btrfs: change btrfs_pin_log_trans to return void
[linux-block.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
5d4f98a2 54static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
59static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 67 struct btrfs_delayed_ref_node *node,
21ebfbe7 68 struct btrfs_delayed_extent_op *extent_op);
01458828 69static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
698d0082 70 int force);
11833d66
YZ
71static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
ab8d0fc4
JM
73static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 75 int dump_block_groups);
5d80366e
JB
76static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
77 u64 num_bytes);
957780eb
JB
78static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
80 u64 num_bytes);
81static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
6a63209f 84
817d52f8
JB
85static noinline int
86block_group_cache_done(struct btrfs_block_group_cache *cache)
87{
88 smp_mb();
36cce922
JB
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
91}
92
0f9dd46c
JB
93static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94{
95 return (cache->flags & bits) == bits;
96}
97
758f2dfc 98void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
99{
100 atomic_inc(&cache->count);
101}
102
103void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104{
f0486c68
YZ
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
0966a7b1
QW
108
109 /*
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
114 *
115 * No better way to resolve, but only to warn.
116 */
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 118 kfree(cache->free_space_ctl);
11dfe35a 119 kfree(cache);
f0486c68 120 }
11dfe35a
JB
121}
122
0f9dd46c
JB
123/*
124 * this adds the block group to the fs_info rb tree for the block group
125 * cache
126 */
b2950863 127static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
128 struct btrfs_block_group_cache *block_group)
129{
130 struct rb_node **p;
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
133
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
136
137 while (*p) {
138 parent = *p;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
140 cache_node);
141 if (block_group->key.objectid < cache->key.objectid) {
142 p = &(*p)->rb_left;
143 } else if (block_group->key.objectid > cache->key.objectid) {
144 p = &(*p)->rb_right;
145 } else {
146 spin_unlock(&info->block_group_cache_lock);
147 return -EEXIST;
148 }
149 }
150
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
a1897fdd
LB
154
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
157
0f9dd46c
JB
158 spin_unlock(&info->block_group_cache_lock);
159
160 return 0;
161}
162
163/*
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
166 */
167static struct btrfs_block_group_cache *
168block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
169 int contains)
170{
171 struct btrfs_block_group_cache *cache, *ret = NULL;
172 struct rb_node *n;
173 u64 end, start;
174
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
177
178 while (n) {
179 cache = rb_entry(n, struct btrfs_block_group_cache,
180 cache_node);
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
183
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
186 ret = cache;
187 n = n->rb_left;
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
190 ret = cache;
191 break;
192 }
193 n = n->rb_right;
194 } else {
195 ret = cache;
196 break;
197 }
198 }
a1897fdd 199 if (ret) {
11dfe35a 200 btrfs_get_block_group(ret);
a1897fdd
LB
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
203 }
0f9dd46c
JB
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207}
208
2ff7e61e 209static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 210 u64 start, u64 num_bytes)
817d52f8 211{
11833d66 212 u64 end = start + num_bytes - 1;
0b246afa 213 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 214 start, end, EXTENT_UPTODATE);
0b246afa 215 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 216 start, end, EXTENT_UPTODATE);
11833d66
YZ
217 return 0;
218}
817d52f8 219
9e715da8 220static void free_excluded_extents(struct btrfs_block_group_cache *cache)
11833d66 221{
9e715da8 222 struct btrfs_fs_info *fs_info = cache->fs_info;
11833d66 223 u64 start, end;
817d52f8 224
11833d66
YZ
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
0b246afa 228 clear_extent_bits(&fs_info->freed_extents[0],
91166212 229 start, end, EXTENT_UPTODATE);
0b246afa 230 clear_extent_bits(&fs_info->freed_extents[1],
91166212 231 start, end, EXTENT_UPTODATE);
817d52f8
JB
232}
233
3c4da657 234static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
817d52f8 235{
3c4da657 236 struct btrfs_fs_info *fs_info = cache->fs_info;
817d52f8
JB
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
06b2331f
YZ
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
2ff7e61e 245 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 246 stripe_len);
835d974f
JB
247 if (ret)
248 return ret;
06b2331f
YZ
249 }
250
817d52f8
JB
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
0b246afa 253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 254 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
255 if (ret)
256 return ret;
11833d66 257
817d52f8 258 while (nr--) {
51bf5f0b
JB
259 u64 start, len;
260
261 if (logical[nr] > cache->key.objectid +
262 cache->key.offset)
263 continue;
264
265 if (logical[nr] + stripe_len <= cache->key.objectid)
266 continue;
267
268 start = logical[nr];
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
272 } else {
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
276 }
277
278 cache->bytes_super += len;
2ff7e61e 279 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
280 if (ret) {
281 kfree(logical);
282 return ret;
283 }
817d52f8 284 }
11833d66 285
817d52f8
JB
286 kfree(logical);
287 }
817d52f8
JB
288 return 0;
289}
290
11833d66
YZ
291static struct btrfs_caching_control *
292get_caching_control(struct btrfs_block_group_cache *cache)
293{
294 struct btrfs_caching_control *ctl;
295
296 spin_lock(&cache->lock);
dde5abee
JB
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
11833d66
YZ
299 return NULL;
300 }
301
302 ctl = cache->caching_ctl;
1e4f4714 303 refcount_inc(&ctl->count);
11833d66
YZ
304 spin_unlock(&cache->lock);
305 return ctl;
306}
307
308static void put_caching_control(struct btrfs_caching_control *ctl)
309{
1e4f4714 310 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
311 kfree(ctl);
312}
313
d0bd4560 314#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 315static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 316{
2ff7e61e 317 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 321 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
322 u64 step = chunk << 1;
323
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
326 start += step;
327 if (len < step)
328 len = 0;
329 else
330 len -= step;
331 }
332}
333#endif
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
a5ed9182 340u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 341 u64 start, u64 end)
0f9dd46c 342{
4457c1c7 343 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 344 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
345 int ret;
346
347 while (start < end) {
11833d66 348 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 349 &extent_start, &extent_end,
e6138876
JB
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
0f9dd46c
JB
352 if (ret)
353 break;
354
06b2331f 355 if (extent_start <= start) {
0f9dd46c
JB
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
817d52f8 359 total_added += size;
ea6a478e
JB
360 ret = btrfs_add_free_space(block_group, start,
361 size);
79787eaa 362 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
817d52f8 371 total_added += size;
ea6a478e 372 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 373 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
374 }
375
817d52f8 376 return total_added;
0f9dd46c
JB
377}
378
73fa48b6 379static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 380{
0b246afa
JM
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
73fa48b6 390 int ret;
d0bd4560 391 bool wakeup = true;
f510cfec 392
e37c9e69
CM
393 path = btrfs_alloc_path();
394 if (!path)
73fa48b6 395 return -ENOMEM;
7d7d6068 396
817d52f8 397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 398
d0bd4560
JB
399#ifdef CONFIG_BTRFS_DEBUG
400 /*
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
403 * the free space.
404 */
2ff7e61e 405 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
406 wakeup = false;
407#endif
5cd57b2c 408 /*
817d52f8
JB
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
5cd57b2c
CM
413 */
414 path->skip_locking = 1;
817d52f8 415 path->search_commit_root = 1;
e4058b54 416 path->reada = READA_FORWARD;
817d52f8 417
e4404d6e 418 key.objectid = last;
e37c9e69 419 key.offset = 0;
11833d66 420 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 421
52ee28d2 422next:
11833d66 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 424 if (ret < 0)
73fa48b6 425 goto out;
a512bbf8 426
11833d66
YZ
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
d397712b 430 while (1) {
7841cb28 431 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 432 last = (u64)-1;
817d52f8 433 break;
f25784b3 434 }
817d52f8 435
11833d66
YZ
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
e37c9e69 441 break;
817d52f8 442
c9ea7b24 443 if (need_resched() ||
9e351cc8 444 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
445 if (wakeup)
446 caching_ctl->progress = last;
ff5714cc 447 btrfs_release_path(path);
9e351cc8 448 up_read(&fs_info->commit_root_sem);
589d8ade 449 mutex_unlock(&caching_ctl->mutex);
11833d66 450 cond_resched();
73fa48b6
OS
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
453 goto next;
589d8ade 454 }
0a3896d0
JB
455
456 ret = btrfs_next_leaf(extent_root, path);
457 if (ret < 0)
73fa48b6 458 goto out;
0a3896d0
JB
459 if (ret)
460 break;
589d8ade
JB
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
463 continue;
11833d66 464 }
817d52f8 465
52ee28d2
LB
466 if (key.objectid < last) {
467 key.objectid = last;
468 key.offset = 0;
469 key.type = BTRFS_EXTENT_ITEM_KEY;
470
d0bd4560
JB
471 if (wakeup)
472 caching_ctl->progress = last;
52ee28d2
LB
473 btrfs_release_path(path);
474 goto next;
475 }
476
11833d66
YZ
477 if (key.objectid < block_group->key.objectid) {
478 path->slots[0]++;
817d52f8 479 continue;
e37c9e69 480 }
0f9dd46c 481
e37c9e69 482 if (key.objectid >= block_group->key.objectid +
0f9dd46c 483 block_group->key.offset)
e37c9e69 484 break;
7d7d6068 485
3173a18f
JB
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 488 total_found += add_new_free_space(block_group, last,
817d52f8 489 key.objectid);
3173a18f
JB
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
da17066c 492 fs_info->nodesize;
3173a18f
JB
493 else
494 last = key.objectid + key.offset;
817d52f8 495
73fa48b6 496 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 497 total_found = 0;
d0bd4560
JB
498 if (wakeup)
499 wake_up(&caching_ctl->wait);
11833d66 500 }
817d52f8 501 }
e37c9e69
CM
502 path->slots[0]++;
503 }
817d52f8 504 ret = 0;
e37c9e69 505
4457c1c7 506 total_found += add_new_free_space(block_group, last,
817d52f8
JB
507 block_group->key.objectid +
508 block_group->key.offset);
11833d66 509 caching_ctl->progress = (u64)-1;
817d52f8 510
73fa48b6
OS
511out:
512 btrfs_free_path(path);
513 return ret;
514}
515
516static noinline void caching_thread(struct btrfs_work *work)
517{
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
521 int ret;
522
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
526
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
529
1e144fb8
OS
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
532 else
533 ret = load_extent_tree_free(caching_ctl);
73fa48b6 534
817d52f8 535 spin_lock(&block_group->lock);
11833d66 536 block_group->caching_ctl = NULL;
73fa48b6 537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 538 spin_unlock(&block_group->lock);
0f9dd46c 539
d0bd4560 540#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 541 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
542 u64 bytes_used;
543
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
2ff7e61e 551 fragment_free_space(block_group);
d0bd4560
JB
552 }
553#endif
554
555 caching_ctl->progress = (u64)-1;
11833d66 556
9e351cc8 557 up_read(&fs_info->commit_root_sem);
9e715da8 558 free_excluded_extents(block_group);
11833d66 559 mutex_unlock(&caching_ctl->mutex);
73fa48b6 560
11833d66
YZ
561 wake_up(&caching_ctl->wait);
562
563 put_caching_control(caching_ctl);
11dfe35a 564 btrfs_put_block_group(block_group);
817d52f8
JB
565}
566
9d66e233 567static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 568 int load_cache_only)
817d52f8 569{
291c7d2f 570 DEFINE_WAIT(wait);
11833d66
YZ
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
573 int ret = 0;
574
291c7d2f 575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
576 if (!caching_ctl)
577 return -ENOMEM;
291c7d2f
JB
578
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
1e4f4714 584 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
291c7d2f
JB
587
588 spin_lock(&cache->lock);
589 /*
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
599 * another.
600 */
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
603
604 ctl = cache->caching_ctl;
1e4f4714 605 refcount_inc(&ctl->count);
291c7d2f
JB
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
608
609 schedule();
610
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
614 }
615
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
618 kfree(caching_ctl);
11833d66 619 return 0;
291c7d2f
JB
620 }
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
11833d66 625
d8953d69 626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 627 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
628 ret = load_free_space_cache(fs_info, cache);
629
630 spin_lock(&cache->lock);
631 if (ret == 1) {
291c7d2f 632 cache->caching_ctl = NULL;
9d66e233
JB
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 635 caching_ctl->progress = (u64)-1;
9d66e233 636 } else {
291c7d2f
JB
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
640 } else {
641 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 642 cache->has_caching_ctl = 1;
291c7d2f 643 }
9d66e233
JB
644 }
645 spin_unlock(&cache->lock);
d0bd4560
JB
646#ifdef CONFIG_BTRFS_DEBUG
647 if (ret == 1 &&
2ff7e61e 648 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
649 u64 bytes_used;
650
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
2ff7e61e 658 fragment_free_space(cache);
d0bd4560
JB
659 }
660#endif
cb83b7b8
JB
661 mutex_unlock(&caching_ctl->mutex);
662
291c7d2f 663 wake_up(&caching_ctl->wait);
3c14874a 664 if (ret == 1) {
291c7d2f 665 put_caching_control(caching_ctl);
9e715da8 666 free_excluded_extents(cache);
9d66e233 667 return 0;
3c14874a 668 }
291c7d2f
JB
669 } else {
670 /*
1e144fb8
OS
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
673 */
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
678 } else {
679 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 680 cache->has_caching_ctl = 1;
291c7d2f
JB
681 }
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
9d66e233
JB
684 }
685
291c7d2f
JB
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
11833d66 688 return 0;
817d52f8 689 }
817d52f8 690
9e351cc8 691 down_write(&fs_info->commit_root_sem);
1e4f4714 692 refcount_inc(&caching_ctl->count);
11833d66 693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 694 up_write(&fs_info->commit_root_sem);
11833d66 695
11dfe35a 696 btrfs_get_block_group(cache);
11833d66 697
e66f0bb1 698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 699
ef8bbdfe 700 return ret;
e37c9e69
CM
701}
702
0f9dd46c
JB
703/*
704 * return the block group that starts at or after bytenr
705 */
d397712b
CM
706static struct btrfs_block_group_cache *
707btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 708{
e2c89907 709 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
710}
711
0f9dd46c 712/*
9f55684c 713 * return the block group that contains the given bytenr
0f9dd46c 714 */
d397712b
CM
715struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
717 u64 bytenr)
be744175 718{
e2c89907 719 return block_group_cache_tree_search(info, bytenr, 1);
be744175 720}
0b86a832 721
0f9dd46c
JB
722static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
723 u64 flags)
6324fbf3 724{
0f9dd46c 725 struct list_head *head = &info->space_info;
0f9dd46c 726 struct btrfs_space_info *found;
4184ea7f 727
52ba6929 728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 729
4184ea7f
CM
730 rcu_read_lock();
731 list_for_each_entry_rcu(found, head, list) {
67377734 732 if (found->flags & flags) {
4184ea7f 733 rcu_read_unlock();
0f9dd46c 734 return found;
4184ea7f 735 }
0f9dd46c 736 }
4184ea7f 737 rcu_read_unlock();
0f9dd46c 738 return NULL;
6324fbf3
CM
739}
740
0d9f824d 741static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 742 bool metadata, u64 root_objectid)
0d9f824d
OS
743{
744 struct btrfs_space_info *space_info;
745 u64 flags;
746
29d2b84c 747 if (metadata) {
0d9f824d
OS
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
750 else
751 flags = BTRFS_BLOCK_GROUP_METADATA;
752 } else {
753 flags = BTRFS_BLOCK_GROUP_DATA;
754 }
755
756 space_info = __find_space_info(fs_info, flags);
55e8196a 757 ASSERT(space_info);
dec59fa3
EL
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
0d9f824d
OS
760}
761
4184ea7f
CM
762/*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
766void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767{
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775}
776
1a4ed8fd 777/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 778int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
779{
780 int ret;
781 struct btrfs_key key;
31840ae1 782 struct btrfs_path *path;
e02119d5 783
31840ae1 784 path = btrfs_alloc_path();
d8926bb3
MF
785 if (!path)
786 return -ENOMEM;
787
e02119d5
CM
788 key.objectid = start;
789 key.offset = len;
3173a18f 790 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 792 btrfs_free_path(path);
7bb86316
CM
793 return ret;
794}
795
a22285a6 796/*
3173a18f 797 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
805int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 806 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 807 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
808{
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
3173a18f
JB
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
0b246afa
JM
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
3173a18f
JB
826 metadata = 0;
827 }
828
a22285a6
YZ
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
a22285a6
YZ
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
639eefc8
FDBM
837
838search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
0b246afa 846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
847 if (ret < 0)
848 goto out_free;
849
3173a18f 850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
851 if (path->slots[0]) {
852 path->slots[0]--;
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 path->slots[0]);
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 857 key.offset == fs_info->nodesize)
74be9510
FDBM
858 ret = 0;
859 }
3173a18f
JB
860 }
861
a22285a6
YZ
862 if (ret == 0) {
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
870 } else {
ba3c2b19
NB
871 ret = -EINVAL;
872 btrfs_print_v0_err(fs_info);
873 if (trans)
874 btrfs_abort_transaction(trans, ret);
875 else
876 btrfs_handle_fs_error(fs_info, ret, NULL);
877
878 goto out_free;
a22285a6 879 }
ba3c2b19 880
a22285a6
YZ
881 BUG_ON(num_refs == 0);
882 } else {
883 num_refs = 0;
884 extent_flags = 0;
885 ret = 0;
886 }
887
888 if (!trans)
889 goto out;
890
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
f72ad18e 893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
894 if (head) {
895 if (!mutex_trylock(&head->mutex)) {
d278850e 896 refcount_inc(&head->refs);
a22285a6
YZ
897 spin_unlock(&delayed_refs->lock);
898
b3b4aa74 899 btrfs_release_path(path);
a22285a6 900
8cc33e5c
DS
901 /*
902 * Mutex was contended, block until it's released and try
903 * again
904 */
a22285a6
YZ
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
d278850e 907 btrfs_put_delayed_ref_head(head);
639eefc8 908 goto search_again;
a22285a6 909 }
d7df2c79 910 spin_lock(&head->lock);
a22285a6
YZ
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
913 else
914 BUG_ON(num_refs == 0);
915
d278850e 916 num_refs += head->ref_mod;
d7df2c79 917 spin_unlock(&head->lock);
a22285a6
YZ
918 mutex_unlock(&head->mutex);
919 }
920 spin_unlock(&delayed_refs->lock);
921out:
922 WARN_ON(num_refs == 0);
923 if (refs)
924 *refs = num_refs;
925 if (flags)
926 *flags = extent_flags;
927out_free:
928 btrfs_free_path(path);
929 return ret;
930}
931
d8d5f3e1
CM
932/*
933 * Back reference rules. Back refs have three main goals:
934 *
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
938 *
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
941 *
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
945 *
5d4f98a2
YZ
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
956 *
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
963 *
01327610 964 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
965 *
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
968 *
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
973 *
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
983 *
984 * Back Reference Key composing:
985 *
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
989 * of back refs.
990 *
d8d5f3e1
CM
991 * File extents can be referenced by:
992 *
993 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 994 * - different files inside a single subvolume
d8d5f3e1
CM
995 * - different offsets inside a file (bookend extents in file.c)
996 *
5d4f98a2 997 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
998 *
999 * - Objectid of the subvolume root
d8d5f3e1 1000 * - objectid of the file holding the reference
5d4f98a2
YZ
1001 * - original offset in the file
1002 * - how many bookend extents
d8d5f3e1 1003 *
5d4f98a2
YZ
1004 * The key offset for the implicit back refs is hash of the first
1005 * three fields.
d8d5f3e1 1006 *
5d4f98a2 1007 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1008 *
5d4f98a2 1009 * - number of pointers in the tree leaf
d8d5f3e1 1010 *
5d4f98a2
YZ
1011 * The key offset for the implicit back refs is the first byte of
1012 * the tree leaf
d8d5f3e1 1013 *
5d4f98a2
YZ
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
d8d5f3e1 1016 *
5d4f98a2 1017 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1018 *
5d4f98a2
YZ
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1021 *
5d4f98a2 1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1023 *
5d4f98a2 1024 * Btree extents can be referenced by:
d8d5f3e1 1025 *
5d4f98a2 1026 * - Different subvolumes
d8d5f3e1 1027 *
5d4f98a2
YZ
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
d8d5f3e1 1036 */
31840ae1 1037
167ce953
LB
1038/*
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1042 */
1043int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1046{
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1049
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1056 return type;
64ecdb64
LB
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1059 /*
1060 * Every shared one has parent tree
1061 * block, which must be aligned to
1062 * nodesize.
1063 */
1064 if (offset &&
1065 IS_ALIGNED(offset, eb->fs_info->nodesize))
1066 return type;
1067 }
167ce953 1068 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1069 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1070 return type;
64ecdb64
LB
1071 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1072 ASSERT(eb->fs_info);
1073 /*
1074 * Every shared one has parent tree
1075 * block, which must be aligned to
1076 * nodesize.
1077 */
1078 if (offset &&
1079 IS_ALIGNED(offset, eb->fs_info->nodesize))
1080 return type;
1081 }
167ce953
LB
1082 } else {
1083 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1084 return type;
1085 }
1086 }
1087
1088 btrfs_print_leaf((struct extent_buffer *)eb);
1089 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1090 eb->start, type);
1091 WARN_ON(1);
1092
1093 return BTRFS_REF_TYPE_INVALID;
1094}
1095
5d4f98a2
YZ
1096static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1097{
1098 u32 high_crc = ~(u32)0;
1099 u32 low_crc = ~(u32)0;
1100 __le64 lenum;
1101
1102 lenum = cpu_to_le64(root_objectid);
9678c543 1103 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1104 lenum = cpu_to_le64(owner);
9678c543 1105 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1106 lenum = cpu_to_le64(offset);
9678c543 1107 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1108
1109 return ((u64)high_crc << 31) ^ (u64)low_crc;
1110}
1111
1112static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1113 struct btrfs_extent_data_ref *ref)
1114{
1115 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1116 btrfs_extent_data_ref_objectid(leaf, ref),
1117 btrfs_extent_data_ref_offset(leaf, ref));
1118}
1119
1120static int match_extent_data_ref(struct extent_buffer *leaf,
1121 struct btrfs_extent_data_ref *ref,
1122 u64 root_objectid, u64 owner, u64 offset)
1123{
1124 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1125 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1126 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1127 return 0;
1128 return 1;
1129}
1130
1131static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1132 struct btrfs_path *path,
1133 u64 bytenr, u64 parent,
1134 u64 root_objectid,
1135 u64 owner, u64 offset)
1136{
bd1d53ef 1137 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1138 struct btrfs_key key;
1139 struct btrfs_extent_data_ref *ref;
31840ae1 1140 struct extent_buffer *leaf;
5d4f98a2 1141 u32 nritems;
74493f7a 1142 int ret;
5d4f98a2
YZ
1143 int recow;
1144 int err = -ENOENT;
74493f7a 1145
31840ae1 1146 key.objectid = bytenr;
5d4f98a2
YZ
1147 if (parent) {
1148 key.type = BTRFS_SHARED_DATA_REF_KEY;
1149 key.offset = parent;
1150 } else {
1151 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1152 key.offset = hash_extent_data_ref(root_objectid,
1153 owner, offset);
1154 }
1155again:
1156 recow = 0;
1157 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1158 if (ret < 0) {
1159 err = ret;
1160 goto fail;
1161 }
31840ae1 1162
5d4f98a2
YZ
1163 if (parent) {
1164 if (!ret)
1165 return 0;
5d4f98a2 1166 goto fail;
31840ae1
ZY
1167 }
1168
1169 leaf = path->nodes[0];
5d4f98a2
YZ
1170 nritems = btrfs_header_nritems(leaf);
1171 while (1) {
1172 if (path->slots[0] >= nritems) {
1173 ret = btrfs_next_leaf(root, path);
1174 if (ret < 0)
1175 err = ret;
1176 if (ret)
1177 goto fail;
1178
1179 leaf = path->nodes[0];
1180 nritems = btrfs_header_nritems(leaf);
1181 recow = 1;
1182 }
1183
1184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185 if (key.objectid != bytenr ||
1186 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1187 goto fail;
1188
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_extent_data_ref);
1191
1192 if (match_extent_data_ref(leaf, ref, root_objectid,
1193 owner, offset)) {
1194 if (recow) {
b3b4aa74 1195 btrfs_release_path(path);
5d4f98a2
YZ
1196 goto again;
1197 }
1198 err = 0;
1199 break;
1200 }
1201 path->slots[0]++;
31840ae1 1202 }
5d4f98a2
YZ
1203fail:
1204 return err;
31840ae1
ZY
1205}
1206
5d4f98a2 1207static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1208 struct btrfs_path *path,
1209 u64 bytenr, u64 parent,
1210 u64 root_objectid, u64 owner,
1211 u64 offset, int refs_to_add)
31840ae1 1212{
62b895af 1213 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1214 struct btrfs_key key;
1215 struct extent_buffer *leaf;
5d4f98a2 1216 u32 size;
31840ae1
ZY
1217 u32 num_refs;
1218 int ret;
74493f7a 1219
74493f7a 1220 key.objectid = bytenr;
5d4f98a2
YZ
1221 if (parent) {
1222 key.type = BTRFS_SHARED_DATA_REF_KEY;
1223 key.offset = parent;
1224 size = sizeof(struct btrfs_shared_data_ref);
1225 } else {
1226 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1227 key.offset = hash_extent_data_ref(root_objectid,
1228 owner, offset);
1229 size = sizeof(struct btrfs_extent_data_ref);
1230 }
74493f7a 1231
5d4f98a2
YZ
1232 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1233 if (ret && ret != -EEXIST)
1234 goto fail;
1235
1236 leaf = path->nodes[0];
1237 if (parent) {
1238 struct btrfs_shared_data_ref *ref;
31840ae1 1239 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1240 struct btrfs_shared_data_ref);
1241 if (ret == 0) {
1242 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1243 } else {
1244 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1245 num_refs += refs_to_add;
1246 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1247 }
5d4f98a2
YZ
1248 } else {
1249 struct btrfs_extent_data_ref *ref;
1250 while (ret == -EEXIST) {
1251 ref = btrfs_item_ptr(leaf, path->slots[0],
1252 struct btrfs_extent_data_ref);
1253 if (match_extent_data_ref(leaf, ref, root_objectid,
1254 owner, offset))
1255 break;
b3b4aa74 1256 btrfs_release_path(path);
5d4f98a2
YZ
1257 key.offset++;
1258 ret = btrfs_insert_empty_item(trans, root, path, &key,
1259 size);
1260 if (ret && ret != -EEXIST)
1261 goto fail;
31840ae1 1262
5d4f98a2
YZ
1263 leaf = path->nodes[0];
1264 }
1265 ref = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_extent_data_ref);
1267 if (ret == 0) {
1268 btrfs_set_extent_data_ref_root(leaf, ref,
1269 root_objectid);
1270 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1271 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1272 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1273 } else {
1274 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1275 num_refs += refs_to_add;
1276 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1277 }
31840ae1 1278 }
5d4f98a2
YZ
1279 btrfs_mark_buffer_dirty(leaf);
1280 ret = 0;
1281fail:
b3b4aa74 1282 btrfs_release_path(path);
7bb86316 1283 return ret;
74493f7a
CM
1284}
1285
5d4f98a2 1286static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1287 struct btrfs_path *path,
fcebe456 1288 int refs_to_drop, int *last_ref)
31840ae1 1289{
5d4f98a2
YZ
1290 struct btrfs_key key;
1291 struct btrfs_extent_data_ref *ref1 = NULL;
1292 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1293 struct extent_buffer *leaf;
5d4f98a2 1294 u32 num_refs = 0;
31840ae1
ZY
1295 int ret = 0;
1296
1297 leaf = path->nodes[0];
5d4f98a2
YZ
1298 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1299
1300 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_shared_data_ref);
1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
6d8ff4e4 1308 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
ba3c2b19
NB
1309 btrfs_print_v0_err(trans->fs_info);
1310 btrfs_abort_transaction(trans, -EINVAL);
1311 return -EINVAL;
5d4f98a2
YZ
1312 } else {
1313 BUG();
1314 }
1315
56bec294
CM
1316 BUG_ON(num_refs < refs_to_drop);
1317 num_refs -= refs_to_drop;
5d4f98a2 1318
31840ae1 1319 if (num_refs == 0) {
e9f6290d 1320 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1321 *last_ref = 1;
31840ae1 1322 } else {
5d4f98a2
YZ
1323 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1324 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1325 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1326 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
31840ae1
ZY
1327 btrfs_mark_buffer_dirty(leaf);
1328 }
31840ae1
ZY
1329 return ret;
1330}
1331
9ed0dea0 1332static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1333 struct btrfs_extent_inline_ref *iref)
15916de8 1334{
5d4f98a2
YZ
1335 struct btrfs_key key;
1336 struct extent_buffer *leaf;
1337 struct btrfs_extent_data_ref *ref1;
1338 struct btrfs_shared_data_ref *ref2;
1339 u32 num_refs = 0;
3de28d57 1340 int type;
5d4f98a2
YZ
1341
1342 leaf = path->nodes[0];
1343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ba3c2b19
NB
1344
1345 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
5d4f98a2 1346 if (iref) {
3de28d57
LB
1347 /*
1348 * If type is invalid, we should have bailed out earlier than
1349 * this call.
1350 */
1351 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1352 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1353 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1354 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1355 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1356 } else {
1357 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 }
1360 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1361 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_extent_data_ref);
1363 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1364 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1365 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_shared_data_ref);
1367 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
5d4f98a2
YZ
1368 } else {
1369 WARN_ON(1);
1370 }
1371 return num_refs;
1372}
15916de8 1373
5d4f98a2 1374static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1375 struct btrfs_path *path,
1376 u64 bytenr, u64 parent,
1377 u64 root_objectid)
1f3c79a2 1378{
b8582eea 1379 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1380 struct btrfs_key key;
1f3c79a2 1381 int ret;
1f3c79a2 1382
5d4f98a2
YZ
1383 key.objectid = bytenr;
1384 if (parent) {
1385 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 key.offset = parent;
1387 } else {
1388 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 key.offset = root_objectid;
1f3c79a2
LH
1390 }
1391
5d4f98a2
YZ
1392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1393 if (ret > 0)
1394 ret = -ENOENT;
5d4f98a2 1395 return ret;
1f3c79a2
LH
1396}
1397
5d4f98a2 1398static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1399 struct btrfs_path *path,
1400 u64 bytenr, u64 parent,
1401 u64 root_objectid)
31840ae1 1402{
5d4f98a2 1403 struct btrfs_key key;
31840ae1 1404 int ret;
31840ae1 1405
5d4f98a2
YZ
1406 key.objectid = bytenr;
1407 if (parent) {
1408 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1409 key.offset = parent;
1410 } else {
1411 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1412 key.offset = root_objectid;
1413 }
1414
10728404 1415 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1416 path, &key, 0);
b3b4aa74 1417 btrfs_release_path(path);
31840ae1
ZY
1418 return ret;
1419}
1420
5d4f98a2 1421static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1422{
5d4f98a2
YZ
1423 int type;
1424 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 else
1428 type = BTRFS_TREE_BLOCK_REF_KEY;
1429 } else {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_DATA_REF_KEY;
1432 else
1433 type = BTRFS_EXTENT_DATA_REF_KEY;
1434 }
1435 return type;
31840ae1 1436}
56bec294 1437
2c47e605
YZ
1438static int find_next_key(struct btrfs_path *path, int level,
1439 struct btrfs_key *key)
56bec294 1440
02217ed2 1441{
2c47e605 1442 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1443 if (!path->nodes[level])
1444 break;
5d4f98a2
YZ
1445 if (path->slots[level] + 1 >=
1446 btrfs_header_nritems(path->nodes[level]))
1447 continue;
1448 if (level == 0)
1449 btrfs_item_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 else
1452 btrfs_node_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1454 return 0;
1455 }
1456 return 1;
1457}
037e6390 1458
5d4f98a2
YZ
1459/*
1460 * look for inline back ref. if back ref is found, *ref_ret is set
1461 * to the address of inline back ref, and 0 is returned.
1462 *
1463 * if back ref isn't found, *ref_ret is set to the address where it
1464 * should be inserted, and -ENOENT is returned.
1465 *
1466 * if insert is true and there are too many inline back refs, the path
1467 * points to the extent item, and -EAGAIN is returned.
1468 *
1469 * NOTE: inline back refs are ordered in the same way that back ref
1470 * items in the tree are ordered.
1471 */
1472static noinline_for_stack
1473int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1474 struct btrfs_path *path,
1475 struct btrfs_extent_inline_ref **ref_ret,
1476 u64 bytenr, u64 num_bytes,
1477 u64 parent, u64 root_objectid,
1478 u64 owner, u64 offset, int insert)
1479{
867cc1fb 1480 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1481 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1482 struct btrfs_key key;
1483 struct extent_buffer *leaf;
1484 struct btrfs_extent_item *ei;
1485 struct btrfs_extent_inline_ref *iref;
1486 u64 flags;
1487 u64 item_size;
1488 unsigned long ptr;
1489 unsigned long end;
1490 int extra_size;
1491 int type;
1492 int want;
1493 int ret;
1494 int err = 0;
0b246afa 1495 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1496 int needed;
26b8003f 1497
db94535d 1498 key.objectid = bytenr;
31840ae1 1499 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1500 key.offset = num_bytes;
31840ae1 1501
5d4f98a2
YZ
1502 want = extent_ref_type(parent, owner);
1503 if (insert) {
1504 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1505 path->keep_locks = 1;
5d4f98a2
YZ
1506 } else
1507 extra_size = -1;
3173a18f
JB
1508
1509 /*
16d1c062
NB
1510 * Owner is our level, so we can just add one to get the level for the
1511 * block we are interested in.
3173a18f
JB
1512 */
1513 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 key.type = BTRFS_METADATA_ITEM_KEY;
1515 key.offset = owner;
1516 }
1517
1518again:
5d4f98a2 1519 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1520 if (ret < 0) {
5d4f98a2
YZ
1521 err = ret;
1522 goto out;
1523 }
3173a18f
JB
1524
1525 /*
1526 * We may be a newly converted file system which still has the old fat
1527 * extent entries for metadata, so try and see if we have one of those.
1528 */
1529 if (ret > 0 && skinny_metadata) {
1530 skinny_metadata = false;
1531 if (path->slots[0]) {
1532 path->slots[0]--;
1533 btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 path->slots[0]);
1535 if (key.objectid == bytenr &&
1536 key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 key.offset == num_bytes)
1538 ret = 0;
1539 }
1540 if (ret) {
9ce49a0b 1541 key.objectid = bytenr;
3173a18f
JB
1542 key.type = BTRFS_EXTENT_ITEM_KEY;
1543 key.offset = num_bytes;
1544 btrfs_release_path(path);
1545 goto again;
1546 }
1547 }
1548
79787eaa
JM
1549 if (ret && !insert) {
1550 err = -ENOENT;
1551 goto out;
fae7f21c 1552 } else if (WARN_ON(ret)) {
492104c8 1553 err = -EIO;
492104c8 1554 goto out;
79787eaa 1555 }
5d4f98a2
YZ
1556
1557 leaf = path->nodes[0];
1558 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6d8ff4e4 1559 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
1560 err = -EINVAL;
1561 btrfs_print_v0_err(fs_info);
1562 btrfs_abort_transaction(trans, err);
1563 goto out;
1564 }
5d4f98a2 1565
5d4f98a2
YZ
1566 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1567 flags = btrfs_extent_flags(leaf, ei);
1568
1569 ptr = (unsigned long)(ei + 1);
1570 end = (unsigned long)ei + item_size;
1571
3173a18f 1572 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1573 ptr += sizeof(struct btrfs_tree_block_info);
1574 BUG_ON(ptr > end);
5d4f98a2
YZ
1575 }
1576
3de28d57
LB
1577 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1578 needed = BTRFS_REF_TYPE_DATA;
1579 else
1580 needed = BTRFS_REF_TYPE_BLOCK;
1581
5d4f98a2
YZ
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1589 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1590 if (type == BTRFS_REF_TYPE_INVALID) {
af431dcb 1591 err = -EUCLEAN;
3de28d57
LB
1592 goto out;
1593 }
1594
5d4f98a2
YZ
1595 if (want < type)
1596 break;
1597 if (want > type) {
1598 ptr += btrfs_extent_inline_ref_size(type);
1599 continue;
1600 }
1601
1602 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 struct btrfs_extent_data_ref *dref;
1604 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 if (match_extent_data_ref(leaf, dref, root_objectid,
1606 owner, offset)) {
1607 err = 0;
1608 break;
1609 }
1610 if (hash_extent_data_ref_item(leaf, dref) <
1611 hash_extent_data_ref(root_objectid, owner, offset))
1612 break;
1613 } else {
1614 u64 ref_offset;
1615 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 if (parent > 0) {
1617 if (parent == ref_offset) {
1618 err = 0;
1619 break;
1620 }
1621 if (ref_offset < parent)
1622 break;
1623 } else {
1624 if (root_objectid == ref_offset) {
1625 err = 0;
1626 break;
1627 }
1628 if (ref_offset < root_objectid)
1629 break;
1630 }
1631 }
1632 ptr += btrfs_extent_inline_ref_size(type);
1633 }
1634 if (err == -ENOENT && insert) {
1635 if (item_size + extra_size >=
1636 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1637 err = -EAGAIN;
1638 goto out;
1639 }
1640 /*
1641 * To add new inline back ref, we have to make sure
1642 * there is no corresponding back ref item.
1643 * For simplicity, we just do not add new inline back
1644 * ref if there is any kind of item for this block
1645 */
2c47e605
YZ
1646 if (find_next_key(path, 0, &key) == 0 &&
1647 key.objectid == bytenr &&
85d4198e 1648 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1649 err = -EAGAIN;
1650 goto out;
1651 }
1652 }
1653 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1654out:
85d4198e 1655 if (insert) {
5d4f98a2
YZ
1656 path->keep_locks = 0;
1657 btrfs_unlock_up_safe(path, 1);
1658 }
1659 return err;
1660}
1661
1662/*
1663 * helper to add new inline back ref
1664 */
1665static noinline_for_stack
87bde3cd 1666void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1667 struct btrfs_path *path,
1668 struct btrfs_extent_inline_ref *iref,
1669 u64 parent, u64 root_objectid,
1670 u64 owner, u64 offset, int refs_to_add,
1671 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1672{
1673 struct extent_buffer *leaf;
1674 struct btrfs_extent_item *ei;
1675 unsigned long ptr;
1676 unsigned long end;
1677 unsigned long item_offset;
1678 u64 refs;
1679 int size;
1680 int type;
5d4f98a2
YZ
1681
1682 leaf = path->nodes[0];
1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 item_offset = (unsigned long)iref - (unsigned long)ei;
1685
1686 type = extent_ref_type(parent, owner);
1687 size = btrfs_extent_inline_ref_size(type);
1688
87bde3cd 1689 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1690
1691 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 refs = btrfs_extent_refs(leaf, ei);
1693 refs += refs_to_add;
1694 btrfs_set_extent_refs(leaf, ei, refs);
1695 if (extent_op)
1696 __run_delayed_extent_op(extent_op, leaf, ei);
1697
1698 ptr = (unsigned long)ei + item_offset;
1699 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 if (ptr < end - size)
1701 memmove_extent_buffer(leaf, ptr + size, ptr,
1702 end - size - ptr);
1703
1704 iref = (struct btrfs_extent_inline_ref *)ptr;
1705 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 struct btrfs_extent_data_ref *dref;
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 struct btrfs_shared_data_ref *sref;
1715 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 } else {
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 }
1723 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1724}
1725
1726static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1727 struct btrfs_path *path,
1728 struct btrfs_extent_inline_ref **ref_ret,
1729 u64 bytenr, u64 num_bytes, u64 parent,
1730 u64 root_objectid, u64 owner, u64 offset)
1731{
1732 int ret;
1733
867cc1fb
NB
1734 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1735 num_bytes, parent, root_objectid,
1736 owner, offset, 0);
5d4f98a2 1737 if (ret != -ENOENT)
54aa1f4d 1738 return ret;
5d4f98a2 1739
b3b4aa74 1740 btrfs_release_path(path);
5d4f98a2
YZ
1741 *ref_ret = NULL;
1742
1743 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1744 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1745 root_objectid);
5d4f98a2 1746 } else {
bd1d53ef
NB
1747 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1748 root_objectid, owner, offset);
b9473439 1749 }
5d4f98a2
YZ
1750 return ret;
1751}
31840ae1 1752
5d4f98a2
YZ
1753/*
1754 * helper to update/remove inline back ref
1755 */
1756static noinline_for_stack
61a18f1c 1757void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1758 struct btrfs_extent_inline_ref *iref,
1759 int refs_to_mod,
fcebe456
JB
1760 struct btrfs_delayed_extent_op *extent_op,
1761 int *last_ref)
5d4f98a2 1762{
61a18f1c
NB
1763 struct extent_buffer *leaf = path->nodes[0];
1764 struct btrfs_fs_info *fs_info = leaf->fs_info;
5d4f98a2
YZ
1765 struct btrfs_extent_item *ei;
1766 struct btrfs_extent_data_ref *dref = NULL;
1767 struct btrfs_shared_data_ref *sref = NULL;
1768 unsigned long ptr;
1769 unsigned long end;
1770 u32 item_size;
1771 int size;
1772 int type;
5d4f98a2
YZ
1773 u64 refs;
1774
5d4f98a2
YZ
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 refs += refs_to_mod;
1779 btrfs_set_extent_refs(leaf, ei, refs);
1780 if (extent_op)
1781 __run_delayed_extent_op(extent_op, leaf, ei);
1782
3de28d57
LB
1783 /*
1784 * If type is invalid, we should have bailed out after
1785 * lookup_inline_extent_backref().
