btrfs: Remove newest_gen argument from find_oldest_super_backup
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
6d97c6e3 22#include <crypto/hash.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
aac0023c 43#include "block-group.h"
eb60ceac 44
319e4d06
QW
45#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
46 BTRFS_HEADER_FLAG_RELOC |\
47 BTRFS_SUPER_FLAG_ERROR |\
48 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
49 BTRFS_SUPER_FLAG_METADUMP |\
50 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 51
e8c9f186 52static const struct extent_io_ops btree_extent_io_ops;
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
d352ac68
CM
100/*
101 * async submit bios are used to offload expensive checksumming
102 * onto the worker threads. They checksum file and metadata bios
103 * just before they are sent down the IO stack.
104 */
44b8bd7e 105struct async_submit_bio {
c6100a4b 106 void *private_data;
44b8bd7e 107 struct bio *bio;
a758781d 108 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 109 int mirror_num;
eaf25d93
CM
110 /*
111 * bio_offset is optional, can be used if the pages in the bio
112 * can't tell us where in the file the bio should go
113 */
114 u64 bio_offset;
8b712842 115 struct btrfs_work work;
4e4cbee9 116 blk_status_t status;
44b8bd7e
CM
117};
118
85d4e461
CM
119/*
120 * Lockdep class keys for extent_buffer->lock's in this root. For a given
121 * eb, the lockdep key is determined by the btrfs_root it belongs to and
122 * the level the eb occupies in the tree.
123 *
124 * Different roots are used for different purposes and may nest inside each
125 * other and they require separate keysets. As lockdep keys should be
126 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
127 * by btrfs_root->root_key.objectid. This ensures that all special purpose
128 * roots have separate keysets.
4008c04a 129 *
85d4e461
CM
130 * Lock-nesting across peer nodes is always done with the immediate parent
131 * node locked thus preventing deadlock. As lockdep doesn't know this, use
132 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 133 *
85d4e461
CM
134 * The key is set by the readpage_end_io_hook after the buffer has passed
135 * csum validation but before the pages are unlocked. It is also set by
136 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 137 *
85d4e461
CM
138 * We also add a check to make sure the highest level of the tree is the
139 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
140 * needs update as well.
4008c04a
CM
141 */
142#ifdef CONFIG_DEBUG_LOCK_ALLOC
143# if BTRFS_MAX_LEVEL != 8
144# error
145# endif
85d4e461
CM
146
147static struct btrfs_lockdep_keyset {
148 u64 id; /* root objectid */
149 const char *name_stem; /* lock name stem */
150 char names[BTRFS_MAX_LEVEL + 1][20];
151 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
152} btrfs_lockdep_keysets[] = {
153 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
154 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
155 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
156 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
157 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
158 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 159 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
160 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
161 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
162 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 163 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 164 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 165 { .id = 0, .name_stem = "tree" },
4008c04a 166};
85d4e461
CM
167
168void __init btrfs_init_lockdep(void)
169{
170 int i, j;
171
172 /* initialize lockdep class names */
173 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177 snprintf(ks->names[j], sizeof(ks->names[j]),
178 "btrfs-%s-%02d", ks->name_stem, j);
179 }
180}
181
182void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183 int level)
184{
185 struct btrfs_lockdep_keyset *ks;
186
187 BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189 /* find the matching keyset, id 0 is the default entry */
190 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191 if (ks->id == objectid)
192 break;
193
194 lockdep_set_class_and_name(&eb->lock,
195 &ks->keys[level], ks->names[level]);
196}
197
4008c04a
CM
198#endif
199
d352ac68
CM
200/*
201 * extents on the btree inode are pretty simple, there's one extent
202 * that covers the entire device
203 */
6af49dbd 204struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 205 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 206 int create)
7eccb903 207{
3ffbd68c 208 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 209 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
210 struct extent_map *em;
211 int ret;
212
890871be 213 read_lock(&em_tree->lock);
d1310b2e 214 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 215 if (em) {
0b246afa 216 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 217 read_unlock(&em_tree->lock);
5f39d397 218 goto out;
a061fc8d 219 }
890871be 220 read_unlock(&em_tree->lock);
7b13b7b1 221
172ddd60 222 em = alloc_extent_map();
5f39d397
CM
223 if (!em) {
224 em = ERR_PTR(-ENOMEM);
225 goto out;
226 }
227 em->start = 0;
0afbaf8c 228 em->len = (u64)-1;
c8b97818 229 em->block_len = (u64)-1;
5f39d397 230 em->block_start = 0;
0b246afa 231 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 232
890871be 233 write_lock(&em_tree->lock);
09a2a8f9 234 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
235 if (ret == -EEXIST) {
236 free_extent_map(em);
7b13b7b1 237 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 238 if (!em)
0433f20d 239 em = ERR_PTR(-EIO);
5f39d397 240 } else if (ret) {
7b13b7b1 241 free_extent_map(em);
0433f20d 242 em = ERR_PTR(ret);
5f39d397 243 }
890871be 244 write_unlock(&em_tree->lock);
7b13b7b1 245
5f39d397
CM
246out:
247 return em;
7eccb903
CM
248}
249
d352ac68 250/*
2996e1f8
JT
251 * Compute the csum of a btree block and store the result to provided buffer.
252 *
253 * Returns error if the extent buffer cannot be mapped.
d352ac68 254 */
2996e1f8 255static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 256{
d5178578
JT
257 struct btrfs_fs_info *fs_info = buf->fs_info;
258 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
259 unsigned long len;
260 unsigned long cur_len;
261 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
262 char *kaddr;
263 unsigned long map_start;
264 unsigned long map_len;
265 int err;
d5178578
JT
266
267 shash->tfm = fs_info->csum_shash;
268 crypto_shash_init(shash);
19c00ddc
CM
269
270 len = buf->len - offset;
d5178578 271
d397712b 272 while (len > 0) {
d2e174d5
JT
273 /*
274 * Note: we don't need to check for the err == 1 case here, as
275 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276 * and 'min_len = 32' and the currently implemented mapping
277 * algorithm we cannot cross a page boundary.
278 */
19c00ddc 279 err = map_private_extent_buffer(buf, offset, 32,
a6591715 280 &kaddr, &map_start, &map_len);
c53839fc 281 if (WARN_ON(err))
8bd98f0e 282 return err;
19c00ddc 283 cur_len = min(len, map_len - (offset - map_start));
d5178578 284 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
285 len -= cur_len;
286 offset += cur_len;
19c00ddc 287 }
71a63551 288 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 289
d5178578 290 crypto_shash_final(shash, result);
19c00ddc 291
19c00ddc
CM
292 return 0;
293}
294
d352ac68
CM
295/*
296 * we can't consider a given block up to date unless the transid of the
297 * block matches the transid in the parent node's pointer. This is how we
298 * detect blocks that either didn't get written at all or got written
299 * in the wrong place.
300 */
1259ab75 301static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
302 struct extent_buffer *eb, u64 parent_transid,
303 int atomic)
1259ab75 304{
2ac55d41 305 struct extent_state *cached_state = NULL;
1259ab75 306 int ret;
2755a0de 307 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
308
309 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310 return 0;
311
b9fab919
CM
312 if (atomic)
313 return -EAGAIN;
314
a26e8c9f
JB
315 if (need_lock) {
316 btrfs_tree_read_lock(eb);
300aa896 317 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
318 }
319
2ac55d41 320 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 321 &cached_state);
0b32f4bb 322 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
323 btrfs_header_generation(eb) == parent_transid) {
324 ret = 0;
325 goto out;
326 }
94647322
DS
327 btrfs_err_rl(eb->fs_info,
328 "parent transid verify failed on %llu wanted %llu found %llu",
329 eb->start,
29549aec 330 parent_transid, btrfs_header_generation(eb));
1259ab75 331 ret = 1;
a26e8c9f
JB
332
333 /*
334 * Things reading via commit roots that don't have normal protection,
335 * like send, can have a really old block in cache that may point at a
01327610 336 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
337 * if we find an eb that is under IO (dirty/writeback) because we could
338 * end up reading in the stale data and then writing it back out and
339 * making everybody very sad.
340 */
341 if (!extent_buffer_under_io(eb))
342 clear_extent_buffer_uptodate(eb);
33958dc6 343out:
2ac55d41 344 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 345 &cached_state);
472b909f
JB
346 if (need_lock)
347 btrfs_tree_read_unlock_blocking(eb);
1259ab75 348 return ret;
1259ab75
CM
349}
350
e7e16f48
JT
351static bool btrfs_supported_super_csum(u16 csum_type)
352{
353 switch (csum_type) {
354 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 355 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 356 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 357 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
358 return true;
359 default:
360 return false;
361 }
362}
363
1104a885
DS
364/*
365 * Return 0 if the superblock checksum type matches the checksum value of that
366 * algorithm. Pass the raw disk superblock data.
367 */
ab8d0fc4
JM
368static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
369 char *raw_disk_sb)
1104a885
DS
370{
371 struct btrfs_super_block *disk_sb =
372 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 373 char result[BTRFS_CSUM_SIZE];
d5178578
JT
374 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
375
376 shash->tfm = fs_info->csum_shash;
377 crypto_shash_init(shash);
1104a885 378
51bce6c9
JT
379 /*
380 * The super_block structure does not span the whole
381 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
382 * filled with zeros and is included in the checksum.
383 */
d5178578
JT
384 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
385 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
386 crypto_shash_final(shash, result);
1104a885 387
51bce6c9
JT
388 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
389 return 1;
1104a885 390
e7e16f48 391 return 0;
1104a885
DS
392}
393
e064d5e9 394int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 395 struct btrfs_key *first_key, u64 parent_transid)
581c1760 396{
e064d5e9 397 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
398 int found_level;
399 struct btrfs_key found_key;
400 int ret;
401
402 found_level = btrfs_header_level(eb);
403 if (found_level != level) {
63489055
QW
404 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
405 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
406 btrfs_err(fs_info,
407"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
408 eb->start, level, found_level);
581c1760
QW
409 return -EIO;
410 }
411
412 if (!first_key)
413 return 0;
414
5d41be6f
QW
415 /*
416 * For live tree block (new tree blocks in current transaction),
417 * we need proper lock context to avoid race, which is impossible here.
418 * So we only checks tree blocks which is read from disk, whose
419 * generation <= fs_info->last_trans_committed.
420 */
421 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
422 return 0;
62fdaa52
QW
423
424 /* We have @first_key, so this @eb must have at least one item */
425 if (btrfs_header_nritems(eb) == 0) {
426 btrfs_err(fs_info,
427 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
428 eb->start);
429 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
430 return -EUCLEAN;
431 }
432
581c1760
QW
433 if (found_level)
434 btrfs_node_key_to_cpu(eb, &found_key, 0);
435 else
436 btrfs_item_key_to_cpu(eb, &found_key, 0);
437 ret = btrfs_comp_cpu_keys(first_key, &found_key);
438
581c1760 439 if (ret) {
63489055
QW
440 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
441 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 442 btrfs_err(fs_info,
ff76a864
LB
443"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
444 eb->start, parent_transid, first_key->objectid,
445 first_key->type, first_key->offset,
446 found_key.objectid, found_key.type,
447 found_key.offset);
581c1760 448 }
581c1760
QW
449 return ret;
450}
451
d352ac68
CM
452/*
453 * helper to read a given tree block, doing retries as required when
454 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
455 *
456 * @parent_transid: expected transid, skip check if 0
457 * @level: expected level, mandatory check
458 * @first_key: expected key of first slot, skip check if NULL
d352ac68 459 */
5ab12d1f 460static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
461 u64 parent_transid, int level,
462 struct btrfs_key *first_key)
f188591e 463{
5ab12d1f 464 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 465 struct extent_io_tree *io_tree;
ea466794 466 int failed = 0;
f188591e
CM
467 int ret;
468 int num_copies = 0;
469 int mirror_num = 0;
ea466794 470 int failed_mirror = 0;
f188591e 471
0b246afa 472 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 473 while (1) {
f8397d69 474 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 475 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 476 if (!ret) {
581c1760 477 if (verify_parent_transid(io_tree, eb,
b9fab919 478 parent_transid, 0))
256dd1bb 479 ret = -EIO;
e064d5e9 480 else if (btrfs_verify_level_key(eb, level,
448de471 481 first_key, parent_transid))
581c1760
QW
482 ret = -EUCLEAN;
483 else
484 break;
256dd1bb 485 }
d397712b 486
0b246afa 487 num_copies = btrfs_num_copies(fs_info,
f188591e 488 eb->start, eb->len);
4235298e 489 if (num_copies == 1)
ea466794 490 break;
4235298e 491
5cf1ab56
JB
492 if (!failed_mirror) {
493 failed = 1;
494 failed_mirror = eb->read_mirror;
495 }
496
f188591e 497 mirror_num++;
ea466794
JB
498 if (mirror_num == failed_mirror)
499 mirror_num++;
500
4235298e 501 if (mirror_num > num_copies)
ea466794 502 break;
f188591e 503 }
ea466794 504
c0901581 505 if (failed && !ret && failed_mirror)
20a1fbf9 506 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
507
508 return ret;
f188591e 509}
19c00ddc 510
d352ac68 511/*
d397712b
CM
512 * checksum a dirty tree block before IO. This has extra checks to make sure
513 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 514 */
d397712b 515
01d58472 516static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 517{
4eee4fa4 518 u64 start = page_offset(page);
19c00ddc 519 u64 found_start;
2996e1f8
JT
520 u8 result[BTRFS_CSUM_SIZE];
521 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 522 struct extent_buffer *eb;
8d47a0d8 523 int ret;
f188591e 524
4f2de97a
JB
525 eb = (struct extent_buffer *)page->private;
526 if (page != eb->pages[0])
527 return 0;
0f805531 528
19c00ddc 529 found_start = btrfs_header_bytenr(eb);
0f805531
AL
530 /*
531 * Please do not consolidate these warnings into a single if.
532 * It is useful to know what went wrong.
533 */
534 if (WARN_ON(found_start != start))
535 return -EUCLEAN;
536 if (WARN_ON(!PageUptodate(page)))
537 return -EUCLEAN;
538
de37aa51 539 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
540 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
541
2996e1f8
JT
542 if (csum_tree_block(eb, result))
543 return -EINVAL;
544
8d47a0d8
QW
545 if (btrfs_header_level(eb))
546 ret = btrfs_check_node(eb);
547 else
548 ret = btrfs_check_leaf_full(eb);
549
550 if (ret < 0) {
c06631b0 551 btrfs_print_tree(eb, 0);
8d47a0d8
QW
552 btrfs_err(fs_info,
553 "block=%llu write time tree block corruption detected",
554 eb->start);
c06631b0 555 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
556 return ret;
557 }
2996e1f8 558 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 559
2996e1f8 560 return 0;
19c00ddc
CM
561}
562
b0c9b3b0 563static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 564{
b0c9b3b0 565 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 566 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 567 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
568 int ret = 1;
569
0a4e5586 570 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 571 while (fs_devices) {
7239ff4b
NB
572 u8 *metadata_uuid;
573
574 /*
575 * Checking the incompat flag is only valid for the current
576 * fs. For seed devices it's forbidden to have their uuid
577 * changed so reading ->fsid in this case is fine
578 */
579 if (fs_devices == fs_info->fs_devices &&
580 btrfs_fs_incompat(fs_info, METADATA_UUID))
581 metadata_uuid = fs_devices->metadata_uuid;
582 else
583 metadata_uuid = fs_devices->fsid;
584
585 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
586 ret = 0;
587 break;
588 }
589 fs_devices = fs_devices->seed;
590 }
591 return ret;
592}
593
facc8a22
MX
594static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
595 u64 phy_offset, struct page *page,
596 u64 start, u64 end, int mirror)
ce9adaa5 597{
ce9adaa5
CM
598 u64 found_start;
599 int found_level;
ce9adaa5
CM
600 struct extent_buffer *eb;
601 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 602 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 603 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 604 int ret = 0;
2996e1f8 605 u8 result[BTRFS_CSUM_SIZE];
727011e0 606 int reads_done;
ce9adaa5 607
ce9adaa5
CM
608 if (!page->private)
609 goto out;
d397712b 610
4f2de97a 611 eb = (struct extent_buffer *)page->private;
d397712b 612
0b32f4bb
JB
613 /* the pending IO might have been the only thing that kept this buffer
614 * in memory. Make sure we have a ref for all this other checks
615 */
67439dad 616 atomic_inc(&eb->refs);
0b32f4bb
JB
617
618 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
619 if (!reads_done)
620 goto err;
f188591e 621
5cf1ab56 622 eb->read_mirror = mirror;
656f30db 623 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
624 ret = -EIO;
625 goto err;
626 }
627
ce9adaa5 628 found_start = btrfs_header_bytenr(eb);
727011e0 629 if (found_start != eb->start) {
893bf4b1
SY
630 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
631 eb->start, found_start);
f188591e 632 ret = -EIO;
ce9adaa5
CM
633 goto err;
634 }
b0c9b3b0 635 if (check_tree_block_fsid(eb)) {
02873e43
ZL
636 btrfs_err_rl(fs_info, "bad fsid on block %llu",
637 eb->start);
1259ab75
CM
638 ret = -EIO;
639 goto err;
640 }
ce9adaa5 641 found_level = btrfs_header_level(eb);
1c24c3ce 642 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
643 btrfs_err(fs_info, "bad tree block level %d on %llu",
644 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
645 ret = -EIO;
646 goto err;
647 }
ce9adaa5 648
85d4e461
CM
649 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
650 eb, found_level);
4008c04a 651
2996e1f8 652 ret = csum_tree_block(eb, result);
8bd98f0e 653 if (ret)
a826d6dc 654 goto err;
a826d6dc 655
2996e1f8
JT
656 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
657 u32 val;
658 u32 found = 0;
659
660 memcpy(&found, result, csum_size);
661
662 read_extent_buffer(eb, &val, 0, csum_size);
663 btrfs_warn_rl(fs_info,
664 "%s checksum verify failed on %llu wanted %x found %x level %d",
665 fs_info->sb->s_id, eb->start,
666 val, found, btrfs_header_level(eb));
667 ret = -EUCLEAN;
668 goto err;
669 }
670
a826d6dc
JB
671 /*
672 * If this is a leaf block and it is corrupt, set the corrupt bit so
673 * that we don't try and read the other copies of this block, just
674 * return -EIO.
