btrfs: Simplify alloc_reserved_tree_block interface
[linux-block.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
5d4f98a2 54static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 55 struct btrfs_fs_info *fs_info,
c682f9b3 56 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
57 u64 root_objectid, u64 owner_objectid,
58 u64 owner_offset, int refs_to_drop,
c682f9b3 59 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
60static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 struct extent_buffer *leaf,
62 struct btrfs_extent_item *ei);
63static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 64 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
65 u64 parent, u64 root_objectid,
66 u64 flags, u64 owner, u64 offset,
67 struct btrfs_key *ins, int ref_mod);
68static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0
NB
69 struct btrfs_delayed_ref_node *node,
70 u64 flags, struct btrfs_disk_key *key);
6a63209f 71static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 72 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 73 int force);
11833d66
YZ
74static int find_next_key(struct btrfs_path *path, int level,
75 struct btrfs_key *key);
ab8d0fc4
JM
76static void dump_space_info(struct btrfs_fs_info *fs_info,
77 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 78 int dump_block_groups);
5d80366e
JB
79static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
80 u64 num_bytes);
957780eb
JB
81static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
84static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
85 struct btrfs_space_info *space_info,
86 u64 num_bytes);
6a63209f 87
817d52f8
JB
88static noinline int
89block_group_cache_done(struct btrfs_block_group_cache *cache)
90{
91 smp_mb();
36cce922
JB
92 return cache->cached == BTRFS_CACHE_FINISHED ||
93 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
94}
95
0f9dd46c
JB
96static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
97{
98 return (cache->flags & bits) == bits;
99}
100
758f2dfc 101void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
102{
103 atomic_inc(&cache->count);
104}
105
106void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
107{
f0486c68
YZ
108 if (atomic_dec_and_test(&cache->count)) {
109 WARN_ON(cache->pinned > 0);
110 WARN_ON(cache->reserved > 0);
0966a7b1
QW
111
112 /*
113 * If not empty, someone is still holding mutex of
114 * full_stripe_lock, which can only be released by caller.
115 * And it will definitely cause use-after-free when caller
116 * tries to release full stripe lock.
117 *
118 * No better way to resolve, but only to warn.
119 */
120 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 121 kfree(cache->free_space_ctl);
11dfe35a 122 kfree(cache);
f0486c68 123 }
11dfe35a
JB
124}
125
0f9dd46c
JB
126/*
127 * this adds the block group to the fs_info rb tree for the block group
128 * cache
129 */
b2950863 130static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
131 struct btrfs_block_group_cache *block_group)
132{
133 struct rb_node **p;
134 struct rb_node *parent = NULL;
135 struct btrfs_block_group_cache *cache;
136
137 spin_lock(&info->block_group_cache_lock);
138 p = &info->block_group_cache_tree.rb_node;
139
140 while (*p) {
141 parent = *p;
142 cache = rb_entry(parent, struct btrfs_block_group_cache,
143 cache_node);
144 if (block_group->key.objectid < cache->key.objectid) {
145 p = &(*p)->rb_left;
146 } else if (block_group->key.objectid > cache->key.objectid) {
147 p = &(*p)->rb_right;
148 } else {
149 spin_unlock(&info->block_group_cache_lock);
150 return -EEXIST;
151 }
152 }
153
154 rb_link_node(&block_group->cache_node, parent, p);
155 rb_insert_color(&block_group->cache_node,
156 &info->block_group_cache_tree);
a1897fdd
LB
157
158 if (info->first_logical_byte > block_group->key.objectid)
159 info->first_logical_byte = block_group->key.objectid;
160
0f9dd46c
JB
161 spin_unlock(&info->block_group_cache_lock);
162
163 return 0;
164}
165
166/*
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
169 */
170static struct btrfs_block_group_cache *
171block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
172 int contains)
173{
174 struct btrfs_block_group_cache *cache, *ret = NULL;
175 struct rb_node *n;
176 u64 end, start;
177
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
180
181 while (n) {
182 cache = rb_entry(n, struct btrfs_block_group_cache,
183 cache_node);
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
186
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
189 ret = cache;
190 n = n->rb_left;
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
193 ret = cache;
194 break;
195 }
196 n = n->rb_right;
197 } else {
198 ret = cache;
199 break;
200 }
201 }
a1897fdd 202 if (ret) {
11dfe35a 203 btrfs_get_block_group(ret);
a1897fdd
LB
204 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
205 info->first_logical_byte = ret->key.objectid;
206 }
0f9dd46c
JB
207 spin_unlock(&info->block_group_cache_lock);
208
209 return ret;
210}
211
2ff7e61e 212static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 213 u64 start, u64 num_bytes)
817d52f8 214{
11833d66 215 u64 end = start + num_bytes - 1;
0b246afa 216 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 217 start, end, EXTENT_UPTODATE);
0b246afa 218 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 219 start, end, EXTENT_UPTODATE);
11833d66
YZ
220 return 0;
221}
817d52f8 222
2ff7e61e 223static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
224 struct btrfs_block_group_cache *cache)
225{
226 u64 start, end;
817d52f8 227
11833d66
YZ
228 start = cache->key.objectid;
229 end = start + cache->key.offset - 1;
230
0b246afa 231 clear_extent_bits(&fs_info->freed_extents[0],
91166212 232 start, end, EXTENT_UPTODATE);
0b246afa 233 clear_extent_bits(&fs_info->freed_extents[1],
91166212 234 start, end, EXTENT_UPTODATE);
817d52f8
JB
235}
236
2ff7e61e 237static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 238 struct btrfs_block_group_cache *cache)
817d52f8 239{
817d52f8
JB
240 u64 bytenr;
241 u64 *logical;
242 int stripe_len;
243 int i, nr, ret;
244
06b2331f
YZ
245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
247 cache->bytes_super += stripe_len;
2ff7e61e 248 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 249 stripe_len);
835d974f
JB
250 if (ret)
251 return ret;
06b2331f
YZ
252 }
253
817d52f8
JB
254 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
255 bytenr = btrfs_sb_offset(i);
0b246afa 256 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 257 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
258 if (ret)
259 return ret;
11833d66 260
817d52f8 261 while (nr--) {
51bf5f0b
JB
262 u64 start, len;
263
264 if (logical[nr] > cache->key.objectid +
265 cache->key.offset)
266 continue;
267
268 if (logical[nr] + stripe_len <= cache->key.objectid)
269 continue;
270
271 start = logical[nr];
272 if (start < cache->key.objectid) {
273 start = cache->key.objectid;
274 len = (logical[nr] + stripe_len) - start;
275 } else {
276 len = min_t(u64, stripe_len,
277 cache->key.objectid +
278 cache->key.offset - start);
279 }
280
281 cache->bytes_super += len;
2ff7e61e 282 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
283 if (ret) {
284 kfree(logical);
285 return ret;
286 }
817d52f8 287 }
11833d66 288
817d52f8
JB
289 kfree(logical);
290 }
817d52f8
JB
291 return 0;
292}
293
11833d66
YZ
294static struct btrfs_caching_control *
295get_caching_control(struct btrfs_block_group_cache *cache)
296{
297 struct btrfs_caching_control *ctl;
298
299 spin_lock(&cache->lock);
dde5abee
JB
300 if (!cache->caching_ctl) {
301 spin_unlock(&cache->lock);
11833d66
YZ
302 return NULL;
303 }
304
305 ctl = cache->caching_ctl;
1e4f4714 306 refcount_inc(&ctl->count);
11833d66
YZ
307 spin_unlock(&cache->lock);
308 return ctl;
309}
310
311static void put_caching_control(struct btrfs_caching_control *ctl)
312{
1e4f4714 313 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
314 kfree(ctl);
315}
316
d0bd4560 317#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 318static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 319{
2ff7e61e 320 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
321 u64 start = block_group->key.objectid;
322 u64 len = block_group->key.offset;
323 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 324 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
325 u64 step = chunk << 1;
326
327 while (len > chunk) {
328 btrfs_remove_free_space(block_group, start, chunk);
329 start += step;
330 if (len < step)
331 len = 0;
332 else
333 len -= step;
334 }
335}
336#endif
337
0f9dd46c
JB
338/*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
a5ed9182 343u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 344 u64 start, u64 end)
0f9dd46c 345{
4457c1c7 346 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 347 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
348 int ret;
349
350 while (start < end) {
11833d66 351 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 352 &extent_start, &extent_end,
e6138876
JB
353 EXTENT_DIRTY | EXTENT_UPTODATE,
354 NULL);
0f9dd46c
JB
355 if (ret)
356 break;
357
06b2331f 358 if (extent_start <= start) {
0f9dd46c
JB
359 start = extent_end + 1;
360 } else if (extent_start > start && extent_start < end) {
361 size = extent_start - start;
817d52f8 362 total_added += size;
ea6a478e
JB
363 ret = btrfs_add_free_space(block_group, start,
364 size);
79787eaa 365 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
366 start = extent_end + 1;
367 } else {
368 break;
369 }
370 }
371
372 if (start < end) {
373 size = end - start;
817d52f8 374 total_added += size;
ea6a478e 375 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 376 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
377 }
378
817d52f8 379 return total_added;
0f9dd46c
JB
380}
381
73fa48b6 382static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 383{
0b246afa
JM
384 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
385 struct btrfs_fs_info *fs_info = block_group->fs_info;
386 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 387 struct btrfs_path *path;
5f39d397 388 struct extent_buffer *leaf;
11833d66 389 struct btrfs_key key;
817d52f8 390 u64 total_found = 0;
11833d66
YZ
391 u64 last = 0;
392 u32 nritems;
73fa48b6 393 int ret;
d0bd4560 394 bool wakeup = true;
f510cfec 395
e37c9e69
CM
396 path = btrfs_alloc_path();
397 if (!path)
73fa48b6 398 return -ENOMEM;
7d7d6068 399
817d52f8 400 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 401
d0bd4560
JB
402#ifdef CONFIG_BTRFS_DEBUG
403 /*
404 * If we're fragmenting we don't want to make anybody think we can
405 * allocate from this block group until we've had a chance to fragment
406 * the free space.
407 */
2ff7e61e 408 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
409 wakeup = false;
410#endif
5cd57b2c 411 /*
817d52f8
JB
412 * We don't want to deadlock with somebody trying to allocate a new
413 * extent for the extent root while also trying to search the extent
414 * root to add free space. So we skip locking and search the commit
415 * root, since its read-only
5cd57b2c
CM
416 */
417 path->skip_locking = 1;
817d52f8 418 path->search_commit_root = 1;
e4058b54 419 path->reada = READA_FORWARD;
817d52f8 420
e4404d6e 421 key.objectid = last;
e37c9e69 422 key.offset = 0;
11833d66 423 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 424
52ee28d2 425next:
11833d66 426 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 427 if (ret < 0)
73fa48b6 428 goto out;
a512bbf8 429
11833d66
YZ
430 leaf = path->nodes[0];
431 nritems = btrfs_header_nritems(leaf);
432
d397712b 433 while (1) {
7841cb28 434 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 435 last = (u64)-1;
817d52f8 436 break;
f25784b3 437 }
817d52f8 438
11833d66
YZ
439 if (path->slots[0] < nritems) {
440 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
441 } else {
442 ret = find_next_key(path, 0, &key);
443 if (ret)
e37c9e69 444 break;
817d52f8 445
c9ea7b24 446 if (need_resched() ||
9e351cc8 447 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
448 if (wakeup)
449 caching_ctl->progress = last;
ff5714cc 450 btrfs_release_path(path);
9e351cc8 451 up_read(&fs_info->commit_root_sem);
589d8ade 452 mutex_unlock(&caching_ctl->mutex);
11833d66 453 cond_resched();
73fa48b6
OS
454 mutex_lock(&caching_ctl->mutex);
455 down_read(&fs_info->commit_root_sem);
456 goto next;
589d8ade 457 }
0a3896d0
JB
458
459 ret = btrfs_next_leaf(extent_root, path);
460 if (ret < 0)
73fa48b6 461 goto out;
0a3896d0
JB
462 if (ret)
463 break;
589d8ade
JB
464 leaf = path->nodes[0];
465 nritems = btrfs_header_nritems(leaf);
466 continue;
11833d66 467 }
817d52f8 468
52ee28d2
LB
469 if (key.objectid < last) {
470 key.objectid = last;
471 key.offset = 0;
472 key.type = BTRFS_EXTENT_ITEM_KEY;
473
d0bd4560
JB
474 if (wakeup)
475 caching_ctl->progress = last;
52ee28d2
LB
476 btrfs_release_path(path);
477 goto next;
478 }
479
11833d66
YZ
480 if (key.objectid < block_group->key.objectid) {
481 path->slots[0]++;
817d52f8 482 continue;
e37c9e69 483 }
0f9dd46c 484
e37c9e69 485 if (key.objectid >= block_group->key.objectid +
0f9dd46c 486 block_group->key.offset)
e37c9e69 487 break;
7d7d6068 488
3173a18f
JB
489 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
490 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 491 total_found += add_new_free_space(block_group, last,
817d52f8 492 key.objectid);
3173a18f
JB
493 if (key.type == BTRFS_METADATA_ITEM_KEY)
494 last = key.objectid +
da17066c 495 fs_info->nodesize;
3173a18f
JB
496 else
497 last = key.objectid + key.offset;
817d52f8 498
73fa48b6 499 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 500 total_found = 0;
d0bd4560
JB
501 if (wakeup)
502 wake_up(&caching_ctl->wait);
11833d66 503 }
817d52f8 504 }
e37c9e69
CM
505 path->slots[0]++;
506 }
817d52f8 507 ret = 0;
e37c9e69 508
4457c1c7 509 total_found += add_new_free_space(block_group, last,
817d52f8
JB
510 block_group->key.objectid +
511 block_group->key.offset);
11833d66 512 caching_ctl->progress = (u64)-1;
817d52f8 513
73fa48b6
OS
514out:
515 btrfs_free_path(path);
516 return ret;
517}
518
519static noinline void caching_thread(struct btrfs_work *work)
520{
521 struct btrfs_block_group_cache *block_group;
522 struct btrfs_fs_info *fs_info;
523 struct btrfs_caching_control *caching_ctl;
524 int ret;
525
526 caching_ctl = container_of(work, struct btrfs_caching_control, work);
527 block_group = caching_ctl->block_group;
528 fs_info = block_group->fs_info;
529
530 mutex_lock(&caching_ctl->mutex);
531 down_read(&fs_info->commit_root_sem);
532
1e144fb8
OS
533 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
534 ret = load_free_space_tree(caching_ctl);
535 else
536 ret = load_extent_tree_free(caching_ctl);
73fa48b6 537
817d52f8 538 spin_lock(&block_group->lock);
11833d66 539 block_group->caching_ctl = NULL;
73fa48b6 540 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 541 spin_unlock(&block_group->lock);
0f9dd46c 542
d0bd4560 543#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 544 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
545 u64 bytes_used;
546
547 spin_lock(&block_group->space_info->lock);
548 spin_lock(&block_group->lock);
549 bytes_used = block_group->key.offset -
550 btrfs_block_group_used(&block_group->item);
551 block_group->space_info->bytes_used += bytes_used >> 1;
552 spin_unlock(&block_group->lock);
553 spin_unlock(&block_group->space_info->lock);
2ff7e61e 554 fragment_free_space(block_group);
d0bd4560
JB
555 }
556#endif
557
558 caching_ctl->progress = (u64)-1;
11833d66 559
9e351cc8 560 up_read(&fs_info->commit_root_sem);
2ff7e61e 561 free_excluded_extents(fs_info, block_group);
11833d66 562 mutex_unlock(&caching_ctl->mutex);
73fa48b6 563
11833d66
YZ
564 wake_up(&caching_ctl->wait);
565
566 put_caching_control(caching_ctl);
11dfe35a 567 btrfs_put_block_group(block_group);
817d52f8
JB
568}
569
9d66e233 570static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 571 int load_cache_only)
817d52f8 572{
291c7d2f 573 DEFINE_WAIT(wait);
11833d66
YZ
574 struct btrfs_fs_info *fs_info = cache->fs_info;
575 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
576 int ret = 0;
577
291c7d2f 578 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
579 if (!caching_ctl)
580 return -ENOMEM;
291c7d2f
JB
581
582 INIT_LIST_HEAD(&caching_ctl->list);
583 mutex_init(&caching_ctl->mutex);
584 init_waitqueue_head(&caching_ctl->wait);
585 caching_ctl->block_group = cache;
586 caching_ctl->progress = cache->key.objectid;
1e4f4714 587 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
588 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
589 caching_thread, NULL, NULL);
291c7d2f
JB
590
591 spin_lock(&cache->lock);
592 /*
593 * This should be a rare occasion, but this could happen I think in the
594 * case where one thread starts to load the space cache info, and then
595 * some other thread starts a transaction commit which tries to do an
596 * allocation while the other thread is still loading the space cache
597 * info. The previous loop should have kept us from choosing this block
598 * group, but if we've moved to the state where we will wait on caching
599 * block groups we need to first check if we're doing a fast load here,
600 * so we can wait for it to finish, otherwise we could end up allocating
601 * from a block group who's cache gets evicted for one reason or
602 * another.
603 */
604 while (cache->cached == BTRFS_CACHE_FAST) {
605 struct btrfs_caching_control *ctl;
606
607 ctl = cache->caching_ctl;
1e4f4714 608 refcount_inc(&ctl->count);
291c7d2f
JB
609 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
610 spin_unlock(&cache->lock);
611
612 schedule();
613
614 finish_wait(&ctl->wait, &wait);
615 put_caching_control(ctl);
616 spin_lock(&cache->lock);
617 }
618
619 if (cache->cached != BTRFS_CACHE_NO) {
620 spin_unlock(&cache->lock);
621 kfree(caching_ctl);
11833d66 622 return 0;
291c7d2f
JB
623 }
624 WARN_ON(cache->caching_ctl);
625 cache->caching_ctl = caching_ctl;
626 cache->cached = BTRFS_CACHE_FAST;
627 spin_unlock(&cache->lock);
11833d66 628
d8953d69 629 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 630 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
631 ret = load_free_space_cache(fs_info, cache);
632
633 spin_lock(&cache->lock);
634 if (ret == 1) {
291c7d2f 635 cache->caching_ctl = NULL;
9d66e233
JB
636 cache->cached = BTRFS_CACHE_FINISHED;
637 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 638 caching_ctl->progress = (u64)-1;
9d66e233 639 } else {
291c7d2f
JB
640 if (load_cache_only) {
641 cache->caching_ctl = NULL;
642 cache->cached = BTRFS_CACHE_NO;
643 } else {
644 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 645 cache->has_caching_ctl = 1;
291c7d2f 646 }
9d66e233
JB
647 }
648 spin_unlock(&cache->lock);
d0bd4560
JB
649#ifdef CONFIG_BTRFS_DEBUG
650 if (ret == 1 &&
2ff7e61e 651 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
652 u64 bytes_used;
653
654 spin_lock(&cache->space_info->lock);
655 spin_lock(&cache->lock);
656 bytes_used = cache->key.offset -
657 btrfs_block_group_used(&cache->item);
658 cache->space_info->bytes_used += bytes_used >> 1;
659 spin_unlock(&cache->lock);
660 spin_unlock(&cache->space_info->lock);
2ff7e61e 661 fragment_free_space(cache);
d0bd4560
JB
662 }
663#endif
cb83b7b8
JB
664 mutex_unlock(&caching_ctl->mutex);
665
291c7d2f 666 wake_up(&caching_ctl->wait);
3c14874a 667 if (ret == 1) {
291c7d2f 668 put_caching_control(caching_ctl);
2ff7e61e 669 free_excluded_extents(fs_info, cache);
9d66e233 670 return 0;
3c14874a 671 }
291c7d2f
JB
672 } else {
673 /*
1e144fb8
OS
674 * We're either using the free space tree or no caching at all.
675 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
676 */
677 spin_lock(&cache->lock);
678 if (load_cache_only) {
679 cache->caching_ctl = NULL;
680 cache->cached = BTRFS_CACHE_NO;
681 } else {
682 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 683 cache->has_caching_ctl = 1;
291c7d2f
JB
684 }
685 spin_unlock(&cache->lock);
686 wake_up(&caching_ctl->wait);
9d66e233
JB
687 }
688
291c7d2f
JB
689 if (load_cache_only) {
690 put_caching_control(caching_ctl);
11833d66 691 return 0;
817d52f8 692 }
817d52f8 693
9e351cc8 694 down_write(&fs_info->commit_root_sem);
1e4f4714 695 refcount_inc(&caching_ctl->count);
11833d66 696 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 697 up_write(&fs_info->commit_root_sem);
11833d66 698
11dfe35a 699 btrfs_get_block_group(cache);
11833d66 700
e66f0bb1 701 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 702
ef8bbdfe 703 return ret;
e37c9e69
CM
704}
705
0f9dd46c
JB
706/*
707 * return the block group that starts at or after bytenr
708 */
d397712b
CM
709static struct btrfs_block_group_cache *
710btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 711{
e2c89907 712 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
713}
714
0f9dd46c 715/*
9f55684c 716 * return the block group that contains the given bytenr
0f9dd46c 717 */
d397712b
CM
718struct btrfs_block_group_cache *btrfs_lookup_block_group(
719 struct btrfs_fs_info *info,
720 u64 bytenr)
be744175 721{
e2c89907 722 return block_group_cache_tree_search(info, bytenr, 1);
be744175 723}
0b86a832 724
0f9dd46c
JB
725static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
726 u64 flags)
6324fbf3 727{
0f9dd46c 728 struct list_head *head = &info->space_info;
0f9dd46c 729 struct btrfs_space_info *found;
4184ea7f 730
52ba6929 731 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 732
4184ea7f
CM
733 rcu_read_lock();
734 list_for_each_entry_rcu(found, head, list) {
67377734 735 if (found->flags & flags) {
4184ea7f 736 rcu_read_unlock();
0f9dd46c 737 return found;
4184ea7f 738 }
0f9dd46c 739 }
4184ea7f 740 rcu_read_unlock();
0f9dd46c 741 return NULL;
6324fbf3
CM
742}
743
0d9f824d 744static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 745 bool metadata, u64 root_objectid)
0d9f824d
OS
746{
747 struct btrfs_space_info *space_info;
748 u64 flags;
749
29d2b84c 750 if (metadata) {
0d9f824d
OS
751 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
752 flags = BTRFS_BLOCK_GROUP_SYSTEM;
753 else
754 flags = BTRFS_BLOCK_GROUP_METADATA;
755 } else {
756 flags = BTRFS_BLOCK_GROUP_DATA;
757 }
758
759 space_info = __find_space_info(fs_info, flags);
55e8196a 760 ASSERT(space_info);
0d9f824d
OS
761 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
762}
763
4184ea7f
CM
764/*
765 * after adding space to the filesystem, we need to clear the full flags
766 * on all the space infos.
767 */
768void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
769{
770 struct list_head *head = &info->space_info;
771 struct btrfs_space_info *found;
772
773 rcu_read_lock();
774 list_for_each_entry_rcu(found, head, list)
775 found->full = 0;
776 rcu_read_unlock();
777}
778
1a4ed8fd 779/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 780int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
781{
782 int ret;
783 struct btrfs_key key;
31840ae1 784 struct btrfs_path *path;
e02119d5 785
31840ae1 786 path = btrfs_alloc_path();
d8926bb3
MF
787 if (!path)
788 return -ENOMEM;
789
e02119d5
CM
790 key.objectid = start;
791 key.offset = len;
3173a18f 792 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 793 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 794 btrfs_free_path(path);
7bb86316
CM
795 return ret;
796}
797
a22285a6 798/*
3173a18f 799 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
800 *
801 * the head node for delayed ref is used to store the sum of all the
802 * reference count modifications queued up in the rbtree. the head
803 * node may also store the extent flags to set. This way you can check
804 * to see what the reference count and extent flags would be if all of
805 * the delayed refs are not processed.
806 */
807int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 808 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 809 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
810{
811 struct btrfs_delayed_ref_head *head;
812 struct btrfs_delayed_ref_root *delayed_refs;
813 struct btrfs_path *path;
814 struct btrfs_extent_item *ei;
815 struct extent_buffer *leaf;
816 struct btrfs_key key;
817 u32 item_size;
818 u64 num_refs;
819 u64 extent_flags;
820 int ret;
821
3173a18f
JB
822 /*
823 * If we don't have skinny metadata, don't bother doing anything
824 * different
825 */
0b246afa
JM
826 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
827 offset = fs_info->nodesize;
3173a18f
JB
828 metadata = 0;
829 }
830
a22285a6
YZ
831 path = btrfs_alloc_path();
832 if (!path)
833 return -ENOMEM;
834
a22285a6
YZ
835 if (!trans) {
836 path->skip_locking = 1;
837 path->search_commit_root = 1;
838 }
639eefc8
FDBM
839
840search_again:
841 key.objectid = bytenr;
842 key.offset = offset;
843 if (metadata)
844 key.type = BTRFS_METADATA_ITEM_KEY;
845 else
846 key.type = BTRFS_EXTENT_ITEM_KEY;
847
0b246afa 848 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
849 if (ret < 0)
850 goto out_free;
851
3173a18f 852 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
853 if (path->slots[0]) {
854 path->slots[0]--;
855 btrfs_item_key_to_cpu(path->nodes[0], &key,
856 path->slots[0]);
857 if (key.objectid == bytenr &&
858 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 859 key.offset == fs_info->nodesize)
74be9510
FDBM
860 ret = 0;
861 }
3173a18f
JB
862 }
863
a22285a6
YZ
864 if (ret == 0) {
865 leaf = path->nodes[0];
866 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
867 if (item_size >= sizeof(*ei)) {
868 ei = btrfs_item_ptr(leaf, path->slots[0],
869 struct btrfs_extent_item);
870 num_refs = btrfs_extent_refs(leaf, ei);
871 extent_flags = btrfs_extent_flags(leaf, ei);
872 } else {
873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 struct btrfs_extent_item_v0 *ei0;
875 BUG_ON(item_size != sizeof(*ei0));
876 ei0 = btrfs_item_ptr(leaf, path->slots[0],
877 struct btrfs_extent_item_v0);
878 num_refs = btrfs_extent_refs_v0(leaf, ei0);
879 /* FIXME: this isn't correct for data */
880 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881#else
882 BUG();
883#endif
884 }
885 BUG_ON(num_refs == 0);
886 } else {
887 num_refs = 0;
888 extent_flags = 0;
889 ret = 0;
890 }
891
892 if (!trans)
893 goto out;
894
895 delayed_refs = &trans->transaction->delayed_refs;
896 spin_lock(&delayed_refs->lock);
f72ad18e 897 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
898 if (head) {
899 if (!mutex_trylock(&head->mutex)) {
d278850e 900 refcount_inc(&head->refs);
a22285a6
YZ
901 spin_unlock(&delayed_refs->lock);
902
b3b4aa74 903 btrfs_release_path(path);
a22285a6 904
8cc33e5c
DS
905 /*
906 * Mutex was contended, block until it's released and try
907 * again
908 */
a22285a6
YZ
909 mutex_lock(&head->mutex);
910 mutex_unlock(&head->mutex);
d278850e 911 btrfs_put_delayed_ref_head(head);
639eefc8 912 goto search_again;
a22285a6 913 }
d7df2c79 914 spin_lock(&head->lock);
a22285a6
YZ
915 if (head->extent_op && head->extent_op->update_flags)
916 extent_flags |= head->extent_op->flags_to_set;
917 else
918 BUG_ON(num_refs == 0);
919
d278850e 920 num_refs += head->ref_mod;
d7df2c79 921 spin_unlock(&head->lock);
a22285a6
YZ
922 mutex_unlock(&head->mutex);
923 }
924 spin_unlock(&delayed_refs->lock);
925out:
926 WARN_ON(num_refs == 0);
927 if (refs)
928 *refs = num_refs;
929 if (flags)
930 *flags = extent_flags;
931out_free:
932 btrfs_free_path(path);
933 return ret;
934}
935
d8d5f3e1
CM
936/*
937 * Back reference rules. Back refs have three main goals:
938 *
939 * 1) differentiate between all holders of references to an extent so that
940 * when a reference is dropped we can make sure it was a valid reference
941 * before freeing the extent.
942 *
943 * 2) Provide enough information to quickly find the holders of an extent
944 * if we notice a given block is corrupted or bad.
945 *
946 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
947 * maintenance. This is actually the same as #2, but with a slightly
948 * different use case.
949 *
5d4f98a2
YZ
950 * There are two kinds of back refs. The implicit back refs is optimized
951 * for pointers in non-shared tree blocks. For a given pointer in a block,
952 * back refs of this kind provide information about the block's owner tree
953 * and the pointer's key. These information allow us to find the block by
954 * b-tree searching. The full back refs is for pointers in tree blocks not
955 * referenced by their owner trees. The location of tree block is recorded
956 * in the back refs. Actually the full back refs is generic, and can be
957 * used in all cases the implicit back refs is used. The major shortcoming
958 * of the full back refs is its overhead. Every time a tree block gets
959 * COWed, we have to update back refs entry for all pointers in it.
960 *
961 * For a newly allocated tree block, we use implicit back refs for
962 * pointers in it. This means most tree related operations only involve
963 * implicit back refs. For a tree block created in old transaction, the
964 * only way to drop a reference to it is COW it. So we can detect the
965 * event that tree block loses its owner tree's reference and do the
966 * back refs conversion.
967 *
01327610 968 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
969 *
970 * The reference count of the block is one and the tree is the block's
971 * owner tree. Nothing to do in this case.
972 *
973 * The reference count of the block is one and the tree is not the
974 * block's owner tree. In this case, full back refs is used for pointers
975 * in the block. Remove these full back refs, add implicit back refs for
976 * every pointers in the new block.
977 *
978 * The reference count of the block is greater than one and the tree is
979 * the block's owner tree. In this case, implicit back refs is used for
980 * pointers in the block. Add full back refs for every pointers in the
981 * block, increase lower level extents' reference counts. The original
982 * implicit back refs are entailed to the new block.
983 *
984 * The reference count of the block is greater than one and the tree is
985 * not the block's owner tree. Add implicit back refs for every pointer in
986 * the new block, increase lower level extents' reference count.
987 *
988 * Back Reference Key composing:
989 *
990 * The key objectid corresponds to the first byte in the extent,
991 * The key type is used to differentiate between types of back refs.
992 * There are different meanings of the key offset for different types
993 * of back refs.
994 *
d8d5f3e1
CM
995 * File extents can be referenced by:
996 *
997 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 998 * - different files inside a single subvolume
d8d5f3e1
CM
999 * - different offsets inside a file (bookend extents in file.c)
1000 *
5d4f98a2 1001 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1002 *
1003 * - Objectid of the subvolume root
d8d5f3e1 1004 * - objectid of the file holding the reference
5d4f98a2
YZ
1005 * - original offset in the file
1006 * - how many bookend extents
d8d5f3e1 1007 *
5d4f98a2
YZ
1008 * The key offset for the implicit back refs is hash of the first
1009 * three fields.
d8d5f3e1 1010 *
5d4f98a2 1011 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1012 *
5d4f98a2 1013 * - number of pointers in the tree leaf
d8d5f3e1 1014 *
5d4f98a2
YZ
1015 * The key offset for the implicit back refs is the first byte of
1016 * the tree leaf
d8d5f3e1 1017 *
5d4f98a2
YZ
1018 * When a file extent is allocated, The implicit back refs is used.
1019 * the fields are filled in:
d8d5f3e1 1020 *
5d4f98a2 1021 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * When a file extent is removed file truncation, we find the
1024 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1025 *
5d4f98a2 1026 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1027 *
5d4f98a2 1028 * Btree extents can be referenced by:
d8d5f3e1 1029 *
5d4f98a2 1030 * - Different subvolumes
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * Both the implicit back refs and the full back refs for tree blocks
1033 * only consist of key. The key offset for the implicit back refs is
1034 * objectid of block's owner tree. The key offset for the full back refs
1035 * is the first byte of parent block.
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When implicit back refs is used, information about the lowest key and
1038 * level of the tree block are required. These information are stored in
1039 * tree block info structure.
d8d5f3e1 1040 */
31840ae1 1041
5d4f98a2
YZ
1042#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1043static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1044 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1045 struct btrfs_path *path,
1046 u64 owner, u32 extra_size)
7bb86316 1047{
87bde3cd 1048 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1049 struct btrfs_extent_item *item;
1050 struct btrfs_extent_item_v0 *ei0;
1051 struct btrfs_extent_ref_v0 *ref0;
1052 struct btrfs_tree_block_info *bi;
1053 struct extent_buffer *leaf;
7bb86316 1054 struct btrfs_key key;
5d4f98a2
YZ
1055 struct btrfs_key found_key;
1056 u32 new_size = sizeof(*item);
1057 u64 refs;
1058 int ret;
1059
1060 leaf = path->nodes[0];
1061 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1062
1063 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1064 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1065 struct btrfs_extent_item_v0);
1066 refs = btrfs_extent_refs_v0(leaf, ei0);
1067
1068 if (owner == (u64)-1) {
1069 while (1) {
1070 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1071 ret = btrfs_next_leaf(root, path);
1072 if (ret < 0)
1073 return ret;
79787eaa 1074 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1075 leaf = path->nodes[0];
1076 }
1077 btrfs_item_key_to_cpu(leaf, &found_key,
1078 path->slots[0]);
1079 BUG_ON(key.objectid != found_key.objectid);
1080 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1081 path->slots[0]++;
1082 continue;
1083 }
1084 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1085 struct btrfs_extent_ref_v0);
1086 owner = btrfs_ref_objectid_v0(leaf, ref0);
1087 break;
1088 }
1089 }
b3b4aa74 1090 btrfs_release_path(path);
5d4f98a2
YZ
1091
1092 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1093 new_size += sizeof(*bi);
1094
1095 new_size -= sizeof(*ei0);
1096 ret = btrfs_search_slot(trans, root, &key, path,
1097 new_size + extra_size, 1);
1098 if (ret < 0)
1099 return ret;
79787eaa 1100 BUG_ON(ret); /* Corruption */
5d4f98a2 1101
87bde3cd 1102 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1103
1104 leaf = path->nodes[0];
1105 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1106 btrfs_set_extent_refs(leaf, item, refs);
1107 /* FIXME: get real generation */
1108 btrfs_set_extent_generation(leaf, item, 0);
1109 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1110 btrfs_set_extent_flags(leaf, item,
1111 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1112 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1113 bi = (struct btrfs_tree_block_info *)(item + 1);
1114 /* FIXME: get first key of the block */
b159fa28 1115 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1116 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1117 } else {
1118 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1119 }
1120 btrfs_mark_buffer_dirty(leaf);
1121 return 0;
1122}
1123#endif
1124
167ce953
LB
1125/*
1126 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1127 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1128 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1129 */
1130int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1131 struct btrfs_extent_inline_ref *iref,
1132 enum btrfs_inline_ref_type is_data)
1133{
1134 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1135 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1136
1137 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1138 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1139 type == BTRFS_SHARED_DATA_REF_KEY ||
1140 type == BTRFS_EXTENT_DATA_REF_KEY) {
1141 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1142 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1143 return type;
64ecdb64
LB
1144 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1145 ASSERT(eb->fs_info);
1146 /*
1147 * Every shared one has parent tree
1148 * block, which must be aligned to
1149 * nodesize.
1150 */
1151 if (offset &&
1152 IS_ALIGNED(offset, eb->fs_info->nodesize))
1153 return type;
1154 }
167ce953 1155 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1156 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1157 return type;
64ecdb64
LB
1158 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1159 ASSERT(eb->fs_info);
1160 /*
1161 * Every shared one has parent tree
1162 * block, which must be aligned to
1163 * nodesize.
1164 */
1165 if (offset &&
1166 IS_ALIGNED(offset, eb->fs_info->nodesize))
1167 return type;
1168 }
167ce953
LB
1169 } else {
1170 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1171 return type;
1172 }
1173 }
1174
1175 btrfs_print_leaf((struct extent_buffer *)eb);
1176 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1177 eb->start, type);
1178 WARN_ON(1);
1179
1180 return BTRFS_REF_TYPE_INVALID;
1181}
1182
5d4f98a2
YZ
1183static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1184{
1185 u32 high_crc = ~(u32)0;
1186 u32 low_crc = ~(u32)0;
1187 __le64 lenum;
1188
1189 lenum = cpu_to_le64(root_objectid);
9678c543 1190 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1191 lenum = cpu_to_le64(owner);
9678c543 1192 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1193 lenum = cpu_to_le64(offset);
9678c543 1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1195
1196 return ((u64)high_crc << 31) ^ (u64)low_crc;
1197}
1198
1199static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1200 struct btrfs_extent_data_ref *ref)
1201{
1202 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1203 btrfs_extent_data_ref_objectid(leaf, ref),
1204 btrfs_extent_data_ref_offset(leaf, ref));
1205}
1206
1207static int match_extent_data_ref(struct extent_buffer *leaf,
1208 struct btrfs_extent_data_ref *ref,
1209 u64 root_objectid, u64 owner, u64 offset)
1210{
1211 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1212 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1213 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1214 return 0;
1215 return 1;
1216}
1217
1218static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1219 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1220 struct btrfs_path *path,
1221 u64 bytenr, u64 parent,
1222 u64 root_objectid,
1223 u64 owner, u64 offset)
1224{
87bde3cd 1225 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1226 struct btrfs_key key;
1227 struct btrfs_extent_data_ref *ref;
31840ae1 1228 struct extent_buffer *leaf;
5d4f98a2 1229 u32 nritems;
74493f7a 1230 int ret;
5d4f98a2
YZ
1231 int recow;
1232 int err = -ENOENT;
74493f7a 1233
31840ae1 1234 key.objectid = bytenr;
5d4f98a2
YZ
1235 if (parent) {
1236 key.type = BTRFS_SHARED_DATA_REF_KEY;
1237 key.offset = parent;
1238 } else {
1239 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1240 key.offset = hash_extent_data_ref(root_objectid,
1241 owner, offset);
1242 }
1243again:
1244 recow = 0;
1245 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1246 if (ret < 0) {
1247 err = ret;
1248 goto fail;
1249 }
31840ae1 1250
5d4f98a2
YZ
1251 if (parent) {
1252 if (!ret)
1253 return 0;
1254#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1255 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1256 btrfs_release_path(path);
5d4f98a2
YZ
1257 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1258 if (ret < 0) {
1259 err = ret;
1260 goto fail;
1261 }
1262 if (!ret)
1263 return 0;
1264#endif
1265 goto fail;
31840ae1
ZY
1266 }
1267
1268 leaf = path->nodes[0];
5d4f98a2
YZ
1269 nritems = btrfs_header_nritems(leaf);
1270 while (1) {
1271 if (path->slots[0] >= nritems) {
1272 ret = btrfs_next_leaf(root, path);
1273 if (ret < 0)
1274 err = ret;
1275 if (ret)
1276 goto fail;
1277
1278 leaf = path->nodes[0];
1279 nritems = btrfs_header_nritems(leaf);
1280 recow = 1;
1281 }
1282
1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284 if (key.objectid != bytenr ||
1285 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1286 goto fail;
1287
1288 ref = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_data_ref);
1290
1291 if (match_extent_data_ref(leaf, ref, root_objectid,
1292 owner, offset)) {
1293 if (recow) {
b3b4aa74 1294 btrfs_release_path(path);
5d4f98a2
YZ
1295 goto again;
1296 }
1297 err = 0;
1298 break;
1299 }
1300 path->slots[0]++;
31840ae1 1301 }
5d4f98a2
YZ
1302fail:
1303 return err;
31840ae1
ZY
1304}
1305
5d4f98a2 1306static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1307 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1308 struct btrfs_path *path,
1309 u64 bytenr, u64 parent,
1310 u64 root_objectid, u64 owner,
1311 u64 offset, int refs_to_add)
31840ae1 1312{
87bde3cd 1313 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1314 struct btrfs_key key;
1315 struct extent_buffer *leaf;
5d4f98a2 1316 u32 size;
31840ae1
ZY
1317 u32 num_refs;
1318 int ret;
74493f7a 1319
74493f7a 1320 key.objectid = bytenr;
5d4f98a2
YZ
1321 if (parent) {
1322 key.type = BTRFS_SHARED_DATA_REF_KEY;
1323 key.offset = parent;
1324 size = sizeof(struct btrfs_shared_data_ref);
1325 } else {
1326 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1327 key.offset = hash_extent_data_ref(root_objectid,
1328 owner, offset);
1329 size = sizeof(struct btrfs_extent_data_ref);
1330 }
74493f7a 1331
5d4f98a2
YZ
1332 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1333 if (ret && ret != -EEXIST)
1334 goto fail;
1335
1336 leaf = path->nodes[0];
1337 if (parent) {
1338 struct btrfs_shared_data_ref *ref;
31840ae1 1339 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1340 struct btrfs_shared_data_ref);
1341 if (ret == 0) {
1342 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1343 } else {
1344 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1345 num_refs += refs_to_add;
1346 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1347 }
5d4f98a2
YZ
1348 } else {
1349 struct btrfs_extent_data_ref *ref;
1350 while (ret == -EEXIST) {
1351 ref = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_data_ref);
1353 if (match_extent_data_ref(leaf, ref, root_objectid,
1354 owner, offset))
1355 break;
b3b4aa74 1356 btrfs_release_path(path);
5d4f98a2
YZ
1357 key.offset++;
1358 ret = btrfs_insert_empty_item(trans, root, path, &key,
1359 size);
1360 if (ret && ret != -EEXIST)
1361 goto fail;
31840ae1 1362
5d4f98a2
YZ
1363 leaf = path->nodes[0];
1364 }
1365 ref = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_extent_data_ref);
1367 if (ret == 0) {
1368 btrfs_set_extent_data_ref_root(leaf, ref,
1369 root_objectid);
1370 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1371 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1372 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1373 } else {
1374 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1375 num_refs += refs_to_add;
1376 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1377 }
31840ae1 1378 }
5d4f98a2
YZ
1379 btrfs_mark_buffer_dirty(leaf);
1380 ret = 0;
1381fail:
b3b4aa74 1382 btrfs_release_path(path);
7bb86316 1383 return ret;
74493f7a
CM
1384}
1385
5d4f98a2 1386static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1387 struct btrfs_fs_info *fs_info,
5d4f98a2 1388 struct btrfs_path *path,
fcebe456 1389 int refs_to_drop, int *last_ref)
31840ae1 1390{
5d4f98a2
YZ
1391 struct btrfs_key key;
1392 struct btrfs_extent_data_ref *ref1 = NULL;
1393 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1394 struct extent_buffer *leaf;
5d4f98a2 1395 u32 num_refs = 0;
31840ae1
ZY
1396 int ret = 0;
1397
1398 leaf = path->nodes[0];
5d4f98a2
YZ
1399 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1400
1401 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1402 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_extent_data_ref);
1404 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1405 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1406 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1407 struct btrfs_shared_data_ref);
1408 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1409#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1410 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1411 struct btrfs_extent_ref_v0 *ref0;
1412 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1413 struct btrfs_extent_ref_v0);
1414 num_refs = btrfs_ref_count_v0(leaf, ref0);
1415#endif
1416 } else {
1417 BUG();
1418 }
1419
56bec294
CM
1420 BUG_ON(num_refs < refs_to_drop);
1421 num_refs -= refs_to_drop;
5d4f98a2 1422
31840ae1 1423 if (num_refs == 0) {
87bde3cd 1424 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1425 *last_ref = 1;
31840ae1 1426 } else {
5d4f98a2
YZ
1427 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1428 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1429 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1430 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1431#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1432 else {
1433 struct btrfs_extent_ref_v0 *ref0;
1434 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1435 struct btrfs_extent_ref_v0);
1436 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1437 }
1438#endif
31840ae1
ZY
1439 btrfs_mark_buffer_dirty(leaf);
1440 }
31840ae1
ZY
1441 return ret;
1442}
1443
9ed0dea0 1444static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1445 struct btrfs_extent_inline_ref *iref)
15916de8 1446{
5d4f98a2
YZ
1447 struct btrfs_key key;
1448 struct extent_buffer *leaf;
1449 struct btrfs_extent_data_ref *ref1;
1450 struct btrfs_shared_data_ref *ref2;
1451 u32 num_refs = 0;
3de28d57 1452 int type;
5d4f98a2
YZ
1453
1454 leaf = path->nodes[0];
1455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1456 if (iref) {
3de28d57
LB
1457 /*
1458 * If type is invalid, we should have bailed out earlier than
1459 * this call.
