Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-2.6-block.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
f361bf4a 19#include <linux/sched/signal.h>
edbd8d4e 20#include <linux/pagemap.h>
ec44a35c 21#include <linux/writeback.h>
21af804c 22#include <linux/blkdev.h>
b7a9f29f 23#include <linux/sort.h>
4184ea7f 24#include <linux/rcupdate.h>
817d52f8 25#include <linux/kthread.h>
5a0e3ad6 26#include <linux/slab.h>
dff51cd1 27#include <linux/ratelimit.h>
b150a4f1 28#include <linux/percpu_counter.h>
69fe2d75 29#include <linux/lockdep.h>
74493f7a 30#include "hash.h"
995946dd 31#include "tree-log.h"
fec577fb
CM
32#include "disk-io.h"
33#include "print-tree.h"
0b86a832 34#include "volumes.h"
53b381b3 35#include "raid56.h"
925baedd 36#include "locking.h"
fa9c0d79 37#include "free-space-cache.h"
1e144fb8 38#include "free-space-tree.h"
3fed40cc 39#include "math.h"
6ab0a202 40#include "sysfs.h"
fcebe456 41#include "qgroup.h"
fd708b81 42#include "ref-verify.h"
fec577fb 43
709c0486
AJ
44#undef SCRAMBLE_DELAYED_REFS
45
9e622d6b
MX
46/*
47 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
50 *
0e4f8f88
CM
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
56 *
9e622d6b
MX
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 *
0e4f8f88
CM
59 */
60enum {
61 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
62 CHUNK_ALLOC_LIMITED = 1,
63 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
64};
65
5d4f98a2 66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 67 struct btrfs_fs_info *fs_info,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 76 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 81 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 86 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
ab8d0fc4
JM
90static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 92 int dump_block_groups);
5d80366e
JB
93static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 u64 num_bytes);
957780eb
JB
95static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 struct btrfs_space_info *space_info,
97 u64 num_bytes);
98static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_space_info *space_info,
100 u64 num_bytes);
6a63209f 101
817d52f8
JB
102static noinline int
103block_group_cache_done(struct btrfs_block_group_cache *cache)
104{
105 smp_mb();
36cce922
JB
106 return cache->cached == BTRFS_CACHE_FINISHED ||
107 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
108}
109
0f9dd46c
JB
110static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111{
112 return (cache->flags & bits) == bits;
113}
114
758f2dfc 115void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
116{
117 atomic_inc(&cache->count);
118}
119
120void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121{
f0486c68
YZ
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
0966a7b1
QW
125
126 /*
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
131 *
132 * No better way to resolve, but only to warn.
133 */
134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 135 kfree(cache->free_space_ctl);
11dfe35a 136 kfree(cache);
f0486c68 137 }
11dfe35a
JB
138}
139
0f9dd46c
JB
140/*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
b2950863 144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
145 struct btrfs_block_group_cache *block_group)
146{
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
a1897fdd
LB
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
0f9dd46c
JB
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178}
179
180/*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184static struct btrfs_block_group_cache *
185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187{
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
a1897fdd 216 if (ret) {
11dfe35a 217 btrfs_get_block_group(ret);
a1897fdd
LB
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
0f9dd46c
JB
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224}
225
2ff7e61e 226static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 227 u64 start, u64 num_bytes)
817d52f8 228{
11833d66 229 u64 end = start + num_bytes - 1;
0b246afa 230 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 231 start, end, EXTENT_UPTODATE);
0b246afa 232 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 233 start, end, EXTENT_UPTODATE);
11833d66
YZ
234 return 0;
235}
817d52f8 236
2ff7e61e 237static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
238 struct btrfs_block_group_cache *cache)
239{
240 u64 start, end;
817d52f8 241
11833d66
YZ
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
0b246afa 245 clear_extent_bits(&fs_info->freed_extents[0],
91166212 246 start, end, EXTENT_UPTODATE);
0b246afa 247 clear_extent_bits(&fs_info->freed_extents[1],
91166212 248 start, end, EXTENT_UPTODATE);
817d52f8
JB
249}
250
2ff7e61e 251static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 252 struct btrfs_block_group_cache *cache)
817d52f8 253{
817d52f8
JB
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
06b2331f
YZ
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
2ff7e61e 262 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 263 stripe_len);
835d974f
JB
264 if (ret)
265 return ret;
06b2331f
YZ
266 }
267
817d52f8
JB
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
0b246afa 270 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 271 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
272 if (ret)
273 return ret;
11833d66 274
817d52f8 275 while (nr--) {
51bf5f0b
JB
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
2ff7e61e 296 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
817d52f8 301 }
11833d66 302
817d52f8
JB
303 kfree(logical);
304 }
817d52f8
JB
305 return 0;
306}
307
11833d66
YZ
308static struct btrfs_caching_control *
309get_caching_control(struct btrfs_block_group_cache *cache)
310{
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
dde5abee
JB
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
11833d66
YZ
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
1e4f4714 320 refcount_inc(&ctl->count);
11833d66
YZ
321 spin_unlock(&cache->lock);
322 return ctl;
323}
324
325static void put_caching_control(struct btrfs_caching_control *ctl)
326{
1e4f4714 327 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
328 kfree(ctl);
329}
330
d0bd4560 331#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 332static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 333{
2ff7e61e 334 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 338 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349}
350#endif
351
0f9dd46c
JB
352/*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
a5ed9182
OS
357u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 359{
817d52f8 360 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
361 int ret;
362
363 while (start < end) {
11833d66 364 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 365 &extent_start, &extent_end,
e6138876
JB
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
0f9dd46c
JB
368 if (ret)
369 break;
370
06b2331f 371 if (extent_start <= start) {
0f9dd46c
JB
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
817d52f8 375 total_added += size;
ea6a478e
JB
376 ret = btrfs_add_free_space(block_group, start,
377 size);
79787eaa 378 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
817d52f8 387 total_added += size;
ea6a478e 388 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 389 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
390 }
391
817d52f8 392 return total_added;
0f9dd46c
JB
393}
394
73fa48b6 395static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 396{
0b246afa
JM
397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 struct btrfs_fs_info *fs_info = block_group->fs_info;
399 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 400 struct btrfs_path *path;
5f39d397 401 struct extent_buffer *leaf;
11833d66 402 struct btrfs_key key;
817d52f8 403 u64 total_found = 0;
11833d66
YZ
404 u64 last = 0;
405 u32 nritems;
73fa48b6 406 int ret;
d0bd4560 407 bool wakeup = true;
f510cfec 408
e37c9e69
CM
409 path = btrfs_alloc_path();
410 if (!path)
73fa48b6 411 return -ENOMEM;
7d7d6068 412
817d52f8 413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 414
d0bd4560
JB
415#ifdef CONFIG_BTRFS_DEBUG
416 /*
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
419 * the free space.
420 */
2ff7e61e 421 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
422 wakeup = false;
423#endif
5cd57b2c 424 /*
817d52f8
JB
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
5cd57b2c
CM
429 */
430 path->skip_locking = 1;
817d52f8 431 path->search_commit_root = 1;
e4058b54 432 path->reada = READA_FORWARD;
817d52f8 433
e4404d6e 434 key.objectid = last;
e37c9e69 435 key.offset = 0;
11833d66 436 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 437
52ee28d2 438next:
11833d66 439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 440 if (ret < 0)
73fa48b6 441 goto out;
a512bbf8 442
11833d66
YZ
443 leaf = path->nodes[0];
444 nritems = btrfs_header_nritems(leaf);
445
d397712b 446 while (1) {
7841cb28 447 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 448 last = (u64)-1;
817d52f8 449 break;
f25784b3 450 }
817d52f8 451
11833d66
YZ
452 if (path->slots[0] < nritems) {
453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 } else {
455 ret = find_next_key(path, 0, &key);
456 if (ret)
e37c9e69 457 break;
817d52f8 458
c9ea7b24 459 if (need_resched() ||
9e351cc8 460 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
461 if (wakeup)
462 caching_ctl->progress = last;
ff5714cc 463 btrfs_release_path(path);
9e351cc8 464 up_read(&fs_info->commit_root_sem);
589d8ade 465 mutex_unlock(&caching_ctl->mutex);
11833d66 466 cond_resched();
73fa48b6
OS
467 mutex_lock(&caching_ctl->mutex);
468 down_read(&fs_info->commit_root_sem);
469 goto next;
589d8ade 470 }
0a3896d0
JB
471
472 ret = btrfs_next_leaf(extent_root, path);
473 if (ret < 0)
73fa48b6 474 goto out;
0a3896d0
JB
475 if (ret)
476 break;
589d8ade
JB
477 leaf = path->nodes[0];
478 nritems = btrfs_header_nritems(leaf);
479 continue;
11833d66 480 }
817d52f8 481
52ee28d2
LB
482 if (key.objectid < last) {
483 key.objectid = last;
484 key.offset = 0;
485 key.type = BTRFS_EXTENT_ITEM_KEY;
486
d0bd4560
JB
487 if (wakeup)
488 caching_ctl->progress = last;
52ee28d2
LB
489 btrfs_release_path(path);
490 goto next;
491 }
492
11833d66
YZ
493 if (key.objectid < block_group->key.objectid) {
494 path->slots[0]++;
817d52f8 495 continue;
e37c9e69 496 }
0f9dd46c 497
e37c9e69 498 if (key.objectid >= block_group->key.objectid +
0f9dd46c 499 block_group->key.offset)
e37c9e69 500 break;
7d7d6068 501
3173a18f
JB
502 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
504 total_found += add_new_free_space(block_group,
505 fs_info, last,
506 key.objectid);
3173a18f
JB
507 if (key.type == BTRFS_METADATA_ITEM_KEY)
508 last = key.objectid +
da17066c 509 fs_info->nodesize;
3173a18f
JB
510 else
511 last = key.objectid + key.offset;
817d52f8 512
73fa48b6 513 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 514 total_found = 0;
d0bd4560
JB
515 if (wakeup)
516 wake_up(&caching_ctl->wait);
11833d66 517 }
817d52f8 518 }
e37c9e69
CM
519 path->slots[0]++;
520 }
817d52f8 521 ret = 0;
e37c9e69 522
817d52f8
JB
523 total_found += add_new_free_space(block_group, fs_info, last,
524 block_group->key.objectid +
525 block_group->key.offset);
11833d66 526 caching_ctl->progress = (u64)-1;
817d52f8 527
73fa48b6
OS
528out:
529 btrfs_free_path(path);
530 return ret;
531}
532
533static noinline void caching_thread(struct btrfs_work *work)
534{
535 struct btrfs_block_group_cache *block_group;
536 struct btrfs_fs_info *fs_info;
537 struct btrfs_caching_control *caching_ctl;
b4570aa9 538 struct btrfs_root *extent_root;
73fa48b6
OS
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
b4570aa9 544 extent_root = fs_info->extent_root;
73fa48b6
OS
545
546 mutex_lock(&caching_ctl->mutex);
547 down_read(&fs_info->commit_root_sem);
548
1e144fb8
OS
549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 ret = load_free_space_tree(caching_ctl);
551 else
552 ret = load_extent_tree_free(caching_ctl);
73fa48b6 553
817d52f8 554 spin_lock(&block_group->lock);
11833d66 555 block_group->caching_ctl = NULL;
73fa48b6 556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 557 spin_unlock(&block_group->lock);
0f9dd46c 558
d0bd4560 559#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 560 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
561 u64 bytes_used;
562
563 spin_lock(&block_group->space_info->lock);
564 spin_lock(&block_group->lock);
565 bytes_used = block_group->key.offset -
566 btrfs_block_group_used(&block_group->item);
567 block_group->space_info->bytes_used += bytes_used >> 1;
568 spin_unlock(&block_group->lock);
569 spin_unlock(&block_group->space_info->lock);
2ff7e61e 570 fragment_free_space(block_group);
d0bd4560
JB
571 }
572#endif
573
574 caching_ctl->progress = (u64)-1;
11833d66 575
9e351cc8 576 up_read(&fs_info->commit_root_sem);
2ff7e61e 577 free_excluded_extents(fs_info, block_group);
11833d66 578 mutex_unlock(&caching_ctl->mutex);
73fa48b6 579
11833d66
YZ
580 wake_up(&caching_ctl->wait);
581
582 put_caching_control(caching_ctl);
11dfe35a 583 btrfs_put_block_group(block_group);
817d52f8
JB
584}
585
9d66e233 586static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 587 int load_cache_only)
817d52f8 588{
291c7d2f 589 DEFINE_WAIT(wait);
11833d66
YZ
590 struct btrfs_fs_info *fs_info = cache->fs_info;
591 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
592 int ret = 0;
593
291c7d2f 594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
595 if (!caching_ctl)
596 return -ENOMEM;
291c7d2f
JB
597
598 INIT_LIST_HEAD(&caching_ctl->list);
599 mutex_init(&caching_ctl->mutex);
600 init_waitqueue_head(&caching_ctl->wait);
601 caching_ctl->block_group = cache;
602 caching_ctl->progress = cache->key.objectid;
1e4f4714 603 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 caching_thread, NULL, NULL);
291c7d2f
JB
606
607 spin_lock(&cache->lock);
608 /*
609 * This should be a rare occasion, but this could happen I think in the
610 * case where one thread starts to load the space cache info, and then
611 * some other thread starts a transaction commit which tries to do an
612 * allocation while the other thread is still loading the space cache
613 * info. The previous loop should have kept us from choosing this block
614 * group, but if we've moved to the state where we will wait on caching
615 * block groups we need to first check if we're doing a fast load here,
616 * so we can wait for it to finish, otherwise we could end up allocating
617 * from a block group who's cache gets evicted for one reason or
618 * another.
619 */
620 while (cache->cached == BTRFS_CACHE_FAST) {
621 struct btrfs_caching_control *ctl;
622
623 ctl = cache->caching_ctl;
1e4f4714 624 refcount_inc(&ctl->count);
291c7d2f
JB
625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 spin_unlock(&cache->lock);
627
628 schedule();
629
630 finish_wait(&ctl->wait, &wait);
631 put_caching_control(ctl);
632 spin_lock(&cache->lock);
633 }
634
635 if (cache->cached != BTRFS_CACHE_NO) {
636 spin_unlock(&cache->lock);
637 kfree(caching_ctl);
11833d66 638 return 0;
291c7d2f
JB
639 }
640 WARN_ON(cache->caching_ctl);
641 cache->caching_ctl = caching_ctl;
642 cache->cached = BTRFS_CACHE_FAST;
643 spin_unlock(&cache->lock);
11833d66 644
d8953d69 645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 646 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
647 ret = load_free_space_cache(fs_info, cache);
648
649 spin_lock(&cache->lock);
650 if (ret == 1) {
291c7d2f 651 cache->caching_ctl = NULL;
9d66e233
JB
652 cache->cached = BTRFS_CACHE_FINISHED;
653 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 654 caching_ctl->progress = (u64)-1;
9d66e233 655 } else {
291c7d2f
JB
656 if (load_cache_only) {
657 cache->caching_ctl = NULL;
658 cache->cached = BTRFS_CACHE_NO;
659 } else {
660 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 661 cache->has_caching_ctl = 1;
291c7d2f 662 }
9d66e233
JB
663 }
664 spin_unlock(&cache->lock);
d0bd4560
JB
665#ifdef CONFIG_BTRFS_DEBUG
666 if (ret == 1 &&
2ff7e61e 667 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
668 u64 bytes_used;
669
670 spin_lock(&cache->space_info->lock);
671 spin_lock(&cache->lock);
672 bytes_used = cache->key.offset -
673 btrfs_block_group_used(&cache->item);
674 cache->space_info->bytes_used += bytes_used >> 1;
675 spin_unlock(&cache->lock);
676 spin_unlock(&cache->space_info->lock);
2ff7e61e 677 fragment_free_space(cache);
d0bd4560
JB
678 }
679#endif
cb83b7b8
JB
680 mutex_unlock(&caching_ctl->mutex);
681
291c7d2f 682 wake_up(&caching_ctl->wait);
3c14874a 683 if (ret == 1) {
291c7d2f 684 put_caching_control(caching_ctl);
2ff7e61e 685 free_excluded_extents(fs_info, cache);
9d66e233 686 return 0;
3c14874a 687 }
291c7d2f
JB
688 } else {
689 /*
1e144fb8
OS
690 * We're either using the free space tree or no caching at all.
691 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
692 */
693 spin_lock(&cache->lock);
694 if (load_cache_only) {
695 cache->caching_ctl = NULL;
696 cache->cached = BTRFS_CACHE_NO;
697 } else {
698 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 699 cache->has_caching_ctl = 1;
291c7d2f
JB
700 }
701 spin_unlock(&cache->lock);
702 wake_up(&caching_ctl->wait);
9d66e233
JB
703 }
704
291c7d2f
JB
705 if (load_cache_only) {
706 put_caching_control(caching_ctl);
11833d66 707 return 0;
817d52f8 708 }
817d52f8 709
9e351cc8 710 down_write(&fs_info->commit_root_sem);
1e4f4714 711 refcount_inc(&caching_ctl->count);
11833d66 712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 713 up_write(&fs_info->commit_root_sem);
11833d66 714
11dfe35a 715 btrfs_get_block_group(cache);
11833d66 716
e66f0bb1 717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 718
ef8bbdfe 719 return ret;
e37c9e69
CM
720}
721
0f9dd46c
JB
722/*
723 * return the block group that starts at or after bytenr
724 */
d397712b
CM
725static struct btrfs_block_group_cache *
726btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 727{
e2c89907 728 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
729}
730
0f9dd46c 731/*
9f55684c 732 * return the block group that contains the given bytenr
0f9dd46c 733 */
d397712b
CM
734struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 struct btrfs_fs_info *info,
736 u64 bytenr)
be744175 737{
e2c89907 738 return block_group_cache_tree_search(info, bytenr, 1);
be744175 739}
0b86a832 740
0f9dd46c
JB
741static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 u64 flags)
6324fbf3 743{
0f9dd46c 744 struct list_head *head = &info->space_info;
0f9dd46c 745 struct btrfs_space_info *found;
4184ea7f 746
52ba6929 747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 748
4184ea7f
CM
749 rcu_read_lock();
750 list_for_each_entry_rcu(found, head, list) {
67377734 751 if (found->flags & flags) {
4184ea7f 752 rcu_read_unlock();
0f9dd46c 753 return found;
4184ea7f 754 }
0f9dd46c 755 }
4184ea7f 756 rcu_read_unlock();
0f9dd46c 757 return NULL;
6324fbf3
CM
758}
759
0d9f824d
OS
760static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 u64 owner, u64 root_objectid)
762{
763 struct btrfs_space_info *space_info;
764 u64 flags;
765
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 else
770 flags = BTRFS_BLOCK_GROUP_METADATA;
771 } else {
772 flags = BTRFS_BLOCK_GROUP_DATA;
773 }
774
775 space_info = __find_space_info(fs_info, flags);
55e8196a 776 ASSERT(space_info);
0d9f824d
OS
777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778}
779
4184ea7f
CM
780/*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785{
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793}
794
1a4ed8fd 795/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
797{
798 int ret;
799 struct btrfs_key key;
31840ae1 800 struct btrfs_path *path;
e02119d5 801
31840ae1 802 path = btrfs_alloc_path();
d8926bb3
MF
803 if (!path)
804 return -ENOMEM;
805
e02119d5
CM
806 key.objectid = start;
807 key.offset = len;
3173a18f 808 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 810 btrfs_free_path(path);
7bb86316
CM
811 return ret;
812}
813
a22285a6 814/*
3173a18f 815 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 824 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 825 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
826{
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
3173a18f
JB
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
0b246afa
JM
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
3173a18f
JB
844 metadata = 0;
845 }
846
a22285a6
YZ
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
a22285a6
YZ
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
639eefc8
FDBM
855
856search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
0b246afa 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
865 if (ret < 0)
866 goto out_free;
867
3173a18f 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 875 key.offset == fs_info->nodesize)
74be9510
FDBM
876 ret = 0;
877 }
3173a18f
JB
878 }
879
a22285a6
YZ
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
889#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 struct btrfs_extent_item_v0 *ei0;
891 BUG_ON(item_size != sizeof(*ei0));
892 ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 struct btrfs_extent_item_v0);
894 num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 /* FIXME: this isn't correct for data */
896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897#else
898 BUG();
899#endif
900 }
901 BUG_ON(num_refs == 0);
902 } else {
903 num_refs = 0;
904 extent_flags = 0;
905 ret = 0;
906 }
907
908 if (!trans)
909 goto out;
910
911 delayed_refs = &trans->transaction->delayed_refs;
912 spin_lock(&delayed_refs->lock);
f72ad18e 913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
914 if (head) {
915 if (!mutex_trylock(&head->mutex)) {
d278850e 916 refcount_inc(&head->refs);
a22285a6
YZ
917 spin_unlock(&delayed_refs->lock);
918
b3b4aa74 919 btrfs_release_path(path);
a22285a6 920
8cc33e5c
DS
921 /*
922 * Mutex was contended, block until it's released and try
923 * again
924 */
a22285a6
YZ
925 mutex_lock(&head->mutex);
926 mutex_unlock(&head->mutex);
d278850e 927 btrfs_put_delayed_ref_head(head);
639eefc8 928 goto search_again;
a22285a6 929 }
d7df2c79 930 spin_lock(&head->lock);
a22285a6
YZ
931 if (head->extent_op && head->extent_op->update_flags)
932 extent_flags |= head->extent_op->flags_to_set;
933 else
934 BUG_ON(num_refs == 0);
935
d278850e 936 num_refs += head->ref_mod;
d7df2c79 937 spin_unlock(&head->lock);
a22285a6
YZ
938 mutex_unlock(&head->mutex);
939 }
940 spin_unlock(&delayed_refs->lock);
941out:
942 WARN_ON(num_refs == 0);
943 if (refs)
944 *refs = num_refs;
945 if (flags)
946 *flags = extent_flags;
947out_free:
948 btrfs_free_path(path);
949 return ret;
950}
951
d8d5f3e1
CM
952/*
953 * Back reference rules. Back refs have three main goals:
954 *
955 * 1) differentiate between all holders of references to an extent so that
956 * when a reference is dropped we can make sure it was a valid reference
957 * before freeing the extent.
958 *
959 * 2) Provide enough information to quickly find the holders of an extent
960 * if we notice a given block is corrupted or bad.
961 *
962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963 * maintenance. This is actually the same as #2, but with a slightly
964 * different use case.
965 *
5d4f98a2
YZ
966 * There are two kinds of back refs. The implicit back refs is optimized
967 * for pointers in non-shared tree blocks. For a given pointer in a block,
968 * back refs of this kind provide information about the block's owner tree
969 * and the pointer's key. These information allow us to find the block by
970 * b-tree searching. The full back refs is for pointers in tree blocks not
971 * referenced by their owner trees. The location of tree block is recorded
972 * in the back refs. Actually the full back refs is generic, and can be
973 * used in all cases the implicit back refs is used. The major shortcoming
974 * of the full back refs is its overhead. Every time a tree block gets
975 * COWed, we have to update back refs entry for all pointers in it.
976 *
977 * For a newly allocated tree block, we use implicit back refs for
978 * pointers in it. This means most tree related operations only involve
979 * implicit back refs. For a tree block created in old transaction, the
980 * only way to drop a reference to it is COW it. So we can detect the
981 * event that tree block loses its owner tree's reference and do the
982 * back refs conversion.
983 *
01327610 984 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
985 *
986 * The reference count of the block is one and the tree is the block's
987 * owner tree. Nothing to do in this case.
988 *
989 * The reference count of the block is one and the tree is not the
990 * block's owner tree. In this case, full back refs is used for pointers
991 * in the block. Remove these full back refs, add implicit back refs for
992 * every pointers in the new block.
993 *
994 * The reference count of the block is greater than one and the tree is
995 * the block's owner tree. In this case, implicit back refs is used for
996 * pointers in the block. Add full back refs for every pointers in the
997 * block, increase lower level extents' reference counts. The original
998 * implicit back refs are entailed to the new block.
999 *
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1003 *
1004 * Back Reference Key composing:
1005 *
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1009 * of back refs.
1010 *
d8d5f3e1
CM
1011 * File extents can be referenced by:
1012 *
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1014 * - different files inside a single subvolume
d8d5f3e1
CM
1015 * - different offsets inside a file (bookend extents in file.c)
1016 *
5d4f98a2 1017 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1018 *
1019 * - Objectid of the subvolume root
d8d5f3e1 1020 * - objectid of the file holding the reference
5d4f98a2
YZ
1021 * - original offset in the file
1022 * - how many bookend extents
d8d5f3e1 1023 *
5d4f98a2
YZ
1024 * The key offset for the implicit back refs is hash of the first
1025 * three fields.
d8d5f3e1 1026 *
5d4f98a2 1027 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1028 *
5d4f98a2 1029 * - number of pointers in the tree leaf
d8d5f3e1 1030 *
5d4f98a2
YZ
1031 * The key offset for the implicit back refs is the first byte of
1032 * the tree leaf
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
d8d5f3e1 1036 *
5d4f98a2 1037 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1038 *
5d4f98a2
YZ
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1041 *
5d4f98a2 1042 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1043 *
5d4f98a2 1044 * Btree extents can be referenced by:
d8d5f3e1 1045 *
5d4f98a2 1046 * - Different subvolumes
d8d5f3e1 1047 *
5d4f98a2
YZ
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
d8d5f3e1 1052 *
5d4f98a2
YZ
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
d8d5f3e1 1056 */
31840ae1 1057
5d4f98a2
YZ
1058#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1060 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1061 struct btrfs_path *path,
1062 u64 owner, u32 extra_size)
7bb86316 1063{
87bde3cd 1064 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1065 struct btrfs_extent_item *item;
1066 struct btrfs_extent_item_v0 *ei0;
1067 struct btrfs_extent_ref_v0 *ref0;
1068 struct btrfs_tree_block_info *bi;
1069 struct extent_buffer *leaf;
7bb86316 1070 struct btrfs_key key;
5d4f98a2
YZ
1071 struct btrfs_key found_key;
1072 u32 new_size = sizeof(*item);
1073 u64 refs;
1074 int ret;
1075
1076 leaf = path->nodes[0];
1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_extent_item_v0);
1082 refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084 if (owner == (u64)-1) {
1085 while (1) {
1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 ret = btrfs_next_leaf(root, path);
1088 if (ret < 0)
1089 return ret;
79787eaa 1090 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1091 leaf = path->nodes[0];
1092 }
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0]);
1095 BUG_ON(key.objectid != found_key.objectid);
1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 path->slots[0]++;
1098 continue;
1099 }
1100 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 struct btrfs_extent_ref_v0);
1102 owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 break;
1104 }
1105 }
b3b4aa74 1106 btrfs_release_path(path);
5d4f98a2
YZ
1107
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 new_size += sizeof(*bi);
1110
1111 new_size -= sizeof(*ei0);
1112 ret = btrfs_search_slot(trans, root, &key, path,
1113 new_size + extra_size, 1);
1114 if (ret < 0)
1115 return ret;
79787eaa 1116 BUG_ON(ret); /* Corruption */
5d4f98a2 1117
87bde3cd 1118 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1119
1120 leaf = path->nodes[0];
1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 btrfs_set_extent_refs(leaf, item, refs);
1123 /* FIXME: get real generation */
1124 btrfs_set_extent_generation(leaf, item, 0);
1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 btrfs_set_extent_flags(leaf, item,
1127 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 bi = (struct btrfs_tree_block_info *)(item + 1);
1130 /* FIXME: get first key of the block */
b159fa28 1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1132 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 } else {
1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135 }
1136 btrfs_mark_buffer_dirty(leaf);
1137 return 0;
1138}
1139#endif
1140
167ce953
LB
1141/*
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145 */
1146int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 struct btrfs_extent_inline_ref *iref,
1148 enum btrfs_inline_ref_type is_data)
1149{
1150 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1152
1153 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 type == BTRFS_SHARED_DATA_REF_KEY ||
1156 type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1158 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1159 return type;
64ecdb64
LB
1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 ASSERT(eb->fs_info);
1162 /*
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1166 */
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1170 }
167ce953 1171 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1172 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1173 return type;
64ecdb64
LB
1174 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 ASSERT(eb->fs_info);
1176 /*
1177 * Every shared one has parent tree
1178 * block, which must be aligned to
1179 * nodesize.
1180 */
1181 if (offset &&
1182 IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 return type;
1184 }
167ce953
LB
1185 } else {
1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 return type;
1188 }
1189 }
1190
1191 btrfs_print_leaf((struct extent_buffer *)eb);
1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 eb->start, type);
1194 WARN_ON(1);
1195
1196 return BTRFS_REF_TYPE_INVALID;
1197}
1198
5d4f98a2
YZ
1199static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200{
1201 u32 high_crc = ~(u32)0;
1202 u32 low_crc = ~(u32)0;
1203 __le64 lenum;
1204
1205 lenum = cpu_to_le64(root_objectid);
14a958e6 1206 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1207 lenum = cpu_to_le64(owner);
14a958e6 1208 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1209 lenum = cpu_to_le64(offset);
14a958e6 1210 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1211
1212 return ((u64)high_crc << 31) ^ (u64)low_crc;
1213}
1214
1215static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 struct btrfs_extent_data_ref *ref)
1217{
1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 btrfs_extent_data_ref_objectid(leaf, ref),
1220 btrfs_extent_data_ref_offset(leaf, ref));
1221}
1222
1223static int match_extent_data_ref(struct extent_buffer *leaf,
1224 struct btrfs_extent_data_ref *ref,
1225 u64 root_objectid, u64 owner, u64 offset)
1226{
1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 return 0;
1231 return 1;
1232}
1233
1234static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1235 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1236 struct btrfs_path *path,
1237 u64 bytenr, u64 parent,
1238 u64 root_objectid,
1239 u64 owner, u64 offset)
1240{
87bde3cd 1241 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref;
31840ae1 1244 struct extent_buffer *leaf;
5d4f98a2 1245 u32 nritems;
74493f7a 1246 int ret;
5d4f98a2
YZ
1247 int recow;
1248 int err = -ENOENT;
74493f7a 1249
31840ae1 1250 key.objectid = bytenr;
5d4f98a2
YZ
1251 if (parent) {
1252 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 key.offset = hash_extent_data_ref(root_objectid,
1257 owner, offset);
1258 }
1259again:
1260 recow = 0;
1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 if (ret < 0) {
1263 err = ret;
1264 goto fail;
1265 }
31840ae1 1266
5d4f98a2
YZ
1267 if (parent) {
1268 if (!ret)
1269 return 0;
1270#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1272 btrfs_release_path(path);
5d4f98a2
YZ
1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 if (ret < 0) {
1275 err = ret;
1276 goto fail;
1277 }
1278 if (!ret)
1279 return 0;
1280#endif
1281 goto fail;
31840ae1
ZY
1282 }
1283
1284 leaf = path->nodes[0];
5d4f98a2
YZ
1285 nritems = btrfs_header_nritems(leaf);
1286 while (1) {
1287 if (path->slots[0] >= nritems) {
1288 ret = btrfs_next_leaf(root, path);
1289 if (ret < 0)
1290 err = ret;
1291 if (ret)
1292 goto fail;
1293
1294 leaf = path->nodes[0];
1295 nritems = btrfs_header_nritems(leaf);
1296 recow = 1;
1297 }
1298
1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 if (key.objectid != bytenr ||
1301 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 goto fail;
1303
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset)) {
1309 if (recow) {
b3b4aa74 1310 btrfs_release_path(path);
5d4f98a2
YZ
1311 goto again;
1312 }
1313 err = 0;
1314 break;
1315 }
1316 path->slots[0]++;
31840ae1 1317 }
5d4f98a2
YZ
1318fail:
1319 return err;
31840ae1
ZY
1320}
1321
5d4f98a2 1322static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1323 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid, u64 owner,
1327 u64 offset, int refs_to_add)
31840ae1 1328{
87bde3cd 1329 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
5d4f98a2 1332 u32 size;
31840ae1
ZY
1333 u32 num_refs;
1334 int ret;
74493f7a 1335
74493f7a 1336 key.objectid = bytenr;
5d4f98a2
YZ
1337 if (parent) {
1338 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 key.offset = parent;
1340 size = sizeof(struct btrfs_shared_data_ref);
1341 } else {
1342 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 key.offset = hash_extent_data_ref(root_objectid,
1344 owner, offset);
1345 size = sizeof(struct btrfs_extent_data_ref);
1346 }
74493f7a 1347
5d4f98a2
YZ
1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 if (ret && ret != -EEXIST)
1350 goto fail;
1351
1352 leaf = path->nodes[0];
1353 if (parent) {
1354 struct btrfs_shared_data_ref *ref;
31840ae1 1355 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1356 struct btrfs_shared_data_ref);
1357 if (ret == 0) {
1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 } else {
1360 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 num_refs += refs_to_add;
1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1363 }
5d4f98a2
YZ
1364 } else {
1365 struct btrfs_extent_data_ref *ref;
1366 while (ret == -EEXIST) {
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (match_extent_data_ref(leaf, ref, root_objectid,
1370 owner, offset))
1371 break;
b3b4aa74 1372 btrfs_release_path(path);
5d4f98a2
YZ
1373 key.offset++;
1374 ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 size);
1376 if (ret && ret != -EEXIST)
1377 goto fail;
31840ae1 1378
5d4f98a2
YZ
1379 leaf = path->nodes[0];
1380 }
1381 ref = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_data_ref);
1383 if (ret == 0) {
1384 btrfs_set_extent_data_ref_root(leaf, ref,
1385 root_objectid);
1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 } else {
1390 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 num_refs += refs_to_add;
1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1393 }
31840ae1 1394 }
5d4f98a2
YZ
1395 btrfs_mark_buffer_dirty(leaf);
1396 ret = 0;
1397fail:
b3b4aa74 1398 btrfs_release_path(path);
7bb86316 1399 return ret;
74493f7a
CM
1400}
1401
5d4f98a2 1402static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1403 struct btrfs_fs_info *fs_info,
5d4f98a2 1404 struct btrfs_path *path,
fcebe456 1405 int refs_to_drop, int *last_ref)
31840ae1 1406{
5d4f98a2
YZ
1407 struct btrfs_key key;
1408 struct btrfs_extent_data_ref *ref1 = NULL;
1409 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1410 struct extent_buffer *leaf;
5d4f98a2 1411 u32 num_refs = 0;
31840ae1
ZY
1412 int ret = 0;
1413
1414 leaf = path->nodes[0];
5d4f98a2
YZ
1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 struct btrfs_extent_data_ref);
1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_shared_data_ref);
1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 struct btrfs_extent_ref_v0 *ref0;
1428 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_ref_v0);
1430 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431#endif
1432 } else {
1433 BUG();
1434 }
1435
56bec294
CM
1436 BUG_ON(num_refs < refs_to_drop);
1437 num_refs -= refs_to_drop;
5d4f98a2 1438
31840ae1 1439 if (num_refs == 0) {
87bde3cd 1440 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1441 *last_ref = 1;
31840ae1 1442 } else {
5d4f98a2
YZ
1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 else {
1449 struct btrfs_extent_ref_v0 *ref0;
1450 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 struct btrfs_extent_ref_v0);
1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453 }
1454#endif
31840ae1
ZY
1455 btrfs_mark_buffer_dirty(leaf);
1456 }
31840ae1
ZY
1457 return ret;
1458}
1459
9ed0dea0 1460static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1461 struct btrfs_extent_inline_ref *iref)
15916de8 1462{
5d4f98a2
YZ
1463 struct btrfs_key key;
1464 struct extent_buffer *leaf;
1465 struct btrfs_extent_data_ref *ref1;
1466 struct btrfs_shared_data_ref *ref2;
1467 u32 num_refs = 0;
3de28d57 1468 int type;
5d4f98a2
YZ
1469
1470 leaf = path->nodes[0];
1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 if (iref) {
3de28d57
LB
1473 /*
1474 * If type is invalid, we should have bailed out earlier than
1475 * this call.
1476 */
1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 } else {
1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485 }
1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_extent_data_ref);
1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 struct btrfs_shared_data_ref);
1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 struct btrfs_extent_ref_v0 *ref0;
1497 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 struct btrfs_extent_ref_v0);
1499 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1500#endif
5d4f98a2
YZ
1501 } else {
1502 WARN_ON(1);
1503 }
1504 return num_refs;
1505}
15916de8 1506
5d4f98a2 1507static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1508 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1509 struct btrfs_path *path,
1510 u64 bytenr, u64 parent,
1511 u64 root_objectid)
1f3c79a2 1512{
87bde3cd 1513 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1514 struct btrfs_key key;
1f3c79a2 1515 int ret;
1f3c79a2 1516
5d4f98a2
YZ
1517 key.objectid = bytenr;
1518 if (parent) {
1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 key.offset = parent;
1521 } else {
1522 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 key.offset = root_objectid;
1f3c79a2
LH
1524 }
1525
5d4f98a2
YZ
1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 if (ret > 0)
1528 ret = -ENOENT;
1529#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 if (ret == -ENOENT && parent) {
b3b4aa74 1531 btrfs_release_path(path);
5d4f98a2
YZ
1532 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret > 0)
1535 ret = -ENOENT;
1536 }
1f3c79a2 1537#endif
5d4f98a2 1538 return ret;
1f3c79a2
LH
1539}
1540
5d4f98a2 1541static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1542 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1543 struct btrfs_path *path,
1544 u64 bytenr, u64 parent,
1545 u64 root_objectid)
31840ae1 1546{
5d4f98a2 1547 struct btrfs_key key;
31840ae1 1548 int ret;
31840ae1 1549
5d4f98a2
YZ
1550 key.objectid = bytenr;
1551 if (parent) {
1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 key.offset = parent;
1554 } else {
1555 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 key.offset = root_objectid;
1557 }
1558
87bde3cd
JM
1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 path, &key, 0);
b3b4aa74 1561 btrfs_release_path(path);
31840ae1
ZY
1562 return ret;
1563}
1564
5d4f98a2 1565static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1566{
5d4f98a2
YZ
1567 int type;
1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 if (parent > 0)
1570 type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 else
1572 type = BTRFS_TREE_BLOCK_REF_KEY;
1573 } else {
1574 if (parent > 0)
1575 type = BTRFS_SHARED_DATA_REF_KEY;
1576 else
1577 type = BTRFS_EXTENT_DATA_REF_KEY;
1578 }
1579 return type;
31840ae1 1580}
56bec294 1581
2c47e605
YZ
1582static int find_next_key(struct btrfs_path *path, int level,
1583 struct btrfs_key *key)
56bec294 1584
02217ed2 1585{
2c47e605 1586 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1587 if (!path->nodes[level])
1588 break;
5d4f98a2
YZ
1589 if (path->slots[level] + 1 >=
1590 btrfs_header_nritems(path->nodes[level]))
1591 continue;
1592 if (level == 0)
1593 btrfs_item_key_to_cpu(path->nodes[level], key,
1594 path->slots[level] + 1);
1595 else
1596 btrfs_node_key_to_cpu(path->nodes[level], key,
1597 path->slots[level] + 1);
1598 return 0;
1599 }
1600 return 1;
1601}
037e6390 1602
5d4f98a2
YZ
1603/*
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1606 *
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1609 *
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1612 *
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 * items in the tree are ordered.
1615 */
1616static noinline_for_stack
1617int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1618 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1619 struct btrfs_path *path,
1620 struct btrfs_extent_inline_ref **ref_ret,
1621 u64 bytenr, u64 num_bytes,
1622 u64 parent, u64 root_objectid,
1623 u64 owner, u64 offset, int insert)
1624{
87bde3cd 1625 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1626 struct btrfs_key key;
1627 struct extent_buffer *leaf;
1628 struct btrfs_extent_item *ei;
1629 struct btrfs_extent_inline_ref *iref;
1630 u64 flags;
1631 u64 item_size;
1632 unsigned long ptr;
1633 unsigned long end;
1634 int extra_size;
1635 int type;
1636 int want;
1637 int ret;
1638 int err = 0;
0b246afa 1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1640 int needed;
26b8003f 1641
db94535d 1642 key.objectid = bytenr;
31840ae1 1643 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1644 key.offset = num_bytes;
31840ae1 1645
5d4f98a2
YZ
1646 want = extent_ref_type(parent, owner);
1647 if (insert) {
1648 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1649 path->keep_locks = 1;
5d4f98a2
YZ
1650 } else
1651 extra_size = -1;
3173a18f
JB
1652
1653 /*
1654 * Owner is our parent level, so we can just add one to get the level
1655 * for the block we are interested in.
1656 */
1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 key.type = BTRFS_METADATA_ITEM_KEY;
1659 key.offset = owner;
1660 }
1661
1662again:
5d4f98a2 1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1664 if (ret < 0) {
5d4f98a2
YZ
1665 err = ret;
1666 goto out;
1667 }
3173a18f
JB
1668
1669 /*
1670 * We may be a newly converted file system which still has the old fat
1671 * extent entries for metadata, so try and see if we have one of those.
1672 */
1673 if (ret > 0 && skinny_metadata) {
1674 skinny_metadata = false;
1675 if (path->slots[0]) {
1676 path->slots[0]--;
1677 btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 path->slots[0]);
1679 if (key.objectid == bytenr &&
1680 key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 key.offset == num_bytes)
1682 ret = 0;
1683 }
1684 if (ret) {
9ce49a0b 1685 key.objectid = bytenr;
3173a18f
JB
1686 key.type = BTRFS_EXTENT_ITEM_KEY;
1687 key.offset = num_bytes;
1688 btrfs_release_path(path);
1689 goto again;
1690 }
1691 }
1692
79787eaa
JM
1693 if (ret && !insert) {
1694 err = -ENOENT;
1695 goto out;
fae7f21c 1696 } else if (WARN_ON(ret)) {
492104c8 1697 err = -EIO;
492104c8 1698 goto out;
79787eaa 1699 }
5d4f98a2
YZ
1700
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 if (item_size < sizeof(*ei)) {
1705 if (!insert) {
1706 err = -ENOENT;
1707 goto out;
1708 }
87bde3cd 1709 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1710 extra_size);
1711 if (ret < 0) {
1712 err = ret;
1713 goto out;
1714 }
1715 leaf = path->nodes[0];
1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717 }
1718#endif
1719 BUG_ON(item_size < sizeof(*ei));
1720
5d4f98a2
YZ
1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 flags = btrfs_extent_flags(leaf, ei);
1723
1724 ptr = (unsigned long)(ei + 1);
1725 end = (unsigned long)ei + item_size;
1726
3173a18f 1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1728 ptr += sizeof(struct btrfs_tree_block_info);
1729 BUG_ON(ptr > end);
5d4f98a2
YZ
1730 }
1731
3de28d57
LB
1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 needed = BTRFS_REF_TYPE_DATA;
1734 else
1735 needed = BTRFS_REF_TYPE_BLOCK;
1736
5d4f98a2
YZ
1737 err = -ENOENT;
1738 while (1) {
1739 if (ptr >= end) {
1740 WARN_ON(ptr > end);
1741 break;
1742 }
1743 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 if (type == BTRFS_REF_TYPE_INVALID) {
1746 err = -EINVAL;
1747 goto out;
1748 }
1749
5d4f98a2
YZ
1750 if (want < type)
1751 break;
1752 if (want > type) {
1753 ptr += btrfs_extent_inline_ref_size(type);
1754 continue;
1755 }
1756
1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 struct btrfs_extent_data_ref *dref;
1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 if (match_extent_data_ref(leaf, dref, root_objectid,
1761 owner, offset)) {
1762 err = 0;
1763 break;
1764 }
1765 if (hash_extent_data_ref_item(leaf, dref) <
1766 hash_extent_data_ref(root_objectid, owner, offset))
1767 break;
1768 } else {
1769 u64 ref_offset;
1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 if (parent > 0) {
1772 if (parent == ref_offset) {
1773 err = 0;
1774 break;
1775 }
1776 if (ref_offset < parent)
1777 break;
1778 } else {
1779 if (root_objectid == ref_offset) {
1780 err = 0;
1781 break;
1782 }
1783 if (ref_offset < root_objectid)
1784 break;
1785 }
1786 }
1787 ptr += btrfs_extent_inline_ref_size(type);
1788 }
1789 if (err == -ENOENT && insert) {
1790 if (item_size + extra_size >=
1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 err = -EAGAIN;
1793 goto out;
1794 }
1795 /*
1796 * To add new inline back ref, we have to make sure
1797 * there is no corresponding back ref item.
