btrfs: split dev-replace locking helpers for read and write
[linux-2.6-block.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
f361bf4a 19#include <linux/sched/signal.h>
edbd8d4e 20#include <linux/pagemap.h>
ec44a35c 21#include <linux/writeback.h>
21af804c 22#include <linux/blkdev.h>
b7a9f29f 23#include <linux/sort.h>
4184ea7f 24#include <linux/rcupdate.h>
817d52f8 25#include <linux/kthread.h>
5a0e3ad6 26#include <linux/slab.h>
dff51cd1 27#include <linux/ratelimit.h>
b150a4f1 28#include <linux/percpu_counter.h>
69fe2d75 29#include <linux/lockdep.h>
9678c543 30#include <linux/crc32c.h>
995946dd 31#include "tree-log.h"
fec577fb
CM
32#include "disk-io.h"
33#include "print-tree.h"
0b86a832 34#include "volumes.h"
53b381b3 35#include "raid56.h"
925baedd 36#include "locking.h"
fa9c0d79 37#include "free-space-cache.h"
1e144fb8 38#include "free-space-tree.h"
3fed40cc 39#include "math.h"
6ab0a202 40#include "sysfs.h"
fcebe456 41#include "qgroup.h"
fd708b81 42#include "ref-verify.h"
fec577fb 43
709c0486
AJ
44#undef SCRAMBLE_DELAYED_REFS
45
9e622d6b
MX
46/*
47 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
50 *
0e4f8f88
CM
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
56 *
9e622d6b
MX
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 *
0e4f8f88
CM
59 */
60enum {
61 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
62 CHUNK_ALLOC_LIMITED = 1,
63 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
64};
65
5d4f98a2 66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 67 struct btrfs_fs_info *fs_info,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 76 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 81 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 86 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
ab8d0fc4
JM
90static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 92 int dump_block_groups);
5d80366e
JB
93static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 u64 num_bytes);
957780eb
JB
95static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 struct btrfs_space_info *space_info,
97 u64 num_bytes);
98static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_space_info *space_info,
100 u64 num_bytes);
6a63209f 101
817d52f8
JB
102static noinline int
103block_group_cache_done(struct btrfs_block_group_cache *cache)
104{
105 smp_mb();
36cce922
JB
106 return cache->cached == BTRFS_CACHE_FINISHED ||
107 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
108}
109
0f9dd46c
JB
110static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111{
112 return (cache->flags & bits) == bits;
113}
114
758f2dfc 115void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
116{
117 atomic_inc(&cache->count);
118}
119
120void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121{
f0486c68
YZ
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
0966a7b1
QW
125
126 /*
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
131 *
132 * No better way to resolve, but only to warn.
133 */
134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 135 kfree(cache->free_space_ctl);
11dfe35a 136 kfree(cache);
f0486c68 137 }
11dfe35a
JB
138}
139
0f9dd46c
JB
140/*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
b2950863 144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
145 struct btrfs_block_group_cache *block_group)
146{
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
a1897fdd
LB
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
0f9dd46c
JB
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178}
179
180/*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184static struct btrfs_block_group_cache *
185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187{
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
a1897fdd 216 if (ret) {
11dfe35a 217 btrfs_get_block_group(ret);
a1897fdd
LB
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
0f9dd46c
JB
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224}
225
2ff7e61e 226static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 227 u64 start, u64 num_bytes)
817d52f8 228{
11833d66 229 u64 end = start + num_bytes - 1;
0b246afa 230 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 231 start, end, EXTENT_UPTODATE);
0b246afa 232 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 233 start, end, EXTENT_UPTODATE);
11833d66
YZ
234 return 0;
235}
817d52f8 236
2ff7e61e 237static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
238 struct btrfs_block_group_cache *cache)
239{
240 u64 start, end;
817d52f8 241
11833d66
YZ
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
0b246afa 245 clear_extent_bits(&fs_info->freed_extents[0],
91166212 246 start, end, EXTENT_UPTODATE);
0b246afa 247 clear_extent_bits(&fs_info->freed_extents[1],
91166212 248 start, end, EXTENT_UPTODATE);
817d52f8
JB
249}
250
2ff7e61e 251static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 252 struct btrfs_block_group_cache *cache)
817d52f8 253{
817d52f8
JB
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
06b2331f
YZ
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
2ff7e61e 262 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 263 stripe_len);
835d974f
JB
264 if (ret)
265 return ret;
06b2331f
YZ
266 }
267
817d52f8
JB
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
0b246afa 270 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 271 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
272 if (ret)
273 return ret;
11833d66 274
817d52f8 275 while (nr--) {
51bf5f0b
JB
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
2ff7e61e 296 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
817d52f8 301 }
11833d66 302
817d52f8
JB
303 kfree(logical);
304 }
817d52f8
JB
305 return 0;
306}
307
11833d66
YZ
308static struct btrfs_caching_control *
309get_caching_control(struct btrfs_block_group_cache *cache)
310{
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
dde5abee
JB
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
11833d66
YZ
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
1e4f4714 320 refcount_inc(&ctl->count);
11833d66
YZ
321 spin_unlock(&cache->lock);
322 return ctl;
323}
324
325static void put_caching_control(struct btrfs_caching_control *ctl)
326{
1e4f4714 327 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
328 kfree(ctl);
329}
330
d0bd4560 331#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 332static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 333{
2ff7e61e 334 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 338 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349}
350#endif
351
0f9dd46c
JB
352/*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
a5ed9182
OS
357u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 359{
817d52f8 360 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
361 int ret;
362
363 while (start < end) {
11833d66 364 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 365 &extent_start, &extent_end,
e6138876
JB
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
0f9dd46c
JB
368 if (ret)
369 break;
370
06b2331f 371 if (extent_start <= start) {
0f9dd46c
JB
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
817d52f8 375 total_added += size;
ea6a478e
JB
376 ret = btrfs_add_free_space(block_group, start,
377 size);
79787eaa 378 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
817d52f8 387 total_added += size;
ea6a478e 388 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 389 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
390 }
391
817d52f8 392 return total_added;
0f9dd46c
JB
393}
394
73fa48b6 395static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 396{
0b246afa
JM
397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 struct btrfs_fs_info *fs_info = block_group->fs_info;
399 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 400 struct btrfs_path *path;
5f39d397 401 struct extent_buffer *leaf;
11833d66 402 struct btrfs_key key;
817d52f8 403 u64 total_found = 0;
11833d66
YZ
404 u64 last = 0;
405 u32 nritems;
73fa48b6 406 int ret;
d0bd4560 407 bool wakeup = true;
f510cfec 408
e37c9e69
CM
409 path = btrfs_alloc_path();
410 if (!path)
73fa48b6 411 return -ENOMEM;
7d7d6068 412
817d52f8 413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 414
d0bd4560
JB
415#ifdef CONFIG_BTRFS_DEBUG
416 /*
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
419 * the free space.
420 */
2ff7e61e 421 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
422 wakeup = false;
423#endif
5cd57b2c 424 /*
817d52f8
JB
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
5cd57b2c
CM
429 */
430 path->skip_locking = 1;
817d52f8 431 path->search_commit_root = 1;
e4058b54 432 path->reada = READA_FORWARD;
817d52f8 433
e4404d6e 434 key.objectid = last;
e37c9e69 435 key.offset = 0;
11833d66 436 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 437
52ee28d2 438next:
11833d66 439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 440 if (ret < 0)
73fa48b6 441 goto out;
a512bbf8 442
11833d66
YZ
443 leaf = path->nodes[0];
444 nritems = btrfs_header_nritems(leaf);
445
d397712b 446 while (1) {
7841cb28 447 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 448 last = (u64)-1;
817d52f8 449 break;
f25784b3 450 }
817d52f8 451
11833d66
YZ
452 if (path->slots[0] < nritems) {
453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 } else {
455 ret = find_next_key(path, 0, &key);
456 if (ret)
e37c9e69 457 break;
817d52f8 458
c9ea7b24 459 if (need_resched() ||
9e351cc8 460 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
461 if (wakeup)
462 caching_ctl->progress = last;
ff5714cc 463 btrfs_release_path(path);
9e351cc8 464 up_read(&fs_info->commit_root_sem);
589d8ade 465 mutex_unlock(&caching_ctl->mutex);
11833d66 466 cond_resched();
73fa48b6
OS
467 mutex_lock(&caching_ctl->mutex);
468 down_read(&fs_info->commit_root_sem);
469 goto next;
589d8ade 470 }
0a3896d0
JB
471
472 ret = btrfs_next_leaf(extent_root, path);
473 if (ret < 0)
73fa48b6 474 goto out;
0a3896d0
JB
475 if (ret)
476 break;
589d8ade
JB
477 leaf = path->nodes[0];
478 nritems = btrfs_header_nritems(leaf);
479 continue;
11833d66 480 }
817d52f8 481
52ee28d2
LB
482 if (key.objectid < last) {
483 key.objectid = last;
484 key.offset = 0;
485 key.type = BTRFS_EXTENT_ITEM_KEY;
486
d0bd4560
JB
487 if (wakeup)
488 caching_ctl->progress = last;
52ee28d2
LB
489 btrfs_release_path(path);
490 goto next;
491 }
492
11833d66
YZ
493 if (key.objectid < block_group->key.objectid) {
494 path->slots[0]++;
817d52f8 495 continue;
e37c9e69 496 }
0f9dd46c 497
e37c9e69 498 if (key.objectid >= block_group->key.objectid +
0f9dd46c 499 block_group->key.offset)
e37c9e69 500 break;
7d7d6068 501
3173a18f
JB
502 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
504 total_found += add_new_free_space(block_group,
505 fs_info, last,
506 key.objectid);
3173a18f
JB
507 if (key.type == BTRFS_METADATA_ITEM_KEY)
508 last = key.objectid +
da17066c 509 fs_info->nodesize;
3173a18f
JB
510 else
511 last = key.objectid + key.offset;
817d52f8 512
73fa48b6 513 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 514 total_found = 0;
d0bd4560
JB
515 if (wakeup)
516 wake_up(&caching_ctl->wait);
11833d66 517 }
817d52f8 518 }
e37c9e69
CM
519 path->slots[0]++;
520 }
817d52f8 521 ret = 0;
e37c9e69 522
817d52f8
JB
523 total_found += add_new_free_space(block_group, fs_info, last,
524 block_group->key.objectid +
525 block_group->key.offset);
11833d66 526 caching_ctl->progress = (u64)-1;
817d52f8 527
73fa48b6
OS
528out:
529 btrfs_free_path(path);
530 return ret;
531}
532
533static noinline void caching_thread(struct btrfs_work *work)
534{
535 struct btrfs_block_group_cache *block_group;
536 struct btrfs_fs_info *fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret;
539
540 caching_ctl = container_of(work, struct btrfs_caching_control, work);
541 block_group = caching_ctl->block_group;
542 fs_info = block_group->fs_info;
543
544 mutex_lock(&caching_ctl->mutex);
545 down_read(&fs_info->commit_root_sem);
546
1e144fb8
OS
547 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
548 ret = load_free_space_tree(caching_ctl);
549 else
550 ret = load_extent_tree_free(caching_ctl);
73fa48b6 551
817d52f8 552 spin_lock(&block_group->lock);
11833d66 553 block_group->caching_ctl = NULL;
73fa48b6 554 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 555 spin_unlock(&block_group->lock);
0f9dd46c 556
d0bd4560 557#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 558 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
559 u64 bytes_used;
560
561 spin_lock(&block_group->space_info->lock);
562 spin_lock(&block_group->lock);
563 bytes_used = block_group->key.offset -
564 btrfs_block_group_used(&block_group->item);
565 block_group->space_info->bytes_used += bytes_used >> 1;
566 spin_unlock(&block_group->lock);
567 spin_unlock(&block_group->space_info->lock);
2ff7e61e 568 fragment_free_space(block_group);
d0bd4560
JB
569 }
570#endif
571
572 caching_ctl->progress = (u64)-1;
11833d66 573
9e351cc8 574 up_read(&fs_info->commit_root_sem);
2ff7e61e 575 free_excluded_extents(fs_info, block_group);
11833d66 576 mutex_unlock(&caching_ctl->mutex);
73fa48b6 577
11833d66
YZ
578 wake_up(&caching_ctl->wait);
579
580 put_caching_control(caching_ctl);
11dfe35a 581 btrfs_put_block_group(block_group);
817d52f8
JB
582}
583
9d66e233 584static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 585 int load_cache_only)
817d52f8 586{
291c7d2f 587 DEFINE_WAIT(wait);
11833d66
YZ
588 struct btrfs_fs_info *fs_info = cache->fs_info;
589 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
590 int ret = 0;
591
291c7d2f 592 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
593 if (!caching_ctl)
594 return -ENOMEM;
291c7d2f
JB
595
596 INIT_LIST_HEAD(&caching_ctl->list);
597 mutex_init(&caching_ctl->mutex);
598 init_waitqueue_head(&caching_ctl->wait);
599 caching_ctl->block_group = cache;
600 caching_ctl->progress = cache->key.objectid;
1e4f4714 601 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
602 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
603 caching_thread, NULL, NULL);
291c7d2f
JB
604
605 spin_lock(&cache->lock);
606 /*
607 * This should be a rare occasion, but this could happen I think in the
608 * case where one thread starts to load the space cache info, and then
609 * some other thread starts a transaction commit which tries to do an
610 * allocation while the other thread is still loading the space cache
611 * info. The previous loop should have kept us from choosing this block
612 * group, but if we've moved to the state where we will wait on caching
613 * block groups we need to first check if we're doing a fast load here,
614 * so we can wait for it to finish, otherwise we could end up allocating
615 * from a block group who's cache gets evicted for one reason or
616 * another.
617 */
618 while (cache->cached == BTRFS_CACHE_FAST) {
619 struct btrfs_caching_control *ctl;
620
621 ctl = cache->caching_ctl;
1e4f4714 622 refcount_inc(&ctl->count);
291c7d2f
JB
623 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
624 spin_unlock(&cache->lock);
625
626 schedule();
627
628 finish_wait(&ctl->wait, &wait);
629 put_caching_control(ctl);
630 spin_lock(&cache->lock);
631 }
632
633 if (cache->cached != BTRFS_CACHE_NO) {
634 spin_unlock(&cache->lock);
635 kfree(caching_ctl);
11833d66 636 return 0;
291c7d2f
JB
637 }
638 WARN_ON(cache->caching_ctl);
639 cache->caching_ctl = caching_ctl;
640 cache->cached = BTRFS_CACHE_FAST;
641 spin_unlock(&cache->lock);
11833d66 642
d8953d69 643 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 644 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
645 ret = load_free_space_cache(fs_info, cache);
646
647 spin_lock(&cache->lock);
648 if (ret == 1) {
291c7d2f 649 cache->caching_ctl = NULL;
9d66e233
JB
650 cache->cached = BTRFS_CACHE_FINISHED;
651 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 652 caching_ctl->progress = (u64)-1;
9d66e233 653 } else {
291c7d2f
JB
654 if (load_cache_only) {
655 cache->caching_ctl = NULL;
656 cache->cached = BTRFS_CACHE_NO;
657 } else {
658 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 659 cache->has_caching_ctl = 1;
291c7d2f 660 }
9d66e233
JB
661 }
662 spin_unlock(&cache->lock);
d0bd4560
JB
663#ifdef CONFIG_BTRFS_DEBUG
664 if (ret == 1 &&
2ff7e61e 665 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
666 u64 bytes_used;
667
668 spin_lock(&cache->space_info->lock);
669 spin_lock(&cache->lock);
670 bytes_used = cache->key.offset -
671 btrfs_block_group_used(&cache->item);
672 cache->space_info->bytes_used += bytes_used >> 1;
673 spin_unlock(&cache->lock);
674 spin_unlock(&cache->space_info->lock);
2ff7e61e 675 fragment_free_space(cache);
d0bd4560
JB
676 }
677#endif
cb83b7b8
JB
678 mutex_unlock(&caching_ctl->mutex);
679
291c7d2f 680 wake_up(&caching_ctl->wait);
3c14874a 681 if (ret == 1) {
291c7d2f 682 put_caching_control(caching_ctl);
2ff7e61e 683 free_excluded_extents(fs_info, cache);
9d66e233 684 return 0;
3c14874a 685 }
291c7d2f
JB
686 } else {
687 /*
1e144fb8
OS
688 * We're either using the free space tree or no caching at all.
689 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
690 */
691 spin_lock(&cache->lock);
692 if (load_cache_only) {
693 cache->caching_ctl = NULL;
694 cache->cached = BTRFS_CACHE_NO;
695 } else {
696 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 697 cache->has_caching_ctl = 1;
291c7d2f
JB
698 }
699 spin_unlock(&cache->lock);
700 wake_up(&caching_ctl->wait);
9d66e233
JB
701 }
702
291c7d2f
JB
703 if (load_cache_only) {
704 put_caching_control(caching_ctl);
11833d66 705 return 0;
817d52f8 706 }
817d52f8 707
9e351cc8 708 down_write(&fs_info->commit_root_sem);
1e4f4714 709 refcount_inc(&caching_ctl->count);
11833d66 710 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 711 up_write(&fs_info->commit_root_sem);
11833d66 712
11dfe35a 713 btrfs_get_block_group(cache);
11833d66 714
e66f0bb1 715 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 716
ef8bbdfe 717 return ret;
e37c9e69
CM
718}
719
0f9dd46c
JB
720/*
721 * return the block group that starts at or after bytenr
722 */
d397712b
CM
723static struct btrfs_block_group_cache *
724btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 725{
e2c89907 726 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
727}
728
0f9dd46c 729/*
9f55684c 730 * return the block group that contains the given bytenr
0f9dd46c 731 */
d397712b
CM
732struct btrfs_block_group_cache *btrfs_lookup_block_group(
733 struct btrfs_fs_info *info,
734 u64 bytenr)
be744175 735{
e2c89907 736 return block_group_cache_tree_search(info, bytenr, 1);
be744175 737}
0b86a832 738
0f9dd46c
JB
739static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
740 u64 flags)
6324fbf3 741{
0f9dd46c 742 struct list_head *head = &info->space_info;
0f9dd46c 743 struct btrfs_space_info *found;
4184ea7f 744
52ba6929 745 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 746
4184ea7f
CM
747 rcu_read_lock();
748 list_for_each_entry_rcu(found, head, list) {
67377734 749 if (found->flags & flags) {
4184ea7f 750 rcu_read_unlock();
0f9dd46c 751 return found;
4184ea7f 752 }
0f9dd46c 753 }
4184ea7f 754 rcu_read_unlock();
0f9dd46c 755 return NULL;
6324fbf3
CM
756}
757
0d9f824d
OS
758static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
759 u64 owner, u64 root_objectid)
760{
761 struct btrfs_space_info *space_info;
762 u64 flags;
763
764 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
765 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
766 flags = BTRFS_BLOCK_GROUP_SYSTEM;
767 else
768 flags = BTRFS_BLOCK_GROUP_METADATA;
769 } else {
770 flags = BTRFS_BLOCK_GROUP_DATA;
771 }
772
773 space_info = __find_space_info(fs_info, flags);
55e8196a 774 ASSERT(space_info);
0d9f824d
OS
775 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
776}
777
4184ea7f
CM
778/*
779 * after adding space to the filesystem, we need to clear the full flags
780 * on all the space infos.
781 */
782void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
783{
784 struct list_head *head = &info->space_info;
785 struct btrfs_space_info *found;
786
787 rcu_read_lock();
788 list_for_each_entry_rcu(found, head, list)
789 found->full = 0;
790 rcu_read_unlock();
791}
792
1a4ed8fd 793/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 794int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
795{
796 int ret;
797 struct btrfs_key key;
31840ae1 798 struct btrfs_path *path;
e02119d5 799
31840ae1 800 path = btrfs_alloc_path();
d8926bb3
MF
801 if (!path)
802 return -ENOMEM;
803
e02119d5
CM
804 key.objectid = start;
805 key.offset = len;
3173a18f 806 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 807 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 808 btrfs_free_path(path);
7bb86316
CM
809 return ret;
810}
811
a22285a6 812/*
3173a18f 813 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
814 *
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
820 */
821int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 822 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 823 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
824{
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
831 u32 item_size;
832 u64 num_refs;
833 u64 extent_flags;
834 int ret;
835
3173a18f
JB
836 /*
837 * If we don't have skinny metadata, don't bother doing anything
838 * different
839 */
0b246afa
JM
840 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
841 offset = fs_info->nodesize;
3173a18f
JB
842 metadata = 0;
843 }
844
a22285a6
YZ
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
a22285a6
YZ
849 if (!trans) {
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
852 }
639eefc8
FDBM
853
854search_again:
855 key.objectid = bytenr;
856 key.offset = offset;
857 if (metadata)
858 key.type = BTRFS_METADATA_ITEM_KEY;
859 else
860 key.type = BTRFS_EXTENT_ITEM_KEY;
861
0b246afa 862 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
863 if (ret < 0)
864 goto out_free;
865
3173a18f 866 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
867 if (path->slots[0]) {
868 path->slots[0]--;
869 btrfs_item_key_to_cpu(path->nodes[0], &key,
870 path->slots[0]);
871 if (key.objectid == bytenr &&
872 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 873 key.offset == fs_info->nodesize)
74be9510
FDBM
874 ret = 0;
875 }
3173a18f
JB
876 }
877
a22285a6
YZ
878 if (ret == 0) {
879 leaf = path->nodes[0];
880 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
881 if (item_size >= sizeof(*ei)) {
882 ei = btrfs_item_ptr(leaf, path->slots[0],
883 struct btrfs_extent_item);
884 num_refs = btrfs_extent_refs(leaf, ei);
885 extent_flags = btrfs_extent_flags(leaf, ei);
886 } else {
887#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
888 struct btrfs_extent_item_v0 *ei0;
889 BUG_ON(item_size != sizeof(*ei0));
890 ei0 = btrfs_item_ptr(leaf, path->slots[0],
891 struct btrfs_extent_item_v0);
892 num_refs = btrfs_extent_refs_v0(leaf, ei0);
893 /* FIXME: this isn't correct for data */
894 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
895#else
896 BUG();
897#endif
898 }
899 BUG_ON(num_refs == 0);
900 } else {
901 num_refs = 0;
902 extent_flags = 0;
903 ret = 0;
904 }
905
906 if (!trans)
907 goto out;
908
909 delayed_refs = &trans->transaction->delayed_refs;
910 spin_lock(&delayed_refs->lock);
f72ad18e 911 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
912 if (head) {
913 if (!mutex_trylock(&head->mutex)) {
d278850e 914 refcount_inc(&head->refs);
a22285a6
YZ
915 spin_unlock(&delayed_refs->lock);
916
b3b4aa74 917 btrfs_release_path(path);
a22285a6 918
8cc33e5c
DS
919 /*
920 * Mutex was contended, block until it's released and try
921 * again
922 */
a22285a6
YZ
923 mutex_lock(&head->mutex);
924 mutex_unlock(&head->mutex);
d278850e 925 btrfs_put_delayed_ref_head(head);
639eefc8 926 goto search_again;
a22285a6 927 }
d7df2c79 928 spin_lock(&head->lock);
a22285a6
YZ
929 if (head->extent_op && head->extent_op->update_flags)
930 extent_flags |= head->extent_op->flags_to_set;
931 else
932 BUG_ON(num_refs == 0);
933
d278850e 934 num_refs += head->ref_mod;
d7df2c79 935 spin_unlock(&head->lock);
a22285a6
YZ
936 mutex_unlock(&head->mutex);
937 }
938 spin_unlock(&delayed_refs->lock);
939out:
940 WARN_ON(num_refs == 0);
941 if (refs)
942 *refs = num_refs;
943 if (flags)
944 *flags = extent_flags;
945out_free:
946 btrfs_free_path(path);
947 return ret;
948}
949
d8d5f3e1
CM
950/*
951 * Back reference rules. Back refs have three main goals:
952 *
953 * 1) differentiate between all holders of references to an extent so that
954 * when a reference is dropped we can make sure it was a valid reference
955 * before freeing the extent.
956 *
957 * 2) Provide enough information to quickly find the holders of an extent
958 * if we notice a given block is corrupted or bad.
959 *
960 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961 * maintenance. This is actually the same as #2, but with a slightly
962 * different use case.
963 *
5d4f98a2
YZ
964 * There are two kinds of back refs. The implicit back refs is optimized
965 * for pointers in non-shared tree blocks. For a given pointer in a block,
966 * back refs of this kind provide information about the block's owner tree
967 * and the pointer's key. These information allow us to find the block by
968 * b-tree searching. The full back refs is for pointers in tree blocks not
969 * referenced by their owner trees. The location of tree block is recorded
970 * in the back refs. Actually the full back refs is generic, and can be
971 * used in all cases the implicit back refs is used. The major shortcoming
972 * of the full back refs is its overhead. Every time a tree block gets
973 * COWed, we have to update back refs entry for all pointers in it.
974 *
975 * For a newly allocated tree block, we use implicit back refs for
976 * pointers in it. This means most tree related operations only involve
977 * implicit back refs. For a tree block created in old transaction, the
978 * only way to drop a reference to it is COW it. So we can detect the
979 * event that tree block loses its owner tree's reference and do the
980 * back refs conversion.
981 *
01327610 982 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
983 *
984 * The reference count of the block is one and the tree is the block's
985 * owner tree. Nothing to do in this case.
986 *
987 * The reference count of the block is one and the tree is not the
988 * block's owner tree. In this case, full back refs is used for pointers
989 * in the block. Remove these full back refs, add implicit back refs for
990 * every pointers in the new block.
991 *
992 * The reference count of the block is greater than one and the tree is
993 * the block's owner tree. In this case, implicit back refs is used for
994 * pointers in the block. Add full back refs for every pointers in the
995 * block, increase lower level extents' reference counts. The original
996 * implicit back refs are entailed to the new block.
997 *
998 * The reference count of the block is greater than one and the tree is
999 * not the block's owner tree. Add implicit back refs for every pointer in
1000 * the new block, increase lower level extents' reference count.
1001 *
1002 * Back Reference Key composing:
1003 *
1004 * The key objectid corresponds to the first byte in the extent,
1005 * The key type is used to differentiate between types of back refs.
1006 * There are different meanings of the key offset for different types
1007 * of back refs.
1008 *
d8d5f3e1
CM
1009 * File extents can be referenced by:
1010 *
1011 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1012 * - different files inside a single subvolume
d8d5f3e1
CM
1013 * - different offsets inside a file (bookend extents in file.c)
1014 *
5d4f98a2 1015 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1016 *
1017 * - Objectid of the subvolume root
d8d5f3e1 1018 * - objectid of the file holding the reference
5d4f98a2
YZ
1019 * - original offset in the file
1020 * - how many bookend extents
d8d5f3e1 1021 *
5d4f98a2
YZ
1022 * The key offset for the implicit back refs is hash of the first
1023 * three fields.
d8d5f3e1 1024 *
5d4f98a2 1025 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1026 *
5d4f98a2 1027 * - number of pointers in the tree leaf
d8d5f3e1 1028 *
5d4f98a2
YZ
1029 * The key offset for the implicit back refs is the first byte of
1030 * the tree leaf
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * When a file extent is allocated, The implicit back refs is used.
1033 * the fields are filled in:
d8d5f3e1 1034 *
5d4f98a2 1035 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When a file extent is removed file truncation, we find the
1038 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1039 *
5d4f98a2 1040 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1041 *
5d4f98a2 1042 * Btree extents can be referenced by:
d8d5f3e1 1043 *
5d4f98a2 1044 * - Different subvolumes
d8d5f3e1 1045 *
5d4f98a2
YZ
1046 * Both the implicit back refs and the full back refs for tree blocks
1047 * only consist of key. The key offset for the implicit back refs is
1048 * objectid of block's owner tree. The key offset for the full back refs
1049 * is the first byte of parent block.
d8d5f3e1 1050 *
5d4f98a2
YZ
1051 * When implicit back refs is used, information about the lowest key and
1052 * level of the tree block are required. These information are stored in
1053 * tree block info structure.
d8d5f3e1 1054 */
31840ae1 1055
5d4f98a2
YZ
1056#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1057static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1058 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1059 struct btrfs_path *path,
1060 u64 owner, u32 extra_size)
7bb86316 1061{
87bde3cd 1062 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
7bb86316 1068 struct btrfs_key key;
5d4f98a2
YZ
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1071 u64 refs;
1072 int ret;
1073
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082 if (owner == (u64)-1) {
1083 while (1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1086 if (ret < 0)
1087 return ret;
79787eaa 1088 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1089 leaf = path->nodes[0];
1090 }
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0]);
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 path->slots[0]++;
1096 continue;
1097 }
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 break;
1102 }
1103 }
b3b4aa74 1104 btrfs_release_path(path);
5d4f98a2
YZ
1105
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1108
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1112 if (ret < 0)
1113 return ret;
79787eaa 1114 BUG_ON(ret); /* Corruption */
5d4f98a2 1115
87bde3cd 1116 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1117
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
b159fa28 1129 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 } else {
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 }
1134 btrfs_mark_buffer_dirty(leaf);
1135 return 0;
1136}
1137#endif
1138
167ce953
LB
1139/*
1140 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1141 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1142 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1143 */
1144int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1145 struct btrfs_extent_inline_ref *iref,
1146 enum btrfs_inline_ref_type is_data)
1147{
1148 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1149 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1150
1151 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1152 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1153 type == BTRFS_SHARED_DATA_REF_KEY ||
1154 type == BTRFS_EXTENT_DATA_REF_KEY) {
1155 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1156 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1157 return type;
64ecdb64
LB
1158 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1159 ASSERT(eb->fs_info);
1160 /*
1161 * Every shared one has parent tree
1162 * block, which must be aligned to
1163 * nodesize.
1164 */
1165 if (offset &&
1166 IS_ALIGNED(offset, eb->fs_info->nodesize))
1167 return type;
1168 }
167ce953 1169 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1170 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1171 return type;
64ecdb64
LB
1172 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1173 ASSERT(eb->fs_info);
1174 /*
1175 * Every shared one has parent tree
1176 * block, which must be aligned to
1177 * nodesize.
1178 */
1179 if (offset &&
1180 IS_ALIGNED(offset, eb->fs_info->nodesize))
1181 return type;
1182 }
167ce953
LB
1183 } else {
1184 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1185 return type;
1186 }
1187 }
1188
1189 btrfs_print_leaf((struct extent_buffer *)eb);
1190 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1191 eb->start, type);
1192 WARN_ON(1);
1193
1194 return BTRFS_REF_TYPE_INVALID;
1195}
1196
5d4f98a2
YZ
1197static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1198{
1199 u32 high_crc = ~(u32)0;
1200 u32 low_crc = ~(u32)0;
1201 __le64 lenum;
1202
1203 lenum = cpu_to_le64(root_objectid);
9678c543 1204 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1205 lenum = cpu_to_le64(owner);
9678c543 1206 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1207 lenum = cpu_to_le64(offset);
9678c543 1208 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1209
1210 return ((u64)high_crc << 31) ^ (u64)low_crc;
1211}
1212
1213static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1214 struct btrfs_extent_data_ref *ref)
1215{
1216 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1217 btrfs_extent_data_ref_objectid(leaf, ref),
1218 btrfs_extent_data_ref_offset(leaf, ref));
1219}
1220
1221static int match_extent_data_ref(struct extent_buffer *leaf,
1222 struct btrfs_extent_data_ref *ref,
1223 u64 root_objectid, u64 owner, u64 offset)
1224{
1225 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1226 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1227 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1228 return 0;
1229 return 1;
1230}
1231
1232static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1233 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1234 struct btrfs_path *path,
1235 u64 bytenr, u64 parent,
1236 u64 root_objectid,
1237 u64 owner, u64 offset)
1238{
87bde3cd 1239 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1240 struct btrfs_key key;
1241 struct btrfs_extent_data_ref *ref;
31840ae1 1242 struct extent_buffer *leaf;
5d4f98a2 1243 u32 nritems;
74493f7a 1244 int ret;
5d4f98a2
YZ
1245 int recow;
1246 int err = -ENOENT;
74493f7a 1247
31840ae1 1248 key.objectid = bytenr;
5d4f98a2
YZ
1249 if (parent) {
1250 key.type = BTRFS_SHARED_DATA_REF_KEY;
1251 key.offset = parent;
1252 } else {
1253 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1254 key.offset = hash_extent_data_ref(root_objectid,
1255 owner, offset);
1256 }
1257again:
1258 recow = 0;
1259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260 if (ret < 0) {
1261 err = ret;
1262 goto fail;
1263 }
31840ae1 1264
5d4f98a2
YZ
1265 if (parent) {
1266 if (!ret)
1267 return 0;
1268#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1269 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1270 btrfs_release_path(path);
5d4f98a2
YZ
1271 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1272 if (ret < 0) {
1273 err = ret;
1274 goto fail;
1275 }
1276 if (!ret)
1277 return 0;
1278#endif
1279 goto fail;
31840ae1
ZY
1280 }
1281
1282 leaf = path->nodes[0];
5d4f98a2
YZ
1283 nritems = btrfs_header_nritems(leaf);
1284 while (1) {
1285 if (path->slots[0] >= nritems) {
1286 ret = btrfs_next_leaf(root, path);
1287 if (ret < 0)
1288 err = ret;
1289 if (ret)
1290 goto fail;
1291
1292 leaf = path->nodes[0];
1293 nritems = btrfs_header_nritems(leaf);
1294 recow = 1;
1295 }
1296
1297 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1298 if (key.objectid != bytenr ||
1299 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1300 goto fail;
1301
1302 ref = btrfs_item_ptr(leaf, path->slots[0],
1303 struct btrfs_extent_data_ref);
1304
1305 if (match_extent_data_ref(leaf, ref, root_objectid,
1306 owner, offset)) {
1307 if (recow) {
b3b4aa74 1308 btrfs_release_path(path);
5d4f98a2
YZ
1309 goto again;
1310 }
1311 err = 0;
1312 break;
1313 }
1314 path->slots[0]++;
31840ae1 1315 }
5d4f98a2
YZ
1316fail:
1317 return err;
31840ae1
ZY
1318}
1319
5d4f98a2 1320static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1321 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1322 struct btrfs_path *path,
1323 u64 bytenr, u64 parent,
1324 u64 root_objectid, u64 owner,
1325 u64 offset, int refs_to_add)
31840ae1 1326{
87bde3cd 1327 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1328 struct btrfs_key key;
1329 struct extent_buffer *leaf;
5d4f98a2 1330 u32 size;
31840ae1
ZY
1331 u32 num_refs;
1332 int ret;
74493f7a 1333
74493f7a 1334 key.objectid = bytenr;
5d4f98a2
YZ
1335 if (parent) {
1336 key.type = BTRFS_SHARED_DATA_REF_KEY;
1337 key.offset = parent;
1338 size = sizeof(struct btrfs_shared_data_ref);
1339 } else {
1340 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1341 key.offset = hash_extent_data_ref(root_objectid,
1342 owner, offset);
1343 size = sizeof(struct btrfs_extent_data_ref);
1344 }
74493f7a 1345
5d4f98a2
YZ
1346 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1347 if (ret && ret != -EEXIST)
1348 goto fail;
1349
1350 leaf = path->nodes[0];
1351 if (parent) {
1352 struct btrfs_shared_data_ref *ref;
31840ae1 1353 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1354 struct btrfs_shared_data_ref);
1355 if (ret == 0) {
1356 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1357 } else {
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1359 num_refs += refs_to_add;
1360 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1361 }
5d4f98a2
YZ
1362 } else {
1363 struct btrfs_extent_data_ref *ref;
1364 while (ret == -EEXIST) {
1365 ref = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_extent_data_ref);
1367 if (match_extent_data_ref(leaf, ref, root_objectid,
1368 owner, offset))
1369 break;
b3b4aa74 1370 btrfs_release_path(path);
5d4f98a2
YZ
1371 key.offset++;
1372 ret = btrfs_insert_empty_item(trans, root, path, &key,
1373 size);
1374 if (ret && ret != -EEXIST)
1375 goto fail;
31840ae1 1376
5d4f98a2
YZ
1377 leaf = path->nodes[0];
1378 }
1379 ref = btrfs_item_ptr(leaf, path->slots[0],
1380 struct btrfs_extent_data_ref);
1381 if (ret == 0) {
1382 btrfs_set_extent_data_ref_root(leaf, ref,
1383 root_objectid);
1384 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1385 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1386 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1387 } else {
1388 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1389 num_refs += refs_to_add;
1390 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1391 }
31840ae1 1392 }
5d4f98a2
YZ
1393 btrfs_mark_buffer_dirty(leaf);
1394 ret = 0;
1395fail:
b3b4aa74 1396 btrfs_release_path(path);
7bb86316 1397 return ret;
74493f7a
CM
1398}
1399
5d4f98a2 1400static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1401 struct btrfs_fs_info *fs_info,
5d4f98a2 1402 struct btrfs_path *path,
fcebe456 1403 int refs_to_drop, int *last_ref)
31840ae1 1404{
5d4f98a2
YZ
1405 struct btrfs_key key;
1406 struct btrfs_extent_data_ref *ref1 = NULL;
1407 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1408 struct extent_buffer *leaf;
5d4f98a2 1409 u32 num_refs = 0;
31840ae1
ZY
1410 int ret = 0;
1411
1412 leaf = path->nodes[0];
5d4f98a2
YZ
1413 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1414
1415 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1416 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1417 struct btrfs_extent_data_ref);
1418 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1419 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1420 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1421 struct btrfs_shared_data_ref);
1422 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1423#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1424 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1425 struct btrfs_extent_ref_v0 *ref0;
1426 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1427 struct btrfs_extent_ref_v0);
1428 num_refs = btrfs_ref_count_v0(leaf, ref0);
1429#endif
1430 } else {
1431 BUG();
1432 }
1433
56bec294
CM
1434 BUG_ON(num_refs < refs_to_drop);
1435 num_refs -= refs_to_drop;
5d4f98a2 1436
31840ae1 1437 if (num_refs == 0) {
87bde3cd 1438 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1439 *last_ref = 1;
31840ae1 1440 } else {
5d4f98a2
YZ
1441 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1442 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1443 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1444 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1445#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1446 else {
1447 struct btrfs_extent_ref_v0 *ref0;
1448 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1449 struct btrfs_extent_ref_v0);
1450 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1451 }
1452#endif
31840ae1
ZY
1453 btrfs_mark_buffer_dirty(leaf);
1454 }
31840ae1
ZY
1455 return ret;
1456}
1457
9ed0dea0 1458static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1459 struct btrfs_extent_inline_ref *iref)
15916de8 1460{
5d4f98a2
YZ
1461 struct btrfs_key key;
1462 struct extent_buffer *leaf;
1463 struct btrfs_extent_data_ref *ref1;
1464 struct btrfs_shared_data_ref *ref2;
1465 u32 num_refs = 0;
3de28d57 1466 int type;
5d4f98a2
YZ
1467
1468 leaf = path->nodes[0];
1469 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1470 if (iref) {
3de28d57
LB
1471 /*
1472 * If type is invalid, we should have bailed out earlier than
1473 * this call.
1474 */
1475 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1476 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1477 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1478 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1479 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1480 } else {
1481 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1482 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1483 }
1484 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1485 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1486 struct btrfs_extent_data_ref);
1487 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1488 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1489 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1490 struct btrfs_shared_data_ref);
1491 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1492#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1493 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1494 struct btrfs_extent_ref_v0 *ref0;
1495 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1496 struct btrfs_extent_ref_v0);
1497 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1498#endif
5d4f98a2
YZ
1499 } else {
1500 WARN_ON(1);
1501 }
1502 return num_refs;
1503}
15916de8 1504
5d4f98a2 1505static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1506 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1507 struct btrfs_path *path,
1508 u64 bytenr, u64 parent,
1509 u64 root_objectid)
1f3c79a2 1510{
87bde3cd 1511 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1512 struct btrfs_key key;
1f3c79a2 1513 int ret;
1f3c79a2 1514
5d4f98a2
YZ
1515 key.objectid = bytenr;
1516 if (parent) {
1517 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1518 key.offset = parent;
1519 } else {
1520 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1521 key.offset = root_objectid;
1f3c79a2
LH
1522 }
1523
5d4f98a2
YZ
1524 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1525 if (ret > 0)
1526 ret = -ENOENT;
1527#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1528 if (ret == -ENOENT && parent) {
b3b4aa74 1529 btrfs_release_path(path);
5d4f98a2
YZ
1530 key.type = BTRFS_EXTENT_REF_V0_KEY;
1531 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1532 if (ret > 0)
1533 ret = -ENOENT;
1534 }
1f3c79a2 1535#endif
5d4f98a2 1536 return ret;
1f3c79a2
LH
1537}
1538
5d4f98a2 1539static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1540 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1541 struct btrfs_path *path,
1542 u64 bytenr, u64 parent,
1543 u64 root_objectid)
31840ae1 1544{
5d4f98a2 1545 struct btrfs_key key;
31840ae1 1546 int ret;
31840ae1 1547
5d4f98a2
YZ
1548 key.objectid = bytenr;
1549 if (parent) {
1550 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1551 key.offset = parent;
1552 } else {
1553 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1554 key.offset = root_objectid;
1555 }
1556
87bde3cd
JM
1557 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1558 path, &key, 0);
b3b4aa74 1559 btrfs_release_path(path);
31840ae1
ZY
1560 return ret;
1561}
1562
5d4f98a2 1563static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1564{
5d4f98a2
YZ
1565 int type;
1566 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1567 if (parent > 0)
1568 type = BTRFS_SHARED_BLOCK_REF_KEY;
1569 else
1570 type = BTRFS_TREE_BLOCK_REF_KEY;
1571 } else {
1572 if (parent > 0)
1573 type = BTRFS_SHARED_DATA_REF_KEY;
1574 else
1575 type = BTRFS_EXTENT_DATA_REF_KEY;
1576 }
1577 return type;
31840ae1 1578}
56bec294 1579
2c47e605
YZ
1580static int find_next_key(struct btrfs_path *path, int level,
1581 struct btrfs_key *key)
56bec294 1582
02217ed2 1583{
2c47e605 1584 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1585 if (!path->nodes[level])
1586 break;
5d4f98a2
YZ
1587 if (path->slots[level] + 1 >=
1588 btrfs_header_nritems(path->nodes[level]))
1589 continue;
1590 if (level == 0)
1591 btrfs_item_key_to_cpu(path->nodes[level], key,
1592 path->slots[level] + 1);
1593 else
1594 btrfs_node_key_to_cpu(path->nodes[level], key,
1595 path->slots[level] + 1);
1596 return 0;
1597 }
1598 return 1;
1599}
037e6390 1600
5d4f98a2
YZ
1601/*
1602 * look for inline back ref. if back ref is found, *ref_ret is set
1603 * to the address of inline back ref, and 0 is returned.
1604 *
1605 * if back ref isn't found, *ref_ret is set to the address where it
1606 * should be inserted, and -ENOENT is returned.
1607 *
1608 * if insert is true and there are too many inline back refs, the path
1609 * points to the extent item, and -EAGAIN is returned.
1610 *
1611 * NOTE: inline back refs are ordered in the same way that back ref
1612 * items in the tree are ordered.
1613 */
1614static noinline_for_stack
1615int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1616 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1617 struct btrfs_path *path,
1618 struct btrfs_extent_inline_ref **ref_ret,
1619 u64 bytenr, u64 num_bytes,
1620 u64 parent, u64 root_objectid,
1621 u64 owner, u64 offset, int insert)
1622{
87bde3cd 1623 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1624 struct btrfs_key key;
1625 struct extent_buffer *leaf;
1626 struct btrfs_extent_item *ei;
1627 struct btrfs_extent_inline_ref *iref;
1628 u64 flags;
1629 u64 item_size;
1630 unsigned long ptr;
1631 unsigned long end;
1632 int extra_size;
1633 int type;
1634 int want;
1635 int ret;
1636 int err = 0;
0b246afa 1637 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1638 int needed;
26b8003f 1639
db94535d 1640 key.objectid = bytenr;
31840ae1 1641 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1642 key.offset = num_bytes;
31840ae1 1643
5d4f98a2
YZ
1644 want = extent_ref_type(parent, owner);
1645 if (insert) {
1646 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1647 path->keep_locks = 1;
5d4f98a2
YZ
1648 } else
1649 extra_size = -1;
3173a18f
JB
1650
1651 /*
1652 * Owner is our parent level, so we can just add one to get the level
1653 * for the block we are interested in.
