btrfs: properly abstract the parity raid bio handling
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
141386e1
JB
66static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67{
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70}
71
d352ac68
CM
72/*
73 * async submit bios are used to offload expensive checksumming
74 * onto the worker threads. They checksum file and metadata bios
75 * just before they are sent down the IO stack.
76 */
44b8bd7e 77struct async_submit_bio {
8896a08d 78 struct inode *inode;
44b8bd7e 79 struct bio *bio;
a758781d 80 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 81 int mirror_num;
1941b64b
QW
82
83 /* Optional parameter for submit_bio_start used by direct io */
84 u64 dio_file_offset;
8b712842 85 struct btrfs_work work;
4e4cbee9 86 blk_status_t status;
44b8bd7e
CM
87};
88
d352ac68 89/*
2996e1f8 90 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 91 */
c67b3892 92static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 93{
d5178578 94 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 95 const int num_pages = num_extent_pages(buf);
a26663e7 96 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 97 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 98 char *kaddr;
e9be5a30 99 int i;
d5178578
JT
100
101 shash->tfm = fs_info->csum_shash;
102 crypto_shash_init(shash);
a26663e7 103 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 104 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 105 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 106
e9be5a30
DS
107 for (i = 1; i < num_pages; i++) {
108 kaddr = page_address(buf->pages[i]);
109 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 110 }
71a63551 111 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 112 crypto_shash_final(shash, result);
19c00ddc
CM
113}
114
d352ac68
CM
115/*
116 * we can't consider a given block up to date unless the transid of the
117 * block matches the transid in the parent node's pointer. This is how we
118 * detect blocks that either didn't get written at all or got written
119 * in the wrong place.
120 */
1259ab75 121static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
122 struct extent_buffer *eb, u64 parent_transid,
123 int atomic)
1259ab75 124{
2ac55d41 125 struct extent_state *cached_state = NULL;
1259ab75
CM
126 int ret;
127
128 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 return 0;
130
b9fab919
CM
131 if (atomic)
132 return -EAGAIN;
133
2ac55d41 134 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 135 &cached_state);
0b32f4bb 136 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
137 btrfs_header_generation(eb) == parent_transid) {
138 ret = 0;
139 goto out;
140 }
94647322 141 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
142"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
143 eb->start, eb->read_mirror,
29549aec 144 parent_transid, btrfs_header_generation(eb));
1259ab75 145 ret = 1;
35b22c19 146 clear_extent_buffer_uptodate(eb);
33958dc6 147out:
2ac55d41 148 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 149 &cached_state);
1259ab75 150 return ret;
1259ab75
CM
151}
152
e7e16f48
JT
153static bool btrfs_supported_super_csum(u16 csum_type)
154{
155 switch (csum_type) {
156 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 157 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 158 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 159 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
160 return true;
161 default:
162 return false;
163 }
164}
165
1104a885
DS
166/*
167 * Return 0 if the superblock checksum type matches the checksum value of that
168 * algorithm. Pass the raw disk superblock data.
169 */
ab8d0fc4
JM
170static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
171 char *raw_disk_sb)
1104a885
DS
172{
173 struct btrfs_super_block *disk_sb =
174 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 175 char result[BTRFS_CSUM_SIZE];
d5178578
JT
176 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
177
178 shash->tfm = fs_info->csum_shash;
1104a885 179
51bce6c9
JT
180 /*
181 * The super_block structure does not span the whole
182 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
183 * filled with zeros and is included in the checksum.
184 */
fd08001f
EB
185 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
186 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 187
55fc29be 188 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 189 return 1;
1104a885 190
e7e16f48 191 return 0;
1104a885
DS
192}
193
e064d5e9 194int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 195 struct btrfs_key *first_key, u64 parent_transid)
581c1760 196{
e064d5e9 197 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
198 int found_level;
199 struct btrfs_key found_key;
200 int ret;
201
202 found_level = btrfs_header_level(eb);
203 if (found_level != level) {
63489055
QW
204 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
205 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
206 btrfs_err(fs_info,
207"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
208 eb->start, level, found_level);
581c1760
QW
209 return -EIO;
210 }
211
212 if (!first_key)
213 return 0;
214
5d41be6f
QW
215 /*
216 * For live tree block (new tree blocks in current transaction),
217 * we need proper lock context to avoid race, which is impossible here.
218 * So we only checks tree blocks which is read from disk, whose
219 * generation <= fs_info->last_trans_committed.
220 */
221 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
222 return 0;
62fdaa52
QW
223
224 /* We have @first_key, so this @eb must have at least one item */
225 if (btrfs_header_nritems(eb) == 0) {
226 btrfs_err(fs_info,
227 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
228 eb->start);
229 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
230 return -EUCLEAN;
231 }
232
581c1760
QW
233 if (found_level)
234 btrfs_node_key_to_cpu(eb, &found_key, 0);
235 else
236 btrfs_item_key_to_cpu(eb, &found_key, 0);
237 ret = btrfs_comp_cpu_keys(first_key, &found_key);
238
581c1760 239 if (ret) {
63489055
QW
240 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
241 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 242 btrfs_err(fs_info,
ff76a864
LB
243"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
244 eb->start, parent_transid, first_key->objectid,
245 first_key->type, first_key->offset,
246 found_key.objectid, found_key.type,
247 found_key.offset);
581c1760 248 }
581c1760
QW
249 return ret;
250}
251
d352ac68
CM
252/*
253 * helper to read a given tree block, doing retries as required when
254 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
255 *
256 * @parent_transid: expected transid, skip check if 0
257 * @level: expected level, mandatory check
258 * @first_key: expected key of first slot, skip check if NULL
d352ac68 259 */
6a2e9dc4
FM
260int btrfs_read_extent_buffer(struct extent_buffer *eb,
261 u64 parent_transid, int level,
262 struct btrfs_key *first_key)
f188591e 263{
5ab12d1f 264 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 265 struct extent_io_tree *io_tree;
ea466794 266 int failed = 0;
f188591e
CM
267 int ret;
268 int num_copies = 0;
269 int mirror_num = 0;
ea466794 270 int failed_mirror = 0;
f188591e 271
0b246afa 272 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 273 while (1) {
f8397d69 274 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 275 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 276 if (!ret) {
581c1760 277 if (verify_parent_transid(io_tree, eb,
b9fab919 278 parent_transid, 0))
256dd1bb 279 ret = -EIO;
e064d5e9 280 else if (btrfs_verify_level_key(eb, level,
448de471 281 first_key, parent_transid))
581c1760
QW
282 ret = -EUCLEAN;
283 else
284 break;
256dd1bb 285 }
d397712b 286
0b246afa 287 num_copies = btrfs_num_copies(fs_info,
f188591e 288 eb->start, eb->len);
4235298e 289 if (num_copies == 1)
ea466794 290 break;
4235298e 291
5cf1ab56
JB
292 if (!failed_mirror) {
293 failed = 1;
294 failed_mirror = eb->read_mirror;
295 }
296
f188591e 297 mirror_num++;
ea466794
JB
298 if (mirror_num == failed_mirror)
299 mirror_num++;
300
4235298e 301 if (mirror_num > num_copies)
ea466794 302 break;
f188591e 303 }
ea466794 304
c0901581 305 if (failed && !ret && failed_mirror)
20a1fbf9 306 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
307
308 return ret;
f188591e 309}
19c00ddc 310
eca0f6f6
QW
311static int csum_one_extent_buffer(struct extent_buffer *eb)
312{
313 struct btrfs_fs_info *fs_info = eb->fs_info;
314 u8 result[BTRFS_CSUM_SIZE];
315 int ret;
316
317 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
318 offsetof(struct btrfs_header, fsid),
319 BTRFS_FSID_SIZE) == 0);
320 csum_tree_block(eb, result);
321
322 if (btrfs_header_level(eb))
323 ret = btrfs_check_node(eb);
324 else
325 ret = btrfs_check_leaf_full(eb);
326
3777369f
QW
327 if (ret < 0)
328 goto error;
329
330 /*
331 * Also check the generation, the eb reached here must be newer than
332 * last committed. Or something seriously wrong happened.