1798 * For simplicity, we just do not add new inline back
1799 * ref if there is any kind of item for this block
1800 */
2c47e605
YZ
1801 if (find_next_key(path, 0, &key) == 0 &&
1802 key.objectid == bytenr &&
85d4198e 1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1804 err = -EAGAIN;
1805 goto out;
1806 }
1807 }
1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809out:
85d4198e 1810 if (insert) {
5d4f98a2
YZ
1811 path->keep_locks = 0;
1812 btrfs_unlock_up_safe(path, 1);
1813 }
1814 return err;
1815}
1816
1817/*
1818 * helper to add new inline back ref
1819 */
1820static noinline_for_stack
87bde3cd 1821void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1822 struct btrfs_path *path,
1823 struct btrfs_extent_inline_ref *iref,
1824 u64 parent, u64 root_objectid,
1825 u64 owner, u64 offset, int refs_to_add,
1826 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1827{
1828 struct extent_buffer *leaf;
1829 struct btrfs_extent_item *ei;
1830 unsigned long ptr;
1831 unsigned long end;
1832 unsigned long item_offset;
1833 u64 refs;
1834 int size;
1835 int type;
5d4f98a2
YZ
1836
1837 leaf = path->nodes[0];
1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841 type = extent_ref_type(parent, owner);
1842 size = btrfs_extent_inline_ref_size(type);
1843
87bde3cd 1844 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1845
1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 refs = btrfs_extent_refs(leaf, ei);
1848 refs += refs_to_add;
1849 btrfs_set_extent_refs(leaf, ei, refs);
1850 if (extent_op)
1851 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853 ptr = (unsigned long)ei + item_offset;
1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 if (ptr < end - size)
1856 memmove_extent_buffer(leaf, ptr + size, ptr,
1857 end - size - ptr);
1858
1859 iref = (struct btrfs_extent_inline_ref *)ptr;
1860 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 struct btrfs_extent_data_ref *dref;
1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 struct btrfs_shared_data_ref *sref;
1870 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 } else {
1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877 }
1878 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1879}
1880
1881static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1882 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1883 struct btrfs_path *path,
1884 struct btrfs_extent_inline_ref **ref_ret,
1885 u64 bytenr, u64 num_bytes, u64 parent,
1886 u64 root_objectid, u64 owner, u64 offset)
1887{
1888 int ret;
1889
87bde3cd 1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1891 bytenr, num_bytes, parent,
1892 root_objectid, owner, offset, 0);
1893 if (ret != -ENOENT)
54aa1f4d 1894 return ret;
5d4f98a2 1895
b3b4aa74 1896 btrfs_release_path(path);
5d4f98a2
YZ
1897 *ref_ret = NULL;
1898
1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 parent, root_objectid);
5d4f98a2 1902 } else {
87bde3cd
JM
1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 parent, root_objectid, owner,
1905 offset);
b9473439 1906 }
5d4f98a2
YZ
1907 return ret;
1908}
31840ae1 1909
5d4f98a2
YZ
1910/*
1911 * helper to update/remove inline back ref
1912 */
1913static noinline_for_stack
87bde3cd 1914void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1915 struct btrfs_path *path,
1916 struct btrfs_extent_inline_ref *iref,
1917 int refs_to_mod,
fcebe456
JB
1918 struct btrfs_delayed_extent_op *extent_op,
1919 int *last_ref)
5d4f98a2
YZ
1920{
1921 struct extent_buffer *leaf;
1922 struct btrfs_extent_item *ei;
1923 struct btrfs_extent_data_ref *dref = NULL;
1924 struct btrfs_shared_data_ref *sref = NULL;
1925 unsigned long ptr;
1926 unsigned long end;
1927 u32 item_size;
1928 int size;
1929 int type;
5d4f98a2
YZ
1930 u64 refs;
1931
1932 leaf = path->nodes[0];
1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 refs = btrfs_extent_refs(leaf, ei);
1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 refs += refs_to_mod;
1937 btrfs_set_extent_refs(leaf, ei, refs);
1938 if (extent_op)
1939 __run_delayed_extent_op(extent_op, leaf, ei);
1940
3de28d57
LB
1941 /*
1942 * If type is invalid, we should have bailed out after
1943 * lookup_inline_extent_backref().
1944 */
1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1947
1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 refs = btrfs_extent_data_ref_count(leaf, dref);
1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 refs = btrfs_shared_data_ref_count(leaf, sref);
1954 } else {
1955 refs = 1;
1956 BUG_ON(refs_to_mod != -1);
56bec294 1957 }
31840ae1 1958
5d4f98a2
YZ
1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 refs += refs_to_mod;
1961
1962 if (refs > 0) {
1963 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 else
1966 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 } else {
fcebe456 1968 *last_ref = 1;
5d4f98a2
YZ
1969 size = btrfs_extent_inline_ref_size(type);
1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 ptr = (unsigned long)iref;
1972 end = (unsigned long)ei + item_size;
1973 if (ptr + size < end)
1974 memmove_extent_buffer(leaf, ptr, ptr + size,
1975 end - ptr - size);
1976 item_size -= size;
87bde3cd 1977 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1978 }
1979 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1980}
1981
1982static noinline_for_stack
1983int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1984 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1985 struct btrfs_path *path,
1986 u64 bytenr, u64 num_bytes, u64 parent,
1987 u64 root_objectid, u64 owner,
1988 u64 offset, int refs_to_add,
1989 struct btrfs_delayed_extent_op *extent_op)
1990{
1991 struct btrfs_extent_inline_ref *iref;
1992 int ret;
1993
87bde3cd 1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1995 bytenr, num_bytes, parent,
1996 root_objectid, owner, offset, 1);
1997 if (ret == 0) {
1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1999 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2000 refs_to_add, extent_op, NULL);
5d4f98a2 2001 } else if (ret == -ENOENT) {
87bde3cd 2002 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
2003 root_objectid, owner, offset,
2004 refs_to_add, extent_op);
2005 ret = 0;
771ed689 2006 }
5d4f98a2
YZ
2007 return ret;
2008}
31840ae1 2009
5d4f98a2 2010static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2011 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2012 struct btrfs_path *path,
2013 u64 bytenr, u64 parent, u64 root_objectid,
2014 u64 owner, u64 offset, int refs_to_add)
2015{
2016 int ret;
2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 BUG_ON(refs_to_add != 1);
87bde3cd 2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2020 parent, root_objectid);
2021 } else {
87bde3cd 2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2023 parent, root_objectid,
2024 owner, offset, refs_to_add);
2025 }
2026 return ret;
2027}
56bec294 2028
5d4f98a2 2029static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2030 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2031 struct btrfs_path *path,
2032 struct btrfs_extent_inline_ref *iref,
fcebe456 2033 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2034{
143bede5 2035 int ret = 0;
b9473439 2036
5d4f98a2
YZ
2037 BUG_ON(!is_data && refs_to_drop != 1);
2038 if (iref) {
87bde3cd 2039 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2040 -refs_to_drop, NULL, last_ref);
5d4f98a2 2041 } else if (is_data) {
87bde3cd 2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 2043 last_ref);
5d4f98a2 2044 } else {
fcebe456 2045 *last_ref = 1;
87bde3cd 2046 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2047 }
2048 return ret;
2049}
2050
86557861 2051#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2052static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 u64 *discarded_bytes)
5d4f98a2 2054{
86557861
JM
2055 int j, ret = 0;
2056 u64 bytes_left, end;
4d89d377 2057 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2058
4d89d377
JM
2059 if (WARN_ON(start != aligned_start)) {
2060 len -= aligned_start - start;
2061 len = round_down(len, 1 << 9);
2062 start = aligned_start;
2063 }
d04c6b88 2064
4d89d377 2065 *discarded_bytes = 0;
86557861
JM
2066
2067 if (!len)
2068 return 0;
2069
2070 end = start + len;
2071 bytes_left = len;
2072
2073 /* Skip any superblocks on this device. */
2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 u64 sb_start = btrfs_sb_offset(j);
2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 u64 size = sb_start - start;
2078
2079 if (!in_range(sb_start, start, bytes_left) &&
2080 !in_range(sb_end, start, bytes_left) &&
2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 continue;
2083
2084 /*
2085 * Superblock spans beginning of range. Adjust start and
2086 * try again.
2087 */
2088 if (sb_start <= start) {
2089 start += sb_end - start;
2090 if (start > end) {
2091 bytes_left = 0;
2092 break;
2093 }
2094 bytes_left = end - start;
2095 continue;
2096 }
2097
2098 if (size) {
2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 GFP_NOFS, 0);
2101 if (!ret)
2102 *discarded_bytes += size;
2103 else if (ret != -EOPNOTSUPP)
2104 return ret;
2105 }
2106
2107 start = sb_end;
2108 if (start > end) {
2109 bytes_left = 0;
2110 break;
2111 }
2112 bytes_left = end - start;
2113 }
2114
2115 if (bytes_left) {
2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2117 GFP_NOFS, 0);
2118 if (!ret)
86557861 2119 *discarded_bytes += bytes_left;
4d89d377 2120 }
d04c6b88 2121 return ret;
5d4f98a2 2122}
5d4f98a2 2123
2ff7e61e 2124int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2125 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2126{
5d4f98a2 2127 int ret;
5378e607 2128 u64 discarded_bytes = 0;
a1d3c478 2129 struct btrfs_bio *bbio = NULL;
5d4f98a2 2130
e244a0ae 2131
2999241d
FM
2132 /*
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are discarding.
2135 */
0b246afa 2136 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2137 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 &bbio, 0);
79787eaa 2140 /* Error condition is -ENOMEM */
5d4f98a2 2141 if (!ret) {
a1d3c478 2142 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2143 int i;
2144
5d4f98a2 2145
a1d3c478 2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2147 u64 bytes;
38b5f68e
AJ
2148 struct request_queue *req_q;
2149
2150 req_q = bdev_get_queue(stripe->dev->bdev);
2151 if (!blk_queue_discard(req_q))
d5e2003c
JB
2152 continue;
2153
5378e607
LD
2154 ret = btrfs_issue_discard(stripe->dev->bdev,
2155 stripe->physical,
d04c6b88
JM
2156 stripe->length,
2157 &bytes);
5378e607 2158 if (!ret)
d04c6b88 2159 discarded_bytes += bytes;
5378e607 2160 else if (ret != -EOPNOTSUPP)
79787eaa 2161 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2162
2163 /*
2164 * Just in case we get back EOPNOTSUPP for some reason,
2165 * just ignore the return value so we don't screw up
2166 * people calling discard_extent.
2167 */
2168 ret = 0;
5d4f98a2 2169 }
6e9606d2 2170 btrfs_put_bbio(bbio);
5d4f98a2 2171 }
0b246afa 2172 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2173
2174 if (actual_bytes)
2175 *actual_bytes = discarded_bytes;
2176
5d4f98a2 2177
53b381b3
DW
2178 if (ret == -EOPNOTSUPP)
2179 ret = 0;
5d4f98a2 2180 return ret;
5d4f98a2
YZ
2181}
2182
79787eaa 2183/* Can return -ENOMEM */
5d4f98a2 2184int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2185 struct btrfs_root *root,
5d4f98a2 2186 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2187 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2188{
84f7d8e6 2189 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2190 int old_ref_mod, new_ref_mod;
5d4f98a2 2191 int ret;
66d7e7f0 2192
5d4f98a2
YZ
2193 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2194 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2195
fd708b81
JB
2196 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2197 owner, offset, BTRFS_ADD_DELAYED_REF);
2198
5d4f98a2 2199 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2200 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2201 num_bytes, parent,
2202 root_objectid, (int)owner,
2203 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2204 &old_ref_mod, &new_ref_mod);
5d4f98a2 2205 } else {
66d7e7f0 2206 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2207 num_bytes, parent,
2208 root_objectid, owner, offset,
d7eae340
OS
2209 0, BTRFS_ADD_DELAYED_REF,
2210 &old_ref_mod, &new_ref_mod);
5d4f98a2 2211 }
d7eae340
OS
2212
2213 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2214 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2215
5d4f98a2
YZ
2216 return ret;
2217}
2218
2219static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2220 struct btrfs_fs_info *fs_info,
c682f9b3 2221 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2222 u64 parent, u64 root_objectid,
2223 u64 owner, u64 offset, int refs_to_add,
2224 struct btrfs_delayed_extent_op *extent_op)
2225{
2226 struct btrfs_path *path;
2227 struct extent_buffer *leaf;
2228 struct btrfs_extent_item *item;
fcebe456 2229 struct btrfs_key key;
c682f9b3
QW
2230 u64 bytenr = node->bytenr;
2231 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2232 u64 refs;
2233 int ret;
5d4f98a2
YZ
2234
2235 path = btrfs_alloc_path();
2236 if (!path)
2237 return -ENOMEM;
2238
e4058b54 2239 path->reada = READA_FORWARD;
5d4f98a2
YZ
2240 path->leave_spinning = 1;
2241 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2242 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2243 num_bytes, parent, root_objectid,
2244 owner, offset,
5d4f98a2 2245 refs_to_add, extent_op);
0ed4792a 2246 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2247 goto out;
fcebe456
JB
2248
2249 /*
2250 * Ok we had -EAGAIN which means we didn't have space to insert and
2251 * inline extent ref, so just update the reference count and add a
2252 * normal backref.
2253 */
5d4f98a2 2254 leaf = path->nodes[0];
fcebe456 2255 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2256 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2257 refs = btrfs_extent_refs(leaf, item);
2258 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2259 if (extent_op)
2260 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2261
5d4f98a2 2262 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2263 btrfs_release_path(path);
56bec294 2264
e4058b54 2265 path->reada = READA_FORWARD;
b9473439 2266 path->leave_spinning = 1;
56bec294 2267 /* now insert the actual backref */
87bde3cd
JM
2268 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2269 root_objectid, owner, offset, refs_to_add);
79787eaa 2270 if (ret)
66642832 2271 btrfs_abort_transaction(trans, ret);
5d4f98a2 2272out:
56bec294 2273 btrfs_free_path(path);
30d133fc 2274 return ret;
56bec294
CM
2275}
2276
5d4f98a2 2277static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2278 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2279 struct btrfs_delayed_ref_node *node,
2280 struct btrfs_delayed_extent_op *extent_op,
2281 int insert_reserved)
56bec294 2282{
5d4f98a2
YZ
2283 int ret = 0;
2284 struct btrfs_delayed_data_ref *ref;
2285 struct btrfs_key ins;
2286 u64 parent = 0;
2287 u64 ref_root = 0;
2288 u64 flags = 0;
2289
2290 ins.objectid = node->bytenr;
2291 ins.offset = node->num_bytes;
2292 ins.type = BTRFS_EXTENT_ITEM_KEY;
2293
2294 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2295 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2296
5d4f98a2
YZ
2297 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2298 parent = ref->parent;
fcebe456 2299 ref_root = ref->root;
5d4f98a2
YZ
2300
2301 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2302 if (extent_op)
5d4f98a2 2303 flags |= extent_op->flags_to_set;
2ff7e61e 2304 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2305 parent, ref_root, flags,
2306 ref->objectid, ref->offset,
2307 &ins, node->ref_mod);
5d4f98a2 2308 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2309 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2310 ref_root, ref->objectid,
2311 ref->offset, node->ref_mod,
c682f9b3 2312 extent_op);
5d4f98a2 2313 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2314 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2315 ref_root, ref->objectid,
2316 ref->offset, node->ref_mod,
c682f9b3 2317 extent_op);
5d4f98a2
YZ
2318 } else {
2319 BUG();
2320 }
2321 return ret;
2322}
2323
2324static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2325 struct extent_buffer *leaf,
2326 struct btrfs_extent_item *ei)
2327{
2328 u64 flags = btrfs_extent_flags(leaf, ei);
2329 if (extent_op->update_flags) {
2330 flags |= extent_op->flags_to_set;
2331 btrfs_set_extent_flags(leaf, ei, flags);
2332 }
2333
2334 if (extent_op->update_key) {
2335 struct btrfs_tree_block_info *bi;
2336 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2337 bi = (struct btrfs_tree_block_info *)(ei + 1);
2338 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2339 }
2340}
2341
2342static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2343 struct btrfs_fs_info *fs_info,
d278850e 2344 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2345 struct btrfs_delayed_extent_op *extent_op)
2346{
2347 struct btrfs_key key;
2348 struct btrfs_path *path;
2349 struct btrfs_extent_item *ei;
2350 struct extent_buffer *leaf;
2351 u32 item_size;
56bec294 2352 int ret;
5d4f98a2 2353 int err = 0;
b1c79e09 2354 int metadata = !extent_op->is_data;
5d4f98a2 2355
79787eaa
JM
2356 if (trans->aborted)
2357 return 0;
2358
0b246afa 2359 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2360 metadata = 0;
2361
5d4f98a2
YZ
2362 path = btrfs_alloc_path();
2363 if (!path)
2364 return -ENOMEM;
2365
d278850e 2366 key.objectid = head->bytenr;
5d4f98a2 2367
3173a18f 2368 if (metadata) {
3173a18f 2369 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2370 key.offset = extent_op->level;
3173a18f
JB
2371 } else {
2372 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2373 key.offset = head->num_bytes;
3173a18f
JB
2374 }
2375
2376again:
e4058b54 2377 path->reada = READA_FORWARD;
5d4f98a2 2378 path->leave_spinning = 1;
0b246afa 2379 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2380 if (ret < 0) {
2381 err = ret;
2382 goto out;
2383 }
2384 if (ret > 0) {
3173a18f 2385 if (metadata) {
55994887
FDBM
2386 if (path->slots[0] > 0) {
2387 path->slots[0]--;
2388 btrfs_item_key_to_cpu(path->nodes[0], &key,
2389 path->slots[0]);
d278850e 2390 if (key.objectid == head->bytenr &&
55994887 2391 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2392 key.offset == head->num_bytes)
55994887
FDBM
2393 ret = 0;
2394 }
2395 if (ret > 0) {
2396 btrfs_release_path(path);
2397 metadata = 0;
3173a18f 2398
d278850e
JB
2399 key.objectid = head->bytenr;
2400 key.offset = head->num_bytes;
55994887
FDBM
2401 key.type = BTRFS_EXTENT_ITEM_KEY;
2402 goto again;
2403 }
2404 } else {
2405 err = -EIO;
2406 goto out;
3173a18f 2407 }
5d4f98a2
YZ
2408 }
2409
2410 leaf = path->nodes[0];
2411 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2412#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2413 if (item_size < sizeof(*ei)) {
87bde3cd 2414 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2415 if (ret < 0) {
2416 err = ret;
2417 goto out;
2418 }
2419 leaf = path->nodes[0];
2420 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2421 }
2422#endif
2423 BUG_ON(item_size < sizeof(*ei));
2424 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2425 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2426
5d4f98a2
YZ
2427 btrfs_mark_buffer_dirty(leaf);
2428out:
2429 btrfs_free_path(path);
2430 return err;
56bec294
CM
2431}
2432
5d4f98a2 2433static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2434 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2435 struct btrfs_delayed_ref_node *node,
2436 struct btrfs_delayed_extent_op *extent_op,
2437 int insert_reserved)
56bec294
CM
2438{
2439 int ret = 0;
5d4f98a2
YZ
2440 struct btrfs_delayed_tree_ref *ref;
2441 struct btrfs_key ins;
2442 u64 parent = 0;
2443 u64 ref_root = 0;
0b246afa 2444 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2445
5d4f98a2 2446 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2447 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2448
5d4f98a2
YZ
2449 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2450 parent = ref->parent;
fcebe456 2451 ref_root = ref->root;
5d4f98a2 2452
3173a18f
JB
2453 ins.objectid = node->bytenr;
2454 if (skinny_metadata) {
2455 ins.offset = ref->level;
2456 ins.type = BTRFS_METADATA_ITEM_KEY;
2457 } else {
2458 ins.offset = node->num_bytes;
2459 ins.type = BTRFS_EXTENT_ITEM_KEY;
2460 }
2461
02794222 2462 if (node->ref_mod != 1) {
2ff7e61e 2463 btrfs_err(fs_info,
02794222
LB
2464 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2465 node->bytenr, node->ref_mod, node->action, ref_root,
2466 parent);
2467 return -EIO;
2468 }
5d4f98a2 2469 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2470 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2471 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2472 parent, ref_root,
2473 extent_op->flags_to_set,
2474 &extent_op->key,
b06c4bf5 2475 ref->level, &ins);
5d4f98a2 2476 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2477 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2478 parent, ref_root,
2479 ref->level, 0, 1,
fcebe456 2480 extent_op);
5d4f98a2 2481 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2482 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2483 parent, ref_root,
2484 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2485 } else {
2486 BUG();
2487 }
56bec294
CM
2488 return ret;
2489}
2490
2491/* helper function to actually process a single delayed ref entry */
5d4f98a2 2492static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2493 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2494 struct btrfs_delayed_ref_node *node,
2495 struct btrfs_delayed_extent_op *extent_op,
2496 int insert_reserved)
56bec294 2497{
79787eaa
JM
2498 int ret = 0;
2499
857cc2fc
JB
2500 if (trans->aborted) {
2501 if (insert_reserved)
2ff7e61e 2502 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2503 node->num_bytes, 1);
79787eaa 2504 return 0;
857cc2fc 2505 }
79787eaa 2506
5d4f98a2
YZ
2507 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2508 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2509 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2510 insert_reserved);
2511 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2512 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2513 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2514 insert_reserved);
2515 else
2516 BUG();
2517 return ret;
56bec294
CM
2518}
2519
c6fc2454 2520static inline struct btrfs_delayed_ref_node *
56bec294
CM
2521select_delayed_ref(struct btrfs_delayed_ref_head *head)
2522{
cffc3374
FM
2523 struct btrfs_delayed_ref_node *ref;
2524
0e0adbcf 2525 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2526 return NULL;
d7df2c79 2527
cffc3374
FM
2528 /*
2529 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2530 * This is to prevent a ref count from going down to zero, which deletes
2531 * the extent item from the extent tree, when there still are references
2532 * to add, which would fail because they would not find the extent item.
2533 */
1d57ee94
WX
2534 if (!list_empty(&head->ref_add_list))
2535 return list_first_entry(&head->ref_add_list,
2536 struct btrfs_delayed_ref_node, add_list);
2537
0e0adbcf
JB
2538 ref = rb_entry(rb_first(&head->ref_tree),
2539 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2540 ASSERT(list_empty(&ref->add_list));
2541 return ref;
56bec294
CM
2542}
2543
2eadaa22
JB
2544static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2545 struct btrfs_delayed_ref_head *head)
2546{
2547 spin_lock(&delayed_refs->lock);
2548 head->processing = 0;
2549 delayed_refs->num_heads_ready++;
2550 spin_unlock(&delayed_refs->lock);
2551 btrfs_delayed_ref_unlock(head);
2552}
2553
b00e6250
JB
2554static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2555 struct btrfs_fs_info *fs_info,
2556 struct btrfs_delayed_ref_head *head)
2557{
2558 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2559 int ret;
2560
2561 if (!extent_op)
2562 return 0;
2563 head->extent_op = NULL;
2564 if (head->must_insert_reserved) {
2565 btrfs_free_delayed_extent_op(extent_op);
2566 return 0;
2567 }
2568 spin_unlock(&head->lock);
d278850e 2569 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2570 btrfs_free_delayed_extent_op(extent_op);
2571 return ret ? ret : 1;
2572}
2573
194ab0bc
JB
2574static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2575 struct btrfs_fs_info *fs_info,
2576 struct btrfs_delayed_ref_head *head)
2577{
2578 struct btrfs_delayed_ref_root *delayed_refs;
2579 int ret;
2580
2581 delayed_refs = &trans->transaction->delayed_refs;
2582
2583 ret = cleanup_extent_op(trans, fs_info, head);
2584 if (ret < 0) {
2585 unselect_delayed_ref_head(delayed_refs, head);
2586 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2587 return ret;
2588 } else if (ret) {
2589 return ret;
2590 }
2591
2592 /*
2593 * Need to drop our head ref lock and re-acquire the delayed ref lock
2594 * and then re-check to make sure nobody got added.
2595 */
2596 spin_unlock(&head->lock);
2597 spin_lock(&delayed_refs->lock);
2598 spin_lock(&head->lock);
0e0adbcf 2599 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2600 spin_unlock(&head->lock);
2601 spin_unlock(&delayed_refs->lock);
2602 return 1;
2603 }
194ab0bc
JB
2604 delayed_refs->num_heads--;
2605 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2606 RB_CLEAR_NODE(&head->href_node);
194ab0bc 2607 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2608 spin_unlock(&head->lock);
2609 atomic_dec(&delayed_refs->num_entries);
2610
d278850e 2611 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2612
2613 if (head->total_ref_mod < 0) {
2614 struct btrfs_block_group_cache *cache;
2615
d278850e 2616 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
c1103f7a
JB
2617 ASSERT(cache);
2618 percpu_counter_add(&cache->space_info->total_bytes_pinned,
d278850e 2619 -head->num_bytes);
c1103f7a
JB
2620 btrfs_put_block_group(cache);
2621
2622 if (head->is_data) {
2623 spin_lock(&delayed_refs->lock);
d278850e 2624 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2625 spin_unlock(&delayed_refs->lock);
2626 }
2627 }
2628
2629 if (head->must_insert_reserved) {
d278850e
JB
2630 btrfs_pin_extent(fs_info, head->bytenr,
2631 head->num_bytes, 1);
c1103f7a 2632 if (head->is_data) {
d278850e
JB
2633 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2634 head->num_bytes);
c1103f7a
JB
2635 }
2636 }
2637
2638 /* Also free its reserved qgroup space */
2639 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2640 head->qgroup_reserved);
2641 btrfs_delayed_ref_unlock(head);
d278850e 2642 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2643 return 0;
2644}
2645
79787eaa
JM
2646/*
2647 * Returns 0 on success or if called with an already aborted transaction.
2648 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2649 */
d7df2c79 2650static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2651 struct btrfs_fs_info *fs_info,
d7df2c79 2652 unsigned long nr)
56bec294 2653{
56bec294
CM
2654 struct btrfs_delayed_ref_root *delayed_refs;
2655 struct btrfs_delayed_ref_node *ref;
2656 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2657 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2658 ktime_t start = ktime_get();
56bec294 2659 int ret;
d7df2c79 2660 unsigned long count = 0;
0a2b2a84 2661 unsigned long actual_count = 0;
56bec294 2662 int must_insert_reserved = 0;
56bec294
CM
2663
2664 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2665 while (1) {
2666 if (!locked_ref) {
d7df2c79 2667 if (count >= nr)
56bec294 2668 break;
56bec294 2669
d7df2c79
JB
2670 spin_lock(&delayed_refs->lock);
2671 locked_ref = btrfs_select_ref_head(trans);
2672 if (!locked_ref) {
2673 spin_unlock(&delayed_refs->lock);
2674 break;
2675 }
c3e69d58
CM
2676
2677 /* grab the lock that says we are going to process
2678 * all the refs for this head */
2679 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2680 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2681 /*
2682 * we may have dropped the spin lock to get the head
2683 * mutex lock, and that might have given someone else
2684 * time to free the head. If that's true, it has been
2685 * removed from our list and we can move on.
2686 */
2687 if (ret == -EAGAIN) {
2688 locked_ref = NULL;
2689 count++;
2690 continue;
56bec294
CM
2691 }
2692 }
a28ec197 2693
2c3cf7d5
FM
2694 /*
2695 * We need to try and merge add/drops of the same ref since we
2696 * can run into issues with relocate dropping the implicit ref
2697 * and then it being added back again before the drop can
2698 * finish. If we merged anything we need to re-loop so we can
2699 * get a good ref.
2700 * Or we can get node references of the same type that weren't
2701 * merged when created due to bumps in the tree mod seq, and
2702 * we need to merge them to prevent adding an inline extent
2703 * backref before dropping it (triggering a BUG_ON at
2704 * insert_inline_extent_backref()).
2705 */
d7df2c79 2706 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2707 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2708 locked_ref);
ae1e206b 2709
d1270cd9
AJ
2710 /*
2711 * locked_ref is the head node, so we have to go one
2712 * node back for any delayed ref updates
2713 */
2714 ref = select_delayed_ref(locked_ref);
2715
2716 if (ref && ref->seq &&
097b8a7c 2717 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2718 spin_unlock(&locked_ref->lock);
2eadaa22 2719 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2720 locked_ref = NULL;
d1270cd9 2721 cond_resched();
27a377db 2722 count++;
d1270cd9
AJ
2723 continue;
2724 }
2725
c1103f7a
JB
2726 /*
2727 * We're done processing refs in this ref_head, clean everything
2728 * up and move on to the next ref_head.
2729 */
56bec294 2730 if (!ref) {
194ab0bc
JB
2731 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2732 if (ret > 0 ) {
b00e6250
JB
2733 /* We dropped our lock, we need to loop. */
2734 ret = 0;
d7df2c79 2735 continue;
194ab0bc
JB
2736 } else if (ret) {
2737 return ret;
5d4f98a2 2738 }
c1103f7a
JB
2739 locked_ref = NULL;
2740 count++;
2741 continue;
2742 }
02217ed2 2743
c1103f7a
JB
2744 actual_count++;
2745 ref->in_tree = 0;
0e0adbcf
JB
2746 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2747 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2748 if (!list_empty(&ref->add_list))
2749 list_del(&ref->add_list);
2750 /*
2751 * When we play the delayed ref, also correct the ref_mod on
2752 * head
2753 */
2754 switch (ref->action) {
2755 case BTRFS_ADD_DELAYED_REF:
2756 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2757 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2758 break;
2759 case BTRFS_DROP_DELAYED_REF:
d278850e 2760 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2761 break;
2762 default:
2763 WARN_ON(1);
22cd2e7d 2764 }
1ce7a5ec
JB
2765 atomic_dec(&delayed_refs->num_entries);
2766
b00e6250
JB
2767 /*
2768 * Record the must-insert_reserved flag before we drop the spin
2769 * lock.
2770 */
2771 must_insert_reserved = locked_ref->must_insert_reserved;
2772 locked_ref->must_insert_reserved = 0;
2773
2774 extent_op = locked_ref->extent_op;
2775 locked_ref->extent_op = NULL;
d7df2c79 2776 spin_unlock(&locked_ref->lock);
925baedd 2777
2ff7e61e 2778 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2779 must_insert_reserved);
eb099670 2780
78a6184a 2781 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2782 if (ret) {
2eadaa22 2783 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2784 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2785 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2786 ret);
79787eaa
JM
2787 return ret;
2788 }
2789
093486c4
MX
2790 btrfs_put_delayed_ref(ref);
2791 count++;
c3e69d58 2792 cond_resched();
c3e69d58 2793 }
0a2b2a84
JB
2794
2795 /*
2796 * We don't want to include ref heads since we can have empty ref heads
2797 * and those will drastically skew our runtime down since we just do
2798 * accounting, no actual extent tree updates.
2799 */
2800 if (actual_count > 0) {
2801 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2802 u64 avg;
2803
2804 /*
2805 * We weigh the current average higher than our current runtime
2806 * to avoid large swings in the average.
2807 */
2808 spin_lock(&delayed_refs->lock);
2809 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2810 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2811 spin_unlock(&delayed_refs->lock);
2812 }
d7df2c79 2813 return 0;
c3e69d58
CM
2814}
2815
709c0486
AJ
2816#ifdef SCRAMBLE_DELAYED_REFS
2817/*
2818 * Normally delayed refs get processed in ascending bytenr order. This
2819 * correlates in most cases to the order added. To expose dependencies on this
2820 * order, we start to process the tree in the middle instead of the beginning
2821 */
2822static u64 find_middle(struct rb_root *root)
2823{
2824 struct rb_node *n = root->rb_node;
2825 struct btrfs_delayed_ref_node *entry;
2826 int alt = 1;
2827 u64 middle;
2828 u64 first = 0, last = 0;
2829
2830 n = rb_first(root);
2831 if (n) {
2832 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2833 first = entry->bytenr;
2834 }
2835 n = rb_last(root);
2836 if (n) {
2837 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2838 last = entry->bytenr;
2839 }
2840 n = root->rb_node;
2841
2842 while (n) {
2843 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2844 WARN_ON(!entry->in_tree);
2845
2846 middle = entry->bytenr;
2847
2848 if (alt)
2849 n = n->rb_left;
2850 else
2851 n = n->rb_right;
2852
2853 alt = 1 - alt;
2854 }
2855 return middle;
2856}
2857#endif
2858
2ff7e61e 2859static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2860{
2861 u64 num_bytes;
2862
2863 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2864 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2865 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2866 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2867
2868 /*
2869 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2870 * closer to what we're really going to want to use.
1be41b78 2871 */
0b246afa 2872 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2873}
2874
1262133b
JB
2875/*
2876 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2877 * would require to store the csums for that many bytes.
2878 */
2ff7e61e 2879u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2880{
2881 u64 csum_size;
2882 u64 num_csums_per_leaf;
2883 u64 num_csums;
2884
0b246afa 2885 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2886 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2887 (u64)btrfs_super_csum_size(fs_info->super_copy));
2888 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2889 num_csums += num_csums_per_leaf - 1;
2890 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2891 return num_csums;
2892}
2893
0a2b2a84 2894int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2895 struct btrfs_fs_info *fs_info)
1be41b78
JB
2896{
2897 struct btrfs_block_rsv *global_rsv;
2898 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2899 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2900 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2901 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2902 int ret = 0;
2903
0b246afa 2904 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2905 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2906 if (num_heads > 1)
0b246afa 2907 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2908 num_bytes <<= 1;
2ff7e61e
JM
2909 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2910 fs_info->nodesize;
0b246afa 2911 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2912 num_dirty_bgs);
0b246afa 2913 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2914
2915 /*
2916 * If we can't allocate any more chunks lets make sure we have _lots_ of
2917 * wiggle room since running delayed refs can create more delayed refs.
2918 */
cb723e49
JB
2919 if (global_rsv->space_info->full) {
2920 num_dirty_bgs_bytes <<= 1;
1be41b78 2921 num_bytes <<= 1;
cb723e49 2922 }
1be41b78
JB
2923
2924 spin_lock(&global_rsv->lock);
cb723e49 2925 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2926 ret = 1;
2927 spin_unlock(&global_rsv->lock);
2928 return ret;
2929}
2930
0a2b2a84 2931int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2932 struct btrfs_fs_info *fs_info)
0a2b2a84 2933{
0a2b2a84
JB
2934 u64 num_entries =
2935 atomic_read(&trans->transaction->delayed_refs.num_entries);
2936 u64 avg_runtime;
a79b7d4b 2937 u64 val;
0a2b2a84
JB
2938
2939 smp_mb();
2940 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2941 val = num_entries * avg_runtime;
dc1a90c6 2942 if (val >= NSEC_PER_SEC)
0a2b2a84 2943 return 1;
a79b7d4b
CM
2944 if (val >= NSEC_PER_SEC / 2)
2945 return 2;
0a2b2a84 2946
2ff7e61e 2947 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2948}
2949
a79b7d4b
CM
2950struct async_delayed_refs {
2951 struct btrfs_root *root;
31b9655f 2952 u64 transid;
a79b7d4b
CM
2953 int count;
2954 int error;
2955 int sync;
2956 struct completion wait;
2957 struct btrfs_work work;
2958};
2959
2ff7e61e
JM
2960static inline struct async_delayed_refs *
2961to_async_delayed_refs(struct btrfs_work *work)
2962{
2963 return container_of(work, struct async_delayed_refs, work);
2964}
2965
a79b7d4b
CM
2966static void delayed_ref_async_start(struct btrfs_work *work)
2967{
2ff7e61e 2968 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2969 struct btrfs_trans_handle *trans;
2ff7e61e 2970 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2971 int ret;
2972
0f873eca 2973 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2974 if (btrfs_transaction_blocked(fs_info))
31b9655f 2975 goto done;
31b9655f 2976
0f873eca
CM
2977 trans = btrfs_join_transaction(async->root);
2978 if (IS_ERR(trans)) {
2979 async->error = PTR_ERR(trans);
a79b7d4b
CM
2980 goto done;
2981 }
2982
2983 /*
01327610 2984 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2985 * wait on delayed refs
2986 */
2987 trans->sync = true;
0f873eca
CM
2988
2989 /* Don't bother flushing if we got into a different transaction */
2990 if (trans->transid > async->transid)
2991 goto end;
2992
2ff7e61e 2993 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
2994 if (ret)
2995 async->error = ret;
0f873eca 2996end:
3a45bb20 2997 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2998 if (ret && !async->error)
2999 async->error = ret;
3000done:
3001 if (async->sync)
3002 complete(&async->wait);
3003 else
3004 kfree(async);
3005}
3006
2ff7e61e 3007int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 3008 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
3009{
3010 struct async_delayed_refs *async;
3011 int ret;
3012
3013 async = kmalloc(sizeof(*async), GFP_NOFS);
3014 if (!async)
3015 return -ENOMEM;
3016
0b246afa 3017 async->root = fs_info->tree_root;
a79b7d4b
CM
3018 async->count = count;
3019 async->error = 0;
31b9655f 3020 async->transid = transid;
a79b7d4b
CM
3021 if (wait)
3022 async->sync = 1;
3023 else
3024 async->sync = 0;
3025 init_completion(&async->wait);
3026
9e0af237
LB
3027 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3028 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3029
0b246afa 3030 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3031
3032 if (wait) {
3033 wait_for_completion(&async->wait);
3034 ret = async->error;
3035 kfree(async);
3036 return ret;
3037 }
3038 return 0;
3039}
3040
c3e69d58
CM
3041/*
3042 * this starts processing the delayed reference count updates and
3043 * extent insertions we have queued up so far. count can be
3044 * 0, which means to process everything in the tree at the start
3045 * of the run (but not newly added entries), or it can be some target
3046 * number you'd like to process.
79787eaa
JM
3047 *
3048 * Returns 0 on success or if called with an aborted transaction
3049 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3050 */
3051int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 3052 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
3053{
3054 struct rb_node *node;
3055 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3056 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3057 int ret;
3058 int run_all = count == (unsigned long)-1;
d9a0540a 3059 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 3060
79787eaa
JM
3061 /* We'll clean this up in btrfs_cleanup_transaction */
3062 if (trans->aborted)
3063 return 0;
3064
0b246afa 3065 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3066 return 0;
3067
c3e69d58 3068 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3069 if (count == 0)
d7df2c79 3070 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3071
c3e69d58 3072again:
709c0486
AJ
3073#ifdef SCRAMBLE_DELAYED_REFS
3074 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3075#endif
d9a0540a 3076 trans->can_flush_pending_bgs = false;
2ff7e61e 3077 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 3078 if (ret < 0) {
66642832 3079 btrfs_abort_transaction(trans, ret);
d7df2c79 3080 return ret;
eb099670 3081 }
c3e69d58 3082
56bec294 3083 if (run_all) {
d7df2c79 3084 if (!list_empty(&trans->new_bgs))
2ff7e61e 3085 btrfs_create_pending_block_groups(trans, fs_info);
ea658bad 3086
d7df2c79 3087 spin_lock(&delayed_refs->lock);
c46effa6 3088 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3089 if (!node) {
3090 spin_unlock(&delayed_refs->lock);
56bec294 3091 goto out;
d7df2c79 3092 }
d278850e
JB
3093 head = rb_entry(node, struct btrfs_delayed_ref_head,
3094 href_node);
3095 refcount_inc(&head->refs);
3096 spin_unlock(&delayed_refs->lock);
e9d0b13b 3097
d278850e
JB
3098 /* Mutex was contended, block until it's released and retry. */
3099 mutex_lock(&head->mutex);
3100 mutex_unlock(&head->mutex);
56bec294 3101
d278850e 3102 btrfs_put_delayed_ref_head(head);
d7df2c79 3103 cond_resched();
56bec294 3104 goto again;
5f39d397 3105 }
54aa1f4d 3106out:
d9a0540a 3107 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3108 return 0;
3109}
3110
5d4f98a2 3111int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3112 struct btrfs_fs_info *fs_info,
5d4f98a2 3113 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3114 int level, int is_data)
5d4f98a2
YZ
3115{
3116 struct btrfs_delayed_extent_op *extent_op;
3117 int ret;
3118
78a6184a 3119 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3120 if (!extent_op)
3121 return -ENOMEM;
3122
3123 extent_op->flags_to_set = flags;
35b3ad50
DS
3124 extent_op->update_flags = true;
3125 extent_op->update_key = false;
3126 extent_op->is_data = is_data ? true : false;
b1c79e09 3127 extent_op->level = level;
5d4f98a2 3128
0b246afa 3129 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3130 num_bytes, extent_op);
5d4f98a2 3131 if (ret)
78a6184a 3132 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3133 return ret;
3134}
3135
e4c3b2dc 3136static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3137 struct btrfs_path *path,
3138 u64 objectid, u64 offset, u64 bytenr)
3139{
3140 struct btrfs_delayed_ref_head *head;
3141 struct btrfs_delayed_ref_node *ref;
3142 struct btrfs_delayed_data_ref *data_ref;
3143 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3144 struct btrfs_transaction *cur_trans;
0e0adbcf 3145 struct rb_node *node;
5d4f98a2
YZ
3146 int ret = 0;
3147
e4c3b2dc
LB
3148 cur_trans = root->fs_info->running_transaction;
3149 if (!cur_trans)
3150 return 0;
3151
3152 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3153 spin_lock(&delayed_refs->lock);
f72ad18e 3154 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3155 if (!head) {
3156 spin_unlock(&delayed_refs->lock);
3157 return 0;
3158 }
5d4f98a2
YZ
3159
3160 if (!mutex_trylock(&head->mutex)) {
d278850e 3161 refcount_inc(&head->refs);
5d4f98a2
YZ
3162 spin_unlock(&delayed_refs->lock);
3163
b3b4aa74 3164 btrfs_release_path(path);
5d4f98a2 3165
8cc33e5c
DS
3166 /*
3167 * Mutex was contended, block until it's released and let
3168 * caller try again
3169 */
5d4f98a2
YZ
3170 mutex_lock(&head->mutex);
3171 mutex_unlock(&head->mutex);
d278850e 3172 btrfs_put_delayed_ref_head(head);
5d4f98a2
YZ
3173 return -EAGAIN;
3174 }
d7df2c79 3175 spin_unlock(&delayed_refs->lock);
5d4f98a2 3176
d7df2c79 3177 spin_lock(&head->lock);
0e0adbcf
JB
3178 /*
3179 * XXX: We should replace this with a proper search function in the
3180 * future.