1654 */
1655 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1656 key.type = BTRFS_METADATA_ITEM_KEY;
1657 key.offset = owner;
1658 }
1659
1660again:
5d4f98a2 1661 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1662 if (ret < 0) {
5d4f98a2
YZ
1663 err = ret;
1664 goto out;
1665 }
3173a18f
JB
1666
1667 /*
1668 * We may be a newly converted file system which still has the old fat
1669 * extent entries for metadata, so try and see if we have one of those.
1670 */
1671 if (ret > 0 && skinny_metadata) {
1672 skinny_metadata = false;
1673 if (path->slots[0]) {
1674 path->slots[0]--;
1675 btrfs_item_key_to_cpu(path->nodes[0], &key,
1676 path->slots[0]);
1677 if (key.objectid == bytenr &&
1678 key.type == BTRFS_EXTENT_ITEM_KEY &&
1679 key.offset == num_bytes)
1680 ret = 0;
1681 }
1682 if (ret) {
9ce49a0b 1683 key.objectid = bytenr;
3173a18f
JB
1684 key.type = BTRFS_EXTENT_ITEM_KEY;
1685 key.offset = num_bytes;
1686 btrfs_release_path(path);
1687 goto again;
1688 }
1689 }
1690
79787eaa
JM
1691 if (ret && !insert) {
1692 err = -ENOENT;
1693 goto out;
fae7f21c 1694 } else if (WARN_ON(ret)) {
492104c8 1695 err = -EIO;
492104c8 1696 goto out;
79787eaa 1697 }
5d4f98a2
YZ
1698
1699 leaf = path->nodes[0];
1700 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1701#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1702 if (item_size < sizeof(*ei)) {
1703 if (!insert) {
1704 err = -ENOENT;
1705 goto out;
1706 }
87bde3cd 1707 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1708 extra_size);
1709 if (ret < 0) {
1710 err = ret;
1711 goto out;
1712 }
1713 leaf = path->nodes[0];
1714 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1715 }
1716#endif
1717 BUG_ON(item_size < sizeof(*ei));
1718
5d4f98a2
YZ
1719 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1720 flags = btrfs_extent_flags(leaf, ei);
1721
1722 ptr = (unsigned long)(ei + 1);
1723 end = (unsigned long)ei + item_size;
1724
3173a18f 1725 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1726 ptr += sizeof(struct btrfs_tree_block_info);
1727 BUG_ON(ptr > end);
5d4f98a2
YZ
1728 }
1729
3de28d57
LB
1730 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1731 needed = BTRFS_REF_TYPE_DATA;
1732 else
1733 needed = BTRFS_REF_TYPE_BLOCK;
1734
5d4f98a2
YZ
1735 err = -ENOENT;
1736 while (1) {
1737 if (ptr >= end) {
1738 WARN_ON(ptr > end);
1739 break;
1740 }
1741 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1742 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1743 if (type == BTRFS_REF_TYPE_INVALID) {
1744 err = -EINVAL;
1745 goto out;
1746 }
1747
5d4f98a2
YZ
1748 if (want < type)
1749 break;
1750 if (want > type) {
1751 ptr += btrfs_extent_inline_ref_size(type);
1752 continue;
1753 }
1754
1755 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1756 struct btrfs_extent_data_ref *dref;
1757 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1758 if (match_extent_data_ref(leaf, dref, root_objectid,
1759 owner, offset)) {
1760 err = 0;
1761 break;
1762 }
1763 if (hash_extent_data_ref_item(leaf, dref) <
1764 hash_extent_data_ref(root_objectid, owner, offset))
1765 break;
1766 } else {
1767 u64 ref_offset;
1768 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1769 if (parent > 0) {
1770 if (parent == ref_offset) {
1771 err = 0;
1772 break;
1773 }
1774 if (ref_offset < parent)
1775 break;
1776 } else {
1777 if (root_objectid == ref_offset) {
1778 err = 0;
1779 break;
1780 }
1781 if (ref_offset < root_objectid)
1782 break;
1783 }
1784 }
1785 ptr += btrfs_extent_inline_ref_size(type);
1786 }
1787 if (err == -ENOENT && insert) {
1788 if (item_size + extra_size >=
1789 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1790 err = -EAGAIN;
1791 goto out;
1792 }
1793 /*
1794 * To add new inline back ref, we have to make sure
1795 * there is no corresponding back ref item.
1796 * For simplicity, we just do not add new inline back
1797 * ref if there is any kind of item for this block
1798 */
2c47e605
YZ
1799 if (find_next_key(path, 0, &key) == 0 &&
1800 key.objectid == bytenr &&
85d4198e 1801 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1802 err = -EAGAIN;
1803 goto out;
1804 }
1805 }
1806 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1807out:
85d4198e 1808 if (insert) {
5d4f98a2
YZ
1809 path->keep_locks = 0;
1810 btrfs_unlock_up_safe(path, 1);
1811 }
1812 return err;
1813}
1814
1815/*
1816 * helper to add new inline back ref
1817 */
1818static noinline_for_stack
87bde3cd 1819void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1820 struct btrfs_path *path,
1821 struct btrfs_extent_inline_ref *iref,
1822 u64 parent, u64 root_objectid,
1823 u64 owner, u64 offset, int refs_to_add,
1824 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1825{
1826 struct extent_buffer *leaf;
1827 struct btrfs_extent_item *ei;
1828 unsigned long ptr;
1829 unsigned long end;
1830 unsigned long item_offset;
1831 u64 refs;
1832 int size;
1833 int type;
5d4f98a2
YZ
1834
1835 leaf = path->nodes[0];
1836 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1837 item_offset = (unsigned long)iref - (unsigned long)ei;
1838
1839 type = extent_ref_type(parent, owner);
1840 size = btrfs_extent_inline_ref_size(type);
1841
87bde3cd 1842 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1843
1844 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1845 refs = btrfs_extent_refs(leaf, ei);
1846 refs += refs_to_add;
1847 btrfs_set_extent_refs(leaf, ei, refs);
1848 if (extent_op)
1849 __run_delayed_extent_op(extent_op, leaf, ei);
1850
1851 ptr = (unsigned long)ei + item_offset;
1852 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1853 if (ptr < end - size)
1854 memmove_extent_buffer(leaf, ptr + size, ptr,
1855 end - size - ptr);
1856
1857 iref = (struct btrfs_extent_inline_ref *)ptr;
1858 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1859 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1860 struct btrfs_extent_data_ref *dref;
1861 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1862 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1863 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1864 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1865 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1866 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1867 struct btrfs_shared_data_ref *sref;
1868 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1869 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1870 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1871 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 } else {
1874 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1875 }
1876 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1877}
1878
1879static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1880 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1881 struct btrfs_path *path,
1882 struct btrfs_extent_inline_ref **ref_ret,
1883 u64 bytenr, u64 num_bytes, u64 parent,
1884 u64 root_objectid, u64 owner, u64 offset)
1885{
1886 int ret;
1887
87bde3cd 1888 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1889 bytenr, num_bytes, parent,
1890 root_objectid, owner, offset, 0);
1891 if (ret != -ENOENT)
54aa1f4d 1892 return ret;
5d4f98a2 1893
b3b4aa74 1894 btrfs_release_path(path);
5d4f98a2
YZ
1895 *ref_ret = NULL;
1896
1897 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1898 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1899 parent, root_objectid);
5d4f98a2 1900 } else {
87bde3cd
JM
1901 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1902 parent, root_objectid, owner,
1903 offset);
b9473439 1904 }
5d4f98a2
YZ
1905 return ret;
1906}
31840ae1 1907
5d4f98a2
YZ
1908/*
1909 * helper to update/remove inline back ref
1910 */
1911static noinline_for_stack
87bde3cd 1912void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1913 struct btrfs_path *path,
1914 struct btrfs_extent_inline_ref *iref,
1915 int refs_to_mod,
fcebe456
JB
1916 struct btrfs_delayed_extent_op *extent_op,
1917 int *last_ref)
5d4f98a2
YZ
1918{
1919 struct extent_buffer *leaf;
1920 struct btrfs_extent_item *ei;
1921 struct btrfs_extent_data_ref *dref = NULL;
1922 struct btrfs_shared_data_ref *sref = NULL;
1923 unsigned long ptr;
1924 unsigned long end;
1925 u32 item_size;
1926 int size;
1927 int type;
5d4f98a2
YZ
1928 u64 refs;
1929
1930 leaf = path->nodes[0];
1931 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1932 refs = btrfs_extent_refs(leaf, ei);
1933 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1934 refs += refs_to_mod;
1935 btrfs_set_extent_refs(leaf, ei, refs);
1936 if (extent_op)
1937 __run_delayed_extent_op(extent_op, leaf, ei);
1938
3de28d57
LB
1939 /*
1940 * If type is invalid, we should have bailed out after
1941 * lookup_inline_extent_backref().
1942 */
1943 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1944 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1945
1946 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1947 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1948 refs = btrfs_extent_data_ref_count(leaf, dref);
1949 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1950 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1951 refs = btrfs_shared_data_ref_count(leaf, sref);
1952 } else {
1953 refs = 1;
1954 BUG_ON(refs_to_mod != -1);
56bec294 1955 }
31840ae1 1956
5d4f98a2
YZ
1957 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1958 refs += refs_to_mod;
1959
1960 if (refs > 0) {
1961 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1962 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1963 else
1964 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1965 } else {
fcebe456 1966 *last_ref = 1;
5d4f98a2
YZ
1967 size = btrfs_extent_inline_ref_size(type);
1968 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1969 ptr = (unsigned long)iref;
1970 end = (unsigned long)ei + item_size;
1971 if (ptr + size < end)
1972 memmove_extent_buffer(leaf, ptr, ptr + size,
1973 end - ptr - size);
1974 item_size -= size;
87bde3cd 1975 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1976 }
1977 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1978}
1979
1980static noinline_for_stack
1981int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1982 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1983 struct btrfs_path *path,
1984 u64 bytenr, u64 num_bytes, u64 parent,
1985 u64 root_objectid, u64 owner,
1986 u64 offset, int refs_to_add,
1987 struct btrfs_delayed_extent_op *extent_op)
1988{
1989 struct btrfs_extent_inline_ref *iref;
1990 int ret;
1991
87bde3cd 1992 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1993 bytenr, num_bytes, parent,
1994 root_objectid, owner, offset, 1);
1995 if (ret == 0) {
1996 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1997 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1998 refs_to_add, extent_op, NULL);
5d4f98a2 1999 } else if (ret == -ENOENT) {
87bde3cd 2000 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
2001 root_objectid, owner, offset,
2002 refs_to_add, extent_op);
2003 ret = 0;
771ed689 2004 }
5d4f98a2
YZ
2005 return ret;
2006}
31840ae1 2007
5d4f98a2 2008static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2009 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2010 struct btrfs_path *path,
2011 u64 bytenr, u64 parent, u64 root_objectid,
2012 u64 owner, u64 offset, int refs_to_add)
2013{
2014 int ret;
2015 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2016 BUG_ON(refs_to_add != 1);
87bde3cd 2017 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2018 parent, root_objectid);
2019 } else {
87bde3cd 2020 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2021 parent, root_objectid,
2022 owner, offset, refs_to_add);
2023 }
2024 return ret;
2025}
56bec294 2026
5d4f98a2 2027static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2028 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2029 struct btrfs_path *path,
2030 struct btrfs_extent_inline_ref *iref,
fcebe456 2031 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2032{
143bede5 2033 int ret = 0;
b9473439 2034
5d4f98a2
YZ
2035 BUG_ON(!is_data && refs_to_drop != 1);
2036 if (iref) {
87bde3cd 2037 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2038 -refs_to_drop, NULL, last_ref);
5d4f98a2 2039 } else if (is_data) {
87bde3cd 2040 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 2041 last_ref);
5d4f98a2 2042 } else {
fcebe456 2043 *last_ref = 1;
87bde3cd 2044 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2045 }
2046 return ret;
2047}
2048
86557861 2049#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2050static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2051 u64 *discarded_bytes)
5d4f98a2 2052{
86557861
JM
2053 int j, ret = 0;
2054 u64 bytes_left, end;
4d89d377 2055 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2056
4d89d377
JM
2057 if (WARN_ON(start != aligned_start)) {
2058 len -= aligned_start - start;
2059 len = round_down(len, 1 << 9);
2060 start = aligned_start;
2061 }
d04c6b88 2062
4d89d377 2063 *discarded_bytes = 0;
86557861
JM
2064
2065 if (!len)
2066 return 0;
2067
2068 end = start + len;
2069 bytes_left = len;
2070
2071 /* Skip any superblocks on this device. */
2072 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2073 u64 sb_start = btrfs_sb_offset(j);
2074 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2075 u64 size = sb_start - start;
2076
2077 if (!in_range(sb_start, start, bytes_left) &&
2078 !in_range(sb_end, start, bytes_left) &&
2079 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2080 continue;
2081
2082 /*
2083 * Superblock spans beginning of range. Adjust start and
2084 * try again.
2085 */
2086 if (sb_start <= start) {
2087 start += sb_end - start;
2088 if (start > end) {
2089 bytes_left = 0;
2090 break;
2091 }
2092 bytes_left = end - start;
2093 continue;
2094 }
2095
2096 if (size) {
2097 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2098 GFP_NOFS, 0);
2099 if (!ret)
2100 *discarded_bytes += size;
2101 else if (ret != -EOPNOTSUPP)
2102 return ret;
2103 }
2104
2105 start = sb_end;
2106 if (start > end) {
2107 bytes_left = 0;
2108 break;
2109 }
2110 bytes_left = end - start;
2111 }
2112
2113 if (bytes_left) {
2114 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2115 GFP_NOFS, 0);
2116 if (!ret)
86557861 2117 *discarded_bytes += bytes_left;
4d89d377 2118 }
d04c6b88 2119 return ret;
5d4f98a2 2120}
5d4f98a2 2121
2ff7e61e 2122int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2123 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2124{
5d4f98a2 2125 int ret;
5378e607 2126 u64 discarded_bytes = 0;
a1d3c478 2127 struct btrfs_bio *bbio = NULL;
5d4f98a2 2128
e244a0ae 2129
2999241d
FM
2130 /*
2131 * Avoid races with device replace and make sure our bbio has devices
2132 * associated to its stripes that don't go away while we are discarding.
2133 */
0b246afa 2134 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2135 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2136 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2137 &bbio, 0);
79787eaa 2138 /* Error condition is -ENOMEM */
5d4f98a2 2139 if (!ret) {
a1d3c478 2140 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2141 int i;
2142
5d4f98a2 2143
a1d3c478 2144 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2145 u64 bytes;
38b5f68e
AJ
2146 struct request_queue *req_q;
2147
627e0873
FM
2148 if (!stripe->dev->bdev) {
2149 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2150 continue;
2151 }
38b5f68e
AJ
2152 req_q = bdev_get_queue(stripe->dev->bdev);
2153 if (!blk_queue_discard(req_q))
d5e2003c
JB
2154 continue;
2155
5378e607
LD
2156 ret = btrfs_issue_discard(stripe->dev->bdev,
2157 stripe->physical,
d04c6b88
JM
2158 stripe->length,
2159 &bytes);
5378e607 2160 if (!ret)
d04c6b88 2161 discarded_bytes += bytes;
5378e607 2162 else if (ret != -EOPNOTSUPP)
79787eaa 2163 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2164
2165 /*
2166 * Just in case we get back EOPNOTSUPP for some reason,
2167 * just ignore the return value so we don't screw up
2168 * people calling discard_extent.
2169 */
2170 ret = 0;
5d4f98a2 2171 }
6e9606d2 2172 btrfs_put_bbio(bbio);
5d4f98a2 2173 }
0b246afa 2174 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2175
2176 if (actual_bytes)
2177 *actual_bytes = discarded_bytes;
2178
5d4f98a2 2179
53b381b3
DW
2180 if (ret == -EOPNOTSUPP)
2181 ret = 0;
5d4f98a2 2182 return ret;
5d4f98a2
YZ
2183}
2184
79787eaa 2185/* Can return -ENOMEM */
5d4f98a2 2186int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2187 struct btrfs_root *root,
5d4f98a2 2188 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2189 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2190{
84f7d8e6 2191 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2192 int old_ref_mod, new_ref_mod;
5d4f98a2 2193 int ret;
66d7e7f0 2194
5d4f98a2
YZ
2195 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2196 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2197
fd708b81
JB
2198 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2199 owner, offset, BTRFS_ADD_DELAYED_REF);
2200
5d4f98a2 2201 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2202 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2203 num_bytes, parent,
2204 root_objectid, (int)owner,
2205 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2206 &old_ref_mod, &new_ref_mod);
5d4f98a2 2207 } else {
66d7e7f0 2208 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2209 num_bytes, parent,
2210 root_objectid, owner, offset,
d7eae340
OS
2211 0, BTRFS_ADD_DELAYED_REF,
2212 &old_ref_mod, &new_ref_mod);
5d4f98a2 2213 }
d7eae340
OS
2214
2215 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2216 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2217
5d4f98a2
YZ
2218 return ret;
2219}
2220
2221static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2222 struct btrfs_fs_info *fs_info,
c682f9b3 2223 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2224 u64 parent, u64 root_objectid,
2225 u64 owner, u64 offset, int refs_to_add,
2226 struct btrfs_delayed_extent_op *extent_op)
2227{
2228 struct btrfs_path *path;
2229 struct extent_buffer *leaf;
2230 struct btrfs_extent_item *item;
fcebe456 2231 struct btrfs_key key;
c682f9b3
QW
2232 u64 bytenr = node->bytenr;
2233 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2234 u64 refs;
2235 int ret;
5d4f98a2
YZ
2236
2237 path = btrfs_alloc_path();
2238 if (!path)
2239 return -ENOMEM;
2240
e4058b54 2241 path->reada = READA_FORWARD;
5d4f98a2
YZ
2242 path->leave_spinning = 1;
2243 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2244 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2245 num_bytes, parent, root_objectid,
2246 owner, offset,
5d4f98a2 2247 refs_to_add, extent_op);
0ed4792a 2248 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2249 goto out;
fcebe456
JB
2250
2251 /*
2252 * Ok we had -EAGAIN which means we didn't have space to insert and
2253 * inline extent ref, so just update the reference count and add a
2254 * normal backref.
2255 */
5d4f98a2 2256 leaf = path->nodes[0];
fcebe456 2257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2258 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2259 refs = btrfs_extent_refs(leaf, item);
2260 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2261 if (extent_op)
2262 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2263
5d4f98a2 2264 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2265 btrfs_release_path(path);
56bec294 2266
e4058b54 2267 path->reada = READA_FORWARD;
b9473439 2268 path->leave_spinning = 1;
56bec294 2269 /* now insert the actual backref */
87bde3cd
JM
2270 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2271 root_objectid, owner, offset, refs_to_add);
79787eaa 2272 if (ret)
66642832 2273 btrfs_abort_transaction(trans, ret);
5d4f98a2 2274out:
56bec294 2275 btrfs_free_path(path);
30d133fc 2276 return ret;
56bec294
CM
2277}
2278
5d4f98a2 2279static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2280 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2281 struct btrfs_delayed_ref_node *node,
2282 struct btrfs_delayed_extent_op *extent_op,
2283 int insert_reserved)
56bec294 2284{
5d4f98a2
YZ
2285 int ret = 0;
2286 struct btrfs_delayed_data_ref *ref;
2287 struct btrfs_key ins;
2288 u64 parent = 0;
2289 u64 ref_root = 0;
2290 u64 flags = 0;
2291
2292 ins.objectid = node->bytenr;
2293 ins.offset = node->num_bytes;
2294 ins.type = BTRFS_EXTENT_ITEM_KEY;
2295
2296 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2297 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2298
5d4f98a2
YZ
2299 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2300 parent = ref->parent;
fcebe456 2301 ref_root = ref->root;
5d4f98a2
YZ
2302
2303 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2304 if (extent_op)
5d4f98a2 2305 flags |= extent_op->flags_to_set;
2ff7e61e 2306 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2307 parent, ref_root, flags,
2308 ref->objectid, ref->offset,
2309 &ins, node->ref_mod);
5d4f98a2 2310 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2311 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2312 ref_root, ref->objectid,
2313 ref->offset, node->ref_mod,
c682f9b3 2314 extent_op);
5d4f98a2 2315 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2316 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2317 ref_root, ref->objectid,
2318 ref->offset, node->ref_mod,
c682f9b3 2319 extent_op);
5d4f98a2
YZ
2320 } else {
2321 BUG();
2322 }
2323 return ret;
2324}
2325
2326static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2327 struct extent_buffer *leaf,
2328 struct btrfs_extent_item *ei)
2329{
2330 u64 flags = btrfs_extent_flags(leaf, ei);
2331 if (extent_op->update_flags) {
2332 flags |= extent_op->flags_to_set;
2333 btrfs_set_extent_flags(leaf, ei, flags);
2334 }
2335
2336 if (extent_op->update_key) {
2337 struct btrfs_tree_block_info *bi;
2338 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2339 bi = (struct btrfs_tree_block_info *)(ei + 1);
2340 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2341 }
2342}
2343
2344static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2345 struct btrfs_fs_info *fs_info,
d278850e 2346 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2347 struct btrfs_delayed_extent_op *extent_op)
2348{
2349 struct btrfs_key key;
2350 struct btrfs_path *path;
2351 struct btrfs_extent_item *ei;
2352 struct extent_buffer *leaf;
2353 u32 item_size;
56bec294 2354 int ret;
5d4f98a2 2355 int err = 0;
b1c79e09 2356 int metadata = !extent_op->is_data;
5d4f98a2 2357
79787eaa
JM
2358 if (trans->aborted)
2359 return 0;
2360
0b246afa 2361 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2362 metadata = 0;
2363
5d4f98a2
YZ
2364 path = btrfs_alloc_path();
2365 if (!path)
2366 return -ENOMEM;
2367
d278850e 2368 key.objectid = head->bytenr;
5d4f98a2 2369
3173a18f 2370 if (metadata) {
3173a18f 2371 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2372 key.offset = extent_op->level;
3173a18f
JB
2373 } else {
2374 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2375 key.offset = head->num_bytes;
3173a18f
JB
2376 }
2377
2378again:
e4058b54 2379 path->reada = READA_FORWARD;
5d4f98a2 2380 path->leave_spinning = 1;
0b246afa 2381 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2382 if (ret < 0) {
2383 err = ret;
2384 goto out;
2385 }
2386 if (ret > 0) {
3173a18f 2387 if (metadata) {
55994887
FDBM
2388 if (path->slots[0] > 0) {
2389 path->slots[0]--;
2390 btrfs_item_key_to_cpu(path->nodes[0], &key,
2391 path->slots[0]);
d278850e 2392 if (key.objectid == head->bytenr &&
55994887 2393 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2394 key.offset == head->num_bytes)
55994887
FDBM
2395 ret = 0;
2396 }
2397 if (ret > 0) {
2398 btrfs_release_path(path);
2399 metadata = 0;
3173a18f 2400
d278850e
JB
2401 key.objectid = head->bytenr;
2402 key.offset = head->num_bytes;
55994887
FDBM
2403 key.type = BTRFS_EXTENT_ITEM_KEY;
2404 goto again;
2405 }
2406 } else {
2407 err = -EIO;
2408 goto out;
3173a18f 2409 }
5d4f98a2
YZ
2410 }
2411
2412 leaf = path->nodes[0];
2413 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2414#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2415 if (item_size < sizeof(*ei)) {
87bde3cd 2416 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2417 if (ret < 0) {
2418 err = ret;
2419 goto out;
2420 }
2421 leaf = path->nodes[0];
2422 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2423 }
2424#endif
2425 BUG_ON(item_size < sizeof(*ei));
2426 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2427 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2428
5d4f98a2
YZ
2429 btrfs_mark_buffer_dirty(leaf);
2430out:
2431 btrfs_free_path(path);
2432 return err;
56bec294
CM
2433}
2434
5d4f98a2 2435static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2436 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2437 struct btrfs_delayed_ref_node *node,
2438 struct btrfs_delayed_extent_op *extent_op,
2439 int insert_reserved)
56bec294
CM
2440{
2441 int ret = 0;
5d4f98a2
YZ
2442 struct btrfs_delayed_tree_ref *ref;
2443 struct btrfs_key ins;
2444 u64 parent = 0;
2445 u64 ref_root = 0;
0b246afa 2446 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2447
5d4f98a2 2448 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2449 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2450
5d4f98a2
YZ
2451 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2452 parent = ref->parent;
fcebe456 2453 ref_root = ref->root;
5d4f98a2 2454
3173a18f
JB
2455 ins.objectid = node->bytenr;
2456 if (skinny_metadata) {
2457 ins.offset = ref->level;
2458 ins.type = BTRFS_METADATA_ITEM_KEY;
2459 } else {
2460 ins.offset = node->num_bytes;
2461 ins.type = BTRFS_EXTENT_ITEM_KEY;
2462 }
2463
02794222 2464 if (node->ref_mod != 1) {
2ff7e61e 2465 btrfs_err(fs_info,
02794222
LB
2466 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2467 node->bytenr, node->ref_mod, node->action, ref_root,
2468 parent);
2469 return -EIO;
2470 }
5d4f98a2 2471 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2472 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2473 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2474 parent, ref_root,
2475 extent_op->flags_to_set,
2476 &extent_op->key,
b06c4bf5 2477 ref->level, &ins);
5d4f98a2 2478 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2479 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2480 parent, ref_root,
2481 ref->level, 0, 1,
fcebe456 2482 extent_op);
5d4f98a2 2483 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2484 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2485 parent, ref_root,
2486 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2487 } else {
2488 BUG();
2489 }
56bec294
CM
2490 return ret;
2491}
2492
2493/* helper function to actually process a single delayed ref entry */
5d4f98a2 2494static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2495 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2496 struct btrfs_delayed_ref_node *node,
2497 struct btrfs_delayed_extent_op *extent_op,
2498 int insert_reserved)
56bec294 2499{
79787eaa
JM
2500 int ret = 0;
2501
857cc2fc
JB
2502 if (trans->aborted) {
2503 if (insert_reserved)
2ff7e61e 2504 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2505 node->num_bytes, 1);
79787eaa 2506 return 0;
857cc2fc 2507 }
79787eaa 2508
5d4f98a2
YZ
2509 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2510 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2511 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2512 insert_reserved);
2513 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2514 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2515 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2516 insert_reserved);
2517 else
2518 BUG();
2519 return ret;
56bec294
CM
2520}
2521
c6fc2454 2522static inline struct btrfs_delayed_ref_node *
56bec294
CM
2523select_delayed_ref(struct btrfs_delayed_ref_head *head)
2524{
cffc3374
FM
2525 struct btrfs_delayed_ref_node *ref;
2526
0e0adbcf 2527 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2528 return NULL;
d7df2c79 2529
cffc3374
FM
2530 /*
2531 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2532 * This is to prevent a ref count from going down to zero, which deletes
2533 * the extent item from the extent tree, when there still are references
2534 * to add, which would fail because they would not find the extent item.
2535 */
1d57ee94
WX
2536 if (!list_empty(&head->ref_add_list))
2537 return list_first_entry(&head->ref_add_list,
2538 struct btrfs_delayed_ref_node, add_list);
2539
0e0adbcf
JB
2540 ref = rb_entry(rb_first(&head->ref_tree),
2541 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2542 ASSERT(list_empty(&ref->add_list));
2543 return ref;
56bec294
CM
2544}
2545
2eadaa22
JB
2546static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2547 struct btrfs_delayed_ref_head *head)
2548{
2549 spin_lock(&delayed_refs->lock);
2550 head->processing = 0;
2551 delayed_refs->num_heads_ready++;
2552 spin_unlock(&delayed_refs->lock);
2553 btrfs_delayed_ref_unlock(head);
2554}
2555
b00e6250
JB
2556static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2557 struct btrfs_fs_info *fs_info,
2558 struct btrfs_delayed_ref_head *head)
2559{
2560 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2561 int ret;
2562
2563 if (!extent_op)
2564 return 0;
2565 head->extent_op = NULL;
2566 if (head->must_insert_reserved) {
2567 btrfs_free_delayed_extent_op(extent_op);
2568 return 0;
2569 }
2570 spin_unlock(&head->lock);
d278850e 2571 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2572 btrfs_free_delayed_extent_op(extent_op);
2573 return ret ? ret : 1;
2574}
2575
194ab0bc
JB
2576static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2577 struct btrfs_fs_info *fs_info,
2578 struct btrfs_delayed_ref_head *head)
2579{
2580 struct btrfs_delayed_ref_root *delayed_refs;
2581 int ret;
2582
2583 delayed_refs = &trans->transaction->delayed_refs;
2584
2585 ret = cleanup_extent_op(trans, fs_info, head);
2586 if (ret < 0) {
2587 unselect_delayed_ref_head(delayed_refs, head);
2588 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2589 return ret;
2590 } else if (ret) {
2591 return ret;
2592 }
2593
2594 /*
2595 * Need to drop our head ref lock and re-acquire the delayed ref lock
2596 * and then re-check to make sure nobody got added.
2597 */
2598 spin_unlock(&head->lock);
2599 spin_lock(&delayed_refs->lock);
2600 spin_lock(&head->lock);
0e0adbcf 2601 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2602 spin_unlock(&head->lock);
2603 spin_unlock(&delayed_refs->lock);
2604 return 1;
2605 }
194ab0bc
JB
2606 delayed_refs->num_heads--;
2607 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2608 RB_CLEAR_NODE(&head->href_node);
194ab0bc 2609 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2610 spin_unlock(&head->lock);
2611 atomic_dec(&delayed_refs->num_entries);
2612
d278850e 2613 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2614
2615 if (head->total_ref_mod < 0) {
2616 struct btrfs_block_group_cache *cache;
2617
d278850e 2618 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
c1103f7a
JB
2619 ASSERT(cache);
2620 percpu_counter_add(&cache->space_info->total_bytes_pinned,
d278850e 2621 -head->num_bytes);
c1103f7a
JB
2622 btrfs_put_block_group(cache);
2623
2624 if (head->is_data) {
2625 spin_lock(&delayed_refs->lock);
d278850e 2626 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2627 spin_unlock(&delayed_refs->lock);
2628 }
2629 }
2630
2631 if (head->must_insert_reserved) {
d278850e
JB
2632 btrfs_pin_extent(fs_info, head->bytenr,
2633 head->num_bytes, 1);
c1103f7a 2634 if (head->is_data) {
d278850e
JB
2635 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2636 head->num_bytes);
c1103f7a
JB
2637 }
2638 }
2639
2640 /* Also free its reserved qgroup space */
2641 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2642 head->qgroup_reserved);
2643 btrfs_delayed_ref_unlock(head);
d278850e 2644 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2645 return 0;
2646}
2647
79787eaa
JM
2648/*
2649 * Returns 0 on success or if called with an already aborted transaction.
2650 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2651 */
d7df2c79 2652static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2653 unsigned long nr)
56bec294 2654{
0a1e458a 2655 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294
CM
2656 struct btrfs_delayed_ref_root *delayed_refs;
2657 struct btrfs_delayed_ref_node *ref;
2658 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2659 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2660 ktime_t start = ktime_get();
56bec294 2661 int ret;
d7df2c79 2662 unsigned long count = 0;
0a2b2a84 2663 unsigned long actual_count = 0;
56bec294 2664 int must_insert_reserved = 0;
56bec294
CM
2665
2666 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2667 while (1) {
2668 if (!locked_ref) {
d7df2c79 2669 if (count >= nr)
56bec294 2670 break;
56bec294 2671
d7df2c79
JB
2672 spin_lock(&delayed_refs->lock);
2673 locked_ref = btrfs_select_ref_head(trans);
2674 if (!locked_ref) {
2675 spin_unlock(&delayed_refs->lock);
2676 break;
2677 }
c3e69d58
CM
2678
2679 /* grab the lock that says we are going to process
2680 * all the refs for this head */
2681 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2682 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2683 /*
2684 * we may have dropped the spin lock to get the head
2685 * mutex lock, and that might have given someone else
2686 * time to free the head. If that's true, it has been
2687 * removed from our list and we can move on.
2688 */
2689 if (ret == -EAGAIN) {
2690 locked_ref = NULL;
2691 count++;
2692 continue;
56bec294
CM
2693 }
2694 }
a28ec197 2695
2c3cf7d5
FM
2696 /*
2697 * We need to try and merge add/drops of the same ref since we
2698 * can run into issues with relocate dropping the implicit ref
2699 * and then it being added back again before the drop can
2700 * finish. If we merged anything we need to re-loop so we can
2701 * get a good ref.
2702 * Or we can get node references of the same type that weren't
2703 * merged when created due to bumps in the tree mod seq, and
2704 * we need to merge them to prevent adding an inline extent
2705 * backref before dropping it (triggering a BUG_ON at
2706 * insert_inline_extent_backref()).
2707 */
d7df2c79 2708 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2709 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2710 locked_ref);
ae1e206b 2711
d1270cd9
AJ
2712 /*
2713 * locked_ref is the head node, so we have to go one
2714 * node back for any delayed ref updates
2715 */
2716 ref = select_delayed_ref(locked_ref);
2717
2718 if (ref && ref->seq &&
097b8a7c 2719 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2720 spin_unlock(&locked_ref->lock);
2eadaa22 2721 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2722 locked_ref = NULL;
d1270cd9 2723 cond_resched();
27a377db 2724 count++;
d1270cd9
AJ
2725 continue;
2726 }
2727
c1103f7a
JB
2728 /*
2729 * We're done processing refs in this ref_head, clean everything
2730 * up and move on to the next ref_head.
2731 */
56bec294 2732 if (!ref) {
194ab0bc
JB
2733 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2734 if (ret > 0 ) {
b00e6250
JB
2735 /* We dropped our lock, we need to loop. */
2736 ret = 0;
d7df2c79 2737 continue;
194ab0bc
JB
2738 } else if (ret) {
2739 return ret;
5d4f98a2 2740 }
c1103f7a
JB
2741 locked_ref = NULL;
2742 count++;
2743 continue;
2744 }
02217ed2 2745
c1103f7a
JB
2746 actual_count++;
2747 ref->in_tree = 0;
0e0adbcf
JB
2748 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2749 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2750 if (!list_empty(&ref->add_list))
2751 list_del(&ref->add_list);
2752 /*
2753 * When we play the delayed ref, also correct the ref_mod on
2754 * head
2755 */
2756 switch (ref->action) {
2757 case BTRFS_ADD_DELAYED_REF:
2758 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2759 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2760 break;
2761 case BTRFS_DROP_DELAYED_REF:
d278850e 2762 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2763 break;
2764 default:
2765 WARN_ON(1);
22cd2e7d 2766 }
1ce7a5ec
JB
2767 atomic_dec(&delayed_refs->num_entries);
2768
b00e6250
JB
2769 /*
2770 * Record the must-insert_reserved flag before we drop the spin
2771 * lock.
2772 */
2773 must_insert_reserved = locked_ref->must_insert_reserved;
2774 locked_ref->must_insert_reserved = 0;
2775
2776 extent_op = locked_ref->extent_op;
2777 locked_ref->extent_op = NULL;
d7df2c79 2778 spin_unlock(&locked_ref->lock);
925baedd 2779
2ff7e61e 2780 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2781 must_insert_reserved);
eb099670 2782
78a6184a 2783 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2784 if (ret) {
2eadaa22 2785 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2786 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2787 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2788 ret);
79787eaa
JM
2789 return ret;
2790 }
2791
093486c4
MX
2792 btrfs_put_delayed_ref(ref);
2793 count++;
c3e69d58 2794 cond_resched();
c3e69d58 2795 }
0a2b2a84
JB
2796
2797 /*
2798 * We don't want to include ref heads since we can have empty ref heads
2799 * and those will drastically skew our runtime down since we just do
2800 * accounting, no actual extent tree updates.
2801 */
2802 if (actual_count > 0) {
2803 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2804 u64 avg;
2805
2806 /*
2807 * We weigh the current average higher than our current runtime
2808 * to avoid large swings in the average.
2809 */
2810 spin_lock(&delayed_refs->lock);
2811 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2812 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2813 spin_unlock(&delayed_refs->lock);
2814 }
d7df2c79 2815 return 0;
c3e69d58
CM
2816}
2817
709c0486
AJ
2818#ifdef SCRAMBLE_DELAYED_REFS
2819/*
2820 * Normally delayed refs get processed in ascending bytenr order. This
2821 * correlates in most cases to the order added. To expose dependencies on this
2822 * order, we start to process the tree in the middle instead of the beginning
2823 */
2824static u64 find_middle(struct rb_root *root)
2825{
2826 struct rb_node *n = root->rb_node;
2827 struct btrfs_delayed_ref_node *entry;
2828 int alt = 1;
2829 u64 middle;
2830 u64 first = 0, last = 0;
2831
2832 n = rb_first(root);
2833 if (n) {
2834 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2835 first = entry->bytenr;
2836 }
2837 n = rb_last(root);
2838 if (n) {
2839 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2840 last = entry->bytenr;
2841 }
2842 n = root->rb_node;
2843
2844 while (n) {
2845 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2846 WARN_ON(!entry->in_tree);
2847
2848 middle = entry->bytenr;
2849
2850 if (alt)
2851 n = n->rb_left;
2852 else
2853 n = n->rb_right;
2854
2855 alt = 1 - alt;
2856 }
2857 return middle;
2858}
2859#endif
2860
2ff7e61e 2861static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2862{
2863 u64 num_bytes;
2864
2865 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2866 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2867 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2868 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2869
2870 /*
2871 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2872 * closer to what we're really going to want to use.
1be41b78 2873 */
0b246afa 2874 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2875}
2876
1262133b
JB
2877/*
2878 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2879 * would require to store the csums for that many bytes.
2880 */
2ff7e61e 2881u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2882{
2883 u64 csum_size;
2884 u64 num_csums_per_leaf;
2885 u64 num_csums;
2886
0b246afa 2887 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2888 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2889 (u64)btrfs_super_csum_size(fs_info->super_copy));
2890 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2891 num_csums += num_csums_per_leaf - 1;
2892 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2893 return num_csums;
2894}
2895
0a2b2a84 2896int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2897 struct btrfs_fs_info *fs_info)
1be41b78
JB
2898{
2899 struct btrfs_block_rsv *global_rsv;
2900 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2901 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2902 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2903 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2904 int ret = 0;
2905
0b246afa 2906 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2907 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2908 if (num_heads > 1)
0b246afa 2909 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2910 num_bytes <<= 1;
2ff7e61e
JM
2911 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2912 fs_info->nodesize;
0b246afa 2913 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2914 num_dirty_bgs);
0b246afa 2915 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2916
2917 /*
2918 * If we can't allocate any more chunks lets make sure we have _lots_ of
2919 * wiggle room since running delayed refs can create more delayed refs.
2920 */
cb723e49
JB
2921 if (global_rsv->space_info->full) {
2922 num_dirty_bgs_bytes <<= 1;
1be41b78 2923 num_bytes <<= 1;
cb723e49 2924 }
1be41b78
JB
2925
2926 spin_lock(&global_rsv->lock);
cb723e49 2927 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2928 ret = 1;
2929 spin_unlock(&global_rsv->lock);
2930 return ret;
2931}
2932
0a2b2a84 2933int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2934 struct btrfs_fs_info *fs_info)
0a2b2a84 2935{
0a2b2a84
JB
2936 u64 num_entries =
2937 atomic_read(&trans->transaction->delayed_refs.num_entries);
2938 u64 avg_runtime;
a79b7d4b 2939 u64 val;
0a2b2a84
JB
2940
2941 smp_mb();
2942 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2943 val = num_entries * avg_runtime;
dc1a90c6 2944 if (val >= NSEC_PER_SEC)
0a2b2a84 2945 return 1;
a79b7d4b
CM
2946 if (val >= NSEC_PER_SEC / 2)
2947 return 2;
0a2b2a84 2948
2ff7e61e 2949 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2950}
2951
a79b7d4b
CM
2952struct async_delayed_refs {
2953 struct btrfs_root *root;
31b9655f 2954 u64 transid;
a79b7d4b
CM
2955 int count;
2956 int error;
2957 int sync;
2958 struct completion wait;
2959 struct btrfs_work work;
2960};
2961
2ff7e61e
JM
2962static inline struct async_delayed_refs *
2963to_async_delayed_refs(struct btrfs_work *work)
2964{
2965 return container_of(work, struct async_delayed_refs, work);
2966}
2967
a79b7d4b
CM
2968static void delayed_ref_async_start(struct btrfs_work *work)
2969{
2ff7e61e 2970 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2971 struct btrfs_trans_handle *trans;
2ff7e61e 2972 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2973 int ret;
2974
0f873eca 2975 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2976 if (btrfs_transaction_blocked(fs_info))
31b9655f 2977 goto done;
31b9655f 2978
0f873eca
CM
2979 trans = btrfs_join_transaction(async->root);
2980 if (IS_ERR(trans)) {
2981 async->error = PTR_ERR(trans);
a79b7d4b
CM
2982 goto done;
2983 }
2984
2985 /*
01327610 2986 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2987 * wait on delayed refs
2988 */
2989 trans->sync = true;
0f873eca
CM
2990
2991 /* Don't bother flushing if we got into a different transaction */
2992 if (trans->transid > async->transid)
2993 goto end;
2994
c79a70b1 2995 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2996 if (ret)
2997 async->error = ret;
0f873eca 2998end:
3a45bb20 2999 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
3000 if (ret && !async->error)
3001 async->error = ret;
3002done:
3003 if (async->sync)
3004 complete(&async->wait);
3005 else
3006 kfree(async);
3007}
3008
2ff7e61e 3009int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 3010 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
3011{
3012 struct async_delayed_refs *async;
3013 int ret;
3014
3015 async = kmalloc(sizeof(*async), GFP_NOFS);
3016 if (!async)
3017 return -ENOMEM;
3018
0b246afa 3019 async->root = fs_info->tree_root;
a79b7d4b
CM
3020 async->count = count;
3021 async->error = 0;
31b9655f 3022 async->transid = transid;
a79b7d4b
CM
3023 if (wait)
3024 async->sync = 1;
3025 else
3026 async->sync = 0;
3027 init_completion(&async->wait);
3028
9e0af237
LB
3029 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3030 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3031
0b246afa 3032 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3033
3034 if (wait) {
3035 wait_for_completion(&async->wait);
3036 ret = async->error;
3037 kfree(async);
3038 return ret;
3039 }
3040 return 0;
3041}
3042
c3e69d58
CM
3043/*
3044 * this starts processing the delayed reference count updates and
3045 * extent insertions we have queued up so far. count can be
3046 * 0, which means to process everything in the tree at the start
3047 * of the run (but not newly added entries), or it can be some target
3048 * number you'd like to process.
