back refs is the first byte of
1018 * the tree leaf
d8d5f3e1 1019 *
5d4f98a2
YZ
1020 * When a file extent is allocated, The implicit back refs is used.
1021 * the fields are filled in:
d8d5f3e1 1022 *
5d4f98a2 1023 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1024 *
5d4f98a2
YZ
1025 * When a file extent is removed file truncation, we find the
1026 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1027 *
5d4f98a2 1028 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1029 *
5d4f98a2 1030 * Btree extents can be referenced by:
d8d5f3e1 1031 *
5d4f98a2 1032 * - Different subvolumes
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * Both the implicit back refs and the full back refs for tree blocks
1035 * only consist of key. The key offset for the implicit back refs is
1036 * objectid of block's owner tree. The key offset for the full back refs
1037 * is the first byte of parent block.
d8d5f3e1 1038 *
5d4f98a2
YZ
1039 * When implicit back refs is used, information about the lowest key and
1040 * level of the tree block are required. These information are stored in
1041 * tree block info structure.
d8d5f3e1 1042 */
31840ae1 1043
5d4f98a2
YZ
1044#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1046 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1047 struct btrfs_path *path,
1048 u64 owner, u32 extra_size)
7bb86316 1049{
87bde3cd 1050 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1051 struct btrfs_extent_item *item;
1052 struct btrfs_extent_item_v0 *ei0;
1053 struct btrfs_extent_ref_v0 *ref0;
1054 struct btrfs_tree_block_info *bi;
1055 struct extent_buffer *leaf;
7bb86316 1056 struct btrfs_key key;
5d4f98a2
YZ
1057 struct btrfs_key found_key;
1058 u32 new_size = sizeof(*item);
1059 u64 refs;
1060 int ret;
1061
1062 leaf = path->nodes[0];
1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064
1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 struct btrfs_extent_item_v0);
1068 refs = btrfs_extent_refs_v0(leaf, ei0);
1069
1070 if (owner == (u64)-1) {
1071 while (1) {
1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 ret = btrfs_next_leaf(root, path);
1074 if (ret < 0)
1075 return ret;
79787eaa 1076 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1077 leaf = path->nodes[0];
1078 }
1079 btrfs_item_key_to_cpu(leaf, &found_key,
1080 path->slots[0]);
1081 BUG_ON(key.objectid != found_key.objectid);
1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 path->slots[0]++;
1084 continue;
1085 }
1086 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_extent_ref_v0);
1088 owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 break;
1090 }
1091 }
b3b4aa74 1092 btrfs_release_path(path);
5d4f98a2
YZ
1093
1094 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 new_size += sizeof(*bi);
1096
1097 new_size -= sizeof(*ei0);
1098 ret = btrfs_search_slot(trans, root, &key, path,
1099 new_size + extra_size, 1);
1100 if (ret < 0)
1101 return ret;
79787eaa 1102 BUG_ON(ret); /* Corruption */
5d4f98a2 1103
87bde3cd 1104 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1105
1106 leaf = path->nodes[0];
1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 btrfs_set_extent_refs(leaf, item, refs);
1109 /* FIXME: get real generation */
1110 btrfs_set_extent_generation(leaf, item, 0);
1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 btrfs_set_extent_flags(leaf, item,
1113 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 bi = (struct btrfs_tree_block_info *)(item + 1);
1116 /* FIXME: get first key of the block */
b159fa28 1117 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1118 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 } else {
1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 }
1122 btrfs_mark_buffer_dirty(leaf);
1123 return 0;
1124}
1125#endif
1126
167ce953
LB
1127/*
1128 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1129 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1130 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1131 */
1132int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1133 struct btrfs_extent_inline_ref *iref,
1134 enum btrfs_inline_ref_type is_data)
1135{
1136 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1137 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1138
1139 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1140 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1141 type == BTRFS_SHARED_DATA_REF_KEY ||
1142 type == BTRFS_EXTENT_DATA_REF_KEY) {
1143 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1144 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1145 return type;
64ecdb64
LB
1146 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1147 ASSERT(eb->fs_info);
1148 /*
1149 * Every shared one has parent tree
1150 * block, which must be aligned to
1151 * nodesize.
1152 */
1153 if (offset &&
1154 IS_ALIGNED(offset, eb->fs_info->nodesize))
1155 return type;
1156 }
167ce953 1157 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1158 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1159 return type;
64ecdb64
LB
1160 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1161 ASSERT(eb->fs_info);
1162 /*
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1166 */
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1170 }
167ce953
LB
1171 } else {
1172 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1173 return type;
1174 }
1175 }
1176
1177 btrfs_print_leaf((struct extent_buffer *)eb);
1178 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1179 eb->start, type);
1180 WARN_ON(1);
1181
1182 return BTRFS_REF_TYPE_INVALID;
1183}
1184
5d4f98a2
YZ
1185static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1186{
1187 u32 high_crc = ~(u32)0;
1188 u32 low_crc = ~(u32)0;
1189 __le64 lenum;
1190
1191 lenum = cpu_to_le64(root_objectid);
9678c543 1192 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1193 lenum = cpu_to_le64(owner);
9678c543 1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1195 lenum = cpu_to_le64(offset);
9678c543 1196 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1197
1198 return ((u64)high_crc << 31) ^ (u64)low_crc;
1199}
1200
1201static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1202 struct btrfs_extent_data_ref *ref)
1203{
1204 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1205 btrfs_extent_data_ref_objectid(leaf, ref),
1206 btrfs_extent_data_ref_offset(leaf, ref));
1207}
1208
1209static int match_extent_data_ref(struct extent_buffer *leaf,
1210 struct btrfs_extent_data_ref *ref,
1211 u64 root_objectid, u64 owner, u64 offset)
1212{
1213 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1214 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1215 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1216 return 0;
1217 return 1;
1218}
1219
1220static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1221 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1222 struct btrfs_path *path,
1223 u64 bytenr, u64 parent,
1224 u64 root_objectid,
1225 u64 owner, u64 offset)
1226{
87bde3cd 1227 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1228 struct btrfs_key key;
1229 struct btrfs_extent_data_ref *ref;
31840ae1 1230 struct extent_buffer *leaf;
5d4f98a2 1231 u32 nritems;
74493f7a 1232 int ret;
5d4f98a2
YZ
1233 int recow;
1234 int err = -ENOENT;
74493f7a 1235
31840ae1 1236 key.objectid = bytenr;
5d4f98a2
YZ
1237 if (parent) {
1238 key.type = BTRFS_SHARED_DATA_REF_KEY;
1239 key.offset = parent;
1240 } else {
1241 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1242 key.offset = hash_extent_data_ref(root_objectid,
1243 owner, offset);
1244 }
1245again:
1246 recow = 0;
1247 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1248 if (ret < 0) {
1249 err = ret;
1250 goto fail;
1251 }
31840ae1 1252
5d4f98a2
YZ
1253 if (parent) {
1254 if (!ret)
1255 return 0;
1256#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1257 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1258 btrfs_release_path(path);
5d4f98a2
YZ
1259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260 if (ret < 0) {
1261 err = ret;
1262 goto fail;
1263 }
1264 if (!ret)
1265 return 0;
1266#endif
1267 goto fail;
31840ae1
ZY
1268 }
1269
1270 leaf = path->nodes[0];
5d4f98a2
YZ
1271 nritems = btrfs_header_nritems(leaf);
1272 while (1) {
1273 if (path->slots[0] >= nritems) {
1274 ret = btrfs_next_leaf(root, path);
1275 if (ret < 0)
1276 err = ret;
1277 if (ret)
1278 goto fail;
1279
1280 leaf = path->nodes[0];
1281 nritems = btrfs_header_nritems(leaf);
1282 recow = 1;
1283 }
1284
1285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286 if (key.objectid != bytenr ||
1287 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1288 goto fail;
1289
1290 ref = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_extent_data_ref);
1292
1293 if (match_extent_data_ref(leaf, ref, root_objectid,
1294 owner, offset)) {
1295 if (recow) {
b3b4aa74 1296 btrfs_release_path(path);
5d4f98a2
YZ
1297 goto again;
1298 }
1299 err = 0;
1300 break;
1301 }
1302 path->slots[0]++;
31840ae1 1303 }
5d4f98a2
YZ
1304fail:
1305 return err;
31840ae1
ZY
1306}
1307
5d4f98a2 1308static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1309 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1310 struct btrfs_path *path,
1311 u64 bytenr, u64 parent,
1312 u64 root_objectid, u64 owner,
1313 u64 offset, int refs_to_add)
31840ae1 1314{
87bde3cd 1315 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1316 struct btrfs_key key;
1317 struct extent_buffer *leaf;
5d4f98a2 1318 u32 size;
31840ae1
ZY
1319 u32 num_refs;
1320 int ret;
74493f7a 1321
74493f7a 1322 key.objectid = bytenr;
5d4f98a2
YZ
1323 if (parent) {
1324 key.type = BTRFS_SHARED_DATA_REF_KEY;
1325 key.offset = parent;
1326 size = sizeof(struct btrfs_shared_data_ref);
1327 } else {
1328 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1329 key.offset = hash_extent_data_ref(root_objectid,
1330 owner, offset);
1331 size = sizeof(struct btrfs_extent_data_ref);
1332 }
74493f7a 1333
5d4f98a2
YZ
1334 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1335 if (ret && ret != -EEXIST)
1336 goto fail;
1337
1338 leaf = path->nodes[0];
1339 if (parent) {
1340 struct btrfs_shared_data_ref *ref;
31840ae1 1341 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1342 struct btrfs_shared_data_ref);
1343 if (ret == 0) {
1344 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1345 } else {
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1347 num_refs += refs_to_add;
1348 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1349 }
5d4f98a2
YZ
1350 } else {
1351 struct btrfs_extent_data_ref *ref;
1352 while (ret == -EEXIST) {
1353 ref = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_extent_data_ref);
1355 if (match_extent_data_ref(leaf, ref, root_objectid,
1356 owner, offset))
1357 break;
b3b4aa74 1358 btrfs_release_path(path);
5d4f98a2
YZ
1359 key.offset++;
1360 ret = btrfs_insert_empty_item(trans, root, path, &key,
1361 size);
1362 if (ret && ret != -EEXIST)
1363 goto fail;
31840ae1 1364
5d4f98a2
YZ
1365 leaf = path->nodes[0];
1366 }
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (ret == 0) {
1370 btrfs_set_extent_data_ref_root(leaf, ref,
1371 root_objectid);
1372 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1373 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1374 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1375 } else {
1376 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1377 num_refs += refs_to_add;
1378 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1379 }
31840ae1 1380 }
5d4f98a2
YZ
1381 btrfs_mark_buffer_dirty(leaf);
1382 ret = 0;
1383fail:
b3b4aa74 1384 btrfs_release_path(path);
7bb86316 1385 return ret;
74493f7a
CM
1386}
1387
5d4f98a2 1388static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1389 struct btrfs_fs_info *fs_info,
5d4f98a2 1390 struct btrfs_path *path,
fcebe456 1391 int refs_to_drop, int *last_ref)
31840ae1 1392{
5d4f98a2
YZ
1393 struct btrfs_key key;
1394 struct btrfs_extent_data_ref *ref1 = NULL;
1395 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1396 struct extent_buffer *leaf;
5d4f98a2 1397 u32 num_refs = 0;
31840ae1
ZY
1398 int ret = 0;
1399
1400 leaf = path->nodes[0];
5d4f98a2
YZ
1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402
1403 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 struct btrfs_extent_data_ref);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_shared_data_ref);
1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 struct btrfs_extent_ref_v0 *ref0;
1414 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 struct btrfs_extent_ref_v0);
1416 num_refs = btrfs_ref_count_v0(leaf, ref0);
1417#endif
1418 } else {
1419 BUG();
1420 }
1421
56bec294
CM
1422 BUG_ON(num_refs < refs_to_drop);
1423 num_refs -= refs_to_drop;
5d4f98a2 1424
31840ae1 1425 if (num_refs == 0) {
87bde3cd 1426 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1427 *last_ref = 1;
31840ae1 1428 } else {
5d4f98a2
YZ
1429 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1430 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1431 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1432 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1433#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1434 else {
1435 struct btrfs_extent_ref_v0 *ref0;
1436 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1437 struct btrfs_extent_ref_v0);
1438 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1439 }
1440#endif
31840ae1
ZY
1441 btrfs_mark_buffer_dirty(leaf);
1442 }
31840ae1
ZY
1443 return ret;
1444}
1445
9ed0dea0 1446static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1447 struct btrfs_extent_inline_ref *iref)
15916de8 1448{
5d4f98a2
YZ
1449 struct btrfs_key key;
1450 struct extent_buffer *leaf;
1451 struct btrfs_extent_data_ref *ref1;
1452 struct btrfs_shared_data_ref *ref2;
1453 u32 num_refs = 0;
3de28d57 1454 int type;
5d4f98a2
YZ
1455
1456 leaf = path->nodes[0];
1457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1458 if (iref) {
3de28d57
LB
1459 /*
1460 * If type is invalid, we should have bailed out earlier than
1461 * this call.
1462 */
1463 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1464 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1465 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1466 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1467 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1468 } else {
1469 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1470 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1471 }
1472 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1474 struct btrfs_extent_data_ref);
1475 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1476 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1477 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1478 struct btrfs_shared_data_ref);
1479 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1480#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1481 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1482 struct btrfs_extent_ref_v0 *ref0;
1483 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1484 struct btrfs_extent_ref_v0);
1485 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1486#endif
5d4f98a2
YZ
1487 } else {
1488 WARN_ON(1);
1489 }
1490 return num_refs;
1491}
15916de8 1492
5d4f98a2 1493static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1494 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1495 struct btrfs_path *path,
1496 u64 bytenr, u64 parent,
1497 u64 root_objectid)
1f3c79a2 1498{
87bde3cd 1499 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1500 struct btrfs_key key;
1f3c79a2 1501 int ret;
1f3c79a2 1502
5d4f98a2
YZ
1503 key.objectid = bytenr;
1504 if (parent) {
1505 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1506 key.offset = parent;
1507 } else {
1508 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1509 key.offset = root_objectid;
1f3c79a2
LH
1510 }
1511
5d4f98a2
YZ
1512 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1513 if (ret > 0)
1514 ret = -ENOENT;
1515#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1516 if (ret == -ENOENT && parent) {
b3b4aa74 1517 btrfs_release_path(path);
5d4f98a2
YZ
1518 key.type = BTRFS_EXTENT_REF_V0_KEY;
1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520 if (ret > 0)
1521 ret = -ENOENT;
1522 }
1f3c79a2 1523#endif
5d4f98a2 1524 return ret;
1f3c79a2
LH
1525}
1526
5d4f98a2 1527static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1528 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1529 struct btrfs_path *path,
1530 u64 bytenr, u64 parent,
1531 u64 root_objectid)
31840ae1 1532{
5d4f98a2 1533 struct btrfs_key key;
31840ae1 1534 int ret;
31840ae1 1535
5d4f98a2
YZ
1536 key.objectid = bytenr;
1537 if (parent) {
1538 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1539 key.offset = parent;
1540 } else {
1541 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1542 key.offset = root_objectid;
1543 }
1544
87bde3cd
JM
1545 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1546 path, &key, 0);
b3b4aa74 1547 btrfs_release_path(path);
31840ae1
ZY
1548 return ret;
1549}
1550
5d4f98a2 1551static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1552{
5d4f98a2
YZ
1553 int type;
1554 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1555 if (parent > 0)
1556 type = BTRFS_SHARED_BLOCK_REF_KEY;
1557 else
1558 type = BTRFS_TREE_BLOCK_REF_KEY;
1559 } else {
1560 if (parent > 0)
1561 type = BTRFS_SHARED_DATA_REF_KEY;
1562 else
1563 type = BTRFS_EXTENT_DATA_REF_KEY;
1564 }
1565 return type;
31840ae1 1566}
56bec294 1567
2c47e605
YZ
1568static int find_next_key(struct btrfs_path *path, int level,
1569 struct btrfs_key *key)
56bec294 1570
02217ed2 1571{
2c47e605 1572 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1573 if (!path->nodes[level])
1574 break;
5d4f98a2
YZ
1575 if (path->slots[level] + 1 >=
1576 btrfs_header_nritems(path->nodes[level]))
1577 continue;
1578 if (level == 0)
1579 btrfs_item_key_to_cpu(path->nodes[level], key,
1580 path->slots[level] + 1);
1581 else
1582 btrfs_node_key_to_cpu(path->nodes[level], key,
1583 path->slots[level] + 1);
1584 return 0;
1585 }
1586 return 1;
1587}
037e6390 1588
5d4f98a2
YZ
1589/*
1590 * look for inline back ref. if back ref is found, *ref_ret is set
1591 * to the address of inline back ref, and 0 is returned.
1592 *
1593 * if back ref isn't found, *ref_ret is set to the address where it
1594 * should be inserted, and -ENOENT is returned.
1595 *
1596 * if insert is true and there are too many inline back refs, the path
1597 * points to the extent item, and -EAGAIN is returned.
1598 *
1599 * NOTE: inline back refs are ordered in the same way that back ref
1600 * items in the tree are ordered.
1601 */
1602static noinline_for_stack
1603int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1604 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1605 struct btrfs_path *path,
1606 struct btrfs_extent_inline_ref **ref_ret,
1607 u64 bytenr, u64 num_bytes,
1608 u64 parent, u64 root_objectid,
1609 u64 owner, u64 offset, int insert)
1610{
87bde3cd 1611 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1612 struct btrfs_key key;
1613 struct extent_buffer *leaf;
1614 struct btrfs_extent_item *ei;
1615 struct btrfs_extent_inline_ref *iref;
1616 u64 flags;
1617 u64 item_size;
1618 unsigned long ptr;
1619 unsigned long end;
1620 int extra_size;
1621 int type;
1622 int want;
1623 int ret;
1624 int err = 0;
0b246afa 1625 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1626 int needed;
26b8003f 1627
db94535d 1628 key.objectid = bytenr;
31840ae1 1629 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1630 key.offset = num_bytes;
31840ae1 1631
5d4f98a2
YZ
1632 want = extent_ref_type(parent, owner);
1633 if (insert) {
1634 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1635 path->keep_locks = 1;
5d4f98a2
YZ
1636 } else
1637 extra_size = -1;
3173a18f
JB
1638
1639 /*
1640 * Owner is our parent level, so we can just add one to get the level
1641 * for the block we are interested in.
1642 */
1643 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1644 key.type = BTRFS_METADATA_ITEM_KEY;
1645 key.offset = owner;
1646 }
1647
1648again:
5d4f98a2 1649 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1650 if (ret < 0) {
5d4f98a2
YZ
1651 err = ret;
1652 goto out;
1653 }
3173a18f
JB
1654
1655 /*
1656 * We may be a newly converted file system which still has the old fat
1657 * extent entries for metadata, so try and see if we have one of those.
1658 */
1659 if (ret > 0 && skinny_metadata) {
1660 skinny_metadata = false;
1661 if (path->slots[0]) {
1662 path->slots[0]--;
1663 btrfs_item_key_to_cpu(path->nodes[0], &key,
1664 path->slots[0]);
1665 if (key.objectid == bytenr &&
1666 key.type == BTRFS_EXTENT_ITEM_KEY &&
1667 key.offset == num_bytes)
1668 ret = 0;
1669 }
1670 if (ret) {
9ce49a0b 1671 key.objectid = bytenr;
3173a18f
JB
1672 key.type = BTRFS_EXTENT_ITEM_KEY;
1673 key.offset = num_bytes;
1674 btrfs_release_path(path);
1675 goto again;
1676 }
1677 }
1678
79787eaa
JM
1679 if (ret && !insert) {
1680 err = -ENOENT;
1681 goto out;
fae7f21c 1682 } else if (WARN_ON(ret)) {
492104c8 1683 err = -EIO;
492104c8 1684 goto out;
79787eaa 1685 }
5d4f98a2
YZ
1686
1687 leaf = path->nodes[0];
1688 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1689#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1690 if (item_size < sizeof(*ei)) {
1691 if (!insert) {
1692 err = -ENOENT;
1693 goto out;
1694 }
87bde3cd 1695 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1696 extra_size);
1697 if (ret < 0) {
1698 err = ret;
1699 goto out;
1700 }
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 }
1704#endif
1705 BUG_ON(item_size < sizeof(*ei));
1706
5d4f98a2
YZ
1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708 flags = btrfs_extent_flags(leaf, ei);
1709
1710 ptr = (unsigned long)(ei + 1);
1711 end = (unsigned long)ei + item_size;
1712
3173a18f 1713 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1714 ptr += sizeof(struct btrfs_tree_block_info);
1715 BUG_ON(ptr > end);
5d4f98a2
YZ
1716 }
1717
3de28d57
LB
1718 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1719 needed = BTRFS_REF_TYPE_DATA;
1720 else
1721 needed = BTRFS_REF_TYPE_BLOCK;
1722
5d4f98a2
YZ
1723 err = -ENOENT;
1724 while (1) {
1725 if (ptr >= end) {
1726 WARN_ON(ptr > end);
1727 break;
1728 }
1729 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1730 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1731 if (type == BTRFS_REF_TYPE_INVALID) {
1732 err = -EINVAL;
1733 goto out;
1734 }
1735
5d4f98a2
YZ
1736 if (want < type)
1737 break;
1738 if (want > type) {
1739 ptr += btrfs_extent_inline_ref_size(type);
1740 continue;
1741 }
1742
1743 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1744 struct btrfs_extent_data_ref *dref;
1745 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1746 if (match_extent_data_ref(leaf, dref, root_objectid,
1747 owner, offset)) {
1748 err = 0;
1749 break;
1750 }
1751 if (hash_extent_data_ref_item(leaf, dref) <
1752 hash_extent_data_ref(root_objectid, owner, offset))
1753 break;
1754 } else {
1755 u64 ref_offset;
1756 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1757 if (parent > 0) {
1758 if (parent == ref_offset) {
1759 err = 0;
1760 break;
1761 }
1762 if (ref_offset < parent)
1763 break;
1764 } else {
1765 if (root_objectid == ref_offset) {
1766 err = 0;
1767 break;
1768 }
1769 if (ref_offset < root_objectid)
1770 break;
1771 }
1772 }
1773 ptr += btrfs_extent_inline_ref_size(type);
1774 }
1775 if (err == -ENOENT && insert) {
1776 if (item_size + extra_size >=
1777 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1778 err = -EAGAIN;
1779 goto out;
1780 }
1781 /*
1782 * To add new inline back ref, we have to make sure
1783 * there is no corresponding back ref item.
1784 * For simplicity, we just do not add new inline back
1785 * ref if there is any kind of item for this block
1786 */
2c47e605
YZ
1787 if (find_next_key(path, 0, &key) == 0 &&
1788 key.objectid == bytenr &&
85d4198e 1789 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1790 err = -EAGAIN;
1791 goto out;
1792 }
1793 }
1794 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1795out:
85d4198e 1796 if (insert) {
5d4f98a2
YZ
1797 path->keep_locks = 0;
1798 btrfs_unlock_up_safe(path, 1);
1799 }
1800 return err;
1801}
1802
1803/*
1804 * helper to add new inline back ref
1805 */
1806static noinline_for_stack
87bde3cd 1807void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1808 struct btrfs_path *path,
1809 struct btrfs_extent_inline_ref *iref,
1810 u64 parent, u64 root_objectid,
1811 u64 owner, u64 offset, int refs_to_add,
1812 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1813{
1814 struct extent_buffer *leaf;
1815 struct btrfs_extent_item *ei;
1816 unsigned long ptr;
1817 unsigned long end;
1818 unsigned long item_offset;
1819 u64 refs;
1820 int size;
1821 int type;
5d4f98a2
YZ
1822
1823 leaf = path->nodes[0];
1824 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1825 item_offset = (unsigned long)iref - (unsigned long)ei;
1826
1827 type = extent_ref_type(parent, owner);
1828 size = btrfs_extent_inline_ref_size(type);
1829
87bde3cd 1830 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1831
1832 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1833 refs = btrfs_extent_refs(leaf, ei);
1834 refs += refs_to_add;
1835 btrfs_set_extent_refs(leaf, ei, refs);
1836 if (extent_op)
1837 __run_delayed_extent_op(extent_op, leaf, ei);
1838
1839 ptr = (unsigned long)ei + item_offset;
1840 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1841 if (ptr < end - size)
1842 memmove_extent_buffer(leaf, ptr + size, ptr,
1843 end - size - ptr);
1844
1845 iref = (struct btrfs_extent_inline_ref *)ptr;
1846 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1847 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 struct btrfs_extent_data_ref *dref;
1849 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1850 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1851 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1852 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1853 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1854 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1855 struct btrfs_shared_data_ref *sref;
1856 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1857 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1860 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1861 } else {
1862 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1863 }
1864 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1865}
1866
1867static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1868 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1869 struct btrfs_path *path,
1870 struct btrfs_extent_inline_ref **ref_ret,
1871 u64 bytenr, u64 num_bytes, u64 parent,
1872 u64 root_objectid, u64 owner, u64 offset)
1873{
1874 int ret;
1875
87bde3cd 1876 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1877 bytenr, num_bytes, parent,
1878 root_objectid, owner, offset, 0);
1879 if (ret != -ENOENT)
54aa1f4d 1880 return ret;
5d4f98a2 1881
b3b4aa74 1882 btrfs_release_path(path);
5d4f98a2
YZ
1883 *ref_ret = NULL;
1884
1885 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1886 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1887 parent, root_objectid);
5d4f98a2 1888 } else {
87bde3cd
JM
1889 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1890 parent, root_objectid, owner,
1891 offset);
b9473439 1892 }
5d4f98a2
YZ
1893 return ret;
1894}
31840ae1 1895
5d4f98a2
YZ
1896/*
1897 * helper to update/remove inline back ref
1898 */
1899static noinline_for_stack
87bde3cd 1900void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1901 struct btrfs_path *path,
1902 struct btrfs_extent_inline_ref *iref,
1903 int refs_to_mod,
fcebe456
JB
1904 struct btrfs_delayed_extent_op *extent_op,
1905 int *last_ref)
5d4f98a2
YZ
1906{
1907 struct extent_buffer *leaf;
1908 struct btrfs_extent_item *ei;
1909 struct btrfs_extent_data_ref *dref = NULL;
1910 struct btrfs_shared_data_ref *sref = NULL;
1911 unsigned long ptr;
1912 unsigned long end;
1913 u32 item_size;
1914 int size;
1915 int type;
5d4f98a2
YZ
1916 u64 refs;
1917
1918 leaf = path->nodes[0];
1919 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1920 refs = btrfs_extent_refs(leaf, ei);
1921 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1922 refs += refs_to_mod;
1923 btrfs_set_extent_refs(leaf, ei, refs);
1924 if (extent_op)
1925 __run_delayed_extent_op(extent_op, leaf, ei);
1926
3de28d57
LB
1927 /*
1928 * If type is invalid, we should have bailed out after
1929 * lookup_inline_extent_backref().
1930 */
1931 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1932 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1933
1934 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1935 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1936 refs = btrfs_extent_data_ref_count(leaf, dref);
1937 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1938 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1939 refs = btrfs_shared_data_ref_count(leaf, sref);
1940 } else {
1941 refs = 1;
1942 BUG_ON(refs_to_mod != -1);
56bec294 1943 }
31840ae1 1944
5d4f98a2
YZ
1945 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1946 refs += refs_to_mod;
1947
1948 if (refs > 0) {
1949 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1950 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1951 else
1952 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1953 } else {
fcebe456 1954 *last_ref = 1;
5d4f98a2
YZ
1955 size = btrfs_extent_inline_ref_size(type);
1956 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1957 ptr = (unsigned long)iref;
1958 end = (unsigned long)ei + item_size;
1959 if (ptr + size < end)
1960 memmove_extent_buffer(leaf, ptr, ptr + size,
1961 end - ptr - size);
1962 item_size -= size;
87bde3cd 1963 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1964 }
1965 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1966}
1967
1968static noinline_for_stack
1969int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1970 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1971 struct btrfs_path *path,
1972 u64 bytenr, u64 num_bytes, u64 parent,
1973 u64 root_objectid, u64 owner,
1974 u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1976{
1977 struct btrfs_extent_inline_ref *iref;
1978 int ret;
1979
87bde3cd 1980 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1981 bytenr, num_bytes, parent,
1982 root_objectid, owner, offset, 1);
1983 if (ret == 0) {
1984 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1985 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1986 refs_to_add, extent_op, NULL);
5d4f98a2 1987 } else if (ret == -ENOENT) {
87bde3cd 1988 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1989 root_objectid, owner, offset,
1990 refs_to_add, extent_op);
1991 ret = 0;
771ed689 1992 }
5d4f98a2
YZ
1993 return ret;
1994}
31840ae1 1995
5d4f98a2 1996static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1997 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1998 struct btrfs_path *path,
1999 u64 bytenr, u64 parent, u64 root_objectid,
2000 u64 owner, u64 offset, int refs_to_add)
2001{
2002 int ret;
2003 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2004 BUG_ON(refs_to_add != 1);
87bde3cd 2005 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2006 parent, root_objectid);
2007 } else {
87bde3cd 2008 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2009 parent, root_objectid,
2010 owner, offset, refs_to_add);
2011 }
2012 return ret;
2013}
56bec294 2014
5d4f98a2 2015static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2016 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2017 struct btrfs_path *path,
2018 struct btrfs_extent_inline_ref *iref,
fcebe456 2019 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2020{
143bede5 2021 int ret = 0;
b9473439 2022
5d4f98a2
YZ
2023 BUG_ON(!is_data && refs_to_drop != 1);
2024 if (iref) {
87bde3cd 2025 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2026 -refs_to_drop, NULL, last_ref);
5d4f98a2 2027 } else if (is_data) {
87bde3cd 2028 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 2029 last_ref);
5d4f98a2 2030 } else {
fcebe456 2031 *last_ref = 1;
87bde3cd 2032 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2033 }
2034 return ret;
2035}
2036
86557861 2037#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2038static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2039 u64 *discarded_bytes)
5d4f98a2 2040{
86557861
JM
2041 int j, ret = 0;
2042 u64 bytes_left, end;
4d89d377 2043 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2044
4d89d377
JM
2045 if (WARN_ON(start != aligned_start)) {
2046 len -= aligned_start - start;
2047 len = round_down(len, 1 << 9);
2048 start = aligned_start;
2049 }
d04c6b88 2050
4d89d377 2051 *discarded_bytes = 0;
86557861
JM
2052
2053 if (!len)
2054 return 0;
2055
2056 end = start + len;
2057 bytes_left = len;
2058
2059 /* Skip any superblocks on this device. */
2060 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2061 u64 sb_start = btrfs_sb_offset(j);
2062 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2063 u64 size = sb_start - start;
2064
2065 if (!in_range(sb_start, start, bytes_left) &&
2066 !in_range(sb_end, start, bytes_left) &&
2067 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2068 continue;
2069
2070 /*
2071 * Superblock spans beginning of range. Adjust start and
2072 * try again.
2073 */
2074 if (sb_start <= start) {
2075 start += sb_end - start;
2076 if (start > end) {
2077 bytes_left = 0;
2078 break;
2079 }
2080 bytes_left = end - start;
2081 continue;
2082 }
2083
2084 if (size) {
2085 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2086 GFP_NOFS, 0);
2087 if (!ret)
2088 *discarded_bytes += size;
2089 else if (ret != -EOPNOTSUPP)
2090 return ret;
2091 }
2092
2093 start = sb_end;
2094 if (start > end) {
2095 bytes_left = 0;
2096 break;
2097 }
2098 bytes_left = end - start;
2099 }
2100
2101 if (bytes_left) {
2102 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2103 GFP_NOFS, 0);
2104 if (!ret)
86557861 2105 *discarded_bytes += bytes_left;
4d89d377 2106 }
d04c6b88 2107 return ret;
5d4f98a2 2108}
5d4f98a2 2109
2ff7e61e 2110int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2111 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2112{
5d4f98a2 2113 int ret;
5378e607 2114 u64 discarded_bytes = 0;
a1d3c478 2115 struct btrfs_bio *bbio = NULL;
5d4f98a2 2116
e244a0ae 2117
2999241d
FM
2118 /*
2119 * Avoid races with device replace and make sure our bbio has devices
2120 * associated to its stripes that don't go away while we are discarding.
2121 */
0b246afa 2122 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2123 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2124 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2125 &bbio, 0);
79787eaa 2126 /* Error condition is -ENOMEM */
5d4f98a2 2127 if (!ret) {
a1d3c478 2128 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2129 int i;
2130
5d4f98a2 2131
a1d3c478 2132 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2133 u64 bytes;
38b5f68e
AJ
2134 struct request_queue *req_q;
2135
627e0873
FM
2136 if (!stripe->dev->bdev) {
2137 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2138 continue;
2139 }
38b5f68e
AJ
2140 req_q = bdev_get_queue(stripe->dev->bdev);
2141 if (!blk_queue_discard(req_q))
d5e2003c
JB
2142 continue;
2143
5378e607
LD
2144 ret = btrfs_issue_discard(stripe->dev->bdev,
2145 stripe->physical,
d04c6b88
JM
2146 stripe->length,
2147 &bytes);
5378e607 2148 if (!ret)
d04c6b88 2149 discarded_bytes += bytes;
5378e607 2150 else if (ret != -EOPNOTSUPP)
79787eaa 2151 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2152
2153 /*
2154 * Just in case we get back EOPNOTSUPP for some reason,
2155 * just ignore the return value so we don't screw up
2156 * people calling discard_extent.
2157 */
2158 ret = 0;
5d4f98a2 2159 }
6e9606d2 2160 btrfs_put_bbio(bbio);
5d4f98a2 2161 }
0b246afa 2162 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2163
2164 if (actual_bytes)
2165 *actual_bytes = discarded_bytes;
2166
5d4f98a2 2167
53b381b3
DW
2168 if (ret == -EOPNOTSUPP)
2169 ret = 0;
5d4f98a2 2170 return ret;
5d4f98a2
YZ
2171}
2172
79787eaa 2173/* Can return -ENOMEM */
5d4f98a2 2174int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2175 struct btrfs_root *root,
5d4f98a2 2176 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2177 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2178{
84f7d8e6 2179 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2180 int old_ref_mod, new_ref_mod;
5d4f98a2 2181 int ret;
66d7e7f0 2182
5d4f98a2
YZ
2183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2184 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2185
fd708b81
JB
2186 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2187 owner, offset, BTRFS_ADD_DELAYED_REF);
2188
5d4f98a2 2189 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2190 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2191 num_bytes, parent,
2192 root_objectid, (int)owner,
2193 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2194 &old_ref_mod, &new_ref_mod);
5d4f98a2 2195 } else {
66d7e7f0 2196 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2197 num_bytes, parent,
2198 root_objectid, owner, offset,
d7eae340
OS
2199 0, BTRFS_ADD_DELAYED_REF,
2200 &old_ref_mod, &new_ref_mod);
5d4f98a2 2201 }
d7eae340 2202
29d2b84c
NB
2203 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2204 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2205
2206 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2207 }
d7eae340 2208
5d4f98a2
YZ
2209 return ret;
2210}
2211
2212static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2213 struct btrfs_fs_info *fs_info,
c682f9b3 2214 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2215 u64 parent, u64 root_objectid,
2216 u64 owner, u64 offset, int refs_to_add,
2217 struct btrfs_delayed_extent_op *extent_op)
2218{
2219 struct btrfs_path *path;
2220 struct extent_buffer *leaf;
2221 struct btrfs_extent_item *item;
fcebe456 2222 struct btrfs_key key;
c682f9b3
QW
2223 u64 bytenr = node->bytenr;
2224 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2225 u64 refs;
2226 int ret;
5d4f98a2
YZ
2227
2228 path = btrfs_alloc_path();
2229 if (!path)
2230 return -ENOMEM;
2231
e4058b54 2232 path->reada = READA_FORWARD;
5d4f98a2
YZ
2233 path->leave_spinning = 1;
2234 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2235 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2236 num_bytes, parent, root_objectid,
2237 owner, offset,
5d4f98a2 2238 refs_to_add, extent_op);
0ed4792a 2239 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2240 goto out;
fcebe456
JB
2241
2242 /*
2243 * Ok we had -EAGAIN which means we didn't have space to insert and
2244 * inline extent ref, so just update the reference count and add a
2245 * normal backref.
2246 */
5d4f98a2 2247 leaf = path->nodes[0];
fcebe456 2248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2249 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2250 refs = btrfs_extent_refs(leaf, item);
2251 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2252 if (extent_op)
2253 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2254
5d4f98a2 2255 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2256 btrfs_release_path(path);
56bec294 2257
e4058b54 2258 path->reada = READA_FORWARD;
b9473439 2259 path->leave_spinning = 1;
56bec294 2260 /* now insert the actual backref */
87bde3cd
JM
2261 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2262 root_objectid, owner, offset, refs_to_add);
79787eaa 2263 if (ret)
66642832 2264 btrfs_abort_transaction(trans, ret);
5d4f98a2 2265out:
56bec294 2266 btrfs_free_path(path);
30d133fc 2267 return ret;
56bec294
CM
2268}
2269
5d4f98a2 2270static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2271 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2272 struct btrfs_delayed_ref_node *node,
2273 struct btrfs_delayed_extent_op *extent_op,
2274 int insert_reserved)
56bec294 2275{
5d4f98a2
YZ
2276 int ret = 0;
2277 struct btrfs_delayed_data_ref *ref;
2278 struct btrfs_key ins;
2279 u64 parent = 0;
2280 u64 ref_root = 0;
2281 u64 flags = 0;
2282
2283 ins.objectid = node->bytenr;
2284 ins.offset = node->num_bytes;
2285 ins.type = BTRFS_EXTENT_ITEM_KEY;
2286
2287 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2288 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2289
5d4f98a2
YZ
2290 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2291 parent = ref->parent;
fcebe456 2292 ref_root = ref->root;
5d4f98a2
YZ
2293
2294 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2295 if (extent_op)
5d4f98a2 2296 flags |= extent_op->flags_to_set;
2ff7e61e 2297 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2298 parent, ref_root, flags,
2299 ref->objectid, ref->offset,
2300 &ins, node->ref_mod);
5d4f98a2 2301 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2302 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2303 ref_root, ref->objectid,
2304 ref->offset, node->ref_mod,
c682f9b3 2305 extent_op);
5d4f98a2 2306 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2307 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2308 ref_root, ref->objectid,
2309 ref->offset, node->ref_mod,
c682f9b3 2310 extent_op);
5d4f98a2
YZ
2311 } else {
2312 BUG();
2313 }
2314 return ret;
2315}
2316
2317static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2318 struct extent_buffer *leaf,
2319 struct btrfs_extent_item *ei)
2320{
2321 u64 flags = btrfs_extent_flags(leaf, ei);
2322 if (extent_op->update_flags) {
2323 flags |= extent_op->flags_to_set;
2324 btrfs_set_extent_flags(leaf, ei, flags);
2325 }
2326
2327 if (extent_op->update_key) {
2328 struct btrfs_tree_block_info *bi;
2329 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2330 bi = (struct btrfs_tree_block_info *)(ei + 1);
2331 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2332 }
2333}
2334
2335static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2336 struct btrfs_fs_info *fs_info,
d278850e 2337 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2338 struct btrfs_delayed_extent_op *extent_op)
2339{
2340 struct btrfs_key key;
2341 struct btrfs_path *path;
2342 struct btrfs_extent_item *ei;
2343 struct extent_buffer *leaf;
2344 u32 item_size;
56bec294 2345 int ret;
5d4f98a2 2346 int err = 0;
b1c79e09 2347 int metadata = !extent_op->is_data;
5d4f98a2 2348
79787eaa
JM
2349 if (trans->aborted)
2350 return 0;
2351
0b246afa 2352 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2353 metadata = 0;
2354
5d4f98a2
YZ
2355 path = btrfs_alloc_path();
2356 if (!path)
2357 return -ENOMEM;
2358
d278850e 2359 key.objectid = head->bytenr;
5d4f98a2 2360
3173a18f 2361 if (metadata) {
3173a18f 2362 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2363 key.offset = extent_op->level;
3173a18f
JB
2364 } else {
2365 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2366 key.offset = head->num_bytes;
3173a18f
JB
2367 }
2368
2369again:
e4058b54 2370 path->reada = READA_FORWARD;
5d4f98a2 2371 path->leave_spinning = 1;
0b246afa 2372 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2373 if (ret < 0) {
2374 err = ret;
2375 goto out;
2376 }
2377 if (ret > 0) {
3173a18f 2378 if (metadata) {
55994887
FDBM
2379 if (path->slots[0] > 0) {
2380 path->slots[0]--;
2381 btrfs_item_key_to_cpu(path->nodes[0], &key,
2382 path->slots[0]);
d278850e 2383 if (key.objectid == head->bytenr &&
55994887 2384 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2385 key.offset == head->num_bytes)
55994887
FDBM
2386 ret = 0;
2387 }
2388 if (ret > 0) {
2389 btrfs_release_path(path);
2390 metadata = 0;
3173a18f 2391
d278850e
JB
2392 key.objectid = head->bytenr;
2393 key.offset = head->num_bytes;
55994887
FDBM
2394 key.type = BTRFS_EXTENT_ITEM_KEY;
2395 goto again;
2396 }
2397 } else {
2398 err = -EIO;
2399 goto out;
3173a18f 2400 }
5d4f98a2
YZ
2401 }
2402
2403 leaf = path->nodes[0];
2404 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2405#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2406 if (item_size < sizeof(*ei)) {
87bde3cd 2407 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2408 if (ret < 0) {
2409 err = ret;
2410 goto out;
2411 }
2412 leaf = path->nodes[0];
2413 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2414 }
2415#endif
2416 BUG_ON(item_size < sizeof(*ei));
2417 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2418 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2419
5d4f98a2
YZ
2420 btrfs_mark_buffer_dirty(leaf);
2421out:
2422 btrfs_free_path(path);
2423 return err;
56bec294
CM
2424}
2425
5d4f98a2 2426static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2427 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2428 struct btrfs_delayed_ref_node *node,
2429 struct btrfs_delayed_extent_op *extent_op,
2430 int insert_reserved)
56bec294
CM
2431{
2432 int ret = 0;
5d4f98a2
YZ
2433 struct btrfs_delayed_tree_ref *ref;
2434 struct btrfs_key ins;
2435 u64 parent = 0;
2436 u64 ref_root = 0;
0b246afa 2437 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2438
5d4f98a2 2439 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2440 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2441
5d4f98a2
YZ
2442 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2443 parent = ref->parent;
fcebe456 2444 ref_root = ref->root;
5d4f98a2 2445
3173a18f
JB
2446 ins.objectid = node->bytenr;
2447 if (skinny_metadata) {
2448 ins.offset = ref->level;
2449 ins.type = BTRFS_METADATA_ITEM_KEY;
2450 } else {
2451 ins.offset = node->num_bytes;
2452 ins.type = BTRFS_EXTENT_ITEM_KEY;
2453 }
2454
02794222 2455 if (node->ref_mod != 1) {
2ff7e61e 2456 btrfs_err(fs_info,
02794222
LB
2457 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2458 node->bytenr, node->ref_mod, node->action, ref_root,
2459 parent);
2460 return -EIO;
2461 }
5d4f98a2 2462 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2463 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2464 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2465 parent, ref_root,
2466 extent_op->flags_to_set,
2467 &extent_op->key,
b06c4bf5 2468 ref->level, &ins);
5d4f98a2 2469 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2470 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2471 parent, ref_root,
2472 ref->level, 0, 1,
fcebe456 2473 extent_op);
5d4f98a2 2474 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2475 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2476 parent, ref_root,
2477 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2478 } else {
2479 BUG();
2480 }
56bec294
CM
2481 return ret;
2482}
2483
2484/* helper function to actually process a single delayed ref entry */
5d4f98a2 2485static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2486 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2487 struct btrfs_delayed_ref_node *node,
2488 struct btrfs_delayed_extent_op *extent_op,
2489 int insert_reserved)
56bec294 2490{
79787eaa
JM
2491 int ret = 0;
2492
857cc2fc
JB
2493 if (trans->aborted) {
2494 if (insert_reserved)
2ff7e61e 2495 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2496 node->num_bytes, 1);
79787eaa 2497 return 0;
857cc2fc 2498 }
79787eaa 2499
5d4f98a2
YZ
2500 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2501 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2502 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2503 insert_reserved);
2504 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2505 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2506 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2507 insert_reserved);
2508 else
2509 BUG();
2510 return ret;
56bec294
CM
2511}
2512
c6fc2454 2513static inline struct btrfs_delayed_ref_node *
56bec294
CM
2514select_delayed_ref(struct btrfs_delayed_ref_head *head)
2515{
cffc3374
FM
2516 struct btrfs_delayed_ref_node *ref;
2517
0e0adbcf 2518 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2519 return NULL;
d7df2c79 2520
cffc3374
FM
2521 /*
2522 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2523 * This is to prevent a ref count from going down to zero, which deletes
2524 * the extent item from the extent tree, when there still are references
2525 * to add, which would fail because they would not find the extent item.