3181 */
3182 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3183 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3184 /* If it's a shared ref we know a cross reference exists */
3185 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3186 ret = 1;
3187 break;
3188 }
5d4f98a2 3189
d7df2c79 3190 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3191
d7df2c79
JB
3192 /*
3193 * If our ref doesn't match the one we're currently looking at
3194 * then we have a cross reference.
3195 */
3196 if (data_ref->root != root->root_key.objectid ||
3197 data_ref->objectid != objectid ||
3198 data_ref->offset != offset) {
3199 ret = 1;
3200 break;
3201 }
5d4f98a2 3202 }
d7df2c79 3203 spin_unlock(&head->lock);
5d4f98a2 3204 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3205 return ret;
3206}
3207
e4c3b2dc 3208static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3209 struct btrfs_path *path,
3210 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3211{
0b246afa
JM
3212 struct btrfs_fs_info *fs_info = root->fs_info;
3213 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3214 struct extent_buffer *leaf;
5d4f98a2
YZ
3215 struct btrfs_extent_data_ref *ref;
3216 struct btrfs_extent_inline_ref *iref;
3217 struct btrfs_extent_item *ei;
f321e491 3218 struct btrfs_key key;
5d4f98a2 3219 u32 item_size;
3de28d57 3220 int type;
be20aa9d 3221 int ret;
925baedd 3222
be20aa9d 3223 key.objectid = bytenr;
31840ae1 3224 key.offset = (u64)-1;
f321e491 3225 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3226
be20aa9d
CM
3227 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3228 if (ret < 0)
3229 goto out;
79787eaa 3230 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3231
3232 ret = -ENOENT;
3233 if (path->slots[0] == 0)
31840ae1 3234 goto out;
be20aa9d 3235
31840ae1 3236 path->slots[0]--;
f321e491 3237 leaf = path->nodes[0];
5d4f98a2 3238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3239
5d4f98a2 3240 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3241 goto out;
f321e491 3242
5d4f98a2
YZ
3243 ret = 1;
3244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3245#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3246 if (item_size < sizeof(*ei)) {
3247 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3248 goto out;
3249 }
3250#endif
3251 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3252
5d4f98a2
YZ
3253 if (item_size != sizeof(*ei) +
3254 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3255 goto out;
be20aa9d 3256
5d4f98a2
YZ
3257 if (btrfs_extent_generation(leaf, ei) <=
3258 btrfs_root_last_snapshot(&root->root_item))
3259 goto out;
3260
3261 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3262
3263 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3264 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3265 goto out;
3266
3267 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3268 if (btrfs_extent_refs(leaf, ei) !=
3269 btrfs_extent_data_ref_count(leaf, ref) ||
3270 btrfs_extent_data_ref_root(leaf, ref) !=
3271 root->root_key.objectid ||
3272 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3273 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3274 goto out;
3275
3276 ret = 0;
3277out:
3278 return ret;
3279}
3280
e4c3b2dc
LB
3281int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3282 u64 bytenr)
5d4f98a2
YZ
3283{
3284 struct btrfs_path *path;
3285 int ret;
3286 int ret2;
3287
3288 path = btrfs_alloc_path();
3289 if (!path)
3290 return -ENOENT;
3291
3292 do {
e4c3b2dc 3293 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3294 offset, bytenr);
3295 if (ret && ret != -ENOENT)
f321e491 3296 goto out;
80ff3856 3297
e4c3b2dc 3298 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3299 offset, bytenr);
3300 } while (ret2 == -EAGAIN);
3301
3302 if (ret2 && ret2 != -ENOENT) {
3303 ret = ret2;
3304 goto out;
f321e491 3305 }
5d4f98a2
YZ
3306
3307 if (ret != -ENOENT || ret2 != -ENOENT)
3308 ret = 0;
be20aa9d 3309out:
80ff3856 3310 btrfs_free_path(path);
f0486c68
YZ
3311 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3312 WARN_ON(ret > 0);
f321e491 3313 return ret;
be20aa9d 3314}
c5739bba 3315
5d4f98a2 3316static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3317 struct btrfs_root *root,
5d4f98a2 3318 struct extent_buffer *buf,
e339a6b0 3319 int full_backref, int inc)
31840ae1 3320{
0b246afa 3321 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3322 u64 bytenr;
5d4f98a2
YZ
3323 u64 num_bytes;
3324 u64 parent;
31840ae1 3325 u64 ref_root;
31840ae1 3326 u32 nritems;
31840ae1
ZY
3327 struct btrfs_key key;
3328 struct btrfs_file_extent_item *fi;
3329 int i;
3330 int level;
3331 int ret = 0;
2ff7e61e 3332 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3333 struct btrfs_root *,
b06c4bf5 3334 u64, u64, u64, u64, u64, u64);
31840ae1 3335
fccb84c9 3336
0b246afa 3337 if (btrfs_is_testing(fs_info))
faa2dbf0 3338 return 0;
fccb84c9 3339
31840ae1 3340 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3341 nritems = btrfs_header_nritems(buf);
3342 level = btrfs_header_level(buf);
3343
27cdeb70 3344 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3345 return 0;
31840ae1 3346
5d4f98a2
YZ
3347 if (inc)
3348 process_func = btrfs_inc_extent_ref;
3349 else
3350 process_func = btrfs_free_extent;
31840ae1 3351
5d4f98a2
YZ
3352 if (full_backref)
3353 parent = buf->start;
3354 else
3355 parent = 0;
3356
3357 for (i = 0; i < nritems; i++) {
31840ae1 3358 if (level == 0) {
5d4f98a2 3359 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3360 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3361 continue;
5d4f98a2 3362 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3363 struct btrfs_file_extent_item);
3364 if (btrfs_file_extent_type(buf, fi) ==
3365 BTRFS_FILE_EXTENT_INLINE)
3366 continue;
3367 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3368 if (bytenr == 0)
3369 continue;
5d4f98a2
YZ
3370
3371 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3372 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3373 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3374 parent, ref_root, key.objectid,
b06c4bf5 3375 key.offset);
31840ae1
ZY
3376 if (ret)
3377 goto fail;
3378 } else {
5d4f98a2 3379 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3380 num_bytes = fs_info->nodesize;
84f7d8e6 3381 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3382 parent, ref_root, level - 1, 0);
31840ae1
ZY
3383 if (ret)
3384 goto fail;
3385 }
3386 }
3387 return 0;
3388fail:
5d4f98a2
YZ
3389 return ret;
3390}
3391
3392int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3393 struct extent_buffer *buf, int full_backref)
5d4f98a2 3394{
e339a6b0 3395 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3396}
3397
3398int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3399 struct extent_buffer *buf, int full_backref)
5d4f98a2 3400{
e339a6b0 3401 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3402}
3403
9078a3e1 3404static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3405 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3406 struct btrfs_path *path,
3407 struct btrfs_block_group_cache *cache)
3408{
3409 int ret;
0b246afa 3410 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3411 unsigned long bi;
3412 struct extent_buffer *leaf;
9078a3e1 3413
9078a3e1 3414 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3415 if (ret) {
3416 if (ret > 0)
3417 ret = -ENOENT;
54aa1f4d 3418 goto fail;
df95e7f0 3419 }
5f39d397
CM
3420
3421 leaf = path->nodes[0];
3422 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3423 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3424 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3425fail:
24b89d08 3426 btrfs_release_path(path);
df95e7f0 3427 return ret;
9078a3e1
CM
3428
3429}
3430
4a8c9a62 3431static struct btrfs_block_group_cache *
2ff7e61e 3432next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3433 struct btrfs_block_group_cache *cache)
3434{
3435 struct rb_node *node;
292cbd51 3436
0b246afa 3437 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3438
3439 /* If our block group was removed, we need a full search. */
3440 if (RB_EMPTY_NODE(&cache->cache_node)) {
3441 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3442
0b246afa 3443 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3444 btrfs_put_block_group(cache);
0b246afa 3445 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3446 }
4a8c9a62
YZ
3447 node = rb_next(&cache->cache_node);
3448 btrfs_put_block_group(cache);
3449 if (node) {
3450 cache = rb_entry(node, struct btrfs_block_group_cache,
3451 cache_node);
11dfe35a 3452 btrfs_get_block_group(cache);
4a8c9a62
YZ
3453 } else
3454 cache = NULL;
0b246afa 3455 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3456 return cache;
3457}
3458
0af3d00b
JB
3459static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3460 struct btrfs_trans_handle *trans,
3461 struct btrfs_path *path)
3462{
0b246afa
JM
3463 struct btrfs_fs_info *fs_info = block_group->fs_info;
3464 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3465 struct inode *inode = NULL;
364ecf36 3466 struct extent_changeset *data_reserved = NULL;
0af3d00b 3467 u64 alloc_hint = 0;
2b20982e 3468 int dcs = BTRFS_DC_ERROR;
f8c269d7 3469 u64 num_pages = 0;
0af3d00b
JB
3470 int retries = 0;
3471 int ret = 0;
3472
3473 /*
3474 * If this block group is smaller than 100 megs don't bother caching the
3475 * block group.
3476 */
ee22184b 3477 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3478 spin_lock(&block_group->lock);
3479 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3480 spin_unlock(&block_group->lock);
3481 return 0;
3482 }
3483
0c0ef4bc
JB
3484 if (trans->aborted)
3485 return 0;
0af3d00b 3486again:
77ab86bf 3487 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3488 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3489 ret = PTR_ERR(inode);
b3b4aa74 3490 btrfs_release_path(path);
0af3d00b
JB
3491 goto out;
3492 }
3493
3494 if (IS_ERR(inode)) {
3495 BUG_ON(retries);
3496 retries++;
3497
3498 if (block_group->ro)
3499 goto out_free;
3500
77ab86bf
JM
3501 ret = create_free_space_inode(fs_info, trans, block_group,
3502 path);
0af3d00b
JB
3503 if (ret)
3504 goto out_free;
3505 goto again;
3506 }
3507
3508 /*
3509 * We want to set the generation to 0, that way if anything goes wrong
3510 * from here on out we know not to trust this cache when we load up next
3511 * time.
3512 */
3513 BTRFS_I(inode)->generation = 0;
3514 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3515 if (ret) {
3516 /*
3517 * So theoretically we could recover from this, simply set the
3518 * super cache generation to 0 so we know to invalidate the
3519 * cache, but then we'd have to keep track of the block groups
3520 * that fail this way so we know we _have_ to reset this cache
3521 * before the next commit or risk reading stale cache. So to
3522 * limit our exposure to horrible edge cases lets just abort the
3523 * transaction, this only happens in really bad situations
3524 * anyway.
3525 */
66642832 3526 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3527 goto out_put;
3528 }
0af3d00b
JB
3529 WARN_ON(ret);
3530
8e138e0d
JB
3531 /* We've already setup this transaction, go ahead and exit */
3532 if (block_group->cache_generation == trans->transid &&
3533 i_size_read(inode)) {
3534 dcs = BTRFS_DC_SETUP;
3535 goto out_put;
3536 }
3537
0af3d00b 3538 if (i_size_read(inode) > 0) {
2ff7e61e 3539 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3540 &fs_info->global_block_rsv);
7b61cd92
MX
3541 if (ret)
3542 goto out_put;
3543
77ab86bf 3544 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3545 if (ret)
3546 goto out_put;
3547 }
3548
3549 spin_lock(&block_group->lock);
cf7c1ef6 3550 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3551 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3552 /*
3553 * don't bother trying to write stuff out _if_
3554 * a) we're not cached,
1a79c1f2
LB
3555 * b) we're with nospace_cache mount option,
3556 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3557 */
2b20982e 3558 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3559 spin_unlock(&block_group->lock);
3560 goto out_put;
3561 }
3562 spin_unlock(&block_group->lock);
3563
2968b1f4
JB
3564 /*
3565 * We hit an ENOSPC when setting up the cache in this transaction, just
3566 * skip doing the setup, we've already cleared the cache so we're safe.
3567 */
3568 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3569 ret = -ENOSPC;
3570 goto out_put;
3571 }
3572
6fc823b1
JB
3573 /*
3574 * Try to preallocate enough space based on how big the block group is.
3575 * Keep in mind this has to include any pinned space which could end up
3576 * taking up quite a bit since it's not folded into the other space
3577 * cache.
3578 */
ee22184b 3579 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3580 if (!num_pages)
3581 num_pages = 1;
3582
0af3d00b 3583 num_pages *= 16;
09cbfeaf 3584 num_pages *= PAGE_SIZE;
0af3d00b 3585
364ecf36 3586 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3587 if (ret)
3588 goto out_put;
3589
3590 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3591 num_pages, num_pages,
3592 &alloc_hint);
2968b1f4
JB
3593 /*
3594 * Our cache requires contiguous chunks so that we don't modify a bunch
3595 * of metadata or split extents when writing the cache out, which means
3596 * we can enospc if we are heavily fragmented in addition to just normal
3597 * out of space conditions. So if we hit this just skip setting up any
3598 * other block groups for this transaction, maybe we'll unpin enough
3599 * space the next time around.
3600 */
2b20982e
JB
3601 if (!ret)
3602 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3603 else if (ret == -ENOSPC)
3604 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3605
0af3d00b
JB
3606out_put:
3607 iput(inode);
3608out_free:
b3b4aa74 3609 btrfs_release_path(path);
0af3d00b
JB
3610out:
3611 spin_lock(&block_group->lock);
e65cbb94 3612 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3613 block_group->cache_generation = trans->transid;
2b20982e 3614 block_group->disk_cache_state = dcs;
0af3d00b
JB
3615 spin_unlock(&block_group->lock);
3616
364ecf36 3617 extent_changeset_free(data_reserved);
0af3d00b
JB
3618 return ret;
3619}
3620
dcdf7f6d 3621int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3622 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3623{
3624 struct btrfs_block_group_cache *cache, *tmp;
3625 struct btrfs_transaction *cur_trans = trans->transaction;
3626 struct btrfs_path *path;
3627
3628 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3629 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3630 return 0;
3631
3632 path = btrfs_alloc_path();
3633 if (!path)
3634 return -ENOMEM;
3635
3636 /* Could add new block groups, use _safe just in case */
3637 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3638 dirty_list) {
3639 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3640 cache_save_setup(cache, trans, path);
3641 }
3642
3643 btrfs_free_path(path);
3644 return 0;
3645}
3646
1bbc621e
CM
3647/*
3648 * transaction commit does final block group cache writeback during a
3649 * critical section where nothing is allowed to change the FS. This is
3650 * required in order for the cache to actually match the block group,
3651 * but can introduce a lot of latency into the commit.
3652 *
3653 * So, btrfs_start_dirty_block_groups is here to kick off block group
3654 * cache IO. There's a chance we'll have to redo some of it if the
3655 * block group changes again during the commit, but it greatly reduces
3656 * the commit latency by getting rid of the easy block groups while
3657 * we're still allowing others to join the commit.
3658 */
3659int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3660 struct btrfs_fs_info *fs_info)
9078a3e1 3661{
4a8c9a62 3662 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3663 struct btrfs_transaction *cur_trans = trans->transaction;
3664 int ret = 0;
c9dc4c65 3665 int should_put;
1bbc621e
CM
3666 struct btrfs_path *path = NULL;
3667 LIST_HEAD(dirty);
3668 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3669 int num_started = 0;
1bbc621e
CM
3670 int loops = 0;
3671
3672 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3673 if (list_empty(&cur_trans->dirty_bgs)) {
3674 spin_unlock(&cur_trans->dirty_bgs_lock);
3675 return 0;
1bbc621e 3676 }
b58d1a9e 3677 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3678 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3679
1bbc621e 3680again:
1bbc621e
CM
3681 /*
3682 * make sure all the block groups on our dirty list actually
3683 * exist
3684 */
2ff7e61e 3685 btrfs_create_pending_block_groups(trans, fs_info);
1bbc621e
CM
3686
3687 if (!path) {
3688 path = btrfs_alloc_path();
3689 if (!path)
3690 return -ENOMEM;
3691 }
3692
b58d1a9e
FM
3693 /*
3694 * cache_write_mutex is here only to save us from balance or automatic
3695 * removal of empty block groups deleting this block group while we are
3696 * writing out the cache
3697 */
3698 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3699 while (!list_empty(&dirty)) {
3700 cache = list_first_entry(&dirty,
3701 struct btrfs_block_group_cache,
3702 dirty_list);
1bbc621e
CM
3703 /*
3704 * this can happen if something re-dirties a block
3705 * group that is already under IO. Just wait for it to
3706 * finish and then do it all again
3707 */
3708 if (!list_empty(&cache->io_list)) {
3709 list_del_init(&cache->io_list);
afdb5718 3710 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3711 btrfs_put_block_group(cache);
3712 }
3713
3714
3715 /*
3716 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3717 * if it should update the cache_state. Don't delete
3718 * until after we wait.
3719 *
3720 * Since we're not running in the commit critical section
3721 * we need the dirty_bgs_lock to protect from update_block_group
3722 */
3723 spin_lock(&cur_trans->dirty_bgs_lock);
3724 list_del_init(&cache->dirty_list);
3725 spin_unlock(&cur_trans->dirty_bgs_lock);
3726
3727 should_put = 1;
3728
3729 cache_save_setup(cache, trans, path);
3730
3731 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3732 cache->io_ctl.inode = NULL;
0b246afa 3733 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3734 cache, path);
1bbc621e
CM
3735 if (ret == 0 && cache->io_ctl.inode) {
3736 num_started++;
3737 should_put = 0;
3738
3739 /*
3740 * the cache_write_mutex is protecting
3741 * the io_list
3742 */
3743 list_add_tail(&cache->io_list, io);
3744 } else {
3745 /*
3746 * if we failed to write the cache, the
3747 * generation will be bad and life goes on
3748 */
3749 ret = 0;
3750 }
3751 }
ff1f8250 3752 if (!ret) {
2ff7e61e
JM
3753 ret = write_one_cache_group(trans, fs_info,
3754 path, cache);
ff1f8250
FM
3755 /*
3756 * Our block group might still be attached to the list
3757 * of new block groups in the transaction handle of some
3758 * other task (struct btrfs_trans_handle->new_bgs). This
3759 * means its block group item isn't yet in the extent
3760 * tree. If this happens ignore the error, as we will
3761 * try again later in the critical section of the
3762 * transaction commit.
3763 */
3764 if (ret == -ENOENT) {
3765 ret = 0;
3766 spin_lock(&cur_trans->dirty_bgs_lock);
3767 if (list_empty(&cache->dirty_list)) {
3768 list_add_tail(&cache->dirty_list,
3769 &cur_trans->dirty_bgs);
3770 btrfs_get_block_group(cache);
3771 }
3772 spin_unlock(&cur_trans->dirty_bgs_lock);
3773 } else if (ret) {
66642832 3774 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3775 }
3776 }
1bbc621e
CM
3777
3778 /* if its not on the io list, we need to put the block group */
3779 if (should_put)
3780 btrfs_put_block_group(cache);
3781
3782 if (ret)
3783 break;
b58d1a9e
FM
3784
3785 /*
3786 * Avoid blocking other tasks for too long. It might even save
3787 * us from writing caches for block groups that are going to be
3788 * removed.
3789 */
3790 mutex_unlock(&trans->transaction->cache_write_mutex);
3791 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3792 }
b58d1a9e 3793 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3794
3795 /*
3796 * go through delayed refs for all the stuff we've just kicked off
3797 * and then loop back (just once)
3798 */
2ff7e61e 3799 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3800 if (!ret && loops == 0) {
3801 loops++;
3802 spin_lock(&cur_trans->dirty_bgs_lock);
3803 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3804 /*
3805 * dirty_bgs_lock protects us from concurrent block group
3806 * deletes too (not just cache_write_mutex).
3807 */
3808 if (!list_empty(&dirty)) {
3809 spin_unlock(&cur_trans->dirty_bgs_lock);
3810 goto again;
3811 }
1bbc621e 3812 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3813 } else if (ret < 0) {
2ff7e61e 3814 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3815 }
3816
3817 btrfs_free_path(path);
3818 return ret;
3819}
3820
3821int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3822 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3823{
3824 struct btrfs_block_group_cache *cache;
3825 struct btrfs_transaction *cur_trans = trans->transaction;
3826 int ret = 0;
3827 int should_put;
3828 struct btrfs_path *path;
3829 struct list_head *io = &cur_trans->io_bgs;
3830 int num_started = 0;
9078a3e1
CM
3831
3832 path = btrfs_alloc_path();
3833 if (!path)
3834 return -ENOMEM;
3835
ce93ec54 3836 /*
e44081ef
FM
3837 * Even though we are in the critical section of the transaction commit,
3838 * we can still have concurrent tasks adding elements to this
3839 * transaction's list of dirty block groups. These tasks correspond to
3840 * endio free space workers started when writeback finishes for a
3841 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3842 * allocate new block groups as a result of COWing nodes of the root
3843 * tree when updating the free space inode. The writeback for the space
3844 * caches is triggered by an earlier call to
3845 * btrfs_start_dirty_block_groups() and iterations of the following
3846 * loop.
3847 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3848 * delayed refs to make sure we have the best chance at doing this all
3849 * in one shot.
3850 */
e44081ef 3851 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3852 while (!list_empty(&cur_trans->dirty_bgs)) {
3853 cache = list_first_entry(&cur_trans->dirty_bgs,
3854 struct btrfs_block_group_cache,
3855 dirty_list);
c9dc4c65
CM
3856
3857 /*
3858 * this can happen if cache_save_setup re-dirties a block
3859 * group that is already under IO. Just wait for it to
3860 * finish and then do it all again
3861 */
3862 if (!list_empty(&cache->io_list)) {
e44081ef 3863 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3864 list_del_init(&cache->io_list);
afdb5718 3865 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3866 btrfs_put_block_group(cache);
e44081ef 3867 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3868 }
3869
1bbc621e
CM
3870 /*
3871 * don't remove from the dirty list until after we've waited
3872 * on any pending IO
3873 */
ce93ec54 3874 list_del_init(&cache->dirty_list);
e44081ef 3875 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3876 should_put = 1;
3877
1bbc621e 3878 cache_save_setup(cache, trans, path);
c9dc4c65 3879
ce93ec54 3880 if (!ret)
2ff7e61e
JM
3881 ret = btrfs_run_delayed_refs(trans, fs_info,
3882 (unsigned long) -1);
c9dc4c65
CM
3883
3884 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3885 cache->io_ctl.inode = NULL;
0b246afa 3886 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3887 cache, path);
c9dc4c65
CM
3888 if (ret == 0 && cache->io_ctl.inode) {
3889 num_started++;
3890 should_put = 0;
1bbc621e 3891 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3892 } else {
3893 /*
3894 * if we failed to write the cache, the
3895 * generation will be bad and life goes on
3896 */
3897 ret = 0;
3898 }
3899 }
ff1f8250 3900 if (!ret) {
2ff7e61e
JM
3901 ret = write_one_cache_group(trans, fs_info,
3902 path, cache);
2bc0bb5f
FM
3903 /*
3904 * One of the free space endio workers might have
3905 * created a new block group while updating a free space
3906 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3907 * and hasn't released its transaction handle yet, in
3908 * which case the new block group is still attached to
3909 * its transaction handle and its creation has not
3910 * finished yet (no block group item in the extent tree
3911 * yet, etc). If this is the case, wait for all free
3912 * space endio workers to finish and retry. This is a
3913 * a very rare case so no need for a more efficient and
3914 * complex approach.
3915 */
3916 if (ret == -ENOENT) {
3917 wait_event(cur_trans->writer_wait,
3918 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3919 ret = write_one_cache_group(trans, fs_info,
3920 path, cache);
2bc0bb5f 3921 }
ff1f8250 3922 if (ret)
66642832 3923 btrfs_abort_transaction(trans, ret);
ff1f8250 3924 }
c9dc4c65
CM
3925
3926 /* if its not on the io list, we need to put the block group */
3927 if (should_put)
3928 btrfs_put_block_group(cache);
e44081ef 3929 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3930 }
e44081ef 3931 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3932
1bbc621e
CM
3933 while (!list_empty(io)) {
3934 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3935 io_list);
3936 list_del_init(&cache->io_list);
afdb5718 3937 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3938 btrfs_put_block_group(cache);
3939 }
3940
9078a3e1 3941 btrfs_free_path(path);
ce93ec54 3942 return ret;
9078a3e1
CM
3943}
3944
2ff7e61e 3945int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3946{
3947 struct btrfs_block_group_cache *block_group;
3948 int readonly = 0;
3949
0b246afa 3950 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3951 if (!block_group || block_group->ro)
3952 readonly = 1;
3953 if (block_group)
fa9c0d79 3954 btrfs_put_block_group(block_group);
d2fb3437
YZ
3955 return readonly;
3956}
3957
f78c436c
FM
3958bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3959{
3960 struct btrfs_block_group_cache *bg;
3961 bool ret = true;
3962
3963 bg = btrfs_lookup_block_group(fs_info, bytenr);
3964 if (!bg)
3965 return false;
3966
3967 spin_lock(&bg->lock);
3968 if (bg->ro)
3969 ret = false;
3970 else
3971 atomic_inc(&bg->nocow_writers);
3972 spin_unlock(&bg->lock);
3973
3974 /* no put on block group, done by btrfs_dec_nocow_writers */
3975 if (!ret)
3976 btrfs_put_block_group(bg);
3977
3978 return ret;
3979
3980}
3981
3982void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3983{
3984 struct btrfs_block_group_cache *bg;
3985
3986 bg = btrfs_lookup_block_group(fs_info, bytenr);
3987 ASSERT(bg);
3988 if (atomic_dec_and_test(&bg->nocow_writers))
3989 wake_up_atomic_t(&bg->nocow_writers);
3990 /*
3991 * Once for our lookup and once for the lookup done by a previous call
3992 * to btrfs_inc_nocow_writers()
3993 */
3994 btrfs_put_block_group(bg);
3995 btrfs_put_block_group(bg);
3996}
3997
f78c436c
FM
3998void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3999{
5e4def20 4000 wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
f78c436c
FM
4001 TASK_UNINTERRUPTIBLE);
4002}
4003
6ab0a202
JM
4004static const char *alloc_name(u64 flags)
4005{
4006 switch (flags) {
4007 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4008 return "mixed";
4009 case BTRFS_BLOCK_GROUP_METADATA:
4010 return "metadata";
4011 case BTRFS_BLOCK_GROUP_DATA:
4012 return "data";
4013 case BTRFS_BLOCK_GROUP_SYSTEM:
4014 return "system";
4015 default:
4016 WARN_ON(1);
4017 return "invalid-combination";
4018 };
4019}
4020
2be12ef7
NB
4021static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4022 struct btrfs_space_info **new)
4023{
4024
4025 struct btrfs_space_info *space_info;
4026 int i;
4027 int ret;
4028
4029 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4030 if (!space_info)
4031 return -ENOMEM;
4032
4033 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4034 GFP_KERNEL);
4035 if (ret) {
4036 kfree(space_info);
4037 return ret;
4038 }
4039
4040 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4041 INIT_LIST_HEAD(&space_info->block_groups[i]);
4042 init_rwsem(&space_info->groups_sem);
4043 spin_lock_init(&space_info->lock);
4044 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4045 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4046 init_waitqueue_head(&space_info->wait);
4047 INIT_LIST_HEAD(&space_info->ro_bgs);
4048 INIT_LIST_HEAD(&space_info->tickets);
4049 INIT_LIST_HEAD(&space_info->priority_tickets);
4050
4051 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4052 info->space_info_kobj, "%s",
4053 alloc_name(space_info->flags));
4054 if (ret) {
4055 percpu_counter_destroy(&space_info->total_bytes_pinned);
4056 kfree(space_info);
4057 return ret;
4058 }
4059
4060 *new = space_info;
4061 list_add_rcu(&space_info->list, &info->space_info);
4062 if (flags & BTRFS_BLOCK_GROUP_DATA)
4063 info->data_sinfo = space_info;
4064
4065 return ret;
4066}
4067
d2006e6d 4068static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4069 u64 total_bytes, u64 bytes_used,
e40edf2d 4070 u64 bytes_readonly,
593060d7
CM
4071 struct btrfs_space_info **space_info)
4072{
4073 struct btrfs_space_info *found;
b742bb82
YZ
4074 int factor;
4075
4076 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4077 BTRFS_BLOCK_GROUP_RAID10))
4078 factor = 2;
4079 else
4080 factor = 1;
593060d7
CM
4081
4082 found = __find_space_info(info, flags);
d2006e6d
NB
4083 ASSERT(found);
4084 spin_lock(&found->lock);
4085 found->total_bytes += total_bytes;
4086 found->disk_total += total_bytes * factor;
4087 found->bytes_used += bytes_used;
4088 found->disk_used += bytes_used * factor;
4089 found->bytes_readonly += bytes_readonly;
4090 if (total_bytes > 0)
4091 found->full = 0;
4092 space_info_add_new_bytes(info, found, total_bytes -
4093 bytes_used - bytes_readonly);
4094 spin_unlock(&found->lock);
4095 *space_info = found;
593060d7
CM
4096}
4097
8790d502
CM
4098static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4099{
899c81ea
ID
4100 u64 extra_flags = chunk_to_extended(flags) &
4101 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4102
de98ced9 4103 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4104 if (flags & BTRFS_BLOCK_GROUP_DATA)
4105 fs_info->avail_data_alloc_bits |= extra_flags;
4106 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4107 fs_info->avail_metadata_alloc_bits |= extra_flags;
4108 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4109 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4110 write_sequnlock(&fs_info->profiles_lock);
8790d502 4111}
593060d7 4112
fc67c450
ID
4113/*
4114 * returns target flags in extended format or 0 if restripe for this
4115 * chunk_type is not in progress
c6664b42
ID
4116 *
4117 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4118 */
4119static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4120{
4121 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4122 u64 target = 0;
4123
fc67c450
ID
4124 if (!bctl)
4125 return 0;
4126
4127 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4128 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4129 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4130 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4131 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4132 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4133 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4134 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4135 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4136 }
4137
4138 return target;
4139}
4140
a46d11a8
ID
4141/*
4142 * @flags: available profiles in extended format (see ctree.h)
4143 *
e4d8ec0f
ID
4144 * Returns reduced profile in chunk format. If profile changing is in
4145 * progress (either running or paused) picks the target profile (if it's
4146 * already available), otherwise falls back to plain reducing.
a46d11a8 4147 */
2ff7e61e 4148static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4149{
0b246afa 4150 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4151 u64 target;
9c170b26
ZL
4152 u64 raid_type;
4153 u64 allowed = 0;
a061fc8d 4154
fc67c450
ID
4155 /*
4156 * see if restripe for this chunk_type is in progress, if so
4157 * try to reduce to the target profile
4158 */
0b246afa
JM
4159 spin_lock(&fs_info->balance_lock);
4160 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4161 if (target) {
4162 /* pick target profile only if it's already available */
4163 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4164 spin_unlock(&fs_info->balance_lock);
fc67c450 4165 return extended_to_chunk(target);
e4d8ec0f
ID
4166 }
4167 }
0b246afa 4168 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4169
53b381b3 4170 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4171 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4172 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4173 allowed |= btrfs_raid_group[raid_type];
4174 }
4175 allowed &= flags;
4176
4177 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4178 allowed = BTRFS_BLOCK_GROUP_RAID6;
4179 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4180 allowed = BTRFS_BLOCK_GROUP_RAID5;
4181 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4182 allowed = BTRFS_BLOCK_GROUP_RAID10;
4183 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4184 allowed = BTRFS_BLOCK_GROUP_RAID1;
4185 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4186 allowed = BTRFS_BLOCK_GROUP_RAID0;
4187
4188 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4189
4190 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4191}
4192
2ff7e61e 4193static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4194{
de98ced9 4195 unsigned seq;
f8213bdc 4196 u64 flags;
de98ced9
MX
4197
4198 do {
f8213bdc 4199 flags = orig_flags;
0b246afa 4200 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4201
4202 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4203 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4204 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4205 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4206 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4207 flags |= fs_info->avail_metadata_alloc_bits;
4208 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4209
2ff7e61e 4210 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4211}
4212
1b86826d 4213static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4214{
0b246afa 4215 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4216 u64 flags;
53b381b3 4217 u64 ret;
9ed74f2d 4218
b742bb82
YZ
4219 if (data)
4220 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4221 else if (root == fs_info->chunk_root)
b742bb82 4222 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4223 else
b742bb82 4224 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4225
2ff7e61e 4226 ret = get_alloc_profile(fs_info, flags);
53b381b3 4227 return ret;
6a63209f 4228}
9ed74f2d 4229
1b86826d
JM
4230u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4231{
4232 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4233}
4234
4235u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4236{
4237 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4238}
4239
4240u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4241{
4242 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4243}
4244
4136135b
LB
4245static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4246 bool may_use_included)
4247{
4248 ASSERT(s_info);
4249 return s_info->bytes_used + s_info->bytes_reserved +
4250 s_info->bytes_pinned + s_info->bytes_readonly +
4251 (may_use_included ? s_info->bytes_may_use : 0);
4252}
4253
04f4f916 4254int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4255{
04f4f916 4256 struct btrfs_root *root = inode->root;
b4d7c3c9 4257 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4258 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4259 u64 used;
94b947b2 4260 int ret = 0;
c99f1b0c
ZL
4261 int need_commit = 2;
4262 int have_pinned_space;
6a63209f 4263
6a63209f 4264 /* make sure bytes are sectorsize aligned */
0b246afa 4265 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4266
9dced186 4267 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4268 need_commit = 0;
9dced186 4269 ASSERT(current->journal_info);
0af3d00b
JB
4270 }
4271
6a63209f
JB
4272again:
4273 /* make sure we have enough space to handle the data first */
4274 spin_lock(&data_sinfo->lock);
4136135b 4275 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4276
4277 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4278 struct btrfs_trans_handle *trans;
9ed74f2d 4279
6a63209f
JB
4280 /*
4281 * if we don't have enough free bytes in this space then we need
4282 * to alloc a new chunk.
4283 */
b9fd47cd 4284 if (!data_sinfo->full) {
6a63209f 4285 u64 alloc_target;
9ed74f2d 4286
0e4f8f88 4287 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4288 spin_unlock(&data_sinfo->lock);
1174cade 4289
1b86826d 4290 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4291 /*
4292 * It is ugly that we don't call nolock join
4293 * transaction for the free space inode case here.
4294 * But it is safe because we only do the data space
4295 * reservation for the free space cache in the
4296 * transaction context, the common join transaction
4297 * just increase the counter of the current transaction
4298 * handler, doesn't try to acquire the trans_lock of
4299 * the fs.
4300 */
7a7eaa40 4301 trans = btrfs_join_transaction(root);
a22285a6
YZ
4302 if (IS_ERR(trans))
4303 return PTR_ERR(trans);
9ed74f2d 4304
2ff7e61e 4305 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4306 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4307 btrfs_end_transaction(trans);
d52a5b5f
MX
4308 if (ret < 0) {
4309 if (ret != -ENOSPC)
4310 return ret;
c99f1b0c
ZL
4311 else {
4312 have_pinned_space = 1;
d52a5b5f 4313 goto commit_trans;
c99f1b0c 4314 }
d52a5b5f 4315 }
9ed74f2d 4316
6a63209f
JB
4317 goto again;
4318 }
f2bb8f5c
JB
4319
4320 /*
b150a4f1 4321 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4322 * allocation, and no removed chunk in current transaction,
4323 * don't bother committing the transaction.
f2bb8f5c 4324 */
c99f1b0c
ZL
4325 have_pinned_space = percpu_counter_compare(
4326 &data_sinfo->total_bytes_pinned,
4327 used + bytes - data_sinfo->total_bytes);
6a63209f 4328 spin_unlock(&data_sinfo->lock);
6a63209f 4329
4e06bdd6 4330 /* commit the current transaction and try again */
d52a5b5f 4331commit_trans:
c99f1b0c 4332 if (need_commit &&
0b246afa 4333 !atomic_read(&fs_info->open_ioctl_trans)) {
c99f1b0c 4334 need_commit--;
b150a4f1 4335
e1746e83
ZL
4336 if (need_commit > 0) {
4337 btrfs_start_delalloc_roots(fs_info, 0, -1);
6374e57a 4338 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4339 (u64)-1);
e1746e83 4340 }
9a4e7276 4341
7a7eaa40 4342 trans = btrfs_join_transaction(root);
a22285a6
YZ
4343 if (IS_ERR(trans))
4344 return PTR_ERR(trans);
c99f1b0c 4345 if (have_pinned_space >= 0 ||
3204d33c
JB
4346 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4347 &trans->transaction->flags) ||
c99f1b0c 4348 need_commit > 0) {
3a45bb20 4349 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4350 if (ret)
4351 return ret;
d7c15171 4352 /*
c2d6cb16
FM
4353 * The cleaner kthread might still be doing iput
4354 * operations. Wait for it to finish so that
4355 * more space is released.
d7c15171 4356 */
0b246afa
JM
4357 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4358 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4359 goto again;
4360 } else {
3a45bb20 4361 btrfs_end_transaction(trans);
94b947b2 4362 }
4e06bdd6 4363 }
9ed74f2d 4364
0b246afa 4365 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4366 "space_info:enospc",
4367 data_sinfo->flags, bytes, 1);
6a63209f
JB
4368 return -ENOSPC;
4369 }
4370 data_sinfo->bytes_may_use += bytes;
0b246afa 4371 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4372 data_sinfo->flags, bytes, 1);
6a63209f 4373 spin_unlock(&data_sinfo->lock);
6a63209f 4374
237c0e9f 4375 return ret;
9ed74f2d 4376}
6a63209f 4377
364ecf36
QW
4378int btrfs_check_data_free_space(struct inode *inode,
4379 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4380{
0b246afa 4381 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4382 int ret;
4383
4384 /* align the range */
0b246afa
JM
4385 len = round_up(start + len, fs_info->sectorsize) -
4386 round_down(start, fs_info->sectorsize);
4387 start = round_down(start, fs_info->sectorsize);
4ceff079 4388
04f4f916 4389 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4390 if (ret < 0)
4391 return ret;
4392
1e5ec2e7 4393 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4394 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4395 if (ret < 0)
1e5ec2e7 4396 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4397 else
4398 ret = 0;
4ceff079
QW
4399 return ret;
4400}
4401
4ceff079
QW
4402/*
4403 * Called if we need to clear a data reservation for this inode
4404 * Normally in a error case.
4405 *
51773bec
QW
4406 * This one will *NOT* use accurate qgroup reserved space API, just for case
4407 * which we can't sleep and is sure it won't affect qgroup reserved space.
4408 * Like clear_bit_hook().
4ceff079 4409 */
51773bec
QW
4410void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4411 u64 len)
4ceff079 4412{
0b246afa 4413 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4414 struct btrfs_space_info *data_sinfo;
4415
4416 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4417 len = round_up(start + len, fs_info->sectorsize) -
4418 round_down(start, fs_info->sectorsize);
4419 start = round_down(start, fs_info->sectorsize);
4ceff079 4420
0b246afa 4421 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4422 spin_lock(&data_sinfo->lock);
4423 if (WARN_ON(data_sinfo->bytes_may_use < len))
4424 data_sinfo->bytes_may_use = 0;
4425 else
4426 data_sinfo->bytes_may_use -= len;
0b246afa 4427 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4428 data_sinfo->flags, len, 0);
4429 spin_unlock(&data_sinfo->lock);
4430}
4431
51773bec
QW
4432/*
4433 * Called if we need to clear a data reservation for this inode
4434 * Normally in a error case.
4435 *
01327610 4436 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4437 * space framework.
4438 */
bc42bda2
QW
4439void btrfs_free_reserved_data_space(struct inode *inode,
4440 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4441{
0c476a5d
JM
4442 struct btrfs_root *root = BTRFS_I(inode)->root;
4443
4444 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4445 len = round_up(start + len, root->fs_info->sectorsize) -
4446 round_down(start, root->fs_info->sectorsize);
4447 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4448
51773bec 4449 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4450 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4451}
4452
97e728d4 4453static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4454{
97e728d4
JB
4455 struct list_head *head = &info->space_info;
4456 struct btrfs_space_info *found;
e3ccfa98 4457
97e728d4
JB
4458 rcu_read_lock();
4459 list_for_each_entry_rcu(found, head, list) {
4460 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4461 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4462 }
97e728d4 4463 rcu_read_unlock();
e3ccfa98
JB
4464}
4465
3c76cd84
MX
4466static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4467{
4468 return (global->size << 1);
4469}
4470
2ff7e61e 4471static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4472 struct btrfs_space_info *sinfo, int force)
32c00aff 4473{
0b246afa 4474 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4475 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4476 u64 thresh;
e3ccfa98 4477
0e4f8f88
CM
4478 if (force == CHUNK_ALLOC_FORCE)
4479 return 1;
4480
fb25e914
JB
4481 /*
4482 * We need to take into account the global rsv because for all intents
4483 * and purposes it's used space. Don't worry about locking the
4484 * global_rsv, it doesn't change except when the transaction commits.
4485 */
54338b5c 4486 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4487 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4488
0e4f8f88
CM
4489 /*
4490 * in limited mode, we want to have some free space up to
4491 * about 1% of the FS size.
4492 */
4493 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4494 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4495 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4496
8d8aafee 4497 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4498 return 1;
4499 }
0e4f8f88 4500
8d8aafee 4501 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4502 return 0;
424499db 4503 return 1;
32c00aff
JB
4504}
4505
2ff7e61e 4506static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4507{
4508 u64 num_dev;
4509
53b381b3
DW
4510 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4511 BTRFS_BLOCK_GROUP_RAID0 |
4512 BTRFS_BLOCK_GROUP_RAID5 |
4513 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4514 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4515 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4516 num_dev = 2;
4517 else
4518 num_dev = 1; /* DUP or single */
4519
39c2d7fa 4520 return num_dev;
15d1ff81
LB
4521}
4522
39c2d7fa
FM
4523/*
4524 * If @is_allocation is true, reserve space in the system space info necessary
4525 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4526 * removing a chunk.
4527 */
4528void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4529 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4530{
4531 struct btrfs_space_info *info;
4532 u64 left;
4533 u64 thresh;
4fbcdf66 4534 int ret = 0;
39c2d7fa 4535 u64 num_devs;
4fbcdf66
FM
4536
4537 /*
4538 * Needed because we can end up allocating a system chunk and for an
4539 * atomic and race free space reservation in the chunk block reserve.
4540 */
0b246afa 4541 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4542
0b246afa 4543 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4544 spin_lock(&info->lock);
4136135b 4545 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4546 spin_unlock(&info->lock);
4547
2ff7e61e 4548 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4549
4550 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4551 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4552 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4553
0b246afa
JM
4554 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4555 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4556 left, thresh, type);
4557 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4558 }
4559
4560 if (left < thresh) {
1b86826d 4561 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4562
4fbcdf66
FM
4563 /*
4564 * Ignore failure to create system chunk. We might end up not
4565 * needing it, as we might not need to COW all nodes/leafs from
4566 * the paths we visit in the chunk tree (they were already COWed
4567 * or created in the current transaction for example).