675 */
1c4360ee 676 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
677 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
678 ret = -EIO;
679 }
ce9adaa5 680
813fd1dc 681 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
682 ret = -EIO;
683
0b32f4bb
JB
684 if (!ret)
685 set_extent_buffer_uptodate(eb);
75391f0d
QW
686 else
687 btrfs_err(fs_info,
688 "block=%llu read time tree block corruption detected",
689 eb->start);
ce9adaa5 690err:
79fb65a1
JB
691 if (reads_done &&
692 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 693 btree_readahead_hook(eb, ret);
4bb31e92 694
53b381b3
DW
695 if (ret) {
696 /*
697 * our io error hook is going to dec the io pages
698 * again, we have to make sure it has something
699 * to decrement
700 */
701 atomic_inc(&eb->io_pages);
0b32f4bb 702 clear_extent_buffer_uptodate(eb);
53b381b3 703 }
0b32f4bb 704 free_extent_buffer(eb);
ce9adaa5 705out:
f188591e 706 return ret;
ce9adaa5
CM
707}
708
4246a0b6 709static void end_workqueue_bio(struct bio *bio)
ce9adaa5 710{
97eb6b69 711 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 712 struct btrfs_fs_info *fs_info;
9e0af237 713 struct btrfs_workqueue *wq;
ce9adaa5 714
ce9adaa5 715 fs_info = end_io_wq->info;
4e4cbee9 716 end_io_wq->status = bio->bi_status;
d20f7043 717
37226b21 718 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 719 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 720 wq = fs_info->endio_meta_write_workers;
a0cac0ec 721 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 722 wq = fs_info->endio_freespace_worker;
a0cac0ec 723 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 724 wq = fs_info->endio_raid56_workers;
a0cac0ec 725 else
9e0af237 726 wq = fs_info->endio_write_workers;
d20f7043 727 } else {
a0cac0ec 728 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 729 wq = fs_info->endio_repair_workers;
a0cac0ec 730 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 731 wq = fs_info->endio_raid56_workers;
a0cac0ec 732 else if (end_io_wq->metadata)
9e0af237 733 wq = fs_info->endio_meta_workers;
a0cac0ec 734 else
9e0af237 735 wq = fs_info->endio_workers;
d20f7043 736 }
9e0af237 737
a0cac0ec 738 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 739 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
740}
741
4e4cbee9 742blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 743 enum btrfs_wq_endio_type metadata)
0b86a832 744{
97eb6b69 745 struct btrfs_end_io_wq *end_io_wq;
8b110e39 746
97eb6b69 747 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 748 if (!end_io_wq)
4e4cbee9 749 return BLK_STS_RESOURCE;
ce9adaa5
CM
750
751 end_io_wq->private = bio->bi_private;
752 end_io_wq->end_io = bio->bi_end_io;
22c59948 753 end_io_wq->info = info;
4e4cbee9 754 end_io_wq->status = 0;
ce9adaa5 755 end_io_wq->bio = bio;
22c59948 756 end_io_wq->metadata = metadata;
ce9adaa5
CM
757
758 bio->bi_private = end_io_wq;
759 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
760 return 0;
761}
762
4a69a410
CM
763static void run_one_async_start(struct btrfs_work *work)
764{
4a69a410 765 struct async_submit_bio *async;
4e4cbee9 766 blk_status_t ret;
4a69a410
CM
767
768 async = container_of(work, struct async_submit_bio, work);
c6100a4b 769 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
770 async->bio_offset);
771 if (ret)
4e4cbee9 772 async->status = ret;
4a69a410
CM
773}
774
06ea01b1
DS
775/*
776 * In order to insert checksums into the metadata in large chunks, we wait
777 * until bio submission time. All the pages in the bio are checksummed and
778 * sums are attached onto the ordered extent record.
779 *
780 * At IO completion time the csums attached on the ordered extent record are
781 * inserted into the tree.
782 */
4a69a410 783static void run_one_async_done(struct btrfs_work *work)
8b712842 784{
8b712842 785 struct async_submit_bio *async;
06ea01b1
DS
786 struct inode *inode;
787 blk_status_t ret;
8b712842
CM
788
789 async = container_of(work, struct async_submit_bio, work);
06ea01b1 790 inode = async->private_data;
4854ddd0 791
bb7ab3b9 792 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
793 if (async->status) {
794 async->bio->bi_status = async->status;
4246a0b6 795 bio_endio(async->bio);
79787eaa
JM
796 return;
797 }
798
ec39f769
CM
799 /*
800 * All of the bios that pass through here are from async helpers.
801 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
802 * This changes nothing when cgroups aren't in use.
803 */
804 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 805 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
806 if (ret) {
807 async->bio->bi_status = ret;
808 bio_endio(async->bio);
809 }
4a69a410
CM
810}
811
812static void run_one_async_free(struct btrfs_work *work)
813{
814 struct async_submit_bio *async;
815
816 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
817 kfree(async);
818}
819
8c27cb35
LT
820blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
821 int mirror_num, unsigned long bio_flags,
822 u64 bio_offset, void *private_data,
e288c080 823 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
824{
825 struct async_submit_bio *async;
826
827 async = kmalloc(sizeof(*async), GFP_NOFS);
828 if (!async)
4e4cbee9 829 return BLK_STS_RESOURCE;
44b8bd7e 830
c6100a4b 831 async->private_data = private_data;
44b8bd7e
CM
832 async->bio = bio;
833 async->mirror_num = mirror_num;
4a69a410 834 async->submit_bio_start = submit_bio_start;
4a69a410 835
a0cac0ec
OS
836 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
837 run_one_async_free);
4a69a410 838
eaf25d93 839 async->bio_offset = bio_offset;
8c8bee1d 840
4e4cbee9 841 async->status = 0;
79787eaa 842
67f055c7 843 if (op_is_sync(bio->bi_opf))
5cdc7ad3 844 btrfs_set_work_high_priority(&async->work);
d313d7a3 845
5cdc7ad3 846 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
847 return 0;
848}
849
4e4cbee9 850static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 851{
2c30c71b 852 struct bio_vec *bvec;
ce3ed71a 853 struct btrfs_root *root;
2b070cfe 854 int ret = 0;
6dc4f100 855 struct bvec_iter_all iter_all;
ce3ed71a 856
c09abff8 857 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 858 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 859 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 860 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
861 if (ret)
862 break;
ce3ed71a 863 }
2c30c71b 864
4e4cbee9 865 return errno_to_blk_status(ret);
ce3ed71a
CM
866}
867
d0ee3934 868static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 869 u64 bio_offset)
22c59948 870{
8b712842
CM
871 /*
872 * when we're called for a write, we're already in the async
5443be45 873 * submission context. Just jump into btrfs_map_bio
8b712842 874 */
79787eaa 875 return btree_csum_one_bio(bio);
4a69a410 876}
22c59948 877
9b4e675a
DS
878static int check_async_write(struct btrfs_fs_info *fs_info,
879 struct btrfs_inode *bi)
de0022b9 880{
6300463b
LB
881 if (atomic_read(&bi->sync_writers))
882 return 0;
9b4e675a 883 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 884 return 0;
de0022b9
JB
885 return 1;
886}
887
a56b1c7b 888static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
889 int mirror_num,
890 unsigned long bio_flags)
44b8bd7e 891{
0b246afa 892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 893 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 894 blk_status_t ret;
cad321ad 895
37226b21 896 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
897 /*
898 * called for a read, do the setup so that checksum validation
899 * can happen in the async kernel threads
900 */
0b246afa
JM
901 ret = btrfs_bio_wq_end_io(fs_info, bio,
902 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 903 if (ret)
61891923 904 goto out_w_error;
08635bae 905 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
906 } else if (!async) {
907 ret = btree_csum_one_bio(bio);
908 if (ret)
61891923 909 goto out_w_error;
08635bae 910 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
911 } else {
912 /*
913 * kthread helpers are used to submit writes so that
914 * checksumming can happen in parallel across all CPUs
915 */
c6100a4b 916 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 917 0, inode, btree_submit_bio_start);
44b8bd7e 918 }
d313d7a3 919
4246a0b6
CH
920 if (ret)
921 goto out_w_error;
922 return 0;
923
61891923 924out_w_error:
4e4cbee9 925 bio->bi_status = ret;
4246a0b6 926 bio_endio(bio);
61891923 927 return ret;
44b8bd7e
CM
928}
929
3dd1462e 930#ifdef CONFIG_MIGRATION
784b4e29 931static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
932 struct page *newpage, struct page *page,
933 enum migrate_mode mode)
784b4e29
CM
934{
935 /*
936 * we can't safely write a btree page from here,
937 * we haven't done the locking hook
938 */
939 if (PageDirty(page))
940 return -EAGAIN;
941 /*
942 * Buffers may be managed in a filesystem specific way.
943 * We must have no buffers or drop them.
944 */
945 if (page_has_private(page) &&
946 !try_to_release_page(page, GFP_KERNEL))
947 return -EAGAIN;
a6bc32b8 948 return migrate_page(mapping, newpage, page, mode);
784b4e29 949}
3dd1462e 950#endif
784b4e29 951
0da5468f
CM
952
953static int btree_writepages(struct address_space *mapping,
954 struct writeback_control *wbc)
955{
e2d84521
MX
956 struct btrfs_fs_info *fs_info;
957 int ret;
958
d8d5f3e1 959 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
960
961 if (wbc->for_kupdate)
962 return 0;
963
e2d84521 964 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 965 /* this is a bit racy, but that's ok */
d814a491
EL
966 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
967 BTRFS_DIRTY_METADATA_THRESH,
968 fs_info->dirty_metadata_batch);
e2d84521 969 if (ret < 0)
793955bc 970 return 0;
793955bc 971 }
0b32f4bb 972 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
973}
974
b2950863 975static int btree_readpage(struct file *file, struct page *page)
5f39d397 976{
d1310b2e
CM
977 struct extent_io_tree *tree;
978 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 979 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 980}
22b0ebda 981
70dec807 982static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 983{
98509cfc 984 if (PageWriteback(page) || PageDirty(page))
d397712b 985 return 0;
0c4e538b 986
f7a52a40 987 return try_release_extent_buffer(page);
d98237b3
CM
988}
989
d47992f8
LC
990static void btree_invalidatepage(struct page *page, unsigned int offset,
991 unsigned int length)
d98237b3 992{
d1310b2e
CM
993 struct extent_io_tree *tree;
994 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
995 extent_invalidatepage(tree, page, offset);
996 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 997 if (PagePrivate(page)) {
efe120a0
FH
998 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
999 "page private not zero on page %llu",
1000 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1001 ClearPagePrivate(page);
1002 set_page_private(page, 0);
09cbfeaf 1003 put_page(page);
9ad6b7bc 1004 }
d98237b3
CM
1005}
1006
0b32f4bb
JB
1007static int btree_set_page_dirty(struct page *page)
1008{
bb146eb2 1009#ifdef DEBUG
0b32f4bb
JB
1010 struct extent_buffer *eb;
1011
1012 BUG_ON(!PagePrivate(page));
1013 eb = (struct extent_buffer *)page->private;
1014 BUG_ON(!eb);
1015 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1016 BUG_ON(!atomic_read(&eb->refs));
1017 btrfs_assert_tree_locked(eb);
bb146eb2 1018#endif
0b32f4bb
JB
1019 return __set_page_dirty_nobuffers(page);
1020}
1021
7f09410b 1022static const struct address_space_operations btree_aops = {
d98237b3 1023 .readpage = btree_readpage,
0da5468f 1024 .writepages = btree_writepages,
5f39d397
CM
1025 .releasepage = btree_releasepage,
1026 .invalidatepage = btree_invalidatepage,
5a92bc88 1027#ifdef CONFIG_MIGRATION
784b4e29 1028 .migratepage = btree_migratepage,
5a92bc88 1029#endif
0b32f4bb 1030 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1031};
1032
2ff7e61e 1033void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1034{
5f39d397 1035 struct extent_buffer *buf = NULL;
537f38f0 1036 int ret;
090d1875 1037
2ff7e61e 1038 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1039 if (IS_ERR(buf))
6197d86e 1040 return;
537f38f0 1041
c2ccfbc6 1042 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1043 if (ret < 0)
1044 free_extent_buffer_stale(buf);
1045 else
1046 free_extent_buffer(buf);
090d1875
CM
1047}
1048
2ff7e61e
JM
1049struct extent_buffer *btrfs_find_create_tree_block(
1050 struct btrfs_fs_info *fs_info,
1051 u64 bytenr)
0999df54 1052{
0b246afa
JM
1053 if (btrfs_is_testing(fs_info))
1054 return alloc_test_extent_buffer(fs_info, bytenr);
1055 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1056}
1057
581c1760
QW
1058/*
1059 * Read tree block at logical address @bytenr and do variant basic but critical
1060 * verification.
1061 *
1062 * @parent_transid: expected transid of this tree block, skip check if 0
1063 * @level: expected level, mandatory check
1064 * @first_key: expected key in slot 0, skip check if NULL
1065 */
2ff7e61e 1066struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1067 u64 parent_transid, int level,
1068 struct btrfs_key *first_key)
0999df54
CM
1069{
1070 struct extent_buffer *buf = NULL;
0999df54
CM
1071 int ret;
1072
2ff7e61e 1073 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1074 if (IS_ERR(buf))
1075 return buf;
0999df54 1076
5ab12d1f 1077 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1078 level, first_key);
0f0fe8f7 1079 if (ret) {
537f38f0 1080 free_extent_buffer_stale(buf);
64c043de 1081 return ERR_PTR(ret);
0f0fe8f7 1082 }
5f39d397 1083 return buf;
ce9adaa5 1084
eb60ceac
CM
1085}
1086
6a884d7d 1087void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1088{
6a884d7d 1089 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1090 if (btrfs_header_generation(buf) ==
e2d84521 1091 fs_info->running_transaction->transid) {
b9447ef8 1092 btrfs_assert_tree_locked(buf);
b4ce94de 1093
b9473439 1094 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1095 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1096 -buf->len,
1097 fs_info->dirty_metadata_batch);
ed7b63eb 1098 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1099 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1100 clear_extent_buffer_dirty(buf);
1101 }
925baedd 1102 }
5f39d397
CM
1103}
1104
8257b2dc
MX
1105static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1106{
1107 struct btrfs_subvolume_writers *writers;
1108 int ret;
1109
1110 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1111 if (!writers)
1112 return ERR_PTR(-ENOMEM);
1113
8a5a916d 1114 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1115 if (ret < 0) {
1116 kfree(writers);
1117 return ERR_PTR(ret);
1118 }
1119
1120 init_waitqueue_head(&writers->wait);
1121 return writers;
1122}
1123
1124static void
1125btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1126{
1127 percpu_counter_destroy(&writers->counter);
1128 kfree(writers);
1129}
1130
da17066c 1131static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1132 u64 objectid)
d97e63b6 1133{
7c0260ee 1134 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1135 root->node = NULL;
a28ec197 1136 root->commit_root = NULL;
27cdeb70 1137 root->state = 0;
d68fc57b 1138 root->orphan_cleanup_state = 0;
0b86a832 1139
0f7d52f4 1140 root->last_trans = 0;
13a8a7c8 1141 root->highest_objectid = 0;
eb73c1b7 1142 root->nr_delalloc_inodes = 0;
199c2a9c 1143 root->nr_ordered_extents = 0;
6bef4d31 1144 root->inode_tree = RB_ROOT;
16cdcec7 1145 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1146 root->block_rsv = NULL;
0b86a832
CM
1147
1148 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1149 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1150 INIT_LIST_HEAD(&root->delalloc_inodes);
1151 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1152 INIT_LIST_HEAD(&root->ordered_extents);
1153 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1154 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1155 INIT_LIST_HEAD(&root->logged_list[0]);
1156 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1157 spin_lock_init(&root->inode_lock);
eb73c1b7 1158 spin_lock_init(&root->delalloc_lock);
199c2a9c 1159 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1160 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1161 spin_lock_init(&root->log_extents_lock[0]);
1162 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1163 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1164 mutex_init(&root->objectid_mutex);
e02119d5 1165 mutex_init(&root->log_mutex);
31f3d255 1166 mutex_init(&root->ordered_extent_mutex);
573bfb72 1167 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1168 init_waitqueue_head(&root->log_writer_wait);
1169 init_waitqueue_head(&root->log_commit_wait[0]);
1170 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1171 INIT_LIST_HEAD(&root->log_ctxs[0]);
1172 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1173 atomic_set(&root->log_commit[0], 0);
1174 atomic_set(&root->log_commit[1], 0);
1175 atomic_set(&root->log_writers, 0);
2ecb7923 1176 atomic_set(&root->log_batch, 0);
0700cea7 1177 refcount_set(&root->refs, 1);
ea14b57f 1178 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1179 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1180 atomic_set(&root->nr_swapfiles, 0);
7237f183 1181 root->log_transid = 0;
d1433deb 1182 root->log_transid_committed = -1;
257c62e1 1183 root->last_log_commit = 0;
7c0260ee 1184 if (!dummy)
43eb5f29
QW
1185 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1186 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1187
3768f368
CM
1188 memset(&root->root_key, 0, sizeof(root->root_key));
1189 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1190 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1191 if (!dummy)
06ea65a3
JB
1192 root->defrag_trans_start = fs_info->generation;
1193 else
1194 root->defrag_trans_start = 0;
4d775673 1195 root->root_key.objectid = objectid;
0ee5dc67 1196 root->anon_dev = 0;
8ea05e3a 1197
5f3ab90a 1198 spin_lock_init(&root->root_item_lock);
370a11b8 1199 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1200}
1201
74e4d827
DS
1202static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1203 gfp_t flags)
6f07e42e 1204{
74e4d827 1205 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1206 if (root)
1207 root->fs_info = fs_info;
1208 return root;
1209}
1210
06ea65a3
JB
1211#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1212/* Should only be used by the testing infrastructure */
da17066c 1213struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1214{
1215 struct btrfs_root *root;
1216
7c0260ee
JM
1217 if (!fs_info)
1218 return ERR_PTR(-EINVAL);
1219
1220 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1221 if (!root)
1222 return ERR_PTR(-ENOMEM);
da17066c 1223
b9ef22de 1224 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1225 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1226 root->alloc_bytenr = 0;
06ea65a3
JB
1227
1228 return root;
1229}
1230#endif
1231
20897f5c 1232struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1233 u64 objectid)
1234{
9b7a2440 1235 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1236 struct extent_buffer *leaf;
1237 struct btrfs_root *tree_root = fs_info->tree_root;
1238 struct btrfs_root *root;
1239 struct btrfs_key key;
b89f6d1f 1240 unsigned int nofs_flag;
20897f5c 1241 int ret = 0;
33d85fda 1242 uuid_le uuid = NULL_UUID_LE;
20897f5c 1243
b89f6d1f
FM
1244 /*
1245 * We're holding a transaction handle, so use a NOFS memory allocation
1246 * context to avoid deadlock if reclaim happens.