1460 */
1461 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1462 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1463 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1464 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1465 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1466 } else {
1467 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1468 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1469 }
1470 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1471 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1472 struct btrfs_extent_data_ref);
1473 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1474 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1475 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1476 struct btrfs_shared_data_ref);
1477 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1478#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1479 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1480 struct btrfs_extent_ref_v0 *ref0;
1481 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1482 struct btrfs_extent_ref_v0);
1483 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1484#endif
5d4f98a2
YZ
1485 } else {
1486 WARN_ON(1);
1487 }
1488 return num_refs;
1489}
15916de8 1490
5d4f98a2 1491static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1492 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1493 struct btrfs_path *path,
1494 u64 bytenr, u64 parent,
1495 u64 root_objectid)
1f3c79a2 1496{
87bde3cd 1497 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1498 struct btrfs_key key;
1f3c79a2 1499 int ret;
1f3c79a2 1500
5d4f98a2
YZ
1501 key.objectid = bytenr;
1502 if (parent) {
1503 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1504 key.offset = parent;
1505 } else {
1506 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1507 key.offset = root_objectid;
1f3c79a2
LH
1508 }
1509
5d4f98a2
YZ
1510 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1511 if (ret > 0)
1512 ret = -ENOENT;
1513#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1514 if (ret == -ENOENT && parent) {
b3b4aa74 1515 btrfs_release_path(path);
5d4f98a2
YZ
1516 key.type = BTRFS_EXTENT_REF_V0_KEY;
1517 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1518 if (ret > 0)
1519 ret = -ENOENT;
1520 }
1f3c79a2 1521#endif
5d4f98a2 1522 return ret;
1f3c79a2
LH
1523}
1524
5d4f98a2 1525static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1526 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1527 struct btrfs_path *path,
1528 u64 bytenr, u64 parent,
1529 u64 root_objectid)
31840ae1 1530{
5d4f98a2 1531 struct btrfs_key key;
31840ae1 1532 int ret;
31840ae1 1533
5d4f98a2
YZ
1534 key.objectid = bytenr;
1535 if (parent) {
1536 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1537 key.offset = parent;
1538 } else {
1539 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1540 key.offset = root_objectid;
1541 }
1542
87bde3cd
JM
1543 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1544 path, &key, 0);
b3b4aa74 1545 btrfs_release_path(path);
31840ae1
ZY
1546 return ret;
1547}
1548
5d4f98a2 1549static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1550{
5d4f98a2
YZ
1551 int type;
1552 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1553 if (parent > 0)
1554 type = BTRFS_SHARED_BLOCK_REF_KEY;
1555 else
1556 type = BTRFS_TREE_BLOCK_REF_KEY;
1557 } else {
1558 if (parent > 0)
1559 type = BTRFS_SHARED_DATA_REF_KEY;
1560 else
1561 type = BTRFS_EXTENT_DATA_REF_KEY;
1562 }
1563 return type;
31840ae1 1564}
56bec294 1565
2c47e605
YZ
1566static int find_next_key(struct btrfs_path *path, int level,
1567 struct btrfs_key *key)
56bec294 1568
02217ed2 1569{
2c47e605 1570 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1571 if (!path->nodes[level])
1572 break;
5d4f98a2
YZ
1573 if (path->slots[level] + 1 >=
1574 btrfs_header_nritems(path->nodes[level]))
1575 continue;
1576 if (level == 0)
1577 btrfs_item_key_to_cpu(path->nodes[level], key,
1578 path->slots[level] + 1);
1579 else
1580 btrfs_node_key_to_cpu(path->nodes[level], key,
1581 path->slots[level] + 1);
1582 return 0;
1583 }
1584 return 1;
1585}
037e6390 1586
5d4f98a2
YZ
1587/*
1588 * look for inline back ref. if back ref is found, *ref_ret is set
1589 * to the address of inline back ref, and 0 is returned.
1590 *
1591 * if back ref isn't found, *ref_ret is set to the address where it
1592 * should be inserted, and -ENOENT is returned.
1593 *
1594 * if insert is true and there are too many inline back refs, the path
1595 * points to the extent item, and -EAGAIN is returned.
1596 *
1597 * NOTE: inline back refs are ordered in the same way that back ref
1598 * items in the tree are ordered.
1599 */
1600static noinline_for_stack
1601int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1602 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1603 struct btrfs_path *path,
1604 struct btrfs_extent_inline_ref **ref_ret,
1605 u64 bytenr, u64 num_bytes,
1606 u64 parent, u64 root_objectid,
1607 u64 owner, u64 offset, int insert)
1608{
87bde3cd 1609 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1610 struct btrfs_key key;
1611 struct extent_buffer *leaf;
1612 struct btrfs_extent_item *ei;
1613 struct btrfs_extent_inline_ref *iref;
1614 u64 flags;
1615 u64 item_size;
1616 unsigned long ptr;
1617 unsigned long end;
1618 int extra_size;
1619 int type;
1620 int want;
1621 int ret;
1622 int err = 0;
0b246afa 1623 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1624 int needed;
26b8003f 1625
db94535d 1626 key.objectid = bytenr;
31840ae1 1627 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1628 key.offset = num_bytes;
31840ae1 1629
5d4f98a2
YZ
1630 want = extent_ref_type(parent, owner);
1631 if (insert) {
1632 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1633 path->keep_locks = 1;
5d4f98a2
YZ
1634 } else
1635 extra_size = -1;
3173a18f
JB
1636
1637 /*
1638 * Owner is our parent level, so we can just add one to get the level
1639 * for the block we are interested in.
1640 */
1641 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1642 key.type = BTRFS_METADATA_ITEM_KEY;
1643 key.offset = owner;
1644 }
1645
1646again:
5d4f98a2 1647 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1648 if (ret < 0) {
5d4f98a2
YZ
1649 err = ret;
1650 goto out;
1651 }
3173a18f
JB
1652
1653 /*
1654 * We may be a newly converted file system which still has the old fat
1655 * extent entries for metadata, so try and see if we have one of those.
1656 */
1657 if (ret > 0 && skinny_metadata) {
1658 skinny_metadata = false;
1659 if (path->slots[0]) {
1660 path->slots[0]--;
1661 btrfs_item_key_to_cpu(path->nodes[0], &key,
1662 path->slots[0]);
1663 if (key.objectid == bytenr &&
1664 key.type == BTRFS_EXTENT_ITEM_KEY &&
1665 key.offset == num_bytes)
1666 ret = 0;
1667 }
1668 if (ret) {
9ce49a0b 1669 key.objectid = bytenr;
3173a18f
JB
1670 key.type = BTRFS_EXTENT_ITEM_KEY;
1671 key.offset = num_bytes;
1672 btrfs_release_path(path);
1673 goto again;
1674 }
1675 }
1676
79787eaa
JM
1677 if (ret && !insert) {
1678 err = -ENOENT;
1679 goto out;
fae7f21c 1680 } else if (WARN_ON(ret)) {
492104c8 1681 err = -EIO;
492104c8 1682 goto out;
79787eaa 1683 }
5d4f98a2
YZ
1684
1685 leaf = path->nodes[0];
1686 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1687#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1688 if (item_size < sizeof(*ei)) {
1689 if (!insert) {
1690 err = -ENOENT;
1691 goto out;
1692 }
87bde3cd 1693 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1694 extra_size);
1695 if (ret < 0) {
1696 err = ret;
1697 goto out;
1698 }
1699 leaf = path->nodes[0];
1700 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1701 }
1702#endif
1703 BUG_ON(item_size < sizeof(*ei));
1704
5d4f98a2
YZ
1705 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1706 flags = btrfs_extent_flags(leaf, ei);
1707
1708 ptr = (unsigned long)(ei + 1);
1709 end = (unsigned long)ei + item_size;
1710
3173a18f 1711 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1712 ptr += sizeof(struct btrfs_tree_block_info);
1713 BUG_ON(ptr > end);
5d4f98a2
YZ
1714 }
1715
3de28d57
LB
1716 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1717 needed = BTRFS_REF_TYPE_DATA;
1718 else
1719 needed = BTRFS_REF_TYPE_BLOCK;
1720
5d4f98a2
YZ
1721 err = -ENOENT;
1722 while (1) {
1723 if (ptr >= end) {
1724 WARN_ON(ptr > end);
1725 break;
1726 }
1727 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1728 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1729 if (type == BTRFS_REF_TYPE_INVALID) {
1730 err = -EINVAL;
1731 goto out;
1732 }
1733
5d4f98a2
YZ
1734 if (want < type)
1735 break;
1736 if (want > type) {
1737 ptr += btrfs_extent_inline_ref_size(type);
1738 continue;
1739 }
1740
1741 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1742 struct btrfs_extent_data_ref *dref;
1743 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1744 if (match_extent_data_ref(leaf, dref, root_objectid,
1745 owner, offset)) {
1746 err = 0;
1747 break;
1748 }
1749 if (hash_extent_data_ref_item(leaf, dref) <
1750 hash_extent_data_ref(root_objectid, owner, offset))
1751 break;
1752 } else {
1753 u64 ref_offset;
1754 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1755 if (parent > 0) {
1756 if (parent == ref_offset) {
1757 err = 0;
1758 break;
1759 }
1760 if (ref_offset < parent)
1761 break;
1762 } else {
1763 if (root_objectid == ref_offset) {
1764 err = 0;
1765 break;
1766 }
1767 if (ref_offset < root_objectid)
1768 break;
1769 }
1770 }
1771 ptr += btrfs_extent_inline_ref_size(type);
1772 }
1773 if (err == -ENOENT && insert) {
1774 if (item_size + extra_size >=
1775 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1776 err = -EAGAIN;
1777 goto out;
1778 }
1779 /*
1780 * To add new inline back ref, we have to make sure
1781 * there is no corresponding back ref item.
1782 * For simplicity, we just do not add new inline back
1783 * ref if there is any kind of item for this block
1784 */
2c47e605
YZ
1785 if (find_next_key(path, 0, &key) == 0 &&
1786 key.objectid == bytenr &&
85d4198e 1787 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1788 err = -EAGAIN;
1789 goto out;
1790 }
1791 }
1792 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1793out:
85d4198e 1794 if (insert) {
5d4f98a2
YZ
1795 path->keep_locks = 0;
1796 btrfs_unlock_up_safe(path, 1);
1797 }
1798 return err;
1799}
1800
1801/*
1802 * helper to add new inline back ref
1803 */
1804static noinline_for_stack
87bde3cd 1805void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1806 struct btrfs_path *path,
1807 struct btrfs_extent_inline_ref *iref,
1808 u64 parent, u64 root_objectid,
1809 u64 owner, u64 offset, int refs_to_add,
1810 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1811{
1812 struct extent_buffer *leaf;
1813 struct btrfs_extent_item *ei;
1814 unsigned long ptr;
1815 unsigned long end;
1816 unsigned long item_offset;
1817 u64 refs;
1818 int size;
1819 int type;
5d4f98a2
YZ
1820
1821 leaf = path->nodes[0];
1822 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1823 item_offset = (unsigned long)iref - (unsigned long)ei;
1824
1825 type = extent_ref_type(parent, owner);
1826 size = btrfs_extent_inline_ref_size(type);
1827
87bde3cd 1828 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1829
1830 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1831 refs = btrfs_extent_refs(leaf, ei);
1832 refs += refs_to_add;
1833 btrfs_set_extent_refs(leaf, ei, refs);
1834 if (extent_op)
1835 __run_delayed_extent_op(extent_op, leaf, ei);
1836
1837 ptr = (unsigned long)ei + item_offset;
1838 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1839 if (ptr < end - size)
1840 memmove_extent_buffer(leaf, ptr + size, ptr,
1841 end - size - ptr);
1842
1843 iref = (struct btrfs_extent_inline_ref *)ptr;
1844 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1845 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1846 struct btrfs_extent_data_ref *dref;
1847 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1848 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1849 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1850 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1851 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1852 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1853 struct btrfs_shared_data_ref *sref;
1854 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1855 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1856 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1857 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859 } else {
1860 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1861 }
1862 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1863}
1864
1865static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1866 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref **ref_ret,
1869 u64 bytenr, u64 num_bytes, u64 parent,
1870 u64 root_objectid, u64 owner, u64 offset)
1871{
1872 int ret;
1873
87bde3cd 1874 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1875 bytenr, num_bytes, parent,
1876 root_objectid, owner, offset, 0);
1877 if (ret != -ENOENT)
54aa1f4d 1878 return ret;
5d4f98a2 1879
b3b4aa74 1880 btrfs_release_path(path);
5d4f98a2
YZ
1881 *ref_ret = NULL;
1882
1883 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1884 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1885 parent, root_objectid);
5d4f98a2 1886 } else {
87bde3cd
JM
1887 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1888 parent, root_objectid, owner,
1889 offset);
b9473439 1890 }
5d4f98a2
YZ
1891 return ret;
1892}
31840ae1 1893
5d4f98a2
YZ
1894/*
1895 * helper to update/remove inline back ref
1896 */
1897static noinline_for_stack
87bde3cd 1898void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1899 struct btrfs_path *path,
1900 struct btrfs_extent_inline_ref *iref,
1901 int refs_to_mod,
fcebe456
JB
1902 struct btrfs_delayed_extent_op *extent_op,
1903 int *last_ref)
5d4f98a2
YZ
1904{
1905 struct extent_buffer *leaf;
1906 struct btrfs_extent_item *ei;
1907 struct btrfs_extent_data_ref *dref = NULL;
1908 struct btrfs_shared_data_ref *sref = NULL;
1909 unsigned long ptr;
1910 unsigned long end;
1911 u32 item_size;
1912 int size;
1913 int type;
5d4f98a2
YZ
1914 u64 refs;
1915
1916 leaf = path->nodes[0];
1917 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1918 refs = btrfs_extent_refs(leaf, ei);
1919 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1920 refs += refs_to_mod;
1921 btrfs_set_extent_refs(leaf, ei, refs);
1922 if (extent_op)
1923 __run_delayed_extent_op(extent_op, leaf, ei);
1924
3de28d57
LB
1925 /*
1926 * If type is invalid, we should have bailed out after
1927 * lookup_inline_extent_backref().
1928 */
1929 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1930 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1931
1932 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1933 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1934 refs = btrfs_extent_data_ref_count(leaf, dref);
1935 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1936 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1937 refs = btrfs_shared_data_ref_count(leaf, sref);
1938 } else {
1939 refs = 1;
1940 BUG_ON(refs_to_mod != -1);
56bec294 1941 }
31840ae1 1942
5d4f98a2
YZ
1943 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1944 refs += refs_to_mod;
1945
1946 if (refs > 0) {
1947 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1948 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1949 else
1950 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1951 } else {
fcebe456 1952 *last_ref = 1;
5d4f98a2
YZ
1953 size = btrfs_extent_inline_ref_size(type);
1954 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1955 ptr = (unsigned long)iref;
1956 end = (unsigned long)ei + item_size;
1957 if (ptr + size < end)
1958 memmove_extent_buffer(leaf, ptr, ptr + size,
1959 end - ptr - size);
1960 item_size -= size;
87bde3cd 1961 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1962 }
1963 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1964}
1965
1966static noinline_for_stack
1967int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1968 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1969 struct btrfs_path *path,
1970 u64 bytenr, u64 num_bytes, u64 parent,
1971 u64 root_objectid, u64 owner,
1972 u64 offset, int refs_to_add,
1973 struct btrfs_delayed_extent_op *extent_op)
1974{
1975 struct btrfs_extent_inline_ref *iref;
1976 int ret;
1977
87bde3cd 1978 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1979 bytenr, num_bytes, parent,
1980 root_objectid, owner, offset, 1);
1981 if (ret == 0) {
1982 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1983 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1984 refs_to_add, extent_op, NULL);
5d4f98a2 1985 } else if (ret == -ENOENT) {
87bde3cd 1986 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1987 root_objectid, owner, offset,
1988 refs_to_add, extent_op);
1989 ret = 0;
771ed689 1990 }
5d4f98a2
YZ
1991 return ret;
1992}
31840ae1 1993
5d4f98a2 1994static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1995 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1996 struct btrfs_path *path,
1997 u64 bytenr, u64 parent, u64 root_objectid,
1998 u64 owner, u64 offset, int refs_to_add)
1999{
2000 int ret;
2001 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2002 BUG_ON(refs_to_add != 1);
87bde3cd 2003 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2004 parent, root_objectid);
2005 } else {
87bde3cd 2006 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2007 parent, root_objectid,
2008 owner, offset, refs_to_add);
2009 }
2010 return ret;
2011}
56bec294 2012
5d4f98a2 2013static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2014 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2015 struct btrfs_path *path,
2016 struct btrfs_extent_inline_ref *iref,
fcebe456 2017 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2018{
143bede5 2019 int ret = 0;
b9473439 2020
5d4f98a2
YZ
2021 BUG_ON(!is_data && refs_to_drop != 1);
2022 if (iref) {
87bde3cd 2023 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2024 -refs_to_drop, NULL, last_ref);
5d4f98a2 2025 } else if (is_data) {
87bde3cd 2026 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 2027 last_ref);
5d4f98a2 2028 } else {
fcebe456 2029 *last_ref = 1;
87bde3cd 2030 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2031 }
2032 return ret;
2033}
2034
86557861 2035#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2036static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2037 u64 *discarded_bytes)
5d4f98a2 2038{
86557861
JM
2039 int j, ret = 0;
2040 u64 bytes_left, end;
4d89d377 2041 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2042
4d89d377
JM
2043 if (WARN_ON(start != aligned_start)) {
2044 len -= aligned_start - start;
2045 len = round_down(len, 1 << 9);
2046 start = aligned_start;
2047 }
d04c6b88 2048
4d89d377 2049 *discarded_bytes = 0;
86557861
JM
2050
2051 if (!len)
2052 return 0;
2053
2054 end = start + len;
2055 bytes_left = len;
2056
2057 /* Skip any superblocks on this device. */
2058 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2059 u64 sb_start = btrfs_sb_offset(j);
2060 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2061 u64 size = sb_start - start;
2062
2063 if (!in_range(sb_start, start, bytes_left) &&
2064 !in_range(sb_end, start, bytes_left) &&
2065 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2066 continue;
2067
2068 /*
2069 * Superblock spans beginning of range. Adjust start and
2070 * try again.
2071 */
2072 if (sb_start <= start) {
2073 start += sb_end - start;
2074 if (start > end) {
2075 bytes_left = 0;
2076 break;
2077 }
2078 bytes_left = end - start;
2079 continue;
2080 }
2081
2082 if (size) {
2083 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2084 GFP_NOFS, 0);
2085 if (!ret)
2086 *discarded_bytes += size;
2087 else if (ret != -EOPNOTSUPP)
2088 return ret;
2089 }
2090
2091 start = sb_end;
2092 if (start > end) {
2093 bytes_left = 0;
2094 break;
2095 }
2096 bytes_left = end - start;
2097 }
2098
2099 if (bytes_left) {
2100 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2101 GFP_NOFS, 0);
2102 if (!ret)
86557861 2103 *discarded_bytes += bytes_left;
4d89d377 2104 }
d04c6b88 2105 return ret;
5d4f98a2 2106}
5d4f98a2 2107
2ff7e61e 2108int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2109 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2110{
5d4f98a2 2111 int ret;
5378e607 2112 u64 discarded_bytes = 0;
a1d3c478 2113 struct btrfs_bio *bbio = NULL;
5d4f98a2 2114
e244a0ae 2115
2999241d
FM
2116 /*
2117 * Avoid races with device replace and make sure our bbio has devices
2118 * associated to its stripes that don't go away while we are discarding.
2119 */
0b246afa 2120 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2121 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2122 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2123 &bbio, 0);
79787eaa 2124 /* Error condition is -ENOMEM */
5d4f98a2 2125 if (!ret) {
a1d3c478 2126 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2127 int i;
2128
5d4f98a2 2129
a1d3c478 2130 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2131 u64 bytes;
38b5f68e
AJ
2132 struct request_queue *req_q;
2133
627e0873
FM
2134 if (!stripe->dev->bdev) {
2135 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2136 continue;
2137 }
38b5f68e
AJ
2138 req_q = bdev_get_queue(stripe->dev->bdev);
2139 if (!blk_queue_discard(req_q))
d5e2003c
JB
2140 continue;
2141
5378e607
LD
2142 ret = btrfs_issue_discard(stripe->dev->bdev,
2143 stripe->physical,
d04c6b88
JM
2144 stripe->length,
2145 &bytes);
5378e607 2146 if (!ret)
d04c6b88 2147 discarded_bytes += bytes;
5378e607 2148 else if (ret != -EOPNOTSUPP)
79787eaa 2149 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2150
2151 /*
2152 * Just in case we get back EOPNOTSUPP for some reason,
2153 * just ignore the return value so we don't screw up
2154 * people calling discard_extent.
2155 */
2156 ret = 0;
5d4f98a2 2157 }
6e9606d2 2158 btrfs_put_bbio(bbio);
5d4f98a2 2159 }
0b246afa 2160 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2161
2162 if (actual_bytes)
2163 *actual_bytes = discarded_bytes;
2164
5d4f98a2 2165
53b381b3
DW
2166 if (ret == -EOPNOTSUPP)
2167 ret = 0;
5d4f98a2 2168 return ret;
5d4f98a2
YZ
2169}
2170
79787eaa 2171/* Can return -ENOMEM */
5d4f98a2 2172int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2173 struct btrfs_root *root,
5d4f98a2 2174 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2175 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2176{
84f7d8e6 2177 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2178 int old_ref_mod, new_ref_mod;
5d4f98a2 2179 int ret;
66d7e7f0 2180
5d4f98a2
YZ
2181 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2182 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2183
fd708b81
JB
2184 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2185 owner, offset, BTRFS_ADD_DELAYED_REF);
2186
5d4f98a2 2187 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2188 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2189 num_bytes, parent,
2190 root_objectid, (int)owner,
2191 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2192 &old_ref_mod, &new_ref_mod);
5d4f98a2 2193 } else {
66d7e7f0 2194 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2195 num_bytes, parent,
2196 root_objectid, owner, offset,
d7eae340
OS
2197 0, BTRFS_ADD_DELAYED_REF,
2198 &old_ref_mod, &new_ref_mod);
5d4f98a2 2199 }
d7eae340 2200
29d2b84c
NB
2201 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2202 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2203
2204 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2205 }
d7eae340 2206
5d4f98a2
YZ
2207 return ret;
2208}
2209
2210static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2211 struct btrfs_fs_info *fs_info,
c682f9b3 2212 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2213 u64 parent, u64 root_objectid,
2214 u64 owner, u64 offset, int refs_to_add,
2215 struct btrfs_delayed_extent_op *extent_op)
2216{
2217 struct btrfs_path *path;
2218 struct extent_buffer *leaf;
2219 struct btrfs_extent_item *item;
fcebe456 2220 struct btrfs_key key;
c682f9b3
QW
2221 u64 bytenr = node->bytenr;
2222 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2223 u64 refs;
2224 int ret;
5d4f98a2
YZ
2225
2226 path = btrfs_alloc_path();
2227 if (!path)
2228 return -ENOMEM;
2229
e4058b54 2230 path->reada = READA_FORWARD;
5d4f98a2
YZ
2231 path->leave_spinning = 1;
2232 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2233 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2234 num_bytes, parent, root_objectid,
2235 owner, offset,
5d4f98a2 2236 refs_to_add, extent_op);
0ed4792a 2237 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2238 goto out;
fcebe456
JB
2239
2240 /*
2241 * Ok we had -EAGAIN which means we didn't have space to insert and
2242 * inline extent ref, so just update the reference count and add a
2243 * normal backref.
2244 */
5d4f98a2 2245 leaf = path->nodes[0];
fcebe456 2246 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2247 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2248 refs = btrfs_extent_refs(leaf, item);
2249 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2250 if (extent_op)
2251 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2252
5d4f98a2 2253 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2254 btrfs_release_path(path);
56bec294 2255
e4058b54 2256 path->reada = READA_FORWARD;
b9473439 2257 path->leave_spinning = 1;
56bec294 2258 /* now insert the actual backref */
87bde3cd
JM
2259 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2260 root_objectid, owner, offset, refs_to_add);
79787eaa 2261 if (ret)
66642832 2262 btrfs_abort_transaction(trans, ret);
5d4f98a2 2263out:
56bec294 2264 btrfs_free_path(path);
30d133fc 2265 return ret;
56bec294
CM
2266}
2267
5d4f98a2 2268static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2269 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2270 struct btrfs_delayed_ref_node *node,
2271 struct btrfs_delayed_extent_op *extent_op,
2272 int insert_reserved)
56bec294 2273{
5d4f98a2
YZ
2274 int ret = 0;
2275 struct btrfs_delayed_data_ref *ref;
2276 struct btrfs_key ins;
2277 u64 parent = 0;
2278 u64 ref_root = 0;
2279 u64 flags = 0;
2280
2281 ins.objectid = node->bytenr;
2282 ins.offset = node->num_bytes;
2283 ins.type = BTRFS_EXTENT_ITEM_KEY;
2284
2285 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2286 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2287
5d4f98a2
YZ
2288 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2289 parent = ref->parent;
fcebe456 2290 ref_root = ref->root;
5d4f98a2
YZ
2291
2292 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2293 if (extent_op)
5d4f98a2 2294 flags |= extent_op->flags_to_set;
2ff7e61e 2295 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2296 parent, ref_root, flags,
2297 ref->objectid, ref->offset,
2298 &ins, node->ref_mod);
5d4f98a2 2299 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2300 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2301 ref_root, ref->objectid,
2302 ref->offset, node->ref_mod,
c682f9b3 2303 extent_op);
5d4f98a2 2304 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2305 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2306 ref_root, ref->objectid,
2307 ref->offset, node->ref_mod,
c682f9b3 2308 extent_op);
5d4f98a2
YZ
2309 } else {
2310 BUG();
2311 }
2312 return ret;
2313}
2314
2315static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2316 struct extent_buffer *leaf,
2317 struct btrfs_extent_item *ei)
2318{
2319 u64 flags = btrfs_extent_flags(leaf, ei);
2320 if (extent_op->update_flags) {
2321 flags |= extent_op->flags_to_set;
2322 btrfs_set_extent_flags(leaf, ei, flags);
2323 }
2324
2325 if (extent_op->update_key) {
2326 struct btrfs_tree_block_info *bi;
2327 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2328 bi = (struct btrfs_tree_block_info *)(ei + 1);
2329 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2330 }
2331}
2332
2333static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2334 struct btrfs_fs_info *fs_info,
d278850e 2335 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2336 struct btrfs_delayed_extent_op *extent_op)
2337{
2338 struct btrfs_key key;
2339 struct btrfs_path *path;
2340 struct btrfs_extent_item *ei;
2341 struct extent_buffer *leaf;
2342 u32 item_size;
56bec294 2343 int ret;
5d4f98a2 2344 int err = 0;
b1c79e09 2345 int metadata = !extent_op->is_data;
5d4f98a2 2346
79787eaa
JM
2347 if (trans->aborted)
2348 return 0;
2349
0b246afa 2350 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2351 metadata = 0;
2352
5d4f98a2
YZ
2353 path = btrfs_alloc_path();
2354 if (!path)
2355 return -ENOMEM;
2356
d278850e 2357 key.objectid = head->bytenr;
5d4f98a2 2358
3173a18f 2359 if (metadata) {
3173a18f 2360 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2361 key.offset = extent_op->level;
3173a18f
JB
2362 } else {
2363 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2364 key.offset = head->num_bytes;
3173a18f
JB
2365 }
2366
2367again:
e4058b54 2368 path->reada = READA_FORWARD;
5d4f98a2 2369 path->leave_spinning = 1;
0b246afa 2370 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2371 if (ret < 0) {
2372 err = ret;
2373 goto out;
2374 }
2375 if (ret > 0) {
3173a18f 2376 if (metadata) {
55994887
FDBM
2377 if (path->slots[0] > 0) {
2378 path->slots[0]--;
2379 btrfs_item_key_to_cpu(path->nodes[0], &key,
2380 path->slots[0]);
d278850e 2381 if (key.objectid == head->bytenr &&
55994887 2382 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2383 key.offset == head->num_bytes)
55994887
FDBM
2384 ret = 0;
2385 }
2386 if (ret > 0) {
2387 btrfs_release_path(path);
2388 metadata = 0;
3173a18f 2389
d278850e
JB
2390 key.objectid = head->bytenr;
2391 key.offset = head->num_bytes;
55994887
FDBM
2392 key.type = BTRFS_EXTENT_ITEM_KEY;
2393 goto again;
2394 }
2395 } else {
2396 err = -EIO;
2397 goto out;
3173a18f 2398 }
5d4f98a2
YZ
2399 }
2400
2401 leaf = path->nodes[0];
2402 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2403#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2404 if (item_size < sizeof(*ei)) {
87bde3cd 2405 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2406 if (ret < 0) {
2407 err = ret;
2408 goto out;
2409 }
2410 leaf = path->nodes[0];
2411 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2412 }
2413#endif
2414 BUG_ON(item_size < sizeof(*ei));
2415 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2416 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2417
5d4f98a2
YZ
2418 btrfs_mark_buffer_dirty(leaf);
2419out:
2420 btrfs_free_path(path);
2421 return err;
56bec294
CM
2422}
2423
5d4f98a2 2424static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2425 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2426 struct btrfs_delayed_ref_node *node,
2427 struct btrfs_delayed_extent_op *extent_op,
2428 int insert_reserved)
56bec294
CM
2429{
2430 int ret = 0;
5d4f98a2 2431 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2432 u64 parent = 0;
2433 u64 ref_root = 0;
56bec294 2434
5d4f98a2 2435 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2436 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2437
5d4f98a2
YZ
2438 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2439 parent = ref->parent;
fcebe456 2440 ref_root = ref->root;
5d4f98a2 2441
02794222 2442 if (node->ref_mod != 1) {
2ff7e61e 2443 btrfs_err(fs_info,
02794222
LB
2444 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2445 node->bytenr, node->ref_mod, node->action, ref_root,
2446 parent);
2447 return -EIO;
2448 }
5d4f98a2 2449 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2450 BUG_ON(!extent_op || !extent_op->update_flags);
4e6bd4e0 2451 ret = alloc_reserved_tree_block(trans, node,
5d4f98a2 2452 extent_op->flags_to_set,
4e6bd4e0 2453 &extent_op->key);
5d4f98a2 2454 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2455 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2456 parent, ref_root,
2457 ref->level, 0, 1,
fcebe456 2458 extent_op);
5d4f98a2 2459 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2460 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2461 parent, ref_root,
2462 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2463 } else {
2464 BUG();
2465 }
56bec294
CM
2466 return ret;
2467}
2468
2469/* helper function to actually process a single delayed ref entry */
5d4f98a2 2470static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2471 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2472 struct btrfs_delayed_ref_node *node,
2473 struct btrfs_delayed_extent_op *extent_op,
2474 int insert_reserved)
56bec294 2475{
79787eaa
JM
2476 int ret = 0;
2477
857cc2fc
JB
2478 if (trans->aborted) {
2479 if (insert_reserved)
2ff7e61e 2480 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2481 node->num_bytes, 1);
79787eaa 2482 return 0;
857cc2fc 2483 }
79787eaa 2484
5d4f98a2
YZ
2485 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2486 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2487 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2488 insert_reserved);
2489 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2490 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2491 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2492 insert_reserved);
2493 else
2494 BUG();
2495 return ret;
56bec294
CM
2496}
2497
c6fc2454 2498static inline struct btrfs_delayed_ref_node *
56bec294
CM
2499select_delayed_ref(struct btrfs_delayed_ref_head *head)
2500{
cffc3374
FM
2501 struct btrfs_delayed_ref_node *ref;
2502
0e0adbcf 2503 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2504 return NULL;
d7df2c79 2505
cffc3374
FM
2506 /*
2507 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2508 * This is to prevent a ref count from going down to zero, which deletes
2509 * the extent item from the extent tree, when there still are references
2510 * to add, which would fail because they would not find the extent item.
2511 */
1d57ee94
WX
2512 if (!list_empty(&head->ref_add_list))
2513 return list_first_entry(&head->ref_add_list,
2514 struct btrfs_delayed_ref_node, add_list);
2515
0e0adbcf
JB
2516 ref = rb_entry(rb_first(&head->ref_tree),
2517 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2518 ASSERT(list_empty(&ref->add_list));
2519 return ref;
56bec294
CM
2520}
2521
2eadaa22
JB
2522static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2523 struct btrfs_delayed_ref_head *head)
2524{
2525 spin_lock(&delayed_refs->lock);
2526 head->processing = 0;
2527 delayed_refs->num_heads_ready++;
2528 spin_unlock(&delayed_refs->lock);
2529 btrfs_delayed_ref_unlock(head);
2530}
2531
b00e6250
JB
2532static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2533 struct btrfs_fs_info *fs_info,
2534 struct btrfs_delayed_ref_head *head)
2535{
2536 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2537 int ret;
2538
2539 if (!extent_op)
2540 return 0;
2541 head->extent_op = NULL;
2542 if (head->must_insert_reserved) {
2543 btrfs_free_delayed_extent_op(extent_op);
2544 return 0;
2545 }
2546 spin_unlock(&head->lock);
d278850e 2547 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2548 btrfs_free_delayed_extent_op(extent_op);
2549 return ret ? ret : 1;
2550}
2551
194ab0bc
JB
2552static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2553 struct btrfs_fs_info *fs_info,
2554 struct btrfs_delayed_ref_head *head)
2555{
2556 struct btrfs_delayed_ref_root *delayed_refs;
2557 int ret;
2558
2559 delayed_refs = &trans->transaction->delayed_refs;
2560
2561 ret = cleanup_extent_op(trans, fs_info, head);
2562 if (ret < 0) {
2563 unselect_delayed_ref_head(delayed_refs, head);
2564 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2565 return ret;
2566 } else if (ret) {
2567 return ret;
2568 }
2569
2570 /*
2571 * Need to drop our head ref lock and re-acquire the delayed ref lock
2572 * and then re-check to make sure nobody got added.
2573 */
2574 spin_unlock(&head->lock);
2575 spin_lock(&delayed_refs->lock);
2576 spin_lock(&head->lock);
0e0adbcf 2577 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2578 spin_unlock(&head->lock);
2579 spin_unlock(&delayed_refs->lock);
2580 return 1;
2581 }
194ab0bc
JB
2582 delayed_refs->num_heads--;
2583 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2584 RB_CLEAR_NODE(&head->href_node);
c1103f7a 2585 spin_unlock(&head->lock);
1e7a1421 2586 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2587 atomic_dec(&delayed_refs->num_entries);
2588
d278850e 2589 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2590
2591 if (head->total_ref_mod < 0) {
5e388e95
NB
2592 struct btrfs_space_info *space_info;
2593 u64 flags;
c1103f7a 2594
5e388e95
NB
2595 if (head->is_data)
2596 flags = BTRFS_BLOCK_GROUP_DATA;
2597 else if (head->is_system)
2598 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2599 else
2600 flags = BTRFS_BLOCK_GROUP_METADATA;
2601 space_info = __find_space_info(fs_info, flags);
2602 ASSERT(space_info);
2603 percpu_counter_add(&space_info->total_bytes_pinned,
d278850e 2604 -head->num_bytes);
c1103f7a
JB
2605
2606 if (head->is_data) {
2607 spin_lock(&delayed_refs->lock);
d278850e 2608 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2609 spin_unlock(&delayed_refs->lock);
2610 }
2611 }
2612
2613 if (head->must_insert_reserved) {
d278850e
JB
2614 btrfs_pin_extent(fs_info, head->bytenr,
2615 head->num_bytes, 1);
c1103f7a 2616 if (head->is_data) {
d278850e
JB
2617 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2618 head->num_bytes);
c1103f7a
JB
2619 }
2620 }
2621
2622 /* Also free its reserved qgroup space */
2623 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2624 head->qgroup_reserved);
2625 btrfs_delayed_ref_unlock(head);
d278850e 2626 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2627 return 0;
2628}
2629
79787eaa
JM
2630/*
2631 * Returns 0 on success or if called with an already aborted transaction.
2632 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2633 */
d7df2c79 2634static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2635 unsigned long nr)
56bec294 2636{
0a1e458a 2637 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294
CM
2638 struct btrfs_delayed_ref_root *delayed_refs;
2639 struct btrfs_delayed_ref_node *ref;
2640 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2641 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2642 ktime_t start = ktime_get();
56bec294 2643 int ret;
d7df2c79 2644 unsigned long count = 0;
0a2b2a84 2645 unsigned long actual_count = 0;
56bec294 2646 int must_insert_reserved = 0;
56bec294
CM
2647
2648 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2649 while (1) {
2650 if (!locked_ref) {
d7df2c79 2651 if (count >= nr)
56bec294 2652 break;
56bec294 2653
d7df2c79
JB
2654 spin_lock(&delayed_refs->lock);
2655 locked_ref = btrfs_select_ref_head(trans);
2656 if (!locked_ref) {
2657 spin_unlock(&delayed_refs->lock);
2658 break;
2659 }
c3e69d58
CM
2660
2661 /* grab the lock that says we are going to process
2662 * all the refs for this head */
2663 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2664 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2665 /*
2666 * we may have dropped the spin lock to get the head
2667 * mutex lock, and that might have given someone else
2668 * time to free the head. If that's true, it has been
2669 * removed from our list and we can move on.
2670 */
2671 if (ret == -EAGAIN) {
2672 locked_ref = NULL;
2673 count++;
2674 continue;
56bec294
CM
2675 }
2676 }
a28ec197 2677
2c3cf7d5
FM
2678 /*
2679 * We need to try and merge add/drops of the same ref since we
2680 * can run into issues with relocate dropping the implicit ref
2681 * and then it being added back again before the drop can
2682 * finish. If we merged anything we need to re-loop so we can
2683 * get a good ref.
2684 * Or we can get node references of the same type that weren't
2685 * merged when created due to bumps in the tree mod seq, and
2686 * we need to merge them to prevent adding an inline extent
2687 * backref before dropping it (triggering a BUG_ON at
2688 * insert_inline_extent_backref()).
2689 */
d7df2c79 2690 spin_lock(&locked_ref->lock);
be97f133 2691 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2692
d1270cd9
AJ
2693 ref = select_delayed_ref(locked_ref);
2694
2695 if (ref && ref->seq &&
41d0bd3b 2696 btrfs_check_delayed_seq(fs_info, ref->seq)) {
d7df2c79 2697 spin_unlock(&locked_ref->lock);
2eadaa22 2698 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2699 locked_ref = NULL;
d1270cd9 2700 cond_resched();
27a377db 2701 count++;
d1270cd9
AJ
2702 continue;
2703 }
2704
c1103f7a
JB
2705 /*
2706 * We're done processing refs in this ref_head, clean everything
2707 * up and move on to the next ref_head.
2708 */
56bec294 2709 if (!ref) {
194ab0bc
JB
2710 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2711 if (ret > 0 ) {
b00e6250
JB
2712 /* We dropped our lock, we need to loop. */
2713 ret = 0;
d7df2c79 2714 continue;
194ab0bc
JB
2715 } else if (ret) {
2716 return ret;
5d4f98a2 2717 }
c1103f7a
JB
2718 locked_ref = NULL;
2719 count++;
2720 continue;
2721 }
02217ed2 2722
c1103f7a
JB
2723 actual_count++;
2724 ref->in_tree = 0;
0e0adbcf
JB
2725 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2726 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2727 if (!list_empty(&ref->add_list))
2728 list_del(&ref->add_list);
2729 /*
2730 * When we play the delayed ref, also correct the ref_mod on
2731 * head
2732 */
2733 switch (ref->action) {
2734 case BTRFS_ADD_DELAYED_REF:
2735 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2736 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2737 break;
2738 case BTRFS_DROP_DELAYED_REF:
d278850e 2739 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2740 break;
2741 default:
2742 WARN_ON(1);
22cd2e7d 2743 }
1ce7a5ec
JB
2744 atomic_dec(&delayed_refs->num_entries);
2745
b00e6250
JB
2746 /*
2747 * Record the must-insert_reserved flag before we drop the spin
2748 * lock.
2749 */
2750 must_insert_reserved = locked_ref->must_insert_reserved;
2751 locked_ref->must_insert_reserved = 0;
2752
2753 extent_op = locked_ref->extent_op;
2754 locked_ref->extent_op = NULL;
d7df2c79 2755 spin_unlock(&locked_ref->lock);
925baedd 2756
2ff7e61e 2757 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2758 must_insert_reserved);
eb099670 2759
78a6184a 2760 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2761 if (ret) {
2eadaa22 2762 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2763 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2764 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2765 ret);
79787eaa
JM
2766 return ret;
2767 }
2768
093486c4
MX
2769 btrfs_put_delayed_ref(ref);
2770 count++;
c3e69d58 2771 cond_resched();
c3e69d58 2772 }
0a2b2a84
JB
2773
2774 /*
2775 * We don't want to include ref heads since we can have empty ref heads
2776 * and those will drastically skew our runtime down since we just do
2777 * accounting, no actual extent tree updates.
2778 */
2779 if (actual_count > 0) {
2780 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2781 u64 avg;
2782
2783 /*
2784 * We weigh the current average higher than our current runtime
2785 * to avoid large swings in the average.
2786 */
2787 spin_lock(&delayed_refs->lock);
2788 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2789 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2790 spin_unlock(&delayed_refs->lock);
2791 }
d7df2c79 2792 return 0;
c3e69d58
CM
2793}
2794
709c0486
AJ
2795#ifdef SCRAMBLE_DELAYED_REFS
2796/*
2797 * Normally delayed refs get processed in ascending bytenr order. This
2798 * correlates in most cases to the order added. To expose dependencies on this
2799 * order, we start to process the tree in the middle instead of the beginning
2800 */
2801static u64 find_middle(struct rb_root *root)
2802{
2803 struct rb_node *n = root->rb_node;
2804 struct btrfs_delayed_ref_node *entry;
2805 int alt = 1;
2806 u64 middle;
2807 u64 first = 0, last = 0;
2808
2809 n = rb_first(root);
2810 if (n) {
2811 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2812 first = entry->bytenr;
2813 }
2814 n = rb_last(root);
2815 if (n) {
2816 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2817 last = entry->bytenr;
2818 }
2819 n = root->rb_node;
2820
2821 while (n) {
2822 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2823 WARN_ON(!entry->in_tree);
2824
2825 middle = entry->bytenr;
2826
2827 if (alt)
2828 n = n->rb_left;
2829 else
2830 n = n->rb_right;
2831
2832 alt = 1 - alt;
2833 }
2834 return middle;
2835}
2836#endif
2837
2ff7e61e 2838static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2839{
2840 u64 num_bytes;
2841
2842 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2843 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2844 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2845 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2846
2847 /*
2848 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2849 * closer to what we're really going to want to use.
1be41b78 2850 */
0b246afa 2851 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2852}
2853
1262133b
JB
2854/*
2855 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2856 * would require to store the csums for that many bytes.
2857 */
2ff7e61e 2858u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2859{
2860 u64 csum_size;
2861 u64 num_csums_per_leaf;
2862 u64 num_csums;
2863
0b246afa 2864 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2865 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2866 (u64)btrfs_super_csum_size(fs_info->super_copy));
2867 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2868 num_csums += num_csums_per_leaf - 1;
2869 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2870 return num_csums;
2871}
2872
0a2b2a84 2873int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2874 struct btrfs_fs_info *fs_info)
1be41b78
JB
2875{
2876 struct btrfs_block_rsv *global_rsv;
2877 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2878 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2879 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2880 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2881 int ret = 0;
2882
0b246afa 2883 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2884 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2885 if (num_heads > 1)
0b246afa 2886 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2887 num_bytes <<= 1;
2ff7e61e
JM
2888 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2889 fs_info->nodesize;
0b246afa 2890 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2891 num_dirty_bgs);
0b246afa 2892 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2893
2894 /*
2895 * If we can't allocate any more chunks lets make sure we have _lots_ of
2896 * wiggle room since running delayed refs can create more delayed refs.