333 */
334 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
335 ret = -EUCLEAN;
eca0f6f6 336 btrfs_err(fs_info,
3777369f
QW
337 "block=%llu bad generation, have %llu expect > %llu",
338 eb->start, btrfs_header_generation(eb),
339 fs_info->last_trans_committed);
340 goto error;
eca0f6f6
QW
341 }
342 write_extent_buffer(eb, result, 0, fs_info->csum_size);
343
344 return 0;
3777369f
QW
345
346error:
347 btrfs_print_tree(eb, 0);
348 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
349 eb->start);
350 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
351 return ret;
eca0f6f6
QW
352}
353
354/* Checksum all dirty extent buffers in one bio_vec */
355static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
356 struct bio_vec *bvec)
357{
358 struct page *page = bvec->bv_page;
359 u64 bvec_start = page_offset(page) + bvec->bv_offset;
360 u64 cur;
361 int ret = 0;
362
363 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
364 cur += fs_info->nodesize) {
365 struct extent_buffer *eb;
366 bool uptodate;
367
368 eb = find_extent_buffer(fs_info, cur);
369 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
370 fs_info->nodesize);
371
01cd3909 372 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
373 if (WARN_ON(!eb))
374 return -EUCLEAN;
375
376 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
377 free_extent_buffer(eb);
378 return -EUCLEAN;
379 }
380 if (WARN_ON(!uptodate)) {
381 free_extent_buffer(eb);
382 return -EUCLEAN;
383 }
384
385 ret = csum_one_extent_buffer(eb);
386 free_extent_buffer(eb);
387 if (ret < 0)
388 return ret;
389 }
390 return ret;
391}
392
d352ac68 393/*
ac303b69
QW
394 * Checksum a dirty tree block before IO. This has extra checks to make sure
395 * we only fill in the checksum field in the first page of a multi-page block.
396 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 397 */
ac303b69 398static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 399{
ac303b69 400 struct page *page = bvec->bv_page;
4eee4fa4 401 u64 start = page_offset(page);
19c00ddc 402 u64 found_start;
19c00ddc 403 struct extent_buffer *eb;
eca0f6f6 404
fbca46eb 405 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 406 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 407
4f2de97a
JB
408 eb = (struct extent_buffer *)page->private;
409 if (page != eb->pages[0])
410 return 0;
0f805531 411
19c00ddc 412 found_start = btrfs_header_bytenr(eb);
d3575156
NA
413
414 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
415 WARN_ON(found_start != 0);
416 return 0;
417 }
418
0f805531
AL
419 /*
420 * Please do not consolidate these warnings into a single if.
421 * It is useful to know what went wrong.
422 */
423 if (WARN_ON(found_start != start))
424 return -EUCLEAN;
425 if (WARN_ON(!PageUptodate(page)))
426 return -EUCLEAN;
427
eca0f6f6 428 return csum_one_extent_buffer(eb);
19c00ddc
CM
429}
430
b0c9b3b0 431static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 432{
b0c9b3b0 433 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 434 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 435 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 436 u8 *metadata_uuid;
2b82032c 437
9a8658e3
DS
438 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
439 BTRFS_FSID_SIZE);
944d3f9f
NB
440 /*
441 * Checking the incompat flag is only valid for the current fs. For
442 * seed devices it's forbidden to have their uuid changed so reading
443 * ->fsid in this case is fine
444 */
445 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
446 metadata_uuid = fs_devices->metadata_uuid;
447 else
448 metadata_uuid = fs_devices->fsid;
449
450 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
451 return 0;
452
453 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
454 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
455 return 0;
456
457 return 1;
2b82032c
YZ
458}
459
77bf40a2
QW
460/* Do basic extent buffer checks at read time */
461static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 462{
77bf40a2 463 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 464 u64 found_start;
77bf40a2
QW
465 const u32 csum_size = fs_info->csum_size;
466 u8 found_level;
2996e1f8 467 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 468 const u8 *header_csum;
77bf40a2 469 int ret = 0;
ea466794 470
ce9adaa5 471 found_start = btrfs_header_bytenr(eb);
727011e0 472 if (found_start != eb->start) {
8f0ed7d4
QW
473 btrfs_err_rl(fs_info,
474 "bad tree block start, mirror %u want %llu have %llu",
475 eb->read_mirror, eb->start, found_start);
f188591e 476 ret = -EIO;
77bf40a2 477 goto out;
ce9adaa5 478 }
b0c9b3b0 479 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
480 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
481 eb->start, eb->read_mirror);
1259ab75 482 ret = -EIO;
77bf40a2 483 goto out;
1259ab75 484 }
ce9adaa5 485 found_level = btrfs_header_level(eb);
1c24c3ce 486 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
487 btrfs_err(fs_info,
488 "bad tree block level, mirror %u level %d on logical %llu",
489 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 490 ret = -EIO;
77bf40a2 491 goto out;
1c24c3ce 492 }
ce9adaa5 493
c67b3892 494 csum_tree_block(eb, result);
dfd29eed
DS
495 header_csum = page_address(eb->pages[0]) +
496 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 497
dfd29eed 498 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 499 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
500"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
501 eb->start, eb->read_mirror,
dfd29eed 502 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
503 CSUM_FMT_VALUE(csum_size, result),
504 btrfs_header_level(eb));
2996e1f8 505 ret = -EUCLEAN;
77bf40a2 506 goto out;
2996e1f8
JT
507 }
508
a826d6dc
JB
509 /*
510 * If this is a leaf block and it is corrupt, set the corrupt bit so
511 * that we don't try and read the other copies of this block, just
512 * return -EIO.
513 */
1c4360ee 514 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
515 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
516 ret = -EIO;
517 }
ce9adaa5 518
813fd1dc 519 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
520 ret = -EIO;
521
0b32f4bb
JB
522 if (!ret)
523 set_extent_buffer_uptodate(eb);
75391f0d
QW
524 else
525 btrfs_err(fs_info,
8f0ed7d4
QW
526 "read time tree block corruption detected on logical %llu mirror %u",
527 eb->start, eb->read_mirror);
77bf40a2
QW
528out:
529 return ret;
530}
531
371cdc07
QW
532static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
533 int mirror)
534{
535 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
536 struct extent_buffer *eb;
537 bool reads_done;
538 int ret = 0;
539
540 /*
541 * We don't allow bio merge for subpage metadata read, so we should
542 * only get one eb for each endio hook.
543 */
544 ASSERT(end == start + fs_info->nodesize - 1);
545 ASSERT(PagePrivate(page));
546
547 eb = find_extent_buffer(fs_info, start);
548 /*
549 * When we are reading one tree block, eb must have been inserted into
550 * the radix tree. If not, something is wrong.
551 */
552 ASSERT(eb);
553
554 reads_done = atomic_dec_and_test(&eb->io_pages);
555 /* Subpage read must finish in page read */
556 ASSERT(reads_done);
557
558 eb->read_mirror = mirror;
559 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
560 ret = -EIO;
561 goto err;
562 }
563 ret = validate_extent_buffer(eb);
564 if (ret < 0)
565 goto err;
566
371cdc07
QW
567 set_extent_buffer_uptodate(eb);
568
569 free_extent_buffer(eb);
570 return ret;
571err:
572 /*
573 * end_bio_extent_readpage decrements io_pages in case of error,
574 * make sure it has something to decrement.
575 */
576 atomic_inc(&eb->io_pages);
577 clear_extent_buffer_uptodate(eb);
578 free_extent_buffer(eb);
579 return ret;
580}
581
c3a3b19b 582int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
583 struct page *page, u64 start, u64 end,
584 int mirror)
585{
586 struct extent_buffer *eb;
587 int ret = 0;
588 int reads_done;
589
590 ASSERT(page->private);
371cdc07 591
fbca46eb 592 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
371cdc07
QW
593 return validate_subpage_buffer(page, start, end, mirror);
594
77bf40a2
QW
595 eb = (struct extent_buffer *)page->private;
596
597 /*
598 * The pending IO might have been the only thing that kept this buffer
599 * in memory. Make sure we have a ref for all this other checks
600 */
601 atomic_inc(&eb->refs);
602
603 reads_done = atomic_dec_and_test(&eb->io_pages);
604 if (!reads_done)
605 goto err;
606
607 eb->read_mirror = mirror;
608 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
609 ret = -EIO;
610 goto err;
611 }
612 ret = validate_extent_buffer(eb);
ce9adaa5 613err:
53b381b3
DW
614 if (ret) {
615 /*
616 * our io error hook is going to dec the io pages
617 * again, we have to make sure it has something
618 * to decrement
619 */
620 atomic_inc(&eb->io_pages);
0b32f4bb 621 clear_extent_buffer_uptodate(eb);
53b381b3 622 }
0b32f4bb 623 free_extent_buffer(eb);
77bf40a2 624
f188591e 625 return ret;
ce9adaa5
CM
626}
627
4a69a410
CM
628static void run_one_async_start(struct btrfs_work *work)
629{
4a69a410 630 struct async_submit_bio *async;
4e4cbee9 631 blk_status_t ret;
4a69a410
CM
632
633 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
634 ret = async->submit_bio_start(async->inode, async->bio,
635 async->dio_file_offset);
79787eaa 636 if (ret)
4e4cbee9 637 async->status = ret;
4a69a410
CM
638}
639
06ea01b1
DS
640/*
641 * In order to insert checksums into the metadata in large chunks, we wait
642 * until bio submission time. All the pages in the bio are checksummed and
643 * sums are attached onto the ordered extent record.