1247 */
1248 nofs_flag = memalloc_nofs_save();
74e4d827 1249 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1250 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1251 if (!root)
1252 return ERR_PTR(-ENOMEM);
1253
da17066c 1254 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1255 root->root_key.objectid = objectid;
1256 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1257 root->root_key.offset = 0;
1258
4d75f8a9 1259 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1260 if (IS_ERR(leaf)) {
1261 ret = PTR_ERR(leaf);
1dd05682 1262 leaf = NULL;
20897f5c
AJ
1263 goto fail;
1264 }
1265
20897f5c 1266 root->node = leaf;
20897f5c
AJ
1267 btrfs_mark_buffer_dirty(leaf);
1268
1269 root->commit_root = btrfs_root_node(root);
27cdeb70 1270 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1271
1272 root->root_item.flags = 0;
1273 root->root_item.byte_limit = 0;
1274 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1275 btrfs_set_root_generation(&root->root_item, trans->transid);
1276 btrfs_set_root_level(&root->root_item, 0);
1277 btrfs_set_root_refs(&root->root_item, 1);
1278 btrfs_set_root_used(&root->root_item, leaf->len);
1279 btrfs_set_root_last_snapshot(&root->root_item, 0);
1280 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1281 if (is_fstree(objectid))
1282 uuid_le_gen(&uuid);
6463fe58 1283 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1284 root->root_item.drop_level = 0;
1285
1286 key.objectid = objectid;
1287 key.type = BTRFS_ROOT_ITEM_KEY;
1288 key.offset = 0;
1289 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1290 if (ret)
1291 goto fail;
1292
1293 btrfs_tree_unlock(leaf);
1294
1dd05682
TI
1295 return root;
1296
20897f5c 1297fail:
1dd05682
TI
1298 if (leaf) {
1299 btrfs_tree_unlock(leaf);
59885b39 1300 free_extent_buffer(root->commit_root);
1dd05682
TI
1301 free_extent_buffer(leaf);
1302 }
1303 kfree(root);
20897f5c 1304
1dd05682 1305 return ERR_PTR(ret);
20897f5c
AJ
1306}
1307
7237f183
YZ
1308static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1309 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1310{
1311 struct btrfs_root *root;
7237f183 1312 struct extent_buffer *leaf;
e02119d5 1313
74e4d827 1314 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1315 if (!root)
7237f183 1316 return ERR_PTR(-ENOMEM);
e02119d5 1317
da17066c 1318 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1319
1320 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1321 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1322 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1323
7237f183 1324 /*
27cdeb70
MX
1325 * DON'T set REF_COWS for log trees
1326 *
7237f183
YZ
1327 * log trees do not get reference counted because they go away
1328 * before a real commit is actually done. They do store pointers
1329 * to file data extents, and those reference counts still get
1330 * updated (along with back refs to the log tree).
1331 */
e02119d5 1332
4d75f8a9
DS
1333 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1334 NULL, 0, 0, 0);
7237f183
YZ
1335 if (IS_ERR(leaf)) {
1336 kfree(root);
1337 return ERR_CAST(leaf);
1338 }
e02119d5 1339
7237f183 1340 root->node = leaf;
e02119d5 1341
e02119d5
CM
1342 btrfs_mark_buffer_dirty(root->node);
1343 btrfs_tree_unlock(root->node);
7237f183
YZ
1344 return root;
1345}
1346
1347int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1348 struct btrfs_fs_info *fs_info)
1349{
1350 struct btrfs_root *log_root;
1351
1352 log_root = alloc_log_tree(trans, fs_info);
1353 if (IS_ERR(log_root))
1354 return PTR_ERR(log_root);
1355 WARN_ON(fs_info->log_root_tree);
1356 fs_info->log_root_tree = log_root;
1357 return 0;
1358}
1359
1360int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root)
1362{
0b246afa 1363 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1364 struct btrfs_root *log_root;
1365 struct btrfs_inode_item *inode_item;
1366
0b246afa 1367 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1368 if (IS_ERR(log_root))
1369 return PTR_ERR(log_root);
1370
1371 log_root->last_trans = trans->transid;
1372 log_root->root_key.offset = root->root_key.objectid;
1373
1374 inode_item = &log_root->root_item.inode;
3cae210f
QW
1375 btrfs_set_stack_inode_generation(inode_item, 1);
1376 btrfs_set_stack_inode_size(inode_item, 3);
1377 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1378 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1379 fs_info->nodesize);
3cae210f 1380 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1381
5d4f98a2 1382 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1383
1384 WARN_ON(root->log_root);
1385 root->log_root = log_root;
1386 root->log_transid = 0;
d1433deb 1387 root->log_transid_committed = -1;
257c62e1 1388 root->last_log_commit = 0;
e02119d5
CM
1389 return 0;
1390}
1391
35a3621b
SB
1392static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1393 struct btrfs_key *key)
e02119d5
CM
1394{
1395 struct btrfs_root *root;
1396 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1397 struct btrfs_path *path;
84234f3a 1398 u64 generation;
cb517eab 1399 int ret;
581c1760 1400 int level;
0f7d52f4 1401
cb517eab
MX
1402 path = btrfs_alloc_path();
1403 if (!path)
0f7d52f4 1404 return ERR_PTR(-ENOMEM);
cb517eab 1405
74e4d827 1406 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1407 if (!root) {
1408 ret = -ENOMEM;
1409 goto alloc_fail;
0f7d52f4
CM
1410 }
1411
da17066c 1412 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1413
cb517eab
MX
1414 ret = btrfs_find_root(tree_root, key, path,
1415 &root->root_item, &root->root_key);
0f7d52f4 1416 if (ret) {
13a8a7c8
YZ
1417 if (ret > 0)
1418 ret = -ENOENT;
cb517eab 1419 goto find_fail;
0f7d52f4 1420 }
13a8a7c8 1421
84234f3a 1422 generation = btrfs_root_generation(&root->root_item);
581c1760 1423 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1424 root->node = read_tree_block(fs_info,
1425 btrfs_root_bytenr(&root->root_item),
581c1760 1426 generation, level, NULL);
64c043de
LB
1427 if (IS_ERR(root->node)) {
1428 ret = PTR_ERR(root->node);
cb517eab
MX
1429 goto find_fail;
1430 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1431 ret = -EIO;
64c043de
LB
1432 free_extent_buffer(root->node);
1433 goto find_fail;
416bc658 1434 }
5d4f98a2 1435 root->commit_root = btrfs_root_node(root);
13a8a7c8 1436out:
cb517eab
MX
1437 btrfs_free_path(path);
1438 return root;
1439
cb517eab
MX
1440find_fail:
1441 kfree(root);
1442alloc_fail:
1443 root = ERR_PTR(ret);
1444 goto out;
1445}
1446
1447struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1448 struct btrfs_key *location)
1449{
1450 struct btrfs_root *root;
1451
1452 root = btrfs_read_tree_root(tree_root, location);
1453 if (IS_ERR(root))
1454 return root;
1455
1456 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1457 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1458 btrfs_check_and_init_root_item(&root->root_item);
1459 }
13a8a7c8 1460
5eda7b5e
CM
1461 return root;
1462}
1463
cb517eab
MX
1464int btrfs_init_fs_root(struct btrfs_root *root)
1465{
1466 int ret;
8257b2dc 1467 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1468
1469 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1470 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1471 GFP_NOFS);
1472 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1473 ret = -ENOMEM;
1474 goto fail;
1475 }
1476
8257b2dc
MX
1477 writers = btrfs_alloc_subvolume_writers();
1478 if (IS_ERR(writers)) {
1479 ret = PTR_ERR(writers);
1480 goto fail;
1481 }
1482 root->subv_writers = writers;
1483
cb517eab 1484 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1485 spin_lock_init(&root->ino_cache_lock);
1486 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1487
1488 ret = get_anon_bdev(&root->anon_dev);
1489 if (ret)
876d2cf1 1490 goto fail;
f32e48e9
CR
1491
1492 mutex_lock(&root->objectid_mutex);
1493 ret = btrfs_find_highest_objectid(root,
1494 &root->highest_objectid);
1495 if (ret) {
1496 mutex_unlock(&root->objectid_mutex);
876d2cf1 1497 goto fail;
f32e48e9
CR
1498 }
1499
1500 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1501
1502 mutex_unlock(&root->objectid_mutex);
1503
cb517eab
MX
1504 return 0;
1505fail:
84db5ccf 1506 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1507 return ret;
1508}
1509
35bbb97f
JM
1510struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1511 u64 root_id)
cb517eab
MX
1512{
1513 struct btrfs_root *root;
1514
1515 spin_lock(&fs_info->fs_roots_radix_lock);
1516 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1517 (unsigned long)root_id);
1518 spin_unlock(&fs_info->fs_roots_radix_lock);
1519 return root;
1520}
1521
1522int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1523 struct btrfs_root *root)
1524{
1525 int ret;
1526
e1860a77 1527 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1528 if (ret)
1529 return ret;
1530
1531 spin_lock(&fs_info->fs_roots_radix_lock);
1532 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1533 (unsigned long)root->root_key.objectid,
1534 root);
1535 if (ret == 0)
27cdeb70 1536 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1537 spin_unlock(&fs_info->fs_roots_radix_lock);
1538 radix_tree_preload_end();
1539
1540 return ret;
1541}
1542
c00869f1
MX
1543struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1544 struct btrfs_key *location,
1545 bool check_ref)
5eda7b5e
CM
1546{
1547 struct btrfs_root *root;
381cf658 1548 struct btrfs_path *path;
1d4c08e0 1549 struct btrfs_key key;
5eda7b5e
CM
1550 int ret;
1551
edbd8d4e
CM
1552 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1553 return fs_info->tree_root;
1554 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1555 return fs_info->extent_root;
8f18cf13
CM
1556 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1557 return fs_info->chunk_root;
1558 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1559 return fs_info->dev_root;
0403e47e
YZ
1560 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1561 return fs_info->csum_root;
bcef60f2
AJ
1562 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1563 return fs_info->quota_root ? fs_info->quota_root :
1564 ERR_PTR(-ENOENT);
f7a81ea4
SB
1565 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1566 return fs_info->uuid_root ? fs_info->uuid_root :
1567 ERR_PTR(-ENOENT);
70f6d82e
OS
1568 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1569 return fs_info->free_space_root ? fs_info->free_space_root :
1570 ERR_PTR(-ENOENT);
4df27c4d 1571again:
cb517eab 1572 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1573 if (root) {
c00869f1 1574 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1575 return ERR_PTR(-ENOENT);
5eda7b5e 1576 return root;
48475471 1577 }
5eda7b5e 1578
cb517eab 1579 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1580 if (IS_ERR(root))
1581 return root;
3394e160 1582
c00869f1 1583 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1584 ret = -ENOENT;
581bb050 1585 goto fail;
35a30d7c 1586 }
581bb050 1587
cb517eab 1588 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1589 if (ret)
1590 goto fail;
3394e160 1591
381cf658
DS
1592 path = btrfs_alloc_path();
1593 if (!path) {
1594 ret = -ENOMEM;
1595 goto fail;
1596 }
1d4c08e0
DS
1597 key.objectid = BTRFS_ORPHAN_OBJECTID;
1598 key.type = BTRFS_ORPHAN_ITEM_KEY;
1599 key.offset = location->objectid;
1600
1601 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1602 btrfs_free_path(path);
d68fc57b
YZ
1603 if (ret < 0)
1604 goto fail;
1605 if (ret == 0)
27cdeb70 1606 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1607
cb517eab 1608 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1609 if (ret) {
4df27c4d 1610 if (ret == -EEXIST) {
84db5ccf 1611 btrfs_free_fs_root(root);
4df27c4d
YZ
1612 goto again;
1613 }
1614 goto fail;
0f7d52f4 1615 }
edbd8d4e 1616 return root;
4df27c4d 1617fail:
84db5ccf 1618 btrfs_free_fs_root(root);
4df27c4d 1619 return ERR_PTR(ret);
edbd8d4e
CM
1620}
1621
04160088
CM
1622static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1623{
1624 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1625 int ret = 0;
04160088
CM
1626 struct btrfs_device *device;
1627 struct backing_dev_info *bdi;
b7967db7 1628
1f78160c
XG
1629 rcu_read_lock();
1630 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1631 if (!device->bdev)
1632 continue;
efa7c9f9 1633 bdi = device->bdev->bd_bdi;
ff9ea323 1634 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1635 ret = 1;
1636 break;
1637 }
1638 }
1f78160c 1639 rcu_read_unlock();
04160088
CM
1640 return ret;
1641}
1642
8b712842
CM
1643/*
1644 * called by the kthread helper functions to finally call the bio end_io
1645 * functions. This is where read checksum verification actually happens
1646 */
1647static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1648{
ce9adaa5 1649 struct bio *bio;
97eb6b69 1650 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1651
97eb6b69 1652 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1653 bio = end_io_wq->bio;
ce9adaa5 1654
4e4cbee9 1655 bio->bi_status = end_io_wq->status;
8b712842
CM
1656 bio->bi_private = end_io_wq->private;
1657 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1658 bio_endio(bio);
9be490f1 1659 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1660}
1661
a74a4b97
CM
1662static int cleaner_kthread(void *arg)
1663{
1664 struct btrfs_root *root = arg;
0b246afa 1665 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1666 int again;
a74a4b97 1667
d6fd0ae2 1668 while (1) {
d0278245 1669 again = 0;
a74a4b97 1670
fd340d0f
JB
1671 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1672
d0278245 1673 /* Make the cleaner go to sleep early. */
2ff7e61e 1674 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1675 goto sleep;
1676
90c711ab
ZB
1677 /*
1678 * Do not do anything if we might cause open_ctree() to block
1679 * before we have finished mounting the filesystem.
1680 */
0b246afa 1681 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1682 goto sleep;
1683
0b246afa 1684 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1685 goto sleep;
1686
dc7f370c
MX
1687 /*
1688 * Avoid the problem that we change the status of the fs
1689 * during the above check and trylock.
1690 */
2ff7e61e 1691 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1692 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1693 goto sleep;
76dda93c 1694 }
a74a4b97 1695
2ff7e61e 1696 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1697
d0278245 1698 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1699 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1700
1701 /*
05323cd1
MX
1702 * The defragger has dealt with the R/O remount and umount,
1703 * needn't do anything special here.
d0278245 1704 */
0b246afa 1705 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1706
1707 /*
1708 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1709 * with relocation (btrfs_relocate_chunk) and relocation
1710 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1711 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1712 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1713 * unused block groups.