2526 */
1d57ee94
WX
2527 if (!list_empty(&head->ref_add_list))
2528 return list_first_entry(&head->ref_add_list,
2529 struct btrfs_delayed_ref_node, add_list);
2530
0e0adbcf
JB
2531 ref = rb_entry(rb_first(&head->ref_tree),
2532 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2533 ASSERT(list_empty(&ref->add_list));
2534 return ref;
56bec294
CM
2535}
2536
2eadaa22
JB
2537static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2538 struct btrfs_delayed_ref_head *head)
2539{
2540 spin_lock(&delayed_refs->lock);
2541 head->processing = 0;
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
2544 btrfs_delayed_ref_unlock(head);
2545}
2546
b00e6250
JB
2547static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2548 struct btrfs_fs_info *fs_info,
2549 struct btrfs_delayed_ref_head *head)
2550{
2551 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2552 int ret;
2553
2554 if (!extent_op)
2555 return 0;
2556 head->extent_op = NULL;
2557 if (head->must_insert_reserved) {
2558 btrfs_free_delayed_extent_op(extent_op);
2559 return 0;
2560 }
2561 spin_unlock(&head->lock);
d278850e 2562 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2563 btrfs_free_delayed_extent_op(extent_op);
2564 return ret ? ret : 1;
2565}
2566
194ab0bc
JB
2567static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2568 struct btrfs_fs_info *fs_info,
2569 struct btrfs_delayed_ref_head *head)
2570{
2571 struct btrfs_delayed_ref_root *delayed_refs;
2572 int ret;
2573
2574 delayed_refs = &trans->transaction->delayed_refs;
2575
2576 ret = cleanup_extent_op(trans, fs_info, head);
2577 if (ret < 0) {
2578 unselect_delayed_ref_head(delayed_refs, head);
2579 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2580 return ret;
2581 } else if (ret) {
2582 return ret;
2583 }
2584
2585 /*
2586 * Need to drop our head ref lock and re-acquire the delayed ref lock
2587 * and then re-check to make sure nobody got added.
2588 */
2589 spin_unlock(&head->lock);
2590 spin_lock(&delayed_refs->lock);
2591 spin_lock(&head->lock);
0e0adbcf 2592 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2593 spin_unlock(&head->lock);
2594 spin_unlock(&delayed_refs->lock);
2595 return 1;
2596 }
194ab0bc
JB
2597 delayed_refs->num_heads--;
2598 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2599 RB_CLEAR_NODE(&head->href_node);
c1103f7a 2600 spin_unlock(&head->lock);
1e7a1421 2601 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2602 atomic_dec(&delayed_refs->num_entries);
2603
d278850e 2604 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2605
2606 if (head->total_ref_mod < 0) {
5e388e95
NB
2607 struct btrfs_space_info *space_info;
2608 u64 flags;
c1103f7a 2609
5e388e95
NB
2610 if (head->is_data)
2611 flags = BTRFS_BLOCK_GROUP_DATA;
2612 else if (head->is_system)
2613 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2614 else
2615 flags = BTRFS_BLOCK_GROUP_METADATA;
2616 space_info = __find_space_info(fs_info, flags);
2617 ASSERT(space_info);
2618 percpu_counter_add(&space_info->total_bytes_pinned,
d278850e 2619 -head->num_bytes);
c1103f7a
JB
2620
2621 if (head->is_data) {
2622 spin_lock(&delayed_refs->lock);
d278850e 2623 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2624 spin_unlock(&delayed_refs->lock);
2625 }
2626 }
2627
2628 if (head->must_insert_reserved) {
d278850e
JB
2629 btrfs_pin_extent(fs_info, head->bytenr,
2630 head->num_bytes, 1);
c1103f7a 2631 if (head->is_data) {
d278850e
JB
2632 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2633 head->num_bytes);
c1103f7a
JB
2634 }
2635 }
2636
2637 /* Also free its reserved qgroup space */
2638 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2639 head->qgroup_reserved);
2640 btrfs_delayed_ref_unlock(head);
d278850e 2641 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2642 return 0;
2643}
2644
79787eaa
JM
2645/*
2646 * Returns 0 on success or if called with an already aborted transaction.
2647 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2648 */
d7df2c79 2649static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2650 unsigned long nr)
56bec294 2651{
0a1e458a 2652 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294
CM
2653 struct btrfs_delayed_ref_root *delayed_refs;
2654 struct btrfs_delayed_ref_node *ref;
2655 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2656 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2657 ktime_t start = ktime_get();
56bec294 2658 int ret;
d7df2c79 2659 unsigned long count = 0;
0a2b2a84 2660 unsigned long actual_count = 0;
56bec294 2661 int must_insert_reserved = 0;
56bec294
CM
2662
2663 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2664 while (1) {
2665 if (!locked_ref) {
d7df2c79 2666 if (count >= nr)
56bec294 2667 break;
56bec294 2668
d7df2c79
JB
2669 spin_lock(&delayed_refs->lock);
2670 locked_ref = btrfs_select_ref_head(trans);
2671 if (!locked_ref) {
2672 spin_unlock(&delayed_refs->lock);
2673 break;
2674 }
c3e69d58
CM
2675
2676 /* grab the lock that says we are going to process
2677 * all the refs for this head */
2678 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2679 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2680 /*
2681 * we may have dropped the spin lock to get the head
2682 * mutex lock, and that might have given someone else
2683 * time to free the head. If that's true, it has been
2684 * removed from our list and we can move on.
2685 */
2686 if (ret == -EAGAIN) {
2687 locked_ref = NULL;
2688 count++;
2689 continue;
56bec294
CM
2690 }
2691 }
a28ec197 2692
2c3cf7d5
FM
2693 /*
2694 * We need to try and merge add/drops of the same ref since we
2695 * can run into issues with relocate dropping the implicit ref
2696 * and then it being added back again before the drop can
2697 * finish. If we merged anything we need to re-loop so we can
2698 * get a good ref.
2699 * Or we can get node references of the same type that weren't
2700 * merged when created due to bumps in the tree mod seq, and
2701 * we need to merge them to prevent adding an inline extent
2702 * backref before dropping it (triggering a BUG_ON at
2703 * insert_inline_extent_backref()).
2704 */
d7df2c79 2705 spin_lock(&locked_ref->lock);
be97f133 2706 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2707
d1270cd9
AJ
2708 /*
2709 * locked_ref is the head node, so we have to go one
2710 * node back for any delayed ref updates
2711 */
2712 ref = select_delayed_ref(locked_ref);
2713
2714 if (ref && ref->seq &&
41d0bd3b 2715 btrfs_check_delayed_seq(fs_info, ref->seq)) {
d7df2c79 2716 spin_unlock(&locked_ref->lock);
2eadaa22 2717 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2718 locked_ref = NULL;
d1270cd9 2719 cond_resched();
27a377db 2720 count++;
d1270cd9
AJ
2721 continue;
2722 }
2723
c1103f7a
JB
2724 /*
2725 * We're done processing refs in this ref_head, clean everything
2726 * up and move on to the next ref_head.
2727 */
56bec294 2728 if (!ref) {
194ab0bc
JB
2729 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2730 if (ret > 0 ) {
b00e6250
JB
2731 /* We dropped our lock, we need to loop. */
2732 ret = 0;
d7df2c79 2733 continue;
194ab0bc
JB
2734 } else if (ret) {
2735 return ret;
5d4f98a2 2736 }
c1103f7a
JB
2737 locked_ref = NULL;
2738 count++;
2739 continue;
2740 }
02217ed2 2741
c1103f7a
JB
2742 actual_count++;
2743 ref->in_tree = 0;
0e0adbcf
JB
2744 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2745 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2746 if (!list_empty(&ref->add_list))
2747 list_del(&ref->add_list);
2748 /*
2749 * When we play the delayed ref, also correct the ref_mod on
2750 * head
2751 */
2752 switch (ref->action) {
2753 case BTRFS_ADD_DELAYED_REF:
2754 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2755 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2756 break;
2757 case BTRFS_DROP_DELAYED_REF:
d278850e 2758 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2759 break;
2760 default:
2761 WARN_ON(1);
22cd2e7d 2762 }
1ce7a5ec
JB
2763 atomic_dec(&delayed_refs->num_entries);
2764
b00e6250
JB
2765 /*
2766 * Record the must-insert_reserved flag before we drop the spin
2767 * lock.
2768 */
2769 must_insert_reserved = locked_ref->must_insert_reserved;
2770 locked_ref->must_insert_reserved = 0;
2771
2772 extent_op = locked_ref->extent_op;
2773 locked_ref->extent_op = NULL;
d7df2c79 2774 spin_unlock(&locked_ref->lock);
925baedd 2775
2ff7e61e 2776 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2777 must_insert_reserved);
eb099670 2778
78a6184a 2779 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2780 if (ret) {
2eadaa22 2781 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2782 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2783 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2784 ret);
79787eaa
JM
2785 return ret;
2786 }
2787
093486c4
MX
2788 btrfs_put_delayed_ref(ref);
2789 count++;
c3e69d58 2790 cond_resched();
c3e69d58 2791 }
0a2b2a84
JB
2792
2793 /*
2794 * We don't want to include ref heads since we can have empty ref heads
2795 * and those will drastically skew our runtime down since we just do
2796 * accounting, no actual extent tree updates.
2797 */
2798 if (actual_count > 0) {
2799 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2800 u64 avg;
2801
2802 /*
2803 * We weigh the current average higher than our current runtime
2804 * to avoid large swings in the average.
2805 */
2806 spin_lock(&delayed_refs->lock);
2807 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2808 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2809 spin_unlock(&delayed_refs->lock);
2810 }
d7df2c79 2811 return 0;
c3e69d58
CM
2812}
2813
709c0486
AJ
2814#ifdef SCRAMBLE_DELAYED_REFS
2815/*
2816 * Normally delayed refs get processed in ascending bytenr order. This
2817 * correlates in most cases to the order added. To expose dependencies on this
2818 * order, we start to process the tree in the middle instead of the beginning
2819 */
2820static u64 find_middle(struct rb_root *root)
2821{
2822 struct rb_node *n = root->rb_node;
2823 struct btrfs_delayed_ref_node *entry;
2824 int alt = 1;
2825 u64 middle;
2826 u64 first = 0, last = 0;
2827
2828 n = rb_first(root);
2829 if (n) {
2830 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2831 first = entry->bytenr;
2832 }
2833 n = rb_last(root);
2834 if (n) {
2835 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2836 last = entry->bytenr;
2837 }
2838 n = root->rb_node;
2839
2840 while (n) {
2841 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842 WARN_ON(!entry->in_tree);
2843
2844 middle = entry->bytenr;
2845
2846 if (alt)
2847 n = n->rb_left;
2848 else
2849 n = n->rb_right;
2850
2851 alt = 1 - alt;
2852 }
2853 return middle;
2854}
2855#endif
2856
2ff7e61e 2857static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2858{
2859 u64 num_bytes;
2860
2861 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2862 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2863 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2864 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2865
2866 /*
2867 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2868 * closer to what we're really going to want to use.
1be41b78 2869 */
0b246afa 2870 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2871}
2872
1262133b
JB
2873/*
2874 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2875 * would require to store the csums for that many bytes.
2876 */
2ff7e61e 2877u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2878{
2879 u64 csum_size;
2880 u64 num_csums_per_leaf;
2881 u64 num_csums;
2882
0b246afa 2883 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2884 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2885 (u64)btrfs_super_csum_size(fs_info->super_copy));
2886 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2887 num_csums += num_csums_per_leaf - 1;
2888 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2889 return num_csums;
2890}
2891
0a2b2a84 2892int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2893 struct btrfs_fs_info *fs_info)
1be41b78
JB
2894{
2895 struct btrfs_block_rsv *global_rsv;
2896 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2897 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2898 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2899 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2900 int ret = 0;
2901
0b246afa 2902 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2903 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2904 if (num_heads > 1)
0b246afa 2905 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2906 num_bytes <<= 1;
2ff7e61e
JM
2907 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2908 fs_info->nodesize;
0b246afa 2909 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2910 num_dirty_bgs);
0b246afa 2911 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2912
2913 /*
2914 * If we can't allocate any more chunks lets make sure we have _lots_ of
2915 * wiggle room since running delayed refs can create more delayed refs.
2916 */
cb723e49
JB
2917 if (global_rsv->space_info->full) {
2918 num_dirty_bgs_bytes <<= 1;
1be41b78 2919 num_bytes <<= 1;
cb723e49 2920 }
1be41b78
JB
2921
2922 spin_lock(&global_rsv->lock);
cb723e49 2923 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2924 ret = 1;
2925 spin_unlock(&global_rsv->lock);
2926 return ret;
2927}
2928
0a2b2a84 2929int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2930 struct btrfs_fs_info *fs_info)
0a2b2a84 2931{
0a2b2a84
JB
2932 u64 num_entries =
2933 atomic_read(&trans->transaction->delayed_refs.num_entries);
2934 u64 avg_runtime;
a79b7d4b 2935 u64 val;
0a2b2a84
JB
2936
2937 smp_mb();
2938 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2939 val = num_entries * avg_runtime;
dc1a90c6 2940 if (val >= NSEC_PER_SEC)
0a2b2a84 2941 return 1;
a79b7d4b
CM
2942 if (val >= NSEC_PER_SEC / 2)
2943 return 2;
0a2b2a84 2944
2ff7e61e 2945 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2946}
2947
a79b7d4b
CM
2948struct async_delayed_refs {
2949 struct btrfs_root *root;
31b9655f 2950 u64 transid;
a79b7d4b
CM
2951 int count;
2952 int error;
2953 int sync;
2954 struct completion wait;
2955 struct btrfs_work work;
2956};
2957
2ff7e61e
JM
2958static inline struct async_delayed_refs *
2959to_async_delayed_refs(struct btrfs_work *work)
2960{
2961 return container_of(work, struct async_delayed_refs, work);
2962}
2963
a79b7d4b
CM
2964static void delayed_ref_async_start(struct btrfs_work *work)
2965{
2ff7e61e 2966 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2967 struct btrfs_trans_handle *trans;
2ff7e61e 2968 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2969 int ret;
2970
0f873eca 2971 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2972 if (btrfs_transaction_blocked(fs_info))
31b9655f 2973 goto done;
31b9655f 2974
0f873eca
CM
2975 trans = btrfs_join_transaction(async->root);
2976 if (IS_ERR(trans)) {
2977 async->error = PTR_ERR(trans);
a79b7d4b
CM
2978 goto done;
2979 }
2980
2981 /*
01327610 2982 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2983 * wait on delayed refs
2984 */
2985 trans->sync = true;
0f873eca
CM
2986
2987 /* Don't bother flushing if we got into a different transaction */
2988 if (trans->transid > async->transid)
2989 goto end;
2990
c79a70b1 2991 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2992 if (ret)
2993 async->error = ret;
0f873eca 2994end:
3a45bb20 2995 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2996 if (ret && !async->error)
2997 async->error = ret;
2998done:
2999 if (async->sync)
3000 complete(&async->wait);
3001 else
3002 kfree(async);
3003}
3004
2ff7e61e 3005int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 3006 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
3007{
3008 struct async_delayed_refs *async;
3009 int ret;
3010
3011 async = kmalloc(sizeof(*async), GFP_NOFS);
3012 if (!async)
3013 return -ENOMEM;
3014
0b246afa 3015 async->root = fs_info->tree_root;
a79b7d4b
CM
3016 async->count = count;
3017 async->error = 0;
31b9655f 3018 async->transid = transid;
a79b7d4b
CM
3019 if (wait)
3020 async->sync = 1;
3021 else
3022 async->sync = 0;
3023 init_completion(&async->wait);
3024
9e0af237
LB
3025 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3026 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3027
0b246afa 3028 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3029
3030 if (wait) {
3031 wait_for_completion(&async->wait);
3032 ret = async->error;
3033 kfree(async);
3034 return ret;
3035 }
3036 return 0;
3037}
3038
c3e69d58
CM
3039/*
3040 * this starts processing the delayed reference count updates and
3041 * extent insertions we have queued up so far. count can be
3042 * 0, which means to process everything in the tree at the start
3043 * of the run (but not newly added entries), or it can be some target
3044 * number you'd like to process.
79787eaa
JM
3045 *
3046 * Returns 0 on success or if called with an aborted transaction
3047 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3048 */
3049int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 3050 unsigned long count)
c3e69d58 3051{
c79a70b1 3052 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
3053 struct rb_node *node;
3054 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3055 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3056 int ret;
3057 int run_all = count == (unsigned long)-1;
d9a0540a 3058 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 3059
79787eaa
JM
3060 /* We'll clean this up in btrfs_cleanup_transaction */
3061 if (trans->aborted)
3062 return 0;
3063
0b246afa 3064 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3065 return 0;
3066
c3e69d58 3067 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3068 if (count == 0)
d7df2c79 3069 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3070
c3e69d58 3071again:
709c0486
AJ
3072#ifdef SCRAMBLE_DELAYED_REFS
3073 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3074#endif
d9a0540a 3075 trans->can_flush_pending_bgs = false;
0a1e458a 3076 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 3077 if (ret < 0) {
66642832 3078 btrfs_abort_transaction(trans, ret);
d7df2c79 3079 return ret;
eb099670 3080 }
c3e69d58 3081
56bec294 3082 if (run_all) {
d7df2c79 3083 if (!list_empty(&trans->new_bgs))
6c686b35 3084 btrfs_create_pending_block_groups(trans);
ea658bad 3085
d7df2c79 3086 spin_lock(&delayed_refs->lock);
c46effa6 3087 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3088 if (!node) {
3089 spin_unlock(&delayed_refs->lock);
56bec294 3090 goto out;
d7df2c79 3091 }
d278850e
JB
3092 head = rb_entry(node, struct btrfs_delayed_ref_head,
3093 href_node);
3094 refcount_inc(&head->refs);
3095 spin_unlock(&delayed_refs->lock);
e9d0b13b 3096
d278850e
JB
3097 /* Mutex was contended, block until it's released and retry. */
3098 mutex_lock(&head->mutex);
3099 mutex_unlock(&head->mutex);
56bec294 3100
d278850e 3101 btrfs_put_delayed_ref_head(head);
d7df2c79 3102 cond_resched();
56bec294 3103 goto again;
5f39d397 3104 }
54aa1f4d 3105out:
d9a0540a 3106 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3107 return 0;
3108}
3109
5d4f98a2 3110int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3111 struct btrfs_fs_info *fs_info,
5d4f98a2 3112 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3113 int level, int is_data)
5d4f98a2
YZ
3114{
3115 struct btrfs_delayed_extent_op *extent_op;
3116 int ret;
3117
78a6184a 3118 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3119 if (!extent_op)
3120 return -ENOMEM;
3121
3122 extent_op->flags_to_set = flags;
35b3ad50
DS
3123 extent_op->update_flags = true;
3124 extent_op->update_key = false;
3125 extent_op->is_data = is_data ? true : false;
b1c79e09 3126 extent_op->level = level;
5d4f98a2 3127
0b246afa 3128 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3129 num_bytes, extent_op);
5d4f98a2 3130 if (ret)
78a6184a 3131 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3132 return ret;
3133}
3134
e4c3b2dc 3135static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3136 struct btrfs_path *path,
3137 u64 objectid, u64 offset, u64 bytenr)
3138{
3139 struct btrfs_delayed_ref_head *head;
3140 struct btrfs_delayed_ref_node *ref;
3141 struct btrfs_delayed_data_ref *data_ref;
3142 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3143 struct btrfs_transaction *cur_trans;
0e0adbcf 3144 struct rb_node *node;
5d4f98a2
YZ
3145 int ret = 0;
3146
998ac6d2 3147 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3148 cur_trans = root->fs_info->running_transaction;
998ac6d2 3149 if (cur_trans)
3150 refcount_inc(&cur_trans->use_count);
3151 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3152 if (!cur_trans)
3153 return 0;
3154
3155 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3156 spin_lock(&delayed_refs->lock);
f72ad18e 3157 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3158 if (!head) {
3159 spin_unlock(&delayed_refs->lock);
998ac6d2 3160 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3161 return 0;
3162 }
5d4f98a2
YZ
3163
3164 if (!mutex_trylock(&head->mutex)) {
d278850e 3165 refcount_inc(&head->refs);
5d4f98a2
YZ
3166 spin_unlock(&delayed_refs->lock);
3167
b3b4aa74 3168 btrfs_release_path(path);
5d4f98a2 3169
8cc33e5c
DS
3170 /*
3171 * Mutex was contended, block until it's released and let
3172 * caller try again
3173 */
5d4f98a2
YZ
3174 mutex_lock(&head->mutex);
3175 mutex_unlock(&head->mutex);
d278850e 3176 btrfs_put_delayed_ref_head(head);
998ac6d2 3177 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3178 return -EAGAIN;
3179 }
d7df2c79 3180 spin_unlock(&delayed_refs->lock);
5d4f98a2 3181
d7df2c79 3182 spin_lock(&head->lock);
0e0adbcf
JB
3183 /*
3184 * XXX: We should replace this with a proper search function in the
3185 * future.
3186 */
3187 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3188 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3189 /* If it's a shared ref we know a cross reference exists */
3190 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3191 ret = 1;
3192 break;
3193 }
5d4f98a2 3194
d7df2c79 3195 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3196
d7df2c79
JB
3197 /*
3198 * If our ref doesn't match the one we're currently looking at
3199 * then we have a cross reference.
3200 */
3201 if (data_ref->root != root->root_key.objectid ||
3202 data_ref->objectid != objectid ||
3203 data_ref->offset != offset) {
3204 ret = 1;
3205 break;
3206 }
5d4f98a2 3207 }
d7df2c79 3208 spin_unlock(&head->lock);
5d4f98a2 3209 mutex_unlock(&head->mutex);
998ac6d2 3210 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3211 return ret;
3212}
3213
e4c3b2dc 3214static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3215 struct btrfs_path *path,
3216 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3217{
0b246afa
JM
3218 struct btrfs_fs_info *fs_info = root->fs_info;
3219 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3220 struct extent_buffer *leaf;
5d4f98a2
YZ
3221 struct btrfs_extent_data_ref *ref;
3222 struct btrfs_extent_inline_ref *iref;
3223 struct btrfs_extent_item *ei;
f321e491 3224 struct btrfs_key key;
5d4f98a2 3225 u32 item_size;
3de28d57 3226 int type;
be20aa9d 3227 int ret;
925baedd 3228
be20aa9d 3229 key.objectid = bytenr;
31840ae1 3230 key.offset = (u64)-1;
f321e491 3231 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3232
be20aa9d
CM
3233 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3234 if (ret < 0)
3235 goto out;
79787eaa 3236 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3237
3238 ret = -ENOENT;
3239 if (path->slots[0] == 0)
31840ae1 3240 goto out;
be20aa9d 3241
31840ae1 3242 path->slots[0]--;
f321e491 3243 leaf = path->nodes[0];
5d4f98a2 3244 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3245
5d4f98a2 3246 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3247 goto out;
f321e491 3248
5d4f98a2
YZ
3249 ret = 1;
3250 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3251#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3252 if (item_size < sizeof(*ei)) {
3253 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3254 goto out;
3255 }
3256#endif
3257 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3258
5d4f98a2
YZ
3259 if (item_size != sizeof(*ei) +
3260 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3261 goto out;
be20aa9d 3262
5d4f98a2
YZ
3263 if (btrfs_extent_generation(leaf, ei) <=
3264 btrfs_root_last_snapshot(&root->root_item))
3265 goto out;
3266
3267 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3268
3269 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3270 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3271 goto out;
3272
3273 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3274 if (btrfs_extent_refs(leaf, ei) !=
3275 btrfs_extent_data_ref_count(leaf, ref) ||
3276 btrfs_extent_data_ref_root(leaf, ref) !=
3277 root->root_key.objectid ||
3278 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3279 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3280 goto out;
3281
3282 ret = 0;
3283out:
3284 return ret;
3285}
3286
e4c3b2dc
LB
3287int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3288 u64 bytenr)
5d4f98a2
YZ
3289{
3290 struct btrfs_path *path;
3291 int ret;
3292 int ret2;
3293
3294 path = btrfs_alloc_path();
3295 if (!path)
3296 return -ENOENT;
3297
3298 do {
e4c3b2dc 3299 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3300 offset, bytenr);
3301 if (ret && ret != -ENOENT)
f321e491 3302 goto out;
80ff3856 3303
e4c3b2dc 3304 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3305 offset, bytenr);
3306 } while (ret2 == -EAGAIN);
3307
3308 if (ret2 && ret2 != -ENOENT) {
3309 ret = ret2;
3310 goto out;
f321e491 3311 }
5d4f98a2
YZ
3312
3313 if (ret != -ENOENT || ret2 != -ENOENT)
3314 ret = 0;
be20aa9d 3315out:
80ff3856 3316 btrfs_free_path(path);
f0486c68
YZ
3317 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3318 WARN_ON(ret > 0);
f321e491 3319 return ret;
be20aa9d 3320}
c5739bba 3321
5d4f98a2 3322static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3323 struct btrfs_root *root,
5d4f98a2 3324 struct extent_buffer *buf,
e339a6b0 3325 int full_backref, int inc)
31840ae1 3326{
0b246afa 3327 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3328 u64 bytenr;
5d4f98a2
YZ
3329 u64 num_bytes;
3330 u64 parent;
31840ae1 3331 u64 ref_root;
31840ae1 3332 u32 nritems;
31840ae1
ZY
3333 struct btrfs_key key;
3334 struct btrfs_file_extent_item *fi;
3335 int i;
3336 int level;
3337 int ret = 0;
2ff7e61e 3338 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3339 struct btrfs_root *,
b06c4bf5 3340 u64, u64, u64, u64, u64, u64);
31840ae1 3341
fccb84c9 3342
0b246afa 3343 if (btrfs_is_testing(fs_info))
faa2dbf0 3344 return 0;
fccb84c9 3345
31840ae1 3346 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3347 nritems = btrfs_header_nritems(buf);
3348 level = btrfs_header_level(buf);
3349
27cdeb70 3350 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3351 return 0;
31840ae1 3352
5d4f98a2
YZ
3353 if (inc)
3354 process_func = btrfs_inc_extent_ref;
3355 else
3356 process_func = btrfs_free_extent;
31840ae1 3357
5d4f98a2
YZ
3358 if (full_backref)
3359 parent = buf->start;
3360 else
3361 parent = 0;
3362
3363 for (i = 0; i < nritems; i++) {
31840ae1 3364 if (level == 0) {
5d4f98a2 3365 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3366 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3367 continue;
5d4f98a2 3368 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3369 struct btrfs_file_extent_item);
3370 if (btrfs_file_extent_type(buf, fi) ==
3371 BTRFS_FILE_EXTENT_INLINE)
3372 continue;
3373 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3374 if (bytenr == 0)
3375 continue;
5d4f98a2
YZ
3376
3377 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3378 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3379 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3380 parent, ref_root, key.objectid,
b06c4bf5 3381 key.offset);
31840ae1
ZY
3382 if (ret)
3383 goto fail;
3384 } else {
5d4f98a2 3385 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3386 num_bytes = fs_info->nodesize;
84f7d8e6 3387 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3388 parent, ref_root, level - 1, 0);
31840ae1
ZY
3389 if (ret)
3390 goto fail;
3391 }
3392 }
3393 return 0;
3394fail:
5d4f98a2
YZ
3395 return ret;
3396}
3397
3398int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3399 struct extent_buffer *buf, int full_backref)
5d4f98a2 3400{
e339a6b0 3401 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3402}
3403
3404int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3405 struct extent_buffer *buf, int full_backref)
5d4f98a2 3406{
e339a6b0 3407 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3408}
3409
9078a3e1 3410static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3411 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3412 struct btrfs_path *path,
3413 struct btrfs_block_group_cache *cache)
3414{
3415 int ret;
0b246afa 3416 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3417 unsigned long bi;
3418 struct extent_buffer *leaf;
9078a3e1 3419
9078a3e1 3420 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3421 if (ret) {
3422 if (ret > 0)
3423 ret = -ENOENT;
54aa1f4d 3424 goto fail;
df95e7f0 3425 }
5f39d397
CM
3426
3427 leaf = path->nodes[0];
3428 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3429 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3430 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3431fail:
24b89d08 3432 btrfs_release_path(path);
df95e7f0 3433 return ret;
9078a3e1
CM
3434
3435}
3436
4a8c9a62 3437static struct btrfs_block_group_cache *
2ff7e61e 3438next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3439 struct btrfs_block_group_cache *cache)
3440{
3441 struct rb_node *node;
292cbd51 3442
0b246afa 3443 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3444
3445 /* If our block group was removed, we need a full search. */
3446 if (RB_EMPTY_NODE(&cache->cache_node)) {
3447 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3448
0b246afa 3449 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3450 btrfs_put_block_group(cache);
0b246afa 3451 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3452 }
4a8c9a62
YZ
3453 node = rb_next(&cache->cache_node);
3454 btrfs_put_block_group(cache);
3455 if (node) {
3456 cache = rb_entry(node, struct btrfs_block_group_cache,
3457 cache_node);
11dfe35a 3458 btrfs_get_block_group(cache);
4a8c9a62
YZ
3459 } else
3460 cache = NULL;
0b246afa 3461 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3462 return cache;
3463}
3464
0af3d00b
JB
3465static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3466 struct btrfs_trans_handle *trans,
3467 struct btrfs_path *path)
3468{
0b246afa
JM
3469 struct btrfs_fs_info *fs_info = block_group->fs_info;
3470 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3471 struct inode *inode = NULL;
364ecf36 3472 struct extent_changeset *data_reserved = NULL;
0af3d00b 3473 u64 alloc_hint = 0;
2b20982e 3474 int dcs = BTRFS_DC_ERROR;
f8c269d7 3475 u64 num_pages = 0;
0af3d00b
JB
3476 int retries = 0;
3477 int ret = 0;
3478
3479 /*
3480 * If this block group is smaller than 100 megs don't bother caching the
3481 * block group.
3482 */
ee22184b 3483 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3484 spin_lock(&block_group->lock);
3485 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3486 spin_unlock(&block_group->lock);
3487 return 0;
3488 }
3489
0c0ef4bc
JB
3490 if (trans->aborted)
3491 return 0;
0af3d00b 3492again:
77ab86bf 3493 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3494 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3495 ret = PTR_ERR(inode);
b3b4aa74 3496 btrfs_release_path(path);
0af3d00b
JB
3497 goto out;
3498 }
3499
3500 if (IS_ERR(inode)) {
3501 BUG_ON(retries);
3502 retries++;
3503
3504 if (block_group->ro)
3505 goto out_free;
3506
77ab86bf
JM
3507 ret = create_free_space_inode(fs_info, trans, block_group,
3508 path);
0af3d00b
JB
3509 if (ret)
3510 goto out_free;
3511 goto again;
3512 }
3513
3514 /*
3515 * We want to set the generation to 0, that way if anything goes wrong
3516 * from here on out we know not to trust this cache when we load up next
3517 * time.
3518 */
3519 BTRFS_I(inode)->generation = 0;
3520 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3521 if (ret) {
3522 /*
3523 * So theoretically we could recover from this, simply set the
3524 * super cache generation to 0 so we know to invalidate the
3525 * cache, but then we'd have to keep track of the block groups
3526 * that fail this way so we know we _have_ to reset this cache
3527 * before the next commit or risk reading stale cache. So to
3528 * limit our exposure to horrible edge cases lets just abort the
3529 * transaction, this only happens in really bad situations
3530 * anyway.
3531 */
66642832 3532 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3533 goto out_put;
3534 }
0af3d00b
JB
3535 WARN_ON(ret);
3536
8e138e0d
JB
3537 /* We've already setup this transaction, go ahead and exit */
3538 if (block_group->cache_generation == trans->transid &&
3539 i_size_read(inode)) {
3540 dcs = BTRFS_DC_SETUP;
3541 goto out_put;
3542 }
3543
0af3d00b 3544 if (i_size_read(inode) > 0) {
2ff7e61e 3545 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3546 &fs_info->global_block_rsv);
7b61cd92
MX
3547 if (ret)
3548 goto out_put;
3549
77ab86bf 3550 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3551 if (ret)
3552 goto out_put;
3553 }
3554
3555 spin_lock(&block_group->lock);
cf7c1ef6 3556 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3557 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3558 /*
3559 * don't bother trying to write stuff out _if_
3560 * a) we're not cached,
1a79c1f2
LB
3561 * b) we're with nospace_cache mount option,
3562 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3563 */
2b20982e 3564 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3565 spin_unlock(&block_group->lock);
3566 goto out_put;
3567 }
3568 spin_unlock(&block_group->lock);
3569
2968b1f4
JB
3570 /*
3571 * We hit an ENOSPC when setting up the cache in this transaction, just
3572 * skip doing the setup, we've already cleared the cache so we're safe.
3573 */
3574 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3575 ret = -ENOSPC;
3576 goto out_put;
3577 }
3578
6fc823b1
JB
3579 /*
3580 * Try to preallocate enough space based on how big the block group is.
3581 * Keep in mind this has to include any pinned space which could end up
3582 * taking up quite a bit since it's not folded into the other space
3583 * cache.
3584 */
ee22184b 3585 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3586 if (!num_pages)
3587 num_pages = 1;
3588
0af3d00b 3589 num_pages *= 16;
09cbfeaf 3590 num_pages *= PAGE_SIZE;
0af3d00b 3591
364ecf36 3592 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3593 if (ret)
3594 goto out_put;
3595
3596 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3597 num_pages, num_pages,
3598 &alloc_hint);
2968b1f4
JB
3599 /*
3600 * Our cache requires contiguous chunks so that we don't modify a bunch
3601 * of metadata or split extents when writing the cache out, which means
3602 * we can enospc if we are heavily fragmented in addition to just normal
3603 * out of space conditions. So if we hit this just skip setting up any
3604 * other block groups for this transaction, maybe we'll unpin enough
3605 * space the next time around.
3606 */
2b20982e
JB
3607 if (!ret)
3608 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3609 else if (ret == -ENOSPC)
3610 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3611
0af3d00b
JB
3612out_put:
3613 iput(inode);
3614out_free:
b3b4aa74 3615 btrfs_release_path(path);
0af3d00b
JB
3616out:
3617 spin_lock(&block_group->lock);
e65cbb94 3618 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3619 block_group->cache_generation = trans->transid;
2b20982e 3620 block_group->disk_cache_state = dcs;
0af3d00b
JB
3621 spin_unlock(&block_group->lock);
3622
364ecf36 3623 extent_changeset_free(data_reserved);
0af3d00b
JB
3624 return ret;
3625}
3626
dcdf7f6d 3627int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3628 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3629{
3630 struct btrfs_block_group_cache *cache, *tmp;
3631 struct btrfs_transaction *cur_trans = trans->transaction;
3632 struct btrfs_path *path;
3633
3634 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3635 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3636 return 0;
3637
3638 path = btrfs_alloc_path();
3639 if (!path)
3640 return -ENOMEM;
3641
3642 /* Could add new block groups, use _safe just in case */
3643 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3644 dirty_list) {
3645 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3646 cache_save_setup(cache, trans, path);
3647 }
3648
3649 btrfs_free_path(path);
3650 return 0;
3651}
3652
1bbc621e
CM
3653/*
3654 * transaction commit does final block group cache writeback during a
3655 * critical section where nothing is allowed to change the FS. This is
3656 * required in order for the cache to actually match the block group,
3657 * but can introduce a lot of latency into the commit.
3658 *
3659 * So, btrfs_start_dirty_block_groups is here to kick off block group
3660 * cache IO. There's a chance we'll have to redo some of it if the
3661 * block group changes again during the commit, but it greatly reduces
3662 * the commit latency by getting rid of the easy block groups while
3663 * we're still allowing others to join the commit.
3664 */
21217054 3665int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3666{
21217054 3667 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3668 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3669 struct btrfs_transaction *cur_trans = trans->transaction;
3670 int ret = 0;
c9dc4c65 3671 int should_put;
1bbc621e
CM
3672 struct btrfs_path *path = NULL;
3673 LIST_HEAD(dirty);
3674 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3675 int num_started = 0;
1bbc621e
CM
3676 int loops = 0;
3677
3678 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3679 if (list_empty(&cur_trans->dirty_bgs)) {
3680 spin_unlock(&cur_trans->dirty_bgs_lock);
3681 return 0;
1bbc621e 3682 }
b58d1a9e 3683 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3684 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3685
1bbc621e 3686again:
1bbc621e
CM
3687 /*
3688 * make sure all the block groups on our dirty list actually
3689 * exist
3690 */
6c686b35 3691 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3692
3693 if (!path) {
3694 path = btrfs_alloc_path();
3695 if (!path)
3696 return -ENOMEM;
3697 }
3698
b58d1a9e
FM
3699 /*
3700 * cache_write_mutex is here only to save us from balance or automatic
3701 * removal of empty block groups deleting this block group while we are
3702 * writing out the cache
3703 */
3704 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3705 while (!list_empty(&dirty)) {
3706 cache = list_first_entry(&dirty,
3707 struct btrfs_block_group_cache,
3708 dirty_list);
1bbc621e
CM
3709 /*
3710 * this can happen if something re-dirties a block
3711 * group that is already under IO. Just wait for it to
3712 * finish and then do it all again
3713 */
3714 if (!list_empty(&cache->io_list)) {
3715 list_del_init(&cache->io_list);
afdb5718 3716 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3717 btrfs_put_block_group(cache);
3718 }
3719
3720
3721 /*
3722 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3723 * if it should update the cache_state. Don't delete
3724 * until after we wait.
