btrfs: don't use btrfs_bio_wq_end_io for compressed writes
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
8896a08d 113 struct inode *inode;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
1941b64b
QW
117
118 /* Optional parameter for submit_bio_start used by direct io */
119 u64 dio_file_offset;
8b712842 120 struct btrfs_work work;
4e4cbee9 121 blk_status_t status;
44b8bd7e
CM
122};
123
85d4e461
CM
124/*
125 * Lockdep class keys for extent_buffer->lock's in this root. For a given
126 * eb, the lockdep key is determined by the btrfs_root it belongs to and
127 * the level the eb occupies in the tree.
128 *
129 * Different roots are used for different purposes and may nest inside each
130 * other and they require separate keysets. As lockdep keys should be
131 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
132 * by btrfs_root->root_key.objectid. This ensures that all special purpose
133 * roots have separate keysets.
4008c04a 134 *
85d4e461
CM
135 * Lock-nesting across peer nodes is always done with the immediate parent
136 * node locked thus preventing deadlock. As lockdep doesn't know this, use
137 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 138 *
85d4e461
CM
139 * The key is set by the readpage_end_io_hook after the buffer has passed
140 * csum validation but before the pages are unlocked. It is also set by
141 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 142 *
85d4e461
CM
143 * We also add a check to make sure the highest level of the tree is the
144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
145 * needs update as well.
4008c04a
CM
146 */
147#ifdef CONFIG_DEBUG_LOCK_ALLOC
148# if BTRFS_MAX_LEVEL != 8
149# error
150# endif
85d4e461 151
ab1405aa
DS
152#define DEFINE_LEVEL(stem, level) \
153 .names[level] = "btrfs-" stem "-0" #level,
154
155#define DEFINE_NAME(stem) \
156 DEFINE_LEVEL(stem, 0) \
157 DEFINE_LEVEL(stem, 1) \
158 DEFINE_LEVEL(stem, 2) \
159 DEFINE_LEVEL(stem, 3) \
160 DEFINE_LEVEL(stem, 4) \
161 DEFINE_LEVEL(stem, 5) \
162 DEFINE_LEVEL(stem, 6) \
163 DEFINE_LEVEL(stem, 7)
164
85d4e461
CM
165static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
ab1405aa 167 /* Longest entry: btrfs-free-space-00 */
387824af
DS
168 char names[BTRFS_MAX_LEVEL][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 170} btrfs_lockdep_keysets[] = {
ab1405aa
DS
171 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
174 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
175 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
176 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
177 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
178 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
180 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182 { .id = 0, DEFINE_NAME("tree") },
4008c04a 183};
85d4e461 184
ab1405aa
DS
185#undef DEFINE_LEVEL
186#undef DEFINE_NAME
85d4e461
CM
187
188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190{
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202}
203
4008c04a
CM
204#endif
205
d352ac68 206/*
2996e1f8 207 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 208 */
c67b3892 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 210{
d5178578 211 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 212 const int num_pages = num_extent_pages(buf);
a26663e7 213 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 215 char *kaddr;
e9be5a30 216 int i;
d5178578
JT
217
218 shash->tfm = fs_info->csum_shash;
219 crypto_shash_init(shash);
a26663e7 220 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 222 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 223
e9be5a30
DS
224 for (i = 1; i < num_pages; i++) {
225 kaddr = page_address(buf->pages[i]);
226 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 227 }
71a63551 228 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 229 crypto_shash_final(shash, result);
19c00ddc
CM
230}
231
d352ac68
CM
232/*
233 * we can't consider a given block up to date unless the transid of the
234 * block matches the transid in the parent node's pointer. This is how we
235 * detect blocks that either didn't get written at all or got written
236 * in the wrong place.
237 */
1259ab75 238static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
239 struct extent_buffer *eb, u64 parent_transid,
240 int atomic)
1259ab75 241{
2ac55d41 242 struct extent_state *cached_state = NULL;
1259ab75
CM
243 int ret;
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
b9fab919
CM
248 if (atomic)
249 return -EAGAIN;
250
2ac55d41 251 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 252 &cached_state);
0b32f4bb 253 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
254 btrfs_header_generation(eb) == parent_transid) {
255 ret = 0;
256 goto out;
257 }
94647322
DS
258 btrfs_err_rl(eb->fs_info,
259 "parent transid verify failed on %llu wanted %llu found %llu",
260 eb->start,
29549aec 261 parent_transid, btrfs_header_generation(eb));
1259ab75 262 ret = 1;
35b22c19 263 clear_extent_buffer_uptodate(eb);
33958dc6 264out:
2ac55d41 265 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 266 &cached_state);
1259ab75 267 return ret;
1259ab75
CM
268}
269
e7e16f48
JT
270static bool btrfs_supported_super_csum(u16 csum_type)
271{
272 switch (csum_type) {
273 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 274 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 275 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 276 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
277 return true;
278 default:
279 return false;
280 }
281}
282
1104a885
DS
283/*
284 * Return 0 if the superblock checksum type matches the checksum value of that
285 * algorithm. Pass the raw disk superblock data.
286 */
ab8d0fc4
JM
287static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288 char *raw_disk_sb)
1104a885
DS
289{
290 struct btrfs_super_block *disk_sb =
291 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 292 char result[BTRFS_CSUM_SIZE];
d5178578
JT
293 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294
295 shash->tfm = fs_info->csum_shash;
1104a885 296
51bce6c9
JT
297 /*
298 * The super_block structure does not span the whole
299 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300 * filled with zeros and is included in the checksum.
301 */
fd08001f
EB
302 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 304
55fc29be 305 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 306 return 1;
1104a885 307
e7e16f48 308 return 0;
1104a885
DS
309}
310
e064d5e9 311int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 312 struct btrfs_key *first_key, u64 parent_transid)
581c1760 313{
e064d5e9 314 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
315 int found_level;
316 struct btrfs_key found_key;
317 int ret;
318
319 found_level = btrfs_header_level(eb);
320 if (found_level != level) {
63489055
QW
321 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
323 btrfs_err(fs_info,
324"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325 eb->start, level, found_level);
581c1760
QW
326 return -EIO;
327 }
328
329 if (!first_key)
330 return 0;
331
5d41be6f
QW
332 /*
333 * For live tree block (new tree blocks in current transaction),
334 * we need proper lock context to avoid race, which is impossible here.
335 * So we only checks tree blocks which is read from disk, whose
336 * generation <= fs_info->last_trans_committed.
337 */
338 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339 return 0;
62fdaa52
QW
340
341 /* We have @first_key, so this @eb must have at least one item */
342 if (btrfs_header_nritems(eb) == 0) {
343 btrfs_err(fs_info,
344 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345 eb->start);
346 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347 return -EUCLEAN;
348 }
349
581c1760
QW
350 if (found_level)
351 btrfs_node_key_to_cpu(eb, &found_key, 0);
352 else
353 btrfs_item_key_to_cpu(eb, &found_key, 0);
354 ret = btrfs_comp_cpu_keys(first_key, &found_key);
355
581c1760 356 if (ret) {
63489055
QW
357 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 359 btrfs_err(fs_info,
ff76a864
LB
360"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361 eb->start, parent_transid, first_key->objectid,
362 first_key->type, first_key->offset,
363 found_key.objectid, found_key.type,
364 found_key.offset);
581c1760 365 }
581c1760
QW
366 return ret;
367}
368
d352ac68
CM
369/*
370 * helper to read a given tree block, doing retries as required when
371 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
372 *
373 * @parent_transid: expected transid, skip check if 0
374 * @level: expected level, mandatory check
375 * @first_key: expected key of first slot, skip check if NULL
d352ac68 376 */
6a2e9dc4
FM
377int btrfs_read_extent_buffer(struct extent_buffer *eb,
378 u64 parent_transid, int level,
379 struct btrfs_key *first_key)
f188591e 380{
5ab12d1f 381 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 382 struct extent_io_tree *io_tree;
ea466794 383 int failed = 0;
f188591e
CM
384 int ret;
385 int num_copies = 0;
386 int mirror_num = 0;
ea466794 387 int failed_mirror = 0;
f188591e 388
0b246afa 389 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 390 while (1) {
f8397d69 391 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 392 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 393 if (!ret) {
581c1760 394 if (verify_parent_transid(io_tree, eb,
b9fab919 395 parent_transid, 0))
256dd1bb 396 ret = -EIO;
e064d5e9 397 else if (btrfs_verify_level_key(eb, level,
448de471 398 first_key, parent_transid))
581c1760
QW
399 ret = -EUCLEAN;
400 else
401 break;
256dd1bb 402 }
d397712b 403
0b246afa 404 num_copies = btrfs_num_copies(fs_info,
f188591e 405 eb->start, eb->len);
4235298e 406 if (num_copies == 1)
ea466794 407 break;
4235298e 408
5cf1ab56
JB
409 if (!failed_mirror) {
410 failed = 1;
411 failed_mirror = eb->read_mirror;
412 }
413
f188591e 414 mirror_num++;
ea466794
JB
415 if (mirror_num == failed_mirror)
416 mirror_num++;
417
4235298e 418 if (mirror_num > num_copies)
ea466794 419 break;
f188591e 420 }
ea466794 421
c0901581 422 if (failed && !ret && failed_mirror)
20a1fbf9 423 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
424
425 return ret;
f188591e 426}
19c00ddc 427
eca0f6f6
QW
428static int csum_one_extent_buffer(struct extent_buffer *eb)
429{
430 struct btrfs_fs_info *fs_info = eb->fs_info;
431 u8 result[BTRFS_CSUM_SIZE];
432 int ret;
433
434 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435 offsetof(struct btrfs_header, fsid),
436 BTRFS_FSID_SIZE) == 0);
437 csum_tree_block(eb, result);
438
439 if (btrfs_header_level(eb))
440 ret = btrfs_check_node(eb);
441 else
442 ret = btrfs_check_leaf_full(eb);
443
3777369f
QW
444 if (ret < 0)
445 goto error;
446
447 /*
448 * Also check the generation, the eb reached here must be newer than
449 * last committed. Or something seriously wrong happened.
450 */
451 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
452 ret = -EUCLEAN;
eca0f6f6 453 btrfs_err(fs_info,
3777369f
QW
454 "block=%llu bad generation, have %llu expect > %llu",
455 eb->start, btrfs_header_generation(eb),
456 fs_info->last_trans_committed);
457 goto error;
eca0f6f6
QW
458 }
459 write_extent_buffer(eb, result, 0, fs_info->csum_size);
460
461 return 0;
3777369f
QW
462
463error:
464 btrfs_print_tree(eb, 0);
465 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
466 eb->start);
467 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
468 return ret;
eca0f6f6
QW
469}
470
471/* Checksum all dirty extent buffers in one bio_vec */
472static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
473 struct bio_vec *bvec)
474{
475 struct page *page = bvec->bv_page;
476 u64 bvec_start = page_offset(page) + bvec->bv_offset;
477 u64 cur;
478 int ret = 0;
479
480 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
481 cur += fs_info->nodesize) {
482 struct extent_buffer *eb;
483 bool uptodate;
484
485 eb = find_extent_buffer(fs_info, cur);
486 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
487 fs_info->nodesize);
488
01cd3909 489 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
490 if (WARN_ON(!eb))
491 return -EUCLEAN;
492
493 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
494 free_extent_buffer(eb);
495 return -EUCLEAN;
496 }
497 if (WARN_ON(!uptodate)) {
498 free_extent_buffer(eb);
499 return -EUCLEAN;
500 }
501
502 ret = csum_one_extent_buffer(eb);
503 free_extent_buffer(eb);
504 if (ret < 0)
505 return ret;
506 }
507 return ret;
508}
509
d352ac68 510/*
ac303b69
QW
511 * Checksum a dirty tree block before IO. This has extra checks to make sure
512 * we only fill in the checksum field in the first page of a multi-page block.
513 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 514 */
ac303b69 515static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 516{
ac303b69 517 struct page *page = bvec->bv_page;
4eee4fa4 518 u64 start = page_offset(page);
19c00ddc 519 u64 found_start;
19c00ddc 520 struct extent_buffer *eb;
eca0f6f6 521
fbca46eb 522 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 523 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 524
4f2de97a
JB
525 eb = (struct extent_buffer *)page->private;
526 if (page != eb->pages[0])
527 return 0;
0f805531 528
19c00ddc 529 found_start = btrfs_header_bytenr(eb);
d3575156
NA
530
531 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
532 WARN_ON(found_start != 0);
533 return 0;
534 }
535
0f805531
AL
536 /*
537 * Please do not consolidate these warnings into a single if.
538 * It is useful to know what went wrong.
539 */
540 if (WARN_ON(found_start != start))
541 return -EUCLEAN;
542 if (WARN_ON(!PageUptodate(page)))
543 return -EUCLEAN;
544
eca0f6f6 545 return csum_one_extent_buffer(eb);
19c00ddc
CM
546}
547
b0c9b3b0 548static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 549{
b0c9b3b0 550 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 551 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 552 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 553 u8 *metadata_uuid;
2b82032c 554
9a8658e3
DS
555 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
556 BTRFS_FSID_SIZE);
944d3f9f
NB
557 /*
558 * Checking the incompat flag is only valid for the current fs. For
559 * seed devices it's forbidden to have their uuid changed so reading
560 * ->fsid in this case is fine
561 */
562 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
563 metadata_uuid = fs_devices->metadata_uuid;
564 else
565 metadata_uuid = fs_devices->fsid;
566
567 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
568 return 0;
569
570 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
571 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
572 return 0;
573
574 return 1;
2b82032c
YZ
575}
576
77bf40a2
QW
577/* Do basic extent buffer checks at read time */
578static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 579{
77bf40a2 580 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 581 u64 found_start;
77bf40a2
QW
582 const u32 csum_size = fs_info->csum_size;
583 u8 found_level;
2996e1f8 584 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 585 const u8 *header_csum;
77bf40a2 586 int ret = 0;
ea466794 587
ce9adaa5 588 found_start = btrfs_header_bytenr(eb);
727011e0 589 if (found_start != eb->start) {
893bf4b1
SY
590 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
591 eb->start, found_start);
f188591e 592 ret = -EIO;
77bf40a2 593 goto out;
ce9adaa5 594 }
b0c9b3b0 595 if (check_tree_block_fsid(eb)) {
02873e43
ZL
596 btrfs_err_rl(fs_info, "bad fsid on block %llu",
597 eb->start);
1259ab75 598 ret = -EIO;
77bf40a2 599 goto out;
1259ab75 600 }
ce9adaa5 601 found_level = btrfs_header_level(eb);
1c24c3ce 602 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
603 btrfs_err(fs_info, "bad tree block level %d on %llu",
604 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 605 ret = -EIO;
77bf40a2 606 goto out;
1c24c3ce 607 }
ce9adaa5 608
c67b3892 609 csum_tree_block(eb, result);
dfd29eed
DS
610 header_csum = page_address(eb->pages[0]) +
611 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 612
dfd29eed 613 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 614 btrfs_warn_rl(fs_info,
ff14aa79
DS
615 "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
616 eb->start,
dfd29eed 617 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
618 CSUM_FMT_VALUE(csum_size, result),
619 btrfs_header_level(eb));
2996e1f8 620 ret = -EUCLEAN;
77bf40a2 621 goto out;
2996e1f8
JT
622 }
623
a826d6dc
JB
624 /*
625 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 * that we don't try and read the other copies of this block, just
627 * return -EIO.
628 */
1c4360ee 629 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
630 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631 ret = -EIO;
632 }
ce9adaa5 633
813fd1dc 634 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
635 ret = -EIO;
636
0b32f4bb
JB
637 if (!ret)
638 set_extent_buffer_uptodate(eb);
75391f0d
QW
639 else
640 btrfs_err(fs_info,
641 "block=%llu read time tree block corruption detected",
642 eb->start);
77bf40a2
QW
643out:
644 return ret;
645}
646
371cdc07
QW
647static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
648 int mirror)
649{
650 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
651 struct extent_buffer *eb;
652 bool reads_done;
653 int ret = 0;
654
655 /*
656 * We don't allow bio merge for subpage metadata read, so we should
657 * only get one eb for each endio hook.
658 */
659 ASSERT(end == start + fs_info->nodesize - 1);
660 ASSERT(PagePrivate(page));
661
662 eb = find_extent_buffer(fs_info, start);
663 /*
664 * When we are reading one tree block, eb must have been inserted into
665 * the radix tree. If not, something is wrong.
666 */
667 ASSERT(eb);
668
669 reads_done = atomic_dec_and_test(&eb->io_pages);
670 /* Subpage read must finish in page read */
671 ASSERT(reads_done);
672
673 eb->read_mirror = mirror;
674 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
675 ret = -EIO;
676 goto err;
677 }
678 ret = validate_extent_buffer(eb);
679 if (ret < 0)
680 goto err;
681
371cdc07
QW
682 set_extent_buffer_uptodate(eb);
683
684 free_extent_buffer(eb);
685 return ret;
686err:
687 /*
688 * end_bio_extent_readpage decrements io_pages in case of error,
689 * make sure it has something to decrement.
690 */
691 atomic_inc(&eb->io_pages);
692 clear_extent_buffer_uptodate(eb);
693 free_extent_buffer(eb);
694 return ret;
695}
696
c3a3b19b 697int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
698 struct page *page, u64 start, u64 end,
699 int mirror)
700{
701 struct extent_buffer *eb;
702 int ret = 0;
703 int reads_done;
704
705 ASSERT(page->private);
371cdc07 706
fbca46eb 707 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
371cdc07
QW
708 return validate_subpage_buffer(page, start, end, mirror);
709
77bf40a2
QW
710 eb = (struct extent_buffer *)page->private;
711
712 /*
713 * The pending IO might have been the only thing that kept this buffer
714 * in memory. Make sure we have a ref for all this other checks
715 */
716 atomic_inc(&eb->refs);
717
718 reads_done = atomic_dec_and_test(&eb->io_pages);
719 if (!reads_done)
720 goto err;
721
722 eb->read_mirror = mirror;
723 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
724 ret = -EIO;
725 goto err;
726 }
727 ret = validate_extent_buffer(eb);
ce9adaa5 728err:
53b381b3
DW
729 if (ret) {
730 /*
731 * our io error hook is going to dec the io pages
732 * again, we have to make sure it has something
733 * to decrement
734 */
735 atomic_inc(&eb->io_pages);
0b32f4bb 736 clear_extent_buffer_uptodate(eb);
53b381b3 737 }
0b32f4bb 738 free_extent_buffer(eb);
77bf40a2 739
f188591e 740 return ret;
ce9adaa5
CM
741}
742
4246a0b6 743static void end_workqueue_bio(struct bio *bio)
ce9adaa5 744{
97eb6b69 745 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 746 struct btrfs_fs_info *fs_info;
9e0af237 747 struct btrfs_workqueue *wq;
ce9adaa5 748
ce9adaa5 749 fs_info = end_io_wq->info;
4e4cbee9 750 end_io_wq->status = bio->bi_status;
d20f7043 751
fed8a72d
CH
752 if (end_io_wq->metadata)
753 wq = fs_info->endio_meta_workers;
754 else
755 wq = fs_info->endio_workers;
9e0af237 756
a0cac0ec 757 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 758 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
759}
760
4e4cbee9 761blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 762 enum btrfs_wq_endio_type metadata)
0b86a832 763{
97eb6b69 764 struct btrfs_end_io_wq *end_io_wq;
8b110e39 765
fed8a72d
CH
766 if (WARN_ON_ONCE(btrfs_op(bio) != BTRFS_MAP_WRITE))
767 return BLK_STS_IOERR;
768
97eb6b69 769 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 770 if (!end_io_wq)
4e4cbee9 771 return BLK_STS_RESOURCE;
ce9adaa5
CM
772
773 end_io_wq->private = bio->bi_private;
774 end_io_wq->end_io = bio->bi_end_io;
22c59948 775 end_io_wq->info = info;
4e4cbee9 776 end_io_wq->status = 0;
ce9adaa5 777 end_io_wq->bio = bio;
22c59948 778 end_io_wq->metadata = metadata;
ce9adaa5
CM
779
780 bio->bi_private = end_io_wq;
781 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
782 return 0;
783}
784
4a69a410
CM
785static void run_one_async_start(struct btrfs_work *work)
786{
4a69a410 787 struct async_submit_bio *async;
4e4cbee9 788 blk_status_t ret;
4a69a410
CM
789
790 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
791 ret = async->submit_bio_start(async->inode, async->bio,
792 async->dio_file_offset);
79787eaa 793 if (ret)
4e4cbee9 794 async->status = ret;
4a69a410
CM
795}
796
06ea01b1
DS
797/*
798 * In order to insert checksums into the metadata in large chunks, we wait
799 * until bio submission time. All the pages in the bio are checksummed and
800 * sums are attached onto the ordered extent record.