644 *
645 * At IO completion time the csums attached on the ordered extent record are
646 * inserted into the tree.
647 */
4a69a410 648static void run_one_async_done(struct btrfs_work *work)
8b712842 649{
8b712842 650 struct async_submit_bio *async;
06ea01b1 651 struct inode *inode;
8b712842
CM
652
653 async = container_of(work, struct async_submit_bio, work);
8896a08d 654 inode = async->inode;
4854ddd0 655
bb7ab3b9 656 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
657 if (async->status) {
658 async->bio->bi_status = async->status;
4246a0b6 659 bio_endio(async->bio);
79787eaa
JM
660 return;
661 }
662
ec39f769
CM
663 /*
664 * All of the bios that pass through here are from async helpers.
665 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
666 * This changes nothing when cgroups aren't in use.
667 */
668 async->bio->bi_opf |= REQ_CGROUP_PUNT;
1a722d8f 669 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
4a69a410
CM
670}
671
672static void run_one_async_free(struct btrfs_work *work)
673{
674 struct async_submit_bio *async;
675
676 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
677 kfree(async);
678}
679
ea1f0ced
CH
680/*
681 * Submit bio to an async queue.
682 *
683 * Retrun:
684 * - true if the work has been succesfuly submitted
685 * - false in case of error
686 */
687bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
688 u64 dio_file_offset,
689 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 690{
8896a08d 691 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
692 struct async_submit_bio *async;
693
694 async = kmalloc(sizeof(*async), GFP_NOFS);
695 if (!async)
ea1f0ced 696 return false;
44b8bd7e 697
8896a08d 698 async->inode = inode;
44b8bd7e
CM
699 async->bio = bio;
700 async->mirror_num = mirror_num;
4a69a410 701 async->submit_bio_start = submit_bio_start;
4a69a410 702
a0cac0ec
OS
703 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
704 run_one_async_free);
4a69a410 705
1941b64b 706 async->dio_file_offset = dio_file_offset;
8c8bee1d 707
4e4cbee9 708 async->status = 0;
79787eaa 709
67f055c7 710 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
711 btrfs_queue_work(fs_info->hipri_workers, &async->work);
712 else
713 btrfs_queue_work(fs_info->workers, &async->work);
ea1f0ced 714 return true;
44b8bd7e
CM
715}
716
4e4cbee9 717static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 718{
2c30c71b 719 struct bio_vec *bvec;
ce3ed71a 720 struct btrfs_root *root;
2b070cfe 721 int ret = 0;
6dc4f100 722 struct bvec_iter_all iter_all;
ce3ed71a 723
c09abff8 724 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 725 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 726 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 727 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
728 if (ret)
729 break;
ce3ed71a 730 }
2c30c71b 731
4e4cbee9 732 return errno_to_blk_status(ret);
ce3ed71a
CM
733}
734
8896a08d 735static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 736 u64 dio_file_offset)
22c59948 737{
8b712842
CM
738 /*
739 * when we're called for a write, we're already in the async
1a722d8f 740 * submission context. Just jump into btrfs_submit_bio.
8b712842 741 */
79787eaa 742 return btree_csum_one_bio(bio);
4a69a410 743}
22c59948 744
f4dcfb30 745static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 746 struct btrfs_inode *bi)
de0022b9 747{
4eef29ef 748 if (btrfs_is_zoned(fs_info))
f4dcfb30 749 return false;
6300463b 750 if (atomic_read(&bi->sync_writers))
f4dcfb30 751 return false;
9b4e675a 752 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
753 return false;
754 return true;
de0022b9
JB
755}
756
94d9e11b 757void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 758{
0b246afa 759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 760 blk_status_t ret;
cad321ad 761
08a6f464
CH
762 bio->bi_opf |= REQ_META;
763
cfe94440 764 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
1a722d8f
CH
765 btrfs_submit_bio(fs_info, bio, mirror_num);
766 return;
44b8bd7e 767 }
d313d7a3 768
ea1f0ced
CH
769 /*
770 * Kthread helpers are used to submit writes so that checksumming can
771 * happen in parallel across all CPUs.
772 */
773 if (should_async_write(fs_info, BTRFS_I(inode)) &&
774 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
775 return;
776
777 ret = btree_csum_one_bio(bio);
94d9e11b
CH
778 if (ret) {
779 bio->bi_status = ret;
780 bio_endio(bio);
ea1f0ced 781 return;
94d9e11b 782 }
ea1f0ced
CH
783
784 btrfs_submit_bio(fs_info, bio, mirror_num);
44b8bd7e
CM
785}
786
3dd1462e 787#ifdef CONFIG_MIGRATION
8958b551
MWO
788static int btree_migrate_folio(struct address_space *mapping,
789 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
790{
791 /*
792 * we can't safely write a btree page from here,
793 * we haven't done the locking hook
794 */
8958b551 795 if (folio_test_dirty(src))
784b4e29
CM
796 return -EAGAIN;
797 /*
798 * Buffers may be managed in a filesystem specific way.
799 * We must have no buffers or drop them.
800 */
8958b551
MWO
801 if (folio_get_private(src) &&
802 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 803 return -EAGAIN;
54184650 804 return migrate_folio(mapping, dst, src, mode);
784b4e29 805}
8958b551
MWO
806#else
807#define btree_migrate_folio NULL
3dd1462e 808#endif
784b4e29 809
0da5468f
CM
810static int btree_writepages(struct address_space *mapping,
811 struct writeback_control *wbc)
812{
e2d84521
MX
813 struct btrfs_fs_info *fs_info;
814 int ret;
815
d8d5f3e1 816 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
817
818 if (wbc->for_kupdate)
819 return 0;
820
e2d84521 821 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 822 /* this is a bit racy, but that's ok */
d814a491
EL
823 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
824 BTRFS_DIRTY_METADATA_THRESH,
825 fs_info->dirty_metadata_batch);
e2d84521 826 if (ret < 0)
793955bc 827 return 0;
793955bc 828 }
0b32f4bb 829 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
830}
831
f913cff3 832static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 833{
f913cff3
MWO
834 if (folio_test_writeback(folio) || folio_test_dirty(folio))
835 return false;
0c4e538b 836
f913cff3 837 return try_release_extent_buffer(&folio->page);
d98237b3
CM
838}
839
895586eb
MWO
840static void btree_invalidate_folio(struct folio *folio, size_t offset,
841 size_t length)
d98237b3 842{
d1310b2e 843 struct extent_io_tree *tree;
895586eb
MWO
844 tree = &BTRFS_I(folio->mapping->host)->io_tree;
845 extent_invalidate_folio(tree, folio, offset);
f913cff3 846 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
847 if (folio_get_private(folio)) {
848 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
849 "folio private not zero on folio %llu",
850 (unsigned long long)folio_pos(folio));
851 folio_detach_private(folio);
9ad6b7bc 852 }
d98237b3
CM
853}
854
bb146eb2 855#ifdef DEBUG
0079c3b1
MWO
856static bool btree_dirty_folio(struct address_space *mapping,
857 struct folio *folio)
858{
859 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 860 struct btrfs_subpage *subpage;
0b32f4bb 861 struct extent_buffer *eb;
139e8cd3 862 int cur_bit = 0;
0079c3b1 863 u64 page_start = folio_pos(folio);
139e8cd3
QW
864
865 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 866 eb = folio_get_private(folio);
139e8cd3
QW
867 BUG_ON(!eb);
868 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
869 BUG_ON(!atomic_read(&eb->refs));
49d0c642 870 btrfs_assert_tree_write_locked(eb);
0079c3b1 871 return filemap_dirty_folio(mapping, folio);
139e8cd3 872 }
0079c3b1 873 subpage = folio_get_private(folio);
139e8cd3
QW
874
875 ASSERT(subpage->dirty_bitmap);
876 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
877 unsigned long flags;
878 u64 cur;
879 u16 tmp = (1 << cur_bit);
880
881 spin_lock_irqsave(&subpage->lock, flags);
882 if (!(tmp & subpage->dirty_bitmap)) {
883 spin_unlock_irqrestore(&subpage->lock, flags);
884 cur_bit++;
885 continue;
886 }
887 spin_unlock_irqrestore(&subpage->lock, flags);
888 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 889
139e8cd3
QW
890 eb = find_extent_buffer(fs_info, cur);
891 ASSERT(eb);
892 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
893 ASSERT(atomic_read(&eb->refs));
49d0c642 894 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
895 free_extent_buffer(eb);
896
897 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
898 }
0079c3b1 899 return filemap_dirty_folio(mapping, folio);
0b32f4bb 900}
0079c3b1
MWO
901#else
902#define btree_dirty_folio filemap_dirty_folio
903#endif
0b32f4bb 904
7f09410b 905static const struct address_space_operations btree_aops = {
0da5468f 906 .writepages = btree_writepages,
f913cff3 907 .release_folio = btree_release_folio,
895586eb 908 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
909 .migrate_folio = btree_migrate_folio,
910 .dirty_folio = btree_dirty_folio,
d98237b3
CM
911};
912
2ff7e61e
JM
913struct extent_buffer *btrfs_find_create_tree_block(
914 struct btrfs_fs_info *fs_info,
3fbaf258
JB
915 u64 bytenr, u64 owner_root,
916 int level)
0999df54 917{
0b246afa
JM
918 if (btrfs_is_testing(fs_info))
919 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 920 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
921}
922
581c1760
QW
923/*
924 * Read tree block at logical address @bytenr and do variant basic but critical
925 * verification.