3725 *
3726 * Since we're not running in the commit critical section
3727 * we need the dirty_bgs_lock to protect from update_block_group
3728 */
3729 spin_lock(&cur_trans->dirty_bgs_lock);
3730 list_del_init(&cache->dirty_list);
3731 spin_unlock(&cur_trans->dirty_bgs_lock);
3732
3733 should_put = 1;
3734
3735 cache_save_setup(cache, trans, path);
3736
3737 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3738 cache->io_ctl.inode = NULL;
0b246afa 3739 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3740 cache, path);
1bbc621e
CM
3741 if (ret == 0 && cache->io_ctl.inode) {
3742 num_started++;
3743 should_put = 0;
3744
3745 /*
45ae2c18
NB
3746 * The cache_write_mutex is protecting the
3747 * io_list, also refer to the definition of
3748 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3749 */
3750 list_add_tail(&cache->io_list, io);
3751 } else {
3752 /*
3753 * if we failed to write the cache, the
3754 * generation will be bad and life goes on
3755 */
3756 ret = 0;
3757 }
3758 }
ff1f8250 3759 if (!ret) {
2ff7e61e
JM
3760 ret = write_one_cache_group(trans, fs_info,
3761 path, cache);
ff1f8250
FM
3762 /*
3763 * Our block group might still be attached to the list
3764 * of new block groups in the transaction handle of some
3765 * other task (struct btrfs_trans_handle->new_bgs). This
3766 * means its block group item isn't yet in the extent
3767 * tree. If this happens ignore the error, as we will
3768 * try again later in the critical section of the
3769 * transaction commit.
3770 */
3771 if (ret == -ENOENT) {
3772 ret = 0;
3773 spin_lock(&cur_trans->dirty_bgs_lock);
3774 if (list_empty(&cache->dirty_list)) {
3775 list_add_tail(&cache->dirty_list,
3776 &cur_trans->dirty_bgs);
3777 btrfs_get_block_group(cache);
3778 }
3779 spin_unlock(&cur_trans->dirty_bgs_lock);
3780 } else if (ret) {
66642832 3781 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3782 }
3783 }
1bbc621e
CM
3784
3785 /* if its not on the io list, we need to put the block group */
3786 if (should_put)
3787 btrfs_put_block_group(cache);
3788
3789 if (ret)
3790 break;
b58d1a9e
FM
3791
3792 /*
3793 * Avoid blocking other tasks for too long. It might even save
3794 * us from writing caches for block groups that are going to be
3795 * removed.
3796 */
3797 mutex_unlock(&trans->transaction->cache_write_mutex);
3798 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3799 }
b58d1a9e 3800 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3801
3802 /*
3803 * go through delayed refs for all the stuff we've just kicked off
3804 * and then loop back (just once)
3805 */
c79a70b1 3806 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3807 if (!ret && loops == 0) {
3808 loops++;
3809 spin_lock(&cur_trans->dirty_bgs_lock);
3810 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3811 /*
3812 * dirty_bgs_lock protects us from concurrent block group
3813 * deletes too (not just cache_write_mutex).
3814 */
3815 if (!list_empty(&dirty)) {
3816 spin_unlock(&cur_trans->dirty_bgs_lock);
3817 goto again;
3818 }
1bbc621e 3819 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3820 } else if (ret < 0) {
2ff7e61e 3821 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3822 }
3823
3824 btrfs_free_path(path);
3825 return ret;
3826}
3827
3828int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3829 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3830{
3831 struct btrfs_block_group_cache *cache;
3832 struct btrfs_transaction *cur_trans = trans->transaction;
3833 int ret = 0;
3834 int should_put;
3835 struct btrfs_path *path;
3836 struct list_head *io = &cur_trans->io_bgs;
3837 int num_started = 0;
9078a3e1
CM
3838
3839 path = btrfs_alloc_path();
3840 if (!path)
3841 return -ENOMEM;
3842
ce93ec54 3843 /*
e44081ef
FM
3844 * Even though we are in the critical section of the transaction commit,
3845 * we can still have concurrent tasks adding elements to this
3846 * transaction's list of dirty block groups. These tasks correspond to
3847 * endio free space workers started when writeback finishes for a
3848 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3849 * allocate new block groups as a result of COWing nodes of the root
3850 * tree when updating the free space inode. The writeback for the space
3851 * caches is triggered by an earlier call to
3852 * btrfs_start_dirty_block_groups() and iterations of the following
3853 * loop.
3854 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3855 * delayed refs to make sure we have the best chance at doing this all
3856 * in one shot.
3857 */
e44081ef 3858 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3859 while (!list_empty(&cur_trans->dirty_bgs)) {
3860 cache = list_first_entry(&cur_trans->dirty_bgs,
3861 struct btrfs_block_group_cache,
3862 dirty_list);
c9dc4c65
CM
3863
3864 /*
3865 * this can happen if cache_save_setup re-dirties a block
3866 * group that is already under IO. Just wait for it to
3867 * finish and then do it all again
3868 */
3869 if (!list_empty(&cache->io_list)) {
e44081ef 3870 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3871 list_del_init(&cache->io_list);
afdb5718 3872 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3873 btrfs_put_block_group(cache);
e44081ef 3874 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3875 }
3876
1bbc621e
CM
3877 /*
3878 * don't remove from the dirty list until after we've waited
3879 * on any pending IO
3880 */
ce93ec54 3881 list_del_init(&cache->dirty_list);
e44081ef 3882 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3883 should_put = 1;
3884
1bbc621e 3885 cache_save_setup(cache, trans, path);
c9dc4c65 3886
ce93ec54 3887 if (!ret)
c79a70b1 3888 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3889 (unsigned long) -1);
c9dc4c65
CM
3890
3891 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3892 cache->io_ctl.inode = NULL;
0b246afa 3893 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3894 cache, path);
c9dc4c65
CM
3895 if (ret == 0 && cache->io_ctl.inode) {
3896 num_started++;
3897 should_put = 0;
1bbc621e 3898 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3899 } else {
3900 /*
3901 * if we failed to write the cache, the
3902 * generation will be bad and life goes on
3903 */
3904 ret = 0;
3905 }
3906 }
ff1f8250 3907 if (!ret) {
2ff7e61e
JM
3908 ret = write_one_cache_group(trans, fs_info,
3909 path, cache);
2bc0bb5f
FM
3910 /*
3911 * One of the free space endio workers might have
3912 * created a new block group while updating a free space
3913 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3914 * and hasn't released its transaction handle yet, in
3915 * which case the new block group is still attached to
3916 * its transaction handle and its creation has not
3917 * finished yet (no block group item in the extent tree
3918 * yet, etc). If this is the case, wait for all free
3919 * space endio workers to finish and retry. This is a
3920 * a very rare case so no need for a more efficient and
3921 * complex approach.
3922 */
3923 if (ret == -ENOENT) {
3924 wait_event(cur_trans->writer_wait,
3925 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3926 ret = write_one_cache_group(trans, fs_info,
3927 path, cache);
2bc0bb5f 3928 }
ff1f8250 3929 if (ret)
66642832 3930 btrfs_abort_transaction(trans, ret);
ff1f8250 3931 }
c9dc4c65
CM
3932
3933 /* if its not on the io list, we need to put the block group */
3934 if (should_put)
3935 btrfs_put_block_group(cache);
e44081ef 3936 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3937 }
e44081ef 3938 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3939
45ae2c18
NB
3940 /*
3941 * Refer to the definition of io_bgs member for details why it's safe
3942 * to use it without any locking
3943 */
1bbc621e
CM
3944 while (!list_empty(io)) {
3945 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3946 io_list);
3947 list_del_init(&cache->io_list);
afdb5718 3948 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3949 btrfs_put_block_group(cache);
3950 }
3951
9078a3e1 3952 btrfs_free_path(path);
ce93ec54 3953 return ret;
9078a3e1
CM
3954}
3955
2ff7e61e 3956int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3957{
3958 struct btrfs_block_group_cache *block_group;
3959 int readonly = 0;
3960
0b246afa 3961 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3962 if (!block_group || block_group->ro)
3963 readonly = 1;
3964 if (block_group)
fa9c0d79 3965 btrfs_put_block_group(block_group);
d2fb3437
YZ
3966 return readonly;
3967}
3968
f78c436c
FM
3969bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3970{
3971 struct btrfs_block_group_cache *bg;
3972 bool ret = true;
3973
3974 bg = btrfs_lookup_block_group(fs_info, bytenr);
3975 if (!bg)
3976 return false;
3977
3978 spin_lock(&bg->lock);
3979 if (bg->ro)
3980 ret = false;
3981 else
3982 atomic_inc(&bg->nocow_writers);
3983 spin_unlock(&bg->lock);
3984
3985 /* no put on block group, done by btrfs_dec_nocow_writers */
3986 if (!ret)
3987 btrfs_put_block_group(bg);
3988
3989 return ret;
3990
3991}
3992
3993void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3994{
3995 struct btrfs_block_group_cache *bg;
3996
3997 bg = btrfs_lookup_block_group(fs_info, bytenr);
3998 ASSERT(bg);
3999 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 4000 wake_up_var(&bg->nocow_writers);
f78c436c
FM
4001 /*
4002 * Once for our lookup and once for the lookup done by a previous call
4003 * to btrfs_inc_nocow_writers()
4004 */
4005 btrfs_put_block_group(bg);
4006 btrfs_put_block_group(bg);
4007}
4008
f78c436c
FM
4009void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4010{
4625956a 4011 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
4012}
4013
6ab0a202
JM
4014static const char *alloc_name(u64 flags)
4015{
4016 switch (flags) {
4017 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4018 return "mixed";
4019 case BTRFS_BLOCK_GROUP_METADATA:
4020 return "metadata";
4021 case BTRFS_BLOCK_GROUP_DATA:
4022 return "data";
4023 case BTRFS_BLOCK_GROUP_SYSTEM:
4024 return "system";
4025 default:
4026 WARN_ON(1);
4027 return "invalid-combination";
4028 };
4029}
4030
2be12ef7
NB
4031static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4032 struct btrfs_space_info **new)
4033{
4034
4035 struct btrfs_space_info *space_info;
4036 int i;
4037 int ret;
4038
4039 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4040 if (!space_info)
4041 return -ENOMEM;
4042
4043 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4044 GFP_KERNEL);
4045 if (ret) {
4046 kfree(space_info);
4047 return ret;
4048 }
4049
4050 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4051 INIT_LIST_HEAD(&space_info->block_groups[i]);
4052 init_rwsem(&space_info->groups_sem);
4053 spin_lock_init(&space_info->lock);
4054 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4055 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4056 init_waitqueue_head(&space_info->wait);
4057 INIT_LIST_HEAD(&space_info->ro_bgs);
4058 INIT_LIST_HEAD(&space_info->tickets);
4059 INIT_LIST_HEAD(&space_info->priority_tickets);
4060
4061 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4062 info->space_info_kobj, "%s",
4063 alloc_name(space_info->flags));
4064 if (ret) {
4065 percpu_counter_destroy(&space_info->total_bytes_pinned);
4066 kfree(space_info);
4067 return ret;
4068 }
4069
4070 *new = space_info;
4071 list_add_rcu(&space_info->list, &info->space_info);
4072 if (flags & BTRFS_BLOCK_GROUP_DATA)
4073 info->data_sinfo = space_info;
4074
4075 return ret;
4076}
4077
d2006e6d 4078static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4079 u64 total_bytes, u64 bytes_used,
e40edf2d 4080 u64 bytes_readonly,
593060d7
CM
4081 struct btrfs_space_info **space_info)
4082{
4083 struct btrfs_space_info *found;
b742bb82
YZ
4084 int factor;
4085
4086 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4087 BTRFS_BLOCK_GROUP_RAID10))
4088 factor = 2;
4089 else
4090 factor = 1;
593060d7
CM
4091
4092 found = __find_space_info(info, flags);
d2006e6d
NB
4093 ASSERT(found);
4094 spin_lock(&found->lock);
4095 found->total_bytes += total_bytes;
4096 found->disk_total += total_bytes * factor;
4097 found->bytes_used += bytes_used;
4098 found->disk_used += bytes_used * factor;
4099 found->bytes_readonly += bytes_readonly;
4100 if (total_bytes > 0)
4101 found->full = 0;
4102 space_info_add_new_bytes(info, found, total_bytes -
4103 bytes_used - bytes_readonly);
4104 spin_unlock(&found->lock);
4105 *space_info = found;
593060d7
CM
4106}
4107
8790d502
CM
4108static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4109{
899c81ea
ID
4110 u64 extra_flags = chunk_to_extended(flags) &
4111 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4112
de98ced9 4113 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4114 if (flags & BTRFS_BLOCK_GROUP_DATA)
4115 fs_info->avail_data_alloc_bits |= extra_flags;
4116 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4117 fs_info->avail_metadata_alloc_bits |= extra_flags;
4118 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4119 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4120 write_sequnlock(&fs_info->profiles_lock);
8790d502 4121}
593060d7 4122
fc67c450
ID
4123/*
4124 * returns target flags in extended format or 0 if restripe for this
4125 * chunk_type is not in progress
c6664b42 4126 *
dccdb07b 4127 * should be called with balance_lock held
fc67c450
ID
4128 */
4129static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4130{
4131 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4132 u64 target = 0;
4133
fc67c450
ID
4134 if (!bctl)
4135 return 0;
4136
4137 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4138 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4139 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4140 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4141 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4142 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4143 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4144 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4145 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4146 }
4147
4148 return target;
4149}
4150
a46d11a8
ID
4151/*
4152 * @flags: available profiles in extended format (see ctree.h)
4153 *
e4d8ec0f
ID
4154 * Returns reduced profile in chunk format. If profile changing is in
4155 * progress (either running or paused) picks the target profile (if it's
4156 * already available), otherwise falls back to plain reducing.
a46d11a8 4157 */
2ff7e61e 4158static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4159{
0b246afa 4160 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4161 u64 target;
9c170b26
ZL
4162 u64 raid_type;
4163 u64 allowed = 0;
a061fc8d 4164
fc67c450
ID
4165 /*
4166 * see if restripe for this chunk_type is in progress, if so
4167 * try to reduce to the target profile
4168 */
0b246afa
JM
4169 spin_lock(&fs_info->balance_lock);
4170 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4171 if (target) {
4172 /* pick target profile only if it's already available */
4173 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4174 spin_unlock(&fs_info->balance_lock);
fc67c450 4175 return extended_to_chunk(target);
e4d8ec0f
ID
4176 }
4177 }
0b246afa 4178 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4179
53b381b3 4180 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4181 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4182 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4183 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4184 }
4185 allowed &= flags;
4186
4187 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4188 allowed = BTRFS_BLOCK_GROUP_RAID6;
4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4190 allowed = BTRFS_BLOCK_GROUP_RAID5;
4191 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4192 allowed = BTRFS_BLOCK_GROUP_RAID10;
4193 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4194 allowed = BTRFS_BLOCK_GROUP_RAID1;
4195 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4196 allowed = BTRFS_BLOCK_GROUP_RAID0;
4197
4198 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4199
4200 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4201}
4202
2ff7e61e 4203static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4204{
de98ced9 4205 unsigned seq;
f8213bdc 4206 u64 flags;
de98ced9
MX
4207
4208 do {
f8213bdc 4209 flags = orig_flags;
0b246afa 4210 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4211
4212 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4213 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4214 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4215 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4216 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4217 flags |= fs_info->avail_metadata_alloc_bits;
4218 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4219
2ff7e61e 4220 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4221}
4222
1b86826d 4223static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4224{
0b246afa 4225 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4226 u64 flags;
53b381b3 4227 u64 ret;
9ed74f2d 4228
b742bb82
YZ
4229 if (data)
4230 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4231 else if (root == fs_info->chunk_root)
b742bb82 4232 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4233 else
b742bb82 4234 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4235
2ff7e61e 4236 ret = get_alloc_profile(fs_info, flags);
53b381b3 4237 return ret;
6a63209f 4238}
9ed74f2d 4239
1b86826d
JM
4240u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4241{
4242 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4243}
4244
4245u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4246{
4247 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4248}
4249
4250u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4251{
4252 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4253}
4254
4136135b
LB
4255static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4256 bool may_use_included)
4257{
4258 ASSERT(s_info);
4259 return s_info->bytes_used + s_info->bytes_reserved +
4260 s_info->bytes_pinned + s_info->bytes_readonly +
4261 (may_use_included ? s_info->bytes_may_use : 0);
4262}
4263
04f4f916 4264int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4265{
04f4f916 4266 struct btrfs_root *root = inode->root;
b4d7c3c9 4267 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4268 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4269 u64 used;
94b947b2 4270 int ret = 0;
c99f1b0c
ZL
4271 int need_commit = 2;
4272 int have_pinned_space;
6a63209f 4273
6a63209f 4274 /* make sure bytes are sectorsize aligned */
0b246afa 4275 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4276
9dced186 4277 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4278 need_commit = 0;
9dced186 4279 ASSERT(current->journal_info);
0af3d00b
JB
4280 }
4281
6a63209f
JB
4282again:
4283 /* make sure we have enough space to handle the data first */
4284 spin_lock(&data_sinfo->lock);
4136135b 4285 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4286
4287 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4288 struct btrfs_trans_handle *trans;
9ed74f2d 4289
6a63209f
JB
4290 /*
4291 * if we don't have enough free bytes in this space then we need
4292 * to alloc a new chunk.
4293 */
b9fd47cd 4294 if (!data_sinfo->full) {
6a63209f 4295 u64 alloc_target;
9ed74f2d 4296
0e4f8f88 4297 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4298 spin_unlock(&data_sinfo->lock);
1174cade 4299
1b86826d 4300 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4301 /*
4302 * It is ugly that we don't call nolock join
4303 * transaction for the free space inode case here.
4304 * But it is safe because we only do the data space
4305 * reservation for the free space cache in the
4306 * transaction context, the common join transaction
4307 * just increase the counter of the current transaction
4308 * handler, doesn't try to acquire the trans_lock of
4309 * the fs.
4310 */
7a7eaa40 4311 trans = btrfs_join_transaction(root);
a22285a6
YZ
4312 if (IS_ERR(trans))
4313 return PTR_ERR(trans);
9ed74f2d 4314
2ff7e61e 4315 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4316 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4317 btrfs_end_transaction(trans);
d52a5b5f
MX
4318 if (ret < 0) {
4319 if (ret != -ENOSPC)
4320 return ret;
c99f1b0c
ZL
4321 else {
4322 have_pinned_space = 1;
d52a5b5f 4323 goto commit_trans;
c99f1b0c 4324 }
d52a5b5f 4325 }
9ed74f2d 4326
6a63209f
JB
4327 goto again;
4328 }
f2bb8f5c
JB
4329
4330 /*
b150a4f1 4331 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4332 * allocation, and no removed chunk in current transaction,
4333 * don't bother committing the transaction.
f2bb8f5c 4334 */
c99f1b0c
ZL
4335 have_pinned_space = percpu_counter_compare(
4336 &data_sinfo->total_bytes_pinned,
4337 used + bytes - data_sinfo->total_bytes);
6a63209f 4338 spin_unlock(&data_sinfo->lock);
6a63209f 4339
4e06bdd6 4340 /* commit the current transaction and try again */
d52a5b5f 4341commit_trans:
92e2f7e3 4342 if (need_commit) {
c99f1b0c 4343 need_commit--;
b150a4f1 4344
e1746e83 4345 if (need_commit > 0) {
82b3e53b 4346 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4347 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4348 (u64)-1);
e1746e83 4349 }
9a4e7276 4350
7a7eaa40 4351 trans = btrfs_join_transaction(root);
a22285a6
YZ
4352 if (IS_ERR(trans))
4353 return PTR_ERR(trans);
c99f1b0c 4354 if (have_pinned_space >= 0 ||
3204d33c
JB
4355 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4356 &trans->transaction->flags) ||
c99f1b0c 4357 need_commit > 0) {
3a45bb20 4358 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4359 if (ret)
4360 return ret;
d7c15171 4361 /*
c2d6cb16
FM
4362 * The cleaner kthread might still be doing iput
4363 * operations. Wait for it to finish so that
4364 * more space is released.
d7c15171 4365 */
0b246afa
JM
4366 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4367 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4368 goto again;
4369 } else {
3a45bb20 4370 btrfs_end_transaction(trans);
94b947b2 4371 }
4e06bdd6 4372 }
9ed74f2d 4373
0b246afa 4374 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4375 "space_info:enospc",
4376 data_sinfo->flags, bytes, 1);
6a63209f
JB
4377 return -ENOSPC;
4378 }
4379 data_sinfo->bytes_may_use += bytes;
0b246afa 4380 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4381 data_sinfo->flags, bytes, 1);
6a63209f 4382 spin_unlock(&data_sinfo->lock);
6a63209f 4383
237c0e9f 4384 return ret;
9ed74f2d 4385}
6a63209f 4386
364ecf36
QW
4387int btrfs_check_data_free_space(struct inode *inode,
4388 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4389{
0b246afa 4390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4391 int ret;
4392
4393 /* align the range */
0b246afa
JM
4394 len = round_up(start + len, fs_info->sectorsize) -
4395 round_down(start, fs_info->sectorsize);
4396 start = round_down(start, fs_info->sectorsize);
4ceff079 4397
04f4f916 4398 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4399 if (ret < 0)
4400 return ret;
4401
1e5ec2e7 4402 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4403 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4404 if (ret < 0)
1e5ec2e7 4405 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4406 else
4407 ret = 0;
4ceff079
QW
4408 return ret;
4409}
4410
4ceff079
QW
4411/*
4412 * Called if we need to clear a data reservation for this inode
4413 * Normally in a error case.
4414 *
51773bec
QW
4415 * This one will *NOT* use accurate qgroup reserved space API, just for case
4416 * which we can't sleep and is sure it won't affect qgroup reserved space.
4417 * Like clear_bit_hook().
4ceff079 4418 */
51773bec
QW
4419void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4420 u64 len)
4ceff079 4421{
0b246afa 4422 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4423 struct btrfs_space_info *data_sinfo;
4424
4425 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4426 len = round_up(start + len, fs_info->sectorsize) -
4427 round_down(start, fs_info->sectorsize);
4428 start = round_down(start, fs_info->sectorsize);
4ceff079 4429
0b246afa 4430 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4431 spin_lock(&data_sinfo->lock);
4432 if (WARN_ON(data_sinfo->bytes_may_use < len))
4433 data_sinfo->bytes_may_use = 0;
4434 else
4435 data_sinfo->bytes_may_use -= len;
0b246afa 4436 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4437 data_sinfo->flags, len, 0);
4438 spin_unlock(&data_sinfo->lock);
4439}
4440
51773bec
QW
4441/*
4442 * Called if we need to clear a data reservation for this inode
4443 * Normally in a error case.
4444 *
01327610 4445 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4446 * space framework.
4447 */
bc42bda2
QW
4448void btrfs_free_reserved_data_space(struct inode *inode,
4449 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4450{
0c476a5d
JM
4451 struct btrfs_root *root = BTRFS_I(inode)->root;
4452
4453 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4454 len = round_up(start + len, root->fs_info->sectorsize) -
4455 round_down(start, root->fs_info->sectorsize);
4456 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4457
51773bec 4458 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4459 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4460}
4461
97e728d4 4462static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4463{
97e728d4
JB
4464 struct list_head *head = &info->space_info;
4465 struct btrfs_space_info *found;
e3ccfa98 4466
97e728d4
JB
4467 rcu_read_lock();
4468 list_for_each_entry_rcu(found, head, list) {
4469 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4470 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4471 }
97e728d4 4472 rcu_read_unlock();
e3ccfa98
JB
4473}
4474
3c76cd84
MX
4475static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4476{
4477 return (global->size << 1);
4478}
4479
2ff7e61e 4480static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4481 struct btrfs_space_info *sinfo, int force)
32c00aff 4482{
0b246afa 4483 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4484 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4485 u64 thresh;
e3ccfa98 4486
0e4f8f88
CM
4487 if (force == CHUNK_ALLOC_FORCE)
4488 return 1;
4489
fb25e914
JB
4490 /*
4491 * We need to take into account the global rsv because for all intents
4492 * and purposes it's used space. Don't worry about locking the
4493 * global_rsv, it doesn't change except when the transaction commits.
4494 */
54338b5c 4495 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4496 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4497
0e4f8f88
CM
4498 /*
4499 * in limited mode, we want to have some free space up to
4500 * about 1% of the FS size.
4501 */
4502 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4503 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4504 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4505
8d8aafee 4506 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4507 return 1;
4508 }
0e4f8f88 4509
8d8aafee 4510 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4511 return 0;
424499db 4512 return 1;
32c00aff
JB
4513}
4514
2ff7e61e 4515static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4516{
4517 u64 num_dev;
4518
53b381b3
DW
4519 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4520 BTRFS_BLOCK_GROUP_RAID0 |
4521 BTRFS_BLOCK_GROUP_RAID5 |
4522 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4523 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4524 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4525 num_dev = 2;
4526 else
4527 num_dev = 1; /* DUP or single */
4528
39c2d7fa 4529 return num_dev;
15d1ff81
LB
4530}
4531
39c2d7fa
FM
4532/*
4533 * If @is_allocation is true, reserve space in the system space info necessary
4534 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4535 * removing a chunk.
4536 */
4537void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4538 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4539{
4540 struct btrfs_space_info *info;
4541 u64 left;
4542 u64 thresh;
4fbcdf66 4543 int ret = 0;
39c2d7fa 4544 u64 num_devs;
4fbcdf66
FM
4545
4546 /*
4547 * Needed because we can end up allocating a system chunk and for an
4548 * atomic and race free space reservation in the chunk block reserve.
4549 */
a32bf9a3 4550 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4551
0b246afa 4552 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4553 spin_lock(&info->lock);
4136135b 4554 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4555 spin_unlock(&info->lock);
4556
2ff7e61e 4557 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4558
4559 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4560 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4561 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4562
0b246afa
JM
4563 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4564 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4565 left, thresh, type);
4566 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4567 }
4568
4569 if (left < thresh) {
1b86826d 4570 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4571
4fbcdf66
FM
4572 /*
4573 * Ignore failure to create system chunk. We might end up not
4574 * needing it, as we might not need to COW all nodes/leafs from
4575 * the paths we visit in the chunk tree (they were already COWed
4576 * or created in the current transaction for example).
4577 */
2ff7e61e 4578 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4579 }
4580
4581 if (!ret) {
0b246afa
JM
4582 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4583 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4584 thresh, BTRFS_RESERVE_NO_FLUSH);
4585 if (!ret)
4586 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4587 }
4588}
4589
28b737f6
LB
4590/*
4591 * If force is CHUNK_ALLOC_FORCE:
4592 * - return 1 if it successfully allocates a chunk,
4593 * - return errors including -ENOSPC otherwise.
4594 * If force is NOT CHUNK_ALLOC_FORCE:
4595 * - return 0 if it doesn't need to allocate a new chunk,
4596 * - return 1 if it successfully allocates a chunk,
4597 * - return errors including -ENOSPC otherwise.
4598 */
6324fbf3 4599static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4600 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4601{
6324fbf3 4602 struct btrfs_space_info *space_info;
6d74119f 4603 int wait_for_alloc = 0;
9ed74f2d 4604 int ret = 0;
9ed74f2d 4605
c6b305a8
JB
4606 /* Don't re-enter if we're already allocating a chunk */
4607 if (trans->allocating_chunk)
4608 return -ENOSPC;
4609
0b246afa 4610 space_info = __find_space_info(fs_info, flags);
dc2d3005 4611 ASSERT(space_info);
9ed74f2d 4612
6d74119f 4613again:
25179201 4614 spin_lock(&space_info->lock);
9e622d6b 4615 if (force < space_info->force_alloc)
0e4f8f88 4616 force = space_info->force_alloc;
25179201 4617 if (space_info->full) {
2ff7e61e 4618 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4619 ret = -ENOSPC;
4620 else
4621 ret = 0;
25179201 4622 spin_unlock(&space_info->lock);
09fb99a6 4623 return ret;
9ed74f2d
JB
4624 }
4625
2ff7e61e 4626 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4627 spin_unlock(&space_info->lock);
6d74119f
JB
4628 return 0;
4629 } else if (space_info->chunk_alloc) {
4630 wait_for_alloc = 1;
4631 } else {
4632 space_info->chunk_alloc = 1;
9ed74f2d 4633 }
0e4f8f88 4634
25179201 4635 spin_unlock(&space_info->lock);
9ed74f2d 4636
6d74119f
JB
4637 mutex_lock(&fs_info->chunk_mutex);
4638
4639 /*
4640 * The chunk_mutex is held throughout the entirety of a chunk
4641 * allocation, so once we've acquired the chunk_mutex we know that the
4642 * other guy is done and we need to recheck and see if we should
4643 * allocate.
4644 */
4645 if (wait_for_alloc) {
4646 mutex_unlock(&fs_info->chunk_mutex);
4647 wait_for_alloc = 0;
1e1c50a9 4648 cond_resched();
6d74119f
JB
4649 goto again;
4650 }
4651
c6b305a8
JB
4652 trans->allocating_chunk = true;
4653
67377734
JB
4654 /*
4655 * If we have mixed data/metadata chunks we want to make sure we keep
4656 * allocating mixed chunks instead of individual chunks.
4657 */
4658 if (btrfs_mixed_space_info(space_info))
4659 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4660
97e728d4
JB
4661 /*
4662 * if we're doing a data chunk, go ahead and make sure that
4663 * we keep a reasonable number of metadata chunks allocated in the
4664 * FS as well.
4665 */
9ed74f2d 4666 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4667 fs_info->data_chunk_allocations++;
4668 if (!(fs_info->data_chunk_allocations %
4669 fs_info->metadata_ratio))
4670 force_metadata_allocation(fs_info);
9ed74f2d
JB
4671 }
4672
15d1ff81
LB
4673 /*
4674 * Check if we have enough space in SYSTEM chunk because we may need
4675 * to update devices.
4676 */
2ff7e61e 4677 check_system_chunk(trans, fs_info, flags);
15d1ff81 4678
2ff7e61e 4679 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4680 trans->allocating_chunk = false;
92b8e897 4681
9ed74f2d 4682 spin_lock(&space_info->lock);
57f1642e
NB
4683 if (ret < 0) {
4684 if (ret == -ENOSPC)
4685 space_info->full = 1;
4686 else
4687 goto out;
4688 } else {
424499db 4689 ret = 1;
57f1642e 4690 }
6d74119f 4691
0e4f8f88 4692 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4693out:
6d74119f 4694 space_info->chunk_alloc = 0;
9ed74f2d 4695 spin_unlock(&space_info->lock);
a25c75d5 4696 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4697 /*
4698 * When we allocate a new chunk we reserve space in the chunk block
4699 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4700 * add new nodes/leafs to it if we end up needing to do it when
4701 * inserting the chunk item and updating device items as part of the
4702 * second phase of chunk allocation, performed by
4703 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4704 * large number of new block groups to create in our transaction
4705 * handle's new_bgs list to avoid exhausting the chunk block reserve
4706 * in extreme cases - like having a single transaction create many new
4707 * block groups when starting to write out the free space caches of all
4708 * the block groups that were made dirty during the lifetime of the
4709 * transaction.
4710 */
d9a0540a 4711 if (trans->can_flush_pending_bgs &&
ee22184b 4712 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
6c686b35 4713 btrfs_create_pending_block_groups(trans);
00d80e34
FM
4714 btrfs_trans_release_chunk_metadata(trans);
4715 }
0f9dd46c 4716 return ret;
6324fbf3 4717}
9ed74f2d 4718
c1c4919b 4719static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4720 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4721 enum btrfs_reserve_flush_enum flush,
4722 bool system_chunk)
a80c8dcf 4723{
0b246afa 4724 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4725 u64 profile;
3c76cd84 4726 u64 space_size;
a80c8dcf
JB
4727 u64 avail;
4728 u64 used;
4729
957780eb
JB
4730 /* Don't overcommit when in mixed mode. */
4731 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4732 return 0;
4733
c1c4919b
JM
4734 if (system_chunk)
4735 profile = btrfs_system_alloc_profile(fs_info);
4736 else
4737 profile = btrfs_metadata_alloc_profile(fs_info);
4738
4136135b 4739 used = btrfs_space_info_used(space_info, false);
96f1bb57 4740
96f1bb57
JB
4741 /*
4742 * We only want to allow over committing if we have lots of actual space
4743 * free, but if we don't have enough space to handle the global reserve
4744 * space then we could end up having a real enospc problem when trying
4745 * to allocate a chunk or some other such important allocation.
4746 */
3c76cd84
MX
4747 spin_lock(&global_rsv->lock);
4748 space_size = calc_global_rsv_need_space(global_rsv);
4749 spin_unlock(&global_rsv->lock);
4750 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4751 return 0;
4752
4753 used += space_info->bytes_may_use;
a80c8dcf 4754
a5ed45f8 4755 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4756
4757 /*
4758 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4759 * space is actually useable. For raid56, the space info used
4760 * doesn't include the parity drive, so we don't have to
4761 * change the math
a80c8dcf
JB
4762 */
4763 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4764 BTRFS_BLOCK_GROUP_RAID1 |
4765 BTRFS_BLOCK_GROUP_RAID10))
4766 avail >>= 1;
4767
4768 /*
561c294d
MX
4769 * If we aren't flushing all things, let us overcommit up to
4770 * 1/2th of the space. If we can flush, don't let us overcommit
4771 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4772 */
08e007d2 4773 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4774 avail >>= 3;
a80c8dcf 4775 else
14575aef 4776 avail >>= 1;
a80c8dcf 4777
14575aef 4778 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4779 return 1;
4780 return 0;
4781}
4782
2ff7e61e 4783static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4784 unsigned long nr_pages, int nr_items)
da633a42 4785{
0b246afa 4786 struct super_block *sb = fs_info->sb;
da633a42 4787
925a6efb
JB
4788 if (down_read_trylock(&sb->s_umount)) {
4789 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4790 up_read(&sb->s_umount);
4791 } else {
da633a42
MX
4792 /*
4793 * We needn't worry the filesystem going from r/w to r/o though
4794 * we don't acquire ->s_umount mutex, because the filesystem
4795 * should guarantee the delalloc inodes list be empty after
4796 * the filesystem is readonly(all dirty pages are written to
4797 * the disk).
4798 */
82b3e53b 4799 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4800 if (!current->journal_info)
0b246afa 4801 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4802 }
4803}
4804
6374e57a 4805static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4806 u64 to_reclaim)
18cd8ea6
MX
4807{
4808 u64 bytes;
6374e57a 4809 u64 nr;
18cd8ea6 4810
2ff7e61e 4811 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4812 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4813 if (!nr)
4814 nr = 1;
4815 return nr;
4816}
4817
ee22184b 4818#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4819
9ed74f2d 4820/*
5da9d01b 4821 * shrink metadata reservation for delalloc
9ed74f2d 4822 */
c1c4919b
JM
4823static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4824 u64 orig, bool wait_ordered)
5da9d01b 4825{
0019f10d 4826 struct btrfs_space_info *space_info;
663350ac 4827 struct btrfs_trans_handle *trans;
f4c738c2 4828 u64 delalloc_bytes;
5da9d01b 4829 u64 max_reclaim;
6374e57a 4830 u64 items;
b1953bce 4831 long time_left;
d3ee29e3
MX
4832 unsigned long nr_pages;
4833 int loops;
5da9d01b 4834
c61a16a7 4835 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4836 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4837 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4838
663350ac 4839 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4840 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4841
963d678b 4842 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4843 &fs_info->delalloc_bytes);
f4c738c2 4844 if (delalloc_bytes == 0) {
fdb5effd 4845 if (trans)
f4c738c2 4846 return;
38c135af 4847 if (wait_ordered)
0b246afa 4848 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4849 return;
fdb5effd
JB
4850 }
4851
d3ee29e3 4852 loops = 0;
f4c738c2
JB
4853 while (delalloc_bytes && loops < 3) {
4854 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4855 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4856 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4857 /*
4858 * We need to wait for the async pages to actually start before
4859 * we do anything.
4860 */
0b246afa 4861 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4862 if (!max_reclaim)
4863 goto skip_async;
4864
4865 if (max_reclaim <= nr_pages)
4866 max_reclaim = 0;
4867 else
4868 max_reclaim -= nr_pages;
dea31f52 4869
0b246afa
JM
4870 wait_event(fs_info->async_submit_wait,
4871 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4872 (int)max_reclaim);
4873skip_async:
0019f10d 4874 spin_lock(&space_info->lock);
957780eb
JB
4875 if (list_empty(&space_info->tickets) &&
4876 list_empty(&space_info->priority_tickets)) {
4877 spin_unlock(&space_info->lock);
4878 break;
4879 }
0019f10d 4880 spin_unlock(&space_info->lock);
5da9d01b 4881
36e39c40 4882 loops++;
f104d044 4883 if (wait_ordered && !trans) {
0b246afa 4884 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4885 } else {
f4c738c2 4886 time_left = schedule_timeout_killable(1);
f104d044
JB
4887 if (time_left)
4888 break;
4889 }
963d678b 4890 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4891 &fs_info->delalloc_bytes);
5da9d01b 4892 }
5da9d01b
YZ
4893}
4894
996478ca
JB
4895struct reserve_ticket {
4896 u64 bytes;
4897 int error;
4898 struct list_head list;
4899 wait_queue_head_t wait;
4900};
4901
663350ac
JB
4902/**
4903 * maybe_commit_transaction - possibly commit the transaction if its ok to
4904 * @root - the root we're allocating for
4905 * @bytes - the number of bytes we want to reserve
4906 * @force - force the commit
8bb8ab2e 4907 *
663350ac
JB
4908 * This will check to make sure that committing the transaction will actually
4909 * get us somewhere and then commit the transaction if it does. Otherwise it
4910 * will return -ENOSPC.
8bb8ab2e 4911 */
0c9ab349 4912static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4913 struct btrfs_space_info *space_info)
663350ac 4914{
996478ca 4915 struct reserve_ticket *ticket = NULL;
0b246afa 4916 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4917 struct btrfs_trans_handle *trans;
996478ca 4918 u64 bytes;
663350ac
JB
4919
4920 trans = (struct btrfs_trans_handle *)current->journal_info;
4921 if (trans)
4922 return -EAGAIN;
4923
996478ca
JB
4924 spin_lock(&space_info->lock);
4925 if (!list_empty(&space_info->priority_tickets))
4926 ticket = list_first_entry(&space_info->priority_tickets,
4927 struct reserve_ticket, list);
4928 else if (!list_empty(&space_info->tickets))
4929 ticket = list_first_entry(&space_info->tickets,
4930 struct reserve_ticket, list);
4931 bytes = (ticket) ? ticket->bytes : 0;
4932 spin_unlock(&space_info->lock);
4933
4934 if (!bytes)
4935 return 0;
663350ac
JB
4936
4937 /* See if there is enough pinned space to make this reservation */
b150a4f1 4938 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4939 bytes) >= 0)
663350ac 4940 goto commit;
663350ac
JB
4941
4942 /*
4943 * See if there is some space in the delayed insertion reservation for
4944 * this reservation.
4945 */
4946 if (space_info != delayed_rsv->space_info)
4947 return -ENOSPC;
4948
4949 spin_lock(&delayed_rsv->lock);
996478ca
JB
4950 if (delayed_rsv->size > bytes)
4951 bytes = 0;
4952 else
4953 bytes -= delayed_rsv->size;
057aac3e
NB
4954 spin_unlock(&delayed_rsv->lock);
4955
b150a4f1 4956 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4957 bytes) < 0) {
663350ac
JB
4958 return -ENOSPC;
4959 }
663350ac
JB
4960
4961commit:
a9b3311e 4962 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4963 if (IS_ERR(trans))
4964 return -ENOSPC;
4965
3a45bb20 4966 return btrfs_commit_transaction(trans);
663350ac
JB
4967}
4968
e38ae7a0
NB
4969/*
4970 * Try to flush some data based on policy set by @state. This is only advisory
4971 * and may fail for various reasons. The caller is supposed to examine the
4972 * state of @space_info to detect the outcome.