801 *
802 * At IO completion time the csums attached on the ordered extent record are
803 * inserted into the tree.
804 */
4a69a410 805static void run_one_async_done(struct btrfs_work *work)
8b712842 806{
8b712842 807 struct async_submit_bio *async;
06ea01b1
DS
808 struct inode *inode;
809 blk_status_t ret;
8b712842
CM
810
811 async = container_of(work, struct async_submit_bio, work);
8896a08d 812 inode = async->inode;
4854ddd0 813
bb7ab3b9 814 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
815 if (async->status) {
816 async->bio->bi_status = async->status;
4246a0b6 817 bio_endio(async->bio);
79787eaa
JM
818 return;
819 }
820
ec39f769
CM
821 /*
822 * All of the bios that pass through here are from async helpers.
823 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
824 * This changes nothing when cgroups aren't in use.
825 */
826 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 827 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
828 if (ret) {
829 async->bio->bi_status = ret;
830 bio_endio(async->bio);
831 }
4a69a410
CM
832}
833
834static void run_one_async_free(struct btrfs_work *work)
835{
836 struct async_submit_bio *async;
837
838 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
839 kfree(async);
840}
841
8896a08d 842blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
a6f5e39e 843 int mirror_num, u64 dio_file_offset,
e288c080 844 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 845{
8896a08d 846 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
847 struct async_submit_bio *async;
848
849 async = kmalloc(sizeof(*async), GFP_NOFS);
850 if (!async)
4e4cbee9 851 return BLK_STS_RESOURCE;
44b8bd7e 852
8896a08d 853 async->inode = inode;
44b8bd7e
CM
854 async->bio = bio;
855 async->mirror_num = mirror_num;
4a69a410 856 async->submit_bio_start = submit_bio_start;
4a69a410 857
a0cac0ec
OS
858 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
859 run_one_async_free);
4a69a410 860
1941b64b 861 async->dio_file_offset = dio_file_offset;
8c8bee1d 862
4e4cbee9 863 async->status = 0;
79787eaa 864
67f055c7 865 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
866 btrfs_queue_work(fs_info->hipri_workers, &async->work);
867 else
868 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
869 return 0;
870}
871
4e4cbee9 872static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 873{
2c30c71b 874 struct bio_vec *bvec;
ce3ed71a 875 struct btrfs_root *root;
2b070cfe 876 int ret = 0;
6dc4f100 877 struct bvec_iter_all iter_all;
ce3ed71a 878
c09abff8 879 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 880 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 881 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 882 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
883 if (ret)
884 break;
ce3ed71a 885 }
2c30c71b 886
4e4cbee9 887 return errno_to_blk_status(ret);
ce3ed71a
CM
888}
889
8896a08d 890static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 891 u64 dio_file_offset)
22c59948 892{
8b712842
CM
893 /*
894 * when we're called for a write, we're already in the async
5443be45 895 * submission context. Just jump into btrfs_map_bio
8b712842 896 */
79787eaa 897 return btree_csum_one_bio(bio);
4a69a410 898}
22c59948 899
f4dcfb30 900static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 901 struct btrfs_inode *bi)
de0022b9 902{
4eef29ef 903 if (btrfs_is_zoned(fs_info))
f4dcfb30 904 return false;
6300463b 905 if (atomic_read(&bi->sync_writers))
f4dcfb30 906 return false;
9b4e675a 907 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
908 return false;
909 return true;
de0022b9
JB
910}
911
94d9e11b 912void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 913{
0b246afa 914 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 915 blk_status_t ret;
cad321ad 916
cfe94440 917 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
4a69a410
CM
918 /*
919 * called for a read, do the setup so that checksum validation
920 * can happen in the async kernel threads
921 */
0b246afa
JM
922 ret = btrfs_bio_wq_end_io(fs_info, bio,
923 BTRFS_WQ_ENDIO_METADATA);
94d9e11b
CH
924 if (!ret)
925 ret = btrfs_map_bio(fs_info, bio, mirror_num);
f4dcfb30 926 } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
de0022b9 927 ret = btree_csum_one_bio(bio);
94d9e11b
CH
928 if (!ret)
929 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
930 } else {
931 /*
932 * kthread helpers are used to submit writes so that
933 * checksumming can happen in parallel across all CPUs
934 */
8896a08d 935 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
a6f5e39e 936 btree_submit_bio_start);
44b8bd7e 937 }
d313d7a3 938
94d9e11b
CH
939 if (ret) {
940 bio->bi_status = ret;
941 bio_endio(bio);
942 }
44b8bd7e
CM
943}
944
3dd1462e 945#ifdef CONFIG_MIGRATION
784b4e29 946static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
947 struct page *newpage, struct page *page,
948 enum migrate_mode mode)
784b4e29
CM
949{
950 /*
951 * we can't safely write a btree page from here,
952 * we haven't done the locking hook
953 */
954 if (PageDirty(page))
955 return -EAGAIN;
956 /*
957 * Buffers may be managed in a filesystem specific way.
958 * We must have no buffers or drop them.
959 */
960 if (page_has_private(page) &&
961 !try_to_release_page(page, GFP_KERNEL))
962 return -EAGAIN;
a6bc32b8 963 return migrate_page(mapping, newpage, page, mode);
784b4e29 964}
3dd1462e 965#endif
784b4e29 966
0da5468f
CM
967
968static int btree_writepages(struct address_space *mapping,
969 struct writeback_control *wbc)
970{
e2d84521
MX
971 struct btrfs_fs_info *fs_info;
972 int ret;
973
d8d5f3e1 974 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
975
976 if (wbc->for_kupdate)
977 return 0;
978
e2d84521 979 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 980 /* this is a bit racy, but that's ok */
d814a491
EL
981 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
982 BTRFS_DIRTY_METADATA_THRESH,
983 fs_info->dirty_metadata_batch);
e2d84521 984 if (ret < 0)
793955bc 985 return 0;
793955bc 986 }
0b32f4bb 987 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
988}
989
f913cff3 990static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 991{
f913cff3
MWO
992 if (folio_test_writeback(folio) || folio_test_dirty(folio))
993 return false;
0c4e538b 994
f913cff3 995 return try_release_extent_buffer(&folio->page);
d98237b3
CM
996}
997
895586eb
MWO
998static void btree_invalidate_folio(struct folio *folio, size_t offset,
999 size_t length)
d98237b3 1000{
d1310b2e 1001 struct extent_io_tree *tree;
895586eb
MWO
1002 tree = &BTRFS_I(folio->mapping->host)->io_tree;
1003 extent_invalidate_folio(tree, folio, offset);
f913cff3 1004 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
1005 if (folio_get_private(folio)) {
1006 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
1007 "folio private not zero on folio %llu",
1008 (unsigned long long)folio_pos(folio));
1009 folio_detach_private(folio);
9ad6b7bc 1010 }
d98237b3
CM
1011}
1012
bb146eb2 1013#ifdef DEBUG
0079c3b1
MWO
1014static bool btree_dirty_folio(struct address_space *mapping,
1015 struct folio *folio)
1016{
1017 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 1018 struct btrfs_subpage *subpage;
0b32f4bb 1019 struct extent_buffer *eb;
139e8cd3 1020 int cur_bit = 0;
0079c3b1 1021 u64 page_start = folio_pos(folio);
139e8cd3
QW
1022
1023 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 1024 eb = folio_get_private(folio);
139e8cd3
QW
1025 BUG_ON(!eb);
1026 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1027 BUG_ON(!atomic_read(&eb->refs));
49d0c642 1028 btrfs_assert_tree_write_locked(eb);
0079c3b1 1029 return filemap_dirty_folio(mapping, folio);
139e8cd3 1030 }
0079c3b1 1031 subpage = folio_get_private(folio);
139e8cd3
QW
1032
1033 ASSERT(subpage->dirty_bitmap);
1034 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1035 unsigned long flags;
1036 u64 cur;
1037 u16 tmp = (1 << cur_bit);
1038
1039 spin_lock_irqsave(&subpage->lock, flags);
1040 if (!(tmp & subpage->dirty_bitmap)) {
1041 spin_unlock_irqrestore(&subpage->lock, flags);
1042 cur_bit++;
1043 continue;
1044 }
1045 spin_unlock_irqrestore(&subpage->lock, flags);
1046 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 1047
139e8cd3
QW
1048 eb = find_extent_buffer(fs_info, cur);
1049 ASSERT(eb);
1050 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1051 ASSERT(atomic_read(&eb->refs));
49d0c642 1052 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
1053 free_extent_buffer(eb);
1054
1055 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1056 }
0079c3b1 1057 return filemap_dirty_folio(mapping, folio);
0b32f4bb 1058}
0079c3b1
MWO
1059#else
1060#define btree_dirty_folio filemap_dirty_folio
1061#endif
0b32f4bb 1062
7f09410b 1063static const struct address_space_operations btree_aops = {
0da5468f 1064 .writepages = btree_writepages,
f913cff3 1065 .release_folio = btree_release_folio,
895586eb 1066 .invalidate_folio = btree_invalidate_folio,
5a92bc88 1067#ifdef CONFIG_MIGRATION
784b4e29 1068 .migratepage = btree_migratepage,
5a92bc88 1069#endif
0079c3b1 1070 .dirty_folio = btree_dirty_folio,
d98237b3
CM
1071};
1072
2ff7e61e
JM
1073struct extent_buffer *btrfs_find_create_tree_block(
1074 struct btrfs_fs_info *fs_info,
3fbaf258
JB
1075 u64 bytenr, u64 owner_root,
1076 int level)
0999df54 1077{
0b246afa
JM
1078 if (btrfs_is_testing(fs_info))
1079 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 1080 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
1081}
1082
581c1760
QW
1083/*
1084 * Read tree block at logical address @bytenr and do variant basic but critical
1085 * verification.
1086 *
1b7ec85e 1087 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
1088 * @parent_transid: expected transid of this tree block, skip check if 0
1089 * @level: expected level, mandatory check
1090 * @first_key: expected key in slot 0, skip check if NULL
1091 */
2ff7e61e 1092struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
1093 u64 owner_root, u64 parent_transid,
1094 int level, struct btrfs_key *first_key)
0999df54
CM
1095{
1096 struct extent_buffer *buf = NULL;
0999df54
CM
1097 int ret;
1098
3fbaf258 1099 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
1100 if (IS_ERR(buf))
1101 return buf;
0999df54 1102
6a2e9dc4 1103 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
0f0fe8f7 1104 if (ret) {
537f38f0 1105 free_extent_buffer_stale(buf);
64c043de 1106 return ERR_PTR(ret);
0f0fe8f7 1107 }
88c602ab
QW
1108 if (btrfs_check_eb_owner(buf, owner_root)) {
1109 free_extent_buffer_stale(buf);
1110 return ERR_PTR(-EUCLEAN);
1111 }
5f39d397 1112 return buf;
ce9adaa5 1113
eb60ceac
CM
1114}
1115
6a884d7d 1116void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1117{
6a884d7d 1118 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1119 if (btrfs_header_generation(buf) ==
e2d84521 1120 fs_info->running_transaction->transid) {
49d0c642 1121 btrfs_assert_tree_write_locked(buf);
b4ce94de 1122
b9473439 1123 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1124 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1125 -buf->len,
1126 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1127 clear_extent_buffer_dirty(buf);
1128 }
925baedd 1129 }
5f39d397
CM
1130}
1131
da17066c 1132static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1133 u64 objectid)
d97e63b6 1134{
7c0260ee 1135 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
1136
1137 memset(&root->root_key, 0, sizeof(root->root_key));
1138 memset(&root->root_item, 0, sizeof(root->root_item));
1139 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 1140 root->fs_info = fs_info;
2e608bd1 1141 root->root_key.objectid = objectid;
cfaa7295 1142 root->node = NULL;
a28ec197 1143 root->commit_root = NULL;
27cdeb70 1144 root->state = 0;
abed4aaa 1145 RB_CLEAR_NODE(&root->rb_node);
0b86a832 1146
0f7d52f4 1147 root->last_trans = 0;
6b8fad57 1148 root->free_objectid = 0;
eb73c1b7 1149 root->nr_delalloc_inodes = 0;
199c2a9c 1150 root->nr_ordered_extents = 0;
6bef4d31 1151 root->inode_tree = RB_ROOT;
088aea3b 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
1153
1154 btrfs_init_root_block_rsv(root);
0b86a832
CM
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1157 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1158 INIT_LIST_HEAD(&root->delalloc_inodes);
1159 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1160 INIT_LIST_HEAD(&root->ordered_extents);
1161 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1162 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1163 INIT_LIST_HEAD(&root->logged_list[0]);
1164 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1165 spin_lock_init(&root->inode_lock);
eb73c1b7 1166 spin_lock_init(&root->delalloc_lock);
199c2a9c 1167 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1168 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1169 spin_lock_init(&root->log_extents_lock[0]);
1170 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1171 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1172 mutex_init(&root->objectid_mutex);
e02119d5 1173 mutex_init(&root->log_mutex);
31f3d255 1174 mutex_init(&root->ordered_extent_mutex);
573bfb72 1175 mutex_init(&root->delalloc_mutex);
c53e9653 1176 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1177 init_waitqueue_head(&root->log_writer_wait);
1178 init_waitqueue_head(&root->log_commit_wait[0]);
1179 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1180 INIT_LIST_HEAD(&root->log_ctxs[0]);
1181 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1182 atomic_set(&root->log_commit[0], 0);
1183 atomic_set(&root->log_commit[1], 0);
1184 atomic_set(&root->log_writers, 0);
2ecb7923 1185 atomic_set(&root->log_batch, 0);
0700cea7 1186 refcount_set(&root->refs, 1);
8ecebf4d 1187 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1188 atomic_set(&root->nr_swapfiles, 0);
7237f183 1189 root->log_transid = 0;
d1433deb 1190 root->log_transid_committed = -1;
257c62e1 1191 root->last_log_commit = 0;
2e608bd1 1192 root->anon_dev = 0;
e289f03e 1193 if (!dummy) {
43eb5f29
QW
1194 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1195 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1196 extent_io_tree_init(fs_info, &root->log_csum_range,
1197 IO_TREE_LOG_CSUM_RANGE, NULL);
1198 }
017e5369 1199
5f3ab90a 1200 spin_lock_init(&root->root_item_lock);
370a11b8 1201 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1202#ifdef CONFIG_BTRFS_DEBUG
1203 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 1204 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 1205 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 1206 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 1207#endif
3768f368
CM
1208}
1209
74e4d827 1210static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1211 u64 objectid, gfp_t flags)
6f07e42e 1212{
74e4d827 1213 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1214 if (root)
96dfcb46 1215 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1216 return root;
1217}
1218
06ea65a3
JB
1219#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1220/* Should only be used by the testing infrastructure */
da17066c 1221struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1222{
1223 struct btrfs_root *root;
1224
7c0260ee
JM
1225 if (!fs_info)
1226 return ERR_PTR(-EINVAL);
1227
96dfcb46 1228 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1229 if (!root)
1230 return ERR_PTR(-ENOMEM);
da17066c 1231
b9ef22de 1232 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1233 root->alloc_bytenr = 0;
06ea65a3
JB
1234
1235 return root;
1236}
1237#endif
1238
abed4aaa
JB
1239static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1240{
1241 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1242 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1243
1244 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1245}
1246
1247static int global_root_key_cmp(const void *k, const struct rb_node *node)
1248{
1249 const struct btrfs_key *key = k;
1250 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1251
1252 return btrfs_comp_cpu_keys(key, &root->root_key);
1253}
1254
1255int btrfs_global_root_insert(struct btrfs_root *root)
1256{
1257 struct btrfs_fs_info *fs_info = root->fs_info;
1258 struct rb_node *tmp;
1259
1260 write_lock(&fs_info->global_root_lock);
1261 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1262 write_unlock(&fs_info->global_root_lock);
1263 ASSERT(!tmp);
1264
1265 return tmp ? -EEXIST : 0;
1266}
1267
1268void btrfs_global_root_delete(struct btrfs_root *root)
1269{
1270 struct btrfs_fs_info *fs_info = root->fs_info;
1271
1272 write_lock(&fs_info->global_root_lock);
1273 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1274 write_unlock(&fs_info->global_root_lock);
1275}
1276
1277struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1278 struct btrfs_key *key)
1279{
1280 struct rb_node *node;
1281 struct btrfs_root *root = NULL;
1282
1283 read_lock(&fs_info->global_root_lock);
1284 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1285 if (node)
1286 root = container_of(node, struct btrfs_root, rb_node);
1287 read_unlock(&fs_info->global_root_lock);
1288
1289 return root;
1290}
1291
f7238e50
JB
1292static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1293{
1294 struct btrfs_block_group *block_group;
1295 u64 ret;
1296
1297 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1298 return 0;
1299
1300 if (bytenr)
1301 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1302 else
1303 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1304 ASSERT(block_group);
1305 if (!block_group)
1306 return 0;
1307 ret = block_group->global_root_id;
1308 btrfs_put_block_group(block_group);
1309
1310 return ret;
1311}
1312
abed4aaa
JB
1313struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1314{
1315 struct btrfs_key key = {
1316 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1317 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1318 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1319 };
1320
1321 return btrfs_global_root(fs_info, &key);
1322}
1323
1324struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1325{
1326 struct btrfs_key key = {
1327 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1328 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1329 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1330 };
1331
1332 return btrfs_global_root(fs_info, &key);
1333}
1334
20897f5c 1335struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1336 u64 objectid)
1337{
9b7a2440 1338 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1339 struct extent_buffer *leaf;
1340 struct btrfs_root *tree_root = fs_info->tree_root;
1341 struct btrfs_root *root;
1342 struct btrfs_key key;
b89f6d1f 1343 unsigned int nofs_flag;
20897f5c 1344 int ret = 0;
20897f5c 1345
b89f6d1f
FM
1346 /*
1347 * We're holding a transaction handle, so use a NOFS memory allocation
1348 * context to avoid deadlock if reclaim happens.
1349 */
1350 nofs_flag = memalloc_nofs_save();
96dfcb46 1351 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1352 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1353 if (!root)
1354 return ERR_PTR(-ENOMEM);
1355
20897f5c
AJ
1356 root->root_key.objectid = objectid;
1357 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1358 root->root_key.offset = 0;
1359
9631e4cc
JB
1360 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1361 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1362 if (IS_ERR(leaf)) {
1363 ret = PTR_ERR(leaf);
1dd05682 1364 leaf = NULL;
8a6a87cd 1365 goto fail_unlock;
20897f5c
AJ
1366 }
1367
20897f5c 1368 root->node = leaf;
20897f5c
AJ
1369 btrfs_mark_buffer_dirty(leaf);
1370
1371 root->commit_root = btrfs_root_node(root);
27cdeb70 1372 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1373
f944d2cb
DS
1374 btrfs_set_root_flags(&root->root_item, 0);
1375 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1376 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1377 btrfs_set_root_generation(&root->root_item, trans->transid);
1378 btrfs_set_root_level(&root->root_item, 0);
1379 btrfs_set_root_refs(&root->root_item, 1);
1380 btrfs_set_root_used(&root->root_item, leaf->len);
1381 btrfs_set_root_last_snapshot(&root->root_item, 0);
1382 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1383 if (is_fstree(objectid))
807fc790
AS
1384 generate_random_guid(root->root_item.uuid);
1385 else
1386 export_guid(root->root_item.uuid, &guid_null);
c8422684 1387 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1388
8a6a87cd
BB
1389 btrfs_tree_unlock(leaf);
1390
20897f5c
AJ
1391 key.objectid = objectid;
1392 key.type = BTRFS_ROOT_ITEM_KEY;
1393 key.offset = 0;
1394 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1395 if (ret)
1396 goto fail;
1397
1dd05682
TI
1398 return root;
1399
8a6a87cd 1400fail_unlock:
8c38938c 1401 if (leaf)
1dd05682 1402 btrfs_tree_unlock(leaf);
8a6a87cd 1403fail:
00246528 1404 btrfs_put_root(root);
20897f5c 1405
1dd05682 1406 return ERR_PTR(ret);
20897f5c
AJ
1407}
1408
7237f183
YZ
1409static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1410 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1411{
1412 struct btrfs_root *root;
e02119d5 1413
96dfcb46 1414 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1415 if (!root)
7237f183 1416 return ERR_PTR(-ENOMEM);
e02119d5 1417
e02119d5
CM
1418 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1419 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1420 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1421
6ab6ebb7
NA
1422 return root;
1423}
1424
1425int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1426 struct btrfs_root *root)
1427{
1428 struct extent_buffer *leaf;
1429
7237f183 1430 /*
92a7cc42 1431 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1432 *
92a7cc42
QW
1433 * Log trees are not exposed to user space thus can't be snapshotted,
1434 * and they go away before a real commit is actually done.