926 *
1b7ec85e 927 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
928 * @parent_transid: expected transid of this tree block, skip check if 0
929 * @level: expected level, mandatory check
930 * @first_key: expected key in slot 0, skip check if NULL
931 */
2ff7e61e 932struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
933 u64 owner_root, u64 parent_transid,
934 int level, struct btrfs_key *first_key)
0999df54
CM
935{
936 struct extent_buffer *buf = NULL;
0999df54
CM
937 int ret;
938
3fbaf258 939 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
940 if (IS_ERR(buf))
941 return buf;
0999df54 942
6a2e9dc4 943 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
0f0fe8f7 944 if (ret) {
537f38f0 945 free_extent_buffer_stale(buf);
64c043de 946 return ERR_PTR(ret);
0f0fe8f7 947 }
88c602ab
QW
948 if (btrfs_check_eb_owner(buf, owner_root)) {
949 free_extent_buffer_stale(buf);
950 return ERR_PTR(-EUCLEAN);
951 }
5f39d397 952 return buf;
ce9adaa5 953
eb60ceac
CM
954}
955
6a884d7d 956void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 957{
6a884d7d 958 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 959 if (btrfs_header_generation(buf) ==
e2d84521 960 fs_info->running_transaction->transid) {
49d0c642 961 btrfs_assert_tree_write_locked(buf);
b4ce94de 962
b9473439 963 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
964 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
965 -buf->len,
966 fs_info->dirty_metadata_batch);
ed7b63eb
JB
967 clear_extent_buffer_dirty(buf);
968 }
925baedd 969 }
5f39d397
CM
970}
971
da17066c 972static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 973 u64 objectid)
d97e63b6 974{
7c0260ee 975 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
976
977 memset(&root->root_key, 0, sizeof(root->root_key));
978 memset(&root->root_item, 0, sizeof(root->root_item));
979 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 980 root->fs_info = fs_info;
2e608bd1 981 root->root_key.objectid = objectid;
cfaa7295 982 root->node = NULL;
a28ec197 983 root->commit_root = NULL;
27cdeb70 984 root->state = 0;
abed4aaa 985 RB_CLEAR_NODE(&root->rb_node);
0b86a832 986
0f7d52f4 987 root->last_trans = 0;
6b8fad57 988 root->free_objectid = 0;
eb73c1b7 989 root->nr_delalloc_inodes = 0;
199c2a9c 990 root->nr_ordered_extents = 0;
6bef4d31 991 root->inode_tree = RB_ROOT;
088aea3b 992 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
993
994 btrfs_init_root_block_rsv(root);
0b86a832
CM
995
996 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 997 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
998 INIT_LIST_HEAD(&root->delalloc_inodes);
999 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1000 INIT_LIST_HEAD(&root->ordered_extents);
1001 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1002 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1003 INIT_LIST_HEAD(&root->logged_list[0]);
1004 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1005 spin_lock_init(&root->inode_lock);
eb73c1b7 1006 spin_lock_init(&root->delalloc_lock);
199c2a9c 1007 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1008 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1009 spin_lock_init(&root->log_extents_lock[0]);
1010 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1011 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1012 mutex_init(&root->objectid_mutex);
e02119d5 1013 mutex_init(&root->log_mutex);
31f3d255 1014 mutex_init(&root->ordered_extent_mutex);
573bfb72 1015 mutex_init(&root->delalloc_mutex);
c53e9653 1016 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1017 init_waitqueue_head(&root->log_writer_wait);
1018 init_waitqueue_head(&root->log_commit_wait[0]);
1019 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1020 INIT_LIST_HEAD(&root->log_ctxs[0]);
1021 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1022 atomic_set(&root->log_commit[0], 0);
1023 atomic_set(&root->log_commit[1], 0);
1024 atomic_set(&root->log_writers, 0);
2ecb7923 1025 atomic_set(&root->log_batch, 0);
0700cea7 1026 refcount_set(&root->refs, 1);
8ecebf4d 1027 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1028 atomic_set(&root->nr_swapfiles, 0);
7237f183 1029 root->log_transid = 0;
d1433deb 1030 root->log_transid_committed = -1;
257c62e1 1031 root->last_log_commit = 0;
2e608bd1 1032 root->anon_dev = 0;
e289f03e 1033 if (!dummy) {
43eb5f29
QW
1034 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1035 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1036 extent_io_tree_init(fs_info, &root->log_csum_range,
1037 IO_TREE_LOG_CSUM_RANGE, NULL);
1038 }
017e5369 1039
5f3ab90a 1040 spin_lock_init(&root->root_item_lock);
370a11b8 1041 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1042#ifdef CONFIG_BTRFS_DEBUG
1043 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 1044 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 1045 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 1046 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 1047#endif
3768f368
CM
1048}
1049
74e4d827 1050static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1051 u64 objectid, gfp_t flags)
6f07e42e 1052{
74e4d827 1053 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1054 if (root)
96dfcb46 1055 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1056 return root;
1057}
1058
06ea65a3
JB
1059#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1060/* Should only be used by the testing infrastructure */
da17066c 1061struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1062{
1063 struct btrfs_root *root;
1064
7c0260ee
JM
1065 if (!fs_info)
1066 return ERR_PTR(-EINVAL);
1067
96dfcb46 1068 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1069 if (!root)
1070 return ERR_PTR(-ENOMEM);
da17066c 1071
b9ef22de 1072 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1073 root->alloc_bytenr = 0;
06ea65a3
JB
1074
1075 return root;
1076}
1077#endif
1078
abed4aaa
JB
1079static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1080{
1081 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1082 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1083
1084 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1085}
1086
1087static int global_root_key_cmp(const void *k, const struct rb_node *node)
1088{
1089 const struct btrfs_key *key = k;
1090 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1091
1092 return btrfs_comp_cpu_keys(key, &root->root_key);
1093}
1094
1095int btrfs_global_root_insert(struct btrfs_root *root)
1096{
1097 struct btrfs_fs_info *fs_info = root->fs_info;
1098 struct rb_node *tmp;
1099
1100 write_lock(&fs_info->global_root_lock);
1101 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1102 write_unlock(&fs_info->global_root_lock);
1103 ASSERT(!tmp);
1104
1105 return tmp ? -EEXIST : 0;
1106}
1107
1108void btrfs_global_root_delete(struct btrfs_root *root)
1109{
1110 struct btrfs_fs_info *fs_info = root->fs_info;
1111
1112 write_lock(&fs_info->global_root_lock);
1113 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1114 write_unlock(&fs_info->global_root_lock);
1115}
1116
1117struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1118 struct btrfs_key *key)
1119{
1120 struct rb_node *node;
1121 struct btrfs_root *root = NULL;
1122
1123 read_lock(&fs_info->global_root_lock);
1124 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1125 if (node)
1126 root = container_of(node, struct btrfs_root, rb_node);
1127 read_unlock(&fs_info->global_root_lock);
1128
1129 return root;
1130}
1131
f7238e50
JB
1132static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1133{
1134 struct btrfs_block_group *block_group;
1135 u64 ret;
1136
1137 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1138 return 0;
1139
1140 if (bytenr)
1141 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1142 else
1143 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1144 ASSERT(block_group);
1145 if (!block_group)
1146 return 0;
1147 ret = block_group->global_root_id;
1148 btrfs_put_block_group(block_group);
1149
1150 return ret;
1151}
1152
abed4aaa
JB
1153struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1154{
1155 struct btrfs_key key = {
1156 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1157 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1158 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1159 };
1160
1161 return btrfs_global_root(fs_info, &key);
1162}
1163
1164struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1165{
1166 struct btrfs_key key = {
1167 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1168 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1169 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1170 };
1171
1172 return btrfs_global_root(fs_info, &key);
1173}
1174
20897f5c 1175struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1176 u64 objectid)
1177{
9b7a2440 1178 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1179 struct extent_buffer *leaf;
1180 struct btrfs_root *tree_root = fs_info->tree_root;
1181 struct btrfs_root *root;
1182 struct btrfs_key key;
b89f6d1f 1183 unsigned int nofs_flag;
20897f5c 1184 int ret = 0;
20897f5c 1185
b89f6d1f
FM
1186 /*
1187 * We're holding a transaction handle, so use a NOFS memory allocation
1188 * context to avoid deadlock if reclaim happens.