1714 */
0b246afa 1715 btrfs_delete_unused_bgs(fs_info);
d0278245 1716sleep:
fd340d0f 1717 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1718 if (kthread_should_park())
1719 kthread_parkme();
1720 if (kthread_should_stop())
1721 return 0;
838fe188 1722 if (!again) {
a74a4b97 1723 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1724 schedule();
a74a4b97
CM
1725 __set_current_state(TASK_RUNNING);
1726 }
da288d28 1727 }
a74a4b97
CM
1728}
1729
1730static int transaction_kthread(void *arg)
1731{
1732 struct btrfs_root *root = arg;
0b246afa 1733 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1734 struct btrfs_trans_handle *trans;
1735 struct btrfs_transaction *cur;
8929ecfa 1736 u64 transid;
a944442c 1737 time64_t now;
a74a4b97 1738 unsigned long delay;
914b2007 1739 bool cannot_commit;
a74a4b97
CM
1740
1741 do {
914b2007 1742 cannot_commit = false;
0b246afa
JM
1743 delay = HZ * fs_info->commit_interval;
1744 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1745
0b246afa
JM
1746 spin_lock(&fs_info->trans_lock);
1747 cur = fs_info->running_transaction;
a74a4b97 1748 if (!cur) {
0b246afa 1749 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1750 goto sleep;
1751 }
31153d81 1752
afd48513 1753 now = ktime_get_seconds();
3296bf56 1754 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1755 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1756 (now < cur->start_time ||
0b246afa
JM
1757 now - cur->start_time < fs_info->commit_interval)) {
1758 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1759 delay = HZ * 5;
1760 goto sleep;
1761 }
8929ecfa 1762 transid = cur->transid;
0b246afa 1763 spin_unlock(&fs_info->trans_lock);
56bec294 1764
79787eaa 1765 /* If the file system is aborted, this will always fail. */
354aa0fb 1766 trans = btrfs_attach_transaction(root);
914b2007 1767 if (IS_ERR(trans)) {
354aa0fb
MX
1768 if (PTR_ERR(trans) != -ENOENT)
1769 cannot_commit = true;
79787eaa 1770 goto sleep;
914b2007 1771 }
8929ecfa 1772 if (transid == trans->transid) {
3a45bb20 1773 btrfs_commit_transaction(trans);
8929ecfa 1774 } else {
3a45bb20 1775 btrfs_end_transaction(trans);
8929ecfa 1776 }
a74a4b97 1777sleep:
0b246afa
JM
1778 wake_up_process(fs_info->cleaner_kthread);
1779 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1780
4e121c06 1781 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1782 &fs_info->fs_state)))
2ff7e61e 1783 btrfs_cleanup_transaction(fs_info);
ce63f891 1784 if (!kthread_should_stop() &&
0b246afa 1785 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1786 cannot_commit))
bc5511d0 1787 schedule_timeout_interruptible(delay);
a74a4b97
CM
1788 } while (!kthread_should_stop());
1789 return 0;
1790}
1791
af31f5e5 1792/*
01f0f9da
NB
1793 * This will find the highest generation in the array of root backups. The
1794 * index of the highest array is returned, or -EINVAL if we can't find
1795 * anything.
af31f5e5
CM
1796 *
1797 * We check to make sure the array is valid by comparing the
1798 * generation of the latest root in the array with the generation
1799 * in the super block. If they don't match we pitch it.
1800 */
01f0f9da 1801static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1802{
01f0f9da 1803 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1804 u64 cur;
af31f5e5
CM
1805 struct btrfs_root_backup *root_backup;
1806 int i;
1807
1808 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1809 root_backup = info->super_copy->super_roots + i;
1810 cur = btrfs_backup_tree_root_gen(root_backup);
1811 if (cur == newest_gen)
01f0f9da 1812 return i;
af31f5e5
CM
1813 }
1814
01f0f9da 1815 return -EINVAL;
af31f5e5
CM
1816}
1817
1818
1819/*
1820 * find the oldest backup so we know where to store new entries
1821 * in the backup array. This will set the backup_root_index
1822 * field in the fs_info struct
1823 */
fc2e4c5b 1824static void find_oldest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1825{
01f0f9da 1826 int newest_index;
af31f5e5 1827
01f0f9da 1828 newest_index = find_newest_super_backup(info);
af31f5e5 1829 /* if there was garbage in there, just move along */
01f0f9da 1830 if (newest_index == -EINVAL) {
af31f5e5
CM
1831 info->backup_root_index = 0;
1832 } else {
1833 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1834 }
1835}
1836
1837/*
1838 * copy all the root pointers into the super backup array.
1839 * this will bump the backup pointer by one when it is
1840 * done
1841 */
1842static void backup_super_roots(struct btrfs_fs_info *info)
1843{
1844 int next_backup;
1845 struct btrfs_root_backup *root_backup;
1846 int last_backup;
1847
1848 next_backup = info->backup_root_index;
1849 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1850 BTRFS_NUM_BACKUP_ROOTS;
1851
1852 /*
1853 * just overwrite the last backup if we're at the same generation
1854 * this happens only at umount
1855 */
1856 root_backup = info->super_for_commit->super_roots + last_backup;
1857 if (btrfs_backup_tree_root_gen(root_backup) ==
1858 btrfs_header_generation(info->tree_root->node))
1859 next_backup = last_backup;
1860
1861 root_backup = info->super_for_commit->super_roots + next_backup;
1862
1863 /*
1864 * make sure all of our padding and empty slots get zero filled
1865 * regardless of which ones we use today
1866 */
1867 memset(root_backup, 0, sizeof(*root_backup));
1868
1869 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1870
1871 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1872 btrfs_set_backup_tree_root_gen(root_backup,
1873 btrfs_header_generation(info->tree_root->node));
1874
1875 btrfs_set_backup_tree_root_level(root_backup,
1876 btrfs_header_level(info->tree_root->node));
1877
1878 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1879 btrfs_set_backup_chunk_root_gen(root_backup,
1880 btrfs_header_generation(info->chunk_root->node));
1881 btrfs_set_backup_chunk_root_level(root_backup,
1882 btrfs_header_level(info->chunk_root->node));
1883
1884 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1885 btrfs_set_backup_extent_root_gen(root_backup,
1886 btrfs_header_generation(info->extent_root->node));
1887 btrfs_set_backup_extent_root_level(root_backup,
1888 btrfs_header_level(info->extent_root->node));
1889
7c7e82a7
CM
1890 /*
1891 * we might commit during log recovery, which happens before we set
1892 * the fs_root. Make sure it is valid before we fill it in.
1893 */
1894 if (info->fs_root && info->fs_root->node) {
1895 btrfs_set_backup_fs_root(root_backup,
1896 info->fs_root->node->start);
1897 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1898 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1899 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1900 btrfs_header_level(info->fs_root->node));
7c7e82a7 1901 }
af31f5e5
CM
1902
1903 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1904 btrfs_set_backup_dev_root_gen(root_backup,
1905 btrfs_header_generation(info->dev_root->node));
1906 btrfs_set_backup_dev_root_level(root_backup,
1907 btrfs_header_level(info->dev_root->node));
1908
1909 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1910 btrfs_set_backup_csum_root_gen(root_backup,
1911 btrfs_header_generation(info->csum_root->node));
1912 btrfs_set_backup_csum_root_level(root_backup,
1913 btrfs_header_level(info->csum_root->node));
1914
1915 btrfs_set_backup_total_bytes(root_backup,
1916 btrfs_super_total_bytes(info->super_copy));
1917 btrfs_set_backup_bytes_used(root_backup,
1918 btrfs_super_bytes_used(info->super_copy));
1919 btrfs_set_backup_num_devices(root_backup,
1920 btrfs_super_num_devices(info->super_copy));
1921
1922 /*
1923 * if we don't copy this out to the super_copy, it won't get remembered
1924 * for the next commit
1925 */
1926 memcpy(&info->super_copy->super_roots,
1927 &info->super_for_commit->super_roots,
1928 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1929}
1930
1931/*
1932 * this copies info out of the root backup array and back into
1933 * the in-memory super block. It is meant to help iterate through
1934 * the array, so you send it the number of backups you've already
1935 * tried and the last backup index you used.
1936 *
1937 * this returns -1 when it has tried all the backups
1938 */
1939static noinline int next_root_backup(struct btrfs_fs_info *info,
1940 struct btrfs_super_block *super,
1941 int *num_backups_tried, int *backup_index)
1942{
1943 struct btrfs_root_backup *root_backup;
1944 int newest = *backup_index;
1945
1946 if (*num_backups_tried == 0) {
01f0f9da 1947 newest = find_newest_super_backup(info);
af31f5e5
CM
1948 if (newest == -1)
1949 return -1;
1950
1951 *backup_index = newest;
1952 *num_backups_tried = 1;
1953 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1954 /* we've tried all the backups, all done */
1955 return -1;
1956 } else {
1957 /* jump to the next oldest backup */
1958 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1959 BTRFS_NUM_BACKUP_ROOTS;
1960 *backup_index = newest;
1961 *num_backups_tried += 1;
1962 }
1963 root_backup = super->super_roots + newest;
1964
1965 btrfs_set_super_generation(super,
1966 btrfs_backup_tree_root_gen(root_backup));
1967 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1968 btrfs_set_super_root_level(super,
1969 btrfs_backup_tree_root_level(root_backup));
1970 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1971
1972 /*
1973 * fixme: the total bytes and num_devices need to match or we should
1974 * need a fsck
1975 */
1976 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1977 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1978 return 0;
1979}
1980
7abadb64
LB
1981/* helper to cleanup workers */
1982static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1983{
dc6e3209 1984 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1985 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1986 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1987 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1988 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1989 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1990 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1991 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1992 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1993 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1994 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1995 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1996 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1997 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a9b9477d
FM
1998 /*
1999 * Now that all other work queues are destroyed, we can safely destroy
2000 * the queues used for metadata I/O, since tasks from those other work
2001 * queues can do metadata I/O operations.
2002 */
2003 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2004 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2005}
2006
2e9f5954
R
2007static void free_root_extent_buffers(struct btrfs_root *root)
2008{
2009 if (root) {
2010 free_extent_buffer(root->node);
2011 free_extent_buffer(root->commit_root);
2012 root->node = NULL;
2013 root->commit_root = NULL;
2014 }
2015}
2016
af31f5e5 2017/* helper to cleanup tree roots */
4273eaff 2018static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2019{
2e9f5954 2020 free_root_extent_buffers(info->tree_root);
655b09fe 2021
2e9f5954
R
2022 free_root_extent_buffers(info->dev_root);
2023 free_root_extent_buffers(info->extent_root);
2024 free_root_extent_buffers(info->csum_root);
2025 free_root_extent_buffers(info->quota_root);
2026 free_root_extent_buffers(info->uuid_root);
4273eaff 2027 if (free_chunk_root)
2e9f5954 2028 free_root_extent_buffers(info->chunk_root);
70f6d82e 2029 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2030}
2031
faa2dbf0 2032void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2033{
2034 int ret;
2035 struct btrfs_root *gang[8];
2036 int i;
2037
2038 while (!list_empty(&fs_info->dead_roots)) {
2039 gang[0] = list_entry(fs_info->dead_roots.next,
2040 struct btrfs_root, root_list);
2041 list_del(&gang[0]->root_list);
2042
27cdeb70 2043 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2044 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2045 } else {
2046 free_extent_buffer(gang[0]->node);
2047 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2048 btrfs_put_fs_root(gang[0]);
171f6537
JB
2049 }
2050 }
2051
2052 while (1) {
2053 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2054 (void **)gang, 0,
2055 ARRAY_SIZE(gang));
2056 if (!ret)
2057 break;
2058 for (i = 0; i < ret; i++)
cb517eab 2059 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2060 }
1a4319cc
LB
2061
2062 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2063 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2064 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2065 }
171f6537 2066}
af31f5e5 2067
638aa7ed
ES
2068static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2069{
2070 mutex_init(&fs_info->scrub_lock);
2071 atomic_set(&fs_info->scrubs_running, 0);
2072 atomic_set(&fs_info->scrub_pause_req, 0);
2073 atomic_set(&fs_info->scrubs_paused, 0);
2074 atomic_set(&fs_info->scrub_cancel_req, 0);
2075 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2076 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2077}
2078
779a65a4
ES
2079static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2080{
2081 spin_lock_init(&fs_info->balance_lock);
2082 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2083 atomic_set(&fs_info->balance_pause_req, 0);
2084 atomic_set(&fs_info->balance_cancel_req, 0);
2085 fs_info->balance_ctl = NULL;
2086 init_waitqueue_head(&fs_info->balance_wait_q);
2087}
2088
6bccf3ab 2089static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2090{
2ff7e61e
JM
2091 struct inode *inode = fs_info->btree_inode;
2092
2093 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2094 set_nlink(inode, 1);
f37938e0
ES
2095 /*
2096 * we set the i_size on the btree inode to the max possible int.
2097 * the real end of the address space is determined by all of
2098 * the devices in the system
2099 */
2ff7e61e
JM
2100 inode->i_size = OFFSET_MAX;
2101 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2102
2ff7e61e 2103 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2104 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2105 IO_TREE_INODE_IO, inode);
7b439738 2106 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2107 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2108
2ff7e61e 2109 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2110
2ff7e61e
JM
2111 BTRFS_I(inode)->root = fs_info->tree_root;
2112 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2113 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2114 btrfs_insert_inode_hash(inode);
f37938e0
ES
2115}
2116
ad618368
ES
2117static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2118{
ad618368 2119 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2120 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2121 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2122}
2123
f9e92e40
ES
2124static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2125{
2126 spin_lock_init(&fs_info->qgroup_lock);
2127 mutex_init(&fs_info->qgroup_ioctl_lock);
2128 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2129 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2130 fs_info->qgroup_seq = 1;
f9e92e40 2131 fs_info->qgroup_ulist = NULL;
d2c609b8 2132 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2133 mutex_init(&fs_info->qgroup_rescan_lock);
2134}
2135
2a458198
ES
2136static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2137 struct btrfs_fs_devices *fs_devices)
2138{
f7b885be 2139 u32 max_active = fs_info->thread_pool_size;
6f011058 2140 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2141
2142 fs_info->workers =
cb001095
JM
2143 btrfs_alloc_workqueue(fs_info, "worker",
2144 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2145
2146 fs_info->delalloc_workers =
cb001095
JM
2147 btrfs_alloc_workqueue(fs_info, "delalloc",
2148 flags, max_active, 2);
2a458198
ES
2149
2150 fs_info->flush_workers =
cb001095
JM
2151 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2152 flags, max_active, 0);
2a458198
ES
2153
2154 fs_info->caching_workers =
cb001095 2155 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2156
2a458198 2157 fs_info->fixup_workers =
cb001095 2158 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2159
2160 /*
2161 * endios are largely parallel and should have a very
2162 * low idle thresh
2163 */
2164 fs_info->endio_workers =
cb001095 2165 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2166 fs_info->endio_meta_workers =
cb001095
JM
2167 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2168 max_active, 4);
2a458198 2169 fs_info->endio_meta_write_workers =
cb001095
JM
2170 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2171 max_active, 2);
2a458198 2172 fs_info->endio_raid56_workers =
cb001095
JM
2173 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2174 max_active, 4);
2a458198 2175 fs_info->endio_repair_workers =
cb001095 2176 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2177 fs_info->rmw_workers =
cb001095 2178 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2179 fs_info->endio_write_workers =
cb001095
JM
2180 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2181 max_active, 2);
2a458198 2182 fs_info->endio_freespace_worker =
cb001095
JM
2183 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2184 max_active, 0);
2a458198 2185 fs_info->delayed_workers =
cb001095
JM
2186 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2187 max_active, 0);
2a458198 2188 fs_info->readahead_workers =
cb001095
JM
2189 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2190 max_active, 2);
2a458198 2191 fs_info->qgroup_rescan_workers =
cb001095 2192 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198
ES
2193
2194 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2195 fs_info->flush_workers &&
2a458198
ES
2196 fs_info->endio_workers && fs_info->endio_meta_workers &&
2197 fs_info->endio_meta_write_workers &&
2198 fs_info->endio_repair_workers &&
2199 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2200 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2201 fs_info->caching_workers && fs_info->readahead_workers &&
2202 fs_info->fixup_workers && fs_info->delayed_workers &&
2a458198
ES
2203 fs_info->qgroup_rescan_workers)) {
2204 return -ENOMEM;
2205 }
2206
2207 return 0;
2208}
2209
6d97c6e3
JT
2210static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2211{
2212 struct crypto_shash *csum_shash;
b4e967be 2213 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2214
b4e967be 2215 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2216
2217 if (IS_ERR(csum_shash)) {
2218 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2219 csum_driver);
6d97c6e3
JT
2220 return PTR_ERR(csum_shash);
2221 }
2222
2223 fs_info->csum_shash = csum_shash;
2224
2225 return 0;
2226}
2227
2228static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2229{
2230 crypto_free_shash(fs_info->csum_shash);
2231}
2232
63443bf5
ES
2233static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2234 struct btrfs_fs_devices *fs_devices)
2235{
2236 int ret;
63443bf5
ES
2237 struct btrfs_root *log_tree_root;
2238 struct btrfs_super_block *disk_super = fs_info->super_copy;
2239 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2240 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2241
2242 if (fs_devices->rw_devices == 0) {
f14d104d 2243 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2244 return -EIO;
2245 }
2246
74e4d827 2247 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2248 if (!log_tree_root)
2249 return -ENOMEM;
2250
da17066c 2251 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2252
2ff7e61e 2253 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2254 fs_info->generation + 1,
2255 level, NULL);
64c043de 2256 if (IS_ERR(log_tree_root->node)) {
f14d104d 2257 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2258 ret = PTR_ERR(log_tree_root->node);
64c043de 2259 kfree(log_tree_root);
0eeff236 2260 return ret;
64c043de 2261 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2262 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2263 free_extent_buffer(log_tree_root->node);
2264 kfree(log_tree_root);
2265 return -EIO;
2266 }
2267 /* returns with log_tree_root freed on success */
2268 ret = btrfs_recover_log_trees(log_tree_root);
2269 if (ret) {
0b246afa
JM
2270 btrfs_handle_fs_error(fs_info, ret,
2271 "Failed to recover log tree");
63443bf5
ES
2272 free_extent_buffer(log_tree_root->node);
2273 kfree(log_tree_root);
2274 return ret;
2275 }
2276
bc98a42c 2277 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2278 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2279 if (ret)
2280 return ret;
2281 }
2282
2283 return 0;
2284}
2285
6bccf3ab 2286static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2287{
6bccf3ab 2288 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2289 struct btrfs_root *root;
4bbcaa64
ES
2290 struct btrfs_key location;
2291 int ret;
2292
6bccf3ab
JM
2293 BUG_ON(!fs_info->tree_root);
2294
4bbcaa64
ES
2295 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2296 location.type = BTRFS_ROOT_ITEM_KEY;
2297 location.offset = 0;
2298
a4f3d2c4 2299 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2300 if (IS_ERR(root)) {
2301 ret = PTR_ERR(root);
2302 goto out;
2303 }
a4f3d2c4
DS
2304 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2305 fs_info->extent_root = root;
4bbcaa64
ES
2306
2307 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2308 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2309 if (IS_ERR(root)) {
2310 ret = PTR_ERR(root);
2311 goto out;
2312 }
a4f3d2c4
DS
2313 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314 fs_info->dev_root = root;
4bbcaa64
ES
2315 btrfs_init_devices_late(fs_info);
2316
2317 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2318 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2319 if (IS_ERR(root)) {
2320 ret = PTR_ERR(root);
2321 goto out;
2322 }
a4f3d2c4
DS
2323 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2324 fs_info->csum_root = root;
4bbcaa64
ES
2325
2326 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2327 root = btrfs_read_tree_root(tree_root, &location);
2328 if (!IS_ERR(root)) {
2329 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2330 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2331 fs_info->quota_root = root;
4bbcaa64
ES
2332 }
2333
2334 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2335 root = btrfs_read_tree_root(tree_root, &location);
2336 if (IS_ERR(root)) {
2337 ret = PTR_ERR(root);
4bbcaa64 2338 if (ret != -ENOENT)
f50f4353 2339 goto out;
4bbcaa64 2340 } else {
a4f3d2c4
DS
2341 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2342 fs_info->uuid_root = root;
4bbcaa64
ES
2343 }
2344
70f6d82e
OS
2345 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2346 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2347 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2348 if (IS_ERR(root)) {
2349 ret = PTR_ERR(root);
2350 goto out;
2351 }
70f6d82e
OS
2352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353 fs_info->free_space_root = root;
2354 }
2355
4bbcaa64 2356 return 0;
f50f4353
LB
2357out:
2358 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2359 location.objectid, ret);
2360 return ret;
4bbcaa64
ES
2361}
2362
069ec957
QW
2363/*
2364 * Real super block validation
2365 * NOTE: super csum type and incompat features will not be checked here.