1786 */
1787 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1788 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
56bec294 1799 }
31840ae1 1800
5d4f98a2
YZ
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
fcebe456 1810 *last_ref = 1;
5d4f98a2
YZ
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1817 end - ptr - size);
1818 item_size -= size;
87bde3cd 1819 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1820 }
1821 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1822}
1823
1824static noinline_for_stack
1825int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831{
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
867cc1fb
NB
1835 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1836 num_bytes, parent, root_objectid,
1837 owner, offset, 1);
5d4f98a2
YZ
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1840 update_inline_extent_backref(path, iref, refs_to_add,
1841 extent_op, NULL);
5d4f98a2 1842 } else if (ret == -ENOENT) {
a639cdeb 1843 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
143bede5
JM
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
771ed689 1847 }
5d4f98a2
YZ
1848 return ret;
1849}
31840ae1 1850
5d4f98a2 1851static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1852 struct btrfs_path *path,
1853 u64 bytenr, u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add)
1855{
1856 int ret;
1857 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 BUG_ON(refs_to_add != 1);
10728404
NB
1859 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1860 root_objectid);
5d4f98a2 1861 } else {
62b895af
NB
1862 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1863 root_objectid, owner, offset,
1864 refs_to_add);
5d4f98a2
YZ
1865 }
1866 return ret;
1867}
56bec294 1868
5d4f98a2 1869static int remove_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1870 struct btrfs_path *path,
1871 struct btrfs_extent_inline_ref *iref,
fcebe456 1872 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1873{
143bede5 1874 int ret = 0;
b9473439 1875
5d4f98a2
YZ
1876 BUG_ON(!is_data && refs_to_drop != 1);
1877 if (iref) {
61a18f1c
NB
1878 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1879 last_ref);
5d4f98a2 1880 } else if (is_data) {
e9f6290d 1881 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 1882 last_ref);
5d4f98a2 1883 } else {
fcebe456 1884 *last_ref = 1;
87cc7a8a 1885 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
5d4f98a2
YZ
1886 }
1887 return ret;
1888}
1889
86557861 1890#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1891static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1892 u64 *discarded_bytes)
5d4f98a2 1893{
86557861
JM
1894 int j, ret = 0;
1895 u64 bytes_left, end;
4d89d377 1896 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1897
4d89d377
JM
1898 if (WARN_ON(start != aligned_start)) {
1899 len -= aligned_start - start;
1900 len = round_down(len, 1 << 9);
1901 start = aligned_start;
1902 }
d04c6b88 1903
4d89d377 1904 *discarded_bytes = 0;
86557861
JM
1905
1906 if (!len)
1907 return 0;
1908
1909 end = start + len;
1910 bytes_left = len;
1911
1912 /* Skip any superblocks on this device. */
1913 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1914 u64 sb_start = btrfs_sb_offset(j);
1915 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1916 u64 size = sb_start - start;
1917
1918 if (!in_range(sb_start, start, bytes_left) &&
1919 !in_range(sb_end, start, bytes_left) &&
1920 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1921 continue;
1922
1923 /*
1924 * Superblock spans beginning of range. Adjust start and
1925 * try again.
1926 */
1927 if (sb_start <= start) {
1928 start += sb_end - start;
1929 if (start > end) {
1930 bytes_left = 0;
1931 break;
1932 }
1933 bytes_left = end - start;
1934 continue;
1935 }
1936
1937 if (size) {
1938 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1939 GFP_NOFS, 0);
1940 if (!ret)
1941 *discarded_bytes += size;
1942 else if (ret != -EOPNOTSUPP)
1943 return ret;
1944 }
1945
1946 start = sb_end;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 }
1953
1954 if (bytes_left) {
1955 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1956 GFP_NOFS, 0);
1957 if (!ret)
86557861 1958 *discarded_bytes += bytes_left;
4d89d377 1959 }
d04c6b88 1960 return ret;
5d4f98a2 1961}
5d4f98a2 1962
2ff7e61e 1963int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 1964 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1965{
5d4f98a2 1966 int ret;
5378e607 1967 u64 discarded_bytes = 0;
a1d3c478 1968 struct btrfs_bio *bbio = NULL;
5d4f98a2 1969
e244a0ae 1970
2999241d
FM
1971 /*
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are discarding.
1974 */
0b246afa 1975 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 1976 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
1977 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1978 &bbio, 0);
79787eaa 1979 /* Error condition is -ENOMEM */
5d4f98a2 1980 if (!ret) {
a1d3c478 1981 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1982 int i;
1983
5d4f98a2 1984
a1d3c478 1985 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1986 u64 bytes;
38b5f68e
AJ
1987 struct request_queue *req_q;
1988
627e0873
FM
1989 if (!stripe->dev->bdev) {
1990 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1991 continue;
1992 }
38b5f68e
AJ
1993 req_q = bdev_get_queue(stripe->dev->bdev);
1994 if (!blk_queue_discard(req_q))
d5e2003c
JB
1995 continue;
1996
5378e607
LD
1997 ret = btrfs_issue_discard(stripe->dev->bdev,
1998 stripe->physical,
d04c6b88
JM
1999 stripe->length,
2000 &bytes);
5378e607 2001 if (!ret)
d04c6b88 2002 discarded_bytes += bytes;
5378e607 2003 else if (ret != -EOPNOTSUPP)
79787eaa 2004 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2005
2006 /*
2007 * Just in case we get back EOPNOTSUPP for some reason,
2008 * just ignore the return value so we don't screw up
2009 * people calling discard_extent.
2010 */
2011 ret = 0;
5d4f98a2 2012 }
6e9606d2 2013 btrfs_put_bbio(bbio);
5d4f98a2 2014 }
0b246afa 2015 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2016
2017 if (actual_bytes)
2018 *actual_bytes = discarded_bytes;
2019
5d4f98a2 2020
53b381b3
DW
2021 if (ret == -EOPNOTSUPP)
2022 ret = 0;
5d4f98a2 2023 return ret;
5d4f98a2
YZ
2024}
2025
79787eaa 2026/* Can return -ENOMEM */
5d4f98a2 2027int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2028 struct btrfs_root *root,
5d4f98a2 2029 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2030 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2031{
84f7d8e6 2032 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2033 int old_ref_mod, new_ref_mod;
5d4f98a2 2034 int ret;
66d7e7f0 2035
5d4f98a2
YZ
2036 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2037 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2038
fd708b81
JB
2039 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2040 owner, offset, BTRFS_ADD_DELAYED_REF);
2041
5d4f98a2 2042 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 2043 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
2044 num_bytes, parent,
2045 root_objectid, (int)owner,
2046 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2047 &old_ref_mod, &new_ref_mod);
5d4f98a2 2048 } else {
88a979c6 2049 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
2050 num_bytes, parent,
2051 root_objectid, owner, offset,
d7eae340
OS
2052 0, BTRFS_ADD_DELAYED_REF,
2053 &old_ref_mod, &new_ref_mod);
5d4f98a2 2054 }
d7eae340 2055
29d2b84c
NB
2056 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2057 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2058
2059 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2060 }
d7eae340 2061
5d4f98a2
YZ
2062 return ret;
2063}
2064
bd3c685e
NB
2065/*
2066 * __btrfs_inc_extent_ref - insert backreference for a given extent
2067 *
2068 * @trans: Handle of transaction
2069 *
2070 * @node: The delayed ref node used to get the bytenr/length for
2071 * extent whose references are incremented.
2072 *
2073 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2074 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2075 * bytenr of the parent block. Since new extents are always
2076 * created with indirect references, this will only be the case
2077 * when relocating a shared extent. In that case, root_objectid
2078 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2079 * be 0
2080 *
2081 * @root_objectid: The id of the root where this modification has originated,
2082 * this can be either one of the well-known metadata trees or
2083 * the subvolume id which references this extent.
2084 *
2085 * @owner: For data extents it is the inode number of the owning file.
2086 * For metadata extents this parameter holds the level in the
2087 * tree of the extent.
2088 *
2089 * @offset: For metadata extents the offset is ignored and is currently
2090 * always passed as 0. For data extents it is the fileoffset
2091 * this extent belongs to.
2092 *
2093 * @refs_to_add Number of references to add
2094 *
2095 * @extent_op Pointer to a structure, holding information necessary when
2096 * updating a tree block's flags
2097 *
2098 */
5d4f98a2 2099static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
c682f9b3 2100 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2101 u64 parent, u64 root_objectid,
2102 u64 owner, u64 offset, int refs_to_add,
2103 struct btrfs_delayed_extent_op *extent_op)
2104{
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
fcebe456 2108 struct btrfs_key key;
c682f9b3
QW
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2111 u64 refs;
2112 int ret;
5d4f98a2
YZ
2113
2114 path = btrfs_alloc_path();
2115 if (!path)
2116 return -ENOMEM;
2117
e4058b54 2118 path->reada = READA_FORWARD;
5d4f98a2
YZ
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
a639cdeb
NB
2121 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2122 parent, root_objectid, owner,
2123 offset, refs_to_add, extent_op);
0ed4792a 2124 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2125 goto out;
fcebe456
JB
2126
2127 /*
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2130 * normal backref.
2131 */
5d4f98a2 2132 leaf = path->nodes[0];
fcebe456 2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 refs = btrfs_extent_refs(leaf, item);
2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2137 if (extent_op)
2138 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2139
5d4f98a2 2140 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2141 btrfs_release_path(path);
56bec294 2142
e4058b54 2143 path->reada = READA_FORWARD;
b9473439 2144 path->leave_spinning = 1;
56bec294 2145 /* now insert the actual backref */
37593410
NB
2146 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2147 owner, offset, refs_to_add);
79787eaa 2148 if (ret)
66642832 2149 btrfs_abort_transaction(trans, ret);
5d4f98a2 2150out:
56bec294 2151 btrfs_free_path(path);
30d133fc 2152 return ret;
56bec294
CM
2153}
2154
5d4f98a2 2155static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2156 struct btrfs_delayed_ref_node *node,
2157 struct btrfs_delayed_extent_op *extent_op,
2158 int insert_reserved)
56bec294 2159{
5d4f98a2
YZ
2160 int ret = 0;
2161 struct btrfs_delayed_data_ref *ref;
2162 struct btrfs_key ins;
2163 u64 parent = 0;
2164 u64 ref_root = 0;
2165 u64 flags = 0;
2166
2167 ins.objectid = node->bytenr;
2168 ins.offset = node->num_bytes;
2169 ins.type = BTRFS_EXTENT_ITEM_KEY;
2170
2171 ref = btrfs_delayed_node_to_data_ref(node);
2bf98ef3 2172 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
599c75ec 2173
5d4f98a2
YZ
2174 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2175 parent = ref->parent;
fcebe456 2176 ref_root = ref->root;
5d4f98a2
YZ
2177
2178 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2179 if (extent_op)
5d4f98a2 2180 flags |= extent_op->flags_to_set;
ef89b824
NB
2181 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2182 flags, ref->objectid,
2183 ref->offset, &ins,
2184 node->ref_mod);
5d4f98a2 2185 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2186 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2187 ref->objectid, ref->offset,
2188 node->ref_mod, extent_op);
5d4f98a2 2189 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2190 ret = __btrfs_free_extent(trans, node, parent,
5d4f98a2
YZ
2191 ref_root, ref->objectid,
2192 ref->offset, node->ref_mod,
c682f9b3 2193 extent_op);
5d4f98a2
YZ
2194 } else {
2195 BUG();
2196 }
2197 return ret;
2198}
2199
2200static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2201 struct extent_buffer *leaf,
2202 struct btrfs_extent_item *ei)
2203{
2204 u64 flags = btrfs_extent_flags(leaf, ei);
2205 if (extent_op->update_flags) {
2206 flags |= extent_op->flags_to_set;
2207 btrfs_set_extent_flags(leaf, ei, flags);
2208 }
2209
2210 if (extent_op->update_key) {
2211 struct btrfs_tree_block_info *bi;
2212 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2213 bi = (struct btrfs_tree_block_info *)(ei + 1);
2214 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2215 }
2216}
2217
2218static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
d278850e 2219 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2220 struct btrfs_delayed_extent_op *extent_op)
2221{
20b9a2d6 2222 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
2223 struct btrfs_key key;
2224 struct btrfs_path *path;
2225 struct btrfs_extent_item *ei;
2226 struct extent_buffer *leaf;
2227 u32 item_size;
56bec294 2228 int ret;
5d4f98a2 2229 int err = 0;
b1c79e09 2230 int metadata = !extent_op->is_data;
5d4f98a2 2231
79787eaa
JM
2232 if (trans->aborted)
2233 return 0;
2234
0b246afa 2235 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2236 metadata = 0;
2237
5d4f98a2
YZ
2238 path = btrfs_alloc_path();
2239 if (!path)
2240 return -ENOMEM;
2241
d278850e 2242 key.objectid = head->bytenr;
5d4f98a2 2243
3173a18f 2244 if (metadata) {
3173a18f 2245 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2246 key.offset = extent_op->level;
3173a18f
JB
2247 } else {
2248 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2249 key.offset = head->num_bytes;
3173a18f
JB
2250 }
2251
2252again:
e4058b54 2253 path->reada = READA_FORWARD;
5d4f98a2 2254 path->leave_spinning = 1;
0b246afa 2255 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2256 if (ret < 0) {
2257 err = ret;
2258 goto out;
2259 }
2260 if (ret > 0) {
3173a18f 2261 if (metadata) {
55994887
FDBM
2262 if (path->slots[0] > 0) {
2263 path->slots[0]--;
2264 btrfs_item_key_to_cpu(path->nodes[0], &key,
2265 path->slots[0]);
d278850e 2266 if (key.objectid == head->bytenr &&
55994887 2267 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2268 key.offset == head->num_bytes)
55994887
FDBM
2269 ret = 0;
2270 }
2271 if (ret > 0) {
2272 btrfs_release_path(path);
2273 metadata = 0;
3173a18f 2274
d278850e
JB
2275 key.objectid = head->bytenr;
2276 key.offset = head->num_bytes;
55994887
FDBM
2277 key.type = BTRFS_EXTENT_ITEM_KEY;
2278 goto again;
2279 }
2280 } else {
2281 err = -EIO;
2282 goto out;
3173a18f 2283 }
5d4f98a2
YZ
2284 }
2285
2286 leaf = path->nodes[0];
2287 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ba3c2b19 2288
6d8ff4e4 2289 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
2290 err = -EINVAL;
2291 btrfs_print_v0_err(fs_info);
2292 btrfs_abort_transaction(trans, err);
2293 goto out;
2294 }
2295
5d4f98a2
YZ
2296 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2297 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2298
5d4f98a2
YZ
2299 btrfs_mark_buffer_dirty(leaf);
2300out:
2301 btrfs_free_path(path);
2302 return err;
56bec294
CM
2303}
2304
5d4f98a2 2305static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2306 struct btrfs_delayed_ref_node *node,
2307 struct btrfs_delayed_extent_op *extent_op,
2308 int insert_reserved)
56bec294
CM
2309{
2310 int ret = 0;
5d4f98a2 2311 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2312 u64 parent = 0;
2313 u64 ref_root = 0;
56bec294 2314
5d4f98a2 2315 ref = btrfs_delayed_node_to_tree_ref(node);
f97806f2 2316 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
599c75ec 2317
5d4f98a2
YZ
2318 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2319 parent = ref->parent;
fcebe456 2320 ref_root = ref->root;
5d4f98a2 2321
02794222 2322 if (node->ref_mod != 1) {
f97806f2 2323 btrfs_err(trans->fs_info,
02794222
LB
2324 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2325 node->bytenr, node->ref_mod, node->action, ref_root,
2326 parent);
2327 return -EIO;
2328 }
5d4f98a2 2329 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2330 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2331 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2332 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2333 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2334 ref->level, 0, 1, extent_op);
5d4f98a2 2335 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2336 ret = __btrfs_free_extent(trans, node, parent, ref_root,
c682f9b3 2337 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2338 } else {
2339 BUG();
2340 }
56bec294
CM
2341 return ret;
2342}
2343
2344/* helper function to actually process a single delayed ref entry */
5d4f98a2 2345static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2346 struct btrfs_delayed_ref_node *node,
2347 struct btrfs_delayed_extent_op *extent_op,
2348 int insert_reserved)
56bec294 2349{
79787eaa
JM
2350 int ret = 0;
2351
857cc2fc
JB
2352 if (trans->aborted) {
2353 if (insert_reserved)
5fac7f9e 2354 btrfs_pin_extent(trans->fs_info, node->bytenr,
857cc2fc 2355 node->num_bytes, 1);
79787eaa 2356 return 0;
857cc2fc 2357 }
79787eaa 2358
5d4f98a2
YZ
2359 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2360 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
f97806f2 2361 ret = run_delayed_tree_ref(trans, node, extent_op,
5d4f98a2
YZ
2362 insert_reserved);
2363 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2364 node->type == BTRFS_SHARED_DATA_REF_KEY)
2bf98ef3 2365 ret = run_delayed_data_ref(trans, node, extent_op,
5d4f98a2
YZ
2366 insert_reserved);
2367 else
2368 BUG();
2369 return ret;
56bec294
CM
2370}
2371
c6fc2454 2372static inline struct btrfs_delayed_ref_node *
56bec294
CM
2373select_delayed_ref(struct btrfs_delayed_ref_head *head)
2374{
cffc3374
FM
2375 struct btrfs_delayed_ref_node *ref;
2376
0e0adbcf 2377 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2378 return NULL;
d7df2c79 2379
cffc3374
FM
2380 /*
2381 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2382 * This is to prevent a ref count from going down to zero, which deletes
2383 * the extent item from the extent tree, when there still are references
2384 * to add, which would fail because they would not find the extent item.
2385 */
1d57ee94
WX
2386 if (!list_empty(&head->ref_add_list))
2387 return list_first_entry(&head->ref_add_list,
2388 struct btrfs_delayed_ref_node, add_list);
2389
0e0adbcf
JB
2390 ref = rb_entry(rb_first(&head->ref_tree),
2391 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2392 ASSERT(list_empty(&ref->add_list));
2393 return ref;
56bec294
CM
2394}
2395
2eadaa22
JB
2396static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2397 struct btrfs_delayed_ref_head *head)
2398{
2399 spin_lock(&delayed_refs->lock);
2400 head->processing = 0;
2401 delayed_refs->num_heads_ready++;
2402 spin_unlock(&delayed_refs->lock);
2403 btrfs_delayed_ref_unlock(head);
2404}
2405
b00e6250 2406static int cleanup_extent_op(struct btrfs_trans_handle *trans,
b00e6250
JB
2407 struct btrfs_delayed_ref_head *head)
2408{
2409 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2410 int ret;
2411
2412 if (!extent_op)
2413 return 0;
2414 head->extent_op = NULL;
2415 if (head->must_insert_reserved) {
2416 btrfs_free_delayed_extent_op(extent_op);
2417 return 0;
2418 }
2419 spin_unlock(&head->lock);
20b9a2d6 2420 ret = run_delayed_extent_op(trans, head, extent_op);
b00e6250
JB
2421 btrfs_free_delayed_extent_op(extent_op);
2422 return ret ? ret : 1;
2423}
2424
194ab0bc 2425static int cleanup_ref_head(struct btrfs_trans_handle *trans,
194ab0bc
JB
2426 struct btrfs_delayed_ref_head *head)
2427{
f9871edd
NB
2428
2429 struct btrfs_fs_info *fs_info = trans->fs_info;
194ab0bc
JB
2430 struct btrfs_delayed_ref_root *delayed_refs;
2431 int ret;
2432
2433 delayed_refs = &trans->transaction->delayed_refs;
2434
c4d56d4a 2435 ret = cleanup_extent_op(trans, head);
194ab0bc
JB
2436 if (ret < 0) {
2437 unselect_delayed_ref_head(delayed_refs, head);
2438 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2439 return ret;
2440 } else if (ret) {
2441 return ret;
2442 }
2443
2444 /*
2445 * Need to drop our head ref lock and re-acquire the delayed ref lock
2446 * and then re-check to make sure nobody got added.
2447 */
2448 spin_unlock(&head->lock);
2449 spin_lock(&delayed_refs->lock);
2450 spin_lock(&head->lock);
0e0adbcf 2451 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2452 spin_unlock(&head->lock);
2453 spin_unlock(&delayed_refs->lock);
2454 return 1;
2455 }
194ab0bc
JB
2456 delayed_refs->num_heads--;
2457 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2458 RB_CLEAR_NODE(&head->href_node);
c1103f7a 2459 spin_unlock(&head->lock);
1e7a1421 2460 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2461 atomic_dec(&delayed_refs->num_entries);
2462
d278850e 2463 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2464
2465 if (head->total_ref_mod < 0) {
5e388e95
NB
2466 struct btrfs_space_info *space_info;
2467 u64 flags;
c1103f7a 2468
5e388e95
NB
2469 if (head->is_data)
2470 flags = BTRFS_BLOCK_GROUP_DATA;
2471 else if (head->is_system)
2472 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 else
2474 flags = BTRFS_BLOCK_GROUP_METADATA;
2475 space_info = __find_space_info(fs_info, flags);
2476 ASSERT(space_info);
dec59fa3
EL
2477 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 -head->num_bytes,
2479 BTRFS_TOTAL_BYTES_PINNED_BATCH);
c1103f7a
JB
2480
2481 if (head->is_data) {
2482 spin_lock(&delayed_refs->lock);
d278850e 2483 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2484 spin_unlock(&delayed_refs->lock);
2485 }
2486 }
2487
2488 if (head->must_insert_reserved) {
d278850e
JB
2489 btrfs_pin_extent(fs_info, head->bytenr,
2490 head->num_bytes, 1);
c1103f7a 2491 if (head->is_data) {
d278850e
JB
2492 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2493 head->num_bytes);
c1103f7a
JB
2494 }
2495 }
2496
2497 /* Also free its reserved qgroup space */
2498 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2499 head->qgroup_reserved);
2500 btrfs_delayed_ref_unlock(head);
d278850e 2501 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2502 return 0;
2503}
2504
79787eaa
JM
2505/*
2506 * Returns 0 on success or if called with an already aborted transaction.
2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508 */
d7df2c79 2509static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2510 unsigned long nr)
56bec294 2511{
0a1e458a 2512 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294
CM
2513 struct btrfs_delayed_ref_root *delayed_refs;
2514 struct btrfs_delayed_ref_node *ref;
2515 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2516 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2517 ktime_t start = ktime_get();
56bec294 2518 int ret;
d7df2c79 2519 unsigned long count = 0;
0a2b2a84 2520 unsigned long actual_count = 0;
56bec294 2521 int must_insert_reserved = 0;
56bec294
CM
2522
2523 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2524 while (1) {
2525 if (!locked_ref) {
d7df2c79 2526 if (count >= nr)
56bec294 2527 break;
56bec294 2528
d7df2c79
JB
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref = btrfs_select_ref_head(trans);
2531 if (!locked_ref) {
2532 spin_unlock(&delayed_refs->lock);
2533 break;
2534 }
c3e69d58
CM
2535
2536 /* grab the lock that says we are going to process
2537 * all the refs for this head */
2538 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2539 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2540 /*
2541 * we may have dropped the spin lock to get the head
2542 * mutex lock, and that might have given someone else
2543 * time to free the head. If that's true, it has been
2544 * removed from our list and we can move on.
2545 */
2546 if (ret == -EAGAIN) {
2547 locked_ref = NULL;
2548 count++;
2549 continue;
56bec294
CM
2550 }
2551 }
a28ec197 2552
2c3cf7d5
FM
2553 /*
2554 * We need to try and merge add/drops of the same ref since we
2555 * can run into issues with relocate dropping the implicit ref
2556 * and then it being added back again before the drop can
2557 * finish. If we merged anything we need to re-loop so we can
2558 * get a good ref.
2559 * Or we can get node references of the same type that weren't
2560 * merged when created due to bumps in the tree mod seq, and
2561 * we need to merge them to prevent adding an inline extent
2562 * backref before dropping it (triggering a BUG_ON at
2563 * insert_inline_extent_backref()).
2564 */
d7df2c79 2565 spin_lock(&locked_ref->lock);
be97f133 2566 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2567
d1270cd9
AJ
2568 ref = select_delayed_ref(locked_ref);
2569
2570 if (ref && ref->seq &&
41d0bd3b 2571 btrfs_check_delayed_seq(fs_info, ref->seq)) {
d7df2c79 2572 spin_unlock(&locked_ref->lock);
2eadaa22 2573 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2574 locked_ref = NULL;
d1270cd9 2575 cond_resched();
27a377db 2576 count++;
d1270cd9
AJ
2577 continue;
2578 }
2579
c1103f7a
JB
2580 /*
2581 * We're done processing refs in this ref_head, clean everything
2582 * up and move on to the next ref_head.
2583 */
56bec294 2584 if (!ref) {
f9871edd 2585 ret = cleanup_ref_head(trans, locked_ref);
194ab0bc 2586 if (ret > 0 ) {
b00e6250
JB
2587 /* We dropped our lock, we need to loop. */
2588 ret = 0;
d7df2c79 2589 continue;
194ab0bc
JB
2590 } else if (ret) {
2591 return ret;
5d4f98a2 2592 }
c1103f7a
JB
2593 locked_ref = NULL;
2594 count++;
2595 continue;
2596 }
02217ed2 2597
c1103f7a
JB
2598 actual_count++;
2599 ref->in_tree = 0;
0e0adbcf
JB
2600 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2601 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2602 if (!list_empty(&ref->add_list))
2603 list_del(&ref->add_list);
2604 /*
2605 * When we play the delayed ref, also correct the ref_mod on
2606 * head
2607 */
2608 switch (ref->action) {
2609 case BTRFS_ADD_DELAYED_REF:
2610 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2611 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2612 break;
2613 case BTRFS_DROP_DELAYED_REF:
d278850e 2614 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2615 break;
2616 default:
2617 WARN_ON(1);
22cd2e7d 2618 }
1ce7a5ec
JB
2619 atomic_dec(&delayed_refs->num_entries);
2620
b00e6250
JB
2621 /*
2622 * Record the must-insert_reserved flag before we drop the spin
2623 * lock.
2624 */
2625 must_insert_reserved = locked_ref->must_insert_reserved;
2626 locked_ref->must_insert_reserved = 0;
2627
2628 extent_op = locked_ref->extent_op;
2629 locked_ref->extent_op = NULL;
d7df2c79 2630 spin_unlock(&locked_ref->lock);
925baedd 2631
5fac7f9e 2632 ret = run_one_delayed_ref(trans, ref, extent_op,
56bec294 2633 must_insert_reserved);
eb099670 2634
78a6184a 2635 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2636 if (ret) {
2eadaa22 2637 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2638 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2639 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2640 ret);
79787eaa
JM
2641 return ret;
2642 }
2643
093486c4
MX
2644 btrfs_put_delayed_ref(ref);
2645 count++;
c3e69d58 2646 cond_resched();
c3e69d58 2647 }
0a2b2a84
JB
2648
2649 /*
2650 * We don't want to include ref heads since we can have empty ref heads
2651 * and those will drastically skew our runtime down since we just do
2652 * accounting, no actual extent tree updates.
2653 */
2654 if (actual_count > 0) {
2655 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2656 u64 avg;
2657
2658 /*
2659 * We weigh the current average higher than our current runtime
2660 * to avoid large swings in the average.
2661 */
2662 spin_lock(&delayed_refs->lock);
2663 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2664 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2665 spin_unlock(&delayed_refs->lock);
2666 }
d7df2c79 2667 return 0;
c3e69d58
CM
2668}
2669
709c0486
AJ
2670#ifdef SCRAMBLE_DELAYED_REFS
2671/*
2672 * Normally delayed refs get processed in ascending bytenr order. This
2673 * correlates in most cases to the order added. To expose dependencies on this
2674 * order, we start to process the tree in the middle instead of the beginning
2675 */
2676static u64 find_middle(struct rb_root *root)
2677{
2678 struct rb_node *n = root->rb_node;
2679 struct btrfs_delayed_ref_node *entry;
2680 int alt = 1;
2681 u64 middle;
2682 u64 first = 0, last = 0;
2683
2684 n = rb_first(root);
2685 if (n) {
2686 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2687 first = entry->bytenr;
2688 }
2689 n = rb_last(root);
2690 if (n) {
2691 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2692 last = entry->bytenr;
2693 }
2694 n = root->rb_node;
2695
2696 while (n) {
2697 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2698 WARN_ON(!entry->in_tree);
2699
2700 middle = entry->bytenr;
2701
2702 if (alt)
2703 n = n->rb_left;
2704 else
2705 n = n->rb_right;
2706
2707 alt = 1 - alt;
2708 }
2709 return middle;
2710}
2711#endif
2712
2ff7e61e 2713static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2714{
2715 u64 num_bytes;
2716
2717 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2718 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2719 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2720 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2721
2722 /*
2723 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2724 * closer to what we're really going to want to use.
1be41b78 2725 */
0b246afa 2726 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2727}
2728
1262133b
JB
2729/*
2730 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2731 * would require to store the csums for that many bytes.
2732 */
2ff7e61e 2733u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2734{
2735 u64 csum_size;
2736 u64 num_csums_per_leaf;
2737 u64 num_csums;
2738
0b246afa 2739 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2740 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2741 (u64)btrfs_super_csum_size(fs_info->super_copy));
2742 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2743 num_csums += num_csums_per_leaf - 1;
2744 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2745 return num_csums;
2746}
2747
0a2b2a84 2748int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2749 struct btrfs_fs_info *fs_info)
1be41b78
JB
2750{
2751 struct btrfs_block_rsv *global_rsv;
2752 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2753 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2754 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2755 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2756 int ret = 0;
2757
0b246afa 2758 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2759 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2760 if (num_heads > 1)
0b246afa 2761 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2762 num_bytes <<= 1;
2ff7e61e
JM
2763 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2764 fs_info->nodesize;
0b246afa 2765 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2766 num_dirty_bgs);
0b246afa 2767 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2768
2769 /*
2770 * If we can't allocate any more chunks lets make sure we have _lots_ of
2771 * wiggle room since running delayed refs can create more delayed refs.
2772 */
cb723e49
JB
2773 if (global_rsv->space_info->full) {
2774 num_dirty_bgs_bytes <<= 1;
1be41b78 2775 num_bytes <<= 1;
cb723e49 2776 }
1be41b78
JB
2777
2778 spin_lock(&global_rsv->lock);
cb723e49 2779 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2780 ret = 1;
2781 spin_unlock(&global_rsv->lock);
2782 return ret;
2783}
2784
0a2b2a84 2785int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2786 struct btrfs_fs_info *fs_info)
0a2b2a84 2787{
0a2b2a84
JB
2788 u64 num_entries =
2789 atomic_read(&trans->transaction->delayed_refs.num_entries);
2790 u64 avg_runtime;
a79b7d4b 2791 u64 val;
0a2b2a84
JB
2792
2793 smp_mb();
2794 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2795 val = num_entries * avg_runtime;
dc1a90c6 2796 if (val >= NSEC_PER_SEC)
0a2b2a84 2797 return 1;
a79b7d4b
CM
2798 if (val >= NSEC_PER_SEC / 2)
2799 return 2;
0a2b2a84 2800
2ff7e61e 2801 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2802}
2803
a79b7d4b
CM
2804struct async_delayed_refs {
2805 struct btrfs_root *root;
31b9655f 2806 u64 transid;
a79b7d4b
CM
2807 int count;
2808 int error;
2809 int sync;
2810 struct completion wait;
2811 struct btrfs_work work;
2812};
2813
2ff7e61e
JM
2814static inline struct async_delayed_refs *
2815to_async_delayed_refs(struct btrfs_work *work)
2816{
2817 return container_of(work, struct async_delayed_refs, work);
2818}
2819
a79b7d4b
CM
2820static void delayed_ref_async_start(struct btrfs_work *work)
2821{
2ff7e61e 2822 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2823 struct btrfs_trans_handle *trans;
2ff7e61e 2824 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2825 int ret;
2826
0f873eca 2827 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2828 if (btrfs_transaction_blocked(fs_info))
31b9655f 2829 goto done;
31b9655f 2830
0f873eca
CM
2831 trans = btrfs_join_transaction(async->root);
2832 if (IS_ERR(trans)) {
2833 async->error = PTR_ERR(trans);
a79b7d4b
CM
2834 goto done;
2835 }
2836
2837 /*
01327610 2838 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2839 * wait on delayed refs
2840 */
2841 trans->sync = true;
0f873eca
CM
2842
2843 /* Don't bother flushing if we got into a different transaction */
2844 if (trans->transid > async->transid)
2845 goto end;
2846
c79a70b1 2847 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2848 if (ret)
2849 async->error = ret;
0f873eca 2850end:
3a45bb20 2851 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2852 if (ret && !async->error)
2853 async->error = ret;
2854done:
2855 if (async->sync)
2856 complete(&async->wait);
2857 else
2858 kfree(async);
2859}
2860
2ff7e61e 2861int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2862 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2863{
2864 struct async_delayed_refs *async;
2865 int ret;
2866
2867 async = kmalloc(sizeof(*async), GFP_NOFS);
2868 if (!async)
2869 return -ENOMEM;
2870
0b246afa 2871 async->root = fs_info->tree_root;
a79b7d4b
CM
2872 async->count = count;
2873 async->error = 0;
31b9655f 2874 async->transid = transid;
a79b7d4b
CM
2875 if (wait)
2876 async->sync = 1;
2877 else
2878 async->sync = 0;
2879 init_completion(&async->wait);
2880
9e0af237
LB
2881 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2882 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2883
0b246afa 2884 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2885
2886 if (wait) {
2887 wait_for_completion(&async->wait);
2888 ret = async->error;
2889 kfree(async);
2890 return ret;
2891 }
2892 return 0;
2893}
2894
c3e69d58
CM
2895/*
2896 * this starts processing the delayed reference count updates and
2897 * extent insertions we have queued up so far. count can be
2898 * 0, which means to process everything in the tree at the start
2899 * of the run (but not newly added entries), or it can be some target
2900 * number you'd like to process.
79787eaa
JM
2901 *
2902 * Returns 0 on success or if called with an aborted transaction
2903 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2904 */
2905int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 2906 unsigned long count)
c3e69d58 2907{
c79a70b1 2908 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
2909 struct rb_node *node;
2910 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2911 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2912 int ret;
2913 int run_all = count == (unsigned long)-1;
d9a0540a 2914 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2915
79787eaa
JM
2916 /* We'll clean this up in btrfs_cleanup_transaction */
2917 if (trans->aborted)
2918 return 0;
2919
0b246afa 2920 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2921 return 0;
2922
c3e69d58 2923 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2924 if (count == 0)
d7df2c79 2925 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2926
c3e69d58 2927again:
709c0486
AJ
2928#ifdef SCRAMBLE_DELAYED_REFS
2929 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2930#endif
d9a0540a 2931 trans->can_flush_pending_bgs = false;
0a1e458a 2932 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 2933 if (ret < 0) {
66642832 2934 btrfs_abort_transaction(trans, ret);
d7df2c79 2935 return ret;
eb099670 2936 }
c3e69d58 2937
56bec294 2938 if (run_all) {
d7df2c79 2939 if (!list_empty(&trans->new_bgs))
6c686b35 2940 btrfs_create_pending_block_groups(trans);
ea658bad 2941
d7df2c79 2942 spin_lock(&delayed_refs->lock);
c46effa6 2943 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2944 if (!node) {
2945 spin_unlock(&delayed_refs->lock);
56bec294 2946 goto out;
d7df2c79 2947 }
d278850e
JB
2948 head = rb_entry(node, struct btrfs_delayed_ref_head,
2949 href_node);
2950 refcount_inc(&head->refs);
2951 spin_unlock(&delayed_refs->lock);
e9d0b13b 2952
d278850e
JB
2953 /* Mutex was contended, block until it's released and retry. */
2954 mutex_lock(&head->mutex);
2955 mutex_unlock(&head->mutex);
56bec294 2956
d278850e 2957 btrfs_put_delayed_ref_head(head);
d7df2c79 2958 cond_resched();
56bec294 2959 goto again;
5f39d397 2960 }
54aa1f4d 2961out:
d9a0540a 2962 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2963 return 0;
2964}
2965
5d4f98a2 2966int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 2967 struct btrfs_fs_info *fs_info,
5d4f98a2 2968 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2969 int level, int is_data)
5d4f98a2
YZ
2970{
2971 struct btrfs_delayed_extent_op *extent_op;
2972 int ret;
2973
78a6184a 2974 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2975 if (!extent_op)
2976 return -ENOMEM;
2977
2978 extent_op->flags_to_set = flags;
35b3ad50
DS
2979 extent_op->update_flags = true;
2980 extent_op->update_key = false;
2981 extent_op->is_data = is_data ? true : false;
b1c79e09 2982 extent_op->level = level;
5d4f98a2 2983
0b246afa 2984 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 2985 num_bytes, extent_op);
5d4f98a2 2986 if (ret)
78a6184a 2987 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2988 return ret;
2989}
2990
e4c3b2dc 2991static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
2992 struct btrfs_path *path,
2993 u64 objectid, u64 offset, u64 bytenr)
2994{
2995 struct btrfs_delayed_ref_head *head;
2996 struct btrfs_delayed_ref_node *ref;
2997 struct btrfs_delayed_data_ref *data_ref;
2998 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 2999 struct btrfs_transaction *cur_trans;
0e0adbcf 3000 struct rb_node *node;
5d4f98a2
YZ
3001 int ret = 0;
3002
998ac6d2 3003 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3004 cur_trans = root->fs_info->running_transaction;
998ac6d2 3005 if (cur_trans)
3006 refcount_inc(&cur_trans->use_count);
3007 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3008 if (!cur_trans)
3009 return 0;
3010
3011 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3012 spin_lock(&delayed_refs->lock);
f72ad18e 3013 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3014 if (!head) {
3015 spin_unlock(&delayed_refs->lock);
998ac6d2 3016 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3017 return 0;
3018 }
5d4f98a2
YZ
3019
3020 if (!mutex_trylock(&head->mutex)) {
d278850e 3021 refcount_inc(&head->refs);
5d4f98a2
YZ
3022 spin_unlock(&delayed_refs->lock);
3023
b3b4aa74 3024 btrfs_release_path(path);
5d4f98a2 3025
8cc33e5c
DS
3026 /*
3027 * Mutex was contended, block until it's released and let
3028 * caller try again
3029 */
5d4f98a2
YZ
3030 mutex_lock(&head->mutex);
3031 mutex_unlock(&head->mutex);
d278850e 3032 btrfs_put_delayed_ref_head(head);
998ac6d2 3033 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3034 return -EAGAIN;
3035 }
d7df2c79 3036 spin_unlock(&delayed_refs->lock);
5d4f98a2 3037
d7df2c79 3038 spin_lock(&head->lock);
0e0adbcf
JB
3039 /*
3040 * XXX: We should replace this with a proper search function in the
3041 * future.
3042 */
3043 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3044 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3045 /* If it's a shared ref we know a cross reference exists */
3046 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3047 ret = 1;
3048 break;
3049 }
5d4f98a2 3050
d7df2c79 3051 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3052
d7df2c79
JB
3053 /*
3054 * If our ref doesn't match the one we're currently looking at
3055 * then we have a cross reference.
3056 */
3057 if (data_ref->root != root->root_key.objectid ||
3058 data_ref->objectid != objectid ||
3059 data_ref->offset != offset) {
3060 ret = 1;
3061 break;
3062 }
5d4f98a2 3063 }
d7df2c79 3064 spin_unlock(&head->lock);
5d4f98a2 3065 mutex_unlock(&head->mutex);
998ac6d2 3066 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3067 return ret;
3068}
3069
e4c3b2dc 3070static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3071 struct btrfs_path *path,
3072 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3073{
0b246afa
JM
3074 struct btrfs_fs_info *fs_info = root->fs_info;
3075 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3076 struct extent_buffer *leaf;
5d4f98a2
YZ
3077 struct btrfs_extent_data_ref *ref;
3078 struct btrfs_extent_inline_ref *iref;
3079 struct btrfs_extent_item *ei;
f321e491 3080 struct btrfs_key key;
5d4f98a2 3081 u32 item_size;
3de28d57 3082 int type;
be20aa9d 3083 int ret;
925baedd 3084
be20aa9d 3085 key.objectid = bytenr;
31840ae1 3086 key.offset = (u64)-1;
f321e491 3087 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3088
be20aa9d
CM
3089 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3090 if (ret < 0)
3091 goto out;
79787eaa 3092 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3093
3094 ret = -ENOENT;
3095 if (path->slots[0] == 0)
31840ae1 3096 goto out;
be20aa9d 3097
31840ae1 3098 path->slots[0]--;
f321e491 3099 leaf = path->nodes[0];
5d4f98a2 3100 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3101
5d4f98a2 3102 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3103 goto out;
f321e491 3104
5d4f98a2
YZ
3105 ret = 1;
3106 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5d4f98a2 3107 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3108
5d4f98a2
YZ
3109 if (item_size != sizeof(*ei) +
3110 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111 goto out;
be20aa9d 3112
5d4f98a2
YZ
3113 if (btrfs_extent_generation(leaf, ei) <=
3114 btrfs_root_last_snapshot(&root->root_item))
3115 goto out;
3116
3117 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3118
3119 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3120 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3121 goto out;
3122
3123 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3124 if (btrfs_extent_refs(leaf, ei) !=
3125 btrfs_extent_data_ref_count(leaf, ref) ||
3126 btrfs_extent_data_ref_root(leaf, ref) !=
3127 root->root_key.objectid ||
3128 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3129 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3130 goto out;
3131
3132 ret = 0;
3133out:
3134 return ret;
3135}
3136
e4c3b2dc
LB
3137int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3138 u64 bytenr)
5d4f98a2
YZ
3139{
3140 struct btrfs_path *path;
3141 int ret;
3142 int ret2;
3143
3144 path = btrfs_alloc_path();
3145 if (!path)
9132c4ff 3146 return -ENOMEM;
5d4f98a2
YZ
3147
3148 do {
e4c3b2dc 3149 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3150 offset, bytenr);
3151 if (ret && ret != -ENOENT)
f321e491 3152 goto out;
80ff3856 3153
e4c3b2dc 3154 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3155 offset, bytenr);
3156 } while (ret2 == -EAGAIN);
3157
3158 if (ret2 && ret2 != -ENOENT) {
3159 ret = ret2;
3160 goto out;
f321e491 3161 }
5d4f98a2
YZ
3162
3163 if (ret != -ENOENT || ret2 != -ENOENT)
3164 ret = 0;
be20aa9d 3165out:
80ff3856 3166 btrfs_free_path(path);
f0486c68
YZ
3167 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3168 WARN_ON(ret > 0);
f321e491 3169 return ret;
be20aa9d 3170}
c5739bba 3171
5d4f98a2 3172static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3173 struct btrfs_root *root,
5d4f98a2 3174 struct extent_buffer *buf,
e339a6b0 3175 int full_backref, int inc)
31840ae1 3176{
0b246afa 3177 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3178 u64 bytenr;
5d4f98a2
YZ
3179 u64 num_bytes;
3180 u64 parent;
31840ae1 3181 u64 ref_root;
31840ae1 3182 u32 nritems;
31840ae1
ZY
3183 struct btrfs_key key;
3184 struct btrfs_file_extent_item *fi;
3185 int i;
3186 int level;
3187 int ret = 0;
2ff7e61e 3188 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3189 struct btrfs_root *,
b06c4bf5 3190 u64, u64, u64, u64, u64, u64);
31840ae1 3191
fccb84c9 3192
0b246afa 3193 if (btrfs_is_testing(fs_info))
faa2dbf0 3194 return 0;
fccb84c9 3195
31840ae1 3196 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3197 nritems = btrfs_header_nritems(buf);
3198 level = btrfs_header_level(buf);
3199
27cdeb70 3200 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3201 return 0;
31840ae1 3202
5d4f98a2
YZ
3203 if (inc)
3204 process_func = btrfs_inc_extent_ref;
3205 else
3206 process_func = btrfs_free_extent;
31840ae1 3207
5d4f98a2
YZ
3208 if (full_backref)
3209 parent = buf->start;
3210 else
3211 parent = 0;
3212
3213 for (i = 0; i < nritems; i++) {
31840ae1 3214 if (level == 0) {
5d4f98a2 3215 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3216 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3217 continue;
5d4f98a2 3218 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3219 struct btrfs_file_extent_item);
3220 if (btrfs_file_extent_type(buf, fi) ==
3221 BTRFS_FILE_EXTENT_INLINE)
3222 continue;
3223 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3224 if (bytenr == 0)
3225 continue;
5d4f98a2
YZ
3226
3227 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3228 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3229 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3230 parent, ref_root, key.objectid,
b06c4bf5 3231 key.offset);
31840ae1
ZY
3232 if (ret)
3233 goto fail;
3234 } else {
5d4f98a2 3235 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3236 num_bytes = fs_info->nodesize;
84f7d8e6 3237 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3238 parent, ref_root, level - 1, 0);
31840ae1
ZY
3239 if (ret)
3240 goto fail;
3241 }
3242 }
3243 return 0;
3244fail:
5d4f98a2
YZ
3245 return ret;
3246}
3247
3248int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3249 struct extent_buffer *buf, int full_backref)
5d4f98a2 3250{
e339a6b0 3251 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3252}
3253
3254int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3255 struct extent_buffer *buf, int full_backref)
5d4f98a2 3256{
e339a6b0 3257 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3258}
3259
9078a3e1 3260static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3261 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3262 struct btrfs_path *path,
3263 struct btrfs_block_group_cache *cache)
3264{
3265 int ret;
0b246afa 3266 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3267 unsigned long bi;
3268 struct extent_buffer *leaf;
9078a3e1 3269
9078a3e1 3270 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3271 if (ret) {
3272 if (ret > 0)
3273 ret = -ENOENT;
54aa1f4d 3274 goto fail;
df95e7f0 3275 }
5f39d397
CM
3276
3277 leaf = path->nodes[0];
3278 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3279 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3280 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3281fail:
24b89d08 3282 btrfs_release_path(path);
df95e7f0 3283 return ret;
9078a3e1
CM
3284
3285}
3286
4a8c9a62 3287static struct btrfs_block_group_cache *
2ff7e61e 3288next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3289 struct btrfs_block_group_cache *cache)
3290{
3291 struct rb_node *node;
292cbd51 3292
0b246afa 3293 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3294
3295 /* If our block group was removed, we need a full search. */
3296 if (RB_EMPTY_NODE(&cache->cache_node)) {
3297 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3298
0b246afa 3299 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3300 btrfs_put_block_group(cache);
0b246afa 3301 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3302 }
4a8c9a62
YZ
3303 node = rb_next(&cache->cache_node);
3304 btrfs_put_block_group(cache);
3305 if (node) {
3306 cache = rb_entry(node, struct btrfs_block_group_cache,
3307 cache_node);
11dfe35a 3308 btrfs_get_block_group(cache);
4a8c9a62
YZ
3309 } else
3310 cache = NULL;
0b246afa 3311 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3312 return cache;
3313}
3314
0af3d00b
JB
3315static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3316 struct btrfs_trans_handle *trans,
3317 struct btrfs_path *path)
3318{
0b246afa
JM
3319 struct btrfs_fs_info *fs_info = block_group->fs_info;
3320 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3321 struct inode *inode = NULL;
364ecf36 3322 struct extent_changeset *data_reserved = NULL;
0af3d00b 3323 u64 alloc_hint = 0;
2b20982e 3324 int dcs = BTRFS_DC_ERROR;
f8c269d7 3325 u64 num_pages = 0;
0af3d00b
JB
3326 int retries = 0;
3327 int ret = 0;
3328
3329 /*
3330 * If this block group is smaller than 100 megs don't bother caching the
3331 * block group.