1435 *
1436 * They do store pointers to file data extents, and those reference
1437 * counts still get updated (along with back refs to the log tree).
7237f183 1438 */
e02119d5 1439
4d75f8a9 1440 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1441 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1442 if (IS_ERR(leaf))
1443 return PTR_ERR(leaf);
e02119d5 1444
7237f183 1445 root->node = leaf;
e02119d5 1446
e02119d5
CM
1447 btrfs_mark_buffer_dirty(root->node);
1448 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1449
1450 return 0;
7237f183
YZ
1451}
1452
1453int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1454 struct btrfs_fs_info *fs_info)
1455{
1456 struct btrfs_root *log_root;
1457
1458 log_root = alloc_log_tree(trans, fs_info);
1459 if (IS_ERR(log_root))
1460 return PTR_ERR(log_root);
6ab6ebb7 1461
3ddebf27
NA
1462 if (!btrfs_is_zoned(fs_info)) {
1463 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1464
1465 if (ret) {
1466 btrfs_put_root(log_root);
1467 return ret;
1468 }
6ab6ebb7
NA
1469 }
1470
7237f183
YZ
1471 WARN_ON(fs_info->log_root_tree);
1472 fs_info->log_root_tree = log_root;
1473 return 0;
1474}
1475
1476int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1477 struct btrfs_root *root)
1478{
0b246afa 1479 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1480 struct btrfs_root *log_root;
1481 struct btrfs_inode_item *inode_item;
6ab6ebb7 1482 int ret;
7237f183 1483
0b246afa 1484 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1485 if (IS_ERR(log_root))
1486 return PTR_ERR(log_root);
1487
6ab6ebb7
NA
1488 ret = btrfs_alloc_log_tree_node(trans, log_root);
1489 if (ret) {
1490 btrfs_put_root(log_root);
1491 return ret;
1492 }
1493
7237f183
YZ
1494 log_root->last_trans = trans->transid;
1495 log_root->root_key.offset = root->root_key.objectid;
1496
1497 inode_item = &log_root->root_item.inode;
3cae210f
QW
1498 btrfs_set_stack_inode_generation(inode_item, 1);
1499 btrfs_set_stack_inode_size(inode_item, 3);
1500 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1501 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1502 fs_info->nodesize);
3cae210f 1503 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1504
5d4f98a2 1505 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1506
1507 WARN_ON(root->log_root);
1508 root->log_root = log_root;
1509 root->log_transid = 0;
d1433deb 1510 root->log_transid_committed = -1;
257c62e1 1511 root->last_log_commit = 0;
e02119d5
CM
1512 return 0;
1513}
1514
49d11bea
JB
1515static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1516 struct btrfs_path *path,
1517 struct btrfs_key *key)
e02119d5
CM
1518{
1519 struct btrfs_root *root;
1520 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1521 u64 generation;
cb517eab 1522 int ret;
581c1760 1523 int level;
0f7d52f4 1524
96dfcb46 1525 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1526 if (!root)
1527 return ERR_PTR(-ENOMEM);
0f7d52f4 1528
cb517eab
MX
1529 ret = btrfs_find_root(tree_root, key, path,
1530 &root->root_item, &root->root_key);
0f7d52f4 1531 if (ret) {
13a8a7c8
YZ
1532 if (ret > 0)
1533 ret = -ENOENT;
49d11bea 1534 goto fail;
0f7d52f4 1535 }
13a8a7c8 1536
84234f3a 1537 generation = btrfs_root_generation(&root->root_item);
581c1760 1538 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1539 root->node = read_tree_block(fs_info,
1540 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1541 key->objectid, generation, level, NULL);
64c043de
LB
1542 if (IS_ERR(root->node)) {
1543 ret = PTR_ERR(root->node);
8c38938c 1544 root->node = NULL;
49d11bea 1545 goto fail;
4eb150d6
QW
1546 }
1547 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1548 ret = -EIO;
49d11bea 1549 goto fail;
416bc658 1550 }
88c602ab
QW
1551
1552 /*
1553 * For real fs, and not log/reloc trees, root owner must
1554 * match its root node owner
1555 */
1556 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1557 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1558 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1559 root->root_key.objectid != btrfs_header_owner(root->node)) {
1560 btrfs_crit(fs_info,
1561"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1562 root->root_key.objectid, root->node->start,
1563 btrfs_header_owner(root->node),
1564 root->root_key.objectid);
1565 ret = -EUCLEAN;
1566 goto fail;
1567 }
5d4f98a2 1568 root->commit_root = btrfs_root_node(root);
cb517eab 1569 return root;
49d11bea 1570fail:
00246528 1571 btrfs_put_root(root);
49d11bea
JB
1572 return ERR_PTR(ret);
1573}
1574
1575struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1576 struct btrfs_key *key)
1577{
1578 struct btrfs_root *root;
1579 struct btrfs_path *path;
1580
1581 path = btrfs_alloc_path();
1582 if (!path)
1583 return ERR_PTR(-ENOMEM);
1584 root = read_tree_root_path(tree_root, path, key);
1585 btrfs_free_path(path);
1586
1587 return root;
cb517eab
MX
1588}
1589
2dfb1e43
QW
1590/*
1591 * Initialize subvolume root in-memory structure
1592 *
1593 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1594 */
1595static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1596{
1597 int ret;
dcc3eb96 1598 unsigned int nofs_flag;
cb517eab 1599
dcc3eb96
NB
1600 /*
1601 * We might be called under a transaction (e.g. indirect backref
1602 * resolution) which could deadlock if it triggers memory reclaim
1603 */
1604 nofs_flag = memalloc_nofs_save();
1605 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1606 memalloc_nofs_restore(nofs_flag);
1607 if (ret)
8257b2dc 1608 goto fail;
8257b2dc 1609
aeb935a4 1610 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1611 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1612 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1613 btrfs_check_and_init_root_item(&root->root_item);
1614 }
1615
851fd730
QW
1616 /*
1617 * Don't assign anonymous block device to roots that are not exposed to
1618 * userspace, the id pool is limited to 1M
1619 */
1620 if (is_fstree(root->root_key.objectid) &&
1621 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1622 if (!anon_dev) {
1623 ret = get_anon_bdev(&root->anon_dev);
1624 if (ret)
1625 goto fail;
1626 } else {
1627 root->anon_dev = anon_dev;
1628 }
851fd730 1629 }
f32e48e9
CR
1630
1631 mutex_lock(&root->objectid_mutex);
453e4873 1632 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1633 if (ret) {
1634 mutex_unlock(&root->objectid_mutex);
876d2cf1 1635 goto fail;
f32e48e9
CR
1636 }
1637
6b8fad57 1638 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1639
1640 mutex_unlock(&root->objectid_mutex);
1641
cb517eab
MX
1642 return 0;
1643fail:
84db5ccf 1644 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1645 return ret;
1646}
1647
a98db0f3
JB
1648static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1649 u64 root_id)
cb517eab
MX
1650{
1651 struct btrfs_root *root;
1652
fc7cbcd4
DS
1653 spin_lock(&fs_info->fs_roots_radix_lock);
1654 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1655 (unsigned long)root_id);
bc44d7c4 1656 if (root)
00246528 1657 root = btrfs_grab_root(root);
fc7cbcd4 1658 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1659 return root;
1660}
1661
49d11bea
JB
1662static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1663 u64 objectid)
1664{
abed4aaa
JB
1665 struct btrfs_key key = {
1666 .objectid = objectid,
1667 .type = BTRFS_ROOT_ITEM_KEY,
1668 .offset = 0,
1669 };
1670
49d11bea
JB
1671 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1672 return btrfs_grab_root(fs_info->tree_root);
1673 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1674 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1675 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1676 return btrfs_grab_root(fs_info->chunk_root);
1677 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1678 return btrfs_grab_root(fs_info->dev_root);
1679 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1680 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1681 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1682 return btrfs_grab_root(fs_info->quota_root) ?
1683 fs_info->quota_root : ERR_PTR(-ENOENT);
1684 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1685 return btrfs_grab_root(fs_info->uuid_root) ?
1686 fs_info->uuid_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1687 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1688 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1689
1690 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1691 }
49d11bea
JB
1692 return NULL;
1693}
1694
cb517eab
MX
1695int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1696 struct btrfs_root *root)
1697{
1698 int ret;
1699
fc7cbcd4
DS
1700 ret = radix_tree_preload(GFP_NOFS);
1701 if (ret)
1702 return ret;
1703
1704 spin_lock(&fs_info->fs_roots_radix_lock);
1705 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1706 (unsigned long)root->root_key.objectid,
1707 root);
af01d2e5 1708 if (ret == 0) {
00246528 1709 btrfs_grab_root(root);
fc7cbcd4 1710 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1711 }
fc7cbcd4
DS
1712 spin_unlock(&fs_info->fs_roots_radix_lock);
1713 radix_tree_preload_end();
cb517eab
MX
1714
1715 return ret;
1716}
1717
bd647ce3
JB
1718void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1719{
1720#ifdef CONFIG_BTRFS_DEBUG
1721 struct btrfs_root *root;
1722
1723 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1724 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1725
bd647ce3
JB
1726 root = list_first_entry(&fs_info->allocated_roots,
1727 struct btrfs_root, leak_list);
457f1864 1728 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1729 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1730 refcount_read(&root->refs));
1731 while (refcount_read(&root->refs) > 1)
00246528
JB
1732 btrfs_put_root(root);
1733 btrfs_put_root(root);
bd647ce3
JB
1734 }
1735#endif
1736}
1737
abed4aaa
JB
1738static void free_global_roots(struct btrfs_fs_info *fs_info)
1739{
1740 struct btrfs_root *root;
1741 struct rb_node *node;
1742
1743 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1744 root = rb_entry(node, struct btrfs_root, rb_node);
1745 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1746 btrfs_put_root(root);
1747 }
1748}
1749
0d4b0463
JB
1750void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1751{
141386e1
JB
1752 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1753 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1754 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1755 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1756 btrfs_free_csum_hash(fs_info);
1757 btrfs_free_stripe_hash_table(fs_info);
1758 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1759 kfree(fs_info->balance_ctl);
1760 kfree(fs_info->delayed_root);
abed4aaa 1761 free_global_roots(fs_info);
00246528
JB
1762 btrfs_put_root(fs_info->tree_root);
1763 btrfs_put_root(fs_info->chunk_root);
1764 btrfs_put_root(fs_info->dev_root);
00246528
JB
1765 btrfs_put_root(fs_info->quota_root);
1766 btrfs_put_root(fs_info->uuid_root);
00246528 1767 btrfs_put_root(fs_info->fs_root);
aeb935a4 1768 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1769 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1770 btrfs_check_leaked_roots(fs_info);
3fd63727 1771 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1772 kfree(fs_info->super_copy);
1773 kfree(fs_info->super_for_commit);
8481dd80 1774 kfree(fs_info->subpage_info);
0d4b0463
JB
1775 kvfree(fs_info);
1776}
1777
1778
2dfb1e43
QW
1779/*
1780 * Get an in-memory reference of a root structure.
1781 *
1782 * For essential trees like root/extent tree, we grab it from fs_info directly.
1783 * For subvolume trees, we check the cached filesystem roots first. If not
1784 * found, then read it from disk and add it to cached fs roots.
1785 *
1786 * Caller should release the root by calling btrfs_put_root() after the usage.
1787 *
1788 * NOTE: Reloc and log trees can't be read by this function as they share the
1789 * same root objectid.
1790 *
1791 * @objectid: root id
1792 * @anon_dev: preallocated anonymous block device number for new roots,
1793 * pass 0 for new allocation.
1794 * @check_ref: whether to check root item references, If true, return -ENOENT
1795 * for orphan roots
1796 */
1797static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1798 u64 objectid, dev_t anon_dev,
1799 bool check_ref)
5eda7b5e
CM
1800{
1801 struct btrfs_root *root;
381cf658 1802 struct btrfs_path *path;
1d4c08e0 1803 struct btrfs_key key;
5eda7b5e
CM
1804 int ret;
1805
49d11bea
JB
1806 root = btrfs_get_global_root(fs_info, objectid);
1807 if (root)
1808 return root;
4df27c4d 1809again:
56e9357a 1810 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1811 if (root) {
2dfb1e43
QW
1812 /* Shouldn't get preallocated anon_dev for cached roots */
1813 ASSERT(!anon_dev);
bc44d7c4 1814 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1815 btrfs_put_root(root);
48475471 1816 return ERR_PTR(-ENOENT);
bc44d7c4 1817 }
5eda7b5e 1818 return root;
48475471 1819 }
5eda7b5e 1820
56e9357a
DS
1821 key.objectid = objectid;
1822 key.type = BTRFS_ROOT_ITEM_KEY;
1823 key.offset = (u64)-1;
1824 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1825 if (IS_ERR(root))
1826 return root;
3394e160 1827
c00869f1 1828 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1829 ret = -ENOENT;
581bb050 1830 goto fail;
35a30d7c 1831 }
581bb050 1832
2dfb1e43 1833 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1834 if (ret)
1835 goto fail;
3394e160 1836
381cf658
DS
1837 path = btrfs_alloc_path();
1838 if (!path) {
1839 ret = -ENOMEM;
1840 goto fail;
1841 }
1d4c08e0
DS
1842 key.objectid = BTRFS_ORPHAN_OBJECTID;
1843 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1844 key.offset = objectid;
1d4c08e0
DS
1845
1846 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1847 btrfs_free_path(path);
d68fc57b
YZ
1848 if (ret < 0)
1849 goto fail;
1850 if (ret == 0)
27cdeb70 1851 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1852
cb517eab 1853 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1854 if (ret) {
168a2f77
JJB
1855 if (ret == -EEXIST) {
1856 btrfs_put_root(root);
4df27c4d 1857 goto again;
168a2f77 1858 }
4df27c4d 1859 goto fail;
0f7d52f4 1860 }
edbd8d4e 1861 return root;
4df27c4d 1862fail:
33fab972
FM
1863 /*
1864 * If our caller provided us an anonymous device, then it's his
143823cf 1865 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1866 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1867 * and once again by our caller.
1868 */
1869 if (anon_dev)
1870 root->anon_dev = 0;
8c38938c 1871 btrfs_put_root(root);
4df27c4d 1872 return ERR_PTR(ret);
edbd8d4e
CM
1873}
1874
2dfb1e43
QW
1875/*
1876 * Get in-memory reference of a root structure
1877 *
1878 * @objectid: tree objectid
1879 * @check_ref: if set, verify that the tree exists and the item has at least
1880 * one reference
1881 */
1882struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1883 u64 objectid, bool check_ref)
1884{
1885 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1886}
1887
1888/*
1889 * Get in-memory reference of a root structure, created as new, optionally pass
1890 * the anonymous block device id
1891 *
1892 * @objectid: tree objectid
1893 * @anon_dev: if zero, allocate a new anonymous block device or use the
1894 * parameter value
1895 */
1896struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1897 u64 objectid, dev_t anon_dev)
1898{
1899 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1900}
1901
49d11bea
JB
1902/*
1903 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1904 * @fs_info: the fs_info
1905 * @objectid: the objectid we need to lookup
1906 *
1907 * This is exclusively used for backref walking, and exists specifically because
1908 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1909 * creation time, which means we may have to read the tree_root in order to look
1910 * up a fs root that is not in memory. If the root is not in memory we will
1911 * read the tree root commit root and look up the fs root from there. This is a
1912 * temporary root, it will not be inserted into the radix tree as it doesn't
1913 * have the most uptodate information, it'll simply be discarded once the
1914 * backref code is finished using the root.
1915 */
1916struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1917 struct btrfs_path *path,
1918 u64 objectid)
1919{
1920 struct btrfs_root *root;
1921 struct btrfs_key key;
1922
1923 ASSERT(path->search_commit_root && path->skip_locking);
1924
1925 /*
1926 * This can return -ENOENT if we ask for a root that doesn't exist, but
1927 * since this is called via the backref walking code we won't be looking
1928 * up a root that doesn't exist, unless there's corruption. So if root
1929 * != NULL just return it.
1930 */
1931 root = btrfs_get_global_root(fs_info, objectid);
1932 if (root)
1933 return root;
1934
1935 root = btrfs_lookup_fs_root(fs_info, objectid);
1936 if (root)
1937 return root;
1938
1939 key.objectid = objectid;
1940 key.type = BTRFS_ROOT_ITEM_KEY;
1941 key.offset = (u64)-1;
1942 root = read_tree_root_path(fs_info->tree_root, path, &key);
1943 btrfs_release_path(path);
1944
1945 return root;
1946}
1947
8b712842
CM
1948/*
1949 * called by the kthread helper functions to finally call the bio end_io
1950 * functions. This is where read checksum verification actually happens
1951 */
1952static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1953{
ce9adaa5 1954 struct bio *bio;
97eb6b69 1955 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1956
97eb6b69 1957 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1958 bio = end_io_wq->bio;
ce9adaa5 1959
4e4cbee9 1960 bio->bi_status = end_io_wq->status;
8b712842
CM
1961 bio->bi_private = end_io_wq->private;
1962 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1963 bio_endio(bio);
9be490f1 1964 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1965}
1966
a74a4b97
CM
1967static int cleaner_kthread(void *arg)
1968{
0d031dc4 1969 struct btrfs_fs_info *fs_info = arg;
d0278245 1970 int again;
a74a4b97 1971
d6fd0ae2 1972 while (1) {
d0278245 1973 again = 0;
a74a4b97 1974
fd340d0f
JB
1975 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1976
d0278245 1977 /* Make the cleaner go to sleep early. */
2ff7e61e 1978 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1979 goto sleep;
1980
90c711ab
ZB
1981 /*
1982 * Do not do anything if we might cause open_ctree() to block
1983 * before we have finished mounting the filesystem.
1984 */
0b246afa 1985 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1986 goto sleep;
1987
0b246afa 1988 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1989 goto sleep;
1990
dc7f370c
MX
1991 /*
1992 * Avoid the problem that we change the status of the fs
1993 * during the above check and trylock.
1994 */
2ff7e61e 1995 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1996 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1997 goto sleep;
76dda93c 1998 }
a74a4b97 1999
2ff7e61e 2000 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 2001
33c44184 2002 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 2003 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
2004
2005 /*
05323cd1
MX
2006 * The defragger has dealt with the R/O remount and umount,
2007 * needn't do anything special here.
d0278245 2008 */
0b246afa 2009 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
2010
2011 /*
f3372065 2012 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
2013 * with relocation (btrfs_relocate_chunk) and relocation
2014 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 2015 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
2016 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
2017 * unused block groups.
2018 */
0b246afa 2019 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
2020
2021 /*
2022 * Reclaim block groups in the reclaim_bgs list after we deleted
2023 * all unused block_groups. This possibly gives us some more free
2024 * space.