79787eaa
JM
3049 *
3050 * Returns 0 on success or if called with an aborted transaction
3051 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3052 */
3053int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 3054 unsigned long count)
c3e69d58 3055{
c79a70b1 3056 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
3057 struct rb_node *node;
3058 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3059 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3060 int ret;
3061 int run_all = count == (unsigned long)-1;
d9a0540a 3062 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 3063
79787eaa
JM
3064 /* We'll clean this up in btrfs_cleanup_transaction */
3065 if (trans->aborted)
3066 return 0;
3067
0b246afa 3068 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3069 return 0;
3070
c3e69d58 3071 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3072 if (count == 0)
d7df2c79 3073 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3074
c3e69d58 3075again:
709c0486
AJ
3076#ifdef SCRAMBLE_DELAYED_REFS
3077 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3078#endif
d9a0540a 3079 trans->can_flush_pending_bgs = false;
0a1e458a 3080 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 3081 if (ret < 0) {
66642832 3082 btrfs_abort_transaction(trans, ret);
d7df2c79 3083 return ret;
eb099670 3084 }
c3e69d58 3085
56bec294 3086 if (run_all) {
d7df2c79 3087 if (!list_empty(&trans->new_bgs))
6c686b35 3088 btrfs_create_pending_block_groups(trans);
ea658bad 3089
d7df2c79 3090 spin_lock(&delayed_refs->lock);
c46effa6 3091 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3092 if (!node) {
3093 spin_unlock(&delayed_refs->lock);
56bec294 3094 goto out;
d7df2c79 3095 }
d278850e
JB
3096 head = rb_entry(node, struct btrfs_delayed_ref_head,
3097 href_node);
3098 refcount_inc(&head->refs);
3099 spin_unlock(&delayed_refs->lock);
e9d0b13b 3100
d278850e
JB
3101 /* Mutex was contended, block until it's released and retry. */
3102 mutex_lock(&head->mutex);
3103 mutex_unlock(&head->mutex);
56bec294 3104
d278850e 3105 btrfs_put_delayed_ref_head(head);
d7df2c79 3106 cond_resched();
56bec294 3107 goto again;
5f39d397 3108 }
54aa1f4d 3109out:
d9a0540a 3110 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3111 return 0;
3112}
3113
5d4f98a2 3114int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3115 struct btrfs_fs_info *fs_info,
5d4f98a2 3116 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3117 int level, int is_data)
5d4f98a2
YZ
3118{
3119 struct btrfs_delayed_extent_op *extent_op;
3120 int ret;
3121
78a6184a 3122 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3123 if (!extent_op)
3124 return -ENOMEM;
3125
3126 extent_op->flags_to_set = flags;
35b3ad50
DS
3127 extent_op->update_flags = true;
3128 extent_op->update_key = false;
3129 extent_op->is_data = is_data ? true : false;
b1c79e09 3130 extent_op->level = level;
5d4f98a2 3131
0b246afa 3132 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3133 num_bytes, extent_op);
5d4f98a2 3134 if (ret)
78a6184a 3135 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3136 return ret;
3137}
3138
e4c3b2dc 3139static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3140 struct btrfs_path *path,
3141 u64 objectid, u64 offset, u64 bytenr)
3142{
3143 struct btrfs_delayed_ref_head *head;
3144 struct btrfs_delayed_ref_node *ref;
3145 struct btrfs_delayed_data_ref *data_ref;
3146 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3147 struct btrfs_transaction *cur_trans;
0e0adbcf 3148 struct rb_node *node;
5d4f98a2
YZ
3149 int ret = 0;
3150
e4c3b2dc
LB
3151 cur_trans = root->fs_info->running_transaction;
3152 if (!cur_trans)
3153 return 0;
3154
3155 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3156 spin_lock(&delayed_refs->lock);
f72ad18e 3157 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3158 if (!head) {
3159 spin_unlock(&delayed_refs->lock);
3160 return 0;
3161 }
5d4f98a2
YZ
3162
3163 if (!mutex_trylock(&head->mutex)) {
d278850e 3164 refcount_inc(&head->refs);
5d4f98a2
YZ
3165 spin_unlock(&delayed_refs->lock);
3166
b3b4aa74 3167 btrfs_release_path(path);
5d4f98a2 3168
8cc33e5c
DS
3169 /*
3170 * Mutex was contended, block until it's released and let
3171 * caller try again
3172 */
5d4f98a2
YZ
3173 mutex_lock(&head->mutex);
3174 mutex_unlock(&head->mutex);
d278850e 3175 btrfs_put_delayed_ref_head(head);
5d4f98a2
YZ
3176 return -EAGAIN;
3177 }
d7df2c79 3178 spin_unlock(&delayed_refs->lock);
5d4f98a2 3179
d7df2c79 3180 spin_lock(&head->lock);
0e0adbcf
JB
3181 /*
3182 * XXX: We should replace this with a proper search function in the
3183 * future.
3184 */
3185 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3186 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3187 /* If it's a shared ref we know a cross reference exists */
3188 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3189 ret = 1;
3190 break;
3191 }
5d4f98a2 3192
d7df2c79 3193 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3194
d7df2c79
JB
3195 /*
3196 * If our ref doesn't match the one we're currently looking at
3197 * then we have a cross reference.
3198 */
3199 if (data_ref->root != root->root_key.objectid ||
3200 data_ref->objectid != objectid ||
3201 data_ref->offset != offset) {
3202 ret = 1;
3203 break;
3204 }
5d4f98a2 3205 }
d7df2c79 3206 spin_unlock(&head->lock);
5d4f98a2 3207 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3208 return ret;
3209}
3210
e4c3b2dc 3211static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3212 struct btrfs_path *path,
3213 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3214{
0b246afa
JM
3215 struct btrfs_fs_info *fs_info = root->fs_info;
3216 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3217 struct extent_buffer *leaf;
5d4f98a2
YZ
3218 struct btrfs_extent_data_ref *ref;
3219 struct btrfs_extent_inline_ref *iref;
3220 struct btrfs_extent_item *ei;
f321e491 3221 struct btrfs_key key;
5d4f98a2 3222 u32 item_size;
3de28d57 3223 int type;
be20aa9d 3224 int ret;
925baedd 3225
be20aa9d 3226 key.objectid = bytenr;
31840ae1 3227 key.offset = (u64)-1;
f321e491 3228 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3229
be20aa9d
CM
3230 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3231 if (ret < 0)
3232 goto out;
79787eaa 3233 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3234
3235 ret = -ENOENT;
3236 if (path->slots[0] == 0)
31840ae1 3237 goto out;
be20aa9d 3238
31840ae1 3239 path->slots[0]--;
f321e491 3240 leaf = path->nodes[0];
5d4f98a2 3241 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3242
5d4f98a2 3243 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3244 goto out;
f321e491 3245
5d4f98a2
YZ
3246 ret = 1;
3247 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3248#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3249 if (item_size < sizeof(*ei)) {
3250 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3251 goto out;
3252 }
3253#endif
3254 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3255
5d4f98a2
YZ
3256 if (item_size != sizeof(*ei) +
3257 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3258 goto out;
be20aa9d 3259
5d4f98a2
YZ
3260 if (btrfs_extent_generation(leaf, ei) <=
3261 btrfs_root_last_snapshot(&root->root_item))
3262 goto out;
3263
3264 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3265
3266 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3267 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3268 goto out;
3269
3270 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3271 if (btrfs_extent_refs(leaf, ei) !=
3272 btrfs_extent_data_ref_count(leaf, ref) ||
3273 btrfs_extent_data_ref_root(leaf, ref) !=
3274 root->root_key.objectid ||
3275 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3276 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3277 goto out;
3278
3279 ret = 0;
3280out:
3281 return ret;
3282}
3283
e4c3b2dc
LB
3284int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3285 u64 bytenr)
5d4f98a2
YZ
3286{
3287 struct btrfs_path *path;
3288 int ret;
3289 int ret2;
3290
3291 path = btrfs_alloc_path();
3292 if (!path)
3293 return -ENOENT;
3294
3295 do {
e4c3b2dc 3296 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3297 offset, bytenr);
3298 if (ret && ret != -ENOENT)
f321e491 3299 goto out;
80ff3856 3300
e4c3b2dc 3301 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3302 offset, bytenr);
3303 } while (ret2 == -EAGAIN);
3304
3305 if (ret2 && ret2 != -ENOENT) {
3306 ret = ret2;
3307 goto out;
f321e491 3308 }
5d4f98a2
YZ
3309
3310 if (ret != -ENOENT || ret2 != -ENOENT)
3311 ret = 0;
be20aa9d 3312out:
80ff3856 3313 btrfs_free_path(path);
f0486c68
YZ
3314 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3315 WARN_ON(ret > 0);
f321e491 3316 return ret;
be20aa9d 3317}
c5739bba 3318
5d4f98a2 3319static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3320 struct btrfs_root *root,
5d4f98a2 3321 struct extent_buffer *buf,
e339a6b0 3322 int full_backref, int inc)
31840ae1 3323{
0b246afa 3324 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3325 u64 bytenr;
5d4f98a2
YZ
3326 u64 num_bytes;
3327 u64 parent;
31840ae1 3328 u64 ref_root;
31840ae1 3329 u32 nritems;
31840ae1
ZY
3330 struct btrfs_key key;
3331 struct btrfs_file_extent_item *fi;
3332 int i;
3333 int level;
3334 int ret = 0;
2ff7e61e 3335 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3336 struct btrfs_root *,
b06c4bf5 3337 u64, u64, u64, u64, u64, u64);
31840ae1 3338
fccb84c9 3339
0b246afa 3340 if (btrfs_is_testing(fs_info))
faa2dbf0 3341 return 0;
fccb84c9 3342
31840ae1 3343 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3344 nritems = btrfs_header_nritems(buf);
3345 level = btrfs_header_level(buf);
3346
27cdeb70 3347 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3348 return 0;
31840ae1 3349
5d4f98a2
YZ
3350 if (inc)
3351 process_func = btrfs_inc_extent_ref;
3352 else
3353 process_func = btrfs_free_extent;
31840ae1 3354
5d4f98a2
YZ
3355 if (full_backref)
3356 parent = buf->start;
3357 else
3358 parent = 0;
3359
3360 for (i = 0; i < nritems; i++) {
31840ae1 3361 if (level == 0) {
5d4f98a2 3362 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3363 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3364 continue;
5d4f98a2 3365 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3366 struct btrfs_file_extent_item);
3367 if (btrfs_file_extent_type(buf, fi) ==
3368 BTRFS_FILE_EXTENT_INLINE)
3369 continue;
3370 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3371 if (bytenr == 0)
3372 continue;
5d4f98a2
YZ
3373
3374 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3375 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3376 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3377 parent, ref_root, key.objectid,
b06c4bf5 3378 key.offset);
31840ae1
ZY
3379 if (ret)
3380 goto fail;
3381 } else {
5d4f98a2 3382 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3383 num_bytes = fs_info->nodesize;
84f7d8e6 3384 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3385 parent, ref_root, level - 1, 0);
31840ae1
ZY
3386 if (ret)
3387 goto fail;
3388 }
3389 }
3390 return 0;
3391fail:
5d4f98a2
YZ
3392 return ret;
3393}
3394
3395int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3396 struct extent_buffer *buf, int full_backref)
5d4f98a2 3397{
e339a6b0 3398 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3399}
3400
3401int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3402 struct extent_buffer *buf, int full_backref)
5d4f98a2 3403{
e339a6b0 3404 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3405}
3406
9078a3e1 3407static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3408 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3409 struct btrfs_path *path,
3410 struct btrfs_block_group_cache *cache)
3411{
3412 int ret;
0b246afa 3413 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3414 unsigned long bi;
3415 struct extent_buffer *leaf;
9078a3e1 3416
9078a3e1 3417 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3418 if (ret) {
3419 if (ret > 0)
3420 ret = -ENOENT;
54aa1f4d 3421 goto fail;
df95e7f0 3422 }
5f39d397
CM
3423
3424 leaf = path->nodes[0];
3425 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3426 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3427 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3428fail:
24b89d08 3429 btrfs_release_path(path);
df95e7f0 3430 return ret;
9078a3e1
CM
3431
3432}
3433
4a8c9a62 3434static struct btrfs_block_group_cache *
2ff7e61e 3435next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3436 struct btrfs_block_group_cache *cache)
3437{
3438 struct rb_node *node;
292cbd51 3439
0b246afa 3440 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3441
3442 /* If our block group was removed, we need a full search. */
3443 if (RB_EMPTY_NODE(&cache->cache_node)) {
3444 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3445
0b246afa 3446 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3447 btrfs_put_block_group(cache);
0b246afa 3448 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3449 }
4a8c9a62
YZ
3450 node = rb_next(&cache->cache_node);
3451 btrfs_put_block_group(cache);
3452 if (node) {
3453 cache = rb_entry(node, struct btrfs_block_group_cache,
3454 cache_node);
11dfe35a 3455 btrfs_get_block_group(cache);
4a8c9a62
YZ
3456 } else
3457 cache = NULL;
0b246afa 3458 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3459 return cache;
3460}
3461
0af3d00b
JB
3462static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3463 struct btrfs_trans_handle *trans,
3464 struct btrfs_path *path)
3465{
0b246afa
JM
3466 struct btrfs_fs_info *fs_info = block_group->fs_info;
3467 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3468 struct inode *inode = NULL;
364ecf36 3469 struct extent_changeset *data_reserved = NULL;
0af3d00b 3470 u64 alloc_hint = 0;
2b20982e 3471 int dcs = BTRFS_DC_ERROR;
f8c269d7 3472 u64 num_pages = 0;
0af3d00b
JB
3473 int retries = 0;
3474 int ret = 0;
3475
3476 /*
3477 * If this block group is smaller than 100 megs don't bother caching the
3478 * block group.
3479 */
ee22184b 3480 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3481 spin_lock(&block_group->lock);
3482 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3483 spin_unlock(&block_group->lock);
3484 return 0;
3485 }
3486
0c0ef4bc
JB
3487 if (trans->aborted)
3488 return 0;
0af3d00b 3489again:
77ab86bf 3490 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3491 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3492 ret = PTR_ERR(inode);
b3b4aa74 3493 btrfs_release_path(path);
0af3d00b
JB
3494 goto out;
3495 }
3496
3497 if (IS_ERR(inode)) {
3498 BUG_ON(retries);
3499 retries++;
3500
3501 if (block_group->ro)
3502 goto out_free;
3503
77ab86bf
JM
3504 ret = create_free_space_inode(fs_info, trans, block_group,
3505 path);
0af3d00b
JB
3506 if (ret)
3507 goto out_free;
3508 goto again;
3509 }
3510
3511 /*
3512 * We want to set the generation to 0, that way if anything goes wrong
3513 * from here on out we know not to trust this cache when we load up next
3514 * time.
3515 */
3516 BTRFS_I(inode)->generation = 0;
3517 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3518 if (ret) {
3519 /*
3520 * So theoretically we could recover from this, simply set the
3521 * super cache generation to 0 so we know to invalidate the
3522 * cache, but then we'd have to keep track of the block groups
3523 * that fail this way so we know we _have_ to reset this cache
3524 * before the next commit or risk reading stale cache. So to
3525 * limit our exposure to horrible edge cases lets just abort the
3526 * transaction, this only happens in really bad situations
3527 * anyway.
3528 */
66642832 3529 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3530 goto out_put;
3531 }
0af3d00b
JB
3532 WARN_ON(ret);
3533
8e138e0d
JB
3534 /* We've already setup this transaction, go ahead and exit */
3535 if (block_group->cache_generation == trans->transid &&
3536 i_size_read(inode)) {
3537 dcs = BTRFS_DC_SETUP;
3538 goto out_put;
3539 }
3540
0af3d00b 3541 if (i_size_read(inode) > 0) {
2ff7e61e 3542 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3543 &fs_info->global_block_rsv);
7b61cd92
MX
3544 if (ret)
3545 goto out_put;
3546
77ab86bf 3547 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3548 if (ret)
3549 goto out_put;
3550 }
3551
3552 spin_lock(&block_group->lock);
cf7c1ef6 3553 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3554 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3555 /*
3556 * don't bother trying to write stuff out _if_
3557 * a) we're not cached,
1a79c1f2
LB
3558 * b) we're with nospace_cache mount option,
3559 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3560 */
2b20982e 3561 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3562 spin_unlock(&block_group->lock);
3563 goto out_put;
3564 }
3565 spin_unlock(&block_group->lock);
3566
2968b1f4
JB
3567 /*
3568 * We hit an ENOSPC when setting up the cache in this transaction, just
3569 * skip doing the setup, we've already cleared the cache so we're safe.
3570 */
3571 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3572 ret = -ENOSPC;
3573 goto out_put;
3574 }
3575
6fc823b1
JB
3576 /*
3577 * Try to preallocate enough space based on how big the block group is.
3578 * Keep in mind this has to include any pinned space which could end up
3579 * taking up quite a bit since it's not folded into the other space
3580 * cache.
3581 */
ee22184b 3582 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3583 if (!num_pages)
3584 num_pages = 1;
3585
0af3d00b 3586 num_pages *= 16;
09cbfeaf 3587 num_pages *= PAGE_SIZE;
0af3d00b 3588
364ecf36 3589 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3590 if (ret)
3591 goto out_put;
3592
3593 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3594 num_pages, num_pages,
3595 &alloc_hint);
2968b1f4
JB
3596 /*
3597 * Our cache requires contiguous chunks so that we don't modify a bunch
3598 * of metadata or split extents when writing the cache out, which means
3599 * we can enospc if we are heavily fragmented in addition to just normal
3600 * out of space conditions. So if we hit this just skip setting up any
3601 * other block groups for this transaction, maybe we'll unpin enough
3602 * space the next time around.
3603 */
2b20982e
JB
3604 if (!ret)
3605 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3606 else if (ret == -ENOSPC)
3607 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3608
0af3d00b
JB
3609out_put:
3610 iput(inode);
3611out_free:
b3b4aa74 3612 btrfs_release_path(path);
0af3d00b
JB
3613out:
3614 spin_lock(&block_group->lock);
e65cbb94 3615 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3616 block_group->cache_generation = trans->transid;
2b20982e 3617 block_group->disk_cache_state = dcs;
0af3d00b
JB
3618 spin_unlock(&block_group->lock);
3619
364ecf36 3620 extent_changeset_free(data_reserved);
0af3d00b
JB
3621 return ret;
3622}
3623
dcdf7f6d 3624int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3625 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3626{
3627 struct btrfs_block_group_cache *cache, *tmp;
3628 struct btrfs_transaction *cur_trans = trans->transaction;
3629 struct btrfs_path *path;
3630
3631 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3632 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3633 return 0;
3634
3635 path = btrfs_alloc_path();
3636 if (!path)
3637 return -ENOMEM;
3638
3639 /* Could add new block groups, use _safe just in case */
3640 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3641 dirty_list) {
3642 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3643 cache_save_setup(cache, trans, path);
3644 }
3645
3646 btrfs_free_path(path);
3647 return 0;
3648}
3649
1bbc621e
CM
3650/*
3651 * transaction commit does final block group cache writeback during a
3652 * critical section where nothing is allowed to change the FS. This is
3653 * required in order for the cache to actually match the block group,
3654 * but can introduce a lot of latency into the commit.
3655 *
3656 * So, btrfs_start_dirty_block_groups is here to kick off block group
3657 * cache IO. There's a chance we'll have to redo some of it if the
3658 * block group changes again during the commit, but it greatly reduces
3659 * the commit latency by getting rid of the easy block groups while
3660 * we're still allowing others to join the commit.
3661 */
21217054 3662int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3663{
21217054 3664 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3665 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3666 struct btrfs_transaction *cur_trans = trans->transaction;
3667 int ret = 0;
c9dc4c65 3668 int should_put;
1bbc621e
CM
3669 struct btrfs_path *path = NULL;
3670 LIST_HEAD(dirty);
3671 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3672 int num_started = 0;
1bbc621e
CM
3673 int loops = 0;
3674
3675 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3676 if (list_empty(&cur_trans->dirty_bgs)) {
3677 spin_unlock(&cur_trans->dirty_bgs_lock);
3678 return 0;
1bbc621e 3679 }
b58d1a9e 3680 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3681 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3682
1bbc621e 3683again:
1bbc621e
CM
3684 /*
3685 * make sure all the block groups on our dirty list actually
3686 * exist
3687 */
6c686b35 3688 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3689
3690 if (!path) {
3691 path = btrfs_alloc_path();
3692 if (!path)
3693 return -ENOMEM;
3694 }
3695
b58d1a9e
FM
3696 /*
3697 * cache_write_mutex is here only to save us from balance or automatic
3698 * removal of empty block groups deleting this block group while we are
3699 * writing out the cache
3700 */
3701 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3702 while (!list_empty(&dirty)) {
3703 cache = list_first_entry(&dirty,
3704 struct btrfs_block_group_cache,
3705 dirty_list);
1bbc621e
CM
3706 /*
3707 * this can happen if something re-dirties a block
3708 * group that is already under IO. Just wait for it to
3709 * finish and then do it all again
3710 */
3711 if (!list_empty(&cache->io_list)) {
3712 list_del_init(&cache->io_list);
afdb5718 3713 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3714 btrfs_put_block_group(cache);
3715 }
3716
3717
3718 /*
3719 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3720 * if it should update the cache_state. Don't delete
3721 * until after we wait.
3722 *
3723 * Since we're not running in the commit critical section
3724 * we need the dirty_bgs_lock to protect from update_block_group
3725 */
3726 spin_lock(&cur_trans->dirty_bgs_lock);
3727 list_del_init(&cache->dirty_list);
3728 spin_unlock(&cur_trans->dirty_bgs_lock);
3729
3730 should_put = 1;
3731
3732 cache_save_setup(cache, trans, path);
3733
3734 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3735 cache->io_ctl.inode = NULL;
0b246afa 3736 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3737 cache, path);
1bbc621e
CM
3738 if (ret == 0 && cache->io_ctl.inode) {
3739 num_started++;
3740 should_put = 0;
3741
3742 /*
45ae2c18
NB
3743 * The cache_write_mutex is protecting the
3744 * io_list, also refer to the definition of
3745 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3746 */
3747 list_add_tail(&cache->io_list, io);
3748 } else {
3749 /*
3750 * if we failed to write the cache, the
3751 * generation will be bad and life goes on
3752 */
3753 ret = 0;
3754 }
3755 }
ff1f8250 3756 if (!ret) {
2ff7e61e
JM
3757 ret = write_one_cache_group(trans, fs_info,
3758 path, cache);
ff1f8250
FM
3759 /*
3760 * Our block group might still be attached to the list
3761 * of new block groups in the transaction handle of some
3762 * other task (struct btrfs_trans_handle->new_bgs). This
3763 * means its block group item isn't yet in the extent
3764 * tree. If this happens ignore the error, as we will
3765 * try again later in the critical section of the
3766 * transaction commit.
3767 */
3768 if (ret == -ENOENT) {
3769 ret = 0;
3770 spin_lock(&cur_trans->dirty_bgs_lock);
3771 if (list_empty(&cache->dirty_list)) {
3772 list_add_tail(&cache->dirty_list,
3773 &cur_trans->dirty_bgs);
3774 btrfs_get_block_group(cache);
3775 }
3776 spin_unlock(&cur_trans->dirty_bgs_lock);
3777 } else if (ret) {
66642832 3778 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3779 }
3780 }
1bbc621e
CM
3781
3782 /* if its not on the io list, we need to put the block group */
3783 if (should_put)
3784 btrfs_put_block_group(cache);
3785
3786 if (ret)
3787 break;
b58d1a9e
FM
3788
3789 /*
3790 * Avoid blocking other tasks for too long. It might even save
3791 * us from writing caches for block groups that are going to be
3792 * removed.
3793 */
3794 mutex_unlock(&trans->transaction->cache_write_mutex);
3795 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3796 }
b58d1a9e 3797 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3798
3799 /*
3800 * go through delayed refs for all the stuff we've just kicked off
3801 * and then loop back (just once)
3802 */
c79a70b1 3803 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3804 if (!ret && loops == 0) {
3805 loops++;
3806 spin_lock(&cur_trans->dirty_bgs_lock);
3807 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3808 /*
3809 * dirty_bgs_lock protects us from concurrent block group
3810 * deletes too (not just cache_write_mutex).
3811 */
3812 if (!list_empty(&dirty)) {
3813 spin_unlock(&cur_trans->dirty_bgs_lock);
3814 goto again;
3815 }
1bbc621e 3816 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3817 } else if (ret < 0) {
2ff7e61e 3818 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3819 }
3820
3821 btrfs_free_path(path);
3822 return ret;
3823}
3824
3825int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3826 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3827{
3828 struct btrfs_block_group_cache *cache;
3829 struct btrfs_transaction *cur_trans = trans->transaction;
3830 int ret = 0;
3831 int should_put;
3832 struct btrfs_path *path;
3833 struct list_head *io = &cur_trans->io_bgs;
3834 int num_started = 0;
9078a3e1
CM
3835
3836 path = btrfs_alloc_path();
3837 if (!path)
3838 return -ENOMEM;
3839
ce93ec54 3840 /*
e44081ef
FM
3841 * Even though we are in the critical section of the transaction commit,
3842 * we can still have concurrent tasks adding elements to this
3843 * transaction's list of dirty block groups. These tasks correspond to
3844 * endio free space workers started when writeback finishes for a
3845 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3846 * allocate new block groups as a result of COWing nodes of the root
3847 * tree when updating the free space inode. The writeback for the space
3848 * caches is triggered by an earlier call to
3849 * btrfs_start_dirty_block_groups() and iterations of the following
3850 * loop.
3851 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3852 * delayed refs to make sure we have the best chance at doing this all
3853 * in one shot.
3854 */
e44081ef 3855 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3856 while (!list_empty(&cur_trans->dirty_bgs)) {
3857 cache = list_first_entry(&cur_trans->dirty_bgs,
3858 struct btrfs_block_group_cache,
3859 dirty_list);
c9dc4c65
CM
3860
3861 /*
3862 * this can happen if cache_save_setup re-dirties a block
3863 * group that is already under IO. Just wait for it to
3864 * finish and then do it all again
3865 */
3866 if (!list_empty(&cache->io_list)) {
e44081ef 3867 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3868 list_del_init(&cache->io_list);
afdb5718 3869 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3870 btrfs_put_block_group(cache);
e44081ef 3871 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3872 }
3873
1bbc621e
CM
3874 /*
3875 * don't remove from the dirty list until after we've waited
3876 * on any pending IO
3877 */
ce93ec54 3878 list_del_init(&cache->dirty_list);
e44081ef 3879 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3880 should_put = 1;
3881
1bbc621e 3882 cache_save_setup(cache, trans, path);
c9dc4c65 3883
ce93ec54 3884 if (!ret)
c79a70b1 3885 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3886 (unsigned long) -1);
c9dc4c65
CM
3887
3888 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3889 cache->io_ctl.inode = NULL;
0b246afa 3890 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3891 cache, path);
c9dc4c65
CM
3892 if (ret == 0 && cache->io_ctl.inode) {
3893 num_started++;
3894 should_put = 0;
1bbc621e 3895 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3896 } else {
3897 /*
3898 * if we failed to write the cache, the
3899 * generation will be bad and life goes on
3900 */
3901 ret = 0;
3902 }
3903 }
ff1f8250 3904 if (!ret) {
2ff7e61e
JM
3905 ret = write_one_cache_group(trans, fs_info,
3906 path, cache);
2bc0bb5f
FM
3907 /*
3908 * One of the free space endio workers might have
3909 * created a new block group while updating a free space
3910 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3911 * and hasn't released its transaction handle yet, in
3912 * which case the new block group is still attached to
3913 * its transaction handle and its creation has not
3914 * finished yet (no block group item in the extent tree
3915 * yet, etc). If this is the case, wait for all free
3916 * space endio workers to finish and retry. This is a
3917 * a very rare case so no need for a more efficient and
3918 * complex approach.
3919 */
3920 if (ret == -ENOENT) {
3921 wait_event(cur_trans->writer_wait,
3922 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3923 ret = write_one_cache_group(trans, fs_info,
3924 path, cache);
2bc0bb5f 3925 }
ff1f8250 3926 if (ret)
66642832 3927 btrfs_abort_transaction(trans, ret);
ff1f8250 3928 }
c9dc4c65
CM
3929
3930 /* if its not on the io list, we need to put the block group */
3931 if (should_put)
3932 btrfs_put_block_group(cache);
e44081ef 3933 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3934 }
e44081ef 3935 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3936
45ae2c18
NB
3937 /*
3938 * Refer to the definition of io_bgs member for details why it's safe
3939 * to use it without any locking
3940 */
1bbc621e
CM
3941 while (!list_empty(io)) {
3942 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3943 io_list);
3944 list_del_init(&cache->io_list);
afdb5718 3945 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3946 btrfs_put_block_group(cache);
3947 }
3948
9078a3e1 3949 btrfs_free_path(path);
ce93ec54 3950 return ret;
9078a3e1
CM
3951}
3952
2ff7e61e 3953int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3954{
3955 struct btrfs_block_group_cache *block_group;
3956 int readonly = 0;
3957
0b246afa 3958 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3959 if (!block_group || block_group->ro)
3960 readonly = 1;
3961 if (block_group)
fa9c0d79 3962 btrfs_put_block_group(block_group);
d2fb3437
YZ
3963 return readonly;
3964}
3965
f78c436c
FM
3966bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3967{
3968 struct btrfs_block_group_cache *bg;
3969 bool ret = true;
3970
3971 bg = btrfs_lookup_block_group(fs_info, bytenr);
3972 if (!bg)
3973 return false;
3974
3975 spin_lock(&bg->lock);
3976 if (bg->ro)
3977 ret = false;
3978 else
3979 atomic_inc(&bg->nocow_writers);
3980 spin_unlock(&bg->lock);
3981
3982 /* no put on block group, done by btrfs_dec_nocow_writers */
3983 if (!ret)
3984 btrfs_put_block_group(bg);
3985
3986 return ret;
3987
3988}
3989
3990void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3991{
3992 struct btrfs_block_group_cache *bg;
3993
3994 bg = btrfs_lookup_block_group(fs_info, bytenr);
3995 ASSERT(bg);
3996 if (atomic_dec_and_test(&bg->nocow_writers))
3997 wake_up_atomic_t(&bg->nocow_writers);
3998 /*
3999 * Once for our lookup and once for the lookup done by a previous call
4000 * to btrfs_inc_nocow_writers()
4001 */
4002 btrfs_put_block_group(bg);
4003 btrfs_put_block_group(bg);
4004}
4005
f78c436c
FM
4006void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4007{
5e4def20 4008 wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
f78c436c
FM
4009 TASK_UNINTERRUPTIBLE);
4010}
4011
6ab0a202
JM
4012static const char *alloc_name(u64 flags)
4013{
4014 switch (flags) {
4015 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4016 return "mixed";
4017 case BTRFS_BLOCK_GROUP_METADATA:
4018 return "metadata";
4019 case BTRFS_BLOCK_GROUP_DATA:
4020 return "data";
4021 case BTRFS_BLOCK_GROUP_SYSTEM:
4022 return "system";
4023 default:
4024 WARN_ON(1);
4025 return "invalid-combination";
4026 };
4027}
4028
2be12ef7
NB
4029static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4030 struct btrfs_space_info **new)
4031{
4032
4033 struct btrfs_space_info *space_info;
4034 int i;
4035 int ret;
4036
4037 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4038 if (!space_info)
4039 return -ENOMEM;
4040
4041 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4042 GFP_KERNEL);
4043 if (ret) {
4044 kfree(space_info);
4045 return ret;
4046 }
4047
4048 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4049 INIT_LIST_HEAD(&space_info->block_groups[i]);
4050 init_rwsem(&space_info->groups_sem);
4051 spin_lock_init(&space_info->lock);
4052 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4053 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4054 init_waitqueue_head(&space_info->wait);
4055 INIT_LIST_HEAD(&space_info->ro_bgs);
4056 INIT_LIST_HEAD(&space_info->tickets);
4057 INIT_LIST_HEAD(&space_info->priority_tickets);
4058
4059 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4060 info->space_info_kobj, "%s",
4061 alloc_name(space_info->flags));
4062 if (ret) {
4063 percpu_counter_destroy(&space_info->total_bytes_pinned);
4064 kfree(space_info);
4065 return ret;
4066 }
4067
4068 *new = space_info;
4069 list_add_rcu(&space_info->list, &info->space_info);
4070 if (flags & BTRFS_BLOCK_GROUP_DATA)
4071 info->data_sinfo = space_info;
4072
4073 return ret;
4074}
4075
d2006e6d 4076static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4077 u64 total_bytes, u64 bytes_used,
e40edf2d 4078 u64 bytes_readonly,
593060d7
CM
4079 struct btrfs_space_info **space_info)
4080{
4081 struct btrfs_space_info *found;
b742bb82
YZ
4082 int factor;
4083
4084 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4085 BTRFS_BLOCK_GROUP_RAID10))
4086 factor = 2;
4087 else
4088 factor = 1;
593060d7
CM
4089
4090 found = __find_space_info(info, flags);
d2006e6d
NB
4091 ASSERT(found);
4092 spin_lock(&found->lock);
4093 found->total_bytes += total_bytes;
4094 found->disk_total += total_bytes * factor;
4095 found->bytes_used += bytes_used;
4096 found->disk_used += bytes_used * factor;
4097 found->bytes_readonly += bytes_readonly;
4098 if (total_bytes > 0)
4099 found->full = 0;
4100 space_info_add_new_bytes(info, found, total_bytes -
4101 bytes_used - bytes_readonly);
4102 spin_unlock(&found->lock);
4103 *space_info = found;
593060d7
CM
4104}
4105
8790d502
CM
4106static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4107{
899c81ea
ID
4108 u64 extra_flags = chunk_to_extended(flags) &
4109 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4110
de98ced9 4111 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4112 if (flags & BTRFS_BLOCK_GROUP_DATA)
4113 fs_info->avail_data_alloc_bits |= extra_flags;
4114 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4115 fs_info->avail_metadata_alloc_bits |= extra_flags;
4116 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4117 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4118 write_sequnlock(&fs_info->profiles_lock);
8790d502 4119}
593060d7 4120
fc67c450
ID
4121/*
4122 * returns target flags in extended format or 0 if restripe for this
4123 * chunk_type is not in progress
c6664b42
ID
4124 *
4125 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4126 */
4127static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4128{
4129 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4130 u64 target = 0;
4131
fc67c450
ID
4132 if (!bctl)
4133 return 0;
4134
4135 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4136 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4137 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4138 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4139 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4140 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4141 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4142 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4143 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4144 }
4145
4146 return target;
4147}
4148
a46d11a8
ID
4149/*
4150 * @flags: available profiles in extended format (see ctree.h)
4151 *
e4d8ec0f
ID
4152 * Returns reduced profile in chunk format. If profile changing is in
4153 * progress (either running or paused) picks the target profile (if it's
4154 * already available), otherwise falls back to plain reducing.
a46d11a8 4155 */
2ff7e61e 4156static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4157{
0b246afa 4158 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4159 u64 target;
9c170b26
ZL
4160 u64 raid_type;
4161 u64 allowed = 0;
a061fc8d 4162
fc67c450
ID
4163 /*
4164 * see if restripe for this chunk_type is in progress, if so
4165 * try to reduce to the target profile
4166 */
0b246afa
JM
4167 spin_lock(&fs_info->balance_lock);
4168 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4169 if (target) {
4170 /* pick target profile only if it's already available */
4171 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4172 spin_unlock(&fs_info->balance_lock);
fc67c450 4173 return extended_to_chunk(target);
e4d8ec0f
ID
4174 }
4175 }
0b246afa 4176 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4177
53b381b3 4178 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4179 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4180 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4181 allowed |= btrfs_raid_group[raid_type];
4182 }
4183 allowed &= flags;
4184
4185 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4186 allowed = BTRFS_BLOCK_GROUP_RAID6;
4187 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4188 allowed = BTRFS_BLOCK_GROUP_RAID5;
4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4190 allowed = BTRFS_BLOCK_GROUP_RAID10;
4191 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4192 allowed = BTRFS_BLOCK_GROUP_RAID1;
4193 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4194 allowed = BTRFS_BLOCK_GROUP_RAID0;
4195
4196 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4197
4198 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4199}
4200
2ff7e61e 4201static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4202{
de98ced9 4203 unsigned seq;
f8213bdc 4204 u64 flags;
de98ced9
MX
4205
4206 do {
f8213bdc 4207 flags = orig_flags;
0b246afa 4208 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4209
4210 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4211 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4212 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4213 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4214 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4215 flags |= fs_info->avail_metadata_alloc_bits;
4216 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4217
2ff7e61e 4218 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4219}
4220
1b86826d 4221static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4222{
0b246afa 4223 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4224 u64 flags;
53b381b3 4225 u64 ret;
9ed74f2d 4226
b742bb82
YZ
4227 if (data)
4228 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4229 else if (root == fs_info->chunk_root)
b742bb82 4230 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4231 else
b742bb82 4232 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4233
2ff7e61e 4234 ret = get_alloc_profile(fs_info, flags);
53b381b3 4235 return ret;
6a63209f 4236}
9ed74f2d 4237
1b86826d
JM
4238u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4239{
4240 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4241}
4242
4243u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4244{
4245 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4246}
4247
4248u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4249{
4250 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4251}
4252
4136135b
LB
4253static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4254 bool may_use_included)
4255{
4256 ASSERT(s_info);
4257 return s_info->bytes_used + s_info->bytes_reserved +
4258 s_info->bytes_pinned + s_info->bytes_readonly +
4259 (may_use_included ? s_info->bytes_may_use : 0);
4260}
4261
04f4f916 4262int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4263{
04f4f916 4264 struct btrfs_root *root = inode->root;
b4d7c3c9 4265 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4266 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4267 u64 used;
94b947b2 4268 int ret = 0;
c99f1b0c
ZL
4269 int need_commit = 2;
4270 int have_pinned_space;
6a63209f 4271
6a63209f 4272 /* make sure bytes are sectorsize aligned */
0b246afa 4273 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4274
9dced186 4275 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4276 need_commit = 0;
9dced186 4277 ASSERT(current->journal_info);
0af3d00b
JB
4278 }
4279
6a63209f
JB
4280again:
4281 /* make sure we have enough space to handle the data first */
4282 spin_lock(&data_sinfo->lock);
4136135b 4283 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4284
4285 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4286 struct btrfs_trans_handle *trans;
9ed74f2d 4287
6a63209f
JB
4288 /*
4289 * if we don't have enough free bytes in this space then we need
4290 * to alloc a new chunk.
4291 */
b9fd47cd 4292 if (!data_sinfo->full) {
6a63209f 4293 u64 alloc_target;
9ed74f2d 4294
0e4f8f88 4295 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4296 spin_unlock(&data_sinfo->lock);
1174cade 4297
1b86826d 4298 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4299 /*
4300 * It is ugly that we don't call nolock join
4301 * transaction for the free space inode case here.
4302 * But it is safe because we only do the data space
4303 * reservation for the free space cache in the
4304 * transaction context, the common join transaction
4305 * just increase the counter of the current transaction
4306 * handler, doesn't try to acquire the trans_lock of
4307 * the fs.
4308 */
7a7eaa40 4309 trans = btrfs_join_transaction(root);
a22285a6
YZ
4310 if (IS_ERR(trans))
4311 return PTR_ERR(trans);
9ed74f2d 4312
2ff7e61e 4313 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4314 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4315 btrfs_end_transaction(trans);
d52a5b5f
MX
4316 if (ret < 0) {
4317 if (ret != -ENOSPC)
4318 return ret;
c99f1b0c
ZL
4319 else {
4320 have_pinned_space = 1;
d52a5b5f 4321 goto commit_trans;
c99f1b0c 4322 }
d52a5b5f 4323 }
9ed74f2d 4324
6a63209f
JB
4325 goto again;
4326 }
f2bb8f5c
JB
4327
4328 /*
b150a4f1 4329 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4330 * allocation, and no removed chunk in current transaction,
4331 * don't bother committing the transaction.
f2bb8f5c 4332 */
c99f1b0c
ZL
4333 have_pinned_space = percpu_counter_compare(
4334 &data_sinfo->total_bytes_pinned,
4335 used + bytes - data_sinfo->total_bytes);
6a63209f 4336 spin_unlock(&data_sinfo->lock);
6a63209f 4337
4e06bdd6 4338 /* commit the current transaction and try again */
d52a5b5f 4339commit_trans:
92e2f7e3 4340 if (need_commit) {
c99f1b0c 4341 need_commit--;
b150a4f1 4342
e1746e83
ZL
4343 if (need_commit > 0) {
4344 btrfs_start_delalloc_roots(fs_info, 0, -1);
6374e57a 4345 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4346 (u64)-1);
e1746e83 4347 }
9a4e7276 4348
7a7eaa40 4349 trans = btrfs_join_transaction(root);
a22285a6
YZ
4350 if (IS_ERR(trans))
4351 return PTR_ERR(trans);
c99f1b0c 4352 if (have_pinned_space >= 0 ||
3204d33c
JB
4353 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4354 &trans->transaction->flags) ||
c99f1b0c 4355 need_commit > 0) {
3a45bb20 4356 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4357 if (ret)
4358 return ret;
d7c15171 4359 /*
c2d6cb16
FM
4360 * The cleaner kthread might still be doing iput
4361 * operations. Wait for it to finish so that
4362 * more space is released.
d7c15171 4363 */
0b246afa
JM
4364 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4365 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4366 goto again;
4367 } else {
3a45bb20 4368 btrfs_end_transaction(trans);
94b947b2 4369 }
4e06bdd6 4370 }
9ed74f2d 4371
0b246afa 4372 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4373 "space_info:enospc",
4374 data_sinfo->flags, bytes, 1);
6a63209f
JB
4375 return -ENOSPC;
4376 }
4377 data_sinfo->bytes_may_use += bytes;
0b246afa 4378 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4379 data_sinfo->flags, bytes, 1);
6a63209f 4380 spin_unlock(&data_sinfo->lock);
6a63209f 4381
237c0e9f 4382 return ret;
9ed74f2d 4383}
6a63209f 4384
364ecf36
QW
4385int btrfs_check_data_free_space(struct inode *inode,
4386 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4387{
0b246afa 4388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4389 int ret;
4390
4391 /* align the range */
0b246afa
JM
4392 len = round_up(start + len, fs_info->sectorsize) -
4393 round_down(start, fs_info->sectorsize);
4394 start = round_down(start, fs_info->sectorsize);
4ceff079 4395
04f4f916 4396 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4397 if (ret < 0)
4398 return ret;
4399
1e5ec2e7 4400 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4401 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4402 if (ret < 0)
1e5ec2e7 4403 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4404 else
4405 ret = 0;
4ceff079
QW
4406 return ret;
4407}
4408
4ceff079
QW
4409/*
4410 * Called if we need to clear a data reservation for this inode
4411 * Normally in a error case.
4412 *
51773bec
QW
4413 * This one will *NOT* use accurate qgroup reserved space API, just for case
4414 * which we can't sleep and is sure it won't affect qgroup reserved space.
4415 * Like clear_bit_hook().
4ceff079 4416 */
51773bec
QW
4417void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4418 u64 len)
4ceff079 4419{
0b246afa 4420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4421 struct btrfs_space_info *data_sinfo;
4422
4423 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4424 len = round_up(start + len, fs_info->sectorsize) -
4425 round_down(start, fs_info->sectorsize);
4426 start = round_down(start, fs_info->sectorsize);
4ceff079 4427
0b246afa 4428 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4429 spin_lock(&data_sinfo->lock);
4430 if (WARN_ON(data_sinfo->bytes_may_use < len))
4431 data_sinfo->bytes_may_use = 0;
4432 else
4433 data_sinfo->bytes_may_use -= len;
0b246afa 4434 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4435 data_sinfo->flags, len, 0);
4436 spin_unlock(&data_sinfo->lock);
4437}
4438
51773bec
QW
4439/*
4440 * Called if we need to clear a data reservation for this inode
4441 * Normally in a error case.
4442 *
01327610 4443 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4444 * space framework.
4445 */
bc42bda2
QW
4446void btrfs_free_reserved_data_space(struct inode *inode,
4447 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4448{
0c476a5d
JM
4449 struct btrfs_root *root = BTRFS_I(inode)->root;
4450
4451 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4452 len = round_up(start + len, root->fs_info->sectorsize) -
4453 round_down(start, root->fs_info->sectorsize);
4454 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4455
51773bec 4456 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4457 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4458}
4459
97e728d4 4460static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4461{
97e728d4
JB
4462 struct list_head *head = &info->space_info;
4463 struct btrfs_space_info *found;
e3ccfa98 4464
97e728d4
JB
4465 rcu_read_lock();
4466 list_for_each_entry_rcu(found, head, list) {
4467 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4468 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4469 }
97e728d4 4470 rcu_read_unlock();
e3ccfa98
JB
4471}
4472
3c76cd84
MX
4473static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4474{
4475 return (global->size << 1);
4476}
4477
2ff7e61e 4478static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4479 struct btrfs_space_info *sinfo, int force)
32c00aff 4480{
0b246afa 4481 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4482 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4483 u64 thresh;
e3ccfa98 4484
0e4f8f88
CM
4485 if (force == CHUNK_ALLOC_FORCE)
4486 return 1;
4487
fb25e914
JB
4488 /*
4489 * We need to take into account the global rsv because for all intents
4490 * and purposes it's used space. Don't worry about locking the
4491 * global_rsv, it doesn't change except when the transaction commits.