3332 */
ee22184b 3333 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3334 spin_lock(&block_group->lock);
3335 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3336 spin_unlock(&block_group->lock);
3337 return 0;
3338 }
3339
0c0ef4bc
JB
3340 if (trans->aborted)
3341 return 0;
0af3d00b 3342again:
77ab86bf 3343 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3344 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3345 ret = PTR_ERR(inode);
b3b4aa74 3346 btrfs_release_path(path);
0af3d00b
JB
3347 goto out;
3348 }
3349
3350 if (IS_ERR(inode)) {
3351 BUG_ON(retries);
3352 retries++;
3353
3354 if (block_group->ro)
3355 goto out_free;
3356
77ab86bf
JM
3357 ret = create_free_space_inode(fs_info, trans, block_group,
3358 path);
0af3d00b
JB
3359 if (ret)
3360 goto out_free;
3361 goto again;
3362 }
3363
3364 /*
3365 * We want to set the generation to 0, that way if anything goes wrong
3366 * from here on out we know not to trust this cache when we load up next
3367 * time.
3368 */
3369 BTRFS_I(inode)->generation = 0;
3370 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3371 if (ret) {
3372 /*
3373 * So theoretically we could recover from this, simply set the
3374 * super cache generation to 0 so we know to invalidate the
3375 * cache, but then we'd have to keep track of the block groups
3376 * that fail this way so we know we _have_ to reset this cache
3377 * before the next commit or risk reading stale cache. So to
3378 * limit our exposure to horrible edge cases lets just abort the
3379 * transaction, this only happens in really bad situations
3380 * anyway.
3381 */
66642832 3382 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3383 goto out_put;
3384 }
0af3d00b
JB
3385 WARN_ON(ret);
3386
8e138e0d
JB
3387 /* We've already setup this transaction, go ahead and exit */
3388 if (block_group->cache_generation == trans->transid &&
3389 i_size_read(inode)) {
3390 dcs = BTRFS_DC_SETUP;
3391 goto out_put;
3392 }
3393
0af3d00b 3394 if (i_size_read(inode) > 0) {
2ff7e61e 3395 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3396 &fs_info->global_block_rsv);
7b61cd92
MX
3397 if (ret)
3398 goto out_put;
3399
77ab86bf 3400 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3401 if (ret)
3402 goto out_put;
3403 }
3404
3405 spin_lock(&block_group->lock);
cf7c1ef6 3406 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3407 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3408 /*
3409 * don't bother trying to write stuff out _if_
3410 * a) we're not cached,
1a79c1f2
LB
3411 * b) we're with nospace_cache mount option,
3412 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3413 */
2b20982e 3414 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3415 spin_unlock(&block_group->lock);
3416 goto out_put;
3417 }
3418 spin_unlock(&block_group->lock);
3419
2968b1f4
JB
3420 /*
3421 * We hit an ENOSPC when setting up the cache in this transaction, just
3422 * skip doing the setup, we've already cleared the cache so we're safe.
3423 */
3424 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3425 ret = -ENOSPC;
3426 goto out_put;
3427 }
3428
6fc823b1
JB
3429 /*
3430 * Try to preallocate enough space based on how big the block group is.
3431 * Keep in mind this has to include any pinned space which could end up
3432 * taking up quite a bit since it's not folded into the other space
3433 * cache.
3434 */
ee22184b 3435 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3436 if (!num_pages)
3437 num_pages = 1;
3438
0af3d00b 3439 num_pages *= 16;
09cbfeaf 3440 num_pages *= PAGE_SIZE;
0af3d00b 3441
364ecf36 3442 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3443 if (ret)
3444 goto out_put;
3445
3446 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3447 num_pages, num_pages,
3448 &alloc_hint);
2968b1f4
JB
3449 /*
3450 * Our cache requires contiguous chunks so that we don't modify a bunch
3451 * of metadata or split extents when writing the cache out, which means
3452 * we can enospc if we are heavily fragmented in addition to just normal
3453 * out of space conditions. So if we hit this just skip setting up any
3454 * other block groups for this transaction, maybe we'll unpin enough
3455 * space the next time around.
3456 */
2b20982e
JB
3457 if (!ret)
3458 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3459 else if (ret == -ENOSPC)
3460 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3461
0af3d00b
JB
3462out_put:
3463 iput(inode);
3464out_free:
b3b4aa74 3465 btrfs_release_path(path);
0af3d00b
JB
3466out:
3467 spin_lock(&block_group->lock);
e65cbb94 3468 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3469 block_group->cache_generation = trans->transid;
2b20982e 3470 block_group->disk_cache_state = dcs;
0af3d00b
JB
3471 spin_unlock(&block_group->lock);
3472
364ecf36 3473 extent_changeset_free(data_reserved);
0af3d00b
JB
3474 return ret;
3475}
3476
dcdf7f6d 3477int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3478 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3479{
3480 struct btrfs_block_group_cache *cache, *tmp;
3481 struct btrfs_transaction *cur_trans = trans->transaction;
3482 struct btrfs_path *path;
3483
3484 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3485 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3486 return 0;
3487
3488 path = btrfs_alloc_path();
3489 if (!path)
3490 return -ENOMEM;
3491
3492 /* Could add new block groups, use _safe just in case */
3493 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3494 dirty_list) {
3495 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3496 cache_save_setup(cache, trans, path);
3497 }
3498
3499 btrfs_free_path(path);
3500 return 0;
3501}
3502
1bbc621e
CM
3503/*
3504 * transaction commit does final block group cache writeback during a
3505 * critical section where nothing is allowed to change the FS. This is
3506 * required in order for the cache to actually match the block group,
3507 * but can introduce a lot of latency into the commit.
3508 *
3509 * So, btrfs_start_dirty_block_groups is here to kick off block group
3510 * cache IO. There's a chance we'll have to redo some of it if the
3511 * block group changes again during the commit, but it greatly reduces
3512 * the commit latency by getting rid of the easy block groups while
3513 * we're still allowing others to join the commit.
3514 */
21217054 3515int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3516{
21217054 3517 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3518 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3519 struct btrfs_transaction *cur_trans = trans->transaction;
3520 int ret = 0;
c9dc4c65 3521 int should_put;
1bbc621e
CM
3522 struct btrfs_path *path = NULL;
3523 LIST_HEAD(dirty);
3524 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3525 int num_started = 0;
1bbc621e
CM
3526 int loops = 0;
3527
3528 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3529 if (list_empty(&cur_trans->dirty_bgs)) {
3530 spin_unlock(&cur_trans->dirty_bgs_lock);
3531 return 0;
1bbc621e 3532 }
b58d1a9e 3533 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3534 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3535
1bbc621e 3536again:
1bbc621e
CM
3537 /*
3538 * make sure all the block groups on our dirty list actually
3539 * exist
3540 */
6c686b35 3541 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3542
3543 if (!path) {
3544 path = btrfs_alloc_path();
3545 if (!path)
3546 return -ENOMEM;
3547 }
3548
b58d1a9e
FM
3549 /*
3550 * cache_write_mutex is here only to save us from balance or automatic
3551 * removal of empty block groups deleting this block group while we are
3552 * writing out the cache
3553 */
3554 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3555 while (!list_empty(&dirty)) {
3556 cache = list_first_entry(&dirty,
3557 struct btrfs_block_group_cache,
3558 dirty_list);
1bbc621e
CM
3559 /*
3560 * this can happen if something re-dirties a block
3561 * group that is already under IO. Just wait for it to
3562 * finish and then do it all again
3563 */
3564 if (!list_empty(&cache->io_list)) {
3565 list_del_init(&cache->io_list);
afdb5718 3566 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3567 btrfs_put_block_group(cache);
3568 }
3569
3570
3571 /*
3572 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3573 * if it should update the cache_state. Don't delete
3574 * until after we wait.
3575 *
3576 * Since we're not running in the commit critical section
3577 * we need the dirty_bgs_lock to protect from update_block_group
3578 */
3579 spin_lock(&cur_trans->dirty_bgs_lock);
3580 list_del_init(&cache->dirty_list);
3581 spin_unlock(&cur_trans->dirty_bgs_lock);
3582
3583 should_put = 1;
3584
3585 cache_save_setup(cache, trans, path);
3586
3587 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3588 cache->io_ctl.inode = NULL;
0b246afa 3589 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3590 cache, path);
1bbc621e
CM
3591 if (ret == 0 && cache->io_ctl.inode) {
3592 num_started++;
3593 should_put = 0;
3594
3595 /*
45ae2c18
NB
3596 * The cache_write_mutex is protecting the
3597 * io_list, also refer to the definition of
3598 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3599 */
3600 list_add_tail(&cache->io_list, io);
3601 } else {
3602 /*
3603 * if we failed to write the cache, the
3604 * generation will be bad and life goes on
3605 */
3606 ret = 0;
3607 }
3608 }
ff1f8250 3609 if (!ret) {
2ff7e61e
JM
3610 ret = write_one_cache_group(trans, fs_info,
3611 path, cache);
ff1f8250
FM
3612 /*
3613 * Our block group might still be attached to the list
3614 * of new block groups in the transaction handle of some
3615 * other task (struct btrfs_trans_handle->new_bgs). This
3616 * means its block group item isn't yet in the extent
3617 * tree. If this happens ignore the error, as we will
3618 * try again later in the critical section of the
3619 * transaction commit.
3620 */
3621 if (ret == -ENOENT) {
3622 ret = 0;
3623 spin_lock(&cur_trans->dirty_bgs_lock);
3624 if (list_empty(&cache->dirty_list)) {
3625 list_add_tail(&cache->dirty_list,
3626 &cur_trans->dirty_bgs);
3627 btrfs_get_block_group(cache);
3628 }
3629 spin_unlock(&cur_trans->dirty_bgs_lock);
3630 } else if (ret) {
66642832 3631 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3632 }
3633 }
1bbc621e
CM
3634
3635 /* if its not on the io list, we need to put the block group */
3636 if (should_put)
3637 btrfs_put_block_group(cache);
3638
3639 if (ret)
3640 break;
b58d1a9e
FM
3641
3642 /*
3643 * Avoid blocking other tasks for too long. It might even save
3644 * us from writing caches for block groups that are going to be
3645 * removed.
3646 */
3647 mutex_unlock(&trans->transaction->cache_write_mutex);
3648 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3649 }
b58d1a9e 3650 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3651
3652 /*
3653 * go through delayed refs for all the stuff we've just kicked off
3654 * and then loop back (just once)
3655 */
c79a70b1 3656 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3657 if (!ret && loops == 0) {
3658 loops++;
3659 spin_lock(&cur_trans->dirty_bgs_lock);
3660 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3661 /*
3662 * dirty_bgs_lock protects us from concurrent block group
3663 * deletes too (not just cache_write_mutex).
3664 */
3665 if (!list_empty(&dirty)) {
3666 spin_unlock(&cur_trans->dirty_bgs_lock);
3667 goto again;
3668 }
1bbc621e 3669 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3670 } else if (ret < 0) {
2ff7e61e 3671 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3672 }
3673
3674 btrfs_free_path(path);
3675 return ret;
3676}
3677
3678int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3679 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3680{
3681 struct btrfs_block_group_cache *cache;
3682 struct btrfs_transaction *cur_trans = trans->transaction;
3683 int ret = 0;
3684 int should_put;
3685 struct btrfs_path *path;
3686 struct list_head *io = &cur_trans->io_bgs;
3687 int num_started = 0;
9078a3e1
CM
3688
3689 path = btrfs_alloc_path();
3690 if (!path)
3691 return -ENOMEM;
3692
ce93ec54 3693 /*
e44081ef
FM
3694 * Even though we are in the critical section of the transaction commit,
3695 * we can still have concurrent tasks adding elements to this
3696 * transaction's list of dirty block groups. These tasks correspond to
3697 * endio free space workers started when writeback finishes for a
3698 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3699 * allocate new block groups as a result of COWing nodes of the root
3700 * tree when updating the free space inode. The writeback for the space
3701 * caches is triggered by an earlier call to
3702 * btrfs_start_dirty_block_groups() and iterations of the following
3703 * loop.
3704 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3705 * delayed refs to make sure we have the best chance at doing this all
3706 * in one shot.
3707 */
e44081ef 3708 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3709 while (!list_empty(&cur_trans->dirty_bgs)) {
3710 cache = list_first_entry(&cur_trans->dirty_bgs,
3711 struct btrfs_block_group_cache,
3712 dirty_list);
c9dc4c65
CM
3713
3714 /*
3715 * this can happen if cache_save_setup re-dirties a block
3716 * group that is already under IO. Just wait for it to
3717 * finish and then do it all again
3718 */
3719 if (!list_empty(&cache->io_list)) {
e44081ef 3720 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3721 list_del_init(&cache->io_list);
afdb5718 3722 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3723 btrfs_put_block_group(cache);
e44081ef 3724 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3725 }
3726
1bbc621e
CM
3727 /*
3728 * don't remove from the dirty list until after we've waited
3729 * on any pending IO
3730 */
ce93ec54 3731 list_del_init(&cache->dirty_list);
e44081ef 3732 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3733 should_put = 1;
3734
1bbc621e 3735 cache_save_setup(cache, trans, path);
c9dc4c65 3736
ce93ec54 3737 if (!ret)
c79a70b1 3738 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3739 (unsigned long) -1);
c9dc4c65
CM
3740
3741 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3742 cache->io_ctl.inode = NULL;
0b246afa 3743 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3744 cache, path);
c9dc4c65
CM
3745 if (ret == 0 && cache->io_ctl.inode) {
3746 num_started++;
3747 should_put = 0;
1bbc621e 3748 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3749 } else {
3750 /*
3751 * if we failed to write the cache, the
3752 * generation will be bad and life goes on
3753 */
3754 ret = 0;
3755 }
3756 }
ff1f8250 3757 if (!ret) {
2ff7e61e
JM
3758 ret = write_one_cache_group(trans, fs_info,
3759 path, cache);
2bc0bb5f
FM
3760 /*
3761 * One of the free space endio workers might have
3762 * created a new block group while updating a free space
3763 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3764 * and hasn't released its transaction handle yet, in
3765 * which case the new block group is still attached to
3766 * its transaction handle and its creation has not
3767 * finished yet (no block group item in the extent tree
3768 * yet, etc). If this is the case, wait for all free
3769 * space endio workers to finish and retry. This is a
3770 * a very rare case so no need for a more efficient and
3771 * complex approach.
3772 */
3773 if (ret == -ENOENT) {
3774 wait_event(cur_trans->writer_wait,
3775 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3776 ret = write_one_cache_group(trans, fs_info,
3777 path, cache);
2bc0bb5f 3778 }
ff1f8250 3779 if (ret)
66642832 3780 btrfs_abort_transaction(trans, ret);
ff1f8250 3781 }
c9dc4c65
CM
3782
3783 /* if its not on the io list, we need to put the block group */
3784 if (should_put)
3785 btrfs_put_block_group(cache);
e44081ef 3786 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3787 }
e44081ef 3788 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3789
45ae2c18
NB
3790 /*
3791 * Refer to the definition of io_bgs member for details why it's safe
3792 * to use it without any locking
3793 */
1bbc621e
CM
3794 while (!list_empty(io)) {
3795 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3796 io_list);
3797 list_del_init(&cache->io_list);
afdb5718 3798 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3799 btrfs_put_block_group(cache);
3800 }
3801
9078a3e1 3802 btrfs_free_path(path);
ce93ec54 3803 return ret;
9078a3e1
CM
3804}
3805
2ff7e61e 3806int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3807{
3808 struct btrfs_block_group_cache *block_group;
3809 int readonly = 0;
3810
0b246afa 3811 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3812 if (!block_group || block_group->ro)
3813 readonly = 1;
3814 if (block_group)
fa9c0d79 3815 btrfs_put_block_group(block_group);
d2fb3437
YZ
3816 return readonly;
3817}
3818
f78c436c
FM
3819bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3820{
3821 struct btrfs_block_group_cache *bg;
3822 bool ret = true;
3823
3824 bg = btrfs_lookup_block_group(fs_info, bytenr);
3825 if (!bg)
3826 return false;
3827
3828 spin_lock(&bg->lock);
3829 if (bg->ro)
3830 ret = false;
3831 else
3832 atomic_inc(&bg->nocow_writers);
3833 spin_unlock(&bg->lock);
3834
3835 /* no put on block group, done by btrfs_dec_nocow_writers */
3836 if (!ret)
3837 btrfs_put_block_group(bg);
3838
3839 return ret;
3840
3841}
3842
3843void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3844{
3845 struct btrfs_block_group_cache *bg;
3846
3847 bg = btrfs_lookup_block_group(fs_info, bytenr);
3848 ASSERT(bg);
3849 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3850 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3851 /*
3852 * Once for our lookup and once for the lookup done by a previous call
3853 * to btrfs_inc_nocow_writers()
3854 */
3855 btrfs_put_block_group(bg);
3856 btrfs_put_block_group(bg);
3857}
3858
f78c436c
FM
3859void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3860{
4625956a 3861 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3862}
3863
6ab0a202
JM
3864static const char *alloc_name(u64 flags)
3865{
3866 switch (flags) {
3867 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3868 return "mixed";
3869 case BTRFS_BLOCK_GROUP_METADATA:
3870 return "metadata";
3871 case BTRFS_BLOCK_GROUP_DATA:
3872 return "data";
3873 case BTRFS_BLOCK_GROUP_SYSTEM:
3874 return "system";
3875 default:
3876 WARN_ON(1);
3877 return "invalid-combination";
3878 };
3879}
3880
4ca61683 3881static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
3882{
3883
3884 struct btrfs_space_info *space_info;
3885 int i;
3886 int ret;
3887
3888 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3889 if (!space_info)
3890 return -ENOMEM;
3891
3892 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3893 GFP_KERNEL);
3894 if (ret) {
3895 kfree(space_info);
3896 return ret;
3897 }
3898
3899 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3900 INIT_LIST_HEAD(&space_info->block_groups[i]);
3901 init_rwsem(&space_info->groups_sem);
3902 spin_lock_init(&space_info->lock);
3903 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3904 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3905 init_waitqueue_head(&space_info->wait);
3906 INIT_LIST_HEAD(&space_info->ro_bgs);
3907 INIT_LIST_HEAD(&space_info->tickets);
3908 INIT_LIST_HEAD(&space_info->priority_tickets);
3909
3910 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3911 info->space_info_kobj, "%s",
3912 alloc_name(space_info->flags));
3913 if (ret) {
3914 percpu_counter_destroy(&space_info->total_bytes_pinned);
3915 kfree(space_info);
3916 return ret;
3917 }
3918
2be12ef7
NB
3919 list_add_rcu(&space_info->list, &info->space_info);
3920 if (flags & BTRFS_BLOCK_GROUP_DATA)
3921 info->data_sinfo = space_info;
3922
3923 return ret;
3924}
3925
d2006e6d 3926static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 3927 u64 total_bytes, u64 bytes_used,
e40edf2d 3928 u64 bytes_readonly,
593060d7
CM
3929 struct btrfs_space_info **space_info)
3930{
3931 struct btrfs_space_info *found;
b742bb82
YZ
3932 int factor;
3933
46df06b8 3934 factor = btrfs_bg_type_to_factor(flags);
593060d7
CM
3935
3936 found = __find_space_info(info, flags);
d2006e6d
NB
3937 ASSERT(found);
3938 spin_lock(&found->lock);
3939 found->total_bytes += total_bytes;
3940 found->disk_total += total_bytes * factor;
3941 found->bytes_used += bytes_used;
3942 found->disk_used += bytes_used * factor;
3943 found->bytes_readonly += bytes_readonly;
3944 if (total_bytes > 0)
3945 found->full = 0;
3946 space_info_add_new_bytes(info, found, total_bytes -
3947 bytes_used - bytes_readonly);
3948 spin_unlock(&found->lock);
3949 *space_info = found;
593060d7
CM
3950}
3951
8790d502
CM
3952static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3953{
899c81ea
ID
3954 u64 extra_flags = chunk_to_extended(flags) &
3955 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3956
de98ced9 3957 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3958 if (flags & BTRFS_BLOCK_GROUP_DATA)
3959 fs_info->avail_data_alloc_bits |= extra_flags;
3960 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3961 fs_info->avail_metadata_alloc_bits |= extra_flags;
3962 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3963 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3964 write_sequnlock(&fs_info->profiles_lock);
8790d502 3965}
593060d7 3966
fc67c450
ID
3967/*
3968 * returns target flags in extended format or 0 if restripe for this
3969 * chunk_type is not in progress
c6664b42 3970 *
dccdb07b 3971 * should be called with balance_lock held
fc67c450
ID
3972 */
3973static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3974{
3975 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3976 u64 target = 0;
3977
fc67c450
ID
3978 if (!bctl)
3979 return 0;
3980
3981 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3982 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3983 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3984 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3985 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3986 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3987 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3988 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3989 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3990 }
3991
3992 return target;
3993}
3994
a46d11a8
ID
3995/*
3996 * @flags: available profiles in extended format (see ctree.h)
3997 *
e4d8ec0f
ID
3998 * Returns reduced profile in chunk format. If profile changing is in
3999 * progress (either running or paused) picks the target profile (if it's
4000 * already available), otherwise falls back to plain reducing.
a46d11a8 4001 */
2ff7e61e 4002static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4003{
0b246afa 4004 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4005 u64 target;
9c170b26
ZL
4006 u64 raid_type;
4007 u64 allowed = 0;
a061fc8d 4008
fc67c450
ID
4009 /*
4010 * see if restripe for this chunk_type is in progress, if so
4011 * try to reduce to the target profile
4012 */
0b246afa
JM
4013 spin_lock(&fs_info->balance_lock);
4014 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4015 if (target) {
4016 /* pick target profile only if it's already available */
4017 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4018 spin_unlock(&fs_info->balance_lock);
fc67c450 4019 return extended_to_chunk(target);
e4d8ec0f
ID
4020 }
4021 }
0b246afa 4022 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4023
53b381b3 4024 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4025 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4026 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4027 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4028 }
4029 allowed &= flags;
4030
4031 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4032 allowed = BTRFS_BLOCK_GROUP_RAID6;
4033 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4034 allowed = BTRFS_BLOCK_GROUP_RAID5;
4035 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4036 allowed = BTRFS_BLOCK_GROUP_RAID10;
4037 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4038 allowed = BTRFS_BLOCK_GROUP_RAID1;
4039 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4040 allowed = BTRFS_BLOCK_GROUP_RAID0;
4041
4042 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4043
4044 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4045}
4046
2ff7e61e 4047static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4048{
de98ced9 4049 unsigned seq;
f8213bdc 4050 u64 flags;
de98ced9
MX
4051
4052 do {
f8213bdc 4053 flags = orig_flags;
0b246afa 4054 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4055
4056 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4057 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4058 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4059 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4060 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4061 flags |= fs_info->avail_metadata_alloc_bits;
4062 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4063
2ff7e61e 4064 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4065}
4066
1b86826d 4067static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4068{
0b246afa 4069 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4070 u64 flags;
53b381b3 4071 u64 ret;
9ed74f2d 4072
b742bb82
YZ
4073 if (data)
4074 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4075 else if (root == fs_info->chunk_root)
b742bb82 4076 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4077 else
b742bb82 4078 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4079
2ff7e61e 4080 ret = get_alloc_profile(fs_info, flags);
53b381b3 4081 return ret;
6a63209f 4082}
9ed74f2d 4083
1b86826d
JM
4084u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4085{
4086 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4087}
4088
4089u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4090{
4091 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4092}
4093
4094u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4095{
4096 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4097}
4098
4136135b
LB
4099static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4100 bool may_use_included)
4101{
4102 ASSERT(s_info);
4103 return s_info->bytes_used + s_info->bytes_reserved +
4104 s_info->bytes_pinned + s_info->bytes_readonly +
4105 (may_use_included ? s_info->bytes_may_use : 0);
4106}
4107
04f4f916 4108int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4109{
04f4f916 4110 struct btrfs_root *root = inode->root;
b4d7c3c9 4111 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4112 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4113 u64 used;
94b947b2 4114 int ret = 0;
c99f1b0c
ZL
4115 int need_commit = 2;
4116 int have_pinned_space;
6a63209f 4117
6a63209f 4118 /* make sure bytes are sectorsize aligned */
0b246afa 4119 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4120
9dced186 4121 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4122 need_commit = 0;
9dced186 4123 ASSERT(current->journal_info);
0af3d00b
JB
4124 }
4125
6a63209f
JB
4126again:
4127 /* make sure we have enough space to handle the data first */
4128 spin_lock(&data_sinfo->lock);
4136135b 4129 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4130
4131 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4132 struct btrfs_trans_handle *trans;
9ed74f2d 4133
6a63209f
JB
4134 /*
4135 * if we don't have enough free bytes in this space then we need
4136 * to alloc a new chunk.
4137 */
b9fd47cd 4138 if (!data_sinfo->full) {
6a63209f 4139 u64 alloc_target;
9ed74f2d 4140
0e4f8f88 4141 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4142 spin_unlock(&data_sinfo->lock);
1174cade 4143
1b86826d 4144 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4145 /*
4146 * It is ugly that we don't call nolock join
4147 * transaction for the free space inode case here.
4148 * But it is safe because we only do the data space
4149 * reservation for the free space cache in the
4150 * transaction context, the common join transaction
4151 * just increase the counter of the current transaction
4152 * handler, doesn't try to acquire the trans_lock of
4153 * the fs.
4154 */
7a7eaa40 4155 trans = btrfs_join_transaction(root);
a22285a6
YZ
4156 if (IS_ERR(trans))
4157 return PTR_ERR(trans);
9ed74f2d 4158
01458828 4159 ret = do_chunk_alloc(trans, alloc_target,
0e4f8f88 4160 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4161 btrfs_end_transaction(trans);
d52a5b5f
MX
4162 if (ret < 0) {
4163 if (ret != -ENOSPC)
4164 return ret;
c99f1b0c
ZL
4165 else {
4166 have_pinned_space = 1;
d52a5b5f 4167 goto commit_trans;
c99f1b0c 4168 }
d52a5b5f 4169 }
9ed74f2d 4170
6a63209f
JB
4171 goto again;
4172 }
f2bb8f5c
JB
4173
4174 /*
b150a4f1 4175 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4176 * allocation, and no removed chunk in current transaction,
4177 * don't bother committing the transaction.
f2bb8f5c 4178 */
dec59fa3 4179 have_pinned_space = __percpu_counter_compare(
c99f1b0c 4180 &data_sinfo->total_bytes_pinned,
dec59fa3
EL
4181 used + bytes - data_sinfo->total_bytes,
4182 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6a63209f 4183 spin_unlock(&data_sinfo->lock);
6a63209f 4184
4e06bdd6 4185 /* commit the current transaction and try again */
d52a5b5f 4186commit_trans:
92e2f7e3 4187 if (need_commit) {
c99f1b0c 4188 need_commit--;
b150a4f1 4189
e1746e83 4190 if (need_commit > 0) {
82b3e53b 4191 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4192 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4193 (u64)-1);
e1746e83 4194 }
9a4e7276 4195
7a7eaa40 4196 trans = btrfs_join_transaction(root);
a22285a6
YZ
4197 if (IS_ERR(trans))
4198 return PTR_ERR(trans);
c99f1b0c 4199 if (have_pinned_space >= 0 ||
3204d33c
JB
4200 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4201 &trans->transaction->flags) ||
c99f1b0c 4202 need_commit > 0) {
3a45bb20 4203 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4204 if (ret)
4205 return ret;
d7c15171 4206 /*
c2d6cb16
FM
4207 * The cleaner kthread might still be doing iput
4208 * operations. Wait for it to finish so that
4209 * more space is released.
d7c15171 4210 */
0b246afa
JM
4211 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4212 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4213 goto again;
4214 } else {
3a45bb20 4215 btrfs_end_transaction(trans);
94b947b2 4216 }
4e06bdd6 4217 }
9ed74f2d 4218
0b246afa 4219 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4220 "space_info:enospc",
4221 data_sinfo->flags, bytes, 1);
6a63209f
JB
4222 return -ENOSPC;
4223 }
4224 data_sinfo->bytes_may_use += bytes;
0b246afa 4225 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4226 data_sinfo->flags, bytes, 1);
6a63209f 4227 spin_unlock(&data_sinfo->lock);
6a63209f 4228
4559b0a7 4229 return 0;
9ed74f2d 4230}
6a63209f 4231
364ecf36
QW
4232int btrfs_check_data_free_space(struct inode *inode,
4233 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4234{
0b246afa 4235 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4236 int ret;
4237
4238 /* align the range */
0b246afa
JM
4239 len = round_up(start + len, fs_info->sectorsize) -
4240 round_down(start, fs_info->sectorsize);
4241 start = round_down(start, fs_info->sectorsize);
4ceff079 4242
04f4f916 4243 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4244 if (ret < 0)
4245 return ret;
4246
1e5ec2e7 4247 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4248 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4249 if (ret < 0)
1e5ec2e7 4250 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4251 else
4252 ret = 0;
4ceff079
QW
4253 return ret;
4254}
4255
4ceff079
QW
4256/*
4257 * Called if we need to clear a data reservation for this inode
4258 * Normally in a error case.
4259 *
51773bec
QW
4260 * This one will *NOT* use accurate qgroup reserved space API, just for case
4261 * which we can't sleep and is sure it won't affect qgroup reserved space.
4262 * Like clear_bit_hook().
4ceff079 4263 */
51773bec
QW
4264void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4265 u64 len)
4ceff079 4266{
0b246afa 4267 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4268 struct btrfs_space_info *data_sinfo;
4269
4270 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4271 len = round_up(start + len, fs_info->sectorsize) -
4272 round_down(start, fs_info->sectorsize);
4273 start = round_down(start, fs_info->sectorsize);
4ceff079 4274
0b246afa 4275 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4276 spin_lock(&data_sinfo->lock);
4277 if (WARN_ON(data_sinfo->bytes_may_use < len))
4278 data_sinfo->bytes_may_use = 0;
4279 else
4280 data_sinfo->bytes_may_use -= len;
0b246afa 4281 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4282 data_sinfo->flags, len, 0);
4283 spin_unlock(&data_sinfo->lock);
4284}
4285
51773bec
QW
4286/*
4287 * Called if we need to clear a data reservation for this inode
4288 * Normally in a error case.
4289 *
01327610 4290 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4291 * space framework.
4292 */
bc42bda2
QW
4293void btrfs_free_reserved_data_space(struct inode *inode,
4294 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4295{
0c476a5d
JM
4296 struct btrfs_root *root = BTRFS_I(inode)->root;
4297
4298 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4299 len = round_up(start + len, root->fs_info->sectorsize) -
4300 round_down(start, root->fs_info->sectorsize);
4301 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4302
51773bec 4303 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4304 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4305}
4306
97e728d4 4307static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4308{
97e728d4
JB
4309 struct list_head *head = &info->space_info;
4310 struct btrfs_space_info *found;
e3ccfa98 4311
97e728d4
JB
4312 rcu_read_lock();
4313 list_for_each_entry_rcu(found, head, list) {
4314 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4315 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4316 }
97e728d4 4317 rcu_read_unlock();
e3ccfa98
JB
4318}
4319
3c76cd84
MX
4320static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4321{
4322 return (global->size << 1);
4323}
4324
2ff7e61e 4325static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4326 struct btrfs_space_info *sinfo, int force)
32c00aff 4327{
0b246afa 4328 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4329 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4330 u64 thresh;
e3ccfa98 4331
0e4f8f88
CM
4332 if (force == CHUNK_ALLOC_FORCE)
4333 return 1;
4334
fb25e914
JB
4335 /*
4336 * We need to take into account the global rsv because for all intents
4337 * and purposes it's used space. Don't worry about locking the
4338 * global_rsv, it doesn't change except when the transaction commits.
4339 */
54338b5c 4340 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4341 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4342
0e4f8f88
CM
4343 /*
4344 * in limited mode, we want to have some free space up to
4345 * about 1% of the FS size.
4346 */
4347 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4348 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4349 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4350
8d8aafee 4351 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4352 return 1;
4353 }
0e4f8f88 4354
8d8aafee 4355 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4356 return 0;
424499db 4357 return 1;
32c00aff
JB
4358}
4359
2ff7e61e 4360static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4361{
4362 u64 num_dev;
4363
53b381b3
DW
4364 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4365 BTRFS_BLOCK_GROUP_RAID0 |
4366 BTRFS_BLOCK_GROUP_RAID5 |
4367 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4368 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4369 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4370 num_dev = 2;
4371 else
4372 num_dev = 1; /* DUP or single */
4373
39c2d7fa 4374 return num_dev;
15d1ff81
LB
4375}
4376
39c2d7fa
FM
4377/*
4378 * If @is_allocation is true, reserve space in the system space info necessary
4379 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4380 * removing a chunk.
4381 */
451a2c13 4382void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
15d1ff81 4383{
451a2c13 4384 struct btrfs_fs_info *fs_info = trans->fs_info;
15d1ff81
LB
4385 struct btrfs_space_info *info;
4386 u64 left;
4387 u64 thresh;
4fbcdf66 4388 int ret = 0;
39c2d7fa 4389 u64 num_devs;
4fbcdf66
FM
4390
4391 /*
4392 * Needed because we can end up allocating a system chunk and for an
4393 * atomic and race free space reservation in the chunk block reserve.
4394 */
a32bf9a3 4395 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4396
0b246afa 4397 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4398 spin_lock(&info->lock);
4136135b 4399 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4400 spin_unlock(&info->lock);
4401
2ff7e61e 4402 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4403
4404 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4405 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4406 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4407
0b246afa
JM
4408 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4409 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4410 left, thresh, type);
4411 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4412 }
4413
4414 if (left < thresh) {
1b86826d 4415 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4416
4fbcdf66
FM
4417 /*
4418 * Ignore failure to create system chunk. We might end up not
4419 * needing it, as we might not need to COW all nodes/leafs from
4420 * the paths we visit in the chunk tree (they were already COWed
4421 * or created in the current transaction for example).
4422 */
c216b203 4423 ret = btrfs_alloc_chunk(trans, flags);
4fbcdf66
FM
4424 }
4425
4426 if (!ret) {
0b246afa
JM
4427 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4428 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4429 thresh, BTRFS_RESERVE_NO_FLUSH);
4430 if (!ret)
4431 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4432 }
4433}
4434
28b737f6
LB
4435/*
4436 * If force is CHUNK_ALLOC_FORCE:
4437 * - return 1 if it successfully allocates a chunk,
4438 * - return errors including -ENOSPC otherwise.
4439 * If force is NOT CHUNK_ALLOC_FORCE:
4440 * - return 0 if it doesn't need to allocate a new chunk,
4441 * - return 1 if it successfully allocates a chunk,
4442 * - return errors including -ENOSPC otherwise.
4443 */
01458828
NB
4444static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4445 int force)
9ed74f2d 4446{
01458828 4447 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 4448 struct btrfs_space_info *space_info;
2556fbb0
NB
4449 bool wait_for_alloc = false;
4450 bool should_alloc = false;
9ed74f2d 4451 int ret = 0;
9ed74f2d 4452
c6b305a8
JB
4453 /* Don't re-enter if we're already allocating a chunk */
4454 if (trans->allocating_chunk)
4455 return -ENOSPC;
4456
0b246afa 4457 space_info = __find_space_info(fs_info, flags);
dc2d3005 4458 ASSERT(space_info);
9ed74f2d 4459
2556fbb0
NB
4460 do {
4461 spin_lock(&space_info->lock);
4462 if (force < space_info->force_alloc)
4463 force = space_info->force_alloc;
4464 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4465 if (space_info->full) {
4466 /* No more free physical space */
4467 if (should_alloc)
4468 ret = -ENOSPC;
4469 else
4470 ret = 0;
4471 spin_unlock(&space_info->lock);
4472 return ret;
4473 } else if (!should_alloc) {
4474 spin_unlock(&space_info->lock);
4475 return 0;
4476 } else if (space_info->chunk_alloc) {
4477 /*
4478 * Someone is already allocating, so we need to block
4479 * until this someone is finished and then loop to
4480 * recheck if we should continue with our allocation
4481 * attempt.
4482 */
4483 wait_for_alloc = true;
4484 spin_unlock(&space_info->lock);
4485 mutex_lock(&fs_info->chunk_mutex);
4486 mutex_unlock(&fs_info->chunk_mutex);
4487 } else {
4488 /* Proceed with allocation */
4489 space_info->chunk_alloc = 1;
4490 wait_for_alloc = false;
4491 spin_unlock(&space_info->lock);
4492 }
6d74119f 4493
1e1c50a9 4494 cond_resched();
2556fbb0 4495 } while (wait_for_alloc);
6d74119f 4496
2556fbb0 4497 mutex_lock(&fs_info->chunk_mutex);
c6b305a8
JB
4498 trans->allocating_chunk = true;
4499
67377734
JB
4500 /*
4501 * If we have mixed data/metadata chunks we want to make sure we keep
4502 * allocating mixed chunks instead of individual chunks.
4503 */
4504 if (btrfs_mixed_space_info(space_info))
4505 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4506
97e728d4
JB
4507 /*
4508 * if we're doing a data chunk, go ahead and make sure that
4509 * we keep a reasonable number of metadata chunks allocated in the
4510 * FS as well.
4511 */
9ed74f2d 4512 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4513 fs_info->data_chunk_allocations++;
4514 if (!(fs_info->data_chunk_allocations %
4515 fs_info->metadata_ratio))
4516 force_metadata_allocation(fs_info);
9ed74f2d
JB
4517 }
4518
15d1ff81
LB
4519 /*
4520 * Check if we have enough space in SYSTEM chunk because we may need
4521 * to update devices.
4522 */
451a2c13 4523 check_system_chunk(trans, flags);
15d1ff81 4524
c216b203 4525 ret = btrfs_alloc_chunk(trans, flags);
c6b305a8 4526 trans->allocating_chunk = false;
92b8e897 4527
9ed74f2d 4528 spin_lock(&space_info->lock);
57f1642e
NB
4529 if (ret < 0) {
4530 if (ret == -ENOSPC)
4531 space_info->full = 1;
4532 else
4533 goto out;
4534 } else {
424499db 4535 ret = 1;
57f1642e 4536 }
6d74119f 4537
0e4f8f88 4538 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4539out:
6d74119f 4540 space_info->chunk_alloc = 0;
9ed74f2d 4541 spin_unlock(&space_info->lock);
a25c75d5 4542 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4543 /*
4544 * When we allocate a new chunk we reserve space in the chunk block
4545 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4546 * add new nodes/leafs to it if we end up needing to do it when
4547 * inserting the chunk item and updating device items as part of the
4548 * second phase of chunk allocation, performed by
4549 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4550 * large number of new block groups to create in our transaction
4551 * handle's new_bgs list to avoid exhausting the chunk block reserve
4552 * in extreme cases - like having a single transaction create many new
4553 * block groups when starting to write out the free space caches of all
4554 * the block groups that were made dirty during the lifetime of the
4555 * transaction.
4556 */
d9a0540a 4557 if (trans->can_flush_pending_bgs &&
ee22184b 4558 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
6c686b35 4559 btrfs_create_pending_block_groups(trans);
00d80e34
FM
4560 btrfs_trans_release_chunk_metadata(trans);
4561 }
0f9dd46c 4562 return ret;
6324fbf3 4563}
9ed74f2d 4564
c1c4919b 4565static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4566 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4567 enum btrfs_reserve_flush_enum flush,
4568 bool system_chunk)
a80c8dcf 4569{
0b246afa 4570 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4571 u64 profile;
3c76cd84 4572 u64 space_size;
a80c8dcf
JB
4573 u64 avail;
4574 u64 used;
46df06b8 4575 int factor;
a80c8dcf 4576
957780eb
JB
4577 /* Don't overcommit when in mixed mode. */
4578 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4579 return 0;
4580
c1c4919b
JM
4581 if (system_chunk)
4582 profile = btrfs_system_alloc_profile(fs_info);
4583 else
4584 profile = btrfs_metadata_alloc_profile(fs_info);
4585
4136135b 4586 used = btrfs_space_info_used(space_info, false);
96f1bb57 4587
96f1bb57
JB
4588 /*
4589 * We only want to allow over committing if we have lots of actual space
4590 * free, but if we don't have enough space to handle the global reserve
4591 * space then we could end up having a real enospc problem when trying
4592 * to allocate a chunk or some other such important allocation.