2366 *
2367 * @sb: super block to check
2368 * @mirror_num: the super block number to check its bytenr:
2369 * 0 the primary (1st) sb
2370 * 1, 2 2nd and 3rd backup copy
2371 * -1 skip bytenr check
2372 */
2373static int validate_super(struct btrfs_fs_info *fs_info,
2374 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2375{
21a852b0
QW
2376 u64 nodesize = btrfs_super_nodesize(sb);
2377 u64 sectorsize = btrfs_super_sectorsize(sb);
2378 int ret = 0;
2379
2380 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2381 btrfs_err(fs_info, "no valid FS found");
2382 ret = -EINVAL;
2383 }
2384 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2385 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2386 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2387 ret = -EINVAL;
2388 }
2389 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2390 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2391 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2392 ret = -EINVAL;
2393 }
2394 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2395 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2396 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2397 ret = -EINVAL;
2398 }
2399 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2400 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2401 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2402 ret = -EINVAL;
2403 }
2404
2405 /*
2406 * Check sectorsize and nodesize first, other check will need it.
2407 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2408 */
2409 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2410 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2411 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2412 ret = -EINVAL;
2413 }
2414 /* Only PAGE SIZE is supported yet */
2415 if (sectorsize != PAGE_SIZE) {
2416 btrfs_err(fs_info,
2417 "sectorsize %llu not supported yet, only support %lu",
2418 sectorsize, PAGE_SIZE);
2419 ret = -EINVAL;
2420 }
2421 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2422 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2423 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2424 ret = -EINVAL;
2425 }
2426 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2427 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2428 le32_to_cpu(sb->__unused_leafsize), nodesize);
2429 ret = -EINVAL;
2430 }
2431
2432 /* Root alignment check */
2433 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2434 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2435 btrfs_super_root(sb));
2436 ret = -EINVAL;
2437 }
2438 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2439 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2440 btrfs_super_chunk_root(sb));
2441 ret = -EINVAL;
2442 }
2443 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2444 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2445 btrfs_super_log_root(sb));
2446 ret = -EINVAL;
2447 }
2448
de37aa51 2449 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2450 BTRFS_FSID_SIZE) != 0) {
21a852b0 2451 btrfs_err(fs_info,
7239ff4b 2452 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2453 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2454 ret = -EINVAL;
2455 }
2456
2457 /*
2458 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2459 * done later
2460 */
2461 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2462 btrfs_err(fs_info, "bytes_used is too small %llu",
2463 btrfs_super_bytes_used(sb));
2464 ret = -EINVAL;
2465 }
2466 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2467 btrfs_err(fs_info, "invalid stripesize %u",
2468 btrfs_super_stripesize(sb));
2469 ret = -EINVAL;
2470 }
2471 if (btrfs_super_num_devices(sb) > (1UL << 31))
2472 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2473 btrfs_super_num_devices(sb));
2474 if (btrfs_super_num_devices(sb) == 0) {
2475 btrfs_err(fs_info, "number of devices is 0");
2476 ret = -EINVAL;
2477 }
2478
069ec957
QW
2479 if (mirror_num >= 0 &&
2480 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2481 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2482 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2483 ret = -EINVAL;
2484 }
2485
2486 /*
2487 * Obvious sys_chunk_array corruptions, it must hold at least one key
2488 * and one chunk
2489 */
2490 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2491 btrfs_err(fs_info, "system chunk array too big %u > %u",
2492 btrfs_super_sys_array_size(sb),
2493 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2494 ret = -EINVAL;
2495 }
2496 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2497 + sizeof(struct btrfs_chunk)) {
2498 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2499 btrfs_super_sys_array_size(sb),
2500 sizeof(struct btrfs_disk_key)
2501 + sizeof(struct btrfs_chunk));
2502 ret = -EINVAL;
2503 }
2504
2505 /*
2506 * The generation is a global counter, we'll trust it more than the others
2507 * but it's still possible that it's the one that's wrong.
2508 */
2509 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2510 btrfs_warn(fs_info,
2511 "suspicious: generation < chunk_root_generation: %llu < %llu",
2512 btrfs_super_generation(sb),
2513 btrfs_super_chunk_root_generation(sb));
2514 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2515 && btrfs_super_cache_generation(sb) != (u64)-1)
2516 btrfs_warn(fs_info,
2517 "suspicious: generation < cache_generation: %llu < %llu",
2518 btrfs_super_generation(sb),
2519 btrfs_super_cache_generation(sb));
2520
2521 return ret;
2522}
2523
069ec957
QW
2524/*
2525 * Validation of super block at mount time.
2526 * Some checks already done early at mount time, like csum type and incompat
2527 * flags will be skipped.
2528 */
2529static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2530{
2531 return validate_super(fs_info, fs_info->super_copy, 0);
2532}
2533
75cb857d
QW
2534/*
2535 * Validation of super block at write time.
2536 * Some checks like bytenr check will be skipped as their values will be
2537 * overwritten soon.
2538 * Extra checks like csum type and incompat flags will be done here.
2539 */
2540static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2541 struct btrfs_super_block *sb)
2542{
2543 int ret;
2544
2545 ret = validate_super(fs_info, sb, -1);
2546 if (ret < 0)
2547 goto out;
e7e16f48 2548 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2549 ret = -EUCLEAN;
2550 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2551 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2552 goto out;
2553 }
2554 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2555 ret = -EUCLEAN;
2556 btrfs_err(fs_info,
2557 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2558 btrfs_super_incompat_flags(sb),
2559 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2560 goto out;
2561 }
2562out:
2563 if (ret < 0)
2564 btrfs_err(fs_info,
2565 "super block corruption detected before writing it to disk");
2566 return ret;
2567}
2568
b105e927 2569int __cold open_ctree(struct super_block *sb,
ad2b2c80
AV
2570 struct btrfs_fs_devices *fs_devices,
2571 char *options)
2e635a27 2572{
db94535d
CM
2573 u32 sectorsize;
2574 u32 nodesize;
87ee04eb 2575 u32 stripesize;
84234f3a 2576 u64 generation;
f2b636e8 2577 u64 features;
51bce6c9 2578 u16 csum_type;
3de4586c 2579 struct btrfs_key location;
a061fc8d 2580 struct buffer_head *bh;
4d34b278 2581 struct btrfs_super_block *disk_super;
815745cf 2582 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2583 struct btrfs_root *tree_root;
4d34b278 2584 struct btrfs_root *chunk_root;
eb60ceac 2585 int ret;
e58ca020 2586 int err = -EINVAL;
af31f5e5
CM
2587 int num_backups_tried = 0;
2588 int backup_index = 0;
6675df31 2589 int clear_free_space_tree = 0;
581c1760 2590 int level;
4543df7e 2591
74e4d827
DS
2592 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2593 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2594 if (!tree_root || !chunk_root) {
39279cc3
CM
2595 err = -ENOMEM;
2596 goto fail;
2597 }
76dda93c
YZ
2598
2599 ret = init_srcu_struct(&fs_info->subvol_srcu);
2600 if (ret) {
2601 err = ret;
2602 goto fail;
2603 }
2604
4297ff84 2605 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2606 if (ret) {
2607 err = ret;
9e11ceee 2608 goto fail_srcu;
e2d84521 2609 }
4297ff84
JB
2610
2611 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2612 if (ret) {
2613 err = ret;
2614 goto fail_dio_bytes;
2615 }
09cbfeaf 2616 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2617 (1 + ilog2(nr_cpu_ids));
2618
908c7f19 2619 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2620 if (ret) {
2621 err = ret;
2622 goto fail_dirty_metadata_bytes;
2623 }
2624
7f8d236a
DS
2625 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2626 GFP_KERNEL);
c404e0dc
MX
2627 if (ret) {
2628 err = ret;
2629 goto fail_delalloc_bytes;
2630 }
2631
76dda93c 2632 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2633 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2634 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2635 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2636 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2637 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2638 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2639 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2640 spin_lock_init(&fs_info->trans_lock);
76dda93c 2641 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2642 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2643 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2644 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2645 spin_lock_init(&fs_info->super_lock);
f28491e0 2646 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2647 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2648 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2649 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2650 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2651 mutex_init(&fs_info->reloc_mutex);
573bfb72 2652 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2653 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2654
0b86a832 2655 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2656 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2657 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2658 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2659 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2660 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2661 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2662 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2663 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2664 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2665 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2666 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2667 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2668 BTRFS_BLOCK_RSV_DELREFS);
2669
771ed689 2670 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2671 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2672 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2673 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2674 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2675 fs_info->sb = sb;
95ac567a 2676 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2677 fs_info->metadata_ratio = 0;
4cb5300b 2678 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2679 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2680 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2681 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2682 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2683 /* readahead state */
d0164adc 2684 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2685 spin_lock_init(&fs_info->reada_lock);
fd708b81 2686 btrfs_init_ref_verify(fs_info);
c8b97818 2687
b34b086c
CM
2688 fs_info->thread_pool_size = min_t(unsigned long,
2689 num_online_cpus() + 2, 8);
0afbaf8c 2690
199c2a9c
MX
2691 INIT_LIST_HEAD(&fs_info->ordered_roots);
2692 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2693
2694 fs_info->btree_inode = new_inode(sb);
2695 if (!fs_info->btree_inode) {
2696 err = -ENOMEM;
2697 goto fail_bio_counter;
2698 }
2699 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2700
16cdcec7 2701 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2702 GFP_KERNEL);
16cdcec7
MX
2703 if (!fs_info->delayed_root) {
2704 err = -ENOMEM;
2705 goto fail_iput;
2706 }
2707 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2708
638aa7ed 2709 btrfs_init_scrub(fs_info);
21adbd5c
SB
2710#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2711 fs_info->check_integrity_print_mask = 0;
2712#endif
779a65a4 2713 btrfs_init_balance(fs_info);
21c7e756 2714 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2715
9f6d2510
DS
2716 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2717 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2718
6bccf3ab 2719 btrfs_init_btree_inode(fs_info);
76dda93c 2720
0f9dd46c 2721 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2722 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2723 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2724
43eb5f29
QW
2725 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2726 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2727 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2728 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2729 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2730 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2731
5a3f23d5 2732 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2733 mutex_init(&fs_info->tree_log_mutex);
925baedd 2734 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2735 mutex_init(&fs_info->transaction_kthread_mutex);
2736 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2737 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2738 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2739 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2740 init_rwsem(&fs_info->subvol_sem);
803b2f54 2741 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2742
ad618368 2743 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2744 btrfs_init_qgroup(fs_info);
416ac51d 2745
fa9c0d79
CM
2746 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2747 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2748
e6dcd2dc 2749 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2750 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2751 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2752 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2753 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2754
da17066c
JM
2755 /* Usable values until the real ones are cached from the superblock */
2756 fs_info->nodesize = 4096;
2757 fs_info->sectorsize = 4096;
2758 fs_info->stripesize = 4096;
2759
eede2bf3
OS
2760 spin_lock_init(&fs_info->swapfile_pins_lock);
2761 fs_info->swapfile_pins = RB_ROOT;
2762
9e967495
FM
2763 fs_info->send_in_progress = 0;
2764
53b381b3
DW
2765 ret = btrfs_alloc_stripe_hash_table(fs_info);
2766 if (ret) {
83c8266a 2767 err = ret;
53b381b3
DW
2768 goto fail_alloc;
2769 }
2770
da17066c 2771 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2772
3c4bb26b 2773 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2774
2775 /*
2776 * Read super block and check the signature bytes only
2777 */
a512bbf8 2778 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2779 if (IS_ERR(bh)) {
2780 err = PTR_ERR(bh);
16cdcec7 2781 goto fail_alloc;
20b45077 2782 }
39279cc3 2783
8dc3f22c
JT
2784 /*
2785 * Verify the type first, if that or the the checksum value are
2786 * corrupted, we'll find out
2787 */
51bce6c9
JT
2788 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2789 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2790 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2791 csum_type);
8dc3f22c
JT
2792 err = -EINVAL;
2793 brelse(bh);
2794 goto fail_alloc;
2795 }
2796
6d97c6e3
JT
2797 ret = btrfs_init_csum_hash(fs_info, csum_type);
2798 if (ret) {
2799 err = ret;
2800 goto fail_alloc;
2801 }
2802
1104a885
DS
2803 /*
2804 * We want to check superblock checksum, the type is stored inside.
2805 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2806 */
ab8d0fc4 2807 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2808 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2809 err = -EINVAL;
b2acdddf 2810 brelse(bh);
6d97c6e3 2811 goto fail_csum;
1104a885
DS
2812 }
2813
2814 /*
2815 * super_copy is zeroed at allocation time and we never touch the
2816 * following bytes up to INFO_SIZE, the checksum is calculated from
2817 * the whole block of INFO_SIZE
2818 */
6c41761f 2819 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2820 brelse(bh);
5f39d397 2821
fbc6feae
NB
2822 disk_super = fs_info->super_copy;
2823
de37aa51
NB
2824 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2825 BTRFS_FSID_SIZE));
2826
7239ff4b 2827 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2828 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2829 fs_info->super_copy->metadata_uuid,
2830 BTRFS_FSID_SIZE));
7239ff4b 2831 }
0b86a832 2832
fbc6feae
NB
2833 features = btrfs_super_flags(disk_super);
2834 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2835 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2836 btrfs_set_super_flags(disk_super, features);
2837 btrfs_info(fs_info,
2838 "found metadata UUID change in progress flag, clearing");
2839 }
2840
2841 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2842 sizeof(*fs_info->super_for_commit));
de37aa51 2843
069ec957 2844 ret = btrfs_validate_mount_super(fs_info);
1104a885 2845 if (ret) {
05135f59 2846 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2847 err = -EINVAL;
6d97c6e3 2848 goto fail_csum;
1104a885
DS
2849 }
2850
0f7d52f4 2851 if (!btrfs_super_root(disk_super))
6d97c6e3 2852 goto fail_csum;
0f7d52f4 2853
acce952b 2854 /* check FS state, whether FS is broken. */
87533c47
MX
2855 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2856 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2857
af31f5e5
CM
2858 /*
2859 * run through our array of backup supers and setup
2860 * our ring pointer to the oldest one
2861 */
fc2e4c5b 2862 find_oldest_super_backup(fs_info);
af31f5e5 2863
75e7cb7f
LB
2864 /*
2865 * In the long term, we'll store the compression type in the super
2866 * block, and it'll be used for per file compression control.
2867 */
2868 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2869
2ff7e61e 2870 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2871 if (ret) {
2872 err = ret;
6d97c6e3 2873 goto fail_csum;
2b82032c 2874 }
dfe25020 2875
f2b636e8
JB
2876 features = btrfs_super_incompat_flags(disk_super) &
2877 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2878 if (features) {
05135f59
DS
2879 btrfs_err(fs_info,
2880 "cannot mount because of unsupported optional features (%llx)",
2881 features);
f2b636e8 2882 err = -EINVAL;
6d97c6e3 2883 goto fail_csum;
f2b636e8
JB
2884 }
2885
5d4f98a2 2886 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2887 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2888 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2889 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2890 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2891 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2892
3173a18f 2893 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2894 btrfs_info(fs_info, "has skinny extents");
3173a18f 2895
727011e0
CM
2896 /*
2897 * flag our filesystem as having big metadata blocks if
2898 * they are bigger than the page size
2899 */
09cbfeaf 2900 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2901 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2902 btrfs_info(fs_info,
2903 "flagging fs with big metadata feature");
727011e0
CM
2904 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2905 }
2906
bc3f116f 2907 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2908 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2909 stripesize = sectorsize;
707e8a07 2910 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2911 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2912
da17066c
JM
2913 /* Cache block sizes */
2914 fs_info->nodesize = nodesize;
2915 fs_info->sectorsize = sectorsize;
2916 fs_info->stripesize = stripesize;
2917
bc3f116f
CM
2918 /*
2919 * mixed block groups end up with duplicate but slightly offset
2920 * extent buffers for the same range. It leads to corruptions
2921 */
2922 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2923 (sectorsize != nodesize)) {
05135f59
DS
2924 btrfs_err(fs_info,
2925"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2926 nodesize, sectorsize);
6d97c6e3 2927 goto fail_csum;
bc3f116f
CM
2928 }
2929
ceda0864
MX
2930 /*
2931 * Needn't use the lock because there is no other task which will
2932 * update the flag.