4492 */
54338b5c 4493 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4494 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4495
0e4f8f88
CM
4496 /*
4497 * in limited mode, we want to have some free space up to
4498 * about 1% of the FS size.
4499 */
4500 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4501 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4502 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4503
8d8aafee 4504 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4505 return 1;
4506 }
0e4f8f88 4507
8d8aafee 4508 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4509 return 0;
424499db 4510 return 1;
32c00aff
JB
4511}
4512
2ff7e61e 4513static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4514{
4515 u64 num_dev;
4516
53b381b3
DW
4517 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4518 BTRFS_BLOCK_GROUP_RAID0 |
4519 BTRFS_BLOCK_GROUP_RAID5 |
4520 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4521 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4522 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4523 num_dev = 2;
4524 else
4525 num_dev = 1; /* DUP or single */
4526
39c2d7fa 4527 return num_dev;
15d1ff81
LB
4528}
4529
39c2d7fa
FM
4530/*
4531 * If @is_allocation is true, reserve space in the system space info necessary
4532 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4533 * removing a chunk.
4534 */
4535void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4536 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4537{
4538 struct btrfs_space_info *info;
4539 u64 left;
4540 u64 thresh;
4fbcdf66 4541 int ret = 0;
39c2d7fa 4542 u64 num_devs;
4fbcdf66
FM
4543
4544 /*
4545 * Needed because we can end up allocating a system chunk and for an
4546 * atomic and race free space reservation in the chunk block reserve.
4547 */
a32bf9a3 4548 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4549
0b246afa 4550 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4551 spin_lock(&info->lock);
4136135b 4552 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4553 spin_unlock(&info->lock);
4554
2ff7e61e 4555 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4556
4557 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4558 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4559 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4560
0b246afa
JM
4561 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4562 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4563 left, thresh, type);
4564 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4565 }
4566
4567 if (left < thresh) {
1b86826d 4568 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4569
4fbcdf66
FM
4570 /*
4571 * Ignore failure to create system chunk. We might end up not
4572 * needing it, as we might not need to COW all nodes/leafs from
4573 * the paths we visit in the chunk tree (they were already COWed
4574 * or created in the current transaction for example).
4575 */
2ff7e61e 4576 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4577 }
4578
4579 if (!ret) {
0b246afa
JM
4580 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4581 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4582 thresh, BTRFS_RESERVE_NO_FLUSH);
4583 if (!ret)
4584 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4585 }
4586}
4587
28b737f6
LB
4588/*
4589 * If force is CHUNK_ALLOC_FORCE:
4590 * - return 1 if it successfully allocates a chunk,
4591 * - return errors including -ENOSPC otherwise.
4592 * If force is NOT CHUNK_ALLOC_FORCE:
4593 * - return 0 if it doesn't need to allocate a new chunk,
4594 * - return 1 if it successfully allocates a chunk,
4595 * - return errors including -ENOSPC otherwise.
4596 */
6324fbf3 4597static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4598 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4599{
6324fbf3 4600 struct btrfs_space_info *space_info;
6d74119f 4601 int wait_for_alloc = 0;
9ed74f2d 4602 int ret = 0;
9ed74f2d 4603
c6b305a8
JB
4604 /* Don't re-enter if we're already allocating a chunk */
4605 if (trans->allocating_chunk)
4606 return -ENOSPC;
4607
0b246afa 4608 space_info = __find_space_info(fs_info, flags);
dc2d3005 4609 ASSERT(space_info);
9ed74f2d 4610
6d74119f 4611again:
25179201 4612 spin_lock(&space_info->lock);
9e622d6b 4613 if (force < space_info->force_alloc)
0e4f8f88 4614 force = space_info->force_alloc;
25179201 4615 if (space_info->full) {
2ff7e61e 4616 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4617 ret = -ENOSPC;
4618 else
4619 ret = 0;
25179201 4620 spin_unlock(&space_info->lock);
09fb99a6 4621 return ret;
9ed74f2d
JB
4622 }
4623
2ff7e61e 4624 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4625 spin_unlock(&space_info->lock);
6d74119f
JB
4626 return 0;
4627 } else if (space_info->chunk_alloc) {
4628 wait_for_alloc = 1;
4629 } else {
4630 space_info->chunk_alloc = 1;
9ed74f2d 4631 }
0e4f8f88 4632
25179201 4633 spin_unlock(&space_info->lock);
9ed74f2d 4634
6d74119f
JB
4635 mutex_lock(&fs_info->chunk_mutex);
4636
4637 /*
4638 * The chunk_mutex is held throughout the entirety of a chunk
4639 * allocation, so once we've acquired the chunk_mutex we know that the
4640 * other guy is done and we need to recheck and see if we should
4641 * allocate.
4642 */
4643 if (wait_for_alloc) {
4644 mutex_unlock(&fs_info->chunk_mutex);
4645 wait_for_alloc = 0;
4646 goto again;
4647 }
4648
c6b305a8
JB
4649 trans->allocating_chunk = true;
4650
67377734
JB
4651 /*
4652 * If we have mixed data/metadata chunks we want to make sure we keep
4653 * allocating mixed chunks instead of individual chunks.
4654 */
4655 if (btrfs_mixed_space_info(space_info))
4656 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4657
97e728d4
JB
4658 /*
4659 * if we're doing a data chunk, go ahead and make sure that
4660 * we keep a reasonable number of metadata chunks allocated in the
4661 * FS as well.
4662 */
9ed74f2d 4663 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4664 fs_info->data_chunk_allocations++;
4665 if (!(fs_info->data_chunk_allocations %
4666 fs_info->metadata_ratio))
4667 force_metadata_allocation(fs_info);
9ed74f2d
JB
4668 }
4669
15d1ff81
LB
4670 /*
4671 * Check if we have enough space in SYSTEM chunk because we may need
4672 * to update devices.
4673 */
2ff7e61e 4674 check_system_chunk(trans, fs_info, flags);
15d1ff81 4675
2ff7e61e 4676 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4677 trans->allocating_chunk = false;
92b8e897 4678
9ed74f2d 4679 spin_lock(&space_info->lock);
a81cb9a2
AO
4680 if (ret < 0 && ret != -ENOSPC)
4681 goto out;
9ed74f2d 4682 if (ret)
6324fbf3 4683 space_info->full = 1;
424499db
YZ
4684 else
4685 ret = 1;
6d74119f 4686
0e4f8f88 4687 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4688out:
6d74119f 4689 space_info->chunk_alloc = 0;
9ed74f2d 4690 spin_unlock(&space_info->lock);
a25c75d5 4691 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4692 /*
4693 * When we allocate a new chunk we reserve space in the chunk block
4694 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4695 * add new nodes/leafs to it if we end up needing to do it when
4696 * inserting the chunk item and updating device items as part of the
4697 * second phase of chunk allocation, performed by
4698 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4699 * large number of new block groups to create in our transaction
4700 * handle's new_bgs list to avoid exhausting the chunk block reserve
4701 * in extreme cases - like having a single transaction create many new
4702 * block groups when starting to write out the free space caches of all
4703 * the block groups that were made dirty during the lifetime of the
4704 * transaction.
4705 */
d9a0540a 4706 if (trans->can_flush_pending_bgs &&
ee22184b 4707 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
6c686b35 4708 btrfs_create_pending_block_groups(trans);
00d80e34
FM
4709 btrfs_trans_release_chunk_metadata(trans);
4710 }
0f9dd46c 4711 return ret;
6324fbf3 4712}
9ed74f2d 4713
c1c4919b 4714static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4715 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4716 enum btrfs_reserve_flush_enum flush,
4717 bool system_chunk)
a80c8dcf 4718{
0b246afa 4719 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4720 u64 profile;
3c76cd84 4721 u64 space_size;
a80c8dcf
JB
4722 u64 avail;
4723 u64 used;
4724
957780eb
JB
4725 /* Don't overcommit when in mixed mode. */
4726 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4727 return 0;
4728
c1c4919b
JM
4729 if (system_chunk)
4730 profile = btrfs_system_alloc_profile(fs_info);
4731 else
4732 profile = btrfs_metadata_alloc_profile(fs_info);
4733
4136135b 4734 used = btrfs_space_info_used(space_info, false);
96f1bb57 4735
96f1bb57
JB
4736 /*
4737 * We only want to allow over committing if we have lots of actual space
4738 * free, but if we don't have enough space to handle the global reserve
4739 * space then we could end up having a real enospc problem when trying
4740 * to allocate a chunk or some other such important allocation.
4741 */
3c76cd84
MX
4742 spin_lock(&global_rsv->lock);
4743 space_size = calc_global_rsv_need_space(global_rsv);
4744 spin_unlock(&global_rsv->lock);
4745 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4746 return 0;
4747
4748 used += space_info->bytes_may_use;
a80c8dcf 4749
a5ed45f8 4750 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4751
4752 /*
4753 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4754 * space is actually useable. For raid56, the space info used
4755 * doesn't include the parity drive, so we don't have to
4756 * change the math
a80c8dcf
JB
4757 */
4758 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4759 BTRFS_BLOCK_GROUP_RAID1 |
4760 BTRFS_BLOCK_GROUP_RAID10))
4761 avail >>= 1;
4762
4763 /*
561c294d
MX
4764 * If we aren't flushing all things, let us overcommit up to
4765 * 1/2th of the space. If we can flush, don't let us overcommit
4766 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4767 */
08e007d2 4768 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4769 avail >>= 3;
a80c8dcf 4770 else
14575aef 4771 avail >>= 1;
a80c8dcf 4772
14575aef 4773 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4774 return 1;
4775 return 0;
4776}
4777
2ff7e61e 4778static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4779 unsigned long nr_pages, int nr_items)
da633a42 4780{
0b246afa 4781 struct super_block *sb = fs_info->sb;
da633a42 4782
925a6efb
JB
4783 if (down_read_trylock(&sb->s_umount)) {
4784 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4785 up_read(&sb->s_umount);
4786 } else {
da633a42
MX
4787 /*
4788 * We needn't worry the filesystem going from r/w to r/o though
4789 * we don't acquire ->s_umount mutex, because the filesystem
4790 * should guarantee the delalloc inodes list be empty after
4791 * the filesystem is readonly(all dirty pages are written to
4792 * the disk).
4793 */
0b246afa 4794 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4795 if (!current->journal_info)
0b246afa 4796 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4797 }
4798}
4799
6374e57a 4800static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4801 u64 to_reclaim)
18cd8ea6
MX
4802{
4803 u64 bytes;
6374e57a 4804 u64 nr;
18cd8ea6 4805
2ff7e61e 4806 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4807 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4808 if (!nr)
4809 nr = 1;
4810 return nr;
4811}
4812
ee22184b 4813#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4814
9ed74f2d 4815/*
5da9d01b 4816 * shrink metadata reservation for delalloc
9ed74f2d 4817 */
c1c4919b
JM
4818static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4819 u64 orig, bool wait_ordered)
5da9d01b 4820{
0019f10d 4821 struct btrfs_space_info *space_info;
663350ac 4822 struct btrfs_trans_handle *trans;
f4c738c2 4823 u64 delalloc_bytes;
5da9d01b 4824 u64 max_reclaim;
6374e57a 4825 u64 items;
b1953bce 4826 long time_left;
d3ee29e3
MX
4827 unsigned long nr_pages;
4828 int loops;
5da9d01b 4829
c61a16a7 4830 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4831 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4832 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4833
663350ac 4834 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4835 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4836
963d678b 4837 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4838 &fs_info->delalloc_bytes);
f4c738c2 4839 if (delalloc_bytes == 0) {
fdb5effd 4840 if (trans)
f4c738c2 4841 return;
38c135af 4842 if (wait_ordered)
0b246afa 4843 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4844 return;
fdb5effd
JB
4845 }
4846
d3ee29e3 4847 loops = 0;
f4c738c2
JB
4848 while (delalloc_bytes && loops < 3) {
4849 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4850 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4851 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4852 /*
4853 * We need to wait for the async pages to actually start before
4854 * we do anything.
4855 */
0b246afa 4856 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4857 if (!max_reclaim)
4858 goto skip_async;
4859
4860 if (max_reclaim <= nr_pages)
4861 max_reclaim = 0;
4862 else
4863 max_reclaim -= nr_pages;
dea31f52 4864
0b246afa
JM
4865 wait_event(fs_info->async_submit_wait,
4866 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4867 (int)max_reclaim);
4868skip_async:
0019f10d 4869 spin_lock(&space_info->lock);
957780eb
JB
4870 if (list_empty(&space_info->tickets) &&
4871 list_empty(&space_info->priority_tickets)) {
4872 spin_unlock(&space_info->lock);
4873 break;
4874 }
0019f10d 4875 spin_unlock(&space_info->lock);
5da9d01b 4876
36e39c40 4877 loops++;
f104d044 4878 if (wait_ordered && !trans) {
0b246afa 4879 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4880 } else {
f4c738c2 4881 time_left = schedule_timeout_killable(1);
f104d044
JB
4882 if (time_left)
4883 break;
4884 }
963d678b 4885 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4886 &fs_info->delalloc_bytes);
5da9d01b 4887 }
5da9d01b
YZ
4888}
4889
996478ca
JB
4890struct reserve_ticket {
4891 u64 bytes;
4892 int error;
4893 struct list_head list;
4894 wait_queue_head_t wait;
4895};
4896
663350ac
JB
4897/**
4898 * maybe_commit_transaction - possibly commit the transaction if its ok to
4899 * @root - the root we're allocating for
4900 * @bytes - the number of bytes we want to reserve
4901 * @force - force the commit
8bb8ab2e 4902 *
663350ac
JB
4903 * This will check to make sure that committing the transaction will actually
4904 * get us somewhere and then commit the transaction if it does. Otherwise it
4905 * will return -ENOSPC.
8bb8ab2e 4906 */
0c9ab349 4907static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4908 struct btrfs_space_info *space_info)
663350ac 4909{
996478ca 4910 struct reserve_ticket *ticket = NULL;
0b246afa 4911 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4912 struct btrfs_trans_handle *trans;
996478ca 4913 u64 bytes;
663350ac
JB
4914
4915 trans = (struct btrfs_trans_handle *)current->journal_info;
4916 if (trans)
4917 return -EAGAIN;
4918
996478ca
JB
4919 spin_lock(&space_info->lock);
4920 if (!list_empty(&space_info->priority_tickets))
4921 ticket = list_first_entry(&space_info->priority_tickets,
4922 struct reserve_ticket, list);
4923 else if (!list_empty(&space_info->tickets))
4924 ticket = list_first_entry(&space_info->tickets,
4925 struct reserve_ticket, list);
4926 bytes = (ticket) ? ticket->bytes : 0;
4927 spin_unlock(&space_info->lock);
4928
4929 if (!bytes)
4930 return 0;
663350ac
JB
4931
4932 /* See if there is enough pinned space to make this reservation */
b150a4f1 4933 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4934 bytes) >= 0)
663350ac 4935 goto commit;
663350ac
JB
4936
4937 /*
4938 * See if there is some space in the delayed insertion reservation for
4939 * this reservation.
4940 */
4941 if (space_info != delayed_rsv->space_info)
4942 return -ENOSPC;
4943
4944 spin_lock(&delayed_rsv->lock);
996478ca
JB
4945 if (delayed_rsv->size > bytes)
4946 bytes = 0;
4947 else
4948 bytes -= delayed_rsv->size;
057aac3e
NB
4949 spin_unlock(&delayed_rsv->lock);
4950
b150a4f1 4951 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4952 bytes) < 0) {
663350ac
JB
4953 return -ENOSPC;
4954 }
663350ac
JB
4955
4956commit:
a9b3311e 4957 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4958 if (IS_ERR(trans))
4959 return -ENOSPC;
4960
3a45bb20 4961 return btrfs_commit_transaction(trans);
663350ac
JB
4962}
4963
e38ae7a0
NB
4964/*
4965 * Try to flush some data based on policy set by @state. This is only advisory
4966 * and may fail for various reasons. The caller is supposed to examine the
4967 * state of @space_info to detect the outcome.
4968 */
4969static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4970 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4971 int state)
96c3f433 4972{
a9b3311e 4973 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4974 struct btrfs_trans_handle *trans;
4975 int nr;
f4c738c2 4976 int ret = 0;
96c3f433
JB
4977
4978 switch (state) {
96c3f433
JB
4979 case FLUSH_DELAYED_ITEMS_NR:
4980 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4981 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4982 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4983 else
96c3f433 4984 nr = -1;
18cd8ea6 4985
96c3f433
JB
4986 trans = btrfs_join_transaction(root);
4987 if (IS_ERR(trans)) {
4988 ret = PTR_ERR(trans);
4989 break;
4990 }
e5c304e6 4991 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4992 btrfs_end_transaction(trans);
96c3f433 4993 break;
67b0fd63
JB
4994 case FLUSH_DELALLOC:
4995 case FLUSH_DELALLOC_WAIT:
7bdd6277 4996 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4997 state == FLUSH_DELALLOC_WAIT);
4998 break;
ea658bad
JB
4999 case ALLOC_CHUNK:
5000 trans = btrfs_join_transaction(root);
5001 if (IS_ERR(trans)) {
5002 ret = PTR_ERR(trans);
5003 break;
5004 }
2ff7e61e 5005 ret = do_chunk_alloc(trans, fs_info,
1b86826d 5006 btrfs_metadata_alloc_profile(fs_info),
ea658bad 5007 CHUNK_ALLOC_NO_FORCE);
3a45bb20 5008 btrfs_end_transaction(trans);
eecba891 5009 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
5010 ret = 0;
5011 break;
96c3f433 5012 case COMMIT_TRANS:
996478ca 5013 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
5014 break;
5015 default:
5016 ret = -ENOSPC;
5017 break;
5018 }
5019
7bdd6277
NB
5020 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5021 ret);
e38ae7a0 5022 return;
96c3f433 5023}
21c7e756
MX
5024
5025static inline u64
c1c4919b
JM
5026btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5027 struct btrfs_space_info *space_info,
5028 bool system_chunk)
21c7e756 5029{
957780eb 5030 struct reserve_ticket *ticket;
21c7e756
MX
5031 u64 used;
5032 u64 expected;
957780eb 5033 u64 to_reclaim = 0;
21c7e756 5034
957780eb
JB
5035 list_for_each_entry(ticket, &space_info->tickets, list)
5036 to_reclaim += ticket->bytes;
5037 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5038 to_reclaim += ticket->bytes;
5039 if (to_reclaim)
5040 return to_reclaim;
21c7e756 5041
e0af2484 5042 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5043 if (can_overcommit(fs_info, space_info, to_reclaim,
5044 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5045 return 0;
5046
0eee8a49
NB
5047 used = btrfs_space_info_used(space_info, true);
5048
c1c4919b
JM
5049 if (can_overcommit(fs_info, space_info, SZ_1M,
5050 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5051 expected = div_factor_fine(space_info->total_bytes, 95);
5052 else
5053 expected = div_factor_fine(space_info->total_bytes, 90);
5054
5055 if (used > expected)
5056 to_reclaim = used - expected;
5057 else
5058 to_reclaim = 0;
5059 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5060 space_info->bytes_reserved);
21c7e756
MX
5061 return to_reclaim;
5062}
5063
c1c4919b
JM
5064static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5065 struct btrfs_space_info *space_info,
5066 u64 used, bool system_chunk)
21c7e756 5067{
365c5313
JB
5068 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5069
5070 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5071 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5072 return 0;
5073
c1c4919b
JM
5074 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5075 system_chunk))
d38b349c
JB
5076 return 0;
5077
0b246afa
JM
5078 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5079 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5080}
5081
957780eb 5082static void wake_all_tickets(struct list_head *head)
21c7e756 5083{
957780eb 5084 struct reserve_ticket *ticket;
25ce459c 5085
957780eb
JB
5086 while (!list_empty(head)) {
5087 ticket = list_first_entry(head, struct reserve_ticket, list);
5088 list_del_init(&ticket->list);
5089 ticket->error = -ENOSPC;
5090 wake_up(&ticket->wait);
21c7e756 5091 }
21c7e756
MX
5092}
5093
957780eb
JB
5094/*
5095 * This is for normal flushers, we can wait all goddamned day if we want to. We
5096 * will loop and continuously try to flush as long as we are making progress.
5097 * We count progress as clearing off tickets each time we have to loop.
5098 */
21c7e756
MX
5099static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5100{
5101 struct btrfs_fs_info *fs_info;
5102 struct btrfs_space_info *space_info;
5103 u64 to_reclaim;
5104 int flush_state;
957780eb 5105 int commit_cycles = 0;
ce129655 5106 u64 last_tickets_id;
21c7e756
MX
5107
5108 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5109 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5110
957780eb 5111 spin_lock(&space_info->lock);
c1c4919b
JM
5112 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5113 false);
957780eb
JB
5114 if (!to_reclaim) {
5115 space_info->flush = 0;
5116 spin_unlock(&space_info->lock);
21c7e756 5117 return;
957780eb 5118 }
ce129655 5119 last_tickets_id = space_info->tickets_id;
957780eb 5120 spin_unlock(&space_info->lock);
21c7e756
MX
5121
5122 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5123 do {
e38ae7a0 5124 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5125 spin_lock(&space_info->lock);
5126 if (list_empty(&space_info->tickets)) {
5127 space_info->flush = 0;
5128 spin_unlock(&space_info->lock);
5129 return;
5130 }
c1c4919b
JM
5131 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5132 space_info,
5133 false);
ce129655 5134 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5135 flush_state++;
5136 } else {
ce129655 5137 last_tickets_id = space_info->tickets_id;
957780eb
JB
5138 flush_state = FLUSH_DELAYED_ITEMS_NR;
5139 if (commit_cycles)
5140 commit_cycles--;
5141 }
5142
5143 if (flush_state > COMMIT_TRANS) {
5144 commit_cycles++;
5145 if (commit_cycles > 2) {
5146 wake_all_tickets(&space_info->tickets);
5147 space_info->flush = 0;
5148 } else {
5149 flush_state = FLUSH_DELAYED_ITEMS_NR;
5150 }
5151 }
5152 spin_unlock(&space_info->lock);
5153 } while (flush_state <= COMMIT_TRANS);
5154}
5155
5156void btrfs_init_async_reclaim_work(struct work_struct *work)
5157{
5158 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5159}
5160
5161static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5162 struct btrfs_space_info *space_info,
5163 struct reserve_ticket *ticket)
5164{
5165 u64 to_reclaim;
5166 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5167
5168 spin_lock(&space_info->lock);
c1c4919b
JM
5169 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5170 false);
957780eb
JB
5171 if (!to_reclaim) {
5172 spin_unlock(&space_info->lock);
5173 return;
5174 }
5175 spin_unlock(&space_info->lock);
5176
21c7e756 5177 do {
7bdd6277 5178 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5179 flush_state++;
957780eb
JB
5180 spin_lock(&space_info->lock);
5181 if (ticket->bytes == 0) {
5182 spin_unlock(&space_info->lock);
21c7e756 5183 return;
957780eb
JB
5184 }
5185 spin_unlock(&space_info->lock);
5186
5187 /*
5188 * Priority flushers can't wait on delalloc without
5189 * deadlocking.
5190 */
5191 if (flush_state == FLUSH_DELALLOC ||
5192 flush_state == FLUSH_DELALLOC_WAIT)
5193 flush_state = ALLOC_CHUNK;
365c5313 5194 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5195}
5196
957780eb
JB
5197static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5198 struct btrfs_space_info *space_info,
5199 struct reserve_ticket *ticket, u64 orig_bytes)
5200
21c7e756 5201{
957780eb
JB
5202 DEFINE_WAIT(wait);
5203 int ret = 0;
5204
5205 spin_lock(&space_info->lock);
5206 while (ticket->bytes > 0 && ticket->error == 0) {
5207 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5208 if (ret) {
5209 ret = -EINTR;
5210 break;
5211 }
5212 spin_unlock(&space_info->lock);
5213
5214 schedule();
5215
5216 finish_wait(&ticket->wait, &wait);
5217 spin_lock(&space_info->lock);
5218 }
5219 if (!ret)
5220 ret = ticket->error;
5221 if (!list_empty(&ticket->list))
5222 list_del_init(&ticket->list);
5223 if (ticket->bytes && ticket->bytes < orig_bytes) {
5224 u64 num_bytes = orig_bytes - ticket->bytes;
5225 space_info->bytes_may_use -= num_bytes;
5226 trace_btrfs_space_reservation(fs_info, "space_info",
5227 space_info->flags, num_bytes, 0);
5228 }
5229 spin_unlock(&space_info->lock);
5230
5231 return ret;
21c7e756
MX
5232}
5233
4a92b1b8
JB
5234/**
5235 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5236 * @root - the root we're allocating for
957780eb 5237 * @space_info - the space info we want to allocate from
4a92b1b8 5238 * @orig_bytes - the number of bytes we want
48fc7f7e 5239 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5240 *
01327610 5241 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5242 * with the block_rsv. If there is not enough space it will make an attempt to
5243 * flush out space to make room. It will do this by flushing delalloc if
5244 * possible or committing the transaction. If flush is 0 then no attempts to
5245 * regain reservations will be made and this will fail if there is not enough
5246 * space already.
8bb8ab2e 5247 */
c1c4919b 5248static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5249 struct btrfs_space_info *space_info,
5250 u64 orig_bytes,
c1c4919b
JM
5251 enum btrfs_reserve_flush_enum flush,
5252 bool system_chunk)
9ed74f2d 5253{
957780eb 5254 struct reserve_ticket ticket;
2bf64758 5255 u64 used;
8bb8ab2e 5256 int ret = 0;
9ed74f2d 5257
957780eb 5258 ASSERT(orig_bytes);
8ca17f0f 5259 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5260
8bb8ab2e 5261 spin_lock(&space_info->lock);
fdb5effd 5262 ret = -ENOSPC;
4136135b 5263 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5264
8bb8ab2e 5265 /*
957780eb
JB
5266 * If we have enough space then hooray, make our reservation and carry
5267 * on. If not see if we can overcommit, and if we can, hooray carry on.
5268 * If not things get more complicated.
8bb8ab2e 5269 */
957780eb
JB
5270 if (used + orig_bytes <= space_info->total_bytes) {
5271 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5272 trace_btrfs_space_reservation(fs_info, "space_info",
5273 space_info->flags, orig_bytes, 1);
957780eb 5274 ret = 0;
c1c4919b
JM
5275 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5276 system_chunk)) {
44734ed1 5277 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5278 trace_btrfs_space_reservation(fs_info, "space_info",
5279 space_info->flags, orig_bytes, 1);
44734ed1 5280 ret = 0;
2bf64758
JB
5281 }
5282
8bb8ab2e 5283 /*
957780eb
JB
5284 * If we couldn't make a reservation then setup our reservation ticket
5285 * and kick the async worker if it's not already running.
08e007d2 5286 *
957780eb
JB
5287 * If we are a priority flusher then we just need to add our ticket to
5288 * the list and we will do our own flushing further down.
8bb8ab2e 5289 */
72bcd99d 5290 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5291 ticket.bytes = orig_bytes;
5292 ticket.error = 0;
5293 init_waitqueue_head(&ticket.wait);
5294 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5295 list_add_tail(&ticket.list, &space_info->tickets);
5296 if (!space_info->flush) {
5297 space_info->flush = 1;
0b246afa 5298 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5299 space_info->flags,
5300 orig_bytes, flush,
5301 "enospc");
957780eb 5302 queue_work(system_unbound_wq,
c1c4919b 5303 &fs_info->async_reclaim_work);
957780eb
JB
5304 }
5305 } else {
5306 list_add_tail(&ticket.list,
5307 &space_info->priority_tickets);
5308 }
21c7e756
MX
5309 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5310 used += orig_bytes;
f6acfd50
JB
5311 /*
5312 * We will do the space reservation dance during log replay,
5313 * which means we won't have fs_info->fs_root set, so don't do
5314 * the async reclaim as we will panic.
5315 */
0b246afa 5316 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5317 need_do_async_reclaim(fs_info, space_info,
5318 used, system_chunk) &&
0b246afa
JM
5319 !work_busy(&fs_info->async_reclaim_work)) {
5320 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5321 orig_bytes, flush, "preempt");
21c7e756 5322 queue_work(system_unbound_wq,
0b246afa 5323 &fs_info->async_reclaim_work);
f376df2b 5324 }
8bb8ab2e 5325 }
f0486c68 5326 spin_unlock(&space_info->lock);
08e007d2 5327 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5328 return ret;
f0486c68 5329
957780eb 5330 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5331 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5332 orig_bytes);
08e007d2 5333
957780eb 5334 ret = 0;
0b246afa 5335 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5336 spin_lock(&space_info->lock);
5337 if (ticket.bytes) {
5338 if (ticket.bytes < orig_bytes) {
5339 u64 num_bytes = orig_bytes - ticket.bytes;
5340 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5341 trace_btrfs_space_reservation(fs_info, "space_info",
5342 space_info->flags,
5343 num_bytes, 0);
08e007d2 5344
957780eb
JB
5345 }
5346 list_del_init(&ticket.list);
5347 ret = -ENOSPC;
5348 }
5349 spin_unlock(&space_info->lock);
5350 ASSERT(list_empty(&ticket.list));
5351 return ret;
5352}
8bb8ab2e 5353
957780eb
JB
5354/**
5355 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5356 * @root - the root we're allocating for
5357 * @block_rsv - the block_rsv we're allocating for
5358 * @orig_bytes - the number of bytes we want
5359 * @flush - whether or not we can flush to make our reservation
5360 *
5361 * This will reserve orgi_bytes number of bytes from the space info associated
5362 * with the block_rsv. If there is not enough space it will make an attempt to
5363 * flush out space to make room. It will do this by flushing delalloc if
5364 * possible or committing the transaction. If flush is 0 then no attempts to
5365 * regain reservations will be made and this will fail if there is not enough
5366 * space already.
5367 */
5368static int reserve_metadata_bytes(struct btrfs_root *root,
5369 struct btrfs_block_rsv *block_rsv,
5370 u64 orig_bytes,
5371 enum btrfs_reserve_flush_enum flush)
5372{
0b246afa
JM
5373 struct btrfs_fs_info *fs_info = root->fs_info;
5374 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5375 int ret;
c1c4919b 5376 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5377
c1c4919b
JM
5378 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5379 orig_bytes, flush, system_chunk);
5d80366e
JB
5380 if (ret == -ENOSPC &&
5381 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5382 if (block_rsv != global_rsv &&
5383 !block_rsv_use_bytes(global_rsv, orig_bytes))
5384 ret = 0;
5385 }
9a3daff3 5386 if (ret == -ENOSPC) {
0b246afa 5387 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5388 block_rsv->space_info->flags,
5389 orig_bytes, 1);
9a3daff3
NB
5390
5391 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5392 dump_space_info(fs_info, block_rsv->space_info,
5393 orig_bytes, 0);
5394 }
f0486c68
YZ
5395 return ret;
5396}
5397
79787eaa
JM
5398static struct btrfs_block_rsv *get_block_rsv(
5399 const struct btrfs_trans_handle *trans,
5400 const struct btrfs_root *root)
f0486c68 5401{
0b246afa 5402 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5403 struct btrfs_block_rsv *block_rsv = NULL;
5404
e9cf439f 5405 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5406 (root == fs_info->csum_root && trans->adding_csums) ||
5407 (root == fs_info->uuid_root))
f7a81ea4
SB
5408 block_rsv = trans->block_rsv;
5409
4c13d758 5410 if (!block_rsv)
f0486c68
YZ
5411 block_rsv = root->block_rsv;
5412
5413 if (!block_rsv)
0b246afa 5414 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5415
5416 return block_rsv;
5417}
5418
5419static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5420 u64 num_bytes)
5421{
5422 int ret = -ENOSPC;
5423 spin_lock(&block_rsv->lock);
5424 if (block_rsv->reserved >= num_bytes) {
5425 block_rsv->reserved -= num_bytes;
5426 if (block_rsv->reserved < block_rsv->size)
5427 block_rsv->full = 0;
5428 ret = 0;
5429 }
5430 spin_unlock(&block_rsv->lock);
5431 return ret;
5432}
5433
5434static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5435 u64 num_bytes, int update_size)
5436{
5437 spin_lock(&block_rsv->lock);
5438 block_rsv->reserved += num_bytes;
5439 if (update_size)
5440 block_rsv->size += num_bytes;
5441 else if (block_rsv->reserved >= block_rsv->size)
5442 block_rsv->full = 1;
5443 spin_unlock(&block_rsv->lock);
5444}
5445
d52be818
JB
5446int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5447 struct btrfs_block_rsv *dest, u64 num_bytes,
5448 int min_factor)
5449{
5450 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5451 u64 min_bytes;
5452
5453 if (global_rsv->space_info != dest->space_info)
5454 return -ENOSPC;
5455
5456 spin_lock(&global_rsv->lock);
5457 min_bytes = div_factor(global_rsv->size, min_factor);
5458 if (global_rsv->reserved < min_bytes + num_bytes) {
5459 spin_unlock(&global_rsv->lock);
5460 return -ENOSPC;
5461 }
5462 global_rsv->reserved -= num_bytes;
5463 if (global_rsv->reserved < global_rsv->size)
5464 global_rsv->full = 0;
5465 spin_unlock(&global_rsv->lock);
5466
5467 block_rsv_add_bytes(dest, num_bytes, 1);
5468 return 0;
5469}
5470
957780eb
JB
5471/*
5472 * This is for space we already have accounted in space_info->bytes_may_use, so
5473 * basically when we're returning space from block_rsv's.
5474 */
5475static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5476 struct btrfs_space_info *space_info,
5477 u64 num_bytes)
5478{
5479 struct reserve_ticket *ticket;
5480 struct list_head *head;
5481 u64 used;
5482 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5483 bool check_overcommit = false;
5484
5485 spin_lock(&space_info->lock);
5486 head = &space_info->priority_tickets;
5487
5488 /*
5489 * If we are over our limit then we need to check and see if we can
5490 * overcommit, and if we can't then we just need to free up our space
5491 * and not satisfy any requests.
5492 */
0eee8a49 5493 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5494 if (used - num_bytes >= space_info->total_bytes)
5495 check_overcommit = true;
5496again:
5497 while (!list_empty(head) && num_bytes) {
5498 ticket = list_first_entry(head, struct reserve_ticket,
5499 list);
5500 /*
5501 * We use 0 bytes because this space is already reserved, so
5502 * adding the ticket space would be a double count.
5503 */
5504 if (check_overcommit &&
c1c4919b 5505 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5506 break;
5507 if (num_bytes >= ticket->bytes) {
5508 list_del_init(&ticket->list);
5509 num_bytes -= ticket->bytes;
5510 ticket->bytes = 0;
ce129655 5511 space_info->tickets_id++;
957780eb
JB
5512 wake_up(&ticket->wait);
5513 } else {
5514 ticket->bytes -= num_bytes;
5515 num_bytes = 0;
5516 }
5517 }
5518
5519 if (num_bytes && head == &space_info->priority_tickets) {
5520 head = &space_info->tickets;
5521 flush = BTRFS_RESERVE_FLUSH_ALL;
5522 goto again;
5523 }
5524 space_info->bytes_may_use -= num_bytes;
5525 trace_btrfs_space_reservation(fs_info, "space_info",
5526 space_info->flags, num_bytes, 0);
5527 spin_unlock(&space_info->lock);
5528}
5529
5530/*
5531 * This is for newly allocated space that isn't accounted in
5532 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5533 * we use this helper.
5534 */
5535static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5536 struct btrfs_space_info *space_info,
5537 u64 num_bytes)
5538{
5539 struct reserve_ticket *ticket;
5540 struct list_head *head = &space_info->priority_tickets;
5541
5542again:
5543 while (!list_empty(head) && num_bytes) {
5544 ticket = list_first_entry(head, struct reserve_ticket,
5545 list);
5546 if (num_bytes >= ticket->bytes) {
5547 trace_btrfs_space_reservation(fs_info, "space_info",
5548 space_info->flags,
5549 ticket->bytes, 1);
5550 list_del_init(&ticket->list);
5551 num_bytes -= ticket->bytes;
5552 space_info->bytes_may_use += ticket->bytes;
5553 ticket->bytes = 0;
ce129655 5554 space_info->tickets_id++;
957780eb
JB
5555 wake_up(&ticket->wait);
5556 } else {
5557 trace_btrfs_space_reservation(fs_info, "space_info",
5558 space_info->flags,
5559 num_bytes, 1);
5560 space_info->bytes_may_use += num_bytes;
5561 ticket->bytes -= num_bytes;
5562 num_bytes = 0;
5563 }
5564 }
5565
5566 if (num_bytes && head == &space_info->priority_tickets) {
5567 head = &space_info->tickets;
5568 goto again;
5569 }
5570}
5571
69fe2d75 5572static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5573 struct btrfs_block_rsv *block_rsv,
62a45b60 5574 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5575{
5576 struct btrfs_space_info *space_info = block_rsv->space_info;
69fe2d75 5577 u64 ret;
f0486c68
YZ
5578
5579 spin_lock(&block_rsv->lock);
5580 if (num_bytes == (u64)-1)
5581 num_bytes = block_rsv->size;
5582 block_rsv->size -= num_bytes;
5583 if (block_rsv->reserved >= block_rsv->size) {
5584 num_bytes = block_rsv->reserved - block_rsv->size;
5585 block_rsv->reserved = block_rsv->size;
5586 block_rsv->full = 1;
5587 } else {
5588 num_bytes = 0;
5589 }
5590 spin_unlock(&block_rsv->lock);
5591
69fe2d75 5592 ret = num_bytes;
f0486c68
YZ
5593 if (num_bytes > 0) {
5594 if (dest) {
e9e22899
JB
5595 spin_lock(&dest->lock);
5596 if (!dest->full) {
5597 u64 bytes_to_add;
5598
5599 bytes_to_add = dest->size - dest->reserved;
5600 bytes_to_add = min(num_bytes, bytes_to_add);
5601 dest->reserved += bytes_to_add;
5602 if (dest->reserved >= dest->size)
5603 dest->full = 1;
5604 num_bytes -= bytes_to_add;
5605 }
5606 spin_unlock(&dest->lock);
5607 }
957780eb
JB
5608 if (num_bytes)
5609 space_info_add_old_bytes(fs_info, space_info,
5610 num_bytes);
9ed74f2d 5611 }
69fe2d75 5612 return ret;
f0486c68 5613}
4e06bdd6 5614
25d609f8
JB
5615int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5616 struct btrfs_block_rsv *dst, u64 num_bytes,
5617 int update_size)
f0486c68
YZ
5618{
5619 int ret;
9ed74f2d 5620
f0486c68
YZ
5621 ret = block_rsv_use_bytes(src, num_bytes);
5622 if (ret)
5623 return ret;
9ed74f2d 5624
25d609f8 5625 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5626 return 0;
5627}
5628
66d8f3dd 5629void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5630{
f0486c68
YZ
5631 memset(rsv, 0, sizeof(*rsv));
5632 spin_lock_init(&rsv->lock);
66d8f3dd 5633 rsv->type = type;
f0486c68
YZ
5634}
5635
69fe2d75
JB
5636void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5637 struct btrfs_block_rsv *rsv,
5638 unsigned short type)
5639{
5640 btrfs_init_block_rsv(rsv, type);
5641 rsv->space_info = __find_space_info(fs_info,
5642 BTRFS_BLOCK_GROUP_METADATA);
5643}
5644
2ff7e61e 5645struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5646 unsigned short type)
f0486c68
YZ
5647{
5648 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5649
f0486c68
YZ
5650 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5651 if (!block_rsv)
5652 return NULL;
9ed74f2d 5653
69fe2d75 5654 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5655 return block_rsv;
5656}
9ed74f2d 5657
2ff7e61e 5658void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5659 struct btrfs_block_rsv *rsv)
5660{
2aaa6655
JB
5661 if (!rsv)
5662 return;
2ff7e61e 5663 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5664 kfree(rsv);
9ed74f2d
JB
5665}
5666
cdfb080e
CM
5667void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5668{
5669 kfree(rsv);
5670}
5671
08e007d2
MX
5672int btrfs_block_rsv_add(struct btrfs_root *root,
5673 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5674 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5675{
f0486c68 5676 int ret;
9ed74f2d 5677
f0486c68
YZ
5678 if (num_bytes == 0)
5679 return 0;
8bb8ab2e 5680
61b520a9 5681 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5682 if (!ret) {
5683 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5684 return 0;
5685 }
9ed74f2d 5686
f0486c68 5687 return ret;
f0486c68 5688}
9ed74f2d 5689
2ff7e61e 5690int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5691{
5692 u64 num_bytes = 0;
f0486c68 5693 int ret = -ENOSPC;
9ed74f2d 5694
f0486c68
YZ
5695 if (!block_rsv)
5696 return 0;
9ed74f2d 5697
f0486c68 5698 spin_lock(&block_rsv->lock);
36ba022a
JB
5699 num_bytes = div_factor(block_rsv->size, min_factor);
5700 if (block_rsv->reserved >= num_bytes)
5701 ret = 0;
5702 spin_unlock(&block_rsv->lock);
9ed74f2d 5703
36ba022a
JB
5704 return ret;
5705}
5706
08e007d2
MX
5707int btrfs_block_rsv_refill(struct btrfs_root *root,
5708 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5709 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5710{
5711 u64 num_bytes = 0;
5712 int ret = -ENOSPC;
5713
5714 if (!block_rsv)
5715 return 0;
5716
5717 spin_lock(&block_rsv->lock);
5718 num_bytes = min_reserved;
13553e52 5719 if (block_rsv->reserved >= num_bytes)
f0486c68 5720 ret = 0;
13553e52 5721 else
f0486c68 5722 num_bytes -= block_rsv->reserved;
f0486c68 5723 spin_unlock(&block_rsv->lock);
13553e52 5724
f0486c68
YZ
5725 if (!ret)
5726 return 0;
5727
aa38a711 5728 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5729 if (!ret) {
5730 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5731 return 0;
6a63209f 5732 }
9ed74f2d 5733
13553e52 5734 return ret;
f0486c68
YZ
5735}
5736
69fe2d75
JB
5737/**
5738 * btrfs_inode_rsv_refill - refill the inode block rsv.
5739 * @inode - the inode we are refilling.
5740 * @flush - the flusing restriction.
5741 *
5742 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5743 * block_rsv->size as the minimum size. We'll either refill the missing amount
5744 * or return if we already have enough space. This will also handle the resreve
5745 * tracepoint for the reserved amount.
5746 */
3f2dd7a0
QW
5747static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5748 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5749{
5750 struct btrfs_root *root = inode->root;
5751 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5752 u64 num_bytes = 0;
5753 int ret = -ENOSPC;
5754
5755 spin_lock(&block_rsv->lock);
5756 if (block_rsv->reserved < block_rsv->size)
5757 num_bytes = block_rsv->size - block_rsv->reserved;
5758 spin_unlock(&block_rsv->lock);
5759
5760 if (num_bytes == 0)
5761 return 0;
5762
43b18595
QW
5763 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
5764 if (ret)
5765 return ret;
69fe2d75
JB
5766 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5767 if (!ret) {
5768 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5769 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5770 btrfs_ino(inode), num_bytes, 1);
5771 }
5772 return ret;
5773}
5774
5775/**
5776 * btrfs_inode_rsv_release - release any excessive reservation.
5777 * @inode - the inode we need to release from.
43b18595
QW
5778 * @qgroup_free - free or convert qgroup meta.