2025 */
2026 btrfs_reclaim_bgs(fs_info);
d0278245 2027sleep:
a0a1db70 2028 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
2029 if (kthread_should_park())
2030 kthread_parkme();
2031 if (kthread_should_stop())
2032 return 0;
838fe188 2033 if (!again) {
a74a4b97 2034 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 2035 schedule();
a74a4b97
CM
2036 __set_current_state(TASK_RUNNING);
2037 }
da288d28 2038 }
a74a4b97
CM
2039}
2040
2041static int transaction_kthread(void *arg)
2042{
2043 struct btrfs_root *root = arg;
0b246afa 2044 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
2045 struct btrfs_trans_handle *trans;
2046 struct btrfs_transaction *cur;
8929ecfa 2047 u64 transid;
643900be 2048 time64_t delta;
a74a4b97 2049 unsigned long delay;
914b2007 2050 bool cannot_commit;
a74a4b97
CM
2051
2052 do {
914b2007 2053 cannot_commit = false;
ba1bc00f 2054 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 2055 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 2056
0b246afa
JM
2057 spin_lock(&fs_info->trans_lock);
2058 cur = fs_info->running_transaction;
a74a4b97 2059 if (!cur) {
0b246afa 2060 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
2061 goto sleep;
2062 }
31153d81 2063
643900be 2064 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
2065 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
2066 cur->state < TRANS_STATE_COMMIT_START &&
643900be 2067 delta < fs_info->commit_interval) {
0b246afa 2068 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
2069 delay -= msecs_to_jiffies((delta - 1) * 1000);
2070 delay = min(delay,
2071 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
2072 goto sleep;
2073 }
8929ecfa 2074 transid = cur->transid;
0b246afa 2075 spin_unlock(&fs_info->trans_lock);
56bec294 2076
79787eaa 2077 /* If the file system is aborted, this will always fail. */
354aa0fb 2078 trans = btrfs_attach_transaction(root);
914b2007 2079 if (IS_ERR(trans)) {
354aa0fb
MX
2080 if (PTR_ERR(trans) != -ENOENT)
2081 cannot_commit = true;
79787eaa 2082 goto sleep;
914b2007 2083 }
8929ecfa 2084 if (transid == trans->transid) {
3a45bb20 2085 btrfs_commit_transaction(trans);
8929ecfa 2086 } else {
3a45bb20 2087 btrfs_end_transaction(trans);
8929ecfa 2088 }
a74a4b97 2089sleep:
0b246afa
JM
2090 wake_up_process(fs_info->cleaner_kthread);
2091 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 2092
84961539 2093 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 2094 btrfs_cleanup_transaction(fs_info);
ce63f891 2095 if (!kthread_should_stop() &&
0b246afa 2096 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 2097 cannot_commit))
bc5511d0 2098 schedule_timeout_interruptible(delay);
a74a4b97
CM
2099 } while (!kthread_should_stop());
2100 return 0;
2101}
2102
af31f5e5 2103/*
01f0f9da
NB
2104 * This will find the highest generation in the array of root backups. The
2105 * index of the highest array is returned, or -EINVAL if we can't find
2106 * anything.
af31f5e5
CM
2107 *
2108 * We check to make sure the array is valid by comparing the
2109 * generation of the latest root in the array with the generation
2110 * in the super block. If they don't match we pitch it.
2111 */
01f0f9da 2112static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 2113{
01f0f9da 2114 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 2115 u64 cur;
af31f5e5
CM
2116 struct btrfs_root_backup *root_backup;
2117 int i;
2118
2119 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2120 root_backup = info->super_copy->super_roots + i;
2121 cur = btrfs_backup_tree_root_gen(root_backup);
2122 if (cur == newest_gen)
01f0f9da 2123 return i;
af31f5e5
CM
2124 }
2125
01f0f9da 2126 return -EINVAL;
af31f5e5
CM
2127}
2128
af31f5e5
CM
2129/*
2130 * copy all the root pointers into the super backup array.
2131 * this will bump the backup pointer by one when it is
2132 * done
2133 */
2134static void backup_super_roots(struct btrfs_fs_info *info)
2135{
6ef108dd 2136 const int next_backup = info->backup_root_index;
af31f5e5 2137 struct btrfs_root_backup *root_backup;
af31f5e5
CM
2138
2139 root_backup = info->super_for_commit->super_roots + next_backup;
2140
2141 /*
2142 * make sure all of our padding and empty slots get zero filled
2143 * regardless of which ones we use today
2144 */
2145 memset(root_backup, 0, sizeof(*root_backup));
2146
2147 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2148
2149 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2150 btrfs_set_backup_tree_root_gen(root_backup,
2151 btrfs_header_generation(info->tree_root->node));
2152
2153 btrfs_set_backup_tree_root_level(root_backup,
2154 btrfs_header_level(info->tree_root->node));
2155
2156 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2157 btrfs_set_backup_chunk_root_gen(root_backup,
2158 btrfs_header_generation(info->chunk_root->node));
2159 btrfs_set_backup_chunk_root_level(root_backup,
2160 btrfs_header_level(info->chunk_root->node));
2161
9c54e80d
JB
2162 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
2163 btrfs_set_backup_block_group_root(root_backup,
2164 info->block_group_root->node->start);
2165 btrfs_set_backup_block_group_root_gen(root_backup,
2166 btrfs_header_generation(info->block_group_root->node));
2167 btrfs_set_backup_block_group_root_level(root_backup,
2168 btrfs_header_level(info->block_group_root->node));
2169 } else {
2170 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 2171 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
2172
2173 btrfs_set_backup_extent_root(root_backup,
2174 extent_root->node->start);
2175 btrfs_set_backup_extent_root_gen(root_backup,
2176 btrfs_header_generation(extent_root->node));
2177 btrfs_set_backup_extent_root_level(root_backup,
2178 btrfs_header_level(extent_root->node));
f7238e50
JB
2179
2180 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2181 btrfs_set_backup_csum_root_gen(root_backup,
2182 btrfs_header_generation(csum_root->node));
2183 btrfs_set_backup_csum_root_level(root_backup,
2184 btrfs_header_level(csum_root->node));
9c54e80d 2185 }
af31f5e5 2186
7c7e82a7
CM
2187 /*
2188 * we might commit during log recovery, which happens before we set
2189 * the fs_root. Make sure it is valid before we fill it in.
2190 */
2191 if (info->fs_root && info->fs_root->node) {
2192 btrfs_set_backup_fs_root(root_backup,
2193 info->fs_root->node->start);
2194 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2195 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2196 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2197 btrfs_header_level(info->fs_root->node));
7c7e82a7 2198 }
af31f5e5
CM
2199
2200 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2201 btrfs_set_backup_dev_root_gen(root_backup,
2202 btrfs_header_generation(info->dev_root->node));
2203 btrfs_set_backup_dev_root_level(root_backup,
2204 btrfs_header_level(info->dev_root->node));
2205
af31f5e5
CM
2206 btrfs_set_backup_total_bytes(root_backup,
2207 btrfs_super_total_bytes(info->super_copy));
2208 btrfs_set_backup_bytes_used(root_backup,
2209 btrfs_super_bytes_used(info->super_copy));
2210 btrfs_set_backup_num_devices(root_backup,
2211 btrfs_super_num_devices(info->super_copy));
2212
2213 /*
2214 * if we don't copy this out to the super_copy, it won't get remembered
2215 * for the next commit
2216 */
2217 memcpy(&info->super_copy->super_roots,
2218 &info->super_for_commit->super_roots,
2219 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2220}
2221
bd2336b2
NB
2222/*
2223 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2224 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2225 *
2226 * fs_info - filesystem whose backup roots need to be read
2227 * priority - priority of backup root required
2228 *
2229 * Returns backup root index on success and -EINVAL otherwise.
2230 */
2231static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2232{
2233 int backup_index = find_newest_super_backup(fs_info);
2234 struct btrfs_super_block *super = fs_info->super_copy;
2235 struct btrfs_root_backup *root_backup;
2236
2237 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2238 if (priority == 0)
2239 return backup_index;
2240
2241 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2242 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2243 } else {
2244 return -EINVAL;
2245 }
2246
2247 root_backup = super->super_roots + backup_index;
2248
2249 btrfs_set_super_generation(super,
2250 btrfs_backup_tree_root_gen(root_backup));
2251 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2252 btrfs_set_super_root_level(super,
2253 btrfs_backup_tree_root_level(root_backup));
2254 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2255
2256 /*
2257 * Fixme: the total bytes and num_devices need to match or we should
2258 * need a fsck
2259 */
2260 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2261 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2262
2263 return backup_index;
2264}
2265
7abadb64
LB
2266/* helper to cleanup workers */
2267static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2268{
dc6e3209 2269 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2270 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2271 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2272 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2273 btrfs_destroy_workqueue(fs_info->endio_workers);
d34e123d
CH
2274 if (fs_info->endio_raid56_workers)
2275 destroy_workqueue(fs_info->endio_raid56_workers);
385de0ef
CH
2276 if (fs_info->rmw_workers)
2277 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
2278 if (fs_info->compressed_write_workers)
2279 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
2280 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2281 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2282 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2283 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2284 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2285 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2286 if (fs_info->discard_ctl.discard_workers)
2287 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2288 /*
2289 * Now that all other work queues are destroyed, we can safely destroy
2290 * the queues used for metadata I/O, since tasks from those other work
2291 * queues can do metadata I/O operations.
2292 */
2293 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2294}
2295
2e9f5954
R
2296static void free_root_extent_buffers(struct btrfs_root *root)
2297{
2298 if (root) {
2299 free_extent_buffer(root->node);
2300 free_extent_buffer(root->commit_root);
2301 root->node = NULL;
2302 root->commit_root = NULL;
2303 }
2304}
2305
abed4aaa
JB
2306static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2307{
2308 struct btrfs_root *root, *tmp;
2309
2310 rbtree_postorder_for_each_entry_safe(root, tmp,
2311 &fs_info->global_root_tree,
2312 rb_node)
2313 free_root_extent_buffers(root);
2314}
2315
af31f5e5 2316/* helper to cleanup tree roots */
4273eaff 2317static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2318{
2e9f5954 2319 free_root_extent_buffers(info->tree_root);
655b09fe 2320
abed4aaa 2321 free_global_root_pointers(info);
2e9f5954 2322 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2323 free_root_extent_buffers(info->quota_root);
2324 free_root_extent_buffers(info->uuid_root);
8c38938c 2325 free_root_extent_buffers(info->fs_root);
aeb935a4 2326 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2327 free_root_extent_buffers(info->block_group_root);
4273eaff 2328 if (free_chunk_root)
2e9f5954 2329 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2330}
2331
8c38938c
JB
2332void btrfs_put_root(struct btrfs_root *root)
2333{
2334 if (!root)
2335 return;
2336
2337 if (refcount_dec_and_test(&root->refs)) {
2338 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2339 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2340 if (root->anon_dev)
2341 free_anon_bdev(root->anon_dev);
2342 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2343 free_root_extent_buffers(root);
8c38938c 2344#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2345 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2346 list_del_init(&root->leak_list);
fc7cbcd4 2347 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2348#endif
2349 kfree(root);
2350 }
2351}
2352
faa2dbf0 2353void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2354{
fc7cbcd4
DS
2355 int ret;
2356 struct btrfs_root *gang[8];
2357 int i;
171f6537
JB
2358
2359 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2360 gang[0] = list_entry(fs_info->dead_roots.next,
2361 struct btrfs_root, root_list);
2362 list_del(&gang[0]->root_list);
171f6537 2363
fc7cbcd4
DS
2364 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2365 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2366 btrfs_put_root(gang[0]);
171f6537
JB
2367 }
2368
fc7cbcd4
DS
2369 while (1) {
2370 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2371 (void **)gang, 0,
2372 ARRAY_SIZE(gang));
2373 if (!ret)
2374 break;
2375 for (i = 0; i < ret; i++)
2376 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2377 }
2378}
af31f5e5 2379
638aa7ed
ES
2380static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2381{
2382 mutex_init(&fs_info->scrub_lock);
2383 atomic_set(&fs_info->scrubs_running, 0);
2384 atomic_set(&fs_info->scrub_pause_req, 0);
2385 atomic_set(&fs_info->scrubs_paused, 0);
2386 atomic_set(&fs_info->scrub_cancel_req, 0);
2387 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2388 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2389}
2390
779a65a4
ES
2391static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2392{
2393 spin_lock_init(&fs_info->balance_lock);
2394 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2395 atomic_set(&fs_info->balance_pause_req, 0);
2396 atomic_set(&fs_info->balance_cancel_req, 0);
2397 fs_info->balance_ctl = NULL;
2398 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2399 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2400}
2401
6bccf3ab 2402static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2403{
2ff7e61e
JM
2404 struct inode *inode = fs_info->btree_inode;
2405
2406 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2407 set_nlink(inode, 1);
f37938e0
ES
2408 /*
2409 * we set the i_size on the btree inode to the max possible int.
2410 * the real end of the address space is determined by all of
2411 * the devices in the system
2412 */
2ff7e61e
JM
2413 inode->i_size = OFFSET_MAX;
2414 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2415
2ff7e61e 2416 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2417 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2418 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2419 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2420 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2421
5c8fd99f 2422 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2423 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2424 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2425 btrfs_insert_inode_hash(inode);
f37938e0
ES
2426}
2427
ad618368
ES
2428static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2429{
ad618368 2430 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2431 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2432 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2433}
2434
f9e92e40
ES
2435static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2436{
2437 spin_lock_init(&fs_info->qgroup_lock);
2438 mutex_init(&fs_info->qgroup_ioctl_lock);
2439 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2440 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2441 fs_info->qgroup_seq = 1;
f9e92e40 2442 fs_info->qgroup_ulist = NULL;
d2c609b8 2443 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2444 mutex_init(&fs_info->qgroup_rescan_lock);
2445}
2446
d21deec5 2447static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2448{
f7b885be 2449 u32 max_active = fs_info->thread_pool_size;
6f011058 2450 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2451
2452 fs_info->workers =
a31b4a43
CH
2453 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2454 fs_info->hipri_workers =
2455 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2456 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2457
2458 fs_info->delalloc_workers =
cb001095
JM
2459 btrfs_alloc_workqueue(fs_info, "delalloc",
2460 flags, max_active, 2);
2a458198
ES
2461
2462 fs_info->flush_workers =
cb001095
JM
2463 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2464 flags, max_active, 0);
2a458198
ES
2465
2466 fs_info->caching_workers =
cb001095 2467 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2468
2a458198 2469 fs_info->fixup_workers =
cb001095 2470 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2471
2472 /*
2473 * endios are largely parallel and should have a very
2474 * low idle thresh
2475 */
2476 fs_info->endio_workers =
cb001095 2477 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2478 fs_info->endio_meta_workers =
cb001095
JM
2479 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2480 max_active, 4);
2a458198 2481 fs_info->endio_raid56_workers =
d34e123d 2482 alloc_workqueue("btrfs-endio-raid56", flags, max_active);
385de0ef 2483 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2484 fs_info->endio_write_workers =
cb001095
JM
2485 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2486 max_active, 2);
fed8a72d
CH
2487 fs_info->compressed_write_workers =
2488 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2489 fs_info->endio_freespace_worker =
cb001095
JM
2490 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2491 max_active, 0);
2a458198 2492 fs_info->delayed_workers =
cb001095
JM
2493 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2494 max_active, 0);
2a458198 2495 fs_info->qgroup_rescan_workers =
cb001095 2496 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2497 fs_info->discard_ctl.discard_workers =
2498 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2499
a31b4a43
CH
2500 if (!(fs_info->workers && fs_info->hipri_workers &&
2501 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2502 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2503 fs_info->compressed_write_workers &&
2a458198
ES
2504 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2505 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2506 fs_info->caching_workers && fs_info->fixup_workers &&
2507 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2508 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2509 return -ENOMEM;
2510 }
2511
2512 return 0;
2513}
2514
6d97c6e3
JT
2515static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2516{
2517 struct crypto_shash *csum_shash;
b4e967be 2518 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2519
b4e967be 2520 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2521
2522 if (IS_ERR(csum_shash)) {
2523 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2524 csum_driver);
6d97c6e3
JT
2525 return PTR_ERR(csum_shash);
2526 }
2527
2528 fs_info->csum_shash = csum_shash;
2529
2530 return 0;
2531}
2532
63443bf5
ES
2533static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2534 struct btrfs_fs_devices *fs_devices)
2535{
2536 int ret;
63443bf5
ES
2537 struct btrfs_root *log_tree_root;
2538 struct btrfs_super_block *disk_super = fs_info->super_copy;
2539 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2540 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2541
2542 if (fs_devices->rw_devices == 0) {
f14d104d 2543 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2544 return -EIO;
2545 }
2546
96dfcb46
JB
2547 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2548 GFP_KERNEL);
63443bf5
ES
2549 if (!log_tree_root)
2550 return -ENOMEM;
2551
2ff7e61e 2552 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2553 BTRFS_TREE_LOG_OBJECTID,
2554 fs_info->generation + 1, level,
2555 NULL);
64c043de 2556 if (IS_ERR(log_tree_root->node)) {
f14d104d 2557 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2558 ret = PTR_ERR(log_tree_root->node);
8c38938c 2559 log_tree_root->node = NULL;
00246528 2560 btrfs_put_root(log_tree_root);
0eeff236 2561 return ret;
4eb150d6
QW
2562 }
2563 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2564 btrfs_err(fs_info, "failed to read log tree");
00246528 2565 btrfs_put_root(log_tree_root);
63443bf5
ES
2566 return -EIO;
2567 }
4eb150d6 2568
63443bf5
ES
2569 /* returns with log_tree_root freed on success */
2570 ret = btrfs_recover_log_trees(log_tree_root);
2571 if (ret) {
0b246afa
JM
2572 btrfs_handle_fs_error(fs_info, ret,
2573 "Failed to recover log tree");
00246528 2574 btrfs_put_root(log_tree_root);
63443bf5
ES
2575 return ret;
2576 }
2577
bc98a42c 2578 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2579 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2580 if (ret)
2581 return ret;
2582 }
2583
2584 return 0;
2585}
2586
abed4aaa
JB
2587static int load_global_roots_objectid(struct btrfs_root *tree_root,
2588 struct btrfs_path *path, u64 objectid,
2589 const char *name)
2590{
2591 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2592 struct btrfs_root *root;
f7238e50 2593 u64 max_global_id = 0;
abed4aaa
JB
2594 int ret;
2595 struct btrfs_key key = {
2596 .objectid = objectid,
2597 .type = BTRFS_ROOT_ITEM_KEY,
2598 .offset = 0,
2599 };
2600 bool found = false;
2601
2602 /* If we have IGNOREDATACSUMS skip loading these roots. */
2603 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2604 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2605 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2606 return 0;
2607 }
2608
2609 while (1) {
2610 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2611 if (ret < 0)
2612 break;
2613
2614 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2615 ret = btrfs_next_leaf(tree_root, path);
2616 if (ret) {
2617 if (ret > 0)
2618 ret = 0;
2619 break;
2620 }
2621 }
2622 ret = 0;
2623
2624 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2625 if (key.objectid != objectid)
2626 break;
2627 btrfs_release_path(path);
2628
f7238e50
JB
2629 /*
2630 * Just worry about this for extent tree, it'll be the same for
2631 * everybody.
2632 */
2633 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2634 max_global_id = max(max_global_id, key.offset);
2635
abed4aaa
JB
2636 found = true;
2637 root = read_tree_root_path(tree_root, path, &key);
2638 if (IS_ERR(root)) {
2639 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2640 ret = PTR_ERR(root);
2641 break;
2642 }
2643 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2644 ret = btrfs_global_root_insert(root);
2645 if (ret) {
2646 btrfs_put_root(root);
2647 break;
2648 }
2649 key.offset++;
2650 }
2651 btrfs_release_path(path);
2652
f7238e50
JB
2653 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2654 fs_info->nr_global_roots = max_global_id + 1;
2655
abed4aaa
JB
2656 if (!found || ret) {
2657 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2658 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2659
2660 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2661 ret = ret ? ret : -ENOENT;
2662 else
2663 ret = 0;
2664 btrfs_err(fs_info, "failed to load root %s", name);
2665 }
2666 return ret;
2667}
2668
2669static int load_global_roots(struct btrfs_root *tree_root)
2670{
2671 struct btrfs_path *path;
2672 int ret = 0;
2673
2674 path = btrfs_alloc_path();
2675 if (!path)
2676 return -ENOMEM;
2677
2678 ret = load_global_roots_objectid(tree_root, path,
2679 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2680 if (ret)
2681 goto out;
2682 ret = load_global_roots_objectid(tree_root, path,
2683 BTRFS_CSUM_TREE_OBJECTID, "csum");
2684 if (ret)
2685 goto out;
2686 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2687 goto out;
2688 ret = load_global_roots_objectid(tree_root, path,
2689 BTRFS_FREE_SPACE_TREE_OBJECTID,
2690 "free space");
2691out:
2692 btrfs_free_path(path);
2693 return ret;
2694}
2695
6bccf3ab 2696static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2697{
6bccf3ab 2698 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2699 struct btrfs_root *root;
4bbcaa64
ES
2700 struct btrfs_key location;
2701 int ret;
2702
6bccf3ab
JM
2703 BUG_ON(!fs_info->tree_root);
2704
abed4aaa
JB
2705 ret = load_global_roots(tree_root);
2706 if (ret)
2707 return ret;
2708
2709 location.objectid = BTRFS_DEV_TREE_OBJECTID;
4bbcaa64
ES
2710 location.type = BTRFS_ROOT_ITEM_KEY;
2711 location.offset = 0;
2712
a4f3d2c4 2713 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2714 if (IS_ERR(root)) {
42437a63
JB
2715 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2716 ret = PTR_ERR(root);
2717 goto out;
2718 }
2719 } else {
2720 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2721 fs_info->dev_root = root;
f50f4353 2722 }
820a49da
JB
2723 /* Initialize fs_info for all devices in any case */
2724 btrfs_init_devices_late(fs_info);
4bbcaa64 2725
aeb935a4
QW
2726 /*
2727 * This tree can share blocks with some other fs tree during relocation
2728 * and we need a proper setup by btrfs_get_fs_root
2729 */
56e9357a
DS
2730 root = btrfs_get_fs_root(tree_root->fs_info,
2731 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2732 if (IS_ERR(root)) {
42437a63
JB
2733 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2734 ret = PTR_ERR(root);
2735 goto out;
2736 }
2737 } else {
2738 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2739 fs_info->data_reloc_root = root;
aeb935a4 2740 }
aeb935a4 2741
4bbcaa64 2742 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2743 root = btrfs_read_tree_root(tree_root, &location);
2744 if (!IS_ERR(root)) {
2745 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2746 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2747 fs_info->quota_root = root;
4bbcaa64
ES
2748 }
2749
2750 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2751 root = btrfs_read_tree_root(tree_root, &location);
2752 if (IS_ERR(root)) {
42437a63
JB
2753 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2754 ret = PTR_ERR(root);
2755 if (ret != -ENOENT)
2756 goto out;
2757 }
4bbcaa64 2758 } else {
a4f3d2c4
DS
2759 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2760 fs_info->uuid_root = root;
4bbcaa64
ES
2761 }
2762
2763 return 0;
f50f4353
LB
2764out:
2765 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2766 location.objectid, ret);
2767 return ret;
4bbcaa64
ES
2768}
2769
069ec957
QW
2770/*
2771 * Real super block validation
2772 * NOTE: super csum type and incompat features will not be checked here.