4973 */
4974static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4975 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4976 int state)
96c3f433 4977{
a9b3311e 4978 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4979 struct btrfs_trans_handle *trans;
4980 int nr;
f4c738c2 4981 int ret = 0;
96c3f433
JB
4982
4983 switch (state) {
96c3f433
JB
4984 case FLUSH_DELAYED_ITEMS_NR:
4985 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4986 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4987 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4988 else
96c3f433 4989 nr = -1;
18cd8ea6 4990
96c3f433
JB
4991 trans = btrfs_join_transaction(root);
4992 if (IS_ERR(trans)) {
4993 ret = PTR_ERR(trans);
4994 break;
4995 }
e5c304e6 4996 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4997 btrfs_end_transaction(trans);
96c3f433 4998 break;
67b0fd63
JB
4999 case FLUSH_DELALLOC:
5000 case FLUSH_DELALLOC_WAIT:
7bdd6277 5001 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
5002 state == FLUSH_DELALLOC_WAIT);
5003 break;
ea658bad
JB
5004 case ALLOC_CHUNK:
5005 trans = btrfs_join_transaction(root);
5006 if (IS_ERR(trans)) {
5007 ret = PTR_ERR(trans);
5008 break;
5009 }
2ff7e61e 5010 ret = do_chunk_alloc(trans, fs_info,
1b86826d 5011 btrfs_metadata_alloc_profile(fs_info),
ea658bad 5012 CHUNK_ALLOC_NO_FORCE);
3a45bb20 5013 btrfs_end_transaction(trans);
eecba891 5014 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
5015 ret = 0;
5016 break;
96c3f433 5017 case COMMIT_TRANS:
996478ca 5018 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
5019 break;
5020 default:
5021 ret = -ENOSPC;
5022 break;
5023 }
5024
7bdd6277
NB
5025 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5026 ret);
e38ae7a0 5027 return;
96c3f433 5028}
21c7e756
MX
5029
5030static inline u64
c1c4919b
JM
5031btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5032 struct btrfs_space_info *space_info,
5033 bool system_chunk)
21c7e756 5034{
957780eb 5035 struct reserve_ticket *ticket;
21c7e756
MX
5036 u64 used;
5037 u64 expected;
957780eb 5038 u64 to_reclaim = 0;
21c7e756 5039
957780eb
JB
5040 list_for_each_entry(ticket, &space_info->tickets, list)
5041 to_reclaim += ticket->bytes;
5042 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5043 to_reclaim += ticket->bytes;
5044 if (to_reclaim)
5045 return to_reclaim;
21c7e756 5046
e0af2484 5047 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5048 if (can_overcommit(fs_info, space_info, to_reclaim,
5049 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5050 return 0;
5051
0eee8a49
NB
5052 used = btrfs_space_info_used(space_info, true);
5053
c1c4919b
JM
5054 if (can_overcommit(fs_info, space_info, SZ_1M,
5055 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5056 expected = div_factor_fine(space_info->total_bytes, 95);
5057 else
5058 expected = div_factor_fine(space_info->total_bytes, 90);
5059
5060 if (used > expected)
5061 to_reclaim = used - expected;
5062 else
5063 to_reclaim = 0;
5064 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5065 space_info->bytes_reserved);
21c7e756
MX
5066 return to_reclaim;
5067}
5068
c1c4919b
JM
5069static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5070 struct btrfs_space_info *space_info,
5071 u64 used, bool system_chunk)
21c7e756 5072{
365c5313
JB
5073 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5074
5075 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5076 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5077 return 0;
5078
c1c4919b
JM
5079 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5080 system_chunk))
d38b349c
JB
5081 return 0;
5082
0b246afa
JM
5083 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5084 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5085}
5086
957780eb 5087static void wake_all_tickets(struct list_head *head)
21c7e756 5088{
957780eb 5089 struct reserve_ticket *ticket;
25ce459c 5090
957780eb
JB
5091 while (!list_empty(head)) {
5092 ticket = list_first_entry(head, struct reserve_ticket, list);
5093 list_del_init(&ticket->list);
5094 ticket->error = -ENOSPC;
5095 wake_up(&ticket->wait);
21c7e756 5096 }
21c7e756
MX
5097}
5098
957780eb
JB
5099/*
5100 * This is for normal flushers, we can wait all goddamned day if we want to. We
5101 * will loop and continuously try to flush as long as we are making progress.
5102 * We count progress as clearing off tickets each time we have to loop.
5103 */
21c7e756
MX
5104static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5105{
5106 struct btrfs_fs_info *fs_info;
5107 struct btrfs_space_info *space_info;
5108 u64 to_reclaim;
5109 int flush_state;
957780eb 5110 int commit_cycles = 0;
ce129655 5111 u64 last_tickets_id;
21c7e756
MX
5112
5113 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5114 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5115
957780eb 5116 spin_lock(&space_info->lock);
c1c4919b
JM
5117 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5118 false);
957780eb
JB
5119 if (!to_reclaim) {
5120 space_info->flush = 0;
5121 spin_unlock(&space_info->lock);
21c7e756 5122 return;
957780eb 5123 }
ce129655 5124 last_tickets_id = space_info->tickets_id;
957780eb 5125 spin_unlock(&space_info->lock);
21c7e756
MX
5126
5127 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5128 do {
e38ae7a0 5129 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5130 spin_lock(&space_info->lock);
5131 if (list_empty(&space_info->tickets)) {
5132 space_info->flush = 0;
5133 spin_unlock(&space_info->lock);
5134 return;
5135 }
c1c4919b
JM
5136 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5137 space_info,
5138 false);
ce129655 5139 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5140 flush_state++;
5141 } else {
ce129655 5142 last_tickets_id = space_info->tickets_id;
957780eb
JB
5143 flush_state = FLUSH_DELAYED_ITEMS_NR;
5144 if (commit_cycles)
5145 commit_cycles--;
5146 }
5147
5148 if (flush_state > COMMIT_TRANS) {
5149 commit_cycles++;
5150 if (commit_cycles > 2) {
5151 wake_all_tickets(&space_info->tickets);
5152 space_info->flush = 0;
5153 } else {
5154 flush_state = FLUSH_DELAYED_ITEMS_NR;
5155 }
5156 }
5157 spin_unlock(&space_info->lock);
5158 } while (flush_state <= COMMIT_TRANS);
5159}
5160
5161void btrfs_init_async_reclaim_work(struct work_struct *work)
5162{
5163 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5164}
5165
5166static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5167 struct btrfs_space_info *space_info,
5168 struct reserve_ticket *ticket)
5169{
5170 u64 to_reclaim;
5171 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5172
5173 spin_lock(&space_info->lock);
c1c4919b
JM
5174 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5175 false);
957780eb
JB
5176 if (!to_reclaim) {
5177 spin_unlock(&space_info->lock);
5178 return;
5179 }
5180 spin_unlock(&space_info->lock);
5181
21c7e756 5182 do {
7bdd6277 5183 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5184 flush_state++;
957780eb
JB
5185 spin_lock(&space_info->lock);
5186 if (ticket->bytes == 0) {
5187 spin_unlock(&space_info->lock);
21c7e756 5188 return;
957780eb
JB
5189 }
5190 spin_unlock(&space_info->lock);
5191
5192 /*
5193 * Priority flushers can't wait on delalloc without
5194 * deadlocking.
5195 */
5196 if (flush_state == FLUSH_DELALLOC ||
5197 flush_state == FLUSH_DELALLOC_WAIT)
5198 flush_state = ALLOC_CHUNK;
365c5313 5199 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5200}
5201
957780eb
JB
5202static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5203 struct btrfs_space_info *space_info,
5204 struct reserve_ticket *ticket, u64 orig_bytes)
5205
21c7e756 5206{
957780eb
JB
5207 DEFINE_WAIT(wait);
5208 int ret = 0;
5209
5210 spin_lock(&space_info->lock);
5211 while (ticket->bytes > 0 && ticket->error == 0) {
5212 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5213 if (ret) {
5214 ret = -EINTR;
5215 break;
5216 }
5217 spin_unlock(&space_info->lock);
5218
5219 schedule();
5220
5221 finish_wait(&ticket->wait, &wait);
5222 spin_lock(&space_info->lock);
5223 }
5224 if (!ret)
5225 ret = ticket->error;
5226 if (!list_empty(&ticket->list))
5227 list_del_init(&ticket->list);
5228 if (ticket->bytes && ticket->bytes < orig_bytes) {
5229 u64 num_bytes = orig_bytes - ticket->bytes;
5230 space_info->bytes_may_use -= num_bytes;
5231 trace_btrfs_space_reservation(fs_info, "space_info",
5232 space_info->flags, num_bytes, 0);
5233 }
5234 spin_unlock(&space_info->lock);
5235
5236 return ret;
21c7e756
MX
5237}
5238
4a92b1b8
JB
5239/**
5240 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5241 * @root - the root we're allocating for
957780eb 5242 * @space_info - the space info we want to allocate from
4a92b1b8 5243 * @orig_bytes - the number of bytes we want
48fc7f7e 5244 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5245 *
01327610 5246 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5247 * with the block_rsv. If there is not enough space it will make an attempt to
5248 * flush out space to make room. It will do this by flushing delalloc if
5249 * possible or committing the transaction. If flush is 0 then no attempts to
5250 * regain reservations will be made and this will fail if there is not enough
5251 * space already.
8bb8ab2e 5252 */
c1c4919b 5253static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5254 struct btrfs_space_info *space_info,
5255 u64 orig_bytes,
c1c4919b
JM
5256 enum btrfs_reserve_flush_enum flush,
5257 bool system_chunk)
9ed74f2d 5258{
957780eb 5259 struct reserve_ticket ticket;
2bf64758 5260 u64 used;
8bb8ab2e 5261 int ret = 0;
9ed74f2d 5262
957780eb 5263 ASSERT(orig_bytes);
8ca17f0f 5264 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5265
8bb8ab2e 5266 spin_lock(&space_info->lock);
fdb5effd 5267 ret = -ENOSPC;
4136135b 5268 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5269
8bb8ab2e 5270 /*
957780eb
JB
5271 * If we have enough space then hooray, make our reservation and carry
5272 * on. If not see if we can overcommit, and if we can, hooray carry on.
5273 * If not things get more complicated.
8bb8ab2e 5274 */
957780eb
JB
5275 if (used + orig_bytes <= space_info->total_bytes) {
5276 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5277 trace_btrfs_space_reservation(fs_info, "space_info",
5278 space_info->flags, orig_bytes, 1);
957780eb 5279 ret = 0;
c1c4919b
JM
5280 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5281 system_chunk)) {
44734ed1 5282 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5283 trace_btrfs_space_reservation(fs_info, "space_info",
5284 space_info->flags, orig_bytes, 1);
44734ed1 5285 ret = 0;
2bf64758
JB
5286 }
5287
8bb8ab2e 5288 /*
957780eb
JB
5289 * If we couldn't make a reservation then setup our reservation ticket
5290 * and kick the async worker if it's not already running.
08e007d2 5291 *
957780eb
JB
5292 * If we are a priority flusher then we just need to add our ticket to
5293 * the list and we will do our own flushing further down.
8bb8ab2e 5294 */
72bcd99d 5295 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5296 ticket.bytes = orig_bytes;
5297 ticket.error = 0;
5298 init_waitqueue_head(&ticket.wait);
5299 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5300 list_add_tail(&ticket.list, &space_info->tickets);
5301 if (!space_info->flush) {
5302 space_info->flush = 1;
0b246afa 5303 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5304 space_info->flags,
5305 orig_bytes, flush,
5306 "enospc");
957780eb 5307 queue_work(system_unbound_wq,
c1c4919b 5308 &fs_info->async_reclaim_work);
957780eb
JB
5309 }
5310 } else {
5311 list_add_tail(&ticket.list,
5312 &space_info->priority_tickets);
5313 }
21c7e756
MX
5314 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5315 used += orig_bytes;
f6acfd50
JB
5316 /*
5317 * We will do the space reservation dance during log replay,
5318 * which means we won't have fs_info->fs_root set, so don't do
5319 * the async reclaim as we will panic.
5320 */
0b246afa 5321 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5322 need_do_async_reclaim(fs_info, space_info,
5323 used, system_chunk) &&
0b246afa
JM
5324 !work_busy(&fs_info->async_reclaim_work)) {
5325 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5326 orig_bytes, flush, "preempt");
21c7e756 5327 queue_work(system_unbound_wq,
0b246afa 5328 &fs_info->async_reclaim_work);
f376df2b 5329 }
8bb8ab2e 5330 }
f0486c68 5331 spin_unlock(&space_info->lock);
08e007d2 5332 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5333 return ret;
f0486c68 5334
957780eb 5335 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5336 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5337 orig_bytes);
08e007d2 5338
957780eb 5339 ret = 0;
0b246afa 5340 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5341 spin_lock(&space_info->lock);
5342 if (ticket.bytes) {
5343 if (ticket.bytes < orig_bytes) {
5344 u64 num_bytes = orig_bytes - ticket.bytes;
5345 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5346 trace_btrfs_space_reservation(fs_info, "space_info",
5347 space_info->flags,
5348 num_bytes, 0);
08e007d2 5349
957780eb
JB
5350 }
5351 list_del_init(&ticket.list);
5352 ret = -ENOSPC;
5353 }
5354 spin_unlock(&space_info->lock);
5355 ASSERT(list_empty(&ticket.list));
5356 return ret;
5357}
8bb8ab2e 5358
957780eb
JB
5359/**
5360 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5361 * @root - the root we're allocating for
5362 * @block_rsv - the block_rsv we're allocating for
5363 * @orig_bytes - the number of bytes we want
5364 * @flush - whether or not we can flush to make our reservation
5365 *
5366 * This will reserve orgi_bytes number of bytes from the space info associated
5367 * with the block_rsv. If there is not enough space it will make an attempt to
5368 * flush out space to make room. It will do this by flushing delalloc if
5369 * possible or committing the transaction. If flush is 0 then no attempts to
5370 * regain reservations will be made and this will fail if there is not enough
5371 * space already.
5372 */
5373static int reserve_metadata_bytes(struct btrfs_root *root,
5374 struct btrfs_block_rsv *block_rsv,
5375 u64 orig_bytes,
5376 enum btrfs_reserve_flush_enum flush)
5377{
0b246afa
JM
5378 struct btrfs_fs_info *fs_info = root->fs_info;
5379 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5380 int ret;
c1c4919b 5381 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5382
c1c4919b
JM
5383 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5384 orig_bytes, flush, system_chunk);
5d80366e
JB
5385 if (ret == -ENOSPC &&
5386 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5387 if (block_rsv != global_rsv &&
5388 !block_rsv_use_bytes(global_rsv, orig_bytes))
5389 ret = 0;
5390 }
9a3daff3 5391 if (ret == -ENOSPC) {
0b246afa 5392 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5393 block_rsv->space_info->flags,
5394 orig_bytes, 1);
9a3daff3
NB
5395
5396 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5397 dump_space_info(fs_info, block_rsv->space_info,
5398 orig_bytes, 0);
5399 }
f0486c68
YZ
5400 return ret;
5401}
5402
79787eaa
JM
5403static struct btrfs_block_rsv *get_block_rsv(
5404 const struct btrfs_trans_handle *trans,
5405 const struct btrfs_root *root)
f0486c68 5406{
0b246afa 5407 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5408 struct btrfs_block_rsv *block_rsv = NULL;
5409
e9cf439f 5410 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5411 (root == fs_info->csum_root && trans->adding_csums) ||
5412 (root == fs_info->uuid_root))
f7a81ea4
SB
5413 block_rsv = trans->block_rsv;
5414
4c13d758 5415 if (!block_rsv)
f0486c68
YZ
5416 block_rsv = root->block_rsv;
5417
5418 if (!block_rsv)
0b246afa 5419 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5420
5421 return block_rsv;
5422}
5423
5424static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5425 u64 num_bytes)
5426{
5427 int ret = -ENOSPC;
5428 spin_lock(&block_rsv->lock);
5429 if (block_rsv->reserved >= num_bytes) {
5430 block_rsv->reserved -= num_bytes;
5431 if (block_rsv->reserved < block_rsv->size)
5432 block_rsv->full = 0;
5433 ret = 0;
5434 }
5435 spin_unlock(&block_rsv->lock);
5436 return ret;
5437}
5438
5439static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5440 u64 num_bytes, int update_size)
5441{
5442 spin_lock(&block_rsv->lock);
5443 block_rsv->reserved += num_bytes;
5444 if (update_size)
5445 block_rsv->size += num_bytes;
5446 else if (block_rsv->reserved >= block_rsv->size)
5447 block_rsv->full = 1;
5448 spin_unlock(&block_rsv->lock);
5449}
5450
d52be818
JB
5451int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5452 struct btrfs_block_rsv *dest, u64 num_bytes,
5453 int min_factor)
5454{
5455 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5456 u64 min_bytes;
5457
5458 if (global_rsv->space_info != dest->space_info)
5459 return -ENOSPC;
5460
5461 spin_lock(&global_rsv->lock);
5462 min_bytes = div_factor(global_rsv->size, min_factor);
5463 if (global_rsv->reserved < min_bytes + num_bytes) {
5464 spin_unlock(&global_rsv->lock);
5465 return -ENOSPC;
5466 }
5467 global_rsv->reserved -= num_bytes;
5468 if (global_rsv->reserved < global_rsv->size)
5469 global_rsv->full = 0;
5470 spin_unlock(&global_rsv->lock);
5471
5472 block_rsv_add_bytes(dest, num_bytes, 1);
5473 return 0;
5474}
5475
957780eb
JB
5476/*
5477 * This is for space we already have accounted in space_info->bytes_may_use, so
5478 * basically when we're returning space from block_rsv's.
5479 */
5480static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5481 struct btrfs_space_info *space_info,
5482 u64 num_bytes)
5483{
5484 struct reserve_ticket *ticket;
5485 struct list_head *head;
5486 u64 used;
5487 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5488 bool check_overcommit = false;
5489
5490 spin_lock(&space_info->lock);
5491 head = &space_info->priority_tickets;
5492
5493 /*
5494 * If we are over our limit then we need to check and see if we can
5495 * overcommit, and if we can't then we just need to free up our space
5496 * and not satisfy any requests.
5497 */
0eee8a49 5498 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5499 if (used - num_bytes >= space_info->total_bytes)
5500 check_overcommit = true;
5501again:
5502 while (!list_empty(head) && num_bytes) {
5503 ticket = list_first_entry(head, struct reserve_ticket,
5504 list);
5505 /*
5506 * We use 0 bytes because this space is already reserved, so
5507 * adding the ticket space would be a double count.
5508 */
5509 if (check_overcommit &&
c1c4919b 5510 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5511 break;
5512 if (num_bytes >= ticket->bytes) {
5513 list_del_init(&ticket->list);
5514 num_bytes -= ticket->bytes;
5515 ticket->bytes = 0;
ce129655 5516 space_info->tickets_id++;
957780eb
JB
5517 wake_up(&ticket->wait);
5518 } else {
5519 ticket->bytes -= num_bytes;
5520 num_bytes = 0;
5521 }
5522 }
5523
5524 if (num_bytes && head == &space_info->priority_tickets) {
5525 head = &space_info->tickets;
5526 flush = BTRFS_RESERVE_FLUSH_ALL;
5527 goto again;
5528 }
5529 space_info->bytes_may_use -= num_bytes;
5530 trace_btrfs_space_reservation(fs_info, "space_info",
5531 space_info->flags, num_bytes, 0);
5532 spin_unlock(&space_info->lock);
5533}
5534
5535/*
5536 * This is for newly allocated space that isn't accounted in
5537 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5538 * we use this helper.
5539 */
5540static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5541 struct btrfs_space_info *space_info,
5542 u64 num_bytes)
5543{
5544 struct reserve_ticket *ticket;
5545 struct list_head *head = &space_info->priority_tickets;
5546
5547again:
5548 while (!list_empty(head) && num_bytes) {
5549 ticket = list_first_entry(head, struct reserve_ticket,
5550 list);
5551 if (num_bytes >= ticket->bytes) {
5552 trace_btrfs_space_reservation(fs_info, "space_info",
5553 space_info->flags,
5554 ticket->bytes, 1);
5555 list_del_init(&ticket->list);
5556 num_bytes -= ticket->bytes;
5557 space_info->bytes_may_use += ticket->bytes;
5558 ticket->bytes = 0;
ce129655 5559 space_info->tickets_id++;
957780eb
JB
5560 wake_up(&ticket->wait);
5561 } else {
5562 trace_btrfs_space_reservation(fs_info, "space_info",
5563 space_info->flags,
5564 num_bytes, 1);
5565 space_info->bytes_may_use += num_bytes;
5566 ticket->bytes -= num_bytes;
5567 num_bytes = 0;
5568 }
5569 }
5570
5571 if (num_bytes && head == &space_info->priority_tickets) {
5572 head = &space_info->tickets;
5573 goto again;
5574 }
5575}
5576
69fe2d75 5577static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5578 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5579 struct btrfs_block_rsv *dest, u64 num_bytes,
5580 u64 *qgroup_to_release_ret)
f0486c68
YZ
5581{
5582 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5583 u64 qgroup_to_release = 0;
69fe2d75 5584 u64 ret;
f0486c68
YZ
5585
5586 spin_lock(&block_rsv->lock);
ff6bc37e 5587 if (num_bytes == (u64)-1) {
f0486c68 5588 num_bytes = block_rsv->size;
ff6bc37e
QW
5589 qgroup_to_release = block_rsv->qgroup_rsv_size;
5590 }
f0486c68
YZ
5591 block_rsv->size -= num_bytes;
5592 if (block_rsv->reserved >= block_rsv->size) {
5593 num_bytes = block_rsv->reserved - block_rsv->size;
5594 block_rsv->reserved = block_rsv->size;
5595 block_rsv->full = 1;
5596 } else {
5597 num_bytes = 0;
5598 }
ff6bc37e
QW
5599 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5600 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5601 block_rsv->qgroup_rsv_size;
5602 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5603 } else {
5604 qgroup_to_release = 0;
5605 }
f0486c68
YZ
5606 spin_unlock(&block_rsv->lock);
5607
69fe2d75 5608 ret = num_bytes;
f0486c68
YZ
5609 if (num_bytes > 0) {
5610 if (dest) {
e9e22899
JB
5611 spin_lock(&dest->lock);
5612 if (!dest->full) {
5613 u64 bytes_to_add;
5614
5615 bytes_to_add = dest->size - dest->reserved;
5616 bytes_to_add = min(num_bytes, bytes_to_add);
5617 dest->reserved += bytes_to_add;
5618 if (dest->reserved >= dest->size)
5619 dest->full = 1;
5620 num_bytes -= bytes_to_add;
5621 }
5622 spin_unlock(&dest->lock);
5623 }
957780eb
JB
5624 if (num_bytes)
5625 space_info_add_old_bytes(fs_info, space_info,
5626 num_bytes);
9ed74f2d 5627 }
ff6bc37e
QW
5628 if (qgroup_to_release_ret)
5629 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5630 return ret;
f0486c68 5631}
4e06bdd6 5632
25d609f8
JB
5633int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5634 struct btrfs_block_rsv *dst, u64 num_bytes,
5635 int update_size)
f0486c68
YZ
5636{
5637 int ret;
9ed74f2d 5638
f0486c68
YZ
5639 ret = block_rsv_use_bytes(src, num_bytes);
5640 if (ret)
5641 return ret;
9ed74f2d 5642
25d609f8 5643 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5644 return 0;
5645}
5646
66d8f3dd 5647void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5648{
f0486c68
YZ
5649 memset(rsv, 0, sizeof(*rsv));
5650 spin_lock_init(&rsv->lock);
66d8f3dd 5651 rsv->type = type;
f0486c68
YZ
5652}
5653
69fe2d75
JB
5654void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5655 struct btrfs_block_rsv *rsv,
5656 unsigned short type)
5657{
5658 btrfs_init_block_rsv(rsv, type);
5659 rsv->space_info = __find_space_info(fs_info,
5660 BTRFS_BLOCK_GROUP_METADATA);
5661}
5662
2ff7e61e 5663struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5664 unsigned short type)
f0486c68
YZ
5665{
5666 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5667
f0486c68
YZ
5668 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5669 if (!block_rsv)
5670 return NULL;
9ed74f2d 5671
69fe2d75 5672 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5673 return block_rsv;
5674}
9ed74f2d 5675
2ff7e61e 5676void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5677 struct btrfs_block_rsv *rsv)
5678{
2aaa6655
JB
5679 if (!rsv)
5680 return;
2ff7e61e 5681 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5682 kfree(rsv);
9ed74f2d
JB
5683}
5684
cdfb080e
CM
5685void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5686{
5687 kfree(rsv);
5688}
5689
08e007d2
MX
5690int btrfs_block_rsv_add(struct btrfs_root *root,
5691 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5692 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5693{
f0486c68 5694 int ret;
9ed74f2d 5695
f0486c68
YZ
5696 if (num_bytes == 0)
5697 return 0;
8bb8ab2e 5698
61b520a9 5699 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5700 if (!ret) {
5701 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5702 return 0;
5703 }
9ed74f2d 5704
f0486c68 5705 return ret;
f0486c68 5706}
9ed74f2d 5707
2ff7e61e 5708int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5709{
5710 u64 num_bytes = 0;
f0486c68 5711 int ret = -ENOSPC;
9ed74f2d 5712
f0486c68
YZ
5713 if (!block_rsv)
5714 return 0;
9ed74f2d 5715
f0486c68 5716 spin_lock(&block_rsv->lock);
36ba022a
JB
5717 num_bytes = div_factor(block_rsv->size, min_factor);
5718 if (block_rsv->reserved >= num_bytes)
5719 ret = 0;
5720 spin_unlock(&block_rsv->lock);
9ed74f2d 5721
36ba022a
JB
5722 return ret;
5723}
5724
08e007d2
MX
5725int btrfs_block_rsv_refill(struct btrfs_root *root,
5726 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5727 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5728{
5729 u64 num_bytes = 0;
5730 int ret = -ENOSPC;
5731
5732 if (!block_rsv)
5733 return 0;
5734
5735 spin_lock(&block_rsv->lock);
5736 num_bytes = min_reserved;
13553e52 5737 if (block_rsv->reserved >= num_bytes)
f0486c68 5738 ret = 0;
13553e52 5739 else
f0486c68 5740 num_bytes -= block_rsv->reserved;
f0486c68 5741 spin_unlock(&block_rsv->lock);
13553e52 5742
f0486c68
YZ
5743 if (!ret)
5744 return 0;
5745
aa38a711 5746 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5747 if (!ret) {
5748 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5749 return 0;
6a63209f 5750 }
9ed74f2d 5751
13553e52 5752 return ret;
f0486c68
YZ
5753}
5754
69fe2d75
JB
5755/**
5756 * btrfs_inode_rsv_refill - refill the inode block rsv.
5757 * @inode - the inode we are refilling.
5758 * @flush - the flusing restriction.
5759 *
5760 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5761 * block_rsv->size as the minimum size. We'll either refill the missing amount
5762 * or return if we already have enough space. This will also handle the resreve
5763 * tracepoint for the reserved amount.
5764 */
3f2dd7a0
QW
5765static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5766 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5767{
5768 struct btrfs_root *root = inode->root;
5769 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5770 u64 num_bytes = 0;
ff6bc37e 5771 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5772 int ret = -ENOSPC;
5773
5774 spin_lock(&block_rsv->lock);
5775 if (block_rsv->reserved < block_rsv->size)
5776 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5777 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5778 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5779 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5780 spin_unlock(&block_rsv->lock);
5781
5782 if (num_bytes == 0)
5783 return 0;
5784
ff6bc37e 5785 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5786 if (ret)
5787 return ret;
69fe2d75
JB
5788 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5789 if (!ret) {
5790 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5791 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5792 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5793
5794 /* Don't forget to increase qgroup_rsv_reserved */
5795 spin_lock(&block_rsv->lock);
5796 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5797 spin_unlock(&block_rsv->lock);
5798 } else
5799 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5800 return ret;
5801}
5802
5803/**
5804 * btrfs_inode_rsv_release - release any excessive reservation.
5805 * @inode - the inode we need to release from.
43b18595
QW
5806 * @qgroup_free - free or convert qgroup meta.
5807 * Unlike normal operation, qgroup meta reservation needs to know if we are
5808 * freeing qgroup reservation or just converting it into per-trans. Normally
5809 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5810 *
5811 * This is the same as btrfs_block_rsv_release, except that it handles the
5812 * tracepoint for the reservation.
5813 */
43b18595 5814static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5815{
5816 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5817 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5818 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5819 u64 released = 0;
ff6bc37e 5820 u64 qgroup_to_release = 0;
69fe2d75
JB
5821
5822 /*
5823 * Since we statically set the block_rsv->size we just want to say we
5824 * are releasing 0 bytes, and then we'll just get the reservation over
5825 * the size free'd.
5826 */
ff6bc37e
QW
5827 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5828 &qgroup_to_release);
69fe2d75
JB
5829 if (released > 0)
5830 trace_btrfs_space_reservation(fs_info, "delalloc",
5831 btrfs_ino(inode), released, 0);
43b18595 5832 if (qgroup_free)
ff6bc37e 5833 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5834 else
ff6bc37e
QW
5835 btrfs_qgroup_convert_reserved_meta(inode->root,
5836 qgroup_to_release);
69fe2d75
JB
5837}
5838
2ff7e61e 5839void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5840 struct btrfs_block_rsv *block_rsv,
5841 u64 num_bytes)
5842{
0b246afa
JM
5843 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5844
17504584 5845 if (global_rsv == block_rsv ||
f0486c68
YZ
5846 block_rsv->space_info != global_rsv->space_info)
5847 global_rsv = NULL;
ff6bc37e 5848 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
6a63209f
JB
5849}
5850
8929ecfa
YZ
5851static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5852{
5853 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5854 struct btrfs_space_info *sinfo = block_rsv->space_info;
5855 u64 num_bytes;
6a63209f 5856
ae2e4728
JB
5857 /*
5858 * The global block rsv is based on the size of the extent tree, the
5859 * checksum tree and the root tree. If the fs is empty we want to set
5860 * it to a minimal amount for safety.
5861 */
5862 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5863 btrfs_root_used(&fs_info->csum_root->root_item) +
5864 btrfs_root_used(&fs_info->tree_root->root_item);
5865 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5866
8929ecfa 5867 spin_lock(&sinfo->lock);
1f699d38 5868 spin_lock(&block_rsv->lock);
4e06bdd6 5869
ee22184b 5870 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5871
fb4b10e5 5872 if (block_rsv->reserved < block_rsv->size) {
4136135b 5873 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5874 if (sinfo->total_bytes > num_bytes) {
5875 num_bytes = sinfo->total_bytes - num_bytes;
5876 num_bytes = min(num_bytes,
5877 block_rsv->size - block_rsv->reserved);
5878 block_rsv->reserved += num_bytes;
5879 sinfo->bytes_may_use += num_bytes;
5880 trace_btrfs_space_reservation(fs_info, "space_info",
5881 sinfo->flags, num_bytes,
5882 1);
5883 }
5884 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5885 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5886 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5887 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5888 sinfo->flags, num_bytes, 0);
8929ecfa 5889 block_rsv->reserved = block_rsv->size;
8929ecfa 5890 }
182608c8 5891
fb4b10e5
JB
5892 if (block_rsv->reserved == block_rsv->size)
5893 block_rsv->full = 1;
5894 else
5895 block_rsv->full = 0;
5896
8929ecfa 5897 spin_unlock(&block_rsv->lock);
1f699d38 5898 spin_unlock(&sinfo->lock);
6a63209f
JB
5899}
5900
f0486c68 5901static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5902{
f0486c68 5903 struct btrfs_space_info *space_info;
6a63209f 5904
f0486c68
YZ
5905 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5906 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5907
f0486c68 5908 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5909 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5910 fs_info->trans_block_rsv.space_info = space_info;
5911 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5912 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5913
8929ecfa
YZ
5914 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5915 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5916 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5917 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5918 if (fs_info->quota_root)
5919 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5920 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5921
8929ecfa 5922 update_global_block_rsv(fs_info);
6a63209f
JB
5923}
5924
8929ecfa 5925static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5926{
8c2a3ca2 5927 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5928 (u64)-1, NULL);
8929ecfa
YZ
5929 WARN_ON(fs_info->trans_block_rsv.size > 0);
5930 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5931 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5932 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5933 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5934 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5935}
5936
6a63209f 5937
4fbcdf66
FM
5938/*
5939 * To be called after all the new block groups attached to the transaction
5940 * handle have been created (btrfs_create_pending_block_groups()).
5941 */
5942void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5943{
64b63580 5944 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5945
5946 if (!trans->chunk_bytes_reserved)
5947 return;
5948
5949 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5950
5951 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5952 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5953 trans->chunk_bytes_reserved = 0;
5954}
5955
79787eaa 5956/* Can only return 0 or -ENOSPC */
d68fc57b 5957int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5958 struct btrfs_inode *inode)
d68fc57b 5959{
8ed7a2a0
NB
5960 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5961 struct btrfs_root *root = inode->root;
40acc3ee
JB
5962 /*
5963 * We always use trans->block_rsv here as we will have reserved space
5964 * for our orphan when starting the transaction, using get_block_rsv()
5965 * here will sometimes make us choose the wrong block rsv as we could be
5966 * doing a reloc inode for a non refcounted root.
5967 */
5968 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5969 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5970
5971 /*
fcb80c2a
JB
5972 * We need to hold space in order to delete our orphan item once we've
5973 * added it, so this takes the reservation so we can release it later
5974 * when we are truly done with the orphan item.
d68fc57b 5975 */
0b246afa
JM
5976 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5977
9678c543 5978 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
8ed7a2a0 5979 num_bytes, 1);
25d609f8 5980 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5981}
5982
703b391a 5983void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5984{
703b391a
NB
5985 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5986 struct btrfs_root *root = inode->root;
0b246afa
JM
5987 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5988
703b391a
NB
5989 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5990 num_bytes, 0);
2ff7e61e 5991 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5992}
97e728d4 5993
d5c12070
MX
5994/*
5995 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5996 * root: the root of the parent directory
5997 * rsv: block reservation
5998 * items: the number of items that we need do reservation
5999 * qgroup_reserved: used to return the reserved size in qgroup
6000 *
6001 * This function is used to reserve the space for snapshot/subvolume
6002 * creation and deletion. Those operations are different with the
6003 * common file/directory operations, they change two fs/file trees
6004 * and root tree, the number of items that the qgroup reserves is
6005 * different with the free space reservation. So we can not use
01327610 6006 * the space reservation mechanism in start_transaction().
d5c12070
MX
6007 */
6008int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
6009 struct btrfs_block_rsv *rsv,
6010 int items,
ee3441b4
JM
6011 u64 *qgroup_reserved,
6012 bool use_global_rsv)
a22285a6 6013{
d5c12070
MX
6014 u64 num_bytes;
6015 int ret;
0b246afa
JM
6016 struct btrfs_fs_info *fs_info = root->fs_info;
6017 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 6018
0b246afa 6019 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 6020 /* One for parent inode, two for dir entries */
0b246afa 6021 num_bytes = 3 * fs_info->nodesize;
733e03a0 6022 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
d5c12070
MX
6023 if (ret)
6024 return ret;
6025 } else {
6026 num_bytes = 0;
6027 }
6028
6029 *qgroup_reserved = num_bytes;
6030
0b246afa
JM
6031 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6032 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6033 BTRFS_BLOCK_GROUP_METADATA);
6034 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6035 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6036
6037 if (ret == -ENOSPC && use_global_rsv)
25d609f8 6038 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 6039
7174109c 6040 if (ret && *qgroup_reserved)
733e03a0 6041 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
d5c12070
MX
6042
6043 return ret;
6044}
6045
2ff7e61e 6046void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6047 struct btrfs_block_rsv *rsv)
d5c12070 6048{
2ff7e61e 6049 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6050}
6051
69fe2d75
JB
6052static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6053 struct btrfs_inode *inode)
9e0baf60 6054{
69fe2d75
JB
6055 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6056 u64 reserve_size = 0;
ff6bc37e 6057 u64 qgroup_rsv_size = 0;
69fe2d75
JB
6058 u64 csum_leaves;
6059 unsigned outstanding_extents;
9e0baf60 6060
69fe2d75
JB
6061 lockdep_assert_held(&inode->lock);
6062 outstanding_extents = inode->outstanding_extents;
6063 if (outstanding_extents)
6064 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6065 outstanding_extents + 1);
6066 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6067 inode->csum_bytes);
6068 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6069 csum_leaves);
ff6bc37e
QW
6070 /*
6071 * For qgroup rsv, the calculation is very simple:
6072 * account one nodesize for each outstanding extent
6073 *
6074 * This is overestimating in most cases.
6075 */
6076 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 6077
69fe2d75
JB
6078 spin_lock(&block_rsv->lock);
6079 block_rsv->size = reserve_size;
ff6bc37e 6080 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6081 spin_unlock(&block_rsv->lock);
0ca1f7ce 6082}
c146afad 6083
9f3db423 6084int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6085{
9f3db423 6086 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
69fe2d75 6087 unsigned nr_extents;
08e007d2 6088 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6089 int ret = 0;
c64c2bd8 6090 bool delalloc_lock = true;
6324fbf3 6091
c64c2bd8
JB
6092 /* If we are a free space inode we need to not flush since we will be in
6093 * the middle of a transaction commit. We also don't need the delalloc
6094 * mutex since we won't race with anybody. We need this mostly to make
6095 * lockdep shut its filthy mouth.
bac357dc
JB
6096 *
6097 * If we have a transaction open (can happen if we call truncate_block
6098 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6099 */
6100 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6101 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6102 delalloc_lock = false;
da07d4ab
NB
6103 } else {
6104 if (current->journal_info)
6105 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6106
da07d4ab
NB
6107 if (btrfs_transaction_in_commit(fs_info))
6108 schedule_timeout(1);
6109 }
ec44a35c 6110
c64c2bd8 6111 if (delalloc_lock)
9f3db423 6112 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6113
0b246afa 6114 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6115
6116 /* Add our new extents and calculate the new rsv size. */
9f3db423 6117 spin_lock(&inode->lock);
69fe2d75 6118 nr_extents = count_max_extents(num_bytes);
8b62f87b 6119 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6120 inode->csum_bytes += num_bytes;
6121 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6122 spin_unlock(&inode->lock);
57a45ced 6123
69fe2d75 6124 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6125 if (unlikely(ret))
88e081bf 6126 goto out_fail;
25179201 6127
c64c2bd8 6128 if (delalloc_lock)
9f3db423 6129 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6130 return 0;
88e081bf
WS
6131
6132out_fail:
9f3db423 6133 spin_lock(&inode->lock);
8b62f87b
JB
6134 nr_extents = count_max_extents(num_bytes);
6135 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6136 inode->csum_bytes -= num_bytes;
6137 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6138 spin_unlock(&inode->lock);
88e081bf 6139
43b18595 6140 btrfs_inode_rsv_release(inode, true);
88e081bf 6141 if (delalloc_lock)
9f3db423 6142 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6143 return ret;
0ca1f7ce
YZ
6144}
6145
7709cde3
JB
6146/**
6147 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6148 * @inode: the inode to release the reservation for.
6149 * @num_bytes: the number of bytes we are releasing.
43b18595 6150 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6151 *
6152 * This will release the metadata reservation for an inode. This can be called
6153 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6154 * reservations, or on error for the same reason.
7709cde3 6155 */
43b18595
QW
6156void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6157 bool qgroup_free)
0ca1f7ce 6158{
691fa059 6159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6160
0b246afa 6161 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6162 spin_lock(&inode->lock);
69fe2d75
JB
6163 inode->csum_bytes -= num_bytes;
6164 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6165 spin_unlock(&inode->lock);
0ca1f7ce 6166
0b246afa 6167 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6168 return;
6169
43b18595 6170 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6171}
6172
8b62f87b
JB
6173/**
6174 * btrfs_delalloc_release_extents - release our outstanding_extents
6175 * @inode: the inode to balance the reservation for.
6176 * @num_bytes: the number of bytes we originally reserved with
43b18595 6177 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6178 *
6179 * When we reserve space we increase outstanding_extents for the extents we may
6180 * add. Once we've set the range as delalloc or created our ordered extents we
6181 * have outstanding_extents to track the real usage, so we use this to free our
6182 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6183 * with btrfs_delalloc_reserve_metadata.
6184 */
43b18595
QW
6185void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6186 bool qgroup_free)
8b62f87b
JB
6187{
6188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6189 unsigned num_extents;
8b62f87b
JB
6190
6191 spin_lock(&inode->lock);
6192 num_extents = count_max_extents(num_bytes);
6193 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6194 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6195 spin_unlock(&inode->lock);
6196
8b62f87b
JB
6197 if (btrfs_is_testing(fs_info))
6198 return;
6199
43b18595 6200 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6201}
6202
1ada3a62 6203/**
7cf5b976 6204 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6205 * delalloc
6206 * @inode: inode we're writing to
6207 * @start: start range we are writing to
6208 * @len: how long the range we are writing to
364ecf36
QW
6209 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6210 * current reservation.