5779 * Unlike normal operation, qgroup meta reservation needs to know if we are
5780 * freeing qgroup reservation or just converting it into per-trans. Normally
5781 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5782 *
5783 * This is the same as btrfs_block_rsv_release, except that it handles the
5784 * tracepoint for the reservation.
5785 */
43b18595 5786static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5787{
5788 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5789 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5790 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5791 u64 released = 0;
5792
5793 /*
5794 * Since we statically set the block_rsv->size we just want to say we
5795 * are releasing 0 bytes, and then we'll just get the reservation over
5796 * the size free'd.
5797 */
5798 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5799 if (released > 0)
5800 trace_btrfs_space_reservation(fs_info, "delalloc",
5801 btrfs_ino(inode), released, 0);
43b18595
QW
5802 if (qgroup_free)
5803 btrfs_qgroup_free_meta_prealloc(inode->root, released);
5804 else
5805 btrfs_qgroup_convert_reserved_meta(inode->root, released);
69fe2d75
JB
5806}
5807
2ff7e61e 5808void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5809 struct btrfs_block_rsv *block_rsv,
5810 u64 num_bytes)
5811{
0b246afa
JM
5812 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5813
17504584 5814 if (global_rsv == block_rsv ||
f0486c68
YZ
5815 block_rsv->space_info != global_rsv->space_info)
5816 global_rsv = NULL;
0b246afa 5817 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5818}
5819
8929ecfa
YZ
5820static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5821{
5822 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5823 struct btrfs_space_info *sinfo = block_rsv->space_info;
5824 u64 num_bytes;
6a63209f 5825
ae2e4728
JB
5826 /*
5827 * The global block rsv is based on the size of the extent tree, the
5828 * checksum tree and the root tree. If the fs is empty we want to set
5829 * it to a minimal amount for safety.
5830 */
5831 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5832 btrfs_root_used(&fs_info->csum_root->root_item) +
5833 btrfs_root_used(&fs_info->tree_root->root_item);
5834 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5835
8929ecfa 5836 spin_lock(&sinfo->lock);
1f699d38 5837 spin_lock(&block_rsv->lock);
4e06bdd6 5838
ee22184b 5839 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5840
fb4b10e5 5841 if (block_rsv->reserved < block_rsv->size) {
4136135b 5842 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5843 if (sinfo->total_bytes > num_bytes) {
5844 num_bytes = sinfo->total_bytes - num_bytes;
5845 num_bytes = min(num_bytes,
5846 block_rsv->size - block_rsv->reserved);
5847 block_rsv->reserved += num_bytes;
5848 sinfo->bytes_may_use += num_bytes;
5849 trace_btrfs_space_reservation(fs_info, "space_info",
5850 sinfo->flags, num_bytes,
5851 1);
5852 }
5853 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5854 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5855 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5856 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5857 sinfo->flags, num_bytes, 0);
8929ecfa 5858 block_rsv->reserved = block_rsv->size;
8929ecfa 5859 }
182608c8 5860
fb4b10e5
JB
5861 if (block_rsv->reserved == block_rsv->size)
5862 block_rsv->full = 1;
5863 else
5864 block_rsv->full = 0;
5865
8929ecfa 5866 spin_unlock(&block_rsv->lock);
1f699d38 5867 spin_unlock(&sinfo->lock);
6a63209f
JB
5868}
5869
f0486c68 5870static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5871{
f0486c68 5872 struct btrfs_space_info *space_info;
6a63209f 5873
f0486c68
YZ
5874 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5875 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5876
f0486c68 5877 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5878 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5879 fs_info->trans_block_rsv.space_info = space_info;
5880 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5881 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5882
8929ecfa
YZ
5883 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5884 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5885 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5886 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5887 if (fs_info->quota_root)
5888 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5889 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5890
8929ecfa 5891 update_global_block_rsv(fs_info);
6a63209f
JB
5892}
5893
8929ecfa 5894static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5895{
8c2a3ca2
JB
5896 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5897 (u64)-1);
8929ecfa
YZ
5898 WARN_ON(fs_info->trans_block_rsv.size > 0);
5899 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5900 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5901 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5902 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5903 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5904}
5905
6a63209f 5906
4fbcdf66
FM
5907/*
5908 * To be called after all the new block groups attached to the transaction
5909 * handle have been created (btrfs_create_pending_block_groups()).
5910 */
5911void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5912{
64b63580 5913 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5914
5915 if (!trans->chunk_bytes_reserved)
5916 return;
5917
5918 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5919
5920 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5921 trans->chunk_bytes_reserved);
5922 trans->chunk_bytes_reserved = 0;
5923}
5924
79787eaa 5925/* Can only return 0 or -ENOSPC */
d68fc57b 5926int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5927 struct btrfs_inode *inode)
d68fc57b 5928{
8ed7a2a0
NB
5929 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5930 struct btrfs_root *root = inode->root;
40acc3ee
JB
5931 /*
5932 * We always use trans->block_rsv here as we will have reserved space
5933 * for our orphan when starting the transaction, using get_block_rsv()
5934 * here will sometimes make us choose the wrong block rsv as we could be
5935 * doing a reloc inode for a non refcounted root.
5936 */
5937 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5938 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5939
5940 /*
fcb80c2a
JB
5941 * We need to hold space in order to delete our orphan item once we've
5942 * added it, so this takes the reservation so we can release it later
5943 * when we are truly done with the orphan item.
d68fc57b 5944 */
0b246afa
JM
5945 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5946
9678c543 5947 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
8ed7a2a0 5948 num_bytes, 1);
25d609f8 5949 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5950}
5951
703b391a 5952void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5953{
703b391a
NB
5954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5955 struct btrfs_root *root = inode->root;
0b246afa
JM
5956 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5957
703b391a
NB
5958 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5959 num_bytes, 0);
2ff7e61e 5960 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5961}
97e728d4 5962
d5c12070
MX
5963/*
5964 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5965 * root: the root of the parent directory
5966 * rsv: block reservation
5967 * items: the number of items that we need do reservation
5968 * qgroup_reserved: used to return the reserved size in qgroup
5969 *
5970 * This function is used to reserve the space for snapshot/subvolume
5971 * creation and deletion. Those operations are different with the
5972 * common file/directory operations, they change two fs/file trees
5973 * and root tree, the number of items that the qgroup reserves is
5974 * different with the free space reservation. So we can not use
01327610 5975 * the space reservation mechanism in start_transaction().
d5c12070
MX
5976 */
5977int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5978 struct btrfs_block_rsv *rsv,
5979 int items,
ee3441b4
JM
5980 u64 *qgroup_reserved,
5981 bool use_global_rsv)
a22285a6 5982{
d5c12070
MX
5983 u64 num_bytes;
5984 int ret;
0b246afa
JM
5985 struct btrfs_fs_info *fs_info = root->fs_info;
5986 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5987
0b246afa 5988 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5989 /* One for parent inode, two for dir entries */
0b246afa 5990 num_bytes = 3 * fs_info->nodesize;
733e03a0 5991 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
d5c12070
MX
5992 if (ret)
5993 return ret;
5994 } else {
5995 num_bytes = 0;
5996 }
5997
5998 *qgroup_reserved = num_bytes;
5999
0b246afa
JM
6000 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6001 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6002 BTRFS_BLOCK_GROUP_METADATA);
6003 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6004 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6005
6006 if (ret == -ENOSPC && use_global_rsv)
25d609f8 6007 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 6008
7174109c 6009 if (ret && *qgroup_reserved)
733e03a0 6010 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
d5c12070
MX
6011
6012 return ret;
6013}
6014
2ff7e61e 6015void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6016 struct btrfs_block_rsv *rsv)
d5c12070 6017{
2ff7e61e 6018 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6019}
6020
69fe2d75
JB
6021static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6022 struct btrfs_inode *inode)
9e0baf60 6023{
69fe2d75
JB
6024 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6025 u64 reserve_size = 0;
6026 u64 csum_leaves;
6027 unsigned outstanding_extents;
9e0baf60 6028
69fe2d75
JB
6029 lockdep_assert_held(&inode->lock);
6030 outstanding_extents = inode->outstanding_extents;
6031 if (outstanding_extents)
6032 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6033 outstanding_extents + 1);
6034 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6035 inode->csum_bytes);
6036 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6037 csum_leaves);
9e0baf60 6038
69fe2d75
JB
6039 spin_lock(&block_rsv->lock);
6040 block_rsv->size = reserve_size;
6041 spin_unlock(&block_rsv->lock);
0ca1f7ce 6042}
c146afad 6043
9f3db423 6044int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6045{
9f3db423 6046 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
69fe2d75 6047 unsigned nr_extents;
08e007d2 6048 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6049 int ret = 0;
c64c2bd8 6050 bool delalloc_lock = true;
6324fbf3 6051
c64c2bd8
JB
6052 /* If we are a free space inode we need to not flush since we will be in
6053 * the middle of a transaction commit. We also don't need the delalloc
6054 * mutex since we won't race with anybody. We need this mostly to make
6055 * lockdep shut its filthy mouth.
bac357dc
JB
6056 *
6057 * If we have a transaction open (can happen if we call truncate_block
6058 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6059 */
6060 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6061 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6062 delalloc_lock = false;
da07d4ab
NB
6063 } else {
6064 if (current->journal_info)
6065 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6066
da07d4ab
NB
6067 if (btrfs_transaction_in_commit(fs_info))
6068 schedule_timeout(1);
6069 }
ec44a35c 6070
c64c2bd8 6071 if (delalloc_lock)
9f3db423 6072 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6073
0b246afa 6074 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6075
6076 /* Add our new extents and calculate the new rsv size. */
9f3db423 6077 spin_lock(&inode->lock);
69fe2d75 6078 nr_extents = count_max_extents(num_bytes);
8b62f87b 6079 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6080 inode->csum_bytes += num_bytes;
6081 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6082 spin_unlock(&inode->lock);
57a45ced 6083
69fe2d75 6084 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6085 if (unlikely(ret))
88e081bf 6086 goto out_fail;
25179201 6087
c64c2bd8 6088 if (delalloc_lock)
9f3db423 6089 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6090 return 0;
88e081bf
WS
6091
6092out_fail:
9f3db423 6093 spin_lock(&inode->lock);
8b62f87b
JB
6094 nr_extents = count_max_extents(num_bytes);
6095 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6096 inode->csum_bytes -= num_bytes;
6097 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6098 spin_unlock(&inode->lock);
88e081bf 6099
43b18595 6100 btrfs_inode_rsv_release(inode, true);
88e081bf 6101 if (delalloc_lock)
9f3db423 6102 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6103 return ret;
0ca1f7ce
YZ
6104}
6105
7709cde3
JB
6106/**
6107 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6108 * @inode: the inode to release the reservation for.
6109 * @num_bytes: the number of bytes we are releasing.
43b18595 6110 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6111 *
6112 * This will release the metadata reservation for an inode. This can be called
6113 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6114 * reservations, or on error for the same reason.
7709cde3 6115 */
43b18595
QW
6116void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6117 bool qgroup_free)
0ca1f7ce 6118{
691fa059 6119 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6120
0b246afa 6121 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6122 spin_lock(&inode->lock);
69fe2d75
JB
6123 inode->csum_bytes -= num_bytes;
6124 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6125 spin_unlock(&inode->lock);
0ca1f7ce 6126
0b246afa 6127 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6128 return;
6129
43b18595 6130 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6131}
6132
8b62f87b
JB
6133/**
6134 * btrfs_delalloc_release_extents - release our outstanding_extents
6135 * @inode: the inode to balance the reservation for.
6136 * @num_bytes: the number of bytes we originally reserved with
43b18595 6137 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6138 *
6139 * When we reserve space we increase outstanding_extents for the extents we may
6140 * add. Once we've set the range as delalloc or created our ordered extents we
6141 * have outstanding_extents to track the real usage, so we use this to free our
6142 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6143 * with btrfs_delalloc_reserve_metadata.
6144 */
43b18595
QW
6145void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6146 bool qgroup_free)
8b62f87b
JB
6147{
6148 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6149 unsigned num_extents;
8b62f87b
JB
6150
6151 spin_lock(&inode->lock);
6152 num_extents = count_max_extents(num_bytes);
6153 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6154 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6155 spin_unlock(&inode->lock);
6156
8b62f87b
JB
6157 if (btrfs_is_testing(fs_info))
6158 return;
6159
43b18595 6160 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6161}
6162
1ada3a62 6163/**
7cf5b976 6164 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6165 * delalloc
6166 * @inode: inode we're writing to
6167 * @start: start range we are writing to
6168 * @len: how long the range we are writing to
364ecf36
QW
6169 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6170 * current reservation.
1ada3a62 6171 *
1ada3a62
QW
6172 * This will do the following things
6173 *
6174 * o reserve space in data space info for num bytes
6175 * and reserve precious corresponding qgroup space
6176 * (Done in check_data_free_space)
6177 *
6178 * o reserve space for metadata space, based on the number of outstanding
6179 * extents and how much csums will be needed
6180 * also reserve metadata space in a per root over-reserve method.
6181 * o add to the inodes->delalloc_bytes
6182 * o add it to the fs_info's delalloc inodes list.
6183 * (Above 3 all done in delalloc_reserve_metadata)
6184 *
6185 * Return 0 for success
6186 * Return <0 for error(-ENOSPC or -EQUOT)
6187 */
364ecf36
QW
6188int btrfs_delalloc_reserve_space(struct inode *inode,
6189 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6190{
6191 int ret;
6192
364ecf36 6193 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6194 if (ret < 0)
6195 return ret;
9f3db423 6196 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6197 if (ret < 0)
bc42bda2 6198 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6199 return ret;
6200}
6201
7709cde3 6202/**
7cf5b976 6203 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6204 * @inode: inode we're releasing space for
6205 * @start: start position of the space already reserved
6206 * @len: the len of the space already reserved
8b62f87b 6207 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6208 *
6209 * This function will release the metadata space that was not used and will
6210 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6211 * list if there are no delalloc bytes left.
6212 * Also it will handle the qgroup reserved space.
6213 */
bc42bda2 6214void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6215 struct extent_changeset *reserved,
43b18595 6216 u64 start, u64 len, bool qgroup_free)
1ada3a62 6217{
43b18595 6218 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6219 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6220}
6221
ce93ec54 6222static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6223 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6224 u64 num_bytes, int alloc)
9078a3e1 6225{
0af3d00b 6226 struct btrfs_block_group_cache *cache = NULL;
db94535d 6227 u64 total = num_bytes;
9078a3e1 6228 u64 old_val;
db94535d 6229 u64 byte_in_group;
0af3d00b 6230 int factor;
3e1ad54f 6231
5d4f98a2 6232 /* block accounting for super block */
eb73c1b7 6233 spin_lock(&info->delalloc_root_lock);
6c41761f 6234 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6235 if (alloc)
6236 old_val += num_bytes;
6237 else
6238 old_val -= num_bytes;
6c41761f 6239 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6240 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6241
d397712b 6242 while (total) {
db94535d 6243 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6244 if (!cache)
79787eaa 6245 return -ENOENT;
b742bb82
YZ
6246 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6247 BTRFS_BLOCK_GROUP_RAID1 |
6248 BTRFS_BLOCK_GROUP_RAID10))
6249 factor = 2;
6250 else
6251 factor = 1;
9d66e233
JB
6252 /*
6253 * If this block group has free space cache written out, we
6254 * need to make sure to load it if we are removing space. This
6255 * is because we need the unpinning stage to actually add the
6256 * space back to the block group, otherwise we will leak space.
6257 */
6258 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6259 cache_block_group(cache, 1);
0af3d00b 6260
db94535d
CM
6261 byte_in_group = bytenr - cache->key.objectid;
6262 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6263
25179201 6264 spin_lock(&cache->space_info->lock);
c286ac48 6265 spin_lock(&cache->lock);
0af3d00b 6266
6202df69 6267 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6268 cache->disk_cache_state < BTRFS_DC_CLEAR)
6269 cache->disk_cache_state = BTRFS_DC_CLEAR;
6270
9078a3e1 6271 old_val = btrfs_block_group_used(&cache->item);
db94535d 6272 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6273 if (alloc) {
db94535d 6274 old_val += num_bytes;
11833d66
YZ
6275 btrfs_set_block_group_used(&cache->item, old_val);
6276 cache->reserved -= num_bytes;
11833d66 6277 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6278 cache->space_info->bytes_used += num_bytes;
6279 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6280 spin_unlock(&cache->lock);
25179201 6281 spin_unlock(&cache->space_info->lock);
cd1bc465 6282 } else {
db94535d 6283 old_val -= num_bytes;
ae0ab003
FM
6284 btrfs_set_block_group_used(&cache->item, old_val);
6285 cache->pinned += num_bytes;
6286 cache->space_info->bytes_pinned += num_bytes;
6287 cache->space_info->bytes_used -= num_bytes;
6288 cache->space_info->disk_used -= num_bytes * factor;
6289 spin_unlock(&cache->lock);
6290 spin_unlock(&cache->space_info->lock);
47ab2a6c 6291
0b246afa 6292 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6293 cache->space_info->flags,
6294 num_bytes, 1);
d7eae340
OS
6295 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6296 num_bytes);
ae0ab003
FM
6297 set_extent_dirty(info->pinned_extents,
6298 bytenr, bytenr + num_bytes - 1,
6299 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6300 }
1bbc621e
CM
6301
6302 spin_lock(&trans->transaction->dirty_bgs_lock);
6303 if (list_empty(&cache->dirty_list)) {
6304 list_add_tail(&cache->dirty_list,
6305 &trans->transaction->dirty_bgs);
6306 trans->transaction->num_dirty_bgs++;
6307 btrfs_get_block_group(cache);
6308 }
6309 spin_unlock(&trans->transaction->dirty_bgs_lock);
6310
036a9348
FM
6311 /*
6312 * No longer have used bytes in this block group, queue it for
6313 * deletion. We do this after adding the block group to the
6314 * dirty list to avoid races between cleaner kthread and space
6315 * cache writeout.
6316 */
6317 if (!alloc && old_val == 0) {
6318 spin_lock(&info->unused_bgs_lock);
6319 if (list_empty(&cache->bg_list)) {
6320 btrfs_get_block_group(cache);
6321 list_add_tail(&cache->bg_list,
6322 &info->unused_bgs);
6323 }
6324 spin_unlock(&info->unused_bgs_lock);
6325 }
6326
fa9c0d79 6327 btrfs_put_block_group(cache);
db94535d
CM
6328 total -= num_bytes;
6329 bytenr += num_bytes;
9078a3e1
CM
6330 }
6331 return 0;
6332}
6324fbf3 6333
2ff7e61e 6334static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6335{
0f9dd46c 6336 struct btrfs_block_group_cache *cache;
d2fb3437 6337 u64 bytenr;
0f9dd46c 6338
0b246afa
JM
6339 spin_lock(&fs_info->block_group_cache_lock);
6340 bytenr = fs_info->first_logical_byte;
6341 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6342
6343 if (bytenr < (u64)-1)
6344 return bytenr;
6345
0b246afa 6346 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6347 if (!cache)
a061fc8d 6348 return 0;
0f9dd46c 6349
d2fb3437 6350 bytenr = cache->key.objectid;
fa9c0d79 6351 btrfs_put_block_group(cache);
d2fb3437
YZ
6352
6353 return bytenr;
a061fc8d
CM
6354}
6355
2ff7e61e 6356static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6357 struct btrfs_block_group_cache *cache,
6358 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6359{
11833d66
YZ
6360 spin_lock(&cache->space_info->lock);
6361 spin_lock(&cache->lock);
6362 cache->pinned += num_bytes;
6363 cache->space_info->bytes_pinned += num_bytes;
6364 if (reserved) {
6365 cache->reserved -= num_bytes;
6366 cache->space_info->bytes_reserved -= num_bytes;
6367 }
6368 spin_unlock(&cache->lock);
6369 spin_unlock(&cache->space_info->lock);
68b38550 6370
0b246afa 6371 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6372 cache->space_info->flags, num_bytes, 1);
4da8b76d 6373 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6374 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6375 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6376 return 0;
6377}
68b38550 6378
f0486c68
YZ
6379/*
6380 * this function must be called within transaction
6381 */
2ff7e61e 6382int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6383 u64 bytenr, u64 num_bytes, int reserved)
6384{
6385 struct btrfs_block_group_cache *cache;
68b38550 6386
0b246afa 6387 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6388 BUG_ON(!cache); /* Logic error */
f0486c68 6389
2ff7e61e 6390 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6391
6392 btrfs_put_block_group(cache);
11833d66
YZ
6393 return 0;
6394}
6395
f0486c68 6396/*
e688b725
CM
6397 * this function must be called within transaction
6398 */
2ff7e61e 6399int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6400 u64 bytenr, u64 num_bytes)
6401{
6402 struct btrfs_block_group_cache *cache;
b50c6e25 6403 int ret;
e688b725 6404
0b246afa 6405 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6406 if (!cache)
6407 return -EINVAL;
e688b725
CM
6408
6409 /*
6410 * pull in the free space cache (if any) so that our pin
6411 * removes the free space from the cache. We have load_only set
6412 * to one because the slow code to read in the free extents does check
6413 * the pinned extents.
6414 */
f6373bf3 6415 cache_block_group(cache, 1);
e688b725 6416
2ff7e61e 6417 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6418
6419 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6420 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6421 btrfs_put_block_group(cache);
b50c6e25 6422 return ret;
e688b725
CM
6423}
6424
2ff7e61e
JM
6425static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6426 u64 start, u64 num_bytes)
8c2a1a30
JB
6427{
6428 int ret;
6429 struct btrfs_block_group_cache *block_group;
6430 struct btrfs_caching_control *caching_ctl;
6431
0b246afa 6432 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6433 if (!block_group)
6434 return -EINVAL;
6435
6436 cache_block_group(block_group, 0);
6437 caching_ctl = get_caching_control(block_group);
6438
6439 if (!caching_ctl) {
6440 /* Logic error */
6441 BUG_ON(!block_group_cache_done(block_group));
6442 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6443 } else {
6444 mutex_lock(&caching_ctl->mutex);
6445
6446 if (start >= caching_ctl->progress) {
2ff7e61e 6447 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6448 } else if (start + num_bytes <= caching_ctl->progress) {
6449 ret = btrfs_remove_free_space(block_group,
6450 start, num_bytes);
6451 } else {
6452 num_bytes = caching_ctl->progress - start;
6453 ret = btrfs_remove_free_space(block_group,
6454 start, num_bytes);
6455 if (ret)
6456 goto out_lock;
6457
6458 num_bytes = (start + num_bytes) -
6459 caching_ctl->progress;
6460 start = caching_ctl->progress;
2ff7e61e 6461 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6462 }
6463out_lock:
6464 mutex_unlock(&caching_ctl->mutex);
6465 put_caching_control(caching_ctl);
6466 }
6467 btrfs_put_block_group(block_group);
6468 return ret;
6469}
6470
2ff7e61e 6471int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6472 struct extent_buffer *eb)
6473{
6474 struct btrfs_file_extent_item *item;
6475 struct btrfs_key key;
6476 int found_type;
6477 int i;
6478
2ff7e61e 6479 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6480 return 0;
6481
6482 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6483 btrfs_item_key_to_cpu(eb, &key, i);
6484 if (key.type != BTRFS_EXTENT_DATA_KEY)
6485 continue;
6486 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6487 found_type = btrfs_file_extent_type(eb, item);
6488 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6489 continue;
6490 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6491 continue;
6492 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6493 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6494 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6495 }
6496
6497 return 0;
6498}
6499
9cfa3e34
FM
6500static void
6501btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6502{
6503 atomic_inc(&bg->reservations);
6504}
6505
6506void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6507 const u64 start)
6508{
6509 struct btrfs_block_group_cache *bg;
6510
6511 bg = btrfs_lookup_block_group(fs_info, start);
6512 ASSERT(bg);
6513 if (atomic_dec_and_test(&bg->reservations))
6514 wake_up_atomic_t(&bg->reservations);
6515 btrfs_put_block_group(bg);
6516}
6517
9cfa3e34
FM
6518void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6519{
6520 struct btrfs_space_info *space_info = bg->space_info;
6521
6522 ASSERT(bg->ro);
6523
6524 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6525 return;
6526
6527 /*
6528 * Our block group is read only but before we set it to read only,
6529 * some task might have had allocated an extent from it already, but it
6530 * has not yet created a respective ordered extent (and added it to a
6531 * root's list of ordered extents).
6532 * Therefore wait for any task currently allocating extents, since the
6533 * block group's reservations counter is incremented while a read lock
6534 * on the groups' semaphore is held and decremented after releasing
6535 * the read access on that semaphore and creating the ordered extent.
6536 */
6537 down_write(&space_info->groups_sem);
6538 up_write(&space_info->groups_sem);
6539
5e4def20 6540 wait_on_atomic_t(&bg->reservations, atomic_t_wait,
9cfa3e34
FM
6541 TASK_UNINTERRUPTIBLE);
6542}
6543
fb25e914 6544/**
4824f1f4 6545 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6546 * @cache: The cache we are manipulating
18513091
WX
6547 * @ram_bytes: The number of bytes of file content, and will be same to
6548 * @num_bytes except for the compress path.
fb25e914 6549 * @num_bytes: The number of bytes in question
e570fd27 6550 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6551 *
745699ef
XW
6552 * This is called by the allocator when it reserves space. If this is a
6553 * reservation and the block group has become read only we cannot make the
6554 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6555 */
4824f1f4 6556static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6557 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6558{
fb25e914 6559 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6560 int ret = 0;
79787eaa 6561
fb25e914
JB
6562 spin_lock(&space_info->lock);
6563 spin_lock(&cache->lock);
4824f1f4
WX
6564 if (cache->ro) {
6565 ret = -EAGAIN;
fb25e914 6566 } else {
4824f1f4
WX
6567 cache->reserved += num_bytes;
6568 space_info->bytes_reserved += num_bytes;
e570fd27 6569
18513091
WX
6570 trace_btrfs_space_reservation(cache->fs_info,
6571 "space_info", space_info->flags,
6572 ram_bytes, 0);
6573 space_info->bytes_may_use -= ram_bytes;
e570fd27 6574 if (delalloc)
4824f1f4 6575 cache->delalloc_bytes += num_bytes;
324ae4df 6576 }
fb25e914
JB
6577 spin_unlock(&cache->lock);
6578 spin_unlock(&space_info->lock);
f0486c68 6579 return ret;
324ae4df 6580}
9078a3e1 6581
4824f1f4
WX
6582/**
6583 * btrfs_free_reserved_bytes - update the block_group and space info counters
6584 * @cache: The cache we are manipulating
6585 * @num_bytes: The number of bytes in question
6586 * @delalloc: The blocks are allocated for the delalloc write
6587 *
6588 * This is called by somebody who is freeing space that was never actually used
6589 * on disk. For example if you reserve some space for a new leaf in transaction
6590 * A and before transaction A commits you free that leaf, you call this with
6591 * reserve set to 0 in order to clear the reservation.
6592 */
6593
6594static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6595 u64 num_bytes, int delalloc)
6596{
6597 struct btrfs_space_info *space_info = cache->space_info;
6598 int ret = 0;
6599
6600 spin_lock(&space_info->lock);
6601 spin_lock(&cache->lock);
6602 if (cache->ro)
6603 space_info->bytes_readonly += num_bytes;
6604 cache->reserved -= num_bytes;
6605 space_info->bytes_reserved -= num_bytes;
6606
6607 if (delalloc)
6608 cache->delalloc_bytes -= num_bytes;
6609 spin_unlock(&cache->lock);
6610 spin_unlock(&space_info->lock);
6611 return ret;
6612}
8b74c03e 6613void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6614{
11833d66
YZ
6615 struct btrfs_caching_control *next;
6616 struct btrfs_caching_control *caching_ctl;
6617 struct btrfs_block_group_cache *cache;
e8569813 6618
9e351cc8 6619 down_write(&fs_info->commit_root_sem);
25179201 6620
11833d66
YZ
6621 list_for_each_entry_safe(caching_ctl, next,
6622 &fs_info->caching_block_groups, list) {
6623 cache = caching_ctl->block_group;
6624 if (block_group_cache_done(cache)) {
6625 cache->last_byte_to_unpin = (u64)-1;
6626 list_del_init(&caching_ctl->list);
6627 put_caching_control(caching_ctl);
e8569813 6628 } else {
11833d66 6629 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6630 }
e8569813 6631 }
11833d66
YZ
6632
6633 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6634 fs_info->pinned_extents = &fs_info->freed_extents[1];
6635 else
6636 fs_info->pinned_extents = &fs_info->freed_extents[0];
6637
9e351cc8 6638 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6639
6640 update_global_block_rsv(fs_info);
e8569813
ZY
6641}
6642
c759c4e1
JB
6643/*
6644 * Returns the free cluster for the given space info and sets empty_cluster to
6645 * what it should be based on the mount options.
6646 */
6647static struct btrfs_free_cluster *
2ff7e61e
JM
6648fetch_cluster_info(struct btrfs_fs_info *fs_info,
6649 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6650{
6651 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6652
6653 *empty_cluster = 0;
6654 if (btrfs_mixed_space_info(space_info))
6655 return ret;
6656
c759c4e1 6657 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6658 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6659 if (btrfs_test_opt(fs_info, SSD))
6660 *empty_cluster = SZ_2M;
6661 else
ee22184b 6662 *empty_cluster = SZ_64K;
583b7231
HK
6663 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6664 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6665 *empty_cluster = SZ_2M;
0b246afa 6666 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6667 }
6668
6669 return ret;
6670}
6671
2ff7e61e
JM
6672static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6673 u64 start, u64 end,
678886bd 6674 const bool return_free_space)
ccd467d6 6675{
11833d66 6676 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6677 struct btrfs_space_info *space_info;
6678 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6679 struct btrfs_free_cluster *cluster = NULL;
11833d66 6680 u64 len;
c759c4e1
JB
6681 u64 total_unpinned = 0;
6682 u64 empty_cluster = 0;
7b398f8e 6683 bool readonly;
ccd467d6 6684
11833d66 6685 while (start <= end) {
7b398f8e 6686 readonly = false;
11833d66
YZ
6687 if (!cache ||
6688 start >= cache->key.objectid + cache->key.offset) {
6689 if (cache)
6690 btrfs_put_block_group(cache);
c759c4e1 6691 total_unpinned = 0;
11833d66 6692 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6693 BUG_ON(!cache); /* Logic error */
c759c4e1 6694
2ff7e61e 6695 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6696 cache->space_info,
6697 &empty_cluster);
6698 empty_cluster <<= 1;
11833d66
YZ
6699 }
6700
6701 len = cache->key.objectid + cache->key.offset - start;
6702 len = min(len, end + 1 - start);
6703
6704 if (start < cache->last_byte_to_unpin) {
6705 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6706 if (return_free_space)
6707 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6708 }
6709
f0486c68 6710 start += len;
c759c4e1 6711 total_unpinned += len;
7b398f8e 6712 space_info = cache->space_info;
f0486c68 6713
c759c4e1
JB
6714 /*
6715 * If this space cluster has been marked as fragmented and we've
6716 * unpinned enough in this block group to potentially allow a
6717 * cluster to be created inside of it go ahead and clear the
6718 * fragmented check.
6719 */
6720 if (cluster && cluster->fragmented &&
6721 total_unpinned > empty_cluster) {
6722 spin_lock(&cluster->lock);
6723 cluster->fragmented = 0;
6724 spin_unlock(&cluster->lock);
6725 }
6726
7b398f8e 6727 spin_lock(&space_info->lock);
11833d66
YZ
6728 spin_lock(&cache->lock);
6729 cache->pinned -= len;
7b398f8e 6730 space_info->bytes_pinned -= len;
c51e7bb1
JB
6731
6732 trace_btrfs_space_reservation(fs_info, "pinned",
6733 space_info->flags, len, 0);
4f4db217 6734 space_info->max_extent_size = 0;
d288db5d 6735 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6736 if (cache->ro) {
6737 space_info->bytes_readonly += len;
6738 readonly = true;
6739 }
11833d66 6740 spin_unlock(&cache->lock);
957780eb
JB
6741 if (!readonly && return_free_space &&
6742 global_rsv->space_info == space_info) {
6743 u64 to_add = len;
92ac58ec 6744
7b398f8e
JB
6745 spin_lock(&global_rsv->lock);
6746 if (!global_rsv->full) {
957780eb
JB
6747 to_add = min(len, global_rsv->size -
6748 global_rsv->reserved);
6749 global_rsv->reserved += to_add;
6750 space_info->bytes_may_use += to_add;
7b398f8e
JB
6751 if (global_rsv->reserved >= global_rsv->size)
6752 global_rsv->full = 1;
957780eb
JB
6753 trace_btrfs_space_reservation(fs_info,
6754 "space_info",
6755 space_info->flags,
6756 to_add, 1);
6757 len -= to_add;
7b398f8e
JB
6758 }
6759 spin_unlock(&global_rsv->lock);
957780eb
JB
6760 /* Add to any tickets we may have */
6761 if (len)
6762 space_info_add_new_bytes(fs_info, space_info,
6763 len);
7b398f8e
JB
6764 }
6765 spin_unlock(&space_info->lock);
ccd467d6 6766 }
11833d66
YZ
6767
6768 if (cache)
6769 btrfs_put_block_group(cache);
ccd467d6
CM
6770 return 0;
6771}
6772
5ead2dd0 6773int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6774{
5ead2dd0 6775 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6776 struct btrfs_block_group_cache *block_group, *tmp;
6777 struct list_head *deleted_bgs;
11833d66 6778 struct extent_io_tree *unpin;
1a5bc167
CM
6779 u64 start;
6780 u64 end;
a28ec197 6781 int ret;
a28ec197 6782
11833d66
YZ
6783 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6784 unpin = &fs_info->freed_extents[1];
6785 else
6786 unpin = &fs_info->freed_extents[0];
6787
e33e17ee 6788 while (!trans->aborted) {
d4b450cd 6789 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6790 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6791 EXTENT_DIRTY, NULL);
d4b450cd
FM
6792 if (ret) {
6793 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6794 break;
d4b450cd 6795 }
1f3c79a2 6796
0b246afa 6797 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6798 ret = btrfs_discard_extent(fs_info, start,
5378e607 6799 end + 1 - start, NULL);
1f3c79a2 6800
af6f8f60 6801 clear_extent_dirty(unpin, start, end);
2ff7e61e 6802 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6803 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6804 cond_resched();
a28ec197 6805 }
817d52f8 6806
e33e17ee
JM
6807 /*
6808 * Transaction is finished. We don't need the lock anymore. We
6809 * do need to clean up the block groups in case of a transaction
6810 * abort.
6811 */
6812 deleted_bgs = &trans->transaction->deleted_bgs;
6813 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6814 u64 trimmed = 0;
6815
6816 ret = -EROFS;
6817 if (!trans->aborted)
2ff7e61e 6818 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6819 block_group->key.objectid,
6820 block_group->key.offset,
6821 &trimmed);
6822
6823 list_del_init(&block_group->bg_list);
6824 btrfs_put_block_group_trimming(block_group);
6825 btrfs_put_block_group(block_group);
6826
6827 if (ret) {
6828 const char *errstr = btrfs_decode_error(ret);
6829 btrfs_warn(fs_info,
913e1535 6830 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6831 ret, errstr);
6832 }
6833 }
6834
e20d96d6
CM
6835 return 0;
6836}
6837
5d4f98a2 6838static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6839 struct btrfs_fs_info *info,
c682f9b3 6840 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6841 u64 root_objectid, u64 owner_objectid,
6842 u64 owner_offset, int refs_to_drop,
c682f9b3 6843 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6844{
e2fa7227 6845 struct btrfs_key key;
5d4f98a2 6846 struct btrfs_path *path;
1261ec42 6847 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6848 struct extent_buffer *leaf;
5d4f98a2
YZ
6849 struct btrfs_extent_item *ei;
6850 struct btrfs_extent_inline_ref *iref;
a28ec197 6851 int ret;
5d4f98a2 6852 int is_data;
952fccac
CM
6853 int extent_slot = 0;
6854 int found_extent = 0;
6855 int num_to_del = 1;
5d4f98a2
YZ
6856 u32 item_size;
6857 u64 refs;
c682f9b3
QW
6858 u64 bytenr = node->bytenr;
6859 u64 num_bytes = node->num_bytes;
fcebe456 6860 int last_ref = 0;
0b246afa 6861 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6862
5caf2a00 6863 path = btrfs_alloc_path();
54aa1f4d
CM
6864 if (!path)
6865 return -ENOMEM;
5f26f772 6866
e4058b54 6867 path->reada = READA_FORWARD;
b9473439 6868 path->leave_spinning = 1;
5d4f98a2
YZ
6869
6870 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6871 BUG_ON(!is_data && refs_to_drop != 1);
6872
3173a18f 6873 if (is_data)
897ca819 6874 skinny_metadata = false;
3173a18f 6875
87bde3cd 6876 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6877 bytenr, num_bytes, parent,
6878 root_objectid, owner_objectid,
6879 owner_offset);
7bb86316 6880 if (ret == 0) {
952fccac 6881 extent_slot = path->slots[0];
5d4f98a2
YZ
6882 while (extent_slot >= 0) {
6883 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6884 extent_slot);
5d4f98a2 6885 if (key.objectid != bytenr)
952fccac 6886 break;
5d4f98a2
YZ
6887 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6888 key.offset == num_bytes) {
952fccac
CM
6889 found_extent = 1;
6890 break;
6891 }
3173a18f
JB
6892 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6893 key.offset == owner_objectid) {
6894 found_extent = 1;
6895 break;
6896 }
952fccac
CM
6897 if (path->slots[0] - extent_slot > 5)
6898 break;
5d4f98a2 6899 extent_slot--;
952fccac 6900 }
5d4f98a2
YZ
6901#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6902 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6903 if (found_extent && item_size < sizeof(*ei))
6904 found_extent = 0;
6905#endif
31840ae1 6906 if (!found_extent) {
5d4f98a2 6907 BUG_ON(iref);
87bde3cd
JM
6908 ret = remove_extent_backref(trans, info, path, NULL,
6909 refs_to_drop,
fcebe456 6910 is_data, &last_ref);
005d6427 6911 if (ret) {
66642832 6912 btrfs_abort_transaction(trans, ret);
005d6427
DS
6913 goto out;
6914 }
b3b4aa74 6915 btrfs_release_path(path);
b9473439 6916 path->leave_spinning = 1;
5d4f98a2
YZ
6917
6918 key.objectid = bytenr;
6919 key.type = BTRFS_EXTENT_ITEM_KEY;
6920 key.offset = num_bytes;
6921
3173a18f
JB
6922 if (!is_data && skinny_metadata) {
6923 key.type = BTRFS_METADATA_ITEM_KEY;
6924 key.offset = owner_objectid;
6925 }
6926
31840ae1
ZY
6927 ret = btrfs_search_slot(trans, extent_root,
6928 &key, path, -1, 1);
3173a18f
JB
6929 if (ret > 0 && skinny_metadata && path->slots[0]) {
6930 /*
6931 * Couldn't find our skinny metadata item,
6932 * see if we have ye olde extent item.
6933 */
6934 path->slots[0]--;
6935 btrfs_item_key_to_cpu(path->nodes[0], &key,
6936 path->slots[0]);
6937 if (key.objectid == bytenr &&
6938 key.type == BTRFS_EXTENT_ITEM_KEY &&
6939 key.offset == num_bytes)
6940 ret = 0;
6941 }
6942
6943 if (ret > 0 && skinny_metadata) {
6944 skinny_metadata = false;
9ce49a0b 6945 key.objectid = bytenr;
3173a18f
JB
6946 key.type = BTRFS_EXTENT_ITEM_KEY;
6947 key.offset = num_bytes;
6948 btrfs_release_path(path);
6949 ret = btrfs_search_slot(trans, extent_root,
6950 &key, path, -1, 1);
6951 }
6952
f3465ca4 6953 if (ret) {
5d163e0e
JM
6954 btrfs_err(info,
6955 "umm, got %d back from search, was looking for %llu",
6956 ret, bytenr);
b783e62d 6957 if (ret > 0)
a4f78750 6958 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6959 }
005d6427 6960 if (ret < 0) {
66642832 6961 btrfs_abort_transaction(trans, ret);
005d6427
DS
6962 goto out;
6963 }
31840ae1
ZY
6964 extent_slot = path->slots[0];
6965 }
fae7f21c 6966 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6967 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6968 btrfs_err(info,
6969 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6970 bytenr, parent, root_objectid, owner_objectid,
6971 owner_offset);
66642832 6972 btrfs_abort_transaction(trans, ret);
c4a050bb 6973 goto out;
79787eaa 6974 } else {
66642832 6975 btrfs_abort_transaction(trans, ret);
005d6427 6976 goto out;
7bb86316 6977 }
5f39d397
CM
6978
6979 leaf = path->nodes[0];
5d4f98a2
YZ
6980 item_size = btrfs_item_size_nr(leaf, extent_slot);
6981#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6982 if (item_size < sizeof(*ei)) {
6983 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6984 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6985 0);
005d6427 6986 if (ret < 0) {
66642832 6987 btrfs_abort_transaction(trans, ret);
005d6427
DS
6988 goto out;
6989 }
5d4f98a2 6990
b3b4aa74 6991 btrfs_release_path(path);
5d4f98a2
YZ
6992 path->leave_spinning = 1;
6993
6994 key.objectid = bytenr;
6995 key.type = BTRFS_EXTENT_ITEM_KEY;
6996 key.offset = num_bytes;
6997
6998 ret = btrfs_search_slot(trans, extent_root, &key, path,
6999 -1, 1);
7000 if (ret) {
5d163e0e
JM
7001 btrfs_err(info,
7002 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7003 ret, bytenr);
a4f78750 7004 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 7005 }
005d6427 7006 if (ret < 0) {
66642832 7007 btrfs_abort_transaction(trans, ret);
005d6427
DS
7008 goto out;
7009 }
7010
5d4f98a2
YZ
7011 extent_slot = path->slots[0];
7012 leaf = path->nodes[0];
7013 item_size = btrfs_item_size_nr(leaf, extent_slot);
7014 }
7015#endif
7016 BUG_ON(item_size < sizeof(*ei));
952fccac 7017 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7018 struct btrfs_extent_item);
3173a18f
JB
7019 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7020 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7021 struct btrfs_tree_block_info *bi;
7022 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7023 bi = (struct btrfs_tree_block_info *)(ei + 1);
7024 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7025 }
56bec294 7026
5d4f98a2 7027 refs = btrfs_extent_refs(leaf, ei);
32b02538 7028 if (refs < refs_to_drop) {
5d163e0e
JM
7029 btrfs_err(info,
7030 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7031 refs_to_drop, refs, bytenr);
32b02538 7032 ret = -EINVAL;
66642832 7033 btrfs_abort_transaction(trans, ret);
32b02538
JB
7034 goto out;
7035 }
56bec294 7036 refs -= refs_to_drop;
5f39d397 7037
5d4f98a2
YZ
7038 if (refs > 0) {
7039 if (extent_op)
7040 __run_delayed_extent_op(extent_op, leaf, ei);
7041 /*
7042 * In the case of inline back ref, reference count will
7043 * be updated by remove_extent_backref
952fccac 7044 */
5d4f98a2
YZ
7045 if (iref) {
7046 BUG_ON(!found_extent);
7047 } else {
7048 btrfs_set_extent_refs(leaf, ei, refs);
7049 btrfs_mark_buffer_dirty(leaf);
7050 }
7051 if (found_extent) {
87bde3cd 7052 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7053 iref, refs_to_drop,
fcebe456 7054 is_data, &last_ref);
005d6427 7055 if (ret) {
66642832 7056 btrfs_abort_transaction(trans, ret);
005d6427
DS
7057 goto out;
7058 }
952fccac 7059 }
5d4f98a2 7060 } else {
5d4f98a2
YZ
7061 if (found_extent) {
7062 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7063 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7064 if (iref) {
7065 BUG_ON(path->slots[0] != extent_slot);
7066 } else {
7067 BUG_ON(path->slots[0] != extent_slot + 1);
7068 path->slots[0] = extent_slot;
7069 num_to_del = 2;
7070 }
78fae27e 7071 }
b9473439 7072
fcebe456 7073 last_ref = 1;
952fccac
CM
7074 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7075 num_to_del);
005d6427 7076 if (ret) {
66642832 7077 btrfs_abort_transaction(trans, ret);
005d6427
DS
7078 goto out;
7079 }
b3b4aa74 7080 btrfs_release_path(path);
21af804c 7081
5d4f98a2 7082 if (is_data) {
5b4aacef 7083 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7084 if (ret) {
66642832 7085 btrfs_abort_transaction(trans, ret);
005d6427
DS
7086 goto out;
7087 }
459931ec
CM
7088 }
7089
0b246afa 7090 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7091 if (ret) {
66642832 7092 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7093 goto out;
7094 }
7095
0b246afa 7096 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7097 if (ret) {
66642832 7098 btrfs_abort_transaction(trans, ret);
005d6427
DS
7099 goto out;
7100 }
a28ec197 7101 }
fcebe456
JB
7102 btrfs_release_path(path);
7103
79787eaa 7104out:
5caf2a00 7105 btrfs_free_path(path);
a28ec197
CM
7106 return ret;
7107}
7108
1887be66 7109/*
f0486c68 7110 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7111 * delayed ref for that extent as well. This searches the delayed ref tree for
7112 * a given extent, and if there are no other delayed refs to be processed, it
7113 * removes it from the tree.