1189 */
1190 nofs_flag = memalloc_nofs_save();
96dfcb46 1191 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1192 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1193 if (!root)
1194 return ERR_PTR(-ENOMEM);
1195
20897f5c
AJ
1196 root->root_key.objectid = objectid;
1197 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1198 root->root_key.offset = 0;
1199
9631e4cc
JB
1200 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1201 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1202 if (IS_ERR(leaf)) {
1203 ret = PTR_ERR(leaf);
1dd05682 1204 leaf = NULL;
8a6a87cd 1205 goto fail_unlock;
20897f5c
AJ
1206 }
1207
20897f5c 1208 root->node = leaf;
20897f5c
AJ
1209 btrfs_mark_buffer_dirty(leaf);
1210
1211 root->commit_root = btrfs_root_node(root);
27cdeb70 1212 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1213
f944d2cb
DS
1214 btrfs_set_root_flags(&root->root_item, 0);
1215 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1216 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1217 btrfs_set_root_generation(&root->root_item, trans->transid);
1218 btrfs_set_root_level(&root->root_item, 0);
1219 btrfs_set_root_refs(&root->root_item, 1);
1220 btrfs_set_root_used(&root->root_item, leaf->len);
1221 btrfs_set_root_last_snapshot(&root->root_item, 0);
1222 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1223 if (is_fstree(objectid))
807fc790
AS
1224 generate_random_guid(root->root_item.uuid);
1225 else
1226 export_guid(root->root_item.uuid, &guid_null);
c8422684 1227 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1228
8a6a87cd
BB
1229 btrfs_tree_unlock(leaf);
1230
20897f5c
AJ
1231 key.objectid = objectid;
1232 key.type = BTRFS_ROOT_ITEM_KEY;
1233 key.offset = 0;
1234 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1235 if (ret)
1236 goto fail;
1237
1dd05682
TI
1238 return root;
1239
8a6a87cd 1240fail_unlock:
8c38938c 1241 if (leaf)
1dd05682 1242 btrfs_tree_unlock(leaf);
8a6a87cd 1243fail:
00246528 1244 btrfs_put_root(root);
20897f5c 1245
1dd05682 1246 return ERR_PTR(ret);
20897f5c
AJ
1247}
1248
7237f183
YZ
1249static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1250 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1251{
1252 struct btrfs_root *root;
e02119d5 1253
96dfcb46 1254 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1255 if (!root)
7237f183 1256 return ERR_PTR(-ENOMEM);
e02119d5 1257
e02119d5
CM
1258 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1259 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1260 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1261
6ab6ebb7
NA
1262 return root;
1263}
1264
1265int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1266 struct btrfs_root *root)
1267{
1268 struct extent_buffer *leaf;
1269
7237f183 1270 /*
92a7cc42 1271 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1272 *
92a7cc42
QW
1273 * Log trees are not exposed to user space thus can't be snapshotted,
1274 * and they go away before a real commit is actually done.
1275 *
1276 * They do store pointers to file data extents, and those reference
1277 * counts still get updated (along with back refs to the log tree).
7237f183 1278 */
e02119d5 1279
4d75f8a9 1280 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1281 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1282 if (IS_ERR(leaf))
1283 return PTR_ERR(leaf);
e02119d5 1284
7237f183 1285 root->node = leaf;
e02119d5 1286
e02119d5
CM
1287 btrfs_mark_buffer_dirty(root->node);
1288 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1289
1290 return 0;
7237f183
YZ
1291}
1292
1293int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1294 struct btrfs_fs_info *fs_info)
1295{
1296 struct btrfs_root *log_root;
1297
1298 log_root = alloc_log_tree(trans, fs_info);
1299 if (IS_ERR(log_root))
1300 return PTR_ERR(log_root);
6ab6ebb7 1301
3ddebf27
NA
1302 if (!btrfs_is_zoned(fs_info)) {
1303 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1304
1305 if (ret) {
1306 btrfs_put_root(log_root);
1307 return ret;
1308 }
6ab6ebb7
NA
1309 }
1310
7237f183
YZ
1311 WARN_ON(fs_info->log_root_tree);
1312 fs_info->log_root_tree = log_root;
1313 return 0;
1314}
1315
1316int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1317 struct btrfs_root *root)
1318{
0b246afa 1319 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1320 struct btrfs_root *log_root;
1321 struct btrfs_inode_item *inode_item;
6ab6ebb7 1322 int ret;
7237f183 1323
0b246afa 1324 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1325 if (IS_ERR(log_root))
1326 return PTR_ERR(log_root);
1327
6ab6ebb7
NA
1328 ret = btrfs_alloc_log_tree_node(trans, log_root);
1329 if (ret) {
1330 btrfs_put_root(log_root);
1331 return ret;
1332 }
1333
7237f183
YZ
1334 log_root->last_trans = trans->transid;
1335 log_root->root_key.offset = root->root_key.objectid;
1336
1337 inode_item = &log_root->root_item.inode;
3cae210f
QW
1338 btrfs_set_stack_inode_generation(inode_item, 1);
1339 btrfs_set_stack_inode_size(inode_item, 3);
1340 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1341 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1342 fs_info->nodesize);
3cae210f 1343 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1344
5d4f98a2 1345 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1346
1347 WARN_ON(root->log_root);
1348 root->log_root = log_root;
1349 root->log_transid = 0;
d1433deb 1350 root->log_transid_committed = -1;
257c62e1 1351 root->last_log_commit = 0;
e02119d5
CM
1352 return 0;
1353}
1354
49d11bea
JB
1355static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1356 struct btrfs_path *path,
1357 struct btrfs_key *key)
e02119d5
CM
1358{
1359 struct btrfs_root *root;
1360 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1361 u64 generation;
cb517eab 1362 int ret;
581c1760 1363 int level;
0f7d52f4 1364
96dfcb46 1365 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1366 if (!root)
1367 return ERR_PTR(-ENOMEM);
0f7d52f4 1368
cb517eab
MX
1369 ret = btrfs_find_root(tree_root, key, path,
1370 &root->root_item, &root->root_key);
0f7d52f4 1371 if (ret) {
13a8a7c8
YZ
1372 if (ret > 0)
1373 ret = -ENOENT;
49d11bea 1374 goto fail;
0f7d52f4 1375 }
13a8a7c8 1376
84234f3a 1377 generation = btrfs_root_generation(&root->root_item);
581c1760 1378 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1379 root->node = read_tree_block(fs_info,
1380 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1381 key->objectid, generation, level, NULL);
64c043de
LB
1382 if (IS_ERR(root->node)) {
1383 ret = PTR_ERR(root->node);
8c38938c 1384 root->node = NULL;
49d11bea 1385 goto fail;
4eb150d6
QW
1386 }
1387 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1388 ret = -EIO;
49d11bea 1389 goto fail;
416bc658 1390 }
88c602ab
QW
1391
1392 /*
1393 * For real fs, and not log/reloc trees, root owner must
1394 * match its root node owner
1395 */
1396 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1397 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1398 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1399 root->root_key.objectid != btrfs_header_owner(root->node)) {
1400 btrfs_crit(fs_info,
1401"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1402 root->root_key.objectid, root->node->start,
1403 btrfs_header_owner(root->node),
1404 root->root_key.objectid);
1405 ret = -EUCLEAN;
1406 goto fail;
1407 }
5d4f98a2 1408 root->commit_root = btrfs_root_node(root);
cb517eab 1409 return root;
49d11bea 1410fail:
00246528 1411 btrfs_put_root(root);
49d11bea
JB
1412 return ERR_PTR(ret);
1413}
1414