2773 *
2774 * @sb: super block to check
2775 * @mirror_num: the super block number to check its bytenr:
2776 * 0 the primary (1st) sb
2777 * 1, 2 2nd and 3rd backup copy
2778 * -1 skip bytenr check
2779 */
2780static int validate_super(struct btrfs_fs_info *fs_info,
2781 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2782{
21a852b0
QW
2783 u64 nodesize = btrfs_super_nodesize(sb);
2784 u64 sectorsize = btrfs_super_sectorsize(sb);
2785 int ret = 0;
2786
2787 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2788 btrfs_err(fs_info, "no valid FS found");
2789 ret = -EINVAL;
2790 }
2791 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2792 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2793 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2794 ret = -EINVAL;
2795 }
2796 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2797 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2798 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2799 ret = -EINVAL;
2800 }
2801 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2802 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2803 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2804 ret = -EINVAL;
2805 }
2806 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2807 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2808 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2809 ret = -EINVAL;
2810 }
2811
2812 /*
2813 * Check sectorsize and nodesize first, other check will need it.
2814 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2815 */
2816 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2817 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2818 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2819 ret = -EINVAL;
2820 }
0bb3eb3e
QW
2821
2822 /*
1a42daab
QW
2823 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2824 *
2825 * We can support 16K sectorsize with 64K page size without problem,
2826 * but such sectorsize/pagesize combination doesn't make much sense.
2827 * 4K will be our future standard, PAGE_SIZE is supported from the very
2828 * beginning.
0bb3eb3e 2829 */
1a42daab 2830 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2831 btrfs_err(fs_info,
0bb3eb3e 2832 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2833 sectorsize, PAGE_SIZE);
2834 ret = -EINVAL;
2835 }
0bb3eb3e 2836
21a852b0
QW
2837 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2838 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2839 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2840 ret = -EINVAL;
2841 }
2842 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2843 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2844 le32_to_cpu(sb->__unused_leafsize), nodesize);
2845 ret = -EINVAL;
2846 }
2847
2848 /* Root alignment check */
2849 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2850 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2851 btrfs_super_root(sb));
2852 ret = -EINVAL;
2853 }
2854 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2855 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2856 btrfs_super_chunk_root(sb));
2857 ret = -EINVAL;
2858 }
2859 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2860 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2861 btrfs_super_log_root(sb));
2862 ret = -EINVAL;
2863 }
2864
aefd7f70
NB
2865 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2866 BTRFS_FSID_SIZE)) {
2867 btrfs_err(fs_info,
2868 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2869 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2870 ret = -EINVAL;
2871 }
2872
2873 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2874 memcmp(fs_info->fs_devices->metadata_uuid,
2875 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2876 btrfs_err(fs_info,
2877"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2878 fs_info->super_copy->metadata_uuid,
2879 fs_info->fs_devices->metadata_uuid);
2880 ret = -EINVAL;
2881 }
2882
de37aa51 2883 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2884 BTRFS_FSID_SIZE) != 0) {
21a852b0 2885 btrfs_err(fs_info,
7239ff4b 2886 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2887 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2888 ret = -EINVAL;
2889 }
2890
2891 /*
2892 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2893 * done later
2894 */
2895 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2896 btrfs_err(fs_info, "bytes_used is too small %llu",
2897 btrfs_super_bytes_used(sb));
2898 ret = -EINVAL;
2899 }
2900 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2901 btrfs_err(fs_info, "invalid stripesize %u",
2902 btrfs_super_stripesize(sb));
2903 ret = -EINVAL;
2904 }
2905 if (btrfs_super_num_devices(sb) > (1UL << 31))
2906 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2907 btrfs_super_num_devices(sb));
2908 if (btrfs_super_num_devices(sb) == 0) {
2909 btrfs_err(fs_info, "number of devices is 0");
2910 ret = -EINVAL;
2911 }
2912
069ec957
QW
2913 if (mirror_num >= 0 &&
2914 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2915 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2916 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2917 ret = -EINVAL;
2918 }
2919
2920 /*
2921 * Obvious sys_chunk_array corruptions, it must hold at least one key
2922 * and one chunk
2923 */
2924 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2925 btrfs_err(fs_info, "system chunk array too big %u > %u",
2926 btrfs_super_sys_array_size(sb),
2927 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2928 ret = -EINVAL;
2929 }
2930 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2931 + sizeof(struct btrfs_chunk)) {
2932 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2933 btrfs_super_sys_array_size(sb),
2934 sizeof(struct btrfs_disk_key)
2935 + sizeof(struct btrfs_chunk));
2936 ret = -EINVAL;
2937 }
2938
2939 /*
2940 * The generation is a global counter, we'll trust it more than the others
2941 * but it's still possible that it's the one that's wrong.
2942 */
2943 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2944 btrfs_warn(fs_info,
2945 "suspicious: generation < chunk_root_generation: %llu < %llu",
2946 btrfs_super_generation(sb),
2947 btrfs_super_chunk_root_generation(sb));
2948 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2949 && btrfs_super_cache_generation(sb) != (u64)-1)
2950 btrfs_warn(fs_info,
2951 "suspicious: generation < cache_generation: %llu < %llu",
2952 btrfs_super_generation(sb),
2953 btrfs_super_cache_generation(sb));
2954
2955 return ret;
2956}
2957
069ec957
QW
2958/*
2959 * Validation of super block at mount time.
2960 * Some checks already done early at mount time, like csum type and incompat
2961 * flags will be skipped.
2962 */
2963static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2964{
2965 return validate_super(fs_info, fs_info->super_copy, 0);
2966}
2967
75cb857d
QW
2968/*
2969 * Validation of super block at write time.
2970 * Some checks like bytenr check will be skipped as their values will be
2971 * overwritten soon.
2972 * Extra checks like csum type and incompat flags will be done here.
2973 */
2974static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2975 struct btrfs_super_block *sb)
2976{
2977 int ret;
2978
2979 ret = validate_super(fs_info, sb, -1);
2980 if (ret < 0)
2981 goto out;
e7e16f48 2982 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2983 ret = -EUCLEAN;
2984 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2985 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2986 goto out;
2987 }
2988 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2989 ret = -EUCLEAN;
2990 btrfs_err(fs_info,
2991 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2992 btrfs_super_incompat_flags(sb),
2993 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2994 goto out;
2995 }
2996out:
2997 if (ret < 0)
2998 btrfs_err(fs_info,
2999 "super block corruption detected before writing it to disk");
3000 return ret;
3001}
3002
bd676446
JB
3003static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
3004{
3005 int ret = 0;
3006
3007 root->node = read_tree_block(root->fs_info, bytenr,
3008 root->root_key.objectid, gen, level, NULL);
3009 if (IS_ERR(root->node)) {
3010 ret = PTR_ERR(root->node);
3011 root->node = NULL;
4eb150d6
QW
3012 return ret;
3013 }
3014 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
3015 free_extent_buffer(root->node);
3016 root->node = NULL;
4eb150d6 3017 return -EIO;
bd676446
JB
3018 }
3019
bd676446
JB
3020 btrfs_set_root_node(&root->root_item, root->node);
3021 root->commit_root = btrfs_root_node(root);
3022 btrfs_set_root_refs(&root->root_item, 1);
3023 return ret;
3024}
3025
3026static int load_important_roots(struct btrfs_fs_info *fs_info)
3027{
3028 struct btrfs_super_block *sb = fs_info->super_copy;
3029 u64 gen, bytenr;
3030 int level, ret;
3031
3032 bytenr = btrfs_super_root(sb);
3033 gen = btrfs_super_generation(sb);
3034 level = btrfs_super_root_level(sb);
3035 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 3036 if (ret) {
bd676446 3037 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
3038 return ret;
3039 }
3040
3041 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3042 return 0;
3043
3044 bytenr = btrfs_super_block_group_root(sb);
3045 gen = btrfs_super_block_group_root_generation(sb);
3046 level = btrfs_super_block_group_root_level(sb);
3047 ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
3048 if (ret)
3049 btrfs_warn(fs_info, "couldn't read block group root");
bd676446
JB
3050 return ret;
3051}
3052
6ef108dd 3053static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 3054{
6ef108dd 3055 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
3056 struct btrfs_super_block *sb = fs_info->super_copy;
3057 struct btrfs_root *tree_root = fs_info->tree_root;
3058 bool handle_error = false;
3059 int ret = 0;
3060 int i;
3061
9c54e80d
JB
3062 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3063 struct btrfs_root *root;
3064
3065 root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
3066 GFP_KERNEL);
3067 if (!root)
3068 return -ENOMEM;
3069 fs_info->block_group_root = root;
3070 }
b8522a1e 3071
b8522a1e 3072 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
3073 if (handle_error) {
3074 if (!IS_ERR(tree_root->node))
3075 free_extent_buffer(tree_root->node);
3076 tree_root->node = NULL;
3077
3078 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3079 break;
3080
3081 free_root_pointers(fs_info, 0);
3082
3083 /*
3084 * Don't use the log in recovery mode, it won't be
3085 * valid
3086 */
3087 btrfs_set_super_log_root(sb, 0);
3088
3089 /* We can't trust the free space cache either */
3090 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3091
3092 ret = read_backup_root(fs_info, i);
6ef108dd 3093 backup_index = ret;
b8522a1e
NB
3094 if (ret < 0)
3095 return ret;
3096 }
b8522a1e 3097
bd676446
JB
3098 ret = load_important_roots(fs_info);
3099 if (ret) {
217f5004 3100 handle_error = true;
b8522a1e
NB
3101 continue;
3102 }
3103
336a0d8d
NB
3104 /*
3105 * No need to hold btrfs_root::objectid_mutex since the fs
3106 * hasn't been fully initialised and we are the only user
3107 */
453e4873 3108 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 3109 if (ret < 0) {
b8522a1e
NB
3110 handle_error = true;
3111 continue;
3112 }
3113
6b8fad57 3114 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
3115
3116 ret = btrfs_read_roots(fs_info);
3117 if (ret < 0) {
3118 handle_error = true;
3119 continue;
3120 }
3121
3122 /* All successful */
bd676446
JB
3123 fs_info->generation = btrfs_header_generation(tree_root->node);
3124 fs_info->last_trans_committed = fs_info->generation;
d96b3424 3125 fs_info->last_reloc_trans = 0;
6ef108dd
NB
3126
3127 /* Always begin writing backup roots after the one being used */
3128 if (backup_index < 0) {
3129 fs_info->backup_root_index = 0;
3130 } else {
3131 fs_info->backup_root_index = backup_index + 1;
3132 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3133 }
b8522a1e
NB
3134 break;
3135 }
3136
3137 return ret;
3138}
3139
8260edba 3140void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 3141{
fc7cbcd4 3142 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 3143 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 3144 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 3145 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 3146 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 3147 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 3148 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 3149 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 3150 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 3151 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 3152 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 3153 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 3154 spin_lock_init(&fs_info->super_lock);
f28491e0 3155 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 3156 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 3157 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 3158 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 3159 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 3160 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 3161 rwlock_init(&fs_info->global_root_lock);
d7c15171 3162 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 3163 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 3164 mutex_init(&fs_info->reloc_mutex);
573bfb72 3165 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 3166 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 3167 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 3168 seqlock_init(&fs_info->profiles_lock);
19c00ddc 3169
0b86a832 3170 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3171 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3172 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3173 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3174 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3175 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3176#ifdef CONFIG_BTRFS_DEBUG
3177 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3178 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3179 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3180#endif
c8bf1b67 3181 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3182 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3183 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3184 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3185 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3186 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3187 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3188 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3189 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3190 BTRFS_BLOCK_RSV_DELREFS);
3191
771ed689 3192 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3193 atomic_set(&fs_info->defrag_running, 0);
034f784d 3194 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3195 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3196 fs_info->global_root_tree = RB_ROOT;
95ac567a 3197 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3198 fs_info->metadata_ratio = 0;
4cb5300b 3199 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3200 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3201 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3202 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3203 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3204 btrfs_init_ref_verify(fs_info);
c8b97818 3205
b34b086c
CM
3206 fs_info->thread_pool_size = min_t(unsigned long,
3207 num_online_cpus() + 2, 8);
0afbaf8c 3208
199c2a9c
MX
3209 INIT_LIST_HEAD(&fs_info->ordered_roots);
3210 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3211
638aa7ed 3212 btrfs_init_scrub(fs_info);
21adbd5c
SB
3213#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3214 fs_info->check_integrity_print_mask = 0;
3215#endif
779a65a4 3216 btrfs_init_balance(fs_info);
57056740 3217 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3218
16b0c258 3219 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3220 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3221
fe119a6e
NB
3222 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3223 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3224
5a3f23d5 3225 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3226 mutex_init(&fs_info->tree_log_mutex);
925baedd 3227 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3228 mutex_init(&fs_info->transaction_kthread_mutex);
3229 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3230 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3231 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3232 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3233 init_rwsem(&fs_info->subvol_sem);
803b2f54 3234 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3235
ad618368 3236 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3237 btrfs_init_qgroup(fs_info);
b0643e59 3238 btrfs_discard_init(fs_info);
416ac51d 3239
fa9c0d79
CM
3240 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3241 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3242
e6dcd2dc 3243 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3244 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3245 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3246 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3247 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3248
da17066c
JM
3249 /* Usable values until the real ones are cached from the superblock */
3250 fs_info->nodesize = 4096;
3251 fs_info->sectorsize = 4096;
ab108d99 3252 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3253 fs_info->stripesize = 4096;
3254
eede2bf3
OS
3255 spin_lock_init(&fs_info->swapfile_pins_lock);
3256 fs_info->swapfile_pins = RB_ROOT;
3257
18bb8bbf
JT
3258 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3259 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3260}
3261
3262static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3263{
3264 int ret;
3265
3266 fs_info->sb = sb;
3267 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3268 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3269
5deb17e1 3270 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3271 if (ret)
c75e8394 3272 return ret;
ae18c37a
JB
3273
3274 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3275 if (ret)
c75e8394 3276 return ret;
ae18c37a
JB
3277
3278 fs_info->dirty_metadata_batch = PAGE_SIZE *
3279 (1 + ilog2(nr_cpu_ids));
3280
3281 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3282 if (ret)
c75e8394 3283 return ret;
ae18c37a
JB
3284
3285 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3286 GFP_KERNEL);
3287 if (ret)
c75e8394 3288 return ret;
ae18c37a
JB
3289
3290 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3291 GFP_KERNEL);
c75e8394
JB
3292 if (!fs_info->delayed_root)
3293 return -ENOMEM;
ae18c37a
JB
3294 btrfs_init_delayed_root(fs_info->delayed_root);
3295
a0a1db70
FM
3296 if (sb_rdonly(sb))
3297 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3298
c75e8394 3299 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3300}
3301
97f4dd09
NB
3302static int btrfs_uuid_rescan_kthread(void *data)
3303{
0d031dc4 3304 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3305 int ret;
3306
3307 /*
3308 * 1st step is to iterate through the existing UUID tree and
3309 * to delete all entries that contain outdated data.
3310 * 2nd step is to add all missing entries to the UUID tree.
3311 */
3312 ret = btrfs_uuid_tree_iterate(fs_info);
3313 if (ret < 0) {
c94bec2c
JB
3314 if (ret != -EINTR)
3315 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3316 ret);
97f4dd09
NB
3317 up(&fs_info->uuid_tree_rescan_sem);
3318 return ret;
3319 }
3320 return btrfs_uuid_scan_kthread(data);
3321}
3322
3323static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3324{
3325 struct task_struct *task;
3326
3327 down(&fs_info->uuid_tree_rescan_sem);
3328 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3329 if (IS_ERR(task)) {
3330 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3331 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3332 up(&fs_info->uuid_tree_rescan_sem);
3333 return PTR_ERR(task);
3334 }
3335
3336 return 0;
3337}
3338
8cd29088
BB
3339/*
3340 * Some options only have meaning at mount time and shouldn't persist across
3341 * remounts, or be displayed. Clear these at the end of mount and remount
3342 * code paths.
3343 */
3344void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3345{
3346 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3347 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3348}
3349
44c0ca21
BB
3350/*
3351 * Mounting logic specific to read-write file systems. Shared by open_ctree
3352 * and btrfs_remount when remounting from read-only to read-write.
3353 */
3354int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3355{
3356 int ret;
94846229 3357 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3358 bool clear_free_space_tree = false;
3359
3360 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3361 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3362 clear_free_space_tree = true;
3363 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3364 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3365 btrfs_warn(fs_info, "free space tree is invalid");
3366 clear_free_space_tree = true;
3367 }
3368
3369 if (clear_free_space_tree) {
3370 btrfs_info(fs_info, "clearing free space tree");
3371 ret = btrfs_clear_free_space_tree(fs_info);
3372 if (ret) {
3373 btrfs_warn(fs_info,
3374 "failed to clear free space tree: %d", ret);
3375 goto out;
3376 }
3377 }
44c0ca21 3378
8d488a8c
FM
3379 /*
3380 * btrfs_find_orphan_roots() is responsible for finding all the dead
3381 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3382 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3383 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3384 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3385 * item before the root's tree is deleted - this means that if we unmount
3386 * or crash before the deletion completes, on the next mount we will not
3387 * delete what remains of the tree because the orphan item does not
3388 * exists anymore, which is what tells us we have a pending deletion.