7114 */
7115static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7116 u64 bytenr)
1887be66
CM
7117{
7118 struct btrfs_delayed_ref_head *head;
7119 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7120 int ret = 0;
1887be66
CM
7121
7122 delayed_refs = &trans->transaction->delayed_refs;
7123 spin_lock(&delayed_refs->lock);
f72ad18e 7124 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7125 if (!head)
cf93da7b 7126 goto out_delayed_unlock;
1887be66 7127
d7df2c79 7128 spin_lock(&head->lock);
0e0adbcf 7129 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7130 goto out;
7131
5d4f98a2
YZ
7132 if (head->extent_op) {
7133 if (!head->must_insert_reserved)
7134 goto out;
78a6184a 7135 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7136 head->extent_op = NULL;
7137 }
7138
1887be66
CM
7139 /*
7140 * waiting for the lock here would deadlock. If someone else has it
7141 * locked they are already in the process of dropping it anyway
7142 */
7143 if (!mutex_trylock(&head->mutex))
7144 goto out;
7145
7146 /*
7147 * at this point we have a head with no other entries. Go
7148 * ahead and process it.
7149 */
c46effa6 7150 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7151 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7152 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7153
7154 /*
7155 * we don't take a ref on the node because we're removing it from the
7156 * tree, so we just steal the ref the tree was holding.
7157 */
c3e69d58 7158 delayed_refs->num_heads--;
d7df2c79 7159 if (head->processing == 0)
c3e69d58 7160 delayed_refs->num_heads_ready--;
d7df2c79
JB
7161 head->processing = 0;
7162 spin_unlock(&head->lock);
1887be66
CM
7163 spin_unlock(&delayed_refs->lock);
7164
f0486c68
YZ
7165 BUG_ON(head->extent_op);
7166 if (head->must_insert_reserved)
7167 ret = 1;
7168
7169 mutex_unlock(&head->mutex);
d278850e 7170 btrfs_put_delayed_ref_head(head);
f0486c68 7171 return ret;
1887be66 7172out:
d7df2c79 7173 spin_unlock(&head->lock);
cf93da7b
CM
7174
7175out_delayed_unlock:
1887be66
CM
7176 spin_unlock(&delayed_refs->lock);
7177 return 0;
7178}
7179
f0486c68
YZ
7180void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7181 struct btrfs_root *root,
7182 struct extent_buffer *buf,
5581a51a 7183 u64 parent, int last_ref)
f0486c68 7184{
0b246afa 7185 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7186 int pin = 1;
f0486c68
YZ
7187 int ret;
7188
7189 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7190 int old_ref_mod, new_ref_mod;
7191
fd708b81
JB
7192 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7193 root->root_key.objectid,
7194 btrfs_header_level(buf), 0,
7195 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7196 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7197 buf->len, parent,
0b246afa
JM
7198 root->root_key.objectid,
7199 btrfs_header_level(buf),
7be07912 7200 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7201 &old_ref_mod, &new_ref_mod);
79787eaa 7202 BUG_ON(ret); /* -ENOMEM */
d7eae340 7203 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7204 }
7205
0a16c7d7 7206 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7207 struct btrfs_block_group_cache *cache;
7208
f0486c68 7209 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7210 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7211 if (!ret)
37be25bc 7212 goto out;
f0486c68
YZ
7213 }
7214
4da8b76d 7215 pin = 0;
0b246afa 7216 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7217
f0486c68 7218 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7219 pin_down_extent(fs_info, cache, buf->start,
7220 buf->len, 1);
6219872d 7221 btrfs_put_block_group(cache);
37be25bc 7222 goto out;
f0486c68
YZ
7223 }
7224
7225 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7226
7227 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7228 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7229 btrfs_put_block_group(cache);
71ff6437 7230 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7231 }
7232out:
b150a4f1 7233 if (pin)
0b246afa 7234 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7235 root->root_key.objectid);
7236
0a16c7d7
OS
7237 if (last_ref) {
7238 /*
7239 * Deleting the buffer, clear the corrupt flag since it doesn't
7240 * matter anymore.
7241 */
7242 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7243 }
f0486c68
YZ
7244}
7245
79787eaa 7246/* Can return -ENOMEM */
2ff7e61e 7247int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7248 struct btrfs_root *root,
66d7e7f0 7249 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7250 u64 owner, u64 offset)
925baedd 7251{
84f7d8e6 7252 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7253 int old_ref_mod, new_ref_mod;
925baedd
CM
7254 int ret;
7255
f5ee5c9a 7256 if (btrfs_is_testing(fs_info))
faa2dbf0 7257 return 0;
fccb84c9 7258
fd708b81
JB
7259 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7260 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7261 root_objectid, owner, offset,
7262 BTRFS_DROP_DELAYED_REF);
7263
56bec294
CM
7264 /*
7265 * tree log blocks never actually go into the extent allocation
7266 * tree, just update pinning info and exit early.
56bec294 7267 */
5d4f98a2
YZ
7268 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7269 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7270 /* unlocks the pinned mutex */
2ff7e61e 7271 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7272 old_ref_mod = new_ref_mod = 0;
56bec294 7273 ret = 0;
5d4f98a2 7274 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7275 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7276 num_bytes, parent,
7277 root_objectid, (int)owner,
7278 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7279 &old_ref_mod, &new_ref_mod);
5d4f98a2 7280 } else {
66d7e7f0 7281 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7282 num_bytes, parent,
7283 root_objectid, owner, offset,
7284 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7285 &old_ref_mod, &new_ref_mod);
56bec294 7286 }
d7eae340
OS
7287
7288 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7289 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7290
925baedd
CM
7291 return ret;
7292}
7293
817d52f8
JB
7294/*
7295 * when we wait for progress in the block group caching, its because
7296 * our allocation attempt failed at least once. So, we must sleep
7297 * and let some progress happen before we try again.
7298 *
7299 * This function will sleep at least once waiting for new free space to
7300 * show up, and then it will check the block group free space numbers
7301 * for our min num_bytes. Another option is to have it go ahead
7302 * and look in the rbtree for a free extent of a given size, but this
7303 * is a good start.
36cce922
JB
7304 *
7305 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7306 * any of the information in this block group.
817d52f8 7307 */
36cce922 7308static noinline void
817d52f8
JB
7309wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7310 u64 num_bytes)
7311{
11833d66 7312 struct btrfs_caching_control *caching_ctl;
817d52f8 7313
11833d66
YZ
7314 caching_ctl = get_caching_control(cache);
7315 if (!caching_ctl)
36cce922 7316 return;
817d52f8 7317
11833d66 7318 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7319 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7320
7321 put_caching_control(caching_ctl);
11833d66
YZ
7322}
7323
7324static noinline int
7325wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7326{
7327 struct btrfs_caching_control *caching_ctl;
36cce922 7328 int ret = 0;
11833d66
YZ
7329
7330 caching_ctl = get_caching_control(cache);
7331 if (!caching_ctl)
36cce922 7332 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7333
7334 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7335 if (cache->cached == BTRFS_CACHE_ERROR)
7336 ret = -EIO;
11833d66 7337 put_caching_control(caching_ctl);
36cce922 7338 return ret;
817d52f8
JB
7339}
7340
6ab0a202
JM
7341static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7342 [BTRFS_RAID_RAID10] = "raid10",
7343 [BTRFS_RAID_RAID1] = "raid1",
7344 [BTRFS_RAID_DUP] = "dup",
7345 [BTRFS_RAID_RAID0] = "raid0",
7346 [BTRFS_RAID_SINGLE] = "single",
7347 [BTRFS_RAID_RAID5] = "raid5",
7348 [BTRFS_RAID_RAID6] = "raid6",
7349};
7350
1b8e5df6 7351static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7352{
7353 if (type >= BTRFS_NR_RAID_TYPES)
7354 return NULL;
7355
7356 return btrfs_raid_type_names[type];
7357}
7358
817d52f8 7359enum btrfs_loop_type {
285ff5af
JB
7360 LOOP_CACHING_NOWAIT = 0,
7361 LOOP_CACHING_WAIT = 1,
7362 LOOP_ALLOC_CHUNK = 2,
7363 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7364};
7365
e570fd27
MX
7366static inline void
7367btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7368 int delalloc)
7369{
7370 if (delalloc)
7371 down_read(&cache->data_rwsem);
7372}
7373
7374static inline void
7375btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7376 int delalloc)
7377{
7378 btrfs_get_block_group(cache);
7379 if (delalloc)
7380 down_read(&cache->data_rwsem);
7381}
7382
7383static struct btrfs_block_group_cache *
7384btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7385 struct btrfs_free_cluster *cluster,
7386 int delalloc)
7387{
89771cc9 7388 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7389
e570fd27 7390 spin_lock(&cluster->refill_lock);
6719afdc
GU
7391 while (1) {
7392 used_bg = cluster->block_group;
7393 if (!used_bg)
7394 return NULL;
7395
7396 if (used_bg == block_group)
e570fd27
MX
7397 return used_bg;
7398
6719afdc 7399 btrfs_get_block_group(used_bg);
e570fd27 7400
6719afdc
GU
7401 if (!delalloc)
7402 return used_bg;
e570fd27 7403
6719afdc
GU
7404 if (down_read_trylock(&used_bg->data_rwsem))
7405 return used_bg;
e570fd27 7406
6719afdc 7407 spin_unlock(&cluster->refill_lock);
e570fd27 7408
e321f8a8
LB
7409 /* We should only have one-level nested. */
7410 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7411
6719afdc
GU
7412 spin_lock(&cluster->refill_lock);
7413 if (used_bg == cluster->block_group)
7414 return used_bg;
e570fd27 7415
6719afdc
GU
7416 up_read(&used_bg->data_rwsem);
7417 btrfs_put_block_group(used_bg);
7418 }
e570fd27
MX
7419}
7420
7421static inline void
7422btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7423 int delalloc)
7424{
7425 if (delalloc)
7426 up_read(&cache->data_rwsem);
7427 btrfs_put_block_group(cache);
7428}
7429
fec577fb
CM
7430/*
7431 * walks the btree of allocated extents and find a hole of a given size.
7432 * The key ins is changed to record the hole:
a4820398 7433 * ins->objectid == start position
62e2749e 7434 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7435 * ins->offset == the size of the hole.
fec577fb 7436 * Any available blocks before search_start are skipped.
a4820398
MX
7437 *
7438 * If there is no suitable free space, we will record the max size of
7439 * the free space extent currently.
fec577fb 7440 */
87bde3cd 7441static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7442 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7443 u64 hint_byte, struct btrfs_key *ins,
7444 u64 flags, int delalloc)
fec577fb 7445{
80eb234a 7446 int ret = 0;
0b246afa 7447 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7448 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7449 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7450 u64 search_start = 0;
a4820398 7451 u64 max_extent_size = 0;
c759c4e1 7452 u64 empty_cluster = 0;
80eb234a 7453 struct btrfs_space_info *space_info;
fa9c0d79 7454 int loop = 0;
3e72ee88 7455 int index = btrfs_bg_flags_to_raid_index(flags);
0a24325e 7456 bool failed_cluster_refill = false;
1cdda9b8 7457 bool failed_alloc = false;
67377734 7458 bool use_cluster = true;
60d2adbb 7459 bool have_caching_bg = false;
13a0db5a 7460 bool orig_have_caching_bg = false;
a5e681d9 7461 bool full_search = false;
fec577fb 7462
0b246afa 7463 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7464 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7465 ins->objectid = 0;
7466 ins->offset = 0;
b1a4d965 7467
71ff6437 7468 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7469
0b246afa 7470 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7471 if (!space_info) {
0b246afa 7472 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7473 return -ENOSPC;
7474 }
2552d17e 7475
67377734 7476 /*
4f4db217
JB
7477 * If our free space is heavily fragmented we may not be able to make
7478 * big contiguous allocations, so instead of doing the expensive search
7479 * for free space, simply return ENOSPC with our max_extent_size so we
7480 * can go ahead and search for a more manageable chunk.
7481 *
7482 * If our max_extent_size is large enough for our allocation simply
7483 * disable clustering since we will likely not be able to find enough
7484 * space to create a cluster and induce latency trying.
67377734 7485 */
4f4db217
JB
7486 if (unlikely(space_info->max_extent_size)) {
7487 spin_lock(&space_info->lock);
7488 if (space_info->max_extent_size &&
7489 num_bytes > space_info->max_extent_size) {
7490 ins->offset = space_info->max_extent_size;
7491 spin_unlock(&space_info->lock);
7492 return -ENOSPC;
7493 } else if (space_info->max_extent_size) {
7494 use_cluster = false;
7495 }
7496 spin_unlock(&space_info->lock);
fa9c0d79 7497 }
0f9dd46c 7498
2ff7e61e 7499 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7500 if (last_ptr) {
fa9c0d79
CM
7501 spin_lock(&last_ptr->lock);
7502 if (last_ptr->block_group)
7503 hint_byte = last_ptr->window_start;
c759c4e1
JB
7504 if (last_ptr->fragmented) {
7505 /*
7506 * We still set window_start so we can keep track of the
7507 * last place we found an allocation to try and save
7508 * some time.
7509 */
7510 hint_byte = last_ptr->window_start;
7511 use_cluster = false;
7512 }
fa9c0d79 7513 spin_unlock(&last_ptr->lock);
239b14b3 7514 }
fa9c0d79 7515
2ff7e61e 7516 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7517 search_start = max(search_start, hint_byte);
2552d17e 7518 if (search_start == hint_byte) {
0b246afa 7519 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7520 /*
7521 * we don't want to use the block group if it doesn't match our
7522 * allocation bits, or if its not cached.
ccf0e725
JB
7523 *
7524 * However if we are re-searching with an ideal block group
7525 * picked out then we don't care that the block group is cached.
817d52f8 7526 */
b6919a58 7527 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7528 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7529 down_read(&space_info->groups_sem);
44fb5511
CM
7530 if (list_empty(&block_group->list) ||
7531 block_group->ro) {
7532 /*
7533 * someone is removing this block group,
7534 * we can't jump into the have_block_group
7535 * target because our list pointers are not
7536 * valid
7537 */
7538 btrfs_put_block_group(block_group);
7539 up_read(&space_info->groups_sem);
ccf0e725 7540 } else {
3e72ee88
QW
7541 index = btrfs_bg_flags_to_raid_index(
7542 block_group->flags);
e570fd27 7543 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7544 goto have_block_group;
ccf0e725 7545 }
2552d17e 7546 } else if (block_group) {
fa9c0d79 7547 btrfs_put_block_group(block_group);
2552d17e 7548 }
42e70e7a 7549 }
2552d17e 7550search:
60d2adbb 7551 have_caching_bg = false;
3e72ee88 7552 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
a5e681d9 7553 full_search = true;
80eb234a 7554 down_read(&space_info->groups_sem);
b742bb82
YZ
7555 list_for_each_entry(block_group, &space_info->block_groups[index],
7556 list) {
6226cb0a 7557 u64 offset;
817d52f8 7558 int cached;
8a1413a2 7559
14443937
JM
7560 /* If the block group is read-only, we can skip it entirely. */
7561 if (unlikely(block_group->ro))
7562 continue;
7563
e570fd27 7564 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7565 search_start = block_group->key.objectid;
42e70e7a 7566
83a50de9
CM
7567 /*
7568 * this can happen if we end up cycling through all the
7569 * raid types, but we want to make sure we only allocate
7570 * for the proper type.
7571 */
b6919a58 7572 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7573 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7574 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7575 BTRFS_BLOCK_GROUP_RAID5 |
7576 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7577 BTRFS_BLOCK_GROUP_RAID10;
7578
7579 /*
7580 * if they asked for extra copies and this block group
7581 * doesn't provide them, bail. This does allow us to
7582 * fill raid0 from raid1.
7583 */
b6919a58 7584 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7585 goto loop;
7586 }
7587
2552d17e 7588have_block_group:
291c7d2f
JB
7589 cached = block_group_cache_done(block_group);
7590 if (unlikely(!cached)) {
a5e681d9 7591 have_caching_bg = true;
f6373bf3 7592 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7593 BUG_ON(ret < 0);
7594 ret = 0;
817d52f8
JB
7595 }
7596
36cce922
JB
7597 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7598 goto loop;
0f9dd46c 7599
0a24325e 7600 /*
062c05c4
AO
7601 * Ok we want to try and use the cluster allocator, so
7602 * lets look there
0a24325e 7603 */
c759c4e1 7604 if (last_ptr && use_cluster) {
215a63d1 7605 struct btrfs_block_group_cache *used_block_group;
8de972b4 7606 unsigned long aligned_cluster;
fa9c0d79
CM
7607 /*
7608 * the refill lock keeps out other
7609 * people trying to start a new cluster
7610 */
e570fd27
MX
7611 used_block_group = btrfs_lock_cluster(block_group,
7612 last_ptr,
7613 delalloc);
7614 if (!used_block_group)
44fb5511 7615 goto refill_cluster;
274bd4fb 7616
e570fd27
MX
7617 if (used_block_group != block_group &&
7618 (used_block_group->ro ||
7619 !block_group_bits(used_block_group, flags)))
7620 goto release_cluster;
44fb5511 7621
274bd4fb 7622 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7623 last_ptr,
7624 num_bytes,
7625 used_block_group->key.objectid,
7626 &max_extent_size);
fa9c0d79
CM
7627 if (offset) {
7628 /* we have a block, we're done */
7629 spin_unlock(&last_ptr->refill_lock);
71ff6437 7630 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7631 used_block_group,
7632 search_start, num_bytes);
215a63d1 7633 if (used_block_group != block_group) {
e570fd27
MX
7634 btrfs_release_block_group(block_group,
7635 delalloc);
215a63d1
MX
7636 block_group = used_block_group;
7637 }
fa9c0d79
CM
7638 goto checks;
7639 }
7640
274bd4fb 7641 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7642release_cluster:
062c05c4
AO
7643 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7644 * set up a new clusters, so lets just skip it
7645 * and let the allocator find whatever block
7646 * it can find. If we reach this point, we
7647 * will have tried the cluster allocator
7648 * plenty of times and not have found
7649 * anything, so we are likely way too
7650 * fragmented for the clustering stuff to find
a5f6f719
AO
7651 * anything.
7652 *
7653 * However, if the cluster is taken from the
7654 * current block group, release the cluster
7655 * first, so that we stand a better chance of
7656 * succeeding in the unclustered
7657 * allocation. */
7658 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7659 used_block_group != block_group) {
062c05c4 7660 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7661 btrfs_release_block_group(used_block_group,
7662 delalloc);
062c05c4
AO
7663 goto unclustered_alloc;
7664 }
7665
fa9c0d79
CM
7666 /*
7667 * this cluster didn't work out, free it and
7668 * start over
7669 */
7670 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7671
e570fd27
MX
7672 if (used_block_group != block_group)
7673 btrfs_release_block_group(used_block_group,
7674 delalloc);
7675refill_cluster:
a5f6f719
AO
7676 if (loop >= LOOP_NO_EMPTY_SIZE) {
7677 spin_unlock(&last_ptr->refill_lock);
7678 goto unclustered_alloc;
7679 }
7680
8de972b4
CM
7681 aligned_cluster = max_t(unsigned long,
7682 empty_cluster + empty_size,
7683 block_group->full_stripe_len);
7684
fa9c0d79 7685 /* allocate a cluster in this block group */
2ff7e61e 7686 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7687 last_ptr, search_start,
7688 num_bytes,
7689 aligned_cluster);
fa9c0d79
CM
7690 if (ret == 0) {
7691 /*
7692 * now pull our allocation out of this
7693 * cluster
7694 */
7695 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7696 last_ptr,
7697 num_bytes,
7698 search_start,
7699 &max_extent_size);
fa9c0d79
CM
7700 if (offset) {
7701 /* we found one, proceed */
7702 spin_unlock(&last_ptr->refill_lock);
71ff6437 7703 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7704 block_group, search_start,
7705 num_bytes);
fa9c0d79
CM
7706 goto checks;
7707 }
0a24325e
JB
7708 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7709 && !failed_cluster_refill) {
817d52f8
JB
7710 spin_unlock(&last_ptr->refill_lock);
7711
0a24325e 7712 failed_cluster_refill = true;
817d52f8
JB
7713 wait_block_group_cache_progress(block_group,
7714 num_bytes + empty_cluster + empty_size);
7715 goto have_block_group;
fa9c0d79 7716 }
817d52f8 7717
fa9c0d79
CM
7718 /*
7719 * at this point we either didn't find a cluster
7720 * or we weren't able to allocate a block from our
7721 * cluster. Free the cluster we've been trying
7722 * to use, and go to the next block group
7723 */
0a24325e 7724 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7725 spin_unlock(&last_ptr->refill_lock);
0a24325e 7726 goto loop;
fa9c0d79
CM
7727 }
7728
062c05c4 7729unclustered_alloc:
c759c4e1
JB
7730 /*
7731 * We are doing an unclustered alloc, set the fragmented flag so
7732 * we don't bother trying to setup a cluster again until we get
7733 * more space.
7734 */
7735 if (unlikely(last_ptr)) {
7736 spin_lock(&last_ptr->lock);
7737 last_ptr->fragmented = 1;
7738 spin_unlock(&last_ptr->lock);
7739 }
0c9b36e0
LB
7740 if (cached) {
7741 struct btrfs_free_space_ctl *ctl =
7742 block_group->free_space_ctl;
7743
7744 spin_lock(&ctl->tree_lock);
7745 if (ctl->free_space <
7746 num_bytes + empty_cluster + empty_size) {
7747 if (ctl->free_space > max_extent_size)
7748 max_extent_size = ctl->free_space;
7749 spin_unlock(&ctl->tree_lock);
7750 goto loop;
7751 }
7752 spin_unlock(&ctl->tree_lock);
a5f6f719 7753 }
a5f6f719 7754
6226cb0a 7755 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7756 num_bytes, empty_size,
7757 &max_extent_size);
1cdda9b8
JB
7758 /*
7759 * If we didn't find a chunk, and we haven't failed on this
7760 * block group before, and this block group is in the middle of
7761 * caching and we are ok with waiting, then go ahead and wait
7762 * for progress to be made, and set failed_alloc to true.
7763 *
7764 * If failed_alloc is true then we've already waited on this
7765 * block group once and should move on to the next block group.
7766 */
7767 if (!offset && !failed_alloc && !cached &&
7768 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7769 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7770 num_bytes + empty_size);
7771 failed_alloc = true;
817d52f8 7772 goto have_block_group;
1cdda9b8
JB
7773 } else if (!offset) {
7774 goto loop;
817d52f8 7775 }
fa9c0d79 7776checks:
0b246afa 7777 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7778
2552d17e
JB
7779 /* move on to the next group */
7780 if (search_start + num_bytes >
215a63d1
MX
7781 block_group->key.objectid + block_group->key.offset) {
7782 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7783 goto loop;
6226cb0a 7784 }
f5a31e16 7785
f0486c68 7786 if (offset < search_start)
215a63d1 7787 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7788 search_start - offset);
7789 BUG_ON(offset > search_start);
2552d17e 7790
18513091
WX
7791 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7792 num_bytes, delalloc);
f0486c68 7793 if (ret == -EAGAIN) {
215a63d1 7794 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7795 goto loop;
0f9dd46c 7796 }
9cfa3e34 7797 btrfs_inc_block_group_reservations(block_group);
0b86a832 7798
f0486c68 7799 /* we are all good, lets return */
2552d17e
JB
7800 ins->objectid = search_start;
7801 ins->offset = num_bytes;
d2fb3437 7802
71ff6437 7803 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7804 search_start, num_bytes);
e570fd27 7805 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7806 break;
7807loop:
0a24325e 7808 failed_cluster_refill = false;
1cdda9b8 7809 failed_alloc = false;
3e72ee88
QW
7810 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7811 index);
e570fd27 7812 btrfs_release_block_group(block_group, delalloc);
14443937 7813 cond_resched();
2552d17e
JB
7814 }
7815 up_read(&space_info->groups_sem);
7816
13a0db5a 7817 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7818 && !orig_have_caching_bg)
7819 orig_have_caching_bg = true;
7820
60d2adbb
MX
7821 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7822 goto search;
7823
b742bb82
YZ
7824 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7825 goto search;
7826
285ff5af 7827 /*
ccf0e725
JB
7828 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7829 * caching kthreads as we move along
817d52f8
JB
7830 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7831 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7832 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7833 * again
fa9c0d79 7834 */
723bda20 7835 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7836 index = 0;
a5e681d9
JB
7837 if (loop == LOOP_CACHING_NOWAIT) {
7838 /*
7839 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7840 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7841 * full search through.
7842 */
13a0db5a 7843 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7844 loop = LOOP_CACHING_WAIT;
7845 else
7846 loop = LOOP_ALLOC_CHUNK;
7847 } else {
7848 loop++;
7849 }
7850
817d52f8 7851 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7852 struct btrfs_trans_handle *trans;
f017f15f
WS
7853 int exist = 0;
7854
7855 trans = current->journal_info;
7856 if (trans)
7857 exist = 1;
7858 else
7859 trans = btrfs_join_transaction(root);
00361589 7860
00361589
JB
7861 if (IS_ERR(trans)) {
7862 ret = PTR_ERR(trans);
7863 goto out;
7864 }
7865
2ff7e61e 7866 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7867 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7868
7869 /*
7870 * If we can't allocate a new chunk we've already looped
7871 * through at least once, move on to the NO_EMPTY_SIZE
7872 * case.
7873 */
7874 if (ret == -ENOSPC)
7875 loop = LOOP_NO_EMPTY_SIZE;
7876
ea658bad
JB
7877 /*
7878 * Do not bail out on ENOSPC since we
7879 * can do more things.
7880 */
00361589 7881 if (ret < 0 && ret != -ENOSPC)
66642832 7882 btrfs_abort_transaction(trans, ret);
00361589
JB
7883 else
7884 ret = 0;
f017f15f 7885 if (!exist)
3a45bb20 7886 btrfs_end_transaction(trans);
00361589 7887 if (ret)
ea658bad 7888 goto out;
2552d17e
JB
7889 }
7890
723bda20 7891 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7892 /*
7893 * Don't loop again if we already have no empty_size and
7894 * no empty_cluster.
7895 */
7896 if (empty_size == 0 &&
7897 empty_cluster == 0) {
7898 ret = -ENOSPC;
7899 goto out;
7900 }
723bda20
JB
7901 empty_size = 0;
7902 empty_cluster = 0;
fa9c0d79 7903 }
723bda20
JB
7904
7905 goto search;
2552d17e
JB
7906 } else if (!ins->objectid) {
7907 ret = -ENOSPC;
d82a6f1d 7908 } else if (ins->objectid) {
c759c4e1
JB
7909 if (!use_cluster && last_ptr) {
7910 spin_lock(&last_ptr->lock);
7911 last_ptr->window_start = ins->objectid;
7912 spin_unlock(&last_ptr->lock);
7913 }
80eb234a 7914 ret = 0;
be744175 7915 }
79787eaa 7916out:
4f4db217
JB
7917 if (ret == -ENOSPC) {
7918 spin_lock(&space_info->lock);
7919 space_info->max_extent_size = max_extent_size;
7920 spin_unlock(&space_info->lock);
a4820398 7921 ins->offset = max_extent_size;
4f4db217 7922 }
0f70abe2 7923 return ret;
fec577fb 7924}
ec44a35c 7925
ab8d0fc4
JM
7926static void dump_space_info(struct btrfs_fs_info *fs_info,
7927 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7928 int dump_block_groups)
0f9dd46c
JB
7929{
7930 struct btrfs_block_group_cache *cache;
b742bb82 7931 int index = 0;
0f9dd46c 7932
9ed74f2d 7933 spin_lock(&info->lock);
ab8d0fc4
JM
7934 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7935 info->flags,
4136135b
LB
7936 info->total_bytes - btrfs_space_info_used(info, true),
7937 info->full ? "" : "not ");
ab8d0fc4
JM
7938 btrfs_info(fs_info,
7939 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7940 info->total_bytes, info->bytes_used, info->bytes_pinned,
7941 info->bytes_reserved, info->bytes_may_use,
7942 info->bytes_readonly);
9ed74f2d
JB
7943 spin_unlock(&info->lock);
7944
7945 if (!dump_block_groups)
7946 return;
0f9dd46c 7947
80eb234a 7948 down_read(&info->groups_sem);
b742bb82
YZ
7949again:
7950 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7951 spin_lock(&cache->lock);
ab8d0fc4
JM
7952 btrfs_info(fs_info,
7953 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7954 cache->key.objectid, cache->key.offset,
7955 btrfs_block_group_used(&cache->item), cache->pinned,
7956 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7957 btrfs_dump_free_space(cache, bytes);
7958 spin_unlock(&cache->lock);
7959 }
b742bb82
YZ
7960 if (++index < BTRFS_NR_RAID_TYPES)
7961 goto again;
80eb234a 7962 up_read(&info->groups_sem);
0f9dd46c 7963}
e8569813 7964
6f47c706
NB
7965/*
7966 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7967 * hole that is at least as big as @num_bytes.
7968 *
7969 * @root - The root that will contain this extent
7970 *
7971 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7972 * is used for accounting purposes. This value differs
7973 * from @num_bytes only in the case of compressed extents.
7974 *
7975 * @num_bytes - Number of bytes to allocate on-disk.
7976 *
7977 * @min_alloc_size - Indicates the minimum amount of space that the
7978 * allocator should try to satisfy. In some cases
7979 * @num_bytes may be larger than what is required and if
7980 * the filesystem is fragmented then allocation fails.
7981 * However, the presence of @min_alloc_size gives a
7982 * chance to try and satisfy the smaller allocation.
7983 *
7984 * @empty_size - A hint that you plan on doing more COW. This is the
7985 * size in bytes the allocator should try to find free
7986 * next to the block it returns. This is just a hint and
7987 * may be ignored by the allocator.
7988 *
7989 * @hint_byte - Hint to the allocator to start searching above the byte
7990 * address passed. It might be ignored.
7991 *
7992 * @ins - This key is modified to record the found hole. It will
7993 * have the following values:
7994 * ins->objectid == start position
7995 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7996 * ins->offset == the size of the hole.
7997 *
7998 * @is_data - Boolean flag indicating whether an extent is
7999 * allocated for data (true) or metadata (false)
8000 *
8001 * @delalloc - Boolean flag indicating whether this allocation is for
8002 * delalloc or not. If 'true' data_rwsem of block groups
8003 * is going to be acquired.
8004 *
8005 *
8006 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8007 * case -ENOSPC is returned then @ins->offset will contain the size of the
8008 * largest available hole the allocator managed to find.
8009 */
18513091 8010int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8011 u64 num_bytes, u64 min_alloc_size,
8012 u64 empty_size, u64 hint_byte,
e570fd27 8013 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8014{
ab8d0fc4 8015 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8016 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8017 u64 flags;
fec577fb 8018 int ret;
925baedd 8019
1b86826d 8020 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8021again:
0b246afa 8022 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8023 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8024 hint_byte, ins, flags, delalloc);
9cfa3e34 8025 if (!ret && !is_data) {
ab8d0fc4 8026 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8027 } else if (ret == -ENOSPC) {
a4820398
MX
8028 if (!final_tried && ins->offset) {
8029 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8030 num_bytes = round_down(num_bytes,
0b246afa 8031 fs_info->sectorsize);
9e622d6b 8032 num_bytes = max(num_bytes, min_alloc_size);
18513091 8033 ram_bytes = num_bytes;
9e622d6b
MX
8034 if (num_bytes == min_alloc_size)
8035 final_tried = true;
8036 goto again;
ab8d0fc4 8037 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8038 struct btrfs_space_info *sinfo;
8039
ab8d0fc4 8040 sinfo = __find_space_info(fs_info, flags);
0b246afa 8041 btrfs_err(fs_info,
5d163e0e
JM
8042 "allocation failed flags %llu, wanted %llu",
8043 flags, num_bytes);
53804280 8044 if (sinfo)
ab8d0fc4 8045 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8046 }
925baedd 8047 }
0f9dd46c
JB
8048
8049 return ret;
e6dcd2dc
CM
8050}
8051
2ff7e61e 8052static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8053 u64 start, u64 len,
8054 int pin, int delalloc)
65b51a00 8055{
0f9dd46c 8056 struct btrfs_block_group_cache *cache;
1f3c79a2 8057 int ret = 0;
0f9dd46c 8058
0b246afa 8059 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8060 if (!cache) {
0b246afa
JM
8061 btrfs_err(fs_info, "Unable to find block group for %llu",
8062 start);
0f9dd46c
JB
8063 return -ENOSPC;
8064 }
1f3c79a2 8065
e688b725 8066 if (pin)
2ff7e61e 8067 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8068 else {
0b246afa 8069 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8070 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8071 btrfs_add_free_space(cache, start, len);
4824f1f4 8072 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8073 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8074 }
31193213 8075
fa9c0d79 8076 btrfs_put_block_group(cache);
e6dcd2dc
CM
8077 return ret;
8078}
8079
2ff7e61e 8080int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8081 u64 start, u64 len, int delalloc)
e688b725 8082{
2ff7e61e 8083 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8084}
8085
2ff7e61e 8086int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8087 u64 start, u64 len)
8088{
2ff7e61e 8089 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8090}
8091
5d4f98a2 8092static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8093 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8094 u64 parent, u64 root_objectid,
8095 u64 flags, u64 owner, u64 offset,
8096 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8097{
8098 int ret;
e6dcd2dc 8099 struct btrfs_extent_item *extent_item;
5d4f98a2 8100 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8101 struct btrfs_path *path;
5d4f98a2
YZ
8102 struct extent_buffer *leaf;
8103 int type;
8104 u32 size;
26b8003f 8105
5d4f98a2
YZ
8106 if (parent > 0)
8107 type = BTRFS_SHARED_DATA_REF_KEY;
8108 else
8109 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8110
5d4f98a2 8111 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8112
8113 path = btrfs_alloc_path();
db5b493a
TI
8114 if (!path)
8115 return -ENOMEM;
47e4bb98 8116
b9473439 8117 path->leave_spinning = 1;
5d4f98a2
YZ
8118 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8119 ins, size);
79787eaa
JM
8120 if (ret) {
8121 btrfs_free_path(path);
8122 return ret;
8123 }
0f9dd46c 8124
5d4f98a2
YZ
8125 leaf = path->nodes[0];
8126 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8127 struct btrfs_extent_item);
5d4f98a2
YZ
8128 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8129 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8130 btrfs_set_extent_flags(leaf, extent_item,
8131 flags | BTRFS_EXTENT_FLAG_DATA);
8132
8133 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8134 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8135 if (parent > 0) {
8136 struct btrfs_shared_data_ref *ref;
8137 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8138 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8139 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8140 } else {
8141 struct btrfs_extent_data_ref *ref;
8142 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8143 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8144 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8145 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8146 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8147 }
47e4bb98
CM
8148
8149 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8150 btrfs_free_path(path);
f510cfec 8151
1e144fb8
OS
8152 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8153 ins->offset);
8154 if (ret)
8155 return ret;
8156
6202df69 8157 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8158 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8159 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8160 ins->objectid, ins->offset);
f5947066
CM
8161 BUG();
8162 }
71ff6437 8163 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8164 return ret;
8165}
8166
5d4f98a2 8167static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8168 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8169 u64 parent, u64 root_objectid,
8170 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8171 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8172{
8173 int ret;
5d4f98a2
YZ
8174 struct btrfs_extent_item *extent_item;
8175 struct btrfs_tree_block_info *block_info;
8176 struct btrfs_extent_inline_ref *iref;
8177 struct btrfs_path *path;
8178 struct extent_buffer *leaf;
3173a18f 8179 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8180 u64 num_bytes = ins->offset;
0b246afa 8181 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8182
8183 if (!skinny_metadata)
8184 size += sizeof(*block_info);
1c2308f8 8185
5d4f98a2 8186 path = btrfs_alloc_path();
857cc2fc 8187 if (!path) {
2ff7e61e 8188 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8189 fs_info->nodesize);
d8926bb3 8190 return -ENOMEM;
857cc2fc 8191 }
56bec294 8192
5d4f98a2
YZ
8193 path->leave_spinning = 1;
8194 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8195 ins, size);
79787eaa 8196 if (ret) {
dd825259 8197 btrfs_free_path(path);
2ff7e61e 8198 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8199 fs_info->nodesize);
79787eaa
JM
8200 return ret;
8201 }
5d4f98a2
YZ
8202
8203 leaf = path->nodes[0];
8204 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8205 struct btrfs_extent_item);
8206 btrfs_set_extent_refs(leaf, extent_item, 1);
8207 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8208 btrfs_set_extent_flags(leaf, extent_item,
8209 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8210
3173a18f
JB
8211 if (skinny_metadata) {
8212 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8213 num_bytes = fs_info->nodesize;
3173a18f
JB
8214 } else {
8215 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8216 btrfs_set_tree_block_key(leaf, block_info, key);
8217 btrfs_set_tree_block_level(leaf, block_info, level);
8218 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8219 }
5d4f98a2 8220
5d4f98a2
YZ
8221 if (parent > 0) {
8222 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8223 btrfs_set_extent_inline_ref_type(leaf, iref,
8224 BTRFS_SHARED_BLOCK_REF_KEY);
8225 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8226 } else {
8227 btrfs_set_extent_inline_ref_type(leaf, iref,
8228 BTRFS_TREE_BLOCK_REF_KEY);
8229 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8230 }
8231
8232 btrfs_mark_buffer_dirty(leaf);
8233 btrfs_free_path(path);
8234
1e144fb8
OS
8235 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8236 num_bytes);
8237 if (ret)
8238 return ret;
8239
6202df69
JM
8240 ret = update_block_group(trans, fs_info, ins->objectid,
8241 fs_info->nodesize, 1);
79787eaa 8242 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8243 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8244 ins->objectid, ins->offset);
5d4f98a2
YZ
8245 BUG();
8246 }
0be5dc67 8247
71ff6437 8248 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8249 fs_info->nodesize);
5d4f98a2
YZ
8250 return ret;
8251}
8252
8253int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8254 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8255 u64 offset, u64 ram_bytes,
8256 struct btrfs_key *ins)
5d4f98a2 8257{
84f7d8e6 8258 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8259 int ret;
8260
84f7d8e6 8261 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8262
fd708b81
JB
8263 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8264 root->root_key.objectid, owner, offset,
8265 BTRFS_ADD_DELAYED_EXTENT);
8266
0b246afa 8267 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8268 ins->offset, 0,
8269 root->root_key.objectid, owner,
7be07912
OS
8270 offset, ram_bytes,
8271 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8272 return ret;
8273}
e02119d5
CM
8274
8275/*
8276 * this is used by the tree logging recovery code. It records that
8277 * an extent has been allocated and makes sure to clear the free
8278 * space cache bits as well
8279 */
5d4f98a2 8280int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8281 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8282 u64 root_objectid, u64 owner, u64 offset,
8283 struct btrfs_key *ins)
e02119d5
CM
8284{
8285 int ret;
8286 struct btrfs_block_group_cache *block_group;
ed7a6948 8287 struct btrfs_space_info *space_info;
11833d66 8288
8c2a1a30
JB
8289 /*
8290 * Mixed block groups will exclude before processing the log so we only
01327610 8291 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8292 */
0b246afa 8293 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8294 ret = __exclude_logged_extent(fs_info, ins->objectid,
8295 ins->offset);
b50c6e25 8296 if (ret)
8c2a1a30 8297 return ret;
11833d66
YZ
8298 }
8299
0b246afa 8300 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8301 if (!block_group)
8302 return -EINVAL;
8303
ed7a6948
WX
8304 space_info = block_group->space_info;
8305 spin_lock(&space_info->lock);
8306 spin_lock(&block_group->lock);
8307 space_info->bytes_reserved += ins->offset;
8308 block_group->reserved += ins->offset;
8309 spin_unlock(&block_group->lock);
8310 spin_unlock(&space_info->lock);
8311
2ff7e61e 8312 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8313 0, owner, offset, ins, 1);
b50c6e25 8314 btrfs_put_block_group(block_group);
e02119d5
CM
8315 return ret;
8316}
8317
48a3b636
ES
8318static struct extent_buffer *
8319btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8320 u64 bytenr, int level)
65b51a00 8321{
0b246afa 8322 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8323 struct extent_buffer *buf;
8324
2ff7e61e 8325 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8326 if (IS_ERR(buf))
8327 return buf;
8328
65b51a00 8329 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8330 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8331 btrfs_tree_lock(buf);
7c302b49 8332 clean_tree_block(fs_info, buf);
3083ee2e 8333 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8334
8335 btrfs_set_lock_blocking(buf);
4db8c528 8336 set_extent_buffer_uptodate(buf);
b4ce94de 8337
d0c803c4 8338 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8339 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8340 /*
8341 * we allow two log transactions at a time, use different
8342 * EXENT bit to differentiate dirty pages.