2933 */
a6fa6fae 2934 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2935
f2b636e8
JB
2936 features = btrfs_super_compat_ro_flags(disk_super) &
2937 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2938 if (!sb_rdonly(sb) && features) {
05135f59
DS
2939 btrfs_err(fs_info,
2940 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2941 features);
f2b636e8 2942 err = -EINVAL;
6d97c6e3 2943 goto fail_csum;
f2b636e8 2944 }
61d92c32 2945
2a458198
ES
2946 ret = btrfs_init_workqueues(fs_info, fs_devices);
2947 if (ret) {
2948 err = ret;
0dc3b84a
JB
2949 goto fail_sb_buffer;
2950 }
4543df7e 2951
9e11ceee
JK
2952 sb->s_bdi->congested_fn = btrfs_congested_fn;
2953 sb->s_bdi->congested_data = fs_info;
2954 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 2955 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
2956 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2957 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2958
a061fc8d
CM
2959 sb->s_blocksize = sectorsize;
2960 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2961 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2962
925baedd 2963 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2964 ret = btrfs_read_sys_array(fs_info);
925baedd 2965 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2966 if (ret) {
05135f59 2967 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2968 goto fail_sb_buffer;
84eed90f 2969 }
0b86a832 2970
84234f3a 2971 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2972 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2973
da17066c 2974 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2975
2ff7e61e 2976 chunk_root->node = read_tree_block(fs_info,
0b86a832 2977 btrfs_super_chunk_root(disk_super),
581c1760 2978 generation, level, NULL);
64c043de
LB
2979 if (IS_ERR(chunk_root->node) ||
2980 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2981 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2982 if (!IS_ERR(chunk_root->node))
2983 free_extent_buffer(chunk_root->node);
95ab1f64 2984 chunk_root->node = NULL;
af31f5e5 2985 goto fail_tree_roots;
83121942 2986 }
5d4f98a2
YZ
2987 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2988 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2989
e17cade2 2990 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2991 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2992
5b4aacef 2993 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2994 if (ret) {
05135f59 2995 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2996 goto fail_tree_roots;
2b82032c 2997 }
0b86a832 2998
8dabb742 2999 /*
9b99b115
AJ
3000 * Keep the devid that is marked to be the target device for the
3001 * device replace procedure
8dabb742 3002 */
9b99b115 3003 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3004
a6b0d5c8 3005 if (!fs_devices->latest_bdev) {
05135f59 3006 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3007 goto fail_tree_roots;
3008 }
3009
af31f5e5 3010retry_root_backup:
84234f3a 3011 generation = btrfs_super_generation(disk_super);
581c1760 3012 level = btrfs_super_root_level(disk_super);
0b86a832 3013
2ff7e61e 3014 tree_root->node = read_tree_block(fs_info,
db94535d 3015 btrfs_super_root(disk_super),
581c1760 3016 generation, level, NULL);
64c043de
LB
3017 if (IS_ERR(tree_root->node) ||
3018 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3019 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3020 if (!IS_ERR(tree_root->node))
3021 free_extent_buffer(tree_root->node);
95ab1f64 3022 tree_root->node = NULL;
af31f5e5 3023 goto recovery_tree_root;
83121942 3024 }
af31f5e5 3025
5d4f98a2
YZ
3026 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3027 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3028 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3029
f32e48e9
CR
3030 mutex_lock(&tree_root->objectid_mutex);
3031 ret = btrfs_find_highest_objectid(tree_root,
3032 &tree_root->highest_objectid);
3033 if (ret) {
3034 mutex_unlock(&tree_root->objectid_mutex);
3035 goto recovery_tree_root;
3036 }
3037
3038 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3039
3040 mutex_unlock(&tree_root->objectid_mutex);
3041
6bccf3ab 3042 ret = btrfs_read_roots(fs_info);
4bbcaa64 3043 if (ret)
af31f5e5 3044 goto recovery_tree_root;
f7a81ea4 3045
8929ecfa
YZ
3046 fs_info->generation = generation;
3047 fs_info->last_trans_committed = generation;
8929ecfa 3048
cf90d884
QW
3049 ret = btrfs_verify_dev_extents(fs_info);
3050 if (ret) {
3051 btrfs_err(fs_info,
3052 "failed to verify dev extents against chunks: %d",
3053 ret);
3054 goto fail_block_groups;
3055 }
68310a5e
ID
3056 ret = btrfs_recover_balance(fs_info);
3057 if (ret) {
05135f59 3058 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3059 goto fail_block_groups;
3060 }
3061
733f4fbb
SB
3062 ret = btrfs_init_dev_stats(fs_info);
3063 if (ret) {
05135f59 3064 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3065 goto fail_block_groups;
3066 }
3067
8dabb742
SB
3068 ret = btrfs_init_dev_replace(fs_info);
3069 if (ret) {
05135f59 3070 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3071 goto fail_block_groups;
3072 }
3073
9b99b115 3074 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3075
b7c35e81
AJ
3076 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3077 if (ret) {
05135f59
DS
3078 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3079 ret);
b7c35e81
AJ
3080 goto fail_block_groups;
3081 }
3082
3083 ret = btrfs_sysfs_add_device(fs_devices);
3084 if (ret) {
05135f59
DS
3085 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3086 ret);
b7c35e81
AJ
3087 goto fail_fsdev_sysfs;
3088 }
3089
96f3136e 3090 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3091 if (ret) {
05135f59 3092 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3093 goto fail_fsdev_sysfs;
c59021f8 3094 }
3095
c59021f8 3096 ret = btrfs_init_space_info(fs_info);
3097 if (ret) {
05135f59 3098 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3099 goto fail_sysfs;
c59021f8 3100 }
3101
5b4aacef 3102 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3103 if (ret) {
05135f59 3104 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3105 goto fail_sysfs;
1b1d1f66 3106 }
4330e183 3107
6528b99d 3108 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3109 btrfs_warn(fs_info,
52042d8e 3110 "writable mount is not allowed due to too many missing devices");
2365dd3c 3111 goto fail_sysfs;
292fd7fc 3112 }
9078a3e1 3113
a74a4b97
CM
3114 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3115 "btrfs-cleaner");
57506d50 3116 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3117 goto fail_sysfs;
a74a4b97
CM
3118
3119 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3120 tree_root,
3121 "btrfs-transaction");
57506d50 3122 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3123 goto fail_cleaner;
a74a4b97 3124
583b7231 3125 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3126 !fs_info->fs_devices->rotating) {
583b7231 3127 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3128 }
3129
572d9ab7 3130 /*
01327610 3131 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3132 * not have to wait for transaction commit
3133 */
3134 btrfs_apply_pending_changes(fs_info);
3818aea2 3135
21adbd5c 3136#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3137 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3138 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3139 btrfs_test_opt(fs_info,
21adbd5c
SB
3140 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3141 1 : 0,
3142 fs_info->check_integrity_print_mask);
3143 if (ret)
05135f59
DS
3144 btrfs_warn(fs_info,
3145 "failed to initialize integrity check module: %d",
3146 ret);
21adbd5c
SB
3147 }
3148#endif
bcef60f2
AJ
3149 ret = btrfs_read_qgroup_config(fs_info);
3150 if (ret)
3151 goto fail_trans_kthread;
21adbd5c 3152
fd708b81
JB
3153 if (btrfs_build_ref_tree(fs_info))
3154 btrfs_err(fs_info, "couldn't build ref tree");
3155
96da0919
QW
3156 /* do not make disk changes in broken FS or nologreplay is given */
3157 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3158 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3159 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3160 if (ret) {
63443bf5 3161 err = ret;
28c16cbb 3162 goto fail_qgroup;
79787eaa 3163 }
e02119d5 3164 }
1a40e23b 3165
6bccf3ab 3166 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3167 if (ret)
28c16cbb 3168 goto fail_qgroup;
76dda93c 3169
bc98a42c 3170 if (!sb_rdonly(sb)) {
d68fc57b 3171 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3172 if (ret)
28c16cbb 3173 goto fail_qgroup;
90c711ab
ZB
3174
3175 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3176 ret = btrfs_recover_relocation(tree_root);
90c711ab 3177 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3178 if (ret < 0) {
05135f59
DS
3179 btrfs_warn(fs_info, "failed to recover relocation: %d",
3180 ret);
d7ce5843 3181 err = -EINVAL;
bcef60f2 3182 goto fail_qgroup;
d7ce5843 3183 }
7c2ca468 3184 }
1a40e23b 3185
3de4586c
CM
3186 location.objectid = BTRFS_FS_TREE_OBJECTID;
3187 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3188 location.offset = 0;
3de4586c 3189
3de4586c 3190 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3191 if (IS_ERR(fs_info->fs_root)) {
3192 err = PTR_ERR(fs_info->fs_root);
f50f4353 3193 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3194 goto fail_qgroup;
3140c9a3 3195 }
c289811c 3196
bc98a42c 3197 if (sb_rdonly(sb))
2b6ba629 3198 return 0;
59641015 3199
f8d468a1
OS
3200 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3201 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3202 clear_free_space_tree = 1;
3203 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3204 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3205 btrfs_warn(fs_info, "free space tree is invalid");
3206 clear_free_space_tree = 1;
3207 }
3208
3209 if (clear_free_space_tree) {
f8d468a1
OS
3210 btrfs_info(fs_info, "clearing free space tree");
3211 ret = btrfs_clear_free_space_tree(fs_info);
3212 if (ret) {
3213 btrfs_warn(fs_info,
3214 "failed to clear free space tree: %d", ret);
6bccf3ab 3215 close_ctree(fs_info);
f8d468a1
OS
3216 return ret;
3217 }
3218 }
3219
0b246afa 3220 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3221 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3222 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3223 ret = btrfs_create_free_space_tree(fs_info);
3224 if (ret) {
05135f59
DS
3225 btrfs_warn(fs_info,
3226 "failed to create free space tree: %d", ret);
6bccf3ab 3227 close_ctree(fs_info);
511711af
CM
3228 return ret;
3229 }
3230 }
3231
2b6ba629
ID
3232 down_read(&fs_info->cleanup_work_sem);
3233 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3234 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3235 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3236 close_ctree(fs_info);
2b6ba629
ID
3237 return ret;
3238 }
3239 up_read(&fs_info->cleanup_work_sem);
59641015 3240
2b6ba629
ID
3241 ret = btrfs_resume_balance_async(fs_info);
3242 if (ret) {
05135f59 3243 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3244 close_ctree(fs_info);
2b6ba629 3245 return ret;
e3acc2a6
JB
3246 }
3247
8dabb742
SB
3248 ret = btrfs_resume_dev_replace_async(fs_info);
3249 if (ret) {
05135f59 3250 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3251 close_ctree(fs_info);
8dabb742
SB
3252 return ret;
3253 }
3254
b382a324
JS
3255 btrfs_qgroup_rescan_resume(fs_info);
3256
4bbcaa64 3257 if (!fs_info->uuid_root) {
05135f59 3258 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3259 ret = btrfs_create_uuid_tree(fs_info);
3260 if (ret) {
05135f59
DS
3261 btrfs_warn(fs_info,
3262 "failed to create the UUID tree: %d", ret);
6bccf3ab 3263 close_ctree(fs_info);
f7a81ea4
SB
3264 return ret;
3265 }
0b246afa 3266 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3267 fs_info->generation !=
3268 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3269 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3270 ret = btrfs_check_uuid_tree(fs_info);
3271 if (ret) {
05135f59
DS
3272 btrfs_warn(fs_info,
3273 "failed to check the UUID tree: %d", ret);
6bccf3ab 3274 close_ctree(fs_info);
70f80175
SB
3275 return ret;
3276 }
3277 } else {
afcdd129 3278 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3279 }
afcdd129 3280 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3281
8dcddfa0
QW
3282 /*
3283 * backuproot only affect mount behavior, and if open_ctree succeeded,
3284 * no need to keep the flag
3285 */
3286 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3287
ad2b2c80 3288 return 0;
39279cc3 3289
bcef60f2
AJ
3290fail_qgroup:
3291 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3292fail_trans_kthread:
3293 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3294 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3295 btrfs_free_fs_roots(fs_info);
3f157a2f 3296fail_cleaner:
a74a4b97 3297 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3298
3299 /*
3300 * make sure we're done with the btree inode before we stop our
3301 * kthreads
3302 */
3303 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3304
2365dd3c 3305fail_sysfs:
6618a59b 3306 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3307
b7c35e81
AJ
3308fail_fsdev_sysfs:
3309 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3310
1b1d1f66 3311fail_block_groups:
54067ae9 3312 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3313
3314fail_tree_roots:
4273eaff 3315 free_root_pointers(fs_info, true);
2b8195bb 3316 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3317
39279cc3 3318fail_sb_buffer:
7abadb64 3319 btrfs_stop_all_workers(fs_info);
5cdd7db6 3320 btrfs_free_block_groups(fs_info);
6d97c6e3
JT
3321fail_csum:
3322 btrfs_free_csum_hash(fs_info);
16cdcec7 3323fail_alloc:
4543df7e 3324fail_iput:
586e46e2
ID
3325 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3326
4543df7e 3327 iput(fs_info->btree_inode);
c404e0dc 3328fail_bio_counter:
7f8d236a 3329 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3330fail_delalloc_bytes:
3331 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3332fail_dirty_metadata_bytes:
3333 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3334fail_dio_bytes:
3335 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3336fail_srcu:
3337 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3338fail:
53b381b3 3339 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3340 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3341 return err;
af31f5e5
CM
3342
3343recovery_tree_root:
0b246afa 3344 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3345 goto fail_tree_roots;
3346
4273eaff 3347 free_root_pointers(fs_info, false);
af31f5e5
CM
3348
3349 /* don't use the log in recovery mode, it won't be valid */
3350 btrfs_set_super_log_root(disk_super, 0);
3351
3352 /* we can't trust the free space cache either */
3353 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3354
3355 ret = next_root_backup(fs_info, fs_info->super_copy,
3356 &num_backups_tried, &backup_index);
3357 if (ret == -1)
3358 goto fail_block_groups;
3359 goto retry_root_backup;
eb60ceac 3360}
663faf9f 3361ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3362
f2984462
CM
3363static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3364{
f2984462
CM
3365 if (uptodate) {
3366 set_buffer_uptodate(bh);
3367 } else {
442a4f63
SB
3368 struct btrfs_device *device = (struct btrfs_device *)
3369 bh->b_private;
3370
fb456252 3371 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3372 "lost page write due to IO error on %s",
606686ee 3373 rcu_str_deref(device->name));
01327610 3374 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3375 * our own ways of dealing with the IO errors
3376 */
f2984462 3377 clear_buffer_uptodate(bh);
442a4f63 3378 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3379 }
3380 unlock_buffer(bh);
3381 put_bh(bh);
3382}
3383
29c36d72
AJ
3384int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3385 struct buffer_head **bh_ret)
3386{
3387 struct buffer_head *bh;
3388 struct btrfs_super_block *super;
3389 u64 bytenr;
3390
3391 bytenr = btrfs_sb_offset(copy_num);
3392 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3393 return -EINVAL;
3394
9f6d2510 3395 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3396 /*
3397 * If we fail to read from the underlying devices, as of now
3398 * the best option we have is to mark it EIO.
3399 */
3400 if (!bh)
3401 return -EIO;
3402
3403 super = (struct btrfs_super_block *)bh->b_data;
3404 if (btrfs_super_bytenr(super) != bytenr ||
3405 btrfs_super_magic(super) != BTRFS_MAGIC) {
3406 brelse(bh);
3407 return -EINVAL;
3408 }
3409
3410 *bh_ret = bh;
3411 return 0;
3412}
3413
3414
a512bbf8
YZ
3415struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3416{
3417 struct buffer_head *bh;
3418 struct buffer_head *latest = NULL;
3419 struct btrfs_super_block *super;
3420 int i;
3421 u64 transid = 0;
92fc03fb 3422 int ret = -EINVAL;
a512bbf8
YZ
3423
3424 /* we would like to check all the supers, but that would make
3425 * a btrfs mount succeed after a mkfs from a different FS.
3426 * So, we need to add a special mount option to scan for
3427 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3428 */
3429 for (i = 0; i < 1; i++) {
29c36d72
AJ
3430 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3431 if (ret)
a512bbf8
YZ
3432 continue;
3433
3434 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3435
3436 if (!latest || btrfs_super_generation(super) > transid) {
3437 brelse(latest);
3438 latest = bh;
3439 transid = btrfs_super_generation(super);
3440 } else {
3441 brelse(bh);
3442 }
3443 }
92fc03fb
AJ
3444
3445 if (!latest)
3446 return ERR_PTR(ret);
3447
a512bbf8
YZ
3448 return latest;
3449}
3450
4eedeb75 3451/*
abbb3b8e
DS
3452 * Write superblock @sb to the @device. Do not wait for completion, all the
3453 * buffer heads we write are pinned.
4eedeb75 3454 *
abbb3b8e
DS
3455 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3456 * the expected device size at commit time. Note that max_mirrors must be
3457 * same for write and wait phases.