1ada3a62 6211 *
1ada3a62
QW
6212 * This will do the following things
6213 *
6214 * o reserve space in data space info for num bytes
6215 * and reserve precious corresponding qgroup space
6216 * (Done in check_data_free_space)
6217 *
6218 * o reserve space for metadata space, based on the number of outstanding
6219 * extents and how much csums will be needed
6220 * also reserve metadata space in a per root over-reserve method.
6221 * o add to the inodes->delalloc_bytes
6222 * o add it to the fs_info's delalloc inodes list.
6223 * (Above 3 all done in delalloc_reserve_metadata)
6224 *
6225 * Return 0 for success
6226 * Return <0 for error(-ENOSPC or -EQUOT)
6227 */
364ecf36
QW
6228int btrfs_delalloc_reserve_space(struct inode *inode,
6229 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6230{
6231 int ret;
6232
364ecf36 6233 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6234 if (ret < 0)
6235 return ret;
9f3db423 6236 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6237 if (ret < 0)
bc42bda2 6238 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6239 return ret;
6240}
6241
7709cde3 6242/**
7cf5b976 6243 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6244 * @inode: inode we're releasing space for
6245 * @start: start position of the space already reserved
6246 * @len: the len of the space already reserved
8b62f87b 6247 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6248 *
6249 * This function will release the metadata space that was not used and will
6250 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6251 * list if there are no delalloc bytes left.
6252 * Also it will handle the qgroup reserved space.
6253 */
bc42bda2 6254void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6255 struct extent_changeset *reserved,
43b18595 6256 u64 start, u64 len, bool qgroup_free)
1ada3a62 6257{
43b18595 6258 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6259 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6260}
6261
ce93ec54 6262static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6263 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6264 u64 num_bytes, int alloc)
9078a3e1 6265{
0af3d00b 6266 struct btrfs_block_group_cache *cache = NULL;
db94535d 6267 u64 total = num_bytes;
9078a3e1 6268 u64 old_val;
db94535d 6269 u64 byte_in_group;
0af3d00b 6270 int factor;
3e1ad54f 6271
5d4f98a2 6272 /* block accounting for super block */
eb73c1b7 6273 spin_lock(&info->delalloc_root_lock);
6c41761f 6274 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6275 if (alloc)
6276 old_val += num_bytes;
6277 else
6278 old_val -= num_bytes;
6c41761f 6279 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6280 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6281
d397712b 6282 while (total) {
db94535d 6283 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6284 if (!cache)
79787eaa 6285 return -ENOENT;
b742bb82
YZ
6286 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6287 BTRFS_BLOCK_GROUP_RAID1 |
6288 BTRFS_BLOCK_GROUP_RAID10))
6289 factor = 2;
6290 else
6291 factor = 1;
9d66e233
JB
6292 /*
6293 * If this block group has free space cache written out, we
6294 * need to make sure to load it if we are removing space. This
6295 * is because we need the unpinning stage to actually add the
6296 * space back to the block group, otherwise we will leak space.
6297 */
6298 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6299 cache_block_group(cache, 1);
0af3d00b 6300
db94535d
CM
6301 byte_in_group = bytenr - cache->key.objectid;
6302 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6303
25179201 6304 spin_lock(&cache->space_info->lock);
c286ac48 6305 spin_lock(&cache->lock);
0af3d00b 6306
6202df69 6307 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6308 cache->disk_cache_state < BTRFS_DC_CLEAR)
6309 cache->disk_cache_state = BTRFS_DC_CLEAR;
6310
9078a3e1 6311 old_val = btrfs_block_group_used(&cache->item);
db94535d 6312 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6313 if (alloc) {
db94535d 6314 old_val += num_bytes;
11833d66
YZ
6315 btrfs_set_block_group_used(&cache->item, old_val);
6316 cache->reserved -= num_bytes;
11833d66 6317 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6318 cache->space_info->bytes_used += num_bytes;
6319 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6320 spin_unlock(&cache->lock);
25179201 6321 spin_unlock(&cache->space_info->lock);
cd1bc465 6322 } else {
db94535d 6323 old_val -= num_bytes;
ae0ab003
FM
6324 btrfs_set_block_group_used(&cache->item, old_val);
6325 cache->pinned += num_bytes;
6326 cache->space_info->bytes_pinned += num_bytes;
6327 cache->space_info->bytes_used -= num_bytes;
6328 cache->space_info->disk_used -= num_bytes * factor;
6329 spin_unlock(&cache->lock);
6330 spin_unlock(&cache->space_info->lock);
47ab2a6c 6331
0b246afa 6332 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6333 cache->space_info->flags,
6334 num_bytes, 1);
d7eae340
OS
6335 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6336 num_bytes);
ae0ab003
FM
6337 set_extent_dirty(info->pinned_extents,
6338 bytenr, bytenr + num_bytes - 1,
6339 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6340 }
1bbc621e
CM
6341
6342 spin_lock(&trans->transaction->dirty_bgs_lock);
6343 if (list_empty(&cache->dirty_list)) {
6344 list_add_tail(&cache->dirty_list,
6345 &trans->transaction->dirty_bgs);
6346 trans->transaction->num_dirty_bgs++;
6347 btrfs_get_block_group(cache);
6348 }
6349 spin_unlock(&trans->transaction->dirty_bgs_lock);
6350
036a9348
FM
6351 /*
6352 * No longer have used bytes in this block group, queue it for
6353 * deletion. We do this after adding the block group to the
6354 * dirty list to avoid races between cleaner kthread and space
6355 * cache writeout.
6356 */
6357 if (!alloc && old_val == 0) {
6358 spin_lock(&info->unused_bgs_lock);
6359 if (list_empty(&cache->bg_list)) {
6360 btrfs_get_block_group(cache);
4ed0a7a3 6361 trace_btrfs_add_unused_block_group(cache);
036a9348
FM
6362 list_add_tail(&cache->bg_list,
6363 &info->unused_bgs);
6364 }
6365 spin_unlock(&info->unused_bgs_lock);
6366 }
6367
fa9c0d79 6368 btrfs_put_block_group(cache);
db94535d
CM
6369 total -= num_bytes;
6370 bytenr += num_bytes;
9078a3e1
CM
6371 }
6372 return 0;
6373}
6324fbf3 6374
2ff7e61e 6375static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6376{
0f9dd46c 6377 struct btrfs_block_group_cache *cache;
d2fb3437 6378 u64 bytenr;
0f9dd46c 6379
0b246afa
JM
6380 spin_lock(&fs_info->block_group_cache_lock);
6381 bytenr = fs_info->first_logical_byte;
6382 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6383
6384 if (bytenr < (u64)-1)
6385 return bytenr;
6386
0b246afa 6387 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6388 if (!cache)
a061fc8d 6389 return 0;
0f9dd46c 6390
d2fb3437 6391 bytenr = cache->key.objectid;
fa9c0d79 6392 btrfs_put_block_group(cache);
d2fb3437
YZ
6393
6394 return bytenr;
a061fc8d
CM
6395}
6396
2ff7e61e 6397static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6398 struct btrfs_block_group_cache *cache,
6399 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6400{
11833d66
YZ
6401 spin_lock(&cache->space_info->lock);
6402 spin_lock(&cache->lock);
6403 cache->pinned += num_bytes;
6404 cache->space_info->bytes_pinned += num_bytes;
6405 if (reserved) {
6406 cache->reserved -= num_bytes;
6407 cache->space_info->bytes_reserved -= num_bytes;
6408 }
6409 spin_unlock(&cache->lock);
6410 spin_unlock(&cache->space_info->lock);
68b38550 6411
0b246afa 6412 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6413 cache->space_info->flags, num_bytes, 1);
4da8b76d 6414 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6415 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6416 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6417 return 0;
6418}
68b38550 6419
f0486c68
YZ
6420/*
6421 * this function must be called within transaction
6422 */
2ff7e61e 6423int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6424 u64 bytenr, u64 num_bytes, int reserved)
6425{
6426 struct btrfs_block_group_cache *cache;
68b38550 6427
0b246afa 6428 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6429 BUG_ON(!cache); /* Logic error */
f0486c68 6430
2ff7e61e 6431 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6432
6433 btrfs_put_block_group(cache);
11833d66
YZ
6434 return 0;
6435}
6436
f0486c68 6437/*
e688b725
CM
6438 * this function must be called within transaction
6439 */
2ff7e61e 6440int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6441 u64 bytenr, u64 num_bytes)
6442{
6443 struct btrfs_block_group_cache *cache;
b50c6e25 6444 int ret;
e688b725 6445
0b246afa 6446 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6447 if (!cache)
6448 return -EINVAL;
e688b725
CM
6449
6450 /*
6451 * pull in the free space cache (if any) so that our pin
6452 * removes the free space from the cache. We have load_only set
6453 * to one because the slow code to read in the free extents does check
6454 * the pinned extents.
6455 */
f6373bf3 6456 cache_block_group(cache, 1);
e688b725 6457
2ff7e61e 6458 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6459
6460 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6461 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6462 btrfs_put_block_group(cache);
b50c6e25 6463 return ret;
e688b725
CM
6464}
6465
2ff7e61e
JM
6466static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6467 u64 start, u64 num_bytes)
8c2a1a30
JB
6468{
6469 int ret;
6470 struct btrfs_block_group_cache *block_group;
6471 struct btrfs_caching_control *caching_ctl;
6472
0b246afa 6473 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6474 if (!block_group)
6475 return -EINVAL;
6476
6477 cache_block_group(block_group, 0);
6478 caching_ctl = get_caching_control(block_group);
6479
6480 if (!caching_ctl) {
6481 /* Logic error */
6482 BUG_ON(!block_group_cache_done(block_group));
6483 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6484 } else {
6485 mutex_lock(&caching_ctl->mutex);
6486
6487 if (start >= caching_ctl->progress) {
2ff7e61e 6488 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6489 } else if (start + num_bytes <= caching_ctl->progress) {
6490 ret = btrfs_remove_free_space(block_group,
6491 start, num_bytes);
6492 } else {
6493 num_bytes = caching_ctl->progress - start;
6494 ret = btrfs_remove_free_space(block_group,
6495 start, num_bytes);
6496 if (ret)
6497 goto out_lock;
6498
6499 num_bytes = (start + num_bytes) -
6500 caching_ctl->progress;
6501 start = caching_ctl->progress;
2ff7e61e 6502 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6503 }
6504out_lock:
6505 mutex_unlock(&caching_ctl->mutex);
6506 put_caching_control(caching_ctl);
6507 }
6508 btrfs_put_block_group(block_group);
6509 return ret;
6510}
6511
2ff7e61e 6512int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6513 struct extent_buffer *eb)
6514{
6515 struct btrfs_file_extent_item *item;
6516 struct btrfs_key key;
6517 int found_type;
6518 int i;
6519
2ff7e61e 6520 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6521 return 0;
6522
6523 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6524 btrfs_item_key_to_cpu(eb, &key, i);
6525 if (key.type != BTRFS_EXTENT_DATA_KEY)
6526 continue;
6527 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6528 found_type = btrfs_file_extent_type(eb, item);
6529 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6530 continue;
6531 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6532 continue;
6533 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6534 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6535 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6536 }
6537
6538 return 0;
6539}
6540
9cfa3e34
FM
6541static void
6542btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6543{
6544 atomic_inc(&bg->reservations);
6545}
6546
6547void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6548 const u64 start)
6549{
6550 struct btrfs_block_group_cache *bg;
6551
6552 bg = btrfs_lookup_block_group(fs_info, start);
6553 ASSERT(bg);
6554 if (atomic_dec_and_test(&bg->reservations))
4625956a 6555 wake_up_var(&bg->reservations);
9cfa3e34
FM
6556 btrfs_put_block_group(bg);
6557}
6558
9cfa3e34
FM
6559void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6560{
6561 struct btrfs_space_info *space_info = bg->space_info;
6562
6563 ASSERT(bg->ro);
6564
6565 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6566 return;
6567
6568 /*
6569 * Our block group is read only but before we set it to read only,
6570 * some task might have had allocated an extent from it already, but it
6571 * has not yet created a respective ordered extent (and added it to a
6572 * root's list of ordered extents).
6573 * Therefore wait for any task currently allocating extents, since the
6574 * block group's reservations counter is incremented while a read lock
6575 * on the groups' semaphore is held and decremented after releasing
6576 * the read access on that semaphore and creating the ordered extent.
6577 */
6578 down_write(&space_info->groups_sem);
6579 up_write(&space_info->groups_sem);
6580
4625956a 6581 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6582}
6583
fb25e914 6584/**
4824f1f4 6585 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6586 * @cache: The cache we are manipulating
18513091
WX
6587 * @ram_bytes: The number of bytes of file content, and will be same to
6588 * @num_bytes except for the compress path.
fb25e914 6589 * @num_bytes: The number of bytes in question
e570fd27 6590 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6591 *
745699ef
XW
6592 * This is called by the allocator when it reserves space. If this is a
6593 * reservation and the block group has become read only we cannot make the
6594 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6595 */
4824f1f4 6596static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6597 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6598{
fb25e914 6599 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6600 int ret = 0;
79787eaa 6601
fb25e914
JB
6602 spin_lock(&space_info->lock);
6603 spin_lock(&cache->lock);
4824f1f4
WX
6604 if (cache->ro) {
6605 ret = -EAGAIN;
fb25e914 6606 } else {
4824f1f4
WX
6607 cache->reserved += num_bytes;
6608 space_info->bytes_reserved += num_bytes;
e570fd27 6609
18513091
WX
6610 trace_btrfs_space_reservation(cache->fs_info,
6611 "space_info", space_info->flags,
6612 ram_bytes, 0);
6613 space_info->bytes_may_use -= ram_bytes;
e570fd27 6614 if (delalloc)
4824f1f4 6615 cache->delalloc_bytes += num_bytes;
324ae4df 6616 }
fb25e914
JB
6617 spin_unlock(&cache->lock);
6618 spin_unlock(&space_info->lock);
f0486c68 6619 return ret;
324ae4df 6620}
9078a3e1 6621
4824f1f4
WX
6622/**
6623 * btrfs_free_reserved_bytes - update the block_group and space info counters
6624 * @cache: The cache we are manipulating
6625 * @num_bytes: The number of bytes in question
6626 * @delalloc: The blocks are allocated for the delalloc write
6627 *
6628 * This is called by somebody who is freeing space that was never actually used
6629 * on disk. For example if you reserve some space for a new leaf in transaction
6630 * A and before transaction A commits you free that leaf, you call this with
6631 * reserve set to 0 in order to clear the reservation.
6632 */
6633
6634static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6635 u64 num_bytes, int delalloc)
6636{
6637 struct btrfs_space_info *space_info = cache->space_info;
6638 int ret = 0;
6639
6640 spin_lock(&space_info->lock);
6641 spin_lock(&cache->lock);
6642 if (cache->ro)
6643 space_info->bytes_readonly += num_bytes;
6644 cache->reserved -= num_bytes;
6645 space_info->bytes_reserved -= num_bytes;
6646
6647 if (delalloc)
6648 cache->delalloc_bytes -= num_bytes;
6649 spin_unlock(&cache->lock);
6650 spin_unlock(&space_info->lock);
6651 return ret;
6652}
8b74c03e 6653void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6654{
11833d66
YZ
6655 struct btrfs_caching_control *next;
6656 struct btrfs_caching_control *caching_ctl;
6657 struct btrfs_block_group_cache *cache;
e8569813 6658
9e351cc8 6659 down_write(&fs_info->commit_root_sem);
25179201 6660
11833d66
YZ
6661 list_for_each_entry_safe(caching_ctl, next,
6662 &fs_info->caching_block_groups, list) {
6663 cache = caching_ctl->block_group;
6664 if (block_group_cache_done(cache)) {
6665 cache->last_byte_to_unpin = (u64)-1;
6666 list_del_init(&caching_ctl->list);
6667 put_caching_control(caching_ctl);
e8569813 6668 } else {
11833d66 6669 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6670 }
e8569813 6671 }
11833d66
YZ
6672
6673 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6674 fs_info->pinned_extents = &fs_info->freed_extents[1];
6675 else
6676 fs_info->pinned_extents = &fs_info->freed_extents[0];
6677
9e351cc8 6678 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6679
6680 update_global_block_rsv(fs_info);
e8569813
ZY
6681}
6682
c759c4e1
JB
6683/*
6684 * Returns the free cluster for the given space info and sets empty_cluster to
6685 * what it should be based on the mount options.
6686 */
6687static struct btrfs_free_cluster *
2ff7e61e
JM
6688fetch_cluster_info(struct btrfs_fs_info *fs_info,
6689 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6690{
6691 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6692
6693 *empty_cluster = 0;
6694 if (btrfs_mixed_space_info(space_info))
6695 return ret;
6696
c759c4e1 6697 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6698 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6699 if (btrfs_test_opt(fs_info, SSD))
6700 *empty_cluster = SZ_2M;
6701 else
ee22184b 6702 *empty_cluster = SZ_64K;
583b7231
HK
6703 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6704 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6705 *empty_cluster = SZ_2M;
0b246afa 6706 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6707 }
6708
6709 return ret;
6710}
6711
2ff7e61e
JM
6712static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6713 u64 start, u64 end,
678886bd 6714 const bool return_free_space)
ccd467d6 6715{
11833d66 6716 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6717 struct btrfs_space_info *space_info;
6718 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6719 struct btrfs_free_cluster *cluster = NULL;
11833d66 6720 u64 len;
c759c4e1
JB
6721 u64 total_unpinned = 0;
6722 u64 empty_cluster = 0;
7b398f8e 6723 bool readonly;
ccd467d6 6724
11833d66 6725 while (start <= end) {
7b398f8e 6726 readonly = false;
11833d66
YZ
6727 if (!cache ||
6728 start >= cache->key.objectid + cache->key.offset) {
6729 if (cache)
6730 btrfs_put_block_group(cache);
c759c4e1 6731 total_unpinned = 0;
11833d66 6732 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6733 BUG_ON(!cache); /* Logic error */
c759c4e1 6734
2ff7e61e 6735 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6736 cache->space_info,
6737 &empty_cluster);
6738 empty_cluster <<= 1;
11833d66
YZ
6739 }
6740
6741 len = cache->key.objectid + cache->key.offset - start;
6742 len = min(len, end + 1 - start);
6743
6744 if (start < cache->last_byte_to_unpin) {
6745 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6746 if (return_free_space)
6747 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6748 }
6749
f0486c68 6750 start += len;
c759c4e1 6751 total_unpinned += len;
7b398f8e 6752 space_info = cache->space_info;
f0486c68 6753
c759c4e1
JB
6754 /*
6755 * If this space cluster has been marked as fragmented and we've
6756 * unpinned enough in this block group to potentially allow a
6757 * cluster to be created inside of it go ahead and clear the
6758 * fragmented check.
6759 */
6760 if (cluster && cluster->fragmented &&
6761 total_unpinned > empty_cluster) {
6762 spin_lock(&cluster->lock);
6763 cluster->fragmented = 0;
6764 spin_unlock(&cluster->lock);
6765 }
6766
7b398f8e 6767 spin_lock(&space_info->lock);
11833d66
YZ
6768 spin_lock(&cache->lock);
6769 cache->pinned -= len;
7b398f8e 6770 space_info->bytes_pinned -= len;
c51e7bb1
JB
6771
6772 trace_btrfs_space_reservation(fs_info, "pinned",
6773 space_info->flags, len, 0);
4f4db217 6774 space_info->max_extent_size = 0;
d288db5d 6775 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6776 if (cache->ro) {
6777 space_info->bytes_readonly += len;
6778 readonly = true;
6779 }
11833d66 6780 spin_unlock(&cache->lock);
957780eb
JB
6781 if (!readonly && return_free_space &&
6782 global_rsv->space_info == space_info) {
6783 u64 to_add = len;
92ac58ec 6784
7b398f8e
JB
6785 spin_lock(&global_rsv->lock);
6786 if (!global_rsv->full) {
957780eb
JB
6787 to_add = min(len, global_rsv->size -
6788 global_rsv->reserved);
6789 global_rsv->reserved += to_add;
6790 space_info->bytes_may_use += to_add;
7b398f8e
JB
6791 if (global_rsv->reserved >= global_rsv->size)
6792 global_rsv->full = 1;
957780eb
JB
6793 trace_btrfs_space_reservation(fs_info,
6794 "space_info",
6795 space_info->flags,
6796 to_add, 1);
6797 len -= to_add;
7b398f8e
JB
6798 }
6799 spin_unlock(&global_rsv->lock);
957780eb
JB
6800 /* Add to any tickets we may have */
6801 if (len)
6802 space_info_add_new_bytes(fs_info, space_info,
6803 len);
7b398f8e
JB
6804 }
6805 spin_unlock(&space_info->lock);
ccd467d6 6806 }
11833d66
YZ
6807
6808 if (cache)
6809 btrfs_put_block_group(cache);
ccd467d6
CM
6810 return 0;
6811}
6812
5ead2dd0 6813int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6814{
5ead2dd0 6815 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6816 struct btrfs_block_group_cache *block_group, *tmp;
6817 struct list_head *deleted_bgs;
11833d66 6818 struct extent_io_tree *unpin;
1a5bc167
CM
6819 u64 start;
6820 u64 end;
a28ec197 6821 int ret;
a28ec197 6822
11833d66
YZ
6823 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6824 unpin = &fs_info->freed_extents[1];
6825 else
6826 unpin = &fs_info->freed_extents[0];
6827
e33e17ee 6828 while (!trans->aborted) {
d4b450cd 6829 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6830 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6831 EXTENT_DIRTY, NULL);
d4b450cd
FM
6832 if (ret) {
6833 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6834 break;
d4b450cd 6835 }
1f3c79a2 6836
0b246afa 6837 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6838 ret = btrfs_discard_extent(fs_info, start,
5378e607 6839 end + 1 - start, NULL);
1f3c79a2 6840
af6f8f60 6841 clear_extent_dirty(unpin, start, end);
2ff7e61e 6842 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6843 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6844 cond_resched();
a28ec197 6845 }
817d52f8 6846
e33e17ee
JM
6847 /*
6848 * Transaction is finished. We don't need the lock anymore. We
6849 * do need to clean up the block groups in case of a transaction
6850 * abort.
6851 */
6852 deleted_bgs = &trans->transaction->deleted_bgs;
6853 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6854 u64 trimmed = 0;
6855
6856 ret = -EROFS;
6857 if (!trans->aborted)
2ff7e61e 6858 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6859 block_group->key.objectid,
6860 block_group->key.offset,
6861 &trimmed);
6862
6863 list_del_init(&block_group->bg_list);
6864 btrfs_put_block_group_trimming(block_group);
6865 btrfs_put_block_group(block_group);
6866
6867 if (ret) {
6868 const char *errstr = btrfs_decode_error(ret);
6869 btrfs_warn(fs_info,
913e1535 6870 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6871 ret, errstr);
6872 }
6873 }
6874
e20d96d6
CM
6875 return 0;
6876}
6877
5d4f98a2 6878static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6879 struct btrfs_fs_info *info,
c682f9b3 6880 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6881 u64 root_objectid, u64 owner_objectid,
6882 u64 owner_offset, int refs_to_drop,
c682f9b3 6883 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6884{
e2fa7227 6885 struct btrfs_key key;
5d4f98a2 6886 struct btrfs_path *path;
1261ec42 6887 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6888 struct extent_buffer *leaf;
5d4f98a2
YZ
6889 struct btrfs_extent_item *ei;
6890 struct btrfs_extent_inline_ref *iref;
a28ec197 6891 int ret;
5d4f98a2 6892 int is_data;
952fccac
CM
6893 int extent_slot = 0;
6894 int found_extent = 0;
6895 int num_to_del = 1;
5d4f98a2
YZ
6896 u32 item_size;
6897 u64 refs;
c682f9b3
QW
6898 u64 bytenr = node->bytenr;
6899 u64 num_bytes = node->num_bytes;
fcebe456 6900 int last_ref = 0;
0b246afa 6901 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6902
5caf2a00 6903 path = btrfs_alloc_path();
54aa1f4d
CM
6904 if (!path)
6905 return -ENOMEM;
5f26f772 6906
e4058b54 6907 path->reada = READA_FORWARD;
b9473439 6908 path->leave_spinning = 1;
5d4f98a2
YZ
6909
6910 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6911 BUG_ON(!is_data && refs_to_drop != 1);
6912
3173a18f 6913 if (is_data)
897ca819 6914 skinny_metadata = false;
3173a18f 6915
87bde3cd 6916 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6917 bytenr, num_bytes, parent,
6918 root_objectid, owner_objectid,
6919 owner_offset);
7bb86316 6920 if (ret == 0) {
952fccac 6921 extent_slot = path->slots[0];
5d4f98a2
YZ
6922 while (extent_slot >= 0) {
6923 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6924 extent_slot);
5d4f98a2 6925 if (key.objectid != bytenr)
952fccac 6926 break;
5d4f98a2
YZ
6927 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6928 key.offset == num_bytes) {
952fccac
CM
6929 found_extent = 1;
6930 break;
6931 }
3173a18f
JB
6932 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6933 key.offset == owner_objectid) {
6934 found_extent = 1;
6935 break;
6936 }
952fccac
CM
6937 if (path->slots[0] - extent_slot > 5)
6938 break;
5d4f98a2 6939 extent_slot--;
952fccac 6940 }
5d4f98a2
YZ
6941#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6942 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6943 if (found_extent && item_size < sizeof(*ei))
6944 found_extent = 0;
6945#endif
31840ae1 6946 if (!found_extent) {
5d4f98a2 6947 BUG_ON(iref);
87bde3cd
JM
6948 ret = remove_extent_backref(trans, info, path, NULL,
6949 refs_to_drop,
fcebe456 6950 is_data, &last_ref);
005d6427 6951 if (ret) {
66642832 6952 btrfs_abort_transaction(trans, ret);
005d6427
DS
6953 goto out;
6954 }
b3b4aa74 6955 btrfs_release_path(path);
b9473439 6956 path->leave_spinning = 1;
5d4f98a2
YZ
6957
6958 key.objectid = bytenr;
6959 key.type = BTRFS_EXTENT_ITEM_KEY;
6960 key.offset = num_bytes;
6961
3173a18f
JB
6962 if (!is_data && skinny_metadata) {
6963 key.type = BTRFS_METADATA_ITEM_KEY;
6964 key.offset = owner_objectid;
6965 }
6966
31840ae1
ZY
6967 ret = btrfs_search_slot(trans, extent_root,
6968 &key, path, -1, 1);
3173a18f
JB
6969 if (ret > 0 && skinny_metadata && path->slots[0]) {
6970 /*
6971 * Couldn't find our skinny metadata item,
6972 * see if we have ye olde extent item.
6973 */
6974 path->slots[0]--;
6975 btrfs_item_key_to_cpu(path->nodes[0], &key,
6976 path->slots[0]);
6977 if (key.objectid == bytenr &&
6978 key.type == BTRFS_EXTENT_ITEM_KEY &&
6979 key.offset == num_bytes)
6980 ret = 0;
6981 }
6982
6983 if (ret > 0 && skinny_metadata) {
6984 skinny_metadata = false;
9ce49a0b 6985 key.objectid = bytenr;
3173a18f
JB
6986 key.type = BTRFS_EXTENT_ITEM_KEY;
6987 key.offset = num_bytes;
6988 btrfs_release_path(path);
6989 ret = btrfs_search_slot(trans, extent_root,
6990 &key, path, -1, 1);
6991 }
6992
f3465ca4 6993 if (ret) {
5d163e0e
JM
6994 btrfs_err(info,
6995 "umm, got %d back from search, was looking for %llu",
6996 ret, bytenr);
b783e62d 6997 if (ret > 0)
a4f78750 6998 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6999 }
005d6427 7000 if (ret < 0) {
66642832 7001 btrfs_abort_transaction(trans, ret);
005d6427
DS
7002 goto out;
7003 }
31840ae1
ZY
7004 extent_slot = path->slots[0];
7005 }
fae7f21c 7006 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 7007 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
7008 btrfs_err(info,
7009 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
7010 bytenr, parent, root_objectid, owner_objectid,
7011 owner_offset);
66642832 7012 btrfs_abort_transaction(trans, ret);
c4a050bb 7013 goto out;
79787eaa 7014 } else {
66642832 7015 btrfs_abort_transaction(trans, ret);
005d6427 7016 goto out;
7bb86316 7017 }
5f39d397
CM
7018
7019 leaf = path->nodes[0];
5d4f98a2
YZ
7020 item_size = btrfs_item_size_nr(leaf, extent_slot);
7021#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7022 if (item_size < sizeof(*ei)) {
7023 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
7024 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7025 0);
005d6427 7026 if (ret < 0) {
66642832 7027 btrfs_abort_transaction(trans, ret);
005d6427
DS
7028 goto out;
7029 }
5d4f98a2 7030
b3b4aa74 7031 btrfs_release_path(path);
5d4f98a2
YZ
7032 path->leave_spinning = 1;
7033
7034 key.objectid = bytenr;
7035 key.type = BTRFS_EXTENT_ITEM_KEY;
7036 key.offset = num_bytes;
7037
7038 ret = btrfs_search_slot(trans, extent_root, &key, path,
7039 -1, 1);
7040 if (ret) {
5d163e0e
JM
7041 btrfs_err(info,
7042 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7043 ret, bytenr);
a4f78750 7044 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 7045 }
005d6427 7046 if (ret < 0) {
66642832 7047 btrfs_abort_transaction(trans, ret);
005d6427
DS
7048 goto out;
7049 }
7050
5d4f98a2
YZ
7051 extent_slot = path->slots[0];
7052 leaf = path->nodes[0];
7053 item_size = btrfs_item_size_nr(leaf, extent_slot);
7054 }
7055#endif
7056 BUG_ON(item_size < sizeof(*ei));
952fccac 7057 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7058 struct btrfs_extent_item);
3173a18f
JB
7059 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7060 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7061 struct btrfs_tree_block_info *bi;
7062 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7063 bi = (struct btrfs_tree_block_info *)(ei + 1);
7064 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7065 }
56bec294 7066
5d4f98a2 7067 refs = btrfs_extent_refs(leaf, ei);
32b02538 7068 if (refs < refs_to_drop) {
5d163e0e
JM
7069 btrfs_err(info,
7070 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7071 refs_to_drop, refs, bytenr);
32b02538 7072 ret = -EINVAL;
66642832 7073 btrfs_abort_transaction(trans, ret);
32b02538
JB
7074 goto out;
7075 }
56bec294 7076 refs -= refs_to_drop;
5f39d397 7077
5d4f98a2
YZ
7078 if (refs > 0) {
7079 if (extent_op)
7080 __run_delayed_extent_op(extent_op, leaf, ei);
7081 /*
7082 * In the case of inline back ref, reference count will
7083 * be updated by remove_extent_backref
952fccac 7084 */
5d4f98a2
YZ
7085 if (iref) {
7086 BUG_ON(!found_extent);
7087 } else {
7088 btrfs_set_extent_refs(leaf, ei, refs);
7089 btrfs_mark_buffer_dirty(leaf);
7090 }
7091 if (found_extent) {
87bde3cd 7092 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7093 iref, refs_to_drop,
fcebe456 7094 is_data, &last_ref);
005d6427 7095 if (ret) {
66642832 7096 btrfs_abort_transaction(trans, ret);
005d6427
DS
7097 goto out;
7098 }
952fccac 7099 }
5d4f98a2 7100 } else {
5d4f98a2
YZ
7101 if (found_extent) {
7102 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7103 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7104 if (iref) {
7105 BUG_ON(path->slots[0] != extent_slot);
7106 } else {
7107 BUG_ON(path->slots[0] != extent_slot + 1);
7108 path->slots[0] = extent_slot;
7109 num_to_del = 2;
7110 }
78fae27e 7111 }
b9473439 7112
fcebe456 7113 last_ref = 1;
952fccac
CM
7114 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7115 num_to_del);
005d6427 7116 if (ret) {
66642832 7117 btrfs_abort_transaction(trans, ret);
005d6427
DS
7118 goto out;
7119 }
b3b4aa74 7120 btrfs_release_path(path);
21af804c 7121
5d4f98a2 7122 if (is_data) {
5b4aacef 7123 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7124 if (ret) {
66642832 7125 btrfs_abort_transaction(trans, ret);
005d6427
DS
7126 goto out;
7127 }
459931ec
CM
7128 }
7129
0b246afa 7130 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7131 if (ret) {
66642832 7132 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7133 goto out;
7134 }
7135
0b246afa 7136 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7137 if (ret) {
66642832 7138 btrfs_abort_transaction(trans, ret);
005d6427
DS
7139 goto out;
7140 }
a28ec197 7141 }
fcebe456
JB
7142 btrfs_release_path(path);
7143
79787eaa 7144out:
5caf2a00 7145 btrfs_free_path(path);
a28ec197
CM
7146 return ret;
7147}
7148
1887be66 7149/*
f0486c68 7150 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7151 * delayed ref for that extent as well. This searches the delayed ref tree for
7152 * a given extent, and if there are no other delayed refs to be processed, it
7153 * removes it from the tree.
7154 */
7155static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7156 u64 bytenr)
1887be66
CM
7157{
7158 struct btrfs_delayed_ref_head *head;
7159 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7160 int ret = 0;
1887be66
CM
7161
7162 delayed_refs = &trans->transaction->delayed_refs;
7163 spin_lock(&delayed_refs->lock);
f72ad18e 7164 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7165 if (!head)
cf93da7b 7166 goto out_delayed_unlock;
1887be66 7167
d7df2c79 7168 spin_lock(&head->lock);
0e0adbcf 7169 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7170 goto out;
7171
5d4f98a2
YZ
7172 if (head->extent_op) {
7173 if (!head->must_insert_reserved)
7174 goto out;
78a6184a 7175 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7176 head->extent_op = NULL;
7177 }
7178
1887be66
CM
7179 /*
7180 * waiting for the lock here would deadlock. If someone else has it
7181 * locked they are already in the process of dropping it anyway
7182 */
7183 if (!mutex_trylock(&head->mutex))
7184 goto out;
7185
7186 /*
7187 * at this point we have a head with no other entries. Go
7188 * ahead and process it.
7189 */
c46effa6 7190 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7191 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7192 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7193
7194 /*
7195 * we don't take a ref on the node because we're removing it from the
7196 * tree, so we just steal the ref the tree was holding.
7197 */
c3e69d58 7198 delayed_refs->num_heads--;
d7df2c79 7199 if (head->processing == 0)
c3e69d58 7200 delayed_refs->num_heads_ready--;
d7df2c79
JB
7201 head->processing = 0;
7202 spin_unlock(&head->lock);
1887be66
CM
7203 spin_unlock(&delayed_refs->lock);
7204
f0486c68
YZ
7205 BUG_ON(head->extent_op);
7206 if (head->must_insert_reserved)
7207 ret = 1;
7208
7209 mutex_unlock(&head->mutex);
d278850e 7210 btrfs_put_delayed_ref_head(head);
f0486c68 7211 return ret;
1887be66 7212out:
d7df2c79 7213 spin_unlock(&head->lock);
cf93da7b
CM
7214
7215out_delayed_unlock:
1887be66
CM
7216 spin_unlock(&delayed_refs->lock);
7217 return 0;
7218}
7219
f0486c68
YZ
7220void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7221 struct btrfs_root *root,
7222 struct extent_buffer *buf,
5581a51a 7223 u64 parent, int last_ref)
f0486c68 7224{
0b246afa 7225 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7226 int pin = 1;
f0486c68
YZ
7227 int ret;
7228
7229 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7230 int old_ref_mod, new_ref_mod;
7231
fd708b81
JB
7232 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7233 root->root_key.objectid,
7234 btrfs_header_level(buf), 0,
7235 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7236 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7237 buf->len, parent,
0b246afa
JM
7238 root->root_key.objectid,
7239 btrfs_header_level(buf),
7be07912 7240 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7241 &old_ref_mod, &new_ref_mod);
79787eaa 7242 BUG_ON(ret); /* -ENOMEM */
d7eae340 7243 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7244 }
7245
0a16c7d7 7246 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7247 struct btrfs_block_group_cache *cache;
7248
f0486c68 7249 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7250 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7251 if (!ret)
37be25bc 7252 goto out;
f0486c68
YZ
7253 }
7254
4da8b76d 7255 pin = 0;
0b246afa 7256 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7257
f0486c68 7258 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7259 pin_down_extent(fs_info, cache, buf->start,
7260 buf->len, 1);
6219872d 7261 btrfs_put_block_group(cache);
37be25bc 7262 goto out;
f0486c68
YZ
7263 }
7264
7265 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7266
7267 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7268 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7269 btrfs_put_block_group(cache);
71ff6437 7270 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7271 }
7272out:
b150a4f1 7273 if (pin)
29d2b84c 7274 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7275 root->root_key.objectid);
7276
0a16c7d7
OS
7277 if (last_ref) {
7278 /*
7279 * Deleting the buffer, clear the corrupt flag since it doesn't
7280 * matter anymore.
7281 */
7282 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7283 }
f0486c68
YZ
7284}
7285
79787eaa 7286/* Can return -ENOMEM */
2ff7e61e 7287int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7288 struct btrfs_root *root,
66d7e7f0 7289 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7290 u64 owner, u64 offset)
925baedd 7291{
84f7d8e6 7292 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7293 int old_ref_mod, new_ref_mod;
925baedd
CM
7294 int ret;
7295
f5ee5c9a 7296 if (btrfs_is_testing(fs_info))
faa2dbf0 7297 return 0;
fccb84c9 7298
fd708b81
JB
7299 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7300 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7301 root_objectid, owner, offset,
7302 BTRFS_DROP_DELAYED_REF);
7303
56bec294
CM
7304 /*
7305 * tree log blocks never actually go into the extent allocation
7306 * tree, just update pinning info and exit early.
56bec294 7307 */
5d4f98a2
YZ
7308 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7309 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7310 /* unlocks the pinned mutex */
2ff7e61e 7311 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7312 old_ref_mod = new_ref_mod = 0;
56bec294 7313 ret = 0;
5d4f98a2 7314 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7315 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7316 num_bytes, parent,
7317 root_objectid, (int)owner,
7318 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7319 &old_ref_mod, &new_ref_mod);
5d4f98a2 7320 } else {
66d7e7f0 7321 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7322 num_bytes, parent,
7323 root_objectid, owner, offset,
7324 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7325 &old_ref_mod, &new_ref_mod);
56bec294 7326 }
d7eae340 7327
29d2b84c
NB
7328 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7329 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7330
7331 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7332 }
d7eae340 7333
925baedd
CM
7334 return ret;
7335}
7336
817d52f8
JB
7337/*
7338 * when we wait for progress in the block group caching, its because
7339 * our allocation attempt failed at least once. So, we must sleep
7340 * and let some progress happen before we try again.
7341 *
7342 * This function will sleep at least once waiting for new free space to
7343 * show up, and then it will check the block group free space numbers
7344 * for our min num_bytes. Another option is to have it go ahead
7345 * and look in the rbtree for a free extent of a given size, but this
7346 * is a good start.
36cce922
JB
7347 *
7348 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7349 * any of the information in this block group.
817d52f8 7350 */
36cce922 7351static noinline void
817d52f8
JB
7352wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7353 u64 num_bytes)
7354{
11833d66 7355 struct btrfs_caching_control *caching_ctl;
817d52f8 7356
11833d66
YZ
7357 caching_ctl = get_caching_control(cache);
7358 if (!caching_ctl)
36cce922 7359 return;
817d52f8 7360
11833d66 7361 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7362 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7363
7364 put_caching_control(caching_ctl);
11833d66
YZ
7365}
7366
7367static noinline int
7368wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7369{
7370 struct btrfs_caching_control *caching_ctl;
36cce922 7371 int ret = 0;
11833d66
YZ
7372
7373 caching_ctl = get_caching_control(cache);
7374 if (!caching_ctl)
36cce922 7375 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7376
7377 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7378 if (cache->cached == BTRFS_CACHE_ERROR)
7379 ret = -EIO;
11833d66 7380 put_caching_control(caching_ctl);
36cce922 7381 return ret;
817d52f8
JB
7382}
7383
7384enum btrfs_loop_type {
285ff5af
JB
7385 LOOP_CACHING_NOWAIT = 0,
7386 LOOP_CACHING_WAIT = 1,
7387 LOOP_ALLOC_CHUNK = 2,
7388 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7389};
7390
e570fd27
MX
7391static inline void
7392btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7393 int delalloc)
7394{
7395 if (delalloc)
7396 down_read(&cache->data_rwsem);
7397}
7398
7399static inline void
7400btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7401 int delalloc)
7402{
7403 btrfs_get_block_group(cache);
7404 if (delalloc)
7405 down_read(&cache->data_rwsem);
7406}
7407
7408static struct btrfs_block_group_cache *
7409btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7410 struct btrfs_free_cluster *cluster,
7411 int delalloc)
7412{
89771cc9 7413 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7414
e570fd27 7415 spin_lock(&cluster->refill_lock);
6719afdc
GU
7416 while (1) {
7417 used_bg = cluster->block_group;
7418 if (!used_bg)
7419 return NULL;
7420
7421 if (used_bg == block_group)
e570fd27
MX
7422 return used_bg;
7423
6719afdc 7424 btrfs_get_block_group(used_bg);
e570fd27 7425
6719afdc
GU
7426 if (!delalloc)
7427 return used_bg;
e570fd27 7428
6719afdc
GU
7429 if (down_read_trylock(&used_bg->data_rwsem))
7430 return used_bg;
e570fd27 7431
6719afdc 7432 spin_unlock(&cluster->refill_lock);
e570fd27 7433
e321f8a8
LB
7434 /* We should only have one-level nested. */
7435 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7436
6719afdc
GU
7437 spin_lock(&cluster->refill_lock);
7438 if (used_bg == cluster->block_group)
7439 return used_bg;
e570fd27 7440
6719afdc
GU
7441 up_read(&used_bg->data_rwsem);
7442 btrfs_put_block_group(used_bg);
7443 }
e570fd27
MX
7444}
7445
7446static inline void
7447btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7448 int delalloc)
7449{
7450 if (delalloc)
7451 up_read(&cache->data_rwsem);
7452 btrfs_put_block_group(cache);
7453}
7454
fec577fb
CM
7455/*
7456 * walks the btree of allocated extents and find a hole of a given size.