8343 */
656f30db 8344 if (buf->log_index == 0)
8cef4e16
YZ
8345 set_extent_dirty(&root->dirty_log_pages, buf->start,
8346 buf->start + buf->len - 1, GFP_NOFS);
8347 else
8348 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8349 buf->start + buf->len - 1);
d0c803c4 8350 } else {
656f30db 8351 buf->log_index = -1;
d0c803c4 8352 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8353 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8354 }
64c12921 8355 trans->dirty = true;
b4ce94de 8356 /* this returns a buffer locked for blocking */
65b51a00
CM
8357 return buf;
8358}
8359
f0486c68
YZ
8360static struct btrfs_block_rsv *
8361use_block_rsv(struct btrfs_trans_handle *trans,
8362 struct btrfs_root *root, u32 blocksize)
8363{
0b246afa 8364 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8365 struct btrfs_block_rsv *block_rsv;
0b246afa 8366 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8367 int ret;
d88033db 8368 bool global_updated = false;
f0486c68
YZ
8369
8370 block_rsv = get_block_rsv(trans, root);
8371
b586b323
MX
8372 if (unlikely(block_rsv->size == 0))
8373 goto try_reserve;
d88033db 8374again:
f0486c68
YZ
8375 ret = block_rsv_use_bytes(block_rsv, blocksize);
8376 if (!ret)
8377 return block_rsv;
8378
b586b323
MX
8379 if (block_rsv->failfast)
8380 return ERR_PTR(ret);
8381
d88033db
MX
8382 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8383 global_updated = true;
0b246afa 8384 update_global_block_rsv(fs_info);
d88033db
MX
8385 goto again;
8386 }
8387
0b246afa 8388 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8389 static DEFINE_RATELIMIT_STATE(_rs,
8390 DEFAULT_RATELIMIT_INTERVAL * 10,
8391 /*DEFAULT_RATELIMIT_BURST*/ 1);
8392 if (__ratelimit(&_rs))
8393 WARN(1, KERN_DEBUG
efe120a0 8394 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8395 }
8396try_reserve:
8397 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8398 BTRFS_RESERVE_NO_FLUSH);
8399 if (!ret)
8400 return block_rsv;
8401 /*
8402 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8403 * the global reserve if its space type is the same as the global
8404 * reservation.
b586b323 8405 */
5881cfc9
MX
8406 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8407 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8408 ret = block_rsv_use_bytes(global_rsv, blocksize);
8409 if (!ret)
8410 return global_rsv;
8411 }
8412 return ERR_PTR(ret);
f0486c68
YZ
8413}
8414
8c2a3ca2
JB
8415static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8416 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8417{
8418 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8419 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8420}
8421
fec577fb 8422/*
f0486c68 8423 * finds a free extent and does all the dirty work required for allocation
67b7859e 8424 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8425 */
4d75f8a9 8426struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8427 struct btrfs_root *root,
8428 u64 parent, u64 root_objectid,
8429 const struct btrfs_disk_key *key,
8430 int level, u64 hint,
8431 u64 empty_size)
fec577fb 8432{
0b246afa 8433 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8434 struct btrfs_key ins;
f0486c68 8435 struct btrfs_block_rsv *block_rsv;
5f39d397 8436 struct extent_buffer *buf;
67b7859e 8437 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8438 u64 flags = 0;
8439 int ret;
0b246afa
JM
8440 u32 blocksize = fs_info->nodesize;
8441 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8442
05653ef3 8443#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8444 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8445 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8446 level);
faa2dbf0
JB
8447 if (!IS_ERR(buf))
8448 root->alloc_bytenr += blocksize;
8449 return buf;
8450 }
05653ef3 8451#endif
fccb84c9 8452
f0486c68
YZ
8453 block_rsv = use_block_rsv(trans, root, blocksize);
8454 if (IS_ERR(block_rsv))
8455 return ERR_CAST(block_rsv);
8456
18513091 8457 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8458 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8459 if (ret)
8460 goto out_unuse;
55c69072 8461
fe864576 8462 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8463 if (IS_ERR(buf)) {
8464 ret = PTR_ERR(buf);
8465 goto out_free_reserved;
8466 }
f0486c68
YZ
8467
8468 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8469 if (parent == 0)
8470 parent = ins.objectid;
8471 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8472 } else
8473 BUG_ON(parent > 0);
8474
8475 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8476 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8477 if (!extent_op) {
8478 ret = -ENOMEM;
8479 goto out_free_buf;
8480 }
f0486c68
YZ
8481 if (key)
8482 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8483 else
8484 memset(&extent_op->key, 0, sizeof(extent_op->key));
8485 extent_op->flags_to_set = flags;
35b3ad50
DS
8486 extent_op->update_key = skinny_metadata ? false : true;
8487 extent_op->update_flags = true;
8488 extent_op->is_data = false;
b1c79e09 8489 extent_op->level = level;
f0486c68 8490
fd708b81
JB
8491 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8492 root_objectid, level, 0,
8493 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8494 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8495 ins.offset, parent,
8496 root_objectid, level,
67b7859e 8497 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8498 extent_op, NULL, NULL);
67b7859e
OS
8499 if (ret)
8500 goto out_free_delayed;
f0486c68 8501 }
fec577fb 8502 return buf;
67b7859e
OS
8503
8504out_free_delayed:
8505 btrfs_free_delayed_extent_op(extent_op);
8506out_free_buf:
8507 free_extent_buffer(buf);
8508out_free_reserved:
2ff7e61e 8509 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8510out_unuse:
0b246afa 8511 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8512 return ERR_PTR(ret);
fec577fb 8513}
a28ec197 8514
2c47e605
YZ
8515struct walk_control {
8516 u64 refs[BTRFS_MAX_LEVEL];
8517 u64 flags[BTRFS_MAX_LEVEL];
8518 struct btrfs_key update_progress;
8519 int stage;
8520 int level;
8521 int shared_level;
8522 int update_ref;
8523 int keep_locks;
1c4850e2
YZ
8524 int reada_slot;
8525 int reada_count;
66d7e7f0 8526 int for_reloc;
2c47e605
YZ
8527};
8528
8529#define DROP_REFERENCE 1
8530#define UPDATE_BACKREF 2
8531
1c4850e2
YZ
8532static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8533 struct btrfs_root *root,
8534 struct walk_control *wc,
8535 struct btrfs_path *path)
6407bf6d 8536{
0b246afa 8537 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8538 u64 bytenr;
8539 u64 generation;
8540 u64 refs;
94fcca9f 8541 u64 flags;
5d4f98a2 8542 u32 nritems;
1c4850e2
YZ
8543 struct btrfs_key key;
8544 struct extent_buffer *eb;
6407bf6d 8545 int ret;
1c4850e2
YZ
8546 int slot;
8547 int nread = 0;
6407bf6d 8548
1c4850e2
YZ
8549 if (path->slots[wc->level] < wc->reada_slot) {
8550 wc->reada_count = wc->reada_count * 2 / 3;
8551 wc->reada_count = max(wc->reada_count, 2);
8552 } else {
8553 wc->reada_count = wc->reada_count * 3 / 2;
8554 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8555 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8556 }
7bb86316 8557
1c4850e2
YZ
8558 eb = path->nodes[wc->level];
8559 nritems = btrfs_header_nritems(eb);
bd56b302 8560
1c4850e2
YZ
8561 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8562 if (nread >= wc->reada_count)
8563 break;
bd56b302 8564
2dd3e67b 8565 cond_resched();
1c4850e2
YZ
8566 bytenr = btrfs_node_blockptr(eb, slot);
8567 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8568
1c4850e2
YZ
8569 if (slot == path->slots[wc->level])
8570 goto reada;
5d4f98a2 8571
1c4850e2
YZ
8572 if (wc->stage == UPDATE_BACKREF &&
8573 generation <= root->root_key.offset)
bd56b302
CM
8574 continue;
8575
94fcca9f 8576 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8577 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8578 wc->level - 1, 1, &refs,
8579 &flags);
79787eaa
JM
8580 /* We don't care about errors in readahead. */
8581 if (ret < 0)
8582 continue;
94fcca9f
YZ
8583 BUG_ON(refs == 0);
8584
1c4850e2 8585 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8586 if (refs == 1)
8587 goto reada;
bd56b302 8588
94fcca9f
YZ
8589 if (wc->level == 1 &&
8590 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8591 continue;
1c4850e2
YZ
8592 if (!wc->update_ref ||
8593 generation <= root->root_key.offset)
8594 continue;
8595 btrfs_node_key_to_cpu(eb, &key, slot);
8596 ret = btrfs_comp_cpu_keys(&key,
8597 &wc->update_progress);
8598 if (ret < 0)
8599 continue;
94fcca9f
YZ
8600 } else {
8601 if (wc->level == 1 &&
8602 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8603 continue;
6407bf6d 8604 }
1c4850e2 8605reada:
2ff7e61e 8606 readahead_tree_block(fs_info, bytenr);
1c4850e2 8607 nread++;
20524f02 8608 }
1c4850e2 8609 wc->reada_slot = slot;
20524f02 8610}
2c47e605 8611
f82d02d9 8612/*
2c016dc2 8613 * helper to process tree block while walking down the tree.
2c47e605 8614 *
2c47e605
YZ
8615 * when wc->stage == UPDATE_BACKREF, this function updates
8616 * back refs for pointers in the block.
8617 *
8618 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8619 */
2c47e605 8620static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8621 struct btrfs_root *root,
2c47e605 8622 struct btrfs_path *path,
94fcca9f 8623 struct walk_control *wc, int lookup_info)
f82d02d9 8624{
2ff7e61e 8625 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8626 int level = wc->level;
8627 struct extent_buffer *eb = path->nodes[level];
2c47e605 8628 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8629 int ret;
8630
2c47e605
YZ
8631 if (wc->stage == UPDATE_BACKREF &&
8632 btrfs_header_owner(eb) != root->root_key.objectid)
8633 return 1;
f82d02d9 8634
2c47e605
YZ
8635 /*
8636 * when reference count of tree block is 1, it won't increase
8637 * again. once full backref flag is set, we never clear it.
8638 */
94fcca9f
YZ
8639 if (lookup_info &&
8640 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8641 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8642 BUG_ON(!path->locks[level]);
2ff7e61e 8643 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8644 eb->start, level, 1,
2c47e605
YZ
8645 &wc->refs[level],
8646 &wc->flags[level]);
79787eaa
JM
8647 BUG_ON(ret == -ENOMEM);
8648 if (ret)
8649 return ret;
2c47e605
YZ
8650 BUG_ON(wc->refs[level] == 0);
8651 }
5d4f98a2 8652
2c47e605
YZ
8653 if (wc->stage == DROP_REFERENCE) {
8654 if (wc->refs[level] > 1)
8655 return 1;
f82d02d9 8656
2c47e605 8657 if (path->locks[level] && !wc->keep_locks) {
bd681513 8658 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8659 path->locks[level] = 0;
8660 }
8661 return 0;
8662 }
f82d02d9 8663
2c47e605
YZ
8664 /* wc->stage == UPDATE_BACKREF */
8665 if (!(wc->flags[level] & flag)) {
8666 BUG_ON(!path->locks[level]);
e339a6b0 8667 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8668 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8669 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8670 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8671 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8672 eb->len, flag,
8673 btrfs_header_level(eb), 0);
79787eaa 8674 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8675 wc->flags[level] |= flag;
8676 }
8677
8678 /*
8679 * the block is shared by multiple trees, so it's not good to
8680 * keep the tree lock
8681 */
8682 if (path->locks[level] && level > 0) {
bd681513 8683 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8684 path->locks[level] = 0;
8685 }
8686 return 0;
8687}
8688
1c4850e2 8689/*
2c016dc2 8690 * helper to process tree block pointer.
1c4850e2
YZ
8691 *
8692 * when wc->stage == DROP_REFERENCE, this function checks
8693 * reference count of the block pointed to. if the block
8694 * is shared and we need update back refs for the subtree
8695 * rooted at the block, this function changes wc->stage to
8696 * UPDATE_BACKREF. if the block is shared and there is no
8697 * need to update back, this function drops the reference
8698 * to the block.
8699 *
8700 * NOTE: return value 1 means we should stop walking down.
8701 */
8702static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8703 struct btrfs_root *root,
8704 struct btrfs_path *path,
94fcca9f 8705 struct walk_control *wc, int *lookup_info)
1c4850e2 8706{
0b246afa 8707 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8708 u64 bytenr;
8709 u64 generation;
8710 u64 parent;
8711 u32 blocksize;
8712 struct btrfs_key key;
581c1760 8713 struct btrfs_key first_key;
1c4850e2
YZ
8714 struct extent_buffer *next;
8715 int level = wc->level;
8716 int reada = 0;
8717 int ret = 0;
1152651a 8718 bool need_account = false;
1c4850e2
YZ
8719
8720 generation = btrfs_node_ptr_generation(path->nodes[level],
8721 path->slots[level]);
8722 /*
8723 * if the lower level block was created before the snapshot
8724 * was created, we know there is no need to update back refs
8725 * for the subtree
8726 */
8727 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8728 generation <= root->root_key.offset) {
8729 *lookup_info = 1;
1c4850e2 8730 return 1;
94fcca9f 8731 }
1c4850e2
YZ
8732
8733 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8734 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8735 path->slots[level]);
0b246afa 8736 blocksize = fs_info->nodesize;
1c4850e2 8737
0b246afa 8738 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8739 if (!next) {
2ff7e61e 8740 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8741 if (IS_ERR(next))
8742 return PTR_ERR(next);
8743
b2aaaa3b
JB
8744 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8745 level - 1);
1c4850e2
YZ
8746 reada = 1;
8747 }
8748 btrfs_tree_lock(next);
8749 btrfs_set_lock_blocking(next);
8750
2ff7e61e 8751 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8752 &wc->refs[level - 1],
8753 &wc->flags[level - 1]);
4867268c
JB
8754 if (ret < 0)
8755 goto out_unlock;
79787eaa 8756
c2cf52eb 8757 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8758 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8759 ret = -EIO;
8760 goto out_unlock;
c2cf52eb 8761 }
94fcca9f 8762 *lookup_info = 0;
1c4850e2 8763
94fcca9f 8764 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8765 if (wc->refs[level - 1] > 1) {
1152651a 8766 need_account = true;
94fcca9f
YZ
8767 if (level == 1 &&
8768 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8769 goto skip;
8770
1c4850e2
YZ
8771 if (!wc->update_ref ||
8772 generation <= root->root_key.offset)
8773 goto skip;
8774
8775 btrfs_node_key_to_cpu(path->nodes[level], &key,
8776 path->slots[level]);
8777 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8778 if (ret < 0)
8779 goto skip;
8780
8781 wc->stage = UPDATE_BACKREF;
8782 wc->shared_level = level - 1;
8783 }
94fcca9f
YZ
8784 } else {
8785 if (level == 1 &&
8786 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8787 goto skip;
1c4850e2
YZ
8788 }
8789
b9fab919 8790 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8791 btrfs_tree_unlock(next);
8792 free_extent_buffer(next);
8793 next = NULL;
94fcca9f 8794 *lookup_info = 1;
1c4850e2
YZ
8795 }
8796
8797 if (!next) {
8798 if (reada && level == 1)
8799 reada_walk_down(trans, root, wc, path);
581c1760
QW
8800 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8801 &first_key);
64c043de
LB
8802 if (IS_ERR(next)) {
8803 return PTR_ERR(next);
8804 } else if (!extent_buffer_uptodate(next)) {
416bc658 8805 free_extent_buffer(next);
97d9a8a4 8806 return -EIO;
416bc658 8807 }
1c4850e2
YZ
8808 btrfs_tree_lock(next);
8809 btrfs_set_lock_blocking(next);
8810 }
8811
8812 level--;
4867268c
JB
8813 ASSERT(level == btrfs_header_level(next));
8814 if (level != btrfs_header_level(next)) {
8815 btrfs_err(root->fs_info, "mismatched level");
8816 ret = -EIO;
8817 goto out_unlock;
8818 }
1c4850e2
YZ
8819 path->nodes[level] = next;
8820 path->slots[level] = 0;
bd681513 8821 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8822 wc->level = level;
8823 if (wc->level == 1)
8824 wc->reada_slot = 0;
8825 return 0;
8826skip:
8827 wc->refs[level - 1] = 0;
8828 wc->flags[level - 1] = 0;
94fcca9f
YZ
8829 if (wc->stage == DROP_REFERENCE) {
8830 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8831 parent = path->nodes[level]->start;
8832 } else {
4867268c 8833 ASSERT(root->root_key.objectid ==
94fcca9f 8834 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8835 if (root->root_key.objectid !=
8836 btrfs_header_owner(path->nodes[level])) {
8837 btrfs_err(root->fs_info,
8838 "mismatched block owner");
8839 ret = -EIO;
8840 goto out_unlock;
8841 }
94fcca9f
YZ
8842 parent = 0;
8843 }
1c4850e2 8844
1152651a 8845 if (need_account) {
33d1f05c
QW
8846 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8847 generation, level - 1);
1152651a 8848 if (ret) {
0b246afa 8849 btrfs_err_rl(fs_info,
5d163e0e
JM
8850 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8851 ret);
1152651a
MF
8852 }
8853 }
84f7d8e6 8854 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8855 parent, root->root_key.objectid,
8856 level - 1, 0);
4867268c
JB
8857 if (ret)
8858 goto out_unlock;
1c4850e2 8859 }
4867268c
JB
8860
8861 *lookup_info = 1;
8862 ret = 1;
8863
8864out_unlock:
1c4850e2
YZ
8865 btrfs_tree_unlock(next);
8866 free_extent_buffer(next);
4867268c
JB
8867
8868 return ret;
1c4850e2
YZ
8869}
8870
2c47e605 8871/*
2c016dc2 8872 * helper to process tree block while walking up the tree.
2c47e605
YZ
8873 *
8874 * when wc->stage == DROP_REFERENCE, this function drops
8875 * reference count on the block.
8876 *
8877 * when wc->stage == UPDATE_BACKREF, this function changes
8878 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8879 * to UPDATE_BACKREF previously while processing the block.
8880 *
8881 * NOTE: return value 1 means we should stop walking up.
8882 */
8883static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8884 struct btrfs_root *root,
8885 struct btrfs_path *path,
8886 struct walk_control *wc)
8887{
0b246afa 8888 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8889 int ret;
2c47e605
YZ
8890 int level = wc->level;
8891 struct extent_buffer *eb = path->nodes[level];
8892 u64 parent = 0;
8893
8894 if (wc->stage == UPDATE_BACKREF) {
8895 BUG_ON(wc->shared_level < level);
8896 if (level < wc->shared_level)
8897 goto out;
8898
2c47e605
YZ
8899 ret = find_next_key(path, level + 1, &wc->update_progress);
8900 if (ret > 0)
8901 wc->update_ref = 0;
8902
8903 wc->stage = DROP_REFERENCE;
8904 wc->shared_level = -1;
8905 path->slots[level] = 0;
8906
8907 /*
8908 * check reference count again if the block isn't locked.
8909 * we should start walking down the tree again if reference
8910 * count is one.
8911 */
8912 if (!path->locks[level]) {
8913 BUG_ON(level == 0);
8914 btrfs_tree_lock(eb);
8915 btrfs_set_lock_blocking(eb);
bd681513 8916 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8917
2ff7e61e 8918 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8919 eb->start, level, 1,
2c47e605
YZ
8920 &wc->refs[level],
8921 &wc->flags[level]);
79787eaa
JM
8922 if (ret < 0) {
8923 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8924 path->locks[level] = 0;
79787eaa
JM
8925 return ret;
8926 }
2c47e605
YZ
8927 BUG_ON(wc->refs[level] == 0);
8928 if (wc->refs[level] == 1) {
bd681513 8929 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8930 path->locks[level] = 0;
2c47e605
YZ
8931 return 1;
8932 }
f82d02d9 8933 }
2c47e605 8934 }
f82d02d9 8935
2c47e605
YZ
8936 /* wc->stage == DROP_REFERENCE */
8937 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8938
2c47e605
YZ
8939 if (wc->refs[level] == 1) {
8940 if (level == 0) {
8941 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8942 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8943 else
e339a6b0 8944 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8945 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8946 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8947 if (ret) {
0b246afa 8948 btrfs_err_rl(fs_info,
5d163e0e
JM
8949 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8950 ret);
1152651a 8951 }
2c47e605
YZ
8952 }
8953 /* make block locked assertion in clean_tree_block happy */
8954 if (!path->locks[level] &&
8955 btrfs_header_generation(eb) == trans->transid) {
8956 btrfs_tree_lock(eb);
8957 btrfs_set_lock_blocking(eb);
bd681513 8958 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8959 }
7c302b49 8960 clean_tree_block(fs_info, eb);
2c47e605
YZ
8961 }
8962
8963 if (eb == root->node) {
8964 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8965 parent = eb->start;
8966 else
8967 BUG_ON(root->root_key.objectid !=
8968 btrfs_header_owner(eb));
8969 } else {
8970 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8971 parent = path->nodes[level + 1]->start;
8972 else
8973 BUG_ON(root->root_key.objectid !=
8974 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8975 }
f82d02d9 8976
5581a51a 8977 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8978out:
8979 wc->refs[level] = 0;
8980 wc->flags[level] = 0;
f0486c68 8981 return 0;
2c47e605
YZ
8982}
8983
8984static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8985 struct btrfs_root *root,
8986 struct btrfs_path *path,
8987 struct walk_control *wc)
8988{
2c47e605 8989 int level = wc->level;
94fcca9f 8990 int lookup_info = 1;
2c47e605
YZ
8991 int ret;
8992
8993 while (level >= 0) {
94fcca9f 8994 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8995 if (ret > 0)
8996 break;
8997
8998 if (level == 0)
8999 break;
9000
7a7965f8
YZ
9001 if (path->slots[level] >=
9002 btrfs_header_nritems(path->nodes[level]))
9003 break;
9004
94fcca9f 9005 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9006 if (ret > 0) {
9007 path->slots[level]++;
9008 continue;
90d2c51d
MX
9009 } else if (ret < 0)
9010 return ret;
1c4850e2 9011 level = wc->level;
f82d02d9 9012 }
f82d02d9
YZ
9013 return 0;
9014}
9015
d397712b 9016static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9017 struct btrfs_root *root,
f82d02d9 9018 struct btrfs_path *path,
2c47e605 9019 struct walk_control *wc, int max_level)
20524f02 9020{
2c47e605 9021 int level = wc->level;
20524f02 9022 int ret;
9f3a7427 9023
2c47e605
YZ
9024 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9025 while (level < max_level && path->nodes[level]) {
9026 wc->level = level;
9027 if (path->slots[level] + 1 <
9028 btrfs_header_nritems(path->nodes[level])) {
9029 path->slots[level]++;
20524f02
CM
9030 return 0;
9031 } else {
2c47e605
YZ
9032 ret = walk_up_proc(trans, root, path, wc);
9033 if (ret > 0)
9034 return 0;
bd56b302 9035
2c47e605 9036 if (path->locks[level]) {
bd681513
CM
9037 btrfs_tree_unlock_rw(path->nodes[level],
9038 path->locks[level]);
2c47e605 9039 path->locks[level] = 0;
f82d02d9 9040 }
2c47e605
YZ
9041 free_extent_buffer(path->nodes[level]);
9042 path->nodes[level] = NULL;
9043 level++;
20524f02
CM
9044 }
9045 }
9046 return 1;
9047}
9048
9aca1d51 9049/*
2c47e605
YZ
9050 * drop a subvolume tree.
9051 *
9052 * this function traverses the tree freeing any blocks that only
9053 * referenced by the tree.
9054 *
9055 * when a shared tree block is found. this function decreases its
9056 * reference count by one. if update_ref is true, this function
9057 * also make sure backrefs for the shared block and all lower level
9058 * blocks are properly updated.
9d1a2a3a
DS
9059 *
9060 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9061 */
2c536799 9062int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9063 struct btrfs_block_rsv *block_rsv, int update_ref,
9064 int for_reloc)
20524f02 9065{
ab8d0fc4 9066 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9067 struct btrfs_path *path;
2c47e605 9068 struct btrfs_trans_handle *trans;
ab8d0fc4 9069 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9070 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9071 struct walk_control *wc;
9072 struct btrfs_key key;
9073 int err = 0;
9074 int ret;
9075 int level;
d29a9f62 9076 bool root_dropped = false;
20524f02 9077
ab8d0fc4 9078 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9079
5caf2a00 9080 path = btrfs_alloc_path();
cb1b69f4
TI
9081 if (!path) {
9082 err = -ENOMEM;
9083 goto out;
9084 }
20524f02 9085
2c47e605 9086 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9087 if (!wc) {
9088 btrfs_free_path(path);
cb1b69f4
TI
9089 err = -ENOMEM;
9090 goto out;
38a1a919 9091 }
2c47e605 9092
a22285a6 9093 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9094 if (IS_ERR(trans)) {
9095 err = PTR_ERR(trans);
9096 goto out_free;
9097 }
98d5dc13 9098
3fd0a558
YZ
9099 if (block_rsv)
9100 trans->block_rsv = block_rsv;
2c47e605 9101
9f3a7427 9102 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9103 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9104 path->nodes[level] = btrfs_lock_root_node(root);
9105 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9106 path->slots[level] = 0;
bd681513 9107 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9108 memset(&wc->update_progress, 0,
9109 sizeof(wc->update_progress));
9f3a7427 9110 } else {
9f3a7427 9111 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9112 memcpy(&wc->update_progress, &key,
9113 sizeof(wc->update_progress));
9114
6702ed49 9115 level = root_item->drop_level;
2c47e605 9116 BUG_ON(level == 0);
6702ed49 9117 path->lowest_level = level;
2c47e605
YZ
9118 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9119 path->lowest_level = 0;
9120 if (ret < 0) {
9121 err = ret;
79787eaa 9122 goto out_end_trans;
9f3a7427 9123 }
1c4850e2 9124 WARN_ON(ret > 0);
2c47e605 9125
7d9eb12c
CM
9126 /*
9127 * unlock our path, this is safe because only this
9128 * function is allowed to delete this snapshot
9129 */
5d4f98a2 9130 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9131
9132 level = btrfs_header_level(root->node);
9133 while (1) {
9134 btrfs_tree_lock(path->nodes[level]);
9135 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9136 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9137
2ff7e61e 9138 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9139 path->nodes[level]->start,
3173a18f 9140 level, 1, &wc->refs[level],
2c47e605 9141 &wc->flags[level]);
79787eaa
JM
9142 if (ret < 0) {
9143 err = ret;
9144 goto out_end_trans;
9145 }
2c47e605
YZ
9146 BUG_ON(wc->refs[level] == 0);
9147
9148 if (level == root_item->drop_level)
9149 break;
9150
9151 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9152 path->locks[level] = 0;
2c47e605
YZ
9153 WARN_ON(wc->refs[level] != 1);
9154 level--;
9155 }
9f3a7427 9156 }
2c47e605
YZ
9157
9158 wc->level = level;
9159 wc->shared_level = -1;
9160 wc->stage = DROP_REFERENCE;
9161 wc->update_ref = update_ref;
9162 wc->keep_locks = 0;
66d7e7f0 9163 wc->for_reloc = for_reloc;
0b246afa 9164 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9165
d397712b 9166 while (1) {
9d1a2a3a 9167
2c47e605
YZ
9168 ret = walk_down_tree(trans, root, path, wc);
9169 if (ret < 0) {
9170 err = ret;
20524f02 9171 break;
2c47e605 9172 }
9aca1d51 9173
2c47e605
YZ
9174 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9175 if (ret < 0) {
9176 err = ret;
20524f02 9177 break;
2c47e605
YZ
9178 }
9179
9180 if (ret > 0) {
9181 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9182 break;
9183 }
2c47e605
YZ
9184
9185 if (wc->stage == DROP_REFERENCE) {
9186 level = wc->level;
9187 btrfs_node_key(path->nodes[level],
9188 &root_item->drop_progress,
9189 path->slots[level]);
9190 root_item->drop_level = level;
9191 }
9192
9193 BUG_ON(wc->level == 0);
3a45bb20 9194 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9195 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9196 ret = btrfs_update_root(trans, tree_root,
9197 &root->root_key,
9198 root_item);
79787eaa 9199 if (ret) {
66642832 9200 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9201 err = ret;
9202 goto out_end_trans;
9203 }
2c47e605 9204
3a45bb20 9205 btrfs_end_transaction_throttle(trans);
2ff7e61e 9206 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9207 btrfs_debug(fs_info,
9208 "drop snapshot early exit");
3c8f2422
JB
9209 err = -EAGAIN;
9210 goto out_free;
9211 }
9212
a22285a6 9213 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9214 if (IS_ERR(trans)) {
9215 err = PTR_ERR(trans);
9216 goto out_free;
9217 }
3fd0a558
YZ
9218 if (block_rsv)
9219 trans->block_rsv = block_rsv;
c3e69d58 9220 }
20524f02 9221 }
b3b4aa74 9222 btrfs_release_path(path);
79787eaa
JM
9223 if (err)
9224 goto out_end_trans;
2c47e605 9225
1cd5447e 9226 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9227 if (ret) {
66642832 9228 btrfs_abort_transaction(trans, ret);
e19182c0 9229 err = ret;
79787eaa
JM
9230 goto out_end_trans;
9231 }
2c47e605 9232
76dda93c 9233 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9234 ret = btrfs_find_root(tree_root, &root->root_key, path,
9235 NULL, NULL);
79787eaa 9236 if (ret < 0) {
66642832 9237 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9238 err = ret;
9239 goto out_end_trans;
9240 } else if (ret > 0) {
84cd948c
JB
9241 /* if we fail to delete the orphan item this time
9242 * around, it'll get picked up the next time.
9243 *
9244 * The most common failure here is just -ENOENT.
9245 */
9246 btrfs_del_orphan_item(trans, tree_root,
9247 root->root_key.objectid);
76dda93c
YZ
9248 }
9249 }
9250
27cdeb70 9251 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9252 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9253 } else {
9254 free_extent_buffer(root->node);
9255 free_extent_buffer(root->commit_root);
b0feb9d9 9256 btrfs_put_fs_root(root);
76dda93c 9257 }
d29a9f62 9258 root_dropped = true;
79787eaa 9259out_end_trans:
3a45bb20 9260 btrfs_end_transaction_throttle(trans);
79787eaa 9261out_free:
2c47e605 9262 kfree(wc);
5caf2a00 9263 btrfs_free_path(path);
cb1b69f4 9264out:
d29a9f62
JB
9265 /*
9266 * So if we need to stop dropping the snapshot for whatever reason we
9267 * need to make sure to add it back to the dead root list so that we
9268 * keep trying to do the work later. This also cleans up roots if we
9269 * don't have it in the radix (like when we recover after a power fail
9270 * or unmount) so we don't leak memory.
9271 */
897ca819 9272 if (!for_reloc && !root_dropped)
d29a9f62 9273 btrfs_add_dead_root(root);
90515e7f 9274 if (err && err != -EAGAIN)
ab8d0fc4 9275 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9276 return err;
20524f02 9277}
9078a3e1 9278
2c47e605
YZ
9279/*
9280 * drop subtree rooted at tree block 'node'.
9281 *
9282 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9283 * only used by relocation code
2c47e605 9284 */
f82d02d9
YZ
9285int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9286 struct btrfs_root *root,
9287 struct extent_buffer *node,
9288 struct extent_buffer *parent)
9289{
0b246afa 9290 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9291 struct btrfs_path *path;
2c47e605 9292 struct walk_control *wc;
f82d02d9
YZ
9293 int level;
9294 int parent_level;
9295 int ret = 0;
9296 int wret;
9297
2c47e605
YZ
9298 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9299
f82d02d9 9300 path = btrfs_alloc_path();
db5b493a
TI
9301 if (!path)
9302 return -ENOMEM;
f82d02d9 9303
2c47e605 9304 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9305 if (!wc) {
9306 btrfs_free_path(path);
9307 return -ENOMEM;
9308 }
2c47e605 9309
b9447ef8 9310 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9311 parent_level = btrfs_header_level(parent);
9312 extent_buffer_get(parent);
9313 path->nodes[parent_level] = parent;
9314 path->slots[parent_level] = btrfs_header_nritems(parent);
9315
b9447ef8 9316 btrfs_assert_tree_locked(node);
f82d02d9 9317 level = btrfs_header_level(node);
f82d02d9
YZ
9318 path->nodes[level] = node;
9319 path->slots[level] = 0;
bd681513 9320 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9321
9322 wc->refs[parent_level] = 1;
9323 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9324 wc->level = level;
9325 wc->shared_level = -1;
9326 wc->stage = DROP_REFERENCE;
9327 wc->update_ref = 0;
9328 wc->keep_locks = 1;
66d7e7f0 9329 wc->for_reloc = 1;
0b246afa 9330 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9331
9332 while (1) {
2c47e605
YZ
9333 wret = walk_down_tree(trans, root, path, wc);
9334 if (wret < 0) {
f82d02d9 9335 ret = wret;
f82d02d9 9336 break;
2c47e605 9337 }
f82d02d9 9338
2c47e605 9339 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9340 if (wret < 0)
9341 ret = wret;
9342 if (wret != 0)
9343 break;
9344 }
9345
2c47e605 9346 kfree(wc);
f82d02d9
YZ
9347 btrfs_free_path(path);
9348 return ret;
9349}
9350
6202df69 9351static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9352{
9353 u64 num_devices;
fc67c450 9354 u64 stripped;
e4d8ec0f 9355
fc67c450
ID
9356 /*
9357 * if restripe for this chunk_type is on pick target profile and
9358 * return, otherwise do the usual balance
9359 */
6202df69 9360 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9361 if (stripped)
9362 return extended_to_chunk(stripped);
e4d8ec0f 9363
6202df69 9364 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9365
fc67c450 9366 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9367 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9368 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9369
ec44a35c
CM
9370 if (num_devices == 1) {
9371 stripped |= BTRFS_BLOCK_GROUP_DUP;
9372 stripped = flags & ~stripped;
9373
9374 /* turn raid0 into single device chunks */
9375 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9376 return stripped;
9377
9378 /* turn mirroring into duplication */
9379 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9380 BTRFS_BLOCK_GROUP_RAID10))
9381 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9382 } else {
9383 /* they already had raid on here, just return */
ec44a35c
CM
9384 if (flags & stripped)
9385 return flags;
9386
9387 stripped |= BTRFS_BLOCK_GROUP_DUP;
9388 stripped = flags & ~stripped;
9389
9390 /* switch duplicated blocks with raid1 */
9391 if (flags & BTRFS_BLOCK_GROUP_DUP)
9392 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9393
e3176ca2 9394 /* this is drive concat, leave it alone */
ec44a35c 9395 }
e3176ca2 9396
ec44a35c
CM
9397 return flags;
9398}
9399
868f401a 9400static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9401{
f0486c68
YZ
9402 struct btrfs_space_info *sinfo = cache->space_info;
9403 u64 num_bytes;
199c36ea 9404 u64 min_allocable_bytes;
f0486c68 9405 int ret = -ENOSPC;
0ef3e66b 9406
199c36ea
MX
9407 /*
9408 * We need some metadata space and system metadata space for
9409 * allocating chunks in some corner cases until we force to set
9410 * it to be readonly.
9411 */
9412 if ((sinfo->flags &
9413 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9414 !force)
ee22184b 9415 min_allocable_bytes = SZ_1M;
199c36ea
MX
9416 else
9417 min_allocable_bytes = 0;
9418
f0486c68
YZ
9419 spin_lock(&sinfo->lock);
9420 spin_lock(&cache->lock);
61cfea9b
W
9421
9422 if (cache->ro) {
868f401a 9423 cache->ro++;
61cfea9b
W
9424 ret = 0;
9425 goto out;
9426 }
9427
f0486c68
YZ
9428 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9429 cache->bytes_super - btrfs_block_group_used(&cache->item);
9430
4136135b 9431 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9432 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9433 sinfo->bytes_readonly += num_bytes;
868f401a 9434 cache->ro++;
633c0aad 9435 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9436 ret = 0;
9437 }
61cfea9b 9438out:
f0486c68
YZ
9439 spin_unlock(&cache->lock);
9440 spin_unlock(&sinfo->lock);
9441 return ret;
9442}
7d9eb12c 9443
5e00f193 9444int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9445 struct btrfs_block_group_cache *cache)
c286ac48 9446
f0486c68
YZ
9447{
9448 struct btrfs_trans_handle *trans;
9449 u64 alloc_flags;
9450 int ret;
7d9eb12c 9451
1bbc621e 9452again:
5e00f193 9453 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9454 if (IS_ERR(trans))
9455 return PTR_ERR(trans);
5d4f98a2 9456
1bbc621e
CM
9457 /*
9458 * we're not allowed to set block groups readonly after the dirty
9459 * block groups cache has started writing. If it already started,
9460 * back off and let this transaction commit
9461 */
0b246afa 9462 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9463 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9464 u64 transid = trans->transid;
9465
0b246afa 9466 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9467 btrfs_end_transaction(trans);
1bbc621e 9468
2ff7e61e 9469 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9470 if (ret)
9471 return ret;
9472 goto again;
9473 }
9474
153c35b6
CM
9475 /*
9476 * if we are changing raid levels, try to allocate a corresponding
9477 * block group with the new raid level.
9478 */
0b246afa 9479 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9480 if (alloc_flags != cache->flags) {
2ff7e61e 9481 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9482 CHUNK_ALLOC_FORCE);
9483 /*
9484 * ENOSPC is allowed here, we may have enough space
9485 * already allocated at the new raid level to
9486 * carry on
9487 */
9488 if (ret == -ENOSPC)
9489 ret = 0;
9490 if (ret < 0)
9491 goto out;
9492 }
1bbc621e 9493
868f401a 9494 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9495 if (!ret)
9496 goto out;
2ff7e61e
JM
9497 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9498 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9499 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9500 if (ret < 0)
9501 goto out;
868f401a 9502 ret = inc_block_group_ro(cache, 0);
f0486c68 9503out:
2f081088 9504 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9505 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9506 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9507 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9508 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9509 }
0b246afa 9510 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9511
3a45bb20 9512 btrfs_end_transaction(trans);
f0486c68
YZ
9513 return ret;
9514}
5d4f98a2 9515
c87f08ca 9516int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9517 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9518{
2ff7e61e
JM
9519 u64 alloc_flags = get_alloc_profile(fs_info, type);
9520
9521 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9522}
9523
6d07bcec
MX
9524/*
9525 * helper to account the unused space of all the readonly block group in the
633c0aad 9526 * space_info. takes mirrors into account.
6d07bcec 9527 */
633c0aad 9528u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9529{
9530 struct btrfs_block_group_cache *block_group;
9531 u64 free_bytes = 0;
9532 int factor;
9533
01327610 9534 /* It's df, we don't care if it's racy */
633c0aad
JB
9535 if (list_empty(&sinfo->ro_bgs))
9536 return 0;
9537
9538 spin_lock(&sinfo->lock);
9539 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9540 spin_lock(&block_group->lock);
9541
9542 if (!block_group->ro) {
9543 spin_unlock(&block_group->lock);
9544 continue;
9545 }
9546
9547 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9548 BTRFS_BLOCK_GROUP_RAID10 |
9549 BTRFS_BLOCK_GROUP_DUP))
9550 factor = 2;
9551 else
9552 factor = 1;
9553
9554 free_bytes += (block_group->key.offset -
9555 btrfs_block_group_used(&block_group->item)) *
9556 factor;
9557
9558 spin_unlock(&block_group->lock);
9559 }
6d07bcec
MX
9560 spin_unlock(&sinfo->lock);
9561
9562 return free_bytes;
9563}
9564
2ff7e61e 9565void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9566{
f0486c68
YZ
9567 struct btrfs_space_info *sinfo = cache->space_info;
9568 u64 num_bytes;
9569
9570 BUG_ON(!cache->ro);
9571
9572 spin_lock(&sinfo->lock);
9573 spin_lock(&cache->lock);
868f401a
Z
9574 if (!--cache->ro) {
9575 num_bytes = cache->key.offset - cache->reserved -
9576 cache->pinned - cache->bytes_super -
9577 btrfs_block_group_used(&cache->item);
9578 sinfo->bytes_readonly -= num_bytes;
9579 list_del_init(&cache->ro_list);
9580 }
f0486c68
YZ
9581 spin_unlock(&cache->lock);
9582 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9583}
9584
ba1bf481
JB
9585/*
9586 * checks to see if its even possible to relocate this block group.
9587 *
9588 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9589 * ok to go ahead and try.
9590 */
6bccf3ab 9591int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9592{
6bccf3ab 9593 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9594 struct btrfs_block_group_cache *block_group;
9595 struct btrfs_space_info *space_info;
0b246afa 9596 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9597 struct btrfs_device *device;
6df9a95e 9598 struct btrfs_trans_handle *trans;
cdcb725c 9599 u64 min_free;
6719db6a
JB
9600 u64 dev_min = 1;
9601 u64 dev_nr = 0;
4a5e98f5 9602 u64 target;
0305bc27 9603 int debug;
cdcb725c 9604 int index;
ba1bf481
JB
9605 int full = 0;
9606 int ret = 0;
1a40e23b 9607
0b246afa 9608 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9609
0b246afa 9610 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9611
ba1bf481 9612 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9613 if (!block_group) {
9614 if (debug)
0b246afa 9615 btrfs_warn(fs_info,
0305bc27
QW
9616 "can't find block group for bytenr %llu",
9617 bytenr);
ba1bf481 9618 return -1;
0305bc27 9619 }
1a40e23b 9620
cdcb725c 9621 min_free = btrfs_block_group_used(&block_group->item);
9622
ba1bf481 9623 /* no bytes used, we're good */
cdcb725c 9624 if (!min_free)
1a40e23b
ZY
9625 goto out;
9626
ba1bf481
JB
9627 space_info = block_group->space_info;
9628 spin_lock(&space_info->lock);
17d217fe 9629
ba1bf481 9630 full = space_info->full;
17d217fe 9631
ba1bf481
JB
9632 /*
9633 * if this is the last block group we have in this space, we can't
7ce618db
CM
9634 * relocate it unless we're able to allocate a new chunk below.
9635 *
9636 * Otherwise, we need to make sure we have room in the space to handle
9637 * all of the extents from this block group. If we can, we're good
ba1bf481 9638 */
7ce618db 9639 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9640 (btrfs_space_info_used(space_info, false) + min_free <
9641 space_info->total_bytes)) {
ba1bf481
JB
9642 spin_unlock(&space_info->lock);
9643 goto out;
17d217fe 9644 }
ba1bf481 9645 spin_unlock(&space_info->lock);
ea8c2819 9646
ba1bf481
JB
9647 /*
9648 * ok we don't have enough space, but maybe we have free space on our
9649 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9650 * alloc devices and guess if we have enough space. if this block
9651 * group is going to be restriped, run checks against the target
9652 * profile instead of the current one.
ba1bf481
JB
9653 */
9654 ret = -1;
ea8c2819 9655
cdcb725c 9656 /*
9657 * index:
9658 * 0: raid10
9659 * 1: raid1
9660 * 2: dup
9661 * 3: raid0
9662 * 4: single
9663 */
0b246afa 9664 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9665 if (target) {
3e72ee88 9666 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9667 } else {
9668 /*
9669 * this is just a balance, so if we were marked as full
9670 * we know there is no space for a new chunk
9671 */
0305bc27
QW
9672 if (full) {
9673 if (debug)
0b246afa
JM
9674 btrfs_warn(fs_info,
9675 "no space to alloc new chunk for block group %llu",
9676 block_group->key.objectid);
4a5e98f5 9677 goto out;
0305bc27 9678 }
4a5e98f5 9679
3e72ee88 9680 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9681 }
9682
e6ec716f 9683 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9684 dev_min = 4;
6719db6a
JB
9685 /* Divide by 2 */
9686 min_free >>= 1;
e6ec716f 9687 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9688 dev_min = 2;
e6ec716f 9689 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9690 /* Multiply by 2 */
9691 min_free <<= 1;
e6ec716f 9692 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9693 dev_min = fs_devices->rw_devices;
47c5713f 9694 min_free = div64_u64(min_free, dev_min);
cdcb725c 9695 }
9696
6df9a95e
JB
9697 /* We need to do this so that we can look at pending chunks */
9698 trans = btrfs_join_transaction(root);
9699 if (IS_ERR(trans)) {
9700 ret = PTR_ERR(trans);
9701 goto out;
9702 }
9703
0b246afa 9704 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9705 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9706 u64 dev_offset;
56bec294 9707
ba1bf481
JB
9708 /*
9709 * check to make sure we can actually find a chunk with enough
9710 * space to fit our block group in.