4593 */
3c76cd84
MX
4594 spin_lock(&global_rsv->lock);
4595 space_size = calc_global_rsv_need_space(global_rsv);
4596 spin_unlock(&global_rsv->lock);
4597 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4598 return 0;
4599
4600 used += space_info->bytes_may_use;
a80c8dcf 4601
a5ed45f8 4602 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4603
4604 /*
4605 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4606 * space is actually useable. For raid56, the space info used
4607 * doesn't include the parity drive, so we don't have to
4608 * change the math
a80c8dcf 4609 */
46df06b8
DS
4610 factor = btrfs_bg_type_to_factor(profile);
4611 avail = div_u64(avail, factor);
a80c8dcf
JB
4612
4613 /*
561c294d
MX
4614 * If we aren't flushing all things, let us overcommit up to
4615 * 1/2th of the space. If we can flush, don't let us overcommit
4616 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4617 */
08e007d2 4618 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4619 avail >>= 3;
a80c8dcf 4620 else
14575aef 4621 avail >>= 1;
a80c8dcf 4622
14575aef 4623 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4624 return 1;
4625 return 0;
4626}
4627
2ff7e61e 4628static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4629 unsigned long nr_pages, int nr_items)
da633a42 4630{
0b246afa 4631 struct super_block *sb = fs_info->sb;
da633a42 4632
925a6efb
JB
4633 if (down_read_trylock(&sb->s_umount)) {
4634 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4635 up_read(&sb->s_umount);
4636 } else {
da633a42
MX
4637 /*
4638 * We needn't worry the filesystem going from r/w to r/o though
4639 * we don't acquire ->s_umount mutex, because the filesystem
4640 * should guarantee the delalloc inodes list be empty after
4641 * the filesystem is readonly(all dirty pages are written to
4642 * the disk).
4643 */
82b3e53b 4644 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4645 if (!current->journal_info)
0b246afa 4646 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4647 }
4648}
4649
6374e57a 4650static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4651 u64 to_reclaim)
18cd8ea6
MX
4652{
4653 u64 bytes;
6374e57a 4654 u64 nr;
18cd8ea6 4655
2ff7e61e 4656 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4657 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4658 if (!nr)
4659 nr = 1;
4660 return nr;
4661}
4662
ee22184b 4663#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4664
9ed74f2d 4665/*
5da9d01b 4666 * shrink metadata reservation for delalloc
9ed74f2d 4667 */
c1c4919b
JM
4668static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4669 u64 orig, bool wait_ordered)
5da9d01b 4670{
0019f10d 4671 struct btrfs_space_info *space_info;
663350ac 4672 struct btrfs_trans_handle *trans;
f4c738c2 4673 u64 delalloc_bytes;
5da9d01b 4674 u64 max_reclaim;
6374e57a 4675 u64 items;
b1953bce 4676 long time_left;
d3ee29e3
MX
4677 unsigned long nr_pages;
4678 int loops;
5da9d01b 4679
c61a16a7 4680 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4681 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4682 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4683
663350ac 4684 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4685 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4686
963d678b 4687 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4688 &fs_info->delalloc_bytes);
f4c738c2 4689 if (delalloc_bytes == 0) {
fdb5effd 4690 if (trans)
f4c738c2 4691 return;
38c135af 4692 if (wait_ordered)
0b246afa 4693 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4694 return;
fdb5effd
JB
4695 }
4696
d3ee29e3 4697 loops = 0;
f4c738c2
JB
4698 while (delalloc_bytes && loops < 3) {
4699 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4700 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4701 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4702 /*
4703 * We need to wait for the async pages to actually start before
4704 * we do anything.
4705 */
0b246afa 4706 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4707 if (!max_reclaim)
4708 goto skip_async;
4709
4710 if (max_reclaim <= nr_pages)
4711 max_reclaim = 0;
4712 else
4713 max_reclaim -= nr_pages;
dea31f52 4714
0b246afa
JM
4715 wait_event(fs_info->async_submit_wait,
4716 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4717 (int)max_reclaim);
4718skip_async:
0019f10d 4719 spin_lock(&space_info->lock);
957780eb
JB
4720 if (list_empty(&space_info->tickets) &&
4721 list_empty(&space_info->priority_tickets)) {
4722 spin_unlock(&space_info->lock);
4723 break;
4724 }
0019f10d 4725 spin_unlock(&space_info->lock);
5da9d01b 4726
36e39c40 4727 loops++;
f104d044 4728 if (wait_ordered && !trans) {
0b246afa 4729 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4730 } else {
f4c738c2 4731 time_left = schedule_timeout_killable(1);
f104d044
JB
4732 if (time_left)
4733 break;
4734 }
963d678b 4735 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4736 &fs_info->delalloc_bytes);
5da9d01b 4737 }
5da9d01b
YZ
4738}
4739
996478ca
JB
4740struct reserve_ticket {
4741 u64 bytes;
4742 int error;
4743 struct list_head list;
4744 wait_queue_head_t wait;
4745};
4746
663350ac
JB
4747/**
4748 * maybe_commit_transaction - possibly commit the transaction if its ok to
4749 * @root - the root we're allocating for
4750 * @bytes - the number of bytes we want to reserve
4751 * @force - force the commit
8bb8ab2e 4752 *
663350ac
JB
4753 * This will check to make sure that committing the transaction will actually
4754 * get us somewhere and then commit the transaction if it does. Otherwise it
4755 * will return -ENOSPC.
8bb8ab2e 4756 */
0c9ab349 4757static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4758 struct btrfs_space_info *space_info)
663350ac 4759{
996478ca 4760 struct reserve_ticket *ticket = NULL;
0b246afa 4761 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4762 struct btrfs_trans_handle *trans;
996478ca 4763 u64 bytes;
663350ac
JB
4764
4765 trans = (struct btrfs_trans_handle *)current->journal_info;
4766 if (trans)
4767 return -EAGAIN;
4768
996478ca
JB
4769 spin_lock(&space_info->lock);
4770 if (!list_empty(&space_info->priority_tickets))
4771 ticket = list_first_entry(&space_info->priority_tickets,
4772 struct reserve_ticket, list);
4773 else if (!list_empty(&space_info->tickets))
4774 ticket = list_first_entry(&space_info->tickets,
4775 struct reserve_ticket, list);
4776 bytes = (ticket) ? ticket->bytes : 0;
4777 spin_unlock(&space_info->lock);
4778
4779 if (!bytes)
4780 return 0;
663350ac
JB
4781
4782 /* See if there is enough pinned space to make this reservation */
dec59fa3
EL
4783 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4784 bytes,
4785 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
663350ac 4786 goto commit;
663350ac
JB
4787
4788 /*
4789 * See if there is some space in the delayed insertion reservation for
4790 * this reservation.
4791 */
4792 if (space_info != delayed_rsv->space_info)
4793 return -ENOSPC;
4794
4795 spin_lock(&delayed_rsv->lock);
996478ca
JB
4796 if (delayed_rsv->size > bytes)
4797 bytes = 0;
4798 else
4799 bytes -= delayed_rsv->size;
057aac3e
NB
4800 spin_unlock(&delayed_rsv->lock);
4801
dec59fa3
EL
4802 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4803 bytes,
4804 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
663350ac
JB
4805 return -ENOSPC;
4806 }
663350ac
JB
4807
4808commit:
a9b3311e 4809 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4810 if (IS_ERR(trans))
4811 return -ENOSPC;
4812
3a45bb20 4813 return btrfs_commit_transaction(trans);
663350ac
JB
4814}
4815
e38ae7a0
NB
4816/*
4817 * Try to flush some data based on policy set by @state. This is only advisory
4818 * and may fail for various reasons. The caller is supposed to examine the
4819 * state of @space_info to detect the outcome.
4820 */
4821static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4822 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4823 int state)
96c3f433 4824{
a9b3311e 4825 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4826 struct btrfs_trans_handle *trans;
4827 int nr;
f4c738c2 4828 int ret = 0;
96c3f433
JB
4829
4830 switch (state) {
96c3f433
JB
4831 case FLUSH_DELAYED_ITEMS_NR:
4832 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4833 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4834 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4835 else
96c3f433 4836 nr = -1;
18cd8ea6 4837
96c3f433
JB
4838 trans = btrfs_join_transaction(root);
4839 if (IS_ERR(trans)) {
4840 ret = PTR_ERR(trans);
4841 break;
4842 }
e5c304e6 4843 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4844 btrfs_end_transaction(trans);
96c3f433 4845 break;
67b0fd63
JB
4846 case FLUSH_DELALLOC:
4847 case FLUSH_DELALLOC_WAIT:
7bdd6277 4848 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4849 state == FLUSH_DELALLOC_WAIT);
4850 break;
ea658bad
JB
4851 case ALLOC_CHUNK:
4852 trans = btrfs_join_transaction(root);
4853 if (IS_ERR(trans)) {
4854 ret = PTR_ERR(trans);
4855 break;
4856 }
01458828 4857 ret = do_chunk_alloc(trans,
1b86826d 4858 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4859 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4860 btrfs_end_transaction(trans);
eecba891 4861 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4862 ret = 0;
4863 break;
96c3f433 4864 case COMMIT_TRANS:
996478ca 4865 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4866 break;
4867 default:
4868 ret = -ENOSPC;
4869 break;
4870 }
4871
7bdd6277
NB
4872 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4873 ret);
e38ae7a0 4874 return;
96c3f433 4875}
21c7e756
MX
4876
4877static inline u64
c1c4919b
JM
4878btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4879 struct btrfs_space_info *space_info,
4880 bool system_chunk)
21c7e756 4881{
957780eb 4882 struct reserve_ticket *ticket;
21c7e756
MX
4883 u64 used;
4884 u64 expected;
957780eb 4885 u64 to_reclaim = 0;
21c7e756 4886
957780eb
JB
4887 list_for_each_entry(ticket, &space_info->tickets, list)
4888 to_reclaim += ticket->bytes;
4889 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4890 to_reclaim += ticket->bytes;
4891 if (to_reclaim)
4892 return to_reclaim;
21c7e756 4893
e0af2484 4894 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4895 if (can_overcommit(fs_info, space_info, to_reclaim,
4896 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4897 return 0;
4898
0eee8a49
NB
4899 used = btrfs_space_info_used(space_info, true);
4900
c1c4919b
JM
4901 if (can_overcommit(fs_info, space_info, SZ_1M,
4902 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4903 expected = div_factor_fine(space_info->total_bytes, 95);
4904 else
4905 expected = div_factor_fine(space_info->total_bytes, 90);
4906
4907 if (used > expected)
4908 to_reclaim = used - expected;
4909 else
4910 to_reclaim = 0;
4911 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4912 space_info->bytes_reserved);
21c7e756
MX
4913 return to_reclaim;
4914}
4915
c1c4919b
JM
4916static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4917 struct btrfs_space_info *space_info,
4918 u64 used, bool system_chunk)
21c7e756 4919{
365c5313
JB
4920 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4921
4922 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4923 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4924 return 0;
4925
c1c4919b
JM
4926 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4927 system_chunk))
d38b349c
JB
4928 return 0;
4929
0b246afa
JM
4930 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4931 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
4932}
4933
957780eb 4934static void wake_all_tickets(struct list_head *head)
21c7e756 4935{
957780eb 4936 struct reserve_ticket *ticket;
25ce459c 4937
957780eb
JB
4938 while (!list_empty(head)) {
4939 ticket = list_first_entry(head, struct reserve_ticket, list);
4940 list_del_init(&ticket->list);
4941 ticket->error = -ENOSPC;
4942 wake_up(&ticket->wait);
21c7e756 4943 }
21c7e756
MX
4944}
4945
957780eb
JB
4946/*
4947 * This is for normal flushers, we can wait all goddamned day if we want to. We
4948 * will loop and continuously try to flush as long as we are making progress.
4949 * We count progress as clearing off tickets each time we have to loop.
4950 */
21c7e756
MX
4951static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4952{
4953 struct btrfs_fs_info *fs_info;
4954 struct btrfs_space_info *space_info;
4955 u64 to_reclaim;
4956 int flush_state;
957780eb 4957 int commit_cycles = 0;
ce129655 4958 u64 last_tickets_id;
21c7e756
MX
4959
4960 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4961 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4962
957780eb 4963 spin_lock(&space_info->lock);
c1c4919b
JM
4964 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4965 false);
957780eb
JB
4966 if (!to_reclaim) {
4967 space_info->flush = 0;
4968 spin_unlock(&space_info->lock);
21c7e756 4969 return;
957780eb 4970 }
ce129655 4971 last_tickets_id = space_info->tickets_id;
957780eb 4972 spin_unlock(&space_info->lock);
21c7e756
MX
4973
4974 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 4975 do {
e38ae7a0 4976 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
4977 spin_lock(&space_info->lock);
4978 if (list_empty(&space_info->tickets)) {
4979 space_info->flush = 0;
4980 spin_unlock(&space_info->lock);
4981 return;
4982 }
c1c4919b
JM
4983 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4984 space_info,
4985 false);
ce129655 4986 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
4987 flush_state++;
4988 } else {
ce129655 4989 last_tickets_id = space_info->tickets_id;
957780eb
JB
4990 flush_state = FLUSH_DELAYED_ITEMS_NR;
4991 if (commit_cycles)
4992 commit_cycles--;
4993 }
4994
4995 if (flush_state > COMMIT_TRANS) {
4996 commit_cycles++;
4997 if (commit_cycles > 2) {
4998 wake_all_tickets(&space_info->tickets);
4999 space_info->flush = 0;
5000 } else {
5001 flush_state = FLUSH_DELAYED_ITEMS_NR;
5002 }
5003 }
5004 spin_unlock(&space_info->lock);
5005 } while (flush_state <= COMMIT_TRANS);
5006}
5007
5008void btrfs_init_async_reclaim_work(struct work_struct *work)
5009{
5010 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5011}
5012
5013static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5014 struct btrfs_space_info *space_info,
5015 struct reserve_ticket *ticket)
5016{
5017 u64 to_reclaim;
5018 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5019
5020 spin_lock(&space_info->lock);
c1c4919b
JM
5021 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5022 false);
957780eb
JB
5023 if (!to_reclaim) {
5024 spin_unlock(&space_info->lock);
5025 return;
5026 }
5027 spin_unlock(&space_info->lock);
5028
21c7e756 5029 do {
7bdd6277 5030 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5031 flush_state++;
957780eb
JB
5032 spin_lock(&space_info->lock);
5033 if (ticket->bytes == 0) {
5034 spin_unlock(&space_info->lock);
21c7e756 5035 return;
957780eb
JB
5036 }
5037 spin_unlock(&space_info->lock);
5038
5039 /*
5040 * Priority flushers can't wait on delalloc without
5041 * deadlocking.
5042 */
5043 if (flush_state == FLUSH_DELALLOC ||
5044 flush_state == FLUSH_DELALLOC_WAIT)
5045 flush_state = ALLOC_CHUNK;
365c5313 5046 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5047}
5048
957780eb
JB
5049static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5050 struct btrfs_space_info *space_info,
5051 struct reserve_ticket *ticket, u64 orig_bytes)
5052
21c7e756 5053{
957780eb
JB
5054 DEFINE_WAIT(wait);
5055 int ret = 0;
5056
5057 spin_lock(&space_info->lock);
5058 while (ticket->bytes > 0 && ticket->error == 0) {
5059 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5060 if (ret) {
5061 ret = -EINTR;
5062 break;
5063 }
5064 spin_unlock(&space_info->lock);
5065
5066 schedule();
5067
5068 finish_wait(&ticket->wait, &wait);
5069 spin_lock(&space_info->lock);
5070 }
5071 if (!ret)
5072 ret = ticket->error;
5073 if (!list_empty(&ticket->list))
5074 list_del_init(&ticket->list);
5075 if (ticket->bytes && ticket->bytes < orig_bytes) {
5076 u64 num_bytes = orig_bytes - ticket->bytes;
5077 space_info->bytes_may_use -= num_bytes;
5078 trace_btrfs_space_reservation(fs_info, "space_info",
5079 space_info->flags, num_bytes, 0);
5080 }
5081 spin_unlock(&space_info->lock);
5082
5083 return ret;
21c7e756
MX
5084}
5085
4a92b1b8
JB
5086/**
5087 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5088 * @root - the root we're allocating for
957780eb 5089 * @space_info - the space info we want to allocate from
4a92b1b8 5090 * @orig_bytes - the number of bytes we want
48fc7f7e 5091 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5092 *
01327610 5093 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5094 * with the block_rsv. If there is not enough space it will make an attempt to
5095 * flush out space to make room. It will do this by flushing delalloc if
5096 * possible or committing the transaction. If flush is 0 then no attempts to
5097 * regain reservations will be made and this will fail if there is not enough
5098 * space already.
8bb8ab2e 5099 */
c1c4919b 5100static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5101 struct btrfs_space_info *space_info,
5102 u64 orig_bytes,
c1c4919b
JM
5103 enum btrfs_reserve_flush_enum flush,
5104 bool system_chunk)
9ed74f2d 5105{
957780eb 5106 struct reserve_ticket ticket;
2bf64758 5107 u64 used;
8bb8ab2e 5108 int ret = 0;
9ed74f2d 5109
957780eb 5110 ASSERT(orig_bytes);
8ca17f0f 5111 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5112
8bb8ab2e 5113 spin_lock(&space_info->lock);
fdb5effd 5114 ret = -ENOSPC;
4136135b 5115 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5116
8bb8ab2e 5117 /*
957780eb
JB
5118 * If we have enough space then hooray, make our reservation and carry
5119 * on. If not see if we can overcommit, and if we can, hooray carry on.
5120 * If not things get more complicated.
8bb8ab2e 5121 */
957780eb
JB
5122 if (used + orig_bytes <= space_info->total_bytes) {
5123 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5124 trace_btrfs_space_reservation(fs_info, "space_info",
5125 space_info->flags, orig_bytes, 1);
957780eb 5126 ret = 0;
c1c4919b
JM
5127 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5128 system_chunk)) {
44734ed1 5129 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5130 trace_btrfs_space_reservation(fs_info, "space_info",
5131 space_info->flags, orig_bytes, 1);
44734ed1 5132 ret = 0;
2bf64758
JB
5133 }
5134
8bb8ab2e 5135 /*
957780eb
JB
5136 * If we couldn't make a reservation then setup our reservation ticket
5137 * and kick the async worker if it's not already running.
08e007d2 5138 *
957780eb
JB
5139 * If we are a priority flusher then we just need to add our ticket to
5140 * the list and we will do our own flushing further down.
8bb8ab2e 5141 */
72bcd99d 5142 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5143 ticket.bytes = orig_bytes;
5144 ticket.error = 0;
5145 init_waitqueue_head(&ticket.wait);
5146 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5147 list_add_tail(&ticket.list, &space_info->tickets);
5148 if (!space_info->flush) {
5149 space_info->flush = 1;
0b246afa 5150 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5151 space_info->flags,
5152 orig_bytes, flush,
5153 "enospc");
957780eb 5154 queue_work(system_unbound_wq,
c1c4919b 5155 &fs_info->async_reclaim_work);
957780eb
JB
5156 }
5157 } else {
5158 list_add_tail(&ticket.list,
5159 &space_info->priority_tickets);
5160 }
21c7e756
MX
5161 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5162 used += orig_bytes;
f6acfd50
JB
5163 /*
5164 * We will do the space reservation dance during log replay,
5165 * which means we won't have fs_info->fs_root set, so don't do
5166 * the async reclaim as we will panic.
5167 */
0b246afa 5168 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5169 need_do_async_reclaim(fs_info, space_info,
5170 used, system_chunk) &&
0b246afa
JM
5171 !work_busy(&fs_info->async_reclaim_work)) {
5172 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5173 orig_bytes, flush, "preempt");
21c7e756 5174 queue_work(system_unbound_wq,
0b246afa 5175 &fs_info->async_reclaim_work);
f376df2b 5176 }
8bb8ab2e 5177 }
f0486c68 5178 spin_unlock(&space_info->lock);
08e007d2 5179 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5180 return ret;
f0486c68 5181
957780eb 5182 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5183 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5184 orig_bytes);
08e007d2 5185
957780eb 5186 ret = 0;
0b246afa 5187 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5188 spin_lock(&space_info->lock);
5189 if (ticket.bytes) {
5190 if (ticket.bytes < orig_bytes) {
5191 u64 num_bytes = orig_bytes - ticket.bytes;
5192 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5193 trace_btrfs_space_reservation(fs_info, "space_info",
5194 space_info->flags,
5195 num_bytes, 0);
08e007d2 5196
957780eb
JB
5197 }
5198 list_del_init(&ticket.list);
5199 ret = -ENOSPC;
5200 }
5201 spin_unlock(&space_info->lock);
5202 ASSERT(list_empty(&ticket.list));
5203 return ret;
5204}
8bb8ab2e 5205
957780eb
JB
5206/**
5207 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5208 * @root - the root we're allocating for
5209 * @block_rsv - the block_rsv we're allocating for
5210 * @orig_bytes - the number of bytes we want
5211 * @flush - whether or not we can flush to make our reservation
5212 *
5213 * This will reserve orgi_bytes number of bytes from the space info associated
5214 * with the block_rsv. If there is not enough space it will make an attempt to
5215 * flush out space to make room. It will do this by flushing delalloc if
5216 * possible or committing the transaction. If flush is 0 then no attempts to
5217 * regain reservations will be made and this will fail if there is not enough
5218 * space already.
5219 */
5220static int reserve_metadata_bytes(struct btrfs_root *root,
5221 struct btrfs_block_rsv *block_rsv,
5222 u64 orig_bytes,
5223 enum btrfs_reserve_flush_enum flush)
5224{
0b246afa
JM
5225 struct btrfs_fs_info *fs_info = root->fs_info;
5226 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5227 int ret;
c1c4919b 5228 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5229
c1c4919b
JM
5230 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5231 orig_bytes, flush, system_chunk);
5d80366e
JB
5232 if (ret == -ENOSPC &&
5233 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5234 if (block_rsv != global_rsv &&
5235 !block_rsv_use_bytes(global_rsv, orig_bytes))
5236 ret = 0;
5237 }
9a3daff3 5238 if (ret == -ENOSPC) {
0b246afa 5239 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5240 block_rsv->space_info->flags,
5241 orig_bytes, 1);
9a3daff3
NB
5242
5243 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5244 dump_space_info(fs_info, block_rsv->space_info,
5245 orig_bytes, 0);
5246 }
f0486c68
YZ
5247 return ret;
5248}
5249
79787eaa
JM
5250static struct btrfs_block_rsv *get_block_rsv(
5251 const struct btrfs_trans_handle *trans,
5252 const struct btrfs_root *root)
f0486c68 5253{
0b246afa 5254 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5255 struct btrfs_block_rsv *block_rsv = NULL;
5256
e9cf439f 5257 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5258 (root == fs_info->csum_root && trans->adding_csums) ||
5259 (root == fs_info->uuid_root))
f7a81ea4
SB
5260 block_rsv = trans->block_rsv;
5261
4c13d758 5262 if (!block_rsv)
f0486c68
YZ
5263 block_rsv = root->block_rsv;
5264
5265 if (!block_rsv)
0b246afa 5266 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5267
5268 return block_rsv;
5269}
5270
5271static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5272 u64 num_bytes)
5273{
5274 int ret = -ENOSPC;
5275 spin_lock(&block_rsv->lock);
5276 if (block_rsv->reserved >= num_bytes) {
5277 block_rsv->reserved -= num_bytes;
5278 if (block_rsv->reserved < block_rsv->size)
5279 block_rsv->full = 0;
5280 ret = 0;
5281 }
5282 spin_unlock(&block_rsv->lock);
5283 return ret;
5284}
5285
5286static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3a584174 5287 u64 num_bytes, bool update_size)
f0486c68
YZ
5288{
5289 spin_lock(&block_rsv->lock);
5290 block_rsv->reserved += num_bytes;
5291 if (update_size)
5292 block_rsv->size += num_bytes;
5293 else if (block_rsv->reserved >= block_rsv->size)
5294 block_rsv->full = 1;
5295 spin_unlock(&block_rsv->lock);
5296}
5297
d52be818
JB
5298int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5299 struct btrfs_block_rsv *dest, u64 num_bytes,
5300 int min_factor)
5301{
5302 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5303 u64 min_bytes;
5304
5305 if (global_rsv->space_info != dest->space_info)
5306 return -ENOSPC;
5307
5308 spin_lock(&global_rsv->lock);
5309 min_bytes = div_factor(global_rsv->size, min_factor);
5310 if (global_rsv->reserved < min_bytes + num_bytes) {
5311 spin_unlock(&global_rsv->lock);
5312 return -ENOSPC;
5313 }
5314 global_rsv->reserved -= num_bytes;
5315 if (global_rsv->reserved < global_rsv->size)
5316 global_rsv->full = 0;
5317 spin_unlock(&global_rsv->lock);
5318
3a584174 5319 block_rsv_add_bytes(dest, num_bytes, true);
d52be818
JB
5320 return 0;
5321}
5322
957780eb
JB
5323/*
5324 * This is for space we already have accounted in space_info->bytes_may_use, so
5325 * basically when we're returning space from block_rsv's.
5326 */
5327static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5328 struct btrfs_space_info *space_info,
5329 u64 num_bytes)
5330{
5331 struct reserve_ticket *ticket;
5332 struct list_head *head;
5333 u64 used;
5334 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5335 bool check_overcommit = false;
5336
5337 spin_lock(&space_info->lock);
5338 head = &space_info->priority_tickets;
5339
5340 /*
5341 * If we are over our limit then we need to check and see if we can
5342 * overcommit, and if we can't then we just need to free up our space
5343 * and not satisfy any requests.
5344 */
0eee8a49 5345 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5346 if (used - num_bytes >= space_info->total_bytes)
5347 check_overcommit = true;
5348again:
5349 while (!list_empty(head) && num_bytes) {
5350 ticket = list_first_entry(head, struct reserve_ticket,
5351 list);
5352 /*
5353 * We use 0 bytes because this space is already reserved, so
5354 * adding the ticket space would be a double count.
5355 */
5356 if (check_overcommit &&
c1c4919b 5357 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5358 break;
5359 if (num_bytes >= ticket->bytes) {
5360 list_del_init(&ticket->list);
5361 num_bytes -= ticket->bytes;
5362 ticket->bytes = 0;
ce129655 5363 space_info->tickets_id++;
957780eb
JB
5364 wake_up(&ticket->wait);
5365 } else {
5366 ticket->bytes -= num_bytes;
5367 num_bytes = 0;
5368 }
5369 }
5370
5371 if (num_bytes && head == &space_info->priority_tickets) {
5372 head = &space_info->tickets;
5373 flush = BTRFS_RESERVE_FLUSH_ALL;
5374 goto again;
5375 }
5376 space_info->bytes_may_use -= num_bytes;
5377 trace_btrfs_space_reservation(fs_info, "space_info",
5378 space_info->flags, num_bytes, 0);
5379 spin_unlock(&space_info->lock);
5380}
5381
5382/*
5383 * This is for newly allocated space that isn't accounted in
5384 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5385 * we use this helper.
5386 */
5387static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5388 struct btrfs_space_info *space_info,
5389 u64 num_bytes)
5390{
5391 struct reserve_ticket *ticket;
5392 struct list_head *head = &space_info->priority_tickets;
5393
5394again:
5395 while (!list_empty(head) && num_bytes) {
5396 ticket = list_first_entry(head, struct reserve_ticket,
5397 list);
5398 if (num_bytes >= ticket->bytes) {
5399 trace_btrfs_space_reservation(fs_info, "space_info",
5400 space_info->flags,
5401 ticket->bytes, 1);
5402 list_del_init(&ticket->list);
5403 num_bytes -= ticket->bytes;
5404 space_info->bytes_may_use += ticket->bytes;
5405 ticket->bytes = 0;
ce129655 5406 space_info->tickets_id++;
957780eb
JB
5407 wake_up(&ticket->wait);
5408 } else {
5409 trace_btrfs_space_reservation(fs_info, "space_info",
5410 space_info->flags,
5411 num_bytes, 1);
5412 space_info->bytes_may_use += num_bytes;
5413 ticket->bytes -= num_bytes;
5414 num_bytes = 0;
5415 }
5416 }
5417
5418 if (num_bytes && head == &space_info->priority_tickets) {
5419 head = &space_info->tickets;
5420 goto again;
5421 }
5422}
5423
69fe2d75 5424static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5425 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5426 struct btrfs_block_rsv *dest, u64 num_bytes,
5427 u64 *qgroup_to_release_ret)
f0486c68
YZ
5428{
5429 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5430 u64 qgroup_to_release = 0;
69fe2d75 5431 u64 ret;
f0486c68
YZ
5432
5433 spin_lock(&block_rsv->lock);
ff6bc37e 5434 if (num_bytes == (u64)-1) {
f0486c68 5435 num_bytes = block_rsv->size;
ff6bc37e
QW
5436 qgroup_to_release = block_rsv->qgroup_rsv_size;
5437 }
f0486c68
YZ
5438 block_rsv->size -= num_bytes;
5439 if (block_rsv->reserved >= block_rsv->size) {
5440 num_bytes = block_rsv->reserved - block_rsv->size;
5441 block_rsv->reserved = block_rsv->size;
5442 block_rsv->full = 1;
5443 } else {
5444 num_bytes = 0;
5445 }
ff6bc37e
QW
5446 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5447 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5448 block_rsv->qgroup_rsv_size;
5449 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5450 } else {
5451 qgroup_to_release = 0;
5452 }
f0486c68
YZ
5453 spin_unlock(&block_rsv->lock);
5454
69fe2d75 5455 ret = num_bytes;
f0486c68
YZ
5456 if (num_bytes > 0) {
5457 if (dest) {
e9e22899
JB
5458 spin_lock(&dest->lock);
5459 if (!dest->full) {
5460 u64 bytes_to_add;
5461
5462 bytes_to_add = dest->size - dest->reserved;
5463 bytes_to_add = min(num_bytes, bytes_to_add);
5464 dest->reserved += bytes_to_add;
5465 if (dest->reserved >= dest->size)
5466 dest->full = 1;
5467 num_bytes -= bytes_to_add;
5468 }
5469 spin_unlock(&dest->lock);
5470 }
957780eb
JB
5471 if (num_bytes)
5472 space_info_add_old_bytes(fs_info, space_info,
5473 num_bytes);
9ed74f2d 5474 }
ff6bc37e
QW
5475 if (qgroup_to_release_ret)
5476 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5477 return ret;
f0486c68 5478}
4e06bdd6 5479
25d609f8
JB
5480int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5481 struct btrfs_block_rsv *dst, u64 num_bytes,
3a584174 5482 bool update_size)
f0486c68
YZ
5483{
5484 int ret;
9ed74f2d 5485
f0486c68
YZ
5486 ret = block_rsv_use_bytes(src, num_bytes);
5487 if (ret)
5488 return ret;
9ed74f2d 5489
25d609f8 5490 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5491 return 0;
5492}
5493
66d8f3dd 5494void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5495{
f0486c68
YZ
5496 memset(rsv, 0, sizeof(*rsv));
5497 spin_lock_init(&rsv->lock);
66d8f3dd 5498 rsv->type = type;
f0486c68
YZ
5499}
5500
69fe2d75
JB
5501void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5502 struct btrfs_block_rsv *rsv,
5503 unsigned short type)
5504{
5505 btrfs_init_block_rsv(rsv, type);
5506 rsv->space_info = __find_space_info(fs_info,
5507 BTRFS_BLOCK_GROUP_METADATA);
5508}
5509
2ff7e61e 5510struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5511 unsigned short type)
f0486c68
YZ
5512{
5513 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5514
f0486c68
YZ
5515 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5516 if (!block_rsv)
5517 return NULL;
9ed74f2d 5518
69fe2d75 5519 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5520 return block_rsv;
5521}
9ed74f2d 5522
2ff7e61e 5523void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5524 struct btrfs_block_rsv *rsv)
5525{
2aaa6655
JB
5526 if (!rsv)
5527 return;
2ff7e61e 5528 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5529 kfree(rsv);
9ed74f2d
JB
5530}
5531
08e007d2
MX
5532int btrfs_block_rsv_add(struct btrfs_root *root,
5533 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5534 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5535{
f0486c68 5536 int ret;
9ed74f2d 5537
f0486c68
YZ
5538 if (num_bytes == 0)
5539 return 0;
8bb8ab2e 5540
61b520a9 5541 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5a2cb25a 5542 if (!ret)
3a584174 5543 block_rsv_add_bytes(block_rsv, num_bytes, true);
9ed74f2d 5544
f0486c68 5545 return ret;
f0486c68 5546}
9ed74f2d 5547
2ff7e61e 5548int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5549{
5550 u64 num_bytes = 0;
f0486c68 5551 int ret = -ENOSPC;
9ed74f2d 5552
f0486c68
YZ
5553 if (!block_rsv)
5554 return 0;
9ed74f2d 5555
f0486c68 5556 spin_lock(&block_rsv->lock);
36ba022a
JB
5557 num_bytes = div_factor(block_rsv->size, min_factor);
5558 if (block_rsv->reserved >= num_bytes)
5559 ret = 0;
5560 spin_unlock(&block_rsv->lock);
9ed74f2d 5561
36ba022a
JB
5562 return ret;
5563}
5564
08e007d2
MX
5565int btrfs_block_rsv_refill(struct btrfs_root *root,
5566 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5567 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5568{
5569 u64 num_bytes = 0;
5570 int ret = -ENOSPC;
5571
5572 if (!block_rsv)
5573 return 0;
5574
5575 spin_lock(&block_rsv->lock);
5576 num_bytes = min_reserved;
13553e52 5577 if (block_rsv->reserved >= num_bytes)
f0486c68 5578 ret = 0;
13553e52 5579 else
f0486c68 5580 num_bytes -= block_rsv->reserved;
f0486c68 5581 spin_unlock(&block_rsv->lock);
13553e52 5582
f0486c68
YZ
5583 if (!ret)
5584 return 0;
5585
aa38a711 5586 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640 5587 if (!ret) {
3a584174 5588 block_rsv_add_bytes(block_rsv, num_bytes, false);
f0486c68 5589 return 0;
6a63209f 5590 }
9ed74f2d 5591
13553e52 5592 return ret;
f0486c68
YZ
5593}
5594
69fe2d75
JB
5595/**
5596 * btrfs_inode_rsv_refill - refill the inode block rsv.
5597 * @inode - the inode we are refilling.
5598 * @flush - the flusing restriction.
5599 *
5600 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5601 * block_rsv->size as the minimum size. We'll either refill the missing amount
5602 * or return if we already have enough space. This will also handle the resreve
5603 * tracepoint for the reserved amount.
5604 */
3f2dd7a0
QW
5605static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5606 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5607{
5608 struct btrfs_root *root = inode->root;
5609 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5610 u64 num_bytes = 0;
ff6bc37e 5611 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5612 int ret = -ENOSPC;
5613
5614 spin_lock(&block_rsv->lock);
5615 if (block_rsv->reserved < block_rsv->size)
5616 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5617 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5618 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5619 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5620 spin_unlock(&block_rsv->lock);
5621
5622 if (num_bytes == 0)
5623 return 0;
5624
ff6bc37e 5625 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5626 if (ret)
5627 return ret;
69fe2d75
JB
5628 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5629 if (!ret) {
3a584174 5630 block_rsv_add_bytes(block_rsv, num_bytes, false);
69fe2d75
JB
5631 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5632 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5633
5634 /* Don't forget to increase qgroup_rsv_reserved */
5635 spin_lock(&block_rsv->lock);
5636 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5637 spin_unlock(&block_rsv->lock);
5638 } else
5639 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5640 return ret;
5641}
5642
5643/**
5644 * btrfs_inode_rsv_release - release any excessive reservation.
5645 * @inode - the inode we need to release from.
43b18595
QW
5646 * @qgroup_free - free or convert qgroup meta.
5647 * Unlike normal operation, qgroup meta reservation needs to know if we are
5648 * freeing qgroup reservation or just converting it into per-trans. Normally
5649 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5650 *
5651 * This is the same as btrfs_block_rsv_release, except that it handles the
5652 * tracepoint for the reservation.
5653 */
43b18595 5654static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5655{
5656 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5657 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5658 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5659 u64 released = 0;
ff6bc37e 5660 u64 qgroup_to_release = 0;
69fe2d75
JB
5661
5662 /*
5663 * Since we statically set the block_rsv->size we just want to say we
5664 * are releasing 0 bytes, and then we'll just get the reservation over
5665 * the size free'd.
5666 */
ff6bc37e
QW
5667 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5668 &qgroup_to_release);
69fe2d75
JB
5669 if (released > 0)
5670 trace_btrfs_space_reservation(fs_info, "delalloc",
5671 btrfs_ino(inode), released, 0);
43b18595 5672 if (qgroup_free)
ff6bc37e 5673 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5674 else
ff6bc37e
QW
5675 btrfs_qgroup_convert_reserved_meta(inode->root,
5676 qgroup_to_release);
69fe2d75
JB
5677}
5678
2ff7e61e 5679void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5680 struct btrfs_block_rsv *block_rsv,
5681 u64 num_bytes)
5682{
0b246afa
JM
5683 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5684
17504584 5685 if (global_rsv == block_rsv ||
f0486c68
YZ
5686 block_rsv->space_info != global_rsv->space_info)
5687 global_rsv = NULL;
ff6bc37e 5688 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
6a63209f
JB
5689}
5690
8929ecfa
YZ
5691static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5692{
5693 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5694 struct btrfs_space_info *sinfo = block_rsv->space_info;
5695 u64 num_bytes;
6a63209f 5696
ae2e4728
JB
5697 /*
5698 * The global block rsv is based on the size of the extent tree, the
5699 * checksum tree and the root tree. If the fs is empty we want to set
5700 * it to a minimal amount for safety.
5701 */
5702 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5703 btrfs_root_used(&fs_info->csum_root->root_item) +
5704 btrfs_root_used(&fs_info->tree_root->root_item);
5705 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5706
8929ecfa 5707 spin_lock(&sinfo->lock);
1f699d38 5708 spin_lock(&block_rsv->lock);
4e06bdd6 5709
ee22184b 5710 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5711
fb4b10e5 5712 if (block_rsv->reserved < block_rsv->size) {
4136135b 5713 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5714 if (sinfo->total_bytes > num_bytes) {
5715 num_bytes = sinfo->total_bytes - num_bytes;
5716 num_bytes = min(num_bytes,
5717 block_rsv->size - block_rsv->reserved);
5718 block_rsv->reserved += num_bytes;
5719 sinfo->bytes_may_use += num_bytes;
5720 trace_btrfs_space_reservation(fs_info, "space_info",
5721 sinfo->flags, num_bytes,
5722 1);
5723 }
5724 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5725 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5726 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5727 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5728 sinfo->flags, num_bytes, 0);
8929ecfa 5729 block_rsv->reserved = block_rsv->size;
8929ecfa 5730 }
182608c8 5731
fb4b10e5
JB
5732 if (block_rsv->reserved == block_rsv->size)
5733 block_rsv->full = 1;
5734 else
5735 block_rsv->full = 0;
5736
8929ecfa 5737 spin_unlock(&block_rsv->lock);
1f699d38 5738 spin_unlock(&sinfo->lock);
6a63209f
JB
5739}
5740
f0486c68 5741static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5742{
f0486c68 5743 struct btrfs_space_info *space_info;
6a63209f 5744
f0486c68
YZ
5745 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5746 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5747
f0486c68 5748 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5749 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5750 fs_info->trans_block_rsv.space_info = space_info;
5751 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5752 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5753
8929ecfa
YZ
5754 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5755 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5756 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5757 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5758 if (fs_info->quota_root)
5759 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5760 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5761
8929ecfa 5762 update_global_block_rsv(fs_info);
6a63209f
JB
5763}
5764
8929ecfa 5765static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5766{
8c2a3ca2 5767 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5768 (u64)-1, NULL);
8929ecfa
YZ
5769 WARN_ON(fs_info->trans_block_rsv.size > 0);
5770 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5771 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5772 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5773 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5774 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5775}
5776
6a63209f 5777
4fbcdf66
FM
5778/*
5779 * To be called after all the new block groups attached to the transaction
5780 * handle have been created (btrfs_create_pending_block_groups()).
5781 */
5782void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5783{
64b63580 5784 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5785
5786 if (!trans->chunk_bytes_reserved)
5787 return;
5788
5789 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5790
5791 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5792 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5793 trans->chunk_bytes_reserved = 0;
5794}
5795
d5c12070
MX
5796/*
5797 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5798 * root: the root of the parent directory
5799 * rsv: block reservation
5800 * items: the number of items that we need do reservation
a5b7f429 5801 * use_global_rsv: allow fallback to the global block reservation
d5c12070
MX
5802 *
5803 * This function is used to reserve the space for snapshot/subvolume
5804 * creation and deletion. Those operations are different with the
5805 * common file/directory operations, they change two fs/file trees
5806 * and root tree, the number of items that the qgroup reserves is
5807 * different with the free space reservation. So we can not use
01327610 5808 * the space reservation mechanism in start_transaction().
d5c12070
MX
5809 */
5810int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
a5b7f429 5811 struct btrfs_block_rsv *rsv, int items,
ee3441b4 5812 bool use_global_rsv)
a22285a6 5813{
a5b7f429 5814 u64 qgroup_num_bytes = 0;
d5c12070
MX
5815 u64 num_bytes;
5816 int ret;
0b246afa
JM
5817 struct btrfs_fs_info *fs_info = root->fs_info;
5818 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5819
0b246afa 5820 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5821 /* One for parent inode, two for dir entries */
a5b7f429
LF
5822 qgroup_num_bytes = 3 * fs_info->nodesize;
5823 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5824 qgroup_num_bytes, true);
d5c12070
MX
5825 if (ret)
5826 return ret;
d5c12070
MX
5827 }
5828
0b246afa
JM
5829 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5830 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5831 BTRFS_BLOCK_GROUP_METADATA);
5832 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5833 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5834
5835 if (ret == -ENOSPC && use_global_rsv)
3a584174 5836 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
ee3441b4 5837
a5b7f429
LF
5838 if (ret && qgroup_num_bytes)
5839 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
d5c12070
MX
5840
5841 return ret;
5842}
5843
2ff7e61e 5844void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5845 struct btrfs_block_rsv *rsv)
d5c12070 5846{
2ff7e61e 5847 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5848}
5849
69fe2d75
JB
5850static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5851 struct btrfs_inode *inode)
9e0baf60 5852{
69fe2d75
JB
5853 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5854 u64 reserve_size = 0;
ff6bc37e 5855 u64 qgroup_rsv_size = 0;
69fe2d75
JB
5856 u64 csum_leaves;
5857 unsigned outstanding_extents;
9e0baf60 5858
69fe2d75
JB
5859 lockdep_assert_held(&inode->lock);
5860 outstanding_extents = inode->outstanding_extents;
5861 if (outstanding_extents)
5862 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5863 outstanding_extents + 1);
5864 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5865 inode->csum_bytes);
5866 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5867 csum_leaves);
ff6bc37e
QW
5868 /*
5869 * For qgroup rsv, the calculation is very simple:
5870 * account one nodesize for each outstanding extent
5871 *
5872 * This is overestimating in most cases.