4eedeb75 3458 *
abbb3b8e 3459 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3460 */
a512bbf8 3461static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3462 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3463{
d5178578
JT
3464 struct btrfs_fs_info *fs_info = device->fs_info;
3465 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8
YZ
3466 struct buffer_head *bh;
3467 int i;
3468 int ret;
3469 int errors = 0;
a512bbf8 3470 u64 bytenr;
1b9e619c 3471 int op_flags;
a512bbf8
YZ
3472
3473 if (max_mirrors == 0)
3474 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3475
d5178578
JT
3476 shash->tfm = fs_info->csum_shash;
3477
a512bbf8
YZ
3478 for (i = 0; i < max_mirrors; i++) {
3479 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3480 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3481 device->commit_total_bytes)
a512bbf8
YZ
3482 break;
3483
abbb3b8e 3484 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3485
d5178578
JT
3486 crypto_shash_init(shash);
3487 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3488 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3489 crypto_shash_final(shash, sb->csum);
4eedeb75 3490
abbb3b8e 3491 /* One reference for us, and we leave it for the caller */
9f6d2510 3492 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3493 BTRFS_SUPER_INFO_SIZE);
3494 if (!bh) {
3495 btrfs_err(device->fs_info,
3496 "couldn't get super buffer head for bytenr %llu",
3497 bytenr);
3498 errors++;
4eedeb75 3499 continue;
abbb3b8e 3500 }
634554dc 3501
abbb3b8e 3502 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3503
abbb3b8e
DS
3504 /* one reference for submit_bh */
3505 get_bh(bh);
4eedeb75 3506
abbb3b8e
DS
3507 set_buffer_uptodate(bh);
3508 lock_buffer(bh);
3509 bh->b_end_io = btrfs_end_buffer_write_sync;
3510 bh->b_private = device;
a512bbf8 3511
387125fc
CM
3512 /*
3513 * we fua the first super. The others we allow
3514 * to go down lazy.
3515 */
1b9e619c
OS
3516 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3517 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3518 op_flags |= REQ_FUA;
3519 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3520 if (ret)
a512bbf8 3521 errors++;
a512bbf8
YZ
3522 }
3523 return errors < i ? 0 : -1;
3524}
3525
abbb3b8e
DS
3526/*
3527 * Wait for write completion of superblocks done by write_dev_supers,
3528 * @max_mirrors same for write and wait phases.
3529 *
3530 * Return number of errors when buffer head is not found or not marked up to
3531 * date.
3532 */
3533static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3534{
3535 struct buffer_head *bh;
3536 int i;
3537 int errors = 0;
b6a535fa 3538 bool primary_failed = false;
abbb3b8e
DS
3539 u64 bytenr;
3540
3541 if (max_mirrors == 0)
3542 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3543
3544 for (i = 0; i < max_mirrors; i++) {
3545 bytenr = btrfs_sb_offset(i);
3546 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3547 device->commit_total_bytes)
3548 break;
3549
9f6d2510
DS
3550 bh = __find_get_block(device->bdev,
3551 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3552 BTRFS_SUPER_INFO_SIZE);
3553 if (!bh) {
3554 errors++;
b6a535fa
HM
3555 if (i == 0)
3556 primary_failed = true;
abbb3b8e
DS
3557 continue;
3558 }
3559 wait_on_buffer(bh);
b6a535fa 3560 if (!buffer_uptodate(bh)) {
abbb3b8e 3561 errors++;
b6a535fa
HM
3562 if (i == 0)
3563 primary_failed = true;
3564 }
abbb3b8e
DS
3565
3566 /* drop our reference */
3567 brelse(bh);
3568
3569 /* drop the reference from the writing run */
3570 brelse(bh);
3571 }
3572
b6a535fa
HM
3573 /* log error, force error return */
3574 if (primary_failed) {
3575 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3576 device->devid);
3577 return -1;
3578 }
3579
abbb3b8e
DS
3580 return errors < i ? 0 : -1;
3581}
3582
387125fc
CM
3583/*
3584 * endio for the write_dev_flush, this will wake anyone waiting
3585 * for the barrier when it is done
3586 */
4246a0b6 3587static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3588{
e0ae9994 3589 complete(bio->bi_private);
387125fc
CM
3590}
3591
3592/*
4fc6441a
AJ
3593 * Submit a flush request to the device if it supports it. Error handling is
3594 * done in the waiting counterpart.
387125fc 3595 */
4fc6441a 3596static void write_dev_flush(struct btrfs_device *device)
387125fc 3597{
c2a9c7ab 3598 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3599 struct bio *bio = device->flush_bio;
387125fc 3600
c2a9c7ab 3601 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3602 return;
387125fc 3603
e0ae9994 3604 bio_reset(bio);
387125fc 3605 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3606 bio_set_dev(bio, device->bdev);
8d910125 3607 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3608 init_completion(&device->flush_wait);
3609 bio->bi_private = &device->flush_wait;
387125fc 3610
43a01111 3611 btrfsic_submit_bio(bio);
1c3063b6 3612 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3613}
387125fc 3614
4fc6441a
AJ
3615/*
3616 * If the flush bio has been submitted by write_dev_flush, wait for it.
3617 */
8c27cb35 3618static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3619{
4fc6441a 3620 struct bio *bio = device->flush_bio;
387125fc 3621
1c3063b6 3622 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3623 return BLK_STS_OK;
387125fc 3624
1c3063b6 3625 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3626 wait_for_completion_io(&device->flush_wait);
387125fc 3627
8c27cb35 3628 return bio->bi_status;
387125fc 3629}
387125fc 3630
d10b82fe 3631static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3632{
6528b99d 3633 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3634 return -EIO;
387125fc
CM
3635 return 0;
3636}
3637
3638/*
3639 * send an empty flush down to each device in parallel,
3640 * then wait for them
3641 */
3642static int barrier_all_devices(struct btrfs_fs_info *info)
3643{
3644 struct list_head *head;
3645 struct btrfs_device *dev;
5af3e8cc 3646 int errors_wait = 0;
4e4cbee9 3647 blk_status_t ret;
387125fc 3648
1538e6c5 3649 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3650 /* send down all the barriers */
3651 head = &info->fs_devices->devices;
1538e6c5 3652 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3653 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3654 continue;
cea7c8bf 3655 if (!dev->bdev)
387125fc 3656 continue;
e12c9621 3657 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3658 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3659 continue;
3660
4fc6441a 3661 write_dev_flush(dev);
58efbc9f 3662 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3663 }
3664
3665 /* wait for all the barriers */
1538e6c5 3666 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3667 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3668 continue;
387125fc 3669 if (!dev->bdev) {
5af3e8cc 3670 errors_wait++;
387125fc
CM
3671 continue;
3672 }
e12c9621 3673 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3674 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3675 continue;
3676
4fc6441a 3677 ret = wait_dev_flush(dev);
401b41e5
AJ
3678 if (ret) {
3679 dev->last_flush_error = ret;
66b4993e
DS
3680 btrfs_dev_stat_inc_and_print(dev,
3681 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3682 errors_wait++;
401b41e5
AJ
3683 }
3684 }
3685
cea7c8bf 3686 if (errors_wait) {
401b41e5
AJ
3687 /*
3688 * At some point we need the status of all disks
3689 * to arrive at the volume status. So error checking
3690 * is being pushed to a separate loop.
3691 */
d10b82fe 3692 return check_barrier_error(info);
387125fc 3693 }
387125fc
CM
3694 return 0;
3695}
3696
943c6e99
ZL
3697int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3698{
8789f4fe
ZL
3699 int raid_type;
3700 int min_tolerated = INT_MAX;
943c6e99 3701
8789f4fe
ZL
3702 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3703 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3704 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3705 btrfs_raid_array[BTRFS_RAID_SINGLE].
3706 tolerated_failures);
943c6e99 3707
8789f4fe
ZL
3708 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3709 if (raid_type == BTRFS_RAID_SINGLE)
3710 continue;
41a6e891 3711 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3712 continue;
8c3e3582 3713 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3714 btrfs_raid_array[raid_type].
3715 tolerated_failures);
3716 }
943c6e99 3717
8789f4fe 3718 if (min_tolerated == INT_MAX) {
ab8d0fc4 3719 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3720 min_tolerated = 0;
3721 }
3722
3723 return min_tolerated;
943c6e99
ZL
3724}
3725
eece6a9c 3726int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3727{
e5e9a520 3728 struct list_head *head;
f2984462 3729 struct btrfs_device *dev;
a061fc8d 3730 struct btrfs_super_block *sb;
f2984462 3731 struct btrfs_dev_item *dev_item;
f2984462
CM
3732 int ret;
3733 int do_barriers;
a236aed1
CM
3734 int max_errors;
3735 int total_errors = 0;
a061fc8d 3736 u64 flags;
f2984462 3737
0b246afa 3738 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3739
3740 /*
3741 * max_mirrors == 0 indicates we're from commit_transaction,
3742 * not from fsync where the tree roots in fs_info have not
3743 * been consistent on disk.
3744 */
3745 if (max_mirrors == 0)
3746 backup_super_roots(fs_info);
f2984462 3747
0b246afa 3748 sb = fs_info->super_for_commit;
a061fc8d 3749 dev_item = &sb->dev_item;
e5e9a520 3750
0b246afa
JM
3751 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3752 head = &fs_info->fs_devices->devices;
3753 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3754
5af3e8cc 3755 if (do_barriers) {
0b246afa 3756 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3757 if (ret) {
3758 mutex_unlock(
0b246afa
JM
3759 &fs_info->fs_devices->device_list_mutex);
3760 btrfs_handle_fs_error(fs_info, ret,
3761 "errors while submitting device barriers.");
5af3e8cc
SB
3762 return ret;
3763 }
3764 }
387125fc 3765
1538e6c5 3766 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3767 if (!dev->bdev) {
3768 total_errors++;
3769 continue;
3770 }
e12c9621 3771 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3772 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3773 continue;
3774
2b82032c 3775 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3776 btrfs_set_stack_device_type(dev_item, dev->type);
3777 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3778 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3779 dev->commit_total_bytes);
ce7213c7
MX
3780 btrfs_set_stack_device_bytes_used(dev_item,
3781 dev->commit_bytes_used);
a061fc8d
CM
3782 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3783 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3784 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3785 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3786 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3787 BTRFS_FSID_SIZE);
a512bbf8 3788
a061fc8d
CM
3789 flags = btrfs_super_flags(sb);
3790 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3791
75cb857d
QW
3792 ret = btrfs_validate_write_super(fs_info, sb);
3793 if (ret < 0) {
3794 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3795 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3796 "unexpected superblock corruption detected");
3797 return -EUCLEAN;
3798 }
3799
abbb3b8e 3800 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3801 if (ret)
3802 total_errors++;
f2984462 3803 }
a236aed1 3804 if (total_errors > max_errors) {
0b246afa
JM
3805 btrfs_err(fs_info, "%d errors while writing supers",
3806 total_errors);
3807 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3808
9d565ba4 3809 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3810 btrfs_handle_fs_error(fs_info, -EIO,
3811 "%d errors while writing supers",
3812 total_errors);
9d565ba4 3813 return -EIO;
a236aed1 3814 }
f2984462 3815
a512bbf8 3816 total_errors = 0;
1538e6c5 3817 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3818 if (!dev->bdev)
3819 continue;
e12c9621 3820 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3821 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3822 continue;
3823
abbb3b8e 3824 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3825 if (ret)
3826 total_errors++;
f2984462 3827 }
0b246afa 3828 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3829 if (total_errors > max_errors) {
0b246afa
JM
3830 btrfs_handle_fs_error(fs_info, -EIO,
3831 "%d errors while writing supers",
3832 total_errors);
79787eaa 3833 return -EIO;
a236aed1 3834 }
f2984462
CM
3835 return 0;
3836}
3837
cb517eab
MX
3838/* Drop a fs root from the radix tree and free it. */
3839void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3840 struct btrfs_root *root)
2619ba1f 3841{
4df27c4d 3842 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3843 radix_tree_delete(&fs_info->fs_roots_radix,
3844 (unsigned long)root->root_key.objectid);
4df27c4d 3845 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3846
3847 if (btrfs_root_refs(&root->root_item) == 0)
3848 synchronize_srcu(&fs_info->subvol_srcu);
3849
1c1ea4f7 3850 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3851 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3852 if (root->reloc_root) {
3853 free_extent_buffer(root->reloc_root->node);
3854 free_extent_buffer(root->reloc_root->commit_root);
3855 btrfs_put_fs_root(root->reloc_root);
3856 root->reloc_root = NULL;
3857 }
3858 }
3321719e 3859
faa2dbf0
JB
3860 if (root->free_ino_pinned)
3861 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3862 if (root->free_ino_ctl)
3863 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3864 btrfs_free_fs_root(root);
4df27c4d
YZ
3865}
3866
84db5ccf 3867void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3868{
57cdc8db 3869 iput(root->ino_cache_inode);
4df27c4d 3870 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3871 if (root->anon_dev)
3872 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3873 if (root->subv_writers)
3874 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3875 free_extent_buffer(root->node);
3876 free_extent_buffer(root->commit_root);
581bb050
LZ
3877 kfree(root->free_ino_ctl);
3878 kfree(root->free_ino_pinned);
b0feb9d9 3879 btrfs_put_fs_root(root);
2619ba1f
CM
3880}
3881
c146afad 3882int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3883{
c146afad
YZ
3884 u64 root_objectid = 0;
3885 struct btrfs_root *gang[8];
65d33fd7
QW
3886 int i = 0;
3887 int err = 0;
3888 unsigned int ret = 0;
3889 int index;
e089f05c 3890
c146afad 3891 while (1) {
65d33fd7 3892 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3893 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3894 (void **)gang, root_objectid,
3895 ARRAY_SIZE(gang));
65d33fd7
QW
3896 if (!ret) {
3897 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3898 break;
65d33fd7 3899 }
5d4f98a2 3900 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3901
c146afad 3902 for (i = 0; i < ret; i++) {
65d33fd7
QW
3903 /* Avoid to grab roots in dead_roots */
3904 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3905 gang[i] = NULL;
3906 continue;
3907 }
3908 /* grab all the search result for later use */
3909 gang[i] = btrfs_grab_fs_root(gang[i]);
3910 }
3911 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3912
65d33fd7
QW
3913 for (i = 0; i < ret; i++) {
3914 if (!gang[i])
3915 continue;
c146afad 3916 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3917 err = btrfs_orphan_cleanup(gang[i]);
3918 if (err)
65d33fd7
QW
3919 break;
3920 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3921 }
3922 root_objectid++;
3923 }
65d33fd7
QW
3924
3925 /* release the uncleaned roots due to error */
3926 for (; i < ret; i++) {
3927 if (gang[i])
3928 btrfs_put_fs_root(gang[i]);
3929 }
3930 return err;
c146afad 3931}
a2135011 3932
6bccf3ab 3933int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3934{
6bccf3ab 3935 struct btrfs_root *root = fs_info->tree_root;
c146afad 3936 struct btrfs_trans_handle *trans;
a74a4b97 3937
0b246afa 3938 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3939 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3940 mutex_unlock(&fs_info->cleaner_mutex);
3941 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3942
3943 /* wait until ongoing cleanup work done */
0b246afa
JM
3944 down_write(&fs_info->cleanup_work_sem);
3945 up_write(&fs_info->cleanup_work_sem);
c71bf099 3946
7a7eaa40 3947 trans = btrfs_join_transaction(root);
3612b495
TI
3948 if (IS_ERR(trans))
3949 return PTR_ERR(trans);
3a45bb20 3950 return btrfs_commit_transaction(trans);
c146afad
YZ
3951}
3952
b105e927 3953void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3954{
c146afad
YZ
3955 int ret;
3956
afcdd129 3957 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3958 /*
3959 * We don't want the cleaner to start new transactions, add more delayed
3960 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3961 * because that frees the task_struct, and the transaction kthread might
3962 * still try to wake up the cleaner.
3963 */
3964 kthread_park(fs_info->cleaner_kthread);
c146afad 3965
7343dd61 3966 /* wait for the qgroup rescan worker to stop */
d06f23d6 3967 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3968
803b2f54
SB
3969 /* wait for the uuid_scan task to finish */
3970 down(&fs_info->uuid_tree_rescan_sem);
3971 /* avoid complains from lockdep et al., set sem back to initial state */
3972 up(&fs_info->uuid_tree_rescan_sem);
3973
837d5b6e 3974 /* pause restriper - we want to resume on mount */
aa1b8cd4 3975 btrfs_pause_balance(fs_info);
837d5b6e 3976
8dabb742
SB
3977 btrfs_dev_replace_suspend_for_unmount(fs_info);
3978
aa1b8cd4 3979 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3980
3981 /* wait for any defraggers to finish */
3982 wait_event(fs_info->transaction_wait,
3983 (atomic_read(&fs_info->defrag_running) == 0));
3984
3985 /* clear out the rbtree of defraggable inodes */
26176e7c 3986 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3987
21c7e756
MX
3988 cancel_work_sync(&fs_info->async_reclaim_work);
3989
bc98a42c 3990 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3991 /*
d6fd0ae2
OS
3992 * The cleaner kthread is stopped, so do one final pass over
3993 * unused block groups.
e44163e1 3994 */
0b246afa 3995 btrfs_delete_unused_bgs(fs_info);
e44163e1 3996
6bccf3ab 3997 ret = btrfs_commit_super(fs_info);
acce952b 3998 if (ret)
04892340 3999 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4000 }
4001
af722733
LB
4002 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4003 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4004 btrfs_error_commit_super(fs_info);
0f7d52f4 4005
e3029d9f
AV
4006 kthread_stop(fs_info->transaction_kthread);
4007 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4008
e187831e 4009 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4010 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4011
04892340 4012 btrfs_free_qgroup_config(fs_info);
fe816d0f 4013 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4014
963d678b 4015 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4016 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4017 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4018 }
bcc63abb 4019
4297ff84
JB
4020 if (percpu_counter_sum(&fs_info->dio_bytes))
4021 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4022 percpu_counter_sum(&fs_info->dio_bytes));
4023
6618a59b 4024 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4025 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4026
faa2dbf0 4027 btrfs_free_fs_roots(fs_info);
d10c5f31 4028
1a4319cc
LB
4029 btrfs_put_block_group_cache(fs_info);
4030
de348ee0
WS
4031 /*
4032 * we must make sure there is not any read request to
4033 * submit after we stopping all workers.