4568 */
2ff7e61e 4569 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4570 }
4571
4572 if (!ret) {
0b246afa
JM
4573 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4574 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4575 thresh, BTRFS_RESERVE_NO_FLUSH);
4576 if (!ret)
4577 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4578 }
4579}
4580
28b737f6
LB
4581/*
4582 * If force is CHUNK_ALLOC_FORCE:
4583 * - return 1 if it successfully allocates a chunk,
4584 * - return errors including -ENOSPC otherwise.
4585 * If force is NOT CHUNK_ALLOC_FORCE:
4586 * - return 0 if it doesn't need to allocate a new chunk,
4587 * - return 1 if it successfully allocates a chunk,
4588 * - return errors including -ENOSPC otherwise.
4589 */
6324fbf3 4590static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4591 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4592{
6324fbf3 4593 struct btrfs_space_info *space_info;
6d74119f 4594 int wait_for_alloc = 0;
9ed74f2d 4595 int ret = 0;
9ed74f2d 4596
c6b305a8
JB
4597 /* Don't re-enter if we're already allocating a chunk */
4598 if (trans->allocating_chunk)
4599 return -ENOSPC;
4600
0b246afa 4601 space_info = __find_space_info(fs_info, flags);
593060d7 4602 if (!space_info) {
2be12ef7
NB
4603 ret = create_space_info(fs_info, flags, &space_info);
4604 if (ret)
4605 return ret;
9ed74f2d
JB
4606 }
4607
6d74119f 4608again:
25179201 4609 spin_lock(&space_info->lock);
9e622d6b 4610 if (force < space_info->force_alloc)
0e4f8f88 4611 force = space_info->force_alloc;
25179201 4612 if (space_info->full) {
2ff7e61e 4613 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4614 ret = -ENOSPC;
4615 else
4616 ret = 0;
25179201 4617 spin_unlock(&space_info->lock);
09fb99a6 4618 return ret;
9ed74f2d
JB
4619 }
4620
2ff7e61e 4621 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4622 spin_unlock(&space_info->lock);
6d74119f
JB
4623 return 0;
4624 } else if (space_info->chunk_alloc) {
4625 wait_for_alloc = 1;
4626 } else {
4627 space_info->chunk_alloc = 1;
9ed74f2d 4628 }
0e4f8f88 4629
25179201 4630 spin_unlock(&space_info->lock);
9ed74f2d 4631
6d74119f
JB
4632 mutex_lock(&fs_info->chunk_mutex);
4633
4634 /*
4635 * The chunk_mutex is held throughout the entirety of a chunk
4636 * allocation, so once we've acquired the chunk_mutex we know that the
4637 * other guy is done and we need to recheck and see if we should
4638 * allocate.
4639 */
4640 if (wait_for_alloc) {
4641 mutex_unlock(&fs_info->chunk_mutex);
4642 wait_for_alloc = 0;
4643 goto again;
4644 }
4645
c6b305a8
JB
4646 trans->allocating_chunk = true;
4647
67377734
JB
4648 /*
4649 * If we have mixed data/metadata chunks we want to make sure we keep
4650 * allocating mixed chunks instead of individual chunks.
4651 */
4652 if (btrfs_mixed_space_info(space_info))
4653 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4654
97e728d4
JB
4655 /*
4656 * if we're doing a data chunk, go ahead and make sure that
4657 * we keep a reasonable number of metadata chunks allocated in the
4658 * FS as well.
4659 */
9ed74f2d 4660 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4661 fs_info->data_chunk_allocations++;
4662 if (!(fs_info->data_chunk_allocations %
4663 fs_info->metadata_ratio))
4664 force_metadata_allocation(fs_info);
9ed74f2d
JB
4665 }
4666
15d1ff81
LB
4667 /*
4668 * Check if we have enough space in SYSTEM chunk because we may need
4669 * to update devices.
4670 */
2ff7e61e 4671 check_system_chunk(trans, fs_info, flags);
15d1ff81 4672
2ff7e61e 4673 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4674 trans->allocating_chunk = false;
92b8e897 4675
9ed74f2d 4676 spin_lock(&space_info->lock);
a81cb9a2
AO
4677 if (ret < 0 && ret != -ENOSPC)
4678 goto out;
9ed74f2d 4679 if (ret)
6324fbf3 4680 space_info->full = 1;
424499db
YZ
4681 else
4682 ret = 1;
6d74119f 4683
0e4f8f88 4684 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4685out:
6d74119f 4686 space_info->chunk_alloc = 0;
9ed74f2d 4687 spin_unlock(&space_info->lock);
a25c75d5 4688 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4689 /*
4690 * When we allocate a new chunk we reserve space in the chunk block
4691 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4692 * add new nodes/leafs to it if we end up needing to do it when
4693 * inserting the chunk item and updating device items as part of the
4694 * second phase of chunk allocation, performed by
4695 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4696 * large number of new block groups to create in our transaction
4697 * handle's new_bgs list to avoid exhausting the chunk block reserve
4698 * in extreme cases - like having a single transaction create many new
4699 * block groups when starting to write out the free space caches of all
4700 * the block groups that were made dirty during the lifetime of the
4701 * transaction.
4702 */
d9a0540a 4703 if (trans->can_flush_pending_bgs &&
ee22184b 4704 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
2ff7e61e 4705 btrfs_create_pending_block_groups(trans, fs_info);
00d80e34
FM
4706 btrfs_trans_release_chunk_metadata(trans);
4707 }
0f9dd46c 4708 return ret;
6324fbf3 4709}
9ed74f2d 4710
c1c4919b 4711static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4712 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4713 enum btrfs_reserve_flush_enum flush,
4714 bool system_chunk)
a80c8dcf 4715{
0b246afa 4716 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4717 u64 profile;
3c76cd84 4718 u64 space_size;
a80c8dcf
JB
4719 u64 avail;
4720 u64 used;
4721
957780eb
JB
4722 /* Don't overcommit when in mixed mode. */
4723 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4724 return 0;
4725
c1c4919b
JM
4726 if (system_chunk)
4727 profile = btrfs_system_alloc_profile(fs_info);
4728 else
4729 profile = btrfs_metadata_alloc_profile(fs_info);
4730
4136135b 4731 used = btrfs_space_info_used(space_info, false);
96f1bb57 4732
96f1bb57
JB
4733 /*
4734 * We only want to allow over committing if we have lots of actual space
4735 * free, but if we don't have enough space to handle the global reserve
4736 * space then we could end up having a real enospc problem when trying
4737 * to allocate a chunk or some other such important allocation.
4738 */
3c76cd84
MX
4739 spin_lock(&global_rsv->lock);
4740 space_size = calc_global_rsv_need_space(global_rsv);
4741 spin_unlock(&global_rsv->lock);
4742 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4743 return 0;
4744
4745 used += space_info->bytes_may_use;
a80c8dcf 4746
a5ed45f8 4747 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4748
4749 /*
4750 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4751 * space is actually useable. For raid56, the space info used
4752 * doesn't include the parity drive, so we don't have to
4753 * change the math
a80c8dcf
JB
4754 */
4755 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4756 BTRFS_BLOCK_GROUP_RAID1 |
4757 BTRFS_BLOCK_GROUP_RAID10))
4758 avail >>= 1;
4759
4760 /*
561c294d
MX
4761 * If we aren't flushing all things, let us overcommit up to
4762 * 1/2th of the space. If we can flush, don't let us overcommit
4763 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4764 */
08e007d2 4765 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4766 avail >>= 3;
a80c8dcf 4767 else
14575aef 4768 avail >>= 1;
a80c8dcf 4769
14575aef 4770 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4771 return 1;
4772 return 0;
4773}
4774
2ff7e61e 4775static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4776 unsigned long nr_pages, int nr_items)
da633a42 4777{
0b246afa 4778 struct super_block *sb = fs_info->sb;
da633a42 4779
925a6efb
JB
4780 if (down_read_trylock(&sb->s_umount)) {
4781 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4782 up_read(&sb->s_umount);
4783 } else {
da633a42
MX
4784 /*
4785 * We needn't worry the filesystem going from r/w to r/o though
4786 * we don't acquire ->s_umount mutex, because the filesystem
4787 * should guarantee the delalloc inodes list be empty after
4788 * the filesystem is readonly(all dirty pages are written to
4789 * the disk).
4790 */
0b246afa 4791 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4792 if (!current->journal_info)
0b246afa 4793 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4794 }
4795}
4796
6374e57a 4797static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4798 u64 to_reclaim)
18cd8ea6
MX
4799{
4800 u64 bytes;
6374e57a 4801 u64 nr;
18cd8ea6 4802
2ff7e61e 4803 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4804 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4805 if (!nr)
4806 nr = 1;
4807 return nr;
4808}
4809
ee22184b 4810#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4811
9ed74f2d 4812/*
5da9d01b 4813 * shrink metadata reservation for delalloc
9ed74f2d 4814 */
c1c4919b
JM
4815static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4816 u64 orig, bool wait_ordered)
5da9d01b 4817{
0019f10d 4818 struct btrfs_space_info *space_info;
663350ac 4819 struct btrfs_trans_handle *trans;
f4c738c2 4820 u64 delalloc_bytes;
5da9d01b 4821 u64 max_reclaim;
6374e57a 4822 u64 items;
b1953bce 4823 long time_left;
d3ee29e3
MX
4824 unsigned long nr_pages;
4825 int loops;
08e007d2 4826 enum btrfs_reserve_flush_enum flush;
5da9d01b 4827
c61a16a7 4828 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4829 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4830 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4831
663350ac 4832 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4833 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4834
963d678b 4835 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4836 &fs_info->delalloc_bytes);
f4c738c2 4837 if (delalloc_bytes == 0) {
fdb5effd 4838 if (trans)
f4c738c2 4839 return;
38c135af 4840 if (wait_ordered)
0b246afa 4841 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4842 return;
fdb5effd
JB
4843 }
4844
d3ee29e3 4845 loops = 0;
f4c738c2
JB
4846 while (delalloc_bytes && loops < 3) {
4847 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4848 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4849 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4850 /*
4851 * We need to wait for the async pages to actually start before
4852 * we do anything.
4853 */
0b246afa 4854 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4855 if (!max_reclaim)
4856 goto skip_async;
4857
4858 if (max_reclaim <= nr_pages)
4859 max_reclaim = 0;
4860 else
4861 max_reclaim -= nr_pages;
dea31f52 4862
0b246afa
JM
4863 wait_event(fs_info->async_submit_wait,
4864 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4865 (int)max_reclaim);
4866skip_async:
08e007d2
MX
4867 if (!trans)
4868 flush = BTRFS_RESERVE_FLUSH_ALL;
4869 else
4870 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4871 spin_lock(&space_info->lock);
957780eb
JB
4872 if (list_empty(&space_info->tickets) &&
4873 list_empty(&space_info->priority_tickets)) {
4874 spin_unlock(&space_info->lock);
4875 break;
4876 }
0019f10d 4877 spin_unlock(&space_info->lock);
5da9d01b 4878
36e39c40 4879 loops++;
f104d044 4880 if (wait_ordered && !trans) {
0b246afa 4881 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4882 } else {
f4c738c2 4883 time_left = schedule_timeout_killable(1);
f104d044
JB
4884 if (time_left)
4885 break;
4886 }
963d678b 4887 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4888 &fs_info->delalloc_bytes);
5da9d01b 4889 }
5da9d01b
YZ
4890}
4891
996478ca
JB
4892struct reserve_ticket {
4893 u64 bytes;
4894 int error;
4895 struct list_head list;
4896 wait_queue_head_t wait;
4897};
4898
663350ac
JB
4899/**
4900 * maybe_commit_transaction - possibly commit the transaction if its ok to
4901 * @root - the root we're allocating for
4902 * @bytes - the number of bytes we want to reserve
4903 * @force - force the commit
8bb8ab2e 4904 *
663350ac
JB
4905 * This will check to make sure that committing the transaction will actually
4906 * get us somewhere and then commit the transaction if it does. Otherwise it
4907 * will return -ENOSPC.
8bb8ab2e 4908 */
0c9ab349 4909static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4910 struct btrfs_space_info *space_info)
663350ac 4911{
996478ca 4912 struct reserve_ticket *ticket = NULL;
0b246afa 4913 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4914 struct btrfs_trans_handle *trans;
996478ca 4915 u64 bytes;
663350ac
JB
4916
4917 trans = (struct btrfs_trans_handle *)current->journal_info;
4918 if (trans)
4919 return -EAGAIN;
4920
996478ca
JB
4921 spin_lock(&space_info->lock);
4922 if (!list_empty(&space_info->priority_tickets))
4923 ticket = list_first_entry(&space_info->priority_tickets,
4924 struct reserve_ticket, list);
4925 else if (!list_empty(&space_info->tickets))
4926 ticket = list_first_entry(&space_info->tickets,
4927 struct reserve_ticket, list);
4928 bytes = (ticket) ? ticket->bytes : 0;
4929 spin_unlock(&space_info->lock);
4930
4931 if (!bytes)
4932 return 0;
663350ac
JB
4933
4934 /* See if there is enough pinned space to make this reservation */
b150a4f1 4935 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4936 bytes) >= 0)
663350ac 4937 goto commit;
663350ac
JB
4938
4939 /*
4940 * See if there is some space in the delayed insertion reservation for
4941 * this reservation.
4942 */
4943 if (space_info != delayed_rsv->space_info)
4944 return -ENOSPC;
4945
4946 spin_lock(&delayed_rsv->lock);
996478ca
JB
4947 if (delayed_rsv->size > bytes)
4948 bytes = 0;
4949 else
4950 bytes -= delayed_rsv->size;
057aac3e
NB
4951 spin_unlock(&delayed_rsv->lock);
4952
b150a4f1 4953 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4954 bytes) < 0) {
663350ac
JB
4955 return -ENOSPC;
4956 }
663350ac
JB
4957
4958commit:
a9b3311e 4959 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4960 if (IS_ERR(trans))
4961 return -ENOSPC;
4962
3a45bb20 4963 return btrfs_commit_transaction(trans);
663350ac
JB
4964}
4965
e38ae7a0
NB
4966/*
4967 * Try to flush some data based on policy set by @state. This is only advisory
4968 * and may fail for various reasons. The caller is supposed to examine the
4969 * state of @space_info to detect the outcome.
4970 */
4971static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4972 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4973 int state)
96c3f433 4974{
a9b3311e 4975 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4976 struct btrfs_trans_handle *trans;
4977 int nr;
f4c738c2 4978 int ret = 0;
96c3f433
JB
4979
4980 switch (state) {
96c3f433
JB
4981 case FLUSH_DELAYED_ITEMS_NR:
4982 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4983 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4984 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4985 else
96c3f433 4986 nr = -1;
18cd8ea6 4987
96c3f433
JB
4988 trans = btrfs_join_transaction(root);
4989 if (IS_ERR(trans)) {
4990 ret = PTR_ERR(trans);
4991 break;
4992 }
2ff7e61e 4993 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
3a45bb20 4994 btrfs_end_transaction(trans);
96c3f433 4995 break;
67b0fd63
JB
4996 case FLUSH_DELALLOC:
4997 case FLUSH_DELALLOC_WAIT:
7bdd6277 4998 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4999 state == FLUSH_DELALLOC_WAIT);
5000 break;
ea658bad
JB
5001 case ALLOC_CHUNK:
5002 trans = btrfs_join_transaction(root);
5003 if (IS_ERR(trans)) {
5004 ret = PTR_ERR(trans);
5005 break;
5006 }
2ff7e61e 5007 ret = do_chunk_alloc(trans, fs_info,
1b86826d 5008 btrfs_metadata_alloc_profile(fs_info),
ea658bad 5009 CHUNK_ALLOC_NO_FORCE);
3a45bb20 5010 btrfs_end_transaction(trans);
eecba891 5011 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
5012 ret = 0;
5013 break;
96c3f433 5014 case COMMIT_TRANS:
996478ca 5015 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
5016 break;
5017 default:
5018 ret = -ENOSPC;
5019 break;
5020 }
5021
7bdd6277
NB
5022 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5023 ret);
e38ae7a0 5024 return;
96c3f433 5025}
21c7e756
MX
5026
5027static inline u64
c1c4919b
JM
5028btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5029 struct btrfs_space_info *space_info,
5030 bool system_chunk)
21c7e756 5031{
957780eb 5032 struct reserve_ticket *ticket;
21c7e756
MX
5033 u64 used;
5034 u64 expected;
957780eb 5035 u64 to_reclaim = 0;
21c7e756 5036
957780eb
JB
5037 list_for_each_entry(ticket, &space_info->tickets, list)
5038 to_reclaim += ticket->bytes;
5039 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5040 to_reclaim += ticket->bytes;
5041 if (to_reclaim)
5042 return to_reclaim;
21c7e756 5043
e0af2484 5044 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5045 if (can_overcommit(fs_info, space_info, to_reclaim,
5046 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5047 return 0;
5048
0eee8a49
NB
5049 used = btrfs_space_info_used(space_info, true);
5050
c1c4919b
JM
5051 if (can_overcommit(fs_info, space_info, SZ_1M,
5052 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5053 expected = div_factor_fine(space_info->total_bytes, 95);
5054 else
5055 expected = div_factor_fine(space_info->total_bytes, 90);
5056
5057 if (used > expected)
5058 to_reclaim = used - expected;
5059 else
5060 to_reclaim = 0;
5061 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5062 space_info->bytes_reserved);
21c7e756
MX
5063 return to_reclaim;
5064}
5065
c1c4919b
JM
5066static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5067 struct btrfs_space_info *space_info,
5068 u64 used, bool system_chunk)
21c7e756 5069{
365c5313
JB
5070 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5071
5072 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5073 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5074 return 0;
5075
c1c4919b
JM
5076 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5077 system_chunk))
d38b349c
JB
5078 return 0;
5079
0b246afa
JM
5080 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5081 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5082}
5083
957780eb 5084static void wake_all_tickets(struct list_head *head)
21c7e756 5085{
957780eb 5086 struct reserve_ticket *ticket;
25ce459c 5087
957780eb
JB
5088 while (!list_empty(head)) {
5089 ticket = list_first_entry(head, struct reserve_ticket, list);
5090 list_del_init(&ticket->list);
5091 ticket->error = -ENOSPC;
5092 wake_up(&ticket->wait);
21c7e756 5093 }
21c7e756
MX
5094}
5095
957780eb
JB
5096/*
5097 * This is for normal flushers, we can wait all goddamned day if we want to. We
5098 * will loop and continuously try to flush as long as we are making progress.
5099 * We count progress as clearing off tickets each time we have to loop.
5100 */
21c7e756
MX
5101static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5102{
5103 struct btrfs_fs_info *fs_info;
5104 struct btrfs_space_info *space_info;
5105 u64 to_reclaim;
5106 int flush_state;
957780eb 5107 int commit_cycles = 0;
ce129655 5108 u64 last_tickets_id;
21c7e756
MX
5109
5110 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5111 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5112
957780eb 5113 spin_lock(&space_info->lock);
c1c4919b
JM
5114 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5115 false);
957780eb
JB
5116 if (!to_reclaim) {
5117 space_info->flush = 0;
5118 spin_unlock(&space_info->lock);
21c7e756 5119 return;
957780eb 5120 }
ce129655 5121 last_tickets_id = space_info->tickets_id;
957780eb 5122 spin_unlock(&space_info->lock);
21c7e756
MX
5123
5124 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5125 do {
e38ae7a0 5126 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5127 spin_lock(&space_info->lock);
5128 if (list_empty(&space_info->tickets)) {
5129 space_info->flush = 0;
5130 spin_unlock(&space_info->lock);
5131 return;
5132 }
c1c4919b
JM
5133 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5134 space_info,
5135 false);
ce129655 5136 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5137 flush_state++;
5138 } else {
ce129655 5139 last_tickets_id = space_info->tickets_id;
957780eb
JB
5140 flush_state = FLUSH_DELAYED_ITEMS_NR;
5141 if (commit_cycles)
5142 commit_cycles--;
5143 }
5144
5145 if (flush_state > COMMIT_TRANS) {
5146 commit_cycles++;
5147 if (commit_cycles > 2) {
5148 wake_all_tickets(&space_info->tickets);
5149 space_info->flush = 0;
5150 } else {
5151 flush_state = FLUSH_DELAYED_ITEMS_NR;
5152 }
5153 }
5154 spin_unlock(&space_info->lock);
5155 } while (flush_state <= COMMIT_TRANS);
5156}
5157
5158void btrfs_init_async_reclaim_work(struct work_struct *work)
5159{
5160 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5161}
5162
5163static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5164 struct btrfs_space_info *space_info,
5165 struct reserve_ticket *ticket)
5166{
5167 u64 to_reclaim;
5168 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5169
5170 spin_lock(&space_info->lock);
c1c4919b
JM
5171 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5172 false);
957780eb
JB
5173 if (!to_reclaim) {
5174 spin_unlock(&space_info->lock);
5175 return;
5176 }
5177 spin_unlock(&space_info->lock);
5178
21c7e756 5179 do {
7bdd6277 5180 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5181 flush_state++;
957780eb
JB
5182 spin_lock(&space_info->lock);
5183 if (ticket->bytes == 0) {
5184 spin_unlock(&space_info->lock);
21c7e756 5185 return;
957780eb
JB
5186 }
5187 spin_unlock(&space_info->lock);
5188
5189 /*
5190 * Priority flushers can't wait on delalloc without
5191 * deadlocking.
5192 */
5193 if (flush_state == FLUSH_DELALLOC ||
5194 flush_state == FLUSH_DELALLOC_WAIT)
5195 flush_state = ALLOC_CHUNK;
365c5313 5196 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5197}
5198
957780eb
JB
5199static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5200 struct btrfs_space_info *space_info,
5201 struct reserve_ticket *ticket, u64 orig_bytes)
5202
21c7e756 5203{
957780eb
JB
5204 DEFINE_WAIT(wait);
5205 int ret = 0;
5206
5207 spin_lock(&space_info->lock);
5208 while (ticket->bytes > 0 && ticket->error == 0) {
5209 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5210 if (ret) {
5211 ret = -EINTR;
5212 break;
5213 }
5214 spin_unlock(&space_info->lock);
5215
5216 schedule();
5217
5218 finish_wait(&ticket->wait, &wait);
5219 spin_lock(&space_info->lock);
5220 }
5221 if (!ret)
5222 ret = ticket->error;
5223 if (!list_empty(&ticket->list))
5224 list_del_init(&ticket->list);
5225 if (ticket->bytes && ticket->bytes < orig_bytes) {
5226 u64 num_bytes = orig_bytes - ticket->bytes;
5227 space_info->bytes_may_use -= num_bytes;
5228 trace_btrfs_space_reservation(fs_info, "space_info",
5229 space_info->flags, num_bytes, 0);
5230 }
5231 spin_unlock(&space_info->lock);
5232
5233 return ret;
21c7e756
MX
5234}
5235
4a92b1b8
JB
5236/**
5237 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5238 * @root - the root we're allocating for
957780eb 5239 * @space_info - the space info we want to allocate from
4a92b1b8 5240 * @orig_bytes - the number of bytes we want
48fc7f7e 5241 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5242 *
01327610 5243 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5244 * with the block_rsv. If there is not enough space it will make an attempt to
5245 * flush out space to make room. It will do this by flushing delalloc if
5246 * possible or committing the transaction. If flush is 0 then no attempts to
5247 * regain reservations will be made and this will fail if there is not enough
5248 * space already.
8bb8ab2e 5249 */
c1c4919b 5250static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5251 struct btrfs_space_info *space_info,
5252 u64 orig_bytes,
c1c4919b
JM
5253 enum btrfs_reserve_flush_enum flush,
5254 bool system_chunk)
9ed74f2d 5255{
957780eb 5256 struct reserve_ticket ticket;
2bf64758 5257 u64 used;
8bb8ab2e 5258 int ret = 0;
9ed74f2d 5259
957780eb 5260 ASSERT(orig_bytes);
8ca17f0f 5261 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5262
8bb8ab2e 5263 spin_lock(&space_info->lock);
fdb5effd 5264 ret = -ENOSPC;
4136135b 5265 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5266
8bb8ab2e 5267 /*
957780eb
JB
5268 * If we have enough space then hooray, make our reservation and carry
5269 * on. If not see if we can overcommit, and if we can, hooray carry on.
5270 * If not things get more complicated.
8bb8ab2e 5271 */
957780eb
JB
5272 if (used + orig_bytes <= space_info->total_bytes) {
5273 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5274 trace_btrfs_space_reservation(fs_info, "space_info",
5275 space_info->flags, orig_bytes, 1);
957780eb 5276 ret = 0;
c1c4919b
JM
5277 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5278 system_chunk)) {
44734ed1 5279 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5280 trace_btrfs_space_reservation(fs_info, "space_info",
5281 space_info->flags, orig_bytes, 1);
44734ed1 5282 ret = 0;
2bf64758
JB
5283 }
5284
8bb8ab2e 5285 /*
957780eb
JB
5286 * If we couldn't make a reservation then setup our reservation ticket
5287 * and kick the async worker if it's not already running.
08e007d2 5288 *
957780eb
JB
5289 * If we are a priority flusher then we just need to add our ticket to
5290 * the list and we will do our own flushing further down.
8bb8ab2e 5291 */
72bcd99d 5292 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5293 ticket.bytes = orig_bytes;
5294 ticket.error = 0;
5295 init_waitqueue_head(&ticket.wait);
5296 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5297 list_add_tail(&ticket.list, &space_info->tickets);
5298 if (!space_info->flush) {
5299 space_info->flush = 1;
0b246afa 5300 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5301 space_info->flags,
5302 orig_bytes, flush,
5303 "enospc");
957780eb 5304 queue_work(system_unbound_wq,
c1c4919b 5305 &fs_info->async_reclaim_work);
957780eb
JB
5306 }
5307 } else {
5308 list_add_tail(&ticket.list,
5309 &space_info->priority_tickets);
5310 }
21c7e756
MX
5311 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5312 used += orig_bytes;
f6acfd50
JB
5313 /*
5314 * We will do the space reservation dance during log replay,
5315 * which means we won't have fs_info->fs_root set, so don't do
5316 * the async reclaim as we will panic.
5317 */
0b246afa 5318 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5319 need_do_async_reclaim(fs_info, space_info,
5320 used, system_chunk) &&
0b246afa
JM
5321 !work_busy(&fs_info->async_reclaim_work)) {
5322 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5323 orig_bytes, flush, "preempt");
21c7e756 5324 queue_work(system_unbound_wq,
0b246afa 5325 &fs_info->async_reclaim_work);
f376df2b 5326 }
8bb8ab2e 5327 }
f0486c68 5328 spin_unlock(&space_info->lock);
08e007d2 5329 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5330 return ret;
f0486c68 5331
957780eb 5332 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5333 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5334 orig_bytes);
08e007d2 5335
957780eb 5336 ret = 0;
0b246afa 5337 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5338 spin_lock(&space_info->lock);
5339 if (ticket.bytes) {
5340 if (ticket.bytes < orig_bytes) {
5341 u64 num_bytes = orig_bytes - ticket.bytes;
5342 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5343 trace_btrfs_space_reservation(fs_info, "space_info",
5344 space_info->flags,
5345 num_bytes, 0);
08e007d2 5346
957780eb
JB
5347 }
5348 list_del_init(&ticket.list);
5349 ret = -ENOSPC;
5350 }
5351 spin_unlock(&space_info->lock);
5352 ASSERT(list_empty(&ticket.list));
5353 return ret;
5354}
8bb8ab2e 5355
957780eb
JB
5356/**
5357 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5358 * @root - the root we're allocating for
5359 * @block_rsv - the block_rsv we're allocating for
5360 * @orig_bytes - the number of bytes we want
5361 * @flush - whether or not we can flush to make our reservation
5362 *
5363 * This will reserve orgi_bytes number of bytes from the space info associated
5364 * with the block_rsv. If there is not enough space it will make an attempt to
5365 * flush out space to make room. It will do this by flushing delalloc if
5366 * possible or committing the transaction. If flush is 0 then no attempts to
5367 * regain reservations will be made and this will fail if there is not enough
5368 * space already.
5369 */
5370static int reserve_metadata_bytes(struct btrfs_root *root,
5371 struct btrfs_block_rsv *block_rsv,
5372 u64 orig_bytes,
5373 enum btrfs_reserve_flush_enum flush)
5374{
0b246afa
JM
5375 struct btrfs_fs_info *fs_info = root->fs_info;
5376 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5377 int ret;
c1c4919b 5378 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5379
c1c4919b
JM
5380 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5381 orig_bytes, flush, system_chunk);
5d80366e
JB
5382 if (ret == -ENOSPC &&
5383 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5384 if (block_rsv != global_rsv &&
5385 !block_rsv_use_bytes(global_rsv, orig_bytes))
5386 ret = 0;
5387 }
cab45e22 5388 if (ret == -ENOSPC)
0b246afa 5389 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5390 block_rsv->space_info->flags,
5391 orig_bytes, 1);
f0486c68
YZ
5392 return ret;
5393}
5394
79787eaa
JM
5395static struct btrfs_block_rsv *get_block_rsv(
5396 const struct btrfs_trans_handle *trans,
5397 const struct btrfs_root *root)
f0486c68 5398{
0b246afa 5399 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5400 struct btrfs_block_rsv *block_rsv = NULL;
5401
e9cf439f 5402 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5403 (root == fs_info->csum_root && trans->adding_csums) ||
5404 (root == fs_info->uuid_root))
f7a81ea4
SB
5405 block_rsv = trans->block_rsv;
5406
4c13d758 5407 if (!block_rsv)
f0486c68
YZ
5408 block_rsv = root->block_rsv;
5409
5410 if (!block_rsv)
0b246afa 5411 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5412
5413 return block_rsv;
5414}
5415
5416static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5417 u64 num_bytes)
5418{
5419 int ret = -ENOSPC;
5420 spin_lock(&block_rsv->lock);
5421 if (block_rsv->reserved >= num_bytes) {
5422 block_rsv->reserved -= num_bytes;
5423 if (block_rsv->reserved < block_rsv->size)
5424 block_rsv->full = 0;
5425 ret = 0;
5426 }
5427 spin_unlock(&block_rsv->lock);
5428 return ret;
5429}
5430
5431static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5432 u64 num_bytes, int update_size)
5433{
5434 spin_lock(&block_rsv->lock);
5435 block_rsv->reserved += num_bytes;
5436 if (update_size)
5437 block_rsv->size += num_bytes;
5438 else if (block_rsv->reserved >= block_rsv->size)
5439 block_rsv->full = 1;
5440 spin_unlock(&block_rsv->lock);
5441}
5442
d52be818
JB
5443int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5444 struct btrfs_block_rsv *dest, u64 num_bytes,
5445 int min_factor)
5446{
5447 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5448 u64 min_bytes;
5449
5450 if (global_rsv->space_info != dest->space_info)
5451 return -ENOSPC;
5452
5453 spin_lock(&global_rsv->lock);
5454 min_bytes = div_factor(global_rsv->size, min_factor);
5455 if (global_rsv->reserved < min_bytes + num_bytes) {
5456 spin_unlock(&global_rsv->lock);
5457 return -ENOSPC;
5458 }
5459 global_rsv->reserved -= num_bytes;
5460 if (global_rsv->reserved < global_rsv->size)
5461 global_rsv->full = 0;
5462 spin_unlock(&global_rsv->lock);
5463
5464 block_rsv_add_bytes(dest, num_bytes, 1);
5465 return 0;
5466}
5467
957780eb
JB
5468/*
5469 * This is for space we already have accounted in space_info->bytes_may_use, so
5470 * basically when we're returning space from block_rsv's.
5471 */
5472static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5473 struct btrfs_space_info *space_info,
5474 u64 num_bytes)
5475{
5476 struct reserve_ticket *ticket;
5477 struct list_head *head;
5478 u64 used;
5479 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5480 bool check_overcommit = false;
5481
5482 spin_lock(&space_info->lock);
5483 head = &space_info->priority_tickets;
5484
5485 /*
5486 * If we are over our limit then we need to check and see if we can
5487 * overcommit, and if we can't then we just need to free up our space
5488 * and not satisfy any requests.
5489 */
0eee8a49 5490 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5491 if (used - num_bytes >= space_info->total_bytes)
5492 check_overcommit = true;
5493again:
5494 while (!list_empty(head) && num_bytes) {
5495 ticket = list_first_entry(head, struct reserve_ticket,
5496 list);
5497 /*
5498 * We use 0 bytes because this space is already reserved, so
5499 * adding the ticket space would be a double count.
5500 */
5501 if (check_overcommit &&
c1c4919b 5502 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5503 break;
5504 if (num_bytes >= ticket->bytes) {
5505 list_del_init(&ticket->list);
5506 num_bytes -= ticket->bytes;
5507 ticket->bytes = 0;
ce129655 5508 space_info->tickets_id++;
957780eb
JB
5509 wake_up(&ticket->wait);
5510 } else {
5511 ticket->bytes -= num_bytes;
5512 num_bytes = 0;
5513 }
5514 }
5515
5516 if (num_bytes && head == &space_info->priority_tickets) {
5517 head = &space_info->tickets;
5518 flush = BTRFS_RESERVE_FLUSH_ALL;
5519 goto again;
5520 }
5521 space_info->bytes_may_use -= num_bytes;
5522 trace_btrfs_space_reservation(fs_info, "space_info",
5523 space_info->flags, num_bytes, 0);
5524 spin_unlock(&space_info->lock);
5525}
5526
5527/*
5528 * This is for newly allocated space that isn't accounted in
5529 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5530 * we use this helper.
5531 */
5532static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5533 struct btrfs_space_info *space_info,
5534 u64 num_bytes)
5535{
5536 struct reserve_ticket *ticket;
5537 struct list_head *head = &space_info->priority_tickets;
5538
5539again:
5540 while (!list_empty(head) && num_bytes) {
5541 ticket = list_first_entry(head, struct reserve_ticket,
5542 list);
5543 if (num_bytes >= ticket->bytes) {
5544 trace_btrfs_space_reservation(fs_info, "space_info",
5545 space_info->flags,
5546 ticket->bytes, 1);
5547 list_del_init(&ticket->list);
5548 num_bytes -= ticket->bytes;
5549 space_info->bytes_may_use += ticket->bytes;
5550 ticket->bytes = 0;
ce129655 5551 space_info->tickets_id++;
957780eb
JB
5552 wake_up(&ticket->wait);
5553 } else {
5554 trace_btrfs_space_reservation(fs_info, "space_info",
5555 space_info->flags,
5556 num_bytes, 1);
5557 space_info->bytes_may_use += num_bytes;
5558 ticket->bytes -= num_bytes;
5559 num_bytes = 0;
5560 }
5561 }
5562
5563 if (num_bytes && head == &space_info->priority_tickets) {
5564 head = &space_info->tickets;
5565 goto again;
5566 }
5567}
5568
69fe2d75 5569static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5570 struct btrfs_block_rsv *block_rsv,
62a45b60 5571 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5572{
5573 struct btrfs_space_info *space_info = block_rsv->space_info;
69fe2d75 5574 u64 ret;
f0486c68
YZ
5575
5576 spin_lock(&block_rsv->lock);
5577 if (num_bytes == (u64)-1)
5578 num_bytes = block_rsv->size;
5579 block_rsv->size -= num_bytes;
5580 if (block_rsv->reserved >= block_rsv->size) {
5581 num_bytes = block_rsv->reserved - block_rsv->size;
5582 block_rsv->reserved = block_rsv->size;
5583 block_rsv->full = 1;
5584 } else {
5585 num_bytes = 0;
5586 }
5587 spin_unlock(&block_rsv->lock);
5588
69fe2d75 5589 ret = num_bytes;
f0486c68
YZ
5590 if (num_bytes > 0) {
5591 if (dest) {
e9e22899
JB
5592 spin_lock(&dest->lock);
5593 if (!dest->full) {
5594 u64 bytes_to_add;
5595
5596 bytes_to_add = dest->size - dest->reserved;
5597 bytes_to_add = min(num_bytes, bytes_to_add);
5598 dest->reserved += bytes_to_add;
5599 if (dest->reserved >= dest->size)
5600 dest->full = 1;
5601 num_bytes -= bytes_to_add;
5602 }
5603 spin_unlock(&dest->lock);
5604 }
957780eb
JB
5605 if (num_bytes)
5606 space_info_add_old_bytes(fs_info, space_info,
5607 num_bytes);
9ed74f2d 5608 }
69fe2d75 5609 return ret;
f0486c68 5610}
4e06bdd6 5611
25d609f8
JB
5612int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5613 struct btrfs_block_rsv *dst, u64 num_bytes,
5614 int update_size)
f0486c68
YZ
5615{
5616 int ret;
9ed74f2d 5617
f0486c68
YZ
5618 ret = block_rsv_use_bytes(src, num_bytes);
5619 if (ret)
5620 return ret;
9ed74f2d 5621
25d609f8 5622 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5623 return 0;
5624}
5625
66d8f3dd 5626void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5627{
f0486c68
YZ
5628 memset(rsv, 0, sizeof(*rsv));
5629 spin_lock_init(&rsv->lock);
66d8f3dd 5630 rsv->type = type;
f0486c68
YZ
5631}
5632
69fe2d75
JB
5633void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5634 struct btrfs_block_rsv *rsv,
5635 unsigned short type)
5636{
5637 btrfs_init_block_rsv(rsv, type);
5638 rsv->space_info = __find_space_info(fs_info,
5639 BTRFS_BLOCK_GROUP_METADATA);
5640}
5641
2ff7e61e 5642struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5643 unsigned short type)
f0486c68
YZ
5644{
5645 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5646
f0486c68
YZ
5647 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5648 if (!block_rsv)
5649 return NULL;
9ed74f2d 5650
69fe2d75 5651 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5652 return block_rsv;
5653}
9ed74f2d 5654
2ff7e61e 5655void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5656 struct btrfs_block_rsv *rsv)
5657{
2aaa6655
JB
5658 if (!rsv)
5659 return;
2ff7e61e 5660 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5661 kfree(rsv);
9ed74f2d
JB
5662}
5663
cdfb080e
CM
5664void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5665{
5666 kfree(rsv);
5667}
5668
08e007d2
MX
5669int btrfs_block_rsv_add(struct btrfs_root *root,
5670 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5671 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5672{
f0486c68 5673 int ret;
9ed74f2d 5674
f0486c68
YZ
5675 if (num_bytes == 0)
5676 return 0;
8bb8ab2e 5677
61b520a9 5678 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5679 if (!ret) {
5680 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5681 return 0;
5682 }
9ed74f2d 5683
f0486c68 5684 return ret;
f0486c68 5685}
9ed74f2d 5686
2ff7e61e 5687int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5688{
5689 u64 num_bytes = 0;
f0486c68 5690 int ret = -ENOSPC;
9ed74f2d 5691
f0486c68
YZ
5692 if (!block_rsv)
5693 return 0;
9ed74f2d 5694
f0486c68 5695 spin_lock(&block_rsv->lock);
36ba022a
JB
5696 num_bytes = div_factor(block_rsv->size, min_factor);
5697 if (block_rsv->reserved >= num_bytes)
5698 ret = 0;
5699 spin_unlock(&block_rsv->lock);
9ed74f2d 5700
36ba022a
JB
5701 return ret;
5702}
5703
08e007d2
MX
5704int btrfs_block_rsv_refill(struct btrfs_root *root,
5705 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5706 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5707{
5708 u64 num_bytes = 0;
5709 int ret = -ENOSPC;
5710
5711 if (!block_rsv)
5712 return 0;
5713
5714 spin_lock(&block_rsv->lock);
5715 num_bytes = min_reserved;
13553e52 5716 if (block_rsv->reserved >= num_bytes)
f0486c68 5717 ret = 0;
13553e52 5718 else
f0486c68 5719 num_bytes -= block_rsv->reserved;
f0486c68 5720 spin_unlock(&block_rsv->lock);
13553e52 5721
f0486c68
YZ
5722 if (!ret)
5723 return 0;
5724
aa38a711 5725 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5726 if (!ret) {
5727 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5728 return 0;
6a63209f 5729 }
9ed74f2d 5730
13553e52 5731 return ret;
f0486c68
YZ
5732}
5733
69fe2d75
JB
5734/**
5735 * btrfs_inode_rsv_refill - refill the inode block rsv.
5736 * @inode - the inode we are refilling.
5737 * @flush - the flusing restriction.
5738 *
5739 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5740 * block_rsv->size as the minimum size. We'll either refill the missing amount
5741 * or return if we already have enough space. This will also handle the resreve
5742 * tracepoint for the reserved amount.
5743 */
3f2dd7a0
QW
5744static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5745 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5746{
5747 struct btrfs_root *root = inode->root;
5748 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5749 u64 num_bytes = 0;
5750 int ret = -ENOSPC;
5751
5752 spin_lock(&block_rsv->lock);
5753 if (block_rsv->reserved < block_rsv->size)
5754 num_bytes = block_rsv->size - block_rsv->reserved;
5755 spin_unlock(&block_rsv->lock);
5756
5757 if (num_bytes == 0)
5758 return 0;
5759
5760 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5761 if (!ret) {
5762 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5763 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5764 btrfs_ino(inode), num_bytes, 1);
5765 }
5766 return ret;
5767}
5768
5769/**
5770 * btrfs_inode_rsv_release - release any excessive reservation.
5771 * @inode - the inode we need to release from.
5772 *
5773 * This is the same as btrfs_block_rsv_release, except that it handles the
5774 * tracepoint for the reservation.
5775 */
d2560ebd 5776static void btrfs_inode_rsv_release(struct btrfs_inode *inode)
69fe2d75
JB
5777{
5778 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5779 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5780 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5781 u64 released = 0;
5782
5783 /*
5784 * Since we statically set the block_rsv->size we just want to say we
5785 * are releasing 0 bytes, and then we'll just get the reservation over
5786 * the size free'd.
5787 */
5788 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5789 if (released > 0)
5790 trace_btrfs_space_reservation(fs_info, "delalloc",
5791 btrfs_ino(inode), released, 0);
5792}
5793
2ff7e61e 5794void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5795 struct btrfs_block_rsv *block_rsv,
5796 u64 num_bytes)
5797{
0b246afa
JM
5798 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5799
17504584 5800 if (global_rsv == block_rsv ||
f0486c68
YZ
5801 block_rsv->space_info != global_rsv->space_info)
5802 global_rsv = NULL;
0b246afa 5803 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5804}
5805
8929ecfa
YZ
5806static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5807{
5808 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5809 struct btrfs_space_info *sinfo = block_rsv->space_info;
5810 u64 num_bytes;
6a63209f 5811
ae2e4728
JB
5812 /*
5813 * The global block rsv is based on the size of the extent tree, the
5814 * checksum tree and the root tree. If the fs is empty we want to set
5815 * it to a minimal amount for safety.