1415struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1416 struct btrfs_key *key)
1417{
1418 struct btrfs_root *root;
1419 struct btrfs_path *path;
1420
1421 path = btrfs_alloc_path();
1422 if (!path)
1423 return ERR_PTR(-ENOMEM);
1424 root = read_tree_root_path(tree_root, path, key);
1425 btrfs_free_path(path);
1426
1427 return root;
cb517eab
MX
1428}
1429
2dfb1e43
QW
1430/*
1431 * Initialize subvolume root in-memory structure
1432 *
1433 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1434 */
1435static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1436{
1437 int ret;
dcc3eb96 1438 unsigned int nofs_flag;
cb517eab 1439
dcc3eb96
NB
1440 /*
1441 * We might be called under a transaction (e.g. indirect backref
1442 * resolution) which could deadlock if it triggers memory reclaim
1443 */
1444 nofs_flag = memalloc_nofs_save();
1445 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1446 memalloc_nofs_restore(nofs_flag);
1447 if (ret)
8257b2dc 1448 goto fail;
8257b2dc 1449
aeb935a4 1450 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1451 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1452 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1453 btrfs_check_and_init_root_item(&root->root_item);
1454 }
1455
851fd730
QW
1456 /*
1457 * Don't assign anonymous block device to roots that are not exposed to
1458 * userspace, the id pool is limited to 1M
1459 */
1460 if (is_fstree(root->root_key.objectid) &&
1461 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1462 if (!anon_dev) {
1463 ret = get_anon_bdev(&root->anon_dev);
1464 if (ret)
1465 goto fail;
1466 } else {
1467 root->anon_dev = anon_dev;
1468 }
851fd730 1469 }
f32e48e9
CR
1470
1471 mutex_lock(&root->objectid_mutex);
453e4873 1472 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1473 if (ret) {
1474 mutex_unlock(&root->objectid_mutex);
876d2cf1 1475 goto fail;
f32e48e9
CR
1476 }
1477
6b8fad57 1478 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1479
1480 mutex_unlock(&root->objectid_mutex);
1481
cb517eab
MX
1482 return 0;
1483fail:
84db5ccf 1484 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1485 return ret;
1486}
1487
a98db0f3
JB
1488static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1489 u64 root_id)
cb517eab
MX
1490{
1491 struct btrfs_root *root;
1492
fc7cbcd4
DS
1493 spin_lock(&fs_info->fs_roots_radix_lock);
1494 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1495 (unsigned long)root_id);
bc44d7c4 1496 if (root)
00246528 1497 root = btrfs_grab_root(root);
fc7cbcd4 1498 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1499 return root;
1500}
1501
49d11bea
JB
1502static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1503 u64 objectid)
1504{
abed4aaa
JB
1505 struct btrfs_key key = {
1506 .objectid = objectid,
1507 .type = BTRFS_ROOT_ITEM_KEY,
1508 .offset = 0,
1509 };
1510
49d11bea
JB
1511 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1512 return btrfs_grab_root(fs_info->tree_root);
1513 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1514 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1515 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1516 return btrfs_grab_root(fs_info->chunk_root);
1517 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1518 return btrfs_grab_root(fs_info->dev_root);
1519 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1520 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1521 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1522 return btrfs_grab_root(fs_info->quota_root) ?
1523 fs_info->quota_root : ERR_PTR(-ENOENT);
1524 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1525 return btrfs_grab_root(fs_info->uuid_root) ?
1526 fs_info->uuid_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1527 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1528 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1529
1530 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1531 }
49d11bea
JB
1532 return NULL;
1533}
1534
cb517eab
MX
1535int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1536 struct btrfs_root *root)
1537{
1538 int ret;
1539
fc7cbcd4
DS
1540 ret = radix_tree_preload(GFP_NOFS);
1541 if (ret)
1542 return ret;
1543
1544 spin_lock(&fs_info->fs_roots_radix_lock);
1545 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1546 (unsigned long)root->root_key.objectid,
1547 root);
af01d2e5 1548 if (ret == 0) {
00246528 1549 btrfs_grab_root(root);
fc7cbcd4 1550 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1551 }
fc7cbcd4
DS
1552 spin_unlock(&fs_info->fs_roots_radix_lock);
1553 radix_tree_preload_end();
cb517eab
MX
1554
1555 return ret;
1556}
1557
bd647ce3
JB
1558void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1559{
1560#ifdef CONFIG_BTRFS_DEBUG
1561 struct btrfs_root *root;
1562
1563 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1564 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1565
bd647ce3
JB
1566 root = list_first_entry(&fs_info->allocated_roots,
1567 struct btrfs_root, leak_list);
457f1864 1568 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1569 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1570 refcount_read(&root->refs));
1571 while (refcount_read(&root->refs) > 1)
00246528
JB
1572 btrfs_put_root(root);
1573 btrfs_put_root(root);
bd647ce3
JB
1574 }
1575#endif
1576}
1577
abed4aaa
JB
1578static void free_global_roots(struct btrfs_fs_info *fs_info)
1579{
1580 struct btrfs_root *root;
1581 struct rb_node *node;
1582
1583 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1584 root = rb_entry(node, struct btrfs_root, rb_node);
1585 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1586 btrfs_put_root(root);
1587 }
1588}
1589
0d4b0463
JB
1590void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1591{
141386e1
JB
1592 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1593 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1594 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1595 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1596 btrfs_free_csum_hash(fs_info);
1597 btrfs_free_stripe_hash_table(fs_info);
1598 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1599 kfree(fs_info->balance_ctl);
1600 kfree(fs_info->delayed_root);
abed4aaa 1601 free_global_roots(fs_info);
00246528
JB
1602 btrfs_put_root(fs_info->tree_root);
1603 btrfs_put_root(fs_info->chunk_root);
1604 btrfs_put_root(fs_info->dev_root);
00246528
JB
1605 btrfs_put_root(fs_info->quota_root);
1606 btrfs_put_root(fs_info->uuid_root);
00246528 1607 btrfs_put_root(fs_info->fs_root);
aeb935a4 1608 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1609 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1610 btrfs_check_leaked_roots(fs_info);
3fd63727 1611 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1612 kfree(fs_info->super_copy);
1613 kfree(fs_info->super_for_commit);
8481dd80 1614 kfree(fs_info->subpage_info);
0d4b0463
JB
1615 kvfree(fs_info);
1616}
1617
1618
2dfb1e43
QW
1619/*
1620 * Get an in-memory reference of a root structure.
1621 *
1622 * For essential trees like root/extent tree, we grab it from fs_info directly.
1623 * For subvolume trees, we check the cached filesystem roots first. If not
1624 * found, then read it from disk and add it to cached fs roots.
1625 *
1626 * Caller should release the root by calling btrfs_put_root() after the usage.
1627 *
1628 * NOTE: Reloc and log trees can't be read by this function as they share the
1629 * same root objectid.
1630 *
1631 * @objectid: root id
1632 * @anon_dev: preallocated anonymous block device number for new roots,
1633 * pass 0 for new allocation.