5873 */
5874 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 5875
69fe2d75
JB
5876 spin_lock(&block_rsv->lock);
5877 block_rsv->size = reserve_size;
ff6bc37e 5878 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 5879 spin_unlock(&block_rsv->lock);
0ca1f7ce 5880}
c146afad 5881
9f3db423 5882int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 5883{
3ffbd68c 5884 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75 5885 unsigned nr_extents;
08e007d2 5886 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5887 int ret = 0;
c64c2bd8 5888 bool delalloc_lock = true;
6324fbf3 5889
c64c2bd8
JB
5890 /* If we are a free space inode we need to not flush since we will be in
5891 * the middle of a transaction commit. We also don't need the delalloc
5892 * mutex since we won't race with anybody. We need this mostly to make
5893 * lockdep shut its filthy mouth.
bac357dc
JB
5894 *
5895 * If we have a transaction open (can happen if we call truncate_block
5896 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5897 */
5898 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5899 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5900 delalloc_lock = false;
da07d4ab
NB
5901 } else {
5902 if (current->journal_info)
5903 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 5904
da07d4ab
NB
5905 if (btrfs_transaction_in_commit(fs_info))
5906 schedule_timeout(1);
5907 }
ec44a35c 5908
c64c2bd8 5909 if (delalloc_lock)
9f3db423 5910 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 5911
0b246afa 5912 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
5913
5914 /* Add our new extents and calculate the new rsv size. */
9f3db423 5915 spin_lock(&inode->lock);
69fe2d75 5916 nr_extents = count_max_extents(num_bytes);
8b62f87b 5917 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
5918 inode->csum_bytes += num_bytes;
5919 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 5920 spin_unlock(&inode->lock);
57a45ced 5921
69fe2d75 5922 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 5923 if (unlikely(ret))
88e081bf 5924 goto out_fail;
25179201 5925
c64c2bd8 5926 if (delalloc_lock)
9f3db423 5927 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 5928 return 0;
88e081bf
WS
5929
5930out_fail:
9f3db423 5931 spin_lock(&inode->lock);
8b62f87b
JB
5932 nr_extents = count_max_extents(num_bytes);
5933 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
5934 inode->csum_bytes -= num_bytes;
5935 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 5936 spin_unlock(&inode->lock);
88e081bf 5937
43b18595 5938 btrfs_inode_rsv_release(inode, true);
88e081bf 5939 if (delalloc_lock)
9f3db423 5940 mutex_unlock(&inode->delalloc_mutex);
88e081bf 5941 return ret;
0ca1f7ce
YZ
5942}
5943
7709cde3
JB
5944/**
5945 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
5946 * @inode: the inode to release the reservation for.
5947 * @num_bytes: the number of bytes we are releasing.
43b18595 5948 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
5949 *
5950 * This will release the metadata reservation for an inode. This can be called
5951 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 5952 * reservations, or on error for the same reason.
7709cde3 5953 */
43b18595
QW
5954void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5955 bool qgroup_free)
0ca1f7ce 5956{
3ffbd68c 5957 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0ca1f7ce 5958
0b246afa 5959 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 5960 spin_lock(&inode->lock);
69fe2d75
JB
5961 inode->csum_bytes -= num_bytes;
5962 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 5963 spin_unlock(&inode->lock);
0ca1f7ce 5964
0b246afa 5965 if (btrfs_is_testing(fs_info))
6a3891c5
JB
5966 return;
5967
43b18595 5968 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
5969}
5970
8b62f87b
JB
5971/**
5972 * btrfs_delalloc_release_extents - release our outstanding_extents
5973 * @inode: the inode to balance the reservation for.
5974 * @num_bytes: the number of bytes we originally reserved with
43b18595 5975 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
5976 *
5977 * When we reserve space we increase outstanding_extents for the extents we may
5978 * add. Once we've set the range as delalloc or created our ordered extents we
5979 * have outstanding_extents to track the real usage, so we use this to free our
5980 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
5981 * with btrfs_delalloc_reserve_metadata.
5982 */
43b18595
QW
5983void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
5984 bool qgroup_free)
8b62f87b 5985{
3ffbd68c 5986 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8b62f87b 5987 unsigned num_extents;
8b62f87b
JB
5988
5989 spin_lock(&inode->lock);
5990 num_extents = count_max_extents(num_bytes);
5991 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 5992 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
5993 spin_unlock(&inode->lock);
5994
8b62f87b
JB
5995 if (btrfs_is_testing(fs_info))
5996 return;
5997
43b18595 5998 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
5999}
6000
1ada3a62 6001/**
7cf5b976 6002 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6003 * delalloc
6004 * @inode: inode we're writing to
6005 * @start: start range we are writing to
6006 * @len: how long the range we are writing to
364ecf36
QW
6007 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6008 * current reservation.
1ada3a62 6009 *
1ada3a62
QW
6010 * This will do the following things
6011 *
6012 * o reserve space in data space info for num bytes
6013 * and reserve precious corresponding qgroup space
6014 * (Done in check_data_free_space)
6015 *
6016 * o reserve space for metadata space, based on the number of outstanding
6017 * extents and how much csums will be needed
6018 * also reserve metadata space in a per root over-reserve method.
6019 * o add to the inodes->delalloc_bytes
6020 * o add it to the fs_info's delalloc inodes list.
6021 * (Above 3 all done in delalloc_reserve_metadata)
6022 *
6023 * Return 0 for success
6024 * Return <0 for error(-ENOSPC or -EQUOT)
6025 */
364ecf36
QW
6026int btrfs_delalloc_reserve_space(struct inode *inode,
6027 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6028{
6029 int ret;
6030
364ecf36 6031 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6032 if (ret < 0)
6033 return ret;
9f3db423 6034 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6035 if (ret < 0)
bc42bda2 6036 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6037 return ret;
6038}
6039
7709cde3 6040/**
7cf5b976 6041 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6042 * @inode: inode we're releasing space for
6043 * @start: start position of the space already reserved
6044 * @len: the len of the space already reserved
8b62f87b 6045 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6046 *
6047 * This function will release the metadata space that was not used and will
6048 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6049 * list if there are no delalloc bytes left.
6050 * Also it will handle the qgroup reserved space.
6051 */
bc42bda2 6052void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6053 struct extent_changeset *reserved,
43b18595 6054 u64 start, u64 len, bool qgroup_free)
1ada3a62 6055{
43b18595 6056 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6057 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6058}
6059
ce93ec54 6060static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6061 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6062 u64 num_bytes, int alloc)
9078a3e1 6063{
0af3d00b 6064 struct btrfs_block_group_cache *cache = NULL;
db94535d 6065 u64 total = num_bytes;
9078a3e1 6066 u64 old_val;
db94535d 6067 u64 byte_in_group;
0af3d00b 6068 int factor;
3e1ad54f 6069
5d4f98a2 6070 /* block accounting for super block */
eb73c1b7 6071 spin_lock(&info->delalloc_root_lock);
6c41761f 6072 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6073 if (alloc)
6074 old_val += num_bytes;
6075 else
6076 old_val -= num_bytes;
6c41761f 6077 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6078 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6079
d397712b 6080 while (total) {
db94535d 6081 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6082 if (!cache)
79787eaa 6083 return -ENOENT;
46df06b8
DS
6084 factor = btrfs_bg_type_to_factor(cache->flags);
6085
9d66e233
JB
6086 /*
6087 * If this block group has free space cache written out, we
6088 * need to make sure to load it if we are removing space. This
6089 * is because we need the unpinning stage to actually add the
6090 * space back to the block group, otherwise we will leak space.
6091 */
6092 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6093 cache_block_group(cache, 1);
0af3d00b 6094
db94535d
CM
6095 byte_in_group = bytenr - cache->key.objectid;
6096 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6097
25179201 6098 spin_lock(&cache->space_info->lock);
c286ac48 6099 spin_lock(&cache->lock);
0af3d00b 6100
6202df69 6101 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6102 cache->disk_cache_state < BTRFS_DC_CLEAR)
6103 cache->disk_cache_state = BTRFS_DC_CLEAR;
6104
9078a3e1 6105 old_val = btrfs_block_group_used(&cache->item);
db94535d 6106 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6107 if (alloc) {
db94535d 6108 old_val += num_bytes;
11833d66
YZ
6109 btrfs_set_block_group_used(&cache->item, old_val);
6110 cache->reserved -= num_bytes;
11833d66 6111 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6112 cache->space_info->bytes_used += num_bytes;
6113 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6114 spin_unlock(&cache->lock);
25179201 6115 spin_unlock(&cache->space_info->lock);
cd1bc465 6116 } else {
db94535d 6117 old_val -= num_bytes;
ae0ab003
FM
6118 btrfs_set_block_group_used(&cache->item, old_val);
6119 cache->pinned += num_bytes;
6120 cache->space_info->bytes_pinned += num_bytes;
6121 cache->space_info->bytes_used -= num_bytes;
6122 cache->space_info->disk_used -= num_bytes * factor;
6123 spin_unlock(&cache->lock);
6124 spin_unlock(&cache->space_info->lock);
47ab2a6c 6125
0b246afa 6126 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6127 cache->space_info->flags,
6128 num_bytes, 1);
dec59fa3
EL
6129 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6130 num_bytes,
6131 BTRFS_TOTAL_BYTES_PINNED_BATCH);
ae0ab003
FM
6132 set_extent_dirty(info->pinned_extents,
6133 bytenr, bytenr + num_bytes - 1,
6134 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6135 }
1bbc621e
CM
6136
6137 spin_lock(&trans->transaction->dirty_bgs_lock);
6138 if (list_empty(&cache->dirty_list)) {
6139 list_add_tail(&cache->dirty_list,
6140 &trans->transaction->dirty_bgs);
bece2e82 6141 trans->transaction->num_dirty_bgs++;
1bbc621e
CM
6142 btrfs_get_block_group(cache);
6143 }
6144 spin_unlock(&trans->transaction->dirty_bgs_lock);
6145
036a9348
FM
6146 /*
6147 * No longer have used bytes in this block group, queue it for
6148 * deletion. We do this after adding the block group to the
6149 * dirty list to avoid races between cleaner kthread and space
6150 * cache writeout.
6151 */
031f24da
QW
6152 if (!alloc && old_val == 0)
6153 btrfs_mark_bg_unused(cache);
036a9348 6154
fa9c0d79 6155 btrfs_put_block_group(cache);
db94535d
CM
6156 total -= num_bytes;
6157 bytenr += num_bytes;
9078a3e1
CM
6158 }
6159 return 0;
6160}
6324fbf3 6161
2ff7e61e 6162static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6163{
0f9dd46c 6164 struct btrfs_block_group_cache *cache;
d2fb3437 6165 u64 bytenr;
0f9dd46c 6166
0b246afa
JM
6167 spin_lock(&fs_info->block_group_cache_lock);
6168 bytenr = fs_info->first_logical_byte;
6169 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6170
6171 if (bytenr < (u64)-1)
6172 return bytenr;
6173
0b246afa 6174 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6175 if (!cache)
a061fc8d 6176 return 0;
0f9dd46c 6177
d2fb3437 6178 bytenr = cache->key.objectid;
fa9c0d79 6179 btrfs_put_block_group(cache);
d2fb3437
YZ
6180
6181 return bytenr;
a061fc8d
CM
6182}
6183
2ff7e61e 6184static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6185 struct btrfs_block_group_cache *cache,
6186 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6187{
11833d66
YZ
6188 spin_lock(&cache->space_info->lock);
6189 spin_lock(&cache->lock);
6190 cache->pinned += num_bytes;
6191 cache->space_info->bytes_pinned += num_bytes;
6192 if (reserved) {
6193 cache->reserved -= num_bytes;
6194 cache->space_info->bytes_reserved -= num_bytes;
6195 }
6196 spin_unlock(&cache->lock);
6197 spin_unlock(&cache->space_info->lock);
68b38550 6198
0b246afa 6199 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6200 cache->space_info->flags, num_bytes, 1);
dec59fa3
EL
6201 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6202 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
0b246afa 6203 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6204 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6205 return 0;
6206}
68b38550 6207
f0486c68
YZ
6208/*
6209 * this function must be called within transaction
6210 */
2ff7e61e 6211int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6212 u64 bytenr, u64 num_bytes, int reserved)
6213{
6214 struct btrfs_block_group_cache *cache;
68b38550 6215
0b246afa 6216 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6217 BUG_ON(!cache); /* Logic error */
f0486c68 6218
2ff7e61e 6219 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6220
6221 btrfs_put_block_group(cache);
11833d66
YZ
6222 return 0;
6223}
6224
f0486c68 6225/*
e688b725
CM
6226 * this function must be called within transaction
6227 */
2ff7e61e 6228int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6229 u64 bytenr, u64 num_bytes)
6230{
6231 struct btrfs_block_group_cache *cache;
b50c6e25 6232 int ret;
e688b725 6233
0b246afa 6234 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6235 if (!cache)
6236 return -EINVAL;
e688b725
CM
6237
6238 /*
6239 * pull in the free space cache (if any) so that our pin
6240 * removes the free space from the cache. We have load_only set
6241 * to one because the slow code to read in the free extents does check
6242 * the pinned extents.
6243 */
f6373bf3 6244 cache_block_group(cache, 1);
e688b725 6245
2ff7e61e 6246 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6247
6248 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6249 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6250 btrfs_put_block_group(cache);
b50c6e25 6251 return ret;
e688b725
CM
6252}
6253
2ff7e61e
JM
6254static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6255 u64 start, u64 num_bytes)
8c2a1a30
JB
6256{
6257 int ret;
6258 struct btrfs_block_group_cache *block_group;
6259 struct btrfs_caching_control *caching_ctl;
6260
0b246afa 6261 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6262 if (!block_group)
6263 return -EINVAL;
6264
6265 cache_block_group(block_group, 0);
6266 caching_ctl = get_caching_control(block_group);
6267
6268 if (!caching_ctl) {
6269 /* Logic error */
6270 BUG_ON(!block_group_cache_done(block_group));
6271 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6272 } else {
6273 mutex_lock(&caching_ctl->mutex);
6274
6275 if (start >= caching_ctl->progress) {
2ff7e61e 6276 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6277 } else if (start + num_bytes <= caching_ctl->progress) {
6278 ret = btrfs_remove_free_space(block_group,
6279 start, num_bytes);
6280 } else {
6281 num_bytes = caching_ctl->progress - start;
6282 ret = btrfs_remove_free_space(block_group,
6283 start, num_bytes);
6284 if (ret)
6285 goto out_lock;
6286
6287 num_bytes = (start + num_bytes) -
6288 caching_ctl->progress;
6289 start = caching_ctl->progress;
2ff7e61e 6290 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6291 }
6292out_lock:
6293 mutex_unlock(&caching_ctl->mutex);
6294 put_caching_control(caching_ctl);
6295 }
6296 btrfs_put_block_group(block_group);
6297 return ret;
6298}
6299
2ff7e61e 6300int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6301 struct extent_buffer *eb)
6302{
6303 struct btrfs_file_extent_item *item;
6304 struct btrfs_key key;
6305 int found_type;
6306 int i;
b89311ef 6307 int ret = 0;
8c2a1a30 6308
2ff7e61e 6309 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6310 return 0;
6311
6312 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6313 btrfs_item_key_to_cpu(eb, &key, i);
6314 if (key.type != BTRFS_EXTENT_DATA_KEY)
6315 continue;
6316 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6317 found_type = btrfs_file_extent_type(eb, item);
6318 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6319 continue;
6320 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6321 continue;
6322 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6323 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6324 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6325 if (ret)
6326 break;
8c2a1a30
JB
6327 }
6328
b89311ef 6329 return ret;
8c2a1a30
JB
6330}
6331
9cfa3e34
FM
6332static void
6333btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6334{
6335 atomic_inc(&bg->reservations);
6336}
6337
6338void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6339 const u64 start)
6340{
6341 struct btrfs_block_group_cache *bg;
6342
6343 bg = btrfs_lookup_block_group(fs_info, start);
6344 ASSERT(bg);
6345 if (atomic_dec_and_test(&bg->reservations))
4625956a 6346 wake_up_var(&bg->reservations);
9cfa3e34
FM
6347 btrfs_put_block_group(bg);
6348}
6349
9cfa3e34
FM
6350void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6351{
6352 struct btrfs_space_info *space_info = bg->space_info;
6353
6354 ASSERT(bg->ro);
6355
6356 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6357 return;
6358
6359 /*
6360 * Our block group is read only but before we set it to read only,
6361 * some task might have had allocated an extent from it already, but it
6362 * has not yet created a respective ordered extent (and added it to a
6363 * root's list of ordered extents).
6364 * Therefore wait for any task currently allocating extents, since the
6365 * block group's reservations counter is incremented while a read lock
6366 * on the groups' semaphore is held and decremented after releasing
6367 * the read access on that semaphore and creating the ordered extent.
6368 */
6369 down_write(&space_info->groups_sem);
6370 up_write(&space_info->groups_sem);
6371
4625956a 6372 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6373}
6374
fb25e914 6375/**
4824f1f4 6376 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6377 * @cache: The cache we are manipulating
18513091
WX
6378 * @ram_bytes: The number of bytes of file content, and will be same to
6379 * @num_bytes except for the compress path.
fb25e914 6380 * @num_bytes: The number of bytes in question
e570fd27 6381 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6382 *
745699ef
XW
6383 * This is called by the allocator when it reserves space. If this is a
6384 * reservation and the block group has become read only we cannot make the
6385 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6386 */
4824f1f4 6387static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6388 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6389{
fb25e914 6390 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6391 int ret = 0;
79787eaa 6392
fb25e914
JB
6393 spin_lock(&space_info->lock);
6394 spin_lock(&cache->lock);
4824f1f4
WX
6395 if (cache->ro) {
6396 ret = -EAGAIN;
fb25e914 6397 } else {
4824f1f4
WX
6398 cache->reserved += num_bytes;
6399 space_info->bytes_reserved += num_bytes;
e570fd27 6400
18513091
WX
6401 trace_btrfs_space_reservation(cache->fs_info,
6402 "space_info", space_info->flags,
6403 ram_bytes, 0);
6404 space_info->bytes_may_use -= ram_bytes;
e570fd27 6405 if (delalloc)
4824f1f4 6406 cache->delalloc_bytes += num_bytes;
324ae4df 6407 }
fb25e914
JB
6408 spin_unlock(&cache->lock);
6409 spin_unlock(&space_info->lock);
f0486c68 6410 return ret;
324ae4df 6411}
9078a3e1 6412
4824f1f4
WX
6413/**
6414 * btrfs_free_reserved_bytes - update the block_group and space info counters
6415 * @cache: The cache we are manipulating
6416 * @num_bytes: The number of bytes in question
6417 * @delalloc: The blocks are allocated for the delalloc write
6418 *
6419 * This is called by somebody who is freeing space that was never actually used
6420 * on disk. For example if you reserve some space for a new leaf in transaction
6421 * A and before transaction A commits you free that leaf, you call this with
6422 * reserve set to 0 in order to clear the reservation.
6423 */
6424
556f3ca8 6425static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6426 u64 num_bytes, int delalloc)
4824f1f4
WX
6427{
6428 struct btrfs_space_info *space_info = cache->space_info;
4824f1f4
WX
6429
6430 spin_lock(&space_info->lock);
6431 spin_lock(&cache->lock);
6432 if (cache->ro)
6433 space_info->bytes_readonly += num_bytes;
6434 cache->reserved -= num_bytes;
6435 space_info->bytes_reserved -= num_bytes;
6436
6437 if (delalloc)
6438 cache->delalloc_bytes -= num_bytes;
6439 spin_unlock(&cache->lock);
6440 spin_unlock(&space_info->lock);
4824f1f4 6441}
8b74c03e 6442void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6443{
11833d66
YZ
6444 struct btrfs_caching_control *next;
6445 struct btrfs_caching_control *caching_ctl;
6446 struct btrfs_block_group_cache *cache;
e8569813 6447
9e351cc8 6448 down_write(&fs_info->commit_root_sem);
25179201 6449
11833d66
YZ
6450 list_for_each_entry_safe(caching_ctl, next,
6451 &fs_info->caching_block_groups, list) {
6452 cache = caching_ctl->block_group;
6453 if (block_group_cache_done(cache)) {
6454 cache->last_byte_to_unpin = (u64)-1;
6455 list_del_init(&caching_ctl->list);
6456 put_caching_control(caching_ctl);
e8569813 6457 } else {
11833d66 6458 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6459 }
e8569813 6460 }
11833d66
YZ
6461
6462 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6463 fs_info->pinned_extents = &fs_info->freed_extents[1];
6464 else
6465 fs_info->pinned_extents = &fs_info->freed_extents[0];
6466
9e351cc8 6467 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6468
6469 update_global_block_rsv(fs_info);
e8569813
ZY
6470}
6471
c759c4e1
JB
6472/*
6473 * Returns the free cluster for the given space info and sets empty_cluster to
6474 * what it should be based on the mount options.
6475 */
6476static struct btrfs_free_cluster *
2ff7e61e
JM
6477fetch_cluster_info(struct btrfs_fs_info *fs_info,
6478 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6479{
6480 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6481
6482 *empty_cluster = 0;
6483 if (btrfs_mixed_space_info(space_info))
6484 return ret;
6485
c759c4e1 6486 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6487 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6488 if (btrfs_test_opt(fs_info, SSD))
6489 *empty_cluster = SZ_2M;
6490 else
ee22184b 6491 *empty_cluster = SZ_64K;
583b7231
HK
6492 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6493 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6494 *empty_cluster = SZ_2M;
0b246afa 6495 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6496 }
6497
6498 return ret;
6499}
6500
2ff7e61e
JM
6501static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6502 u64 start, u64 end,
678886bd 6503 const bool return_free_space)
ccd467d6 6504{
11833d66 6505 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6506 struct btrfs_space_info *space_info;
6507 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6508 struct btrfs_free_cluster *cluster = NULL;
11833d66 6509 u64 len;
c759c4e1
JB
6510 u64 total_unpinned = 0;
6511 u64 empty_cluster = 0;
7b398f8e 6512 bool readonly;
ccd467d6 6513
11833d66 6514 while (start <= end) {
7b398f8e 6515 readonly = false;
11833d66
YZ
6516 if (!cache ||
6517 start >= cache->key.objectid + cache->key.offset) {
6518 if (cache)
6519 btrfs_put_block_group(cache);
c759c4e1 6520 total_unpinned = 0;
11833d66 6521 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6522 BUG_ON(!cache); /* Logic error */
c759c4e1 6523
2ff7e61e 6524 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6525 cache->space_info,
6526 &empty_cluster);
6527 empty_cluster <<= 1;
11833d66
YZ
6528 }
6529
6530 len = cache->key.objectid + cache->key.offset - start;
6531 len = min(len, end + 1 - start);
6532
6533 if (start < cache->last_byte_to_unpin) {
6534 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6535 if (return_free_space)
6536 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6537 }
6538
f0486c68 6539 start += len;
c759c4e1 6540 total_unpinned += len;
7b398f8e 6541 space_info = cache->space_info;
f0486c68 6542
c759c4e1
JB
6543 /*
6544 * If this space cluster has been marked as fragmented and we've
6545 * unpinned enough in this block group to potentially allow a
6546 * cluster to be created inside of it go ahead and clear the
6547 * fragmented check.
6548 */
6549 if (cluster && cluster->fragmented &&
6550 total_unpinned > empty_cluster) {
6551 spin_lock(&cluster->lock);
6552 cluster->fragmented = 0;
6553 spin_unlock(&cluster->lock);
6554 }
6555
7b398f8e 6556 spin_lock(&space_info->lock);
11833d66
YZ
6557 spin_lock(&cache->lock);
6558 cache->pinned -= len;
7b398f8e 6559 space_info->bytes_pinned -= len;
c51e7bb1
JB
6560
6561 trace_btrfs_space_reservation(fs_info, "pinned",
6562 space_info->flags, len, 0);
4f4db217 6563 space_info->max_extent_size = 0;
dec59fa3
EL
6564 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6565 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
7b398f8e
JB
6566 if (cache->ro) {
6567 space_info->bytes_readonly += len;
6568 readonly = true;
6569 }
11833d66 6570 spin_unlock(&cache->lock);
957780eb
JB
6571 if (!readonly && return_free_space &&
6572 global_rsv->space_info == space_info) {
6573 u64 to_add = len;
92ac58ec 6574
7b398f8e
JB
6575 spin_lock(&global_rsv->lock);
6576 if (!global_rsv->full) {
957780eb
JB
6577 to_add = min(len, global_rsv->size -
6578 global_rsv->reserved);
6579 global_rsv->reserved += to_add;
6580 space_info->bytes_may_use += to_add;
7b398f8e
JB
6581 if (global_rsv->reserved >= global_rsv->size)
6582 global_rsv->full = 1;
957780eb
JB
6583 trace_btrfs_space_reservation(fs_info,
6584 "space_info",
6585 space_info->flags,
6586 to_add, 1);
6587 len -= to_add;
7b398f8e
JB
6588 }
6589 spin_unlock(&global_rsv->lock);
957780eb
JB
6590 /* Add to any tickets we may have */
6591 if (len)
6592 space_info_add_new_bytes(fs_info, space_info,
6593 len);
7b398f8e
JB
6594 }
6595 spin_unlock(&space_info->lock);
ccd467d6 6596 }
11833d66
YZ
6597
6598 if (cache)
6599 btrfs_put_block_group(cache);
ccd467d6
CM
6600 return 0;
6601}
6602
5ead2dd0 6603int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6604{
5ead2dd0 6605 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6606 struct btrfs_block_group_cache *block_group, *tmp;
6607 struct list_head *deleted_bgs;
11833d66 6608 struct extent_io_tree *unpin;
1a5bc167
CM
6609 u64 start;
6610 u64 end;
a28ec197 6611 int ret;
a28ec197 6612
11833d66
YZ
6613 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6614 unpin = &fs_info->freed_extents[1];
6615 else
6616 unpin = &fs_info->freed_extents[0];
6617
e33e17ee 6618 while (!trans->aborted) {
d4b450cd 6619 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6620 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6621 EXTENT_DIRTY, NULL);
d4b450cd
FM
6622 if (ret) {
6623 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6624 break;
d4b450cd 6625 }
1f3c79a2 6626
0b246afa 6627 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6628 ret = btrfs_discard_extent(fs_info, start,
5378e607 6629 end + 1 - start, NULL);
1f3c79a2 6630
af6f8f60 6631 clear_extent_dirty(unpin, start, end);
2ff7e61e 6632 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6633 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6634 cond_resched();
a28ec197 6635 }
817d52f8 6636
e33e17ee
JM
6637 /*
6638 * Transaction is finished. We don't need the lock anymore. We
6639 * do need to clean up the block groups in case of a transaction
6640 * abort.
6641 */
6642 deleted_bgs = &trans->transaction->deleted_bgs;
6643 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6644 u64 trimmed = 0;
6645
6646 ret = -EROFS;
6647 if (!trans->aborted)
2ff7e61e 6648 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6649 block_group->key.objectid,
6650 block_group->key.offset,
6651 &trimmed);
6652
6653 list_del_init(&block_group->bg_list);
6654 btrfs_put_block_group_trimming(block_group);
6655 btrfs_put_block_group(block_group);
6656
6657 if (ret) {
6658 const char *errstr = btrfs_decode_error(ret);
6659 btrfs_warn(fs_info,
913e1535 6660 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6661 ret, errstr);
6662 }
6663 }
6664
e20d96d6
CM
6665 return 0;
6666}
6667
5d4f98a2 6668static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
6669 struct btrfs_delayed_ref_node *node, u64 parent,
6670 u64 root_objectid, u64 owner_objectid,
6671 u64 owner_offset, int refs_to_drop,
6672 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6673{
e72cb923 6674 struct btrfs_fs_info *info = trans->fs_info;
e2fa7227 6675 struct btrfs_key key;
5d4f98a2 6676 struct btrfs_path *path;
1261ec42 6677 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6678 struct extent_buffer *leaf;
5d4f98a2
YZ
6679 struct btrfs_extent_item *ei;
6680 struct btrfs_extent_inline_ref *iref;
a28ec197 6681 int ret;
5d4f98a2 6682 int is_data;
952fccac
CM
6683 int extent_slot = 0;
6684 int found_extent = 0;
6685 int num_to_del = 1;
5d4f98a2
YZ
6686 u32 item_size;
6687 u64 refs;
c682f9b3
QW
6688 u64 bytenr = node->bytenr;
6689 u64 num_bytes = node->num_bytes;
fcebe456 6690 int last_ref = 0;
0b246afa 6691 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6692
5caf2a00 6693 path = btrfs_alloc_path();
54aa1f4d
CM
6694 if (!path)
6695 return -ENOMEM;
5f26f772 6696
e4058b54 6697 path->reada = READA_FORWARD;
b9473439 6698 path->leave_spinning = 1;
5d4f98a2
YZ
6699
6700 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6701 BUG_ON(!is_data && refs_to_drop != 1);
6702
3173a18f 6703 if (is_data)
897ca819 6704 skinny_metadata = false;
3173a18f 6705
fbe4801b
NB
6706 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6707 parent, root_objectid, owner_objectid,
5d4f98a2 6708 owner_offset);
7bb86316 6709 if (ret == 0) {
952fccac 6710 extent_slot = path->slots[0];
5d4f98a2
YZ
6711 while (extent_slot >= 0) {
6712 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6713 extent_slot);
5d4f98a2 6714 if (key.objectid != bytenr)
952fccac 6715 break;
5d4f98a2
YZ
6716 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6717 key.offset == num_bytes) {
952fccac
CM
6718 found_extent = 1;
6719 break;
6720 }
3173a18f
JB
6721 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6722 key.offset == owner_objectid) {
6723 found_extent = 1;
6724 break;
6725 }
952fccac
CM
6726 if (path->slots[0] - extent_slot > 5)
6727 break;
5d4f98a2 6728 extent_slot--;
952fccac 6729 }
a79865c6 6730
31840ae1 6731 if (!found_extent) {
5d4f98a2 6732 BUG_ON(iref);
87cc7a8a 6733 ret = remove_extent_backref(trans, path, NULL,
87bde3cd 6734 refs_to_drop,
fcebe456 6735 is_data, &last_ref);
005d6427 6736 if (ret) {
66642832 6737 btrfs_abort_transaction(trans, ret);
005d6427
DS
6738 goto out;
6739 }
b3b4aa74 6740 btrfs_release_path(path);
b9473439 6741 path->leave_spinning = 1;
5d4f98a2
YZ
6742
6743 key.objectid = bytenr;
6744 key.type = BTRFS_EXTENT_ITEM_KEY;
6745 key.offset = num_bytes;
6746
3173a18f
JB
6747 if (!is_data && skinny_metadata) {
6748 key.type = BTRFS_METADATA_ITEM_KEY;
6749 key.offset = owner_objectid;
6750 }
6751
31840ae1
ZY
6752 ret = btrfs_search_slot(trans, extent_root,
6753 &key, path, -1, 1);
3173a18f
JB
6754 if (ret > 0 && skinny_metadata && path->slots[0]) {
6755 /*
6756 * Couldn't find our skinny metadata item,
6757 * see if we have ye olde extent item.
6758 */
6759 path->slots[0]--;
6760 btrfs_item_key_to_cpu(path->nodes[0], &key,
6761 path->slots[0]);
6762 if (key.objectid == bytenr &&
6763 key.type == BTRFS_EXTENT_ITEM_KEY &&
6764 key.offset == num_bytes)
6765 ret = 0;
6766 }
6767
6768 if (ret > 0 && skinny_metadata) {
6769 skinny_metadata = false;
9ce49a0b 6770 key.objectid = bytenr;
3173a18f
JB
6771 key.type = BTRFS_EXTENT_ITEM_KEY;
6772 key.offset = num_bytes;
6773 btrfs_release_path(path);
6774 ret = btrfs_search_slot(trans, extent_root,
6775 &key, path, -1, 1);
6776 }
6777
f3465ca4 6778 if (ret) {
5d163e0e
JM
6779 btrfs_err(info,
6780 "umm, got %d back from search, was looking for %llu",
6781 ret, bytenr);
b783e62d 6782 if (ret > 0)
a4f78750 6783 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6784 }
005d6427 6785 if (ret < 0) {
66642832 6786 btrfs_abort_transaction(trans, ret);
005d6427
DS
6787 goto out;
6788 }
31840ae1
ZY
6789 extent_slot = path->slots[0];
6790 }
fae7f21c 6791 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6792 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6793 btrfs_err(info,
6794 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6795 bytenr, parent, root_objectid, owner_objectid,
6796 owner_offset);
66642832 6797 btrfs_abort_transaction(trans, ret);
c4a050bb 6798 goto out;
79787eaa 6799 } else {
66642832 6800 btrfs_abort_transaction(trans, ret);
005d6427 6801 goto out;
7bb86316 6802 }
5f39d397
CM
6803
6804 leaf = path->nodes[0];
5d4f98a2 6805 item_size = btrfs_item_size_nr(leaf, extent_slot);
6d8ff4e4 6806 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
6807 ret = -EINVAL;
6808 btrfs_print_v0_err(info);
6809 btrfs_abort_transaction(trans, ret);
6810 goto out;
6811 }
952fccac 6812 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6813 struct btrfs_extent_item);
3173a18f
JB
6814 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6815 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6816 struct btrfs_tree_block_info *bi;
6817 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6818 bi = (struct btrfs_tree_block_info *)(ei + 1);
6819 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6820 }
56bec294 6821
5d4f98a2 6822 refs = btrfs_extent_refs(leaf, ei);
32b02538 6823 if (refs < refs_to_drop) {
5d163e0e
JM
6824 btrfs_err(info,
6825 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6826 refs_to_drop, refs, bytenr);
32b02538 6827 ret = -EINVAL;
66642832 6828 btrfs_abort_transaction(trans, ret);
32b02538
JB
6829 goto out;
6830 }
56bec294 6831 refs -= refs_to_drop;
5f39d397 6832
5d4f98a2
YZ
6833 if (refs > 0) {
6834 if (extent_op)
6835 __run_delayed_extent_op(extent_op, leaf, ei);
6836 /*
6837 * In the case of inline back ref, reference count will
6838 * be updated by remove_extent_backref
952fccac 6839 */
5d4f98a2
YZ
6840 if (iref) {
6841 BUG_ON(!found_extent);
6842 } else {
6843 btrfs_set_extent_refs(leaf, ei, refs);
6844 btrfs_mark_buffer_dirty(leaf);
6845 }
6846 if (found_extent) {
87cc7a8a
NB
6847 ret = remove_extent_backref(trans, path, iref,
6848 refs_to_drop, is_data,
6849 &last_ref);
005d6427 6850 if (ret) {
66642832 6851 btrfs_abort_transaction(trans, ret);
005d6427
DS
6852 goto out;
6853 }
952fccac 6854 }
5d4f98a2 6855 } else {
5d4f98a2
YZ
6856 if (found_extent) {
6857 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6858 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6859 if (iref) {
6860 BUG_ON(path->slots[0] != extent_slot);
6861 } else {
6862 BUG_ON(path->slots[0] != extent_slot + 1);
6863 path->slots[0] = extent_slot;
6864 num_to_del = 2;
6865 }
78fae27e 6866 }
b9473439 6867
fcebe456 6868 last_ref = 1;
952fccac
CM
6869 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6870 num_to_del);
005d6427 6871 if (ret) {
66642832 6872 btrfs_abort_transaction(trans, ret);
005d6427
DS
6873 goto out;
6874 }
b3b4aa74 6875 btrfs_release_path(path);
21af804c 6876
5d4f98a2 6877 if (is_data) {
5b4aacef 6878 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 6879 if (ret) {
66642832 6880 btrfs_abort_transaction(trans, ret);
005d6427
DS
6881 goto out;
6882 }
459931ec
CM
6883 }
6884
e7355e50 6885 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 6886 if (ret) {
66642832 6887 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
6888 goto out;
6889 }
6890
0b246afa 6891 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 6892 if (ret) {
66642832 6893 btrfs_abort_transaction(trans, ret);
005d6427
DS
6894 goto out;
6895 }
a28ec197 6896 }
fcebe456
JB
6897 btrfs_release_path(path);
6898
79787eaa 6899out:
5caf2a00 6900 btrfs_free_path(path);
a28ec197
CM
6901 return ret;
6902}
6903
1887be66 6904/*
f0486c68 6905 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6906 * delayed ref for that extent as well. This searches the delayed ref tree for
6907 * a given extent, and if there are no other delayed refs to be processed, it
6908 * removes it from the tree.
6909 */
6910static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 6911 u64 bytenr)
1887be66
CM
6912{
6913 struct btrfs_delayed_ref_head *head;
6914 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6915 int ret = 0;
1887be66
CM
6916
6917 delayed_refs = &trans->transaction->delayed_refs;
6918 spin_lock(&delayed_refs->lock);
f72ad18e 6919 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 6920 if (!head)
cf93da7b 6921 goto out_delayed_unlock;
1887be66 6922
d7df2c79 6923 spin_lock(&head->lock);
0e0adbcf 6924 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
6925 goto out;
6926
5d4f98a2
YZ
6927 if (head->extent_op) {
6928 if (!head->must_insert_reserved)
6929 goto out;
78a6184a 6930 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6931 head->extent_op = NULL;
6932 }
6933
1887be66
CM
6934 /*
6935 * waiting for the lock here would deadlock. If someone else has it
6936 * locked they are already in the process of dropping it anyway
6937 */
6938 if (!mutex_trylock(&head->mutex))
6939 goto out;
6940
6941 /*
6942 * at this point we have a head with no other entries. Go
6943 * ahead and process it.
6944 */
c46effa6 6945 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 6946 RB_CLEAR_NODE(&head->href_node);
d7df2c79 6947 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6948
6949 /*
6950 * we don't take a ref on the node because we're removing it from the
6951 * tree, so we just steal the ref the tree was holding.
6952 */
c3e69d58 6953 delayed_refs->num_heads--;
d7df2c79 6954 if (head->processing == 0)
c3e69d58 6955 delayed_refs->num_heads_ready--;
d7df2c79
JB
6956 head->processing = 0;
6957 spin_unlock(&head->lock);
1887be66
CM
6958 spin_unlock(&delayed_refs->lock);
6959
f0486c68
YZ
6960 BUG_ON(head->extent_op);
6961 if (head->must_insert_reserved)
6962 ret = 1;
6963
6964 mutex_unlock(&head->mutex);
d278850e 6965 btrfs_put_delayed_ref_head(head);
f0486c68 6966 return ret;
1887be66 6967out:
d7df2c79 6968 spin_unlock(&head->lock);
cf93da7b
CM
6969
6970out_delayed_unlock:
1887be66
CM
6971 spin_unlock(&delayed_refs->lock);
6972 return 0;
6973}
6974
f0486c68
YZ
6975void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6976 struct btrfs_root *root,
6977 struct extent_buffer *buf,
5581a51a 6978 u64 parent, int last_ref)
f0486c68 6979{
0b246afa 6980 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 6981 int pin = 1;
f0486c68
YZ
6982 int ret;
6983
6984 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
6985 int old_ref_mod, new_ref_mod;
6986
fd708b81
JB
6987 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
6988 root->root_key.objectid,
6989 btrfs_header_level(buf), 0,
6990 BTRFS_DROP_DELAYED_REF);
44e1c47d 6991 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7be07912 6992 buf->len, parent,
0b246afa
JM
6993 root->root_key.objectid,
6994 btrfs_header_level(buf),
7be07912 6995 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 6996 &old_ref_mod, &new_ref_mod);
79787eaa 6997 BUG_ON(ret); /* -ENOMEM */
d7eae340 6998 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
6999 }
7000
0a16c7d7 7001 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7002 struct btrfs_block_group_cache *cache;
7003
f0486c68 7004 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7005 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7006 if (!ret)
37be25bc 7007 goto out;
f0486c68
YZ
7008 }
7009
4da8b76d 7010 pin = 0;
0b246afa 7011 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7012
f0486c68 7013 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7014 pin_down_extent(fs_info, cache, buf->start,
7015 buf->len, 1);
6219872d 7016 btrfs_put_block_group(cache);
37be25bc 7017 goto out;
f0486c68
YZ
7018 }
7019
7020 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7021
7022 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7023 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7024 btrfs_put_block_group(cache);
71ff6437 7025 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7026 }
7027out:
b150a4f1 7028 if (pin)
29d2b84c 7029 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7030 root->root_key.objectid);
7031
0a16c7d7
OS
7032 if (last_ref) {
7033 /*
7034 * Deleting the buffer, clear the corrupt flag since it doesn't
7035 * matter anymore.
7036 */
7037 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7038 }
f0486c68
YZ
7039}
7040
79787eaa 7041/* Can return -ENOMEM */
2ff7e61e 7042int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7043 struct btrfs_root *root,
66d7e7f0 7044 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7045 u64 owner, u64 offset)
925baedd 7046{
84f7d8e6 7047 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7048 int old_ref_mod, new_ref_mod;
925baedd
CM
7049 int ret;
7050
f5ee5c9a 7051 if (btrfs_is_testing(fs_info))
faa2dbf0 7052 return 0;
fccb84c9 7053
fd708b81
JB
7054 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7055 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7056 root_objectid, owner, offset,
7057 BTRFS_DROP_DELAYED_REF);
7058
56bec294
CM
7059 /*
7060 * tree log blocks never actually go into the extent allocation
7061 * tree, just update pinning info and exit early.
56bec294 7062 */
5d4f98a2
YZ
7063 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7064 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7065 /* unlocks the pinned mutex */
2ff7e61e 7066 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7067 old_ref_mod = new_ref_mod = 0;
56bec294 7068 ret = 0;
5d4f98a2 7069 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 7070 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
7071 num_bytes, parent,
7072 root_objectid, (int)owner,
7073 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7074 &old_ref_mod, &new_ref_mod);
5d4f98a2 7075 } else {
88a979c6 7076 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
7077 num_bytes, parent,
7078 root_objectid, owner, offset,
7079 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7080 &old_ref_mod, &new_ref_mod);
56bec294 7081 }
d7eae340 7082
29d2b84c
NB
7083 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7084 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7085
7086 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7087 }
d7eae340 7088
925baedd
CM
7089 return ret;
7090}
7091
817d52f8
JB
7092/*
7093 * when we wait for progress in the block group caching, its because
7094 * our allocation attempt failed at least once. So, we must sleep
7095 * and let some progress happen before we try again.
7096 *
7097 * This function will sleep at least once waiting for new free space to
7098 * show up, and then it will check the block group free space numbers
7099 * for our min num_bytes. Another option is to have it go ahead
7100 * and look in the rbtree for a free extent of a given size, but this
7101 * is a good start.