2897 */
cb723e49
JB
2898 if (global_rsv->space_info->full) {
2899 num_dirty_bgs_bytes <<= 1;
1be41b78 2900 num_bytes <<= 1;
cb723e49 2901 }
1be41b78
JB
2902
2903 spin_lock(&global_rsv->lock);
cb723e49 2904 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2905 ret = 1;
2906 spin_unlock(&global_rsv->lock);
2907 return ret;
2908}
2909
0a2b2a84 2910int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2911 struct btrfs_fs_info *fs_info)
0a2b2a84 2912{
0a2b2a84
JB
2913 u64 num_entries =
2914 atomic_read(&trans->transaction->delayed_refs.num_entries);
2915 u64 avg_runtime;
a79b7d4b 2916 u64 val;
0a2b2a84
JB
2917
2918 smp_mb();
2919 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2920 val = num_entries * avg_runtime;
dc1a90c6 2921 if (val >= NSEC_PER_SEC)
0a2b2a84 2922 return 1;
a79b7d4b
CM
2923 if (val >= NSEC_PER_SEC / 2)
2924 return 2;
0a2b2a84 2925
2ff7e61e 2926 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2927}
2928
a79b7d4b
CM
2929struct async_delayed_refs {
2930 struct btrfs_root *root;
31b9655f 2931 u64 transid;
a79b7d4b
CM
2932 int count;
2933 int error;
2934 int sync;
2935 struct completion wait;
2936 struct btrfs_work work;
2937};
2938
2ff7e61e
JM
2939static inline struct async_delayed_refs *
2940to_async_delayed_refs(struct btrfs_work *work)
2941{
2942 return container_of(work, struct async_delayed_refs, work);
2943}
2944
a79b7d4b
CM
2945static void delayed_ref_async_start(struct btrfs_work *work)
2946{
2ff7e61e 2947 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2948 struct btrfs_trans_handle *trans;
2ff7e61e 2949 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2950 int ret;
2951
0f873eca 2952 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2953 if (btrfs_transaction_blocked(fs_info))
31b9655f 2954 goto done;
31b9655f 2955
0f873eca
CM
2956 trans = btrfs_join_transaction(async->root);
2957 if (IS_ERR(trans)) {
2958 async->error = PTR_ERR(trans);
a79b7d4b
CM
2959 goto done;
2960 }
2961
2962 /*
01327610 2963 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2964 * wait on delayed refs
2965 */
2966 trans->sync = true;
0f873eca
CM
2967
2968 /* Don't bother flushing if we got into a different transaction */
2969 if (trans->transid > async->transid)
2970 goto end;
2971
c79a70b1 2972 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2973 if (ret)
2974 async->error = ret;
0f873eca 2975end:
3a45bb20 2976 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2977 if (ret && !async->error)
2978 async->error = ret;
2979done:
2980 if (async->sync)
2981 complete(&async->wait);
2982 else
2983 kfree(async);
2984}
2985
2ff7e61e 2986int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2987 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2988{
2989 struct async_delayed_refs *async;
2990 int ret;
2991
2992 async = kmalloc(sizeof(*async), GFP_NOFS);
2993 if (!async)
2994 return -ENOMEM;
2995
0b246afa 2996 async->root = fs_info->tree_root;
a79b7d4b
CM
2997 async->count = count;
2998 async->error = 0;
31b9655f 2999 async->transid = transid;
a79b7d4b
CM
3000 if (wait)
3001 async->sync = 1;
3002 else
3003 async->sync = 0;
3004 init_completion(&async->wait);
3005
9e0af237
LB
3006 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3007 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3008
0b246afa 3009 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3010
3011 if (wait) {
3012 wait_for_completion(&async->wait);
3013 ret = async->error;
3014 kfree(async);
3015 return ret;
3016 }
3017 return 0;
3018}
3019
c3e69d58
CM
3020/*
3021 * this starts processing the delayed reference count updates and
3022 * extent insertions we have queued up so far. count can be
3023 * 0, which means to process everything in the tree at the start
3024 * of the run (but not newly added entries), or it can be some target
3025 * number you'd like to process.
79787eaa
JM
3026 *
3027 * Returns 0 on success or if called with an aborted transaction
3028 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3029 */
3030int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 3031 unsigned long count)
c3e69d58 3032{
c79a70b1 3033 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
3034 struct rb_node *node;
3035 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3036 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3037 int ret;
3038 int run_all = count == (unsigned long)-1;
d9a0540a 3039 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 3040
79787eaa
JM
3041 /* We'll clean this up in btrfs_cleanup_transaction */
3042 if (trans->aborted)
3043 return 0;
3044
0b246afa 3045 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3046 return 0;
3047
c3e69d58 3048 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3049 if (count == 0)
d7df2c79 3050 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3051
c3e69d58 3052again:
709c0486
AJ
3053#ifdef SCRAMBLE_DELAYED_REFS
3054 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3055#endif
d9a0540a 3056 trans->can_flush_pending_bgs = false;
0a1e458a 3057 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 3058 if (ret < 0) {
66642832 3059 btrfs_abort_transaction(trans, ret);
d7df2c79 3060 return ret;
eb099670 3061 }
c3e69d58 3062
56bec294 3063 if (run_all) {
d7df2c79 3064 if (!list_empty(&trans->new_bgs))
6c686b35 3065 btrfs_create_pending_block_groups(trans);
ea658bad 3066
d7df2c79 3067 spin_lock(&delayed_refs->lock);
c46effa6 3068 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3069 if (!node) {
3070 spin_unlock(&delayed_refs->lock);
56bec294 3071 goto out;
d7df2c79 3072 }
d278850e
JB
3073 head = rb_entry(node, struct btrfs_delayed_ref_head,
3074 href_node);
3075 refcount_inc(&head->refs);
3076 spin_unlock(&delayed_refs->lock);
e9d0b13b 3077
d278850e
JB
3078 /* Mutex was contended, block until it's released and retry. */
3079 mutex_lock(&head->mutex);
3080 mutex_unlock(&head->mutex);
56bec294 3081
d278850e 3082 btrfs_put_delayed_ref_head(head);
d7df2c79 3083 cond_resched();
56bec294 3084 goto again;
5f39d397 3085 }
54aa1f4d 3086out:
d9a0540a 3087 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3088 return 0;
3089}
3090
5d4f98a2 3091int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3092 struct btrfs_fs_info *fs_info,
5d4f98a2 3093 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3094 int level, int is_data)
5d4f98a2
YZ
3095{
3096 struct btrfs_delayed_extent_op *extent_op;
3097 int ret;
3098
78a6184a 3099 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3100 if (!extent_op)
3101 return -ENOMEM;
3102
3103 extent_op->flags_to_set = flags;
35b3ad50
DS
3104 extent_op->update_flags = true;
3105 extent_op->update_key = false;
3106 extent_op->is_data = is_data ? true : false;
b1c79e09 3107 extent_op->level = level;
5d4f98a2 3108
0b246afa 3109 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3110 num_bytes, extent_op);
5d4f98a2 3111 if (ret)
78a6184a 3112 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3113 return ret;
3114}
3115
e4c3b2dc 3116static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3117 struct btrfs_path *path,
3118 u64 objectid, u64 offset, u64 bytenr)
3119{
3120 struct btrfs_delayed_ref_head *head;
3121 struct btrfs_delayed_ref_node *ref;
3122 struct btrfs_delayed_data_ref *data_ref;
3123 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3124 struct btrfs_transaction *cur_trans;
0e0adbcf 3125 struct rb_node *node;
5d4f98a2
YZ
3126 int ret = 0;
3127
998ac6d2 3128 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3129 cur_trans = root->fs_info->running_transaction;
998ac6d2 3130 if (cur_trans)
3131 refcount_inc(&cur_trans->use_count);
3132 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3133 if (!cur_trans)
3134 return 0;
3135
3136 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3137 spin_lock(&delayed_refs->lock);
f72ad18e 3138 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3139 if (!head) {
3140 spin_unlock(&delayed_refs->lock);
998ac6d2 3141 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3142 return 0;
3143 }
5d4f98a2
YZ
3144
3145 if (!mutex_trylock(&head->mutex)) {
d278850e 3146 refcount_inc(&head->refs);
5d4f98a2
YZ
3147 spin_unlock(&delayed_refs->lock);
3148
b3b4aa74 3149 btrfs_release_path(path);
5d4f98a2 3150
8cc33e5c
DS
3151 /*
3152 * Mutex was contended, block until it's released and let
3153 * caller try again
3154 */
5d4f98a2
YZ
3155 mutex_lock(&head->mutex);
3156 mutex_unlock(&head->mutex);
d278850e 3157 btrfs_put_delayed_ref_head(head);
998ac6d2 3158 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3159 return -EAGAIN;
3160 }
d7df2c79 3161 spin_unlock(&delayed_refs->lock);
5d4f98a2 3162
d7df2c79 3163 spin_lock(&head->lock);
0e0adbcf
JB
3164 /*
3165 * XXX: We should replace this with a proper search function in the
3166 * future.
3167 */
3168 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3169 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3170 /* If it's a shared ref we know a cross reference exists */
3171 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3172 ret = 1;
3173 break;
3174 }
5d4f98a2 3175
d7df2c79 3176 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3177
d7df2c79
JB
3178 /*
3179 * If our ref doesn't match the one we're currently looking at
3180 * then we have a cross reference.
3181 */
3182 if (data_ref->root != root->root_key.objectid ||
3183 data_ref->objectid != objectid ||
3184 data_ref->offset != offset) {
3185 ret = 1;
3186 break;
3187 }
5d4f98a2 3188 }
d7df2c79 3189 spin_unlock(&head->lock);
5d4f98a2 3190 mutex_unlock(&head->mutex);
998ac6d2 3191 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3192 return ret;
3193}
3194
e4c3b2dc 3195static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3196 struct btrfs_path *path,
3197 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3198{
0b246afa
JM
3199 struct btrfs_fs_info *fs_info = root->fs_info;
3200 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3201 struct extent_buffer *leaf;
5d4f98a2
YZ
3202 struct btrfs_extent_data_ref *ref;
3203 struct btrfs_extent_inline_ref *iref;
3204 struct btrfs_extent_item *ei;
f321e491 3205 struct btrfs_key key;
5d4f98a2 3206 u32 item_size;
3de28d57 3207 int type;
be20aa9d 3208 int ret;
925baedd 3209
be20aa9d 3210 key.objectid = bytenr;
31840ae1 3211 key.offset = (u64)-1;
f321e491 3212 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3213
be20aa9d
CM
3214 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3215 if (ret < 0)
3216 goto out;
79787eaa 3217 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3218
3219 ret = -ENOENT;
3220 if (path->slots[0] == 0)
31840ae1 3221 goto out;
be20aa9d 3222
31840ae1 3223 path->slots[0]--;
f321e491 3224 leaf = path->nodes[0];
5d4f98a2 3225 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3226
5d4f98a2 3227 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3228 goto out;
f321e491 3229
5d4f98a2
YZ
3230 ret = 1;
3231 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3232#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3233 if (item_size < sizeof(*ei)) {
3234 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3235 goto out;
3236 }
3237#endif
3238 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3239
5d4f98a2
YZ
3240 if (item_size != sizeof(*ei) +
3241 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3242 goto out;
be20aa9d 3243
5d4f98a2
YZ
3244 if (btrfs_extent_generation(leaf, ei) <=
3245 btrfs_root_last_snapshot(&root->root_item))
3246 goto out;
3247
3248 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3249
3250 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3251 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3252 goto out;
3253
3254 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3255 if (btrfs_extent_refs(leaf, ei) !=
3256 btrfs_extent_data_ref_count(leaf, ref) ||
3257 btrfs_extent_data_ref_root(leaf, ref) !=
3258 root->root_key.objectid ||
3259 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3260 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3261 goto out;
3262
3263 ret = 0;
3264out:
3265 return ret;
3266}
3267
e4c3b2dc
LB
3268int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3269 u64 bytenr)
5d4f98a2
YZ
3270{
3271 struct btrfs_path *path;
3272 int ret;
3273 int ret2;
3274
3275 path = btrfs_alloc_path();
3276 if (!path)
3277 return -ENOENT;
3278
3279 do {
e4c3b2dc 3280 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3281 offset, bytenr);
3282 if (ret && ret != -ENOENT)
f321e491 3283 goto out;
80ff3856 3284
e4c3b2dc 3285 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3286 offset, bytenr);
3287 } while (ret2 == -EAGAIN);
3288
3289 if (ret2 && ret2 != -ENOENT) {
3290 ret = ret2;
3291 goto out;
f321e491 3292 }
5d4f98a2
YZ
3293
3294 if (ret != -ENOENT || ret2 != -ENOENT)
3295 ret = 0;
be20aa9d 3296out:
80ff3856 3297 btrfs_free_path(path);
f0486c68
YZ
3298 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3299 WARN_ON(ret > 0);
f321e491 3300 return ret;
be20aa9d 3301}
c5739bba 3302
5d4f98a2 3303static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3304 struct btrfs_root *root,
5d4f98a2 3305 struct extent_buffer *buf,
e339a6b0 3306 int full_backref, int inc)
31840ae1 3307{
0b246afa 3308 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3309 u64 bytenr;
5d4f98a2
YZ
3310 u64 num_bytes;
3311 u64 parent;
31840ae1 3312 u64 ref_root;
31840ae1 3313 u32 nritems;
31840ae1
ZY
3314 struct btrfs_key key;
3315 struct btrfs_file_extent_item *fi;
3316 int i;
3317 int level;
3318 int ret = 0;
2ff7e61e 3319 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3320 struct btrfs_root *,
b06c4bf5 3321 u64, u64, u64, u64, u64, u64);
31840ae1 3322
fccb84c9 3323
0b246afa 3324 if (btrfs_is_testing(fs_info))
faa2dbf0 3325 return 0;
fccb84c9 3326
31840ae1 3327 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3328 nritems = btrfs_header_nritems(buf);
3329 level = btrfs_header_level(buf);
3330
27cdeb70 3331 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3332 return 0;
31840ae1 3333
5d4f98a2
YZ
3334 if (inc)
3335 process_func = btrfs_inc_extent_ref;
3336 else
3337 process_func = btrfs_free_extent;
31840ae1 3338
5d4f98a2
YZ
3339 if (full_backref)
3340 parent = buf->start;
3341 else
3342 parent = 0;
3343
3344 for (i = 0; i < nritems; i++) {
31840ae1 3345 if (level == 0) {
5d4f98a2 3346 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3347 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3348 continue;
5d4f98a2 3349 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3350 struct btrfs_file_extent_item);
3351 if (btrfs_file_extent_type(buf, fi) ==
3352 BTRFS_FILE_EXTENT_INLINE)
3353 continue;
3354 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3355 if (bytenr == 0)
3356 continue;
5d4f98a2
YZ
3357
3358 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3359 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3360 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3361 parent, ref_root, key.objectid,
b06c4bf5 3362 key.offset);
31840ae1
ZY
3363 if (ret)
3364 goto fail;
3365 } else {
5d4f98a2 3366 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3367 num_bytes = fs_info->nodesize;
84f7d8e6 3368 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3369 parent, ref_root, level - 1, 0);
31840ae1
ZY
3370 if (ret)
3371 goto fail;
3372 }
3373 }
3374 return 0;
3375fail:
5d4f98a2
YZ
3376 return ret;
3377}
3378
3379int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3380 struct extent_buffer *buf, int full_backref)
5d4f98a2 3381{
e339a6b0 3382 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3383}
3384
3385int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3386 struct extent_buffer *buf, int full_backref)
5d4f98a2 3387{
e339a6b0 3388 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3389}
3390
9078a3e1 3391static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3392 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3393 struct btrfs_path *path,
3394 struct btrfs_block_group_cache *cache)
3395{
3396 int ret;
0b246afa 3397 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3398 unsigned long bi;
3399 struct extent_buffer *leaf;
9078a3e1 3400
9078a3e1 3401 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3402 if (ret) {
3403 if (ret > 0)
3404 ret = -ENOENT;
54aa1f4d 3405 goto fail;
df95e7f0 3406 }
5f39d397
CM
3407
3408 leaf = path->nodes[0];
3409 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3410 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3411 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3412fail:
24b89d08 3413 btrfs_release_path(path);
df95e7f0 3414 return ret;
9078a3e1
CM
3415
3416}
3417
4a8c9a62 3418static struct btrfs_block_group_cache *
2ff7e61e 3419next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3420 struct btrfs_block_group_cache *cache)
3421{
3422 struct rb_node *node;
292cbd51 3423
0b246afa 3424 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3425
3426 /* If our block group was removed, we need a full search. */
3427 if (RB_EMPTY_NODE(&cache->cache_node)) {
3428 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3429
0b246afa 3430 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3431 btrfs_put_block_group(cache);
0b246afa 3432 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3433 }
4a8c9a62
YZ
3434 node = rb_next(&cache->cache_node);
3435 btrfs_put_block_group(cache);
3436 if (node) {
3437 cache = rb_entry(node, struct btrfs_block_group_cache,
3438 cache_node);
11dfe35a 3439 btrfs_get_block_group(cache);
4a8c9a62
YZ
3440 } else
3441 cache = NULL;
0b246afa 3442 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3443 return cache;
3444}
3445
0af3d00b
JB
3446static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3447 struct btrfs_trans_handle *trans,
3448 struct btrfs_path *path)
3449{
0b246afa
JM
3450 struct btrfs_fs_info *fs_info = block_group->fs_info;
3451 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3452 struct inode *inode = NULL;
364ecf36 3453 struct extent_changeset *data_reserved = NULL;
0af3d00b 3454 u64 alloc_hint = 0;
2b20982e 3455 int dcs = BTRFS_DC_ERROR;
f8c269d7 3456 u64 num_pages = 0;
0af3d00b
JB
3457 int retries = 0;
3458 int ret = 0;
3459
3460 /*
3461 * If this block group is smaller than 100 megs don't bother caching the
3462 * block group.
3463 */
ee22184b 3464 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3465 spin_lock(&block_group->lock);
3466 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3467 spin_unlock(&block_group->lock);
3468 return 0;
3469 }
3470
0c0ef4bc
JB
3471 if (trans->aborted)
3472 return 0;
0af3d00b 3473again:
77ab86bf 3474 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3475 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3476 ret = PTR_ERR(inode);
b3b4aa74 3477 btrfs_release_path(path);
0af3d00b
JB
3478 goto out;
3479 }
3480
3481 if (IS_ERR(inode)) {
3482 BUG_ON(retries);
3483 retries++;
3484
3485 if (block_group->ro)
3486 goto out_free;
3487
77ab86bf
JM
3488 ret = create_free_space_inode(fs_info, trans, block_group,
3489 path);
0af3d00b
JB
3490 if (ret)
3491 goto out_free;
3492 goto again;
3493 }
3494
3495 /*
3496 * We want to set the generation to 0, that way if anything goes wrong
3497 * from here on out we know not to trust this cache when we load up next
3498 * time.
3499 */
3500 BTRFS_I(inode)->generation = 0;
3501 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3502 if (ret) {
3503 /*
3504 * So theoretically we could recover from this, simply set the
3505 * super cache generation to 0 so we know to invalidate the
3506 * cache, but then we'd have to keep track of the block groups
3507 * that fail this way so we know we _have_ to reset this cache
3508 * before the next commit or risk reading stale cache. So to
3509 * limit our exposure to horrible edge cases lets just abort the
3510 * transaction, this only happens in really bad situations
3511 * anyway.
3512 */
66642832 3513 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3514 goto out_put;
3515 }
0af3d00b
JB
3516 WARN_ON(ret);
3517
8e138e0d
JB
3518 /* We've already setup this transaction, go ahead and exit */
3519 if (block_group->cache_generation == trans->transid &&
3520 i_size_read(inode)) {
3521 dcs = BTRFS_DC_SETUP;
3522 goto out_put;
3523 }
3524
0af3d00b 3525 if (i_size_read(inode) > 0) {
2ff7e61e 3526 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3527 &fs_info->global_block_rsv);
7b61cd92
MX
3528 if (ret)
3529 goto out_put;
3530
77ab86bf 3531 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3532 if (ret)
3533 goto out_put;
3534 }
3535
3536 spin_lock(&block_group->lock);
cf7c1ef6 3537 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3538 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3539 /*
3540 * don't bother trying to write stuff out _if_
3541 * a) we're not cached,
1a79c1f2
LB
3542 * b) we're with nospace_cache mount option,
3543 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3544 */
2b20982e 3545 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3546 spin_unlock(&block_group->lock);
3547 goto out_put;
3548 }
3549 spin_unlock(&block_group->lock);
3550
2968b1f4
JB
3551 /*
3552 * We hit an ENOSPC when setting up the cache in this transaction, just
3553 * skip doing the setup, we've already cleared the cache so we're safe.
3554 */
3555 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3556 ret = -ENOSPC;
3557 goto out_put;
3558 }
3559
6fc823b1
JB
3560 /*
3561 * Try to preallocate enough space based on how big the block group is.
3562 * Keep in mind this has to include any pinned space which could end up
3563 * taking up quite a bit since it's not folded into the other space
3564 * cache.
3565 */
ee22184b 3566 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3567 if (!num_pages)
3568 num_pages = 1;
3569
0af3d00b 3570 num_pages *= 16;
09cbfeaf 3571 num_pages *= PAGE_SIZE;
0af3d00b 3572
364ecf36 3573 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3574 if (ret)
3575 goto out_put;
3576
3577 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3578 num_pages, num_pages,
3579 &alloc_hint);
2968b1f4
JB
3580 /*
3581 * Our cache requires contiguous chunks so that we don't modify a bunch
3582 * of metadata or split extents when writing the cache out, which means
3583 * we can enospc if we are heavily fragmented in addition to just normal
3584 * out of space conditions. So if we hit this just skip setting up any
3585 * other block groups for this transaction, maybe we'll unpin enough
3586 * space the next time around.
3587 */
2b20982e
JB
3588 if (!ret)
3589 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3590 else if (ret == -ENOSPC)
3591 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3592
0af3d00b
JB
3593out_put:
3594 iput(inode);
3595out_free:
b3b4aa74 3596 btrfs_release_path(path);
0af3d00b
JB
3597out:
3598 spin_lock(&block_group->lock);
e65cbb94 3599 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3600 block_group->cache_generation = trans->transid;
2b20982e 3601 block_group->disk_cache_state = dcs;
0af3d00b
JB
3602 spin_unlock(&block_group->lock);
3603
364ecf36 3604 extent_changeset_free(data_reserved);
0af3d00b
JB
3605 return ret;
3606}
3607
dcdf7f6d 3608int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3609 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3610{
3611 struct btrfs_block_group_cache *cache, *tmp;
3612 struct btrfs_transaction *cur_trans = trans->transaction;
3613 struct btrfs_path *path;
3614
3615 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3616 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3617 return 0;
3618
3619 path = btrfs_alloc_path();
3620 if (!path)
3621 return -ENOMEM;
3622
3623 /* Could add new block groups, use _safe just in case */
3624 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3625 dirty_list) {
3626 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3627 cache_save_setup(cache, trans, path);
3628 }
3629
3630 btrfs_free_path(path);
3631 return 0;
3632}
3633
1bbc621e
CM
3634/*
3635 * transaction commit does final block group cache writeback during a
3636 * critical section where nothing is allowed to change the FS. This is
3637 * required in order for the cache to actually match the block group,
3638 * but can introduce a lot of latency into the commit.
3639 *
3640 * So, btrfs_start_dirty_block_groups is here to kick off block group
3641 * cache IO. There's a chance we'll have to redo some of it if the
3642 * block group changes again during the commit, but it greatly reduces
3643 * the commit latency by getting rid of the easy block groups while
3644 * we're still allowing others to join the commit.
3645 */
21217054 3646int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3647{
21217054 3648 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3649 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3650 struct btrfs_transaction *cur_trans = trans->transaction;
3651 int ret = 0;
c9dc4c65 3652 int should_put;
1bbc621e
CM
3653 struct btrfs_path *path = NULL;
3654 LIST_HEAD(dirty);
3655 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3656 int num_started = 0;
1bbc621e
CM
3657 int loops = 0;
3658
3659 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3660 if (list_empty(&cur_trans->dirty_bgs)) {
3661 spin_unlock(&cur_trans->dirty_bgs_lock);
3662 return 0;
1bbc621e 3663 }
b58d1a9e 3664 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3665 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3666
1bbc621e 3667again:
1bbc621e
CM
3668 /*
3669 * make sure all the block groups on our dirty list actually
3670 * exist
3671 */
6c686b35 3672 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3673
3674 if (!path) {
3675 path = btrfs_alloc_path();
3676 if (!path)
3677 return -ENOMEM;
3678 }
3679
b58d1a9e
FM
3680 /*
3681 * cache_write_mutex is here only to save us from balance or automatic
3682 * removal of empty block groups deleting this block group while we are
3683 * writing out the cache
3684 */
3685 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3686 while (!list_empty(&dirty)) {
3687 cache = list_first_entry(&dirty,
3688 struct btrfs_block_group_cache,
3689 dirty_list);
1bbc621e
CM
3690 /*
3691 * this can happen if something re-dirties a block
3692 * group that is already under IO. Just wait for it to
3693 * finish and then do it all again
3694 */
3695 if (!list_empty(&cache->io_list)) {
3696 list_del_init(&cache->io_list);
afdb5718 3697 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3698 btrfs_put_block_group(cache);
3699 }
3700
3701
3702 /*
3703 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3704 * if it should update the cache_state. Don't delete
3705 * until after we wait.
3706 *
3707 * Since we're not running in the commit critical section
3708 * we need the dirty_bgs_lock to protect from update_block_group
3709 */
3710 spin_lock(&cur_trans->dirty_bgs_lock);
3711 list_del_init(&cache->dirty_list);
3712 spin_unlock(&cur_trans->dirty_bgs_lock);
3713
3714 should_put = 1;
3715
3716 cache_save_setup(cache, trans, path);
3717
3718 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3719 cache->io_ctl.inode = NULL;
0b246afa 3720 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3721 cache, path);
1bbc621e
CM
3722 if (ret == 0 && cache->io_ctl.inode) {
3723 num_started++;
3724 should_put = 0;
3725
3726 /*
45ae2c18
NB
3727 * The cache_write_mutex is protecting the
3728 * io_list, also refer to the definition of
3729 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3730 */
3731 list_add_tail(&cache->io_list, io);
3732 } else {
3733 /*
3734 * if we failed to write the cache, the
3735 * generation will be bad and life goes on
3736 */
3737 ret = 0;
3738 }
3739 }
ff1f8250 3740 if (!ret) {
2ff7e61e
JM
3741 ret = write_one_cache_group(trans, fs_info,
3742 path, cache);
ff1f8250
FM
3743 /*
3744 * Our block group might still be attached to the list
3745 * of new block groups in the transaction handle of some
3746 * other task (struct btrfs_trans_handle->new_bgs). This
3747 * means its block group item isn't yet in the extent
3748 * tree. If this happens ignore the error, as we will
3749 * try again later in the critical section of the
3750 * transaction commit.
3751 */
3752 if (ret == -ENOENT) {
3753 ret = 0;
3754 spin_lock(&cur_trans->dirty_bgs_lock);
3755 if (list_empty(&cache->dirty_list)) {
3756 list_add_tail(&cache->dirty_list,
3757 &cur_trans->dirty_bgs);
3758 btrfs_get_block_group(cache);
3759 }
3760 spin_unlock(&cur_trans->dirty_bgs_lock);
3761 } else if (ret) {
66642832 3762 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3763 }
3764 }
1bbc621e
CM
3765
3766 /* if its not on the io list, we need to put the block group */
3767 if (should_put)
3768 btrfs_put_block_group(cache);
3769
3770 if (ret)
3771 break;
b58d1a9e
FM
3772
3773 /*
3774 * Avoid blocking other tasks for too long. It might even save
3775 * us from writing caches for block groups that are going to be
3776 * removed.
3777 */
3778 mutex_unlock(&trans->transaction->cache_write_mutex);
3779 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3780 }
b58d1a9e 3781 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3782
3783 /*
3784 * go through delayed refs for all the stuff we've just kicked off
3785 * and then loop back (just once)
3786 */
c79a70b1 3787 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3788 if (!ret && loops == 0) {
3789 loops++;
3790 spin_lock(&cur_trans->dirty_bgs_lock);
3791 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3792 /*
3793 * dirty_bgs_lock protects us from concurrent block group
3794 * deletes too (not just cache_write_mutex).
3795 */
3796 if (!list_empty(&dirty)) {
3797 spin_unlock(&cur_trans->dirty_bgs_lock);
3798 goto again;
3799 }
1bbc621e 3800 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3801 } else if (ret < 0) {
2ff7e61e 3802 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3803 }
3804
3805 btrfs_free_path(path);
3806 return ret;
3807}
3808
3809int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3810 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3811{
3812 struct btrfs_block_group_cache *cache;
3813 struct btrfs_transaction *cur_trans = trans->transaction;
3814 int ret = 0;
3815 int should_put;
3816 struct btrfs_path *path;
3817 struct list_head *io = &cur_trans->io_bgs;
3818 int num_started = 0;
9078a3e1
CM
3819
3820 path = btrfs_alloc_path();
3821 if (!path)
3822 return -ENOMEM;
3823
ce93ec54 3824 /*
e44081ef
FM
3825 * Even though we are in the critical section of the transaction commit,
3826 * we can still have concurrent tasks adding elements to this
3827 * transaction's list of dirty block groups. These tasks correspond to
3828 * endio free space workers started when writeback finishes for a
3829 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3830 * allocate new block groups as a result of COWing nodes of the root
3831 * tree when updating the free space inode. The writeback for the space
3832 * caches is triggered by an earlier call to
3833 * btrfs_start_dirty_block_groups() and iterations of the following
3834 * loop.
3835 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3836 * delayed refs to make sure we have the best chance at doing this all
3837 * in one shot.
3838 */
e44081ef 3839 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3840 while (!list_empty(&cur_trans->dirty_bgs)) {
3841 cache = list_first_entry(&cur_trans->dirty_bgs,
3842 struct btrfs_block_group_cache,
3843 dirty_list);
c9dc4c65
CM
3844
3845 /*
3846 * this can happen if cache_save_setup re-dirties a block
3847 * group that is already under IO. Just wait for it to
3848 * finish and then do it all again
3849 */
3850 if (!list_empty(&cache->io_list)) {
e44081ef 3851 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3852 list_del_init(&cache->io_list);
afdb5718 3853 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3854 btrfs_put_block_group(cache);
e44081ef 3855 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3856 }
3857
1bbc621e
CM
3858 /*
3859 * don't remove from the dirty list until after we've waited
3860 * on any pending IO
3861 */
ce93ec54 3862 list_del_init(&cache->dirty_list);
e44081ef 3863 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3864 should_put = 1;
3865
1bbc621e 3866 cache_save_setup(cache, trans, path);
c9dc4c65 3867
ce93ec54 3868 if (!ret)
c79a70b1 3869 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3870 (unsigned long) -1);
c9dc4c65
CM
3871
3872 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3873 cache->io_ctl.inode = NULL;
0b246afa 3874 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3875 cache, path);
c9dc4c65
CM
3876 if (ret == 0 && cache->io_ctl.inode) {
3877 num_started++;
3878 should_put = 0;
1bbc621e 3879 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3880 } else {
3881 /*
3882 * if we failed to write the cache, the
3883 * generation will be bad and life goes on
3884 */
3885 ret = 0;
3886 }
3887 }
ff1f8250 3888 if (!ret) {
2ff7e61e
JM
3889 ret = write_one_cache_group(trans, fs_info,
3890 path, cache);
2bc0bb5f
FM
3891 /*
3892 * One of the free space endio workers might have
3893 * created a new block group while updating a free space
3894 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3895 * and hasn't released its transaction handle yet, in
3896 * which case the new block group is still attached to
3897 * its transaction handle and its creation has not
3898 * finished yet (no block group item in the extent tree
3899 * yet, etc). If this is the case, wait for all free
3900 * space endio workers to finish and retry. This is a
3901 * a very rare case so no need for a more efficient and
3902 * complex approach.
3903 */
3904 if (ret == -ENOENT) {
3905 wait_event(cur_trans->writer_wait,
3906 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3907 ret = write_one_cache_group(trans, fs_info,
3908 path, cache);
2bc0bb5f 3909 }
ff1f8250 3910 if (ret)
66642832 3911 btrfs_abort_transaction(trans, ret);
ff1f8250 3912 }
c9dc4c65
CM
3913
3914 /* if its not on the io list, we need to put the block group */
3915 if (should_put)
3916 btrfs_put_block_group(cache);
e44081ef 3917 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3918 }
e44081ef 3919 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3920
45ae2c18
NB
3921 /*
3922 * Refer to the definition of io_bgs member for details why it's safe
3923 * to use it without any locking
3924 */
1bbc621e
CM
3925 while (!list_empty(io)) {
3926 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3927 io_list);
3928 list_del_init(&cache->io_list);
afdb5718 3929 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3930 btrfs_put_block_group(cache);
3931 }
3932
9078a3e1 3933 btrfs_free_path(path);
ce93ec54 3934 return ret;
9078a3e1
CM
3935}
3936
2ff7e61e 3937int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3938{
3939 struct btrfs_block_group_cache *block_group;
3940 int readonly = 0;
3941
0b246afa 3942 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3943 if (!block_group || block_group->ro)
3944 readonly = 1;
3945 if (block_group)
fa9c0d79 3946 btrfs_put_block_group(block_group);
d2fb3437
YZ
3947 return readonly;
3948}
3949
f78c436c
FM
3950bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3951{
3952 struct btrfs_block_group_cache *bg;
3953 bool ret = true;
3954
3955 bg = btrfs_lookup_block_group(fs_info, bytenr);
3956 if (!bg)
3957 return false;
3958
3959 spin_lock(&bg->lock);
3960 if (bg->ro)
3961 ret = false;
3962 else
3963 atomic_inc(&bg->nocow_writers);
3964 spin_unlock(&bg->lock);
3965
3966 /* no put on block group, done by btrfs_dec_nocow_writers */
3967 if (!ret)
3968 btrfs_put_block_group(bg);
3969
3970 return ret;
3971
3972}
3973
3974void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3975{
3976 struct btrfs_block_group_cache *bg;
3977
3978 bg = btrfs_lookup_block_group(fs_info, bytenr);
3979 ASSERT(bg);
3980 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3981 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3982 /*
3983 * Once for our lookup and once for the lookup done by a previous call
3984 * to btrfs_inc_nocow_writers()
3985 */
3986 btrfs_put_block_group(bg);
3987 btrfs_put_block_group(bg);
3988}
3989
f78c436c
FM
3990void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3991{
4625956a 3992 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3993}
3994
6ab0a202
JM
3995static const char *alloc_name(u64 flags)
3996{
3997 switch (flags) {
3998 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3999 return "mixed";
4000 case BTRFS_BLOCK_GROUP_METADATA:
4001 return "metadata";
4002 case BTRFS_BLOCK_GROUP_DATA:
4003 return "data";
4004 case BTRFS_BLOCK_GROUP_SYSTEM:
4005 return "system";
4006 default:
4007 WARN_ON(1);
4008 return "invalid-combination";
4009 };
4010}
4011
2be12ef7
NB
4012static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4013 struct btrfs_space_info **new)
4014{
4015
4016 struct btrfs_space_info *space_info;
4017 int i;
4018 int ret;
4019
4020 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4021 if (!space_info)
4022 return -ENOMEM;
4023
4024 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4025 GFP_KERNEL);
4026 if (ret) {
4027 kfree(space_info);
4028 return ret;
4029 }
4030
4031 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4032 INIT_LIST_HEAD(&space_info->block_groups[i]);
4033 init_rwsem(&space_info->groups_sem);
4034 spin_lock_init(&space_info->lock);
4035 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4036 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4037 init_waitqueue_head(&space_info->wait);
4038 INIT_LIST_HEAD(&space_info->ro_bgs);
4039 INIT_LIST_HEAD(&space_info->tickets);
4040 INIT_LIST_HEAD(&space_info->priority_tickets);
4041
4042 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4043 info->space_info_kobj, "%s",
4044 alloc_name(space_info->flags));
4045 if (ret) {
4046 percpu_counter_destroy(&space_info->total_bytes_pinned);
4047 kfree(space_info);
4048 return ret;
4049 }
4050
4051 *new = space_info;
4052 list_add_rcu(&space_info->list, &info->space_info);
4053 if (flags & BTRFS_BLOCK_GROUP_DATA)
4054 info->data_sinfo = space_info;
4055
4056 return ret;
4057}
4058
d2006e6d 4059static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4060 u64 total_bytes, u64 bytes_used,
e40edf2d 4061 u64 bytes_readonly,
593060d7
CM
4062 struct btrfs_space_info **space_info)
4063{
4064 struct btrfs_space_info *found;
b742bb82
YZ
4065 int factor;
4066
4067 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4068 BTRFS_BLOCK_GROUP_RAID10))
4069 factor = 2;
4070 else
4071 factor = 1;
593060d7
CM
4072
4073 found = __find_space_info(info, flags);
d2006e6d
NB
4074 ASSERT(found);
4075 spin_lock(&found->lock);
4076 found->total_bytes += total_bytes;
4077 found->disk_total += total_bytes * factor;
4078 found->bytes_used += bytes_used;
4079 found->disk_used += bytes_used * factor;
4080 found->bytes_readonly += bytes_readonly;
4081 if (total_bytes > 0)
4082 found->full = 0;
4083 space_info_add_new_bytes(info, found, total_bytes -
4084 bytes_used - bytes_readonly);
4085 spin_unlock(&found->lock);
4086 *space_info = found;
593060d7
CM
4087}
4088
8790d502
CM
4089static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4090{
899c81ea
ID
4091 u64 extra_flags = chunk_to_extended(flags) &
4092 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4093
de98ced9 4094 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4095 if (flags & BTRFS_BLOCK_GROUP_DATA)
4096 fs_info->avail_data_alloc_bits |= extra_flags;
4097 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4098 fs_info->avail_metadata_alloc_bits |= extra_flags;
4099 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4100 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4101 write_sequnlock(&fs_info->profiles_lock);
8790d502 4102}
593060d7 4103
fc67c450
ID
4104/*
4105 * returns target flags in extended format or 0 if restripe for this
4106 * chunk_type is not in progress
c6664b42 4107 *
dccdb07b 4108 * should be called with balance_lock held
fc67c450
ID
4109 */
4110static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4111{
4112 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4113 u64 target = 0;
4114
fc67c450
ID
4115 if (!bctl)
4116 return 0;
4117
4118 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4119 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4120 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4121 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4122 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4123 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4124 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4125 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4126 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4127 }
4128
4129 return target;
4130}
4131
a46d11a8
ID
4132/*
4133 * @flags: available profiles in extended format (see ctree.h)
4134 *
e4d8ec0f
ID
4135 * Returns reduced profile in chunk format. If profile changing is in
4136 * progress (either running or paused) picks the target profile (if it's
4137 * already available), otherwise falls back to plain reducing.
a46d11a8 4138 */
2ff7e61e 4139static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4140{
0b246afa 4141 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4142 u64 target;
9c170b26
ZL
4143 u64 raid_type;
4144 u64 allowed = 0;
a061fc8d 4145
fc67c450
ID
4146 /*
4147 * see if restripe for this chunk_type is in progress, if so
4148 * try to reduce to the target profile
4149 */
0b246afa
JM
4150 spin_lock(&fs_info->balance_lock);
4151 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4152 if (target) {
4153 /* pick target profile only if it's already available */
4154 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4155 spin_unlock(&fs_info->balance_lock);
fc67c450 4156 return extended_to_chunk(target);
e4d8ec0f
ID
4157 }
4158 }
0b246afa 4159 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4160
53b381b3 4161 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4162 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4163 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4164 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4165 }
4166 allowed &= flags;
4167
4168 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4169 allowed = BTRFS_BLOCK_GROUP_RAID6;
4170 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4171 allowed = BTRFS_BLOCK_GROUP_RAID5;
4172 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4173 allowed = BTRFS_BLOCK_GROUP_RAID10;
4174 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4175 allowed = BTRFS_BLOCK_GROUP_RAID1;
4176 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4177 allowed = BTRFS_BLOCK_GROUP_RAID0;
4178
4179 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4180
4181 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4182}
4183
2ff7e61e 4184static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4185{
de98ced9 4186 unsigned seq;
f8213bdc 4187 u64 flags;
de98ced9
MX
4188
4189 do {
f8213bdc 4190 flags = orig_flags;
0b246afa 4191 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4192
4193 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4194 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4195 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4196 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4197 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4198 flags |= fs_info->avail_metadata_alloc_bits;
4199 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4200
2ff7e61e 4201 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4202}
4203
1b86826d 4204static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4205{
0b246afa 4206 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4207 u64 flags;
53b381b3 4208 u64 ret;
9ed74f2d 4209
b742bb82
YZ
4210 if (data)
4211 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4212 else if (root == fs_info->chunk_root)
b742bb82 4213 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4214 else
b742bb82 4215 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4216
2ff7e61e 4217 ret = get_alloc_profile(fs_info, flags);
53b381b3 4218 return ret;
6a63209f 4219}
9ed74f2d 4220
1b86826d
JM
4221u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4222{
4223 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4224}
4225
4226u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4227{
4228 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4229}
4230
4231u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4232{
4233 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4234}
4235
4136135b
LB
4236static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4237 bool may_use_included)
4238{
4239 ASSERT(s_info);
4240 return s_info->bytes_used + s_info->bytes_reserved +
4241 s_info->bytes_pinned + s_info->bytes_readonly +
4242 (may_use_included ? s_info->bytes_may_use : 0);
4243}
4244
04f4f916 4245int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4246{
04f4f916 4247 struct btrfs_root *root = inode->root;
b4d7c3c9 4248 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4249 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4250 u64 used;
94b947b2 4251 int ret = 0;
c99f1b0c
ZL
4252 int need_commit = 2;
4253 int have_pinned_space;
6a63209f 4254
6a63209f 4255 /* make sure bytes are sectorsize aligned */
0b246afa 4256 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4257
9dced186 4258 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4259 need_commit = 0;
9dced186 4260 ASSERT(current->journal_info);
0af3d00b
JB
4261 }
4262
6a63209f
JB
4263again:
4264 /* make sure we have enough space to handle the data first */
4265 spin_lock(&data_sinfo->lock);
4136135b 4266 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4267
4268 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4269 struct btrfs_trans_handle *trans;
9ed74f2d 4270
6a63209f
JB
4271 /*
4272 * if we don't have enough free bytes in this space then we need
4273 * to alloc a new chunk.
4274 */
b9fd47cd 4275 if (!data_sinfo->full) {
6a63209f 4276 u64 alloc_target;
9ed74f2d 4277
0e4f8f88 4278 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4279 spin_unlock(&data_sinfo->lock);
1174cade 4280
1b86826d 4281 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4282 /*
4283 * It is ugly that we don't call nolock join
4284 * transaction for the free space inode case here.
4285 * But it is safe because we only do the data space
4286 * reservation for the free space cache in the
4287 * transaction context, the common join transaction
4288 * just increase the counter of the current transaction
4289 * handler, doesn't try to acquire the trans_lock of
4290 * the fs.
4291 */
7a7eaa40 4292 trans = btrfs_join_transaction(root);
a22285a6
YZ
4293 if (IS_ERR(trans))
4294 return PTR_ERR(trans);
9ed74f2d 4295
2ff7e61e 4296 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4297 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4298 btrfs_end_transaction(trans);
d52a5b5f
MX
4299 if (ret < 0) {
4300 if (ret != -ENOSPC)
4301 return ret;
c99f1b0c
ZL
4302 else {
4303 have_pinned_space = 1;
d52a5b5f 4304 goto commit_trans;
c99f1b0c 4305 }
d52a5b5f 4306 }
9ed74f2d 4307
6a63209f
JB
4308 goto again;
4309 }
f2bb8f5c
JB
4310
4311 /*
b150a4f1 4312 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4313 * allocation, and no removed chunk in current transaction,
4314 * don't bother committing the transaction.
f2bb8f5c 4315 */
c99f1b0c
ZL
4316 have_pinned_space = percpu_counter_compare(
4317 &data_sinfo->total_bytes_pinned,
4318 used + bytes - data_sinfo->total_bytes);
6a63209f 4319 spin_unlock(&data_sinfo->lock);
6a63209f 4320
4e06bdd6 4321 /* commit the current transaction and try again */
d52a5b5f 4322commit_trans:
92e2f7e3 4323 if (need_commit) {
c99f1b0c 4324 need_commit--;
b150a4f1 4325
e1746e83 4326 if (need_commit > 0) {
82b3e53b 4327 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4328 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4329 (u64)-1);
e1746e83 4330 }
9a4e7276 4331
7a7eaa40 4332 trans = btrfs_join_transaction(root);
a22285a6
YZ
4333 if (IS_ERR(trans))
4334 return PTR_ERR(trans);
c99f1b0c 4335 if (have_pinned_space >= 0 ||
3204d33c
JB
4336 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4337 &trans->transaction->flags) ||
c99f1b0c 4338 need_commit > 0) {
3a45bb20 4339 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4340 if (ret)
4341 return ret;
d7c15171 4342 /*
c2d6cb16
FM
4343 * The cleaner kthread might still be doing iput
4344 * operations. Wait for it to finish so that
4345 * more space is released.
d7c15171 4346 */
0b246afa
JM
4347 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4348 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4349 goto again;
4350 } else {
3a45bb20 4351 btrfs_end_transaction(trans);
94b947b2 4352 }
4e06bdd6 4353 }
9ed74f2d 4354
0b246afa 4355 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4356 "space_info:enospc",
4357 data_sinfo->flags, bytes, 1);
6a63209f
JB
4358 return -ENOSPC;
4359 }
4360 data_sinfo->bytes_may_use += bytes;
0b246afa 4361 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4362 data_sinfo->flags, bytes, 1);
6a63209f 4363 spin_unlock(&data_sinfo->lock);
6a63209f 4364
237c0e9f 4365 return ret;
9ed74f2d 4366}
6a63209f 4367
364ecf36
QW
4368int btrfs_check_data_free_space(struct inode *inode,
4369 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4370{
0b246afa 4371 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4372 int ret;
4373
4374 /* align the range */
0b246afa
JM
4375 len = round_up(start + len, fs_info->sectorsize) -
4376 round_down(start, fs_info->sectorsize);
4377 start = round_down(start, fs_info->sectorsize);
4ceff079 4378
04f4f916 4379 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4380 if (ret < 0)
4381 return ret;
4382
1e5ec2e7 4383 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4384 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4385 if (ret < 0)
1e5ec2e7 4386 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4387 else
4388 ret = 0;
4ceff079
QW
4389 return ret;
4390}
4391
4ceff079
QW
4392/*
4393 * Called if we need to clear a data reservation for this inode
4394 * Normally in a error case.