7457 * The key ins is changed to record the hole:
a4820398 7458 * ins->objectid == start position
62e2749e 7459 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7460 * ins->offset == the size of the hole.
fec577fb 7461 * Any available blocks before search_start are skipped.
a4820398
MX
7462 *
7463 * If there is no suitable free space, we will record the max size of
7464 * the free space extent currently.
fec577fb 7465 */
87bde3cd 7466static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7467 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7468 u64 hint_byte, struct btrfs_key *ins,
7469 u64 flags, int delalloc)
fec577fb 7470{
80eb234a 7471 int ret = 0;
0b246afa 7472 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7473 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7474 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7475 u64 search_start = 0;
a4820398 7476 u64 max_extent_size = 0;
c759c4e1 7477 u64 empty_cluster = 0;
80eb234a 7478 struct btrfs_space_info *space_info;
fa9c0d79 7479 int loop = 0;
3e72ee88 7480 int index = btrfs_bg_flags_to_raid_index(flags);
0a24325e 7481 bool failed_cluster_refill = false;
1cdda9b8 7482 bool failed_alloc = false;
67377734 7483 bool use_cluster = true;
60d2adbb 7484 bool have_caching_bg = false;
13a0db5a 7485 bool orig_have_caching_bg = false;
a5e681d9 7486 bool full_search = false;
fec577fb 7487
0b246afa 7488 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7489 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7490 ins->objectid = 0;
7491 ins->offset = 0;
b1a4d965 7492
71ff6437 7493 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7494
0b246afa 7495 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7496 if (!space_info) {
0b246afa 7497 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7498 return -ENOSPC;
7499 }
2552d17e 7500
67377734 7501 /*
4f4db217
JB
7502 * If our free space is heavily fragmented we may not be able to make
7503 * big contiguous allocations, so instead of doing the expensive search
7504 * for free space, simply return ENOSPC with our max_extent_size so we
7505 * can go ahead and search for a more manageable chunk.
7506 *
7507 * If our max_extent_size is large enough for our allocation simply
7508 * disable clustering since we will likely not be able to find enough
7509 * space to create a cluster and induce latency trying.
67377734 7510 */
4f4db217
JB
7511 if (unlikely(space_info->max_extent_size)) {
7512 spin_lock(&space_info->lock);
7513 if (space_info->max_extent_size &&
7514 num_bytes > space_info->max_extent_size) {
7515 ins->offset = space_info->max_extent_size;
7516 spin_unlock(&space_info->lock);
7517 return -ENOSPC;
7518 } else if (space_info->max_extent_size) {
7519 use_cluster = false;
7520 }
7521 spin_unlock(&space_info->lock);
fa9c0d79 7522 }
0f9dd46c 7523
2ff7e61e 7524 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7525 if (last_ptr) {
fa9c0d79
CM
7526 spin_lock(&last_ptr->lock);
7527 if (last_ptr->block_group)
7528 hint_byte = last_ptr->window_start;
c759c4e1
JB
7529 if (last_ptr->fragmented) {
7530 /*
7531 * We still set window_start so we can keep track of the
7532 * last place we found an allocation to try and save
7533 * some time.
7534 */
7535 hint_byte = last_ptr->window_start;
7536 use_cluster = false;
7537 }
fa9c0d79 7538 spin_unlock(&last_ptr->lock);
239b14b3 7539 }
fa9c0d79 7540
2ff7e61e 7541 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7542 search_start = max(search_start, hint_byte);
2552d17e 7543 if (search_start == hint_byte) {
0b246afa 7544 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7545 /*
7546 * we don't want to use the block group if it doesn't match our
7547 * allocation bits, or if its not cached.
ccf0e725
JB
7548 *
7549 * However if we are re-searching with an ideal block group
7550 * picked out then we don't care that the block group is cached.
817d52f8 7551 */
b6919a58 7552 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7553 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7554 down_read(&space_info->groups_sem);
44fb5511
CM
7555 if (list_empty(&block_group->list) ||
7556 block_group->ro) {
7557 /*
7558 * someone is removing this block group,
7559 * we can't jump into the have_block_group
7560 * target because our list pointers are not
7561 * valid
7562 */
7563 btrfs_put_block_group(block_group);
7564 up_read(&space_info->groups_sem);
ccf0e725 7565 } else {
3e72ee88
QW
7566 index = btrfs_bg_flags_to_raid_index(
7567 block_group->flags);
e570fd27 7568 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7569 goto have_block_group;
ccf0e725 7570 }
2552d17e 7571 } else if (block_group) {
fa9c0d79 7572 btrfs_put_block_group(block_group);
2552d17e 7573 }
42e70e7a 7574 }
2552d17e 7575search:
60d2adbb 7576 have_caching_bg = false;
3e72ee88 7577 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
a5e681d9 7578 full_search = true;
80eb234a 7579 down_read(&space_info->groups_sem);
b742bb82
YZ
7580 list_for_each_entry(block_group, &space_info->block_groups[index],
7581 list) {
6226cb0a 7582 u64 offset;
817d52f8 7583 int cached;
8a1413a2 7584
14443937
JM
7585 /* If the block group is read-only, we can skip it entirely. */
7586 if (unlikely(block_group->ro))
7587 continue;
7588
e570fd27 7589 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7590 search_start = block_group->key.objectid;
42e70e7a 7591
83a50de9
CM
7592 /*
7593 * this can happen if we end up cycling through all the
7594 * raid types, but we want to make sure we only allocate
7595 * for the proper type.
7596 */
b6919a58 7597 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7598 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7599 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7600 BTRFS_BLOCK_GROUP_RAID5 |
7601 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7602 BTRFS_BLOCK_GROUP_RAID10;
7603
7604 /*
7605 * if they asked for extra copies and this block group
7606 * doesn't provide them, bail. This does allow us to
7607 * fill raid0 from raid1.
7608 */
b6919a58 7609 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7610 goto loop;
7611 }
7612
2552d17e 7613have_block_group:
291c7d2f
JB
7614 cached = block_group_cache_done(block_group);
7615 if (unlikely(!cached)) {
a5e681d9 7616 have_caching_bg = true;
f6373bf3 7617 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7618 BUG_ON(ret < 0);
7619 ret = 0;
817d52f8
JB
7620 }
7621
36cce922
JB
7622 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7623 goto loop;
0f9dd46c 7624
0a24325e 7625 /*
062c05c4
AO
7626 * Ok we want to try and use the cluster allocator, so
7627 * lets look there
0a24325e 7628 */
c759c4e1 7629 if (last_ptr && use_cluster) {
215a63d1 7630 struct btrfs_block_group_cache *used_block_group;
8de972b4 7631 unsigned long aligned_cluster;
fa9c0d79
CM
7632 /*
7633 * the refill lock keeps out other
7634 * people trying to start a new cluster
7635 */
e570fd27
MX
7636 used_block_group = btrfs_lock_cluster(block_group,
7637 last_ptr,
7638 delalloc);
7639 if (!used_block_group)
44fb5511 7640 goto refill_cluster;
274bd4fb 7641
e570fd27
MX
7642 if (used_block_group != block_group &&
7643 (used_block_group->ro ||
7644 !block_group_bits(used_block_group, flags)))
7645 goto release_cluster;
44fb5511 7646
274bd4fb 7647 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7648 last_ptr,
7649 num_bytes,
7650 used_block_group->key.objectid,
7651 &max_extent_size);
fa9c0d79
CM
7652 if (offset) {
7653 /* we have a block, we're done */
7654 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7655 trace_btrfs_reserve_extent_cluster(
89d4346a
MX
7656 used_block_group,
7657 search_start, num_bytes);
215a63d1 7658 if (used_block_group != block_group) {
e570fd27
MX
7659 btrfs_release_block_group(block_group,
7660 delalloc);
215a63d1
MX
7661 block_group = used_block_group;
7662 }
fa9c0d79
CM
7663 goto checks;
7664 }
7665
274bd4fb 7666 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7667release_cluster:
062c05c4
AO
7668 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7669 * set up a new clusters, so lets just skip it
7670 * and let the allocator find whatever block
7671 * it can find. If we reach this point, we
7672 * will have tried the cluster allocator
7673 * plenty of times and not have found
7674 * anything, so we are likely way too
7675 * fragmented for the clustering stuff to find
a5f6f719
AO
7676 * anything.
7677 *
7678 * However, if the cluster is taken from the
7679 * current block group, release the cluster
7680 * first, so that we stand a better chance of
7681 * succeeding in the unclustered
7682 * allocation. */
7683 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7684 used_block_group != block_group) {
062c05c4 7685 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7686 btrfs_release_block_group(used_block_group,
7687 delalloc);
062c05c4
AO
7688 goto unclustered_alloc;
7689 }
7690
fa9c0d79
CM
7691 /*
7692 * this cluster didn't work out, free it and
7693 * start over
7694 */
7695 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7696
e570fd27
MX
7697 if (used_block_group != block_group)
7698 btrfs_release_block_group(used_block_group,
7699 delalloc);
7700refill_cluster:
a5f6f719
AO
7701 if (loop >= LOOP_NO_EMPTY_SIZE) {
7702 spin_unlock(&last_ptr->refill_lock);
7703 goto unclustered_alloc;
7704 }
7705
8de972b4
CM
7706 aligned_cluster = max_t(unsigned long,
7707 empty_cluster + empty_size,
7708 block_group->full_stripe_len);
7709
fa9c0d79 7710 /* allocate a cluster in this block group */
2ff7e61e 7711 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7712 last_ptr, search_start,
7713 num_bytes,
7714 aligned_cluster);
fa9c0d79
CM
7715 if (ret == 0) {
7716 /*
7717 * now pull our allocation out of this
7718 * cluster
7719 */
7720 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7721 last_ptr,
7722 num_bytes,
7723 search_start,
7724 &max_extent_size);
fa9c0d79
CM
7725 if (offset) {
7726 /* we found one, proceed */
7727 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7728 trace_btrfs_reserve_extent_cluster(
3f7de037
JB
7729 block_group, search_start,
7730 num_bytes);
fa9c0d79
CM
7731 goto checks;
7732 }
0a24325e
JB
7733 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7734 && !failed_cluster_refill) {
817d52f8
JB
7735 spin_unlock(&last_ptr->refill_lock);
7736
0a24325e 7737 failed_cluster_refill = true;
817d52f8
JB
7738 wait_block_group_cache_progress(block_group,
7739 num_bytes + empty_cluster + empty_size);
7740 goto have_block_group;
fa9c0d79 7741 }
817d52f8 7742
fa9c0d79
CM
7743 /*
7744 * at this point we either didn't find a cluster
7745 * or we weren't able to allocate a block from our
7746 * cluster. Free the cluster we've been trying
7747 * to use, and go to the next block group
7748 */
0a24325e 7749 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7750 spin_unlock(&last_ptr->refill_lock);
0a24325e 7751 goto loop;
fa9c0d79
CM
7752 }
7753
062c05c4 7754unclustered_alloc:
c759c4e1
JB
7755 /*
7756 * We are doing an unclustered alloc, set the fragmented flag so
7757 * we don't bother trying to setup a cluster again until we get
7758 * more space.
7759 */
7760 if (unlikely(last_ptr)) {
7761 spin_lock(&last_ptr->lock);
7762 last_ptr->fragmented = 1;
7763 spin_unlock(&last_ptr->lock);
7764 }
0c9b36e0
LB
7765 if (cached) {
7766 struct btrfs_free_space_ctl *ctl =
7767 block_group->free_space_ctl;
7768
7769 spin_lock(&ctl->tree_lock);
7770 if (ctl->free_space <
7771 num_bytes + empty_cluster + empty_size) {
7772 if (ctl->free_space > max_extent_size)
7773 max_extent_size = ctl->free_space;
7774 spin_unlock(&ctl->tree_lock);
7775 goto loop;
7776 }
7777 spin_unlock(&ctl->tree_lock);
a5f6f719 7778 }
a5f6f719 7779
6226cb0a 7780 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7781 num_bytes, empty_size,
7782 &max_extent_size);
1cdda9b8
JB
7783 /*
7784 * If we didn't find a chunk, and we haven't failed on this
7785 * block group before, and this block group is in the middle of
7786 * caching and we are ok with waiting, then go ahead and wait
7787 * for progress to be made, and set failed_alloc to true.
7788 *
7789 * If failed_alloc is true then we've already waited on this
7790 * block group once and should move on to the next block group.
7791 */
7792 if (!offset && !failed_alloc && !cached &&
7793 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7794 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7795 num_bytes + empty_size);
7796 failed_alloc = true;
817d52f8 7797 goto have_block_group;
1cdda9b8
JB
7798 } else if (!offset) {
7799 goto loop;
817d52f8 7800 }
fa9c0d79 7801checks:
0b246afa 7802 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7803
2552d17e
JB
7804 /* move on to the next group */
7805 if (search_start + num_bytes >
215a63d1
MX
7806 block_group->key.objectid + block_group->key.offset) {
7807 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7808 goto loop;
6226cb0a 7809 }
f5a31e16 7810
f0486c68 7811 if (offset < search_start)
215a63d1 7812 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7813 search_start - offset);
7814 BUG_ON(offset > search_start);
2552d17e 7815
18513091
WX
7816 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7817 num_bytes, delalloc);
f0486c68 7818 if (ret == -EAGAIN) {
215a63d1 7819 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7820 goto loop;
0f9dd46c 7821 }
9cfa3e34 7822 btrfs_inc_block_group_reservations(block_group);
0b86a832 7823
f0486c68 7824 /* we are all good, lets return */
2552d17e
JB
7825 ins->objectid = search_start;
7826 ins->offset = num_bytes;
d2fb3437 7827
3dca5c94 7828 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
e570fd27 7829 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7830 break;
7831loop:
0a24325e 7832 failed_cluster_refill = false;
1cdda9b8 7833 failed_alloc = false;
3e72ee88
QW
7834 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7835 index);
e570fd27 7836 btrfs_release_block_group(block_group, delalloc);
14443937 7837 cond_resched();
2552d17e
JB
7838 }
7839 up_read(&space_info->groups_sem);
7840
13a0db5a 7841 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7842 && !orig_have_caching_bg)
7843 orig_have_caching_bg = true;
7844
60d2adbb
MX
7845 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7846 goto search;
7847
b742bb82
YZ
7848 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7849 goto search;
7850
285ff5af 7851 /*
ccf0e725
JB
7852 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7853 * caching kthreads as we move along
817d52f8
JB
7854 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7855 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7856 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7857 * again
fa9c0d79 7858 */
723bda20 7859 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7860 index = 0;
a5e681d9
JB
7861 if (loop == LOOP_CACHING_NOWAIT) {
7862 /*
7863 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7864 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7865 * full search through.
7866 */
13a0db5a 7867 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7868 loop = LOOP_CACHING_WAIT;
7869 else
7870 loop = LOOP_ALLOC_CHUNK;
7871 } else {
7872 loop++;
7873 }
7874
817d52f8 7875 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7876 struct btrfs_trans_handle *trans;
f017f15f
WS
7877 int exist = 0;
7878
7879 trans = current->journal_info;
7880 if (trans)
7881 exist = 1;
7882 else
7883 trans = btrfs_join_transaction(root);
00361589 7884
00361589
JB
7885 if (IS_ERR(trans)) {
7886 ret = PTR_ERR(trans);
7887 goto out;
7888 }
7889
2ff7e61e 7890 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7891 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7892
7893 /*
7894 * If we can't allocate a new chunk we've already looped
7895 * through at least once, move on to the NO_EMPTY_SIZE
7896 * case.
7897 */
7898 if (ret == -ENOSPC)
7899 loop = LOOP_NO_EMPTY_SIZE;
7900
ea658bad
JB
7901 /*
7902 * Do not bail out on ENOSPC since we
7903 * can do more things.
7904 */
00361589 7905 if (ret < 0 && ret != -ENOSPC)
66642832 7906 btrfs_abort_transaction(trans, ret);
00361589
JB
7907 else
7908 ret = 0;
f017f15f 7909 if (!exist)
3a45bb20 7910 btrfs_end_transaction(trans);
00361589 7911 if (ret)
ea658bad 7912 goto out;
2552d17e
JB
7913 }
7914
723bda20 7915 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7916 /*
7917 * Don't loop again if we already have no empty_size and
7918 * no empty_cluster.
7919 */
7920 if (empty_size == 0 &&
7921 empty_cluster == 0) {
7922 ret = -ENOSPC;
7923 goto out;
7924 }
723bda20
JB
7925 empty_size = 0;
7926 empty_cluster = 0;
fa9c0d79 7927 }
723bda20
JB
7928
7929 goto search;
2552d17e
JB
7930 } else if (!ins->objectid) {
7931 ret = -ENOSPC;
d82a6f1d 7932 } else if (ins->objectid) {
c759c4e1
JB
7933 if (!use_cluster && last_ptr) {
7934 spin_lock(&last_ptr->lock);
7935 last_ptr->window_start = ins->objectid;
7936 spin_unlock(&last_ptr->lock);
7937 }
80eb234a 7938 ret = 0;
be744175 7939 }
79787eaa 7940out:
4f4db217
JB
7941 if (ret == -ENOSPC) {
7942 spin_lock(&space_info->lock);
7943 space_info->max_extent_size = max_extent_size;
7944 spin_unlock(&space_info->lock);
a4820398 7945 ins->offset = max_extent_size;
4f4db217 7946 }
0f70abe2 7947 return ret;
fec577fb 7948}
ec44a35c 7949
ab8d0fc4
JM
7950static void dump_space_info(struct btrfs_fs_info *fs_info,
7951 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7952 int dump_block_groups)
0f9dd46c
JB
7953{
7954 struct btrfs_block_group_cache *cache;
b742bb82 7955 int index = 0;
0f9dd46c 7956
9ed74f2d 7957 spin_lock(&info->lock);
ab8d0fc4
JM
7958 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7959 info->flags,
4136135b
LB
7960 info->total_bytes - btrfs_space_info_used(info, true),
7961 info->full ? "" : "not ");
ab8d0fc4
JM
7962 btrfs_info(fs_info,
7963 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7964 info->total_bytes, info->bytes_used, info->bytes_pinned,
7965 info->bytes_reserved, info->bytes_may_use,
7966 info->bytes_readonly);
9ed74f2d
JB
7967 spin_unlock(&info->lock);
7968
7969 if (!dump_block_groups)
7970 return;
0f9dd46c 7971
80eb234a 7972 down_read(&info->groups_sem);
b742bb82
YZ
7973again:
7974 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7975 spin_lock(&cache->lock);
ab8d0fc4
JM
7976 btrfs_info(fs_info,
7977 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7978 cache->key.objectid, cache->key.offset,
7979 btrfs_block_group_used(&cache->item), cache->pinned,
7980 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7981 btrfs_dump_free_space(cache, bytes);
7982 spin_unlock(&cache->lock);
7983 }
b742bb82
YZ
7984 if (++index < BTRFS_NR_RAID_TYPES)
7985 goto again;
80eb234a 7986 up_read(&info->groups_sem);
0f9dd46c 7987}
e8569813 7988
6f47c706
NB
7989/*
7990 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7991 * hole that is at least as big as @num_bytes.
7992 *
7993 * @root - The root that will contain this extent
7994 *
7995 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7996 * is used for accounting purposes. This value differs
7997 * from @num_bytes only in the case of compressed extents.
7998 *
7999 * @num_bytes - Number of bytes to allocate on-disk.
8000 *
8001 * @min_alloc_size - Indicates the minimum amount of space that the
8002 * allocator should try to satisfy. In some cases
8003 * @num_bytes may be larger than what is required and if
8004 * the filesystem is fragmented then allocation fails.
8005 * However, the presence of @min_alloc_size gives a
8006 * chance to try and satisfy the smaller allocation.
8007 *
8008 * @empty_size - A hint that you plan on doing more COW. This is the
8009 * size in bytes the allocator should try to find free
8010 * next to the block it returns. This is just a hint and
8011 * may be ignored by the allocator.
8012 *
8013 * @hint_byte - Hint to the allocator to start searching above the byte
8014 * address passed. It might be ignored.
8015 *
8016 * @ins - This key is modified to record the found hole. It will
8017 * have the following values:
8018 * ins->objectid == start position
8019 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8020 * ins->offset == the size of the hole.
8021 *
8022 * @is_data - Boolean flag indicating whether an extent is
8023 * allocated for data (true) or metadata (false)
8024 *
8025 * @delalloc - Boolean flag indicating whether this allocation is for
8026 * delalloc or not. If 'true' data_rwsem of block groups
8027 * is going to be acquired.
8028 *
8029 *
8030 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8031 * case -ENOSPC is returned then @ins->offset will contain the size of the
8032 * largest available hole the allocator managed to find.
8033 */
18513091 8034int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8035 u64 num_bytes, u64 min_alloc_size,
8036 u64 empty_size, u64 hint_byte,
e570fd27 8037 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8038{
ab8d0fc4 8039 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8040 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8041 u64 flags;
fec577fb 8042 int ret;
925baedd 8043
1b86826d 8044 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8045again:
0b246afa 8046 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8047 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8048 hint_byte, ins, flags, delalloc);
9cfa3e34 8049 if (!ret && !is_data) {
ab8d0fc4 8050 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8051 } else if (ret == -ENOSPC) {
a4820398
MX
8052 if (!final_tried && ins->offset) {
8053 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8054 num_bytes = round_down(num_bytes,
0b246afa 8055 fs_info->sectorsize);
9e622d6b 8056 num_bytes = max(num_bytes, min_alloc_size);
18513091 8057 ram_bytes = num_bytes;
9e622d6b
MX
8058 if (num_bytes == min_alloc_size)
8059 final_tried = true;
8060 goto again;
ab8d0fc4 8061 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8062 struct btrfs_space_info *sinfo;
8063
ab8d0fc4 8064 sinfo = __find_space_info(fs_info, flags);
0b246afa 8065 btrfs_err(fs_info,
5d163e0e
JM
8066 "allocation failed flags %llu, wanted %llu",
8067 flags, num_bytes);
53804280 8068 if (sinfo)
ab8d0fc4 8069 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8070 }
925baedd 8071 }
0f9dd46c
JB
8072
8073 return ret;
e6dcd2dc
CM
8074}
8075
2ff7e61e 8076static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8077 u64 start, u64 len,
8078 int pin, int delalloc)
65b51a00 8079{
0f9dd46c 8080 struct btrfs_block_group_cache *cache;
1f3c79a2 8081 int ret = 0;
0f9dd46c 8082
0b246afa 8083 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8084 if (!cache) {
0b246afa
JM
8085 btrfs_err(fs_info, "Unable to find block group for %llu",
8086 start);
0f9dd46c
JB
8087 return -ENOSPC;
8088 }
1f3c79a2 8089
e688b725 8090 if (pin)
2ff7e61e 8091 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8092 else {
0b246afa 8093 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8094 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8095 btrfs_add_free_space(cache, start, len);
4824f1f4 8096 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8097 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8098 }
31193213 8099
fa9c0d79 8100 btrfs_put_block_group(cache);
e6dcd2dc
CM
8101 return ret;
8102}
8103
2ff7e61e 8104int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8105 u64 start, u64 len, int delalloc)
e688b725 8106{
2ff7e61e 8107 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8108}
8109
2ff7e61e 8110int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8111 u64 start, u64 len)
8112{
2ff7e61e 8113 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8114}
8115
5d4f98a2 8116static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8117 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8118 u64 parent, u64 root_objectid,
8119 u64 flags, u64 owner, u64 offset,
8120 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8121{
8122 int ret;
e6dcd2dc 8123 struct btrfs_extent_item *extent_item;
5d4f98a2 8124 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8125 struct btrfs_path *path;
5d4f98a2
YZ
8126 struct extent_buffer *leaf;
8127 int type;
8128 u32 size;
26b8003f 8129
5d4f98a2
YZ
8130 if (parent > 0)
8131 type = BTRFS_SHARED_DATA_REF_KEY;
8132 else
8133 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8134
5d4f98a2 8135 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8136
8137 path = btrfs_alloc_path();
db5b493a
TI
8138 if (!path)
8139 return -ENOMEM;
47e4bb98 8140
b9473439 8141 path->leave_spinning = 1;
5d4f98a2
YZ
8142 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8143 ins, size);
79787eaa
JM
8144 if (ret) {
8145 btrfs_free_path(path);
8146 return ret;
8147 }
0f9dd46c 8148
5d4f98a2
YZ
8149 leaf = path->nodes[0];
8150 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8151 struct btrfs_extent_item);
5d4f98a2
YZ
8152 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8153 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8154 btrfs_set_extent_flags(leaf, extent_item,
8155 flags | BTRFS_EXTENT_FLAG_DATA);
8156
8157 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8158 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8159 if (parent > 0) {
8160 struct btrfs_shared_data_ref *ref;
8161 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8162 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8163 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8164 } else {
8165 struct btrfs_extent_data_ref *ref;
8166 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8167 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8168 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8169 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8170 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8171 }
47e4bb98
CM
8172
8173 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8174 btrfs_free_path(path);
f510cfec 8175
1e144fb8
OS
8176 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8177 ins->offset);
8178 if (ret)
8179 return ret;
8180
6202df69 8181 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8182 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8183 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8184 ins->objectid, ins->offset);
f5947066
CM
8185 BUG();
8186 }
71ff6437 8187 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8188 return ret;
8189}
8190
5d4f98a2 8191static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8192 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8193 u64 parent, u64 root_objectid,
8194 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8195 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8196{
8197 int ret;
5d4f98a2
YZ
8198 struct btrfs_extent_item *extent_item;
8199 struct btrfs_tree_block_info *block_info;
8200 struct btrfs_extent_inline_ref *iref;
8201 struct btrfs_path *path;
8202 struct extent_buffer *leaf;
3173a18f 8203 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8204 u64 num_bytes = ins->offset;
0b246afa 8205 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8206
8207 if (!skinny_metadata)
8208 size += sizeof(*block_info);
1c2308f8 8209
5d4f98a2 8210 path = btrfs_alloc_path();
857cc2fc 8211 if (!path) {
2ff7e61e 8212 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8213 fs_info->nodesize);
d8926bb3 8214 return -ENOMEM;
857cc2fc 8215 }
56bec294 8216
5d4f98a2
YZ
8217 path->leave_spinning = 1;
8218 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8219 ins, size);
79787eaa 8220 if (ret) {
dd825259 8221 btrfs_free_path(path);
2ff7e61e 8222 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8223 fs_info->nodesize);
79787eaa
JM
8224 return ret;
8225 }
5d4f98a2
YZ
8226
8227 leaf = path->nodes[0];
8228 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8229 struct btrfs_extent_item);
8230 btrfs_set_extent_refs(leaf, extent_item, 1);
8231 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8232 btrfs_set_extent_flags(leaf, extent_item,
8233 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8234
3173a18f
JB
8235 if (skinny_metadata) {
8236 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8237 num_bytes = fs_info->nodesize;
3173a18f
JB
8238 } else {
8239 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8240 btrfs_set_tree_block_key(leaf, block_info, key);
8241 btrfs_set_tree_block_level(leaf, block_info, level);
8242 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8243 }
5d4f98a2 8244
5d4f98a2
YZ
8245 if (parent > 0) {
8246 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8247 btrfs_set_extent_inline_ref_type(leaf, iref,
8248 BTRFS_SHARED_BLOCK_REF_KEY);
8249 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8250 } else {
8251 btrfs_set_extent_inline_ref_type(leaf, iref,
8252 BTRFS_TREE_BLOCK_REF_KEY);
8253 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8254 }
8255
8256 btrfs_mark_buffer_dirty(leaf);
8257 btrfs_free_path(path);
8258
1e144fb8
OS
8259 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8260 num_bytes);
8261 if (ret)
8262 return ret;
8263
6202df69
JM
8264 ret = update_block_group(trans, fs_info, ins->objectid,
8265 fs_info->nodesize, 1);
79787eaa 8266 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8267 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8268 ins->objectid, ins->offset);
5d4f98a2
YZ
8269 BUG();
8270 }
0be5dc67 8271
71ff6437 8272 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8273 fs_info->nodesize);
5d4f98a2
YZ
8274 return ret;
8275}
8276
8277int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8278 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8279 u64 offset, u64 ram_bytes,
8280 struct btrfs_key *ins)
5d4f98a2 8281{
84f7d8e6 8282 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8283 int ret;
8284
84f7d8e6 8285 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8286
fd708b81
JB
8287 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8288 root->root_key.objectid, owner, offset,
8289 BTRFS_ADD_DELAYED_EXTENT);
8290
0b246afa 8291 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8292 ins->offset, 0,
8293 root->root_key.objectid, owner,
7be07912
OS
8294 offset, ram_bytes,
8295 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8296 return ret;
8297}
e02119d5
CM
8298
8299/*
8300 * this is used by the tree logging recovery code. It records that
8301 * an extent has been allocated and makes sure to clear the free
8302 * space cache bits as well
8303 */
5d4f98a2 8304int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8305 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8306 u64 root_objectid, u64 owner, u64 offset,
8307 struct btrfs_key *ins)
e02119d5
CM
8308{
8309 int ret;
8310 struct btrfs_block_group_cache *block_group;
ed7a6948 8311 struct btrfs_space_info *space_info;
11833d66 8312
8c2a1a30
JB
8313 /*
8314 * Mixed block groups will exclude before processing the log so we only
01327610 8315 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8316 */
0b246afa 8317 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8318 ret = __exclude_logged_extent(fs_info, ins->objectid,
8319 ins->offset);
b50c6e25 8320 if (ret)
8c2a1a30 8321 return ret;
11833d66
YZ
8322 }
8323
0b246afa 8324 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8325 if (!block_group)
8326 return -EINVAL;
8327
ed7a6948
WX
8328 space_info = block_group->space_info;
8329 spin_lock(&space_info->lock);
8330 spin_lock(&block_group->lock);
8331 space_info->bytes_reserved += ins->offset;
8332 block_group->reserved += ins->offset;
8333 spin_unlock(&block_group->lock);
8334 spin_unlock(&space_info->lock);
8335
2ff7e61e 8336 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8337 0, owner, offset, ins, 1);
b50c6e25 8338 btrfs_put_block_group(block_group);
e02119d5
CM
8339 return ret;
8340}
8341
48a3b636
ES
8342static struct extent_buffer *
8343btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8344 u64 bytenr, int level)
65b51a00 8345{
0b246afa 8346 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8347 struct extent_buffer *buf;
8348
2ff7e61e 8349 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8350 if (IS_ERR(buf))
8351 return buf;
8352
65b51a00 8353 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8354 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8355 btrfs_tree_lock(buf);
7c302b49 8356 clean_tree_block(fs_info, buf);
3083ee2e 8357 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8358
8359 btrfs_set_lock_blocking(buf);
4db8c528 8360 set_extent_buffer_uptodate(buf);
b4ce94de 8361
d0c803c4 8362 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8363 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8364 /*
8365 * we allow two log transactions at a time, use different
8366 * EXENT bit to differentiate dirty pages.
8367 */
656f30db 8368 if (buf->log_index == 0)
8cef4e16
YZ
8369 set_extent_dirty(&root->dirty_log_pages, buf->start,
8370 buf->start + buf->len - 1, GFP_NOFS);
8371 else
8372 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8373 buf->start + buf->len - 1);
d0c803c4 8374 } else {
656f30db 8375 buf->log_index = -1;
d0c803c4 8376 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8377 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8378 }
64c12921 8379 trans->dirty = true;
b4ce94de 8380 /* this returns a buffer locked for blocking */
65b51a00
CM
8381 return buf;
8382}
8383
f0486c68
YZ
8384static struct btrfs_block_rsv *
8385use_block_rsv(struct btrfs_trans_handle *trans,
8386 struct btrfs_root *root, u32 blocksize)
8387{
0b246afa 8388 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8389 struct btrfs_block_rsv *block_rsv;
0b246afa 8390 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8391 int ret;
d88033db 8392 bool global_updated = false;
f0486c68
YZ
8393
8394 block_rsv = get_block_rsv(trans, root);
8395
b586b323
MX
8396 if (unlikely(block_rsv->size == 0))
8397 goto try_reserve;
d88033db 8398again:
f0486c68
YZ
8399 ret = block_rsv_use_bytes(block_rsv, blocksize);
8400 if (!ret)
8401 return block_rsv;
8402
b586b323
MX
8403 if (block_rsv->failfast)
8404 return ERR_PTR(ret);
8405
d88033db
MX
8406 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8407 global_updated = true;
0b246afa 8408 update_global_block_rsv(fs_info);
d88033db
MX
8409 goto again;
8410 }
8411
0b246afa 8412 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8413 static DEFINE_RATELIMIT_STATE(_rs,
8414 DEFAULT_RATELIMIT_INTERVAL * 10,
8415 /*DEFAULT_RATELIMIT_BURST*/ 1);
8416 if (__ratelimit(&_rs))
8417 WARN(1, KERN_DEBUG
efe120a0 8418 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8419 }
8420try_reserve:
8421 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8422 BTRFS_RESERVE_NO_FLUSH);
8423 if (!ret)
8424 return block_rsv;
8425 /*
8426 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8427 * the global reserve if its space type is the same as the global
8428 * reservation.
b586b323 8429 */
5881cfc9
MX
8430 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8431 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8432 ret = block_rsv_use_bytes(global_rsv, blocksize);
8433 if (!ret)
8434 return global_rsv;
8435 }
8436 return ERR_PTR(ret);
f0486c68
YZ
8437}
8438
8c2a3ca2
JB
8439static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8440 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8441{
8442 block_rsv_add_bytes(block_rsv, blocksize, 0);
ff6bc37e 8443 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8444}
8445
fec577fb 8446/*
f0486c68 8447 * finds a free extent and does all the dirty work required for allocation
67b7859e 8448 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8449 */
4d75f8a9 8450struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8451 struct btrfs_root *root,
8452 u64 parent, u64 root_objectid,
8453 const struct btrfs_disk_key *key,
8454 int level, u64 hint,
8455 u64 empty_size)
fec577fb 8456{
0b246afa 8457 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8458 struct btrfs_key ins;
f0486c68 8459 struct btrfs_block_rsv *block_rsv;
5f39d397 8460 struct extent_buffer *buf;
67b7859e 8461 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8462 u64 flags = 0;
8463 int ret;
0b246afa
JM
8464 u32 blocksize = fs_info->nodesize;
8465 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8466
05653ef3 8467#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8468 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8469 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8470 level);
faa2dbf0
JB
8471 if (!IS_ERR(buf))
8472 root->alloc_bytenr += blocksize;
8473 return buf;
8474 }
05653ef3 8475#endif
fccb84c9 8476
f0486c68
YZ
8477 block_rsv = use_block_rsv(trans, root, blocksize);
8478 if (IS_ERR(block_rsv))
8479 return ERR_CAST(block_rsv);
8480
18513091 8481 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8482 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8483 if (ret)
8484 goto out_unuse;
55c69072 8485
fe864576 8486 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8487 if (IS_ERR(buf)) {
8488 ret = PTR_ERR(buf);
8489 goto out_free_reserved;
8490 }
f0486c68
YZ
8491
8492 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8493 if (parent == 0)
8494 parent = ins.objectid;
8495 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8496 } else
8497 BUG_ON(parent > 0);
8498
8499 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8500 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8501 if (!extent_op) {
8502 ret = -ENOMEM;
8503 goto out_free_buf;
8504 }
f0486c68
YZ
8505 if (key)
8506 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8507 else
8508 memset(&extent_op->key, 0, sizeof(extent_op->key));
8509 extent_op->flags_to_set = flags;
35b3ad50
DS
8510 extent_op->update_key = skinny_metadata ? false : true;
8511 extent_op->update_flags = true;
8512 extent_op->is_data = false;
b1c79e09 8513 extent_op->level = level;
f0486c68 8514
fd708b81
JB
8515 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8516 root_objectid, level, 0,
8517 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8518 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8519 ins.offset, parent,
8520 root_objectid, level,
67b7859e 8521 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8522 extent_op, NULL, NULL);
67b7859e
OS
8523 if (ret)
8524 goto out_free_delayed;
f0486c68 8525 }
fec577fb 8526 return buf;
67b7859e
OS
8527
8528out_free_delayed:
8529 btrfs_free_delayed_extent_op(extent_op);
8530out_free_buf:
8531 free_extent_buffer(buf);
8532out_free_reserved:
2ff7e61e 8533 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8534out_unuse:
0b246afa 8535 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8536 return ERR_PTR(ret);
fec577fb 8537}
a28ec197 8538
2c47e605
YZ
8539struct walk_control {
8540 u64 refs[BTRFS_MAX_LEVEL];
8541 u64 flags[BTRFS_MAX_LEVEL];
8542 struct btrfs_key update_progress;
8543 int stage;
8544 int level;
8545 int shared_level;
8546 int update_ref;
8547 int keep_locks;
1c4850e2
YZ
8548 int reada_slot;
8549 int reada_count;
66d7e7f0 8550 int for_reloc;
2c47e605
YZ
8551};
8552
8553#define DROP_REFERENCE 1
8554#define UPDATE_BACKREF 2
8555
1c4850e2
YZ
8556static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8557 struct btrfs_root *root,
8558 struct walk_control *wc,
8559 struct btrfs_path *path)
6407bf6d 8560{
0b246afa 8561 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8562 u64 bytenr;
8563 u64 generation;
8564 u64 refs;
94fcca9f 8565 u64 flags;
5d4f98a2 8566 u32 nritems;
1c4850e2
YZ
8567 struct btrfs_key key;
8568 struct extent_buffer *eb;
6407bf6d 8569 int ret;
1c4850e2
YZ
8570 int slot;
8571 int nread = 0;
6407bf6d 8572
1c4850e2
YZ
8573 if (path->slots[wc->level] < wc->reada_slot) {
8574 wc->reada_count = wc->reada_count * 2 / 3;
8575 wc->reada_count = max(wc->reada_count, 2);
8576 } else {
8577 wc->reada_count = wc->reada_count * 3 / 2;
8578 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8579 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8580 }
7bb86316 8581
1c4850e2
YZ
8582 eb = path->nodes[wc->level];
8583 nritems = btrfs_header_nritems(eb);
bd56b302 8584
1c4850e2
YZ
8585 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8586 if (nread >= wc->reada_count)
8587 break;
bd56b302 8588
2dd3e67b 8589 cond_resched();
1c4850e2
YZ
8590 bytenr = btrfs_node_blockptr(eb, slot);
8591 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8592
1c4850e2
YZ
8593 if (slot == path->slots[wc->level])
8594 goto reada;
5d4f98a2 8595
1c4850e2
YZ
8596 if (wc->stage == UPDATE_BACKREF &&
8597 generation <= root->root_key.offset)
bd56b302
CM
8598 continue;
8599
94fcca9f 8600 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8601 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8602 wc->level - 1, 1, &refs,
8603 &flags);
79787eaa
JM
8604 /* We don't care about errors in readahead. */
8605 if (ret < 0)
8606 continue;
94fcca9f
YZ
8607 BUG_ON(refs == 0);
8608
1c4850e2 8609 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8610 if (refs == 1)
8611 goto reada;
bd56b302 8612
94fcca9f
YZ
8613 if (wc->level == 1 &&
8614 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8615 continue;
1c4850e2
YZ
8616 if (!wc->update_ref ||
8617 generation <= root->root_key.offset)
8618 continue;
8619 btrfs_node_key_to_cpu(eb, &key, slot);
8620 ret = btrfs_comp_cpu_keys(&key,
8621 &wc->update_progress);
8622 if (ret < 0)
8623 continue;
94fcca9f
YZ
8624 } else {
8625 if (wc->level == 1 &&
8626 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8627 continue;
6407bf6d 8628 }
1c4850e2 8629reada:
2ff7e61e 8630 readahead_tree_block(fs_info, bytenr);
1c4850e2 8631 nread++;
20524f02 8632 }
1c4850e2 8633 wc->reada_slot = slot;
20524f02 8634}
2c47e605 8635
f82d02d9 8636/*
2c016dc2 8637 * helper to process tree block while walking down the tree.