36cce922
JB
7102 *
7103 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7104 * any of the information in this block group.
817d52f8 7105 */
36cce922 7106static noinline void
817d52f8
JB
7107wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7108 u64 num_bytes)
7109{
11833d66 7110 struct btrfs_caching_control *caching_ctl;
817d52f8 7111
11833d66
YZ
7112 caching_ctl = get_caching_control(cache);
7113 if (!caching_ctl)
36cce922 7114 return;
817d52f8 7115
11833d66 7116 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7117 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7118
7119 put_caching_control(caching_ctl);
11833d66
YZ
7120}
7121
7122static noinline int
7123wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7124{
7125 struct btrfs_caching_control *caching_ctl;
36cce922 7126 int ret = 0;
11833d66
YZ
7127
7128 caching_ctl = get_caching_control(cache);
7129 if (!caching_ctl)
36cce922 7130 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7131
7132 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7133 if (cache->cached == BTRFS_CACHE_ERROR)
7134 ret = -EIO;
11833d66 7135 put_caching_control(caching_ctl);
36cce922 7136 return ret;
817d52f8
JB
7137}
7138
7139enum btrfs_loop_type {
285ff5af
JB
7140 LOOP_CACHING_NOWAIT = 0,
7141 LOOP_CACHING_WAIT = 1,
7142 LOOP_ALLOC_CHUNK = 2,
7143 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7144};
7145
e570fd27
MX
7146static inline void
7147btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7148 int delalloc)
7149{
7150 if (delalloc)
7151 down_read(&cache->data_rwsem);
7152}
7153
7154static inline void
7155btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7156 int delalloc)
7157{
7158 btrfs_get_block_group(cache);
7159 if (delalloc)
7160 down_read(&cache->data_rwsem);
7161}
7162
7163static struct btrfs_block_group_cache *
7164btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7165 struct btrfs_free_cluster *cluster,
7166 int delalloc)
7167{
89771cc9 7168 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7169
e570fd27 7170 spin_lock(&cluster->refill_lock);
6719afdc
GU
7171 while (1) {
7172 used_bg = cluster->block_group;
7173 if (!used_bg)
7174 return NULL;
7175
7176 if (used_bg == block_group)
e570fd27
MX
7177 return used_bg;
7178
6719afdc 7179 btrfs_get_block_group(used_bg);
e570fd27 7180
6719afdc
GU
7181 if (!delalloc)
7182 return used_bg;
e570fd27 7183
6719afdc
GU
7184 if (down_read_trylock(&used_bg->data_rwsem))
7185 return used_bg;
e570fd27 7186
6719afdc 7187 spin_unlock(&cluster->refill_lock);
e570fd27 7188
e321f8a8
LB
7189 /* We should only have one-level nested. */
7190 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7191
6719afdc
GU
7192 spin_lock(&cluster->refill_lock);
7193 if (used_bg == cluster->block_group)
7194 return used_bg;
e570fd27 7195
6719afdc
GU
7196 up_read(&used_bg->data_rwsem);
7197 btrfs_put_block_group(used_bg);
7198 }
e570fd27
MX
7199}
7200
7201static inline void
7202btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7203 int delalloc)
7204{
7205 if (delalloc)
7206 up_read(&cache->data_rwsem);
7207 btrfs_put_block_group(cache);
7208}
7209
fec577fb
CM
7210/*
7211 * walks the btree of allocated extents and find a hole of a given size.
7212 * The key ins is changed to record the hole:
a4820398 7213 * ins->objectid == start position
62e2749e 7214 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7215 * ins->offset == the size of the hole.
fec577fb 7216 * Any available blocks before search_start are skipped.
a4820398
MX
7217 *
7218 * If there is no suitable free space, we will record the max size of
7219 * the free space extent currently.
fec577fb 7220 */
87bde3cd 7221static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7222 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7223 u64 hint_byte, struct btrfs_key *ins,
7224 u64 flags, int delalloc)
fec577fb 7225{
80eb234a 7226 int ret = 0;
0b246afa 7227 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7228 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7229 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7230 u64 search_start = 0;
a4820398 7231 u64 max_extent_size = 0;
c759c4e1 7232 u64 empty_cluster = 0;
80eb234a 7233 struct btrfs_space_info *space_info;
fa9c0d79 7234 int loop = 0;
3e72ee88 7235 int index = btrfs_bg_flags_to_raid_index(flags);
0a24325e 7236 bool failed_cluster_refill = false;
1cdda9b8 7237 bool failed_alloc = false;
67377734 7238 bool use_cluster = true;
60d2adbb 7239 bool have_caching_bg = false;
13a0db5a 7240 bool orig_have_caching_bg = false;
a5e681d9 7241 bool full_search = false;
fec577fb 7242
0b246afa 7243 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7244 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7245 ins->objectid = 0;
7246 ins->offset = 0;
b1a4d965 7247
71ff6437 7248 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7249
0b246afa 7250 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7251 if (!space_info) {
0b246afa 7252 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7253 return -ENOSPC;
7254 }
2552d17e 7255
67377734 7256 /*
4f4db217
JB
7257 * If our free space is heavily fragmented we may not be able to make
7258 * big contiguous allocations, so instead of doing the expensive search
7259 * for free space, simply return ENOSPC with our max_extent_size so we
7260 * can go ahead and search for a more manageable chunk.
7261 *
7262 * If our max_extent_size is large enough for our allocation simply
7263 * disable clustering since we will likely not be able to find enough
7264 * space to create a cluster and induce latency trying.
67377734 7265 */
4f4db217
JB
7266 if (unlikely(space_info->max_extent_size)) {
7267 spin_lock(&space_info->lock);
7268 if (space_info->max_extent_size &&
7269 num_bytes > space_info->max_extent_size) {
7270 ins->offset = space_info->max_extent_size;
7271 spin_unlock(&space_info->lock);
7272 return -ENOSPC;
7273 } else if (space_info->max_extent_size) {
7274 use_cluster = false;
7275 }
7276 spin_unlock(&space_info->lock);
fa9c0d79 7277 }
0f9dd46c 7278
2ff7e61e 7279 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7280 if (last_ptr) {
fa9c0d79
CM
7281 spin_lock(&last_ptr->lock);
7282 if (last_ptr->block_group)
7283 hint_byte = last_ptr->window_start;
c759c4e1
JB
7284 if (last_ptr->fragmented) {
7285 /*
7286 * We still set window_start so we can keep track of the
7287 * last place we found an allocation to try and save
7288 * some time.
7289 */
7290 hint_byte = last_ptr->window_start;
7291 use_cluster = false;
7292 }
fa9c0d79 7293 spin_unlock(&last_ptr->lock);
239b14b3 7294 }
fa9c0d79 7295
2ff7e61e 7296 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7297 search_start = max(search_start, hint_byte);
2552d17e 7298 if (search_start == hint_byte) {
0b246afa 7299 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7300 /*
7301 * we don't want to use the block group if it doesn't match our
7302 * allocation bits, or if its not cached.
ccf0e725
JB
7303 *
7304 * However if we are re-searching with an ideal block group
7305 * picked out then we don't care that the block group is cached.
817d52f8 7306 */
b6919a58 7307 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7308 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7309 down_read(&space_info->groups_sem);
44fb5511
CM
7310 if (list_empty(&block_group->list) ||
7311 block_group->ro) {
7312 /*
7313 * someone is removing this block group,
7314 * we can't jump into the have_block_group
7315 * target because our list pointers are not
7316 * valid
7317 */
7318 btrfs_put_block_group(block_group);
7319 up_read(&space_info->groups_sem);
ccf0e725 7320 } else {
3e72ee88
QW
7321 index = btrfs_bg_flags_to_raid_index(
7322 block_group->flags);
e570fd27 7323 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7324 goto have_block_group;
ccf0e725 7325 }
2552d17e 7326 } else if (block_group) {
fa9c0d79 7327 btrfs_put_block_group(block_group);
2552d17e 7328 }
42e70e7a 7329 }
2552d17e 7330search:
60d2adbb 7331 have_caching_bg = false;
3e72ee88 7332 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
a5e681d9 7333 full_search = true;
80eb234a 7334 down_read(&space_info->groups_sem);
b742bb82
YZ
7335 list_for_each_entry(block_group, &space_info->block_groups[index],
7336 list) {
6226cb0a 7337 u64 offset;
817d52f8 7338 int cached;
8a1413a2 7339
14443937
JM
7340 /* If the block group is read-only, we can skip it entirely. */
7341 if (unlikely(block_group->ro))
7342 continue;
7343
e570fd27 7344 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7345 search_start = block_group->key.objectid;
42e70e7a 7346
83a50de9
CM
7347 /*
7348 * this can happen if we end up cycling through all the
7349 * raid types, but we want to make sure we only allocate
7350 * for the proper type.
7351 */
b6919a58 7352 if (!block_group_bits(block_group, flags)) {
bece2e82 7353 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 7354 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7355 BTRFS_BLOCK_GROUP_RAID5 |
7356 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7357 BTRFS_BLOCK_GROUP_RAID10;
7358
7359 /*
7360 * if they asked for extra copies and this block group
7361 * doesn't provide them, bail. This does allow us to
7362 * fill raid0 from raid1.
7363 */
b6919a58 7364 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7365 goto loop;
7366 }
7367
2552d17e 7368have_block_group:
291c7d2f
JB
7369 cached = block_group_cache_done(block_group);
7370 if (unlikely(!cached)) {
a5e681d9 7371 have_caching_bg = true;
f6373bf3 7372 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7373 BUG_ON(ret < 0);
7374 ret = 0;
817d52f8
JB
7375 }
7376
36cce922
JB
7377 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7378 goto loop;
0f9dd46c 7379
0a24325e 7380 /*
062c05c4
AO
7381 * Ok we want to try and use the cluster allocator, so
7382 * lets look there
0a24325e 7383 */
c759c4e1 7384 if (last_ptr && use_cluster) {
215a63d1 7385 struct btrfs_block_group_cache *used_block_group;
8de972b4 7386 unsigned long aligned_cluster;
fa9c0d79
CM
7387 /*
7388 * the refill lock keeps out other
7389 * people trying to start a new cluster
7390 */
e570fd27
MX
7391 used_block_group = btrfs_lock_cluster(block_group,
7392 last_ptr,
7393 delalloc);
7394 if (!used_block_group)
44fb5511 7395 goto refill_cluster;
274bd4fb 7396
e570fd27
MX
7397 if (used_block_group != block_group &&
7398 (used_block_group->ro ||
7399 !block_group_bits(used_block_group, flags)))
7400 goto release_cluster;
44fb5511 7401
274bd4fb 7402 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7403 last_ptr,
7404 num_bytes,
7405 used_block_group->key.objectid,
7406 &max_extent_size);
fa9c0d79
CM
7407 if (offset) {
7408 /* we have a block, we're done */
7409 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7410 trace_btrfs_reserve_extent_cluster(
89d4346a
MX
7411 used_block_group,
7412 search_start, num_bytes);
215a63d1 7413 if (used_block_group != block_group) {
e570fd27
MX
7414 btrfs_release_block_group(block_group,
7415 delalloc);
215a63d1
MX
7416 block_group = used_block_group;
7417 }
fa9c0d79
CM
7418 goto checks;
7419 }
7420
274bd4fb 7421 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7422release_cluster:
062c05c4
AO
7423 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7424 * set up a new clusters, so lets just skip it
7425 * and let the allocator find whatever block
7426 * it can find. If we reach this point, we
7427 * will have tried the cluster allocator
7428 * plenty of times and not have found
7429 * anything, so we are likely way too
7430 * fragmented for the clustering stuff to find
a5f6f719
AO
7431 * anything.
7432 *
7433 * However, if the cluster is taken from the
7434 * current block group, release the cluster
7435 * first, so that we stand a better chance of
7436 * succeeding in the unclustered
7437 * allocation. */
7438 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7439 used_block_group != block_group) {
062c05c4 7440 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7441 btrfs_release_block_group(used_block_group,
7442 delalloc);
062c05c4
AO
7443 goto unclustered_alloc;
7444 }
7445
fa9c0d79
CM
7446 /*
7447 * this cluster didn't work out, free it and
7448 * start over
7449 */
7450 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7451
e570fd27
MX
7452 if (used_block_group != block_group)
7453 btrfs_release_block_group(used_block_group,
7454 delalloc);
7455refill_cluster:
a5f6f719
AO
7456 if (loop >= LOOP_NO_EMPTY_SIZE) {
7457 spin_unlock(&last_ptr->refill_lock);
7458 goto unclustered_alloc;
7459 }
7460
8de972b4
CM
7461 aligned_cluster = max_t(unsigned long,
7462 empty_cluster + empty_size,
7463 block_group->full_stripe_len);
7464
fa9c0d79 7465 /* allocate a cluster in this block group */
2ff7e61e 7466 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7467 last_ptr, search_start,
7468 num_bytes,
7469 aligned_cluster);
fa9c0d79
CM
7470 if (ret == 0) {
7471 /*
7472 * now pull our allocation out of this
7473 * cluster
7474 */
7475 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7476 last_ptr,
7477 num_bytes,
7478 search_start,
7479 &max_extent_size);
fa9c0d79
CM
7480 if (offset) {
7481 /* we found one, proceed */
7482 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7483 trace_btrfs_reserve_extent_cluster(
3f7de037
JB
7484 block_group, search_start,
7485 num_bytes);
fa9c0d79
CM
7486 goto checks;
7487 }
0a24325e
JB
7488 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7489 && !failed_cluster_refill) {
817d52f8
JB
7490 spin_unlock(&last_ptr->refill_lock);
7491
0a24325e 7492 failed_cluster_refill = true;
817d52f8
JB
7493 wait_block_group_cache_progress(block_group,
7494 num_bytes + empty_cluster + empty_size);
7495 goto have_block_group;
fa9c0d79 7496 }
817d52f8 7497
fa9c0d79
CM
7498 /*
7499 * at this point we either didn't find a cluster
7500 * or we weren't able to allocate a block from our
7501 * cluster. Free the cluster we've been trying
7502 * to use, and go to the next block group
7503 */
0a24325e 7504 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7505 spin_unlock(&last_ptr->refill_lock);
0a24325e 7506 goto loop;
fa9c0d79
CM
7507 }
7508
062c05c4 7509unclustered_alloc:
c759c4e1
JB
7510 /*
7511 * We are doing an unclustered alloc, set the fragmented flag so
7512 * we don't bother trying to setup a cluster again until we get
7513 * more space.
7514 */
7515 if (unlikely(last_ptr)) {
7516 spin_lock(&last_ptr->lock);
7517 last_ptr->fragmented = 1;
7518 spin_unlock(&last_ptr->lock);
7519 }
0c9b36e0
LB
7520 if (cached) {
7521 struct btrfs_free_space_ctl *ctl =
7522 block_group->free_space_ctl;
7523
7524 spin_lock(&ctl->tree_lock);
7525 if (ctl->free_space <
7526 num_bytes + empty_cluster + empty_size) {
7527 if (ctl->free_space > max_extent_size)
7528 max_extent_size = ctl->free_space;
7529 spin_unlock(&ctl->tree_lock);
7530 goto loop;
7531 }
7532 spin_unlock(&ctl->tree_lock);
a5f6f719 7533 }
a5f6f719 7534
6226cb0a 7535 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7536 num_bytes, empty_size,
7537 &max_extent_size);
1cdda9b8
JB
7538 /*
7539 * If we didn't find a chunk, and we haven't failed on this
7540 * block group before, and this block group is in the middle of
7541 * caching and we are ok with waiting, then go ahead and wait
7542 * for progress to be made, and set failed_alloc to true.
7543 *
7544 * If failed_alloc is true then we've already waited on this
7545 * block group once and should move on to the next block group.
7546 */
7547 if (!offset && !failed_alloc && !cached &&
7548 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7549 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7550 num_bytes + empty_size);
7551 failed_alloc = true;
817d52f8 7552 goto have_block_group;
1cdda9b8
JB
7553 } else if (!offset) {
7554 goto loop;
817d52f8 7555 }
fa9c0d79 7556checks:
5e23a6fe 7557 search_start = round_up(offset, fs_info->stripesize);
25179201 7558
2552d17e
JB
7559 /* move on to the next group */
7560 if (search_start + num_bytes >
215a63d1
MX
7561 block_group->key.objectid + block_group->key.offset) {
7562 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7563 goto loop;
6226cb0a 7564 }
f5a31e16 7565
f0486c68 7566 if (offset < search_start)
215a63d1 7567 btrfs_add_free_space(block_group, offset,
f0486c68 7568 search_start - offset);
2552d17e 7569
18513091
WX
7570 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7571 num_bytes, delalloc);
f0486c68 7572 if (ret == -EAGAIN) {
215a63d1 7573 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7574 goto loop;
0f9dd46c 7575 }
9cfa3e34 7576 btrfs_inc_block_group_reservations(block_group);
0b86a832 7577
f0486c68 7578 /* we are all good, lets return */
2552d17e
JB
7579 ins->objectid = search_start;
7580 ins->offset = num_bytes;
d2fb3437 7581
3dca5c94 7582 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
e570fd27 7583 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7584 break;
7585loop:
0a24325e 7586 failed_cluster_refill = false;
1cdda9b8 7587 failed_alloc = false;
3e72ee88
QW
7588 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7589 index);
e570fd27 7590 btrfs_release_block_group(block_group, delalloc);
14443937 7591 cond_resched();
2552d17e
JB
7592 }
7593 up_read(&space_info->groups_sem);
7594
13a0db5a 7595 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7596 && !orig_have_caching_bg)
7597 orig_have_caching_bg = true;
7598
60d2adbb
MX
7599 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7600 goto search;
7601
b742bb82
YZ
7602 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7603 goto search;
7604
285ff5af 7605 /*
ccf0e725
JB
7606 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7607 * caching kthreads as we move along
817d52f8
JB
7608 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7609 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7610 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7611 * again
fa9c0d79 7612 */
723bda20 7613 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7614 index = 0;
a5e681d9
JB
7615 if (loop == LOOP_CACHING_NOWAIT) {
7616 /*
7617 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7618 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7619 * full search through.
7620 */
13a0db5a 7621 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7622 loop = LOOP_CACHING_WAIT;
7623 else
7624 loop = LOOP_ALLOC_CHUNK;
7625 } else {
7626 loop++;
7627 }
7628
817d52f8 7629 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7630 struct btrfs_trans_handle *trans;
f017f15f
WS
7631 int exist = 0;
7632
7633 trans = current->journal_info;
7634 if (trans)
7635 exist = 1;
7636 else
7637 trans = btrfs_join_transaction(root);
00361589 7638
00361589
JB
7639 if (IS_ERR(trans)) {
7640 ret = PTR_ERR(trans);
7641 goto out;
7642 }
7643
01458828 7644 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
a5e681d9
JB
7645
7646 /*
7647 * If we can't allocate a new chunk we've already looped
7648 * through at least once, move on to the NO_EMPTY_SIZE
7649 * case.
7650 */
7651 if (ret == -ENOSPC)
7652 loop = LOOP_NO_EMPTY_SIZE;
7653
ea658bad
JB
7654 /*
7655 * Do not bail out on ENOSPC since we
7656 * can do more things.
7657 */
00361589 7658 if (ret < 0 && ret != -ENOSPC)
66642832 7659 btrfs_abort_transaction(trans, ret);
00361589
JB
7660 else
7661 ret = 0;
f017f15f 7662 if (!exist)
3a45bb20 7663 btrfs_end_transaction(trans);
00361589 7664 if (ret)
ea658bad 7665 goto out;
2552d17e
JB
7666 }
7667
723bda20 7668 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7669 /*
7670 * Don't loop again if we already have no empty_size and
7671 * no empty_cluster.
7672 */
7673 if (empty_size == 0 &&
7674 empty_cluster == 0) {
7675 ret = -ENOSPC;
7676 goto out;
7677 }
723bda20
JB
7678 empty_size = 0;
7679 empty_cluster = 0;
fa9c0d79 7680 }
723bda20
JB
7681
7682 goto search;
2552d17e
JB
7683 } else if (!ins->objectid) {
7684 ret = -ENOSPC;
d82a6f1d 7685 } else if (ins->objectid) {
c759c4e1
JB
7686 if (!use_cluster && last_ptr) {
7687 spin_lock(&last_ptr->lock);
7688 last_ptr->window_start = ins->objectid;
7689 spin_unlock(&last_ptr->lock);
7690 }
80eb234a 7691 ret = 0;
be744175 7692 }
79787eaa 7693out:
4f4db217
JB
7694 if (ret == -ENOSPC) {
7695 spin_lock(&space_info->lock);
7696 space_info->max_extent_size = max_extent_size;
7697 spin_unlock(&space_info->lock);
a4820398 7698 ins->offset = max_extent_size;
4f4db217 7699 }
0f70abe2 7700 return ret;
fec577fb 7701}
ec44a35c 7702
ab8d0fc4
JM
7703static void dump_space_info(struct btrfs_fs_info *fs_info,
7704 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7705 int dump_block_groups)
0f9dd46c
JB
7706{
7707 struct btrfs_block_group_cache *cache;
b742bb82 7708 int index = 0;
0f9dd46c 7709
9ed74f2d 7710 spin_lock(&info->lock);
ab8d0fc4
JM
7711 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7712 info->flags,
4136135b
LB
7713 info->total_bytes - btrfs_space_info_used(info, true),
7714 info->full ? "" : "not ");
ab8d0fc4
JM
7715 btrfs_info(fs_info,
7716 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7717 info->total_bytes, info->bytes_used, info->bytes_pinned,
7718 info->bytes_reserved, info->bytes_may_use,
7719 info->bytes_readonly);
9ed74f2d
JB
7720 spin_unlock(&info->lock);
7721
7722 if (!dump_block_groups)
7723 return;
0f9dd46c 7724
80eb234a 7725 down_read(&info->groups_sem);
b742bb82
YZ
7726again:
7727 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7728 spin_lock(&cache->lock);
ab8d0fc4
JM
7729 btrfs_info(fs_info,
7730 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7731 cache->key.objectid, cache->key.offset,
7732 btrfs_block_group_used(&cache->item), cache->pinned,
7733 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7734 btrfs_dump_free_space(cache, bytes);
7735 spin_unlock(&cache->lock);
7736 }
b742bb82
YZ
7737 if (++index < BTRFS_NR_RAID_TYPES)
7738 goto again;
80eb234a 7739 up_read(&info->groups_sem);
0f9dd46c 7740}
e8569813 7741
6f47c706
NB
7742/*
7743 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7744 * hole that is at least as big as @num_bytes.
7745 *
7746 * @root - The root that will contain this extent
7747 *
7748 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7749 * is used for accounting purposes. This value differs
7750 * from @num_bytes only in the case of compressed extents.
7751 *
7752 * @num_bytes - Number of bytes to allocate on-disk.
7753 *
7754 * @min_alloc_size - Indicates the minimum amount of space that the
7755 * allocator should try to satisfy. In some cases
7756 * @num_bytes may be larger than what is required and if
7757 * the filesystem is fragmented then allocation fails.
7758 * However, the presence of @min_alloc_size gives a
7759 * chance to try and satisfy the smaller allocation.
7760 *
7761 * @empty_size - A hint that you plan on doing more COW. This is the
7762 * size in bytes the allocator should try to find free
7763 * next to the block it returns. This is just a hint and
7764 * may be ignored by the allocator.
7765 *
7766 * @hint_byte - Hint to the allocator to start searching above the byte
7767 * address passed. It might be ignored.
7768 *
7769 * @ins - This key is modified to record the found hole. It will
7770 * have the following values:
7771 * ins->objectid == start position
7772 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7773 * ins->offset == the size of the hole.
7774 *
7775 * @is_data - Boolean flag indicating whether an extent is
7776 * allocated for data (true) or metadata (false)
7777 *
7778 * @delalloc - Boolean flag indicating whether this allocation is for
7779 * delalloc or not. If 'true' data_rwsem of block groups
7780 * is going to be acquired.
7781 *
7782 *
7783 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7784 * case -ENOSPC is returned then @ins->offset will contain the size of the
7785 * largest available hole the allocator managed to find.
7786 */
18513091 7787int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7788 u64 num_bytes, u64 min_alloc_size,
7789 u64 empty_size, u64 hint_byte,
e570fd27 7790 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7791{
ab8d0fc4 7792 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7793 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7794 u64 flags;
fec577fb 7795 int ret;
925baedd 7796
1b86826d 7797 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 7798again:
0b246afa 7799 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7800 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7801 hint_byte, ins, flags, delalloc);
9cfa3e34 7802 if (!ret && !is_data) {
ab8d0fc4 7803 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7804 } else if (ret == -ENOSPC) {
a4820398
MX
7805 if (!final_tried && ins->offset) {
7806 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7807 num_bytes = round_down(num_bytes,
0b246afa 7808 fs_info->sectorsize);
9e622d6b 7809 num_bytes = max(num_bytes, min_alloc_size);
18513091 7810 ram_bytes = num_bytes;
9e622d6b
MX
7811 if (num_bytes == min_alloc_size)
7812 final_tried = true;
7813 goto again;
ab8d0fc4 7814 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7815 struct btrfs_space_info *sinfo;
7816
ab8d0fc4 7817 sinfo = __find_space_info(fs_info, flags);
0b246afa 7818 btrfs_err(fs_info,
5d163e0e
JM
7819 "allocation failed flags %llu, wanted %llu",
7820 flags, num_bytes);
53804280 7821 if (sinfo)
ab8d0fc4 7822 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 7823 }
925baedd 7824 }
0f9dd46c
JB
7825
7826 return ret;
e6dcd2dc
CM
7827}
7828
2ff7e61e 7829static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
7830 u64 start, u64 len,
7831 int pin, int delalloc)
65b51a00 7832{
0f9dd46c 7833 struct btrfs_block_group_cache *cache;
1f3c79a2 7834 int ret = 0;
0f9dd46c 7835
0b246afa 7836 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 7837 if (!cache) {
0b246afa
JM
7838 btrfs_err(fs_info, "Unable to find block group for %llu",
7839 start);
0f9dd46c
JB
7840 return -ENOSPC;
7841 }
1f3c79a2 7842
e688b725 7843 if (pin)
2ff7e61e 7844 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 7845 else {
0b246afa 7846 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 7847 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 7848 btrfs_add_free_space(cache, start, len);
4824f1f4 7849 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 7850 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 7851 }
31193213 7852
fa9c0d79 7853 btrfs_put_block_group(cache);
e6dcd2dc
CM
7854 return ret;
7855}
7856
2ff7e61e 7857int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 7858 u64 start, u64 len, int delalloc)
e688b725 7859{
2ff7e61e 7860 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
7861}
7862
2ff7e61e 7863int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
7864 u64 start, u64 len)
7865{
2ff7e61e 7866 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
7867}
7868
5d4f98a2 7869static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
7870 u64 parent, u64 root_objectid,
7871 u64 flags, u64 owner, u64 offset,
7872 struct btrfs_key *ins, int ref_mod)
e6dcd2dc 7873{
ef89b824 7874 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 7875 int ret;
e6dcd2dc 7876 struct btrfs_extent_item *extent_item;
5d4f98a2 7877 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7878 struct btrfs_path *path;
5d4f98a2
YZ
7879 struct extent_buffer *leaf;
7880 int type;
7881 u32 size;
26b8003f 7882
5d4f98a2
YZ
7883 if (parent > 0)
7884 type = BTRFS_SHARED_DATA_REF_KEY;
7885 else
7886 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7887
5d4f98a2 7888 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7889
7890 path = btrfs_alloc_path();
db5b493a
TI
7891 if (!path)
7892 return -ENOMEM;
47e4bb98 7893
b9473439 7894 path->leave_spinning = 1;
5d4f98a2
YZ
7895 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7896 ins, size);
79787eaa
JM
7897 if (ret) {
7898 btrfs_free_path(path);
7899 return ret;
7900 }
0f9dd46c 7901
5d4f98a2
YZ
7902 leaf = path->nodes[0];
7903 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7904 struct btrfs_extent_item);
5d4f98a2
YZ
7905 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7906 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7907 btrfs_set_extent_flags(leaf, extent_item,
7908 flags | BTRFS_EXTENT_FLAG_DATA);
7909
7910 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7911 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7912 if (parent > 0) {
7913 struct btrfs_shared_data_ref *ref;
7914 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7915 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7916 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7917 } else {
7918 struct btrfs_extent_data_ref *ref;
7919 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7920 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7921 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7922 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7923 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7924 }
47e4bb98
CM
7925
7926 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7927 btrfs_free_path(path);
f510cfec 7928
25a356d3 7929 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
7930 if (ret)
7931 return ret;
7932
6202df69 7933 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 7934 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7935 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7936 ins->objectid, ins->offset);
f5947066
CM
7937 BUG();
7938 }
71ff6437 7939 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
7940 return ret;
7941}
7942
5d4f98a2 7943static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 7944 struct btrfs_delayed_ref_node *node,
21ebfbe7 7945 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 7946{
9dcdbe01 7947 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 7948 int ret;
5d4f98a2 7949 struct btrfs_extent_item *extent_item;
4e6bd4e0 7950 struct btrfs_key extent_key;
5d4f98a2
YZ
7951 struct btrfs_tree_block_info *block_info;
7952 struct btrfs_extent_inline_ref *iref;
7953 struct btrfs_path *path;
7954 struct extent_buffer *leaf;
4e6bd4e0 7955 struct btrfs_delayed_tree_ref *ref;
3173a18f 7956 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 7957 u64 num_bytes;
21ebfbe7 7958 u64 flags = extent_op->flags_to_set;
0b246afa 7959 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 7960
4e6bd4e0
NB
7961 ref = btrfs_delayed_node_to_tree_ref(node);
7962
4e6bd4e0
NB
7963 extent_key.objectid = node->bytenr;
7964 if (skinny_metadata) {
7965 extent_key.offset = ref->level;
7966 extent_key.type = BTRFS_METADATA_ITEM_KEY;
7967 num_bytes = fs_info->nodesize;
7968 } else {
7969 extent_key.offset = node->num_bytes;
7970 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 7971 size += sizeof(*block_info);
4e6bd4e0
NB
7972 num_bytes = node->num_bytes;
7973 }
1c2308f8 7974
5d4f98a2 7975 path = btrfs_alloc_path();
857cc2fc 7976 if (!path) {
4e6bd4e0
NB
7977 btrfs_free_and_pin_reserved_extent(fs_info,
7978 extent_key.objectid,
0b246afa 7979 fs_info->nodesize);
d8926bb3 7980 return -ENOMEM;
857cc2fc 7981 }
56bec294 7982
5d4f98a2
YZ
7983 path->leave_spinning = 1;
7984 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 7985 &extent_key, size);
79787eaa 7986 if (ret) {
dd825259 7987 btrfs_free_path(path);
4e6bd4e0
NB
7988 btrfs_free_and_pin_reserved_extent(fs_info,
7989 extent_key.objectid,
0b246afa 7990 fs_info->nodesize);
79787eaa
JM
7991 return ret;
7992 }
5d4f98a2
YZ
7993
7994 leaf = path->nodes[0];
7995 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7996 struct btrfs_extent_item);
7997 btrfs_set_extent_refs(leaf, extent_item, 1);
7998 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7999 btrfs_set_extent_flags(leaf, extent_item,
8000 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8001
3173a18f
JB
8002 if (skinny_metadata) {
8003 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8004 } else {
8005 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8006 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8007 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8008 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8009 }
5d4f98a2 8010
d4b20733 8011 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8012 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8013 btrfs_set_extent_inline_ref_type(leaf, iref,
8014 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8015 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8016 } else {
8017 btrfs_set_extent_inline_ref_type(leaf, iref,
8018 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8019 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8020 }
8021
8022 btrfs_mark_buffer_dirty(leaf);
8023 btrfs_free_path(path);
8024
4e6bd4e0
NB
8025 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8026 num_bytes);
1e144fb8
OS
8027 if (ret)
8028 return ret;
8029
4e6bd4e0 8030 ret = update_block_group(trans, fs_info, extent_key.objectid,
6202df69 8031 fs_info->nodesize, 1);
79787eaa 8032 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8033 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8034 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8035 BUG();
8036 }
0be5dc67 8037
4e6bd4e0 8038 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8039 fs_info->nodesize);
5d4f98a2
YZ
8040 return ret;
8041}
8042
8043int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8044 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8045 u64 offset, u64 ram_bytes,
8046 struct btrfs_key *ins)
5d4f98a2
YZ
8047{
8048 int ret;
8049
84f7d8e6 8050 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8051
fd708b81
JB
8052 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8053 root->root_key.objectid, owner, offset,
8054 BTRFS_ADD_DELAYED_EXTENT);
8055
88a979c6 8056 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
84f7d8e6
JB
8057 ins->offset, 0,
8058 root->root_key.objectid, owner,
7be07912
OS
8059 offset, ram_bytes,
8060 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8061 return ret;
8062}
e02119d5
CM
8063
8064/*
8065 * this is used by the tree logging recovery code. It records that
8066 * an extent has been allocated and makes sure to clear the free
8067 * space cache bits as well
8068 */
5d4f98a2 8069int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8070 u64 root_objectid, u64 owner, u64 offset,
8071 struct btrfs_key *ins)
e02119d5 8072{
61da2abf 8073 struct btrfs_fs_info *fs_info = trans->fs_info;
e02119d5
CM
8074 int ret;
8075 struct btrfs_block_group_cache *block_group;
ed7a6948 8076 struct btrfs_space_info *space_info;
11833d66 8077
8c2a1a30
JB
8078 /*
8079 * Mixed block groups will exclude before processing the log so we only
01327610 8080 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8081 */
0b246afa 8082 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8083 ret = __exclude_logged_extent(fs_info, ins->objectid,
8084 ins->offset);
b50c6e25 8085 if (ret)
8c2a1a30 8086 return ret;
11833d66
YZ
8087 }
8088
0b246afa 8089 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8090 if (!block_group)
8091 return -EINVAL;
8092
ed7a6948
WX
8093 space_info = block_group->space_info;
8094 spin_lock(&space_info->lock);
8095 spin_lock(&block_group->lock);
8096 space_info->bytes_reserved += ins->offset;
8097 block_group->reserved += ins->offset;
8098 spin_unlock(&block_group->lock);
8099 spin_unlock(&space_info->lock);
8100
ef89b824
NB
8101 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8102 offset, ins, 1);
b50c6e25 8103 btrfs_put_block_group(block_group);
e02119d5
CM
8104 return ret;
8105}
8106
48a3b636
ES
8107static struct extent_buffer *
8108btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
bc877d28 8109 u64 bytenr, int level, u64 owner)
65b51a00 8110{
0b246afa 8111 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8112 struct extent_buffer *buf;
8113
2ff7e61e 8114 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8115 if (IS_ERR(buf))
8116 return buf;
8117
85d4e461 8118 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8119 btrfs_tree_lock(buf);
7c302b49 8120 clean_tree_block(fs_info, buf);
3083ee2e 8121 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8122
8123 btrfs_set_lock_blocking(buf);
4db8c528 8124 set_extent_buffer_uptodate(buf);
b4ce94de 8125
bc877d28
NB
8126 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8127 btrfs_set_header_level(buf, level);
8128 btrfs_set_header_bytenr(buf, buf->start);
8129 btrfs_set_header_generation(buf, trans->transid);
8130 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8131 btrfs_set_header_owner(buf, owner);
8132 write_extent_buffer_fsid(buf, fs_info->fsid);
8133 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
d0c803c4 8134 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8135 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8136 /*
8137 * we allow two log transactions at a time, use different
8138 * EXENT bit to differentiate dirty pages.
8139 */
656f30db 8140 if (buf->log_index == 0)
8cef4e16
YZ
8141 set_extent_dirty(&root->dirty_log_pages, buf->start,
8142 buf->start + buf->len - 1, GFP_NOFS);
8143 else
8144 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8145 buf->start + buf->len - 1);
d0c803c4 8146 } else {
656f30db 8147 buf->log_index = -1;
d0c803c4 8148 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8149 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8150 }
64c12921 8151 trans->dirty = true;
b4ce94de 8152 /* this returns a buffer locked for blocking */
65b51a00
CM
8153 return buf;
8154}
8155
f0486c68
YZ
8156static struct btrfs_block_rsv *
8157use_block_rsv(struct btrfs_trans_handle *trans,
8158 struct btrfs_root *root, u32 blocksize)
8159{
0b246afa 8160 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8161 struct btrfs_block_rsv *block_rsv;
0b246afa 8162 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8163 int ret;
d88033db 8164 bool global_updated = false;
f0486c68
YZ
8165
8166 block_rsv = get_block_rsv(trans, root);
8167
b586b323
MX
8168 if (unlikely(block_rsv->size == 0))
8169 goto try_reserve;
d88033db 8170again:
f0486c68
YZ
8171 ret = block_rsv_use_bytes(block_rsv, blocksize);
8172 if (!ret)
8173 return block_rsv;
8174
b586b323
MX
8175 if (block_rsv->failfast)
8176 return ERR_PTR(ret);
8177
d88033db
MX
8178 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8179 global_updated = true;
0b246afa 8180 update_global_block_rsv(fs_info);
d88033db
MX
8181 goto again;
8182 }
8183
0b246afa 8184 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8185 static DEFINE_RATELIMIT_STATE(_rs,
8186 DEFAULT_RATELIMIT_INTERVAL * 10,
8187 /*DEFAULT_RATELIMIT_BURST*/ 1);
8188 if (__ratelimit(&_rs))
8189 WARN(1, KERN_DEBUG
efe120a0 8190 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8191 }
8192try_reserve:
8193 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8194 BTRFS_RESERVE_NO_FLUSH);
8195 if (!ret)
8196 return block_rsv;
8197 /*
8198 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8199 * the global reserve if its space type is the same as the global
8200 * reservation.
b586b323 8201 */
5881cfc9
MX
8202 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8203 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8204 ret = block_rsv_use_bytes(global_rsv, blocksize);
8205 if (!ret)
8206 return global_rsv;
8207 }
8208 return ERR_PTR(ret);
f0486c68
YZ
8209}
8210
8c2a3ca2
JB
8211static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8212 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68 8213{
3a584174 8214 block_rsv_add_bytes(block_rsv, blocksize, false);
ff6bc37e 8215 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8216}
8217
fec577fb 8218/*
f0486c68 8219 * finds a free extent and does all the dirty work required for allocation
67b7859e 8220 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8221 */
4d75f8a9 8222struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8223 struct btrfs_root *root,
8224 u64 parent, u64 root_objectid,
8225 const struct btrfs_disk_key *key,
8226 int level, u64 hint,
8227 u64 empty_size)
fec577fb 8228{
0b246afa 8229 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8230 struct btrfs_key ins;
f0486c68 8231 struct btrfs_block_rsv *block_rsv;
5f39d397 8232 struct extent_buffer *buf;
67b7859e 8233 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8234 u64 flags = 0;
8235 int ret;
0b246afa
JM
8236 u32 blocksize = fs_info->nodesize;
8237 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8238
05653ef3 8239#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8240 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8241 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
bc877d28 8242 level, root_objectid);
faa2dbf0
JB
8243 if (!IS_ERR(buf))
8244 root->alloc_bytenr += blocksize;
8245 return buf;
8246 }
05653ef3 8247#endif
fccb84c9 8248
f0486c68
YZ
8249 block_rsv = use_block_rsv(trans, root, blocksize);
8250 if (IS_ERR(block_rsv))
8251 return ERR_CAST(block_rsv);
8252
18513091 8253 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8254 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8255 if (ret)
8256 goto out_unuse;
55c69072 8257
bc877d28
NB
8258 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8259 root_objectid);
67b7859e
OS
8260 if (IS_ERR(buf)) {
8261 ret = PTR_ERR(buf);
8262 goto out_free_reserved;
8263 }
f0486c68
YZ
8264
8265 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8266 if (parent == 0)
8267 parent = ins.objectid;
8268 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8269 } else
8270 BUG_ON(parent > 0);
8271
8272 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8273 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8274 if (!extent_op) {
8275 ret = -ENOMEM;
8276 goto out_free_buf;
8277 }
f0486c68
YZ
8278 if (key)
8279 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8280 else
8281 memset(&extent_op->key, 0, sizeof(extent_op->key));
8282 extent_op->flags_to_set = flags;
35b3ad50
DS
8283 extent_op->update_key = skinny_metadata ? false : true;
8284 extent_op->update_flags = true;
8285 extent_op->is_data = false;
b1c79e09 8286 extent_op->level = level;
f0486c68 8287
fd708b81
JB
8288 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8289 root_objectid, level, 0,
8290 BTRFS_ADD_DELAYED_EXTENT);
44e1c47d 8291 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
7be07912
OS
8292 ins.offset, parent,
8293 root_objectid, level,
67b7859e 8294 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8295 extent_op, NULL, NULL);
67b7859e
OS
8296 if (ret)
8297 goto out_free_delayed;
f0486c68 8298 }
fec577fb 8299 return buf;
67b7859e
OS
8300
8301out_free_delayed:
8302 btrfs_free_delayed_extent_op(extent_op);
8303out_free_buf:
8304 free_extent_buffer(buf);
8305out_free_reserved:
2ff7e61e 8306 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8307out_unuse:
0b246afa 8308 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8309 return ERR_PTR(ret);
fec577fb 8310}
a28ec197 8311
2c47e605
YZ
8312struct walk_control {
8313 u64 refs[BTRFS_MAX_LEVEL];
8314 u64 flags[BTRFS_MAX_LEVEL];
8315 struct btrfs_key update_progress;
8316 int stage;
8317 int level;
8318 int shared_level;
8319 int update_ref;
8320 int keep_locks;
1c4850e2
YZ
8321 int reada_slot;
8322 int reada_count;
2c47e605
YZ
8323};
8324
8325#define DROP_REFERENCE 1
8326#define UPDATE_BACKREF 2
8327
1c4850e2
YZ
8328static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8329 struct btrfs_root *root,
8330 struct walk_control *wc,
8331 struct btrfs_path *path)
6407bf6d 8332{
0b246afa 8333 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8334 u64 bytenr;
8335 u64 generation;
8336 u64 refs;
94fcca9f 8337 u64 flags;
5d4f98a2 8338 u32 nritems;
1c4850e2
YZ
8339 struct btrfs_key key;
8340 struct extent_buffer *eb;
6407bf6d 8341 int ret;
1c4850e2
YZ
8342 int slot;
8343 int nread = 0;
6407bf6d 8344
1c4850e2
YZ
8345 if (path->slots[wc->level] < wc->reada_slot) {
8346 wc->reada_count = wc->reada_count * 2 / 3;
8347 wc->reada_count = max(wc->reada_count, 2);
8348 } else {
8349 wc->reada_count = wc->reada_count * 3 / 2;
8350 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8351 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8352 }
7bb86316 8353
1c4850e2
YZ
8354 eb = path->nodes[wc->level];
8355 nritems = btrfs_header_nritems(eb);
bd56b302 8356
1c4850e2
YZ
8357 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8358 if (nread >= wc->reada_count)
8359 break;
bd56b302 8360
2dd3e67b 8361 cond_resched();
1c4850e2
YZ
8362 bytenr = btrfs_node_blockptr(eb, slot);
8363 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8364
1c4850e2
YZ
8365 if (slot == path->slots[wc->level])
8366 goto reada;
5d4f98a2 8367
1c4850e2
YZ
8368 if (wc->stage == UPDATE_BACKREF &&
8369 generation <= root->root_key.offset)
bd56b302
CM
8370 continue;
8371
94fcca9f 8372 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8373 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8374 wc->level - 1, 1, &refs,
8375 &flags);
79787eaa
JM
8376 /* We don't care about errors in readahead. */
8377 if (ret < 0)
8378 continue;
94fcca9f
YZ
8379 BUG_ON(refs == 0);
8380
1c4850e2 8381 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8382 if (refs == 1)
8383 goto reada;
bd56b302 8384
94fcca9f
YZ
8385 if (wc->level == 1 &&
8386 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8387 continue;
1c4850e2
YZ
8388 if (!wc->update_ref ||
8389 generation <= root->root_key.offset)
8390 continue;
8391 btrfs_node_key_to_cpu(eb, &key, slot);
8392 ret = btrfs_comp_cpu_keys(&key,
8393 &wc->update_progress);
8394 if (ret < 0)
8395 continue;
94fcca9f
YZ
8396 } else {
8397 if (wc->level == 1 &&
8398 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8399 continue;
6407bf6d 8400 }
1c4850e2 8401reada:
2ff7e61e 8402 readahead_tree_block(fs_info, bytenr);
1c4850e2 8403 nread++;
20524f02 8404 }
1c4850e2 8405 wc->reada_slot = slot;
20524f02 8406}
2c47e605 8407
f82d02d9 8408/*
2c016dc2 8409 * helper to process tree block while walking down the tree.