4034 */
4035 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4036 btrfs_stop_all_workers(fs_info);
4037
5cdd7db6
FM
4038 btrfs_free_block_groups(fs_info);
4039
afcdd129 4040 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4041 free_root_pointers(fs_info, true);
9ad6b7bc 4042
13e6c37b 4043 iput(fs_info->btree_inode);
d6bfde87 4044
21adbd5c 4045#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4046 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4047 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4048#endif
4049
0b86a832 4050 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4051 btrfs_close_devices(fs_info->fs_devices);
b248a415 4052
e2d84521 4053 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4054 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4055 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4056 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4057 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4058
bfcea1c6 4059 btrfs_free_csum_hash(fs_info);
53b381b3 4060 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4061 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4062}
4063
b9fab919
CM
4064int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4065 int atomic)
5f39d397 4066{
1259ab75 4067 int ret;
727011e0 4068 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4069
0b32f4bb 4070 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4071 if (!ret)
4072 return ret;
4073
4074 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4075 parent_transid, atomic);
4076 if (ret == -EAGAIN)
4077 return ret;
1259ab75 4078 return !ret;
5f39d397
CM
4079}
4080
5f39d397
CM
4081void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4082{
0b246afa 4083 struct btrfs_fs_info *fs_info;
06ea65a3 4084 struct btrfs_root *root;
5f39d397 4085 u64 transid = btrfs_header_generation(buf);
b9473439 4086 int was_dirty;
b4ce94de 4087
06ea65a3
JB
4088#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4089 /*
4090 * This is a fast path so only do this check if we have sanity tests
52042d8e 4091 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4092 * outside of the sanity tests.
4093 */
b0132a3b 4094 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4095 return;
4096#endif
4097 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4098 fs_info = root->fs_info;
b9447ef8 4099 btrfs_assert_tree_locked(buf);
0b246afa 4100 if (transid != fs_info->generation)
5d163e0e 4101 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4102 buf->start, transid, fs_info->generation);
0b32f4bb 4103 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4104 if (!was_dirty)
104b4e51
NB
4105 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4106 buf->len,
4107 fs_info->dirty_metadata_batch);
1f21ef0a 4108#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4109 /*
4110 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4111 * but item data not updated.
4112 * So here we should only check item pointers, not item data.
4113 */
4114 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4115 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4116 btrfs_print_leaf(buf);
1f21ef0a
FM
4117 ASSERT(0);
4118 }
4119#endif
eb60ceac
CM
4120}
4121
2ff7e61e 4122static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4123 int flush_delayed)
16cdcec7
MX
4124{
4125 /*
4126 * looks as though older kernels can get into trouble with
4127 * this code, they end up stuck in balance_dirty_pages forever
4128 */
e2d84521 4129 int ret;
16cdcec7
MX
4130
4131 if (current->flags & PF_MEMALLOC)
4132 return;
4133
b53d3f5d 4134 if (flush_delayed)
2ff7e61e 4135 btrfs_balance_delayed_items(fs_info);
16cdcec7 4136
d814a491
EL
4137 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4138 BTRFS_DIRTY_METADATA_THRESH,
4139 fs_info->dirty_metadata_batch);
e2d84521 4140 if (ret > 0) {
0b246afa 4141 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4142 }
16cdcec7
MX
4143}
4144
2ff7e61e 4145void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4146{
2ff7e61e 4147 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4148}
585ad2c3 4149
2ff7e61e 4150void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4151{
2ff7e61e 4152 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4153}
6b80053d 4154
581c1760
QW
4155int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4156 struct btrfs_key *first_key)
6b80053d 4157{
5ab12d1f 4158 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4159 level, first_key);
6b80053d 4160}
0da5468f 4161
2ff7e61e 4162static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4163{
fe816d0f
NB
4164 /* cleanup FS via transaction */
4165 btrfs_cleanup_transaction(fs_info);
4166
0b246afa 4167 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4168 btrfs_run_delayed_iputs(fs_info);
0b246afa 4169 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4170
0b246afa
JM
4171 down_write(&fs_info->cleanup_work_sem);
4172 up_write(&fs_info->cleanup_work_sem);
acce952b 4173}
4174
143bede5 4175static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4176{
acce952b 4177 struct btrfs_ordered_extent *ordered;
acce952b 4178
199c2a9c 4179 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4180 /*
4181 * This will just short circuit the ordered completion stuff which will
4182 * make sure the ordered extent gets properly cleaned up.
4183 */
199c2a9c 4184 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4185 root_extent_list)
4186 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4187 spin_unlock(&root->ordered_extent_lock);
4188}
4189
4190static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4191{
4192 struct btrfs_root *root;
4193 struct list_head splice;
4194
4195 INIT_LIST_HEAD(&splice);
4196
4197 spin_lock(&fs_info->ordered_root_lock);
4198 list_splice_init(&fs_info->ordered_roots, &splice);
4199 while (!list_empty(&splice)) {
4200 root = list_first_entry(&splice, struct btrfs_root,
4201 ordered_root);
1de2cfde
JB
4202 list_move_tail(&root->ordered_root,
4203 &fs_info->ordered_roots);
199c2a9c 4204
2a85d9ca 4205 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4206 btrfs_destroy_ordered_extents(root);
4207
2a85d9ca
LB
4208 cond_resched();
4209 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4210 }
4211 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4212
4213 /*
4214 * We need this here because if we've been flipped read-only we won't
4215 * get sync() from the umount, so we need to make sure any ordered
4216 * extents that haven't had their dirty pages IO start writeout yet
4217 * actually get run and error out properly.
4218 */
4219 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4220}
4221
35a3621b 4222static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4223 struct btrfs_fs_info *fs_info)
acce952b 4224{
4225 struct rb_node *node;
4226 struct btrfs_delayed_ref_root *delayed_refs;
4227 struct btrfs_delayed_ref_node *ref;
4228 int ret = 0;
4229
4230 delayed_refs = &trans->delayed_refs;
4231
4232 spin_lock(&delayed_refs->lock);
d7df2c79 4233 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4234 spin_unlock(&delayed_refs->lock);
0b246afa 4235 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4236 return ret;
4237 }
4238
5c9d028b 4239 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4240 struct btrfs_delayed_ref_head *head;
0e0adbcf 4241 struct rb_node *n;
e78417d1 4242 bool pin_bytes = false;
acce952b 4243
d7df2c79
JB
4244 head = rb_entry(node, struct btrfs_delayed_ref_head,
4245 href_node);
3069bd26 4246 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4247 continue;
3069bd26 4248
d7df2c79 4249 spin_lock(&head->lock);
e3d03965 4250 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4251 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4252 ref_node);
d7df2c79 4253 ref->in_tree = 0;
e3d03965 4254 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4255 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4256 if (!list_empty(&ref->add_list))
4257 list_del(&ref->add_list);
d7df2c79
JB
4258 atomic_dec(&delayed_refs->num_entries);
4259 btrfs_put_delayed_ref(ref);
e78417d1 4260 }
d7df2c79
JB
4261 if (head->must_insert_reserved)
4262 pin_bytes = true;
4263 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4264 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4265 spin_unlock(&head->lock);
4266 spin_unlock(&delayed_refs->lock);
4267 mutex_unlock(&head->mutex);
acce952b 4268
d7df2c79 4269 if (pin_bytes)
d278850e
JB
4270 btrfs_pin_extent(fs_info, head->bytenr,
4271 head->num_bytes, 1);
31890da0 4272 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4273 btrfs_put_delayed_ref_head(head);
acce952b 4274 cond_resched();
4275 spin_lock(&delayed_refs->lock);
4276 }
4277
4278 spin_unlock(&delayed_refs->lock);
4279
4280 return ret;
4281}
4282
143bede5 4283static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4284{
4285 struct btrfs_inode *btrfs_inode;
4286 struct list_head splice;
4287
4288 INIT_LIST_HEAD(&splice);
4289
eb73c1b7
MX
4290 spin_lock(&root->delalloc_lock);
4291 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4292
4293 while (!list_empty(&splice)) {
fe816d0f 4294 struct inode *inode = NULL;
eb73c1b7
MX
4295 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4296 delalloc_inodes);
fe816d0f 4297 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4298 spin_unlock(&root->delalloc_lock);
acce952b 4299
fe816d0f
NB
4300 /*
4301 * Make sure we get a live inode and that it'll not disappear
4302 * meanwhile.
4303 */
4304 inode = igrab(&btrfs_inode->vfs_inode);
4305 if (inode) {
4306 invalidate_inode_pages2(inode->i_mapping);
4307 iput(inode);
4308 }
eb73c1b7 4309 spin_lock(&root->delalloc_lock);
acce952b 4310 }
eb73c1b7
MX
4311 spin_unlock(&root->delalloc_lock);
4312}
4313
4314static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4315{
4316 struct btrfs_root *root;
4317 struct list_head splice;
4318
4319 INIT_LIST_HEAD(&splice);
4320
4321 spin_lock(&fs_info->delalloc_root_lock);
4322 list_splice_init(&fs_info->delalloc_roots, &splice);
4323 while (!list_empty(&splice)) {
4324 root = list_first_entry(&splice, struct btrfs_root,
4325 delalloc_root);
eb73c1b7
MX
4326 root = btrfs_grab_fs_root(root);
4327 BUG_ON(!root);
4328 spin_unlock(&fs_info->delalloc_root_lock);
4329
4330 btrfs_destroy_delalloc_inodes(root);
4331 btrfs_put_fs_root(root);
4332
4333 spin_lock(&fs_info->delalloc_root_lock);
4334 }
4335 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4336}
4337
2ff7e61e 4338static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4339 struct extent_io_tree *dirty_pages,
4340 int mark)
4341{
4342 int ret;
acce952b 4343 struct extent_buffer *eb;
4344 u64 start = 0;
4345 u64 end;
acce952b 4346
4347 while (1) {
4348 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4349 mark, NULL);
acce952b 4350 if (ret)
4351 break;
4352
91166212 4353 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4354 while (start <= end) {
0b246afa
JM
4355 eb = find_extent_buffer(fs_info, start);
4356 start += fs_info->nodesize;
fd8b2b61 4357 if (!eb)
acce952b 4358 continue;
fd8b2b61 4359 wait_on_extent_buffer_writeback(eb);
acce952b 4360
fd8b2b61
JB
4361 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4362 &eb->bflags))
4363 clear_extent_buffer_dirty(eb);
4364 free_extent_buffer_stale(eb);
acce952b 4365 }
4366 }
4367
4368 return ret;
4369}
4370
2ff7e61e 4371static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4372 struct extent_io_tree *pinned_extents)
4373{
4374 struct extent_io_tree *unpin;
4375 u64 start;
4376 u64 end;
4377 int ret;
ed0eaa14 4378 bool loop = true;
acce952b 4379
4380 unpin = pinned_extents;
ed0eaa14 4381again:
acce952b 4382 while (1) {
0e6ec385
FM
4383 struct extent_state *cached_state = NULL;
4384
fcd5e742
LF
4385 /*
4386 * The btrfs_finish_extent_commit() may get the same range as
4387 * ours between find_first_extent_bit and clear_extent_dirty.
4388 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4389 * the same extent range.
4390 */
4391 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4392 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4393 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4394 if (ret) {
4395 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4396 break;
fcd5e742 4397 }
acce952b 4398
0e6ec385
FM
4399 clear_extent_dirty(unpin, start, end, &cached_state);
4400 free_extent_state(cached_state);
2ff7e61e 4401 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4402 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4403 cond_resched();
4404 }
4405
ed0eaa14 4406 if (loop) {
0b246afa
JM
4407 if (unpin == &fs_info->freed_extents[0])
4408 unpin = &fs_info->freed_extents[1];
ed0eaa14 4409 else
0b246afa 4410 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4411 loop = false;
4412 goto again;
4413 }
4414
acce952b 4415 return 0;
4416}
4417
c79a1751
LB
4418static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4419{
4420 struct inode *inode;
4421
4422 inode = cache->io_ctl.inode;
4423 if (inode) {
4424 invalidate_inode_pages2(inode->i_mapping);
4425 BTRFS_I(inode)->generation = 0;
4426 cache->io_ctl.inode = NULL;
4427 iput(inode);
4428 }
4429 btrfs_put_block_group(cache);
4430}
4431
4432void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4433 struct btrfs_fs_info *fs_info)
c79a1751
LB
4434{
4435 struct btrfs_block_group_cache *cache;
4436
4437 spin_lock(&cur_trans->dirty_bgs_lock);
4438 while (!list_empty(&cur_trans->dirty_bgs)) {
4439 cache = list_first_entry(&cur_trans->dirty_bgs,
4440 struct btrfs_block_group_cache,
4441 dirty_list);
c79a1751
LB
4442
4443 if (!list_empty(&cache->io_list)) {
4444 spin_unlock(&cur_trans->dirty_bgs_lock);
4445 list_del_init(&cache->io_list);
4446 btrfs_cleanup_bg_io(cache);
4447 spin_lock(&cur_trans->dirty_bgs_lock);
4448 }
4449
4450 list_del_init(&cache->dirty_list);
4451 spin_lock(&cache->lock);
4452 cache->disk_cache_state = BTRFS_DC_ERROR;
4453 spin_unlock(&cache->lock);
4454
4455 spin_unlock(&cur_trans->dirty_bgs_lock);
4456 btrfs_put_block_group(cache);
ba2c4d4e 4457 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4458 spin_lock(&cur_trans->dirty_bgs_lock);
4459 }
4460 spin_unlock(&cur_trans->dirty_bgs_lock);
4461
45ae2c18
NB
4462 /*
4463 * Refer to the definition of io_bgs member for details why it's safe
4464 * to use it without any locking
4465 */
c79a1751
LB
4466 while (!list_empty(&cur_trans->io_bgs)) {
4467 cache = list_first_entry(&cur_trans->io_bgs,
4468 struct btrfs_block_group_cache,
4469 io_list);
c79a1751
LB
4470
4471 list_del_init(&cache->io_list);
4472 spin_lock(&cache->lock);
4473 cache->disk_cache_state = BTRFS_DC_ERROR;
4474 spin_unlock(&cache->lock);
4475 btrfs_cleanup_bg_io(cache);
4476 }
4477}
4478
49b25e05 4479void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4480 struct btrfs_fs_info *fs_info)
49b25e05 4481{
bbbf7243
NB
4482 struct btrfs_device *dev, *tmp;
4483
2ff7e61e 4484 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4485 ASSERT(list_empty(&cur_trans->dirty_bgs));
4486 ASSERT(list_empty(&cur_trans->io_bgs));
4487
bbbf7243
NB
4488 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4489 post_commit_list) {
4490 list_del_init(&dev->post_commit_list);
4491 }
4492
2ff7e61e 4493 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4494
4a9d8bde 4495 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4496 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4497
4a9d8bde 4498 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4499 wake_up(&fs_info->transaction_wait);
49b25e05 4500
ccdf9b30
JM
4501 btrfs_destroy_delayed_inodes(fs_info);
4502 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4503
2ff7e61e 4504 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4505 EXTENT_DIRTY);
2ff7e61e 4506 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4507 fs_info->pinned_extents);
49b25e05 4508
4a9d8bde
MX
4509 cur_trans->state =TRANS_STATE_COMPLETED;
4510 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4511}
4512
2ff7e61e 4513static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4514{
4515 struct btrfs_transaction *t;
acce952b 4516
0b246afa 4517 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4518
0b246afa
JM
4519 spin_lock(&fs_info->trans_lock);
4520 while (!list_empty(&fs_info->trans_list)) {
4521 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4522 struct btrfs_transaction, list);
4523 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4524 refcount_inc(&t->use_count);
0b246afa 4525 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4526 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4527 btrfs_put_transaction(t);
0b246afa 4528 spin_lock(&fs_info->trans_lock);
724e2315
JB
4529 continue;
4530 }
0b246afa 4531 if (t == fs_info->running_transaction) {
724e2315 4532 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4533 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4534 /*
4535 * We wait for 0 num_writers since we don't hold a trans
4536 * handle open currently for this transaction.
4537 */
4538 wait_event(t->writer_wait,
4539 atomic_read(&t->num_writers) == 0);
4540 } else {
0b246afa 4541 spin_unlock(&fs_info->trans_lock);
724e2315 4542 }
2ff7e61e 4543 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4544
0b246afa
JM
4545 spin_lock(&fs_info->trans_lock);
4546 if (t == fs_info->running_transaction)
4547 fs_info->running_transaction = NULL;
acce952b 4548 list_del_init(&t->list);
0b246afa 4549 spin_unlock(&fs_info->trans_lock);
acce952b 4550
724e2315 4551 btrfs_put_transaction(t);
2ff7e61e 4552 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4553 spin_lock(&fs_info->trans_lock);
724e2315 4554 }
0b246afa
JM
4555 spin_unlock(&fs_info->trans_lock);
4556 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4557 btrfs_destroy_delayed_inodes(fs_info);
4558 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4559 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4560 btrfs_destroy_all_delalloc_inodes(fs_info);
4561 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4562
4563 return 0;
4564}
4565
e8c9f186 4566static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4567 /* mandatory callbacks */
0b86a832 4568 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4569 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4570};