4395 *
51773bec
QW
4396 * This one will *NOT* use accurate qgroup reserved space API, just for case
4397 * which we can't sleep and is sure it won't affect qgroup reserved space.
4398 * Like clear_bit_hook().
4ceff079 4399 */
51773bec
QW
4400void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4401 u64 len)
4ceff079 4402{
0b246afa 4403 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4404 struct btrfs_space_info *data_sinfo;
4405
4406 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4407 len = round_up(start + len, fs_info->sectorsize) -
4408 round_down(start, fs_info->sectorsize);
4409 start = round_down(start, fs_info->sectorsize);
4ceff079 4410
0b246afa 4411 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4412 spin_lock(&data_sinfo->lock);
4413 if (WARN_ON(data_sinfo->bytes_may_use < len))
4414 data_sinfo->bytes_may_use = 0;
4415 else
4416 data_sinfo->bytes_may_use -= len;
0b246afa 4417 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4418 data_sinfo->flags, len, 0);
4419 spin_unlock(&data_sinfo->lock);
4420}
4421
51773bec
QW
4422/*
4423 * Called if we need to clear a data reservation for this inode
4424 * Normally in a error case.
4425 *
01327610 4426 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4427 * space framework.
4428 */
bc42bda2
QW
4429void btrfs_free_reserved_data_space(struct inode *inode,
4430 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4431{
0c476a5d
JM
4432 struct btrfs_root *root = BTRFS_I(inode)->root;
4433
4434 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4435 len = round_up(start + len, root->fs_info->sectorsize) -
4436 round_down(start, root->fs_info->sectorsize);
4437 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4438
51773bec 4439 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4440 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4441}
4442
97e728d4 4443static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4444{
97e728d4
JB
4445 struct list_head *head = &info->space_info;
4446 struct btrfs_space_info *found;
e3ccfa98 4447
97e728d4
JB
4448 rcu_read_lock();
4449 list_for_each_entry_rcu(found, head, list) {
4450 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4451 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4452 }
97e728d4 4453 rcu_read_unlock();
e3ccfa98
JB
4454}
4455
3c76cd84
MX
4456static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4457{
4458 return (global->size << 1);
4459}
4460
2ff7e61e 4461static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4462 struct btrfs_space_info *sinfo, int force)
32c00aff 4463{
0b246afa 4464 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4465 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4466 u64 thresh;
e3ccfa98 4467
0e4f8f88
CM
4468 if (force == CHUNK_ALLOC_FORCE)
4469 return 1;
4470
fb25e914
JB
4471 /*
4472 * We need to take into account the global rsv because for all intents
4473 * and purposes it's used space. Don't worry about locking the
4474 * global_rsv, it doesn't change except when the transaction commits.
4475 */
54338b5c 4476 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4477 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4478
0e4f8f88
CM
4479 /*
4480 * in limited mode, we want to have some free space up to
4481 * about 1% of the FS size.
4482 */
4483 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4484 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4485 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4486
8d8aafee 4487 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4488 return 1;
4489 }
0e4f8f88 4490
8d8aafee 4491 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4492 return 0;
424499db 4493 return 1;
32c00aff
JB
4494}
4495
2ff7e61e 4496static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4497{
4498 u64 num_dev;
4499
53b381b3
DW
4500 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4501 BTRFS_BLOCK_GROUP_RAID0 |
4502 BTRFS_BLOCK_GROUP_RAID5 |
4503 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4504 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4505 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4506 num_dev = 2;
4507 else
4508 num_dev = 1; /* DUP or single */
4509
39c2d7fa 4510 return num_dev;
15d1ff81
LB
4511}
4512
39c2d7fa
FM
4513/*
4514 * If @is_allocation is true, reserve space in the system space info necessary
4515 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4516 * removing a chunk.
4517 */
4518void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4519 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4520{
4521 struct btrfs_space_info *info;
4522 u64 left;
4523 u64 thresh;
4fbcdf66 4524 int ret = 0;
39c2d7fa 4525 u64 num_devs;
4fbcdf66
FM
4526
4527 /*
4528 * Needed because we can end up allocating a system chunk and for an
4529 * atomic and race free space reservation in the chunk block reserve.
4530 */
a32bf9a3 4531 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4532
0b246afa 4533 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4534 spin_lock(&info->lock);
4136135b 4535 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4536 spin_unlock(&info->lock);
4537
2ff7e61e 4538 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4539
4540 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4541 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4542 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4543
0b246afa
JM
4544 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4545 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4546 left, thresh, type);
4547 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4548 }
4549
4550 if (left < thresh) {
1b86826d 4551 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4552
4fbcdf66
FM
4553 /*
4554 * Ignore failure to create system chunk. We might end up not
4555 * needing it, as we might not need to COW all nodes/leafs from
4556 * the paths we visit in the chunk tree (they were already COWed
4557 * or created in the current transaction for example).
4558 */
2ff7e61e 4559 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4560 }
4561
4562 if (!ret) {
0b246afa
JM
4563 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4564 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4565 thresh, BTRFS_RESERVE_NO_FLUSH);
4566 if (!ret)
4567 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4568 }
4569}
4570
28b737f6
LB
4571/*
4572 * If force is CHUNK_ALLOC_FORCE:
4573 * - return 1 if it successfully allocates a chunk,
4574 * - return errors including -ENOSPC otherwise.
4575 * If force is NOT CHUNK_ALLOC_FORCE:
4576 * - return 0 if it doesn't need to allocate a new chunk,
4577 * - return 1 if it successfully allocates a chunk,
4578 * - return errors including -ENOSPC otherwise.
4579 */
6324fbf3 4580static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4581 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4582{
6324fbf3 4583 struct btrfs_space_info *space_info;
6d74119f 4584 int wait_for_alloc = 0;
9ed74f2d 4585 int ret = 0;
9ed74f2d 4586
c6b305a8
JB
4587 /* Don't re-enter if we're already allocating a chunk */
4588 if (trans->allocating_chunk)
4589 return -ENOSPC;
4590
0b246afa 4591 space_info = __find_space_info(fs_info, flags);
dc2d3005 4592 ASSERT(space_info);
9ed74f2d 4593
6d74119f 4594again:
25179201 4595 spin_lock(&space_info->lock);
9e622d6b 4596 if (force < space_info->force_alloc)
0e4f8f88 4597 force = space_info->force_alloc;
25179201 4598 if (space_info->full) {
2ff7e61e 4599 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4600 ret = -ENOSPC;
4601 else
4602 ret = 0;
25179201 4603 spin_unlock(&space_info->lock);
09fb99a6 4604 return ret;
9ed74f2d
JB
4605 }
4606
2ff7e61e 4607 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4608 spin_unlock(&space_info->lock);
6d74119f
JB
4609 return 0;
4610 } else if (space_info->chunk_alloc) {
4611 wait_for_alloc = 1;
4612 } else {
4613 space_info->chunk_alloc = 1;
9ed74f2d 4614 }
0e4f8f88 4615
25179201 4616 spin_unlock(&space_info->lock);
9ed74f2d 4617
6d74119f
JB
4618 mutex_lock(&fs_info->chunk_mutex);
4619
4620 /*
4621 * The chunk_mutex is held throughout the entirety of a chunk
4622 * allocation, so once we've acquired the chunk_mutex we know that the
4623 * other guy is done and we need to recheck and see if we should
4624 * allocate.
4625 */
4626 if (wait_for_alloc) {
4627 mutex_unlock(&fs_info->chunk_mutex);
4628 wait_for_alloc = 0;
1e1c50a9 4629 cond_resched();
6d74119f
JB
4630 goto again;
4631 }
4632
c6b305a8
JB
4633 trans->allocating_chunk = true;
4634
67377734
JB
4635 /*
4636 * If we have mixed data/metadata chunks we want to make sure we keep
4637 * allocating mixed chunks instead of individual chunks.
4638 */
4639 if (btrfs_mixed_space_info(space_info))
4640 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4641
97e728d4
JB
4642 /*
4643 * if we're doing a data chunk, go ahead and make sure that
4644 * we keep a reasonable number of metadata chunks allocated in the
4645 * FS as well.
4646 */
9ed74f2d 4647 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4648 fs_info->data_chunk_allocations++;
4649 if (!(fs_info->data_chunk_allocations %
4650 fs_info->metadata_ratio))
4651 force_metadata_allocation(fs_info);
9ed74f2d
JB
4652 }
4653
15d1ff81
LB
4654 /*
4655 * Check if we have enough space in SYSTEM chunk because we may need
4656 * to update devices.
4657 */
2ff7e61e 4658 check_system_chunk(trans, fs_info, flags);
15d1ff81 4659
2ff7e61e 4660 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4661 trans->allocating_chunk = false;
92b8e897 4662
9ed74f2d 4663 spin_lock(&space_info->lock);
57f1642e
NB
4664 if (ret < 0) {
4665 if (ret == -ENOSPC)
4666 space_info->full = 1;
4667 else
4668 goto out;
4669 } else {
424499db 4670 ret = 1;
57f1642e 4671 }
6d74119f 4672
0e4f8f88 4673 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4674out:
6d74119f 4675 space_info->chunk_alloc = 0;
9ed74f2d 4676 spin_unlock(&space_info->lock);
a25c75d5 4677 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4678 /*
4679 * When we allocate a new chunk we reserve space in the chunk block
4680 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4681 * add new nodes/leafs to it if we end up needing to do it when
4682 * inserting the chunk item and updating device items as part of the
4683 * second phase of chunk allocation, performed by
4684 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4685 * large number of new block groups to create in our transaction
4686 * handle's new_bgs list to avoid exhausting the chunk block reserve
4687 * in extreme cases - like having a single transaction create many new
4688 * block groups when starting to write out the free space caches of all
4689 * the block groups that were made dirty during the lifetime of the
4690 * transaction.
4691 */
d9a0540a 4692 if (trans->can_flush_pending_bgs &&
ee22184b 4693 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
6c686b35 4694 btrfs_create_pending_block_groups(trans);
00d80e34
FM
4695 btrfs_trans_release_chunk_metadata(trans);
4696 }
0f9dd46c 4697 return ret;
6324fbf3 4698}
9ed74f2d 4699
c1c4919b 4700static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4701 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4702 enum btrfs_reserve_flush_enum flush,
4703 bool system_chunk)
a80c8dcf 4704{
0b246afa 4705 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4706 u64 profile;
3c76cd84 4707 u64 space_size;
a80c8dcf
JB
4708 u64 avail;
4709 u64 used;
4710
957780eb
JB
4711 /* Don't overcommit when in mixed mode. */
4712 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4713 return 0;
4714
c1c4919b
JM
4715 if (system_chunk)
4716 profile = btrfs_system_alloc_profile(fs_info);
4717 else
4718 profile = btrfs_metadata_alloc_profile(fs_info);
4719
4136135b 4720 used = btrfs_space_info_used(space_info, false);
96f1bb57 4721
96f1bb57
JB
4722 /*
4723 * We only want to allow over committing if we have lots of actual space
4724 * free, but if we don't have enough space to handle the global reserve
4725 * space then we could end up having a real enospc problem when trying
4726 * to allocate a chunk or some other such important allocation.
4727 */
3c76cd84
MX
4728 spin_lock(&global_rsv->lock);
4729 space_size = calc_global_rsv_need_space(global_rsv);
4730 spin_unlock(&global_rsv->lock);
4731 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4732 return 0;
4733
4734 used += space_info->bytes_may_use;
a80c8dcf 4735
a5ed45f8 4736 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4737
4738 /*
4739 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4740 * space is actually useable. For raid56, the space info used
4741 * doesn't include the parity drive, so we don't have to
4742 * change the math
a80c8dcf
JB
4743 */
4744 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4745 BTRFS_BLOCK_GROUP_RAID1 |
4746 BTRFS_BLOCK_GROUP_RAID10))
4747 avail >>= 1;
4748
4749 /*
561c294d
MX
4750 * If we aren't flushing all things, let us overcommit up to
4751 * 1/2th of the space. If we can flush, don't let us overcommit
4752 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4753 */
08e007d2 4754 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4755 avail >>= 3;
a80c8dcf 4756 else
14575aef 4757 avail >>= 1;
a80c8dcf 4758
14575aef 4759 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4760 return 1;
4761 return 0;
4762}
4763
2ff7e61e 4764static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4765 unsigned long nr_pages, int nr_items)
da633a42 4766{
0b246afa 4767 struct super_block *sb = fs_info->sb;
da633a42 4768
925a6efb
JB
4769 if (down_read_trylock(&sb->s_umount)) {
4770 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4771 up_read(&sb->s_umount);
4772 } else {
da633a42
MX
4773 /*
4774 * We needn't worry the filesystem going from r/w to r/o though
4775 * we don't acquire ->s_umount mutex, because the filesystem
4776 * should guarantee the delalloc inodes list be empty after
4777 * the filesystem is readonly(all dirty pages are written to
4778 * the disk).
4779 */
82b3e53b 4780 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4781 if (!current->journal_info)
0b246afa 4782 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4783 }
4784}
4785
6374e57a 4786static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4787 u64 to_reclaim)
18cd8ea6
MX
4788{
4789 u64 bytes;
6374e57a 4790 u64 nr;
18cd8ea6 4791
2ff7e61e 4792 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4793 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4794 if (!nr)
4795 nr = 1;
4796 return nr;
4797}
4798
ee22184b 4799#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4800
9ed74f2d 4801/*
5da9d01b 4802 * shrink metadata reservation for delalloc
9ed74f2d 4803 */
c1c4919b
JM
4804static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4805 u64 orig, bool wait_ordered)
5da9d01b 4806{
0019f10d 4807 struct btrfs_space_info *space_info;
663350ac 4808 struct btrfs_trans_handle *trans;
f4c738c2 4809 u64 delalloc_bytes;
5da9d01b 4810 u64 max_reclaim;
6374e57a 4811 u64 items;
b1953bce 4812 long time_left;
d3ee29e3
MX
4813 unsigned long nr_pages;
4814 int loops;
5da9d01b 4815
c61a16a7 4816 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4817 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4818 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4819
663350ac 4820 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4821 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4822
963d678b 4823 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4824 &fs_info->delalloc_bytes);
f4c738c2 4825 if (delalloc_bytes == 0) {
fdb5effd 4826 if (trans)
f4c738c2 4827 return;
38c135af 4828 if (wait_ordered)
0b246afa 4829 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4830 return;
fdb5effd
JB
4831 }
4832
d3ee29e3 4833 loops = 0;
f4c738c2
JB
4834 while (delalloc_bytes && loops < 3) {
4835 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4836 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4837 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4838 /*
4839 * We need to wait for the async pages to actually start before
4840 * we do anything.
4841 */
0b246afa 4842 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4843 if (!max_reclaim)
4844 goto skip_async;
4845
4846 if (max_reclaim <= nr_pages)
4847 max_reclaim = 0;
4848 else
4849 max_reclaim -= nr_pages;
dea31f52 4850
0b246afa
JM
4851 wait_event(fs_info->async_submit_wait,
4852 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4853 (int)max_reclaim);
4854skip_async:
0019f10d 4855 spin_lock(&space_info->lock);
957780eb
JB
4856 if (list_empty(&space_info->tickets) &&
4857 list_empty(&space_info->priority_tickets)) {
4858 spin_unlock(&space_info->lock);
4859 break;
4860 }
0019f10d 4861 spin_unlock(&space_info->lock);
5da9d01b 4862
36e39c40 4863 loops++;
f104d044 4864 if (wait_ordered && !trans) {
0b246afa 4865 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4866 } else {
f4c738c2 4867 time_left = schedule_timeout_killable(1);
f104d044
JB
4868 if (time_left)
4869 break;
4870 }
963d678b 4871 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4872 &fs_info->delalloc_bytes);
5da9d01b 4873 }
5da9d01b
YZ
4874}
4875
996478ca
JB
4876struct reserve_ticket {
4877 u64 bytes;
4878 int error;
4879 struct list_head list;
4880 wait_queue_head_t wait;
4881};
4882
663350ac
JB
4883/**
4884 * maybe_commit_transaction - possibly commit the transaction if its ok to
4885 * @root - the root we're allocating for
4886 * @bytes - the number of bytes we want to reserve
4887 * @force - force the commit
8bb8ab2e 4888 *
663350ac
JB
4889 * This will check to make sure that committing the transaction will actually
4890 * get us somewhere and then commit the transaction if it does. Otherwise it
4891 * will return -ENOSPC.
8bb8ab2e 4892 */
0c9ab349 4893static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4894 struct btrfs_space_info *space_info)
663350ac 4895{
996478ca 4896 struct reserve_ticket *ticket = NULL;
0b246afa 4897 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4898 struct btrfs_trans_handle *trans;
996478ca 4899 u64 bytes;
663350ac
JB
4900
4901 trans = (struct btrfs_trans_handle *)current->journal_info;
4902 if (trans)
4903 return -EAGAIN;
4904
996478ca
JB
4905 spin_lock(&space_info->lock);
4906 if (!list_empty(&space_info->priority_tickets))
4907 ticket = list_first_entry(&space_info->priority_tickets,
4908 struct reserve_ticket, list);
4909 else if (!list_empty(&space_info->tickets))
4910 ticket = list_first_entry(&space_info->tickets,
4911 struct reserve_ticket, list);
4912 bytes = (ticket) ? ticket->bytes : 0;
4913 spin_unlock(&space_info->lock);
4914
4915 if (!bytes)
4916 return 0;
663350ac
JB
4917
4918 /* See if there is enough pinned space to make this reservation */
b150a4f1 4919 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4920 bytes) >= 0)
663350ac 4921 goto commit;
663350ac
JB
4922
4923 /*
4924 * See if there is some space in the delayed insertion reservation for
4925 * this reservation.
4926 */
4927 if (space_info != delayed_rsv->space_info)
4928 return -ENOSPC;
4929
4930 spin_lock(&delayed_rsv->lock);
996478ca
JB
4931 if (delayed_rsv->size > bytes)
4932 bytes = 0;
4933 else
4934 bytes -= delayed_rsv->size;
057aac3e
NB
4935 spin_unlock(&delayed_rsv->lock);
4936
b150a4f1 4937 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4938 bytes) < 0) {
663350ac
JB
4939 return -ENOSPC;
4940 }
663350ac
JB
4941
4942commit:
a9b3311e 4943 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4944 if (IS_ERR(trans))
4945 return -ENOSPC;
4946
3a45bb20 4947 return btrfs_commit_transaction(trans);
663350ac
JB
4948}
4949
e38ae7a0
NB
4950/*
4951 * Try to flush some data based on policy set by @state. This is only advisory
4952 * and may fail for various reasons. The caller is supposed to examine the
4953 * state of @space_info to detect the outcome.
4954 */
4955static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4956 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4957 int state)
96c3f433 4958{
a9b3311e 4959 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4960 struct btrfs_trans_handle *trans;
4961 int nr;
f4c738c2 4962 int ret = 0;
96c3f433
JB
4963
4964 switch (state) {
96c3f433
JB
4965 case FLUSH_DELAYED_ITEMS_NR:
4966 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4967 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4968 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4969 else
96c3f433 4970 nr = -1;
18cd8ea6 4971
96c3f433
JB
4972 trans = btrfs_join_transaction(root);
4973 if (IS_ERR(trans)) {
4974 ret = PTR_ERR(trans);
4975 break;
4976 }
e5c304e6 4977 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4978 btrfs_end_transaction(trans);
96c3f433 4979 break;
67b0fd63
JB
4980 case FLUSH_DELALLOC:
4981 case FLUSH_DELALLOC_WAIT:
7bdd6277 4982 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4983 state == FLUSH_DELALLOC_WAIT);
4984 break;
ea658bad
JB
4985 case ALLOC_CHUNK:
4986 trans = btrfs_join_transaction(root);
4987 if (IS_ERR(trans)) {
4988 ret = PTR_ERR(trans);
4989 break;
4990 }
2ff7e61e 4991 ret = do_chunk_alloc(trans, fs_info,
1b86826d 4992 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4993 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4994 btrfs_end_transaction(trans);
eecba891 4995 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4996 ret = 0;
4997 break;
96c3f433 4998 case COMMIT_TRANS:
996478ca 4999 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
5000 break;
5001 default:
5002 ret = -ENOSPC;
5003 break;
5004 }
5005
7bdd6277
NB
5006 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5007 ret);
e38ae7a0 5008 return;
96c3f433 5009}
21c7e756
MX
5010
5011static inline u64
c1c4919b
JM
5012btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5013 struct btrfs_space_info *space_info,
5014 bool system_chunk)
21c7e756 5015{
957780eb 5016 struct reserve_ticket *ticket;
21c7e756
MX
5017 u64 used;
5018 u64 expected;
957780eb 5019 u64 to_reclaim = 0;
21c7e756 5020
957780eb
JB
5021 list_for_each_entry(ticket, &space_info->tickets, list)
5022 to_reclaim += ticket->bytes;
5023 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5024 to_reclaim += ticket->bytes;
5025 if (to_reclaim)
5026 return to_reclaim;
21c7e756 5027
e0af2484 5028 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5029 if (can_overcommit(fs_info, space_info, to_reclaim,
5030 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5031 return 0;
5032
0eee8a49
NB
5033 used = btrfs_space_info_used(space_info, true);
5034
c1c4919b
JM
5035 if (can_overcommit(fs_info, space_info, SZ_1M,
5036 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5037 expected = div_factor_fine(space_info->total_bytes, 95);
5038 else
5039 expected = div_factor_fine(space_info->total_bytes, 90);
5040
5041 if (used > expected)
5042 to_reclaim = used - expected;
5043 else
5044 to_reclaim = 0;
5045 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5046 space_info->bytes_reserved);
21c7e756
MX
5047 return to_reclaim;
5048}
5049
c1c4919b
JM
5050static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5051 struct btrfs_space_info *space_info,
5052 u64 used, bool system_chunk)
21c7e756 5053{
365c5313
JB
5054 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5055
5056 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5057 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5058 return 0;
5059
c1c4919b
JM
5060 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5061 system_chunk))
d38b349c
JB
5062 return 0;
5063
0b246afa
JM
5064 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5065 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5066}
5067
957780eb 5068static void wake_all_tickets(struct list_head *head)
21c7e756 5069{
957780eb 5070 struct reserve_ticket *ticket;
25ce459c 5071
957780eb
JB
5072 while (!list_empty(head)) {
5073 ticket = list_first_entry(head, struct reserve_ticket, list);
5074 list_del_init(&ticket->list);
5075 ticket->error = -ENOSPC;
5076 wake_up(&ticket->wait);
21c7e756 5077 }
21c7e756
MX
5078}
5079
957780eb
JB
5080/*
5081 * This is for normal flushers, we can wait all goddamned day if we want to. We
5082 * will loop and continuously try to flush as long as we are making progress.
5083 * We count progress as clearing off tickets each time we have to loop.
5084 */
21c7e756
MX
5085static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5086{
5087 struct btrfs_fs_info *fs_info;
5088 struct btrfs_space_info *space_info;
5089 u64 to_reclaim;
5090 int flush_state;
957780eb 5091 int commit_cycles = 0;
ce129655 5092 u64 last_tickets_id;
21c7e756
MX
5093
5094 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5095 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5096
957780eb 5097 spin_lock(&space_info->lock);
c1c4919b
JM
5098 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5099 false);
957780eb
JB
5100 if (!to_reclaim) {
5101 space_info->flush = 0;
5102 spin_unlock(&space_info->lock);
21c7e756 5103 return;
957780eb 5104 }
ce129655 5105 last_tickets_id = space_info->tickets_id;
957780eb 5106 spin_unlock(&space_info->lock);
21c7e756
MX
5107
5108 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5109 do {
e38ae7a0 5110 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5111 spin_lock(&space_info->lock);
5112 if (list_empty(&space_info->tickets)) {
5113 space_info->flush = 0;
5114 spin_unlock(&space_info->lock);
5115 return;
5116 }
c1c4919b
JM
5117 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5118 space_info,
5119 false);
ce129655 5120 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5121 flush_state++;
5122 } else {
ce129655 5123 last_tickets_id = space_info->tickets_id;
957780eb
JB
5124 flush_state = FLUSH_DELAYED_ITEMS_NR;
5125 if (commit_cycles)
5126 commit_cycles--;
5127 }
5128
5129 if (flush_state > COMMIT_TRANS) {
5130 commit_cycles++;
5131 if (commit_cycles > 2) {
5132 wake_all_tickets(&space_info->tickets);
5133 space_info->flush = 0;
5134 } else {
5135 flush_state = FLUSH_DELAYED_ITEMS_NR;
5136 }
5137 }
5138 spin_unlock(&space_info->lock);
5139 } while (flush_state <= COMMIT_TRANS);
5140}
5141
5142void btrfs_init_async_reclaim_work(struct work_struct *work)
5143{
5144 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5145}
5146
5147static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5148 struct btrfs_space_info *space_info,
5149 struct reserve_ticket *ticket)
5150{
5151 u64 to_reclaim;
5152 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5153
5154 spin_lock(&space_info->lock);
c1c4919b
JM
5155 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5156 false);
957780eb
JB
5157 if (!to_reclaim) {
5158 spin_unlock(&space_info->lock);
5159 return;
5160 }
5161 spin_unlock(&space_info->lock);
5162
21c7e756 5163 do {
7bdd6277 5164 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5165 flush_state++;
957780eb
JB
5166 spin_lock(&space_info->lock);
5167 if (ticket->bytes == 0) {
5168 spin_unlock(&space_info->lock);
21c7e756 5169 return;
957780eb
JB
5170 }
5171 spin_unlock(&space_info->lock);
5172
5173 /*
5174 * Priority flushers can't wait on delalloc without
5175 * deadlocking.
5176 */
5177 if (flush_state == FLUSH_DELALLOC ||
5178 flush_state == FLUSH_DELALLOC_WAIT)
5179 flush_state = ALLOC_CHUNK;
365c5313 5180 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5181}
5182
957780eb
JB
5183static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5184 struct btrfs_space_info *space_info,
5185 struct reserve_ticket *ticket, u64 orig_bytes)
5186
21c7e756 5187{
957780eb
JB
5188 DEFINE_WAIT(wait);
5189 int ret = 0;
5190
5191 spin_lock(&space_info->lock);
5192 while (ticket->bytes > 0 && ticket->error == 0) {
5193 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5194 if (ret) {
5195 ret = -EINTR;
5196 break;
5197 }
5198 spin_unlock(&space_info->lock);
5199
5200 schedule();
5201
5202 finish_wait(&ticket->wait, &wait);
5203 spin_lock(&space_info->lock);
5204 }
5205 if (!ret)
5206 ret = ticket->error;
5207 if (!list_empty(&ticket->list))
5208 list_del_init(&ticket->list);
5209 if (ticket->bytes && ticket->bytes < orig_bytes) {
5210 u64 num_bytes = orig_bytes - ticket->bytes;
5211 space_info->bytes_may_use -= num_bytes;
5212 trace_btrfs_space_reservation(fs_info, "space_info",
5213 space_info->flags, num_bytes, 0);
5214 }
5215 spin_unlock(&space_info->lock);
5216
5217 return ret;
21c7e756
MX
5218}
5219
4a92b1b8
JB
5220/**
5221 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5222 * @root - the root we're allocating for
957780eb 5223 * @space_info - the space info we want to allocate from
4a92b1b8 5224 * @orig_bytes - the number of bytes we want
48fc7f7e 5225 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5226 *
01327610 5227 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5228 * with the block_rsv. If there is not enough space it will make an attempt to
5229 * flush out space to make room. It will do this by flushing delalloc if
5230 * possible or committing the transaction. If flush is 0 then no attempts to
5231 * regain reservations will be made and this will fail if there is not enough
5232 * space already.
8bb8ab2e 5233 */
c1c4919b 5234static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5235 struct btrfs_space_info *space_info,
5236 u64 orig_bytes,
c1c4919b
JM
5237 enum btrfs_reserve_flush_enum flush,
5238 bool system_chunk)
9ed74f2d 5239{
957780eb 5240 struct reserve_ticket ticket;
2bf64758 5241 u64 used;
8bb8ab2e 5242 int ret = 0;
9ed74f2d 5243
957780eb 5244 ASSERT(orig_bytes);
8ca17f0f 5245 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5246
8bb8ab2e 5247 spin_lock(&space_info->lock);
fdb5effd 5248 ret = -ENOSPC;
4136135b 5249 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5250
8bb8ab2e 5251 /*
957780eb
JB
5252 * If we have enough space then hooray, make our reservation and carry
5253 * on. If not see if we can overcommit, and if we can, hooray carry on.
5254 * If not things get more complicated.
8bb8ab2e 5255 */
957780eb
JB
5256 if (used + orig_bytes <= space_info->total_bytes) {
5257 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5258 trace_btrfs_space_reservation(fs_info, "space_info",
5259 space_info->flags, orig_bytes, 1);
957780eb 5260 ret = 0;
c1c4919b
JM
5261 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5262 system_chunk)) {
44734ed1 5263 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5264 trace_btrfs_space_reservation(fs_info, "space_info",
5265 space_info->flags, orig_bytes, 1);
44734ed1 5266 ret = 0;
2bf64758
JB
5267 }
5268
8bb8ab2e 5269 /*
957780eb
JB
5270 * If we couldn't make a reservation then setup our reservation ticket
5271 * and kick the async worker if it's not already running.
08e007d2 5272 *
957780eb
JB
5273 * If we are a priority flusher then we just need to add our ticket to
5274 * the list and we will do our own flushing further down.
8bb8ab2e 5275 */
72bcd99d 5276 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5277 ticket.bytes = orig_bytes;
5278 ticket.error = 0;
5279 init_waitqueue_head(&ticket.wait);
5280 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5281 list_add_tail(&ticket.list, &space_info->tickets);
5282 if (!space_info->flush) {
5283 space_info->flush = 1;
0b246afa 5284 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5285 space_info->flags,
5286 orig_bytes, flush,
5287 "enospc");
957780eb 5288 queue_work(system_unbound_wq,
c1c4919b 5289 &fs_info->async_reclaim_work);
957780eb
JB
5290 }
5291 } else {
5292 list_add_tail(&ticket.list,
5293 &space_info->priority_tickets);
5294 }
21c7e756
MX
5295 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5296 used += orig_bytes;
f6acfd50
JB
5297 /*
5298 * We will do the space reservation dance during log replay,
5299 * which means we won't have fs_info->fs_root set, so don't do
5300 * the async reclaim as we will panic.
5301 */
0b246afa 5302 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5303 need_do_async_reclaim(fs_info, space_info,
5304 used, system_chunk) &&
0b246afa
JM
5305 !work_busy(&fs_info->async_reclaim_work)) {
5306 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5307 orig_bytes, flush, "preempt");
21c7e756 5308 queue_work(system_unbound_wq,
0b246afa 5309 &fs_info->async_reclaim_work);
f376df2b 5310 }
8bb8ab2e 5311 }
f0486c68 5312 spin_unlock(&space_info->lock);
08e007d2 5313 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5314 return ret;
f0486c68 5315
957780eb 5316 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5317 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5318 orig_bytes);
08e007d2 5319
957780eb 5320 ret = 0;
0b246afa 5321 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5322 spin_lock(&space_info->lock);
5323 if (ticket.bytes) {
5324 if (ticket.bytes < orig_bytes) {
5325 u64 num_bytes = orig_bytes - ticket.bytes;
5326 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5327 trace_btrfs_space_reservation(fs_info, "space_info",
5328 space_info->flags,
5329 num_bytes, 0);
08e007d2 5330
957780eb
JB
5331 }
5332 list_del_init(&ticket.list);
5333 ret = -ENOSPC;
5334 }
5335 spin_unlock(&space_info->lock);
5336 ASSERT(list_empty(&ticket.list));
5337 return ret;
5338}
8bb8ab2e 5339
957780eb
JB
5340/**
5341 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5342 * @root - the root we're allocating for
5343 * @block_rsv - the block_rsv we're allocating for
5344 * @orig_bytes - the number of bytes we want
5345 * @flush - whether or not we can flush to make our reservation
5346 *
5347 * This will reserve orgi_bytes number of bytes from the space info associated
5348 * with the block_rsv. If there is not enough space it will make an attempt to
5349 * flush out space to make room. It will do this by flushing delalloc if
5350 * possible or committing the transaction. If flush is 0 then no attempts to
5351 * regain reservations will be made and this will fail if there is not enough
5352 * space already.
5353 */
5354static int reserve_metadata_bytes(struct btrfs_root *root,
5355 struct btrfs_block_rsv *block_rsv,
5356 u64 orig_bytes,
5357 enum btrfs_reserve_flush_enum flush)
5358{
0b246afa
JM
5359 struct btrfs_fs_info *fs_info = root->fs_info;
5360 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5361 int ret;
c1c4919b 5362 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5363
c1c4919b
JM
5364 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5365 orig_bytes, flush, system_chunk);
5d80366e
JB
5366 if (ret == -ENOSPC &&
5367 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5368 if (block_rsv != global_rsv &&
5369 !block_rsv_use_bytes(global_rsv, orig_bytes))
5370 ret = 0;
5371 }
9a3daff3 5372 if (ret == -ENOSPC) {
0b246afa 5373 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5374 block_rsv->space_info->flags,
5375 orig_bytes, 1);
9a3daff3
NB
5376
5377 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5378 dump_space_info(fs_info, block_rsv->space_info,
5379 orig_bytes, 0);
5380 }
f0486c68
YZ
5381 return ret;
5382}
5383
79787eaa
JM
5384static struct btrfs_block_rsv *get_block_rsv(
5385 const struct btrfs_trans_handle *trans,
5386 const struct btrfs_root *root)
f0486c68 5387{
0b246afa 5388 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5389 struct btrfs_block_rsv *block_rsv = NULL;
5390
e9cf439f 5391 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5392 (root == fs_info->csum_root && trans->adding_csums) ||
5393 (root == fs_info->uuid_root))
f7a81ea4
SB
5394 block_rsv = trans->block_rsv;
5395
4c13d758 5396 if (!block_rsv)
f0486c68
YZ
5397 block_rsv = root->block_rsv;
5398
5399 if (!block_rsv)
0b246afa 5400 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5401
5402 return block_rsv;
5403}
5404
5405static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5406 u64 num_bytes)
5407{
5408 int ret = -ENOSPC;
5409 spin_lock(&block_rsv->lock);
5410 if (block_rsv->reserved >= num_bytes) {
5411 block_rsv->reserved -= num_bytes;
5412 if (block_rsv->reserved < block_rsv->size)
5413 block_rsv->full = 0;
5414 ret = 0;
5415 }
5416 spin_unlock(&block_rsv->lock);
5417 return ret;
5418}
5419
5420static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5421 u64 num_bytes, int update_size)
5422{
5423 spin_lock(&block_rsv->lock);
5424 block_rsv->reserved += num_bytes;
5425 if (update_size)
5426 block_rsv->size += num_bytes;
5427 else if (block_rsv->reserved >= block_rsv->size)
5428 block_rsv->full = 1;
5429 spin_unlock(&block_rsv->lock);
5430}
5431
d52be818
JB
5432int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5433 struct btrfs_block_rsv *dest, u64 num_bytes,
5434 int min_factor)
5435{
5436 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5437 u64 min_bytes;
5438
5439 if (global_rsv->space_info != dest->space_info)
5440 return -ENOSPC;
5441
5442 spin_lock(&global_rsv->lock);
5443 min_bytes = div_factor(global_rsv->size, min_factor);
5444 if (global_rsv->reserved < min_bytes + num_bytes) {
5445 spin_unlock(&global_rsv->lock);
5446 return -ENOSPC;
5447 }
5448 global_rsv->reserved -= num_bytes;
5449 if (global_rsv->reserved < global_rsv->size)
5450 global_rsv->full = 0;
5451 spin_unlock(&global_rsv->lock);
5452
5453 block_rsv_add_bytes(dest, num_bytes, 1);
5454 return 0;
5455}
5456
957780eb
JB
5457/*
5458 * This is for space we already have accounted in space_info->bytes_may_use, so
5459 * basically when we're returning space from block_rsv's.
5460 */
5461static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5462 struct btrfs_space_info *space_info,
5463 u64 num_bytes)
5464{
5465 struct reserve_ticket *ticket;
5466 struct list_head *head;
5467 u64 used;
5468 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5469 bool check_overcommit = false;
5470
5471 spin_lock(&space_info->lock);
5472 head = &space_info->priority_tickets;
5473
5474 /*
5475 * If we are over our limit then we need to check and see if we can
5476 * overcommit, and if we can't then we just need to free up our space
5477 * and not satisfy any requests.
5478 */
0eee8a49 5479 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5480 if (used - num_bytes >= space_info->total_bytes)
5481 check_overcommit = true;
5482again:
5483 while (!list_empty(head) && num_bytes) {
5484 ticket = list_first_entry(head, struct reserve_ticket,
5485 list);
5486 /*
5487 * We use 0 bytes because this space is already reserved, so
5488 * adding the ticket space would be a double count.
5489 */
5490 if (check_overcommit &&
c1c4919b 5491 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5492 break;
5493 if (num_bytes >= ticket->bytes) {
5494 list_del_init(&ticket->list);
5495 num_bytes -= ticket->bytes;
5496 ticket->bytes = 0;
ce129655 5497 space_info->tickets_id++;
957780eb
JB
5498 wake_up(&ticket->wait);
5499 } else {
5500 ticket->bytes -= num_bytes;
5501 num_bytes = 0;
5502 }
5503 }
5504
5505 if (num_bytes && head == &space_info->priority_tickets) {
5506 head = &space_info->tickets;
5507 flush = BTRFS_RESERVE_FLUSH_ALL;
5508 goto again;
5509 }
5510 space_info->bytes_may_use -= num_bytes;
5511 trace_btrfs_space_reservation(fs_info, "space_info",
5512 space_info->flags, num_bytes, 0);
5513 spin_unlock(&space_info->lock);
5514}
5515
5516/*
5517 * This is for newly allocated space that isn't accounted in
5518 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5519 * we use this helper.
5520 */
5521static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5522 struct btrfs_space_info *space_info,
5523 u64 num_bytes)
5524{
5525 struct reserve_ticket *ticket;
5526 struct list_head *head = &space_info->priority_tickets;
5527
5528again:
5529 while (!list_empty(head) && num_bytes) {
5530 ticket = list_first_entry(head, struct reserve_ticket,
5531 list);
5532 if (num_bytes >= ticket->bytes) {
5533 trace_btrfs_space_reservation(fs_info, "space_info",
5534 space_info->flags,
5535 ticket->bytes, 1);
5536 list_del_init(&ticket->list);
5537 num_bytes -= ticket->bytes;
5538 space_info->bytes_may_use += ticket->bytes;
5539 ticket->bytes = 0;
ce129655 5540 space_info->tickets_id++;
957780eb
JB
5541 wake_up(&ticket->wait);
5542 } else {
5543 trace_btrfs_space_reservation(fs_info, "space_info",
5544 space_info->flags,
5545 num_bytes, 1);
5546 space_info->bytes_may_use += num_bytes;
5547 ticket->bytes -= num_bytes;
5548 num_bytes = 0;
5549 }
5550 }
5551
5552 if (num_bytes && head == &space_info->priority_tickets) {
5553 head = &space_info->tickets;
5554 goto again;
5555 }
5556}
5557
69fe2d75 5558static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5559 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5560 struct btrfs_block_rsv *dest, u64 num_bytes,
5561 u64 *qgroup_to_release_ret)
f0486c68
YZ
5562{
5563 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5564 u64 qgroup_to_release = 0;
69fe2d75 5565 u64 ret;
f0486c68
YZ
5566
5567 spin_lock(&block_rsv->lock);
ff6bc37e 5568 if (num_bytes == (u64)-1) {
f0486c68 5569 num_bytes = block_rsv->size;
ff6bc37e
QW
5570 qgroup_to_release = block_rsv->qgroup_rsv_size;
5571 }
f0486c68
YZ
5572 block_rsv->size -= num_bytes;
5573 if (block_rsv->reserved >= block_rsv->size) {
5574 num_bytes = block_rsv->reserved - block_rsv->size;
5575 block_rsv->reserved = block_rsv->size;
5576 block_rsv->full = 1;
5577 } else {
5578 num_bytes = 0;
5579 }
ff6bc37e
QW
5580 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5581 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5582 block_rsv->qgroup_rsv_size;
5583 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5584 } else {
5585 qgroup_to_release = 0;
5586 }
f0486c68
YZ
5587 spin_unlock(&block_rsv->lock);
5588
69fe2d75 5589 ret = num_bytes;
f0486c68
YZ
5590 if (num_bytes > 0) {
5591 if (dest) {
e9e22899
JB
5592 spin_lock(&dest->lock);
5593 if (!dest->full) {
5594 u64 bytes_to_add;
5595
5596 bytes_to_add = dest->size - dest->reserved;
5597 bytes_to_add = min(num_bytes, bytes_to_add);
5598 dest->reserved += bytes_to_add;
5599 if (dest->reserved >= dest->size)
5600 dest->full = 1;
5601 num_bytes -= bytes_to_add;
5602 }
5603 spin_unlock(&dest->lock);
5604 }
957780eb
JB
5605 if (num_bytes)
5606 space_info_add_old_bytes(fs_info, space_info,
5607 num_bytes);
9ed74f2d 5608 }
ff6bc37e
QW
5609 if (qgroup_to_release_ret)
5610 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5611 return ret;
f0486c68 5612}
4e06bdd6 5613
25d609f8
JB
5614int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5615 struct btrfs_block_rsv *dst, u64 num_bytes,
5616 int update_size)
f0486c68
YZ
5617{
5618 int ret;
9ed74f2d 5619
f0486c68
YZ
5620 ret = block_rsv_use_bytes(src, num_bytes);
5621 if (ret)
5622 return ret;
9ed74f2d 5623
25d609f8 5624 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5625 return 0;
5626}
5627
66d8f3dd 5628void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5629{
f0486c68
YZ
5630 memset(rsv, 0, sizeof(*rsv));
5631 spin_lock_init(&rsv->lock);
66d8f3dd 5632 rsv->type = type;
f0486c68
YZ
5633}
5634
69fe2d75
JB
5635void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5636 struct btrfs_block_rsv *rsv,
5637 unsigned short type)
5638{
5639 btrfs_init_block_rsv(rsv, type);
5640 rsv->space_info = __find_space_info(fs_info,
5641 BTRFS_BLOCK_GROUP_METADATA);
5642}
5643
2ff7e61e 5644struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5645 unsigned short type)
f0486c68
YZ
5646{
5647 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5648
f0486c68
YZ
5649 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5650 if (!block_rsv)
5651 return NULL;
9ed74f2d 5652
69fe2d75 5653 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5654 return block_rsv;
5655}
9ed74f2d 5656
2ff7e61e 5657void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5658 struct btrfs_block_rsv *rsv)
5659{
2aaa6655
JB
5660 if (!rsv)
5661 return;
2ff7e61e 5662 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5663 kfree(rsv);
9ed74f2d
JB
5664}
5665
cdfb080e
CM
5666void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5667{
5668 kfree(rsv);
5669}
5670
08e007d2
MX
5671int btrfs_block_rsv_add(struct btrfs_root *root,
5672 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5673 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5674{
f0486c68 5675 int ret;
9ed74f2d 5676
f0486c68
YZ
5677 if (num_bytes == 0)
5678 return 0;
8bb8ab2e 5679
61b520a9 5680 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5681 if (!ret) {
5682 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5683 return 0;
5684 }
9ed74f2d 5685
f0486c68 5686 return ret;
f0486c68 5687}
9ed74f2d 5688
2ff7e61e 5689int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5690{
5691 u64 num_bytes = 0;
f0486c68 5692 int ret = -ENOSPC;
9ed74f2d 5693
f0486c68
YZ
5694 if (!block_rsv)
5695 return 0;
9ed74f2d 5696
f0486c68 5697 spin_lock(&block_rsv->lock);
36ba022a
JB
5698 num_bytes = div_factor(block_rsv->size, min_factor);
5699 if (block_rsv->reserved >= num_bytes)
5700 ret = 0;
5701 spin_unlock(&block_rsv->lock);
9ed74f2d 5702
36ba022a
JB
5703 return ret;
5704}
5705
08e007d2
MX
5706int btrfs_block_rsv_refill(struct btrfs_root *root,
5707 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5708 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5709{
5710 u64 num_bytes = 0;
5711 int ret = -ENOSPC;
5712
5713 if (!block_rsv)
5714 return 0;
5715
5716 spin_lock(&block_rsv->lock);
5717 num_bytes = min_reserved;
13553e52 5718 if (block_rsv->reserved >= num_bytes)
f0486c68 5719 ret = 0;
13553e52 5720 else
f0486c68 5721 num_bytes -= block_rsv->reserved;
f0486c68 5722 spin_unlock(&block_rsv->lock);
13553e52 5723
f0486c68
YZ
5724 if (!ret)
5725 return 0;
5726
aa38a711 5727 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5728 if (!ret) {
5729 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5730 return 0;
6a63209f 5731 }
9ed74f2d 5732
13553e52 5733 return ret;
f0486c68
YZ
5734}
5735
69fe2d75
JB
5736/**
5737 * btrfs_inode_rsv_refill - refill the inode block rsv.