3389 */
3390 ret = btrfs_find_orphan_roots(fs_info);
3391 if (ret)
3392 goto out;
3393
44c0ca21
BB
3394 ret = btrfs_cleanup_fs_roots(fs_info);
3395 if (ret)
3396 goto out;
3397
8f1c21d7
BB
3398 down_read(&fs_info->cleanup_work_sem);
3399 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3400 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3401 up_read(&fs_info->cleanup_work_sem);
3402 goto out;
3403 }
3404 up_read(&fs_info->cleanup_work_sem);
3405
44c0ca21 3406 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3407 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3408 mutex_unlock(&fs_info->cleaner_mutex);
3409 if (ret < 0) {
3410 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3411 goto out;
3412 }
3413
5011139a
BB
3414 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3415 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3416 btrfs_info(fs_info, "creating free space tree");
3417 ret = btrfs_create_free_space_tree(fs_info);
3418 if (ret) {
3419 btrfs_warn(fs_info,
3420 "failed to create free space tree: %d", ret);
3421 goto out;
3422 }
3423 }
3424
94846229
BB
3425 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3426 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3427 if (ret)
3428 goto out;
3429 }
3430
44c0ca21
BB
3431 ret = btrfs_resume_balance_async(fs_info);
3432 if (ret)
3433 goto out;
3434
3435 ret = btrfs_resume_dev_replace_async(fs_info);
3436 if (ret) {
3437 btrfs_warn(fs_info, "failed to resume dev_replace");
3438 goto out;
3439 }
3440
3441 btrfs_qgroup_rescan_resume(fs_info);
3442
3443 if (!fs_info->uuid_root) {
3444 btrfs_info(fs_info, "creating UUID tree");
3445 ret = btrfs_create_uuid_tree(fs_info);
3446 if (ret) {
3447 btrfs_warn(fs_info,
3448 "failed to create the UUID tree %d", ret);
3449 goto out;
3450 }
3451 }
3452
3453out:
3454 return ret;
3455}
3456
ae18c37a
JB
3457int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3458 char *options)
3459{
3460 u32 sectorsize;
3461 u32 nodesize;
3462 u32 stripesize;
3463 u64 generation;
3464 u64 features;
3465 u16 csum_type;
ae18c37a
JB
3466 struct btrfs_super_block *disk_super;
3467 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3468 struct btrfs_root *tree_root;
3469 struct btrfs_root *chunk_root;
3470 int ret;
3471 int err = -EINVAL;
ae18c37a
JB
3472 int level;
3473
8260edba 3474 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3475 if (ret) {
83c8266a 3476 err = ret;
ae18c37a 3477 goto fail;
53b381b3
DW
3478 }
3479
ae18c37a
JB
3480 /* These need to be init'ed before we start creating inodes and such. */
3481 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3482 GFP_KERNEL);
3483 fs_info->tree_root = tree_root;
3484 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3485 GFP_KERNEL);
3486 fs_info->chunk_root = chunk_root;
3487 if (!tree_root || !chunk_root) {
3488 err = -ENOMEM;
c75e8394 3489 goto fail;
ae18c37a
JB
3490 }
3491
3492 fs_info->btree_inode = new_inode(sb);
3493 if (!fs_info->btree_inode) {
3494 err = -ENOMEM;
c75e8394 3495 goto fail;
ae18c37a
JB
3496 }
3497 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3498 btrfs_init_btree_inode(fs_info);
3499
d24fa5c1 3500 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3501
3502 /*
3503 * Read super block and check the signature bytes only
3504 */
d24fa5c1 3505 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3506 if (IS_ERR(disk_super)) {
3507 err = PTR_ERR(disk_super);
16cdcec7 3508 goto fail_alloc;
20b45077 3509 }
39279cc3 3510
8dc3f22c 3511 /*
260db43c 3512 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3513 * corrupted, we'll find out
3514 */
8f32380d 3515 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3516 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3517 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3518 csum_type);
8dc3f22c 3519 err = -EINVAL;
8f32380d 3520 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3521 goto fail_alloc;
3522 }
3523
83c68bbc
SY
3524 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3525
6d97c6e3
JT
3526 ret = btrfs_init_csum_hash(fs_info, csum_type);
3527 if (ret) {
3528 err = ret;
8f32380d 3529 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3530 goto fail_alloc;
3531 }
3532
1104a885
DS
3533 /*
3534 * We want to check superblock checksum, the type is stored inside.
3535 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3536 */
8f32380d 3537 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3538 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3539 err = -EINVAL;
8f32380d 3540 btrfs_release_disk_super(disk_super);
141386e1 3541 goto fail_alloc;
1104a885
DS
3542 }
3543
3544 /*
3545 * super_copy is zeroed at allocation time and we never touch the
3546 * following bytes up to INFO_SIZE, the checksum is calculated from
3547 * the whole block of INFO_SIZE
3548 */
8f32380d
JT
3549 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3550 btrfs_release_disk_super(disk_super);
5f39d397 3551
fbc6feae
NB
3552 disk_super = fs_info->super_copy;
3553
0b86a832 3554
fbc6feae
NB
3555 features = btrfs_super_flags(disk_super);
3556 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3557 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3558 btrfs_set_super_flags(disk_super, features);
3559 btrfs_info(fs_info,
3560 "found metadata UUID change in progress flag, clearing");
3561 }
3562
3563 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3564 sizeof(*fs_info->super_for_commit));
de37aa51 3565
069ec957 3566 ret = btrfs_validate_mount_super(fs_info);
1104a885 3567 if (ret) {
05135f59 3568 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3569 err = -EINVAL;
141386e1 3570 goto fail_alloc;
1104a885
DS
3571 }
3572
0f7d52f4 3573 if (!btrfs_super_root(disk_super))
141386e1 3574 goto fail_alloc;
0f7d52f4 3575
acce952b 3576 /* check FS state, whether FS is broken. */
87533c47
MX
3577 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3578 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3579
75e7cb7f
LB
3580 /*
3581 * In the long term, we'll store the compression type in the super
3582 * block, and it'll be used for per file compression control.
3583 */
3584 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3585
6f93e834
AJ
3586 /*
3587 * Flag our filesystem as having big metadata blocks if they are bigger
3588 * than the page size.
3589 */
3590 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3591 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3592 btrfs_info(fs_info,
3593 "flagging fs with big metadata feature");
3594 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3595 }
3596
3597 /* Set up fs_info before parsing mount options */
3598 nodesize = btrfs_super_nodesize(disk_super);
3599 sectorsize = btrfs_super_sectorsize(disk_super);
3600 stripesize = sectorsize;
3601 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3602 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3603
3604 fs_info->nodesize = nodesize;
3605 fs_info->sectorsize = sectorsize;
3606 fs_info->sectorsize_bits = ilog2(sectorsize);
3607 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3608 fs_info->stripesize = stripesize;
3609
2ff7e61e 3610 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3611 if (ret) {
3612 err = ret;
141386e1 3613 goto fail_alloc;
2b82032c 3614 }
dfe25020 3615
f2b636e8
JB
3616 features = btrfs_super_incompat_flags(disk_super) &
3617 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3618 if (features) {
05135f59 3619 btrfs_err(fs_info,
d5321a0f 3620 "cannot mount because of unsupported optional features (0x%llx)",
05135f59 3621 features);
f2b636e8 3622 err = -EINVAL;
141386e1 3623 goto fail_alloc;
f2b636e8
JB
3624 }
3625
5d4f98a2 3626 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3627 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3628 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3629 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3630 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3631 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3632
3173a18f 3633 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3634 btrfs_info(fs_info, "has skinny extents");
3173a18f 3635
bc3f116f
CM
3636 /*
3637 * mixed block groups end up with duplicate but slightly offset
3638 * extent buffers for the same range. It leads to corruptions
3639 */
3640 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3641 (sectorsize != nodesize)) {
05135f59
DS
3642 btrfs_err(fs_info,
3643"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3644 nodesize, sectorsize);
141386e1 3645 goto fail_alloc;
bc3f116f
CM
3646 }
3647
ceda0864
MX
3648 /*
3649 * Needn't use the lock because there is no other task which will
3650 * update the flag.
3651 */
a6fa6fae 3652 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3653
f2b636e8
JB
3654 features = btrfs_super_compat_ro_flags(disk_super) &
3655 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3656 if (!sb_rdonly(sb) && features) {
05135f59 3657 btrfs_err(fs_info,
d5321a0f 3658 "cannot mount read-write because of unsupported optional features (0x%llx)",
c1c9ff7c 3659 features);
f2b636e8 3660 err = -EINVAL;
141386e1 3661 goto fail_alloc;
f2b636e8 3662 }
61d92c32 3663
8481dd80
QW
3664 if (sectorsize < PAGE_SIZE) {
3665 struct btrfs_subpage_info *subpage_info;
3666
9f73f1ae
QW
3667 /*
3668 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3669 * going to be deprecated.
3670 *
3671 * Force to use v2 cache for subpage case.
3672 */
3673 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3674 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3675 "forcing free space tree for sector size %u with page size %lu",
3676 sectorsize, PAGE_SIZE);
3677
95ea0486
QW
3678 btrfs_warn(fs_info,
3679 "read-write for sector size %u with page size %lu is experimental",
3680 sectorsize, PAGE_SIZE);
8481dd80
QW
3681 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3682 if (!subpage_info)
3683 goto fail_alloc;
3684 btrfs_init_subpage_info(subpage_info, sectorsize);
3685 fs_info->subpage_info = subpage_info;
c8050b3b 3686 }
0bb3eb3e 3687
d21deec5 3688 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3689 if (ret) {
3690 err = ret;
0dc3b84a
JB
3691 goto fail_sb_buffer;
3692 }
4543df7e 3693
9e11ceee
JK
3694 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3695 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3696
a061fc8d
CM
3697 sb->s_blocksize = sectorsize;
3698 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3699 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3700
925baedd 3701 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3702 ret = btrfs_read_sys_array(fs_info);
925baedd 3703 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3704 if (ret) {
05135f59 3705 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3706 goto fail_sb_buffer;
84eed90f 3707 }
0b86a832 3708
84234f3a 3709 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3710 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3711 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3712 generation, level);
3713 if (ret) {
05135f59 3714 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3715 goto fail_tree_roots;
83121942 3716 }
0b86a832 3717
e17cade2 3718 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3719 offsetof(struct btrfs_header, chunk_tree_uuid),
3720 BTRFS_UUID_SIZE);
e17cade2 3721
5b4aacef 3722 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3723 if (ret) {
05135f59 3724 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3725 goto fail_tree_roots;
2b82032c 3726 }
0b86a832 3727
8dabb742 3728 /*
bacce86a
AJ
3729 * At this point we know all the devices that make this filesystem,
3730 * including the seed devices but we don't know yet if the replace
3731 * target is required. So free devices that are not part of this
1a9fd417 3732 * filesystem but skip the replace target device which is checked
bacce86a 3733 * below in btrfs_init_dev_replace().
8dabb742 3734 */
bacce86a 3735 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3736 if (!fs_devices->latest_dev->bdev) {
05135f59 3737 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3738 goto fail_tree_roots;
3739 }
3740
b8522a1e 3741 ret = init_tree_roots(fs_info);
4bbcaa64 3742 if (ret)
b8522a1e 3743 goto fail_tree_roots;
8929ecfa 3744
73651042
NA
3745 /*
3746 * Get zone type information of zoned block devices. This will also
3747 * handle emulation of a zoned filesystem if a regular device has the
3748 * zoned incompat feature flag set.
3749 */
3750 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3751 if (ret) {
3752 btrfs_err(fs_info,
3753 "zoned: failed to read device zone info: %d",
3754 ret);
3755 goto fail_block_groups;
3756 }
3757
75ec1db8
JB
3758 /*
3759 * If we have a uuid root and we're not being told to rescan we need to
3760 * check the generation here so we can set the
3761 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3762 * transaction during a balance or the log replay without updating the
3763 * uuid generation, and then if we crash we would rescan the uuid tree,
3764 * even though it was perfectly fine.
3765 */
3766 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3767 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3768 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3769
cf90d884
QW
3770 ret = btrfs_verify_dev_extents(fs_info);
3771 if (ret) {
3772 btrfs_err(fs_info,
3773 "failed to verify dev extents against chunks: %d",
3774 ret);
3775 goto fail_block_groups;
3776 }
68310a5e
ID
3777 ret = btrfs_recover_balance(fs_info);
3778 if (ret) {
05135f59 3779 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3780 goto fail_block_groups;
3781 }
3782
733f4fbb
SB
3783 ret = btrfs_init_dev_stats(fs_info);
3784 if (ret) {
05135f59 3785 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3786 goto fail_block_groups;
3787 }
3788
8dabb742
SB
3789 ret = btrfs_init_dev_replace(fs_info);
3790 if (ret) {
05135f59 3791 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3792 goto fail_block_groups;
3793 }
3794
b70f5097
NA
3795 ret = btrfs_check_zoned_mode(fs_info);
3796 if (ret) {
3797 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3798 ret);
3799 goto fail_block_groups;
3800 }
3801
c6761a9e 3802 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3803 if (ret) {
05135f59
DS
3804 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3805 ret);
b7c35e81
AJ
3806 goto fail_block_groups;
3807 }
3808
96f3136e 3809 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3810 if (ret) {
05135f59 3811 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3812 goto fail_fsdev_sysfs;
c59021f8 3813 }
3814
c59021f8 3815 ret = btrfs_init_space_info(fs_info);
3816 if (ret) {
05135f59 3817 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3818 goto fail_sysfs;
c59021f8 3819 }
3820
5b4aacef 3821 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3822 if (ret) {
05135f59 3823 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3824 goto fail_sysfs;
1b1d1f66 3825 }
4330e183 3826
16beac87
NA
3827 btrfs_free_zone_cache(fs_info);
3828
5c78a5e7
AJ
3829 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3830 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3831 btrfs_warn(fs_info,
52042d8e 3832 "writable mount is not allowed due to too many missing devices");
2365dd3c 3833 goto fail_sysfs;
292fd7fc 3834 }
9078a3e1 3835
33c44184 3836 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3837 "btrfs-cleaner");
57506d50 3838 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3839 goto fail_sysfs;
a74a4b97
CM
3840
3841 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3842 tree_root,
3843 "btrfs-transaction");
57506d50 3844 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3845 goto fail_cleaner;
a74a4b97 3846
583b7231 3847 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3848 !fs_info->fs_devices->rotating) {
583b7231 3849 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3850 }
3851
572d9ab7 3852 /*
01327610 3853 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3854 * not have to wait for transaction commit
3855 */
3856 btrfs_apply_pending_changes(fs_info);
3818aea2 3857
21adbd5c 3858#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3859 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3860 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3861 btrfs_test_opt(fs_info,
cbeaae4f 3862 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3863 fs_info->check_integrity_print_mask);
3864 if (ret)
05135f59
DS
3865 btrfs_warn(fs_info,
3866 "failed to initialize integrity check module: %d",
3867 ret);
21adbd5c
SB
3868 }
3869#endif
bcef60f2
AJ
3870 ret = btrfs_read_qgroup_config(fs_info);
3871 if (ret)
3872 goto fail_trans_kthread;
21adbd5c 3873
fd708b81
JB
3874 if (btrfs_build_ref_tree(fs_info))
3875 btrfs_err(fs_info, "couldn't build ref tree");
3876
96da0919
QW
3877 /* do not make disk changes in broken FS or nologreplay is given */
3878 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3879 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3880 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3881 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3882 if (ret) {
63443bf5 3883 err = ret;
28c16cbb 3884 goto fail_qgroup;
79787eaa 3885 }
e02119d5 3886 }
1a40e23b 3887
56e9357a 3888 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3889 if (IS_ERR(fs_info->fs_root)) {
3890 err = PTR_ERR(fs_info->fs_root);
f50f4353 3891 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3892 fs_info->fs_root = NULL;
bcef60f2 3893 goto fail_qgroup;
3140c9a3 3894 }
c289811c 3895
bc98a42c 3896 if (sb_rdonly(sb))
8cd29088 3897 goto clear_oneshot;
59641015 3898
44c0ca21 3899 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3900 if (ret) {
6bccf3ab 3901 close_ctree(fs_info);
2b6ba629 3902 return ret;
e3acc2a6 3903 }
b0643e59 3904 btrfs_discard_resume(fs_info);
b382a324 3905
44c0ca21
BB
3906 if (fs_info->uuid_root &&
3907 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3908 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3909 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3910 ret = btrfs_check_uuid_tree(fs_info);
3911 if (ret) {
05135f59
DS
3912 btrfs_warn(fs_info,
3913 "failed to check the UUID tree: %d", ret);
6bccf3ab 3914 close_ctree(fs_info);
70f80175
SB
3915 return ret;
3916 }
f7a81ea4 3917 }
94846229 3918
afcdd129 3919 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3920
b4be6aef
JB
3921 /* Kick the cleaner thread so it'll start deleting snapshots. */
3922 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3923 wake_up_process(fs_info->cleaner_kthread);
3924
8cd29088
BB
3925clear_oneshot:
3926 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3927 return 0;
39279cc3 3928
bcef60f2
AJ
3929fail_qgroup:
3930 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3931fail_trans_kthread:
3932 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3933 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3934 btrfs_free_fs_roots(fs_info);
3f157a2f 3935fail_cleaner:
a74a4b97 3936 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3937
3938 /*
3939 * make sure we're done with the btree inode before we stop our
3940 * kthreads
3941 */
3942 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3943
2365dd3c 3944fail_sysfs:
6618a59b 3945 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3946
b7c35e81
AJ
3947fail_fsdev_sysfs:
3948 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3949
1b1d1f66 3950fail_block_groups:
54067ae9 3951 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3952
3953fail_tree_roots:
9e3aa805
JB
3954 if (fs_info->data_reloc_root)
3955 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3956 free_root_pointers(fs_info, true);
2b8195bb 3957 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3958
39279cc3 3959fail_sb_buffer:
7abadb64 3960 btrfs_stop_all_workers(fs_info);
5cdd7db6 3961 btrfs_free_block_groups(fs_info);
16cdcec7 3962fail_alloc:
586e46e2
ID
3963 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3964
4543df7e 3965 iput(fs_info->btree_inode);
7e662854 3966fail:
586e46e2 3967 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3968 return err;
eb60ceac 3969}
663faf9f 3970ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3971
314b6dd0 3972static void btrfs_end_super_write(struct bio *bio)
f2984462 3973{
314b6dd0
JT
3974 struct btrfs_device *device = bio->bi_private;
3975 struct bio_vec *bvec;
3976 struct bvec_iter_all iter_all;
3977 struct page *page;
3978
3979 bio_for_each_segment_all(bvec, bio, iter_all) {
3980 page = bvec->bv_page;
3981
3982 if (bio->bi_status) {
3983 btrfs_warn_rl_in_rcu(device->fs_info,
3984 "lost page write due to IO error on %s (%d)",
3985 rcu_str_deref(device->name),
3986 blk_status_to_errno(bio->bi_status));
3987 ClearPageUptodate(page);
3988 SetPageError(page);
3989 btrfs_dev_stat_inc_and_print(device,
3990 BTRFS_DEV_STAT_WRITE_ERRS);
3991 } else {
3992 SetPageUptodate(page);
3993 }
3994
3995 put_page(page);
3996 unlock_page(page);
f2984462 3997 }
314b6dd0
JT
3998
3999 bio_put(bio);
f2984462
CM
4000}
4001
8f32380d
JT
4002struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
4003 int copy_num)
29c36d72 4004{
29c36d72 4005 struct btrfs_super_block *super;
8f32380d 4006 struct page *page;
12659251 4007 u64 bytenr, bytenr_orig;
8f32380d 4008 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
4009 int ret;
4010
4011 bytenr_orig = btrfs_sb_offset(copy_num);
4012 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
4013 if (ret == -ENOENT)
4014 return ERR_PTR(-EINVAL);
4015 else if (ret)
4016 return ERR_PTR(ret);
29c36d72 4017
cda00eba 4018 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 4019 return ERR_PTR(-EINVAL);
29c36d72 4020
8f32380d
JT
4021 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
4022 if (IS_ERR(page))
4023 return ERR_CAST(page);
29c36d72 4024
8f32380d 4025 super = page_address(page);
96c2e067
AJ
4026 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4027 btrfs_release_disk_super(super);
4028 return ERR_PTR(-ENODATA);
4029 }
4030
12659251 4031 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
4032 btrfs_release_disk_super(super);
4033 return ERR_PTR(-EINVAL);
29c36d72
AJ
4034 }
4035
8f32380d 4036 return super;
29c36d72
AJ
4037}
4038
4039
8f32380d 4040struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 4041{
8f32380d 4042 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
4043 int i;
4044 u64 transid = 0;
a512bbf8
YZ
4045
4046 /* we would like to check all the supers, but that would make
4047 * a btrfs mount succeed after a mkfs from a different FS.
4048 * So, we need to add a special mount option to scan for
4049 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4050 */
4051 for (i = 0; i < 1; i++) {
8f32380d
JT
4052 super = btrfs_read_dev_one_super(bdev, i);
4053 if (IS_ERR(super))
a512bbf8
YZ
4054 continue;
4055
a512bbf8 4056 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
4057 if (latest)
4058 btrfs_release_disk_super(super);
4059
4060 latest = super;
a512bbf8 4061 transid = btrfs_super_generation(super);
a512bbf8
YZ
4062 }
4063 }
92fc03fb 4064
8f32380d 4065 return super;
a512bbf8
YZ
4066}
4067
4eedeb75 4068/*
abbb3b8e 4069 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 4070 * pages we use for writing are locked.
4eedeb75 4071 *
abbb3b8e
DS
4072 * Write @max_mirrors copies of the superblock, where 0 means default that fit
4073 * the expected device size at commit time. Note that max_mirrors must be
4074 * same for write and wait phases.
4eedeb75 4075 *
314b6dd0 4076 * Return number of errors when page is not found or submission fails.