5816 */
5817 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5818 btrfs_root_used(&fs_info->csum_root->root_item) +
5819 btrfs_root_used(&fs_info->tree_root->root_item);
5820 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5821
8929ecfa 5822 spin_lock(&sinfo->lock);
1f699d38 5823 spin_lock(&block_rsv->lock);
4e06bdd6 5824
ee22184b 5825 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5826
fb4b10e5 5827 if (block_rsv->reserved < block_rsv->size) {
4136135b 5828 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5829 if (sinfo->total_bytes > num_bytes) {
5830 num_bytes = sinfo->total_bytes - num_bytes;
5831 num_bytes = min(num_bytes,
5832 block_rsv->size - block_rsv->reserved);
5833 block_rsv->reserved += num_bytes;
5834 sinfo->bytes_may_use += num_bytes;
5835 trace_btrfs_space_reservation(fs_info, "space_info",
5836 sinfo->flags, num_bytes,
5837 1);
5838 }
5839 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5840 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5841 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5842 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5843 sinfo->flags, num_bytes, 0);
8929ecfa 5844 block_rsv->reserved = block_rsv->size;
8929ecfa 5845 }
182608c8 5846
fb4b10e5
JB
5847 if (block_rsv->reserved == block_rsv->size)
5848 block_rsv->full = 1;
5849 else
5850 block_rsv->full = 0;
5851
8929ecfa 5852 spin_unlock(&block_rsv->lock);
1f699d38 5853 spin_unlock(&sinfo->lock);
6a63209f
JB
5854}
5855
f0486c68 5856static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5857{
f0486c68 5858 struct btrfs_space_info *space_info;
6a63209f 5859
f0486c68
YZ
5860 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5861 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5862
f0486c68 5863 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5864 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5865 fs_info->trans_block_rsv.space_info = space_info;
5866 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5867 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5868
8929ecfa
YZ
5869 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5870 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5871 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5872 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5873 if (fs_info->quota_root)
5874 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5875 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5876
8929ecfa 5877 update_global_block_rsv(fs_info);
6a63209f
JB
5878}
5879
8929ecfa 5880static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5881{
8c2a3ca2
JB
5882 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5883 (u64)-1);
8929ecfa
YZ
5884 WARN_ON(fs_info->trans_block_rsv.size > 0);
5885 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5886 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5887 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5888 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5889 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5890}
5891
a22285a6 5892void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2ff7e61e 5893 struct btrfs_fs_info *fs_info)
6a63209f 5894{
bf2681cb
JB
5895 if (!trans->block_rsv) {
5896 ASSERT(!trans->bytes_reserved);
0e721106 5897 return;
bf2681cb 5898 }
0e721106 5899
a22285a6
YZ
5900 if (!trans->bytes_reserved)
5901 return;
6a63209f 5902
bf2681cb 5903 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
0b246afa 5904 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 5905 trans->transid, trans->bytes_reserved, 0);
2ff7e61e
JM
5906 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5907 trans->bytes_reserved);
a22285a6
YZ
5908 trans->bytes_reserved = 0;
5909}
6a63209f 5910
4fbcdf66
FM
5911/*
5912 * To be called after all the new block groups attached to the transaction
5913 * handle have been created (btrfs_create_pending_block_groups()).
5914 */
5915void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5916{
64b63580 5917 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5918
5919 if (!trans->chunk_bytes_reserved)
5920 return;
5921
5922 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5923
5924 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5925 trans->chunk_bytes_reserved);
5926 trans->chunk_bytes_reserved = 0;
5927}
5928
79787eaa 5929/* Can only return 0 or -ENOSPC */
d68fc57b 5930int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5931 struct btrfs_inode *inode)
d68fc57b 5932{
8ed7a2a0
NB
5933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5934 struct btrfs_root *root = inode->root;
40acc3ee
JB
5935 /*
5936 * We always use trans->block_rsv here as we will have reserved space
5937 * for our orphan when starting the transaction, using get_block_rsv()
5938 * here will sometimes make us choose the wrong block rsv as we could be
5939 * doing a reloc inode for a non refcounted root.
5940 */
5941 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5942 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5943
5944 /*
fcb80c2a
JB
5945 * We need to hold space in order to delete our orphan item once we've
5946 * added it, so this takes the reservation so we can release it later
5947 * when we are truly done with the orphan item.
d68fc57b 5948 */
0b246afa
JM
5949 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5950
8ed7a2a0
NB
5951 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5952 num_bytes, 1);
25d609f8 5953 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5954}
5955
703b391a 5956void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5957{
703b391a
NB
5958 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5959 struct btrfs_root *root = inode->root;
0b246afa
JM
5960 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5961
703b391a
NB
5962 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5963 num_bytes, 0);
2ff7e61e 5964 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5965}
97e728d4 5966
d5c12070
MX
5967/*
5968 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5969 * root: the root of the parent directory
5970 * rsv: block reservation
5971 * items: the number of items that we need do reservation
5972 * qgroup_reserved: used to return the reserved size in qgroup
5973 *
5974 * This function is used to reserve the space for snapshot/subvolume
5975 * creation and deletion. Those operations are different with the
5976 * common file/directory operations, they change two fs/file trees
5977 * and root tree, the number of items that the qgroup reserves is
5978 * different with the free space reservation. So we can not use
01327610 5979 * the space reservation mechanism in start_transaction().
d5c12070
MX
5980 */
5981int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5982 struct btrfs_block_rsv *rsv,
5983 int items,
ee3441b4
JM
5984 u64 *qgroup_reserved,
5985 bool use_global_rsv)
a22285a6 5986{
d5c12070
MX
5987 u64 num_bytes;
5988 int ret;
0b246afa
JM
5989 struct btrfs_fs_info *fs_info = root->fs_info;
5990 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5991
0b246afa 5992 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5993 /* One for parent inode, two for dir entries */
0b246afa 5994 num_bytes = 3 * fs_info->nodesize;
003d7c59 5995 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
5996 if (ret)
5997 return ret;
5998 } else {
5999 num_bytes = 0;
6000 }
6001
6002 *qgroup_reserved = num_bytes;
6003
0b246afa
JM
6004 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6005 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6006 BTRFS_BLOCK_GROUP_METADATA);
6007 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6008 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6009
6010 if (ret == -ENOSPC && use_global_rsv)
25d609f8 6011 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 6012
7174109c
QW
6013 if (ret && *qgroup_reserved)
6014 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
6015
6016 return ret;
6017}
6018
2ff7e61e 6019void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6020 struct btrfs_block_rsv *rsv)
d5c12070 6021{
2ff7e61e 6022 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6023}
6024
69fe2d75
JB
6025static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6026 struct btrfs_inode *inode)
9e0baf60 6027{
69fe2d75
JB
6028 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6029 u64 reserve_size = 0;
6030 u64 csum_leaves;
6031 unsigned outstanding_extents;
9e0baf60 6032
69fe2d75
JB
6033 lockdep_assert_held(&inode->lock);
6034 outstanding_extents = inode->outstanding_extents;
6035 if (outstanding_extents)
6036 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6037 outstanding_extents + 1);
6038 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6039 inode->csum_bytes);
6040 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6041 csum_leaves);
9e0baf60 6042
69fe2d75
JB
6043 spin_lock(&block_rsv->lock);
6044 block_rsv->size = reserve_size;
6045 spin_unlock(&block_rsv->lock);
0ca1f7ce 6046}
c146afad 6047
9f3db423 6048int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6049{
9f3db423
NB
6050 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6051 struct btrfs_root *root = inode->root;
69fe2d75 6052 unsigned nr_extents;
08e007d2 6053 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6054 int ret = 0;
c64c2bd8 6055 bool delalloc_lock = true;
6324fbf3 6056
c64c2bd8
JB
6057 /* If we are a free space inode we need to not flush since we will be in
6058 * the middle of a transaction commit. We also don't need the delalloc
6059 * mutex since we won't race with anybody. We need this mostly to make
6060 * lockdep shut its filthy mouth.
bac357dc
JB
6061 *
6062 * If we have a transaction open (can happen if we call truncate_block
6063 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6064 */
6065 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6066 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6067 delalloc_lock = false;
bac357dc
JB
6068 } else if (current->journal_info) {
6069 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 6070 }
c09544e0 6071
08e007d2 6072 if (flush != BTRFS_RESERVE_NO_FLUSH &&
0b246afa 6073 btrfs_transaction_in_commit(fs_info))
0ca1f7ce 6074 schedule_timeout(1);
ec44a35c 6075
c64c2bd8 6076 if (delalloc_lock)
9f3db423 6077 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6078
0b246afa 6079 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6080
6081 /* Add our new extents and calculate the new rsv size. */
9f3db423 6082 spin_lock(&inode->lock);
69fe2d75 6083 nr_extents = count_max_extents(num_bytes);
8b62f87b 6084 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6085 inode->csum_bytes += num_bytes;
6086 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6087 spin_unlock(&inode->lock);
57a45ced 6088
0b246afa 6089 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 6090 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 6091 nr_extents * fs_info->nodesize, true);
88e081bf
WS
6092 if (ret)
6093 goto out_fail;
6094 }
c5567237 6095
69fe2d75 6096 ret = btrfs_inode_rsv_refill(inode, flush);
88e081bf 6097 if (unlikely(ret)) {
da17066c 6098 btrfs_qgroup_free_meta(root,
0b246afa 6099 nr_extents * fs_info->nodesize);
88e081bf 6100 goto out_fail;
9e0baf60 6101 }
25179201 6102
c64c2bd8 6103 if (delalloc_lock)
9f3db423 6104 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6105 return 0;
88e081bf
WS
6106
6107out_fail:
9f3db423 6108 spin_lock(&inode->lock);
8b62f87b
JB
6109 nr_extents = count_max_extents(num_bytes);
6110 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6111 inode->csum_bytes -= num_bytes;
6112 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6113 spin_unlock(&inode->lock);
88e081bf 6114
69fe2d75 6115 btrfs_inode_rsv_release(inode);
88e081bf 6116 if (delalloc_lock)
9f3db423 6117 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6118 return ret;
0ca1f7ce
YZ
6119}
6120
7709cde3
JB
6121/**
6122 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6123 * @inode: the inode to release the reservation for.
6124 * @num_bytes: the number of bytes we are releasing.
7709cde3
JB
6125 *
6126 * This will release the metadata reservation for an inode. This can be called
6127 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6128 * reservations, or on error for the same reason.
7709cde3 6129 */
691fa059 6130void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6131{
691fa059 6132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6133
0b246afa 6134 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6135 spin_lock(&inode->lock);
69fe2d75
JB
6136 inode->csum_bytes -= num_bytes;
6137 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6138 spin_unlock(&inode->lock);
0ca1f7ce 6139
0b246afa 6140 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6141 return;
6142
69fe2d75 6143 btrfs_inode_rsv_release(inode);
0ca1f7ce
YZ
6144}
6145
8b62f87b
JB
6146/**
6147 * btrfs_delalloc_release_extents - release our outstanding_extents
6148 * @inode: the inode to balance the reservation for.
6149 * @num_bytes: the number of bytes we originally reserved with
6150 *
6151 * When we reserve space we increase outstanding_extents for the extents we may
6152 * add. Once we've set the range as delalloc or created our ordered extents we
6153 * have outstanding_extents to track the real usage, so we use this to free our
6154 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6155 * with btrfs_delalloc_reserve_metadata.
6156 */
6157void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6158{
6159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6160 unsigned num_extents;
8b62f87b
JB
6161
6162 spin_lock(&inode->lock);
6163 num_extents = count_max_extents(num_bytes);
6164 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6165 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6166 spin_unlock(&inode->lock);
6167
8b62f87b
JB
6168 if (btrfs_is_testing(fs_info))
6169 return;
6170
69fe2d75 6171 btrfs_inode_rsv_release(inode);
8b62f87b
JB
6172}
6173
1ada3a62 6174/**
7cf5b976 6175 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6176 * delalloc
6177 * @inode: inode we're writing to
6178 * @start: start range we are writing to
6179 * @len: how long the range we are writing to
364ecf36
QW
6180 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6181 * current reservation.
1ada3a62 6182 *
1ada3a62
QW
6183 * This will do the following things
6184 *
6185 * o reserve space in data space info for num bytes
6186 * and reserve precious corresponding qgroup space
6187 * (Done in check_data_free_space)
6188 *
6189 * o reserve space for metadata space, based on the number of outstanding
6190 * extents and how much csums will be needed
6191 * also reserve metadata space in a per root over-reserve method.
6192 * o add to the inodes->delalloc_bytes
6193 * o add it to the fs_info's delalloc inodes list.
6194 * (Above 3 all done in delalloc_reserve_metadata)
6195 *
6196 * Return 0 for success
6197 * Return <0 for error(-ENOSPC or -EQUOT)
6198 */
364ecf36
QW
6199int btrfs_delalloc_reserve_space(struct inode *inode,
6200 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6201{
6202 int ret;
6203
364ecf36 6204 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6205 if (ret < 0)
6206 return ret;
9f3db423 6207 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6208 if (ret < 0)
bc42bda2 6209 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6210 return ret;
6211}
6212
7709cde3 6213/**
7cf5b976 6214 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6215 * @inode: inode we're releasing space for
6216 * @start: start position of the space already reserved
6217 * @len: the len of the space already reserved
8b62f87b 6218 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6219 *
6220 * This function will release the metadata space that was not used and will
6221 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6222 * list if there are no delalloc bytes left.
6223 * Also it will handle the qgroup reserved space.
6224 */
bc42bda2 6225void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b
JB
6226 struct extent_changeset *reserved,
6227 u64 start, u64 len)
1ada3a62 6228{
691fa059 6229 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
bc42bda2 6230 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6231}
6232
ce93ec54 6233static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6234 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6235 u64 num_bytes, int alloc)
9078a3e1 6236{
0af3d00b 6237 struct btrfs_block_group_cache *cache = NULL;
db94535d 6238 u64 total = num_bytes;
9078a3e1 6239 u64 old_val;
db94535d 6240 u64 byte_in_group;
0af3d00b 6241 int factor;
3e1ad54f 6242
5d4f98a2 6243 /* block accounting for super block */
eb73c1b7 6244 spin_lock(&info->delalloc_root_lock);
6c41761f 6245 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6246 if (alloc)
6247 old_val += num_bytes;
6248 else
6249 old_val -= num_bytes;
6c41761f 6250 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6251 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6252
d397712b 6253 while (total) {
db94535d 6254 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6255 if (!cache)
79787eaa 6256 return -ENOENT;
b742bb82
YZ
6257 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6258 BTRFS_BLOCK_GROUP_RAID1 |
6259 BTRFS_BLOCK_GROUP_RAID10))
6260 factor = 2;
6261 else
6262 factor = 1;
9d66e233
JB
6263 /*
6264 * If this block group has free space cache written out, we
6265 * need to make sure to load it if we are removing space. This
6266 * is because we need the unpinning stage to actually add the
6267 * space back to the block group, otherwise we will leak space.
6268 */
6269 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6270 cache_block_group(cache, 1);
0af3d00b 6271
db94535d
CM
6272 byte_in_group = bytenr - cache->key.objectid;
6273 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6274
25179201 6275 spin_lock(&cache->space_info->lock);
c286ac48 6276 spin_lock(&cache->lock);
0af3d00b 6277
6202df69 6278 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6279 cache->disk_cache_state < BTRFS_DC_CLEAR)
6280 cache->disk_cache_state = BTRFS_DC_CLEAR;
6281
9078a3e1 6282 old_val = btrfs_block_group_used(&cache->item);
db94535d 6283 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6284 if (alloc) {
db94535d 6285 old_val += num_bytes;
11833d66
YZ
6286 btrfs_set_block_group_used(&cache->item, old_val);
6287 cache->reserved -= num_bytes;
11833d66 6288 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6289 cache->space_info->bytes_used += num_bytes;
6290 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6291 spin_unlock(&cache->lock);
25179201 6292 spin_unlock(&cache->space_info->lock);
cd1bc465 6293 } else {
db94535d 6294 old_val -= num_bytes;
ae0ab003
FM
6295 btrfs_set_block_group_used(&cache->item, old_val);
6296 cache->pinned += num_bytes;
6297 cache->space_info->bytes_pinned += num_bytes;
6298 cache->space_info->bytes_used -= num_bytes;
6299 cache->space_info->disk_used -= num_bytes * factor;
6300 spin_unlock(&cache->lock);
6301 spin_unlock(&cache->space_info->lock);
47ab2a6c 6302
0b246afa 6303 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6304 cache->space_info->flags,
6305 num_bytes, 1);
d7eae340
OS
6306 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6307 num_bytes);
ae0ab003
FM
6308 set_extent_dirty(info->pinned_extents,
6309 bytenr, bytenr + num_bytes - 1,
6310 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6311 }
1bbc621e
CM
6312
6313 spin_lock(&trans->transaction->dirty_bgs_lock);
6314 if (list_empty(&cache->dirty_list)) {
6315 list_add_tail(&cache->dirty_list,
6316 &trans->transaction->dirty_bgs);
6317 trans->transaction->num_dirty_bgs++;
6318 btrfs_get_block_group(cache);
6319 }
6320 spin_unlock(&trans->transaction->dirty_bgs_lock);
6321
036a9348
FM
6322 /*
6323 * No longer have used bytes in this block group, queue it for
6324 * deletion. We do this after adding the block group to the
6325 * dirty list to avoid races between cleaner kthread and space
6326 * cache writeout.
6327 */
6328 if (!alloc && old_val == 0) {
6329 spin_lock(&info->unused_bgs_lock);
6330 if (list_empty(&cache->bg_list)) {
6331 btrfs_get_block_group(cache);
6332 list_add_tail(&cache->bg_list,
6333 &info->unused_bgs);
6334 }
6335 spin_unlock(&info->unused_bgs_lock);
6336 }
6337
fa9c0d79 6338 btrfs_put_block_group(cache);
db94535d
CM
6339 total -= num_bytes;
6340 bytenr += num_bytes;
9078a3e1
CM
6341 }
6342 return 0;
6343}
6324fbf3 6344
2ff7e61e 6345static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6346{
0f9dd46c 6347 struct btrfs_block_group_cache *cache;
d2fb3437 6348 u64 bytenr;
0f9dd46c 6349
0b246afa
JM
6350 spin_lock(&fs_info->block_group_cache_lock);
6351 bytenr = fs_info->first_logical_byte;
6352 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6353
6354 if (bytenr < (u64)-1)
6355 return bytenr;
6356
0b246afa 6357 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6358 if (!cache)
a061fc8d 6359 return 0;
0f9dd46c 6360
d2fb3437 6361 bytenr = cache->key.objectid;
fa9c0d79 6362 btrfs_put_block_group(cache);
d2fb3437
YZ
6363
6364 return bytenr;
a061fc8d
CM
6365}
6366
2ff7e61e 6367static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6368 struct btrfs_block_group_cache *cache,
6369 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6370{
11833d66
YZ
6371 spin_lock(&cache->space_info->lock);
6372 spin_lock(&cache->lock);
6373 cache->pinned += num_bytes;
6374 cache->space_info->bytes_pinned += num_bytes;
6375 if (reserved) {
6376 cache->reserved -= num_bytes;
6377 cache->space_info->bytes_reserved -= num_bytes;
6378 }
6379 spin_unlock(&cache->lock);
6380 spin_unlock(&cache->space_info->lock);
68b38550 6381
0b246afa 6382 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6383 cache->space_info->flags, num_bytes, 1);
4da8b76d 6384 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6385 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6386 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6387 return 0;
6388}
68b38550 6389
f0486c68
YZ
6390/*
6391 * this function must be called within transaction
6392 */
2ff7e61e 6393int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6394 u64 bytenr, u64 num_bytes, int reserved)
6395{
6396 struct btrfs_block_group_cache *cache;
68b38550 6397
0b246afa 6398 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6399 BUG_ON(!cache); /* Logic error */
f0486c68 6400
2ff7e61e 6401 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6402
6403 btrfs_put_block_group(cache);
11833d66
YZ
6404 return 0;
6405}
6406
f0486c68 6407/*
e688b725
CM
6408 * this function must be called within transaction
6409 */
2ff7e61e 6410int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6411 u64 bytenr, u64 num_bytes)
6412{
6413 struct btrfs_block_group_cache *cache;
b50c6e25 6414 int ret;
e688b725 6415
0b246afa 6416 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6417 if (!cache)
6418 return -EINVAL;
e688b725
CM
6419
6420 /*
6421 * pull in the free space cache (if any) so that our pin
6422 * removes the free space from the cache. We have load_only set
6423 * to one because the slow code to read in the free extents does check
6424 * the pinned extents.
6425 */
f6373bf3 6426 cache_block_group(cache, 1);
e688b725 6427
2ff7e61e 6428 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6429
6430 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6431 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6432 btrfs_put_block_group(cache);
b50c6e25 6433 return ret;
e688b725
CM
6434}
6435
2ff7e61e
JM
6436static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6437 u64 start, u64 num_bytes)
8c2a1a30
JB
6438{
6439 int ret;
6440 struct btrfs_block_group_cache *block_group;
6441 struct btrfs_caching_control *caching_ctl;
6442
0b246afa 6443 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6444 if (!block_group)
6445 return -EINVAL;
6446
6447 cache_block_group(block_group, 0);
6448 caching_ctl = get_caching_control(block_group);
6449
6450 if (!caching_ctl) {
6451 /* Logic error */
6452 BUG_ON(!block_group_cache_done(block_group));
6453 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6454 } else {
6455 mutex_lock(&caching_ctl->mutex);
6456
6457 if (start >= caching_ctl->progress) {
2ff7e61e 6458 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6459 } else if (start + num_bytes <= caching_ctl->progress) {
6460 ret = btrfs_remove_free_space(block_group,
6461 start, num_bytes);
6462 } else {
6463 num_bytes = caching_ctl->progress - start;
6464 ret = btrfs_remove_free_space(block_group,
6465 start, num_bytes);
6466 if (ret)
6467 goto out_lock;
6468
6469 num_bytes = (start + num_bytes) -
6470 caching_ctl->progress;
6471 start = caching_ctl->progress;
2ff7e61e 6472 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6473 }
6474out_lock:
6475 mutex_unlock(&caching_ctl->mutex);
6476 put_caching_control(caching_ctl);
6477 }
6478 btrfs_put_block_group(block_group);
6479 return ret;
6480}
6481
2ff7e61e 6482int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6483 struct extent_buffer *eb)
6484{
6485 struct btrfs_file_extent_item *item;
6486 struct btrfs_key key;
6487 int found_type;
6488 int i;
6489
2ff7e61e 6490 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6491 return 0;
6492
6493 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6494 btrfs_item_key_to_cpu(eb, &key, i);
6495 if (key.type != BTRFS_EXTENT_DATA_KEY)
6496 continue;
6497 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6498 found_type = btrfs_file_extent_type(eb, item);
6499 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6500 continue;
6501 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6502 continue;
6503 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6504 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6505 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6506 }
6507
6508 return 0;
6509}
6510
9cfa3e34
FM
6511static void
6512btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6513{
6514 atomic_inc(&bg->reservations);
6515}
6516
6517void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6518 const u64 start)
6519{
6520 struct btrfs_block_group_cache *bg;
6521
6522 bg = btrfs_lookup_block_group(fs_info, start);
6523 ASSERT(bg);
6524 if (atomic_dec_and_test(&bg->reservations))
6525 wake_up_atomic_t(&bg->reservations);
6526 btrfs_put_block_group(bg);
6527}
6528
9cfa3e34
FM
6529void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6530{
6531 struct btrfs_space_info *space_info = bg->space_info;
6532
6533 ASSERT(bg->ro);
6534
6535 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6536 return;
6537
6538 /*
6539 * Our block group is read only but before we set it to read only,
6540 * some task might have had allocated an extent from it already, but it
6541 * has not yet created a respective ordered extent (and added it to a
6542 * root's list of ordered extents).
6543 * Therefore wait for any task currently allocating extents, since the
6544 * block group's reservations counter is incremented while a read lock
6545 * on the groups' semaphore is held and decremented after releasing
6546 * the read access on that semaphore and creating the ordered extent.
6547 */
6548 down_write(&space_info->groups_sem);
6549 up_write(&space_info->groups_sem);
6550
5e4def20 6551 wait_on_atomic_t(&bg->reservations, atomic_t_wait,
9cfa3e34
FM
6552 TASK_UNINTERRUPTIBLE);
6553}
6554
fb25e914 6555/**
4824f1f4 6556 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6557 * @cache: The cache we are manipulating
18513091
WX
6558 * @ram_bytes: The number of bytes of file content, and will be same to
6559 * @num_bytes except for the compress path.
fb25e914 6560 * @num_bytes: The number of bytes in question
e570fd27 6561 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6562 *
745699ef
XW
6563 * This is called by the allocator when it reserves space. If this is a
6564 * reservation and the block group has become read only we cannot make the
6565 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6566 */
4824f1f4 6567static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6568 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6569{
fb25e914 6570 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6571 int ret = 0;
79787eaa 6572
fb25e914
JB
6573 spin_lock(&space_info->lock);
6574 spin_lock(&cache->lock);
4824f1f4
WX
6575 if (cache->ro) {
6576 ret = -EAGAIN;
fb25e914 6577 } else {
4824f1f4
WX
6578 cache->reserved += num_bytes;
6579 space_info->bytes_reserved += num_bytes;
e570fd27 6580
18513091
WX
6581 trace_btrfs_space_reservation(cache->fs_info,
6582 "space_info", space_info->flags,
6583 ram_bytes, 0);
6584 space_info->bytes_may_use -= ram_bytes;
e570fd27 6585 if (delalloc)
4824f1f4 6586 cache->delalloc_bytes += num_bytes;
324ae4df 6587 }
fb25e914
JB
6588 spin_unlock(&cache->lock);
6589 spin_unlock(&space_info->lock);
f0486c68 6590 return ret;
324ae4df 6591}
9078a3e1 6592
4824f1f4
WX
6593/**
6594 * btrfs_free_reserved_bytes - update the block_group and space info counters
6595 * @cache: The cache we are manipulating
6596 * @num_bytes: The number of bytes in question
6597 * @delalloc: The blocks are allocated for the delalloc write
6598 *
6599 * This is called by somebody who is freeing space that was never actually used
6600 * on disk. For example if you reserve some space for a new leaf in transaction
6601 * A and before transaction A commits you free that leaf, you call this with
6602 * reserve set to 0 in order to clear the reservation.
6603 */
6604
6605static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6606 u64 num_bytes, int delalloc)
6607{
6608 struct btrfs_space_info *space_info = cache->space_info;
6609 int ret = 0;
6610
6611 spin_lock(&space_info->lock);
6612 spin_lock(&cache->lock);
6613 if (cache->ro)
6614 space_info->bytes_readonly += num_bytes;
6615 cache->reserved -= num_bytes;
6616 space_info->bytes_reserved -= num_bytes;
6617
6618 if (delalloc)
6619 cache->delalloc_bytes -= num_bytes;
6620 spin_unlock(&cache->lock);
6621 spin_unlock(&space_info->lock);
6622 return ret;
6623}
8b74c03e 6624void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6625{
11833d66
YZ
6626 struct btrfs_caching_control *next;
6627 struct btrfs_caching_control *caching_ctl;
6628 struct btrfs_block_group_cache *cache;
e8569813 6629
9e351cc8 6630 down_write(&fs_info->commit_root_sem);
25179201 6631
11833d66
YZ
6632 list_for_each_entry_safe(caching_ctl, next,
6633 &fs_info->caching_block_groups, list) {
6634 cache = caching_ctl->block_group;
6635 if (block_group_cache_done(cache)) {
6636 cache->last_byte_to_unpin = (u64)-1;
6637 list_del_init(&caching_ctl->list);
6638 put_caching_control(caching_ctl);
e8569813 6639 } else {
11833d66 6640 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6641 }
e8569813 6642 }
11833d66
YZ
6643
6644 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6645 fs_info->pinned_extents = &fs_info->freed_extents[1];
6646 else
6647 fs_info->pinned_extents = &fs_info->freed_extents[0];
6648
9e351cc8 6649 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6650
6651 update_global_block_rsv(fs_info);
e8569813
ZY
6652}
6653
c759c4e1
JB
6654/*
6655 * Returns the free cluster for the given space info and sets empty_cluster to
6656 * what it should be based on the mount options.
6657 */
6658static struct btrfs_free_cluster *
2ff7e61e
JM
6659fetch_cluster_info(struct btrfs_fs_info *fs_info,
6660 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6661{
6662 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6663
6664 *empty_cluster = 0;
6665 if (btrfs_mixed_space_info(space_info))
6666 return ret;
6667
c759c4e1 6668 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6669 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6670 if (btrfs_test_opt(fs_info, SSD))
6671 *empty_cluster = SZ_2M;
6672 else
ee22184b 6673 *empty_cluster = SZ_64K;
583b7231
HK
6674 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6675 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6676 *empty_cluster = SZ_2M;
0b246afa 6677 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6678 }
6679
6680 return ret;
6681}
6682
2ff7e61e
JM
6683static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6684 u64 start, u64 end,
678886bd 6685 const bool return_free_space)
ccd467d6 6686{
11833d66 6687 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6688 struct btrfs_space_info *space_info;
6689 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6690 struct btrfs_free_cluster *cluster = NULL;
11833d66 6691 u64 len;
c759c4e1
JB
6692 u64 total_unpinned = 0;
6693 u64 empty_cluster = 0;
7b398f8e 6694 bool readonly;
ccd467d6 6695
11833d66 6696 while (start <= end) {
7b398f8e 6697 readonly = false;
11833d66
YZ
6698 if (!cache ||
6699 start >= cache->key.objectid + cache->key.offset) {
6700 if (cache)
6701 btrfs_put_block_group(cache);
c759c4e1 6702 total_unpinned = 0;
11833d66 6703 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6704 BUG_ON(!cache); /* Logic error */
c759c4e1 6705
2ff7e61e 6706 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6707 cache->space_info,
6708 &empty_cluster);
6709 empty_cluster <<= 1;
11833d66
YZ
6710 }
6711
6712 len = cache->key.objectid + cache->key.offset - start;
6713 len = min(len, end + 1 - start);
6714
6715 if (start < cache->last_byte_to_unpin) {
6716 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6717 if (return_free_space)
6718 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6719 }
6720
f0486c68 6721 start += len;
c759c4e1 6722 total_unpinned += len;
7b398f8e 6723 space_info = cache->space_info;
f0486c68 6724
c759c4e1
JB
6725 /*
6726 * If this space cluster has been marked as fragmented and we've
6727 * unpinned enough in this block group to potentially allow a
6728 * cluster to be created inside of it go ahead and clear the
6729 * fragmented check.
6730 */
6731 if (cluster && cluster->fragmented &&
6732 total_unpinned > empty_cluster) {
6733 spin_lock(&cluster->lock);
6734 cluster->fragmented = 0;
6735 spin_unlock(&cluster->lock);
6736 }
6737
7b398f8e 6738 spin_lock(&space_info->lock);
11833d66
YZ
6739 spin_lock(&cache->lock);
6740 cache->pinned -= len;
7b398f8e 6741 space_info->bytes_pinned -= len;
c51e7bb1
JB
6742
6743 trace_btrfs_space_reservation(fs_info, "pinned",
6744 space_info->flags, len, 0);
4f4db217 6745 space_info->max_extent_size = 0;
d288db5d 6746 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6747 if (cache->ro) {
6748 space_info->bytes_readonly += len;
6749 readonly = true;
6750 }
11833d66 6751 spin_unlock(&cache->lock);
957780eb
JB
6752 if (!readonly && return_free_space &&
6753 global_rsv->space_info == space_info) {
6754 u64 to_add = len;
92ac58ec 6755
7b398f8e
JB
6756 spin_lock(&global_rsv->lock);
6757 if (!global_rsv->full) {
957780eb
JB
6758 to_add = min(len, global_rsv->size -
6759 global_rsv->reserved);
6760 global_rsv->reserved += to_add;
6761 space_info->bytes_may_use += to_add;
7b398f8e
JB
6762 if (global_rsv->reserved >= global_rsv->size)
6763 global_rsv->full = 1;
957780eb
JB
6764 trace_btrfs_space_reservation(fs_info,
6765 "space_info",
6766 space_info->flags,
6767 to_add, 1);
6768 len -= to_add;
7b398f8e
JB
6769 }
6770 spin_unlock(&global_rsv->lock);
957780eb
JB
6771 /* Add to any tickets we may have */
6772 if (len)
6773 space_info_add_new_bytes(fs_info, space_info,
6774 len);
7b398f8e
JB
6775 }
6776 spin_unlock(&space_info->lock);
ccd467d6 6777 }
11833d66
YZ
6778
6779 if (cache)
6780 btrfs_put_block_group(cache);
ccd467d6
CM
6781 return 0;
6782}
6783
6784int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6785 struct btrfs_fs_info *fs_info)
a28ec197 6786{
e33e17ee
JM
6787 struct btrfs_block_group_cache *block_group, *tmp;
6788 struct list_head *deleted_bgs;
11833d66 6789 struct extent_io_tree *unpin;
1a5bc167
CM
6790 u64 start;
6791 u64 end;
a28ec197 6792 int ret;
a28ec197 6793
11833d66
YZ
6794 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6795 unpin = &fs_info->freed_extents[1];
6796 else
6797 unpin = &fs_info->freed_extents[0];
6798
e33e17ee 6799 while (!trans->aborted) {
d4b450cd 6800 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6801 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6802 EXTENT_DIRTY, NULL);
d4b450cd
FM
6803 if (ret) {
6804 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6805 break;
d4b450cd 6806 }
1f3c79a2 6807
0b246afa 6808 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6809 ret = btrfs_discard_extent(fs_info, start,
5378e607 6810 end + 1 - start, NULL);
1f3c79a2 6811
af6f8f60 6812 clear_extent_dirty(unpin, start, end);
2ff7e61e 6813 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6814 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6815 cond_resched();
a28ec197 6816 }
817d52f8 6817
e33e17ee
JM
6818 /*
6819 * Transaction is finished. We don't need the lock anymore. We
6820 * do need to clean up the block groups in case of a transaction
6821 * abort.
6822 */
6823 deleted_bgs = &trans->transaction->deleted_bgs;
6824 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6825 u64 trimmed = 0;
6826
6827 ret = -EROFS;
6828 if (!trans->aborted)
2ff7e61e 6829 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6830 block_group->key.objectid,
6831 block_group->key.offset,
6832 &trimmed);
6833
6834 list_del_init(&block_group->bg_list);
6835 btrfs_put_block_group_trimming(block_group);
6836 btrfs_put_block_group(block_group);
6837
6838 if (ret) {
6839 const char *errstr = btrfs_decode_error(ret);
6840 btrfs_warn(fs_info,
913e1535 6841 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6842 ret, errstr);
6843 }
6844 }
6845
e20d96d6
CM
6846 return 0;
6847}
6848
5d4f98a2 6849static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6850 struct btrfs_fs_info *info,
c682f9b3 6851 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6852 u64 root_objectid, u64 owner_objectid,
6853 u64 owner_offset, int refs_to_drop,
c682f9b3 6854 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6855{
e2fa7227 6856 struct btrfs_key key;
5d4f98a2 6857 struct btrfs_path *path;
1261ec42 6858 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6859 struct extent_buffer *leaf;
5d4f98a2
YZ
6860 struct btrfs_extent_item *ei;
6861 struct btrfs_extent_inline_ref *iref;
a28ec197 6862 int ret;
5d4f98a2 6863 int is_data;
952fccac
CM
6864 int extent_slot = 0;
6865 int found_extent = 0;
6866 int num_to_del = 1;
5d4f98a2
YZ
6867 u32 item_size;
6868 u64 refs;
c682f9b3
QW
6869 u64 bytenr = node->bytenr;
6870 u64 num_bytes = node->num_bytes;
fcebe456 6871 int last_ref = 0;
0b246afa 6872 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6873
5caf2a00 6874 path = btrfs_alloc_path();
54aa1f4d
CM
6875 if (!path)
6876 return -ENOMEM;
5f26f772 6877
e4058b54 6878 path->reada = READA_FORWARD;
b9473439 6879 path->leave_spinning = 1;
5d4f98a2
YZ
6880
6881 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6882 BUG_ON(!is_data && refs_to_drop != 1);
6883
3173a18f 6884 if (is_data)
897ca819 6885 skinny_metadata = false;
3173a18f 6886
87bde3cd 6887 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6888 bytenr, num_bytes, parent,
6889 root_objectid, owner_objectid,
6890 owner_offset);
7bb86316 6891 if (ret == 0) {
952fccac 6892 extent_slot = path->slots[0];
5d4f98a2
YZ
6893 while (extent_slot >= 0) {
6894 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6895 extent_slot);
5d4f98a2 6896 if (key.objectid != bytenr)
952fccac 6897 break;
5d4f98a2
YZ
6898 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6899 key.offset == num_bytes) {
952fccac
CM
6900 found_extent = 1;
6901 break;
6902 }
3173a18f
JB
6903 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6904 key.offset == owner_objectid) {
6905 found_extent = 1;
6906 break;
6907 }
952fccac
CM
6908 if (path->slots[0] - extent_slot > 5)
6909 break;
5d4f98a2 6910 extent_slot--;
952fccac 6911 }
5d4f98a2
YZ
6912#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6913 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6914 if (found_extent && item_size < sizeof(*ei))
6915 found_extent = 0;
6916#endif
31840ae1 6917 if (!found_extent) {
5d4f98a2 6918 BUG_ON(iref);
87bde3cd
JM
6919 ret = remove_extent_backref(trans, info, path, NULL,
6920 refs_to_drop,
fcebe456 6921 is_data, &last_ref);
005d6427 6922 if (ret) {
66642832 6923 btrfs_abort_transaction(trans, ret);
005d6427
DS
6924 goto out;
6925 }
b3b4aa74 6926 btrfs_release_path(path);
b9473439 6927 path->leave_spinning = 1;
5d4f98a2
YZ
6928
6929 key.objectid = bytenr;
6930 key.type = BTRFS_EXTENT_ITEM_KEY;
6931 key.offset = num_bytes;
6932
3173a18f
JB
6933 if (!is_data && skinny_metadata) {
6934 key.type = BTRFS_METADATA_ITEM_KEY;
6935 key.offset = owner_objectid;
6936 }
6937
31840ae1
ZY
6938 ret = btrfs_search_slot(trans, extent_root,
6939 &key, path, -1, 1);
3173a18f
JB
6940 if (ret > 0 && skinny_metadata && path->slots[0]) {
6941 /*
6942 * Couldn't find our skinny metadata item,
6943 * see if we have ye olde extent item.
6944 */
6945 path->slots[0]--;
6946 btrfs_item_key_to_cpu(path->nodes[0], &key,
6947 path->slots[0]);
6948 if (key.objectid == bytenr &&
6949 key.type == BTRFS_EXTENT_ITEM_KEY &&
6950 key.offset == num_bytes)
6951 ret = 0;
6952 }
6953
6954 if (ret > 0 && skinny_metadata) {
6955 skinny_metadata = false;
9ce49a0b 6956 key.objectid = bytenr;
3173a18f
JB
6957 key.type = BTRFS_EXTENT_ITEM_KEY;
6958 key.offset = num_bytes;
6959 btrfs_release_path(path);
6960 ret = btrfs_search_slot(trans, extent_root,
6961 &key, path, -1, 1);
6962 }
6963
f3465ca4 6964 if (ret) {
5d163e0e
JM
6965 btrfs_err(info,
6966 "umm, got %d back from search, was looking for %llu",
6967 ret, bytenr);
b783e62d 6968 if (ret > 0)
a4f78750 6969 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6970 }
005d6427 6971 if (ret < 0) {
66642832 6972 btrfs_abort_transaction(trans, ret);
005d6427
DS
6973 goto out;
6974 }
31840ae1
ZY
6975 extent_slot = path->slots[0];
6976 }
fae7f21c 6977 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6978 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6979 btrfs_err(info,
6980 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6981 bytenr, parent, root_objectid, owner_objectid,
6982 owner_offset);
66642832 6983 btrfs_abort_transaction(trans, ret);
c4a050bb 6984 goto out;
79787eaa 6985 } else {
66642832 6986 btrfs_abort_transaction(trans, ret);
005d6427 6987 goto out;
7bb86316 6988 }
5f39d397
CM
6989
6990 leaf = path->nodes[0];
5d4f98a2
YZ
6991 item_size = btrfs_item_size_nr(leaf, extent_slot);
6992#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6993 if (item_size < sizeof(*ei)) {
6994 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6995 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6996 0);
005d6427 6997 if (ret < 0) {
66642832 6998 btrfs_abort_transaction(trans, ret);
005d6427
DS
6999 goto out;
7000 }
5d4f98a2 7001
b3b4aa74 7002 btrfs_release_path(path);
5d4f98a2
YZ
7003 path->leave_spinning = 1;
7004
7005 key.objectid = bytenr;
7006 key.type = BTRFS_EXTENT_ITEM_KEY;
7007 key.offset = num_bytes;
7008
7009 ret = btrfs_search_slot(trans, extent_root, &key, path,
7010 -1, 1);
7011 if (ret) {
5d163e0e
JM
7012 btrfs_err(info,
7013 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7014 ret, bytenr);
a4f78750 7015 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 7016 }
005d6427 7017 if (ret < 0) {
66642832 7018 btrfs_abort_transaction(trans, ret);
005d6427
DS
7019 goto out;
7020 }
7021
5d4f98a2
YZ
7022 extent_slot = path->slots[0];
7023 leaf = path->nodes[0];
7024 item_size = btrfs_item_size_nr(leaf, extent_slot);
7025 }
7026#endif
7027 BUG_ON(item_size < sizeof(*ei));
952fccac 7028 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7029 struct btrfs_extent_item);
3173a18f
JB
7030 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7031 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7032 struct btrfs_tree_block_info *bi;
7033 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7034 bi = (struct btrfs_tree_block_info *)(ei + 1);
7035 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7036 }
56bec294 7037
5d4f98a2 7038 refs = btrfs_extent_refs(leaf, ei);
32b02538 7039 if (refs < refs_to_drop) {
5d163e0e
JM
7040 btrfs_err(info,
7041 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7042 refs_to_drop, refs, bytenr);
32b02538 7043 ret = -EINVAL;
66642832 7044 btrfs_abort_transaction(trans, ret);
32b02538
JB
7045 goto out;
7046 }
56bec294 7047 refs -= refs_to_drop;
5f39d397 7048
5d4f98a2
YZ
7049 if (refs > 0) {
7050 if (extent_op)
7051 __run_delayed_extent_op(extent_op, leaf, ei);
7052 /*
7053 * In the case of inline back ref, reference count will
7054 * be updated by remove_extent_backref
952fccac 7055 */
5d4f98a2
YZ
7056 if (iref) {
7057 BUG_ON(!found_extent);
7058 } else {
7059 btrfs_set_extent_refs(leaf, ei, refs);
7060 btrfs_mark_buffer_dirty(leaf);
7061 }
7062 if (found_extent) {
87bde3cd 7063 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7064 iref, refs_to_drop,
fcebe456 7065 is_data, &last_ref);
005d6427 7066 if (ret) {
66642832 7067 btrfs_abort_transaction(trans, ret);
005d6427
DS
7068 goto out;
7069 }
952fccac 7070 }
5d4f98a2 7071 } else {
5d4f98a2
YZ
7072 if (found_extent) {
7073 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7074 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7075 if (iref) {
7076 BUG_ON(path->slots[0] != extent_slot);
7077 } else {
7078 BUG_ON(path->slots[0] != extent_slot + 1);
7079 path->slots[0] = extent_slot;
7080 num_to_del = 2;
7081 }
78fae27e 7082 }
b9473439 7083
fcebe456 7084 last_ref = 1;
952fccac
CM
7085 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7086 num_to_del);
005d6427 7087 if (ret) {
66642832 7088 btrfs_abort_transaction(trans, ret);
005d6427
DS
7089 goto out;
7090 }
b3b4aa74 7091 btrfs_release_path(path);
21af804c 7092
5d4f98a2 7093 if (is_data) {
5b4aacef 7094 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7095 if (ret) {
66642832 7096 btrfs_abort_transaction(trans, ret);
005d6427
DS
7097 goto out;
7098 }
459931ec
CM
7099 }
7100
0b246afa 7101 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7102 if (ret) {
66642832 7103 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7104 goto out;
7105 }
7106
0b246afa 7107 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7108 if (ret) {
66642832 7109 btrfs_abort_transaction(trans, ret);
005d6427
DS
7110 goto out;
7111 }
a28ec197 7112 }
fcebe456
JB
7113 btrfs_release_path(path);
7114
79787eaa 7115out:
5caf2a00 7116 btrfs_free_path(path);
a28ec197
CM
7117 return ret;
7118}
7119
1887be66 7120/*
f0486c68 7121 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7122 * delayed ref for that extent as well. This searches the delayed ref tree for
7123 * a given extent, and if there are no other delayed refs to be processed, it
7124 * removes it from the tree.