1634 * @check_ref: whether to check root item references, If true, return -ENOENT
1635 * for orphan roots
1636 */
1637static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1638 u64 objectid, dev_t anon_dev,
1639 bool check_ref)
5eda7b5e
CM
1640{
1641 struct btrfs_root *root;
381cf658 1642 struct btrfs_path *path;
1d4c08e0 1643 struct btrfs_key key;
5eda7b5e
CM
1644 int ret;
1645
49d11bea
JB
1646 root = btrfs_get_global_root(fs_info, objectid);
1647 if (root)
1648 return root;
4df27c4d 1649again:
56e9357a 1650 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1651 if (root) {
2dfb1e43
QW
1652 /* Shouldn't get preallocated anon_dev for cached roots */
1653 ASSERT(!anon_dev);
bc44d7c4 1654 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1655 btrfs_put_root(root);
48475471 1656 return ERR_PTR(-ENOENT);
bc44d7c4 1657 }
5eda7b5e 1658 return root;
48475471 1659 }
5eda7b5e 1660
56e9357a
DS
1661 key.objectid = objectid;
1662 key.type = BTRFS_ROOT_ITEM_KEY;
1663 key.offset = (u64)-1;
1664 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1665 if (IS_ERR(root))
1666 return root;
3394e160 1667
c00869f1 1668 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1669 ret = -ENOENT;
581bb050 1670 goto fail;
35a30d7c 1671 }
581bb050 1672
2dfb1e43 1673 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1674 if (ret)
1675 goto fail;
3394e160 1676
381cf658
DS
1677 path = btrfs_alloc_path();
1678 if (!path) {
1679 ret = -ENOMEM;
1680 goto fail;
1681 }
1d4c08e0
DS
1682 key.objectid = BTRFS_ORPHAN_OBJECTID;
1683 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1684 key.offset = objectid;
1d4c08e0
DS
1685
1686 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1687 btrfs_free_path(path);
d68fc57b
YZ
1688 if (ret < 0)
1689 goto fail;
1690 if (ret == 0)
27cdeb70 1691 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1692
cb517eab 1693 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1694 if (ret) {
168a2f77
JJB
1695 if (ret == -EEXIST) {
1696 btrfs_put_root(root);
4df27c4d 1697 goto again;
168a2f77 1698 }
4df27c4d 1699 goto fail;
0f7d52f4 1700 }
edbd8d4e 1701 return root;
4df27c4d 1702fail:
33fab972
FM
1703 /*
1704 * If our caller provided us an anonymous device, then it's his
143823cf 1705 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1706 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1707 * and once again by our caller.
1708 */
1709 if (anon_dev)
1710 root->anon_dev = 0;
8c38938c 1711 btrfs_put_root(root);
4df27c4d 1712 return ERR_PTR(ret);
edbd8d4e
CM
1713}
1714
2dfb1e43
QW
1715/*
1716 * Get in-memory reference of a root structure
1717 *
1718 * @objectid: tree objectid
1719 * @check_ref: if set, verify that the tree exists and the item has at least
1720 * one reference
1721 */
1722struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1723 u64 objectid, bool check_ref)
1724{
1725 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1726}
1727
1728/*
1729 * Get in-memory reference of a root structure, created as new, optionally pass
1730 * the anonymous block device id
1731 *
1732 * @objectid: tree objectid
1733 * @anon_dev: if zero, allocate a new anonymous block device or use the
1734 * parameter value
1735 */
1736struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1737 u64 objectid, dev_t anon_dev)
1738{
1739 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1740}
1741
49d11bea
JB
1742/*
1743 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1744 * @fs_info: the fs_info
1745 * @objectid: the objectid we need to lookup
1746 *
1747 * This is exclusively used for backref walking, and exists specifically because
1748 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1749 * creation time, which means we may have to read the tree_root in order to look
1750 * up a fs root that is not in memory. If the root is not in memory we will
1751 * read the tree root commit root and look up the fs root from there. This is a
1752 * temporary root, it will not be inserted into the radix tree as it doesn't
1753 * have the most uptodate information, it'll simply be discarded once the
1754 * backref code is finished using the root.
1755 */
1756struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1757 struct btrfs_path *path,
1758 u64 objectid)
1759{
1760 struct btrfs_root *root;
1761 struct btrfs_key key;
1762
1763 ASSERT(path->search_commit_root && path->skip_locking);
1764
1765 /*
1766 * This can return -ENOENT if we ask for a root that doesn't exist, but
1767 * since this is called via the backref walking code we won't be looking
1768 * up a root that doesn't exist, unless there's corruption. So if root
1769 * != NULL just return it.
1770 */
1771 root = btrfs_get_global_root(fs_info, objectid);
1772 if (root)
1773 return root;
1774
1775 root = btrfs_lookup_fs_root(fs_info, objectid);
1776 if (root)
1777 return root;
1778
1779 key.objectid = objectid;
1780 key.type = BTRFS_ROOT_ITEM_KEY;
1781 key.offset = (u64)-1;
1782 root = read_tree_root_path(fs_info->tree_root, path, &key);
1783 btrfs_release_path(path);
1784
1785 return root;
1786}
1787
a74a4b97
CM
1788static int cleaner_kthread(void *arg)
1789{
0d031dc4 1790 struct btrfs_fs_info *fs_info = arg;
d0278245 1791 int again;
a74a4b97 1792
d6fd0ae2 1793 while (1) {
d0278245 1794 again = 0;
a74a4b97 1795
fd340d0f
JB
1796 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1797
d0278245 1798 /* Make the cleaner go to sleep early. */
2ff7e61e 1799 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1800 goto sleep;
1801
90c711ab
ZB
1802 /*
1803 * Do not do anything if we might cause open_ctree() to block
1804 * before we have finished mounting the filesystem.
1805 */
0b246afa 1806 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1807 goto sleep;
1808
0b246afa 1809 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1810 goto sleep;
1811
dc7f370c
MX
1812 /*
1813 * Avoid the problem that we change the status of the fs
1814 * during the above check and trylock.
1815 */
2ff7e61e 1816 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1817 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1818 goto sleep;
76dda93c 1819 }
a74a4b97 1820
2ff7e61e 1821 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1822
33c44184 1823 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1824 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1825
1826 /*
05323cd1
MX
1827 * The defragger has dealt with the R/O remount and umount,
1828 * needn't do anything special here.
d0278245 1829 */
0b246afa 1830 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1831
1832 /*
f3372065 1833 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1834 * with relocation (btrfs_relocate_chunk) and relocation
1835 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1836 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1837 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1838 * unused block groups.
1839 */
0b246afa 1840 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1841
1842 /*
1843 * Reclaim block groups in the reclaim_bgs list after we deleted
1844 * all unused block_groups. This possibly gives us some more free
1845 * space.
1846 */
1847 btrfs_reclaim_bgs(fs_info);
d0278245 1848sleep:
a0a1db70 1849 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1850 if (kthread_should_park())
1851 kthread_parkme();
1852 if (kthread_should_stop())
1853 return 0;
838fe188 1854 if (!again) {
a74a4b97 1855 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1856 schedule();
a74a4b97
CM
1857 __set_current_state(TASK_RUNNING);
1858 }
da288d28 1859 }
a74a4b97
CM
1860}
1861
1862static int transaction_kthread(void *arg)
1863{
1864 struct btrfs_root *root = arg;
0b246afa 1865 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1866 struct btrfs_trans_handle *trans;
1867 struct btrfs_transaction *cur;
8929ecfa 1868 u64 transid;
643900be 1869 time64_t delta;
a74a4b97 1870 unsigned long delay;
914b2007 1871 bool cannot_commit;
a74a4b97
CM
1872
1873 do {
914b2007 1874 cannot_commit = false;
ba1bc00f 1875 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1876 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1877
0b246afa
JM
1878 spin_lock(&fs_info->trans_lock);
1879 cur = fs_info->running_transaction;
a74a4b97 1880 if (!cur) {
0b246afa 1881 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1882 goto sleep;
1883 }
31153d81 1884
643900be 1885 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1886 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1887 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1888 delta < fs_info->commit_interval) {
0b246afa 1889 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1890 delay -= msecs_to_jiffies((delta - 1) * 1000);
1891 delay = min(delay,
1892 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1893 goto sleep;
1894 }
8929ecfa 1895 transid = cur->transid;
0b246afa 1896 spin_unlock(&fs_info->trans_lock);
56bec294 1897
79787eaa 1898 /* If the file system is aborted, this will always fail. */
354aa0fb 1899 trans = btrfs_attach_transaction(root);
914b2007 1900 if (IS_ERR(trans)) {
354aa0fb
MX
1901 if (PTR_ERR(trans) != -ENOENT)
1902 cannot_commit = true;
79787eaa 1903 goto sleep;
914b2007 1904 }
8929ecfa 1905 if (transid == trans->transid) {
3a45bb20 1906 btrfs_commit_transaction(trans);
8929ecfa 1907 } else {
3a45bb20 1908 btrfs_end_transaction(trans);
8929ecfa 1909 }
a74a4b97 1910sleep:
0b246afa
JM
1911 wake_up_process(fs_info->cleaner_kthread);
1912 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1913
84961539 1914 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1915 btrfs_cleanup_transaction(fs_info);
ce63f891 1916 if (!kthread_should_stop() &&
0b246afa 1917 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1918 cannot_commit))
bc5511d0 1919 schedule_timeout_interruptible(delay);
a74a4b97
CM
1920 } while (!kthread_should_stop());
1921 return 0;
1922}
1923
af31f5e5 1924/*
01f0f9da
NB
1925 * This will find the highest generation in the array of root backups. The
1926 * index of the highest array is returned, or -EINVAL if we can't find
1927 * anything.
af31f5e5
CM
1928 *
1929 * We check to make sure the array is valid by comparing the
1930 * generation of the latest root in the array with the generation
1931 * in the super block. If they don't match we pitch it.