5738 * @inode - the inode we are refilling.
5739 * @flush - the flusing restriction.
5740 *
5741 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5742 * block_rsv->size as the minimum size. We'll either refill the missing amount
5743 * or return if we already have enough space. This will also handle the resreve
5744 * tracepoint for the reserved amount.
5745 */
3f2dd7a0
QW
5746static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5747 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5748{
5749 struct btrfs_root *root = inode->root;
5750 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5751 u64 num_bytes = 0;
ff6bc37e 5752 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5753 int ret = -ENOSPC;
5754
5755 spin_lock(&block_rsv->lock);
5756 if (block_rsv->reserved < block_rsv->size)
5757 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5758 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5759 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5760 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5761 spin_unlock(&block_rsv->lock);
5762
5763 if (num_bytes == 0)
5764 return 0;
5765
ff6bc37e 5766 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5767 if (ret)
5768 return ret;
69fe2d75
JB
5769 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5770 if (!ret) {
5771 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5772 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5773 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5774
5775 /* Don't forget to increase qgroup_rsv_reserved */
5776 spin_lock(&block_rsv->lock);
5777 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5778 spin_unlock(&block_rsv->lock);
5779 } else
5780 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5781 return ret;
5782}
5783
5784/**
5785 * btrfs_inode_rsv_release - release any excessive reservation.
5786 * @inode - the inode we need to release from.
43b18595
QW
5787 * @qgroup_free - free or convert qgroup meta.
5788 * Unlike normal operation, qgroup meta reservation needs to know if we are
5789 * freeing qgroup reservation or just converting it into per-trans. Normally
5790 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5791 *
5792 * This is the same as btrfs_block_rsv_release, except that it handles the
5793 * tracepoint for the reservation.
5794 */
43b18595 5795static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5796{
5797 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5798 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5799 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5800 u64 released = 0;
ff6bc37e 5801 u64 qgroup_to_release = 0;
69fe2d75
JB
5802
5803 /*
5804 * Since we statically set the block_rsv->size we just want to say we
5805 * are releasing 0 bytes, and then we'll just get the reservation over
5806 * the size free'd.
5807 */
ff6bc37e
QW
5808 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5809 &qgroup_to_release);
69fe2d75
JB
5810 if (released > 0)
5811 trace_btrfs_space_reservation(fs_info, "delalloc",
5812 btrfs_ino(inode), released, 0);
43b18595 5813 if (qgroup_free)
ff6bc37e 5814 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5815 else
ff6bc37e
QW
5816 btrfs_qgroup_convert_reserved_meta(inode->root,
5817 qgroup_to_release);
69fe2d75
JB
5818}
5819
2ff7e61e 5820void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5821 struct btrfs_block_rsv *block_rsv,
5822 u64 num_bytes)
5823{
0b246afa
JM
5824 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5825
17504584 5826 if (global_rsv == block_rsv ||
f0486c68
YZ
5827 block_rsv->space_info != global_rsv->space_info)
5828 global_rsv = NULL;
ff6bc37e 5829 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
6a63209f
JB
5830}
5831
8929ecfa
YZ
5832static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5833{
5834 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5835 struct btrfs_space_info *sinfo = block_rsv->space_info;
5836 u64 num_bytes;
6a63209f 5837
ae2e4728
JB
5838 /*
5839 * The global block rsv is based on the size of the extent tree, the
5840 * checksum tree and the root tree. If the fs is empty we want to set
5841 * it to a minimal amount for safety.
5842 */
5843 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5844 btrfs_root_used(&fs_info->csum_root->root_item) +
5845 btrfs_root_used(&fs_info->tree_root->root_item);
5846 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5847
8929ecfa 5848 spin_lock(&sinfo->lock);
1f699d38 5849 spin_lock(&block_rsv->lock);
4e06bdd6 5850
ee22184b 5851 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5852
fb4b10e5 5853 if (block_rsv->reserved < block_rsv->size) {
4136135b 5854 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5855 if (sinfo->total_bytes > num_bytes) {
5856 num_bytes = sinfo->total_bytes - num_bytes;
5857 num_bytes = min(num_bytes,
5858 block_rsv->size - block_rsv->reserved);
5859 block_rsv->reserved += num_bytes;
5860 sinfo->bytes_may_use += num_bytes;
5861 trace_btrfs_space_reservation(fs_info, "space_info",
5862 sinfo->flags, num_bytes,
5863 1);
5864 }
5865 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5866 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5867 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5868 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5869 sinfo->flags, num_bytes, 0);
8929ecfa 5870 block_rsv->reserved = block_rsv->size;
8929ecfa 5871 }
182608c8 5872
fb4b10e5
JB
5873 if (block_rsv->reserved == block_rsv->size)
5874 block_rsv->full = 1;
5875 else
5876 block_rsv->full = 0;
5877
8929ecfa 5878 spin_unlock(&block_rsv->lock);
1f699d38 5879 spin_unlock(&sinfo->lock);
6a63209f
JB
5880}
5881
f0486c68 5882static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5883{
f0486c68 5884 struct btrfs_space_info *space_info;
6a63209f 5885
f0486c68
YZ
5886 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5887 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5888
f0486c68 5889 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5890 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5891 fs_info->trans_block_rsv.space_info = space_info;
5892 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5893 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5894
8929ecfa
YZ
5895 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5896 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5897 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5898 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5899 if (fs_info->quota_root)
5900 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5901 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5902
8929ecfa 5903 update_global_block_rsv(fs_info);
6a63209f
JB
5904}
5905
8929ecfa 5906static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5907{
8c2a3ca2 5908 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5909 (u64)-1, NULL);
8929ecfa
YZ
5910 WARN_ON(fs_info->trans_block_rsv.size > 0);
5911 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5912 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5913 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5914 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5915 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5916}
5917
6a63209f 5918
4fbcdf66
FM
5919/*
5920 * To be called after all the new block groups attached to the transaction
5921 * handle have been created (btrfs_create_pending_block_groups()).
5922 */
5923void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5924{
64b63580 5925 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5926
5927 if (!trans->chunk_bytes_reserved)
5928 return;
5929
5930 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5931
5932 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5933 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5934 trans->chunk_bytes_reserved = 0;
5935}
5936
d5c12070
MX
5937/*
5938 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5939 * root: the root of the parent directory
5940 * rsv: block reservation
5941 * items: the number of items that we need do reservation
5942 * qgroup_reserved: used to return the reserved size in qgroup
5943 *
5944 * This function is used to reserve the space for snapshot/subvolume
5945 * creation and deletion. Those operations are different with the
5946 * common file/directory operations, they change two fs/file trees
5947 * and root tree, the number of items that the qgroup reserves is
5948 * different with the free space reservation. So we can not use
01327610 5949 * the space reservation mechanism in start_transaction().
d5c12070
MX
5950 */
5951int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5952 struct btrfs_block_rsv *rsv,
5953 int items,
ee3441b4
JM
5954 u64 *qgroup_reserved,
5955 bool use_global_rsv)
a22285a6 5956{
d5c12070
MX
5957 u64 num_bytes;
5958 int ret;
0b246afa
JM
5959 struct btrfs_fs_info *fs_info = root->fs_info;
5960 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5961
0b246afa 5962 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5963 /* One for parent inode, two for dir entries */
0b246afa 5964 num_bytes = 3 * fs_info->nodesize;
733e03a0 5965 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
d5c12070
MX
5966 if (ret)
5967 return ret;
5968 } else {
5969 num_bytes = 0;
5970 }
5971
5972 *qgroup_reserved = num_bytes;
5973
0b246afa
JM
5974 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5975 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5976 BTRFS_BLOCK_GROUP_METADATA);
5977 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5978 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5979
5980 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5981 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5982
7174109c 5983 if (ret && *qgroup_reserved)
733e03a0 5984 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
d5c12070
MX
5985
5986 return ret;
5987}
5988
2ff7e61e 5989void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5990 struct btrfs_block_rsv *rsv)
d5c12070 5991{
2ff7e61e 5992 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5993}
5994
69fe2d75
JB
5995static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5996 struct btrfs_inode *inode)
9e0baf60 5997{
69fe2d75
JB
5998 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5999 u64 reserve_size = 0;
ff6bc37e 6000 u64 qgroup_rsv_size = 0;
69fe2d75
JB
6001 u64 csum_leaves;
6002 unsigned outstanding_extents;
9e0baf60 6003
69fe2d75
JB
6004 lockdep_assert_held(&inode->lock);
6005 outstanding_extents = inode->outstanding_extents;
6006 if (outstanding_extents)
6007 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6008 outstanding_extents + 1);
6009 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6010 inode->csum_bytes);
6011 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6012 csum_leaves);
ff6bc37e
QW
6013 /*
6014 * For qgroup rsv, the calculation is very simple:
6015 * account one nodesize for each outstanding extent
6016 *
6017 * This is overestimating in most cases.
6018 */
6019 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 6020
69fe2d75
JB
6021 spin_lock(&block_rsv->lock);
6022 block_rsv->size = reserve_size;
ff6bc37e 6023 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6024 spin_unlock(&block_rsv->lock);
0ca1f7ce 6025}
c146afad 6026
9f3db423 6027int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6028{
9f3db423 6029 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
69fe2d75 6030 unsigned nr_extents;
08e007d2 6031 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6032 int ret = 0;
c64c2bd8 6033 bool delalloc_lock = true;
6324fbf3 6034
c64c2bd8
JB
6035 /* If we are a free space inode we need to not flush since we will be in
6036 * the middle of a transaction commit. We also don't need the delalloc
6037 * mutex since we won't race with anybody. We need this mostly to make
6038 * lockdep shut its filthy mouth.
bac357dc
JB
6039 *
6040 * If we have a transaction open (can happen if we call truncate_block
6041 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6042 */
6043 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6044 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6045 delalloc_lock = false;
da07d4ab
NB
6046 } else {
6047 if (current->journal_info)
6048 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6049
da07d4ab
NB
6050 if (btrfs_transaction_in_commit(fs_info))
6051 schedule_timeout(1);
6052 }
ec44a35c 6053
c64c2bd8 6054 if (delalloc_lock)
9f3db423 6055 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6056
0b246afa 6057 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6058
6059 /* Add our new extents and calculate the new rsv size. */
9f3db423 6060 spin_lock(&inode->lock);
69fe2d75 6061 nr_extents = count_max_extents(num_bytes);
8b62f87b 6062 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6063 inode->csum_bytes += num_bytes;
6064 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6065 spin_unlock(&inode->lock);
57a45ced 6066
69fe2d75 6067 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6068 if (unlikely(ret))
88e081bf 6069 goto out_fail;
25179201 6070
c64c2bd8 6071 if (delalloc_lock)
9f3db423 6072 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6073 return 0;
88e081bf
WS
6074
6075out_fail:
9f3db423 6076 spin_lock(&inode->lock);
8b62f87b
JB
6077 nr_extents = count_max_extents(num_bytes);
6078 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6079 inode->csum_bytes -= num_bytes;
6080 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6081 spin_unlock(&inode->lock);
88e081bf 6082
43b18595 6083 btrfs_inode_rsv_release(inode, true);
88e081bf 6084 if (delalloc_lock)
9f3db423 6085 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6086 return ret;
0ca1f7ce
YZ
6087}
6088
7709cde3
JB
6089/**
6090 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6091 * @inode: the inode to release the reservation for.
6092 * @num_bytes: the number of bytes we are releasing.
43b18595 6093 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6094 *
6095 * This will release the metadata reservation for an inode. This can be called
6096 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6097 * reservations, or on error for the same reason.
7709cde3 6098 */
43b18595
QW
6099void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6100 bool qgroup_free)
0ca1f7ce 6101{
691fa059 6102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6103
0b246afa 6104 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6105 spin_lock(&inode->lock);
69fe2d75
JB
6106 inode->csum_bytes -= num_bytes;
6107 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6108 spin_unlock(&inode->lock);
0ca1f7ce 6109
0b246afa 6110 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6111 return;
6112
43b18595 6113 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6114}
6115
8b62f87b
JB
6116/**
6117 * btrfs_delalloc_release_extents - release our outstanding_extents
6118 * @inode: the inode to balance the reservation for.
6119 * @num_bytes: the number of bytes we originally reserved with
43b18595 6120 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6121 *
6122 * When we reserve space we increase outstanding_extents for the extents we may
6123 * add. Once we've set the range as delalloc or created our ordered extents we
6124 * have outstanding_extents to track the real usage, so we use this to free our
6125 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6126 * with btrfs_delalloc_reserve_metadata.
6127 */
43b18595
QW
6128void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6129 bool qgroup_free)
8b62f87b
JB
6130{
6131 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6132 unsigned num_extents;
8b62f87b
JB
6133
6134 spin_lock(&inode->lock);
6135 num_extents = count_max_extents(num_bytes);
6136 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6137 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6138 spin_unlock(&inode->lock);
6139
8b62f87b
JB
6140 if (btrfs_is_testing(fs_info))
6141 return;
6142
43b18595 6143 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6144}
6145
1ada3a62 6146/**
7cf5b976 6147 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6148 * delalloc
6149 * @inode: inode we're writing to
6150 * @start: start range we are writing to
6151 * @len: how long the range we are writing to
364ecf36
QW
6152 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6153 * current reservation.
1ada3a62 6154 *
1ada3a62
QW
6155 * This will do the following things
6156 *
6157 * o reserve space in data space info for num bytes
6158 * and reserve precious corresponding qgroup space
6159 * (Done in check_data_free_space)
6160 *
6161 * o reserve space for metadata space, based on the number of outstanding
6162 * extents and how much csums will be needed
6163 * also reserve metadata space in a per root over-reserve method.
6164 * o add to the inodes->delalloc_bytes
6165 * o add it to the fs_info's delalloc inodes list.
6166 * (Above 3 all done in delalloc_reserve_metadata)
6167 *
6168 * Return 0 for success
6169 * Return <0 for error(-ENOSPC or -EQUOT)
6170 */
364ecf36
QW
6171int btrfs_delalloc_reserve_space(struct inode *inode,
6172 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6173{
6174 int ret;
6175
364ecf36 6176 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6177 if (ret < 0)
6178 return ret;
9f3db423 6179 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6180 if (ret < 0)
bc42bda2 6181 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6182 return ret;
6183}
6184
7709cde3 6185/**
7cf5b976 6186 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6187 * @inode: inode we're releasing space for
6188 * @start: start position of the space already reserved
6189 * @len: the len of the space already reserved
8b62f87b 6190 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6191 *
6192 * This function will release the metadata space that was not used and will
6193 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6194 * list if there are no delalloc bytes left.
6195 * Also it will handle the qgroup reserved space.
6196 */
bc42bda2 6197void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6198 struct extent_changeset *reserved,
43b18595 6199 u64 start, u64 len, bool qgroup_free)
1ada3a62 6200{
43b18595 6201 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6202 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6203}
6204
ce93ec54 6205static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6206 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6207 u64 num_bytes, int alloc)
9078a3e1 6208{
0af3d00b 6209 struct btrfs_block_group_cache *cache = NULL;
db94535d 6210 u64 total = num_bytes;
9078a3e1 6211 u64 old_val;
db94535d 6212 u64 byte_in_group;
0af3d00b 6213 int factor;
3e1ad54f 6214
5d4f98a2 6215 /* block accounting for super block */
eb73c1b7 6216 spin_lock(&info->delalloc_root_lock);
6c41761f 6217 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6218 if (alloc)
6219 old_val += num_bytes;
6220 else
6221 old_val -= num_bytes;
6c41761f 6222 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6223 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6224
d397712b 6225 while (total) {
db94535d 6226 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6227 if (!cache)
79787eaa 6228 return -ENOENT;
b742bb82
YZ
6229 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6230 BTRFS_BLOCK_GROUP_RAID1 |
6231 BTRFS_BLOCK_GROUP_RAID10))
6232 factor = 2;
6233 else
6234 factor = 1;
9d66e233
JB
6235 /*
6236 * If this block group has free space cache written out, we
6237 * need to make sure to load it if we are removing space. This
6238 * is because we need the unpinning stage to actually add the
6239 * space back to the block group, otherwise we will leak space.
6240 */
6241 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6242 cache_block_group(cache, 1);
0af3d00b 6243
db94535d
CM
6244 byte_in_group = bytenr - cache->key.objectid;
6245 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6246
25179201 6247 spin_lock(&cache->space_info->lock);
c286ac48 6248 spin_lock(&cache->lock);
0af3d00b 6249
6202df69 6250 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6251 cache->disk_cache_state < BTRFS_DC_CLEAR)
6252 cache->disk_cache_state = BTRFS_DC_CLEAR;
6253
9078a3e1 6254 old_val = btrfs_block_group_used(&cache->item);
db94535d 6255 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6256 if (alloc) {
db94535d 6257 old_val += num_bytes;
11833d66
YZ
6258 btrfs_set_block_group_used(&cache->item, old_val);
6259 cache->reserved -= num_bytes;
11833d66 6260 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6261 cache->space_info->bytes_used += num_bytes;
6262 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6263 spin_unlock(&cache->lock);
25179201 6264 spin_unlock(&cache->space_info->lock);
cd1bc465 6265 } else {
db94535d 6266 old_val -= num_bytes;
ae0ab003
FM
6267 btrfs_set_block_group_used(&cache->item, old_val);
6268 cache->pinned += num_bytes;
6269 cache->space_info->bytes_pinned += num_bytes;
6270 cache->space_info->bytes_used -= num_bytes;
6271 cache->space_info->disk_used -= num_bytes * factor;
6272 spin_unlock(&cache->lock);
6273 spin_unlock(&cache->space_info->lock);
47ab2a6c 6274
0b246afa 6275 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6276 cache->space_info->flags,
6277 num_bytes, 1);
d7eae340
OS
6278 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6279 num_bytes);
ae0ab003
FM
6280 set_extent_dirty(info->pinned_extents,
6281 bytenr, bytenr + num_bytes - 1,
6282 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6283 }
1bbc621e
CM
6284
6285 spin_lock(&trans->transaction->dirty_bgs_lock);
6286 if (list_empty(&cache->dirty_list)) {
6287 list_add_tail(&cache->dirty_list,
6288 &trans->transaction->dirty_bgs);
6289 trans->transaction->num_dirty_bgs++;
6290 btrfs_get_block_group(cache);
6291 }
6292 spin_unlock(&trans->transaction->dirty_bgs_lock);
6293
036a9348
FM
6294 /*
6295 * No longer have used bytes in this block group, queue it for
6296 * deletion. We do this after adding the block group to the
6297 * dirty list to avoid races between cleaner kthread and space
6298 * cache writeout.
6299 */
6300 if (!alloc && old_val == 0) {
6301 spin_lock(&info->unused_bgs_lock);
6302 if (list_empty(&cache->bg_list)) {
6303 btrfs_get_block_group(cache);
4ed0a7a3 6304 trace_btrfs_add_unused_block_group(cache);
036a9348
FM
6305 list_add_tail(&cache->bg_list,
6306 &info->unused_bgs);
6307 }
6308 spin_unlock(&info->unused_bgs_lock);
6309 }
6310
fa9c0d79 6311 btrfs_put_block_group(cache);
db94535d
CM
6312 total -= num_bytes;
6313 bytenr += num_bytes;
9078a3e1
CM
6314 }
6315 return 0;
6316}
6324fbf3 6317
2ff7e61e 6318static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6319{
0f9dd46c 6320 struct btrfs_block_group_cache *cache;
d2fb3437 6321 u64 bytenr;
0f9dd46c 6322
0b246afa
JM
6323 spin_lock(&fs_info->block_group_cache_lock);
6324 bytenr = fs_info->first_logical_byte;
6325 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6326
6327 if (bytenr < (u64)-1)
6328 return bytenr;
6329
0b246afa 6330 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6331 if (!cache)
a061fc8d 6332 return 0;
0f9dd46c 6333
d2fb3437 6334 bytenr = cache->key.objectid;
fa9c0d79 6335 btrfs_put_block_group(cache);
d2fb3437
YZ
6336
6337 return bytenr;
a061fc8d
CM
6338}
6339
2ff7e61e 6340static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6341 struct btrfs_block_group_cache *cache,
6342 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6343{
11833d66
YZ
6344 spin_lock(&cache->space_info->lock);
6345 spin_lock(&cache->lock);
6346 cache->pinned += num_bytes;
6347 cache->space_info->bytes_pinned += num_bytes;
6348 if (reserved) {
6349 cache->reserved -= num_bytes;
6350 cache->space_info->bytes_reserved -= num_bytes;
6351 }
6352 spin_unlock(&cache->lock);
6353 spin_unlock(&cache->space_info->lock);
68b38550 6354
0b246afa 6355 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6356 cache->space_info->flags, num_bytes, 1);
4da8b76d 6357 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6358 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6359 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6360 return 0;
6361}
68b38550 6362
f0486c68
YZ
6363/*
6364 * this function must be called within transaction
6365 */
2ff7e61e 6366int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6367 u64 bytenr, u64 num_bytes, int reserved)
6368{
6369 struct btrfs_block_group_cache *cache;
68b38550 6370
0b246afa 6371 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6372 BUG_ON(!cache); /* Logic error */
f0486c68 6373
2ff7e61e 6374 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6375
6376 btrfs_put_block_group(cache);
11833d66
YZ
6377 return 0;
6378}
6379
f0486c68 6380/*
e688b725
CM
6381 * this function must be called within transaction
6382 */
2ff7e61e 6383int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6384 u64 bytenr, u64 num_bytes)
6385{
6386 struct btrfs_block_group_cache *cache;
b50c6e25 6387 int ret;
e688b725 6388
0b246afa 6389 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6390 if (!cache)
6391 return -EINVAL;
e688b725
CM
6392
6393 /*
6394 * pull in the free space cache (if any) so that our pin
6395 * removes the free space from the cache. We have load_only set
6396 * to one because the slow code to read in the free extents does check
6397 * the pinned extents.
6398 */
f6373bf3 6399 cache_block_group(cache, 1);
e688b725 6400
2ff7e61e 6401 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6402
6403 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6404 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6405 btrfs_put_block_group(cache);
b50c6e25 6406 return ret;
e688b725
CM
6407}
6408
2ff7e61e
JM
6409static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6410 u64 start, u64 num_bytes)
8c2a1a30
JB
6411{
6412 int ret;
6413 struct btrfs_block_group_cache *block_group;
6414 struct btrfs_caching_control *caching_ctl;
6415
0b246afa 6416 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6417 if (!block_group)
6418 return -EINVAL;
6419
6420 cache_block_group(block_group, 0);
6421 caching_ctl = get_caching_control(block_group);
6422
6423 if (!caching_ctl) {
6424 /* Logic error */
6425 BUG_ON(!block_group_cache_done(block_group));
6426 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6427 } else {
6428 mutex_lock(&caching_ctl->mutex);
6429
6430 if (start >= caching_ctl->progress) {
2ff7e61e 6431 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6432 } else if (start + num_bytes <= caching_ctl->progress) {
6433 ret = btrfs_remove_free_space(block_group,
6434 start, num_bytes);
6435 } else {
6436 num_bytes = caching_ctl->progress - start;
6437 ret = btrfs_remove_free_space(block_group,
6438 start, num_bytes);
6439 if (ret)
6440 goto out_lock;
6441
6442 num_bytes = (start + num_bytes) -
6443 caching_ctl->progress;
6444 start = caching_ctl->progress;
2ff7e61e 6445 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6446 }
6447out_lock:
6448 mutex_unlock(&caching_ctl->mutex);
6449 put_caching_control(caching_ctl);
6450 }
6451 btrfs_put_block_group(block_group);
6452 return ret;
6453}
6454
2ff7e61e 6455int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6456 struct extent_buffer *eb)
6457{
6458 struct btrfs_file_extent_item *item;
6459 struct btrfs_key key;
6460 int found_type;
6461 int i;
6462
2ff7e61e 6463 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6464 return 0;
6465
6466 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6467 btrfs_item_key_to_cpu(eb, &key, i);
6468 if (key.type != BTRFS_EXTENT_DATA_KEY)
6469 continue;
6470 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6471 found_type = btrfs_file_extent_type(eb, item);
6472 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6473 continue;
6474 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6475 continue;
6476 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6477 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6478 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6479 }
6480
6481 return 0;
6482}
6483
9cfa3e34
FM
6484static void
6485btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6486{
6487 atomic_inc(&bg->reservations);
6488}
6489
6490void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6491 const u64 start)
6492{
6493 struct btrfs_block_group_cache *bg;
6494
6495 bg = btrfs_lookup_block_group(fs_info, start);
6496 ASSERT(bg);
6497 if (atomic_dec_and_test(&bg->reservations))
4625956a 6498 wake_up_var(&bg->reservations);
9cfa3e34
FM
6499 btrfs_put_block_group(bg);
6500}
6501
9cfa3e34
FM
6502void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6503{
6504 struct btrfs_space_info *space_info = bg->space_info;
6505
6506 ASSERT(bg->ro);
6507
6508 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6509 return;
6510
6511 /*
6512 * Our block group is read only but before we set it to read only,
6513 * some task might have had allocated an extent from it already, but it
6514 * has not yet created a respective ordered extent (and added it to a
6515 * root's list of ordered extents).
6516 * Therefore wait for any task currently allocating extents, since the
6517 * block group's reservations counter is incremented while a read lock
6518 * on the groups' semaphore is held and decremented after releasing
6519 * the read access on that semaphore and creating the ordered extent.
6520 */
6521 down_write(&space_info->groups_sem);
6522 up_write(&space_info->groups_sem);
6523
4625956a 6524 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6525}
6526
fb25e914 6527/**
4824f1f4 6528 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6529 * @cache: The cache we are manipulating
18513091
WX
6530 * @ram_bytes: The number of bytes of file content, and will be same to
6531 * @num_bytes except for the compress path.
fb25e914 6532 * @num_bytes: The number of bytes in question
e570fd27 6533 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6534 *
745699ef
XW
6535 * This is called by the allocator when it reserves space. If this is a
6536 * reservation and the block group has become read only we cannot make the
6537 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6538 */
4824f1f4 6539static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6540 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6541{
fb25e914 6542 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6543 int ret = 0;
79787eaa 6544
fb25e914
JB
6545 spin_lock(&space_info->lock);
6546 spin_lock(&cache->lock);
4824f1f4
WX
6547 if (cache->ro) {
6548 ret = -EAGAIN;
fb25e914 6549 } else {
4824f1f4
WX
6550 cache->reserved += num_bytes;
6551 space_info->bytes_reserved += num_bytes;
e570fd27 6552
18513091
WX
6553 trace_btrfs_space_reservation(cache->fs_info,
6554 "space_info", space_info->flags,
6555 ram_bytes, 0);
6556 space_info->bytes_may_use -= ram_bytes;
e570fd27 6557 if (delalloc)
4824f1f4 6558 cache->delalloc_bytes += num_bytes;
324ae4df 6559 }
fb25e914
JB
6560 spin_unlock(&cache->lock);
6561 spin_unlock(&space_info->lock);
f0486c68 6562 return ret;
324ae4df 6563}
9078a3e1 6564
4824f1f4
WX
6565/**
6566 * btrfs_free_reserved_bytes - update the block_group and space info counters
6567 * @cache: The cache we are manipulating
6568 * @num_bytes: The number of bytes in question
6569 * @delalloc: The blocks are allocated for the delalloc write
6570 *
6571 * This is called by somebody who is freeing space that was never actually used
6572 * on disk. For example if you reserve some space for a new leaf in transaction
6573 * A and before transaction A commits you free that leaf, you call this with
6574 * reserve set to 0 in order to clear the reservation.
6575 */
6576
6577static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6578 u64 num_bytes, int delalloc)
6579{
6580 struct btrfs_space_info *space_info = cache->space_info;
6581 int ret = 0;
6582
6583 spin_lock(&space_info->lock);
6584 spin_lock(&cache->lock);
6585 if (cache->ro)
6586 space_info->bytes_readonly += num_bytes;
6587 cache->reserved -= num_bytes;
6588 space_info->bytes_reserved -= num_bytes;
6589
6590 if (delalloc)
6591 cache->delalloc_bytes -= num_bytes;
6592 spin_unlock(&cache->lock);
6593 spin_unlock(&space_info->lock);
6594 return ret;
6595}
8b74c03e 6596void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6597{
11833d66
YZ
6598 struct btrfs_caching_control *next;
6599 struct btrfs_caching_control *caching_ctl;
6600 struct btrfs_block_group_cache *cache;
e8569813 6601
9e351cc8 6602 down_write(&fs_info->commit_root_sem);
25179201 6603
11833d66
YZ
6604 list_for_each_entry_safe(caching_ctl, next,
6605 &fs_info->caching_block_groups, list) {
6606 cache = caching_ctl->block_group;
6607 if (block_group_cache_done(cache)) {
6608 cache->last_byte_to_unpin = (u64)-1;
6609 list_del_init(&caching_ctl->list);
6610 put_caching_control(caching_ctl);
e8569813 6611 } else {
11833d66 6612 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6613 }
e8569813 6614 }
11833d66
YZ
6615
6616 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6617 fs_info->pinned_extents = &fs_info->freed_extents[1];
6618 else
6619 fs_info->pinned_extents = &fs_info->freed_extents[0];
6620
9e351cc8 6621 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6622
6623 update_global_block_rsv(fs_info);
e8569813
ZY
6624}
6625
c759c4e1
JB
6626/*
6627 * Returns the free cluster for the given space info and sets empty_cluster to
6628 * what it should be based on the mount options.
6629 */
6630static struct btrfs_free_cluster *
2ff7e61e
JM
6631fetch_cluster_info(struct btrfs_fs_info *fs_info,
6632 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6633{
6634 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6635
6636 *empty_cluster = 0;
6637 if (btrfs_mixed_space_info(space_info))
6638 return ret;
6639
c759c4e1 6640 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6641 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6642 if (btrfs_test_opt(fs_info, SSD))
6643 *empty_cluster = SZ_2M;
6644 else
ee22184b 6645 *empty_cluster = SZ_64K;
583b7231
HK
6646 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6647 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6648 *empty_cluster = SZ_2M;
0b246afa 6649 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6650 }
6651
6652 return ret;
6653}
6654
2ff7e61e
JM
6655static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6656 u64 start, u64 end,
678886bd 6657 const bool return_free_space)
ccd467d6 6658{
11833d66 6659 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6660 struct btrfs_space_info *space_info;
6661 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6662 struct btrfs_free_cluster *cluster = NULL;
11833d66 6663 u64 len;
c759c4e1
JB
6664 u64 total_unpinned = 0;
6665 u64 empty_cluster = 0;
7b398f8e 6666 bool readonly;
ccd467d6 6667
11833d66 6668 while (start <= end) {
7b398f8e 6669 readonly = false;
11833d66
YZ
6670 if (!cache ||
6671 start >= cache->key.objectid + cache->key.offset) {
6672 if (cache)
6673 btrfs_put_block_group(cache);
c759c4e1 6674 total_unpinned = 0;
11833d66 6675 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6676 BUG_ON(!cache); /* Logic error */
c759c4e1 6677
2ff7e61e 6678 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6679 cache->space_info,
6680 &empty_cluster);
6681 empty_cluster <<= 1;
11833d66
YZ
6682 }
6683
6684 len = cache->key.objectid + cache->key.offset - start;
6685 len = min(len, end + 1 - start);
6686
6687 if (start < cache->last_byte_to_unpin) {
6688 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6689 if (return_free_space)
6690 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6691 }
6692
f0486c68 6693 start += len;
c759c4e1 6694 total_unpinned += len;
7b398f8e 6695 space_info = cache->space_info;
f0486c68 6696
c759c4e1
JB
6697 /*
6698 * If this space cluster has been marked as fragmented and we've
6699 * unpinned enough in this block group to potentially allow a
6700 * cluster to be created inside of it go ahead and clear the
6701 * fragmented check.
6702 */
6703 if (cluster && cluster->fragmented &&
6704 total_unpinned > empty_cluster) {
6705 spin_lock(&cluster->lock);
6706 cluster->fragmented = 0;
6707 spin_unlock(&cluster->lock);
6708 }
6709
7b398f8e 6710 spin_lock(&space_info->lock);
11833d66
YZ
6711 spin_lock(&cache->lock);
6712 cache->pinned -= len;
7b398f8e 6713 space_info->bytes_pinned -= len;
c51e7bb1
JB
6714
6715 trace_btrfs_space_reservation(fs_info, "pinned",
6716 space_info->flags, len, 0);
4f4db217 6717 space_info->max_extent_size = 0;
d288db5d 6718 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6719 if (cache->ro) {
6720 space_info->bytes_readonly += len;
6721 readonly = true;
6722 }
11833d66 6723 spin_unlock(&cache->lock);
957780eb
JB
6724 if (!readonly && return_free_space &&
6725 global_rsv->space_info == space_info) {
6726 u64 to_add = len;
92ac58ec 6727
7b398f8e
JB
6728 spin_lock(&global_rsv->lock);
6729 if (!global_rsv->full) {
957780eb
JB
6730 to_add = min(len, global_rsv->size -
6731 global_rsv->reserved);
6732 global_rsv->reserved += to_add;
6733 space_info->bytes_may_use += to_add;
7b398f8e
JB
6734 if (global_rsv->reserved >= global_rsv->size)
6735 global_rsv->full = 1;
957780eb
JB
6736 trace_btrfs_space_reservation(fs_info,
6737 "space_info",
6738 space_info->flags,
6739 to_add, 1);
6740 len -= to_add;
7b398f8e
JB
6741 }
6742 spin_unlock(&global_rsv->lock);
957780eb
JB
6743 /* Add to any tickets we may have */
6744 if (len)
6745 space_info_add_new_bytes(fs_info, space_info,
6746 len);
7b398f8e
JB
6747 }
6748 spin_unlock(&space_info->lock);
ccd467d6 6749 }
11833d66
YZ
6750
6751 if (cache)
6752 btrfs_put_block_group(cache);
ccd467d6
CM
6753 return 0;
6754}
6755
5ead2dd0 6756int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6757{
5ead2dd0 6758 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6759 struct btrfs_block_group_cache *block_group, *tmp;
6760 struct list_head *deleted_bgs;
11833d66 6761 struct extent_io_tree *unpin;
1a5bc167
CM
6762 u64 start;
6763 u64 end;
a28ec197 6764 int ret;
a28ec197 6765
11833d66
YZ
6766 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6767 unpin = &fs_info->freed_extents[1];
6768 else
6769 unpin = &fs_info->freed_extents[0];
6770
e33e17ee 6771 while (!trans->aborted) {
d4b450cd 6772 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6773 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6774 EXTENT_DIRTY, NULL);
d4b450cd
FM
6775 if (ret) {
6776 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6777 break;
d4b450cd 6778 }
1f3c79a2 6779
0b246afa 6780 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6781 ret = btrfs_discard_extent(fs_info, start,
5378e607 6782 end + 1 - start, NULL);
1f3c79a2 6783
af6f8f60 6784 clear_extent_dirty(unpin, start, end);
2ff7e61e 6785 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6786 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6787 cond_resched();
a28ec197 6788 }
817d52f8 6789
e33e17ee
JM
6790 /*
6791 * Transaction is finished. We don't need the lock anymore. We
6792 * do need to clean up the block groups in case of a transaction
6793 * abort.
6794 */
6795 deleted_bgs = &trans->transaction->deleted_bgs;
6796 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6797 u64 trimmed = 0;
6798
6799 ret = -EROFS;
6800 if (!trans->aborted)
2ff7e61e 6801 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6802 block_group->key.objectid,
6803 block_group->key.offset,
6804 &trimmed);
6805
6806 list_del_init(&block_group->bg_list);
6807 btrfs_put_block_group_trimming(block_group);
6808 btrfs_put_block_group(block_group);
6809
6810 if (ret) {
6811 const char *errstr = btrfs_decode_error(ret);
6812 btrfs_warn(fs_info,
913e1535 6813 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6814 ret, errstr);
6815 }
6816 }
6817
e20d96d6
CM
6818 return 0;
6819}
6820
5d4f98a2 6821static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6822 struct btrfs_fs_info *info,
c682f9b3 6823 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6824 u64 root_objectid, u64 owner_objectid,
6825 u64 owner_offset, int refs_to_drop,
c682f9b3 6826 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6827{
e2fa7227 6828 struct btrfs_key key;
5d4f98a2 6829 struct btrfs_path *path;
1261ec42 6830 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6831 struct extent_buffer *leaf;
5d4f98a2
YZ
6832 struct btrfs_extent_item *ei;
6833 struct btrfs_extent_inline_ref *iref;
a28ec197 6834 int ret;
5d4f98a2 6835 int is_data;
952fccac
CM
6836 int extent_slot = 0;
6837 int found_extent = 0;
6838 int num_to_del = 1;
5d4f98a2
YZ
6839 u32 item_size;
6840 u64 refs;
c682f9b3
QW
6841 u64 bytenr = node->bytenr;
6842 u64 num_bytes = node->num_bytes;
fcebe456 6843 int last_ref = 0;
0b246afa 6844 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6845
5caf2a00 6846 path = btrfs_alloc_path();
54aa1f4d
CM
6847 if (!path)
6848 return -ENOMEM;
5f26f772 6849
e4058b54 6850 path->reada = READA_FORWARD;
b9473439 6851 path->leave_spinning = 1;
5d4f98a2
YZ
6852
6853 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6854 BUG_ON(!is_data && refs_to_drop != 1);
6855
3173a18f 6856 if (is_data)
897ca819 6857 skinny_metadata = false;
3173a18f 6858
87bde3cd 6859 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6860 bytenr, num_bytes, parent,
6861 root_objectid, owner_objectid,
6862 owner_offset);
7bb86316 6863 if (ret == 0) {
952fccac 6864 extent_slot = path->slots[0];
5d4f98a2
YZ
6865 while (extent_slot >= 0) {
6866 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6867 extent_slot);
5d4f98a2 6868 if (key.objectid != bytenr)
952fccac 6869 break;
5d4f98a2
YZ
6870 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6871 key.offset == num_bytes) {
952fccac
CM
6872 found_extent = 1;
6873 break;
6874 }
3173a18f
JB
6875 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6876 key.offset == owner_objectid) {
6877 found_extent = 1;
6878 break;
6879 }
952fccac
CM
6880 if (path->slots[0] - extent_slot > 5)
6881 break;
5d4f98a2 6882 extent_slot--;
952fccac 6883 }
5d4f98a2
YZ
6884#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6885 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6886 if (found_extent && item_size < sizeof(*ei))
6887 found_extent = 0;
6888#endif
31840ae1 6889 if (!found_extent) {
5d4f98a2 6890 BUG_ON(iref);
87bde3cd
JM
6891 ret = remove_extent_backref(trans, info, path, NULL,
6892 refs_to_drop,
fcebe456 6893 is_data, &last_ref);
005d6427 6894 if (ret) {
66642832 6895 btrfs_abort_transaction(trans, ret);
005d6427
DS
6896 goto out;
6897 }
b3b4aa74 6898 btrfs_release_path(path);
b9473439 6899 path->leave_spinning = 1;
5d4f98a2
YZ
6900
6901 key.objectid = bytenr;
6902 key.type = BTRFS_EXTENT_ITEM_KEY;
6903 key.offset = num_bytes;
6904
3173a18f
JB
6905 if (!is_data && skinny_metadata) {
6906 key.type = BTRFS_METADATA_ITEM_KEY;
6907 key.offset = owner_objectid;
6908 }
6909
31840ae1
ZY
6910 ret = btrfs_search_slot(trans, extent_root,
6911 &key, path, -1, 1);
3173a18f
JB
6912 if (ret > 0 && skinny_metadata && path->slots[0]) {
6913 /*
6914 * Couldn't find our skinny metadata item,
6915 * see if we have ye olde extent item.
6916 */
6917 path->slots[0]--;
6918 btrfs_item_key_to_cpu(path->nodes[0], &key,
6919 path->slots[0]);
6920 if (key.objectid == bytenr &&
6921 key.type == BTRFS_EXTENT_ITEM_KEY &&
6922 key.offset == num_bytes)
6923 ret = 0;
6924 }
6925
6926 if (ret > 0 && skinny_metadata) {
6927 skinny_metadata = false;
9ce49a0b 6928 key.objectid = bytenr;
3173a18f
JB
6929 key.type = BTRFS_EXTENT_ITEM_KEY;
6930 key.offset = num_bytes;
6931 btrfs_release_path(path);
6932 ret = btrfs_search_slot(trans, extent_root,
6933 &key, path, -1, 1);
6934 }
6935
f3465ca4 6936 if (ret) {
5d163e0e
JM
6937 btrfs_err(info,
6938 "umm, got %d back from search, was looking for %llu",
6939 ret, bytenr);
b783e62d 6940 if (ret > 0)
a4f78750 6941 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6942 }
005d6427 6943 if (ret < 0) {
66642832 6944 btrfs_abort_transaction(trans, ret);
005d6427
DS
6945 goto out;
6946 }
31840ae1
ZY
6947 extent_slot = path->slots[0];
6948 }
fae7f21c 6949 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6950 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6951 btrfs_err(info,
6952 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6953 bytenr, parent, root_objectid, owner_objectid,
6954 owner_offset);
66642832 6955 btrfs_abort_transaction(trans, ret);
c4a050bb 6956 goto out;
79787eaa 6957 } else {
66642832 6958 btrfs_abort_transaction(trans, ret);
005d6427 6959 goto out;
7bb86316 6960 }
5f39d397
CM
6961
6962 leaf = path->nodes[0];
5d4f98a2
YZ
6963 item_size = btrfs_item_size_nr(leaf, extent_slot);
6964#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6965 if (item_size < sizeof(*ei)) {
6966 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6967 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6968 0);
005d6427 6969 if (ret < 0) {
66642832 6970 btrfs_abort_transaction(trans, ret);
005d6427
DS
6971 goto out;
6972 }
5d4f98a2 6973
b3b4aa74 6974 btrfs_release_path(path);
5d4f98a2
YZ
6975 path->leave_spinning = 1;
6976
6977 key.objectid = bytenr;
6978 key.type = BTRFS_EXTENT_ITEM_KEY;
6979 key.offset = num_bytes;
6980
6981 ret = btrfs_search_slot(trans, extent_root, &key, path,
6982 -1, 1);
6983 if (ret) {
5d163e0e
JM
6984 btrfs_err(info,
6985 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6986 ret, bytenr);
a4f78750 6987 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 6988 }
005d6427 6989 if (ret < 0) {
66642832 6990 btrfs_abort_transaction(trans, ret);
005d6427
DS
6991 goto out;
6992 }
6993
5d4f98a2
YZ
6994 extent_slot = path->slots[0];
6995 leaf = path->nodes[0];
6996 item_size = btrfs_item_size_nr(leaf, extent_slot);
6997 }
6998#endif
6999 BUG_ON(item_size < sizeof(*ei));
952fccac 7000 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7001 struct btrfs_extent_item);
3173a18f
JB
7002 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7003 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7004 struct btrfs_tree_block_info *bi;
7005 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7006 bi = (struct btrfs_tree_block_info *)(ei + 1);
7007 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7008 }
56bec294 7009
5d4f98a2 7010 refs = btrfs_extent_refs(leaf, ei);
32b02538 7011 if (refs < refs_to_drop) {
5d163e0e
JM
7012 btrfs_err(info,
7013 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7014 refs_to_drop, refs, bytenr);
32b02538 7015 ret = -EINVAL;
66642832 7016 btrfs_abort_transaction(trans, ret);
32b02538
JB
7017 goto out;
7018 }
56bec294 7019 refs -= refs_to_drop;
5f39d397 7020
5d4f98a2
YZ
7021 if (refs > 0) {
7022 if (extent_op)
7023 __run_delayed_extent_op(extent_op, leaf, ei);
7024 /*
7025 * In the case of inline back ref, reference count will
7026 * be updated by remove_extent_backref
952fccac 7027 */
5d4f98a2
YZ
7028 if (iref) {
7029 BUG_ON(!found_extent);
7030 } else {
7031 btrfs_set_extent_refs(leaf, ei, refs);
7032 btrfs_mark_buffer_dirty(leaf);
7033 }
7034 if (found_extent) {
87bde3cd 7035 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7036 iref, refs_to_drop,
fcebe456 7037 is_data, &last_ref);
005d6427 7038 if (ret) {
66642832 7039 btrfs_abort_transaction(trans, ret);
005d6427
DS
7040 goto out;
7041 }
952fccac 7042 }
5d4f98a2 7043 } else {
5d4f98a2
YZ
7044 if (found_extent) {
7045 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7046 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7047 if (iref) {
7048 BUG_ON(path->slots[0] != extent_slot);
7049 } else {
7050 BUG_ON(path->slots[0] != extent_slot + 1);
7051 path->slots[0] = extent_slot;
7052 num_to_del = 2;
7053 }
78fae27e 7054 }
b9473439 7055
fcebe456 7056 last_ref = 1;
952fccac
CM
7057 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7058 num_to_del);
005d6427 7059 if (ret) {
66642832 7060 btrfs_abort_transaction(trans, ret);
005d6427
DS
7061 goto out;
7062 }
b3b4aa74 7063 btrfs_release_path(path);
21af804c 7064
5d4f98a2 7065 if (is_data) {
5b4aacef 7066 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7067 if (ret) {
66642832 7068 btrfs_abort_transaction(trans, ret);
005d6427
DS
7069 goto out;
7070 }
459931ec
CM
7071 }
7072
e7355e50 7073 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 7074 if (ret) {
66642832 7075 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7076 goto out;
7077 }
7078
0b246afa 7079 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7080 if (ret) {
66642832 7081 btrfs_abort_transaction(trans, ret);
005d6427
DS
7082 goto out;
7083 }
a28ec197 7084 }
fcebe456
JB
7085 btrfs_release_path(path);
7086
79787eaa 7087out:
5caf2a00 7088 btrfs_free_path(path);
a28ec197
CM
7089 return ret;
7090}
7091
1887be66 7092/*
f0486c68 7093 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7094 * delayed ref for that extent as well. This searches the delayed ref tree for
7095 * a given extent, and if there are no other delayed refs to be processed, it
7096 * removes it from the tree.