2c47e605 8410 *
2c47e605
YZ
8411 * when wc->stage == UPDATE_BACKREF, this function updates
8412 * back refs for pointers in the block.
8413 *
8414 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8415 */
2c47e605 8416static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8417 struct btrfs_root *root,
2c47e605 8418 struct btrfs_path *path,
94fcca9f 8419 struct walk_control *wc, int lookup_info)
f82d02d9 8420{
2ff7e61e 8421 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8422 int level = wc->level;
8423 struct extent_buffer *eb = path->nodes[level];
2c47e605 8424 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8425 int ret;
8426
2c47e605
YZ
8427 if (wc->stage == UPDATE_BACKREF &&
8428 btrfs_header_owner(eb) != root->root_key.objectid)
8429 return 1;
f82d02d9 8430
2c47e605
YZ
8431 /*
8432 * when reference count of tree block is 1, it won't increase
8433 * again. once full backref flag is set, we never clear it.
8434 */
94fcca9f
YZ
8435 if (lookup_info &&
8436 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8437 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8438 BUG_ON(!path->locks[level]);
2ff7e61e 8439 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8440 eb->start, level, 1,
2c47e605
YZ
8441 &wc->refs[level],
8442 &wc->flags[level]);
79787eaa
JM
8443 BUG_ON(ret == -ENOMEM);
8444 if (ret)
8445 return ret;
2c47e605
YZ
8446 BUG_ON(wc->refs[level] == 0);
8447 }
5d4f98a2 8448
2c47e605
YZ
8449 if (wc->stage == DROP_REFERENCE) {
8450 if (wc->refs[level] > 1)
8451 return 1;
f82d02d9 8452
2c47e605 8453 if (path->locks[level] && !wc->keep_locks) {
bd681513 8454 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8455 path->locks[level] = 0;
8456 }
8457 return 0;
8458 }
f82d02d9 8459
2c47e605
YZ
8460 /* wc->stage == UPDATE_BACKREF */
8461 if (!(wc->flags[level] & flag)) {
8462 BUG_ON(!path->locks[level]);
e339a6b0 8463 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8464 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8465 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8466 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8467 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8468 eb->len, flag,
8469 btrfs_header_level(eb), 0);
79787eaa 8470 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8471 wc->flags[level] |= flag;
8472 }
8473
8474 /*
8475 * the block is shared by multiple trees, so it's not good to
8476 * keep the tree lock
8477 */
8478 if (path->locks[level] && level > 0) {
bd681513 8479 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8480 path->locks[level] = 0;
8481 }
8482 return 0;
8483}
8484
1c4850e2 8485/*
2c016dc2 8486 * helper to process tree block pointer.
1c4850e2
YZ
8487 *
8488 * when wc->stage == DROP_REFERENCE, this function checks
8489 * reference count of the block pointed to. if the block
8490 * is shared and we need update back refs for the subtree
8491 * rooted at the block, this function changes wc->stage to
8492 * UPDATE_BACKREF. if the block is shared and there is no
8493 * need to update back, this function drops the reference
8494 * to the block.
8495 *
8496 * NOTE: return value 1 means we should stop walking down.
8497 */
8498static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8499 struct btrfs_root *root,
8500 struct btrfs_path *path,
94fcca9f 8501 struct walk_control *wc, int *lookup_info)
1c4850e2 8502{
0b246afa 8503 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8504 u64 bytenr;
8505 u64 generation;
8506 u64 parent;
8507 u32 blocksize;
8508 struct btrfs_key key;
581c1760 8509 struct btrfs_key first_key;
1c4850e2
YZ
8510 struct extent_buffer *next;
8511 int level = wc->level;
8512 int reada = 0;
8513 int ret = 0;
1152651a 8514 bool need_account = false;
1c4850e2
YZ
8515
8516 generation = btrfs_node_ptr_generation(path->nodes[level],
8517 path->slots[level]);
8518 /*
8519 * if the lower level block was created before the snapshot
8520 * was created, we know there is no need to update back refs
8521 * for the subtree
8522 */
8523 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8524 generation <= root->root_key.offset) {
8525 *lookup_info = 1;
1c4850e2 8526 return 1;
94fcca9f 8527 }
1c4850e2
YZ
8528
8529 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8530 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8531 path->slots[level]);
0b246afa 8532 blocksize = fs_info->nodesize;
1c4850e2 8533
0b246afa 8534 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8535 if (!next) {
2ff7e61e 8536 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8537 if (IS_ERR(next))
8538 return PTR_ERR(next);
8539
b2aaaa3b
JB
8540 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8541 level - 1);
1c4850e2
YZ
8542 reada = 1;
8543 }
8544 btrfs_tree_lock(next);
8545 btrfs_set_lock_blocking(next);
8546
2ff7e61e 8547 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8548 &wc->refs[level - 1],
8549 &wc->flags[level - 1]);
4867268c
JB
8550 if (ret < 0)
8551 goto out_unlock;
79787eaa 8552
c2cf52eb 8553 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8554 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8555 ret = -EIO;
8556 goto out_unlock;
c2cf52eb 8557 }
94fcca9f 8558 *lookup_info = 0;
1c4850e2 8559
94fcca9f 8560 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8561 if (wc->refs[level - 1] > 1) {
1152651a 8562 need_account = true;
94fcca9f
YZ
8563 if (level == 1 &&
8564 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8565 goto skip;
8566
1c4850e2
YZ
8567 if (!wc->update_ref ||
8568 generation <= root->root_key.offset)
8569 goto skip;
8570
8571 btrfs_node_key_to_cpu(path->nodes[level], &key,
8572 path->slots[level]);
8573 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8574 if (ret < 0)
8575 goto skip;
8576
8577 wc->stage = UPDATE_BACKREF;
8578 wc->shared_level = level - 1;
8579 }
94fcca9f
YZ
8580 } else {
8581 if (level == 1 &&
8582 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8583 goto skip;
1c4850e2
YZ
8584 }
8585
b9fab919 8586 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8587 btrfs_tree_unlock(next);
8588 free_extent_buffer(next);
8589 next = NULL;
94fcca9f 8590 *lookup_info = 1;
1c4850e2
YZ
8591 }
8592
8593 if (!next) {
8594 if (reada && level == 1)
8595 reada_walk_down(trans, root, wc, path);
581c1760
QW
8596 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8597 &first_key);
64c043de
LB
8598 if (IS_ERR(next)) {
8599 return PTR_ERR(next);
8600 } else if (!extent_buffer_uptodate(next)) {
416bc658 8601 free_extent_buffer(next);
97d9a8a4 8602 return -EIO;
416bc658 8603 }
1c4850e2
YZ
8604 btrfs_tree_lock(next);
8605 btrfs_set_lock_blocking(next);
8606 }
8607
8608 level--;
4867268c
JB
8609 ASSERT(level == btrfs_header_level(next));
8610 if (level != btrfs_header_level(next)) {
8611 btrfs_err(root->fs_info, "mismatched level");
8612 ret = -EIO;
8613 goto out_unlock;
8614 }
1c4850e2
YZ
8615 path->nodes[level] = next;
8616 path->slots[level] = 0;
bd681513 8617 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8618 wc->level = level;
8619 if (wc->level == 1)
8620 wc->reada_slot = 0;
8621 return 0;
8622skip:
8623 wc->refs[level - 1] = 0;
8624 wc->flags[level - 1] = 0;
94fcca9f
YZ
8625 if (wc->stage == DROP_REFERENCE) {
8626 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8627 parent = path->nodes[level]->start;
8628 } else {
4867268c 8629 ASSERT(root->root_key.objectid ==
94fcca9f 8630 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8631 if (root->root_key.objectid !=
8632 btrfs_header_owner(path->nodes[level])) {
8633 btrfs_err(root->fs_info,
8634 "mismatched block owner");
8635 ret = -EIO;
8636 goto out_unlock;
8637 }
94fcca9f
YZ
8638 parent = 0;
8639 }
1c4850e2 8640
1152651a 8641 if (need_account) {
deb40627 8642 ret = btrfs_qgroup_trace_subtree(trans, next,
33d1f05c 8643 generation, level - 1);
1152651a 8644 if (ret) {
0b246afa 8645 btrfs_err_rl(fs_info,
5d163e0e
JM
8646 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8647 ret);
1152651a
MF
8648 }
8649 }
84f7d8e6 8650 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8651 parent, root->root_key.objectid,
8652 level - 1, 0);
4867268c
JB
8653 if (ret)
8654 goto out_unlock;
1c4850e2 8655 }
4867268c
JB
8656
8657 *lookup_info = 1;
8658 ret = 1;
8659
8660out_unlock:
1c4850e2
YZ
8661 btrfs_tree_unlock(next);
8662 free_extent_buffer(next);
4867268c
JB
8663
8664 return ret;
1c4850e2
YZ
8665}
8666
2c47e605 8667/*
2c016dc2 8668 * helper to process tree block while walking up the tree.
2c47e605
YZ
8669 *
8670 * when wc->stage == DROP_REFERENCE, this function drops
8671 * reference count on the block.
8672 *
8673 * when wc->stage == UPDATE_BACKREF, this function changes
8674 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8675 * to UPDATE_BACKREF previously while processing the block.
8676 *
8677 * NOTE: return value 1 means we should stop walking up.
8678 */
8679static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8680 struct btrfs_root *root,
8681 struct btrfs_path *path,
8682 struct walk_control *wc)
8683{
0b246afa 8684 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8685 int ret;
2c47e605
YZ
8686 int level = wc->level;
8687 struct extent_buffer *eb = path->nodes[level];
8688 u64 parent = 0;
8689
8690 if (wc->stage == UPDATE_BACKREF) {
8691 BUG_ON(wc->shared_level < level);
8692 if (level < wc->shared_level)
8693 goto out;
8694
2c47e605
YZ
8695 ret = find_next_key(path, level + 1, &wc->update_progress);
8696 if (ret > 0)
8697 wc->update_ref = 0;
8698
8699 wc->stage = DROP_REFERENCE;
8700 wc->shared_level = -1;
8701 path->slots[level] = 0;
8702
8703 /*
8704 * check reference count again if the block isn't locked.
8705 * we should start walking down the tree again if reference
8706 * count is one.
8707 */
8708 if (!path->locks[level]) {
8709 BUG_ON(level == 0);
8710 btrfs_tree_lock(eb);
8711 btrfs_set_lock_blocking(eb);
bd681513 8712 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8713
2ff7e61e 8714 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8715 eb->start, level, 1,
2c47e605
YZ
8716 &wc->refs[level],
8717 &wc->flags[level]);
79787eaa
JM
8718 if (ret < 0) {
8719 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8720 path->locks[level] = 0;
79787eaa
JM
8721 return ret;
8722 }
2c47e605
YZ
8723 BUG_ON(wc->refs[level] == 0);
8724 if (wc->refs[level] == 1) {
bd681513 8725 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8726 path->locks[level] = 0;
2c47e605
YZ
8727 return 1;
8728 }
f82d02d9 8729 }
2c47e605 8730 }
f82d02d9 8731
2c47e605
YZ
8732 /* wc->stage == DROP_REFERENCE */
8733 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8734
2c47e605
YZ
8735 if (wc->refs[level] == 1) {
8736 if (level == 0) {
8737 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8738 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8739 else
e339a6b0 8740 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8741 BUG_ON(ret); /* -ENOMEM */
8d38d7eb 8742 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
1152651a 8743 if (ret) {
0b246afa 8744 btrfs_err_rl(fs_info,
5d163e0e
JM
8745 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8746 ret);
1152651a 8747 }
2c47e605
YZ
8748 }
8749 /* make block locked assertion in clean_tree_block happy */
8750 if (!path->locks[level] &&
8751 btrfs_header_generation(eb) == trans->transid) {
8752 btrfs_tree_lock(eb);
8753 btrfs_set_lock_blocking(eb);
bd681513 8754 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8755 }
7c302b49 8756 clean_tree_block(fs_info, eb);
2c47e605
YZ
8757 }
8758
8759 if (eb == root->node) {
8760 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8761 parent = eb->start;
8762 else
8763 BUG_ON(root->root_key.objectid !=
8764 btrfs_header_owner(eb));
8765 } else {
8766 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8767 parent = path->nodes[level + 1]->start;
8768 else
8769 BUG_ON(root->root_key.objectid !=
8770 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8771 }
f82d02d9 8772
5581a51a 8773 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8774out:
8775 wc->refs[level] = 0;
8776 wc->flags[level] = 0;
f0486c68 8777 return 0;
2c47e605
YZ
8778}
8779
8780static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8781 struct btrfs_root *root,
8782 struct btrfs_path *path,
8783 struct walk_control *wc)
8784{
2c47e605 8785 int level = wc->level;
94fcca9f 8786 int lookup_info = 1;
2c47e605
YZ
8787 int ret;
8788
8789 while (level >= 0) {
94fcca9f 8790 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8791 if (ret > 0)
8792 break;
8793
8794 if (level == 0)
8795 break;
8796
7a7965f8
YZ
8797 if (path->slots[level] >=
8798 btrfs_header_nritems(path->nodes[level]))
8799 break;
8800
94fcca9f 8801 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8802 if (ret > 0) {
8803 path->slots[level]++;
8804 continue;
90d2c51d
MX
8805 } else if (ret < 0)
8806 return ret;
1c4850e2 8807 level = wc->level;
f82d02d9 8808 }
f82d02d9
YZ
8809 return 0;
8810}
8811
d397712b 8812static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8813 struct btrfs_root *root,
f82d02d9 8814 struct btrfs_path *path,
2c47e605 8815 struct walk_control *wc, int max_level)
20524f02 8816{
2c47e605 8817 int level = wc->level;
20524f02 8818 int ret;
9f3a7427 8819
2c47e605
YZ
8820 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8821 while (level < max_level && path->nodes[level]) {
8822 wc->level = level;
8823 if (path->slots[level] + 1 <
8824 btrfs_header_nritems(path->nodes[level])) {
8825 path->slots[level]++;
20524f02
CM
8826 return 0;
8827 } else {
2c47e605
YZ
8828 ret = walk_up_proc(trans, root, path, wc);
8829 if (ret > 0)
8830 return 0;
bd56b302 8831
2c47e605 8832 if (path->locks[level]) {
bd681513
CM
8833 btrfs_tree_unlock_rw(path->nodes[level],
8834 path->locks[level]);
2c47e605 8835 path->locks[level] = 0;
f82d02d9 8836 }
2c47e605
YZ
8837 free_extent_buffer(path->nodes[level]);
8838 path->nodes[level] = NULL;
8839 level++;
20524f02
CM
8840 }
8841 }
8842 return 1;
8843}
8844
9aca1d51 8845/*
2c47e605
YZ
8846 * drop a subvolume tree.
8847 *
8848 * this function traverses the tree freeing any blocks that only
8849 * referenced by the tree.
8850 *
8851 * when a shared tree block is found. this function decreases its
8852 * reference count by one. if update_ref is true, this function
8853 * also make sure backrefs for the shared block and all lower level
8854 * blocks are properly updated.
9d1a2a3a
DS
8855 *
8856 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8857 */
2c536799 8858int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8859 struct btrfs_block_rsv *block_rsv, int update_ref,
8860 int for_reloc)
20524f02 8861{
ab8d0fc4 8862 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 8863 struct btrfs_path *path;
2c47e605 8864 struct btrfs_trans_handle *trans;
ab8d0fc4 8865 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 8866 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8867 struct walk_control *wc;
8868 struct btrfs_key key;
8869 int err = 0;
8870 int ret;
8871 int level;
d29a9f62 8872 bool root_dropped = false;
20524f02 8873
4fd786e6 8874 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
1152651a 8875
5caf2a00 8876 path = btrfs_alloc_path();
cb1b69f4
TI
8877 if (!path) {
8878 err = -ENOMEM;
8879 goto out;
8880 }
20524f02 8881
2c47e605 8882 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8883 if (!wc) {
8884 btrfs_free_path(path);
cb1b69f4
TI
8885 err = -ENOMEM;
8886 goto out;
38a1a919 8887 }
2c47e605 8888
a22285a6 8889 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8890 if (IS_ERR(trans)) {
8891 err = PTR_ERR(trans);
8892 goto out_free;
8893 }
98d5dc13 8894
3fd0a558
YZ
8895 if (block_rsv)
8896 trans->block_rsv = block_rsv;
2c47e605 8897
9f3a7427 8898 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8899 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8900 path->nodes[level] = btrfs_lock_root_node(root);
8901 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8902 path->slots[level] = 0;
bd681513 8903 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8904 memset(&wc->update_progress, 0,
8905 sizeof(wc->update_progress));
9f3a7427 8906 } else {
9f3a7427 8907 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8908 memcpy(&wc->update_progress, &key,
8909 sizeof(wc->update_progress));
8910
6702ed49 8911 level = root_item->drop_level;
2c47e605 8912 BUG_ON(level == 0);
6702ed49 8913 path->lowest_level = level;
2c47e605
YZ
8914 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8915 path->lowest_level = 0;
8916 if (ret < 0) {
8917 err = ret;
79787eaa 8918 goto out_end_trans;
9f3a7427 8919 }
1c4850e2 8920 WARN_ON(ret > 0);
2c47e605 8921
7d9eb12c
CM
8922 /*
8923 * unlock our path, this is safe because only this
8924 * function is allowed to delete this snapshot
8925 */
5d4f98a2 8926 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8927
8928 level = btrfs_header_level(root->node);
8929 while (1) {
8930 btrfs_tree_lock(path->nodes[level]);
8931 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8932 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8933
2ff7e61e 8934 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 8935 path->nodes[level]->start,
3173a18f 8936 level, 1, &wc->refs[level],
2c47e605 8937 &wc->flags[level]);
79787eaa
JM
8938 if (ret < 0) {
8939 err = ret;
8940 goto out_end_trans;
8941 }
2c47e605
YZ
8942 BUG_ON(wc->refs[level] == 0);
8943
8944 if (level == root_item->drop_level)
8945 break;
8946
8947 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8948 path->locks[level] = 0;
2c47e605
YZ
8949 WARN_ON(wc->refs[level] != 1);
8950 level--;
8951 }
9f3a7427 8952 }
2c47e605
YZ
8953
8954 wc->level = level;
8955 wc->shared_level = -1;
8956 wc->stage = DROP_REFERENCE;
8957 wc->update_ref = update_ref;
8958 wc->keep_locks = 0;
0b246afa 8959 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 8960
d397712b 8961 while (1) {
9d1a2a3a 8962
2c47e605
YZ
8963 ret = walk_down_tree(trans, root, path, wc);
8964 if (ret < 0) {
8965 err = ret;
20524f02 8966 break;
2c47e605 8967 }
9aca1d51 8968
2c47e605
YZ
8969 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8970 if (ret < 0) {
8971 err = ret;
20524f02 8972 break;
2c47e605
YZ
8973 }
8974
8975 if (ret > 0) {
8976 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8977 break;
8978 }
2c47e605
YZ
8979
8980 if (wc->stage == DROP_REFERENCE) {
8981 level = wc->level;
8982 btrfs_node_key(path->nodes[level],
8983 &root_item->drop_progress,
8984 path->slots[level]);
8985 root_item->drop_level = level;
8986 }
8987
8988 BUG_ON(wc->level == 0);
3a45bb20 8989 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 8990 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
8991 ret = btrfs_update_root(trans, tree_root,
8992 &root->root_key,
8993 root_item);
79787eaa 8994 if (ret) {
66642832 8995 btrfs_abort_transaction(trans, ret);
79787eaa
JM
8996 err = ret;
8997 goto out_end_trans;
8998 }
2c47e605 8999
3a45bb20 9000 btrfs_end_transaction_throttle(trans);
2ff7e61e 9001 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9002 btrfs_debug(fs_info,
9003 "drop snapshot early exit");
3c8f2422
JB
9004 err = -EAGAIN;
9005 goto out_free;
9006 }
9007
a22285a6 9008 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9009 if (IS_ERR(trans)) {
9010 err = PTR_ERR(trans);
9011 goto out_free;
9012 }
3fd0a558
YZ
9013 if (block_rsv)
9014 trans->block_rsv = block_rsv;
c3e69d58 9015 }
20524f02 9016 }
b3b4aa74 9017 btrfs_release_path(path);
79787eaa
JM
9018 if (err)
9019 goto out_end_trans;
2c47e605 9020
ab9ce7d4 9021 ret = btrfs_del_root(trans, &root->root_key);
79787eaa 9022 if (ret) {
66642832 9023 btrfs_abort_transaction(trans, ret);
e19182c0 9024 err = ret;
79787eaa
JM
9025 goto out_end_trans;
9026 }
2c47e605 9027
76dda93c 9028 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9029 ret = btrfs_find_root(tree_root, &root->root_key, path,
9030 NULL, NULL);
79787eaa 9031 if (ret < 0) {
66642832 9032 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9033 err = ret;
9034 goto out_end_trans;
9035 } else if (ret > 0) {
84cd948c
JB
9036 /* if we fail to delete the orphan item this time
9037 * around, it'll get picked up the next time.
9038 *
9039 * The most common failure here is just -ENOENT.
9040 */
9041 btrfs_del_orphan_item(trans, tree_root,
9042 root->root_key.objectid);
76dda93c
YZ
9043 }
9044 }
9045
27cdeb70 9046 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9047 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9048 } else {
9049 free_extent_buffer(root->node);
9050 free_extent_buffer(root->commit_root);
b0feb9d9 9051 btrfs_put_fs_root(root);
76dda93c 9052 }
d29a9f62 9053 root_dropped = true;
79787eaa 9054out_end_trans:
3a45bb20 9055 btrfs_end_transaction_throttle(trans);
79787eaa 9056out_free:
2c47e605 9057 kfree(wc);
5caf2a00 9058 btrfs_free_path(path);
cb1b69f4 9059out:
d29a9f62
JB
9060 /*
9061 * So if we need to stop dropping the snapshot for whatever reason we
9062 * need to make sure to add it back to the dead root list so that we
9063 * keep trying to do the work later. This also cleans up roots if we
9064 * don't have it in the radix (like when we recover after a power fail
9065 * or unmount) so we don't leak memory.
9066 */
897ca819 9067 if (!for_reloc && !root_dropped)
d29a9f62 9068 btrfs_add_dead_root(root);
90515e7f 9069 if (err && err != -EAGAIN)
ab8d0fc4 9070 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9071 return err;
20524f02 9072}
9078a3e1 9073
2c47e605
YZ
9074/*
9075 * drop subtree rooted at tree block 'node'.
9076 *
9077 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9078 * only used by relocation code
2c47e605 9079 */
f82d02d9
YZ
9080int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9081 struct btrfs_root *root,
9082 struct extent_buffer *node,
9083 struct extent_buffer *parent)
9084{
0b246afa 9085 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9086 struct btrfs_path *path;
2c47e605 9087 struct walk_control *wc;
f82d02d9
YZ
9088 int level;
9089 int parent_level;
9090 int ret = 0;
9091 int wret;
9092
2c47e605
YZ
9093 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9094
f82d02d9 9095 path = btrfs_alloc_path();
db5b493a
TI
9096 if (!path)
9097 return -ENOMEM;
f82d02d9 9098
2c47e605 9099 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9100 if (!wc) {
9101 btrfs_free_path(path);
9102 return -ENOMEM;
9103 }
2c47e605 9104
b9447ef8 9105 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9106 parent_level = btrfs_header_level(parent);
9107 extent_buffer_get(parent);
9108 path->nodes[parent_level] = parent;
9109 path->slots[parent_level] = btrfs_header_nritems(parent);
9110
b9447ef8 9111 btrfs_assert_tree_locked(node);
f82d02d9 9112 level = btrfs_header_level(node);
f82d02d9
YZ
9113 path->nodes[level] = node;
9114 path->slots[level] = 0;
bd681513 9115 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9116
9117 wc->refs[parent_level] = 1;
9118 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9119 wc->level = level;
9120 wc->shared_level = -1;
9121 wc->stage = DROP_REFERENCE;
9122 wc->update_ref = 0;
9123 wc->keep_locks = 1;
0b246afa 9124 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9125
9126 while (1) {
2c47e605
YZ
9127 wret = walk_down_tree(trans, root, path, wc);
9128 if (wret < 0) {
f82d02d9 9129 ret = wret;
f82d02d9 9130 break;
2c47e605 9131 }
f82d02d9 9132
2c47e605 9133 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9134 if (wret < 0)
9135 ret = wret;
9136 if (wret != 0)
9137 break;
9138 }
9139
2c47e605 9140 kfree(wc);
f82d02d9
YZ
9141 btrfs_free_path(path);
9142 return ret;
9143}
9144
6202df69 9145static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9146{
9147 u64 num_devices;
fc67c450 9148 u64 stripped;
e4d8ec0f 9149
fc67c450
ID
9150 /*
9151 * if restripe for this chunk_type is on pick target profile and
9152 * return, otherwise do the usual balance
9153 */
6202df69 9154 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9155 if (stripped)
9156 return extended_to_chunk(stripped);
e4d8ec0f 9157
6202df69 9158 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9159
fc67c450 9160 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9161 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9162 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9163
ec44a35c
CM
9164 if (num_devices == 1) {
9165 stripped |= BTRFS_BLOCK_GROUP_DUP;
9166 stripped = flags & ~stripped;
9167
9168 /* turn raid0 into single device chunks */
9169 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9170 return stripped;
9171
9172 /* turn mirroring into duplication */
9173 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9174 BTRFS_BLOCK_GROUP_RAID10))
9175 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9176 } else {
9177 /* they already had raid on here, just return */
ec44a35c
CM
9178 if (flags & stripped)
9179 return flags;
9180
9181 stripped |= BTRFS_BLOCK_GROUP_DUP;
9182 stripped = flags & ~stripped;
9183
9184 /* switch duplicated blocks with raid1 */
9185 if (flags & BTRFS_BLOCK_GROUP_DUP)
9186 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9187
e3176ca2 9188 /* this is drive concat, leave it alone */
ec44a35c 9189 }
e3176ca2 9190
ec44a35c
CM
9191 return flags;
9192}
9193
868f401a 9194static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9195{
f0486c68
YZ
9196 struct btrfs_space_info *sinfo = cache->space_info;
9197 u64 num_bytes;
199c36ea 9198 u64 min_allocable_bytes;
f0486c68 9199 int ret = -ENOSPC;
0ef3e66b 9200
199c36ea
MX
9201 /*
9202 * We need some metadata space and system metadata space for
9203 * allocating chunks in some corner cases until we force to set
9204 * it to be readonly.
9205 */
9206 if ((sinfo->flags &
9207 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9208 !force)
ee22184b 9209 min_allocable_bytes = SZ_1M;
199c36ea
MX
9210 else
9211 min_allocable_bytes = 0;
9212
f0486c68
YZ
9213 spin_lock(&sinfo->lock);
9214 spin_lock(&cache->lock);
61cfea9b
W
9215
9216 if (cache->ro) {
868f401a 9217 cache->ro++;
61cfea9b
W
9218 ret = 0;
9219 goto out;
9220 }
9221
f0486c68
YZ
9222 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9223 cache->bytes_super - btrfs_block_group_used(&cache->item);
9224
4136135b 9225 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9226 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9227 sinfo->bytes_readonly += num_bytes;
868f401a 9228 cache->ro++;
633c0aad 9229 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9230 ret = 0;
9231 }
61cfea9b 9232out:
f0486c68
YZ
9233 spin_unlock(&cache->lock);
9234 spin_unlock(&sinfo->lock);
9235 return ret;
9236}
7d9eb12c 9237
c83488af 9238int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
c286ac48 9239
f0486c68 9240{
c83488af 9241 struct btrfs_fs_info *fs_info = cache->fs_info;
f0486c68
YZ
9242 struct btrfs_trans_handle *trans;
9243 u64 alloc_flags;
9244 int ret;
7d9eb12c 9245
1bbc621e 9246again:
5e00f193 9247 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9248 if (IS_ERR(trans))
9249 return PTR_ERR(trans);
5d4f98a2 9250
1bbc621e
CM
9251 /*
9252 * we're not allowed to set block groups readonly after the dirty
9253 * block groups cache has started writing. If it already started,
9254 * back off and let this transaction commit
9255 */
0b246afa 9256 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9257 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9258 u64 transid = trans->transid;
9259
0b246afa 9260 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9261 btrfs_end_transaction(trans);
1bbc621e 9262
2ff7e61e 9263 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9264 if (ret)
9265 return ret;
9266 goto again;
9267 }
9268
153c35b6
CM
9269 /*
9270 * if we are changing raid levels, try to allocate a corresponding
9271 * block group with the new raid level.
9272 */
0b246afa 9273 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9274 if (alloc_flags != cache->flags) {
01458828 9275 ret = do_chunk_alloc(trans, alloc_flags,
153c35b6
CM
9276 CHUNK_ALLOC_FORCE);
9277 /*
9278 * ENOSPC is allowed here, we may have enough space
9279 * already allocated at the new raid level to
9280 * carry on
9281 */
9282 if (ret == -ENOSPC)
9283 ret = 0;
9284 if (ret < 0)
9285 goto out;
9286 }
1bbc621e 9287
868f401a 9288 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9289 if (!ret)
9290 goto out;
2ff7e61e 9291 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
01458828 9292 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
f0486c68
YZ
9293 if (ret < 0)
9294 goto out;
868f401a 9295 ret = inc_block_group_ro(cache, 0);
f0486c68 9296out:
2f081088 9297 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9298 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9299 mutex_lock(&fs_info->chunk_mutex);
451a2c13 9300 check_system_chunk(trans, alloc_flags);
34441361 9301 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9302 }
0b246afa 9303 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9304
3a45bb20 9305 btrfs_end_transaction(trans);
f0486c68
YZ
9306 return ret;
9307}
5d4f98a2 9308
43a7e99d 9309int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
c87f08ca 9310{
43a7e99d 9311 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
2ff7e61e 9312
01458828 9313 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9314}
9315
6d07bcec
MX
9316/*
9317 * helper to account the unused space of all the readonly block group in the
633c0aad 9318 * space_info. takes mirrors into account.
6d07bcec 9319 */
633c0aad 9320u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9321{
9322 struct btrfs_block_group_cache *block_group;
9323 u64 free_bytes = 0;
9324 int factor;
9325
01327610 9326 /* It's df, we don't care if it's racy */
633c0aad
JB
9327 if (list_empty(&sinfo->ro_bgs))
9328 return 0;
9329
9330 spin_lock(&sinfo->lock);
9331 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9332 spin_lock(&block_group->lock);
9333
9334 if (!block_group->ro) {
9335 spin_unlock(&block_group->lock);
9336 continue;
9337 }
9338
46df06b8 9339 factor = btrfs_bg_type_to_factor(block_group->flags);
6d07bcec
MX
9340 free_bytes += (block_group->key.offset -
9341 btrfs_block_group_used(&block_group->item)) *
9342 factor;
9343
9344 spin_unlock(&block_group->lock);
9345 }
6d07bcec
MX
9346 spin_unlock(&sinfo->lock);
9347
9348 return free_bytes;
9349}
9350
2ff7e61e 9351void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9352{
f0486c68
YZ
9353 struct btrfs_space_info *sinfo = cache->space_info;
9354 u64 num_bytes;
9355
9356 BUG_ON(!cache->ro);
9357
9358 spin_lock(&sinfo->lock);
9359 spin_lock(&cache->lock);
868f401a
Z
9360 if (!--cache->ro) {
9361 num_bytes = cache->key.offset - cache->reserved -
9362 cache->pinned - cache->bytes_super -
9363 btrfs_block_group_used(&cache->item);
9364 sinfo->bytes_readonly -= num_bytes;
9365 list_del_init(&cache->ro_list);
9366 }
f0486c68
YZ
9367 spin_unlock(&cache->lock);
9368 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9369}
9370
ba1bf481
JB
9371/*
9372 * checks to see if its even possible to relocate this block group.
9373 *
9374 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9375 * ok to go ahead and try.
9376 */
6bccf3ab 9377int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9378{
6bccf3ab 9379 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9380 struct btrfs_block_group_cache *block_group;
9381 struct btrfs_space_info *space_info;
0b246afa 9382 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9383 struct btrfs_device *device;
6df9a95e 9384 struct btrfs_trans_handle *trans;
cdcb725c 9385 u64 min_free;
6719db6a
JB
9386 u64 dev_min = 1;
9387 u64 dev_nr = 0;
4a5e98f5 9388 u64 target;
0305bc27 9389 int debug;
cdcb725c 9390 int index;
ba1bf481
JB
9391 int full = 0;
9392 int ret = 0;
1a40e23b 9393
0b246afa 9394 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9395
0b246afa 9396 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9397
ba1bf481 9398 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9399 if (!block_group) {
9400 if (debug)
0b246afa 9401 btrfs_warn(fs_info,
0305bc27
QW
9402 "can't find block group for bytenr %llu",
9403 bytenr);
ba1bf481 9404 return -1;
0305bc27 9405 }
1a40e23b 9406
cdcb725c 9407 min_free = btrfs_block_group_used(&block_group->item);
9408
ba1bf481 9409 /* no bytes used, we're good */
cdcb725c 9410 if (!min_free)
1a40e23b
ZY
9411 goto out;
9412
ba1bf481
JB
9413 space_info = block_group->space_info;
9414 spin_lock(&space_info->lock);
17d217fe 9415
ba1bf481 9416 full = space_info->full;
17d217fe 9417
ba1bf481
JB
9418 /*
9419 * if this is the last block group we have in this space, we can't
7ce618db
CM
9420 * relocate it unless we're able to allocate a new chunk below.
9421 *
9422 * Otherwise, we need to make sure we have room in the space to handle
9423 * all of the extents from this block group. If we can, we're good
ba1bf481 9424 */
7ce618db 9425 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9426 (btrfs_space_info_used(space_info, false) + min_free <
9427 space_info->total_bytes)) {
ba1bf481
JB
9428 spin_unlock(&space_info->lock);
9429 goto out;
17d217fe 9430 }
ba1bf481 9431 spin_unlock(&space_info->lock);
ea8c2819 9432
ba1bf481
JB
9433 /*
9434 * ok we don't have enough space, but maybe we have free space on our
9435 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9436 * alloc devices and guess if we have enough space. if this block
9437 * group is going to be restriped, run checks against the target
9438 * profile instead of the current one.
ba1bf481
JB
9439 */
9440 ret = -1;
ea8c2819 9441
cdcb725c 9442 /*
9443 * index:
9444 * 0: raid10
9445 * 1: raid1
9446 * 2: dup
9447 * 3: raid0
9448 * 4: single
9449 */
0b246afa 9450 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9451 if (target) {
3e72ee88 9452 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9453 } else {
9454 /*
9455 * this is just a balance, so if we were marked as full
9456 * we know there is no space for a new chunk
9457 */
0305bc27
QW
9458 if (full) {
9459 if (debug)
0b246afa
JM
9460 btrfs_warn(fs_info,
9461 "no space to alloc new chunk for block group %llu",
9462 block_group->key.objectid);
4a5e98f5 9463 goto out;
0305bc27 9464 }
4a5e98f5 9465
3e72ee88 9466 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9467 }
9468
e6ec716f 9469 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9470 dev_min = 4;
6719db6a
JB
9471 /* Divide by 2 */
9472 min_free >>= 1;
e6ec716f 9473 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9474 dev_min = 2;
e6ec716f 9475 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9476 /* Multiply by 2 */
9477 min_free <<= 1;
e6ec716f 9478 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9479 dev_min = fs_devices->rw_devices;
47c5713f 9480 min_free = div64_u64(min_free, dev_min);
cdcb725c 9481 }
9482
6df9a95e
JB
9483 /* We need to do this so that we can look at pending chunks */
9484 trans = btrfs_join_transaction(root);
9485 if (IS_ERR(trans)) {
9486 ret = PTR_ERR(trans);
9487 goto out;
9488 }
9489
0b246afa 9490 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9491 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9492 u64 dev_offset;
56bec294 9493
ba1bf481
JB
9494 /*
9495 * check to make sure we can actually find a chunk with enough
9496 * space to fit our block group in.
9497 */
63a212ab 9498 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9499 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9500 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9501 &dev_offset, NULL);
ba1bf481 9502 if (!ret)
cdcb725c 9503 dev_nr++;
9504
9505 if (dev_nr >= dev_min)
73e48b27 9506 break;
cdcb725c 9507
ba1bf481 9508 ret = -1;
725c8463 9509 }
edbd8d4e 9510 }
0305bc27 9511 if (debug && ret == -1)
0b246afa
JM
9512 btrfs_warn(fs_info,
9513 "no space to allocate a new chunk for block group %llu",
9514 block_group->key.objectid);
9515 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9516 btrfs_end_transaction(trans);
edbd8d4e 9517out:
ba1bf481 9518 btrfs_put_block_group(block_group);
edbd8d4e
CM
9519 return ret;
9520}
9521
6bccf3ab
JM
9522static int find_first_block_group(struct btrfs_fs_info *fs_info,
9523 struct btrfs_path *path,
9524 struct btrfs_key *key)
0b86a832 9525{
6bccf3ab 9526 struct btrfs_root *root = fs_info->extent_root;
925baedd 9527 int ret = 0;
0b86a832
CM
9528 struct btrfs_key found_key;
9529 struct extent_buffer *leaf;
514c7dca
QW
9530 struct btrfs_block_group_item bg;
9531 u64 flags;
0b86a832 9532 int slot;
edbd8d4e 9533
0b86a832
CM
9534 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9535 if (ret < 0)
925baedd
CM
9536 goto out;
9537
d397712b 9538 while (1) {
0b86a832 9539 slot = path->slots[0];
edbd8d4e 9540 leaf = path->nodes[0];
0b86a832
CM
9541 if (slot >= btrfs_header_nritems(leaf)) {
9542 ret = btrfs_next_leaf(root, path);
9543 if (ret == 0)
9544 continue;
9545 if (ret < 0)
925baedd 9546 goto out;
0b86a832 9547 break;
edbd8d4e 9548 }
0b86a832 9549 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9550
0b86a832 9551 if (found_key.objectid >= key->objectid &&
925baedd 9552 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9553 struct extent_map_tree *em_tree;
9554 struct extent_map *em;
9555
9556 em_tree = &root->fs_info->mapping_tree.map_tree;
9557 read_lock(&em_tree->lock);
9558 em = lookup_extent_mapping(em_tree, found_key.objectid,
9559 found_key.offset);
9560 read_unlock(&em_tree->lock);
9561 if (!em) {
0b246afa 9562 btrfs_err(fs_info,
6fb37b75
LB
9563 "logical %llu len %llu found bg but no related chunk",
9564 found_key.objectid, found_key.offset);
9565 ret = -ENOENT;
514c7dca
QW
9566 } else if (em->start != found_key.objectid ||
9567 em->len != found_key.offset) {
9568 btrfs_err(fs_info,
9569 "block group %llu len %llu mismatch with chunk %llu len %llu",
9570 found_key.objectid, found_key.offset,
9571 em->start, em->len);
9572 ret = -EUCLEAN;
6fb37b75 9573 } else {
514c7dca
QW
9574 read_extent_buffer(leaf, &bg,
9575 btrfs_item_ptr_offset(leaf, slot),
9576 sizeof(bg));
9577 flags = btrfs_block_group_flags(&bg) &
9578 BTRFS_BLOCK_GROUP_TYPE_MASK;
9579
9580 if (flags != (em->map_lookup->type &
9581 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9582 btrfs_err(fs_info,
9583"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9584 found_key.objectid,
9585 found_key.offset, flags,
9586 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9587 em->map_lookup->type));
9588 ret = -EUCLEAN;
9589 } else {
9590 ret = 0;
9591 }
6fb37b75 9592 }
187ee58c 9593 free_extent_map(em);
925baedd
CM
9594 goto out;
9595 }
0b86a832 9596 path->slots[0]++;
edbd8d4e 9597 }
925baedd 9598out:
0b86a832 9599 return ret;
edbd8d4e
CM
9600}
9601
0af3d00b
JB
9602void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9603{
9604 struct btrfs_block_group_cache *block_group;
9605 u64 last = 0;
9606
9607 while (1) {
9608 struct inode *inode;
9609
9610 block_group = btrfs_lookup_first_block_group(info, last);
9611 while (block_group) {
9612 spin_lock(&block_group->lock);
9613 if (block_group->iref)
9614 break;
9615 spin_unlock(&block_group->lock);
2ff7e61e 9616 block_group = next_block_group(info, block_group);
0af3d00b
JB
9617 }
9618 if (!block_group) {
9619 if (last == 0)
9620 break;
9621 last = 0;
9622 continue;
9623 }
9624
9625 inode = block_group->inode;
9626 block_group->iref = 0;
9627 block_group->inode = NULL;
9628 spin_unlock(&block_group->lock);
f3bca802 9629 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9630 iput(inode);
9631 last = block_group->key.objectid + block_group->key.offset;
9632 btrfs_put_block_group(block_group);
9633 }
9634}
9635
5cdd7db6
FM
9636/*
9637 * Must be called only after stopping all workers, since we could have block
9638 * group caching kthreads running, and therefore they could race with us if we
9639 * freed the block groups before stopping them.