2c47e605 8638 *
2c47e605
YZ
8639 * when wc->stage == UPDATE_BACKREF, this function updates
8640 * back refs for pointers in the block.
8641 *
8642 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8643 */
2c47e605 8644static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8645 struct btrfs_root *root,
2c47e605 8646 struct btrfs_path *path,
94fcca9f 8647 struct walk_control *wc, int lookup_info)
f82d02d9 8648{
2ff7e61e 8649 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8650 int level = wc->level;
8651 struct extent_buffer *eb = path->nodes[level];
2c47e605 8652 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8653 int ret;
8654
2c47e605
YZ
8655 if (wc->stage == UPDATE_BACKREF &&
8656 btrfs_header_owner(eb) != root->root_key.objectid)
8657 return 1;
f82d02d9 8658
2c47e605
YZ
8659 /*
8660 * when reference count of tree block is 1, it won't increase
8661 * again. once full backref flag is set, we never clear it.
8662 */
94fcca9f
YZ
8663 if (lookup_info &&
8664 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8665 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8666 BUG_ON(!path->locks[level]);
2ff7e61e 8667 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8668 eb->start, level, 1,
2c47e605
YZ
8669 &wc->refs[level],
8670 &wc->flags[level]);
79787eaa
JM
8671 BUG_ON(ret == -ENOMEM);
8672 if (ret)
8673 return ret;
2c47e605
YZ
8674 BUG_ON(wc->refs[level] == 0);
8675 }
5d4f98a2 8676
2c47e605
YZ
8677 if (wc->stage == DROP_REFERENCE) {
8678 if (wc->refs[level] > 1)
8679 return 1;
f82d02d9 8680
2c47e605 8681 if (path->locks[level] && !wc->keep_locks) {
bd681513 8682 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8683 path->locks[level] = 0;
8684 }
8685 return 0;
8686 }
f82d02d9 8687
2c47e605
YZ
8688 /* wc->stage == UPDATE_BACKREF */
8689 if (!(wc->flags[level] & flag)) {
8690 BUG_ON(!path->locks[level]);
e339a6b0 8691 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8692 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8693 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8694 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8695 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8696 eb->len, flag,
8697 btrfs_header_level(eb), 0);
79787eaa 8698 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8699 wc->flags[level] |= flag;
8700 }
8701
8702 /*
8703 * the block is shared by multiple trees, so it's not good to
8704 * keep the tree lock
8705 */
8706 if (path->locks[level] && level > 0) {
bd681513 8707 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8708 path->locks[level] = 0;
8709 }
8710 return 0;
8711}
8712
1c4850e2 8713/*
2c016dc2 8714 * helper to process tree block pointer.
1c4850e2
YZ
8715 *
8716 * when wc->stage == DROP_REFERENCE, this function checks
8717 * reference count of the block pointed to. if the block
8718 * is shared and we need update back refs for the subtree
8719 * rooted at the block, this function changes wc->stage to
8720 * UPDATE_BACKREF. if the block is shared and there is no
8721 * need to update back, this function drops the reference
8722 * to the block.
8723 *
8724 * NOTE: return value 1 means we should stop walking down.
8725 */
8726static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8727 struct btrfs_root *root,
8728 struct btrfs_path *path,
94fcca9f 8729 struct walk_control *wc, int *lookup_info)
1c4850e2 8730{
0b246afa 8731 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8732 u64 bytenr;
8733 u64 generation;
8734 u64 parent;
8735 u32 blocksize;
8736 struct btrfs_key key;
581c1760 8737 struct btrfs_key first_key;
1c4850e2
YZ
8738 struct extent_buffer *next;
8739 int level = wc->level;
8740 int reada = 0;
8741 int ret = 0;
1152651a 8742 bool need_account = false;
1c4850e2
YZ
8743
8744 generation = btrfs_node_ptr_generation(path->nodes[level],
8745 path->slots[level]);
8746 /*
8747 * if the lower level block was created before the snapshot
8748 * was created, we know there is no need to update back refs
8749 * for the subtree
8750 */
8751 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8752 generation <= root->root_key.offset) {
8753 *lookup_info = 1;
1c4850e2 8754 return 1;
94fcca9f 8755 }
1c4850e2
YZ
8756
8757 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8758 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8759 path->slots[level]);
0b246afa 8760 blocksize = fs_info->nodesize;
1c4850e2 8761
0b246afa 8762 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8763 if (!next) {
2ff7e61e 8764 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8765 if (IS_ERR(next))
8766 return PTR_ERR(next);
8767
b2aaaa3b
JB
8768 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8769 level - 1);
1c4850e2
YZ
8770 reada = 1;
8771 }
8772 btrfs_tree_lock(next);
8773 btrfs_set_lock_blocking(next);
8774
2ff7e61e 8775 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8776 &wc->refs[level - 1],
8777 &wc->flags[level - 1]);
4867268c
JB
8778 if (ret < 0)
8779 goto out_unlock;
79787eaa 8780
c2cf52eb 8781 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8782 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8783 ret = -EIO;
8784 goto out_unlock;
c2cf52eb 8785 }
94fcca9f 8786 *lookup_info = 0;
1c4850e2 8787
94fcca9f 8788 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8789 if (wc->refs[level - 1] > 1) {
1152651a 8790 need_account = true;
94fcca9f
YZ
8791 if (level == 1 &&
8792 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8793 goto skip;
8794
1c4850e2
YZ
8795 if (!wc->update_ref ||
8796 generation <= root->root_key.offset)
8797 goto skip;
8798
8799 btrfs_node_key_to_cpu(path->nodes[level], &key,
8800 path->slots[level]);
8801 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8802 if (ret < 0)
8803 goto skip;
8804
8805 wc->stage = UPDATE_BACKREF;
8806 wc->shared_level = level - 1;
8807 }
94fcca9f
YZ
8808 } else {
8809 if (level == 1 &&
8810 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8811 goto skip;
1c4850e2
YZ
8812 }
8813
b9fab919 8814 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8815 btrfs_tree_unlock(next);
8816 free_extent_buffer(next);
8817 next = NULL;
94fcca9f 8818 *lookup_info = 1;
1c4850e2
YZ
8819 }
8820
8821 if (!next) {
8822 if (reada && level == 1)
8823 reada_walk_down(trans, root, wc, path);
581c1760
QW
8824 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8825 &first_key);
64c043de
LB
8826 if (IS_ERR(next)) {
8827 return PTR_ERR(next);
8828 } else if (!extent_buffer_uptodate(next)) {
416bc658 8829 free_extent_buffer(next);
97d9a8a4 8830 return -EIO;
416bc658 8831 }
1c4850e2
YZ
8832 btrfs_tree_lock(next);
8833 btrfs_set_lock_blocking(next);
8834 }
8835
8836 level--;
4867268c
JB
8837 ASSERT(level == btrfs_header_level(next));
8838 if (level != btrfs_header_level(next)) {
8839 btrfs_err(root->fs_info, "mismatched level");
8840 ret = -EIO;
8841 goto out_unlock;
8842 }
1c4850e2
YZ
8843 path->nodes[level] = next;
8844 path->slots[level] = 0;
bd681513 8845 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8846 wc->level = level;
8847 if (wc->level == 1)
8848 wc->reada_slot = 0;
8849 return 0;
8850skip:
8851 wc->refs[level - 1] = 0;
8852 wc->flags[level - 1] = 0;
94fcca9f
YZ
8853 if (wc->stage == DROP_REFERENCE) {
8854 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8855 parent = path->nodes[level]->start;
8856 } else {
4867268c 8857 ASSERT(root->root_key.objectid ==
94fcca9f 8858 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8859 if (root->root_key.objectid !=
8860 btrfs_header_owner(path->nodes[level])) {
8861 btrfs_err(root->fs_info,
8862 "mismatched block owner");
8863 ret = -EIO;
8864 goto out_unlock;
8865 }
94fcca9f
YZ
8866 parent = 0;
8867 }
1c4850e2 8868
1152651a 8869 if (need_account) {
33d1f05c
QW
8870 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8871 generation, level - 1);
1152651a 8872 if (ret) {
0b246afa 8873 btrfs_err_rl(fs_info,
5d163e0e
JM
8874 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8875 ret);
1152651a
MF
8876 }
8877 }
84f7d8e6 8878 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8879 parent, root->root_key.objectid,
8880 level - 1, 0);
4867268c
JB
8881 if (ret)
8882 goto out_unlock;
1c4850e2 8883 }
4867268c
JB
8884
8885 *lookup_info = 1;
8886 ret = 1;
8887
8888out_unlock:
1c4850e2
YZ
8889 btrfs_tree_unlock(next);
8890 free_extent_buffer(next);
4867268c
JB
8891
8892 return ret;
1c4850e2
YZ
8893}
8894
2c47e605 8895/*
2c016dc2 8896 * helper to process tree block while walking up the tree.
2c47e605
YZ
8897 *
8898 * when wc->stage == DROP_REFERENCE, this function drops
8899 * reference count on the block.
8900 *
8901 * when wc->stage == UPDATE_BACKREF, this function changes
8902 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8903 * to UPDATE_BACKREF previously while processing the block.
8904 *
8905 * NOTE: return value 1 means we should stop walking up.
8906 */
8907static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8908 struct btrfs_root *root,
8909 struct btrfs_path *path,
8910 struct walk_control *wc)
8911{
0b246afa 8912 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8913 int ret;
2c47e605
YZ
8914 int level = wc->level;
8915 struct extent_buffer *eb = path->nodes[level];
8916 u64 parent = 0;
8917
8918 if (wc->stage == UPDATE_BACKREF) {
8919 BUG_ON(wc->shared_level < level);
8920 if (level < wc->shared_level)
8921 goto out;
8922
2c47e605
YZ
8923 ret = find_next_key(path, level + 1, &wc->update_progress);
8924 if (ret > 0)
8925 wc->update_ref = 0;
8926
8927 wc->stage = DROP_REFERENCE;
8928 wc->shared_level = -1;
8929 path->slots[level] = 0;
8930
8931 /*
8932 * check reference count again if the block isn't locked.
8933 * we should start walking down the tree again if reference
8934 * count is one.
8935 */
8936 if (!path->locks[level]) {
8937 BUG_ON(level == 0);
8938 btrfs_tree_lock(eb);
8939 btrfs_set_lock_blocking(eb);
bd681513 8940 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8941
2ff7e61e 8942 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8943 eb->start, level, 1,
2c47e605
YZ
8944 &wc->refs[level],
8945 &wc->flags[level]);
79787eaa
JM
8946 if (ret < 0) {
8947 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8948 path->locks[level] = 0;
79787eaa
JM
8949 return ret;
8950 }
2c47e605
YZ
8951 BUG_ON(wc->refs[level] == 0);
8952 if (wc->refs[level] == 1) {
bd681513 8953 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8954 path->locks[level] = 0;
2c47e605
YZ
8955 return 1;
8956 }
f82d02d9 8957 }
2c47e605 8958 }
f82d02d9 8959
2c47e605
YZ
8960 /* wc->stage == DROP_REFERENCE */
8961 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8962
2c47e605
YZ
8963 if (wc->refs[level] == 1) {
8964 if (level == 0) {
8965 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8966 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8967 else
e339a6b0 8968 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8969 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8970 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8971 if (ret) {
0b246afa 8972 btrfs_err_rl(fs_info,
5d163e0e
JM
8973 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8974 ret);
1152651a 8975 }
2c47e605
YZ
8976 }
8977 /* make block locked assertion in clean_tree_block happy */
8978 if (!path->locks[level] &&
8979 btrfs_header_generation(eb) == trans->transid) {
8980 btrfs_tree_lock(eb);
8981 btrfs_set_lock_blocking(eb);
bd681513 8982 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8983 }
7c302b49 8984 clean_tree_block(fs_info, eb);
2c47e605
YZ
8985 }
8986
8987 if (eb == root->node) {
8988 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8989 parent = eb->start;
8990 else
8991 BUG_ON(root->root_key.objectid !=
8992 btrfs_header_owner(eb));
8993 } else {
8994 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8995 parent = path->nodes[level + 1]->start;
8996 else
8997 BUG_ON(root->root_key.objectid !=
8998 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8999 }
f82d02d9 9000
5581a51a 9001 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9002out:
9003 wc->refs[level] = 0;
9004 wc->flags[level] = 0;
f0486c68 9005 return 0;
2c47e605
YZ
9006}
9007
9008static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9009 struct btrfs_root *root,
9010 struct btrfs_path *path,
9011 struct walk_control *wc)
9012{
2c47e605 9013 int level = wc->level;
94fcca9f 9014 int lookup_info = 1;
2c47e605
YZ
9015 int ret;
9016
9017 while (level >= 0) {
94fcca9f 9018 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9019 if (ret > 0)
9020 break;
9021
9022 if (level == 0)
9023 break;
9024
7a7965f8
YZ
9025 if (path->slots[level] >=
9026 btrfs_header_nritems(path->nodes[level]))
9027 break;
9028
94fcca9f 9029 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9030 if (ret > 0) {
9031 path->slots[level]++;
9032 continue;
90d2c51d
MX
9033 } else if (ret < 0)
9034 return ret;
1c4850e2 9035 level = wc->level;
f82d02d9 9036 }
f82d02d9
YZ
9037 return 0;
9038}
9039
d397712b 9040static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9041 struct btrfs_root *root,
f82d02d9 9042 struct btrfs_path *path,
2c47e605 9043 struct walk_control *wc, int max_level)
20524f02 9044{
2c47e605 9045 int level = wc->level;
20524f02 9046 int ret;
9f3a7427 9047
2c47e605
YZ
9048 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9049 while (level < max_level && path->nodes[level]) {
9050 wc->level = level;
9051 if (path->slots[level] + 1 <
9052 btrfs_header_nritems(path->nodes[level])) {
9053 path->slots[level]++;
20524f02
CM
9054 return 0;
9055 } else {
2c47e605
YZ
9056 ret = walk_up_proc(trans, root, path, wc);
9057 if (ret > 0)
9058 return 0;
bd56b302 9059
2c47e605 9060 if (path->locks[level]) {
bd681513
CM
9061 btrfs_tree_unlock_rw(path->nodes[level],
9062 path->locks[level]);
2c47e605 9063 path->locks[level] = 0;
f82d02d9 9064 }
2c47e605
YZ
9065 free_extent_buffer(path->nodes[level]);
9066 path->nodes[level] = NULL;
9067 level++;
20524f02
CM
9068 }
9069 }
9070 return 1;
9071}
9072
9aca1d51 9073/*
2c47e605
YZ
9074 * drop a subvolume tree.
9075 *
9076 * this function traverses the tree freeing any blocks that only
9077 * referenced by the tree.
9078 *
9079 * when a shared tree block is found. this function decreases its
9080 * reference count by one. if update_ref is true, this function
9081 * also make sure backrefs for the shared block and all lower level
9082 * blocks are properly updated.
9d1a2a3a
DS
9083 *
9084 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9085 */
2c536799 9086int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9087 struct btrfs_block_rsv *block_rsv, int update_ref,
9088 int for_reloc)
20524f02 9089{
ab8d0fc4 9090 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9091 struct btrfs_path *path;
2c47e605 9092 struct btrfs_trans_handle *trans;
ab8d0fc4 9093 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9094 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9095 struct walk_control *wc;
9096 struct btrfs_key key;
9097 int err = 0;
9098 int ret;
9099 int level;
d29a9f62 9100 bool root_dropped = false;
20524f02 9101
ab8d0fc4 9102 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9103
5caf2a00 9104 path = btrfs_alloc_path();
cb1b69f4
TI
9105 if (!path) {
9106 err = -ENOMEM;
9107 goto out;
9108 }
20524f02 9109
2c47e605 9110 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9111 if (!wc) {
9112 btrfs_free_path(path);
cb1b69f4
TI
9113 err = -ENOMEM;
9114 goto out;
38a1a919 9115 }
2c47e605 9116
a22285a6 9117 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9118 if (IS_ERR(trans)) {
9119 err = PTR_ERR(trans);
9120 goto out_free;
9121 }
98d5dc13 9122
3fd0a558
YZ
9123 if (block_rsv)
9124 trans->block_rsv = block_rsv;
2c47e605 9125
9f3a7427 9126 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9127 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9128 path->nodes[level] = btrfs_lock_root_node(root);
9129 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9130 path->slots[level] = 0;
bd681513 9131 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9132 memset(&wc->update_progress, 0,
9133 sizeof(wc->update_progress));
9f3a7427 9134 } else {
9f3a7427 9135 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9136 memcpy(&wc->update_progress, &key,
9137 sizeof(wc->update_progress));
9138
6702ed49 9139 level = root_item->drop_level;
2c47e605 9140 BUG_ON(level == 0);
6702ed49 9141 path->lowest_level = level;
2c47e605
YZ
9142 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9143 path->lowest_level = 0;
9144 if (ret < 0) {
9145 err = ret;
79787eaa 9146 goto out_end_trans;
9f3a7427 9147 }
1c4850e2 9148 WARN_ON(ret > 0);
2c47e605 9149
7d9eb12c
CM
9150 /*
9151 * unlock our path, this is safe because only this
9152 * function is allowed to delete this snapshot
9153 */
5d4f98a2 9154 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9155
9156 level = btrfs_header_level(root->node);
9157 while (1) {
9158 btrfs_tree_lock(path->nodes[level]);
9159 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9160 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9161
2ff7e61e 9162 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9163 path->nodes[level]->start,
3173a18f 9164 level, 1, &wc->refs[level],
2c47e605 9165 &wc->flags[level]);
79787eaa
JM
9166 if (ret < 0) {
9167 err = ret;
9168 goto out_end_trans;
9169 }
2c47e605
YZ
9170 BUG_ON(wc->refs[level] == 0);
9171
9172 if (level == root_item->drop_level)
9173 break;
9174
9175 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9176 path->locks[level] = 0;
2c47e605
YZ
9177 WARN_ON(wc->refs[level] != 1);
9178 level--;
9179 }
9f3a7427 9180 }
2c47e605
YZ
9181
9182 wc->level = level;
9183 wc->shared_level = -1;
9184 wc->stage = DROP_REFERENCE;
9185 wc->update_ref = update_ref;
9186 wc->keep_locks = 0;
66d7e7f0 9187 wc->for_reloc = for_reloc;
0b246afa 9188 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9189
d397712b 9190 while (1) {
9d1a2a3a 9191
2c47e605
YZ
9192 ret = walk_down_tree(trans, root, path, wc);
9193 if (ret < 0) {
9194 err = ret;
20524f02 9195 break;
2c47e605 9196 }
9aca1d51 9197
2c47e605
YZ
9198 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9199 if (ret < 0) {
9200 err = ret;
20524f02 9201 break;
2c47e605
YZ
9202 }
9203
9204 if (ret > 0) {
9205 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9206 break;
9207 }
2c47e605
YZ
9208
9209 if (wc->stage == DROP_REFERENCE) {
9210 level = wc->level;
9211 btrfs_node_key(path->nodes[level],
9212 &root_item->drop_progress,
9213 path->slots[level]);
9214 root_item->drop_level = level;
9215 }
9216
9217 BUG_ON(wc->level == 0);
3a45bb20 9218 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9219 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9220 ret = btrfs_update_root(trans, tree_root,
9221 &root->root_key,
9222 root_item);
79787eaa 9223 if (ret) {
66642832 9224 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9225 err = ret;
9226 goto out_end_trans;
9227 }
2c47e605 9228
3a45bb20 9229 btrfs_end_transaction_throttle(trans);
2ff7e61e 9230 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9231 btrfs_debug(fs_info,
9232 "drop snapshot early exit");
3c8f2422
JB
9233 err = -EAGAIN;
9234 goto out_free;
9235 }
9236
a22285a6 9237 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9238 if (IS_ERR(trans)) {
9239 err = PTR_ERR(trans);
9240 goto out_free;
9241 }
3fd0a558
YZ
9242 if (block_rsv)
9243 trans->block_rsv = block_rsv;
c3e69d58 9244 }
20524f02 9245 }
b3b4aa74 9246 btrfs_release_path(path);
79787eaa
JM
9247 if (err)
9248 goto out_end_trans;
2c47e605 9249
1cd5447e 9250 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9251 if (ret) {
66642832 9252 btrfs_abort_transaction(trans, ret);
e19182c0 9253 err = ret;
79787eaa
JM
9254 goto out_end_trans;
9255 }
2c47e605 9256
76dda93c 9257 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9258 ret = btrfs_find_root(tree_root, &root->root_key, path,
9259 NULL, NULL);
79787eaa 9260 if (ret < 0) {
66642832 9261 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9262 err = ret;
9263 goto out_end_trans;
9264 } else if (ret > 0) {
84cd948c
JB
9265 /* if we fail to delete the orphan item this time
9266 * around, it'll get picked up the next time.
9267 *
9268 * The most common failure here is just -ENOENT.
9269 */
9270 btrfs_del_orphan_item(trans, tree_root,
9271 root->root_key.objectid);
76dda93c
YZ
9272 }
9273 }
9274
27cdeb70 9275 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9276 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9277 } else {
9278 free_extent_buffer(root->node);
9279 free_extent_buffer(root->commit_root);
b0feb9d9 9280 btrfs_put_fs_root(root);
76dda93c 9281 }
d29a9f62 9282 root_dropped = true;
79787eaa 9283out_end_trans:
3a45bb20 9284 btrfs_end_transaction_throttle(trans);
79787eaa 9285out_free:
2c47e605 9286 kfree(wc);
5caf2a00 9287 btrfs_free_path(path);
cb1b69f4 9288out:
d29a9f62
JB
9289 /*
9290 * So if we need to stop dropping the snapshot for whatever reason we
9291 * need to make sure to add it back to the dead root list so that we
9292 * keep trying to do the work later. This also cleans up roots if we
9293 * don't have it in the radix (like when we recover after a power fail
9294 * or unmount) so we don't leak memory.
9295 */
897ca819 9296 if (!for_reloc && !root_dropped)
d29a9f62 9297 btrfs_add_dead_root(root);
90515e7f 9298 if (err && err != -EAGAIN)
ab8d0fc4 9299 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9300 return err;
20524f02 9301}
9078a3e1 9302
2c47e605
YZ
9303/*
9304 * drop subtree rooted at tree block 'node'.
9305 *
9306 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9307 * only used by relocation code
2c47e605 9308 */
f82d02d9
YZ
9309int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9310 struct btrfs_root *root,
9311 struct extent_buffer *node,
9312 struct extent_buffer *parent)
9313{
0b246afa 9314 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9315 struct btrfs_path *path;
2c47e605 9316 struct walk_control *wc;
f82d02d9
YZ
9317 int level;
9318 int parent_level;
9319 int ret = 0;
9320 int wret;
9321
2c47e605
YZ
9322 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9323
f82d02d9 9324 path = btrfs_alloc_path();
db5b493a
TI
9325 if (!path)
9326 return -ENOMEM;
f82d02d9 9327
2c47e605 9328 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9329 if (!wc) {
9330 btrfs_free_path(path);
9331 return -ENOMEM;
9332 }
2c47e605 9333
b9447ef8 9334 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9335 parent_level = btrfs_header_level(parent);
9336 extent_buffer_get(parent);
9337 path->nodes[parent_level] = parent;
9338 path->slots[parent_level] = btrfs_header_nritems(parent);
9339
b9447ef8 9340 btrfs_assert_tree_locked(node);
f82d02d9 9341 level = btrfs_header_level(node);
f82d02d9
YZ
9342 path->nodes[level] = node;
9343 path->slots[level] = 0;
bd681513 9344 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9345
9346 wc->refs[parent_level] = 1;
9347 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9348 wc->level = level;
9349 wc->shared_level = -1;
9350 wc->stage = DROP_REFERENCE;
9351 wc->update_ref = 0;
9352 wc->keep_locks = 1;
66d7e7f0 9353 wc->for_reloc = 1;
0b246afa 9354 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9355
9356 while (1) {
2c47e605
YZ
9357 wret = walk_down_tree(trans, root, path, wc);
9358 if (wret < 0) {
f82d02d9 9359 ret = wret;
f82d02d9 9360 break;
2c47e605 9361 }
f82d02d9 9362
2c47e605 9363 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9364 if (wret < 0)
9365 ret = wret;
9366 if (wret != 0)
9367 break;
9368 }
9369
2c47e605 9370 kfree(wc);
f82d02d9
YZ
9371 btrfs_free_path(path);
9372 return ret;
9373}
9374
6202df69 9375static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9376{
9377 u64 num_devices;
fc67c450 9378 u64 stripped;
e4d8ec0f 9379
fc67c450
ID
9380 /*
9381 * if restripe for this chunk_type is on pick target profile and
9382 * return, otherwise do the usual balance
9383 */
6202df69 9384 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9385 if (stripped)
9386 return extended_to_chunk(stripped);
e4d8ec0f 9387
6202df69 9388 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9389
fc67c450 9390 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9391 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9392 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9393
ec44a35c
CM
9394 if (num_devices == 1) {
9395 stripped |= BTRFS_BLOCK_GROUP_DUP;
9396 stripped = flags & ~stripped;
9397
9398 /* turn raid0 into single device chunks */
9399 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9400 return stripped;
9401
9402 /* turn mirroring into duplication */
9403 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9404 BTRFS_BLOCK_GROUP_RAID10))
9405 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9406 } else {
9407 /* they already had raid on here, just return */
ec44a35c
CM
9408 if (flags & stripped)
9409 return flags;
9410
9411 stripped |= BTRFS_BLOCK_GROUP_DUP;
9412 stripped = flags & ~stripped;
9413
9414 /* switch duplicated blocks with raid1 */
9415 if (flags & BTRFS_BLOCK_GROUP_DUP)
9416 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9417
e3176ca2 9418 /* this is drive concat, leave it alone */
ec44a35c 9419 }
e3176ca2 9420
ec44a35c
CM
9421 return flags;
9422}
9423
868f401a 9424static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9425{
f0486c68
YZ
9426 struct btrfs_space_info *sinfo = cache->space_info;
9427 u64 num_bytes;
199c36ea 9428 u64 min_allocable_bytes;
f0486c68 9429 int ret = -ENOSPC;
0ef3e66b 9430
199c36ea
MX
9431 /*
9432 * We need some metadata space and system metadata space for
9433 * allocating chunks in some corner cases until we force to set
9434 * it to be readonly.
9435 */
9436 if ((sinfo->flags &
9437 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9438 !force)
ee22184b 9439 min_allocable_bytes = SZ_1M;
199c36ea
MX
9440 else
9441 min_allocable_bytes = 0;
9442
f0486c68
YZ
9443 spin_lock(&sinfo->lock);
9444 spin_lock(&cache->lock);
61cfea9b
W
9445
9446 if (cache->ro) {
868f401a 9447 cache->ro++;
61cfea9b
W
9448 ret = 0;
9449 goto out;
9450 }
9451
f0486c68
YZ
9452 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9453 cache->bytes_super - btrfs_block_group_used(&cache->item);
9454
4136135b 9455 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9456 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9457 sinfo->bytes_readonly += num_bytes;
868f401a 9458 cache->ro++;
633c0aad 9459 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9460 ret = 0;
9461 }
61cfea9b 9462out:
f0486c68
YZ
9463 spin_unlock(&cache->lock);
9464 spin_unlock(&sinfo->lock);
9465 return ret;
9466}
7d9eb12c 9467
5e00f193 9468int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9469 struct btrfs_block_group_cache *cache)
c286ac48 9470
f0486c68
YZ
9471{
9472 struct btrfs_trans_handle *trans;
9473 u64 alloc_flags;
9474 int ret;
7d9eb12c 9475
1bbc621e 9476again:
5e00f193 9477 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9478 if (IS_ERR(trans))
9479 return PTR_ERR(trans);
5d4f98a2 9480
1bbc621e
CM
9481 /*
9482 * we're not allowed to set block groups readonly after the dirty
9483 * block groups cache has started writing. If it already started,
9484 * back off and let this transaction commit
9485 */
0b246afa 9486 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9487 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9488 u64 transid = trans->transid;
9489
0b246afa 9490 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9491 btrfs_end_transaction(trans);
1bbc621e 9492
2ff7e61e 9493 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9494 if (ret)
9495 return ret;
9496 goto again;
9497 }
9498
153c35b6
CM
9499 /*
9500 * if we are changing raid levels, try to allocate a corresponding
9501 * block group with the new raid level.
9502 */
0b246afa 9503 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9504 if (alloc_flags != cache->flags) {
2ff7e61e 9505 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9506 CHUNK_ALLOC_FORCE);
9507 /*
9508 * ENOSPC is allowed here, we may have enough space
9509 * already allocated at the new raid level to
9510 * carry on
9511 */
9512 if (ret == -ENOSPC)
9513 ret = 0;
9514 if (ret < 0)
9515 goto out;
9516 }
1bbc621e 9517
868f401a 9518 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9519 if (!ret)
9520 goto out;
2ff7e61e
JM
9521 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9522 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9523 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9524 if (ret < 0)
9525 goto out;
868f401a 9526 ret = inc_block_group_ro(cache, 0);
f0486c68 9527out:
2f081088 9528 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9529 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9530 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9531 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9532 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9533 }
0b246afa 9534 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9535
3a45bb20 9536 btrfs_end_transaction(trans);
f0486c68
YZ
9537 return ret;
9538}
5d4f98a2 9539
c87f08ca 9540int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9541 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9542{
2ff7e61e
JM
9543 u64 alloc_flags = get_alloc_profile(fs_info, type);
9544
9545 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9546}
9547
6d07bcec
MX
9548/*
9549 * helper to account the unused space of all the readonly block group in the
633c0aad 9550 * space_info. takes mirrors into account.
6d07bcec 9551 */
633c0aad 9552u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9553{
9554 struct btrfs_block_group_cache *block_group;
9555 u64 free_bytes = 0;
9556 int factor;
9557
01327610 9558 /* It's df, we don't care if it's racy */
633c0aad
JB
9559 if (list_empty(&sinfo->ro_bgs))
9560 return 0;
9561
9562 spin_lock(&sinfo->lock);
9563 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9564 spin_lock(&block_group->lock);
9565
9566 if (!block_group->ro) {
9567 spin_unlock(&block_group->lock);
9568 continue;
9569 }
9570
9571 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9572 BTRFS_BLOCK_GROUP_RAID10 |
9573 BTRFS_BLOCK_GROUP_DUP))
9574 factor = 2;
9575 else
9576 factor = 1;
9577
9578 free_bytes += (block_group->key.offset -
9579 btrfs_block_group_used(&block_group->item)) *
9580 factor;
9581
9582 spin_unlock(&block_group->lock);
9583 }
6d07bcec
MX
9584 spin_unlock(&sinfo->lock);
9585
9586 return free_bytes;
9587}
9588
2ff7e61e 9589void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9590{
f0486c68
YZ
9591 struct btrfs_space_info *sinfo = cache->space_info;
9592 u64 num_bytes;
9593
9594 BUG_ON(!cache->ro);
9595
9596 spin_lock(&sinfo->lock);
9597 spin_lock(&cache->lock);
868f401a
Z
9598 if (!--cache->ro) {
9599 num_bytes = cache->key.offset - cache->reserved -
9600 cache->pinned - cache->bytes_super -
9601 btrfs_block_group_used(&cache->item);
9602 sinfo->bytes_readonly -= num_bytes;
9603 list_del_init(&cache->ro_list);
9604 }
f0486c68
YZ
9605 spin_unlock(&cache->lock);
9606 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9607}
9608
ba1bf481
JB
9609/*
9610 * checks to see if its even possible to relocate this block group.
9611 *
9612 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9613 * ok to go ahead and try.
9614 */
6bccf3ab 9615int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9616{
6bccf3ab 9617 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9618 struct btrfs_block_group_cache *block_group;
9619 struct btrfs_space_info *space_info;
0b246afa 9620 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9621 struct btrfs_device *device;
6df9a95e 9622 struct btrfs_trans_handle *trans;
cdcb725c 9623 u64 min_free;
6719db6a
JB
9624 u64 dev_min = 1;
9625 u64 dev_nr = 0;
4a5e98f5 9626 u64 target;
0305bc27 9627 int debug;
cdcb725c 9628 int index;
ba1bf481
JB
9629 int full = 0;
9630 int ret = 0;
1a40e23b 9631
0b246afa 9632 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9633
0b246afa 9634 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9635
ba1bf481 9636 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9637 if (!block_group) {
9638 if (debug)
0b246afa 9639 btrfs_warn(fs_info,
0305bc27
QW
9640 "can't find block group for bytenr %llu",
9641 bytenr);
ba1bf481 9642 return -1;
0305bc27 9643 }
1a40e23b 9644
cdcb725c 9645 min_free = btrfs_block_group_used(&block_group->item);
9646
ba1bf481 9647 /* no bytes used, we're good */
cdcb725c 9648 if (!min_free)
1a40e23b
ZY
9649 goto out;
9650
ba1bf481
JB
9651 space_info = block_group->space_info;
9652 spin_lock(&space_info->lock);
17d217fe 9653
ba1bf481 9654 full = space_info->full;
17d217fe 9655
ba1bf481
JB
9656 /*
9657 * if this is the last block group we have in this space, we can't
7ce618db
CM
9658 * relocate it unless we're able to allocate a new chunk below.
9659 *
9660 * Otherwise, we need to make sure we have room in the space to handle
9661 * all of the extents from this block group. If we can, we're good
ba1bf481 9662 */
7ce618db 9663 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9664 (btrfs_space_info_used(space_info, false) + min_free <
9665 space_info->total_bytes)) {
ba1bf481
JB
9666 spin_unlock(&space_info->lock);
9667 goto out;
17d217fe 9668 }
ba1bf481 9669 spin_unlock(&space_info->lock);
ea8c2819 9670
ba1bf481
JB
9671 /*
9672 * ok we don't have enough space, but maybe we have free space on our
9673 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9674 * alloc devices and guess if we have enough space. if this block
9675 * group is going to be restriped, run checks against the target
9676 * profile instead of the current one.
ba1bf481
JB
9677 */
9678 ret = -1;
ea8c2819 9679
cdcb725c 9680 /*
9681 * index:
9682 * 0: raid10
9683 * 1: raid1
9684 * 2: dup
9685 * 3: raid0
9686 * 4: single
9687 */
0b246afa 9688 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9689 if (target) {
3e72ee88 9690 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9691 } else {
9692 /*
9693 * this is just a balance, so if we were marked as full
9694 * we know there is no space for a new chunk
9695 */
0305bc27
QW
9696 if (full) {
9697 if (debug)
0b246afa
JM
9698 btrfs_warn(fs_info,
9699 "no space to alloc new chunk for block group %llu",
9700 block_group->key.objectid);
4a5e98f5 9701 goto out;
0305bc27 9702 }
4a5e98f5 9703
3e72ee88 9704 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9705 }
9706
e6ec716f 9707 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9708 dev_min = 4;
6719db6a
JB
9709 /* Divide by 2 */
9710 min_free >>= 1;
e6ec716f 9711 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9712 dev_min = 2;
e6ec716f 9713 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9714 /* Multiply by 2 */
9715 min_free <<= 1;
e6ec716f 9716 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9717 dev_min = fs_devices->rw_devices;
47c5713f 9718 min_free = div64_u64(min_free, dev_min);
cdcb725c 9719 }
9720
6df9a95e
JB
9721 /* We need to do this so that we can look at pending chunks */
9722 trans = btrfs_join_transaction(root);
9723 if (IS_ERR(trans)) {
9724 ret = PTR_ERR(trans);
9725 goto out;
9726 }
9727
0b246afa 9728 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9729 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9730 u64 dev_offset;
56bec294 9731
ba1bf481
JB
9732 /*
9733 * check to make sure we can actually find a chunk with enough
9734 * space to fit our block group in.
9735 */
63a212ab 9736 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9737 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9738 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9739 &dev_offset, NULL);
ba1bf481 9740 if (!ret)
cdcb725c 9741 dev_nr++;
9742
9743 if (dev_nr >= dev_min)
73e48b27 9744 break;
cdcb725c 9745
ba1bf481 9746 ret = -1;
725c8463 9747 }
edbd8d4e 9748 }
0305bc27 9749 if (debug && ret == -1)
0b246afa
JM
9750 btrfs_warn(fs_info,
9751 "no space to allocate a new chunk for block group %llu",
9752 block_group->key.objectid);
9753 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9754 btrfs_end_transaction(trans);
edbd8d4e 9755out:
ba1bf481 9756 btrfs_put_block_group(block_group);
edbd8d4e
CM
9757 return ret;
9758}
9759
6bccf3ab
JM
9760static int find_first_block_group(struct btrfs_fs_info *fs_info,
9761 struct btrfs_path *path,
9762 struct btrfs_key *key)
0b86a832 9763{
6bccf3ab 9764 struct btrfs_root *root = fs_info->extent_root;
925baedd 9765 int ret = 0;
0b86a832
CM
9766 struct btrfs_key found_key;
9767 struct extent_buffer *leaf;
9768 int slot;
edbd8d4e 9769
0b86a832
CM
9770 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9771 if (ret < 0)
925baedd
CM
9772 goto out;
9773
d397712b 9774 while (1) {
0b86a832 9775 slot = path->slots[0];
edbd8d4e 9776 leaf = path->nodes[0];
0b86a832
CM
9777 if (slot >= btrfs_header_nritems(leaf)) {
9778 ret = btrfs_next_leaf(root, path);
9779 if (ret == 0)
9780 continue;
9781 if (ret < 0)
925baedd 9782 goto out;
0b86a832 9783 break;
edbd8d4e 9784 }
0b86a832 9785 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9786
0b86a832 9787 if (found_key.objectid >= key->objectid &&
925baedd 9788 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9789 struct extent_map_tree *em_tree;
9790 struct extent_map *em;
9791
9792 em_tree = &root->fs_info->mapping_tree.map_tree;
9793 read_lock(&em_tree->lock);
9794 em = lookup_extent_mapping(em_tree, found_key.objectid,
9795 found_key.offset);
9796 read_unlock(&em_tree->lock);
9797 if (!em) {
0b246afa 9798 btrfs_err(fs_info,
6fb37b75
LB
9799 "logical %llu len %llu found bg but no related chunk",
9800 found_key.objectid, found_key.offset);
9801 ret = -ENOENT;
9802 } else {
9803 ret = 0;
9804 }
187ee58c 9805 free_extent_map(em);
925baedd
CM
9806 goto out;
9807 }
0b86a832 9808 path->slots[0]++;
edbd8d4e 9809 }
925baedd 9810out:
0b86a832 9811 return ret;
edbd8d4e
CM
9812}
9813
0af3d00b
JB
9814void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9815{
9816 struct btrfs_block_group_cache *block_group;
9817 u64 last = 0;
9818
9819 while (1) {
9820 struct inode *inode;
9821
9822 block_group = btrfs_lookup_first_block_group(info, last);
9823 while (block_group) {
9824 spin_lock(&block_group->lock);
9825 if (block_group->iref)
9826 break;
9827 spin_unlock(&block_group->lock);
2ff7e61e 9828 block_group = next_block_group(info, block_group);
0af3d00b
JB
9829 }
9830 if (!block_group) {
9831 if (last == 0)
9832 break;
9833 last = 0;
9834 continue;
9835 }
9836
9837 inode = block_group->inode;
9838 block_group->iref = 0;
9839 block_group->inode = NULL;
9840 spin_unlock(&block_group->lock);
f3bca802 9841 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9842 iput(inode);
9843 last = block_group->key.objectid + block_group->key.offset;
9844 btrfs_put_block_group(block_group);
9845 }
9846}
9847
5cdd7db6
FM
9848/*
9849 * Must be called only after stopping all workers, since we could have block
9850 * group caching kthreads running, and therefore they could race with us if we
9851 * freed the block groups before stopping them.