7097 */
7098static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7099 u64 bytenr)
1887be66
CM
7100{
7101 struct btrfs_delayed_ref_head *head;
7102 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7103 int ret = 0;
1887be66
CM
7104
7105 delayed_refs = &trans->transaction->delayed_refs;
7106 spin_lock(&delayed_refs->lock);
f72ad18e 7107 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7108 if (!head)
cf93da7b 7109 goto out_delayed_unlock;
1887be66 7110
d7df2c79 7111 spin_lock(&head->lock);
0e0adbcf 7112 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7113 goto out;
7114
5d4f98a2
YZ
7115 if (head->extent_op) {
7116 if (!head->must_insert_reserved)
7117 goto out;
78a6184a 7118 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7119 head->extent_op = NULL;
7120 }
7121
1887be66
CM
7122 /*
7123 * waiting for the lock here would deadlock. If someone else has it
7124 * locked they are already in the process of dropping it anyway
7125 */
7126 if (!mutex_trylock(&head->mutex))
7127 goto out;
7128
7129 /*
7130 * at this point we have a head with no other entries. Go
7131 * ahead and process it.
7132 */
c46effa6 7133 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7134 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7135 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7136
7137 /*
7138 * we don't take a ref on the node because we're removing it from the
7139 * tree, so we just steal the ref the tree was holding.
7140 */
c3e69d58 7141 delayed_refs->num_heads--;
d7df2c79 7142 if (head->processing == 0)
c3e69d58 7143 delayed_refs->num_heads_ready--;
d7df2c79
JB
7144 head->processing = 0;
7145 spin_unlock(&head->lock);
1887be66
CM
7146 spin_unlock(&delayed_refs->lock);
7147
f0486c68
YZ
7148 BUG_ON(head->extent_op);
7149 if (head->must_insert_reserved)
7150 ret = 1;
7151
7152 mutex_unlock(&head->mutex);
d278850e 7153 btrfs_put_delayed_ref_head(head);
f0486c68 7154 return ret;
1887be66 7155out:
d7df2c79 7156 spin_unlock(&head->lock);
cf93da7b
CM
7157
7158out_delayed_unlock:
1887be66
CM
7159 spin_unlock(&delayed_refs->lock);
7160 return 0;
7161}
7162
f0486c68
YZ
7163void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7164 struct btrfs_root *root,
7165 struct extent_buffer *buf,
5581a51a 7166 u64 parent, int last_ref)
f0486c68 7167{
0b246afa 7168 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7169 int pin = 1;
f0486c68
YZ
7170 int ret;
7171
7172 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7173 int old_ref_mod, new_ref_mod;
7174
fd708b81
JB
7175 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7176 root->root_key.objectid,
7177 btrfs_header_level(buf), 0,
7178 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7179 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7180 buf->len, parent,
0b246afa
JM
7181 root->root_key.objectid,
7182 btrfs_header_level(buf),
7be07912 7183 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7184 &old_ref_mod, &new_ref_mod);
79787eaa 7185 BUG_ON(ret); /* -ENOMEM */
d7eae340 7186 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7187 }
7188
0a16c7d7 7189 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7190 struct btrfs_block_group_cache *cache;
7191
f0486c68 7192 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7193 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7194 if (!ret)
37be25bc 7195 goto out;
f0486c68
YZ
7196 }
7197
4da8b76d 7198 pin = 0;
0b246afa 7199 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7200
f0486c68 7201 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7202 pin_down_extent(fs_info, cache, buf->start,
7203 buf->len, 1);
6219872d 7204 btrfs_put_block_group(cache);
37be25bc 7205 goto out;
f0486c68
YZ
7206 }
7207
7208 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7209
7210 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7211 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7212 btrfs_put_block_group(cache);
71ff6437 7213 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7214 }
7215out:
b150a4f1 7216 if (pin)
29d2b84c 7217 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7218 root->root_key.objectid);
7219
0a16c7d7
OS
7220 if (last_ref) {
7221 /*
7222 * Deleting the buffer, clear the corrupt flag since it doesn't
7223 * matter anymore.
7224 */
7225 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7226 }
f0486c68
YZ
7227}
7228
79787eaa 7229/* Can return -ENOMEM */
2ff7e61e 7230int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7231 struct btrfs_root *root,
66d7e7f0 7232 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7233 u64 owner, u64 offset)
925baedd 7234{
84f7d8e6 7235 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7236 int old_ref_mod, new_ref_mod;
925baedd
CM
7237 int ret;
7238
f5ee5c9a 7239 if (btrfs_is_testing(fs_info))
faa2dbf0 7240 return 0;
fccb84c9 7241
fd708b81
JB
7242 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7243 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7244 root_objectid, owner, offset,
7245 BTRFS_DROP_DELAYED_REF);
7246
56bec294
CM
7247 /*
7248 * tree log blocks never actually go into the extent allocation
7249 * tree, just update pinning info and exit early.
56bec294 7250 */
5d4f98a2
YZ
7251 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7252 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7253 /* unlocks the pinned mutex */
2ff7e61e 7254 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7255 old_ref_mod = new_ref_mod = 0;
56bec294 7256 ret = 0;
5d4f98a2 7257 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7258 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7259 num_bytes, parent,
7260 root_objectid, (int)owner,
7261 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7262 &old_ref_mod, &new_ref_mod);
5d4f98a2 7263 } else {
66d7e7f0 7264 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7265 num_bytes, parent,
7266 root_objectid, owner, offset,
7267 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7268 &old_ref_mod, &new_ref_mod);
56bec294 7269 }
d7eae340 7270
29d2b84c
NB
7271 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7272 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7273
7274 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7275 }
d7eae340 7276
925baedd
CM
7277 return ret;
7278}
7279
817d52f8
JB
7280/*
7281 * when we wait for progress in the block group caching, its because
7282 * our allocation attempt failed at least once. So, we must sleep
7283 * and let some progress happen before we try again.
7284 *
7285 * This function will sleep at least once waiting for new free space to
7286 * show up, and then it will check the block group free space numbers
7287 * for our min num_bytes. Another option is to have it go ahead
7288 * and look in the rbtree for a free extent of a given size, but this
7289 * is a good start.
36cce922
JB
7290 *
7291 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7292 * any of the information in this block group.
817d52f8 7293 */
36cce922 7294static noinline void
817d52f8
JB
7295wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7296 u64 num_bytes)
7297{
11833d66 7298 struct btrfs_caching_control *caching_ctl;
817d52f8 7299
11833d66
YZ
7300 caching_ctl = get_caching_control(cache);
7301 if (!caching_ctl)
36cce922 7302 return;
817d52f8 7303
11833d66 7304 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7305 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7306
7307 put_caching_control(caching_ctl);
11833d66
YZ
7308}
7309
7310static noinline int
7311wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7312{
7313 struct btrfs_caching_control *caching_ctl;
36cce922 7314 int ret = 0;
11833d66
YZ
7315
7316 caching_ctl = get_caching_control(cache);
7317 if (!caching_ctl)
36cce922 7318 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7319
7320 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7321 if (cache->cached == BTRFS_CACHE_ERROR)
7322 ret = -EIO;
11833d66 7323 put_caching_control(caching_ctl);
36cce922 7324 return ret;
817d52f8
JB
7325}
7326
7327enum btrfs_loop_type {
285ff5af
JB
7328 LOOP_CACHING_NOWAIT = 0,
7329 LOOP_CACHING_WAIT = 1,
7330 LOOP_ALLOC_CHUNK = 2,
7331 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7332};
7333
e570fd27
MX
7334static inline void
7335btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7336 int delalloc)
7337{
7338 if (delalloc)
7339 down_read(&cache->data_rwsem);
7340}
7341
7342static inline void
7343btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7344 int delalloc)
7345{
7346 btrfs_get_block_group(cache);
7347 if (delalloc)
7348 down_read(&cache->data_rwsem);
7349}
7350
7351static struct btrfs_block_group_cache *
7352btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7353 struct btrfs_free_cluster *cluster,
7354 int delalloc)
7355{
89771cc9 7356 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7357
e570fd27 7358 spin_lock(&cluster->refill_lock);
6719afdc
GU
7359 while (1) {
7360 used_bg = cluster->block_group;
7361 if (!used_bg)
7362 return NULL;
7363
7364 if (used_bg == block_group)
e570fd27
MX
7365 return used_bg;
7366
6719afdc 7367 btrfs_get_block_group(used_bg);
e570fd27 7368
6719afdc
GU
7369 if (!delalloc)
7370 return used_bg;
e570fd27 7371
6719afdc
GU
7372 if (down_read_trylock(&used_bg->data_rwsem))
7373 return used_bg;
e570fd27 7374
6719afdc 7375 spin_unlock(&cluster->refill_lock);
e570fd27 7376
e321f8a8
LB
7377 /* We should only have one-level nested. */
7378 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7379
6719afdc
GU
7380 spin_lock(&cluster->refill_lock);
7381 if (used_bg == cluster->block_group)
7382 return used_bg;
e570fd27 7383
6719afdc
GU
7384 up_read(&used_bg->data_rwsem);
7385 btrfs_put_block_group(used_bg);
7386 }
e570fd27
MX
7387}
7388
7389static inline void
7390btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7391 int delalloc)
7392{
7393 if (delalloc)
7394 up_read(&cache->data_rwsem);
7395 btrfs_put_block_group(cache);
7396}
7397
fec577fb
CM
7398/*
7399 * walks the btree of allocated extents and find a hole of a given size.
7400 * The key ins is changed to record the hole:
a4820398 7401 * ins->objectid == start position
62e2749e 7402 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7403 * ins->offset == the size of the hole.
fec577fb 7404 * Any available blocks before search_start are skipped.
a4820398
MX
7405 *
7406 * If there is no suitable free space, we will record the max size of
7407 * the free space extent currently.
fec577fb 7408 */
87bde3cd 7409static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7410 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7411 u64 hint_byte, struct btrfs_key *ins,
7412 u64 flags, int delalloc)
fec577fb 7413{
80eb234a 7414 int ret = 0;
0b246afa 7415 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7416 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7417 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7418 u64 search_start = 0;
a4820398 7419 u64 max_extent_size = 0;
c759c4e1 7420 u64 empty_cluster = 0;
80eb234a 7421 struct btrfs_space_info *space_info;
fa9c0d79 7422 int loop = 0;
3e72ee88 7423 int index = btrfs_bg_flags_to_raid_index(flags);
0a24325e 7424 bool failed_cluster_refill = false;
1cdda9b8 7425 bool failed_alloc = false;
67377734 7426 bool use_cluster = true;
60d2adbb 7427 bool have_caching_bg = false;
13a0db5a 7428 bool orig_have_caching_bg = false;
a5e681d9 7429 bool full_search = false;
fec577fb 7430
0b246afa 7431 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7432 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7433 ins->objectid = 0;
7434 ins->offset = 0;
b1a4d965 7435
71ff6437 7436 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7437
0b246afa 7438 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7439 if (!space_info) {
0b246afa 7440 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7441 return -ENOSPC;
7442 }
2552d17e 7443
67377734 7444 /*
4f4db217
JB
7445 * If our free space is heavily fragmented we may not be able to make
7446 * big contiguous allocations, so instead of doing the expensive search
7447 * for free space, simply return ENOSPC with our max_extent_size so we
7448 * can go ahead and search for a more manageable chunk.
7449 *
7450 * If our max_extent_size is large enough for our allocation simply
7451 * disable clustering since we will likely not be able to find enough
7452 * space to create a cluster and induce latency trying.
67377734 7453 */
4f4db217
JB
7454 if (unlikely(space_info->max_extent_size)) {
7455 spin_lock(&space_info->lock);
7456 if (space_info->max_extent_size &&
7457 num_bytes > space_info->max_extent_size) {
7458 ins->offset = space_info->max_extent_size;
7459 spin_unlock(&space_info->lock);
7460 return -ENOSPC;
7461 } else if (space_info->max_extent_size) {
7462 use_cluster = false;
7463 }
7464 spin_unlock(&space_info->lock);
fa9c0d79 7465 }
0f9dd46c 7466
2ff7e61e 7467 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7468 if (last_ptr) {
fa9c0d79
CM
7469 spin_lock(&last_ptr->lock);
7470 if (last_ptr->block_group)
7471 hint_byte = last_ptr->window_start;
c759c4e1
JB
7472 if (last_ptr->fragmented) {
7473 /*
7474 * We still set window_start so we can keep track of the
7475 * last place we found an allocation to try and save
7476 * some time.
7477 */
7478 hint_byte = last_ptr->window_start;
7479 use_cluster = false;
7480 }
fa9c0d79 7481 spin_unlock(&last_ptr->lock);
239b14b3 7482 }
fa9c0d79 7483
2ff7e61e 7484 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7485 search_start = max(search_start, hint_byte);
2552d17e 7486 if (search_start == hint_byte) {
0b246afa 7487 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7488 /*
7489 * we don't want to use the block group if it doesn't match our
7490 * allocation bits, or if its not cached.
ccf0e725
JB
7491 *
7492 * However if we are re-searching with an ideal block group
7493 * picked out then we don't care that the block group is cached.
817d52f8 7494 */
b6919a58 7495 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7496 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7497 down_read(&space_info->groups_sem);
44fb5511
CM
7498 if (list_empty(&block_group->list) ||
7499 block_group->ro) {
7500 /*
7501 * someone is removing this block group,
7502 * we can't jump into the have_block_group
7503 * target because our list pointers are not
7504 * valid
7505 */
7506 btrfs_put_block_group(block_group);
7507 up_read(&space_info->groups_sem);
ccf0e725 7508 } else {
3e72ee88
QW
7509 index = btrfs_bg_flags_to_raid_index(
7510 block_group->flags);
e570fd27 7511 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7512 goto have_block_group;
ccf0e725 7513 }
2552d17e 7514 } else if (block_group) {
fa9c0d79 7515 btrfs_put_block_group(block_group);
2552d17e 7516 }
42e70e7a 7517 }
2552d17e 7518search:
60d2adbb 7519 have_caching_bg = false;
3e72ee88 7520 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
a5e681d9 7521 full_search = true;
80eb234a 7522 down_read(&space_info->groups_sem);
b742bb82
YZ
7523 list_for_each_entry(block_group, &space_info->block_groups[index],
7524 list) {
6226cb0a 7525 u64 offset;
817d52f8 7526 int cached;
8a1413a2 7527
14443937
JM
7528 /* If the block group is read-only, we can skip it entirely. */
7529 if (unlikely(block_group->ro))
7530 continue;
7531
e570fd27 7532 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7533 search_start = block_group->key.objectid;
42e70e7a 7534
83a50de9
CM
7535 /*
7536 * this can happen if we end up cycling through all the
7537 * raid types, but we want to make sure we only allocate
7538 * for the proper type.
7539 */
b6919a58 7540 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7541 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7542 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7543 BTRFS_BLOCK_GROUP_RAID5 |
7544 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7545 BTRFS_BLOCK_GROUP_RAID10;
7546
7547 /*
7548 * if they asked for extra copies and this block group
7549 * doesn't provide them, bail. This does allow us to
7550 * fill raid0 from raid1.
7551 */
b6919a58 7552 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7553 goto loop;
7554 }
7555
2552d17e 7556have_block_group:
291c7d2f
JB
7557 cached = block_group_cache_done(block_group);
7558 if (unlikely(!cached)) {
a5e681d9 7559 have_caching_bg = true;
f6373bf3 7560 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7561 BUG_ON(ret < 0);
7562 ret = 0;
817d52f8
JB
7563 }
7564
36cce922
JB
7565 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7566 goto loop;
0f9dd46c 7567
0a24325e 7568 /*
062c05c4
AO
7569 * Ok we want to try and use the cluster allocator, so
7570 * lets look there
0a24325e 7571 */
c759c4e1 7572 if (last_ptr && use_cluster) {
215a63d1 7573 struct btrfs_block_group_cache *used_block_group;
8de972b4 7574 unsigned long aligned_cluster;
fa9c0d79
CM
7575 /*
7576 * the refill lock keeps out other
7577 * people trying to start a new cluster
7578 */
e570fd27
MX
7579 used_block_group = btrfs_lock_cluster(block_group,
7580 last_ptr,
7581 delalloc);
7582 if (!used_block_group)
44fb5511 7583 goto refill_cluster;
274bd4fb 7584
e570fd27
MX
7585 if (used_block_group != block_group &&
7586 (used_block_group->ro ||
7587 !block_group_bits(used_block_group, flags)))
7588 goto release_cluster;
44fb5511 7589
274bd4fb 7590 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7591 last_ptr,
7592 num_bytes,
7593 used_block_group->key.objectid,
7594 &max_extent_size);
fa9c0d79
CM
7595 if (offset) {
7596 /* we have a block, we're done */
7597 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7598 trace_btrfs_reserve_extent_cluster(
89d4346a
MX
7599 used_block_group,
7600 search_start, num_bytes);
215a63d1 7601 if (used_block_group != block_group) {
e570fd27
MX
7602 btrfs_release_block_group(block_group,
7603 delalloc);
215a63d1
MX
7604 block_group = used_block_group;
7605 }
fa9c0d79
CM
7606 goto checks;
7607 }
7608
274bd4fb 7609 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7610release_cluster:
062c05c4
AO
7611 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7612 * set up a new clusters, so lets just skip it
7613 * and let the allocator find whatever block
7614 * it can find. If we reach this point, we
7615 * will have tried the cluster allocator
7616 * plenty of times and not have found
7617 * anything, so we are likely way too
7618 * fragmented for the clustering stuff to find
a5f6f719
AO
7619 * anything.
7620 *
7621 * However, if the cluster is taken from the
7622 * current block group, release the cluster
7623 * first, so that we stand a better chance of
7624 * succeeding in the unclustered
7625 * allocation. */
7626 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7627 used_block_group != block_group) {
062c05c4 7628 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7629 btrfs_release_block_group(used_block_group,
7630 delalloc);
062c05c4
AO
7631 goto unclustered_alloc;
7632 }
7633
fa9c0d79
CM
7634 /*
7635 * this cluster didn't work out, free it and
7636 * start over
7637 */
7638 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7639
e570fd27
MX
7640 if (used_block_group != block_group)
7641 btrfs_release_block_group(used_block_group,
7642 delalloc);
7643refill_cluster:
a5f6f719
AO
7644 if (loop >= LOOP_NO_EMPTY_SIZE) {
7645 spin_unlock(&last_ptr->refill_lock);
7646 goto unclustered_alloc;
7647 }
7648
8de972b4
CM
7649 aligned_cluster = max_t(unsigned long,
7650 empty_cluster + empty_size,
7651 block_group->full_stripe_len);
7652
fa9c0d79 7653 /* allocate a cluster in this block group */
2ff7e61e 7654 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7655 last_ptr, search_start,
7656 num_bytes,
7657 aligned_cluster);
fa9c0d79
CM
7658 if (ret == 0) {
7659 /*
7660 * now pull our allocation out of this
7661 * cluster
7662 */
7663 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7664 last_ptr,
7665 num_bytes,
7666 search_start,
7667 &max_extent_size);
fa9c0d79
CM
7668 if (offset) {
7669 /* we found one, proceed */
7670 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7671 trace_btrfs_reserve_extent_cluster(
3f7de037
JB
7672 block_group, search_start,
7673 num_bytes);
fa9c0d79
CM
7674 goto checks;
7675 }
0a24325e
JB
7676 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7677 && !failed_cluster_refill) {
817d52f8
JB
7678 spin_unlock(&last_ptr->refill_lock);
7679
0a24325e 7680 failed_cluster_refill = true;
817d52f8
JB
7681 wait_block_group_cache_progress(block_group,
7682 num_bytes + empty_cluster + empty_size);
7683 goto have_block_group;
fa9c0d79 7684 }
817d52f8 7685
fa9c0d79
CM
7686 /*
7687 * at this point we either didn't find a cluster
7688 * or we weren't able to allocate a block from our
7689 * cluster. Free the cluster we've been trying
7690 * to use, and go to the next block group
7691 */
0a24325e 7692 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7693 spin_unlock(&last_ptr->refill_lock);
0a24325e 7694 goto loop;
fa9c0d79
CM
7695 }
7696
062c05c4 7697unclustered_alloc:
c759c4e1
JB
7698 /*
7699 * We are doing an unclustered alloc, set the fragmented flag so
7700 * we don't bother trying to setup a cluster again until we get
7701 * more space.
7702 */
7703 if (unlikely(last_ptr)) {
7704 spin_lock(&last_ptr->lock);
7705 last_ptr->fragmented = 1;
7706 spin_unlock(&last_ptr->lock);
7707 }
0c9b36e0
LB
7708 if (cached) {
7709 struct btrfs_free_space_ctl *ctl =
7710 block_group->free_space_ctl;
7711
7712 spin_lock(&ctl->tree_lock);
7713 if (ctl->free_space <
7714 num_bytes + empty_cluster + empty_size) {
7715 if (ctl->free_space > max_extent_size)
7716 max_extent_size = ctl->free_space;
7717 spin_unlock(&ctl->tree_lock);
7718 goto loop;
7719 }
7720 spin_unlock(&ctl->tree_lock);
a5f6f719 7721 }
a5f6f719 7722
6226cb0a 7723 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7724 num_bytes, empty_size,
7725 &max_extent_size);
1cdda9b8
JB
7726 /*
7727 * If we didn't find a chunk, and we haven't failed on this
7728 * block group before, and this block group is in the middle of
7729 * caching and we are ok with waiting, then go ahead and wait
7730 * for progress to be made, and set failed_alloc to true.
7731 *
7732 * If failed_alloc is true then we've already waited on this
7733 * block group once and should move on to the next block group.
7734 */
7735 if (!offset && !failed_alloc && !cached &&
7736 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7737 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7738 num_bytes + empty_size);
7739 failed_alloc = true;
817d52f8 7740 goto have_block_group;
1cdda9b8
JB
7741 } else if (!offset) {
7742 goto loop;
817d52f8 7743 }
fa9c0d79 7744checks:
0b246afa 7745 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7746
2552d17e
JB
7747 /* move on to the next group */
7748 if (search_start + num_bytes >
215a63d1
MX
7749 block_group->key.objectid + block_group->key.offset) {
7750 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7751 goto loop;
6226cb0a 7752 }
f5a31e16 7753
f0486c68 7754 if (offset < search_start)
215a63d1 7755 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7756 search_start - offset);
7757 BUG_ON(offset > search_start);
2552d17e 7758
18513091
WX
7759 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7760 num_bytes, delalloc);
f0486c68 7761 if (ret == -EAGAIN) {
215a63d1 7762 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7763 goto loop;
0f9dd46c 7764 }
9cfa3e34 7765 btrfs_inc_block_group_reservations(block_group);
0b86a832 7766
f0486c68 7767 /* we are all good, lets return */
2552d17e
JB
7768 ins->objectid = search_start;
7769 ins->offset = num_bytes;
d2fb3437 7770
3dca5c94 7771 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
e570fd27 7772 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7773 break;
7774loop:
0a24325e 7775 failed_cluster_refill = false;
1cdda9b8 7776 failed_alloc = false;
3e72ee88
QW
7777 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7778 index);
e570fd27 7779 btrfs_release_block_group(block_group, delalloc);
14443937 7780 cond_resched();
2552d17e
JB
7781 }
7782 up_read(&space_info->groups_sem);
7783
13a0db5a 7784 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7785 && !orig_have_caching_bg)
7786 orig_have_caching_bg = true;
7787
60d2adbb
MX
7788 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7789 goto search;
7790
b742bb82
YZ
7791 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7792 goto search;
7793
285ff5af 7794 /*
ccf0e725
JB
7795 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7796 * caching kthreads as we move along
817d52f8
JB
7797 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7798 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7799 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7800 * again
fa9c0d79 7801 */
723bda20 7802 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7803 index = 0;
a5e681d9
JB
7804 if (loop == LOOP_CACHING_NOWAIT) {
7805 /*
7806 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7807 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7808 * full search through.
7809 */
13a0db5a 7810 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7811 loop = LOOP_CACHING_WAIT;
7812 else
7813 loop = LOOP_ALLOC_CHUNK;
7814 } else {
7815 loop++;
7816 }
7817
817d52f8 7818 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7819 struct btrfs_trans_handle *trans;
f017f15f
WS
7820 int exist = 0;
7821
7822 trans = current->journal_info;
7823 if (trans)
7824 exist = 1;
7825 else
7826 trans = btrfs_join_transaction(root);
00361589 7827
00361589
JB
7828 if (IS_ERR(trans)) {
7829 ret = PTR_ERR(trans);
7830 goto out;
7831 }
7832
2ff7e61e 7833 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7834 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7835
7836 /*
7837 * If we can't allocate a new chunk we've already looped
7838 * through at least once, move on to the NO_EMPTY_SIZE
7839 * case.
7840 */
7841 if (ret == -ENOSPC)
7842 loop = LOOP_NO_EMPTY_SIZE;
7843
ea658bad
JB
7844 /*
7845 * Do not bail out on ENOSPC since we
7846 * can do more things.
7847 */
00361589 7848 if (ret < 0 && ret != -ENOSPC)
66642832 7849 btrfs_abort_transaction(trans, ret);
00361589
JB
7850 else
7851 ret = 0;
f017f15f 7852 if (!exist)
3a45bb20 7853 btrfs_end_transaction(trans);
00361589 7854 if (ret)
ea658bad 7855 goto out;
2552d17e
JB
7856 }
7857
723bda20 7858 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7859 /*
7860 * Don't loop again if we already have no empty_size and
7861 * no empty_cluster.
7862 */
7863 if (empty_size == 0 &&
7864 empty_cluster == 0) {
7865 ret = -ENOSPC;
7866 goto out;
7867 }
723bda20
JB
7868 empty_size = 0;
7869 empty_cluster = 0;
fa9c0d79 7870 }
723bda20
JB
7871
7872 goto search;
2552d17e
JB
7873 } else if (!ins->objectid) {
7874 ret = -ENOSPC;
d82a6f1d 7875 } else if (ins->objectid) {
c759c4e1
JB
7876 if (!use_cluster && last_ptr) {
7877 spin_lock(&last_ptr->lock);
7878 last_ptr->window_start = ins->objectid;
7879 spin_unlock(&last_ptr->lock);
7880 }
80eb234a 7881 ret = 0;
be744175 7882 }
79787eaa 7883out:
4f4db217
JB
7884 if (ret == -ENOSPC) {
7885 spin_lock(&space_info->lock);
7886 space_info->max_extent_size = max_extent_size;
7887 spin_unlock(&space_info->lock);
a4820398 7888 ins->offset = max_extent_size;
4f4db217 7889 }
0f70abe2 7890 return ret;
fec577fb 7891}
ec44a35c 7892
ab8d0fc4
JM
7893static void dump_space_info(struct btrfs_fs_info *fs_info,
7894 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7895 int dump_block_groups)
0f9dd46c
JB
7896{
7897 struct btrfs_block_group_cache *cache;
b742bb82 7898 int index = 0;
0f9dd46c 7899
9ed74f2d 7900 spin_lock(&info->lock);
ab8d0fc4
JM
7901 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7902 info->flags,
4136135b
LB
7903 info->total_bytes - btrfs_space_info_used(info, true),
7904 info->full ? "" : "not ");
ab8d0fc4
JM
7905 btrfs_info(fs_info,
7906 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7907 info->total_bytes, info->bytes_used, info->bytes_pinned,
7908 info->bytes_reserved, info->bytes_may_use,
7909 info->bytes_readonly);
9ed74f2d
JB
7910 spin_unlock(&info->lock);
7911
7912 if (!dump_block_groups)
7913 return;
0f9dd46c 7914
80eb234a 7915 down_read(&info->groups_sem);
b742bb82
YZ
7916again:
7917 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7918 spin_lock(&cache->lock);
ab8d0fc4
JM
7919 btrfs_info(fs_info,
7920 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7921 cache->key.objectid, cache->key.offset,
7922 btrfs_block_group_used(&cache->item), cache->pinned,
7923 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7924 btrfs_dump_free_space(cache, bytes);
7925 spin_unlock(&cache->lock);
7926 }
b742bb82
YZ
7927 if (++index < BTRFS_NR_RAID_TYPES)
7928 goto again;
80eb234a 7929 up_read(&info->groups_sem);
0f9dd46c 7930}
e8569813 7931
6f47c706
NB
7932/*
7933 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7934 * hole that is at least as big as @num_bytes.
7935 *
7936 * @root - The root that will contain this extent
7937 *
7938 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7939 * is used for accounting purposes. This value differs
7940 * from @num_bytes only in the case of compressed extents.
7941 *
7942 * @num_bytes - Number of bytes to allocate on-disk.
7943 *
7944 * @min_alloc_size - Indicates the minimum amount of space that the
7945 * allocator should try to satisfy. In some cases
7946 * @num_bytes may be larger than what is required and if
7947 * the filesystem is fragmented then allocation fails.
7948 * However, the presence of @min_alloc_size gives a
7949 * chance to try and satisfy the smaller allocation.
7950 *
7951 * @empty_size - A hint that you plan on doing more COW. This is the
7952 * size in bytes the allocator should try to find free
7953 * next to the block it returns. This is just a hint and
7954 * may be ignored by the allocator.
7955 *
7956 * @hint_byte - Hint to the allocator to start searching above the byte
7957 * address passed. It might be ignored.
7958 *
7959 * @ins - This key is modified to record the found hole. It will
7960 * have the following values:
7961 * ins->objectid == start position
7962 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7963 * ins->offset == the size of the hole.
7964 *
7965 * @is_data - Boolean flag indicating whether an extent is
7966 * allocated for data (true) or metadata (false)
7967 *
7968 * @delalloc - Boolean flag indicating whether this allocation is for
7969 * delalloc or not. If 'true' data_rwsem of block groups
7970 * is going to be acquired.
7971 *
7972 *
7973 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7974 * case -ENOSPC is returned then @ins->offset will contain the size of the
7975 * largest available hole the allocator managed to find.
7976 */
18513091 7977int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7978 u64 num_bytes, u64 min_alloc_size,
7979 u64 empty_size, u64 hint_byte,
e570fd27 7980 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7981{
ab8d0fc4 7982 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7983 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7984 u64 flags;
fec577fb 7985 int ret;
925baedd 7986
1b86826d 7987 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 7988again:
0b246afa 7989 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7990 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7991 hint_byte, ins, flags, delalloc);
9cfa3e34 7992 if (!ret && !is_data) {
ab8d0fc4 7993 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7994 } else if (ret == -ENOSPC) {
a4820398
MX
7995 if (!final_tried && ins->offset) {
7996 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7997 num_bytes = round_down(num_bytes,
0b246afa 7998 fs_info->sectorsize);
9e622d6b 7999 num_bytes = max(num_bytes, min_alloc_size);
18513091 8000 ram_bytes = num_bytes;
9e622d6b
MX
8001 if (num_bytes == min_alloc_size)
8002 final_tried = true;
8003 goto again;
ab8d0fc4 8004 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8005 struct btrfs_space_info *sinfo;
8006
ab8d0fc4 8007 sinfo = __find_space_info(fs_info, flags);
0b246afa 8008 btrfs_err(fs_info,
5d163e0e
JM
8009 "allocation failed flags %llu, wanted %llu",
8010 flags, num_bytes);
53804280 8011 if (sinfo)
ab8d0fc4 8012 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8013 }
925baedd 8014 }
0f9dd46c
JB
8015
8016 return ret;
e6dcd2dc
CM
8017}
8018
2ff7e61e 8019static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8020 u64 start, u64 len,
8021 int pin, int delalloc)
65b51a00 8022{
0f9dd46c 8023 struct btrfs_block_group_cache *cache;
1f3c79a2 8024 int ret = 0;
0f9dd46c 8025
0b246afa 8026 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8027 if (!cache) {
0b246afa
JM
8028 btrfs_err(fs_info, "Unable to find block group for %llu",
8029 start);
0f9dd46c
JB
8030 return -ENOSPC;
8031 }
1f3c79a2 8032
e688b725 8033 if (pin)
2ff7e61e 8034 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8035 else {
0b246afa 8036 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8037 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8038 btrfs_add_free_space(cache, start, len);
4824f1f4 8039 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8040 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8041 }
31193213 8042
fa9c0d79 8043 btrfs_put_block_group(cache);
e6dcd2dc
CM
8044 return ret;
8045}
8046
2ff7e61e 8047int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8048 u64 start, u64 len, int delalloc)
e688b725 8049{
2ff7e61e 8050 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8051}
8052
2ff7e61e 8053int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8054 u64 start, u64 len)
8055{
2ff7e61e 8056 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8057}
8058
5d4f98a2 8059static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8060 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8061 u64 parent, u64 root_objectid,
8062 u64 flags, u64 owner, u64 offset,
8063 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8064{
8065 int ret;
e6dcd2dc 8066 struct btrfs_extent_item *extent_item;
5d4f98a2 8067 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8068 struct btrfs_path *path;
5d4f98a2
YZ
8069 struct extent_buffer *leaf;
8070 int type;
8071 u32 size;
26b8003f 8072
5d4f98a2
YZ
8073 if (parent > 0)
8074 type = BTRFS_SHARED_DATA_REF_KEY;
8075 else
8076 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8077
5d4f98a2 8078 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8079
8080 path = btrfs_alloc_path();
db5b493a
TI
8081 if (!path)
8082 return -ENOMEM;
47e4bb98 8083
b9473439 8084 path->leave_spinning = 1;
5d4f98a2
YZ
8085 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8086 ins, size);
79787eaa
JM
8087 if (ret) {
8088 btrfs_free_path(path);
8089 return ret;
8090 }
0f9dd46c 8091
5d4f98a2
YZ
8092 leaf = path->nodes[0];
8093 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8094 struct btrfs_extent_item);
5d4f98a2
YZ
8095 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8096 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8097 btrfs_set_extent_flags(leaf, extent_item,
8098 flags | BTRFS_EXTENT_FLAG_DATA);
8099
8100 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8101 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8102 if (parent > 0) {
8103 struct btrfs_shared_data_ref *ref;
8104 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8105 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8106 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8107 } else {
8108 struct btrfs_extent_data_ref *ref;
8109 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8110 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8111 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8112 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8113 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8114 }
47e4bb98
CM
8115
8116 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8117 btrfs_free_path(path);
f510cfec 8118
25a356d3 8119 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
8120 if (ret)
8121 return ret;
8122
6202df69 8123 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8124 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8125 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8126 ins->objectid, ins->offset);
f5947066
CM
8127 BUG();
8128 }
71ff6437 8129 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8130 return ret;
8131}
8132
5d4f98a2 8133static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0
NB
8134 struct btrfs_delayed_ref_node *node,
8135 u64 flags, struct btrfs_disk_key *key)
e6dcd2dc 8136{
9dcdbe01 8137 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8138 int ret;
5d4f98a2 8139 struct btrfs_extent_item *extent_item;
4e6bd4e0 8140 struct btrfs_key extent_key;
5d4f98a2
YZ
8141 struct btrfs_tree_block_info *block_info;
8142 struct btrfs_extent_inline_ref *iref;
8143 struct btrfs_path *path;
8144 struct extent_buffer *leaf;
4e6bd4e0 8145 struct btrfs_delayed_tree_ref *ref;
3173a18f 8146 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0
NB
8147 u64 num_bytes;
8148 u64 parent;
0b246afa 8149 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 8150
4e6bd4e0
NB
8151 ref = btrfs_delayed_node_to_tree_ref(node);
8152
8153 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
8154 parent = ref->parent;
8155 else
8156 parent = 0;
8157
8158 extent_key.objectid = node->bytenr;
8159 if (skinny_metadata) {
8160 extent_key.offset = ref->level;
8161 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8162 num_bytes = fs_info->nodesize;
8163 } else {
8164 extent_key.offset = node->num_bytes;
8165 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 8166 size += sizeof(*block_info);
4e6bd4e0
NB
8167 num_bytes = node->num_bytes;
8168 }
1c2308f8 8169
5d4f98a2 8170 path = btrfs_alloc_path();
857cc2fc 8171 if (!path) {
4e6bd4e0
NB
8172 btrfs_free_and_pin_reserved_extent(fs_info,
8173 extent_key.objectid,
0b246afa 8174 fs_info->nodesize);
d8926bb3 8175 return -ENOMEM;
857cc2fc 8176 }
56bec294 8177
5d4f98a2
YZ
8178 path->leave_spinning = 1;
8179 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8180 &extent_key, size);
79787eaa 8181 if (ret) {
dd825259 8182 btrfs_free_path(path);
4e6bd4e0
NB
8183 btrfs_free_and_pin_reserved_extent(fs_info,
8184 extent_key.objectid,
0b246afa 8185 fs_info->nodesize);
79787eaa
JM
8186 return ret;
8187 }
5d4f98a2
YZ
8188
8189 leaf = path->nodes[0];
8190 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8191 struct btrfs_extent_item);
8192 btrfs_set_extent_refs(leaf, extent_item, 1);
8193 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8194 btrfs_set_extent_flags(leaf, extent_item,
8195 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8196
3173a18f
JB
8197 if (skinny_metadata) {
8198 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8199 } else {
8200 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8201 btrfs_set_tree_block_key(leaf, block_info, key);
4e6bd4e0 8202 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8203 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8204 }
5d4f98a2 8205
5d4f98a2
YZ
8206 if (parent > 0) {
8207 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8208 btrfs_set_extent_inline_ref_type(leaf, iref,
8209 BTRFS_SHARED_BLOCK_REF_KEY);
8210 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8211 } else {
8212 btrfs_set_extent_inline_ref_type(leaf, iref,
8213 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8214 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8215 }
8216
8217 btrfs_mark_buffer_dirty(leaf);
8218 btrfs_free_path(path);
8219
4e6bd4e0
NB
8220 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8221 num_bytes);
1e144fb8
OS
8222 if (ret)
8223 return ret;
8224
4e6bd4e0 8225 ret = update_block_group(trans, fs_info, extent_key.objectid,
6202df69 8226 fs_info->nodesize, 1);
79787eaa 8227 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8228 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8229 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8230 BUG();
8231 }
0be5dc67 8232
4e6bd4e0 8233 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8234 fs_info->nodesize);
5d4f98a2
YZ
8235 return ret;
8236}
8237
8238int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8239 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8240 u64 offset, u64 ram_bytes,
8241 struct btrfs_key *ins)
5d4f98a2 8242{
84f7d8e6 8243 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8244 int ret;
8245
84f7d8e6 8246 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8247
fd708b81
JB
8248 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8249 root->root_key.objectid, owner, offset,
8250 BTRFS_ADD_DELAYED_EXTENT);
8251
0b246afa 8252 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8253 ins->offset, 0,
8254 root->root_key.objectid, owner,
7be07912
OS
8255 offset, ram_bytes,
8256 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8257 return ret;
8258}
e02119d5
CM
8259
8260/*
8261 * this is used by the tree logging recovery code. It records that
8262 * an extent has been allocated and makes sure to clear the free
8263 * space cache bits as well
8264 */
5d4f98a2 8265int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8266 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8267 u64 root_objectid, u64 owner, u64 offset,
8268 struct btrfs_key *ins)
e02119d5
CM
8269{
8270 int ret;
8271 struct btrfs_block_group_cache *block_group;
ed7a6948 8272 struct btrfs_space_info *space_info;
11833d66 8273
8c2a1a30
JB
8274 /*
8275 * Mixed block groups will exclude before processing the log so we only
01327610 8276 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8277 */
0b246afa 8278 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8279 ret = __exclude_logged_extent(fs_info, ins->objectid,
8280 ins->offset);
b50c6e25 8281 if (ret)
8c2a1a30 8282 return ret;
11833d66
YZ
8283 }
8284
0b246afa 8285 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8286 if (!block_group)
8287 return -EINVAL;
8288
ed7a6948
WX
8289 space_info = block_group->space_info;
8290 spin_lock(&space_info->lock);
8291 spin_lock(&block_group->lock);
8292 space_info->bytes_reserved += ins->offset;
8293 block_group->reserved += ins->offset;
8294 spin_unlock(&block_group->lock);
8295 spin_unlock(&space_info->lock);
8296
2ff7e61e 8297 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8298 0, owner, offset, ins, 1);
b50c6e25 8299 btrfs_put_block_group(block_group);
e02119d5
CM
8300 return ret;
8301}
8302
48a3b636
ES
8303static struct extent_buffer *
8304btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8305 u64 bytenr, int level)
65b51a00 8306{
0b246afa 8307 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8308 struct extent_buffer *buf;
8309
2ff7e61e 8310 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8311 if (IS_ERR(buf))
8312 return buf;
8313
65b51a00 8314 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8315 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8316 btrfs_tree_lock(buf);
7c302b49 8317 clean_tree_block(fs_info, buf);
3083ee2e 8318 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8319
8320 btrfs_set_lock_blocking(buf);
4db8c528 8321 set_extent_buffer_uptodate(buf);
b4ce94de 8322
d0c803c4 8323 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8324 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8325 /*
8326 * we allow two log transactions at a time, use different
8327 * EXENT bit to differentiate dirty pages.