4eedeb75 4077 */
a512bbf8 4078static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 4079 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 4080{
d5178578 4081 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 4082 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 4083 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 4084 int i;
a512bbf8 4085 int errors = 0;
12659251
NA
4086 int ret;
4087 u64 bytenr, bytenr_orig;
a512bbf8
YZ
4088
4089 if (max_mirrors == 0)
4090 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4091
d5178578
JT
4092 shash->tfm = fs_info->csum_shash;
4093
a512bbf8 4094 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4095 struct page *page;
4096 struct bio *bio;
4097 struct btrfs_super_block *disk_super;
4098
12659251
NA
4099 bytenr_orig = btrfs_sb_offset(i);
4100 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4101 if (ret == -ENOENT) {
4102 continue;
4103 } else if (ret < 0) {
4104 btrfs_err(device->fs_info,
4105 "couldn't get super block location for mirror %d",
4106 i);
4107 errors++;
4108 continue;
4109 }
935e5cc9
MX
4110 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4111 device->commit_total_bytes)
a512bbf8
YZ
4112 break;
4113
12659251 4114 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 4115
fd08001f
EB
4116 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4117 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4118 sb->csum);
4eedeb75 4119
314b6dd0
JT
4120 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4121 GFP_NOFS);
4122 if (!page) {
abbb3b8e 4123 btrfs_err(device->fs_info,
314b6dd0 4124 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
4125 bytenr);
4126 errors++;
4eedeb75 4127 continue;
abbb3b8e 4128 }
634554dc 4129
314b6dd0
JT
4130 /* Bump the refcount for wait_dev_supers() */
4131 get_page(page);
a512bbf8 4132
314b6dd0
JT
4133 disk_super = page_address(page);
4134 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 4135
314b6dd0
JT
4136 /*
4137 * Directly use bios here instead of relying on the page cache
4138 * to do I/O, so we don't lose the ability to do integrity
4139 * checking.
4140 */
07888c66
CH
4141 bio = bio_alloc(device->bdev, 1,
4142 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4143 GFP_NOFS);
314b6dd0
JT
4144 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4145 bio->bi_private = device;
4146 bio->bi_end_io = btrfs_end_super_write;
4147 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4148 offset_in_page(bytenr));
a512bbf8 4149
387125fc 4150 /*
314b6dd0
JT
4151 * We FUA only the first super block. The others we allow to
4152 * go down lazy and there's a short window where the on-disk
4153 * copies might still contain the older version.
387125fc 4154 */
1b9e619c 4155 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4156 bio->bi_opf |= REQ_FUA;
4157
58ff51f1
CH
4158 btrfsic_check_bio(bio);
4159 submit_bio(bio);
8376d9e1
NA
4160
4161 if (btrfs_advance_sb_log(device, i))
4162 errors++;
a512bbf8
YZ
4163 }
4164 return errors < i ? 0 : -1;
4165}
4166
abbb3b8e
DS
4167/*
4168 * Wait for write completion of superblocks done by write_dev_supers,
4169 * @max_mirrors same for write and wait phases.
4170 *
314b6dd0 4171 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4172 * date.
4173 */
4174static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4175{
abbb3b8e
DS
4176 int i;
4177 int errors = 0;
b6a535fa 4178 bool primary_failed = false;
12659251 4179 int ret;
abbb3b8e
DS
4180 u64 bytenr;
4181
4182 if (max_mirrors == 0)
4183 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4184
4185 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4186 struct page *page;
4187
12659251
NA
4188 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4189 if (ret == -ENOENT) {
4190 break;
4191 } else if (ret < 0) {
4192 errors++;
4193 if (i == 0)
4194 primary_failed = true;
4195 continue;
4196 }
abbb3b8e
DS
4197 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4198 device->commit_total_bytes)
4199 break;
4200
314b6dd0
JT
4201 page = find_get_page(device->bdev->bd_inode->i_mapping,
4202 bytenr >> PAGE_SHIFT);
4203 if (!page) {
abbb3b8e 4204 errors++;
b6a535fa
HM
4205 if (i == 0)
4206 primary_failed = true;
abbb3b8e
DS
4207 continue;
4208 }
314b6dd0
JT
4209 /* Page is submitted locked and unlocked once the IO completes */
4210 wait_on_page_locked(page);
4211 if (PageError(page)) {
abbb3b8e 4212 errors++;
b6a535fa
HM
4213 if (i == 0)
4214 primary_failed = true;
4215 }
abbb3b8e 4216
314b6dd0
JT
4217 /* Drop our reference */
4218 put_page(page);
abbb3b8e 4219
314b6dd0
JT
4220 /* Drop the reference from the writing run */
4221 put_page(page);
abbb3b8e
DS
4222 }
4223
b6a535fa
HM
4224 /* log error, force error return */
4225 if (primary_failed) {
4226 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4227 device->devid);
4228 return -1;
4229 }
4230
abbb3b8e
DS
4231 return errors < i ? 0 : -1;
4232}
4233
387125fc
CM
4234/*
4235 * endio for the write_dev_flush, this will wake anyone waiting
4236 * for the barrier when it is done
4237 */
4246a0b6 4238static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4239{
f9e69aa9 4240 bio_uninit(bio);
e0ae9994 4241 complete(bio->bi_private);
387125fc
CM
4242}
4243
4244/*
4fc6441a
AJ
4245 * Submit a flush request to the device if it supports it. Error handling is
4246 * done in the waiting counterpart.
387125fc 4247 */
4fc6441a 4248static void write_dev_flush(struct btrfs_device *device)
387125fc 4249{
f9e69aa9 4250 struct bio *bio = &device->flush_bio;
387125fc 4251
a91cf0ff
WY
4252#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4253 /*
4254 * When a disk has write caching disabled, we skip submission of a bio
4255 * with flush and sync requests before writing the superblock, since
4256 * it's not needed. However when the integrity checker is enabled, this
4257 * results in reports that there are metadata blocks referred by a
4258 * superblock that were not properly flushed. So don't skip the bio
4259 * submission only when the integrity checker is enabled for the sake
4260 * of simplicity, since this is a debug tool and not meant for use in
4261 * non-debug builds.
4262 */
08e688fd 4263 if (!bdev_write_cache(device->bdev))
4fc6441a 4264 return;
a91cf0ff 4265#endif
387125fc 4266
f9e69aa9
CH
4267 bio_init(bio, device->bdev, NULL, 0,
4268 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4269 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4270 init_completion(&device->flush_wait);
4271 bio->bi_private = &device->flush_wait;
387125fc 4272
58ff51f1
CH
4273 btrfsic_check_bio(bio);
4274 submit_bio(bio);
1c3063b6 4275 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4276}
387125fc 4277
4fc6441a
AJ
4278/*
4279 * If the flush bio has been submitted by write_dev_flush, wait for it.
4280 */
8c27cb35 4281static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4282{
f9e69aa9 4283 struct bio *bio = &device->flush_bio;
387125fc 4284
1c3063b6 4285 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4286 return BLK_STS_OK;
387125fc 4287
1c3063b6 4288 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4289 wait_for_completion_io(&device->flush_wait);
387125fc 4290
8c27cb35 4291 return bio->bi_status;
387125fc 4292}
387125fc 4293
d10b82fe 4294static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4295{
6528b99d 4296 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4297 return -EIO;
387125fc
CM
4298 return 0;
4299}
4300
4301/*
4302 * send an empty flush down to each device in parallel,
4303 * then wait for them
4304 */
4305static int barrier_all_devices(struct btrfs_fs_info *info)
4306{
4307 struct list_head *head;
4308 struct btrfs_device *dev;
5af3e8cc 4309 int errors_wait = 0;
4e4cbee9 4310 blk_status_t ret;
387125fc 4311
1538e6c5 4312 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4313 /* send down all the barriers */
4314 head = &info->fs_devices->devices;
1538e6c5 4315 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4316 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4317 continue;
cea7c8bf 4318 if (!dev->bdev)
387125fc 4319 continue;
e12c9621 4320 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4321 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4322 continue;
4323
4fc6441a 4324 write_dev_flush(dev);
58efbc9f 4325 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4326 }
4327
4328 /* wait for all the barriers */
1538e6c5 4329 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4330 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4331 continue;
387125fc 4332 if (!dev->bdev) {
5af3e8cc 4333 errors_wait++;
387125fc
CM
4334 continue;
4335 }
e12c9621 4336 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4337 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4338 continue;
4339
4fc6441a 4340 ret = wait_dev_flush(dev);
401b41e5
AJ
4341 if (ret) {
4342 dev->last_flush_error = ret;
66b4993e
DS
4343 btrfs_dev_stat_inc_and_print(dev,
4344 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4345 errors_wait++;
401b41e5
AJ
4346 }
4347 }
4348
cea7c8bf 4349 if (errors_wait) {
401b41e5
AJ
4350 /*
4351 * At some point we need the status of all disks
4352 * to arrive at the volume status. So error checking
4353 * is being pushed to a separate loop.
4354 */
d10b82fe 4355 return check_barrier_error(info);
387125fc 4356 }
387125fc
CM
4357 return 0;
4358}
4359
943c6e99
ZL
4360int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4361{
8789f4fe
ZL
4362 int raid_type;
4363 int min_tolerated = INT_MAX;
943c6e99 4364
8789f4fe
ZL
4365 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4366 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4367 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4368 btrfs_raid_array[BTRFS_RAID_SINGLE].
4369 tolerated_failures);
943c6e99 4370
8789f4fe
ZL
4371 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4372 if (raid_type == BTRFS_RAID_SINGLE)
4373 continue;
41a6e891 4374 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4375 continue;
8c3e3582 4376 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4377 btrfs_raid_array[raid_type].
4378 tolerated_failures);
4379 }
943c6e99 4380
8789f4fe 4381 if (min_tolerated == INT_MAX) {
ab8d0fc4 4382 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4383 min_tolerated = 0;
4384 }
4385
4386 return min_tolerated;
943c6e99
ZL
4387}
4388
eece6a9c 4389int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4390{
e5e9a520 4391 struct list_head *head;
f2984462 4392 struct btrfs_device *dev;
a061fc8d 4393 struct btrfs_super_block *sb;
f2984462 4394 struct btrfs_dev_item *dev_item;
f2984462
CM
4395 int ret;
4396 int do_barriers;
a236aed1
CM
4397 int max_errors;
4398 int total_errors = 0;
a061fc8d 4399 u64 flags;
f2984462 4400
0b246afa 4401 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4402
4403 /*
4404 * max_mirrors == 0 indicates we're from commit_transaction,
4405 * not from fsync where the tree roots in fs_info have not
4406 * been consistent on disk.
4407 */
4408 if (max_mirrors == 0)
4409 backup_super_roots(fs_info);
f2984462 4410
0b246afa 4411 sb = fs_info->super_for_commit;
a061fc8d 4412 dev_item = &sb->dev_item;
e5e9a520 4413
0b246afa
JM
4414 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4415 head = &fs_info->fs_devices->devices;
4416 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4417
5af3e8cc 4418 if (do_barriers) {
0b246afa 4419 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4420 if (ret) {
4421 mutex_unlock(
0b246afa
JM
4422 &fs_info->fs_devices->device_list_mutex);
4423 btrfs_handle_fs_error(fs_info, ret,
4424 "errors while submitting device barriers.");
5af3e8cc
SB
4425 return ret;
4426 }
4427 }
387125fc 4428
1538e6c5 4429 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4430 if (!dev->bdev) {
4431 total_errors++;
4432 continue;
4433 }
e12c9621 4434 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4435 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4436 continue;
4437
2b82032c 4438 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4439 btrfs_set_stack_device_type(dev_item, dev->type);
4440 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4441 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4442 dev->commit_total_bytes);
ce7213c7
MX
4443 btrfs_set_stack_device_bytes_used(dev_item,
4444 dev->commit_bytes_used);
a061fc8d
CM
4445 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4446 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4447 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4448 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4449 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4450 BTRFS_FSID_SIZE);
a512bbf8 4451
a061fc8d
CM
4452 flags = btrfs_super_flags(sb);
4453 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4454
75cb857d
QW
4455 ret = btrfs_validate_write_super(fs_info, sb);
4456 if (ret < 0) {
4457 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4458 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4459 "unexpected superblock corruption detected");
4460 return -EUCLEAN;
4461 }
4462
abbb3b8e 4463 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4464 if (ret)
4465 total_errors++;
f2984462 4466 }
a236aed1 4467 if (total_errors > max_errors) {
0b246afa
JM
4468 btrfs_err(fs_info, "%d errors while writing supers",
4469 total_errors);
4470 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4471
9d565ba4 4472 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4473 btrfs_handle_fs_error(fs_info, -EIO,
4474 "%d errors while writing supers",
4475 total_errors);
9d565ba4 4476 return -EIO;
a236aed1 4477 }
f2984462 4478
a512bbf8 4479 total_errors = 0;
1538e6c5 4480 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4481 if (!dev->bdev)
4482 continue;
e12c9621 4483 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4484 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4485 continue;
4486
abbb3b8e 4487 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4488 if (ret)
4489 total_errors++;
f2984462 4490 }
0b246afa 4491 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4492 if (total_errors > max_errors) {
0b246afa
JM
4493 btrfs_handle_fs_error(fs_info, -EIO,
4494 "%d errors while writing supers",
4495 total_errors);
79787eaa 4496 return -EIO;
a236aed1 4497 }
f2984462
CM
4498 return 0;
4499}
4500
cb517eab
MX
4501/* Drop a fs root from the radix tree and free it. */
4502void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4503 struct btrfs_root *root)
2619ba1f 4504{
4785e24f
JB
4505 bool drop_ref = false;
4506
fc7cbcd4
DS
4507 spin_lock(&fs_info->fs_roots_radix_lock);
4508 radix_tree_delete(&fs_info->fs_roots_radix,
4509 (unsigned long)root->root_key.objectid);
4510 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4511 drop_ref = true;
fc7cbcd4 4512 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4513
84961539 4514 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4515 ASSERT(root->log_root == NULL);
1c1ea4f7 4516 if (root->reloc_root) {
00246528 4517 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4518 root->reloc_root = NULL;
4519 }
4520 }
3321719e 4521
4785e24f
JB
4522 if (drop_ref)
4523 btrfs_put_root(root);
2619ba1f
CM
4524}
4525
c146afad 4526int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4527{
fc7cbcd4
DS
4528 u64 root_objectid = 0;
4529 struct btrfs_root *gang[8];
4530 int i = 0;
65d33fd7 4531 int err = 0;
fc7cbcd4 4532 unsigned int ret = 0;
e089f05c 4533
c146afad 4534 while (1) {
fc7cbcd4
DS
4535 spin_lock(&fs_info->fs_roots_radix_lock);
4536 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4537 (void **)gang, root_objectid,
4538 ARRAY_SIZE(gang));
4539 if (!ret) {
4540 spin_unlock(&fs_info->fs_roots_radix_lock);
4541 break;
65d33fd7 4542 }
fc7cbcd4 4543 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4544
fc7cbcd4
DS
4545 for (i = 0; i < ret; i++) {
4546 /* Avoid to grab roots in dead_roots */
4547 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4548 gang[i] = NULL;
4549 continue;
4550 }
4551 /* grab all the search result for later use */
4552 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4553 }
fc7cbcd4 4554 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4555
fc7cbcd4
DS
4556 for (i = 0; i < ret; i++) {
4557 if (!gang[i])
65d33fd7 4558 continue;
fc7cbcd4
DS
4559 root_objectid = gang[i]->root_key.objectid;
4560 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4561 if (err)
fc7cbcd4
DS
4562 break;
4563 btrfs_put_root(gang[i]);
c146afad 4564 }
fc7cbcd4 4565 root_objectid++;
c146afad 4566 }
65d33fd7 4567
fc7cbcd4
DS
4568 /* release the uncleaned roots due to error */
4569 for (; i < ret; i++) {
4570 if (gang[i])
4571 btrfs_put_root(gang[i]);
65d33fd7
QW
4572 }
4573 return err;
c146afad 4574}
a2135011 4575
6bccf3ab 4576int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4577{
6bccf3ab 4578 struct btrfs_root *root = fs_info->tree_root;
c146afad 4579 struct btrfs_trans_handle *trans;
a74a4b97 4580
0b246afa 4581 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4582 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4583 mutex_unlock(&fs_info->cleaner_mutex);
4584 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4585
4586 /* wait until ongoing cleanup work done */
0b246afa
JM
4587 down_write(&fs_info->cleanup_work_sem);
4588 up_write(&fs_info->cleanup_work_sem);
c71bf099 4589
7a7eaa40 4590 trans = btrfs_join_transaction(root);
3612b495
TI
4591 if (IS_ERR(trans))
4592 return PTR_ERR(trans);
3a45bb20 4593 return btrfs_commit_transaction(trans);
c146afad
YZ
4594}
4595
36c86a9e
QW
4596static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4597{
4598 struct btrfs_transaction *trans;
4599 struct btrfs_transaction *tmp;
4600 bool found = false;
4601
4602 if (list_empty(&fs_info->trans_list))
4603 return;
4604
4605 /*
4606 * This function is only called at the very end of close_ctree(),
4607 * thus no other running transaction, no need to take trans_lock.
4608 */
4609 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4610 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4611 struct extent_state *cached = NULL;
4612 u64 dirty_bytes = 0;
4613 u64 cur = 0;
4614 u64 found_start;
4615 u64 found_end;
4616
4617 found = true;
4618 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4619 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4620 dirty_bytes += found_end + 1 - found_start;
4621 cur = found_end + 1;
4622 }
4623 btrfs_warn(fs_info,
4624 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4625 trans->transid, dirty_bytes);
4626 btrfs_cleanup_one_transaction(trans, fs_info);
4627
4628 if (trans == fs_info->running_transaction)
4629 fs_info->running_transaction = NULL;
4630 list_del_init(&trans->list);
4631
4632 btrfs_put_transaction(trans);
4633 trace_btrfs_transaction_commit(fs_info);
4634 }
4635 ASSERT(!found);
4636}
4637
b105e927 4638void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4639{
c146afad
YZ
4640 int ret;
4641
afcdd129 4642 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52
FM
4643
4644 /*
4645 * We may have the reclaim task running and relocating a data block group,
4646 * in which case it may create delayed iputs. So stop it before we park
4647 * the cleaner kthread otherwise we can get new delayed iputs after
4648 * parking the cleaner, and that can make the async reclaim task to hang
4649 * if it's waiting for delayed iputs to complete, since the cleaner is
4650 * parked and can not run delayed iputs - this will make us hang when
4651 * trying to stop the async reclaim task.
4652 */
4653 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4654 /*
4655 * We don't want the cleaner to start new transactions, add more delayed
4656 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4657 * because that frees the task_struct, and the transaction kthread might
4658 * still try to wake up the cleaner.
4659 */
4660 kthread_park(fs_info->cleaner_kthread);
c146afad 4661
b4be6aef
JB
4662 /*
4663 * If we had UNFINISHED_DROPS we could still be processing them, so
4664 * clear that bit and wake up relocation so it can stop.
4665 */
4666 btrfs_wake_unfinished_drop(fs_info);
4667
7343dd61 4668 /* wait for the qgroup rescan worker to stop */
d06f23d6 4669 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4670
803b2f54
SB
4671 /* wait for the uuid_scan task to finish */
4672 down(&fs_info->uuid_tree_rescan_sem);
4673 /* avoid complains from lockdep et al., set sem back to initial state */
4674 up(&fs_info->uuid_tree_rescan_sem);
4675
837d5b6e 4676 /* pause restriper - we want to resume on mount */
aa1b8cd4 4677 btrfs_pause_balance(fs_info);
837d5b6e 4678
8dabb742
SB
4679 btrfs_dev_replace_suspend_for_unmount(fs_info);
4680
aa1b8cd4 4681 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4682
4683 /* wait for any defraggers to finish */
4684 wait_event(fs_info->transaction_wait,
4685 (atomic_read(&fs_info->defrag_running) == 0));
4686
4687 /* clear out the rbtree of defraggable inodes */
26176e7c 4688 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4689
21c7e756 4690 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4691 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4692 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4693
b0643e59
DZ
4694 /* Cancel or finish ongoing discard work */
4695 btrfs_discard_cleanup(fs_info);
4696
bc98a42c 4697 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4698 /*
d6fd0ae2
OS
4699 * The cleaner kthread is stopped, so do one final pass over
4700 * unused block groups.
e44163e1 4701 */
0b246afa 4702 btrfs_delete_unused_bgs(fs_info);
e44163e1 4703
f0cc2cd7
FM
4704 /*
4705 * There might be existing delayed inode workers still running
4706 * and holding an empty delayed inode item. We must wait for
4707 * them to complete first because they can create a transaction.
4708 * This happens when someone calls btrfs_balance_delayed_items()
4709 * and then a transaction commit runs the same delayed nodes
4710 * before any delayed worker has done something with the nodes.
4711 * We must wait for any worker here and not at transaction
4712 * commit time since that could cause a deadlock.
4713 * This is a very rare case.