7125 */
7126static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7127 u64 bytenr)
1887be66
CM
7128{
7129 struct btrfs_delayed_ref_head *head;
7130 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7131 int ret = 0;
1887be66
CM
7132
7133 delayed_refs = &trans->transaction->delayed_refs;
7134 spin_lock(&delayed_refs->lock);
f72ad18e 7135 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7136 if (!head)
cf93da7b 7137 goto out_delayed_unlock;
1887be66 7138
d7df2c79 7139 spin_lock(&head->lock);
0e0adbcf 7140 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7141 goto out;
7142
5d4f98a2
YZ
7143 if (head->extent_op) {
7144 if (!head->must_insert_reserved)
7145 goto out;
78a6184a 7146 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7147 head->extent_op = NULL;
7148 }
7149
1887be66
CM
7150 /*
7151 * waiting for the lock here would deadlock. If someone else has it
7152 * locked they are already in the process of dropping it anyway
7153 */
7154 if (!mutex_trylock(&head->mutex))
7155 goto out;
7156
7157 /*
7158 * at this point we have a head with no other entries. Go
7159 * ahead and process it.
7160 */
c46effa6 7161 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7162 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7163 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7164
7165 /*
7166 * we don't take a ref on the node because we're removing it from the
7167 * tree, so we just steal the ref the tree was holding.
7168 */
c3e69d58 7169 delayed_refs->num_heads--;
d7df2c79 7170 if (head->processing == 0)
c3e69d58 7171 delayed_refs->num_heads_ready--;
d7df2c79
JB
7172 head->processing = 0;
7173 spin_unlock(&head->lock);
1887be66
CM
7174 spin_unlock(&delayed_refs->lock);
7175
f0486c68
YZ
7176 BUG_ON(head->extent_op);
7177 if (head->must_insert_reserved)
7178 ret = 1;
7179
7180 mutex_unlock(&head->mutex);
d278850e 7181 btrfs_put_delayed_ref_head(head);
f0486c68 7182 return ret;
1887be66 7183out:
d7df2c79 7184 spin_unlock(&head->lock);
cf93da7b
CM
7185
7186out_delayed_unlock:
1887be66
CM
7187 spin_unlock(&delayed_refs->lock);
7188 return 0;
7189}
7190
f0486c68
YZ
7191void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7192 struct btrfs_root *root,
7193 struct extent_buffer *buf,
5581a51a 7194 u64 parent, int last_ref)
f0486c68 7195{
0b246afa 7196 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7197 int pin = 1;
f0486c68
YZ
7198 int ret;
7199
7200 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7201 int old_ref_mod, new_ref_mod;
7202
fd708b81
JB
7203 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7204 root->root_key.objectid,
7205 btrfs_header_level(buf), 0,
7206 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7207 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7208 buf->len, parent,
0b246afa
JM
7209 root->root_key.objectid,
7210 btrfs_header_level(buf),
7be07912 7211 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7212 &old_ref_mod, &new_ref_mod);
79787eaa 7213 BUG_ON(ret); /* -ENOMEM */
d7eae340 7214 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7215 }
7216
0a16c7d7 7217 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7218 struct btrfs_block_group_cache *cache;
7219
f0486c68 7220 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7221 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7222 if (!ret)
37be25bc 7223 goto out;
f0486c68
YZ
7224 }
7225
4da8b76d 7226 pin = 0;
0b246afa 7227 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7228
f0486c68 7229 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7230 pin_down_extent(fs_info, cache, buf->start,
7231 buf->len, 1);
6219872d 7232 btrfs_put_block_group(cache);
37be25bc 7233 goto out;
f0486c68
YZ
7234 }
7235
7236 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7237
7238 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7239 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7240 btrfs_put_block_group(cache);
71ff6437 7241 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7242 }
7243out:
b150a4f1 7244 if (pin)
0b246afa 7245 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7246 root->root_key.objectid);
7247
0a16c7d7
OS
7248 if (last_ref) {
7249 /*
7250 * Deleting the buffer, clear the corrupt flag since it doesn't
7251 * matter anymore.
7252 */
7253 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7254 }
f0486c68
YZ
7255}
7256
79787eaa 7257/* Can return -ENOMEM */
2ff7e61e 7258int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7259 struct btrfs_root *root,
66d7e7f0 7260 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7261 u64 owner, u64 offset)
925baedd 7262{
84f7d8e6 7263 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7264 int old_ref_mod, new_ref_mod;
925baedd
CM
7265 int ret;
7266
f5ee5c9a 7267 if (btrfs_is_testing(fs_info))
faa2dbf0 7268 return 0;
fccb84c9 7269
fd708b81
JB
7270 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7271 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7272 root_objectid, owner, offset,
7273 BTRFS_DROP_DELAYED_REF);
7274
56bec294
CM
7275 /*
7276 * tree log blocks never actually go into the extent allocation
7277 * tree, just update pinning info and exit early.
56bec294 7278 */
5d4f98a2
YZ
7279 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7280 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7281 /* unlocks the pinned mutex */
2ff7e61e 7282 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7283 old_ref_mod = new_ref_mod = 0;
56bec294 7284 ret = 0;
5d4f98a2 7285 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7286 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7287 num_bytes, parent,
7288 root_objectid, (int)owner,
7289 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7290 &old_ref_mod, &new_ref_mod);
5d4f98a2 7291 } else {
66d7e7f0 7292 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7293 num_bytes, parent,
7294 root_objectid, owner, offset,
7295 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7296 &old_ref_mod, &new_ref_mod);
56bec294 7297 }
d7eae340
OS
7298
7299 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7300 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7301
925baedd
CM
7302 return ret;
7303}
7304
817d52f8
JB
7305/*
7306 * when we wait for progress in the block group caching, its because
7307 * our allocation attempt failed at least once. So, we must sleep
7308 * and let some progress happen before we try again.
7309 *
7310 * This function will sleep at least once waiting for new free space to
7311 * show up, and then it will check the block group free space numbers
7312 * for our min num_bytes. Another option is to have it go ahead
7313 * and look in the rbtree for a free extent of a given size, but this
7314 * is a good start.
36cce922
JB
7315 *
7316 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7317 * any of the information in this block group.
817d52f8 7318 */
36cce922 7319static noinline void
817d52f8
JB
7320wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7321 u64 num_bytes)
7322{
11833d66 7323 struct btrfs_caching_control *caching_ctl;
817d52f8 7324
11833d66
YZ
7325 caching_ctl = get_caching_control(cache);
7326 if (!caching_ctl)
36cce922 7327 return;
817d52f8 7328
11833d66 7329 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7330 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7331
7332 put_caching_control(caching_ctl);
11833d66
YZ
7333}
7334
7335static noinline int
7336wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7337{
7338 struct btrfs_caching_control *caching_ctl;
36cce922 7339 int ret = 0;
11833d66
YZ
7340
7341 caching_ctl = get_caching_control(cache);
7342 if (!caching_ctl)
36cce922 7343 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7344
7345 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7346 if (cache->cached == BTRFS_CACHE_ERROR)
7347 ret = -EIO;
11833d66 7348 put_caching_control(caching_ctl);
36cce922 7349 return ret;
817d52f8
JB
7350}
7351
31e50229 7352int __get_raid_index(u64 flags)
b742bb82 7353{
7738a53a 7354 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7355 return BTRFS_RAID_RAID10;
7738a53a 7356 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7357 return BTRFS_RAID_RAID1;
7738a53a 7358 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7359 return BTRFS_RAID_DUP;
7738a53a 7360 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7361 return BTRFS_RAID_RAID0;
53b381b3 7362 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7363 return BTRFS_RAID_RAID5;
53b381b3 7364 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7365 return BTRFS_RAID_RAID6;
7738a53a 7366
e942f883 7367 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7368}
7369
6ab0a202 7370int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7371{
31e50229 7372 return __get_raid_index(cache->flags);
7738a53a
ID
7373}
7374
6ab0a202
JM
7375static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7376 [BTRFS_RAID_RAID10] = "raid10",
7377 [BTRFS_RAID_RAID1] = "raid1",
7378 [BTRFS_RAID_DUP] = "dup",
7379 [BTRFS_RAID_RAID0] = "raid0",
7380 [BTRFS_RAID_SINGLE] = "single",
7381 [BTRFS_RAID_RAID5] = "raid5",
7382 [BTRFS_RAID_RAID6] = "raid6",
7383};
7384
1b8e5df6 7385static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7386{
7387 if (type >= BTRFS_NR_RAID_TYPES)
7388 return NULL;
7389
7390 return btrfs_raid_type_names[type];
7391}
7392
817d52f8 7393enum btrfs_loop_type {
285ff5af
JB
7394 LOOP_CACHING_NOWAIT = 0,
7395 LOOP_CACHING_WAIT = 1,
7396 LOOP_ALLOC_CHUNK = 2,
7397 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7398};
7399
e570fd27
MX
7400static inline void
7401btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7402 int delalloc)
7403{
7404 if (delalloc)
7405 down_read(&cache->data_rwsem);
7406}
7407
7408static inline void
7409btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7410 int delalloc)
7411{
7412 btrfs_get_block_group(cache);
7413 if (delalloc)
7414 down_read(&cache->data_rwsem);
7415}
7416
7417static struct btrfs_block_group_cache *
7418btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7419 struct btrfs_free_cluster *cluster,
7420 int delalloc)
7421{
89771cc9 7422 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7423
e570fd27 7424 spin_lock(&cluster->refill_lock);
6719afdc
GU
7425 while (1) {
7426 used_bg = cluster->block_group;
7427 if (!used_bg)
7428 return NULL;
7429
7430 if (used_bg == block_group)
e570fd27
MX
7431 return used_bg;
7432
6719afdc 7433 btrfs_get_block_group(used_bg);
e570fd27 7434
6719afdc
GU
7435 if (!delalloc)
7436 return used_bg;
e570fd27 7437
6719afdc
GU
7438 if (down_read_trylock(&used_bg->data_rwsem))
7439 return used_bg;
e570fd27 7440
6719afdc 7441 spin_unlock(&cluster->refill_lock);
e570fd27 7442
e321f8a8
LB
7443 /* We should only have one-level nested. */
7444 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7445
6719afdc
GU
7446 spin_lock(&cluster->refill_lock);
7447 if (used_bg == cluster->block_group)
7448 return used_bg;
e570fd27 7449
6719afdc
GU
7450 up_read(&used_bg->data_rwsem);
7451 btrfs_put_block_group(used_bg);
7452 }
e570fd27
MX
7453}
7454
7455static inline void
7456btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7457 int delalloc)
7458{
7459 if (delalloc)
7460 up_read(&cache->data_rwsem);
7461 btrfs_put_block_group(cache);
7462}
7463
fec577fb
CM
7464/*
7465 * walks the btree of allocated extents and find a hole of a given size.
7466 * The key ins is changed to record the hole:
a4820398 7467 * ins->objectid == start position
62e2749e 7468 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7469 * ins->offset == the size of the hole.
fec577fb 7470 * Any available blocks before search_start are skipped.
a4820398
MX
7471 *
7472 * If there is no suitable free space, we will record the max size of
7473 * the free space extent currently.
fec577fb 7474 */
87bde3cd 7475static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7476 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7477 u64 hint_byte, struct btrfs_key *ins,
7478 u64 flags, int delalloc)
fec577fb 7479{
80eb234a 7480 int ret = 0;
0b246afa 7481 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7482 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7483 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7484 u64 search_start = 0;
a4820398 7485 u64 max_extent_size = 0;
c759c4e1 7486 u64 empty_cluster = 0;
80eb234a 7487 struct btrfs_space_info *space_info;
fa9c0d79 7488 int loop = 0;
b6919a58 7489 int index = __get_raid_index(flags);
0a24325e 7490 bool failed_cluster_refill = false;
1cdda9b8 7491 bool failed_alloc = false;
67377734 7492 bool use_cluster = true;
60d2adbb 7493 bool have_caching_bg = false;
13a0db5a 7494 bool orig_have_caching_bg = false;
a5e681d9 7495 bool full_search = false;
fec577fb 7496
0b246afa 7497 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7498 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7499 ins->objectid = 0;
7500 ins->offset = 0;
b1a4d965 7501
71ff6437 7502 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7503
0b246afa 7504 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7505 if (!space_info) {
0b246afa 7506 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7507 return -ENOSPC;
7508 }
2552d17e 7509
67377734 7510 /*
4f4db217
JB
7511 * If our free space is heavily fragmented we may not be able to make
7512 * big contiguous allocations, so instead of doing the expensive search
7513 * for free space, simply return ENOSPC with our max_extent_size so we
7514 * can go ahead and search for a more manageable chunk.
7515 *
7516 * If our max_extent_size is large enough for our allocation simply
7517 * disable clustering since we will likely not be able to find enough
7518 * space to create a cluster and induce latency trying.
67377734 7519 */
4f4db217
JB
7520 if (unlikely(space_info->max_extent_size)) {
7521 spin_lock(&space_info->lock);
7522 if (space_info->max_extent_size &&
7523 num_bytes > space_info->max_extent_size) {
7524 ins->offset = space_info->max_extent_size;
7525 spin_unlock(&space_info->lock);
7526 return -ENOSPC;
7527 } else if (space_info->max_extent_size) {
7528 use_cluster = false;
7529 }
7530 spin_unlock(&space_info->lock);
fa9c0d79 7531 }
0f9dd46c 7532
2ff7e61e 7533 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7534 if (last_ptr) {
fa9c0d79
CM
7535 spin_lock(&last_ptr->lock);
7536 if (last_ptr->block_group)
7537 hint_byte = last_ptr->window_start;
c759c4e1
JB
7538 if (last_ptr->fragmented) {
7539 /*
7540 * We still set window_start so we can keep track of the
7541 * last place we found an allocation to try and save
7542 * some time.
7543 */
7544 hint_byte = last_ptr->window_start;
7545 use_cluster = false;
7546 }
fa9c0d79 7547 spin_unlock(&last_ptr->lock);
239b14b3 7548 }
fa9c0d79 7549
2ff7e61e 7550 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7551 search_start = max(search_start, hint_byte);
2552d17e 7552 if (search_start == hint_byte) {
0b246afa 7553 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7554 /*
7555 * we don't want to use the block group if it doesn't match our
7556 * allocation bits, or if its not cached.
ccf0e725
JB
7557 *
7558 * However if we are re-searching with an ideal block group
7559 * picked out then we don't care that the block group is cached.
817d52f8 7560 */
b6919a58 7561 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7562 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7563 down_read(&space_info->groups_sem);
44fb5511
CM
7564 if (list_empty(&block_group->list) ||
7565 block_group->ro) {
7566 /*
7567 * someone is removing this block group,
7568 * we can't jump into the have_block_group
7569 * target because our list pointers are not
7570 * valid
7571 */
7572 btrfs_put_block_group(block_group);
7573 up_read(&space_info->groups_sem);
ccf0e725 7574 } else {
b742bb82 7575 index = get_block_group_index(block_group);
e570fd27 7576 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7577 goto have_block_group;
ccf0e725 7578 }
2552d17e 7579 } else if (block_group) {
fa9c0d79 7580 btrfs_put_block_group(block_group);
2552d17e 7581 }
42e70e7a 7582 }
2552d17e 7583search:
60d2adbb 7584 have_caching_bg = false;
a5e681d9
JB
7585 if (index == 0 || index == __get_raid_index(flags))
7586 full_search = true;
80eb234a 7587 down_read(&space_info->groups_sem);
b742bb82
YZ
7588 list_for_each_entry(block_group, &space_info->block_groups[index],
7589 list) {
6226cb0a 7590 u64 offset;
817d52f8 7591 int cached;
8a1413a2 7592
14443937
JM
7593 /* If the block group is read-only, we can skip it entirely. */
7594 if (unlikely(block_group->ro))
7595 continue;
7596
e570fd27 7597 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7598 search_start = block_group->key.objectid;
42e70e7a 7599
83a50de9
CM
7600 /*
7601 * this can happen if we end up cycling through all the
7602 * raid types, but we want to make sure we only allocate
7603 * for the proper type.
7604 */
b6919a58 7605 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7606 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7607 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7608 BTRFS_BLOCK_GROUP_RAID5 |
7609 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7610 BTRFS_BLOCK_GROUP_RAID10;
7611
7612 /*
7613 * if they asked for extra copies and this block group
7614 * doesn't provide them, bail. This does allow us to
7615 * fill raid0 from raid1.
7616 */
b6919a58 7617 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7618 goto loop;
7619 }
7620
2552d17e 7621have_block_group:
291c7d2f
JB
7622 cached = block_group_cache_done(block_group);
7623 if (unlikely(!cached)) {
a5e681d9 7624 have_caching_bg = true;
f6373bf3 7625 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7626 BUG_ON(ret < 0);
7627 ret = 0;
817d52f8
JB
7628 }
7629
36cce922
JB
7630 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7631 goto loop;
0f9dd46c 7632
0a24325e 7633 /*
062c05c4
AO
7634 * Ok we want to try and use the cluster allocator, so
7635 * lets look there
0a24325e 7636 */
c759c4e1 7637 if (last_ptr && use_cluster) {
215a63d1 7638 struct btrfs_block_group_cache *used_block_group;
8de972b4 7639 unsigned long aligned_cluster;
fa9c0d79
CM
7640 /*
7641 * the refill lock keeps out other
7642 * people trying to start a new cluster
7643 */
e570fd27
MX
7644 used_block_group = btrfs_lock_cluster(block_group,
7645 last_ptr,
7646 delalloc);
7647 if (!used_block_group)
44fb5511 7648 goto refill_cluster;
274bd4fb 7649
e570fd27
MX
7650 if (used_block_group != block_group &&
7651 (used_block_group->ro ||
7652 !block_group_bits(used_block_group, flags)))
7653 goto release_cluster;
44fb5511 7654
274bd4fb 7655 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7656 last_ptr,
7657 num_bytes,
7658 used_block_group->key.objectid,
7659 &max_extent_size);
fa9c0d79
CM
7660 if (offset) {
7661 /* we have a block, we're done */
7662 spin_unlock(&last_ptr->refill_lock);
71ff6437 7663 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7664 used_block_group,
7665 search_start, num_bytes);
215a63d1 7666 if (used_block_group != block_group) {
e570fd27
MX
7667 btrfs_release_block_group(block_group,
7668 delalloc);
215a63d1
MX
7669 block_group = used_block_group;
7670 }
fa9c0d79
CM
7671 goto checks;
7672 }
7673
274bd4fb 7674 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7675release_cluster:
062c05c4
AO
7676 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7677 * set up a new clusters, so lets just skip it
7678 * and let the allocator find whatever block
7679 * it can find. If we reach this point, we
7680 * will have tried the cluster allocator
7681 * plenty of times and not have found
7682 * anything, so we are likely way too
7683 * fragmented for the clustering stuff to find
a5f6f719
AO
7684 * anything.
7685 *
7686 * However, if the cluster is taken from the
7687 * current block group, release the cluster
7688 * first, so that we stand a better chance of
7689 * succeeding in the unclustered
7690 * allocation. */
7691 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7692 used_block_group != block_group) {
062c05c4 7693 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7694 btrfs_release_block_group(used_block_group,
7695 delalloc);
062c05c4
AO
7696 goto unclustered_alloc;
7697 }
7698
fa9c0d79
CM
7699 /*
7700 * this cluster didn't work out, free it and
7701 * start over
7702 */
7703 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7704
e570fd27
MX
7705 if (used_block_group != block_group)
7706 btrfs_release_block_group(used_block_group,
7707 delalloc);
7708refill_cluster:
a5f6f719
AO
7709 if (loop >= LOOP_NO_EMPTY_SIZE) {
7710 spin_unlock(&last_ptr->refill_lock);
7711 goto unclustered_alloc;
7712 }
7713
8de972b4
CM
7714 aligned_cluster = max_t(unsigned long,
7715 empty_cluster + empty_size,
7716 block_group->full_stripe_len);
7717
fa9c0d79 7718 /* allocate a cluster in this block group */
2ff7e61e 7719 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7720 last_ptr, search_start,
7721 num_bytes,
7722 aligned_cluster);
fa9c0d79
CM
7723 if (ret == 0) {
7724 /*
7725 * now pull our allocation out of this
7726 * cluster
7727 */
7728 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7729 last_ptr,
7730 num_bytes,
7731 search_start,
7732 &max_extent_size);
fa9c0d79
CM
7733 if (offset) {
7734 /* we found one, proceed */
7735 spin_unlock(&last_ptr->refill_lock);
71ff6437 7736 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7737 block_group, search_start,
7738 num_bytes);
fa9c0d79
CM
7739 goto checks;
7740 }
0a24325e
JB
7741 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7742 && !failed_cluster_refill) {
817d52f8
JB
7743 spin_unlock(&last_ptr->refill_lock);
7744
0a24325e 7745 failed_cluster_refill = true;
817d52f8
JB
7746 wait_block_group_cache_progress(block_group,
7747 num_bytes + empty_cluster + empty_size);
7748 goto have_block_group;
fa9c0d79 7749 }
817d52f8 7750
fa9c0d79
CM
7751 /*
7752 * at this point we either didn't find a cluster
7753 * or we weren't able to allocate a block from our
7754 * cluster. Free the cluster we've been trying
7755 * to use, and go to the next block group
7756 */
0a24325e 7757 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7758 spin_unlock(&last_ptr->refill_lock);
0a24325e 7759 goto loop;
fa9c0d79
CM
7760 }
7761
062c05c4 7762unclustered_alloc:
c759c4e1
JB
7763 /*
7764 * We are doing an unclustered alloc, set the fragmented flag so
7765 * we don't bother trying to setup a cluster again until we get
7766 * more space.
7767 */
7768 if (unlikely(last_ptr)) {
7769 spin_lock(&last_ptr->lock);
7770 last_ptr->fragmented = 1;
7771 spin_unlock(&last_ptr->lock);
7772 }
0c9b36e0
LB
7773 if (cached) {
7774 struct btrfs_free_space_ctl *ctl =
7775 block_group->free_space_ctl;
7776
7777 spin_lock(&ctl->tree_lock);
7778 if (ctl->free_space <
7779 num_bytes + empty_cluster + empty_size) {
7780 if (ctl->free_space > max_extent_size)
7781 max_extent_size = ctl->free_space;
7782 spin_unlock(&ctl->tree_lock);
7783 goto loop;
7784 }
7785 spin_unlock(&ctl->tree_lock);
a5f6f719 7786 }
a5f6f719 7787
6226cb0a 7788 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7789 num_bytes, empty_size,
7790 &max_extent_size);
1cdda9b8
JB
7791 /*
7792 * If we didn't find a chunk, and we haven't failed on this
7793 * block group before, and this block group is in the middle of
7794 * caching and we are ok with waiting, then go ahead and wait
7795 * for progress to be made, and set failed_alloc to true.
7796 *
7797 * If failed_alloc is true then we've already waited on this
7798 * block group once and should move on to the next block group.
7799 */
7800 if (!offset && !failed_alloc && !cached &&
7801 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7802 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7803 num_bytes + empty_size);
7804 failed_alloc = true;
817d52f8 7805 goto have_block_group;
1cdda9b8
JB
7806 } else if (!offset) {
7807 goto loop;
817d52f8 7808 }
fa9c0d79 7809checks:
0b246afa 7810 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7811
2552d17e
JB
7812 /* move on to the next group */
7813 if (search_start + num_bytes >
215a63d1
MX
7814 block_group->key.objectid + block_group->key.offset) {
7815 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7816 goto loop;
6226cb0a 7817 }
f5a31e16 7818
f0486c68 7819 if (offset < search_start)
215a63d1 7820 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7821 search_start - offset);
7822 BUG_ON(offset > search_start);
2552d17e 7823
18513091
WX
7824 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7825 num_bytes, delalloc);
f0486c68 7826 if (ret == -EAGAIN) {
215a63d1 7827 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7828 goto loop;
0f9dd46c 7829 }
9cfa3e34 7830 btrfs_inc_block_group_reservations(block_group);
0b86a832 7831
f0486c68 7832 /* we are all good, lets return */
2552d17e
JB
7833 ins->objectid = search_start;
7834 ins->offset = num_bytes;
d2fb3437 7835
71ff6437 7836 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7837 search_start, num_bytes);
e570fd27 7838 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7839 break;
7840loop:
0a24325e 7841 failed_cluster_refill = false;
1cdda9b8 7842 failed_alloc = false;
b742bb82 7843 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7844 btrfs_release_block_group(block_group, delalloc);
14443937 7845 cond_resched();
2552d17e
JB
7846 }
7847 up_read(&space_info->groups_sem);
7848
13a0db5a 7849 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7850 && !orig_have_caching_bg)
7851 orig_have_caching_bg = true;
7852
60d2adbb
MX
7853 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7854 goto search;
7855
b742bb82
YZ
7856 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7857 goto search;
7858
285ff5af 7859 /*
ccf0e725
JB
7860 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7861 * caching kthreads as we move along
817d52f8
JB
7862 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7863 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7864 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7865 * again
fa9c0d79 7866 */
723bda20 7867 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7868 index = 0;
a5e681d9
JB
7869 if (loop == LOOP_CACHING_NOWAIT) {
7870 /*
7871 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7872 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7873 * full search through.
7874 */
13a0db5a 7875 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7876 loop = LOOP_CACHING_WAIT;
7877 else
7878 loop = LOOP_ALLOC_CHUNK;
7879 } else {
7880 loop++;
7881 }
7882
817d52f8 7883 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7884 struct btrfs_trans_handle *trans;
f017f15f
WS
7885 int exist = 0;
7886
7887 trans = current->journal_info;
7888 if (trans)
7889 exist = 1;
7890 else
7891 trans = btrfs_join_transaction(root);
00361589 7892
00361589
JB
7893 if (IS_ERR(trans)) {
7894 ret = PTR_ERR(trans);
7895 goto out;
7896 }
7897
2ff7e61e 7898 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7899 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7900
7901 /*
7902 * If we can't allocate a new chunk we've already looped
7903 * through at least once, move on to the NO_EMPTY_SIZE
7904 * case.
7905 */
7906 if (ret == -ENOSPC)
7907 loop = LOOP_NO_EMPTY_SIZE;
7908
ea658bad
JB
7909 /*
7910 * Do not bail out on ENOSPC since we
7911 * can do more things.
7912 */
00361589 7913 if (ret < 0 && ret != -ENOSPC)
66642832 7914 btrfs_abort_transaction(trans, ret);
00361589
JB
7915 else
7916 ret = 0;
f017f15f 7917 if (!exist)
3a45bb20 7918 btrfs_end_transaction(trans);
00361589 7919 if (ret)
ea658bad 7920 goto out;
2552d17e
JB
7921 }
7922
723bda20 7923 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7924 /*
7925 * Don't loop again if we already have no empty_size and
7926 * no empty_cluster.
7927 */
7928 if (empty_size == 0 &&
7929 empty_cluster == 0) {
7930 ret = -ENOSPC;
7931 goto out;
7932 }
723bda20
JB
7933 empty_size = 0;
7934 empty_cluster = 0;
fa9c0d79 7935 }
723bda20
JB
7936
7937 goto search;
2552d17e
JB
7938 } else if (!ins->objectid) {
7939 ret = -ENOSPC;
d82a6f1d 7940 } else if (ins->objectid) {
c759c4e1
JB
7941 if (!use_cluster && last_ptr) {
7942 spin_lock(&last_ptr->lock);
7943 last_ptr->window_start = ins->objectid;
7944 spin_unlock(&last_ptr->lock);
7945 }
80eb234a 7946 ret = 0;
be744175 7947 }
79787eaa 7948out:
4f4db217
JB
7949 if (ret == -ENOSPC) {
7950 spin_lock(&space_info->lock);
7951 space_info->max_extent_size = max_extent_size;
7952 spin_unlock(&space_info->lock);
a4820398 7953 ins->offset = max_extent_size;
4f4db217 7954 }
0f70abe2 7955 return ret;
fec577fb 7956}
ec44a35c 7957
ab8d0fc4
JM
7958static void dump_space_info(struct btrfs_fs_info *fs_info,
7959 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7960 int dump_block_groups)
0f9dd46c
JB
7961{
7962 struct btrfs_block_group_cache *cache;
b742bb82 7963 int index = 0;
0f9dd46c 7964
9ed74f2d 7965 spin_lock(&info->lock);
ab8d0fc4
JM
7966 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7967 info->flags,
4136135b
LB
7968 info->total_bytes - btrfs_space_info_used(info, true),
7969 info->full ? "" : "not ");
ab8d0fc4
JM
7970 btrfs_info(fs_info,
7971 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7972 info->total_bytes, info->bytes_used, info->bytes_pinned,
7973 info->bytes_reserved, info->bytes_may_use,
7974 info->bytes_readonly);
9ed74f2d
JB
7975 spin_unlock(&info->lock);
7976
7977 if (!dump_block_groups)
7978 return;
0f9dd46c 7979
80eb234a 7980 down_read(&info->groups_sem);
b742bb82
YZ
7981again:
7982 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7983 spin_lock(&cache->lock);
ab8d0fc4
JM
7984 btrfs_info(fs_info,
7985 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7986 cache->key.objectid, cache->key.offset,
7987 btrfs_block_group_used(&cache->item), cache->pinned,
7988 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7989 btrfs_dump_free_space(cache, bytes);
7990 spin_unlock(&cache->lock);
7991 }
b742bb82
YZ
7992 if (++index < BTRFS_NR_RAID_TYPES)
7993 goto again;
80eb234a 7994 up_read(&info->groups_sem);
0f9dd46c 7995}
e8569813 7996
18513091 7997int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7998 u64 num_bytes, u64 min_alloc_size,
7999 u64 empty_size, u64 hint_byte,
e570fd27 8000 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8001{
ab8d0fc4 8002 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8003 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8004 u64 flags;
fec577fb 8005 int ret;
925baedd 8006
1b86826d 8007 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8008again:
0b246afa 8009 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8010 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8011 hint_byte, ins, flags, delalloc);
9cfa3e34 8012 if (!ret && !is_data) {
ab8d0fc4 8013 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8014 } else if (ret == -ENOSPC) {
a4820398
MX
8015 if (!final_tried && ins->offset) {
8016 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8017 num_bytes = round_down(num_bytes,
0b246afa 8018 fs_info->sectorsize);
9e622d6b 8019 num_bytes = max(num_bytes, min_alloc_size);
18513091 8020 ram_bytes = num_bytes;
9e622d6b
MX
8021 if (num_bytes == min_alloc_size)
8022 final_tried = true;
8023 goto again;
ab8d0fc4 8024 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8025 struct btrfs_space_info *sinfo;
8026
ab8d0fc4 8027 sinfo = __find_space_info(fs_info, flags);
0b246afa 8028 btrfs_err(fs_info,
5d163e0e
JM
8029 "allocation failed flags %llu, wanted %llu",
8030 flags, num_bytes);
53804280 8031 if (sinfo)
ab8d0fc4 8032 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8033 }
925baedd 8034 }
0f9dd46c
JB
8035
8036 return ret;
e6dcd2dc
CM
8037}
8038
2ff7e61e 8039static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8040 u64 start, u64 len,
8041 int pin, int delalloc)
65b51a00 8042{
0f9dd46c 8043 struct btrfs_block_group_cache *cache;
1f3c79a2 8044 int ret = 0;
0f9dd46c 8045
0b246afa 8046 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8047 if (!cache) {
0b246afa
JM
8048 btrfs_err(fs_info, "Unable to find block group for %llu",
8049 start);
0f9dd46c
JB
8050 return -ENOSPC;
8051 }
1f3c79a2 8052
e688b725 8053 if (pin)
2ff7e61e 8054 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8055 else {
0b246afa 8056 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8057 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8058 btrfs_add_free_space(cache, start, len);
4824f1f4 8059 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8060 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8061 }
31193213 8062
fa9c0d79 8063 btrfs_put_block_group(cache);
e6dcd2dc
CM
8064 return ret;
8065}
8066
2ff7e61e 8067int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8068 u64 start, u64 len, int delalloc)
e688b725 8069{
2ff7e61e 8070 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8071}
8072
2ff7e61e 8073int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8074 u64 start, u64 len)
8075{
2ff7e61e 8076 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8077}
8078
5d4f98a2 8079static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8080 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8081 u64 parent, u64 root_objectid,
8082 u64 flags, u64 owner, u64 offset,
8083 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8084{
8085 int ret;
e6dcd2dc 8086 struct btrfs_extent_item *extent_item;
5d4f98a2 8087 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8088 struct btrfs_path *path;
5d4f98a2
YZ
8089 struct extent_buffer *leaf;
8090 int type;
8091 u32 size;
26b8003f 8092
5d4f98a2
YZ
8093 if (parent > 0)
8094 type = BTRFS_SHARED_DATA_REF_KEY;
8095 else
8096 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8097
5d4f98a2 8098 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8099
8100 path = btrfs_alloc_path();
db5b493a
TI
8101 if (!path)
8102 return -ENOMEM;
47e4bb98 8103
b9473439 8104 path->leave_spinning = 1;
5d4f98a2
YZ
8105 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8106 ins, size);
79787eaa
JM
8107 if (ret) {
8108 btrfs_free_path(path);
8109 return ret;
8110 }
0f9dd46c 8111
5d4f98a2
YZ
8112 leaf = path->nodes[0];
8113 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8114 struct btrfs_extent_item);
5d4f98a2
YZ
8115 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8116 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8117 btrfs_set_extent_flags(leaf, extent_item,
8118 flags | BTRFS_EXTENT_FLAG_DATA);
8119
8120 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8121 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8122 if (parent > 0) {
8123 struct btrfs_shared_data_ref *ref;
8124 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8125 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8126 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8127 } else {
8128 struct btrfs_extent_data_ref *ref;
8129 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8130 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8131 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8132 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8133 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8134 }
47e4bb98
CM
8135
8136 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8137 btrfs_free_path(path);
f510cfec 8138
1e144fb8
OS
8139 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8140 ins->offset);
8141 if (ret)
8142 return ret;
8143
6202df69 8144 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8145 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8146 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8147 ins->objectid, ins->offset);
f5947066
CM
8148 BUG();
8149 }
71ff6437 8150 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8151 return ret;
8152}
8153
5d4f98a2 8154static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8155 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8156 u64 parent, u64 root_objectid,
8157 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8158 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8159{
8160 int ret;
5d4f98a2
YZ
8161 struct btrfs_extent_item *extent_item;
8162 struct btrfs_tree_block_info *block_info;
8163 struct btrfs_extent_inline_ref *iref;
8164 struct btrfs_path *path;
8165 struct extent_buffer *leaf;
3173a18f 8166 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8167 u64 num_bytes = ins->offset;
0b246afa 8168 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8169
8170 if (!skinny_metadata)
8171 size += sizeof(*block_info);
1c2308f8 8172
5d4f98a2 8173 path = btrfs_alloc_path();
857cc2fc 8174 if (!path) {
2ff7e61e 8175 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8176 fs_info->nodesize);
d8926bb3 8177 return -ENOMEM;
857cc2fc 8178 }
56bec294 8179
5d4f98a2
YZ
8180 path->leave_spinning = 1;
8181 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8182 ins, size);
79787eaa 8183 if (ret) {
dd825259 8184 btrfs_free_path(path);
2ff7e61e 8185 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8186 fs_info->nodesize);
79787eaa
JM
8187 return ret;
8188 }
5d4f98a2
YZ
8189
8190 leaf = path->nodes[0];
8191 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8192 struct btrfs_extent_item);
8193 btrfs_set_extent_refs(leaf, extent_item, 1);
8194 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8195 btrfs_set_extent_flags(leaf, extent_item,
8196 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8197
3173a18f
JB
8198 if (skinny_metadata) {
8199 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8200 num_bytes = fs_info->nodesize;
3173a18f
JB
8201 } else {
8202 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8203 btrfs_set_tree_block_key(leaf, block_info, key);
8204 btrfs_set_tree_block_level(leaf, block_info, level);
8205 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8206 }
5d4f98a2 8207
5d4f98a2
YZ
8208 if (parent > 0) {
8209 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8210 btrfs_set_extent_inline_ref_type(leaf, iref,
8211 BTRFS_SHARED_BLOCK_REF_KEY);
8212 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8213 } else {
8214 btrfs_set_extent_inline_ref_type(leaf, iref,
8215 BTRFS_TREE_BLOCK_REF_KEY);
8216 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8217 }
8218
8219 btrfs_mark_buffer_dirty(leaf);
8220 btrfs_free_path(path);
8221
1e144fb8
OS
8222 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8223 num_bytes);
8224 if (ret)
8225 return ret;
8226
6202df69
JM
8227 ret = update_block_group(trans, fs_info, ins->objectid,
8228 fs_info->nodesize, 1);
79787eaa 8229 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8230 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8231 ins->objectid, ins->offset);
5d4f98a2
YZ
8232 BUG();
8233 }
0be5dc67 8234
71ff6437 8235 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8236 fs_info->nodesize);
5d4f98a2
YZ
8237 return ret;
8238}
8239
8240int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8241 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8242 u64 offset, u64 ram_bytes,
8243 struct btrfs_key *ins)
5d4f98a2 8244{
84f7d8e6 8245 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8246 int ret;
8247
84f7d8e6 8248 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8249
fd708b81
JB
8250 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8251 root->root_key.objectid, owner, offset,
8252 BTRFS_ADD_DELAYED_EXTENT);
8253
0b246afa 8254 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8255 ins->offset, 0,
8256 root->root_key.objectid, owner,
7be07912
OS
8257 offset, ram_bytes,
8258 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8259 return ret;
8260}
e02119d5
CM
8261
8262/*
8263 * this is used by the tree logging recovery code. It records that
8264 * an extent has been allocated and makes sure to clear the free
8265 * space cache bits as well
8266 */
5d4f98a2 8267int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8268 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8269 u64 root_objectid, u64 owner, u64 offset,
8270 struct btrfs_key *ins)
e02119d5
CM
8271{
8272 int ret;
8273 struct btrfs_block_group_cache *block_group;
ed7a6948 8274 struct btrfs_space_info *space_info;
11833d66 8275
8c2a1a30
JB
8276 /*
8277 * Mixed block groups will exclude before processing the log so we only
01327610 8278 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8279 */
0b246afa 8280 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8281 ret = __exclude_logged_extent(fs_info, ins->objectid,
8282 ins->offset);
b50c6e25 8283 if (ret)
8c2a1a30 8284 return ret;
11833d66
YZ
8285 }
8286
0b246afa 8287 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8288 if (!block_group)
8289 return -EINVAL;
8290
ed7a6948
WX
8291 space_info = block_group->space_info;
8292 spin_lock(&space_info->lock);
8293 spin_lock(&block_group->lock);
8294 space_info->bytes_reserved += ins->offset;
8295 block_group->reserved += ins->offset;
8296 spin_unlock(&block_group->lock);
8297 spin_unlock(&space_info->lock);
8298
2ff7e61e 8299 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8300 0, owner, offset, ins, 1);
b50c6e25 8301 btrfs_put_block_group(block_group);
e02119d5
CM
8302 return ret;
8303}
8304
48a3b636
ES
8305static struct extent_buffer *
8306btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8307 u64 bytenr, int level)
65b51a00 8308{
0b246afa 8309 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8310 struct extent_buffer *buf;
8311
2ff7e61e 8312 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8313 if (IS_ERR(buf))
8314 return buf;
8315
65b51a00 8316 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8317 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8318 btrfs_tree_lock(buf);
7c302b49 8319 clean_tree_block(fs_info, buf);
3083ee2e 8320 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8321
8322 btrfs_set_lock_blocking(buf);
4db8c528 8323 set_extent_buffer_uptodate(buf);
b4ce94de 8324
d0c803c4 8325 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8326 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8327 /*
8328 * we allow two log transactions at a time, use different
8329 * EXENT bit to differentiate dirty pages.