8328 */
656f30db 8329 if (buf->log_index == 0)
8cef4e16
YZ
8330 set_extent_dirty(&root->dirty_log_pages, buf->start,
8331 buf->start + buf->len - 1, GFP_NOFS);
8332 else
8333 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8334 buf->start + buf->len - 1);
d0c803c4 8335 } else {
656f30db 8336 buf->log_index = -1;
d0c803c4 8337 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8338 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8339 }
64c12921 8340 trans->dirty = true;
b4ce94de 8341 /* this returns a buffer locked for blocking */
65b51a00
CM
8342 return buf;
8343}
8344
f0486c68
YZ
8345static struct btrfs_block_rsv *
8346use_block_rsv(struct btrfs_trans_handle *trans,
8347 struct btrfs_root *root, u32 blocksize)
8348{
0b246afa 8349 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8350 struct btrfs_block_rsv *block_rsv;
0b246afa 8351 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8352 int ret;
d88033db 8353 bool global_updated = false;
f0486c68
YZ
8354
8355 block_rsv = get_block_rsv(trans, root);
8356
b586b323
MX
8357 if (unlikely(block_rsv->size == 0))
8358 goto try_reserve;
d88033db 8359again:
f0486c68
YZ
8360 ret = block_rsv_use_bytes(block_rsv, blocksize);
8361 if (!ret)
8362 return block_rsv;
8363
b586b323
MX
8364 if (block_rsv->failfast)
8365 return ERR_PTR(ret);
8366
d88033db
MX
8367 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8368 global_updated = true;
0b246afa 8369 update_global_block_rsv(fs_info);
d88033db
MX
8370 goto again;
8371 }
8372
0b246afa 8373 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8374 static DEFINE_RATELIMIT_STATE(_rs,
8375 DEFAULT_RATELIMIT_INTERVAL * 10,
8376 /*DEFAULT_RATELIMIT_BURST*/ 1);
8377 if (__ratelimit(&_rs))
8378 WARN(1, KERN_DEBUG
efe120a0 8379 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8380 }
8381try_reserve:
8382 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8383 BTRFS_RESERVE_NO_FLUSH);
8384 if (!ret)
8385 return block_rsv;
8386 /*
8387 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8388 * the global reserve if its space type is the same as the global
8389 * reservation.
b586b323 8390 */
5881cfc9
MX
8391 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8392 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8393 ret = block_rsv_use_bytes(global_rsv, blocksize);
8394 if (!ret)
8395 return global_rsv;
8396 }
8397 return ERR_PTR(ret);
f0486c68
YZ
8398}
8399
8c2a3ca2
JB
8400static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8401 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8402{
8403 block_rsv_add_bytes(block_rsv, blocksize, 0);
ff6bc37e 8404 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8405}
8406
fec577fb 8407/*
f0486c68 8408 * finds a free extent and does all the dirty work required for allocation
67b7859e 8409 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8410 */
4d75f8a9 8411struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8412 struct btrfs_root *root,
8413 u64 parent, u64 root_objectid,
8414 const struct btrfs_disk_key *key,
8415 int level, u64 hint,
8416 u64 empty_size)
fec577fb 8417{
0b246afa 8418 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8419 struct btrfs_key ins;
f0486c68 8420 struct btrfs_block_rsv *block_rsv;
5f39d397 8421 struct extent_buffer *buf;
67b7859e 8422 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8423 u64 flags = 0;
8424 int ret;
0b246afa
JM
8425 u32 blocksize = fs_info->nodesize;
8426 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8427
05653ef3 8428#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8429 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8430 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8431 level);
faa2dbf0
JB
8432 if (!IS_ERR(buf))
8433 root->alloc_bytenr += blocksize;
8434 return buf;
8435 }
05653ef3 8436#endif
fccb84c9 8437
f0486c68
YZ
8438 block_rsv = use_block_rsv(trans, root, blocksize);
8439 if (IS_ERR(block_rsv))
8440 return ERR_CAST(block_rsv);
8441
18513091 8442 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8443 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8444 if (ret)
8445 goto out_unuse;
55c69072 8446
fe864576 8447 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8448 if (IS_ERR(buf)) {
8449 ret = PTR_ERR(buf);
8450 goto out_free_reserved;
8451 }
f0486c68
YZ
8452
8453 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8454 if (parent == 0)
8455 parent = ins.objectid;
8456 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8457 } else
8458 BUG_ON(parent > 0);
8459
8460 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8461 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8462 if (!extent_op) {
8463 ret = -ENOMEM;
8464 goto out_free_buf;
8465 }
f0486c68
YZ
8466 if (key)
8467 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8468 else
8469 memset(&extent_op->key, 0, sizeof(extent_op->key));
8470 extent_op->flags_to_set = flags;
35b3ad50
DS
8471 extent_op->update_key = skinny_metadata ? false : true;
8472 extent_op->update_flags = true;
8473 extent_op->is_data = false;
b1c79e09 8474 extent_op->level = level;
f0486c68 8475
fd708b81
JB
8476 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8477 root_objectid, level, 0,
8478 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8479 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8480 ins.offset, parent,
8481 root_objectid, level,
67b7859e 8482 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8483 extent_op, NULL, NULL);
67b7859e
OS
8484 if (ret)
8485 goto out_free_delayed;
f0486c68 8486 }
fec577fb 8487 return buf;
67b7859e
OS
8488
8489out_free_delayed:
8490 btrfs_free_delayed_extent_op(extent_op);
8491out_free_buf:
8492 free_extent_buffer(buf);
8493out_free_reserved:
2ff7e61e 8494 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8495out_unuse:
0b246afa 8496 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8497 return ERR_PTR(ret);
fec577fb 8498}
a28ec197 8499
2c47e605
YZ
8500struct walk_control {
8501 u64 refs[BTRFS_MAX_LEVEL];
8502 u64 flags[BTRFS_MAX_LEVEL];
8503 struct btrfs_key update_progress;
8504 int stage;
8505 int level;
8506 int shared_level;
8507 int update_ref;
8508 int keep_locks;
1c4850e2
YZ
8509 int reada_slot;
8510 int reada_count;
66d7e7f0 8511 int for_reloc;
2c47e605
YZ
8512};
8513
8514#define DROP_REFERENCE 1
8515#define UPDATE_BACKREF 2
8516
1c4850e2
YZ
8517static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8518 struct btrfs_root *root,
8519 struct walk_control *wc,
8520 struct btrfs_path *path)
6407bf6d 8521{
0b246afa 8522 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8523 u64 bytenr;
8524 u64 generation;
8525 u64 refs;
94fcca9f 8526 u64 flags;
5d4f98a2 8527 u32 nritems;
1c4850e2
YZ
8528 struct btrfs_key key;
8529 struct extent_buffer *eb;
6407bf6d 8530 int ret;
1c4850e2
YZ
8531 int slot;
8532 int nread = 0;
6407bf6d 8533
1c4850e2
YZ
8534 if (path->slots[wc->level] < wc->reada_slot) {
8535 wc->reada_count = wc->reada_count * 2 / 3;
8536 wc->reada_count = max(wc->reada_count, 2);
8537 } else {
8538 wc->reada_count = wc->reada_count * 3 / 2;
8539 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8540 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8541 }
7bb86316 8542
1c4850e2
YZ
8543 eb = path->nodes[wc->level];
8544 nritems = btrfs_header_nritems(eb);
bd56b302 8545
1c4850e2
YZ
8546 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8547 if (nread >= wc->reada_count)
8548 break;
bd56b302 8549
2dd3e67b 8550 cond_resched();
1c4850e2
YZ
8551 bytenr = btrfs_node_blockptr(eb, slot);
8552 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8553
1c4850e2
YZ
8554 if (slot == path->slots[wc->level])
8555 goto reada;
5d4f98a2 8556
1c4850e2
YZ
8557 if (wc->stage == UPDATE_BACKREF &&
8558 generation <= root->root_key.offset)
bd56b302
CM
8559 continue;
8560
94fcca9f 8561 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8562 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8563 wc->level - 1, 1, &refs,
8564 &flags);
79787eaa
JM
8565 /* We don't care about errors in readahead. */
8566 if (ret < 0)
8567 continue;
94fcca9f
YZ
8568 BUG_ON(refs == 0);
8569
1c4850e2 8570 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8571 if (refs == 1)
8572 goto reada;
bd56b302 8573
94fcca9f
YZ
8574 if (wc->level == 1 &&
8575 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8576 continue;
1c4850e2
YZ
8577 if (!wc->update_ref ||
8578 generation <= root->root_key.offset)
8579 continue;
8580 btrfs_node_key_to_cpu(eb, &key, slot);
8581 ret = btrfs_comp_cpu_keys(&key,
8582 &wc->update_progress);
8583 if (ret < 0)
8584 continue;
94fcca9f
YZ
8585 } else {
8586 if (wc->level == 1 &&
8587 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8588 continue;
6407bf6d 8589 }
1c4850e2 8590reada:
2ff7e61e 8591 readahead_tree_block(fs_info, bytenr);
1c4850e2 8592 nread++;
20524f02 8593 }
1c4850e2 8594 wc->reada_slot = slot;
20524f02 8595}
2c47e605 8596
f82d02d9 8597/*
2c016dc2 8598 * helper to process tree block while walking down the tree.
2c47e605 8599 *
2c47e605
YZ
8600 * when wc->stage == UPDATE_BACKREF, this function updates
8601 * back refs for pointers in the block.
8602 *
8603 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8604 */
2c47e605 8605static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8606 struct btrfs_root *root,
2c47e605 8607 struct btrfs_path *path,
94fcca9f 8608 struct walk_control *wc, int lookup_info)
f82d02d9 8609{
2ff7e61e 8610 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8611 int level = wc->level;
8612 struct extent_buffer *eb = path->nodes[level];
2c47e605 8613 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8614 int ret;
8615
2c47e605
YZ
8616 if (wc->stage == UPDATE_BACKREF &&
8617 btrfs_header_owner(eb) != root->root_key.objectid)
8618 return 1;
f82d02d9 8619
2c47e605
YZ
8620 /*
8621 * when reference count of tree block is 1, it won't increase
8622 * again. once full backref flag is set, we never clear it.
8623 */
94fcca9f
YZ
8624 if (lookup_info &&
8625 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8626 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8627 BUG_ON(!path->locks[level]);
2ff7e61e 8628 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8629 eb->start, level, 1,
2c47e605
YZ
8630 &wc->refs[level],
8631 &wc->flags[level]);
79787eaa
JM
8632 BUG_ON(ret == -ENOMEM);
8633 if (ret)
8634 return ret;
2c47e605
YZ
8635 BUG_ON(wc->refs[level] == 0);
8636 }
5d4f98a2 8637
2c47e605
YZ
8638 if (wc->stage == DROP_REFERENCE) {
8639 if (wc->refs[level] > 1)
8640 return 1;
f82d02d9 8641
2c47e605 8642 if (path->locks[level] && !wc->keep_locks) {
bd681513 8643 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8644 path->locks[level] = 0;
8645 }
8646 return 0;
8647 }
f82d02d9 8648
2c47e605
YZ
8649 /* wc->stage == UPDATE_BACKREF */
8650 if (!(wc->flags[level] & flag)) {
8651 BUG_ON(!path->locks[level]);
e339a6b0 8652 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8653 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8654 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8655 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8656 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8657 eb->len, flag,
8658 btrfs_header_level(eb), 0);
79787eaa 8659 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8660 wc->flags[level] |= flag;
8661 }
8662
8663 /*
8664 * the block is shared by multiple trees, so it's not good to
8665 * keep the tree lock
8666 */
8667 if (path->locks[level] && level > 0) {
bd681513 8668 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8669 path->locks[level] = 0;
8670 }
8671 return 0;
8672}
8673
1c4850e2 8674/*
2c016dc2 8675 * helper to process tree block pointer.
1c4850e2
YZ
8676 *
8677 * when wc->stage == DROP_REFERENCE, this function checks
8678 * reference count of the block pointed to. if the block
8679 * is shared and we need update back refs for the subtree
8680 * rooted at the block, this function changes wc->stage to
8681 * UPDATE_BACKREF. if the block is shared and there is no
8682 * need to update back, this function drops the reference
8683 * to the block.
8684 *
8685 * NOTE: return value 1 means we should stop walking down.
8686 */
8687static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8688 struct btrfs_root *root,
8689 struct btrfs_path *path,
94fcca9f 8690 struct walk_control *wc, int *lookup_info)
1c4850e2 8691{
0b246afa 8692 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8693 u64 bytenr;
8694 u64 generation;
8695 u64 parent;
8696 u32 blocksize;
8697 struct btrfs_key key;
581c1760 8698 struct btrfs_key first_key;
1c4850e2
YZ
8699 struct extent_buffer *next;
8700 int level = wc->level;
8701 int reada = 0;
8702 int ret = 0;
1152651a 8703 bool need_account = false;
1c4850e2
YZ
8704
8705 generation = btrfs_node_ptr_generation(path->nodes[level],
8706 path->slots[level]);
8707 /*
8708 * if the lower level block was created before the snapshot
8709 * was created, we know there is no need to update back refs
8710 * for the subtree
8711 */
8712 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8713 generation <= root->root_key.offset) {
8714 *lookup_info = 1;
1c4850e2 8715 return 1;
94fcca9f 8716 }
1c4850e2
YZ
8717
8718 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8719 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8720 path->slots[level]);
0b246afa 8721 blocksize = fs_info->nodesize;
1c4850e2 8722
0b246afa 8723 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8724 if (!next) {
2ff7e61e 8725 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8726 if (IS_ERR(next))
8727 return PTR_ERR(next);
8728
b2aaaa3b
JB
8729 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8730 level - 1);
1c4850e2
YZ
8731 reada = 1;
8732 }
8733 btrfs_tree_lock(next);
8734 btrfs_set_lock_blocking(next);
8735
2ff7e61e 8736 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8737 &wc->refs[level - 1],
8738 &wc->flags[level - 1]);
4867268c
JB
8739 if (ret < 0)
8740 goto out_unlock;
79787eaa 8741
c2cf52eb 8742 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8743 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8744 ret = -EIO;
8745 goto out_unlock;
c2cf52eb 8746 }
94fcca9f 8747 *lookup_info = 0;
1c4850e2 8748
94fcca9f 8749 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8750 if (wc->refs[level - 1] > 1) {
1152651a 8751 need_account = true;
94fcca9f
YZ
8752 if (level == 1 &&
8753 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8754 goto skip;
8755
1c4850e2
YZ
8756 if (!wc->update_ref ||
8757 generation <= root->root_key.offset)
8758 goto skip;
8759
8760 btrfs_node_key_to_cpu(path->nodes[level], &key,
8761 path->slots[level]);
8762 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8763 if (ret < 0)
8764 goto skip;
8765
8766 wc->stage = UPDATE_BACKREF;
8767 wc->shared_level = level - 1;
8768 }
94fcca9f
YZ
8769 } else {
8770 if (level == 1 &&
8771 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8772 goto skip;
1c4850e2
YZ
8773 }
8774
b9fab919 8775 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8776 btrfs_tree_unlock(next);
8777 free_extent_buffer(next);
8778 next = NULL;
94fcca9f 8779 *lookup_info = 1;
1c4850e2
YZ
8780 }
8781
8782 if (!next) {
8783 if (reada && level == 1)
8784 reada_walk_down(trans, root, wc, path);
581c1760
QW
8785 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8786 &first_key);
64c043de
LB
8787 if (IS_ERR(next)) {
8788 return PTR_ERR(next);
8789 } else if (!extent_buffer_uptodate(next)) {
416bc658 8790 free_extent_buffer(next);
97d9a8a4 8791 return -EIO;
416bc658 8792 }
1c4850e2
YZ
8793 btrfs_tree_lock(next);
8794 btrfs_set_lock_blocking(next);
8795 }
8796
8797 level--;
4867268c
JB
8798 ASSERT(level == btrfs_header_level(next));
8799 if (level != btrfs_header_level(next)) {
8800 btrfs_err(root->fs_info, "mismatched level");
8801 ret = -EIO;
8802 goto out_unlock;
8803 }
1c4850e2
YZ
8804 path->nodes[level] = next;
8805 path->slots[level] = 0;
bd681513 8806 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8807 wc->level = level;
8808 if (wc->level == 1)
8809 wc->reada_slot = 0;
8810 return 0;
8811skip:
8812 wc->refs[level - 1] = 0;
8813 wc->flags[level - 1] = 0;
94fcca9f
YZ
8814 if (wc->stage == DROP_REFERENCE) {
8815 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8816 parent = path->nodes[level]->start;
8817 } else {
4867268c 8818 ASSERT(root->root_key.objectid ==
94fcca9f 8819 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8820 if (root->root_key.objectid !=
8821 btrfs_header_owner(path->nodes[level])) {
8822 btrfs_err(root->fs_info,
8823 "mismatched block owner");
8824 ret = -EIO;
8825 goto out_unlock;
8826 }
94fcca9f
YZ
8827 parent = 0;
8828 }
1c4850e2 8829
1152651a 8830 if (need_account) {
33d1f05c
QW
8831 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8832 generation, level - 1);
1152651a 8833 if (ret) {
0b246afa 8834 btrfs_err_rl(fs_info,
5d163e0e
JM
8835 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8836 ret);
1152651a
MF
8837 }
8838 }
84f7d8e6 8839 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8840 parent, root->root_key.objectid,
8841 level - 1, 0);
4867268c
JB
8842 if (ret)
8843 goto out_unlock;
1c4850e2 8844 }
4867268c
JB
8845
8846 *lookup_info = 1;
8847 ret = 1;
8848
8849out_unlock:
1c4850e2
YZ
8850 btrfs_tree_unlock(next);
8851 free_extent_buffer(next);
4867268c
JB
8852
8853 return ret;
1c4850e2
YZ
8854}
8855
2c47e605 8856/*
2c016dc2 8857 * helper to process tree block while walking up the tree.
2c47e605
YZ
8858 *
8859 * when wc->stage == DROP_REFERENCE, this function drops
8860 * reference count on the block.
8861 *
8862 * when wc->stage == UPDATE_BACKREF, this function changes
8863 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8864 * to UPDATE_BACKREF previously while processing the block.
8865 *
8866 * NOTE: return value 1 means we should stop walking up.
8867 */
8868static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8869 struct btrfs_root *root,
8870 struct btrfs_path *path,
8871 struct walk_control *wc)
8872{
0b246afa 8873 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8874 int ret;
2c47e605
YZ
8875 int level = wc->level;
8876 struct extent_buffer *eb = path->nodes[level];
8877 u64 parent = 0;
8878
8879 if (wc->stage == UPDATE_BACKREF) {
8880 BUG_ON(wc->shared_level < level);
8881 if (level < wc->shared_level)
8882 goto out;
8883
2c47e605
YZ
8884 ret = find_next_key(path, level + 1, &wc->update_progress);
8885 if (ret > 0)
8886 wc->update_ref = 0;
8887
8888 wc->stage = DROP_REFERENCE;
8889 wc->shared_level = -1;
8890 path->slots[level] = 0;
8891
8892 /*
8893 * check reference count again if the block isn't locked.
8894 * we should start walking down the tree again if reference
8895 * count is one.
8896 */
8897 if (!path->locks[level]) {
8898 BUG_ON(level == 0);
8899 btrfs_tree_lock(eb);
8900 btrfs_set_lock_blocking(eb);
bd681513 8901 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8902
2ff7e61e 8903 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8904 eb->start, level, 1,
2c47e605
YZ
8905 &wc->refs[level],
8906 &wc->flags[level]);
79787eaa
JM
8907 if (ret < 0) {
8908 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8909 path->locks[level] = 0;
79787eaa
JM
8910 return ret;
8911 }
2c47e605
YZ
8912 BUG_ON(wc->refs[level] == 0);
8913 if (wc->refs[level] == 1) {
bd681513 8914 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8915 path->locks[level] = 0;
2c47e605
YZ
8916 return 1;
8917 }
f82d02d9 8918 }
2c47e605 8919 }
f82d02d9 8920
2c47e605
YZ
8921 /* wc->stage == DROP_REFERENCE */
8922 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8923
2c47e605
YZ
8924 if (wc->refs[level] == 1) {
8925 if (level == 0) {
8926 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8927 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8928 else
e339a6b0 8929 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8930 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8931 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8932 if (ret) {
0b246afa 8933 btrfs_err_rl(fs_info,
5d163e0e
JM
8934 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8935 ret);
1152651a 8936 }
2c47e605
YZ
8937 }
8938 /* make block locked assertion in clean_tree_block happy */
8939 if (!path->locks[level] &&
8940 btrfs_header_generation(eb) == trans->transid) {
8941 btrfs_tree_lock(eb);
8942 btrfs_set_lock_blocking(eb);
bd681513 8943 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8944 }
7c302b49 8945 clean_tree_block(fs_info, eb);
2c47e605
YZ
8946 }
8947
8948 if (eb == root->node) {
8949 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8950 parent = eb->start;
8951 else
8952 BUG_ON(root->root_key.objectid !=
8953 btrfs_header_owner(eb));
8954 } else {
8955 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8956 parent = path->nodes[level + 1]->start;
8957 else
8958 BUG_ON(root->root_key.objectid !=
8959 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8960 }
f82d02d9 8961
5581a51a 8962 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8963out:
8964 wc->refs[level] = 0;
8965 wc->flags[level] = 0;
f0486c68 8966 return 0;
2c47e605
YZ
8967}
8968
8969static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8970 struct btrfs_root *root,
8971 struct btrfs_path *path,
8972 struct walk_control *wc)
8973{
2c47e605 8974 int level = wc->level;
94fcca9f 8975 int lookup_info = 1;
2c47e605
YZ
8976 int ret;
8977
8978 while (level >= 0) {
94fcca9f 8979 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8980 if (ret > 0)
8981 break;
8982
8983 if (level == 0)
8984 break;
8985
7a7965f8
YZ
8986 if (path->slots[level] >=
8987 btrfs_header_nritems(path->nodes[level]))
8988 break;
8989
94fcca9f 8990 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8991 if (ret > 0) {
8992 path->slots[level]++;
8993 continue;
90d2c51d
MX
8994 } else if (ret < 0)
8995 return ret;
1c4850e2 8996 level = wc->level;
f82d02d9 8997 }
f82d02d9
YZ
8998 return 0;
8999}
9000
d397712b 9001static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9002 struct btrfs_root *root,
f82d02d9 9003 struct btrfs_path *path,
2c47e605 9004 struct walk_control *wc, int max_level)
20524f02 9005{
2c47e605 9006 int level = wc->level;
20524f02 9007 int ret;
9f3a7427 9008
2c47e605
YZ
9009 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9010 while (level < max_level && path->nodes[level]) {
9011 wc->level = level;
9012 if (path->slots[level] + 1 <
9013 btrfs_header_nritems(path->nodes[level])) {
9014 path->slots[level]++;
20524f02
CM
9015 return 0;
9016 } else {
2c47e605
YZ
9017 ret = walk_up_proc(trans, root, path, wc);
9018 if (ret > 0)
9019 return 0;
bd56b302 9020
2c47e605 9021 if (path->locks[level]) {
bd681513
CM
9022 btrfs_tree_unlock_rw(path->nodes[level],
9023 path->locks[level]);
2c47e605 9024 path->locks[level] = 0;
f82d02d9 9025 }
2c47e605
YZ
9026 free_extent_buffer(path->nodes[level]);
9027 path->nodes[level] = NULL;
9028 level++;
20524f02
CM
9029 }
9030 }
9031 return 1;
9032}
9033
9aca1d51 9034/*
2c47e605
YZ
9035 * drop a subvolume tree.
9036 *
9037 * this function traverses the tree freeing any blocks that only
9038 * referenced by the tree.
9039 *
9040 * when a shared tree block is found. this function decreases its
9041 * reference count by one. if update_ref is true, this function
9042 * also make sure backrefs for the shared block and all lower level
9043 * blocks are properly updated.
9d1a2a3a
DS
9044 *
9045 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9046 */
2c536799 9047int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9048 struct btrfs_block_rsv *block_rsv, int update_ref,
9049 int for_reloc)
20524f02 9050{
ab8d0fc4 9051 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9052 struct btrfs_path *path;
2c47e605 9053 struct btrfs_trans_handle *trans;
ab8d0fc4 9054 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9055 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9056 struct walk_control *wc;
9057 struct btrfs_key key;
9058 int err = 0;
9059 int ret;
9060 int level;
d29a9f62 9061 bool root_dropped = false;
20524f02 9062
ab8d0fc4 9063 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9064
5caf2a00 9065 path = btrfs_alloc_path();
cb1b69f4
TI
9066 if (!path) {
9067 err = -ENOMEM;
9068 goto out;
9069 }
20524f02 9070
2c47e605 9071 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9072 if (!wc) {
9073 btrfs_free_path(path);
cb1b69f4
TI
9074 err = -ENOMEM;
9075 goto out;
38a1a919 9076 }
2c47e605 9077
a22285a6 9078 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9079 if (IS_ERR(trans)) {
9080 err = PTR_ERR(trans);
9081 goto out_free;
9082 }
98d5dc13 9083
3fd0a558
YZ
9084 if (block_rsv)
9085 trans->block_rsv = block_rsv;
2c47e605 9086
9f3a7427 9087 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9088 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9089 path->nodes[level] = btrfs_lock_root_node(root);
9090 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9091 path->slots[level] = 0;
bd681513 9092 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9093 memset(&wc->update_progress, 0,
9094 sizeof(wc->update_progress));
9f3a7427 9095 } else {
9f3a7427 9096 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9097 memcpy(&wc->update_progress, &key,
9098 sizeof(wc->update_progress));
9099
6702ed49 9100 level = root_item->drop_level;
2c47e605 9101 BUG_ON(level == 0);
6702ed49 9102 path->lowest_level = level;
2c47e605
YZ
9103 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9104 path->lowest_level = 0;
9105 if (ret < 0) {
9106 err = ret;
79787eaa 9107 goto out_end_trans;
9f3a7427 9108 }
1c4850e2 9109 WARN_ON(ret > 0);
2c47e605 9110
7d9eb12c
CM
9111 /*
9112 * unlock our path, this is safe because only this
9113 * function is allowed to delete this snapshot
9114 */
5d4f98a2 9115 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9116
9117 level = btrfs_header_level(root->node);
9118 while (1) {
9119 btrfs_tree_lock(path->nodes[level]);
9120 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9121 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9122
2ff7e61e 9123 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9124 path->nodes[level]->start,
3173a18f 9125 level, 1, &wc->refs[level],
2c47e605 9126 &wc->flags[level]);
79787eaa
JM
9127 if (ret < 0) {
9128 err = ret;
9129 goto out_end_trans;
9130 }
2c47e605
YZ
9131 BUG_ON(wc->refs[level] == 0);
9132
9133 if (level == root_item->drop_level)
9134 break;
9135
9136 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9137 path->locks[level] = 0;
2c47e605
YZ
9138 WARN_ON(wc->refs[level] != 1);
9139 level--;
9140 }
9f3a7427 9141 }
2c47e605
YZ
9142
9143 wc->level = level;
9144 wc->shared_level = -1;
9145 wc->stage = DROP_REFERENCE;
9146 wc->update_ref = update_ref;
9147 wc->keep_locks = 0;
66d7e7f0 9148 wc->for_reloc = for_reloc;
0b246afa 9149 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9150
d397712b 9151 while (1) {
9d1a2a3a 9152
2c47e605
YZ
9153 ret = walk_down_tree(trans, root, path, wc);
9154 if (ret < 0) {
9155 err = ret;
20524f02 9156 break;
2c47e605 9157 }
9aca1d51 9158
2c47e605
YZ
9159 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9160 if (ret < 0) {
9161 err = ret;
20524f02 9162 break;
2c47e605
YZ
9163 }
9164
9165 if (ret > 0) {
9166 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9167 break;
9168 }
2c47e605
YZ
9169
9170 if (wc->stage == DROP_REFERENCE) {
9171 level = wc->level;
9172 btrfs_node_key(path->nodes[level],
9173 &root_item->drop_progress,
9174 path->slots[level]);
9175 root_item->drop_level = level;
9176 }
9177
9178 BUG_ON(wc->level == 0);
3a45bb20 9179 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9180 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9181 ret = btrfs_update_root(trans, tree_root,
9182 &root->root_key,
9183 root_item);
79787eaa 9184 if (ret) {
66642832 9185 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9186 err = ret;
9187 goto out_end_trans;
9188 }
2c47e605 9189
3a45bb20 9190 btrfs_end_transaction_throttle(trans);
2ff7e61e 9191 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9192 btrfs_debug(fs_info,
9193 "drop snapshot early exit");
3c8f2422
JB
9194 err = -EAGAIN;
9195 goto out_free;
9196 }
9197
a22285a6 9198 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9199 if (IS_ERR(trans)) {
9200 err = PTR_ERR(trans);
9201 goto out_free;
9202 }
3fd0a558
YZ
9203 if (block_rsv)
9204 trans->block_rsv = block_rsv;
c3e69d58 9205 }
20524f02 9206 }
b3b4aa74 9207 btrfs_release_path(path);
79787eaa
JM
9208 if (err)
9209 goto out_end_trans;
2c47e605 9210
1cd5447e 9211 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9212 if (ret) {
66642832 9213 btrfs_abort_transaction(trans, ret);
e19182c0 9214 err = ret;
79787eaa
JM
9215 goto out_end_trans;
9216 }
2c47e605 9217
76dda93c 9218 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9219 ret = btrfs_find_root(tree_root, &root->root_key, path,
9220 NULL, NULL);
79787eaa 9221 if (ret < 0) {
66642832 9222 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9223 err = ret;
9224 goto out_end_trans;
9225 } else if (ret > 0) {
84cd948c
JB
9226 /* if we fail to delete the orphan item this time
9227 * around, it'll get picked up the next time.
9228 *
9229 * The most common failure here is just -ENOENT.
9230 */
9231 btrfs_del_orphan_item(trans, tree_root,
9232 root->root_key.objectid);
76dda93c
YZ
9233 }
9234 }
9235
27cdeb70 9236 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9237 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9238 } else {
9239 free_extent_buffer(root->node);
9240 free_extent_buffer(root->commit_root);
b0feb9d9 9241 btrfs_put_fs_root(root);
76dda93c 9242 }
d29a9f62 9243 root_dropped = true;
79787eaa 9244out_end_trans:
3a45bb20 9245 btrfs_end_transaction_throttle(trans);
79787eaa 9246out_free:
2c47e605 9247 kfree(wc);
5caf2a00 9248 btrfs_free_path(path);
cb1b69f4 9249out:
d29a9f62
JB
9250 /*
9251 * So if we need to stop dropping the snapshot for whatever reason we
9252 * need to make sure to add it back to the dead root list so that we
9253 * keep trying to do the work later. This also cleans up roots if we
9254 * don't have it in the radix (like when we recover after a power fail
9255 * or unmount) so we don't leak memory.
9256 */
897ca819 9257 if (!for_reloc && !root_dropped)
d29a9f62 9258 btrfs_add_dead_root(root);
90515e7f 9259 if (err && err != -EAGAIN)
ab8d0fc4 9260 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9261 return err;
20524f02 9262}
9078a3e1 9263
2c47e605
YZ
9264/*
9265 * drop subtree rooted at tree block 'node'.
9266 *
9267 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9268 * only used by relocation code
2c47e605 9269 */
f82d02d9
YZ
9270int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9271 struct btrfs_root *root,
9272 struct extent_buffer *node,
9273 struct extent_buffer *parent)
9274{
0b246afa 9275 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9276 struct btrfs_path *path;
2c47e605 9277 struct walk_control *wc;
f82d02d9
YZ
9278 int level;
9279 int parent_level;
9280 int ret = 0;
9281 int wret;
9282
2c47e605
YZ
9283 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9284
f82d02d9 9285 path = btrfs_alloc_path();
db5b493a
TI
9286 if (!path)
9287 return -ENOMEM;
f82d02d9 9288
2c47e605 9289 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9290 if (!wc) {
9291 btrfs_free_path(path);
9292 return -ENOMEM;
9293 }
2c47e605 9294
b9447ef8 9295 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9296 parent_level = btrfs_header_level(parent);
9297 extent_buffer_get(parent);
9298 path->nodes[parent_level] = parent;
9299 path->slots[parent_level] = btrfs_header_nritems(parent);
9300
b9447ef8 9301 btrfs_assert_tree_locked(node);
f82d02d9 9302 level = btrfs_header_level(node);
f82d02d9
YZ
9303 path->nodes[level] = node;
9304 path->slots[level] = 0;
bd681513 9305 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9306
9307 wc->refs[parent_level] = 1;
9308 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9309 wc->level = level;
9310 wc->shared_level = -1;
9311 wc->stage = DROP_REFERENCE;
9312 wc->update_ref = 0;
9313 wc->keep_locks = 1;
66d7e7f0 9314 wc->for_reloc = 1;
0b246afa 9315 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9316
9317 while (1) {
2c47e605
YZ
9318 wret = walk_down_tree(trans, root, path, wc);
9319 if (wret < 0) {
f82d02d9 9320 ret = wret;
f82d02d9 9321 break;
2c47e605 9322 }
f82d02d9 9323
2c47e605 9324 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9325 if (wret < 0)
9326 ret = wret;
9327 if (wret != 0)
9328 break;
9329 }
9330
2c47e605 9331 kfree(wc);
f82d02d9
YZ
9332 btrfs_free_path(path);
9333 return ret;
9334}
9335
6202df69 9336static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9337{
9338 u64 num_devices;
fc67c450 9339 u64 stripped;
e4d8ec0f 9340
fc67c450
ID
9341 /*
9342 * if restripe for this chunk_type is on pick target profile and
9343 * return, otherwise do the usual balance
9344 */
6202df69 9345 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9346 if (stripped)
9347 return extended_to_chunk(stripped);
e4d8ec0f 9348
6202df69 9349 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9350
fc67c450 9351 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9352 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9353 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9354
ec44a35c
CM
9355 if (num_devices == 1) {
9356 stripped |= BTRFS_BLOCK_GROUP_DUP;
9357 stripped = flags & ~stripped;
9358
9359 /* turn raid0 into single device chunks */
9360 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9361 return stripped;
9362
9363 /* turn mirroring into duplication */
9364 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9365 BTRFS_BLOCK_GROUP_RAID10))
9366 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9367 } else {
9368 /* they already had raid on here, just return */
ec44a35c
CM
9369 if (flags & stripped)
9370 return flags;
9371
9372 stripped |= BTRFS_BLOCK_GROUP_DUP;
9373 stripped = flags & ~stripped;
9374
9375 /* switch duplicated blocks with raid1 */
9376 if (flags & BTRFS_BLOCK_GROUP_DUP)
9377 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9378
e3176ca2 9379 /* this is drive concat, leave it alone */
ec44a35c 9380 }
e3176ca2 9381
ec44a35c
CM
9382 return flags;
9383}
9384
868f401a 9385static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9386{
f0486c68
YZ
9387 struct btrfs_space_info *sinfo = cache->space_info;
9388 u64 num_bytes;
199c36ea 9389 u64 min_allocable_bytes;
f0486c68 9390 int ret = -ENOSPC;
0ef3e66b 9391
199c36ea
MX
9392 /*
9393 * We need some metadata space and system metadata space for
9394 * allocating chunks in some corner cases until we force to set
9395 * it to be readonly.
9396 */
9397 if ((sinfo->flags &
9398 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9399 !force)
ee22184b 9400 min_allocable_bytes = SZ_1M;
199c36ea
MX
9401 else
9402 min_allocable_bytes = 0;
9403
f0486c68
YZ
9404 spin_lock(&sinfo->lock);
9405 spin_lock(&cache->lock);
61cfea9b
W
9406
9407 if (cache->ro) {
868f401a 9408 cache->ro++;
61cfea9b
W
9409 ret = 0;
9410 goto out;
9411 }
9412
f0486c68
YZ
9413 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9414 cache->bytes_super - btrfs_block_group_used(&cache->item);
9415
4136135b 9416 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9417 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9418 sinfo->bytes_readonly += num_bytes;
868f401a 9419 cache->ro++;
633c0aad 9420 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9421 ret = 0;
9422 }
61cfea9b 9423out:
f0486c68
YZ
9424 spin_unlock(&cache->lock);
9425 spin_unlock(&sinfo->lock);
9426 return ret;
9427}
7d9eb12c 9428
5e00f193 9429int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9430 struct btrfs_block_group_cache *cache)
c286ac48 9431
f0486c68
YZ
9432{
9433 struct btrfs_trans_handle *trans;
9434 u64 alloc_flags;
9435 int ret;
7d9eb12c 9436
1bbc621e 9437again:
5e00f193 9438 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9439 if (IS_ERR(trans))
9440 return PTR_ERR(trans);
5d4f98a2 9441
1bbc621e
CM
9442 /*
9443 * we're not allowed to set block groups readonly after the dirty
9444 * block groups cache has started writing. If it already started,
9445 * back off and let this transaction commit
9446 */
0b246afa 9447 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9448 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9449 u64 transid = trans->transid;
9450
0b246afa 9451 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9452 btrfs_end_transaction(trans);
1bbc621e 9453
2ff7e61e 9454 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9455 if (ret)
9456 return ret;
9457 goto again;
9458 }
9459
153c35b6
CM
9460 /*
9461 * if we are changing raid levels, try to allocate a corresponding
9462 * block group with the new raid level.
9463 */
0b246afa 9464 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9465 if (alloc_flags != cache->flags) {
2ff7e61e 9466 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9467 CHUNK_ALLOC_FORCE);
9468 /*
9469 * ENOSPC is allowed here, we may have enough space
9470 * already allocated at the new raid level to
9471 * carry on
9472 */
9473 if (ret == -ENOSPC)
9474 ret = 0;
9475 if (ret < 0)
9476 goto out;
9477 }
1bbc621e 9478
868f401a 9479 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9480 if (!ret)
9481 goto out;
2ff7e61e
JM
9482 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9483 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9484 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9485 if (ret < 0)
9486 goto out;
868f401a 9487 ret = inc_block_group_ro(cache, 0);
f0486c68 9488out:
2f081088 9489 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9490 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9491 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9492 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9493 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9494 }
0b246afa 9495 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9496
3a45bb20 9497 btrfs_end_transaction(trans);
f0486c68
YZ
9498 return ret;
9499}
5d4f98a2 9500
c87f08ca 9501int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9502 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9503{
2ff7e61e
JM
9504 u64 alloc_flags = get_alloc_profile(fs_info, type);
9505
9506 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9507}
9508
6d07bcec
MX
9509/*
9510 * helper to account the unused space of all the readonly block group in the
633c0aad 9511 * space_info. takes mirrors into account.
6d07bcec 9512 */
633c0aad 9513u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9514{
9515 struct btrfs_block_group_cache *block_group;
9516 u64 free_bytes = 0;
9517 int factor;
9518
01327610 9519 /* It's df, we don't care if it's racy */
633c0aad
JB
9520 if (list_empty(&sinfo->ro_bgs))
9521 return 0;
9522
9523 spin_lock(&sinfo->lock);
9524 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9525 spin_lock(&block_group->lock);
9526
9527 if (!block_group->ro) {
9528 spin_unlock(&block_group->lock);
9529 continue;
9530 }
9531
9532 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9533 BTRFS_BLOCK_GROUP_RAID10 |
9534 BTRFS_BLOCK_GROUP_DUP))
9535 factor = 2;
9536 else
9537 factor = 1;
9538
9539 free_bytes += (block_group->key.offset -
9540 btrfs_block_group_used(&block_group->item)) *
9541 factor;
9542
9543 spin_unlock(&block_group->lock);
9544 }
6d07bcec
MX
9545 spin_unlock(&sinfo->lock);
9546
9547 return free_bytes;
9548}
9549
2ff7e61e 9550void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9551{
f0486c68
YZ
9552 struct btrfs_space_info *sinfo = cache->space_info;
9553 u64 num_bytes;
9554
9555 BUG_ON(!cache->ro);
9556
9557 spin_lock(&sinfo->lock);
9558 spin_lock(&cache->lock);
868f401a
Z
9559 if (!--cache->ro) {
9560 num_bytes = cache->key.offset - cache->reserved -
9561 cache->pinned - cache->bytes_super -
9562 btrfs_block_group_used(&cache->item);
9563 sinfo->bytes_readonly -= num_bytes;
9564 list_del_init(&cache->ro_list);
9565 }
f0486c68
YZ
9566 spin_unlock(&cache->lock);
9567 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9568}
9569
ba1bf481
JB
9570/*
9571 * checks to see if its even possible to relocate this block group.
9572 *
9573 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9574 * ok to go ahead and try.
9575 */
6bccf3ab 9576int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9577{
6bccf3ab 9578 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9579 struct btrfs_block_group_cache *block_group;
9580 struct btrfs_space_info *space_info;
0b246afa 9581 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9582 struct btrfs_device *device;
6df9a95e 9583 struct btrfs_trans_handle *trans;
cdcb725c 9584 u64 min_free;
6719db6a
JB
9585 u64 dev_min = 1;
9586 u64 dev_nr = 0;
4a5e98f5 9587 u64 target;
0305bc27 9588 int debug;
cdcb725c 9589 int index;
ba1bf481
JB
9590 int full = 0;
9591 int ret = 0;
1a40e23b 9592
0b246afa 9593 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9594
0b246afa 9595 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9596
ba1bf481 9597 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9598 if (!block_group) {
9599 if (debug)
0b246afa 9600 btrfs_warn(fs_info,
0305bc27
QW
9601 "can't find block group for bytenr %llu",
9602 bytenr);
ba1bf481 9603 return -1;
0305bc27 9604 }
1a40e23b 9605
cdcb725c 9606 min_free = btrfs_block_group_used(&block_group->item);
9607
ba1bf481 9608 /* no bytes used, we're good */
cdcb725c 9609 if (!min_free)
1a40e23b
ZY
9610 goto out;
9611
ba1bf481
JB
9612 space_info = block_group->space_info;
9613 spin_lock(&space_info->lock);
17d217fe 9614
ba1bf481 9615 full = space_info->full;
17d217fe 9616
ba1bf481
JB
9617 /*
9618 * if this is the last block group we have in this space, we can't
7ce618db
CM
9619 * relocate it unless we're able to allocate a new chunk below.
9620 *
9621 * Otherwise, we need to make sure we have room in the space to handle
9622 * all of the extents from this block group. If we can, we're good
ba1bf481 9623 */
7ce618db 9624 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9625 (btrfs_space_info_used(space_info, false) + min_free <
9626 space_info->total_bytes)) {
ba1bf481
JB
9627 spin_unlock(&space_info->lock);
9628 goto out;
17d217fe 9629 }
ba1bf481 9630 spin_unlock(&space_info->lock);
ea8c2819 9631
ba1bf481
JB
9632 /*
9633 * ok we don't have enough space, but maybe we have free space on our
9634 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9635 * alloc devices and guess if we have enough space. if this block
9636 * group is going to be restriped, run checks against the target
9637 * profile instead of the current one.
ba1bf481
JB
9638 */
9639 ret = -1;
ea8c2819 9640
cdcb725c 9641 /*
9642 * index:
9643 * 0: raid10
9644 * 1: raid1
9645 * 2: dup
9646 * 3: raid0
9647 * 4: single
9648 */
0b246afa 9649 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9650 if (target) {
3e72ee88 9651 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9652 } else {
9653 /*
9654 * this is just a balance, so if we were marked as full
9655 * we know there is no space for a new chunk
9656 */
0305bc27
QW
9657 if (full) {
9658 if (debug)
0b246afa
JM
9659 btrfs_warn(fs_info,
9660 "no space to alloc new chunk for block group %llu",
9661 block_group->key.objectid);
4a5e98f5 9662 goto out;
0305bc27 9663 }
4a5e98f5 9664
3e72ee88 9665 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9666 }
9667
e6ec716f 9668 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9669 dev_min = 4;
6719db6a
JB
9670 /* Divide by 2 */
9671 min_free >>= 1;
e6ec716f 9672 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9673 dev_min = 2;
e6ec716f 9674 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9675 /* Multiply by 2 */
9676 min_free <<= 1;
e6ec716f 9677 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9678 dev_min = fs_devices->rw_devices;
47c5713f 9679 min_free = div64_u64(min_free, dev_min);
cdcb725c 9680 }
9681
6df9a95e
JB
9682 /* We need to do this so that we can look at pending chunks */
9683 trans = btrfs_join_transaction(root);
9684 if (IS_ERR(trans)) {
9685 ret = PTR_ERR(trans);
9686 goto out;
9687 }
9688
0b246afa 9689 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9690 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9691 u64 dev_offset;
56bec294 9692
ba1bf481
JB
9693 /*
9694 * check to make sure we can actually find a chunk with enough
9695 * space to fit our block group in.