4714 */
4715 btrfs_flush_workqueue(fs_info->delayed_workers);
4716
6bccf3ab 4717 ret = btrfs_commit_super(fs_info);
acce952b 4718 if (ret)
04892340 4719 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4720 }
4721
84961539 4722 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4723 btrfs_error_commit_super(fs_info);
0f7d52f4 4724
e3029d9f
AV
4725 kthread_stop(fs_info->transaction_kthread);
4726 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4727
e187831e 4728 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4729 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4730
5958253c
QW
4731 if (btrfs_check_quota_leak(fs_info)) {
4732 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4733 btrfs_err(fs_info, "qgroup reserved space leaked");
4734 }
4735
04892340 4736 btrfs_free_qgroup_config(fs_info);
fe816d0f 4737 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4738
963d678b 4739 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4740 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4741 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4742 }
bcc63abb 4743
5deb17e1 4744 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4745 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4746 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4747
6618a59b 4748 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4749 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4750
1a4319cc
LB
4751 btrfs_put_block_group_cache(fs_info);
4752
de348ee0
WS
4753 /*
4754 * we must make sure there is not any read request to
4755 * submit after we stopping all workers.
4756 */
4757 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4758 btrfs_stop_all_workers(fs_info);
4759
0a31daa4 4760 /* We shouldn't have any transaction open at this point */
36c86a9e 4761 warn_about_uncommitted_trans(fs_info);
0a31daa4 4762
afcdd129 4763 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4764 free_root_pointers(fs_info, true);
8c38938c 4765 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4766
4e19443d
JB
4767 /*
4768 * We must free the block groups after dropping the fs_roots as we could
4769 * have had an IO error and have left over tree log blocks that aren't
4770 * cleaned up until the fs roots are freed. This makes the block group
4771 * accounting appear to be wrong because there's pending reserved bytes,
4772 * so make sure we do the block group cleanup afterwards.
4773 */
4774 btrfs_free_block_groups(fs_info);
4775
13e6c37b 4776 iput(fs_info->btree_inode);
d6bfde87 4777
21adbd5c 4778#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4779 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4780 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4781#endif
4782
0b86a832 4783 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4784 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4785}
4786
b9fab919
CM
4787int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4788 int atomic)
5f39d397 4789{
1259ab75 4790 int ret;
727011e0 4791 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4792
0b32f4bb 4793 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4794 if (!ret)
4795 return ret;
4796
4797 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4798 parent_transid, atomic);
4799 if (ret == -EAGAIN)
4800 return ret;
1259ab75 4801 return !ret;
5f39d397
CM
4802}
4803
5f39d397
CM
4804void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4805{
2f4d60df 4806 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4807 u64 transid = btrfs_header_generation(buf);
b9473439 4808 int was_dirty;
b4ce94de 4809
06ea65a3
JB
4810#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4811 /*
4812 * This is a fast path so only do this check if we have sanity tests
52042d8e 4813 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4814 * outside of the sanity tests.
4815 */
b0132a3b 4816 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4817 return;
4818#endif
49d0c642 4819 btrfs_assert_tree_write_locked(buf);
0b246afa 4820 if (transid != fs_info->generation)
5d163e0e 4821 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4822 buf->start, transid, fs_info->generation);
0b32f4bb 4823 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4824 if (!was_dirty)
104b4e51
NB
4825 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4826 buf->len,
4827 fs_info->dirty_metadata_batch);
1f21ef0a 4828#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4829 /*
4830 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4831 * but item data not updated.
4832 * So here we should only check item pointers, not item data.
4833 */
4834 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4835 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4836 btrfs_print_leaf(buf);
1f21ef0a
FM
4837 ASSERT(0);
4838 }
4839#endif
eb60ceac
CM
4840}
4841
2ff7e61e 4842static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4843 int flush_delayed)
16cdcec7
MX
4844{
4845 /*
4846 * looks as though older kernels can get into trouble with
4847 * this code, they end up stuck in balance_dirty_pages forever
4848 */
e2d84521 4849 int ret;
16cdcec7
MX
4850
4851 if (current->flags & PF_MEMALLOC)
4852 return;
4853
b53d3f5d 4854 if (flush_delayed)
2ff7e61e 4855 btrfs_balance_delayed_items(fs_info);
16cdcec7 4856
d814a491
EL
4857 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4858 BTRFS_DIRTY_METADATA_THRESH,
4859 fs_info->dirty_metadata_batch);
e2d84521 4860 if (ret > 0) {
0b246afa 4861 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4862 }
16cdcec7
MX
4863}
4864
2ff7e61e 4865void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4866{
2ff7e61e 4867 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4868}
585ad2c3 4869
2ff7e61e 4870void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4871{
2ff7e61e 4872 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4873}
6b80053d 4874
2ff7e61e 4875static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4876{
fe816d0f
NB
4877 /* cleanup FS via transaction */
4878 btrfs_cleanup_transaction(fs_info);
4879
0b246afa 4880 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4881 btrfs_run_delayed_iputs(fs_info);
0b246afa 4882 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4883
0b246afa
JM
4884 down_write(&fs_info->cleanup_work_sem);
4885 up_write(&fs_info->cleanup_work_sem);
acce952b 4886}
4887
ef67963d
JB
4888static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4889{
fc7cbcd4
DS
4890 struct btrfs_root *gang[8];
4891 u64 root_objectid = 0;
4892 int ret;
4893
4894 spin_lock(&fs_info->fs_roots_radix_lock);
4895 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4896 (void **)gang, root_objectid,
4897 ARRAY_SIZE(gang))) != 0) {
4898 int i;
4899
4900 for (i = 0; i < ret; i++)
4901 gang[i] = btrfs_grab_root(gang[i]);
4902 spin_unlock(&fs_info->fs_roots_radix_lock);
4903
4904 for (i = 0; i < ret; i++) {
4905 if (!gang[i])
ef67963d 4906 continue;
fc7cbcd4
DS
4907 root_objectid = gang[i]->root_key.objectid;
4908 btrfs_free_log(NULL, gang[i]);
4909 btrfs_put_root(gang[i]);
ef67963d 4910 }
fc7cbcd4
DS
4911 root_objectid++;
4912 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4913 }
fc7cbcd4 4914 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4915 btrfs_free_log_root_tree(NULL, fs_info);
4916}
4917
143bede5 4918static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4919{
acce952b 4920 struct btrfs_ordered_extent *ordered;
acce952b 4921
199c2a9c 4922 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4923 /*
4924 * This will just short circuit the ordered completion stuff which will
4925 * make sure the ordered extent gets properly cleaned up.
4926 */
199c2a9c 4927 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4928 root_extent_list)
4929 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4930 spin_unlock(&root->ordered_extent_lock);
4931}
4932
4933static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4934{
4935 struct btrfs_root *root;
4936 struct list_head splice;
4937
4938 INIT_LIST_HEAD(&splice);
4939
4940 spin_lock(&fs_info->ordered_root_lock);
4941 list_splice_init(&fs_info->ordered_roots, &splice);
4942 while (!list_empty(&splice)) {
4943 root = list_first_entry(&splice, struct btrfs_root,
4944 ordered_root);
1de2cfde
JB
4945 list_move_tail(&root->ordered_root,
4946 &fs_info->ordered_roots);
199c2a9c 4947
2a85d9ca 4948 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4949 btrfs_destroy_ordered_extents(root);
4950
2a85d9ca
LB
4951 cond_resched();
4952 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4953 }
4954 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4955
4956 /*
4957 * We need this here because if we've been flipped read-only we won't
4958 * get sync() from the umount, so we need to make sure any ordered
4959 * extents that haven't had their dirty pages IO start writeout yet
4960 * actually get run and error out properly.
4961 */
4962 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4963}
4964
35a3621b 4965static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4966 struct btrfs_fs_info *fs_info)
acce952b 4967{
4968 struct rb_node *node;
4969 struct btrfs_delayed_ref_root *delayed_refs;
4970 struct btrfs_delayed_ref_node *ref;
4971 int ret = 0;
4972
4973 delayed_refs = &trans->delayed_refs;
4974
4975 spin_lock(&delayed_refs->lock);
d7df2c79 4976 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4977 spin_unlock(&delayed_refs->lock);
b79ce3dd 4978 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4979 return ret;
4980 }
4981
5c9d028b 4982 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4983 struct btrfs_delayed_ref_head *head;
0e0adbcf 4984 struct rb_node *n;
e78417d1 4985 bool pin_bytes = false;
acce952b 4986
d7df2c79
JB
4987 head = rb_entry(node, struct btrfs_delayed_ref_head,
4988 href_node);
3069bd26 4989 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4990 continue;
3069bd26 4991
d7df2c79 4992 spin_lock(&head->lock);
e3d03965 4993 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4994 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4995 ref_node);
d7df2c79 4996 ref->in_tree = 0;
e3d03965 4997 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4998 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4999 if (!list_empty(&ref->add_list))
5000 list_del(&ref->add_list);
d7df2c79
JB
5001 atomic_dec(&delayed_refs->num_entries);
5002 btrfs_put_delayed_ref(ref);
e78417d1 5003 }
d7df2c79
JB
5004 if (head->must_insert_reserved)
5005 pin_bytes = true;
5006 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 5007 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
5008 spin_unlock(&head->lock);
5009 spin_unlock(&delayed_refs->lock);
5010 mutex_unlock(&head->mutex);
acce952b 5011
f603bb94
NB
5012 if (pin_bytes) {
5013 struct btrfs_block_group *cache;
5014
5015 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5016 BUG_ON(!cache);
5017
5018 spin_lock(&cache->space_info->lock);
5019 spin_lock(&cache->lock);
5020 cache->pinned += head->num_bytes;
5021 btrfs_space_info_update_bytes_pinned(fs_info,
5022 cache->space_info, head->num_bytes);
5023 cache->reserved -= head->num_bytes;
5024 cache->space_info->bytes_reserved -= head->num_bytes;
5025 spin_unlock(&cache->lock);
5026 spin_unlock(&cache->space_info->lock);
f603bb94
NB
5027
5028 btrfs_put_block_group(cache);
5029
5030 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5031 head->bytenr + head->num_bytes - 1);
5032 }
31890da0 5033 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 5034 btrfs_put_delayed_ref_head(head);
acce952b 5035 cond_resched();
5036 spin_lock(&delayed_refs->lock);
5037 }
81f7eb00 5038 btrfs_qgroup_destroy_extent_records(trans);
acce952b 5039
5040 spin_unlock(&delayed_refs->lock);
5041
5042 return ret;
5043}
5044
143bede5 5045static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 5046{
5047 struct btrfs_inode *btrfs_inode;
5048 struct list_head splice;
5049
5050 INIT_LIST_HEAD(&splice);
5051
eb73c1b7
MX
5052 spin_lock(&root->delalloc_lock);
5053 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 5054
5055 while (!list_empty(&splice)) {
fe816d0f 5056 struct inode *inode = NULL;
eb73c1b7
MX
5057 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5058 delalloc_inodes);
fe816d0f 5059 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 5060 spin_unlock(&root->delalloc_lock);
acce952b 5061
fe816d0f
NB
5062 /*
5063 * Make sure we get a live inode and that it'll not disappear
5064 * meanwhile.
5065 */
5066 inode = igrab(&btrfs_inode->vfs_inode);
5067 if (inode) {
5068 invalidate_inode_pages2(inode->i_mapping);
5069 iput(inode);
5070 }
eb73c1b7 5071 spin_lock(&root->delalloc_lock);
acce952b 5072 }
eb73c1b7
MX
5073 spin_unlock(&root->delalloc_lock);
5074}
5075
5076static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5077{
5078 struct btrfs_root *root;
5079 struct list_head splice;
5080
5081 INIT_LIST_HEAD(&splice);
5082
5083 spin_lock(&fs_info->delalloc_root_lock);
5084 list_splice_init(&fs_info->delalloc_roots, &splice);
5085 while (!list_empty(&splice)) {
5086 root = list_first_entry(&splice, struct btrfs_root,
5087 delalloc_root);
00246528 5088 root = btrfs_grab_root(root);
eb73c1b7
MX
5089 BUG_ON(!root);
5090 spin_unlock(&fs_info->delalloc_root_lock);
5091
5092 btrfs_destroy_delalloc_inodes(root);
00246528 5093 btrfs_put_root(root);
eb73c1b7
MX
5094
5095 spin_lock(&fs_info->delalloc_root_lock);
5096 }
5097 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 5098}
5099
2ff7e61e 5100static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 5101 struct extent_io_tree *dirty_pages,
5102 int mark)
5103{
5104 int ret;
acce952b 5105 struct extent_buffer *eb;
5106 u64 start = 0;
5107 u64 end;
acce952b 5108
5109 while (1) {
5110 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 5111 mark, NULL);
acce952b 5112 if (ret)
5113 break;
5114
91166212 5115 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 5116 while (start <= end) {
0b246afa
JM
5117 eb = find_extent_buffer(fs_info, start);
5118 start += fs_info->nodesize;
fd8b2b61 5119 if (!eb)
acce952b 5120 continue;
fd8b2b61 5121 wait_on_extent_buffer_writeback(eb);
acce952b 5122
fd8b2b61
JB
5123 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5124 &eb->bflags))
5125 clear_extent_buffer_dirty(eb);
5126 free_extent_buffer_stale(eb);
acce952b 5127 }
5128 }
5129
5130 return ret;
5131}
5132
2ff7e61e 5133static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5134 struct extent_io_tree *unpin)
acce952b 5135{
acce952b 5136 u64 start;
5137 u64 end;
5138 int ret;
5139
acce952b 5140 while (1) {
0e6ec385
FM
5141 struct extent_state *cached_state = NULL;
5142
fcd5e742
LF
5143 /*
5144 * The btrfs_finish_extent_commit() may get the same range as
5145 * ours between find_first_extent_bit and clear_extent_dirty.
5146 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5147 * the same extent range.
5148 */
5149 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5150 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5151 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5152 if (ret) {
5153 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5154 break;
fcd5e742 5155 }
acce952b 5156
0e6ec385
FM
5157 clear_extent_dirty(unpin, start, end, &cached_state);
5158 free_extent_state(cached_state);
2ff7e61e 5159 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5160 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5161 cond_resched();
5162 }
5163
5164 return 0;
5165}
5166
32da5386 5167static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5168{
5169 struct inode *inode;
5170
5171 inode = cache->io_ctl.inode;
5172 if (inode) {
5173 invalidate_inode_pages2(inode->i_mapping);
5174 BTRFS_I(inode)->generation = 0;
5175 cache->io_ctl.inode = NULL;
5176 iput(inode);
5177 }
bbc37d6e 5178 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5179 btrfs_put_block_group(cache);
5180}
5181
5182void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5183 struct btrfs_fs_info *fs_info)
c79a1751 5184{
32da5386 5185 struct btrfs_block_group *cache;
c79a1751
LB
5186
5187 spin_lock(&cur_trans->dirty_bgs_lock);
5188 while (!list_empty(&cur_trans->dirty_bgs)) {
5189 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5190 struct btrfs_block_group,
c79a1751 5191 dirty_list);
c79a1751
LB
5192
5193 if (!list_empty(&cache->io_list)) {
5194 spin_unlock(&cur_trans->dirty_bgs_lock);
5195 list_del_init(&cache->io_list);
5196 btrfs_cleanup_bg_io(cache);
5197 spin_lock(&cur_trans->dirty_bgs_lock);
5198 }
5199
5200 list_del_init(&cache->dirty_list);
5201 spin_lock(&cache->lock);
5202 cache->disk_cache_state = BTRFS_DC_ERROR;
5203 spin_unlock(&cache->lock);
5204
5205 spin_unlock(&cur_trans->dirty_bgs_lock);
5206 btrfs_put_block_group(cache);
ba2c4d4e 5207 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5208 spin_lock(&cur_trans->dirty_bgs_lock);
5209 }
5210 spin_unlock(&cur_trans->dirty_bgs_lock);
5211
45ae2c18
NB
5212 /*
5213 * Refer to the definition of io_bgs member for details why it's safe
5214 * to use it without any locking
5215 */
c79a1751
LB
5216 while (!list_empty(&cur_trans->io_bgs)) {
5217 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5218 struct btrfs_block_group,
c79a1751 5219 io_list);
c79a1751
LB
5220
5221 list_del_init(&cache->io_list);
5222 spin_lock(&cache->lock);
5223 cache->disk_cache_state = BTRFS_DC_ERROR;
5224 spin_unlock(&cache->lock);
5225 btrfs_cleanup_bg_io(cache);
5226 }
5227}
5228
49b25e05 5229void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5230 struct btrfs_fs_info *fs_info)
49b25e05 5231{
bbbf7243
NB
5232 struct btrfs_device *dev, *tmp;
5233
2ff7e61e 5234 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5235 ASSERT(list_empty(&cur_trans->dirty_bgs));
5236 ASSERT(list_empty(&cur_trans->io_bgs));
5237
bbbf7243
NB
5238 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5239 post_commit_list) {
5240 list_del_init(&dev->post_commit_list);
5241 }
5242
2ff7e61e 5243 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5244
4a9d8bde 5245 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5246 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5247
4a9d8bde 5248 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5249 wake_up(&fs_info->transaction_wait);
49b25e05 5250
ccdf9b30 5251 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5252
2ff7e61e 5253 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5254 EXTENT_DIRTY);
fe119a6e 5255 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5256
d3575156
NA
5257 btrfs_free_redirty_list(cur_trans);
5258
4a9d8bde
MX
5259 cur_trans->state =TRANS_STATE_COMPLETED;
5260 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5261}
5262
2ff7e61e 5263static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5264{
5265 struct btrfs_transaction *t;
acce952b 5266
0b246afa 5267 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5268
0b246afa
JM
5269 spin_lock(&fs_info->trans_lock);
5270 while (!list_empty(&fs_info->trans_list)) {
5271 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5272 struct btrfs_transaction, list);
5273 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5274 refcount_inc(&t->use_count);
0b246afa 5275 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5276 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5277 btrfs_put_transaction(t);
0b246afa 5278 spin_lock(&fs_info->trans_lock);
724e2315
JB
5279 continue;
5280 }
0b246afa 5281 if (t == fs_info->running_transaction) {
724e2315 5282 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5283 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5284 /*
5285 * We wait for 0 num_writers since we don't hold a trans
5286 * handle open currently for this transaction.
5287 */
5288 wait_event(t->writer_wait,
5289 atomic_read(&t->num_writers) == 0);
5290 } else {
0b246afa 5291 spin_unlock(&fs_info->trans_lock);
724e2315 5292 }
2ff7e61e 5293 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5294
0b246afa
JM
5295 spin_lock(&fs_info->trans_lock);
5296 if (t == fs_info->running_transaction)
5297 fs_info->running_transaction = NULL;
acce952b 5298 list_del_init(&t->list);
0b246afa 5299 spin_unlock(&fs_info->trans_lock);
acce952b 5300
724e2315 5301 btrfs_put_transaction(t);
2e4e97ab 5302 trace_btrfs_transaction_commit(fs_info);
0b246afa 5303 spin_lock(&fs_info->trans_lock);
724e2315 5304 }
0b246afa
JM
5305 spin_unlock(&fs_info->trans_lock);
5306 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5307 btrfs_destroy_delayed_inodes(fs_info);
5308 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5309 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5310 btrfs_drop_all_logs(fs_info);
0b246afa 5311 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5312
5313 return 0;
5314}
ec7d6dfd 5315
453e4873 5316int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5317{
5318 struct btrfs_path *path;
5319 int ret;
5320 struct extent_buffer *l;
5321 struct btrfs_key search_key;
5322 struct btrfs_key found_key;
5323 int slot;
5324
5325 path = btrfs_alloc_path();
5326 if (!path)
5327 return -ENOMEM;
5328
5329 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5330 search_key.type = -1;
5331 search_key.offset = (u64)-1;
5332 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5333 if (ret < 0)
5334 goto error;
5335 BUG_ON(ret == 0); /* Corruption */
5336 if (path->slots[0] > 0) {
5337 slot = path->slots[0] - 1;
5338 l = path->nodes[0];
5339 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5340 root->free_objectid = max_t(u64, found_key.objectid + 1,
5341 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5342 } else {
23125104 5343 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5344 }
5345 ret = 0;
5346error:
5347 btrfs_free_path(path);
5348 return ret;
5349}
5350
543068a2 5351int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5352{
5353 int ret;
5354 mutex_lock(&root->objectid_mutex);
5355
6b8fad57 5356 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5357 btrfs_warn(root->fs_info,
5358 "the objectid of root %llu reaches its highest value",
5359 root->root_key.objectid);
5360 ret = -ENOSPC;
5361 goto out;
5362 }
5363
23125104 5364 *objectid = root->free_objectid++;
ec7d6dfd
NB
5365 ret = 0;
5366out:
5367 mutex_unlock(&root->objectid_mutex);
5368 return ret;
5369}