8330 */
656f30db 8331 if (buf->log_index == 0)
8cef4e16
YZ
8332 set_extent_dirty(&root->dirty_log_pages, buf->start,
8333 buf->start + buf->len - 1, GFP_NOFS);
8334 else
8335 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8336 buf->start + buf->len - 1);
d0c803c4 8337 } else {
656f30db 8338 buf->log_index = -1;
d0c803c4 8339 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8340 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8341 }
64c12921 8342 trans->dirty = true;
b4ce94de 8343 /* this returns a buffer locked for blocking */
65b51a00
CM
8344 return buf;
8345}
8346
f0486c68
YZ
8347static struct btrfs_block_rsv *
8348use_block_rsv(struct btrfs_trans_handle *trans,
8349 struct btrfs_root *root, u32 blocksize)
8350{
0b246afa 8351 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8352 struct btrfs_block_rsv *block_rsv;
0b246afa 8353 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8354 int ret;
d88033db 8355 bool global_updated = false;
f0486c68
YZ
8356
8357 block_rsv = get_block_rsv(trans, root);
8358
b586b323
MX
8359 if (unlikely(block_rsv->size == 0))
8360 goto try_reserve;
d88033db 8361again:
f0486c68
YZ
8362 ret = block_rsv_use_bytes(block_rsv, blocksize);
8363 if (!ret)
8364 return block_rsv;
8365
b586b323
MX
8366 if (block_rsv->failfast)
8367 return ERR_PTR(ret);
8368
d88033db
MX
8369 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8370 global_updated = true;
0b246afa 8371 update_global_block_rsv(fs_info);
d88033db
MX
8372 goto again;
8373 }
8374
0b246afa 8375 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8376 static DEFINE_RATELIMIT_STATE(_rs,
8377 DEFAULT_RATELIMIT_INTERVAL * 10,
8378 /*DEFAULT_RATELIMIT_BURST*/ 1);
8379 if (__ratelimit(&_rs))
8380 WARN(1, KERN_DEBUG
efe120a0 8381 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8382 }
8383try_reserve:
8384 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8385 BTRFS_RESERVE_NO_FLUSH);
8386 if (!ret)
8387 return block_rsv;
8388 /*
8389 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8390 * the global reserve if its space type is the same as the global
8391 * reservation.
b586b323 8392 */
5881cfc9
MX
8393 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8394 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8395 ret = block_rsv_use_bytes(global_rsv, blocksize);
8396 if (!ret)
8397 return global_rsv;
8398 }
8399 return ERR_PTR(ret);
f0486c68
YZ
8400}
8401
8c2a3ca2
JB
8402static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8403 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8404{
8405 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8406 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8407}
8408
fec577fb 8409/*
f0486c68 8410 * finds a free extent and does all the dirty work required for allocation
67b7859e 8411 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8412 */
4d75f8a9 8413struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8414 struct btrfs_root *root,
8415 u64 parent, u64 root_objectid,
8416 const struct btrfs_disk_key *key,
8417 int level, u64 hint,
8418 u64 empty_size)
fec577fb 8419{
0b246afa 8420 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8421 struct btrfs_key ins;
f0486c68 8422 struct btrfs_block_rsv *block_rsv;
5f39d397 8423 struct extent_buffer *buf;
67b7859e 8424 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8425 u64 flags = 0;
8426 int ret;
0b246afa
JM
8427 u32 blocksize = fs_info->nodesize;
8428 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8429
05653ef3 8430#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8431 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8432 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8433 level);
faa2dbf0
JB
8434 if (!IS_ERR(buf))
8435 root->alloc_bytenr += blocksize;
8436 return buf;
8437 }
05653ef3 8438#endif
fccb84c9 8439
f0486c68
YZ
8440 block_rsv = use_block_rsv(trans, root, blocksize);
8441 if (IS_ERR(block_rsv))
8442 return ERR_CAST(block_rsv);
8443
18513091 8444 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8445 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8446 if (ret)
8447 goto out_unuse;
55c69072 8448
fe864576 8449 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8450 if (IS_ERR(buf)) {
8451 ret = PTR_ERR(buf);
8452 goto out_free_reserved;
8453 }
f0486c68
YZ
8454
8455 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8456 if (parent == 0)
8457 parent = ins.objectid;
8458 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8459 } else
8460 BUG_ON(parent > 0);
8461
8462 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8463 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8464 if (!extent_op) {
8465 ret = -ENOMEM;
8466 goto out_free_buf;
8467 }
f0486c68
YZ
8468 if (key)
8469 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8470 else
8471 memset(&extent_op->key, 0, sizeof(extent_op->key));
8472 extent_op->flags_to_set = flags;
35b3ad50
DS
8473 extent_op->update_key = skinny_metadata ? false : true;
8474 extent_op->update_flags = true;
8475 extent_op->is_data = false;
b1c79e09 8476 extent_op->level = level;
f0486c68 8477
fd708b81
JB
8478 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8479 root_objectid, level, 0,
8480 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8481 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8482 ins.offset, parent,
8483 root_objectid, level,
67b7859e 8484 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8485 extent_op, NULL, NULL);
67b7859e
OS
8486 if (ret)
8487 goto out_free_delayed;
f0486c68 8488 }
fec577fb 8489 return buf;
67b7859e
OS
8490
8491out_free_delayed:
8492 btrfs_free_delayed_extent_op(extent_op);
8493out_free_buf:
8494 free_extent_buffer(buf);
8495out_free_reserved:
2ff7e61e 8496 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8497out_unuse:
0b246afa 8498 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8499 return ERR_PTR(ret);
fec577fb 8500}
a28ec197 8501
2c47e605
YZ
8502struct walk_control {
8503 u64 refs[BTRFS_MAX_LEVEL];
8504 u64 flags[BTRFS_MAX_LEVEL];
8505 struct btrfs_key update_progress;
8506 int stage;
8507 int level;
8508 int shared_level;
8509 int update_ref;
8510 int keep_locks;
1c4850e2
YZ
8511 int reada_slot;
8512 int reada_count;
66d7e7f0 8513 int for_reloc;
2c47e605
YZ
8514};
8515
8516#define DROP_REFERENCE 1
8517#define UPDATE_BACKREF 2
8518
1c4850e2
YZ
8519static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8520 struct btrfs_root *root,
8521 struct walk_control *wc,
8522 struct btrfs_path *path)
6407bf6d 8523{
0b246afa 8524 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8525 u64 bytenr;
8526 u64 generation;
8527 u64 refs;
94fcca9f 8528 u64 flags;
5d4f98a2 8529 u32 nritems;
1c4850e2
YZ
8530 struct btrfs_key key;
8531 struct extent_buffer *eb;
6407bf6d 8532 int ret;
1c4850e2
YZ
8533 int slot;
8534 int nread = 0;
6407bf6d 8535
1c4850e2
YZ
8536 if (path->slots[wc->level] < wc->reada_slot) {
8537 wc->reada_count = wc->reada_count * 2 / 3;
8538 wc->reada_count = max(wc->reada_count, 2);
8539 } else {
8540 wc->reada_count = wc->reada_count * 3 / 2;
8541 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8542 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8543 }
7bb86316 8544
1c4850e2
YZ
8545 eb = path->nodes[wc->level];
8546 nritems = btrfs_header_nritems(eb);
bd56b302 8547
1c4850e2
YZ
8548 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8549 if (nread >= wc->reada_count)
8550 break;
bd56b302 8551
2dd3e67b 8552 cond_resched();
1c4850e2
YZ
8553 bytenr = btrfs_node_blockptr(eb, slot);
8554 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8555
1c4850e2
YZ
8556 if (slot == path->slots[wc->level])
8557 goto reada;
5d4f98a2 8558
1c4850e2
YZ
8559 if (wc->stage == UPDATE_BACKREF &&
8560 generation <= root->root_key.offset)
bd56b302
CM
8561 continue;
8562
94fcca9f 8563 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8564 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8565 wc->level - 1, 1, &refs,
8566 &flags);
79787eaa
JM
8567 /* We don't care about errors in readahead. */
8568 if (ret < 0)
8569 continue;
94fcca9f
YZ
8570 BUG_ON(refs == 0);
8571
1c4850e2 8572 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8573 if (refs == 1)
8574 goto reada;
bd56b302 8575
94fcca9f
YZ
8576 if (wc->level == 1 &&
8577 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8578 continue;
1c4850e2
YZ
8579 if (!wc->update_ref ||
8580 generation <= root->root_key.offset)
8581 continue;
8582 btrfs_node_key_to_cpu(eb, &key, slot);
8583 ret = btrfs_comp_cpu_keys(&key,
8584 &wc->update_progress);
8585 if (ret < 0)
8586 continue;
94fcca9f
YZ
8587 } else {
8588 if (wc->level == 1 &&
8589 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8590 continue;
6407bf6d 8591 }
1c4850e2 8592reada:
2ff7e61e 8593 readahead_tree_block(fs_info, bytenr);
1c4850e2 8594 nread++;
20524f02 8595 }
1c4850e2 8596 wc->reada_slot = slot;
20524f02 8597}
2c47e605 8598
f82d02d9 8599/*
2c016dc2 8600 * helper to process tree block while walking down the tree.
2c47e605 8601 *
2c47e605
YZ
8602 * when wc->stage == UPDATE_BACKREF, this function updates
8603 * back refs for pointers in the block.
8604 *
8605 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8606 */
2c47e605 8607static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8608 struct btrfs_root *root,
2c47e605 8609 struct btrfs_path *path,
94fcca9f 8610 struct walk_control *wc, int lookup_info)
f82d02d9 8611{
2ff7e61e 8612 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8613 int level = wc->level;
8614 struct extent_buffer *eb = path->nodes[level];
2c47e605 8615 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8616 int ret;
8617
2c47e605
YZ
8618 if (wc->stage == UPDATE_BACKREF &&
8619 btrfs_header_owner(eb) != root->root_key.objectid)
8620 return 1;
f82d02d9 8621
2c47e605
YZ
8622 /*
8623 * when reference count of tree block is 1, it won't increase
8624 * again. once full backref flag is set, we never clear it.
8625 */
94fcca9f
YZ
8626 if (lookup_info &&
8627 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8628 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8629 BUG_ON(!path->locks[level]);
2ff7e61e 8630 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8631 eb->start, level, 1,
2c47e605
YZ
8632 &wc->refs[level],
8633 &wc->flags[level]);
79787eaa
JM
8634 BUG_ON(ret == -ENOMEM);
8635 if (ret)
8636 return ret;
2c47e605
YZ
8637 BUG_ON(wc->refs[level] == 0);
8638 }
5d4f98a2 8639
2c47e605
YZ
8640 if (wc->stage == DROP_REFERENCE) {
8641 if (wc->refs[level] > 1)
8642 return 1;
f82d02d9 8643
2c47e605 8644 if (path->locks[level] && !wc->keep_locks) {
bd681513 8645 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8646 path->locks[level] = 0;
8647 }
8648 return 0;
8649 }
f82d02d9 8650
2c47e605
YZ
8651 /* wc->stage == UPDATE_BACKREF */
8652 if (!(wc->flags[level] & flag)) {
8653 BUG_ON(!path->locks[level]);
e339a6b0 8654 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8655 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8656 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8657 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8658 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8659 eb->len, flag,
8660 btrfs_header_level(eb), 0);
79787eaa 8661 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8662 wc->flags[level] |= flag;
8663 }
8664
8665 /*
8666 * the block is shared by multiple trees, so it's not good to
8667 * keep the tree lock
8668 */
8669 if (path->locks[level] && level > 0) {
bd681513 8670 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8671 path->locks[level] = 0;
8672 }
8673 return 0;
8674}
8675
1c4850e2 8676/*
2c016dc2 8677 * helper to process tree block pointer.
1c4850e2
YZ
8678 *
8679 * when wc->stage == DROP_REFERENCE, this function checks
8680 * reference count of the block pointed to. if the block
8681 * is shared and we need update back refs for the subtree
8682 * rooted at the block, this function changes wc->stage to
8683 * UPDATE_BACKREF. if the block is shared and there is no
8684 * need to update back, this function drops the reference
8685 * to the block.
8686 *
8687 * NOTE: return value 1 means we should stop walking down.
8688 */
8689static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8690 struct btrfs_root *root,
8691 struct btrfs_path *path,
94fcca9f 8692 struct walk_control *wc, int *lookup_info)
1c4850e2 8693{
0b246afa 8694 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8695 u64 bytenr;
8696 u64 generation;
8697 u64 parent;
8698 u32 blocksize;
8699 struct btrfs_key key;
8700 struct extent_buffer *next;
8701 int level = wc->level;
8702 int reada = 0;
8703 int ret = 0;
1152651a 8704 bool need_account = false;
1c4850e2
YZ
8705
8706 generation = btrfs_node_ptr_generation(path->nodes[level],
8707 path->slots[level]);
8708 /*
8709 * if the lower level block was created before the snapshot
8710 * was created, we know there is no need to update back refs
8711 * for the subtree
8712 */
8713 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8714 generation <= root->root_key.offset) {
8715 *lookup_info = 1;
1c4850e2 8716 return 1;
94fcca9f 8717 }
1c4850e2
YZ
8718
8719 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8720 blocksize = fs_info->nodesize;
1c4850e2 8721
0b246afa 8722 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8723 if (!next) {
2ff7e61e 8724 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8725 if (IS_ERR(next))
8726 return PTR_ERR(next);
8727
b2aaaa3b
JB
8728 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8729 level - 1);
1c4850e2
YZ
8730 reada = 1;
8731 }
8732 btrfs_tree_lock(next);
8733 btrfs_set_lock_blocking(next);
8734
2ff7e61e 8735 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8736 &wc->refs[level - 1],
8737 &wc->flags[level - 1]);
4867268c
JB
8738 if (ret < 0)
8739 goto out_unlock;
79787eaa 8740
c2cf52eb 8741 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8742 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8743 ret = -EIO;
8744 goto out_unlock;
c2cf52eb 8745 }
94fcca9f 8746 *lookup_info = 0;
1c4850e2 8747
94fcca9f 8748 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8749 if (wc->refs[level - 1] > 1) {
1152651a 8750 need_account = true;
94fcca9f
YZ
8751 if (level == 1 &&
8752 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8753 goto skip;
8754
1c4850e2
YZ
8755 if (!wc->update_ref ||
8756 generation <= root->root_key.offset)
8757 goto skip;
8758
8759 btrfs_node_key_to_cpu(path->nodes[level], &key,
8760 path->slots[level]);
8761 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8762 if (ret < 0)
8763 goto skip;
8764
8765 wc->stage = UPDATE_BACKREF;
8766 wc->shared_level = level - 1;
8767 }
94fcca9f
YZ
8768 } else {
8769 if (level == 1 &&
8770 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8771 goto skip;
1c4850e2
YZ
8772 }
8773
b9fab919 8774 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8775 btrfs_tree_unlock(next);
8776 free_extent_buffer(next);
8777 next = NULL;
94fcca9f 8778 *lookup_info = 1;
1c4850e2
YZ
8779 }
8780
8781 if (!next) {
8782 if (reada && level == 1)
8783 reada_walk_down(trans, root, wc, path);
2ff7e61e 8784 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8785 if (IS_ERR(next)) {
8786 return PTR_ERR(next);
8787 } else if (!extent_buffer_uptodate(next)) {
416bc658 8788 free_extent_buffer(next);
97d9a8a4 8789 return -EIO;
416bc658 8790 }
1c4850e2
YZ
8791 btrfs_tree_lock(next);
8792 btrfs_set_lock_blocking(next);
8793 }
8794
8795 level--;
4867268c
JB
8796 ASSERT(level == btrfs_header_level(next));
8797 if (level != btrfs_header_level(next)) {
8798 btrfs_err(root->fs_info, "mismatched level");
8799 ret = -EIO;
8800 goto out_unlock;
8801 }
1c4850e2
YZ
8802 path->nodes[level] = next;
8803 path->slots[level] = 0;
bd681513 8804 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8805 wc->level = level;
8806 if (wc->level == 1)
8807 wc->reada_slot = 0;
8808 return 0;
8809skip:
8810 wc->refs[level - 1] = 0;
8811 wc->flags[level - 1] = 0;
94fcca9f
YZ
8812 if (wc->stage == DROP_REFERENCE) {
8813 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8814 parent = path->nodes[level]->start;
8815 } else {
4867268c 8816 ASSERT(root->root_key.objectid ==
94fcca9f 8817 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8818 if (root->root_key.objectid !=
8819 btrfs_header_owner(path->nodes[level])) {
8820 btrfs_err(root->fs_info,
8821 "mismatched block owner");
8822 ret = -EIO;
8823 goto out_unlock;
8824 }
94fcca9f
YZ
8825 parent = 0;
8826 }
1c4850e2 8827
1152651a 8828 if (need_account) {
33d1f05c
QW
8829 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8830 generation, level - 1);
1152651a 8831 if (ret) {
0b246afa 8832 btrfs_err_rl(fs_info,
5d163e0e
JM
8833 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8834 ret);
1152651a
MF
8835 }
8836 }
84f7d8e6 8837 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8838 parent, root->root_key.objectid,
8839 level - 1, 0);
4867268c
JB
8840 if (ret)
8841 goto out_unlock;
1c4850e2 8842 }
4867268c
JB
8843
8844 *lookup_info = 1;
8845 ret = 1;
8846
8847out_unlock:
1c4850e2
YZ
8848 btrfs_tree_unlock(next);
8849 free_extent_buffer(next);
4867268c
JB
8850
8851 return ret;
1c4850e2
YZ
8852}
8853
2c47e605 8854/*
2c016dc2 8855 * helper to process tree block while walking up the tree.
2c47e605
YZ
8856 *
8857 * when wc->stage == DROP_REFERENCE, this function drops
8858 * reference count on the block.
8859 *
8860 * when wc->stage == UPDATE_BACKREF, this function changes
8861 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8862 * to UPDATE_BACKREF previously while processing the block.
8863 *
8864 * NOTE: return value 1 means we should stop walking up.
8865 */
8866static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8867 struct btrfs_root *root,
8868 struct btrfs_path *path,
8869 struct walk_control *wc)
8870{
0b246afa 8871 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8872 int ret;
2c47e605
YZ
8873 int level = wc->level;
8874 struct extent_buffer *eb = path->nodes[level];
8875 u64 parent = 0;
8876
8877 if (wc->stage == UPDATE_BACKREF) {
8878 BUG_ON(wc->shared_level < level);
8879 if (level < wc->shared_level)
8880 goto out;
8881
2c47e605
YZ
8882 ret = find_next_key(path, level + 1, &wc->update_progress);
8883 if (ret > 0)
8884 wc->update_ref = 0;
8885
8886 wc->stage = DROP_REFERENCE;
8887 wc->shared_level = -1;
8888 path->slots[level] = 0;
8889
8890 /*
8891 * check reference count again if the block isn't locked.
8892 * we should start walking down the tree again if reference
8893 * count is one.
8894 */
8895 if (!path->locks[level]) {
8896 BUG_ON(level == 0);
8897 btrfs_tree_lock(eb);
8898 btrfs_set_lock_blocking(eb);
bd681513 8899 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8900
2ff7e61e 8901 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8902 eb->start, level, 1,
2c47e605
YZ
8903 &wc->refs[level],
8904 &wc->flags[level]);
79787eaa
JM
8905 if (ret < 0) {
8906 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8907 path->locks[level] = 0;
79787eaa
JM
8908 return ret;
8909 }
2c47e605
YZ
8910 BUG_ON(wc->refs[level] == 0);
8911 if (wc->refs[level] == 1) {
bd681513 8912 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8913 path->locks[level] = 0;
2c47e605
YZ
8914 return 1;
8915 }
f82d02d9 8916 }
2c47e605 8917 }
f82d02d9 8918
2c47e605
YZ
8919 /* wc->stage == DROP_REFERENCE */
8920 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8921
2c47e605
YZ
8922 if (wc->refs[level] == 1) {
8923 if (level == 0) {
8924 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8925 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8926 else
e339a6b0 8927 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8928 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8929 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8930 if (ret) {
0b246afa 8931 btrfs_err_rl(fs_info,
5d163e0e
JM
8932 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8933 ret);
1152651a 8934 }
2c47e605
YZ
8935 }
8936 /* make block locked assertion in clean_tree_block happy */
8937 if (!path->locks[level] &&
8938 btrfs_header_generation(eb) == trans->transid) {
8939 btrfs_tree_lock(eb);
8940 btrfs_set_lock_blocking(eb);
bd681513 8941 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8942 }
7c302b49 8943 clean_tree_block(fs_info, eb);
2c47e605
YZ
8944 }
8945
8946 if (eb == root->node) {
8947 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8948 parent = eb->start;
8949 else
8950 BUG_ON(root->root_key.objectid !=
8951 btrfs_header_owner(eb));
8952 } else {
8953 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8954 parent = path->nodes[level + 1]->start;
8955 else
8956 BUG_ON(root->root_key.objectid !=
8957 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8958 }
f82d02d9 8959
5581a51a 8960 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8961out:
8962 wc->refs[level] = 0;
8963 wc->flags[level] = 0;
f0486c68 8964 return 0;
2c47e605
YZ
8965}
8966
8967static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8968 struct btrfs_root *root,
8969 struct btrfs_path *path,
8970 struct walk_control *wc)
8971{
2c47e605 8972 int level = wc->level;
94fcca9f 8973 int lookup_info = 1;
2c47e605
YZ
8974 int ret;
8975
8976 while (level >= 0) {
94fcca9f 8977 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8978 if (ret > 0)
8979 break;
8980
8981 if (level == 0)
8982 break;
8983
7a7965f8
YZ
8984 if (path->slots[level] >=
8985 btrfs_header_nritems(path->nodes[level]))
8986 break;
8987
94fcca9f 8988 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8989 if (ret > 0) {
8990 path->slots[level]++;
8991 continue;
90d2c51d
MX
8992 } else if (ret < 0)
8993 return ret;
1c4850e2 8994 level = wc->level;
f82d02d9 8995 }
f82d02d9
YZ
8996 return 0;
8997}
8998
d397712b 8999static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9000 struct btrfs_root *root,
f82d02d9 9001 struct btrfs_path *path,
2c47e605 9002 struct walk_control *wc, int max_level)
20524f02 9003{
2c47e605 9004 int level = wc->level;
20524f02 9005 int ret;
9f3a7427 9006
2c47e605
YZ
9007 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9008 while (level < max_level && path->nodes[level]) {
9009 wc->level = level;
9010 if (path->slots[level] + 1 <
9011 btrfs_header_nritems(path->nodes[level])) {
9012 path->slots[level]++;
20524f02
CM
9013 return 0;
9014 } else {
2c47e605
YZ
9015 ret = walk_up_proc(trans, root, path, wc);
9016 if (ret > 0)
9017 return 0;
bd56b302 9018
2c47e605 9019 if (path->locks[level]) {
bd681513
CM
9020 btrfs_tree_unlock_rw(path->nodes[level],
9021 path->locks[level]);
2c47e605 9022 path->locks[level] = 0;
f82d02d9 9023 }
2c47e605
YZ
9024 free_extent_buffer(path->nodes[level]);
9025 path->nodes[level] = NULL;
9026 level++;
20524f02
CM
9027 }
9028 }
9029 return 1;
9030}
9031
9aca1d51 9032/*
2c47e605
YZ
9033 * drop a subvolume tree.
9034 *
9035 * this function traverses the tree freeing any blocks that only
9036 * referenced by the tree.
9037 *
9038 * when a shared tree block is found. this function decreases its
9039 * reference count by one. if update_ref is true, this function
9040 * also make sure backrefs for the shared block and all lower level
9041 * blocks are properly updated.
9d1a2a3a
DS
9042 *
9043 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9044 */
2c536799 9045int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9046 struct btrfs_block_rsv *block_rsv, int update_ref,
9047 int for_reloc)
20524f02 9048{
ab8d0fc4 9049 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9050 struct btrfs_path *path;
2c47e605 9051 struct btrfs_trans_handle *trans;
ab8d0fc4 9052 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9053 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9054 struct walk_control *wc;
9055 struct btrfs_key key;
9056 int err = 0;
9057 int ret;
9058 int level;
d29a9f62 9059 bool root_dropped = false;
20524f02 9060
ab8d0fc4 9061 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9062
5caf2a00 9063 path = btrfs_alloc_path();
cb1b69f4
TI
9064 if (!path) {
9065 err = -ENOMEM;
9066 goto out;
9067 }
20524f02 9068
2c47e605 9069 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9070 if (!wc) {
9071 btrfs_free_path(path);
cb1b69f4
TI
9072 err = -ENOMEM;
9073 goto out;
38a1a919 9074 }
2c47e605 9075
a22285a6 9076 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9077 if (IS_ERR(trans)) {
9078 err = PTR_ERR(trans);
9079 goto out_free;
9080 }
98d5dc13 9081
3fd0a558
YZ
9082 if (block_rsv)
9083 trans->block_rsv = block_rsv;
2c47e605 9084
9f3a7427 9085 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9086 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9087 path->nodes[level] = btrfs_lock_root_node(root);
9088 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9089 path->slots[level] = 0;
bd681513 9090 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9091 memset(&wc->update_progress, 0,
9092 sizeof(wc->update_progress));
9f3a7427 9093 } else {
9f3a7427 9094 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9095 memcpy(&wc->update_progress, &key,
9096 sizeof(wc->update_progress));
9097
6702ed49 9098 level = root_item->drop_level;
2c47e605 9099 BUG_ON(level == 0);
6702ed49 9100 path->lowest_level = level;
2c47e605
YZ
9101 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9102 path->lowest_level = 0;
9103 if (ret < 0) {
9104 err = ret;
79787eaa 9105 goto out_end_trans;
9f3a7427 9106 }
1c4850e2 9107 WARN_ON(ret > 0);
2c47e605 9108
7d9eb12c
CM
9109 /*
9110 * unlock our path, this is safe because only this
9111 * function is allowed to delete this snapshot
9112 */
5d4f98a2 9113 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9114
9115 level = btrfs_header_level(root->node);
9116 while (1) {
9117 btrfs_tree_lock(path->nodes[level]);
9118 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9119 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9120
2ff7e61e 9121 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9122 path->nodes[level]->start,
3173a18f 9123 level, 1, &wc->refs[level],
2c47e605 9124 &wc->flags[level]);
79787eaa
JM
9125 if (ret < 0) {
9126 err = ret;
9127 goto out_end_trans;
9128 }
2c47e605
YZ
9129 BUG_ON(wc->refs[level] == 0);
9130
9131 if (level == root_item->drop_level)
9132 break;
9133
9134 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9135 path->locks[level] = 0;
2c47e605
YZ
9136 WARN_ON(wc->refs[level] != 1);
9137 level--;
9138 }
9f3a7427 9139 }
2c47e605
YZ
9140
9141 wc->level = level;
9142 wc->shared_level = -1;
9143 wc->stage = DROP_REFERENCE;
9144 wc->update_ref = update_ref;
9145 wc->keep_locks = 0;
66d7e7f0 9146 wc->for_reloc = for_reloc;
0b246afa 9147 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9148
d397712b 9149 while (1) {
9d1a2a3a 9150
2c47e605
YZ
9151 ret = walk_down_tree(trans, root, path, wc);
9152 if (ret < 0) {
9153 err = ret;
20524f02 9154 break;
2c47e605 9155 }
9aca1d51 9156
2c47e605
YZ
9157 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9158 if (ret < 0) {
9159 err = ret;
20524f02 9160 break;
2c47e605
YZ
9161 }
9162
9163 if (ret > 0) {
9164 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9165 break;
9166 }
2c47e605
YZ
9167
9168 if (wc->stage == DROP_REFERENCE) {
9169 level = wc->level;
9170 btrfs_node_key(path->nodes[level],
9171 &root_item->drop_progress,
9172 path->slots[level]);
9173 root_item->drop_level = level;
9174 }
9175
9176 BUG_ON(wc->level == 0);
3a45bb20 9177 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9178 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9179 ret = btrfs_update_root(trans, tree_root,
9180 &root->root_key,
9181 root_item);
79787eaa 9182 if (ret) {
66642832 9183 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9184 err = ret;
9185 goto out_end_trans;
9186 }
2c47e605 9187
3a45bb20 9188 btrfs_end_transaction_throttle(trans);
2ff7e61e 9189 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9190 btrfs_debug(fs_info,
9191 "drop snapshot early exit");
3c8f2422
JB
9192 err = -EAGAIN;
9193 goto out_free;
9194 }
9195
a22285a6 9196 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9197 if (IS_ERR(trans)) {
9198 err = PTR_ERR(trans);
9199 goto out_free;
9200 }
3fd0a558
YZ
9201 if (block_rsv)
9202 trans->block_rsv = block_rsv;
c3e69d58 9203 }
20524f02 9204 }
b3b4aa74 9205 btrfs_release_path(path);
79787eaa
JM
9206 if (err)
9207 goto out_end_trans;
2c47e605 9208
1cd5447e 9209 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9210 if (ret) {
66642832 9211 btrfs_abort_transaction(trans, ret);
e19182c0 9212 err = ret;
79787eaa
JM
9213 goto out_end_trans;
9214 }
2c47e605 9215
76dda93c 9216 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9217 ret = btrfs_find_root(tree_root, &root->root_key, path,
9218 NULL, NULL);
79787eaa 9219 if (ret < 0) {
66642832 9220 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9221 err = ret;
9222 goto out_end_trans;
9223 } else if (ret > 0) {
84cd948c
JB
9224 /* if we fail to delete the orphan item this time
9225 * around, it'll get picked up the next time.
9226 *
9227 * The most common failure here is just -ENOENT.
9228 */
9229 btrfs_del_orphan_item(trans, tree_root,
9230 root->root_key.objectid);
76dda93c
YZ
9231 }
9232 }
9233
27cdeb70 9234 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9235 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9236 } else {
9237 free_extent_buffer(root->node);
9238 free_extent_buffer(root->commit_root);
b0feb9d9 9239 btrfs_put_fs_root(root);
76dda93c 9240 }
d29a9f62 9241 root_dropped = true;
79787eaa 9242out_end_trans:
3a45bb20 9243 btrfs_end_transaction_throttle(trans);
79787eaa 9244out_free:
2c47e605 9245 kfree(wc);
5caf2a00 9246 btrfs_free_path(path);
cb1b69f4 9247out:
d29a9f62
JB
9248 /*
9249 * So if we need to stop dropping the snapshot for whatever reason we
9250 * need to make sure to add it back to the dead root list so that we
9251 * keep trying to do the work later. This also cleans up roots if we
9252 * don't have it in the radix (like when we recover after a power fail
9253 * or unmount) so we don't leak memory.
9254 */
897ca819 9255 if (!for_reloc && !root_dropped)
d29a9f62 9256 btrfs_add_dead_root(root);
90515e7f 9257 if (err && err != -EAGAIN)
ab8d0fc4 9258 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9259 return err;
20524f02 9260}
9078a3e1 9261
2c47e605
YZ
9262/*
9263 * drop subtree rooted at tree block 'node'.
9264 *
9265 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9266 * only used by relocation code
2c47e605 9267 */
f82d02d9
YZ
9268int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9269 struct btrfs_root *root,
9270 struct extent_buffer *node,
9271 struct extent_buffer *parent)
9272{
0b246afa 9273 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9274 struct btrfs_path *path;
2c47e605 9275 struct walk_control *wc;
f82d02d9
YZ
9276 int level;
9277 int parent_level;
9278 int ret = 0;
9279 int wret;
9280
2c47e605
YZ
9281 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9282
f82d02d9 9283 path = btrfs_alloc_path();
db5b493a
TI
9284 if (!path)
9285 return -ENOMEM;
f82d02d9 9286
2c47e605 9287 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9288 if (!wc) {
9289 btrfs_free_path(path);
9290 return -ENOMEM;
9291 }
2c47e605 9292
b9447ef8 9293 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9294 parent_level = btrfs_header_level(parent);
9295 extent_buffer_get(parent);
9296 path->nodes[parent_level] = parent;
9297 path->slots[parent_level] = btrfs_header_nritems(parent);
9298
b9447ef8 9299 btrfs_assert_tree_locked(node);
f82d02d9 9300 level = btrfs_header_level(node);
f82d02d9
YZ
9301 path->nodes[level] = node;
9302 path->slots[level] = 0;
bd681513 9303 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9304
9305 wc->refs[parent_level] = 1;
9306 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9307 wc->level = level;
9308 wc->shared_level = -1;
9309 wc->stage = DROP_REFERENCE;
9310 wc->update_ref = 0;
9311 wc->keep_locks = 1;
66d7e7f0 9312 wc->for_reloc = 1;
0b246afa 9313 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9314
9315 while (1) {
2c47e605
YZ
9316 wret = walk_down_tree(trans, root, path, wc);
9317 if (wret < 0) {
f82d02d9 9318 ret = wret;
f82d02d9 9319 break;
2c47e605 9320 }
f82d02d9 9321
2c47e605 9322 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9323 if (wret < 0)
9324 ret = wret;
9325 if (wret != 0)
9326 break;
9327 }
9328
2c47e605 9329 kfree(wc);
f82d02d9
YZ
9330 btrfs_free_path(path);
9331 return ret;
9332}
9333
6202df69 9334static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9335{
9336 u64 num_devices;
fc67c450 9337 u64 stripped;
e4d8ec0f 9338
fc67c450
ID
9339 /*
9340 * if restripe for this chunk_type is on pick target profile and
9341 * return, otherwise do the usual balance
9342 */
6202df69 9343 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9344 if (stripped)
9345 return extended_to_chunk(stripped);
e4d8ec0f 9346
6202df69 9347 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9348
fc67c450 9349 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9350 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9351 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9352
ec44a35c
CM
9353 if (num_devices == 1) {
9354 stripped |= BTRFS_BLOCK_GROUP_DUP;
9355 stripped = flags & ~stripped;
9356
9357 /* turn raid0 into single device chunks */
9358 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9359 return stripped;
9360
9361 /* turn mirroring into duplication */
9362 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9363 BTRFS_BLOCK_GROUP_RAID10))
9364 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9365 } else {
9366 /* they already had raid on here, just return */
ec44a35c
CM
9367 if (flags & stripped)
9368 return flags;
9369
9370 stripped |= BTRFS_BLOCK_GROUP_DUP;
9371 stripped = flags & ~stripped;
9372
9373 /* switch duplicated blocks with raid1 */
9374 if (flags & BTRFS_BLOCK_GROUP_DUP)
9375 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9376
e3176ca2 9377 /* this is drive concat, leave it alone */
ec44a35c 9378 }
e3176ca2 9379
ec44a35c
CM
9380 return flags;
9381}
9382
868f401a 9383static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9384{
f0486c68
YZ
9385 struct btrfs_space_info *sinfo = cache->space_info;
9386 u64 num_bytes;
199c36ea 9387 u64 min_allocable_bytes;
f0486c68 9388 int ret = -ENOSPC;
0ef3e66b 9389
199c36ea
MX
9390 /*
9391 * We need some metadata space and system metadata space for
9392 * allocating chunks in some corner cases until we force to set
9393 * it to be readonly.
9394 */
9395 if ((sinfo->flags &
9396 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9397 !force)
ee22184b 9398 min_allocable_bytes = SZ_1M;
199c36ea
MX
9399 else
9400 min_allocable_bytes = 0;
9401
f0486c68
YZ
9402 spin_lock(&sinfo->lock);
9403 spin_lock(&cache->lock);
61cfea9b
W
9404
9405 if (cache->ro) {
868f401a 9406 cache->ro++;
61cfea9b
W
9407 ret = 0;
9408 goto out;
9409 }
9410
f0486c68
YZ
9411 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9412 cache->bytes_super - btrfs_block_group_used(&cache->item);
9413
4136135b 9414 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9415 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9416 sinfo->bytes_readonly += num_bytes;
868f401a 9417 cache->ro++;
633c0aad 9418 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9419 ret = 0;
9420 }
61cfea9b 9421out:
f0486c68
YZ
9422 spin_unlock(&cache->lock);
9423 spin_unlock(&sinfo->lock);
9424 return ret;
9425}
7d9eb12c 9426
5e00f193 9427int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9428 struct btrfs_block_group_cache *cache)
c286ac48 9429
f0486c68
YZ
9430{
9431 struct btrfs_trans_handle *trans;
9432 u64 alloc_flags;
9433 int ret;
7d9eb12c 9434
1bbc621e 9435again:
5e00f193 9436 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9437 if (IS_ERR(trans))
9438 return PTR_ERR(trans);
5d4f98a2 9439
1bbc621e
CM
9440 /*
9441 * we're not allowed to set block groups readonly after the dirty
9442 * block groups cache has started writing. If it already started,
9443 * back off and let this transaction commit
9444 */
0b246afa 9445 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9446 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9447 u64 transid = trans->transid;
9448
0b246afa 9449 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9450 btrfs_end_transaction(trans);
1bbc621e 9451
2ff7e61e 9452 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9453 if (ret)
9454 return ret;
9455 goto again;
9456 }
9457
153c35b6
CM
9458 /*
9459 * if we are changing raid levels, try to allocate a corresponding
9460 * block group with the new raid level.
9461 */
0b246afa 9462 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9463 if (alloc_flags != cache->flags) {
2ff7e61e 9464 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9465 CHUNK_ALLOC_FORCE);
9466 /*
9467 * ENOSPC is allowed here, we may have enough space
9468 * already allocated at the new raid level to
9469 * carry on
9470 */
9471 if (ret == -ENOSPC)
9472 ret = 0;
9473 if (ret < 0)
9474 goto out;
9475 }
1bbc621e 9476
868f401a 9477 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9478 if (!ret)
9479 goto out;
2ff7e61e
JM
9480 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9481 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9482 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9483 if (ret < 0)
9484 goto out;
868f401a 9485 ret = inc_block_group_ro(cache, 0);
f0486c68 9486out:
2f081088 9487 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9488 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9489 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9490 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9491 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9492 }
0b246afa 9493 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9494
3a45bb20 9495 btrfs_end_transaction(trans);
f0486c68
YZ
9496 return ret;
9497}
5d4f98a2 9498
c87f08ca 9499int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9500 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9501{
2ff7e61e
JM
9502 u64 alloc_flags = get_alloc_profile(fs_info, type);
9503
9504 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9505}
9506
6d07bcec
MX
9507/*
9508 * helper to account the unused space of all the readonly block group in the
633c0aad 9509 * space_info. takes mirrors into account.
6d07bcec 9510 */
633c0aad 9511u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9512{
9513 struct btrfs_block_group_cache *block_group;
9514 u64 free_bytes = 0;
9515 int factor;
9516
01327610 9517 /* It's df, we don't care if it's racy */
633c0aad
JB
9518 if (list_empty(&sinfo->ro_bgs))
9519 return 0;
9520
9521 spin_lock(&sinfo->lock);
9522 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9523 spin_lock(&block_group->lock);
9524
9525 if (!block_group->ro) {
9526 spin_unlock(&block_group->lock);
9527 continue;
9528 }
9529
9530 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9531 BTRFS_BLOCK_GROUP_RAID10 |
9532 BTRFS_BLOCK_GROUP_DUP))
9533 factor = 2;
9534 else
9535 factor = 1;
9536
9537 free_bytes += (block_group->key.offset -
9538 btrfs_block_group_used(&block_group->item)) *
9539 factor;
9540
9541 spin_unlock(&block_group->lock);
9542 }
6d07bcec
MX
9543 spin_unlock(&sinfo->lock);
9544
9545 return free_bytes;
9546}
9547
2ff7e61e 9548void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9549{
f0486c68
YZ
9550 struct btrfs_space_info *sinfo = cache->space_info;
9551 u64 num_bytes;
9552
9553 BUG_ON(!cache->ro);
9554
9555 spin_lock(&sinfo->lock);
9556 spin_lock(&cache->lock);
868f401a
Z
9557 if (!--cache->ro) {
9558 num_bytes = cache->key.offset - cache->reserved -
9559 cache->pinned - cache->bytes_super -
9560 btrfs_block_group_used(&cache->item);
9561 sinfo->bytes_readonly -= num_bytes;
9562 list_del_init(&cache->ro_list);
9563 }
f0486c68
YZ
9564 spin_unlock(&cache->lock);
9565 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9566}
9567
ba1bf481
JB
9568/*
9569 * checks to see if its even possible to relocate this block group.
9570 *
9571 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9572 * ok to go ahead and try.
9573 */
6bccf3ab 9574int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9575{
6bccf3ab 9576 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9577 struct btrfs_block_group_cache *block_group;
9578 struct btrfs_space_info *space_info;
0b246afa 9579 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9580 struct btrfs_device *device;
6df9a95e 9581 struct btrfs_trans_handle *trans;
cdcb725c 9582 u64 min_free;
6719db6a
JB
9583 u64 dev_min = 1;
9584 u64 dev_nr = 0;
4a5e98f5 9585 u64 target;
0305bc27 9586 int debug;
cdcb725c 9587 int index;
ba1bf481
JB
9588 int full = 0;
9589 int ret = 0;
1a40e23b 9590
0b246afa 9591 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9592
0b246afa 9593 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9594
ba1bf481 9595 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9596 if (!block_group) {
9597 if (debug)
0b246afa 9598 btrfs_warn(fs_info,
0305bc27
QW
9599 "can't find block group for bytenr %llu",
9600 bytenr);
ba1bf481 9601 return -1;
0305bc27 9602 }
1a40e23b 9603
cdcb725c 9604 min_free = btrfs_block_group_used(&block_group->item);
9605
ba1bf481 9606 /* no bytes used, we're good */
cdcb725c 9607 if (!min_free)
1a40e23b
ZY
9608 goto out;
9609
ba1bf481
JB
9610 space_info = block_group->space_info;
9611 spin_lock(&space_info->lock);
17d217fe 9612
ba1bf481 9613 full = space_info->full;
17d217fe 9614
ba1bf481
JB
9615 /*
9616 * if this is the last block group we have in this space, we can't
7ce618db
CM
9617 * relocate it unless we're able to allocate a new chunk below.
9618 *
9619 * Otherwise, we need to make sure we have room in the space to handle
9620 * all of the extents from this block group. If we can, we're good
ba1bf481 9621 */
7ce618db 9622 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9623 (btrfs_space_info_used(space_info, false) + min_free <
9624 space_info->total_bytes)) {
ba1bf481
JB
9625 spin_unlock(&space_info->lock);
9626 goto out;
17d217fe 9627 }
ba1bf481 9628 spin_unlock(&space_info->lock);
ea8c2819 9629
ba1bf481
JB
9630 /*
9631 * ok we don't have enough space, but maybe we have free space on our
9632 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9633 * alloc devices and guess if we have enough space. if this block
9634 * group is going to be restriped, run checks against the target
9635 * profile instead of the current one.
ba1bf481
JB
9636 */
9637 ret = -1;
ea8c2819 9638
cdcb725c 9639 /*
9640 * index:
9641 * 0: raid10
9642 * 1: raid1
9643 * 2: dup
9644 * 3: raid0
9645 * 4: single
9646 */
0b246afa 9647 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9648 if (target) {
31e50229 9649 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9650 } else {
9651 /*
9652 * this is just a balance, so if we were marked as full
9653 * we know there is no space for a new chunk
9654 */
0305bc27
QW
9655 if (full) {
9656 if (debug)
0b246afa
JM
9657 btrfs_warn(fs_info,
9658 "no space to alloc new chunk for block group %llu",
9659 block_group->key.objectid);
4a5e98f5 9660 goto out;
0305bc27 9661 }
4a5e98f5
ID
9662
9663 index = get_block_group_index(block_group);
9664 }
9665
e6ec716f 9666 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9667 dev_min = 4;
6719db6a
JB
9668 /* Divide by 2 */
9669 min_free >>= 1;
e6ec716f 9670 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9671 dev_min = 2;
e6ec716f 9672 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9673 /* Multiply by 2 */
9674 min_free <<= 1;
e6ec716f 9675 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9676 dev_min = fs_devices->rw_devices;
47c5713f 9677 min_free = div64_u64(min_free, dev_min);
cdcb725c 9678 }
9679
6df9a95e
JB
9680 /* We need to do this so that we can look at pending chunks */
9681 trans = btrfs_join_transaction(root);
9682 if (IS_ERR(trans)) {
9683 ret = PTR_ERR(trans);
9684 goto out;
9685 }
9686
0b246afa 9687 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9688 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9689 u64 dev_offset;
56bec294 9690
ba1bf481
JB
9691 /*
9692 * check to make sure we can actually find a chunk with enough
9693 * space to fit our block group in.