9852 */
1a40e23b
ZY
9853int btrfs_free_block_groups(struct btrfs_fs_info *info)
9854{
9855 struct btrfs_block_group_cache *block_group;
4184ea7f 9856 struct btrfs_space_info *space_info;
11833d66 9857 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9858 struct rb_node *n;
9859
9e351cc8 9860 down_write(&info->commit_root_sem);
11833d66
YZ
9861 while (!list_empty(&info->caching_block_groups)) {
9862 caching_ctl = list_entry(info->caching_block_groups.next,
9863 struct btrfs_caching_control, list);
9864 list_del(&caching_ctl->list);
9865 put_caching_control(caching_ctl);
9866 }
9e351cc8 9867 up_write(&info->commit_root_sem);
11833d66 9868
47ab2a6c
JB
9869 spin_lock(&info->unused_bgs_lock);
9870 while (!list_empty(&info->unused_bgs)) {
9871 block_group = list_first_entry(&info->unused_bgs,
9872 struct btrfs_block_group_cache,
9873 bg_list);
9874 list_del_init(&block_group->bg_list);
9875 btrfs_put_block_group(block_group);
9876 }
9877 spin_unlock(&info->unused_bgs_lock);
9878
1a40e23b
ZY
9879 spin_lock(&info->block_group_cache_lock);
9880 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9881 block_group = rb_entry(n, struct btrfs_block_group_cache,
9882 cache_node);
1a40e23b
ZY
9883 rb_erase(&block_group->cache_node,
9884 &info->block_group_cache_tree);
01eacb27 9885 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9886 spin_unlock(&info->block_group_cache_lock);
9887
80eb234a 9888 down_write(&block_group->space_info->groups_sem);
1a40e23b 9889 list_del(&block_group->list);
80eb234a 9890 up_write(&block_group->space_info->groups_sem);
d2fb3437 9891
3c14874a
JB
9892 /*
9893 * We haven't cached this block group, which means we could
9894 * possibly have excluded extents on this block group.
9895 */
36cce922
JB
9896 if (block_group->cached == BTRFS_CACHE_NO ||
9897 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9898 free_excluded_extents(info, block_group);
3c14874a 9899
817d52f8 9900 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9901 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9902 ASSERT(list_empty(&block_group->dirty_list));
9903 ASSERT(list_empty(&block_group->io_list));
9904 ASSERT(list_empty(&block_group->bg_list));
9905 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9906 btrfs_put_block_group(block_group);
d899e052
YZ
9907
9908 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9909 }
9910 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9911
9912 /* now that all the block groups are freed, go through and
9913 * free all the space_info structs. This is only called during
9914 * the final stages of unmount, and so we know nobody is
9915 * using them. We call synchronize_rcu() once before we start,
9916 * just to be on the safe side.
9917 */
9918 synchronize_rcu();
9919
8929ecfa
YZ
9920 release_global_block_rsv(info);
9921
67871254 9922 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9923 int i;
9924
4184ea7f
CM
9925 space_info = list_entry(info->space_info.next,
9926 struct btrfs_space_info,
9927 list);
d555b6c3
JB
9928
9929 /*
9930 * Do not hide this behind enospc_debug, this is actually
9931 * important and indicates a real bug if this happens.
9932 */
9933 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9934 space_info->bytes_reserved > 0 ||
d555b6c3 9935 space_info->bytes_may_use > 0))
ab8d0fc4 9936 dump_space_info(info, space_info, 0, 0);
4184ea7f 9937 list_del(&space_info->list);
6ab0a202
JM
9938 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9939 struct kobject *kobj;
c1895442
JM
9940 kobj = space_info->block_group_kobjs[i];
9941 space_info->block_group_kobjs[i] = NULL;
9942 if (kobj) {
6ab0a202
JM
9943 kobject_del(kobj);
9944 kobject_put(kobj);
9945 }
9946 }
9947 kobject_del(&space_info->kobj);
9948 kobject_put(&space_info->kobj);
4184ea7f 9949 }
1a40e23b
ZY
9950 return 0;
9951}
9952
75cb379d
JM
9953/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9954void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9955{
9956 struct btrfs_space_info *space_info;
9957 struct raid_kobject *rkobj;
9958 LIST_HEAD(list);
9959 int index;
9960 int ret = 0;
9961
9962 spin_lock(&fs_info->pending_raid_kobjs_lock);
9963 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9964 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9965
9966 list_for_each_entry(rkobj, &list, list) {
9967 space_info = __find_space_info(fs_info, rkobj->flags);
9968 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9969
9970 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9971 "%s", get_raid_name(index));
9972 if (ret) {
9973 kobject_put(&rkobj->kobj);
9974 break;
9975 }
9976 }
9977 if (ret)
9978 btrfs_warn(fs_info,
9979 "failed to add kobject for block cache, ignoring");
9980}
9981
c434d21c 9982static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9983{
c434d21c 9984 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 9985 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 9986 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 9987 bool first = false;
b742bb82
YZ
9988
9989 down_write(&space_info->groups_sem);
ed55b6ac
JM
9990 if (list_empty(&space_info->block_groups[index]))
9991 first = true;
9992 list_add_tail(&cache->list, &space_info->block_groups[index]);
9993 up_write(&space_info->groups_sem);
9994
9995 if (first) {
75cb379d
JM
9996 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9997 if (!rkobj) {
9998 btrfs_warn(cache->fs_info,
9999 "couldn't alloc memory for raid level kobject");
10000 return;
6ab0a202 10001 }
75cb379d
JM
10002 rkobj->flags = cache->flags;
10003 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10004
10005 spin_lock(&fs_info->pending_raid_kobjs_lock);
10006 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10007 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 10008 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10009 }
b742bb82
YZ
10010}
10011
920e4a58 10012static struct btrfs_block_group_cache *
2ff7e61e
JM
10013btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10014 u64 start, u64 size)
920e4a58
MX
10015{
10016 struct btrfs_block_group_cache *cache;
10017
10018 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10019 if (!cache)
10020 return NULL;
10021
10022 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10023 GFP_NOFS);
10024 if (!cache->free_space_ctl) {
10025 kfree(cache);
10026 return NULL;
10027 }
10028
10029 cache->key.objectid = start;
10030 cache->key.offset = size;
10031 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10032
0b246afa 10033 cache->fs_info = fs_info;
e4ff5fb5 10034 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10035 set_free_space_tree_thresholds(cache);
10036
920e4a58
MX
10037 atomic_set(&cache->count, 1);
10038 spin_lock_init(&cache->lock);
e570fd27 10039 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10040 INIT_LIST_HEAD(&cache->list);
10041 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10042 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10043 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10044 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10045 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10046 btrfs_init_free_space_ctl(cache);
04216820 10047 atomic_set(&cache->trimming, 0);
a5ed9182 10048 mutex_init(&cache->free_space_lock);
0966a7b1 10049 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10050
10051 return cache;
10052}
10053
5b4aacef 10054int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10055{
10056 struct btrfs_path *path;
10057 int ret;
9078a3e1 10058 struct btrfs_block_group_cache *cache;
6324fbf3 10059 struct btrfs_space_info *space_info;
9078a3e1
CM
10060 struct btrfs_key key;
10061 struct btrfs_key found_key;
5f39d397 10062 struct extent_buffer *leaf;
0af3d00b
JB
10063 int need_clear = 0;
10064 u64 cache_gen;
49303381
LB
10065 u64 feature;
10066 int mixed;
10067
10068 feature = btrfs_super_incompat_flags(info->super_copy);
10069 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10070
9078a3e1 10071 key.objectid = 0;
0b86a832 10072 key.offset = 0;
962a298f 10073 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10074 path = btrfs_alloc_path();
10075 if (!path)
10076 return -ENOMEM;
e4058b54 10077 path->reada = READA_FORWARD;
9078a3e1 10078
0b246afa
JM
10079 cache_gen = btrfs_super_cache_generation(info->super_copy);
10080 if (btrfs_test_opt(info, SPACE_CACHE) &&
10081 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10082 need_clear = 1;
0b246afa 10083 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10084 need_clear = 1;
0af3d00b 10085
d397712b 10086 while (1) {
6bccf3ab 10087 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10088 if (ret > 0)
10089 break;
0b86a832
CM
10090 if (ret != 0)
10091 goto error;
920e4a58 10092
5f39d397
CM
10093 leaf = path->nodes[0];
10094 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10095
2ff7e61e 10096 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10097 found_key.offset);
9078a3e1 10098 if (!cache) {
0b86a832 10099 ret = -ENOMEM;
f0486c68 10100 goto error;
9078a3e1 10101 }
96303081 10102
cf7c1ef6
LB
10103 if (need_clear) {
10104 /*
10105 * When we mount with old space cache, we need to
10106 * set BTRFS_DC_CLEAR and set dirty flag.
10107 *
10108 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10109 * truncate the old free space cache inode and
10110 * setup a new one.
10111 * b) Setting 'dirty flag' makes sure that we flush
10112 * the new space cache info onto disk.
10113 */
0b246afa 10114 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10115 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10116 }
0af3d00b 10117
5f39d397
CM
10118 read_extent_buffer(leaf, &cache->item,
10119 btrfs_item_ptr_offset(leaf, path->slots[0]),
10120 sizeof(cache->item));
920e4a58 10121 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10122 if (!mixed &&
10123 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10124 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10125 btrfs_err(info,
10126"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10127 cache->key.objectid);
10128 ret = -EINVAL;
10129 goto error;
10130 }
0b86a832 10131
9078a3e1 10132 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10133 btrfs_release_path(path);
34d52cb6 10134
3c14874a
JB
10135 /*
10136 * We need to exclude the super stripes now so that the space
10137 * info has super bytes accounted for, otherwise we'll think
10138 * we have more space than we actually do.
10139 */
2ff7e61e 10140 ret = exclude_super_stripes(info, cache);
835d974f
JB
10141 if (ret) {
10142 /*
10143 * We may have excluded something, so call this just in
10144 * case.
10145 */
2ff7e61e 10146 free_excluded_extents(info, cache);
920e4a58 10147 btrfs_put_block_group(cache);
835d974f
JB
10148 goto error;
10149 }
3c14874a 10150
817d52f8
JB
10151 /*
10152 * check for two cases, either we are full, and therefore
10153 * don't need to bother with the caching work since we won't
10154 * find any space, or we are empty, and we can just add all
10155 * the space in and be done with it. This saves us _alot_ of
10156 * time, particularly in the full case.
10157 */
10158 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10159 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10160 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10161 free_excluded_extents(info, cache);
817d52f8 10162 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10163 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10164 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10165 add_new_free_space(cache, info,
817d52f8
JB
10166 found_key.objectid,
10167 found_key.objectid +
10168 found_key.offset);
2ff7e61e 10169 free_excluded_extents(info, cache);
817d52f8 10170 }
96b5179d 10171
0b246afa 10172 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10173 if (ret) {
10174 btrfs_remove_free_space_cache(cache);
10175 btrfs_put_block_group(cache);
10176 goto error;
10177 }
10178
0b246afa 10179 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10180 update_space_info(info, cache->flags, found_key.offset,
10181 btrfs_block_group_used(&cache->item),
10182 cache->bytes_super, &space_info);
8c579fe7 10183
6324fbf3 10184 cache->space_info = space_info;
1b2da372 10185
c434d21c 10186 link_block_group(cache);
0f9dd46c 10187
0b246afa 10188 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10189 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10190 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10191 } else if (btrfs_block_group_used(&cache->item) == 0) {
10192 spin_lock(&info->unused_bgs_lock);
10193 /* Should always be true but just in case. */
10194 if (list_empty(&cache->bg_list)) {
10195 btrfs_get_block_group(cache);
4ed0a7a3 10196 trace_btrfs_add_unused_block_group(cache);
47ab2a6c
JB
10197 list_add_tail(&cache->bg_list,
10198 &info->unused_bgs);
10199 }
10200 spin_unlock(&info->unused_bgs_lock);
10201 }
9078a3e1 10202 }
b742bb82 10203
0b246afa 10204 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10205 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10206 (BTRFS_BLOCK_GROUP_RAID10 |
10207 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10208 BTRFS_BLOCK_GROUP_RAID5 |
10209 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10210 BTRFS_BLOCK_GROUP_DUP)))
10211 continue;
10212 /*
10213 * avoid allocating from un-mirrored block group if there are
10214 * mirrored block groups.
10215 */
1095cc0d 10216 list_for_each_entry(cache,
10217 &space_info->block_groups[BTRFS_RAID_RAID0],
10218 list)
868f401a 10219 inc_block_group_ro(cache, 1);
1095cc0d 10220 list_for_each_entry(cache,
10221 &space_info->block_groups[BTRFS_RAID_SINGLE],
10222 list)
868f401a 10223 inc_block_group_ro(cache, 1);
9078a3e1 10224 }
f0486c68 10225
75cb379d 10226 btrfs_add_raid_kobjects(info);
f0486c68 10227 init_global_block_rsv(info);
0b86a832
CM
10228 ret = 0;
10229error:
9078a3e1 10230 btrfs_free_path(path);
0b86a832 10231 return ret;
9078a3e1 10232}
6324fbf3 10233
6c686b35 10234void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10235{
6c686b35 10236 struct btrfs_fs_info *fs_info = trans->fs_info;
ea658bad 10237 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10238 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10239 struct btrfs_block_group_item item;
10240 struct btrfs_key key;
10241 int ret = 0;
d9a0540a 10242 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10243
d9a0540a 10244 trans->can_flush_pending_bgs = false;
47ab2a6c 10245 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10246 if (ret)
c92f6be3 10247 goto next;
ea658bad
JB
10248
10249 spin_lock(&block_group->lock);
10250 memcpy(&item, &block_group->item, sizeof(item));
10251 memcpy(&key, &block_group->key, sizeof(key));
10252 spin_unlock(&block_group->lock);
10253
10254 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10255 sizeof(item));
10256 if (ret)
66642832 10257 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10258 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10259 key.offset);
6df9a95e 10260 if (ret)
66642832 10261 btrfs_abort_transaction(trans, ret);
0b246afa 10262 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10263 /* already aborted the transaction if it failed. */
c92f6be3
FM
10264next:
10265 list_del_init(&block_group->bg_list);
ea658bad 10266 }
d9a0540a 10267 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10268}
10269
6324fbf3 10270int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10271 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10272 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10273{
6324fbf3 10274 struct btrfs_block_group_cache *cache;
0b246afa 10275 int ret;
6324fbf3 10276
0b246afa 10277 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10278
2ff7e61e 10279 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10280 if (!cache)
10281 return -ENOMEM;
34d52cb6 10282
6324fbf3 10283 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10284 btrfs_set_block_group_chunk_objectid(&cache->item,
10285 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10286 btrfs_set_block_group_flags(&cache->item, type);
10287
920e4a58 10288 cache->flags = type;
11833d66 10289 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10290 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10291 cache->needs_free_space = 1;
2ff7e61e 10292 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10293 if (ret) {
10294 /*
10295 * We may have excluded something, so call this just in
10296 * case.
10297 */
2ff7e61e 10298 free_excluded_extents(fs_info, cache);
920e4a58 10299 btrfs_put_block_group(cache);
835d974f
JB
10300 return ret;
10301 }
96303081 10302
0b246afa 10303 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10304
2ff7e61e 10305 free_excluded_extents(fs_info, cache);
11833d66 10306
d0bd4560 10307#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10308 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10309 u64 new_bytes_used = size - bytes_used;
10310
10311 bytes_used += new_bytes_used >> 1;
2ff7e61e 10312 fragment_free_space(cache);
d0bd4560
JB
10313 }
10314#endif
2e6e5183 10315 /*
2be12ef7
NB
10316 * Ensure the corresponding space_info object is created and
10317 * assigned to our block group. We want our bg to be added to the rbtree
10318 * with its ->space_info set.
2e6e5183 10319 */
2be12ef7 10320 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10321 ASSERT(cache->space_info);
2e6e5183 10322
0b246afa 10323 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10324 if (ret) {
10325 btrfs_remove_free_space_cache(cache);
10326 btrfs_put_block_group(cache);
10327 return ret;
10328 }
10329
2e6e5183
FM
10330 /*
10331 * Now that our block group has its ->space_info set and is inserted in
10332 * the rbtree, update the space info's counters.
10333 */
0b246afa 10334 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10335 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10336 cache->bytes_super, &cache->space_info);
0b246afa 10337 update_global_block_rsv(fs_info);
1b2da372 10338
c434d21c 10339 link_block_group(cache);
6324fbf3 10340
47ab2a6c 10341 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10342
0b246afa 10343 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10344 return 0;
10345}
1a40e23b 10346
10ea00f5
ID
10347static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10348{
899c81ea
ID
10349 u64 extra_flags = chunk_to_extended(flags) &
10350 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10351
de98ced9 10352 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10353 if (flags & BTRFS_BLOCK_GROUP_DATA)
10354 fs_info->avail_data_alloc_bits &= ~extra_flags;
10355 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10356 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10357 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10358 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10359 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10360}
10361
1a40e23b 10362int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10363 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10364 struct extent_map *em)
1a40e23b 10365{
6bccf3ab 10366 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10367 struct btrfs_path *path;
10368 struct btrfs_block_group_cache *block_group;
44fb5511 10369 struct btrfs_free_cluster *cluster;
0b246afa 10370 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10371 struct btrfs_key key;
0af3d00b 10372 struct inode *inode;
c1895442 10373 struct kobject *kobj = NULL;
1a40e23b 10374 int ret;
10ea00f5 10375 int index;
89a55897 10376 int factor;
4f69cb98 10377 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10378 bool remove_em;
1a40e23b 10379
6bccf3ab 10380 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10381 BUG_ON(!block_group);
c146afad 10382 BUG_ON(!block_group->ro);
1a40e23b 10383
4ed0a7a3 10384 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10385 /*
10386 * Free the reserved super bytes from this block group before
10387 * remove it.
10388 */
2ff7e61e 10389 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10390 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10391 block_group->key.offset);
9f7c43c9 10392
1a40e23b 10393 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10394 index = btrfs_bg_flags_to_raid_index(block_group->flags);
89a55897
JB
10395 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10396 BTRFS_BLOCK_GROUP_RAID1 |
10397 BTRFS_BLOCK_GROUP_RAID10))
10398 factor = 2;
10399 else
10400 factor = 1;
1a40e23b 10401
44fb5511 10402 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10403 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10404 spin_lock(&cluster->refill_lock);
10405 btrfs_return_cluster_to_free_space(block_group, cluster);
10406 spin_unlock(&cluster->refill_lock);
10407
10408 /*
10409 * make sure this block group isn't part of a metadata
10410 * allocation cluster
10411 */
0b246afa 10412 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10413 spin_lock(&cluster->refill_lock);
10414 btrfs_return_cluster_to_free_space(block_group, cluster);
10415 spin_unlock(&cluster->refill_lock);
10416
1a40e23b 10417 path = btrfs_alloc_path();
d8926bb3
MF
10418 if (!path) {
10419 ret = -ENOMEM;
10420 goto out;
10421 }
1a40e23b 10422
1bbc621e
CM
10423 /*
10424 * get the inode first so any iput calls done for the io_list
10425 * aren't the final iput (no unlinks allowed now)
10426 */
77ab86bf 10427 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10428
10429 mutex_lock(&trans->transaction->cache_write_mutex);
10430 /*
10431 * make sure our free spache cache IO is done before remove the
10432 * free space inode
10433 */
10434 spin_lock(&trans->transaction->dirty_bgs_lock);
10435 if (!list_empty(&block_group->io_list)) {
10436 list_del_init(&block_group->io_list);
10437
10438 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10439
10440 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10441 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10442 btrfs_put_block_group(block_group);
10443 spin_lock(&trans->transaction->dirty_bgs_lock);
10444 }
10445
10446 if (!list_empty(&block_group->dirty_list)) {
10447 list_del_init(&block_group->dirty_list);
10448 btrfs_put_block_group(block_group);
10449 }
10450 spin_unlock(&trans->transaction->dirty_bgs_lock);
10451 mutex_unlock(&trans->transaction->cache_write_mutex);
10452
0af3d00b 10453 if (!IS_ERR(inode)) {
73f2e545 10454 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10455 if (ret) {
10456 btrfs_add_delayed_iput(inode);
10457 goto out;
10458 }
0af3d00b
JB
10459 clear_nlink(inode);
10460 /* One for the block groups ref */
10461 spin_lock(&block_group->lock);
10462 if (block_group->iref) {
10463 block_group->iref = 0;
10464 block_group->inode = NULL;
10465 spin_unlock(&block_group->lock);
10466 iput(inode);
10467 } else {
10468 spin_unlock(&block_group->lock);
10469 }
10470 /* One for our lookup ref */
455757c3 10471 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10472 }
10473
10474 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10475 key.offset = block_group->key.objectid;
10476 key.type = 0;
10477
10478 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10479 if (ret < 0)
10480 goto out;
10481 if (ret > 0)
b3b4aa74 10482 btrfs_release_path(path);
0af3d00b
JB
10483 if (ret == 0) {
10484 ret = btrfs_del_item(trans, tree_root, path);
10485 if (ret)
10486 goto out;
b3b4aa74 10487 btrfs_release_path(path);
0af3d00b
JB
10488 }
10489
0b246afa 10490 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10491 rb_erase(&block_group->cache_node,
0b246afa 10492 &fs_info->block_group_cache_tree);
292cbd51 10493 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10494
0b246afa
JM
10495 if (fs_info->first_logical_byte == block_group->key.objectid)
10496 fs_info->first_logical_byte = (u64)-1;
10497 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10498
80eb234a 10499 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10500 /*
10501 * we must use list_del_init so people can check to see if they
10502 * are still on the list after taking the semaphore
10503 */
10504 list_del_init(&block_group->list);
6ab0a202 10505 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10506 kobj = block_group->space_info->block_group_kobjs[index];
10507 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10508 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10509 }
80eb234a 10510 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10511 if (kobj) {
10512 kobject_del(kobj);
10513 kobject_put(kobj);
10514 }
1a40e23b 10515
4f69cb98
FM
10516 if (block_group->has_caching_ctl)
10517 caching_ctl = get_caching_control(block_group);
817d52f8 10518 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10519 wait_block_group_cache_done(block_group);
4f69cb98 10520 if (block_group->has_caching_ctl) {
0b246afa 10521 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10522 if (!caching_ctl) {
10523 struct btrfs_caching_control *ctl;
10524
10525 list_for_each_entry(ctl,
0b246afa 10526 &fs_info->caching_block_groups, list)
4f69cb98
FM
10527 if (ctl->block_group == block_group) {
10528 caching_ctl = ctl;
1e4f4714 10529 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10530 break;
10531 }
10532 }
10533 if (caching_ctl)
10534 list_del_init(&caching_ctl->list);
0b246afa 10535 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10536 if (caching_ctl) {
10537 /* Once for the caching bgs list and once for us. */
10538 put_caching_control(caching_ctl);
10539 put_caching_control(caching_ctl);
10540 }
10541 }
817d52f8 10542
ce93ec54
JB
10543 spin_lock(&trans->transaction->dirty_bgs_lock);
10544 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10545 WARN_ON(1);
10546 }
10547 if (!list_empty(&block_group->io_list)) {
10548 WARN_ON(1);
ce93ec54
JB
10549 }
10550 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10551 btrfs_remove_free_space_cache(block_group);
10552
c146afad 10553 spin_lock(&block_group->space_info->lock);
75c68e9f 10554 list_del_init(&block_group->ro_list);
18d018ad 10555
0b246afa 10556 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10557 WARN_ON(block_group->space_info->total_bytes
10558 < block_group->key.offset);
10559 WARN_ON(block_group->space_info->bytes_readonly
10560 < block_group->key.offset);
10561 WARN_ON(block_group->space_info->disk_total
10562 < block_group->key.offset * factor);
10563 }
c146afad
YZ
10564 block_group->space_info->total_bytes -= block_group->key.offset;
10565 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10566 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10567
c146afad 10568 spin_unlock(&block_group->space_info->lock);
283bb197 10569
0af3d00b
JB
10570 memcpy(&key, &block_group->key, sizeof(key));
10571
34441361 10572 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10573 if (!list_empty(&em->list)) {
10574 /* We're in the transaction->pending_chunks list. */
10575 free_extent_map(em);
10576 }
04216820
FM
10577 spin_lock(&block_group->lock);
10578 block_group->removed = 1;
10579 /*
10580 * At this point trimming can't start on this block group, because we
10581 * removed the block group from the tree fs_info->block_group_cache_tree
10582 * so no one can't find it anymore and even if someone already got this
10583 * block group before we removed it from the rbtree, they have already
10584 * incremented block_group->trimming - if they didn't, they won't find
10585 * any free space entries because we already removed them all when we
10586 * called btrfs_remove_free_space_cache().
10587 *
10588 * And we must not remove the extent map from the fs_info->mapping_tree
10589 * to prevent the same logical address range and physical device space
10590 * ranges from being reused for a new block group. This is because our
10591 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10592 * completely transactionless, so while it is trimming a range the
10593 * currently running transaction might finish and a new one start,
10594 * allowing for new block groups to be created that can reuse the same
10595 * physical device locations unless we take this special care.
e33e17ee
JM
10596 *
10597 * There may also be an implicit trim operation if the file system
10598 * is mounted with -odiscard. The same protections must remain
10599 * in place until the extents have been discarded completely when
10600 * the transaction commit has completed.
04216820
FM
10601 */
10602 remove_em = (atomic_read(&block_group->trimming) == 0);
10603 /*
10604 * Make sure a trimmer task always sees the em in the pinned_chunks list
10605 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10606 * before checking block_group->removed).
10607 */
10608 if (!remove_em) {
10609 /*
10610 * Our em might be in trans->transaction->pending_chunks which
10611 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10612 * and so is the fs_info->pinned_chunks list.
10613 *
10614 * So at this point we must be holding the chunk_mutex to avoid
10615 * any races with chunk allocation (more specifically at
10616 * volumes.c:contains_pending_extent()), to ensure it always
10617 * sees the em, either in the pending_chunks list or in the
10618 * pinned_chunks list.
10619 */
0b246afa 10620 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10621 }
10622 spin_unlock(&block_group->lock);
04216820
FM
10623
10624 if (remove_em) {
10625 struct extent_map_tree *em_tree;
10626
0b246afa 10627 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10628 write_lock(&em_tree->lock);
8dbcd10f
FM
10629 /*
10630 * The em might be in the pending_chunks list, so make sure the
10631 * chunk mutex is locked, since remove_extent_mapping() will
10632 * delete us from that list.
10633 */
04216820
FM
10634 remove_extent_mapping(em_tree, em);
10635 write_unlock(&em_tree->lock);
10636 /* once for the tree */
10637 free_extent_map(em);
10638 }
10639
34441361 10640 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10641
0b246afa 10642 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10643 if (ret)
10644 goto out;
10645
fa9c0d79
CM
10646 btrfs_put_block_group(block_group);
10647 btrfs_put_block_group(block_group);
1a40e23b
ZY
10648
10649 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10650 if (ret > 0)
10651 ret = -EIO;
10652 if (ret < 0)
10653 goto out;
10654
10655 ret = btrfs_del_item(trans, root, path);
10656out:
10657 btrfs_free_path(path);
10658 return ret;
10659}
acce952b 10660
8eab77ff 10661struct btrfs_trans_handle *
7fd01182
FM
10662btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10663 const u64 chunk_offset)
8eab77ff 10664{
7fd01182
FM
10665 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10666 struct extent_map *em;
10667 struct map_lookup *map;
10668 unsigned int num_items;
10669
10670 read_lock(&em_tree->lock);
10671 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10672 read_unlock(&em_tree->lock);
10673 ASSERT(em && em->start == chunk_offset);
10674
8eab77ff 10675 /*
7fd01182
FM
10676 * We need to reserve 3 + N units from the metadata space info in order
10677 * to remove a block group (done at btrfs_remove_chunk() and at
10678 * btrfs_remove_block_group()), which are used for:
10679 *
8eab77ff
FM
10680 * 1 unit for adding the free space inode's orphan (located in the tree
10681 * of tree roots).
7fd01182
FM
10682 * 1 unit for deleting the block group item (located in the extent
10683 * tree).
10684 * 1 unit for deleting the free space item (located in tree of tree
10685 * roots).
10686 * N units for deleting N device extent items corresponding to each
10687 * stripe (located in the device tree).
10688 *
10689 * In order to remove a block group we also need to reserve units in the
10690 * system space info in order to update the chunk tree (update one or
10691 * more device items and remove one chunk item), but this is done at
10692 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10693 */
95617d69 10694 map = em->map_lookup;
7fd01182
FM
10695 num_items = 3 + map->num_stripes;
10696 free_extent_map(em);
10697
8eab77ff 10698 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10699 num_items, 1);
8eab77ff
FM
10700}
10701
47ab2a6c
JB
10702/*
10703 * Process the unused_bgs list and remove any that don't have any allocated
10704 * space inside of them.
10705 */
10706void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10707{
10708 struct btrfs_block_group_cache *block_group;
10709 struct btrfs_space_info *space_info;
47ab2a6c
JB
10710 struct btrfs_trans_handle *trans;
10711 int ret = 0;
10712
afcdd129 10713 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10714 return;
10715
10716 spin_lock(&fs_info->unused_bgs_lock);
10717 while (!list_empty(&fs_info->unused_bgs)) {
10718 u64 start, end;
e33e17ee 10719 int trimming;
47ab2a6c
JB
10720
10721 block_group = list_first_entry(&fs_info->unused_bgs,
10722 struct btrfs_block_group_cache,
10723 bg_list);
47ab2a6c 10724 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10725
10726 space_info = block_group->space_info;
10727
47ab2a6c
JB
10728 if (ret || btrfs_mixed_space_info(space_info)) {
10729 btrfs_put_block_group(block_group);
10730 continue;
10731 }
10732 spin_unlock(&fs_info->unused_bgs_lock);
10733
d5f2e33b 10734 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10735
47ab2a6c
JB
10736 /* Don't want to race with allocators so take the groups_sem */
10737 down_write(&space_info->groups_sem);
10738 spin_lock(&block_group->lock);
10739 if (block_group->reserved ||
10740 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10741 block_group->ro ||
aefbe9a6 10742 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10743 /*
10744 * We want to bail if we made new allocations or have
10745 * outstanding allocations in this block group. We do
10746 * the ro check in case balance is currently acting on
10747 * this block group.
10748 */
4ed0a7a3 10749 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10750 spin_unlock(&block_group->lock);
10751 up_write(&space_info->groups_sem);
10752 goto next;
10753 }
10754 spin_unlock(&block_group->lock);
10755
10756 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10757 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10758 up_write(&space_info->groups_sem);
10759 if (ret < 0) {
10760 ret = 0;
10761 goto next;
10762 }
10763
10764 /*
10765 * Want to do this before we do anything else so we can recover
10766 * properly if we fail to join the transaction.
10767 */
7fd01182
FM
10768 trans = btrfs_start_trans_remove_block_group(fs_info,
10769 block_group->key.objectid);
47ab2a6c 10770 if (IS_ERR(trans)) {
2ff7e61e 10771 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10772 ret = PTR_ERR(trans);
10773 goto next;
10774 }
10775
10776 /*
10777 * We could have pending pinned extents for this block group,
10778 * just delete them, we don't care about them anymore.
10779 */
10780 start = block_group->key.objectid;
10781 end = start + block_group->key.offset - 1;
d4b450cd
FM
10782 /*
10783 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10784 * btrfs_finish_extent_commit(). If we are at transaction N,
10785 * another task might be running finish_extent_commit() for the
10786 * previous transaction N - 1, and have seen a range belonging
10787 * to the block group in freed_extents[] before we were able to
10788 * clear the whole block group range from freed_extents[]. This
10789 * means that task can lookup for the block group after we
10790 * unpinned it from freed_extents[] and removed it, leading to
10791 * a BUG_ON() at btrfs_unpin_extent_range().
10792 */
10793 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10794 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10795 EXTENT_DIRTY);
758eb51e 10796 if (ret) {
d4b450cd 10797 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10798 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10799 goto end_trans;
10800 }
10801 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10802 EXTENT_DIRTY);
758eb51e 10803 if (ret) {
d4b450cd 10804 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10805 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10806 goto end_trans;
10807 }
d4b450cd 10808 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10809
10810 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10811 spin_lock(&space_info->lock);
10812 spin_lock(&block_group->lock);
10813
10814 space_info->bytes_pinned -= block_group->pinned;
10815 space_info->bytes_readonly += block_group->pinned;
10816 percpu_counter_add(&space_info->total_bytes_pinned,
10817 -block_group->pinned);
47ab2a6c
JB
10818 block_group->pinned = 0;
10819
c30666d4
ZL
10820 spin_unlock(&block_group->lock);
10821 spin_unlock(&space_info->lock);
10822
e33e17ee 10823 /* DISCARD can flip during remount */
0b246afa 10824 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10825
10826 /* Implicit trim during transaction commit. */
10827 if (trimming)
10828 btrfs_get_block_group_trimming(block_group);
10829
47ab2a6c
JB
10830 /*
10831 * Btrfs_remove_chunk will abort the transaction if things go
10832 * horribly wrong.
10833 */
5b4aacef 10834 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10835 block_group->key.objectid);
e33e17ee
JM
10836
10837 if (ret) {
10838 if (trimming)
10839 btrfs_put_block_group_trimming(block_group);
10840 goto end_trans;
10841 }
10842
10843 /*
10844 * If we're not mounted with -odiscard, we can just forget
10845 * about this block group. Otherwise we'll need to wait
10846 * until transaction commit to do the actual discard.
10847 */
10848 if (trimming) {
348a0013
FM
10849 spin_lock(&fs_info->unused_bgs_lock);
10850 /*
10851 * A concurrent scrub might have added us to the list
10852 * fs_info->unused_bgs, so use a list_move operation
10853 * to add the block group to the deleted_bgs list.
10854 */
e33e17ee
JM
10855 list_move(&block_group->bg_list,
10856 &trans->transaction->deleted_bgs);
348a0013 10857 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10858 btrfs_get_block_group(block_group);
10859 }
758eb51e 10860end_trans:
3a45bb20 10861 btrfs_end_transaction(trans);
47ab2a6c 10862next:
d5f2e33b 10863 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10864 btrfs_put_block_group(block_group);
10865 spin_lock(&fs_info->unused_bgs_lock);
10866 }
10867 spin_unlock(&fs_info->unused_bgs_lock);
10868}
10869
c59021f8 10870int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10871{
10872 struct btrfs_space_info *space_info;
1aba86d6 10873 struct btrfs_super_block *disk_super;
10874 u64 features;
10875 u64 flags;
10876 int mixed = 0;
c59021f8 10877 int ret;
10878
6c41761f 10879 disk_super = fs_info->super_copy;
1aba86d6 10880 if (!btrfs_super_root(disk_super))
0dc924c5 10881 return -EINVAL;
c59021f8 10882
1aba86d6 10883 features = btrfs_super_incompat_flags(disk_super);
10884 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10885 mixed = 1;
c59021f8 10886
1aba86d6 10887 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10888 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10889 if (ret)
1aba86d6 10890 goto out;
c59021f8 10891
1aba86d6 10892 if (mixed) {
10893 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10894 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10895 } else {
10896 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10897 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10898 if (ret)
10899 goto out;
10900
10901 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10902 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10903 }
10904out:
c59021f8 10905 return ret;
10906}
10907
2ff7e61e
JM
10908int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10909 u64 start, u64 end)
acce952b 10910{
2ff7e61e 10911 return unpin_extent_range(fs_info, start, end, false);
acce952b 10912}
10913
499f377f
JM
10914/*
10915 * It used to be that old block groups would be left around forever.
10916 * Iterating over them would be enough to trim unused space. Since we
10917 * now automatically remove them, we also need to iterate over unallocated
10918 * space.
10919 *
10920 * We don't want a transaction for this since the discard may take a
10921 * substantial amount of time. We don't require that a transaction be
10922 * running, but we do need to take a running transaction into account
10923 * to ensure that we're not discarding chunks that were released in
10924 * the current transaction.
10925 *
10926 * Holding the chunks lock will prevent other threads from allocating
10927 * or releasing chunks, but it won't prevent a running transaction
10928 * from committing and releasing the memory that the pending chunks
10929 * list head uses. For that, we need to take a reference to the
10930 * transaction.
10931 */
10932static int btrfs_trim_free_extents(struct btrfs_device *device,
10933 u64 minlen, u64 *trimmed)
10934{
10935 u64 start = 0, len = 0;
10936 int ret;
10937
10938 *trimmed = 0;
10939
10940 /* Not writeable = nothing to do. */
ebbede42 10941 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10942 return 0;
10943
10944 /* No free space = nothing to do. */
10945 if (device->total_bytes <= device->bytes_used)
10946 return 0;
10947
10948 ret = 0;
10949
10950 while (1) {
fb456252 10951 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10952 struct btrfs_transaction *trans;
10953 u64 bytes;
10954
10955 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10956 if (ret)
10957 return ret;
10958
10959 down_read(&fs_info->commit_root_sem);
10960
10961 spin_lock(&fs_info->trans_lock);
10962 trans = fs_info->running_transaction;
10963 if (trans)
9b64f57d 10964 refcount_inc(&trans->use_count);
499f377f
JM
10965 spin_unlock(&fs_info->trans_lock);
10966
10967 ret = find_free_dev_extent_start(trans, device, minlen, start,
10968 &start, &len);
10969 if (trans)
10970 btrfs_put_transaction(trans);
10971
10972 if (ret) {
10973 up_read(&fs_info->commit_root_sem);
10974 mutex_unlock(&fs_info->chunk_mutex);
10975 if (ret == -ENOSPC)
10976 ret = 0;
10977 break;
10978 }
10979
10980 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10981 up_read(&fs_info->commit_root_sem);
10982 mutex_unlock(&fs_info->chunk_mutex);
10983
10984 if (ret)
10985 break;
10986
10987 start += len;
10988 *trimmed += bytes;
10989
10990 if (fatal_signal_pending(current)) {
10991 ret = -ERESTARTSYS;
10992 break;
10993 }
10994
10995 cond_resched();
10996 }
10997
10998 return ret;
10999}
11000
2ff7e61e 11001int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 11002{
f7039b1d 11003 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11004 struct btrfs_device *device;
11005 struct list_head *devices;
f7039b1d
LD
11006 u64 group_trimmed;
11007 u64 start;
11008 u64 end;
11009 u64 trimmed = 0;
2cac13e4 11010 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
11011 int ret = 0;
11012
2cac13e4
LB
11013 /*
11014 * try to trim all FS space, our block group may start from non-zero.
11015 */
11016 if (range->len == total_bytes)
11017 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11018 else
11019 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
11020
11021 while (cache) {
11022 if (cache->key.objectid >= (range->start + range->len)) {
11023 btrfs_put_block_group(cache);
11024 break;
11025 }
11026
11027 start = max(range->start, cache->key.objectid);
11028 end = min(range->start + range->len,
11029 cache->key.objectid + cache->key.offset);
11030
11031 if (end - start >= range->minlen) {
11032 if (!block_group_cache_done(cache)) {
f6373bf3 11033 ret = cache_block_group(cache, 0);
1be41b78
JB
11034 if (ret) {
11035 btrfs_put_block_group(cache);
11036 break;
11037 }
11038 ret = wait_block_group_cache_done(cache);
11039 if (ret) {
11040 btrfs_put_block_group(cache);
11041 break;
11042 }
f7039b1d
LD
11043 }
11044 ret = btrfs_trim_block_group(cache,
11045 &group_trimmed,
11046 start,
11047 end,
11048 range->minlen);
11049
11050 trimmed += group_trimmed;
11051 if (ret) {
11052 btrfs_put_block_group(cache);
11053 break;
11054 }
11055 }
11056
2ff7e61e 11057 cache = next_block_group(fs_info, cache);
f7039b1d
LD
11058 }
11059
0b246afa
JM
11060 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11061 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
11062 list_for_each_entry(device, devices, dev_alloc_list) {
11063 ret = btrfs_trim_free_extents(device, range->minlen,
11064 &group_trimmed);
11065 if (ret)
11066 break;
11067
11068 trimmed += group_trimmed;
11069 }
0b246afa 11070 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11071
f7039b1d
LD
11072 range->len = trimmed;
11073 return ret;
11074}
8257b2dc
MX
11075
11076/*
ea14b57f 11077 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11078 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11079 * data into the page cache through nocow before the subvolume is snapshoted,
11080 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11081 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11082 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11083 */
ea14b57f 11084void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11085{
11086 percpu_counter_dec(&root->subv_writers->counter);
11087 /*
a83342aa 11088 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11089 */
11090 smp_mb();
11091 if (waitqueue_active(&root->subv_writers->wait))
11092 wake_up(&root->subv_writers->wait);
11093}
11094
ea14b57f 11095int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11096{
ea14b57f 11097 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11098 return 0;
11099
11100 percpu_counter_inc(&root->subv_writers->counter);
11101 /*
11102 * Make sure counter is updated before we check for snapshot creation.
11103 */
11104 smp_mb();
ea14b57f
DS
11105 if (atomic_read(&root->will_be_snapshotted)) {
11106 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11107 return 0;
11108 }
11109 return 1;
11110}
0bc19f90 11111
0bc19f90
ZL
11112void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11113{
11114 while (true) {
11115 int ret;
11116
ea14b57f 11117 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11118 if (ret)
11119 break;
4625956a
PZ
11120 wait_var_event(&root->will_be_snapshotted,
11121 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11122 }
11123}