9711 */
63a212ab 9712 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9713 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9714 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9715 &dev_offset, NULL);
ba1bf481 9716 if (!ret)
cdcb725c 9717 dev_nr++;
9718
9719 if (dev_nr >= dev_min)
73e48b27 9720 break;
cdcb725c 9721
ba1bf481 9722 ret = -1;
725c8463 9723 }
edbd8d4e 9724 }
0305bc27 9725 if (debug && ret == -1)
0b246afa
JM
9726 btrfs_warn(fs_info,
9727 "no space to allocate a new chunk for block group %llu",
9728 block_group->key.objectid);
9729 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9730 btrfs_end_transaction(trans);
edbd8d4e 9731out:
ba1bf481 9732 btrfs_put_block_group(block_group);
edbd8d4e
CM
9733 return ret;
9734}
9735
6bccf3ab
JM
9736static int find_first_block_group(struct btrfs_fs_info *fs_info,
9737 struct btrfs_path *path,
9738 struct btrfs_key *key)
0b86a832 9739{
6bccf3ab 9740 struct btrfs_root *root = fs_info->extent_root;
925baedd 9741 int ret = 0;
0b86a832
CM
9742 struct btrfs_key found_key;
9743 struct extent_buffer *leaf;
9744 int slot;
edbd8d4e 9745
0b86a832
CM
9746 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9747 if (ret < 0)
925baedd
CM
9748 goto out;
9749
d397712b 9750 while (1) {
0b86a832 9751 slot = path->slots[0];
edbd8d4e 9752 leaf = path->nodes[0];
0b86a832
CM
9753 if (slot >= btrfs_header_nritems(leaf)) {
9754 ret = btrfs_next_leaf(root, path);
9755 if (ret == 0)
9756 continue;
9757 if (ret < 0)
925baedd 9758 goto out;
0b86a832 9759 break;
edbd8d4e 9760 }
0b86a832 9761 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9762
0b86a832 9763 if (found_key.objectid >= key->objectid &&
925baedd 9764 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9765 struct extent_map_tree *em_tree;
9766 struct extent_map *em;
9767
9768 em_tree = &root->fs_info->mapping_tree.map_tree;
9769 read_lock(&em_tree->lock);
9770 em = lookup_extent_mapping(em_tree, found_key.objectid,
9771 found_key.offset);
9772 read_unlock(&em_tree->lock);
9773 if (!em) {
0b246afa 9774 btrfs_err(fs_info,
6fb37b75
LB
9775 "logical %llu len %llu found bg but no related chunk",
9776 found_key.objectid, found_key.offset);
9777 ret = -ENOENT;
9778 } else {
9779 ret = 0;
9780 }
187ee58c 9781 free_extent_map(em);
925baedd
CM
9782 goto out;
9783 }
0b86a832 9784 path->slots[0]++;
edbd8d4e 9785 }
925baedd 9786out:
0b86a832 9787 return ret;
edbd8d4e
CM
9788}
9789
0af3d00b
JB
9790void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9791{
9792 struct btrfs_block_group_cache *block_group;
9793 u64 last = 0;
9794
9795 while (1) {
9796 struct inode *inode;
9797
9798 block_group = btrfs_lookup_first_block_group(info, last);
9799 while (block_group) {
9800 spin_lock(&block_group->lock);
9801 if (block_group->iref)
9802 break;
9803 spin_unlock(&block_group->lock);
2ff7e61e 9804 block_group = next_block_group(info, block_group);
0af3d00b
JB
9805 }
9806 if (!block_group) {
9807 if (last == 0)
9808 break;
9809 last = 0;
9810 continue;
9811 }
9812
9813 inode = block_group->inode;
9814 block_group->iref = 0;
9815 block_group->inode = NULL;
9816 spin_unlock(&block_group->lock);
f3bca802 9817 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9818 iput(inode);
9819 last = block_group->key.objectid + block_group->key.offset;
9820 btrfs_put_block_group(block_group);
9821 }
9822}
9823
5cdd7db6
FM
9824/*
9825 * Must be called only after stopping all workers, since we could have block
9826 * group caching kthreads running, and therefore they could race with us if we
9827 * freed the block groups before stopping them.
9828 */
1a40e23b
ZY
9829int btrfs_free_block_groups(struct btrfs_fs_info *info)
9830{
9831 struct btrfs_block_group_cache *block_group;
4184ea7f 9832 struct btrfs_space_info *space_info;
11833d66 9833 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9834 struct rb_node *n;
9835
9e351cc8 9836 down_write(&info->commit_root_sem);
11833d66
YZ
9837 while (!list_empty(&info->caching_block_groups)) {
9838 caching_ctl = list_entry(info->caching_block_groups.next,
9839 struct btrfs_caching_control, list);
9840 list_del(&caching_ctl->list);
9841 put_caching_control(caching_ctl);
9842 }
9e351cc8 9843 up_write(&info->commit_root_sem);
11833d66 9844
47ab2a6c
JB
9845 spin_lock(&info->unused_bgs_lock);
9846 while (!list_empty(&info->unused_bgs)) {
9847 block_group = list_first_entry(&info->unused_bgs,
9848 struct btrfs_block_group_cache,
9849 bg_list);
9850 list_del_init(&block_group->bg_list);
9851 btrfs_put_block_group(block_group);
9852 }
9853 spin_unlock(&info->unused_bgs_lock);
9854
1a40e23b
ZY
9855 spin_lock(&info->block_group_cache_lock);
9856 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9857 block_group = rb_entry(n, struct btrfs_block_group_cache,
9858 cache_node);
1a40e23b
ZY
9859 rb_erase(&block_group->cache_node,
9860 &info->block_group_cache_tree);
01eacb27 9861 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9862 spin_unlock(&info->block_group_cache_lock);
9863
80eb234a 9864 down_write(&block_group->space_info->groups_sem);
1a40e23b 9865 list_del(&block_group->list);
80eb234a 9866 up_write(&block_group->space_info->groups_sem);
d2fb3437 9867
3c14874a
JB
9868 /*
9869 * We haven't cached this block group, which means we could
9870 * possibly have excluded extents on this block group.
9871 */
36cce922
JB
9872 if (block_group->cached == BTRFS_CACHE_NO ||
9873 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9874 free_excluded_extents(info, block_group);
3c14874a 9875
817d52f8 9876 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9877 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9878 ASSERT(list_empty(&block_group->dirty_list));
9879 ASSERT(list_empty(&block_group->io_list));
9880 ASSERT(list_empty(&block_group->bg_list));
9881 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9882 btrfs_put_block_group(block_group);
d899e052
YZ
9883
9884 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9885 }
9886 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9887
9888 /* now that all the block groups are freed, go through and
9889 * free all the space_info structs. This is only called during
9890 * the final stages of unmount, and so we know nobody is
9891 * using them. We call synchronize_rcu() once before we start,
9892 * just to be on the safe side.
9893 */
9894 synchronize_rcu();
9895
8929ecfa
YZ
9896 release_global_block_rsv(info);
9897
67871254 9898 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9899 int i;
9900
4184ea7f
CM
9901 space_info = list_entry(info->space_info.next,
9902 struct btrfs_space_info,
9903 list);
d555b6c3
JB
9904
9905 /*
9906 * Do not hide this behind enospc_debug, this is actually
9907 * important and indicates a real bug if this happens.
9908 */
9909 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9910 space_info->bytes_reserved > 0 ||
d555b6c3 9911 space_info->bytes_may_use > 0))
ab8d0fc4 9912 dump_space_info(info, space_info, 0, 0);
4184ea7f 9913 list_del(&space_info->list);
6ab0a202
JM
9914 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9915 struct kobject *kobj;
c1895442
JM
9916 kobj = space_info->block_group_kobjs[i];
9917 space_info->block_group_kobjs[i] = NULL;
9918 if (kobj) {
6ab0a202
JM
9919 kobject_del(kobj);
9920 kobject_put(kobj);
9921 }
9922 }
9923 kobject_del(&space_info->kobj);
9924 kobject_put(&space_info->kobj);
4184ea7f 9925 }
1a40e23b
ZY
9926 return 0;
9927}
9928
75cb379d
JM
9929/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9930void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9931{
9932 struct btrfs_space_info *space_info;
9933 struct raid_kobject *rkobj;
9934 LIST_HEAD(list);
9935 int index;
9936 int ret = 0;
9937
9938 spin_lock(&fs_info->pending_raid_kobjs_lock);
9939 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9940 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9941
9942 list_for_each_entry(rkobj, &list, list) {
9943 space_info = __find_space_info(fs_info, rkobj->flags);
9944 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9945
9946 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9947 "%s", get_raid_name(index));
9948 if (ret) {
9949 kobject_put(&rkobj->kobj);
9950 break;
9951 }
9952 }
9953 if (ret)
9954 btrfs_warn(fs_info,
9955 "failed to add kobject for block cache, ignoring");
9956}
9957
c434d21c 9958static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9959{
c434d21c 9960 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 9961 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 9962 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 9963 bool first = false;
b742bb82
YZ
9964
9965 down_write(&space_info->groups_sem);
ed55b6ac
JM
9966 if (list_empty(&space_info->block_groups[index]))
9967 first = true;
9968 list_add_tail(&cache->list, &space_info->block_groups[index]);
9969 up_write(&space_info->groups_sem);
9970
9971 if (first) {
75cb379d
JM
9972 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9973 if (!rkobj) {
9974 btrfs_warn(cache->fs_info,
9975 "couldn't alloc memory for raid level kobject");
9976 return;
6ab0a202 9977 }
75cb379d
JM
9978 rkobj->flags = cache->flags;
9979 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9980
9981 spin_lock(&fs_info->pending_raid_kobjs_lock);
9982 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9983 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 9984 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9985 }
b742bb82
YZ
9986}
9987
920e4a58 9988static struct btrfs_block_group_cache *
2ff7e61e
JM
9989btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9990 u64 start, u64 size)
920e4a58
MX
9991{
9992 struct btrfs_block_group_cache *cache;
9993
9994 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9995 if (!cache)
9996 return NULL;
9997
9998 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9999 GFP_NOFS);
10000 if (!cache->free_space_ctl) {
10001 kfree(cache);
10002 return NULL;
10003 }
10004
10005 cache->key.objectid = start;
10006 cache->key.offset = size;
10007 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10008
0b246afa 10009 cache->fs_info = fs_info;
e4ff5fb5 10010 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10011 set_free_space_tree_thresholds(cache);
10012
920e4a58
MX
10013 atomic_set(&cache->count, 1);
10014 spin_lock_init(&cache->lock);
e570fd27 10015 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10016 INIT_LIST_HEAD(&cache->list);
10017 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10018 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10019 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10020 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10021 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10022 btrfs_init_free_space_ctl(cache);
04216820 10023 atomic_set(&cache->trimming, 0);
a5ed9182 10024 mutex_init(&cache->free_space_lock);
0966a7b1 10025 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10026
10027 return cache;
10028}
10029
5b4aacef 10030int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10031{
10032 struct btrfs_path *path;
10033 int ret;
9078a3e1 10034 struct btrfs_block_group_cache *cache;
6324fbf3 10035 struct btrfs_space_info *space_info;
9078a3e1
CM
10036 struct btrfs_key key;
10037 struct btrfs_key found_key;
5f39d397 10038 struct extent_buffer *leaf;
0af3d00b
JB
10039 int need_clear = 0;
10040 u64 cache_gen;
49303381
LB
10041 u64 feature;
10042 int mixed;
10043
10044 feature = btrfs_super_incompat_flags(info->super_copy);
10045 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10046
9078a3e1 10047 key.objectid = 0;
0b86a832 10048 key.offset = 0;
962a298f 10049 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10050 path = btrfs_alloc_path();
10051 if (!path)
10052 return -ENOMEM;
e4058b54 10053 path->reada = READA_FORWARD;
9078a3e1 10054
0b246afa
JM
10055 cache_gen = btrfs_super_cache_generation(info->super_copy);
10056 if (btrfs_test_opt(info, SPACE_CACHE) &&
10057 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10058 need_clear = 1;
0b246afa 10059 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10060 need_clear = 1;
0af3d00b 10061
d397712b 10062 while (1) {
6bccf3ab 10063 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10064 if (ret > 0)
10065 break;
0b86a832
CM
10066 if (ret != 0)
10067 goto error;
920e4a58 10068
5f39d397
CM
10069 leaf = path->nodes[0];
10070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10071
2ff7e61e 10072 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10073 found_key.offset);
9078a3e1 10074 if (!cache) {
0b86a832 10075 ret = -ENOMEM;
f0486c68 10076 goto error;
9078a3e1 10077 }
96303081 10078
cf7c1ef6
LB
10079 if (need_clear) {
10080 /*
10081 * When we mount with old space cache, we need to
10082 * set BTRFS_DC_CLEAR and set dirty flag.
10083 *
10084 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10085 * truncate the old free space cache inode and
10086 * setup a new one.
10087 * b) Setting 'dirty flag' makes sure that we flush
10088 * the new space cache info onto disk.
10089 */
0b246afa 10090 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10091 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10092 }
0af3d00b 10093
5f39d397
CM
10094 read_extent_buffer(leaf, &cache->item,
10095 btrfs_item_ptr_offset(leaf, path->slots[0]),
10096 sizeof(cache->item));
920e4a58 10097 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10098 if (!mixed &&
10099 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10100 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10101 btrfs_err(info,
10102"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10103 cache->key.objectid);
10104 ret = -EINVAL;
10105 goto error;
10106 }
0b86a832 10107
9078a3e1 10108 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10109 btrfs_release_path(path);
34d52cb6 10110
3c14874a
JB
10111 /*
10112 * We need to exclude the super stripes now so that the space
10113 * info has super bytes accounted for, otherwise we'll think
10114 * we have more space than we actually do.
10115 */
2ff7e61e 10116 ret = exclude_super_stripes(info, cache);
835d974f
JB
10117 if (ret) {
10118 /*
10119 * We may have excluded something, so call this just in
10120 * case.
10121 */
2ff7e61e 10122 free_excluded_extents(info, cache);
920e4a58 10123 btrfs_put_block_group(cache);
835d974f
JB
10124 goto error;
10125 }
3c14874a 10126
817d52f8
JB
10127 /*
10128 * check for two cases, either we are full, and therefore
10129 * don't need to bother with the caching work since we won't
10130 * find any space, or we are empty, and we can just add all
10131 * the space in and be done with it. This saves us _alot_ of
10132 * time, particularly in the full case.
10133 */
10134 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10135 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10136 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10137 free_excluded_extents(info, cache);
817d52f8 10138 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10139 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10140 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10141 add_new_free_space(cache, info,
817d52f8
JB
10142 found_key.objectid,
10143 found_key.objectid +
10144 found_key.offset);
2ff7e61e 10145 free_excluded_extents(info, cache);
817d52f8 10146 }
96b5179d 10147
0b246afa 10148 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10149 if (ret) {
10150 btrfs_remove_free_space_cache(cache);
10151 btrfs_put_block_group(cache);
10152 goto error;
10153 }
10154
0b246afa 10155 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10156 update_space_info(info, cache->flags, found_key.offset,
10157 btrfs_block_group_used(&cache->item),
10158 cache->bytes_super, &space_info);
8c579fe7 10159
6324fbf3 10160 cache->space_info = space_info;
1b2da372 10161
c434d21c 10162 link_block_group(cache);
0f9dd46c 10163
0b246afa 10164 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10165 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10166 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10167 } else if (btrfs_block_group_used(&cache->item) == 0) {
10168 spin_lock(&info->unused_bgs_lock);
10169 /* Should always be true but just in case. */
10170 if (list_empty(&cache->bg_list)) {
10171 btrfs_get_block_group(cache);
10172 list_add_tail(&cache->bg_list,
10173 &info->unused_bgs);
10174 }
10175 spin_unlock(&info->unused_bgs_lock);
10176 }
9078a3e1 10177 }
b742bb82 10178
0b246afa 10179 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10180 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10181 (BTRFS_BLOCK_GROUP_RAID10 |
10182 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10183 BTRFS_BLOCK_GROUP_RAID5 |
10184 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10185 BTRFS_BLOCK_GROUP_DUP)))
10186 continue;
10187 /*
10188 * avoid allocating from un-mirrored block group if there are
10189 * mirrored block groups.
10190 */
1095cc0d 10191 list_for_each_entry(cache,
10192 &space_info->block_groups[BTRFS_RAID_RAID0],
10193 list)
868f401a 10194 inc_block_group_ro(cache, 1);
1095cc0d 10195 list_for_each_entry(cache,
10196 &space_info->block_groups[BTRFS_RAID_SINGLE],
10197 list)
868f401a 10198 inc_block_group_ro(cache, 1);
9078a3e1 10199 }
f0486c68 10200
75cb379d 10201 btrfs_add_raid_kobjects(info);
f0486c68 10202 init_global_block_rsv(info);
0b86a832
CM
10203 ret = 0;
10204error:
9078a3e1 10205 btrfs_free_path(path);
0b86a832 10206 return ret;
9078a3e1 10207}
6324fbf3 10208
6c686b35 10209void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10210{
6c686b35 10211 struct btrfs_fs_info *fs_info = trans->fs_info;
ea658bad 10212 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10213 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10214 struct btrfs_block_group_item item;
10215 struct btrfs_key key;
10216 int ret = 0;
d9a0540a 10217 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10218
d9a0540a 10219 trans->can_flush_pending_bgs = false;
47ab2a6c 10220 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10221 if (ret)
c92f6be3 10222 goto next;
ea658bad
JB
10223
10224 spin_lock(&block_group->lock);
10225 memcpy(&item, &block_group->item, sizeof(item));
10226 memcpy(&key, &block_group->key, sizeof(key));
10227 spin_unlock(&block_group->lock);
10228
10229 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10230 sizeof(item));
10231 if (ret)
66642832 10232 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10233 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10234 key.offset);
6df9a95e 10235 if (ret)
66642832 10236 btrfs_abort_transaction(trans, ret);
0b246afa 10237 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10238 /* already aborted the transaction if it failed. */
c92f6be3
FM
10239next:
10240 list_del_init(&block_group->bg_list);
ea658bad 10241 }
d9a0540a 10242 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10243}
10244
6324fbf3 10245int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10246 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10247 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10248{
6324fbf3 10249 struct btrfs_block_group_cache *cache;
0b246afa 10250 int ret;
6324fbf3 10251
0b246afa 10252 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10253
2ff7e61e 10254 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10255 if (!cache)
10256 return -ENOMEM;
34d52cb6 10257
6324fbf3 10258 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10259 btrfs_set_block_group_chunk_objectid(&cache->item,
10260 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10261 btrfs_set_block_group_flags(&cache->item, type);
10262
920e4a58 10263 cache->flags = type;
11833d66 10264 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10265 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10266 cache->needs_free_space = 1;
2ff7e61e 10267 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10268 if (ret) {
10269 /*
10270 * We may have excluded something, so call this just in
10271 * case.
10272 */
2ff7e61e 10273 free_excluded_extents(fs_info, cache);
920e4a58 10274 btrfs_put_block_group(cache);
835d974f
JB
10275 return ret;
10276 }
96303081 10277
0b246afa 10278 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10279
2ff7e61e 10280 free_excluded_extents(fs_info, cache);
11833d66 10281
d0bd4560 10282#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10283 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10284 u64 new_bytes_used = size - bytes_used;
10285
10286 bytes_used += new_bytes_used >> 1;
2ff7e61e 10287 fragment_free_space(cache);
d0bd4560
JB
10288 }
10289#endif
2e6e5183 10290 /*
2be12ef7
NB
10291 * Ensure the corresponding space_info object is created and
10292 * assigned to our block group. We want our bg to be added to the rbtree
10293 * with its ->space_info set.
2e6e5183 10294 */
2be12ef7 10295 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10296 ASSERT(cache->space_info);
2e6e5183 10297
0b246afa 10298 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10299 if (ret) {
10300 btrfs_remove_free_space_cache(cache);
10301 btrfs_put_block_group(cache);
10302 return ret;
10303 }
10304
2e6e5183
FM
10305 /*
10306 * Now that our block group has its ->space_info set and is inserted in
10307 * the rbtree, update the space info's counters.
10308 */
0b246afa 10309 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10310 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10311 cache->bytes_super, &cache->space_info);
0b246afa 10312 update_global_block_rsv(fs_info);
1b2da372 10313
c434d21c 10314 link_block_group(cache);
6324fbf3 10315
47ab2a6c 10316 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10317
0b246afa 10318 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10319 return 0;
10320}
1a40e23b 10321
10ea00f5
ID
10322static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10323{
899c81ea
ID
10324 u64 extra_flags = chunk_to_extended(flags) &
10325 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10326
de98ced9 10327 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10328 if (flags & BTRFS_BLOCK_GROUP_DATA)
10329 fs_info->avail_data_alloc_bits &= ~extra_flags;
10330 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10331 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10332 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10333 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10334 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10335}
10336
1a40e23b 10337int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10338 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10339 struct extent_map *em)
1a40e23b 10340{
6bccf3ab 10341 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10342 struct btrfs_path *path;
10343 struct btrfs_block_group_cache *block_group;
44fb5511 10344 struct btrfs_free_cluster *cluster;
0b246afa 10345 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10346 struct btrfs_key key;
0af3d00b 10347 struct inode *inode;
c1895442 10348 struct kobject *kobj = NULL;
1a40e23b 10349 int ret;
10ea00f5 10350 int index;
89a55897 10351 int factor;
4f69cb98 10352 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10353 bool remove_em;
1a40e23b 10354
6bccf3ab 10355 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10356 BUG_ON(!block_group);
c146afad 10357 BUG_ON(!block_group->ro);
1a40e23b 10358
9f7c43c9 10359 /*
10360 * Free the reserved super bytes from this block group before
10361 * remove it.
10362 */
2ff7e61e 10363 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10364 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10365 block_group->key.offset);
9f7c43c9 10366
1a40e23b 10367 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10368 index = btrfs_bg_flags_to_raid_index(block_group->flags);
89a55897
JB
10369 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10370 BTRFS_BLOCK_GROUP_RAID1 |
10371 BTRFS_BLOCK_GROUP_RAID10))
10372 factor = 2;
10373 else
10374 factor = 1;
1a40e23b 10375
44fb5511 10376 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10377 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10378 spin_lock(&cluster->refill_lock);
10379 btrfs_return_cluster_to_free_space(block_group, cluster);
10380 spin_unlock(&cluster->refill_lock);
10381
10382 /*
10383 * make sure this block group isn't part of a metadata
10384 * allocation cluster
10385 */
0b246afa 10386 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10387 spin_lock(&cluster->refill_lock);
10388 btrfs_return_cluster_to_free_space(block_group, cluster);
10389 spin_unlock(&cluster->refill_lock);
10390
1a40e23b 10391 path = btrfs_alloc_path();
d8926bb3
MF
10392 if (!path) {
10393 ret = -ENOMEM;
10394 goto out;
10395 }
1a40e23b 10396
1bbc621e
CM
10397 /*
10398 * get the inode first so any iput calls done for the io_list
10399 * aren't the final iput (no unlinks allowed now)
10400 */
77ab86bf 10401 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10402
10403 mutex_lock(&trans->transaction->cache_write_mutex);
10404 /*
10405 * make sure our free spache cache IO is done before remove the
10406 * free space inode
10407 */
10408 spin_lock(&trans->transaction->dirty_bgs_lock);
10409 if (!list_empty(&block_group->io_list)) {
10410 list_del_init(&block_group->io_list);
10411
10412 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10413
10414 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10415 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10416 btrfs_put_block_group(block_group);
10417 spin_lock(&trans->transaction->dirty_bgs_lock);
10418 }
10419
10420 if (!list_empty(&block_group->dirty_list)) {
10421 list_del_init(&block_group->dirty_list);
10422 btrfs_put_block_group(block_group);
10423 }
10424 spin_unlock(&trans->transaction->dirty_bgs_lock);
10425 mutex_unlock(&trans->transaction->cache_write_mutex);
10426
0af3d00b 10427 if (!IS_ERR(inode)) {
73f2e545 10428 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10429 if (ret) {
10430 btrfs_add_delayed_iput(inode);
10431 goto out;
10432 }
0af3d00b
JB
10433 clear_nlink(inode);
10434 /* One for the block groups ref */
10435 spin_lock(&block_group->lock);
10436 if (block_group->iref) {
10437 block_group->iref = 0;
10438 block_group->inode = NULL;
10439 spin_unlock(&block_group->lock);
10440 iput(inode);
10441 } else {
10442 spin_unlock(&block_group->lock);
10443 }
10444 /* One for our lookup ref */
455757c3 10445 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10446 }
10447
10448 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10449 key.offset = block_group->key.objectid;
10450 key.type = 0;
10451
10452 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10453 if (ret < 0)
10454 goto out;
10455 if (ret > 0)
b3b4aa74 10456 btrfs_release_path(path);
0af3d00b
JB
10457 if (ret == 0) {
10458 ret = btrfs_del_item(trans, tree_root, path);
10459 if (ret)
10460 goto out;
b3b4aa74 10461 btrfs_release_path(path);
0af3d00b
JB
10462 }
10463
0b246afa 10464 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10465 rb_erase(&block_group->cache_node,
0b246afa 10466 &fs_info->block_group_cache_tree);
292cbd51 10467 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10468
0b246afa
JM
10469 if (fs_info->first_logical_byte == block_group->key.objectid)
10470 fs_info->first_logical_byte = (u64)-1;
10471 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10472
80eb234a 10473 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10474 /*
10475 * we must use list_del_init so people can check to see if they
10476 * are still on the list after taking the semaphore
10477 */
10478 list_del_init(&block_group->list);
6ab0a202 10479 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10480 kobj = block_group->space_info->block_group_kobjs[index];
10481 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10482 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10483 }
80eb234a 10484 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10485 if (kobj) {
10486 kobject_del(kobj);
10487 kobject_put(kobj);
10488 }
1a40e23b 10489
4f69cb98
FM
10490 if (block_group->has_caching_ctl)
10491 caching_ctl = get_caching_control(block_group);
817d52f8 10492 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10493 wait_block_group_cache_done(block_group);
4f69cb98 10494 if (block_group->has_caching_ctl) {
0b246afa 10495 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10496 if (!caching_ctl) {
10497 struct btrfs_caching_control *ctl;
10498
10499 list_for_each_entry(ctl,
0b246afa 10500 &fs_info->caching_block_groups, list)
4f69cb98
FM
10501 if (ctl->block_group == block_group) {
10502 caching_ctl = ctl;
1e4f4714 10503 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10504 break;
10505 }
10506 }
10507 if (caching_ctl)
10508 list_del_init(&caching_ctl->list);
0b246afa 10509 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10510 if (caching_ctl) {
10511 /* Once for the caching bgs list and once for us. */
10512 put_caching_control(caching_ctl);
10513 put_caching_control(caching_ctl);
10514 }
10515 }
817d52f8 10516
ce93ec54
JB
10517 spin_lock(&trans->transaction->dirty_bgs_lock);
10518 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10519 WARN_ON(1);
10520 }
10521 if (!list_empty(&block_group->io_list)) {
10522 WARN_ON(1);
ce93ec54
JB
10523 }
10524 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10525 btrfs_remove_free_space_cache(block_group);
10526
c146afad 10527 spin_lock(&block_group->space_info->lock);
75c68e9f 10528 list_del_init(&block_group->ro_list);
18d018ad 10529
0b246afa 10530 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10531 WARN_ON(block_group->space_info->total_bytes
10532 < block_group->key.offset);
10533 WARN_ON(block_group->space_info->bytes_readonly
10534 < block_group->key.offset);
10535 WARN_ON(block_group->space_info->disk_total
10536 < block_group->key.offset * factor);
10537 }
c146afad
YZ
10538 block_group->space_info->total_bytes -= block_group->key.offset;
10539 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10540 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10541
c146afad 10542 spin_unlock(&block_group->space_info->lock);
283bb197 10543
0af3d00b
JB
10544 memcpy(&key, &block_group->key, sizeof(key));
10545
34441361 10546 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10547 if (!list_empty(&em->list)) {
10548 /* We're in the transaction->pending_chunks list. */
10549 free_extent_map(em);
10550 }
04216820
FM
10551 spin_lock(&block_group->lock);
10552 block_group->removed = 1;
10553 /*
10554 * At this point trimming can't start on this block group, because we
10555 * removed the block group from the tree fs_info->block_group_cache_tree
10556 * so no one can't find it anymore and even if someone already got this
10557 * block group before we removed it from the rbtree, they have already
10558 * incremented block_group->trimming - if they didn't, they won't find
10559 * any free space entries because we already removed them all when we
10560 * called btrfs_remove_free_space_cache().
10561 *
10562 * And we must not remove the extent map from the fs_info->mapping_tree
10563 * to prevent the same logical address range and physical device space
10564 * ranges from being reused for a new block group. This is because our
10565 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10566 * completely transactionless, so while it is trimming a range the
10567 * currently running transaction might finish and a new one start,
10568 * allowing for new block groups to be created that can reuse the same
10569 * physical device locations unless we take this special care.
e33e17ee
JM
10570 *
10571 * There may also be an implicit trim operation if the file system
10572 * is mounted with -odiscard. The same protections must remain
10573 * in place until the extents have been discarded completely when
10574 * the transaction commit has completed.
04216820
FM
10575 */
10576 remove_em = (atomic_read(&block_group->trimming) == 0);
10577 /*
10578 * Make sure a trimmer task always sees the em in the pinned_chunks list
10579 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10580 * before checking block_group->removed).
10581 */
10582 if (!remove_em) {
10583 /*
10584 * Our em might be in trans->transaction->pending_chunks which
10585 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10586 * and so is the fs_info->pinned_chunks list.
10587 *
10588 * So at this point we must be holding the chunk_mutex to avoid
10589 * any races with chunk allocation (more specifically at
10590 * volumes.c:contains_pending_extent()), to ensure it always
10591 * sees the em, either in the pending_chunks list or in the
10592 * pinned_chunks list.
10593 */
0b246afa 10594 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10595 }
10596 spin_unlock(&block_group->lock);
04216820
FM
10597
10598 if (remove_em) {
10599 struct extent_map_tree *em_tree;
10600
0b246afa 10601 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10602 write_lock(&em_tree->lock);
8dbcd10f
FM
10603 /*
10604 * The em might be in the pending_chunks list, so make sure the
10605 * chunk mutex is locked, since remove_extent_mapping() will
10606 * delete us from that list.
10607 */
04216820
FM
10608 remove_extent_mapping(em_tree, em);
10609 write_unlock(&em_tree->lock);
10610 /* once for the tree */
10611 free_extent_map(em);
10612 }
10613
34441361 10614 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10615
0b246afa 10616 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10617 if (ret)
10618 goto out;
10619
fa9c0d79
CM
10620 btrfs_put_block_group(block_group);
10621 btrfs_put_block_group(block_group);
1a40e23b
ZY
10622
10623 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10624 if (ret > 0)
10625 ret = -EIO;
10626 if (ret < 0)
10627 goto out;
10628
10629 ret = btrfs_del_item(trans, root, path);
10630out:
10631 btrfs_free_path(path);
10632 return ret;
10633}
acce952b 10634
8eab77ff 10635struct btrfs_trans_handle *
7fd01182
FM
10636btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10637 const u64 chunk_offset)
8eab77ff 10638{
7fd01182
FM
10639 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10640 struct extent_map *em;
10641 struct map_lookup *map;
10642 unsigned int num_items;
10643
10644 read_lock(&em_tree->lock);
10645 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10646 read_unlock(&em_tree->lock);
10647 ASSERT(em && em->start == chunk_offset);
10648
8eab77ff 10649 /*
7fd01182
FM
10650 * We need to reserve 3 + N units from the metadata space info in order
10651 * to remove a block group (done at btrfs_remove_chunk() and at
10652 * btrfs_remove_block_group()), which are used for:
10653 *
8eab77ff
FM
10654 * 1 unit for adding the free space inode's orphan (located in the tree
10655 * of tree roots).
7fd01182
FM
10656 * 1 unit for deleting the block group item (located in the extent
10657 * tree).
10658 * 1 unit for deleting the free space item (located in tree of tree
10659 * roots).
10660 * N units for deleting N device extent items corresponding to each
10661 * stripe (located in the device tree).
10662 *
10663 * In order to remove a block group we also need to reserve units in the
10664 * system space info in order to update the chunk tree (update one or
10665 * more device items and remove one chunk item), but this is done at
10666 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10667 */
95617d69 10668 map = em->map_lookup;
7fd01182
FM
10669 num_items = 3 + map->num_stripes;
10670 free_extent_map(em);
10671
8eab77ff 10672 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10673 num_items, 1);
8eab77ff
FM
10674}
10675
47ab2a6c
JB
10676/*
10677 * Process the unused_bgs list and remove any that don't have any allocated
10678 * space inside of them.
10679 */
10680void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10681{
10682 struct btrfs_block_group_cache *block_group;
10683 struct btrfs_space_info *space_info;
47ab2a6c
JB
10684 struct btrfs_trans_handle *trans;
10685 int ret = 0;
10686
afcdd129 10687 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10688 return;
10689
10690 spin_lock(&fs_info->unused_bgs_lock);
10691 while (!list_empty(&fs_info->unused_bgs)) {
10692 u64 start, end;
e33e17ee 10693 int trimming;
47ab2a6c
JB
10694
10695 block_group = list_first_entry(&fs_info->unused_bgs,
10696 struct btrfs_block_group_cache,
10697 bg_list);
47ab2a6c 10698 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10699
10700 space_info = block_group->space_info;
10701
47ab2a6c
JB
10702 if (ret || btrfs_mixed_space_info(space_info)) {
10703 btrfs_put_block_group(block_group);
10704 continue;
10705 }
10706 spin_unlock(&fs_info->unused_bgs_lock);
10707
d5f2e33b 10708 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10709
47ab2a6c
JB
10710 /* Don't want to race with allocators so take the groups_sem */
10711 down_write(&space_info->groups_sem);
10712 spin_lock(&block_group->lock);
10713 if (block_group->reserved ||
10714 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10715 block_group->ro ||
aefbe9a6 10716 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10717 /*
10718 * We want to bail if we made new allocations or have
10719 * outstanding allocations in this block group. We do
10720 * the ro check in case balance is currently acting on
10721 * this block group.
10722 */
10723 spin_unlock(&block_group->lock);
10724 up_write(&space_info->groups_sem);
10725 goto next;
10726 }
10727 spin_unlock(&block_group->lock);
10728
10729 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10730 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10731 up_write(&space_info->groups_sem);
10732 if (ret < 0) {
10733 ret = 0;
10734 goto next;
10735 }
10736
10737 /*
10738 * Want to do this before we do anything else so we can recover
10739 * properly if we fail to join the transaction.
10740 */
7fd01182
FM
10741 trans = btrfs_start_trans_remove_block_group(fs_info,
10742 block_group->key.objectid);
47ab2a6c 10743 if (IS_ERR(trans)) {
2ff7e61e 10744 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10745 ret = PTR_ERR(trans);
10746 goto next;
10747 }
10748
10749 /*
10750 * We could have pending pinned extents for this block group,
10751 * just delete them, we don't care about them anymore.
10752 */
10753 start = block_group->key.objectid;
10754 end = start + block_group->key.offset - 1;
d4b450cd
FM
10755 /*
10756 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10757 * btrfs_finish_extent_commit(). If we are at transaction N,
10758 * another task might be running finish_extent_commit() for the
10759 * previous transaction N - 1, and have seen a range belonging
10760 * to the block group in freed_extents[] before we were able to
10761 * clear the whole block group range from freed_extents[]. This
10762 * means that task can lookup for the block group after we
10763 * unpinned it from freed_extents[] and removed it, leading to
10764 * a BUG_ON() at btrfs_unpin_extent_range().
10765 */
10766 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10767 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10768 EXTENT_DIRTY);
758eb51e 10769 if (ret) {
d4b450cd 10770 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10771 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10772 goto end_trans;
10773 }
10774 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10775 EXTENT_DIRTY);
758eb51e 10776 if (ret) {
d4b450cd 10777 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10778 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10779 goto end_trans;
10780 }
d4b450cd 10781 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10782
10783 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10784 spin_lock(&space_info->lock);
10785 spin_lock(&block_group->lock);
10786
10787 space_info->bytes_pinned -= block_group->pinned;
10788 space_info->bytes_readonly += block_group->pinned;
10789 percpu_counter_add(&space_info->total_bytes_pinned,
10790 -block_group->pinned);
47ab2a6c
JB
10791 block_group->pinned = 0;
10792
c30666d4
ZL
10793 spin_unlock(&block_group->lock);
10794 spin_unlock(&space_info->lock);
10795
e33e17ee 10796 /* DISCARD can flip during remount */
0b246afa 10797 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10798
10799 /* Implicit trim during transaction commit. */
10800 if (trimming)
10801 btrfs_get_block_group_trimming(block_group);
10802
47ab2a6c
JB
10803 /*
10804 * Btrfs_remove_chunk will abort the transaction if things go
10805 * horribly wrong.
10806 */
5b4aacef 10807 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10808 block_group->key.objectid);
e33e17ee
JM
10809
10810 if (ret) {
10811 if (trimming)
10812 btrfs_put_block_group_trimming(block_group);
10813 goto end_trans;
10814 }
10815
10816 /*
10817 * If we're not mounted with -odiscard, we can just forget
10818 * about this block group. Otherwise we'll need to wait
10819 * until transaction commit to do the actual discard.
10820 */
10821 if (trimming) {
348a0013
FM
10822 spin_lock(&fs_info->unused_bgs_lock);
10823 /*
10824 * A concurrent scrub might have added us to the list
10825 * fs_info->unused_bgs, so use a list_move operation
10826 * to add the block group to the deleted_bgs list.
10827 */
e33e17ee
JM
10828 list_move(&block_group->bg_list,
10829 &trans->transaction->deleted_bgs);
348a0013 10830 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10831 btrfs_get_block_group(block_group);
10832 }
758eb51e 10833end_trans:
3a45bb20 10834 btrfs_end_transaction(trans);
47ab2a6c 10835next:
d5f2e33b 10836 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10837 btrfs_put_block_group(block_group);
10838 spin_lock(&fs_info->unused_bgs_lock);
10839 }
10840 spin_unlock(&fs_info->unused_bgs_lock);
10841}
10842
c59021f8 10843int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10844{
10845 struct btrfs_space_info *space_info;
1aba86d6 10846 struct btrfs_super_block *disk_super;
10847 u64 features;
10848 u64 flags;
10849 int mixed = 0;
c59021f8 10850 int ret;
10851
6c41761f 10852 disk_super = fs_info->super_copy;
1aba86d6 10853 if (!btrfs_super_root(disk_super))
0dc924c5 10854 return -EINVAL;
c59021f8 10855
1aba86d6 10856 features = btrfs_super_incompat_flags(disk_super);
10857 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10858 mixed = 1;
c59021f8 10859
1aba86d6 10860 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10861 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10862 if (ret)
1aba86d6 10863 goto out;
c59021f8 10864
1aba86d6 10865 if (mixed) {
10866 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10867 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10868 } else {
10869 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10870 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10871 if (ret)
10872 goto out;
10873
10874 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10875 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10876 }
10877out:
c59021f8 10878 return ret;
10879}
10880
2ff7e61e
JM
10881int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10882 u64 start, u64 end)
acce952b 10883{
2ff7e61e 10884 return unpin_extent_range(fs_info, start, end, false);
acce952b 10885}
10886
499f377f
JM
10887/*
10888 * It used to be that old block groups would be left around forever.
10889 * Iterating over them would be enough to trim unused space. Since we
10890 * now automatically remove them, we also need to iterate over unallocated
10891 * space.
10892 *
10893 * We don't want a transaction for this since the discard may take a
10894 * substantial amount of time. We don't require that a transaction be
10895 * running, but we do need to take a running transaction into account
10896 * to ensure that we're not discarding chunks that were released in
10897 * the current transaction.
10898 *
10899 * Holding the chunks lock will prevent other threads from allocating
10900 * or releasing chunks, but it won't prevent a running transaction
10901 * from committing and releasing the memory that the pending chunks
10902 * list head uses. For that, we need to take a reference to the
10903 * transaction.
10904 */
10905static int btrfs_trim_free_extents(struct btrfs_device *device,
10906 u64 minlen, u64 *trimmed)
10907{
10908 u64 start = 0, len = 0;
10909 int ret;
10910
10911 *trimmed = 0;
10912
10913 /* Not writeable = nothing to do. */
ebbede42 10914 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10915 return 0;
10916
10917 /* No free space = nothing to do. */
10918 if (device->total_bytes <= device->bytes_used)
10919 return 0;
10920
10921 ret = 0;
10922
10923 while (1) {
fb456252 10924 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10925 struct btrfs_transaction *trans;
10926 u64 bytes;
10927
10928 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10929 if (ret)
10930 return ret;
10931
10932 down_read(&fs_info->commit_root_sem);
10933
10934 spin_lock(&fs_info->trans_lock);
10935 trans = fs_info->running_transaction;
10936 if (trans)
9b64f57d 10937 refcount_inc(&trans->use_count);
499f377f
JM
10938 spin_unlock(&fs_info->trans_lock);
10939
10940 ret = find_free_dev_extent_start(trans, device, minlen, start,
10941 &start, &len);
10942 if (trans)
10943 btrfs_put_transaction(trans);
10944
10945 if (ret) {
10946 up_read(&fs_info->commit_root_sem);
10947 mutex_unlock(&fs_info->chunk_mutex);
10948 if (ret == -ENOSPC)
10949 ret = 0;
10950 break;
10951 }
10952
10953 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10954 up_read(&fs_info->commit_root_sem);
10955 mutex_unlock(&fs_info->chunk_mutex);
10956
10957 if (ret)
10958 break;
10959
10960 start += len;
10961 *trimmed += bytes;
10962
10963 if (fatal_signal_pending(current)) {
10964 ret = -ERESTARTSYS;
10965 break;
10966 }
10967
10968 cond_resched();
10969 }
10970
10971 return ret;
10972}
10973
2ff7e61e 10974int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10975{
f7039b1d 10976 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10977 struct btrfs_device *device;
10978 struct list_head *devices;
f7039b1d
LD
10979 u64 group_trimmed;
10980 u64 start;
10981 u64 end;
10982 u64 trimmed = 0;
2cac13e4 10983 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10984 int ret = 0;
10985
2cac13e4
LB
10986 /*
10987 * try to trim all FS space, our block group may start from non-zero.
10988 */
10989 if (range->len == total_bytes)
10990 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10991 else
10992 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10993
10994 while (cache) {
10995 if (cache->key.objectid >= (range->start + range->len)) {
10996 btrfs_put_block_group(cache);
10997 break;
10998 }
10999
11000 start = max(range->start, cache->key.objectid);
11001 end = min(range->start + range->len,
11002 cache->key.objectid + cache->key.offset);
11003
11004 if (end - start >= range->minlen) {
11005 if (!block_group_cache_done(cache)) {
f6373bf3 11006 ret = cache_block_group(cache, 0);
1be41b78
JB
11007 if (ret) {
11008 btrfs_put_block_group(cache);
11009 break;
11010 }
11011 ret = wait_block_group_cache_done(cache);
11012 if (ret) {
11013 btrfs_put_block_group(cache);
11014 break;
11015 }
f7039b1d
LD
11016 }
11017 ret = btrfs_trim_block_group(cache,
11018 &group_trimmed,
11019 start,
11020 end,
11021 range->minlen);
11022
11023 trimmed += group_trimmed;
11024 if (ret) {
11025 btrfs_put_block_group(cache);
11026 break;
11027 }
11028 }
11029
2ff7e61e 11030 cache = next_block_group(fs_info, cache);
f7039b1d
LD
11031 }
11032
0b246afa
JM
11033 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11034 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
11035 list_for_each_entry(device, devices, dev_alloc_list) {
11036 ret = btrfs_trim_free_extents(device, range->minlen,
11037 &group_trimmed);
11038 if (ret)
11039 break;
11040
11041 trimmed += group_trimmed;
11042 }
0b246afa 11043 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11044
f7039b1d
LD
11045 range->len = trimmed;
11046 return ret;
11047}
8257b2dc
MX
11048
11049/*
ea14b57f 11050 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11051 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11052 * data into the page cache through nocow before the subvolume is snapshoted,
11053 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11054 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11055 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11056 */
ea14b57f 11057void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11058{
11059 percpu_counter_dec(&root->subv_writers->counter);
11060 /*
a83342aa 11061 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11062 */
11063 smp_mb();
11064 if (waitqueue_active(&root->subv_writers->wait))
11065 wake_up(&root->subv_writers->wait);
11066}
11067
ea14b57f 11068int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11069{
ea14b57f 11070 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11071 return 0;
11072
11073 percpu_counter_inc(&root->subv_writers->counter);
11074 /*
11075 * Make sure counter is updated before we check for snapshot creation.
11076 */
11077 smp_mb();
ea14b57f
DS
11078 if (atomic_read(&root->will_be_snapshotted)) {
11079 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11080 return 0;
11081 }
11082 return 1;
11083}
0bc19f90 11084
0bc19f90
ZL
11085void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11086{
11087 while (true) {
11088 int ret;
11089
ea14b57f 11090 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11091 if (ret)
11092 break;
5e4def20 11093 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
0bc19f90
ZL
11094 TASK_UNINTERRUPTIBLE);
11095 }
11096}