9694 */
63a212ab 9695 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9696 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9697 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9698 &dev_offset, NULL);
ba1bf481 9699 if (!ret)
cdcb725c 9700 dev_nr++;
9701
9702 if (dev_nr >= dev_min)
73e48b27 9703 break;
cdcb725c 9704
ba1bf481 9705 ret = -1;
725c8463 9706 }
edbd8d4e 9707 }
0305bc27 9708 if (debug && ret == -1)
0b246afa
JM
9709 btrfs_warn(fs_info,
9710 "no space to allocate a new chunk for block group %llu",
9711 block_group->key.objectid);
9712 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9713 btrfs_end_transaction(trans);
edbd8d4e 9714out:
ba1bf481 9715 btrfs_put_block_group(block_group);
edbd8d4e
CM
9716 return ret;
9717}
9718
6bccf3ab
JM
9719static int find_first_block_group(struct btrfs_fs_info *fs_info,
9720 struct btrfs_path *path,
9721 struct btrfs_key *key)
0b86a832 9722{
6bccf3ab 9723 struct btrfs_root *root = fs_info->extent_root;
925baedd 9724 int ret = 0;
0b86a832
CM
9725 struct btrfs_key found_key;
9726 struct extent_buffer *leaf;
9727 int slot;
edbd8d4e 9728
0b86a832
CM
9729 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9730 if (ret < 0)
925baedd
CM
9731 goto out;
9732
d397712b 9733 while (1) {
0b86a832 9734 slot = path->slots[0];
edbd8d4e 9735 leaf = path->nodes[0];
0b86a832
CM
9736 if (slot >= btrfs_header_nritems(leaf)) {
9737 ret = btrfs_next_leaf(root, path);
9738 if (ret == 0)
9739 continue;
9740 if (ret < 0)
925baedd 9741 goto out;
0b86a832 9742 break;
edbd8d4e 9743 }
0b86a832 9744 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9745
0b86a832 9746 if (found_key.objectid >= key->objectid &&
925baedd 9747 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9748 struct extent_map_tree *em_tree;
9749 struct extent_map *em;
9750
9751 em_tree = &root->fs_info->mapping_tree.map_tree;
9752 read_lock(&em_tree->lock);
9753 em = lookup_extent_mapping(em_tree, found_key.objectid,
9754 found_key.offset);
9755 read_unlock(&em_tree->lock);
9756 if (!em) {
0b246afa 9757 btrfs_err(fs_info,
6fb37b75
LB
9758 "logical %llu len %llu found bg but no related chunk",
9759 found_key.objectid, found_key.offset);
9760 ret = -ENOENT;
9761 } else {
9762 ret = 0;
9763 }
187ee58c 9764 free_extent_map(em);
925baedd
CM
9765 goto out;
9766 }
0b86a832 9767 path->slots[0]++;
edbd8d4e 9768 }
925baedd 9769out:
0b86a832 9770 return ret;
edbd8d4e
CM
9771}
9772
0af3d00b
JB
9773void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9774{
9775 struct btrfs_block_group_cache *block_group;
9776 u64 last = 0;
9777
9778 while (1) {
9779 struct inode *inode;
9780
9781 block_group = btrfs_lookup_first_block_group(info, last);
9782 while (block_group) {
9783 spin_lock(&block_group->lock);
9784 if (block_group->iref)
9785 break;
9786 spin_unlock(&block_group->lock);
2ff7e61e 9787 block_group = next_block_group(info, block_group);
0af3d00b
JB
9788 }
9789 if (!block_group) {
9790 if (last == 0)
9791 break;
9792 last = 0;
9793 continue;
9794 }
9795
9796 inode = block_group->inode;
9797 block_group->iref = 0;
9798 block_group->inode = NULL;
9799 spin_unlock(&block_group->lock);
f3bca802 9800 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9801 iput(inode);
9802 last = block_group->key.objectid + block_group->key.offset;
9803 btrfs_put_block_group(block_group);
9804 }
9805}
9806
5cdd7db6
FM
9807/*
9808 * Must be called only after stopping all workers, since we could have block
9809 * group caching kthreads running, and therefore they could race with us if we
9810 * freed the block groups before stopping them.
9811 */
1a40e23b
ZY
9812int btrfs_free_block_groups(struct btrfs_fs_info *info)
9813{
9814 struct btrfs_block_group_cache *block_group;
4184ea7f 9815 struct btrfs_space_info *space_info;
11833d66 9816 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9817 struct rb_node *n;
9818
9e351cc8 9819 down_write(&info->commit_root_sem);
11833d66
YZ
9820 while (!list_empty(&info->caching_block_groups)) {
9821 caching_ctl = list_entry(info->caching_block_groups.next,
9822 struct btrfs_caching_control, list);
9823 list_del(&caching_ctl->list);
9824 put_caching_control(caching_ctl);
9825 }
9e351cc8 9826 up_write(&info->commit_root_sem);
11833d66 9827
47ab2a6c
JB
9828 spin_lock(&info->unused_bgs_lock);
9829 while (!list_empty(&info->unused_bgs)) {
9830 block_group = list_first_entry(&info->unused_bgs,
9831 struct btrfs_block_group_cache,
9832 bg_list);
9833 list_del_init(&block_group->bg_list);
9834 btrfs_put_block_group(block_group);
9835 }
9836 spin_unlock(&info->unused_bgs_lock);
9837
1a40e23b
ZY
9838 spin_lock(&info->block_group_cache_lock);
9839 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9840 block_group = rb_entry(n, struct btrfs_block_group_cache,
9841 cache_node);
1a40e23b
ZY
9842 rb_erase(&block_group->cache_node,
9843 &info->block_group_cache_tree);
01eacb27 9844 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9845 spin_unlock(&info->block_group_cache_lock);
9846
80eb234a 9847 down_write(&block_group->space_info->groups_sem);
1a40e23b 9848 list_del(&block_group->list);
80eb234a 9849 up_write(&block_group->space_info->groups_sem);
d2fb3437 9850
3c14874a
JB
9851 /*
9852 * We haven't cached this block group, which means we could
9853 * possibly have excluded extents on this block group.
9854 */
36cce922
JB
9855 if (block_group->cached == BTRFS_CACHE_NO ||
9856 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9857 free_excluded_extents(info, block_group);
3c14874a 9858
817d52f8 9859 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9860 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9861 ASSERT(list_empty(&block_group->dirty_list));
9862 ASSERT(list_empty(&block_group->io_list));
9863 ASSERT(list_empty(&block_group->bg_list));
9864 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9865 btrfs_put_block_group(block_group);
d899e052
YZ
9866
9867 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9868 }
9869 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9870
9871 /* now that all the block groups are freed, go through and
9872 * free all the space_info structs. This is only called during
9873 * the final stages of unmount, and so we know nobody is
9874 * using them. We call synchronize_rcu() once before we start,
9875 * just to be on the safe side.
9876 */
9877 synchronize_rcu();
9878
8929ecfa
YZ
9879 release_global_block_rsv(info);
9880
67871254 9881 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9882 int i;
9883
4184ea7f
CM
9884 space_info = list_entry(info->space_info.next,
9885 struct btrfs_space_info,
9886 list);
d555b6c3
JB
9887
9888 /*
9889 * Do not hide this behind enospc_debug, this is actually
9890 * important and indicates a real bug if this happens.
9891 */
9892 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9893 space_info->bytes_reserved > 0 ||
d555b6c3 9894 space_info->bytes_may_use > 0))
ab8d0fc4 9895 dump_space_info(info, space_info, 0, 0);
4184ea7f 9896 list_del(&space_info->list);
6ab0a202
JM
9897 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9898 struct kobject *kobj;
c1895442
JM
9899 kobj = space_info->block_group_kobjs[i];
9900 space_info->block_group_kobjs[i] = NULL;
9901 if (kobj) {
6ab0a202
JM
9902 kobject_del(kobj);
9903 kobject_put(kobj);
9904 }
9905 }
9906 kobject_del(&space_info->kobj);
9907 kobject_put(&space_info->kobj);
4184ea7f 9908 }
1a40e23b
ZY
9909 return 0;
9910}
9911
c434d21c 9912static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9913{
c434d21c 9914 struct btrfs_space_info *space_info = cache->space_info;
b742bb82 9915 int index = get_block_group_index(cache);
ed55b6ac 9916 bool first = false;
b742bb82
YZ
9917
9918 down_write(&space_info->groups_sem);
ed55b6ac
JM
9919 if (list_empty(&space_info->block_groups[index]))
9920 first = true;
9921 list_add_tail(&cache->list, &space_info->block_groups[index]);
9922 up_write(&space_info->groups_sem);
9923
9924 if (first) {
c1895442 9925 struct raid_kobject *rkobj;
6ab0a202
JM
9926 int ret;
9927
c1895442
JM
9928 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9929 if (!rkobj)
9930 goto out_err;
9931 rkobj->raid_type = index;
9932 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9933 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9934 "%s", get_raid_name(index));
6ab0a202 9935 if (ret) {
c1895442
JM
9936 kobject_put(&rkobj->kobj);
9937 goto out_err;
6ab0a202 9938 }
c1895442 9939 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9940 }
c1895442
JM
9941
9942 return;
9943out_err:
ab8d0fc4
JM
9944 btrfs_warn(cache->fs_info,
9945 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9946}
9947
920e4a58 9948static struct btrfs_block_group_cache *
2ff7e61e
JM
9949btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9950 u64 start, u64 size)
920e4a58
MX
9951{
9952 struct btrfs_block_group_cache *cache;
9953
9954 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9955 if (!cache)
9956 return NULL;
9957
9958 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9959 GFP_NOFS);
9960 if (!cache->free_space_ctl) {
9961 kfree(cache);
9962 return NULL;
9963 }
9964
9965 cache->key.objectid = start;
9966 cache->key.offset = size;
9967 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9968
0b246afa 9969 cache->fs_info = fs_info;
e4ff5fb5 9970 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
9971 set_free_space_tree_thresholds(cache);
9972
920e4a58
MX
9973 atomic_set(&cache->count, 1);
9974 spin_lock_init(&cache->lock);
e570fd27 9975 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9976 INIT_LIST_HEAD(&cache->list);
9977 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9978 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9979 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9980 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9981 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9982 btrfs_init_free_space_ctl(cache);
04216820 9983 atomic_set(&cache->trimming, 0);
a5ed9182 9984 mutex_init(&cache->free_space_lock);
0966a7b1 9985 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9986
9987 return cache;
9988}
9989
5b4aacef 9990int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9991{
9992 struct btrfs_path *path;
9993 int ret;
9078a3e1 9994 struct btrfs_block_group_cache *cache;
6324fbf3 9995 struct btrfs_space_info *space_info;
9078a3e1
CM
9996 struct btrfs_key key;
9997 struct btrfs_key found_key;
5f39d397 9998 struct extent_buffer *leaf;
0af3d00b
JB
9999 int need_clear = 0;
10000 u64 cache_gen;
49303381
LB
10001 u64 feature;
10002 int mixed;
10003
10004 feature = btrfs_super_incompat_flags(info->super_copy);
10005 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10006
9078a3e1 10007 key.objectid = 0;
0b86a832 10008 key.offset = 0;
962a298f 10009 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10010 path = btrfs_alloc_path();
10011 if (!path)
10012 return -ENOMEM;
e4058b54 10013 path->reada = READA_FORWARD;
9078a3e1 10014
0b246afa
JM
10015 cache_gen = btrfs_super_cache_generation(info->super_copy);
10016 if (btrfs_test_opt(info, SPACE_CACHE) &&
10017 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10018 need_clear = 1;
0b246afa 10019 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10020 need_clear = 1;
0af3d00b 10021
d397712b 10022 while (1) {
6bccf3ab 10023 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10024 if (ret > 0)
10025 break;
0b86a832
CM
10026 if (ret != 0)
10027 goto error;
920e4a58 10028
5f39d397
CM
10029 leaf = path->nodes[0];
10030 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10031
2ff7e61e 10032 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10033 found_key.offset);
9078a3e1 10034 if (!cache) {
0b86a832 10035 ret = -ENOMEM;
f0486c68 10036 goto error;
9078a3e1 10037 }
96303081 10038
cf7c1ef6
LB
10039 if (need_clear) {
10040 /*
10041 * When we mount with old space cache, we need to
10042 * set BTRFS_DC_CLEAR and set dirty flag.
10043 *
10044 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10045 * truncate the old free space cache inode and
10046 * setup a new one.
10047 * b) Setting 'dirty flag' makes sure that we flush
10048 * the new space cache info onto disk.
10049 */
0b246afa 10050 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10051 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10052 }
0af3d00b 10053
5f39d397
CM
10054 read_extent_buffer(leaf, &cache->item,
10055 btrfs_item_ptr_offset(leaf, path->slots[0]),
10056 sizeof(cache->item));
920e4a58 10057 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10058 if (!mixed &&
10059 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10060 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10061 btrfs_err(info,
10062"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10063 cache->key.objectid);
10064 ret = -EINVAL;
10065 goto error;
10066 }
0b86a832 10067
9078a3e1 10068 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10069 btrfs_release_path(path);
34d52cb6 10070
3c14874a
JB
10071 /*
10072 * We need to exclude the super stripes now so that the space
10073 * info has super bytes accounted for, otherwise we'll think
10074 * we have more space than we actually do.
10075 */
2ff7e61e 10076 ret = exclude_super_stripes(info, cache);
835d974f
JB
10077 if (ret) {
10078 /*
10079 * We may have excluded something, so call this just in
10080 * case.
10081 */
2ff7e61e 10082 free_excluded_extents(info, cache);
920e4a58 10083 btrfs_put_block_group(cache);
835d974f
JB
10084 goto error;
10085 }
3c14874a 10086
817d52f8
JB
10087 /*
10088 * check for two cases, either we are full, and therefore
10089 * don't need to bother with the caching work since we won't
10090 * find any space, or we are empty, and we can just add all
10091 * the space in and be done with it. This saves us _alot_ of
10092 * time, particularly in the full case.
10093 */
10094 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10095 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10096 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10097 free_excluded_extents(info, cache);
817d52f8 10098 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10099 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10100 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10101 add_new_free_space(cache, info,
817d52f8
JB
10102 found_key.objectid,
10103 found_key.objectid +
10104 found_key.offset);
2ff7e61e 10105 free_excluded_extents(info, cache);
817d52f8 10106 }
96b5179d 10107
0b246afa 10108 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10109 if (ret) {
10110 btrfs_remove_free_space_cache(cache);
10111 btrfs_put_block_group(cache);
10112 goto error;
10113 }
10114
0b246afa 10115 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10116 update_space_info(info, cache->flags, found_key.offset,
10117 btrfs_block_group_used(&cache->item),
10118 cache->bytes_super, &space_info);
8c579fe7 10119
6324fbf3 10120 cache->space_info = space_info;
1b2da372 10121
c434d21c 10122 link_block_group(cache);
0f9dd46c 10123
0b246afa 10124 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10125 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10126 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10127 } else if (btrfs_block_group_used(&cache->item) == 0) {
10128 spin_lock(&info->unused_bgs_lock);
10129 /* Should always be true but just in case. */
10130 if (list_empty(&cache->bg_list)) {
10131 btrfs_get_block_group(cache);
10132 list_add_tail(&cache->bg_list,
10133 &info->unused_bgs);
10134 }
10135 spin_unlock(&info->unused_bgs_lock);
10136 }
9078a3e1 10137 }
b742bb82 10138
0b246afa 10139 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10140 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10141 (BTRFS_BLOCK_GROUP_RAID10 |
10142 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10143 BTRFS_BLOCK_GROUP_RAID5 |
10144 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10145 BTRFS_BLOCK_GROUP_DUP)))
10146 continue;
10147 /*
10148 * avoid allocating from un-mirrored block group if there are
10149 * mirrored block groups.
10150 */
1095cc0d 10151 list_for_each_entry(cache,
10152 &space_info->block_groups[BTRFS_RAID_RAID0],
10153 list)
868f401a 10154 inc_block_group_ro(cache, 1);
1095cc0d 10155 list_for_each_entry(cache,
10156 &space_info->block_groups[BTRFS_RAID_SINGLE],
10157 list)
868f401a 10158 inc_block_group_ro(cache, 1);
9078a3e1 10159 }
f0486c68
YZ
10160
10161 init_global_block_rsv(info);
0b86a832
CM
10162 ret = 0;
10163error:
9078a3e1 10164 btrfs_free_path(path);
0b86a832 10165 return ret;
9078a3e1 10166}
6324fbf3 10167
ea658bad 10168void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 10169 struct btrfs_fs_info *fs_info)
ea658bad
JB
10170{
10171 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10172 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10173 struct btrfs_block_group_item item;
10174 struct btrfs_key key;
10175 int ret = 0;
d9a0540a 10176 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10177
d9a0540a 10178 trans->can_flush_pending_bgs = false;
47ab2a6c 10179 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10180 if (ret)
c92f6be3 10181 goto next;
ea658bad
JB
10182
10183 spin_lock(&block_group->lock);
10184 memcpy(&item, &block_group->item, sizeof(item));
10185 memcpy(&key, &block_group->key, sizeof(key));
10186 spin_unlock(&block_group->lock);
10187
10188 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10189 sizeof(item));
10190 if (ret)
66642832 10191 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10192 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10193 key.offset);
6df9a95e 10194 if (ret)
66642832 10195 btrfs_abort_transaction(trans, ret);
0b246afa 10196 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10197 /* already aborted the transaction if it failed. */
c92f6be3
FM
10198next:
10199 list_del_init(&block_group->bg_list);
ea658bad 10200 }
d9a0540a 10201 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10202}
10203
6324fbf3 10204int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10205 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10206 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10207{
6324fbf3 10208 struct btrfs_block_group_cache *cache;
0b246afa 10209 int ret;
6324fbf3 10210
0b246afa 10211 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10212
2ff7e61e 10213 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10214 if (!cache)
10215 return -ENOMEM;
34d52cb6 10216
6324fbf3 10217 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10218 btrfs_set_block_group_chunk_objectid(&cache->item,
10219 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10220 btrfs_set_block_group_flags(&cache->item, type);
10221
920e4a58 10222 cache->flags = type;
11833d66 10223 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10224 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10225 cache->needs_free_space = 1;
2ff7e61e 10226 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10227 if (ret) {
10228 /*
10229 * We may have excluded something, so call this just in
10230 * case.
10231 */
2ff7e61e 10232 free_excluded_extents(fs_info, cache);
920e4a58 10233 btrfs_put_block_group(cache);
835d974f
JB
10234 return ret;
10235 }
96303081 10236
0b246afa 10237 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10238
2ff7e61e 10239 free_excluded_extents(fs_info, cache);
11833d66 10240
d0bd4560 10241#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10242 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10243 u64 new_bytes_used = size - bytes_used;
10244
10245 bytes_used += new_bytes_used >> 1;
2ff7e61e 10246 fragment_free_space(cache);
d0bd4560
JB
10247 }
10248#endif
2e6e5183 10249 /*
2be12ef7
NB
10250 * Ensure the corresponding space_info object is created and
10251 * assigned to our block group. We want our bg to be added to the rbtree
10252 * with its ->space_info set.
2e6e5183 10253 */
2be12ef7
NB
10254 cache->space_info = __find_space_info(fs_info, cache->flags);
10255 if (!cache->space_info) {
10256 ret = create_space_info(fs_info, cache->flags,
10257 &cache->space_info);
10258 if (ret) {
10259 btrfs_remove_free_space_cache(cache);
10260 btrfs_put_block_group(cache);
10261 return ret;
10262 }
2e6e5183
FM
10263 }
10264
0b246afa 10265 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10266 if (ret) {
10267 btrfs_remove_free_space_cache(cache);
10268 btrfs_put_block_group(cache);
10269 return ret;
10270 }
10271
2e6e5183
FM
10272 /*
10273 * Now that our block group has its ->space_info set and is inserted in
10274 * the rbtree, update the space info's counters.
10275 */
0b246afa 10276 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10277 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10278 cache->bytes_super, &cache->space_info);
0b246afa 10279 update_global_block_rsv(fs_info);
1b2da372 10280
c434d21c 10281 link_block_group(cache);
6324fbf3 10282
47ab2a6c 10283 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10284
0b246afa 10285 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10286 return 0;
10287}
1a40e23b 10288
10ea00f5
ID
10289static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10290{
899c81ea
ID
10291 u64 extra_flags = chunk_to_extended(flags) &
10292 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10293
de98ced9 10294 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10295 if (flags & BTRFS_BLOCK_GROUP_DATA)
10296 fs_info->avail_data_alloc_bits &= ~extra_flags;
10297 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10298 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10299 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10300 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10301 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10302}
10303
1a40e23b 10304int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10305 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10306 struct extent_map *em)
1a40e23b 10307{
6bccf3ab 10308 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10309 struct btrfs_path *path;
10310 struct btrfs_block_group_cache *block_group;
44fb5511 10311 struct btrfs_free_cluster *cluster;
0b246afa 10312 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10313 struct btrfs_key key;
0af3d00b 10314 struct inode *inode;
c1895442 10315 struct kobject *kobj = NULL;
1a40e23b 10316 int ret;
10ea00f5 10317 int index;
89a55897 10318 int factor;
4f69cb98 10319 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10320 bool remove_em;
1a40e23b 10321
6bccf3ab 10322 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10323 BUG_ON(!block_group);
c146afad 10324 BUG_ON(!block_group->ro);
1a40e23b 10325
9f7c43c9 10326 /*
10327 * Free the reserved super bytes from this block group before
10328 * remove it.
10329 */
2ff7e61e 10330 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10331 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10332 block_group->key.offset);
9f7c43c9 10333
1a40e23b 10334 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10335 index = get_block_group_index(block_group);
89a55897
JB
10336 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10337 BTRFS_BLOCK_GROUP_RAID1 |
10338 BTRFS_BLOCK_GROUP_RAID10))
10339 factor = 2;
10340 else
10341 factor = 1;
1a40e23b 10342
44fb5511 10343 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10344 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10345 spin_lock(&cluster->refill_lock);
10346 btrfs_return_cluster_to_free_space(block_group, cluster);
10347 spin_unlock(&cluster->refill_lock);
10348
10349 /*
10350 * make sure this block group isn't part of a metadata
10351 * allocation cluster
10352 */
0b246afa 10353 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10354 spin_lock(&cluster->refill_lock);
10355 btrfs_return_cluster_to_free_space(block_group, cluster);
10356 spin_unlock(&cluster->refill_lock);
10357
1a40e23b 10358 path = btrfs_alloc_path();
d8926bb3
MF
10359 if (!path) {
10360 ret = -ENOMEM;
10361 goto out;
10362 }
1a40e23b 10363
1bbc621e
CM
10364 /*
10365 * get the inode first so any iput calls done for the io_list
10366 * aren't the final iput (no unlinks allowed now)
10367 */
77ab86bf 10368 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10369
10370 mutex_lock(&trans->transaction->cache_write_mutex);
10371 /*
10372 * make sure our free spache cache IO is done before remove the
10373 * free space inode
10374 */
10375 spin_lock(&trans->transaction->dirty_bgs_lock);
10376 if (!list_empty(&block_group->io_list)) {
10377 list_del_init(&block_group->io_list);
10378
10379 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10380
10381 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10382 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10383 btrfs_put_block_group(block_group);
10384 spin_lock(&trans->transaction->dirty_bgs_lock);
10385 }
10386
10387 if (!list_empty(&block_group->dirty_list)) {
10388 list_del_init(&block_group->dirty_list);
10389 btrfs_put_block_group(block_group);
10390 }
10391 spin_unlock(&trans->transaction->dirty_bgs_lock);
10392 mutex_unlock(&trans->transaction->cache_write_mutex);
10393
0af3d00b 10394 if (!IS_ERR(inode)) {
73f2e545 10395 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10396 if (ret) {
10397 btrfs_add_delayed_iput(inode);
10398 goto out;
10399 }
0af3d00b
JB
10400 clear_nlink(inode);
10401 /* One for the block groups ref */
10402 spin_lock(&block_group->lock);
10403 if (block_group->iref) {
10404 block_group->iref = 0;
10405 block_group->inode = NULL;
10406 spin_unlock(&block_group->lock);
10407 iput(inode);
10408 } else {
10409 spin_unlock(&block_group->lock);
10410 }
10411 /* One for our lookup ref */
455757c3 10412 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10413 }
10414
10415 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10416 key.offset = block_group->key.objectid;
10417 key.type = 0;
10418
10419 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10420 if (ret < 0)
10421 goto out;
10422 if (ret > 0)
b3b4aa74 10423 btrfs_release_path(path);
0af3d00b
JB
10424 if (ret == 0) {
10425 ret = btrfs_del_item(trans, tree_root, path);
10426 if (ret)
10427 goto out;
b3b4aa74 10428 btrfs_release_path(path);
0af3d00b
JB
10429 }
10430
0b246afa 10431 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10432 rb_erase(&block_group->cache_node,
0b246afa 10433 &fs_info->block_group_cache_tree);
292cbd51 10434 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10435
0b246afa
JM
10436 if (fs_info->first_logical_byte == block_group->key.objectid)
10437 fs_info->first_logical_byte = (u64)-1;
10438 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10439
80eb234a 10440 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10441 /*
10442 * we must use list_del_init so people can check to see if they
10443 * are still on the list after taking the semaphore
10444 */
10445 list_del_init(&block_group->list);
6ab0a202 10446 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10447 kobj = block_group->space_info->block_group_kobjs[index];
10448 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10449 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10450 }
80eb234a 10451 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10452 if (kobj) {
10453 kobject_del(kobj);
10454 kobject_put(kobj);
10455 }
1a40e23b 10456
4f69cb98
FM
10457 if (block_group->has_caching_ctl)
10458 caching_ctl = get_caching_control(block_group);
817d52f8 10459 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10460 wait_block_group_cache_done(block_group);
4f69cb98 10461 if (block_group->has_caching_ctl) {
0b246afa 10462 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10463 if (!caching_ctl) {
10464 struct btrfs_caching_control *ctl;
10465
10466 list_for_each_entry(ctl,
0b246afa 10467 &fs_info->caching_block_groups, list)
4f69cb98
FM
10468 if (ctl->block_group == block_group) {
10469 caching_ctl = ctl;
1e4f4714 10470 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10471 break;
10472 }
10473 }
10474 if (caching_ctl)
10475 list_del_init(&caching_ctl->list);
0b246afa 10476 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10477 if (caching_ctl) {
10478 /* Once for the caching bgs list and once for us. */
10479 put_caching_control(caching_ctl);
10480 put_caching_control(caching_ctl);
10481 }
10482 }
817d52f8 10483
ce93ec54
JB
10484 spin_lock(&trans->transaction->dirty_bgs_lock);
10485 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10486 WARN_ON(1);
10487 }
10488 if (!list_empty(&block_group->io_list)) {
10489 WARN_ON(1);
ce93ec54
JB
10490 }
10491 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10492 btrfs_remove_free_space_cache(block_group);
10493
c146afad 10494 spin_lock(&block_group->space_info->lock);
75c68e9f 10495 list_del_init(&block_group->ro_list);
18d018ad 10496
0b246afa 10497 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10498 WARN_ON(block_group->space_info->total_bytes
10499 < block_group->key.offset);
10500 WARN_ON(block_group->space_info->bytes_readonly
10501 < block_group->key.offset);
10502 WARN_ON(block_group->space_info->disk_total
10503 < block_group->key.offset * factor);
10504 }
c146afad
YZ
10505 block_group->space_info->total_bytes -= block_group->key.offset;
10506 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10507 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10508
c146afad 10509 spin_unlock(&block_group->space_info->lock);
283bb197 10510
0af3d00b
JB
10511 memcpy(&key, &block_group->key, sizeof(key));
10512
34441361 10513 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10514 if (!list_empty(&em->list)) {
10515 /* We're in the transaction->pending_chunks list. */
10516 free_extent_map(em);
10517 }
04216820
FM
10518 spin_lock(&block_group->lock);
10519 block_group->removed = 1;
10520 /*
10521 * At this point trimming can't start on this block group, because we
10522 * removed the block group from the tree fs_info->block_group_cache_tree
10523 * so no one can't find it anymore and even if someone already got this
10524 * block group before we removed it from the rbtree, they have already
10525 * incremented block_group->trimming - if they didn't, they won't find
10526 * any free space entries because we already removed them all when we
10527 * called btrfs_remove_free_space_cache().
10528 *
10529 * And we must not remove the extent map from the fs_info->mapping_tree
10530 * to prevent the same logical address range and physical device space
10531 * ranges from being reused for a new block group. This is because our
10532 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10533 * completely transactionless, so while it is trimming a range the
10534 * currently running transaction might finish and a new one start,
10535 * allowing for new block groups to be created that can reuse the same
10536 * physical device locations unless we take this special care.
e33e17ee
JM
10537 *
10538 * There may also be an implicit trim operation if the file system
10539 * is mounted with -odiscard. The same protections must remain
10540 * in place until the extents have been discarded completely when
10541 * the transaction commit has completed.
04216820
FM
10542 */
10543 remove_em = (atomic_read(&block_group->trimming) == 0);
10544 /*
10545 * Make sure a trimmer task always sees the em in the pinned_chunks list
10546 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10547 * before checking block_group->removed).
10548 */
10549 if (!remove_em) {
10550 /*
10551 * Our em might be in trans->transaction->pending_chunks which
10552 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10553 * and so is the fs_info->pinned_chunks list.
10554 *
10555 * So at this point we must be holding the chunk_mutex to avoid
10556 * any races with chunk allocation (more specifically at
10557 * volumes.c:contains_pending_extent()), to ensure it always
10558 * sees the em, either in the pending_chunks list or in the
10559 * pinned_chunks list.
10560 */
0b246afa 10561 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10562 }
10563 spin_unlock(&block_group->lock);
04216820
FM
10564
10565 if (remove_em) {
10566 struct extent_map_tree *em_tree;
10567
0b246afa 10568 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10569 write_lock(&em_tree->lock);
8dbcd10f
FM
10570 /*
10571 * The em might be in the pending_chunks list, so make sure the
10572 * chunk mutex is locked, since remove_extent_mapping() will
10573 * delete us from that list.
10574 */
04216820
FM
10575 remove_extent_mapping(em_tree, em);
10576 write_unlock(&em_tree->lock);
10577 /* once for the tree */
10578 free_extent_map(em);
10579 }
10580
34441361 10581 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10582
0b246afa 10583 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10584 if (ret)
10585 goto out;
10586
fa9c0d79
CM
10587 btrfs_put_block_group(block_group);
10588 btrfs_put_block_group(block_group);
1a40e23b
ZY
10589
10590 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10591 if (ret > 0)
10592 ret = -EIO;
10593 if (ret < 0)
10594 goto out;
10595
10596 ret = btrfs_del_item(trans, root, path);
10597out:
10598 btrfs_free_path(path);
10599 return ret;
10600}
acce952b 10601
8eab77ff 10602struct btrfs_trans_handle *
7fd01182
FM
10603btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10604 const u64 chunk_offset)
8eab77ff 10605{
7fd01182
FM
10606 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10607 struct extent_map *em;
10608 struct map_lookup *map;
10609 unsigned int num_items;
10610
10611 read_lock(&em_tree->lock);
10612 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10613 read_unlock(&em_tree->lock);
10614 ASSERT(em && em->start == chunk_offset);
10615
8eab77ff 10616 /*
7fd01182
FM
10617 * We need to reserve 3 + N units from the metadata space info in order
10618 * to remove a block group (done at btrfs_remove_chunk() and at
10619 * btrfs_remove_block_group()), which are used for:
10620 *
8eab77ff
FM
10621 * 1 unit for adding the free space inode's orphan (located in the tree
10622 * of tree roots).
7fd01182
FM
10623 * 1 unit for deleting the block group item (located in the extent
10624 * tree).
10625 * 1 unit for deleting the free space item (located in tree of tree
10626 * roots).
10627 * N units for deleting N device extent items corresponding to each
10628 * stripe (located in the device tree).
10629 *
10630 * In order to remove a block group we also need to reserve units in the
10631 * system space info in order to update the chunk tree (update one or
10632 * more device items and remove one chunk item), but this is done at
10633 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10634 */
95617d69 10635 map = em->map_lookup;
7fd01182
FM
10636 num_items = 3 + map->num_stripes;
10637 free_extent_map(em);
10638
8eab77ff 10639 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10640 num_items, 1);
8eab77ff
FM
10641}
10642
47ab2a6c
JB
10643/*
10644 * Process the unused_bgs list and remove any that don't have any allocated
10645 * space inside of them.
10646 */
10647void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10648{
10649 struct btrfs_block_group_cache *block_group;
10650 struct btrfs_space_info *space_info;
47ab2a6c
JB
10651 struct btrfs_trans_handle *trans;
10652 int ret = 0;
10653
afcdd129 10654 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10655 return;
10656
10657 spin_lock(&fs_info->unused_bgs_lock);
10658 while (!list_empty(&fs_info->unused_bgs)) {
10659 u64 start, end;
e33e17ee 10660 int trimming;
47ab2a6c
JB
10661
10662 block_group = list_first_entry(&fs_info->unused_bgs,
10663 struct btrfs_block_group_cache,
10664 bg_list);
47ab2a6c 10665 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10666
10667 space_info = block_group->space_info;
10668
47ab2a6c
JB
10669 if (ret || btrfs_mixed_space_info(space_info)) {
10670 btrfs_put_block_group(block_group);
10671 continue;
10672 }
10673 spin_unlock(&fs_info->unused_bgs_lock);
10674
d5f2e33b 10675 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10676
47ab2a6c
JB
10677 /* Don't want to race with allocators so take the groups_sem */
10678 down_write(&space_info->groups_sem);
10679 spin_lock(&block_group->lock);
10680 if (block_group->reserved ||
10681 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10682 block_group->ro ||
aefbe9a6 10683 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10684 /*
10685 * We want to bail if we made new allocations or have
10686 * outstanding allocations in this block group. We do
10687 * the ro check in case balance is currently acting on
10688 * this block group.
10689 */
10690 spin_unlock(&block_group->lock);
10691 up_write(&space_info->groups_sem);
10692 goto next;
10693 }
10694 spin_unlock(&block_group->lock);
10695
10696 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10697 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10698 up_write(&space_info->groups_sem);
10699 if (ret < 0) {
10700 ret = 0;
10701 goto next;
10702 }
10703
10704 /*
10705 * Want to do this before we do anything else so we can recover
10706 * properly if we fail to join the transaction.
10707 */
7fd01182
FM
10708 trans = btrfs_start_trans_remove_block_group(fs_info,
10709 block_group->key.objectid);
47ab2a6c 10710 if (IS_ERR(trans)) {
2ff7e61e 10711 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10712 ret = PTR_ERR(trans);
10713 goto next;
10714 }
10715
10716 /*
10717 * We could have pending pinned extents for this block group,
10718 * just delete them, we don't care about them anymore.
10719 */
10720 start = block_group->key.objectid;
10721 end = start + block_group->key.offset - 1;
d4b450cd
FM
10722 /*
10723 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10724 * btrfs_finish_extent_commit(). If we are at transaction N,
10725 * another task might be running finish_extent_commit() for the
10726 * previous transaction N - 1, and have seen a range belonging
10727 * to the block group in freed_extents[] before we were able to
10728 * clear the whole block group range from freed_extents[]. This
10729 * means that task can lookup for the block group after we
10730 * unpinned it from freed_extents[] and removed it, leading to
10731 * a BUG_ON() at btrfs_unpin_extent_range().
10732 */
10733 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10734 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10735 EXTENT_DIRTY);
758eb51e 10736 if (ret) {
d4b450cd 10737 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10738 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10739 goto end_trans;
10740 }
10741 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10742 EXTENT_DIRTY);
758eb51e 10743 if (ret) {
d4b450cd 10744 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10745 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10746 goto end_trans;
10747 }
d4b450cd 10748 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10749
10750 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10751 spin_lock(&space_info->lock);
10752 spin_lock(&block_group->lock);
10753
10754 space_info->bytes_pinned -= block_group->pinned;
10755 space_info->bytes_readonly += block_group->pinned;
10756 percpu_counter_add(&space_info->total_bytes_pinned,
10757 -block_group->pinned);
47ab2a6c
JB
10758 block_group->pinned = 0;
10759
c30666d4
ZL
10760 spin_unlock(&block_group->lock);
10761 spin_unlock(&space_info->lock);
10762
e33e17ee 10763 /* DISCARD can flip during remount */
0b246afa 10764 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10765
10766 /* Implicit trim during transaction commit. */
10767 if (trimming)
10768 btrfs_get_block_group_trimming(block_group);
10769
47ab2a6c
JB
10770 /*
10771 * Btrfs_remove_chunk will abort the transaction if things go
10772 * horribly wrong.
10773 */
5b4aacef 10774 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10775 block_group->key.objectid);
e33e17ee
JM
10776
10777 if (ret) {
10778 if (trimming)
10779 btrfs_put_block_group_trimming(block_group);
10780 goto end_trans;
10781 }
10782
10783 /*
10784 * If we're not mounted with -odiscard, we can just forget
10785 * about this block group. Otherwise we'll need to wait
10786 * until transaction commit to do the actual discard.
10787 */
10788 if (trimming) {
348a0013
FM
10789 spin_lock(&fs_info->unused_bgs_lock);
10790 /*
10791 * A concurrent scrub might have added us to the list
10792 * fs_info->unused_bgs, so use a list_move operation
10793 * to add the block group to the deleted_bgs list.
10794 */
e33e17ee
JM
10795 list_move(&block_group->bg_list,
10796 &trans->transaction->deleted_bgs);
348a0013 10797 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10798 btrfs_get_block_group(block_group);
10799 }
758eb51e 10800end_trans:
3a45bb20 10801 btrfs_end_transaction(trans);
47ab2a6c 10802next:
d5f2e33b 10803 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10804 btrfs_put_block_group(block_group);
10805 spin_lock(&fs_info->unused_bgs_lock);
10806 }
10807 spin_unlock(&fs_info->unused_bgs_lock);
10808}
10809
c59021f8 10810int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10811{
10812 struct btrfs_space_info *space_info;
1aba86d6 10813 struct btrfs_super_block *disk_super;
10814 u64 features;
10815 u64 flags;
10816 int mixed = 0;
c59021f8 10817 int ret;
10818
6c41761f 10819 disk_super = fs_info->super_copy;
1aba86d6 10820 if (!btrfs_super_root(disk_super))
0dc924c5 10821 return -EINVAL;
c59021f8 10822
1aba86d6 10823 features = btrfs_super_incompat_flags(disk_super);
10824 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10825 mixed = 1;
c59021f8 10826
1aba86d6 10827 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10828 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10829 if (ret)
1aba86d6 10830 goto out;
c59021f8 10831
1aba86d6 10832 if (mixed) {
10833 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10834 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10835 } else {
10836 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10837 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10838 if (ret)
10839 goto out;
10840
10841 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10842 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10843 }
10844out:
c59021f8 10845 return ret;
10846}
10847
2ff7e61e
JM
10848int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10849 u64 start, u64 end)
acce952b 10850{
2ff7e61e 10851 return unpin_extent_range(fs_info, start, end, false);
acce952b 10852}
10853
499f377f
JM
10854/*
10855 * It used to be that old block groups would be left around forever.
10856 * Iterating over them would be enough to trim unused space. Since we
10857 * now automatically remove them, we also need to iterate over unallocated
10858 * space.
10859 *
10860 * We don't want a transaction for this since the discard may take a
10861 * substantial amount of time. We don't require that a transaction be
10862 * running, but we do need to take a running transaction into account
10863 * to ensure that we're not discarding chunks that were released in
10864 * the current transaction.
10865 *
10866 * Holding the chunks lock will prevent other threads from allocating
10867 * or releasing chunks, but it won't prevent a running transaction
10868 * from committing and releasing the memory that the pending chunks
10869 * list head uses. For that, we need to take a reference to the
10870 * transaction.
10871 */
10872static int btrfs_trim_free_extents(struct btrfs_device *device,
10873 u64 minlen, u64 *trimmed)
10874{
10875 u64 start = 0, len = 0;
10876 int ret;
10877
10878 *trimmed = 0;
10879
10880 /* Not writeable = nothing to do. */
ebbede42 10881 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10882 return 0;
10883
10884 /* No free space = nothing to do. */
10885 if (device->total_bytes <= device->bytes_used)
10886 return 0;
10887
10888 ret = 0;
10889
10890 while (1) {
fb456252 10891 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10892 struct btrfs_transaction *trans;
10893 u64 bytes;
10894
10895 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10896 if (ret)
10897 return ret;
10898
10899 down_read(&fs_info->commit_root_sem);
10900
10901 spin_lock(&fs_info->trans_lock);
10902 trans = fs_info->running_transaction;
10903 if (trans)
9b64f57d 10904 refcount_inc(&trans->use_count);
499f377f
JM
10905 spin_unlock(&fs_info->trans_lock);
10906
10907 ret = find_free_dev_extent_start(trans, device, minlen, start,
10908 &start, &len);
10909 if (trans)
10910 btrfs_put_transaction(trans);
10911
10912 if (ret) {
10913 up_read(&fs_info->commit_root_sem);
10914 mutex_unlock(&fs_info->chunk_mutex);
10915 if (ret == -ENOSPC)
10916 ret = 0;
10917 break;
10918 }
10919
10920 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10921 up_read(&fs_info->commit_root_sem);
10922 mutex_unlock(&fs_info->chunk_mutex);
10923
10924 if (ret)
10925 break;
10926
10927 start += len;
10928 *trimmed += bytes;
10929
10930 if (fatal_signal_pending(current)) {
10931 ret = -ERESTARTSYS;
10932 break;
10933 }
10934
10935 cond_resched();
10936 }
10937
10938 return ret;
10939}
10940
2ff7e61e 10941int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10942{
f7039b1d 10943 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10944 struct btrfs_device *device;
10945 struct list_head *devices;
f7039b1d
LD
10946 u64 group_trimmed;
10947 u64 start;
10948 u64 end;
10949 u64 trimmed = 0;
2cac13e4 10950 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10951 int ret = 0;
10952
2cac13e4
LB
10953 /*
10954 * try to trim all FS space, our block group may start from non-zero.
10955 */
10956 if (range->len == total_bytes)
10957 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10958 else
10959 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10960
10961 while (cache) {
10962 if (cache->key.objectid >= (range->start + range->len)) {
10963 btrfs_put_block_group(cache);
10964 break;
10965 }
10966
10967 start = max(range->start, cache->key.objectid);
10968 end = min(range->start + range->len,
10969 cache->key.objectid + cache->key.offset);
10970
10971 if (end - start >= range->minlen) {
10972 if (!block_group_cache_done(cache)) {
f6373bf3 10973 ret = cache_block_group(cache, 0);
1be41b78
JB
10974 if (ret) {
10975 btrfs_put_block_group(cache);
10976 break;
10977 }
10978 ret = wait_block_group_cache_done(cache);
10979 if (ret) {
10980 btrfs_put_block_group(cache);
10981 break;
10982 }
f7039b1d
LD
10983 }
10984 ret = btrfs_trim_block_group(cache,
10985 &group_trimmed,
10986 start,
10987 end,
10988 range->minlen);
10989
10990 trimmed += group_trimmed;
10991 if (ret) {
10992 btrfs_put_block_group(cache);
10993 break;
10994 }
10995 }
10996
2ff7e61e 10997 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10998 }
10999
0b246afa
JM
11000 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11001 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
11002 list_for_each_entry(device, devices, dev_alloc_list) {
11003 ret = btrfs_trim_free_extents(device, range->minlen,
11004 &group_trimmed);
11005 if (ret)
11006 break;
11007
11008 trimmed += group_trimmed;
11009 }
0b246afa 11010 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11011
f7039b1d
LD
11012 range->len = trimmed;
11013 return ret;
11014}
8257b2dc
MX
11015
11016/*
ea14b57f 11017 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11018 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11019 * data into the page cache through nocow before the subvolume is snapshoted,
11020 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11021 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11022 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11023 */
ea14b57f 11024void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11025{
11026 percpu_counter_dec(&root->subv_writers->counter);
11027 /*
a83342aa 11028 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11029 */
11030 smp_mb();
11031 if (waitqueue_active(&root->subv_writers->wait))
11032 wake_up(&root->subv_writers->wait);
11033}
11034
ea14b57f 11035int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11036{
ea14b57f 11037 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11038 return 0;
11039
11040 percpu_counter_inc(&root->subv_writers->counter);
11041 /*
11042 * Make sure counter is updated before we check for snapshot creation.
11043 */
11044 smp_mb();
ea14b57f
DS
11045 if (atomic_read(&root->will_be_snapshotted)) {
11046 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11047 return 0;
11048 }
11049 return 1;
11050}
0bc19f90 11051
0bc19f90
ZL
11052void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11053{
11054 while (true) {
11055 int ret;
11056
ea14b57f 11057 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11058 if (ret)
11059 break;
5e4def20 11060 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
0bc19f90
ZL
11061 TASK_UNINTERRUPTIBLE);
11062 }
11063}