9640 */
1a40e23b
ZY
9641int btrfs_free_block_groups(struct btrfs_fs_info *info)
9642{
9643 struct btrfs_block_group_cache *block_group;
4184ea7f 9644 struct btrfs_space_info *space_info;
11833d66 9645 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9646 struct rb_node *n;
9647
9e351cc8 9648 down_write(&info->commit_root_sem);
11833d66
YZ
9649 while (!list_empty(&info->caching_block_groups)) {
9650 caching_ctl = list_entry(info->caching_block_groups.next,
9651 struct btrfs_caching_control, list);
9652 list_del(&caching_ctl->list);
9653 put_caching_control(caching_ctl);
9654 }
9e351cc8 9655 up_write(&info->commit_root_sem);
11833d66 9656
47ab2a6c
JB
9657 spin_lock(&info->unused_bgs_lock);
9658 while (!list_empty(&info->unused_bgs)) {
9659 block_group = list_first_entry(&info->unused_bgs,
9660 struct btrfs_block_group_cache,
9661 bg_list);
9662 list_del_init(&block_group->bg_list);
9663 btrfs_put_block_group(block_group);
9664 }
9665 spin_unlock(&info->unused_bgs_lock);
9666
1a40e23b
ZY
9667 spin_lock(&info->block_group_cache_lock);
9668 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9669 block_group = rb_entry(n, struct btrfs_block_group_cache,
9670 cache_node);
1a40e23b
ZY
9671 rb_erase(&block_group->cache_node,
9672 &info->block_group_cache_tree);
01eacb27 9673 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9674 spin_unlock(&info->block_group_cache_lock);
9675
80eb234a 9676 down_write(&block_group->space_info->groups_sem);
1a40e23b 9677 list_del(&block_group->list);
80eb234a 9678 up_write(&block_group->space_info->groups_sem);
d2fb3437 9679
3c14874a
JB
9680 /*
9681 * We haven't cached this block group, which means we could
9682 * possibly have excluded extents on this block group.
9683 */
36cce922
JB
9684 if (block_group->cached == BTRFS_CACHE_NO ||
9685 block_group->cached == BTRFS_CACHE_ERROR)
9e715da8 9686 free_excluded_extents(block_group);
3c14874a 9687
817d52f8 9688 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9689 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9690 ASSERT(list_empty(&block_group->dirty_list));
9691 ASSERT(list_empty(&block_group->io_list));
9692 ASSERT(list_empty(&block_group->bg_list));
9693 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9694 btrfs_put_block_group(block_group);
d899e052
YZ
9695
9696 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9697 }
9698 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9699
9700 /* now that all the block groups are freed, go through and
9701 * free all the space_info structs. This is only called during
9702 * the final stages of unmount, and so we know nobody is
9703 * using them. We call synchronize_rcu() once before we start,
9704 * just to be on the safe side.
9705 */
9706 synchronize_rcu();
9707
8929ecfa
YZ
9708 release_global_block_rsv(info);
9709
67871254 9710 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9711 int i;
9712
4184ea7f
CM
9713 space_info = list_entry(info->space_info.next,
9714 struct btrfs_space_info,
9715 list);
d555b6c3
JB
9716
9717 /*
9718 * Do not hide this behind enospc_debug, this is actually
9719 * important and indicates a real bug if this happens.
9720 */
9721 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9722 space_info->bytes_reserved > 0 ||
d555b6c3 9723 space_info->bytes_may_use > 0))
ab8d0fc4 9724 dump_space_info(info, space_info, 0, 0);
4184ea7f 9725 list_del(&space_info->list);
6ab0a202
JM
9726 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9727 struct kobject *kobj;
c1895442
JM
9728 kobj = space_info->block_group_kobjs[i];
9729 space_info->block_group_kobjs[i] = NULL;
9730 if (kobj) {
6ab0a202
JM
9731 kobject_del(kobj);
9732 kobject_put(kobj);
9733 }
9734 }
9735 kobject_del(&space_info->kobj);
9736 kobject_put(&space_info->kobj);
4184ea7f 9737 }
1a40e23b
ZY
9738 return 0;
9739}
9740
75cb379d
JM
9741/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9742void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9743{
9744 struct btrfs_space_info *space_info;
9745 struct raid_kobject *rkobj;
9746 LIST_HEAD(list);
9747 int index;
9748 int ret = 0;
9749
9750 spin_lock(&fs_info->pending_raid_kobjs_lock);
9751 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9752 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9753
9754 list_for_each_entry(rkobj, &list, list) {
9755 space_info = __find_space_info(fs_info, rkobj->flags);
9756 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9757
9758 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9759 "%s", get_raid_name(index));
9760 if (ret) {
9761 kobject_put(&rkobj->kobj);
9762 break;
9763 }
9764 }
9765 if (ret)
9766 btrfs_warn(fs_info,
9767 "failed to add kobject for block cache, ignoring");
9768}
9769
c434d21c 9770static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9771{
c434d21c 9772 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 9773 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 9774 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 9775 bool first = false;
b742bb82
YZ
9776
9777 down_write(&space_info->groups_sem);
ed55b6ac
JM
9778 if (list_empty(&space_info->block_groups[index]))
9779 first = true;
9780 list_add_tail(&cache->list, &space_info->block_groups[index]);
9781 up_write(&space_info->groups_sem);
9782
9783 if (first) {
75cb379d
JM
9784 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9785 if (!rkobj) {
9786 btrfs_warn(cache->fs_info,
9787 "couldn't alloc memory for raid level kobject");
9788 return;
6ab0a202 9789 }
75cb379d
JM
9790 rkobj->flags = cache->flags;
9791 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9792
9793 spin_lock(&fs_info->pending_raid_kobjs_lock);
9794 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9795 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 9796 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9797 }
b742bb82
YZ
9798}
9799
920e4a58 9800static struct btrfs_block_group_cache *
2ff7e61e
JM
9801btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9802 u64 start, u64 size)
920e4a58
MX
9803{
9804 struct btrfs_block_group_cache *cache;
9805
9806 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9807 if (!cache)
9808 return NULL;
9809
9810 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9811 GFP_NOFS);
9812 if (!cache->free_space_ctl) {
9813 kfree(cache);
9814 return NULL;
9815 }
9816
9817 cache->key.objectid = start;
9818 cache->key.offset = size;
9819 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9820
0b246afa 9821 cache->fs_info = fs_info;
e4ff5fb5 9822 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
9823 set_free_space_tree_thresholds(cache);
9824
920e4a58
MX
9825 atomic_set(&cache->count, 1);
9826 spin_lock_init(&cache->lock);
e570fd27 9827 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9828 INIT_LIST_HEAD(&cache->list);
9829 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9830 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9831 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9832 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9833 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9834 btrfs_init_free_space_ctl(cache);
04216820 9835 atomic_set(&cache->trimming, 0);
a5ed9182 9836 mutex_init(&cache->free_space_lock);
0966a7b1 9837 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9838
9839 return cache;
9840}
9841
7ef49515
QW
9842
9843/*
9844 * Iterate all chunks and verify that each of them has the corresponding block
9845 * group
9846 */
9847static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9848{
9849 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9850 struct extent_map *em;
9851 struct btrfs_block_group_cache *bg;
9852 u64 start = 0;
9853 int ret = 0;
9854
9855 while (1) {
9856 read_lock(&map_tree->map_tree.lock);
9857 /*
9858 * lookup_extent_mapping will return the first extent map
9859 * intersecting the range, so setting @len to 1 is enough to
9860 * get the first chunk.
9861 */
9862 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9863 read_unlock(&map_tree->map_tree.lock);
9864 if (!em)
9865 break;
9866
9867 bg = btrfs_lookup_block_group(fs_info, em->start);
9868 if (!bg) {
9869 btrfs_err(fs_info,
9870 "chunk start=%llu len=%llu doesn't have corresponding block group",
9871 em->start, em->len);
9872 ret = -EUCLEAN;
9873 free_extent_map(em);
9874 break;
9875 }
9876 if (bg->key.objectid != em->start ||
9877 bg->key.offset != em->len ||
9878 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9879 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9880 btrfs_err(fs_info,
9881"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9882 em->start, em->len,
9883 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9884 bg->key.objectid, bg->key.offset,
9885 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9886 ret = -EUCLEAN;
9887 free_extent_map(em);
9888 btrfs_put_block_group(bg);
9889 break;
9890 }
9891 start = em->start + em->len;
9892 free_extent_map(em);
9893 btrfs_put_block_group(bg);
9894 }
9895 return ret;
9896}
9897
5b4aacef 9898int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9899{
9900 struct btrfs_path *path;
9901 int ret;
9078a3e1 9902 struct btrfs_block_group_cache *cache;
6324fbf3 9903 struct btrfs_space_info *space_info;
9078a3e1
CM
9904 struct btrfs_key key;
9905 struct btrfs_key found_key;
5f39d397 9906 struct extent_buffer *leaf;
0af3d00b
JB
9907 int need_clear = 0;
9908 u64 cache_gen;
49303381
LB
9909 u64 feature;
9910 int mixed;
9911
9912 feature = btrfs_super_incompat_flags(info->super_copy);
9913 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9914
9078a3e1 9915 key.objectid = 0;
0b86a832 9916 key.offset = 0;
962a298f 9917 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9918 path = btrfs_alloc_path();
9919 if (!path)
9920 return -ENOMEM;
e4058b54 9921 path->reada = READA_FORWARD;
9078a3e1 9922
0b246afa
JM
9923 cache_gen = btrfs_super_cache_generation(info->super_copy);
9924 if (btrfs_test_opt(info, SPACE_CACHE) &&
9925 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 9926 need_clear = 1;
0b246afa 9927 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 9928 need_clear = 1;
0af3d00b 9929
d397712b 9930 while (1) {
6bccf3ab 9931 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
9932 if (ret > 0)
9933 break;
0b86a832
CM
9934 if (ret != 0)
9935 goto error;
920e4a58 9936
5f39d397
CM
9937 leaf = path->nodes[0];
9938 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 9939
2ff7e61e 9940 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 9941 found_key.offset);
9078a3e1 9942 if (!cache) {
0b86a832 9943 ret = -ENOMEM;
f0486c68 9944 goto error;
9078a3e1 9945 }
96303081 9946
cf7c1ef6
LB
9947 if (need_clear) {
9948 /*
9949 * When we mount with old space cache, we need to
9950 * set BTRFS_DC_CLEAR and set dirty flag.
9951 *
9952 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9953 * truncate the old free space cache inode and
9954 * setup a new one.
9955 * b) Setting 'dirty flag' makes sure that we flush
9956 * the new space cache info onto disk.
9957 */
0b246afa 9958 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 9959 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9960 }
0af3d00b 9961
5f39d397
CM
9962 read_extent_buffer(leaf, &cache->item,
9963 btrfs_item_ptr_offset(leaf, path->slots[0]),
9964 sizeof(cache->item));
920e4a58 9965 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
9966 if (!mixed &&
9967 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9968 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9969 btrfs_err(info,
9970"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9971 cache->key.objectid);
9972 ret = -EINVAL;
9973 goto error;
9974 }
0b86a832 9975
9078a3e1 9976 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9977 btrfs_release_path(path);
34d52cb6 9978
3c14874a
JB
9979 /*
9980 * We need to exclude the super stripes now so that the space
9981 * info has super bytes accounted for, otherwise we'll think
9982 * we have more space than we actually do.
9983 */
3c4da657 9984 ret = exclude_super_stripes(cache);
835d974f
JB
9985 if (ret) {
9986 /*
9987 * We may have excluded something, so call this just in
9988 * case.
9989 */
9e715da8 9990 free_excluded_extents(cache);
920e4a58 9991 btrfs_put_block_group(cache);
835d974f
JB
9992 goto error;
9993 }
3c14874a 9994
817d52f8
JB
9995 /*
9996 * check for two cases, either we are full, and therefore
9997 * don't need to bother with the caching work since we won't
9998 * find any space, or we are empty, and we can just add all
9999 * the space in and be done with it. This saves us _alot_ of
10000 * time, particularly in the full case.
10001 */
10002 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10003 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10004 cache->cached = BTRFS_CACHE_FINISHED;
9e715da8 10005 free_excluded_extents(cache);
817d52f8 10006 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10007 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10008 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10009 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10010 found_key.objectid +
10011 found_key.offset);
9e715da8 10012 free_excluded_extents(cache);
817d52f8 10013 }
96b5179d 10014
0b246afa 10015 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10016 if (ret) {
10017 btrfs_remove_free_space_cache(cache);
10018 btrfs_put_block_group(cache);
10019 goto error;
10020 }
10021
0b246afa 10022 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10023 update_space_info(info, cache->flags, found_key.offset,
10024 btrfs_block_group_used(&cache->item),
10025 cache->bytes_super, &space_info);
8c579fe7 10026
6324fbf3 10027 cache->space_info = space_info;
1b2da372 10028
c434d21c 10029 link_block_group(cache);
0f9dd46c 10030
0b246afa 10031 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10032 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10033 inc_block_group_ro(cache, 1);
47ab2a6c 10034 } else if (btrfs_block_group_used(&cache->item) == 0) {
031f24da
QW
10035 ASSERT(list_empty(&cache->bg_list));
10036 btrfs_mark_bg_unused(cache);
47ab2a6c 10037 }
9078a3e1 10038 }
b742bb82 10039
0b246afa 10040 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10041 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10042 (BTRFS_BLOCK_GROUP_RAID10 |
10043 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10044 BTRFS_BLOCK_GROUP_RAID5 |
10045 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10046 BTRFS_BLOCK_GROUP_DUP)))
10047 continue;
10048 /*
10049 * avoid allocating from un-mirrored block group if there are
10050 * mirrored block groups.
10051 */
1095cc0d 10052 list_for_each_entry(cache,
10053 &space_info->block_groups[BTRFS_RAID_RAID0],
10054 list)
868f401a 10055 inc_block_group_ro(cache, 1);
1095cc0d 10056 list_for_each_entry(cache,
10057 &space_info->block_groups[BTRFS_RAID_SINGLE],
10058 list)
868f401a 10059 inc_block_group_ro(cache, 1);
9078a3e1 10060 }
f0486c68 10061
75cb379d 10062 btrfs_add_raid_kobjects(info);
f0486c68 10063 init_global_block_rsv(info);
7ef49515 10064 ret = check_chunk_block_group_mappings(info);
0b86a832 10065error:
9078a3e1 10066 btrfs_free_path(path);
0b86a832 10067 return ret;
9078a3e1 10068}
6324fbf3 10069
6c686b35 10070void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10071{
6c686b35 10072 struct btrfs_fs_info *fs_info = trans->fs_info;
ea658bad 10073 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10074 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10075 struct btrfs_block_group_item item;
10076 struct btrfs_key key;
10077 int ret = 0;
d9a0540a 10078 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10079
d9a0540a 10080 trans->can_flush_pending_bgs = false;
47ab2a6c 10081 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10082 if (ret)
c92f6be3 10083 goto next;
ea658bad
JB
10084
10085 spin_lock(&block_group->lock);
10086 memcpy(&item, &block_group->item, sizeof(item));
10087 memcpy(&key, &block_group->key, sizeof(key));
10088 spin_unlock(&block_group->lock);
10089
10090 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10091 sizeof(item));
10092 if (ret)
66642832 10093 btrfs_abort_transaction(trans, ret);
97aff912 10094 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
6df9a95e 10095 if (ret)
66642832 10096 btrfs_abort_transaction(trans, ret);
e4e0711c 10097 add_block_group_free_space(trans, block_group);
1e144fb8 10098 /* already aborted the transaction if it failed. */
c92f6be3
FM
10099next:
10100 list_del_init(&block_group->bg_list);
ea658bad 10101 }
d9a0540a 10102 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10103}
10104
e7e02096 10105int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
0174484d 10106 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10107{
e7e02096 10108 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 10109 struct btrfs_block_group_cache *cache;
0b246afa 10110 int ret;
6324fbf3 10111
0b246afa 10112 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10113
2ff7e61e 10114 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10115 if (!cache)
10116 return -ENOMEM;
34d52cb6 10117
6324fbf3 10118 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10119 btrfs_set_block_group_chunk_objectid(&cache->item,
10120 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10121 btrfs_set_block_group_flags(&cache->item, type);
10122
920e4a58 10123 cache->flags = type;
11833d66 10124 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10125 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10126 cache->needs_free_space = 1;
3c4da657 10127 ret = exclude_super_stripes(cache);
835d974f
JB
10128 if (ret) {
10129 /*
10130 * We may have excluded something, so call this just in
10131 * case.
10132 */
9e715da8 10133 free_excluded_extents(cache);
920e4a58 10134 btrfs_put_block_group(cache);
835d974f
JB
10135 return ret;
10136 }
96303081 10137
4457c1c7 10138 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10139
9e715da8 10140 free_excluded_extents(cache);
11833d66 10141
d0bd4560 10142#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10143 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10144 u64 new_bytes_used = size - bytes_used;
10145
10146 bytes_used += new_bytes_used >> 1;
2ff7e61e 10147 fragment_free_space(cache);
d0bd4560
JB
10148 }
10149#endif
2e6e5183 10150 /*
2be12ef7
NB
10151 * Ensure the corresponding space_info object is created and
10152 * assigned to our block group. We want our bg to be added to the rbtree
10153 * with its ->space_info set.
2e6e5183 10154 */
2be12ef7 10155 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10156 ASSERT(cache->space_info);
2e6e5183 10157
0b246afa 10158 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10159 if (ret) {
10160 btrfs_remove_free_space_cache(cache);
10161 btrfs_put_block_group(cache);
10162 return ret;
10163 }
10164
2e6e5183
FM
10165 /*
10166 * Now that our block group has its ->space_info set and is inserted in
10167 * the rbtree, update the space info's counters.
10168 */
0b246afa 10169 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10170 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10171 cache->bytes_super, &cache->space_info);
0b246afa 10172 update_global_block_rsv(fs_info);
1b2da372 10173
c434d21c 10174 link_block_group(cache);
6324fbf3 10175
47ab2a6c 10176 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10177
0b246afa 10178 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10179 return 0;
10180}
1a40e23b 10181
10ea00f5
ID
10182static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10183{
899c81ea
ID
10184 u64 extra_flags = chunk_to_extended(flags) &
10185 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10186
de98ced9 10187 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10188 if (flags & BTRFS_BLOCK_GROUP_DATA)
10189 fs_info->avail_data_alloc_bits &= ~extra_flags;
10190 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10191 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10192 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10193 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10194 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10195}
10196
1a40e23b 10197int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5a98ec01 10198 u64 group_start, struct extent_map *em)
1a40e23b 10199{
5a98ec01 10200 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 10201 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10202 struct btrfs_path *path;
10203 struct btrfs_block_group_cache *block_group;
44fb5511 10204 struct btrfs_free_cluster *cluster;
0b246afa 10205 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10206 struct btrfs_key key;
0af3d00b 10207 struct inode *inode;
c1895442 10208 struct kobject *kobj = NULL;
1a40e23b 10209 int ret;
10ea00f5 10210 int index;
89a55897 10211 int factor;
4f69cb98 10212 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10213 bool remove_em;
1a40e23b 10214
6bccf3ab 10215 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10216 BUG_ON(!block_group);
c146afad 10217 BUG_ON(!block_group->ro);
1a40e23b 10218
4ed0a7a3 10219 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10220 /*
10221 * Free the reserved super bytes from this block group before
10222 * remove it.
10223 */
9e715da8 10224 free_excluded_extents(block_group);
fd708b81
JB
10225 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10226 block_group->key.offset);
9f7c43c9 10227
1a40e23b 10228 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10229 index = btrfs_bg_flags_to_raid_index(block_group->flags);
46df06b8 10230 factor = btrfs_bg_type_to_factor(block_group->flags);
1a40e23b 10231
44fb5511 10232 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10233 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10234 spin_lock(&cluster->refill_lock);
10235 btrfs_return_cluster_to_free_space(block_group, cluster);
10236 spin_unlock(&cluster->refill_lock);
10237
10238 /*
10239 * make sure this block group isn't part of a metadata
10240 * allocation cluster
10241 */
0b246afa 10242 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10243 spin_lock(&cluster->refill_lock);
10244 btrfs_return_cluster_to_free_space(block_group, cluster);
10245 spin_unlock(&cluster->refill_lock);
10246
1a40e23b 10247 path = btrfs_alloc_path();
d8926bb3
MF
10248 if (!path) {
10249 ret = -ENOMEM;
10250 goto out;
10251 }
1a40e23b 10252
1bbc621e
CM
10253 /*
10254 * get the inode first so any iput calls done for the io_list
10255 * aren't the final iput (no unlinks allowed now)
10256 */
77ab86bf 10257 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10258
10259 mutex_lock(&trans->transaction->cache_write_mutex);
10260 /*
10261 * make sure our free spache cache IO is done before remove the
10262 * free space inode
10263 */
10264 spin_lock(&trans->transaction->dirty_bgs_lock);
10265 if (!list_empty(&block_group->io_list)) {
10266 list_del_init(&block_group->io_list);
10267
10268 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10269
10270 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10271 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10272 btrfs_put_block_group(block_group);
10273 spin_lock(&trans->transaction->dirty_bgs_lock);
10274 }
10275
10276 if (!list_empty(&block_group->dirty_list)) {
10277 list_del_init(&block_group->dirty_list);
10278 btrfs_put_block_group(block_group);
10279 }
10280 spin_unlock(&trans->transaction->dirty_bgs_lock);
10281 mutex_unlock(&trans->transaction->cache_write_mutex);
10282
0af3d00b 10283 if (!IS_ERR(inode)) {
73f2e545 10284 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10285 if (ret) {
10286 btrfs_add_delayed_iput(inode);
10287 goto out;
10288 }
0af3d00b
JB
10289 clear_nlink(inode);
10290 /* One for the block groups ref */
10291 spin_lock(&block_group->lock);
10292 if (block_group->iref) {
10293 block_group->iref = 0;
10294 block_group->inode = NULL;
10295 spin_unlock(&block_group->lock);
10296 iput(inode);
10297 } else {
10298 spin_unlock(&block_group->lock);
10299 }
10300 /* One for our lookup ref */
455757c3 10301 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10302 }
10303
10304 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10305 key.offset = block_group->key.objectid;
10306 key.type = 0;
10307
10308 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10309 if (ret < 0)
10310 goto out;
10311 if (ret > 0)
b3b4aa74 10312 btrfs_release_path(path);
0af3d00b
JB
10313 if (ret == 0) {
10314 ret = btrfs_del_item(trans, tree_root, path);
10315 if (ret)
10316 goto out;
b3b4aa74 10317 btrfs_release_path(path);
0af3d00b
JB
10318 }
10319
0b246afa 10320 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10321 rb_erase(&block_group->cache_node,
0b246afa 10322 &fs_info->block_group_cache_tree);
292cbd51 10323 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10324
0b246afa
JM
10325 if (fs_info->first_logical_byte == block_group->key.objectid)
10326 fs_info->first_logical_byte = (u64)-1;
10327 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10328
80eb234a 10329 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10330 /*
10331 * we must use list_del_init so people can check to see if they
10332 * are still on the list after taking the semaphore
10333 */
10334 list_del_init(&block_group->list);
6ab0a202 10335 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10336 kobj = block_group->space_info->block_group_kobjs[index];
10337 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10338 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10339 }
80eb234a 10340 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10341 if (kobj) {
10342 kobject_del(kobj);
10343 kobject_put(kobj);
10344 }
1a40e23b 10345
4f69cb98
FM
10346 if (block_group->has_caching_ctl)
10347 caching_ctl = get_caching_control(block_group);
817d52f8 10348 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10349 wait_block_group_cache_done(block_group);
4f69cb98 10350 if (block_group->has_caching_ctl) {
0b246afa 10351 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10352 if (!caching_ctl) {
10353 struct btrfs_caching_control *ctl;
10354
10355 list_for_each_entry(ctl,
0b246afa 10356 &fs_info->caching_block_groups, list)
4f69cb98
FM
10357 if (ctl->block_group == block_group) {
10358 caching_ctl = ctl;
1e4f4714 10359 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10360 break;
10361 }
10362 }
10363 if (caching_ctl)
10364 list_del_init(&caching_ctl->list);
0b246afa 10365 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10366 if (caching_ctl) {
10367 /* Once for the caching bgs list and once for us. */
10368 put_caching_control(caching_ctl);
10369 put_caching_control(caching_ctl);
10370 }
10371 }
817d52f8 10372
ce93ec54
JB
10373 spin_lock(&trans->transaction->dirty_bgs_lock);
10374 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10375 WARN_ON(1);
10376 }
10377 if (!list_empty(&block_group->io_list)) {
10378 WARN_ON(1);
ce93ec54
JB
10379 }
10380 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10381 btrfs_remove_free_space_cache(block_group);
10382
c146afad 10383 spin_lock(&block_group->space_info->lock);
75c68e9f 10384 list_del_init(&block_group->ro_list);
18d018ad 10385
0b246afa 10386 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10387 WARN_ON(block_group->space_info->total_bytes
10388 < block_group->key.offset);
10389 WARN_ON(block_group->space_info->bytes_readonly
10390 < block_group->key.offset);
10391 WARN_ON(block_group->space_info->disk_total
10392 < block_group->key.offset * factor);
10393 }
c146afad
YZ
10394 block_group->space_info->total_bytes -= block_group->key.offset;
10395 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10396 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10397
c146afad 10398 spin_unlock(&block_group->space_info->lock);
283bb197 10399
0af3d00b
JB
10400 memcpy(&key, &block_group->key, sizeof(key));
10401
34441361 10402 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10403 if (!list_empty(&em->list)) {
10404 /* We're in the transaction->pending_chunks list. */
10405 free_extent_map(em);
10406 }
04216820
FM
10407 spin_lock(&block_group->lock);
10408 block_group->removed = 1;
10409 /*
10410 * At this point trimming can't start on this block group, because we
10411 * removed the block group from the tree fs_info->block_group_cache_tree
10412 * so no one can't find it anymore and even if someone already got this
10413 * block group before we removed it from the rbtree, they have already
10414 * incremented block_group->trimming - if they didn't, they won't find
10415 * any free space entries because we already removed them all when we
10416 * called btrfs_remove_free_space_cache().
10417 *
10418 * And we must not remove the extent map from the fs_info->mapping_tree
10419 * to prevent the same logical address range and physical device space
10420 * ranges from being reused for a new block group. This is because our
10421 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10422 * completely transactionless, so while it is trimming a range the
10423 * currently running transaction might finish and a new one start,
10424 * allowing for new block groups to be created that can reuse the same
10425 * physical device locations unless we take this special care.
e33e17ee
JM
10426 *
10427 * There may also be an implicit trim operation if the file system
10428 * is mounted with -odiscard. The same protections must remain
10429 * in place until the extents have been discarded completely when
10430 * the transaction commit has completed.
04216820
FM
10431 */
10432 remove_em = (atomic_read(&block_group->trimming) == 0);
10433 /*
10434 * Make sure a trimmer task always sees the em in the pinned_chunks list
10435 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10436 * before checking block_group->removed).
10437 */
10438 if (!remove_em) {
10439 /*
10440 * Our em might be in trans->transaction->pending_chunks which
10441 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10442 * and so is the fs_info->pinned_chunks list.
10443 *
10444 * So at this point we must be holding the chunk_mutex to avoid
10445 * any races with chunk allocation (more specifically at
10446 * volumes.c:contains_pending_extent()), to ensure it always
10447 * sees the em, either in the pending_chunks list or in the
10448 * pinned_chunks list.
10449 */
0b246afa 10450 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10451 }
10452 spin_unlock(&block_group->lock);
04216820
FM
10453
10454 if (remove_em) {
10455 struct extent_map_tree *em_tree;
10456
0b246afa 10457 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10458 write_lock(&em_tree->lock);
8dbcd10f
FM
10459 /*
10460 * The em might be in the pending_chunks list, so make sure the
10461 * chunk mutex is locked, since remove_extent_mapping() will
10462 * delete us from that list.
10463 */
04216820
FM
10464 remove_extent_mapping(em_tree, em);
10465 write_unlock(&em_tree->lock);
10466 /* once for the tree */
10467 free_extent_map(em);
10468 }
10469
34441361 10470 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10471
f3f72779 10472 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10473 if (ret)
10474 goto out;
10475
fa9c0d79
CM
10476 btrfs_put_block_group(block_group);
10477 btrfs_put_block_group(block_group);
1a40e23b
ZY
10478
10479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10480 if (ret > 0)
10481 ret = -EIO;
10482 if (ret < 0)
10483 goto out;
10484
10485 ret = btrfs_del_item(trans, root, path);
10486out:
10487 btrfs_free_path(path);
10488 return ret;
10489}
acce952b 10490
8eab77ff 10491struct btrfs_trans_handle *
7fd01182
FM
10492btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10493 const u64 chunk_offset)
8eab77ff 10494{
7fd01182
FM
10495 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10496 struct extent_map *em;
10497 struct map_lookup *map;
10498 unsigned int num_items;
10499
10500 read_lock(&em_tree->lock);
10501 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10502 read_unlock(&em_tree->lock);
10503 ASSERT(em && em->start == chunk_offset);
10504
8eab77ff 10505 /*
7fd01182
FM
10506 * We need to reserve 3 + N units from the metadata space info in order
10507 * to remove a block group (done at btrfs_remove_chunk() and at
10508 * btrfs_remove_block_group()), which are used for:
10509 *
8eab77ff
FM
10510 * 1 unit for adding the free space inode's orphan (located in the tree
10511 * of tree roots).
7fd01182
FM
10512 * 1 unit for deleting the block group item (located in the extent
10513 * tree).
10514 * 1 unit for deleting the free space item (located in tree of tree
10515 * roots).
10516 * N units for deleting N device extent items corresponding to each
10517 * stripe (located in the device tree).
10518 *
10519 * In order to remove a block group we also need to reserve units in the
10520 * system space info in order to update the chunk tree (update one or
10521 * more device items and remove one chunk item), but this is done at
10522 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10523 */
95617d69 10524 map = em->map_lookup;
7fd01182
FM
10525 num_items = 3 + map->num_stripes;
10526 free_extent_map(em);
10527
8eab77ff 10528 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10529 num_items, 1);
8eab77ff
FM
10530}
10531
47ab2a6c
JB
10532/*
10533 * Process the unused_bgs list and remove any that don't have any allocated
10534 * space inside of them.
10535 */
10536void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10537{
10538 struct btrfs_block_group_cache *block_group;
10539 struct btrfs_space_info *space_info;
47ab2a6c
JB
10540 struct btrfs_trans_handle *trans;
10541 int ret = 0;
10542
afcdd129 10543 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10544 return;
10545
10546 spin_lock(&fs_info->unused_bgs_lock);
10547 while (!list_empty(&fs_info->unused_bgs)) {
10548 u64 start, end;
e33e17ee 10549 int trimming;
47ab2a6c
JB
10550
10551 block_group = list_first_entry(&fs_info->unused_bgs,
10552 struct btrfs_block_group_cache,
10553 bg_list);
47ab2a6c 10554 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10555
10556 space_info = block_group->space_info;
10557
47ab2a6c
JB
10558 if (ret || btrfs_mixed_space_info(space_info)) {
10559 btrfs_put_block_group(block_group);
10560 continue;
10561 }
10562 spin_unlock(&fs_info->unused_bgs_lock);
10563
d5f2e33b 10564 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10565
47ab2a6c
JB
10566 /* Don't want to race with allocators so take the groups_sem */
10567 down_write(&space_info->groups_sem);
10568 spin_lock(&block_group->lock);
43794446 10569 if (block_group->reserved || block_group->pinned ||
47ab2a6c 10570 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10571 block_group->ro ||
aefbe9a6 10572 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10573 /*
10574 * We want to bail if we made new allocations or have
10575 * outstanding allocations in this block group. We do
10576 * the ro check in case balance is currently acting on
10577 * this block group.
10578 */
4ed0a7a3 10579 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10580 spin_unlock(&block_group->lock);
10581 up_write(&space_info->groups_sem);
10582 goto next;
10583 }
10584 spin_unlock(&block_group->lock);
10585
10586 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10587 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10588 up_write(&space_info->groups_sem);
10589 if (ret < 0) {
10590 ret = 0;
10591 goto next;
10592 }
10593
10594 /*
10595 * Want to do this before we do anything else so we can recover
10596 * properly if we fail to join the transaction.
10597 */
7fd01182
FM
10598 trans = btrfs_start_trans_remove_block_group(fs_info,
10599 block_group->key.objectid);
47ab2a6c 10600 if (IS_ERR(trans)) {
2ff7e61e 10601 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10602 ret = PTR_ERR(trans);
10603 goto next;
10604 }
10605
10606 /*
10607 * We could have pending pinned extents for this block group,
10608 * just delete them, we don't care about them anymore.
10609 */
10610 start = block_group->key.objectid;
10611 end = start + block_group->key.offset - 1;
d4b450cd
FM
10612 /*
10613 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10614 * btrfs_finish_extent_commit(). If we are at transaction N,
10615 * another task might be running finish_extent_commit() for the
10616 * previous transaction N - 1, and have seen a range belonging
10617 * to the block group in freed_extents[] before we were able to
10618 * clear the whole block group range from freed_extents[]. This
10619 * means that task can lookup for the block group after we
10620 * unpinned it from freed_extents[] and removed it, leading to
10621 * a BUG_ON() at btrfs_unpin_extent_range().
10622 */
10623 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10624 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10625 EXTENT_DIRTY);
758eb51e 10626 if (ret) {
d4b450cd 10627 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10628 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10629 goto end_trans;
10630 }
10631 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10632 EXTENT_DIRTY);
758eb51e 10633 if (ret) {
d4b450cd 10634 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10635 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10636 goto end_trans;
10637 }
d4b450cd 10638 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10639
10640 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10641 spin_lock(&space_info->lock);
10642 spin_lock(&block_group->lock);
10643
10644 space_info->bytes_pinned -= block_group->pinned;
10645 space_info->bytes_readonly += block_group->pinned;
dec59fa3
EL
10646 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10647 -block_group->pinned,
10648 BTRFS_TOTAL_BYTES_PINNED_BATCH);
47ab2a6c
JB
10649 block_group->pinned = 0;
10650
c30666d4
ZL
10651 spin_unlock(&block_group->lock);
10652 spin_unlock(&space_info->lock);
10653
e33e17ee 10654 /* DISCARD can flip during remount */
0b246afa 10655 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10656
10657 /* Implicit trim during transaction commit. */
10658 if (trimming)
10659 btrfs_get_block_group_trimming(block_group);
10660
47ab2a6c
JB
10661 /*
10662 * Btrfs_remove_chunk will abort the transaction if things go
10663 * horribly wrong.
10664 */
97aff912 10665 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
e33e17ee
JM
10666
10667 if (ret) {
10668 if (trimming)
10669 btrfs_put_block_group_trimming(block_group);
10670 goto end_trans;
10671 }
10672
10673 /*
10674 * If we're not mounted with -odiscard, we can just forget
10675 * about this block group. Otherwise we'll need to wait
10676 * until transaction commit to do the actual discard.
10677 */
10678 if (trimming) {
348a0013
FM
10679 spin_lock(&fs_info->unused_bgs_lock);
10680 /*
10681 * A concurrent scrub might have added us to the list
10682 * fs_info->unused_bgs, so use a list_move operation
10683 * to add the block group to the deleted_bgs list.
10684 */
e33e17ee
JM
10685 list_move(&block_group->bg_list,
10686 &trans->transaction->deleted_bgs);
348a0013 10687 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10688 btrfs_get_block_group(block_group);
10689 }
758eb51e 10690end_trans:
3a45bb20 10691 btrfs_end_transaction(trans);
47ab2a6c 10692next:
d5f2e33b 10693 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10694 btrfs_put_block_group(block_group);
10695 spin_lock(&fs_info->unused_bgs_lock);
10696 }
10697 spin_unlock(&fs_info->unused_bgs_lock);
10698}
10699
c59021f8 10700int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10701{
1aba86d6 10702 struct btrfs_super_block *disk_super;
10703 u64 features;
10704 u64 flags;
10705 int mixed = 0;
c59021f8 10706 int ret;
10707
6c41761f 10708 disk_super = fs_info->super_copy;
1aba86d6 10709 if (!btrfs_super_root(disk_super))
0dc924c5 10710 return -EINVAL;
c59021f8 10711
1aba86d6 10712 features = btrfs_super_incompat_flags(disk_super);
10713 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10714 mixed = 1;
c59021f8 10715
1aba86d6 10716 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 10717 ret = create_space_info(fs_info, flags);
c59021f8 10718 if (ret)
1aba86d6 10719 goto out;
c59021f8 10720
1aba86d6 10721 if (mixed) {
10722 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 10723 ret = create_space_info(fs_info, flags);
1aba86d6 10724 } else {
10725 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 10726 ret = create_space_info(fs_info, flags);
1aba86d6 10727 if (ret)
10728 goto out;
10729
10730 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 10731 ret = create_space_info(fs_info, flags);
1aba86d6 10732 }
10733out:
c59021f8 10734 return ret;
10735}
10736
2ff7e61e
JM
10737int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10738 u64 start, u64 end)
acce952b 10739{
2ff7e61e 10740 return unpin_extent_range(fs_info, start, end, false);
acce952b 10741}
10742
499f377f
JM
10743/*
10744 * It used to be that old block groups would be left around forever.
10745 * Iterating over them would be enough to trim unused space. Since we
10746 * now automatically remove them, we also need to iterate over unallocated
10747 * space.
10748 *
10749 * We don't want a transaction for this since the discard may take a
10750 * substantial amount of time. We don't require that a transaction be
10751 * running, but we do need to take a running transaction into account
10752 * to ensure that we're not discarding chunks that were released in
10753 * the current transaction.
10754 *
10755 * Holding the chunks lock will prevent other threads from allocating
10756 * or releasing chunks, but it won't prevent a running transaction
10757 * from committing and releasing the memory that the pending chunks
10758 * list head uses. For that, we need to take a reference to the
10759 * transaction.
10760 */
10761static int btrfs_trim_free_extents(struct btrfs_device *device,
10762 u64 minlen, u64 *trimmed)
10763{
10764 u64 start = 0, len = 0;
10765 int ret;
10766
10767 *trimmed = 0;
10768
10769 /* Not writeable = nothing to do. */
ebbede42 10770 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10771 return 0;
10772
10773 /* No free space = nothing to do. */
10774 if (device->total_bytes <= device->bytes_used)
10775 return 0;
10776
10777 ret = 0;
10778
10779 while (1) {
fb456252 10780 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10781 struct btrfs_transaction *trans;
10782 u64 bytes;
10783
10784 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10785 if (ret)
10786 return ret;
10787
10788 down_read(&fs_info->commit_root_sem);
10789
10790 spin_lock(&fs_info->trans_lock);
10791 trans = fs_info->running_transaction;
10792 if (trans)
9b64f57d 10793 refcount_inc(&trans->use_count);
499f377f
JM
10794 spin_unlock(&fs_info->trans_lock);
10795
10796 ret = find_free_dev_extent_start(trans, device, minlen, start,
10797 &start, &len);
10798 if (trans)
10799 btrfs_put_transaction(trans);
10800
10801 if (ret) {
10802 up_read(&fs_info->commit_root_sem);
10803 mutex_unlock(&fs_info->chunk_mutex);
10804 if (ret == -ENOSPC)
10805 ret = 0;
10806 break;
10807 }
10808
10809 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10810 up_read(&fs_info->commit_root_sem);
10811 mutex_unlock(&fs_info->chunk_mutex);
10812
10813 if (ret)
10814 break;
10815
10816 start += len;
10817 *trimmed += bytes;
10818
10819 if (fatal_signal_pending(current)) {
10820 ret = -ERESTARTSYS;
10821 break;
10822 }
10823
10824 cond_resched();
10825 }
10826
10827 return ret;
10828}
10829
2ff7e61e 10830int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10831{
f7039b1d 10832 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10833 struct btrfs_device *device;
10834 struct list_head *devices;
f7039b1d
LD
10835 u64 group_trimmed;
10836 u64 start;
10837 u64 end;
10838 u64 trimmed = 0;
2cac13e4 10839 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10840 int ret = 0;
10841
2cac13e4
LB
10842 /*
10843 * try to trim all FS space, our block group may start from non-zero.
10844 */
10845 if (range->len == total_bytes)
10846 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10847 else
10848 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10849
10850 while (cache) {
10851 if (cache->key.objectid >= (range->start + range->len)) {
10852 btrfs_put_block_group(cache);
10853 break;
10854 }
10855
10856 start = max(range->start, cache->key.objectid);
10857 end = min(range->start + range->len,
10858 cache->key.objectid + cache->key.offset);
10859
10860 if (end - start >= range->minlen) {
10861 if (!block_group_cache_done(cache)) {
f6373bf3 10862 ret = cache_block_group(cache, 0);
1be41b78
JB
10863 if (ret) {
10864 btrfs_put_block_group(cache);
10865 break;
10866 }
10867 ret = wait_block_group_cache_done(cache);
10868 if (ret) {
10869 btrfs_put_block_group(cache);
10870 break;
10871 }
f7039b1d
LD
10872 }
10873 ret = btrfs_trim_block_group(cache,
10874 &group_trimmed,
10875 start,
10876 end,
10877 range->minlen);
10878
10879 trimmed += group_trimmed;
10880 if (ret) {
10881 btrfs_put_block_group(cache);
10882 break;
10883 }
10884 }
10885
2ff7e61e 10886 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10887 }
10888
0b246afa
JM
10889 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10890 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
10891 list_for_each_entry(device, devices, dev_alloc_list) {
10892 ret = btrfs_trim_free_extents(device, range->minlen,
10893 &group_trimmed);
10894 if (ret)
10895 break;
10896
10897 trimmed += group_trimmed;
10898 }
0b246afa 10899 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10900
f7039b1d
LD
10901 range->len = trimmed;
10902 return ret;
10903}
8257b2dc
MX
10904
10905/*
ea14b57f 10906 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
10907 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10908 * data into the page cache through nocow before the subvolume is snapshoted,
10909 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 10910 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 10911 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10912 */
ea14b57f 10913void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
10914{
10915 percpu_counter_dec(&root->subv_writers->counter);
093258e6 10916 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
10917}
10918
ea14b57f 10919int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 10920{
ea14b57f 10921 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
10922 return 0;
10923
10924 percpu_counter_inc(&root->subv_writers->counter);
10925 /*
10926 * Make sure counter is updated before we check for snapshot creation.
10927 */
10928 smp_mb();
ea14b57f
DS
10929 if (atomic_read(&root->will_be_snapshotted)) {
10930 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
10931 return 0;
10932 }
10933 return 1;
10934}
0bc19f90 10935
0bc19f90
ZL
10936void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10937{
10938 while (true) {
10939 int ret;
10940
ea14b57f 10941 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
10942 if (ret)
10943 break;
4625956a
PZ
10944 wait_var_event(&root->will_be_snapshotted,
10945 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
10946 }
10947}
031f24da
QW
10948
10949void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
10950{
10951 struct btrfs_fs_info *fs_info = bg->fs_info;
10952
10953 spin_lock(&fs_info->unused_bgs_lock);
10954 if (list_empty(&bg->bg_list)) {
10955 btrfs_get_block_group(bg);
10956 trace_btrfs_add_unused_block_group(bg);
10957 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
10958 }
10959 spin_unlock(&fs_info->unused_bgs_lock);
10960}