9696 */
63a212ab 9697 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9698 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9699 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9700 &dev_offset, NULL);
ba1bf481 9701 if (!ret)
cdcb725c 9702 dev_nr++;
9703
9704 if (dev_nr >= dev_min)
73e48b27 9705 break;
cdcb725c 9706
ba1bf481 9707 ret = -1;
725c8463 9708 }
edbd8d4e 9709 }
0305bc27 9710 if (debug && ret == -1)
0b246afa
JM
9711 btrfs_warn(fs_info,
9712 "no space to allocate a new chunk for block group %llu",
9713 block_group->key.objectid);
9714 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9715 btrfs_end_transaction(trans);
edbd8d4e 9716out:
ba1bf481 9717 btrfs_put_block_group(block_group);
edbd8d4e
CM
9718 return ret;
9719}
9720
6bccf3ab
JM
9721static int find_first_block_group(struct btrfs_fs_info *fs_info,
9722 struct btrfs_path *path,
9723 struct btrfs_key *key)
0b86a832 9724{
6bccf3ab 9725 struct btrfs_root *root = fs_info->extent_root;
925baedd 9726 int ret = 0;
0b86a832
CM
9727 struct btrfs_key found_key;
9728 struct extent_buffer *leaf;
9729 int slot;
edbd8d4e 9730
0b86a832
CM
9731 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9732 if (ret < 0)
925baedd
CM
9733 goto out;
9734
d397712b 9735 while (1) {
0b86a832 9736 slot = path->slots[0];
edbd8d4e 9737 leaf = path->nodes[0];
0b86a832
CM
9738 if (slot >= btrfs_header_nritems(leaf)) {
9739 ret = btrfs_next_leaf(root, path);
9740 if (ret == 0)
9741 continue;
9742 if (ret < 0)
925baedd 9743 goto out;
0b86a832 9744 break;
edbd8d4e 9745 }
0b86a832 9746 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9747
0b86a832 9748 if (found_key.objectid >= key->objectid &&
925baedd 9749 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9750 struct extent_map_tree *em_tree;
9751 struct extent_map *em;
9752
9753 em_tree = &root->fs_info->mapping_tree.map_tree;
9754 read_lock(&em_tree->lock);
9755 em = lookup_extent_mapping(em_tree, found_key.objectid,
9756 found_key.offset);
9757 read_unlock(&em_tree->lock);
9758 if (!em) {
0b246afa 9759 btrfs_err(fs_info,
6fb37b75
LB
9760 "logical %llu len %llu found bg but no related chunk",
9761 found_key.objectid, found_key.offset);
9762 ret = -ENOENT;
9763 } else {
9764 ret = 0;
9765 }
187ee58c 9766 free_extent_map(em);
925baedd
CM
9767 goto out;
9768 }
0b86a832 9769 path->slots[0]++;
edbd8d4e 9770 }
925baedd 9771out:
0b86a832 9772 return ret;
edbd8d4e
CM
9773}
9774
0af3d00b
JB
9775void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9776{
9777 struct btrfs_block_group_cache *block_group;
9778 u64 last = 0;
9779
9780 while (1) {
9781 struct inode *inode;
9782
9783 block_group = btrfs_lookup_first_block_group(info, last);
9784 while (block_group) {
9785 spin_lock(&block_group->lock);
9786 if (block_group->iref)
9787 break;
9788 spin_unlock(&block_group->lock);
2ff7e61e 9789 block_group = next_block_group(info, block_group);
0af3d00b
JB
9790 }
9791 if (!block_group) {
9792 if (last == 0)
9793 break;
9794 last = 0;
9795 continue;
9796 }
9797
9798 inode = block_group->inode;
9799 block_group->iref = 0;
9800 block_group->inode = NULL;
9801 spin_unlock(&block_group->lock);
f3bca802 9802 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9803 iput(inode);
9804 last = block_group->key.objectid + block_group->key.offset;
9805 btrfs_put_block_group(block_group);
9806 }
9807}
9808
5cdd7db6
FM
9809/*
9810 * Must be called only after stopping all workers, since we could have block
9811 * group caching kthreads running, and therefore they could race with us if we
9812 * freed the block groups before stopping them.
9813 */
1a40e23b
ZY
9814int btrfs_free_block_groups(struct btrfs_fs_info *info)
9815{
9816 struct btrfs_block_group_cache *block_group;
4184ea7f 9817 struct btrfs_space_info *space_info;
11833d66 9818 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9819 struct rb_node *n;
9820
9e351cc8 9821 down_write(&info->commit_root_sem);
11833d66
YZ
9822 while (!list_empty(&info->caching_block_groups)) {
9823 caching_ctl = list_entry(info->caching_block_groups.next,
9824 struct btrfs_caching_control, list);
9825 list_del(&caching_ctl->list);
9826 put_caching_control(caching_ctl);
9827 }
9e351cc8 9828 up_write(&info->commit_root_sem);
11833d66 9829
47ab2a6c
JB
9830 spin_lock(&info->unused_bgs_lock);
9831 while (!list_empty(&info->unused_bgs)) {
9832 block_group = list_first_entry(&info->unused_bgs,
9833 struct btrfs_block_group_cache,
9834 bg_list);
9835 list_del_init(&block_group->bg_list);
9836 btrfs_put_block_group(block_group);
9837 }
9838 spin_unlock(&info->unused_bgs_lock);
9839
1a40e23b
ZY
9840 spin_lock(&info->block_group_cache_lock);
9841 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9842 block_group = rb_entry(n, struct btrfs_block_group_cache,
9843 cache_node);
1a40e23b
ZY
9844 rb_erase(&block_group->cache_node,
9845 &info->block_group_cache_tree);
01eacb27 9846 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9847 spin_unlock(&info->block_group_cache_lock);
9848
80eb234a 9849 down_write(&block_group->space_info->groups_sem);
1a40e23b 9850 list_del(&block_group->list);
80eb234a 9851 up_write(&block_group->space_info->groups_sem);
d2fb3437 9852
3c14874a
JB
9853 /*
9854 * We haven't cached this block group, which means we could
9855 * possibly have excluded extents on this block group.
9856 */
36cce922
JB
9857 if (block_group->cached == BTRFS_CACHE_NO ||
9858 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9859 free_excluded_extents(info, block_group);
3c14874a 9860
817d52f8 9861 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9862 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9863 ASSERT(list_empty(&block_group->dirty_list));
9864 ASSERT(list_empty(&block_group->io_list));
9865 ASSERT(list_empty(&block_group->bg_list));
9866 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9867 btrfs_put_block_group(block_group);
d899e052
YZ
9868
9869 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9870 }
9871 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9872
9873 /* now that all the block groups are freed, go through and
9874 * free all the space_info structs. This is only called during
9875 * the final stages of unmount, and so we know nobody is
9876 * using them. We call synchronize_rcu() once before we start,
9877 * just to be on the safe side.
9878 */
9879 synchronize_rcu();
9880
8929ecfa
YZ
9881 release_global_block_rsv(info);
9882
67871254 9883 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9884 int i;
9885
4184ea7f
CM
9886 space_info = list_entry(info->space_info.next,
9887 struct btrfs_space_info,
9888 list);
d555b6c3
JB
9889
9890 /*
9891 * Do not hide this behind enospc_debug, this is actually
9892 * important and indicates a real bug if this happens.
9893 */
9894 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9895 space_info->bytes_reserved > 0 ||
d555b6c3 9896 space_info->bytes_may_use > 0))
ab8d0fc4 9897 dump_space_info(info, space_info, 0, 0);
4184ea7f 9898 list_del(&space_info->list);
6ab0a202
JM
9899 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9900 struct kobject *kobj;
c1895442
JM
9901 kobj = space_info->block_group_kobjs[i];
9902 space_info->block_group_kobjs[i] = NULL;
9903 if (kobj) {
6ab0a202
JM
9904 kobject_del(kobj);
9905 kobject_put(kobj);
9906 }
9907 }
9908 kobject_del(&space_info->kobj);
9909 kobject_put(&space_info->kobj);
4184ea7f 9910 }
1a40e23b
ZY
9911 return 0;
9912}
9913
75cb379d
JM
9914/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9915void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9916{
9917 struct btrfs_space_info *space_info;
9918 struct raid_kobject *rkobj;
9919 LIST_HEAD(list);
9920 int index;
9921 int ret = 0;
9922
9923 spin_lock(&fs_info->pending_raid_kobjs_lock);
9924 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9925 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9926
9927 list_for_each_entry(rkobj, &list, list) {
9928 space_info = __find_space_info(fs_info, rkobj->flags);
9929 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9930
9931 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9932 "%s", get_raid_name(index));
9933 if (ret) {
9934 kobject_put(&rkobj->kobj);
9935 break;
9936 }
9937 }
9938 if (ret)
9939 btrfs_warn(fs_info,
9940 "failed to add kobject for block cache, ignoring");
9941}
9942
c434d21c 9943static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9944{
c434d21c 9945 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 9946 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 9947 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 9948 bool first = false;
b742bb82
YZ
9949
9950 down_write(&space_info->groups_sem);
ed55b6ac
JM
9951 if (list_empty(&space_info->block_groups[index]))
9952 first = true;
9953 list_add_tail(&cache->list, &space_info->block_groups[index]);
9954 up_write(&space_info->groups_sem);
9955
9956 if (first) {
75cb379d
JM
9957 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9958 if (!rkobj) {
9959 btrfs_warn(cache->fs_info,
9960 "couldn't alloc memory for raid level kobject");
9961 return;
6ab0a202 9962 }
75cb379d
JM
9963 rkobj->flags = cache->flags;
9964 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9965
9966 spin_lock(&fs_info->pending_raid_kobjs_lock);
9967 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9968 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 9969 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9970 }
b742bb82
YZ
9971}
9972
920e4a58 9973static struct btrfs_block_group_cache *
2ff7e61e
JM
9974btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9975 u64 start, u64 size)
920e4a58
MX
9976{
9977 struct btrfs_block_group_cache *cache;
9978
9979 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9980 if (!cache)
9981 return NULL;
9982
9983 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9984 GFP_NOFS);
9985 if (!cache->free_space_ctl) {
9986 kfree(cache);
9987 return NULL;
9988 }
9989
9990 cache->key.objectid = start;
9991 cache->key.offset = size;
9992 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9993
0b246afa 9994 cache->fs_info = fs_info;
e4ff5fb5 9995 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
9996 set_free_space_tree_thresholds(cache);
9997
920e4a58
MX
9998 atomic_set(&cache->count, 1);
9999 spin_lock_init(&cache->lock);
e570fd27 10000 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10001 INIT_LIST_HEAD(&cache->list);
10002 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10003 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10004 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10005 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10006 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10007 btrfs_init_free_space_ctl(cache);
04216820 10008 atomic_set(&cache->trimming, 0);
a5ed9182 10009 mutex_init(&cache->free_space_lock);
0966a7b1 10010 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10011
10012 return cache;
10013}
10014
5b4aacef 10015int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10016{
10017 struct btrfs_path *path;
10018 int ret;
9078a3e1 10019 struct btrfs_block_group_cache *cache;
6324fbf3 10020 struct btrfs_space_info *space_info;
9078a3e1
CM
10021 struct btrfs_key key;
10022 struct btrfs_key found_key;
5f39d397 10023 struct extent_buffer *leaf;
0af3d00b
JB
10024 int need_clear = 0;
10025 u64 cache_gen;
49303381
LB
10026 u64 feature;
10027 int mixed;
10028
10029 feature = btrfs_super_incompat_flags(info->super_copy);
10030 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10031
9078a3e1 10032 key.objectid = 0;
0b86a832 10033 key.offset = 0;
962a298f 10034 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10035 path = btrfs_alloc_path();
10036 if (!path)
10037 return -ENOMEM;
e4058b54 10038 path->reada = READA_FORWARD;
9078a3e1 10039
0b246afa
JM
10040 cache_gen = btrfs_super_cache_generation(info->super_copy);
10041 if (btrfs_test_opt(info, SPACE_CACHE) &&
10042 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10043 need_clear = 1;
0b246afa 10044 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10045 need_clear = 1;
0af3d00b 10046
d397712b 10047 while (1) {
6bccf3ab 10048 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10049 if (ret > 0)
10050 break;
0b86a832
CM
10051 if (ret != 0)
10052 goto error;
920e4a58 10053
5f39d397
CM
10054 leaf = path->nodes[0];
10055 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10056
2ff7e61e 10057 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10058 found_key.offset);
9078a3e1 10059 if (!cache) {
0b86a832 10060 ret = -ENOMEM;
f0486c68 10061 goto error;
9078a3e1 10062 }
96303081 10063
cf7c1ef6
LB
10064 if (need_clear) {
10065 /*
10066 * When we mount with old space cache, we need to
10067 * set BTRFS_DC_CLEAR and set dirty flag.
10068 *
10069 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10070 * truncate the old free space cache inode and
10071 * setup a new one.
10072 * b) Setting 'dirty flag' makes sure that we flush
10073 * the new space cache info onto disk.
10074 */
0b246afa 10075 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10076 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10077 }
0af3d00b 10078
5f39d397
CM
10079 read_extent_buffer(leaf, &cache->item,
10080 btrfs_item_ptr_offset(leaf, path->slots[0]),
10081 sizeof(cache->item));
920e4a58 10082 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10083 if (!mixed &&
10084 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10085 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10086 btrfs_err(info,
10087"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10088 cache->key.objectid);
10089 ret = -EINVAL;
10090 goto error;
10091 }
0b86a832 10092
9078a3e1 10093 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10094 btrfs_release_path(path);
34d52cb6 10095
3c14874a
JB
10096 /*
10097 * We need to exclude the super stripes now so that the space
10098 * info has super bytes accounted for, otherwise we'll think
10099 * we have more space than we actually do.
10100 */
2ff7e61e 10101 ret = exclude_super_stripes(info, cache);
835d974f
JB
10102 if (ret) {
10103 /*
10104 * We may have excluded something, so call this just in
10105 * case.
10106 */
2ff7e61e 10107 free_excluded_extents(info, cache);
920e4a58 10108 btrfs_put_block_group(cache);
835d974f
JB
10109 goto error;
10110 }
3c14874a 10111
817d52f8
JB
10112 /*
10113 * check for two cases, either we are full, and therefore
10114 * don't need to bother with the caching work since we won't
10115 * find any space, or we are empty, and we can just add all
10116 * the space in and be done with it. This saves us _alot_ of
10117 * time, particularly in the full case.
10118 */
10119 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10120 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10121 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10122 free_excluded_extents(info, cache);
817d52f8 10123 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10124 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10125 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10126 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10127 found_key.objectid +
10128 found_key.offset);
2ff7e61e 10129 free_excluded_extents(info, cache);
817d52f8 10130 }
96b5179d 10131
0b246afa 10132 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10133 if (ret) {
10134 btrfs_remove_free_space_cache(cache);
10135 btrfs_put_block_group(cache);
10136 goto error;
10137 }
10138
0b246afa 10139 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10140 update_space_info(info, cache->flags, found_key.offset,
10141 btrfs_block_group_used(&cache->item),
10142 cache->bytes_super, &space_info);
8c579fe7 10143
6324fbf3 10144 cache->space_info = space_info;
1b2da372 10145
c434d21c 10146 link_block_group(cache);
0f9dd46c 10147
0b246afa 10148 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10149 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10150 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10151 } else if (btrfs_block_group_used(&cache->item) == 0) {
10152 spin_lock(&info->unused_bgs_lock);
10153 /* Should always be true but just in case. */
10154 if (list_empty(&cache->bg_list)) {
10155 btrfs_get_block_group(cache);
4ed0a7a3 10156 trace_btrfs_add_unused_block_group(cache);
47ab2a6c
JB
10157 list_add_tail(&cache->bg_list,
10158 &info->unused_bgs);
10159 }
10160 spin_unlock(&info->unused_bgs_lock);
10161 }
9078a3e1 10162 }
b742bb82 10163
0b246afa 10164 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10165 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10166 (BTRFS_BLOCK_GROUP_RAID10 |
10167 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10168 BTRFS_BLOCK_GROUP_RAID5 |
10169 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10170 BTRFS_BLOCK_GROUP_DUP)))
10171 continue;
10172 /*
10173 * avoid allocating from un-mirrored block group if there are
10174 * mirrored block groups.
10175 */
1095cc0d 10176 list_for_each_entry(cache,
10177 &space_info->block_groups[BTRFS_RAID_RAID0],
10178 list)
868f401a 10179 inc_block_group_ro(cache, 1);
1095cc0d 10180 list_for_each_entry(cache,
10181 &space_info->block_groups[BTRFS_RAID_SINGLE],
10182 list)
868f401a 10183 inc_block_group_ro(cache, 1);
9078a3e1 10184 }
f0486c68 10185
75cb379d 10186 btrfs_add_raid_kobjects(info);
f0486c68 10187 init_global_block_rsv(info);
0b86a832
CM
10188 ret = 0;
10189error:
9078a3e1 10190 btrfs_free_path(path);
0b86a832 10191 return ret;
9078a3e1 10192}
6324fbf3 10193
6c686b35 10194void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10195{
6c686b35 10196 struct btrfs_fs_info *fs_info = trans->fs_info;
ea658bad 10197 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10198 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10199 struct btrfs_block_group_item item;
10200 struct btrfs_key key;
10201 int ret = 0;
d9a0540a 10202 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10203
d9a0540a 10204 trans->can_flush_pending_bgs = false;
47ab2a6c 10205 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10206 if (ret)
c92f6be3 10207 goto next;
ea658bad
JB
10208
10209 spin_lock(&block_group->lock);
10210 memcpy(&item, &block_group->item, sizeof(item));
10211 memcpy(&key, &block_group->key, sizeof(key));
10212 spin_unlock(&block_group->lock);
10213
10214 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10215 sizeof(item));
10216 if (ret)
66642832 10217 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10218 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10219 key.offset);
6df9a95e 10220 if (ret)
66642832 10221 btrfs_abort_transaction(trans, ret);
e4e0711c 10222 add_block_group_free_space(trans, block_group);
1e144fb8 10223 /* already aborted the transaction if it failed. */
c92f6be3
FM
10224next:
10225 list_del_init(&block_group->bg_list);
ea658bad 10226 }
d9a0540a 10227 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10228}
10229
6324fbf3 10230int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10231 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10232 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10233{
6324fbf3 10234 struct btrfs_block_group_cache *cache;
0b246afa 10235 int ret;
6324fbf3 10236
0b246afa 10237 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10238
2ff7e61e 10239 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10240 if (!cache)
10241 return -ENOMEM;
34d52cb6 10242
6324fbf3 10243 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10244 btrfs_set_block_group_chunk_objectid(&cache->item,
10245 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10246 btrfs_set_block_group_flags(&cache->item, type);
10247
920e4a58 10248 cache->flags = type;
11833d66 10249 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10250 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10251 cache->needs_free_space = 1;
2ff7e61e 10252 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10253 if (ret) {
10254 /*
10255 * We may have excluded something, so call this just in
10256 * case.
10257 */
2ff7e61e 10258 free_excluded_extents(fs_info, cache);
920e4a58 10259 btrfs_put_block_group(cache);
835d974f
JB
10260 return ret;
10261 }
96303081 10262
4457c1c7 10263 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10264
2ff7e61e 10265 free_excluded_extents(fs_info, cache);
11833d66 10266
d0bd4560 10267#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10268 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10269 u64 new_bytes_used = size - bytes_used;
10270
10271 bytes_used += new_bytes_used >> 1;
2ff7e61e 10272 fragment_free_space(cache);
d0bd4560
JB
10273 }
10274#endif
2e6e5183 10275 /*
2be12ef7
NB
10276 * Ensure the corresponding space_info object is created and
10277 * assigned to our block group. We want our bg to be added to the rbtree
10278 * with its ->space_info set.
2e6e5183 10279 */
2be12ef7 10280 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10281 ASSERT(cache->space_info);
2e6e5183 10282
0b246afa 10283 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10284 if (ret) {
10285 btrfs_remove_free_space_cache(cache);
10286 btrfs_put_block_group(cache);
10287 return ret;
10288 }
10289
2e6e5183
FM
10290 /*
10291 * Now that our block group has its ->space_info set and is inserted in
10292 * the rbtree, update the space info's counters.
10293 */
0b246afa 10294 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10295 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10296 cache->bytes_super, &cache->space_info);
0b246afa 10297 update_global_block_rsv(fs_info);
1b2da372 10298
c434d21c 10299 link_block_group(cache);
6324fbf3 10300
47ab2a6c 10301 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10302
0b246afa 10303 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10304 return 0;
10305}
1a40e23b 10306
10ea00f5
ID
10307static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10308{
899c81ea
ID
10309 u64 extra_flags = chunk_to_extended(flags) &
10310 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10311
de98ced9 10312 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10313 if (flags & BTRFS_BLOCK_GROUP_DATA)
10314 fs_info->avail_data_alloc_bits &= ~extra_flags;
10315 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10316 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10317 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10318 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10319 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10320}
10321
1a40e23b 10322int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10323 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10324 struct extent_map *em)
1a40e23b 10325{
6bccf3ab 10326 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10327 struct btrfs_path *path;
10328 struct btrfs_block_group_cache *block_group;
44fb5511 10329 struct btrfs_free_cluster *cluster;
0b246afa 10330 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10331 struct btrfs_key key;
0af3d00b 10332 struct inode *inode;
c1895442 10333 struct kobject *kobj = NULL;
1a40e23b 10334 int ret;
10ea00f5 10335 int index;
89a55897 10336 int factor;
4f69cb98 10337 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10338 bool remove_em;
1a40e23b 10339
6bccf3ab 10340 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10341 BUG_ON(!block_group);
c146afad 10342 BUG_ON(!block_group->ro);
1a40e23b 10343
4ed0a7a3 10344 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10345 /*
10346 * Free the reserved super bytes from this block group before
10347 * remove it.
10348 */
2ff7e61e 10349 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10350 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10351 block_group->key.offset);
9f7c43c9 10352
1a40e23b 10353 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10354 index = btrfs_bg_flags_to_raid_index(block_group->flags);
89a55897
JB
10355 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10356 BTRFS_BLOCK_GROUP_RAID1 |
10357 BTRFS_BLOCK_GROUP_RAID10))
10358 factor = 2;
10359 else
10360 factor = 1;
1a40e23b 10361
44fb5511 10362 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10363 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10364 spin_lock(&cluster->refill_lock);
10365 btrfs_return_cluster_to_free_space(block_group, cluster);
10366 spin_unlock(&cluster->refill_lock);
10367
10368 /*
10369 * make sure this block group isn't part of a metadata
10370 * allocation cluster
10371 */
0b246afa 10372 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10373 spin_lock(&cluster->refill_lock);
10374 btrfs_return_cluster_to_free_space(block_group, cluster);
10375 spin_unlock(&cluster->refill_lock);
10376
1a40e23b 10377 path = btrfs_alloc_path();
d8926bb3
MF
10378 if (!path) {
10379 ret = -ENOMEM;
10380 goto out;
10381 }
1a40e23b 10382
1bbc621e
CM
10383 /*
10384 * get the inode first so any iput calls done for the io_list
10385 * aren't the final iput (no unlinks allowed now)
10386 */
77ab86bf 10387 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10388
10389 mutex_lock(&trans->transaction->cache_write_mutex);
10390 /*
10391 * make sure our free spache cache IO is done before remove the
10392 * free space inode
10393 */
10394 spin_lock(&trans->transaction->dirty_bgs_lock);
10395 if (!list_empty(&block_group->io_list)) {
10396 list_del_init(&block_group->io_list);
10397
10398 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10399
10400 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10401 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10402 btrfs_put_block_group(block_group);
10403 spin_lock(&trans->transaction->dirty_bgs_lock);
10404 }
10405
10406 if (!list_empty(&block_group->dirty_list)) {
10407 list_del_init(&block_group->dirty_list);
10408 btrfs_put_block_group(block_group);
10409 }
10410 spin_unlock(&trans->transaction->dirty_bgs_lock);
10411 mutex_unlock(&trans->transaction->cache_write_mutex);
10412
0af3d00b 10413 if (!IS_ERR(inode)) {
73f2e545 10414 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10415 if (ret) {
10416 btrfs_add_delayed_iput(inode);
10417 goto out;
10418 }
0af3d00b
JB
10419 clear_nlink(inode);
10420 /* One for the block groups ref */
10421 spin_lock(&block_group->lock);
10422 if (block_group->iref) {
10423 block_group->iref = 0;
10424 block_group->inode = NULL;
10425 spin_unlock(&block_group->lock);
10426 iput(inode);
10427 } else {
10428 spin_unlock(&block_group->lock);
10429 }
10430 /* One for our lookup ref */
455757c3 10431 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10432 }
10433
10434 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10435 key.offset = block_group->key.objectid;
10436 key.type = 0;
10437
10438 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10439 if (ret < 0)
10440 goto out;
10441 if (ret > 0)
b3b4aa74 10442 btrfs_release_path(path);
0af3d00b
JB
10443 if (ret == 0) {
10444 ret = btrfs_del_item(trans, tree_root, path);
10445 if (ret)
10446 goto out;
b3b4aa74 10447 btrfs_release_path(path);
0af3d00b
JB
10448 }
10449
0b246afa 10450 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10451 rb_erase(&block_group->cache_node,
0b246afa 10452 &fs_info->block_group_cache_tree);
292cbd51 10453 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10454
0b246afa
JM
10455 if (fs_info->first_logical_byte == block_group->key.objectid)
10456 fs_info->first_logical_byte = (u64)-1;
10457 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10458
80eb234a 10459 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10460 /*
10461 * we must use list_del_init so people can check to see if they
10462 * are still on the list after taking the semaphore
10463 */
10464 list_del_init(&block_group->list);
6ab0a202 10465 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10466 kobj = block_group->space_info->block_group_kobjs[index];
10467 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10468 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10469 }
80eb234a 10470 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10471 if (kobj) {
10472 kobject_del(kobj);
10473 kobject_put(kobj);
10474 }
1a40e23b 10475
4f69cb98
FM
10476 if (block_group->has_caching_ctl)
10477 caching_ctl = get_caching_control(block_group);
817d52f8 10478 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10479 wait_block_group_cache_done(block_group);
4f69cb98 10480 if (block_group->has_caching_ctl) {
0b246afa 10481 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10482 if (!caching_ctl) {
10483 struct btrfs_caching_control *ctl;
10484
10485 list_for_each_entry(ctl,
0b246afa 10486 &fs_info->caching_block_groups, list)
4f69cb98
FM
10487 if (ctl->block_group == block_group) {
10488 caching_ctl = ctl;
1e4f4714 10489 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10490 break;
10491 }
10492 }
10493 if (caching_ctl)
10494 list_del_init(&caching_ctl->list);
0b246afa 10495 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10496 if (caching_ctl) {
10497 /* Once for the caching bgs list and once for us. */
10498 put_caching_control(caching_ctl);
10499 put_caching_control(caching_ctl);
10500 }
10501 }
817d52f8 10502
ce93ec54
JB
10503 spin_lock(&trans->transaction->dirty_bgs_lock);
10504 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10505 WARN_ON(1);
10506 }
10507 if (!list_empty(&block_group->io_list)) {
10508 WARN_ON(1);
ce93ec54
JB
10509 }
10510 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10511 btrfs_remove_free_space_cache(block_group);
10512
c146afad 10513 spin_lock(&block_group->space_info->lock);
75c68e9f 10514 list_del_init(&block_group->ro_list);
18d018ad 10515
0b246afa 10516 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10517 WARN_ON(block_group->space_info->total_bytes
10518 < block_group->key.offset);
10519 WARN_ON(block_group->space_info->bytes_readonly
10520 < block_group->key.offset);
10521 WARN_ON(block_group->space_info->disk_total
10522 < block_group->key.offset * factor);
10523 }
c146afad
YZ
10524 block_group->space_info->total_bytes -= block_group->key.offset;
10525 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10526 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10527
c146afad 10528 spin_unlock(&block_group->space_info->lock);
283bb197 10529
0af3d00b
JB
10530 memcpy(&key, &block_group->key, sizeof(key));
10531
34441361 10532 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10533 if (!list_empty(&em->list)) {
10534 /* We're in the transaction->pending_chunks list. */
10535 free_extent_map(em);
10536 }
04216820
FM
10537 spin_lock(&block_group->lock);
10538 block_group->removed = 1;
10539 /*
10540 * At this point trimming can't start on this block group, because we
10541 * removed the block group from the tree fs_info->block_group_cache_tree
10542 * so no one can't find it anymore and even if someone already got this
10543 * block group before we removed it from the rbtree, they have already
10544 * incremented block_group->trimming - if they didn't, they won't find
10545 * any free space entries because we already removed them all when we
10546 * called btrfs_remove_free_space_cache().
10547 *
10548 * And we must not remove the extent map from the fs_info->mapping_tree
10549 * to prevent the same logical address range and physical device space
10550 * ranges from being reused for a new block group. This is because our
10551 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10552 * completely transactionless, so while it is trimming a range the
10553 * currently running transaction might finish and a new one start,
10554 * allowing for new block groups to be created that can reuse the same
10555 * physical device locations unless we take this special care.
e33e17ee
JM
10556 *
10557 * There may also be an implicit trim operation if the file system
10558 * is mounted with -odiscard. The same protections must remain
10559 * in place until the extents have been discarded completely when
10560 * the transaction commit has completed.
04216820
FM
10561 */
10562 remove_em = (atomic_read(&block_group->trimming) == 0);
10563 /*
10564 * Make sure a trimmer task always sees the em in the pinned_chunks list
10565 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10566 * before checking block_group->removed).
10567 */
10568 if (!remove_em) {
10569 /*
10570 * Our em might be in trans->transaction->pending_chunks which
10571 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10572 * and so is the fs_info->pinned_chunks list.
10573 *
10574 * So at this point we must be holding the chunk_mutex to avoid
10575 * any races with chunk allocation (more specifically at
10576 * volumes.c:contains_pending_extent()), to ensure it always
10577 * sees the em, either in the pending_chunks list or in the
10578 * pinned_chunks list.
10579 */
0b246afa 10580 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10581 }
10582 spin_unlock(&block_group->lock);
04216820
FM
10583
10584 if (remove_em) {
10585 struct extent_map_tree *em_tree;
10586
0b246afa 10587 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10588 write_lock(&em_tree->lock);
8dbcd10f
FM
10589 /*
10590 * The em might be in the pending_chunks list, so make sure the
10591 * chunk mutex is locked, since remove_extent_mapping() will
10592 * delete us from that list.
10593 */
04216820
FM
10594 remove_extent_mapping(em_tree, em);
10595 write_unlock(&em_tree->lock);
10596 /* once for the tree */
10597 free_extent_map(em);
10598 }
10599
34441361 10600 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10601
f3f72779 10602 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10603 if (ret)
10604 goto out;
10605
fa9c0d79
CM
10606 btrfs_put_block_group(block_group);
10607 btrfs_put_block_group(block_group);
1a40e23b
ZY
10608
10609 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10610 if (ret > 0)
10611 ret = -EIO;
10612 if (ret < 0)
10613 goto out;
10614
10615 ret = btrfs_del_item(trans, root, path);
10616out:
10617 btrfs_free_path(path);
10618 return ret;
10619}
acce952b 10620
8eab77ff 10621struct btrfs_trans_handle *
7fd01182
FM
10622btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10623 const u64 chunk_offset)
8eab77ff 10624{
7fd01182
FM
10625 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10626 struct extent_map *em;
10627 struct map_lookup *map;
10628 unsigned int num_items;
10629
10630 read_lock(&em_tree->lock);
10631 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10632 read_unlock(&em_tree->lock);
10633 ASSERT(em && em->start == chunk_offset);
10634
8eab77ff 10635 /*
7fd01182
FM
10636 * We need to reserve 3 + N units from the metadata space info in order
10637 * to remove a block group (done at btrfs_remove_chunk() and at
10638 * btrfs_remove_block_group()), which are used for:
10639 *
8eab77ff
FM
10640 * 1 unit for adding the free space inode's orphan (located in the tree
10641 * of tree roots).
7fd01182
FM
10642 * 1 unit for deleting the block group item (located in the extent
10643 * tree).
10644 * 1 unit for deleting the free space item (located in tree of tree
10645 * roots).
10646 * N units for deleting N device extent items corresponding to each
10647 * stripe (located in the device tree).
10648 *
10649 * In order to remove a block group we also need to reserve units in the
10650 * system space info in order to update the chunk tree (update one or
10651 * more device items and remove one chunk item), but this is done at
10652 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10653 */
95617d69 10654 map = em->map_lookup;
7fd01182
FM
10655 num_items = 3 + map->num_stripes;
10656 free_extent_map(em);
10657
8eab77ff 10658 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10659 num_items, 1);
8eab77ff
FM
10660}
10661
47ab2a6c
JB
10662/*
10663 * Process the unused_bgs list and remove any that don't have any allocated
10664 * space inside of them.
10665 */
10666void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10667{
10668 struct btrfs_block_group_cache *block_group;
10669 struct btrfs_space_info *space_info;
47ab2a6c
JB
10670 struct btrfs_trans_handle *trans;
10671 int ret = 0;
10672
afcdd129 10673 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10674 return;
10675
10676 spin_lock(&fs_info->unused_bgs_lock);
10677 while (!list_empty(&fs_info->unused_bgs)) {
10678 u64 start, end;
e33e17ee 10679 int trimming;
47ab2a6c
JB
10680
10681 block_group = list_first_entry(&fs_info->unused_bgs,
10682 struct btrfs_block_group_cache,
10683 bg_list);
47ab2a6c 10684 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10685
10686 space_info = block_group->space_info;
10687
47ab2a6c
JB
10688 if (ret || btrfs_mixed_space_info(space_info)) {
10689 btrfs_put_block_group(block_group);
10690 continue;
10691 }
10692 spin_unlock(&fs_info->unused_bgs_lock);
10693
d5f2e33b 10694 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10695
47ab2a6c
JB
10696 /* Don't want to race with allocators so take the groups_sem */
10697 down_write(&space_info->groups_sem);
10698 spin_lock(&block_group->lock);
10699 if (block_group->reserved ||
10700 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10701 block_group->ro ||
aefbe9a6 10702 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10703 /*
10704 * We want to bail if we made new allocations or have
10705 * outstanding allocations in this block group. We do
10706 * the ro check in case balance is currently acting on
10707 * this block group.
10708 */
4ed0a7a3 10709 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10710 spin_unlock(&block_group->lock);
10711 up_write(&space_info->groups_sem);
10712 goto next;
10713 }
10714 spin_unlock(&block_group->lock);
10715
10716 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10717 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10718 up_write(&space_info->groups_sem);
10719 if (ret < 0) {
10720 ret = 0;
10721 goto next;
10722 }
10723
10724 /*
10725 * Want to do this before we do anything else so we can recover
10726 * properly if we fail to join the transaction.
10727 */
7fd01182
FM
10728 trans = btrfs_start_trans_remove_block_group(fs_info,
10729 block_group->key.objectid);
47ab2a6c 10730 if (IS_ERR(trans)) {
2ff7e61e 10731 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10732 ret = PTR_ERR(trans);
10733 goto next;
10734 }
10735
10736 /*
10737 * We could have pending pinned extents for this block group,
10738 * just delete them, we don't care about them anymore.
10739 */
10740 start = block_group->key.objectid;
10741 end = start + block_group->key.offset - 1;
d4b450cd
FM
10742 /*
10743 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10744 * btrfs_finish_extent_commit(). If we are at transaction N,
10745 * another task might be running finish_extent_commit() for the
10746 * previous transaction N - 1, and have seen a range belonging
10747 * to the block group in freed_extents[] before we were able to
10748 * clear the whole block group range from freed_extents[]. This
10749 * means that task can lookup for the block group after we
10750 * unpinned it from freed_extents[] and removed it, leading to
10751 * a BUG_ON() at btrfs_unpin_extent_range().
10752 */
10753 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10754 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10755 EXTENT_DIRTY);
758eb51e 10756 if (ret) {
d4b450cd 10757 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10758 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10759 goto end_trans;
10760 }
10761 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10762 EXTENT_DIRTY);
758eb51e 10763 if (ret) {
d4b450cd 10764 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10765 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10766 goto end_trans;
10767 }
d4b450cd 10768 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10769
10770 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10771 spin_lock(&space_info->lock);
10772 spin_lock(&block_group->lock);
10773
10774 space_info->bytes_pinned -= block_group->pinned;
10775 space_info->bytes_readonly += block_group->pinned;
10776 percpu_counter_add(&space_info->total_bytes_pinned,
10777 -block_group->pinned);
47ab2a6c
JB
10778 block_group->pinned = 0;
10779
c30666d4
ZL
10780 spin_unlock(&block_group->lock);
10781 spin_unlock(&space_info->lock);
10782
e33e17ee 10783 /* DISCARD can flip during remount */
0b246afa 10784 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10785
10786 /* Implicit trim during transaction commit. */
10787 if (trimming)
10788 btrfs_get_block_group_trimming(block_group);
10789
47ab2a6c
JB
10790 /*
10791 * Btrfs_remove_chunk will abort the transaction if things go
10792 * horribly wrong.
10793 */
5b4aacef 10794 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10795 block_group->key.objectid);
e33e17ee
JM
10796
10797 if (ret) {
10798 if (trimming)
10799 btrfs_put_block_group_trimming(block_group);
10800 goto end_trans;
10801 }
10802
10803 /*
10804 * If we're not mounted with -odiscard, we can just forget
10805 * about this block group. Otherwise we'll need to wait
10806 * until transaction commit to do the actual discard.
10807 */
10808 if (trimming) {
348a0013
FM
10809 spin_lock(&fs_info->unused_bgs_lock);
10810 /*
10811 * A concurrent scrub might have added us to the list
10812 * fs_info->unused_bgs, so use a list_move operation
10813 * to add the block group to the deleted_bgs list.
10814 */
e33e17ee
JM
10815 list_move(&block_group->bg_list,
10816 &trans->transaction->deleted_bgs);
348a0013 10817 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10818 btrfs_get_block_group(block_group);
10819 }
758eb51e 10820end_trans:
3a45bb20 10821 btrfs_end_transaction(trans);
47ab2a6c 10822next:
d5f2e33b 10823 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10824 btrfs_put_block_group(block_group);
10825 spin_lock(&fs_info->unused_bgs_lock);
10826 }
10827 spin_unlock(&fs_info->unused_bgs_lock);
10828}
10829
c59021f8 10830int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10831{
10832 struct btrfs_space_info *space_info;
1aba86d6 10833 struct btrfs_super_block *disk_super;
10834 u64 features;
10835 u64 flags;
10836 int mixed = 0;
c59021f8 10837 int ret;
10838
6c41761f 10839 disk_super = fs_info->super_copy;
1aba86d6 10840 if (!btrfs_super_root(disk_super))
0dc924c5 10841 return -EINVAL;
c59021f8 10842
1aba86d6 10843 features = btrfs_super_incompat_flags(disk_super);
10844 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10845 mixed = 1;
c59021f8 10846
1aba86d6 10847 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10848 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10849 if (ret)
1aba86d6 10850 goto out;
c59021f8 10851
1aba86d6 10852 if (mixed) {
10853 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10854 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10855 } else {
10856 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10857 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10858 if (ret)
10859 goto out;
10860
10861 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10862 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10863 }
10864out:
c59021f8 10865 return ret;
10866}
10867
2ff7e61e
JM
10868int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10869 u64 start, u64 end)
acce952b 10870{
2ff7e61e 10871 return unpin_extent_range(fs_info, start, end, false);
acce952b 10872}
10873
499f377f
JM
10874/*
10875 * It used to be that old block groups would be left around forever.
10876 * Iterating over them would be enough to trim unused space. Since we
10877 * now automatically remove them, we also need to iterate over unallocated
10878 * space.
10879 *
10880 * We don't want a transaction for this since the discard may take a
10881 * substantial amount of time. We don't require that a transaction be
10882 * running, but we do need to take a running transaction into account
10883 * to ensure that we're not discarding chunks that were released in
10884 * the current transaction.
10885 *
10886 * Holding the chunks lock will prevent other threads from allocating
10887 * or releasing chunks, but it won't prevent a running transaction
10888 * from committing and releasing the memory that the pending chunks
10889 * list head uses. For that, we need to take a reference to the
10890 * transaction.
10891 */
10892static int btrfs_trim_free_extents(struct btrfs_device *device,
10893 u64 minlen, u64 *trimmed)
10894{
10895 u64 start = 0, len = 0;
10896 int ret;
10897
10898 *trimmed = 0;
10899
10900 /* Not writeable = nothing to do. */
ebbede42 10901 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10902 return 0;
10903
10904 /* No free space = nothing to do. */
10905 if (device->total_bytes <= device->bytes_used)
10906 return 0;
10907
10908 ret = 0;
10909
10910 while (1) {
fb456252 10911 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10912 struct btrfs_transaction *trans;
10913 u64 bytes;
10914
10915 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10916 if (ret)
10917 return ret;
10918
10919 down_read(&fs_info->commit_root_sem);
10920
10921 spin_lock(&fs_info->trans_lock);
10922 trans = fs_info->running_transaction;
10923 if (trans)
9b64f57d 10924 refcount_inc(&trans->use_count);
499f377f
JM
10925 spin_unlock(&fs_info->trans_lock);
10926
10927 ret = find_free_dev_extent_start(trans, device, minlen, start,
10928 &start, &len);
10929 if (trans)
10930 btrfs_put_transaction(trans);
10931
10932 if (ret) {
10933 up_read(&fs_info->commit_root_sem);
10934 mutex_unlock(&fs_info->chunk_mutex);
10935 if (ret == -ENOSPC)
10936 ret = 0;
10937 break;
10938 }
10939
10940 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10941 up_read(&fs_info->commit_root_sem);
10942 mutex_unlock(&fs_info->chunk_mutex);
10943
10944 if (ret)
10945 break;
10946
10947 start += len;
10948 *trimmed += bytes;
10949
10950 if (fatal_signal_pending(current)) {
10951 ret = -ERESTARTSYS;
10952 break;
10953 }
10954
10955 cond_resched();
10956 }
10957
10958 return ret;
10959}
10960
2ff7e61e 10961int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10962{
f7039b1d 10963 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10964 struct btrfs_device *device;
10965 struct list_head *devices;
f7039b1d
LD
10966 u64 group_trimmed;
10967 u64 start;
10968 u64 end;
10969 u64 trimmed = 0;
2cac13e4 10970 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10971 int ret = 0;
10972
2cac13e4
LB
10973 /*
10974 * try to trim all FS space, our block group may start from non-zero.
10975 */
10976 if (range->len == total_bytes)
10977 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10978 else
10979 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10980
10981 while (cache) {
10982 if (cache->key.objectid >= (range->start + range->len)) {
10983 btrfs_put_block_group(cache);
10984 break;
10985 }
10986
10987 start = max(range->start, cache->key.objectid);
10988 end = min(range->start + range->len,
10989 cache->key.objectid + cache->key.offset);
10990
10991 if (end - start >= range->minlen) {
10992 if (!block_group_cache_done(cache)) {
f6373bf3 10993 ret = cache_block_group(cache, 0);
1be41b78
JB
10994 if (ret) {
10995 btrfs_put_block_group(cache);
10996 break;
10997 }
10998 ret = wait_block_group_cache_done(cache);
10999 if (ret) {
11000 btrfs_put_block_group(cache);
11001 break;
11002 }
f7039b1d
LD
11003 }
11004 ret = btrfs_trim_block_group(cache,
11005 &group_trimmed,
11006 start,
11007 end,
11008 range->minlen);
11009
11010 trimmed += group_trimmed;
11011 if (ret) {
11012 btrfs_put_block_group(cache);
11013 break;
11014 }
11015 }
11016
2ff7e61e 11017 cache = next_block_group(fs_info, cache);
f7039b1d
LD
11018 }
11019
0b246afa
JM
11020 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11021 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
11022 list_for_each_entry(device, devices, dev_alloc_list) {
11023 ret = btrfs_trim_free_extents(device, range->minlen,
11024 &group_trimmed);
11025 if (ret)
11026 break;
11027
11028 trimmed += group_trimmed;
11029 }
0b246afa 11030 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11031
f7039b1d
LD
11032 range->len = trimmed;
11033 return ret;
11034}
8257b2dc
MX
11035
11036/*
ea14b57f 11037 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11038 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11039 * data into the page cache through nocow before the subvolume is snapshoted,
11040 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11041 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11042 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11043 */
ea14b57f 11044void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11045{
11046 percpu_counter_dec(&root->subv_writers->counter);
093258e6 11047 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
11048}
11049
ea14b57f 11050int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11051{
ea14b57f 11052 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11053 return 0;
11054
11055 percpu_counter_inc(&root->subv_writers->counter);
11056 /*
11057 * Make sure counter is updated before we check for snapshot creation.
11058 */
11059 smp_mb();
ea14b57f
DS
11060 if (atomic_read(&root->will_be_snapshotted)) {
11061 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11062 return 0;
11063 }
11064 return 1;
11065}
0bc19f90 11066
0bc19f90
ZL
11067void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11068{
11069 while (true) {
11070 int ret;
11071
ea14b57f 11072 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11073 if (ret)
11074 break;
4625956a
PZ
11075 wait_var_event(&root->will_be_snapshotted,
11076 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11077 }
11078}