1932 */
01f0f9da 1933static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1934{
01f0f9da 1935 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1936 u64 cur;
af31f5e5
CM
1937 struct btrfs_root_backup *root_backup;
1938 int i;
1939
1940 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1941 root_backup = info->super_copy->super_roots + i;
1942 cur = btrfs_backup_tree_root_gen(root_backup);
1943 if (cur == newest_gen)
01f0f9da 1944 return i;
af31f5e5
CM
1945 }
1946
01f0f9da 1947 return -EINVAL;
af31f5e5
CM
1948}
1949
af31f5e5
CM
1950/*
1951 * copy all the root pointers into the super backup array.
1952 * this will bump the backup pointer by one when it is
1953 * done
1954 */
1955static void backup_super_roots(struct btrfs_fs_info *info)
1956{
6ef108dd 1957 const int next_backup = info->backup_root_index;
af31f5e5 1958 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1959
1960 root_backup = info->super_for_commit->super_roots + next_backup;
1961
1962 /*
1963 * make sure all of our padding and empty slots get zero filled
1964 * regardless of which ones we use today
1965 */
1966 memset(root_backup, 0, sizeof(*root_backup));
1967
1968 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1969
1970 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1971 btrfs_set_backup_tree_root_gen(root_backup,
1972 btrfs_header_generation(info->tree_root->node));
1973
1974 btrfs_set_backup_tree_root_level(root_backup,
1975 btrfs_header_level(info->tree_root->node));
1976
1977 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1978 btrfs_set_backup_chunk_root_gen(root_backup,
1979 btrfs_header_generation(info->chunk_root->node));
1980 btrfs_set_backup_chunk_root_level(root_backup,
1981 btrfs_header_level(info->chunk_root->node));
1982
9c54e80d
JB
1983 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
1984 btrfs_set_backup_block_group_root(root_backup,
1985 info->block_group_root->node->start);
1986 btrfs_set_backup_block_group_root_gen(root_backup,
1987 btrfs_header_generation(info->block_group_root->node));
1988 btrfs_set_backup_block_group_root_level(root_backup,
1989 btrfs_header_level(info->block_group_root->node));
1990 } else {
1991 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1992 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1993
1994 btrfs_set_backup_extent_root(root_backup,
1995 extent_root->node->start);
1996 btrfs_set_backup_extent_root_gen(root_backup,
1997 btrfs_header_generation(extent_root->node));
1998 btrfs_set_backup_extent_root_level(root_backup,
1999 btrfs_header_level(extent_root->node));
f7238e50
JB
2000
2001 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2002 btrfs_set_backup_csum_root_gen(root_backup,
2003 btrfs_header_generation(csum_root->node));
2004 btrfs_set_backup_csum_root_level(root_backup,
2005 btrfs_header_level(csum_root->node));
9c54e80d 2006 }
af31f5e5 2007
7c7e82a7
CM
2008 /*
2009 * we might commit during log recovery, which happens before we set
2010 * the fs_root. Make sure it is valid before we fill it in.
2011 */
2012 if (info->fs_root && info->fs_root->node) {
2013 btrfs_set_backup_fs_root(root_backup,
2014 info->fs_root->node->start);
2015 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2016 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2017 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2018 btrfs_header_level(info->fs_root->node));
7c7e82a7 2019 }
af31f5e5
CM
2020
2021 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2022 btrfs_set_backup_dev_root_gen(root_backup,
2023 btrfs_header_generation(info->dev_root->node));
2024 btrfs_set_backup_dev_root_level(root_backup,
2025 btrfs_header_level(info->dev_root->node));
2026
af31f5e5
CM
2027 btrfs_set_backup_total_bytes(root_backup,
2028 btrfs_super_total_bytes(info->super_copy));
2029 btrfs_set_backup_bytes_used(root_backup,
2030 btrfs_super_bytes_used(info->super_copy));
2031 btrfs_set_backup_num_devices(root_backup,
2032 btrfs_super_num_devices(info->super_copy));
2033
2034 /*
2035 * if we don't copy this out to the super_copy, it won't get remembered
2036 * for the next commit
2037 */
2038 memcpy(&info->super_copy->super_roots,
2039 &info->super_for_commit->super_roots,
2040 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2041}
2042
bd2336b2
NB
2043/*
2044 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2045 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2046 *
2047 * fs_info - filesystem whose backup roots need to be read
2048 * priority - priority of backup root required
2049 *
2050 * Returns backup root index on success and -EINVAL otherwise.
2051 */
2052static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2053{
2054 int backup_index = find_newest_super_backup(fs_info);
2055 struct btrfs_super_block *super = fs_info->super_copy;
2056 struct btrfs_root_backup *root_backup;
2057
2058 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2059 if (priority == 0)
2060 return backup_index;
2061
2062 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2063 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2064 } else {
2065 return -EINVAL;
2066 }
2067
2068 root_backup = super->super_roots + backup_index;
2069
2070 btrfs_set_super_generation(super,
2071 btrfs_backup_tree_root_gen(root_backup));
2072 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2073 btrfs_set_super_root_level(super,
2074 btrfs_backup_tree_root_level(root_backup));
2075 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2076
2077 /*
2078 * Fixme: the total bytes and num_devices need to match or we should
2079 * need a fsck
2080 */
2081 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2082 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2083
2084 return backup_index;
2085}
2086
7abadb64
LB
2087/* helper to cleanup workers */
2088static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2089{
dc6e3209 2090 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2091 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2092 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2093 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
2094 if (fs_info->endio_workers)
2095 destroy_workqueue(fs_info->endio_workers);
d34e123d
CH
2096 if (fs_info->endio_raid56_workers)
2097 destroy_workqueue(fs_info->endio_raid56_workers);
385de0ef
CH
2098 if (fs_info->rmw_workers)
2099 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
2100 if (fs_info->compressed_write_workers)
2101 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
2102 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2103 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2104 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2105 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2106 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2107 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2108 if (fs_info->discard_ctl.discard_workers)
2109 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2110 /*
2111 * Now that all other work queues are destroyed, we can safely destroy
2112 * the queues used for metadata I/O, since tasks from those other work
2113 * queues can do metadata I/O operations.
2114 */
d7b9416f
CH
2115 if (fs_info->endio_meta_workers)
2116 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2117}
2118
2e9f5954
R
2119static void free_root_extent_buffers(struct btrfs_root *root)
2120{
2121 if (root) {
2122 free_extent_buffer(root->node);
2123 free_extent_buffer(root->commit_root);
2124 root->node = NULL;
2125 root->commit_root = NULL;
2126 }
2127}
2128
abed4aaa
JB
2129static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2130{
2131 struct btrfs_root *root, *tmp;
2132
2133 rbtree_postorder_for_each_entry_safe(root, tmp,
2134 &fs_info->global_root_tree,
2135 rb_node)
2136 free_root_extent_buffers(root);
2137}
2138
af31f5e5 2139/* helper to cleanup tree roots */
4273eaff 2140static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2141{
2e9f5954 2142 free_root_extent_buffers(info->tree_root);
655b09fe 2143
abed4aaa 2144 free_global_root_pointers(info);
2e9f5954 2145 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2146 free_root_extent_buffers(info->quota_root);
2147 free_root_extent_buffers(info->uuid_root);
8c38938c 2148 free_root_extent_buffers(info->fs_root);
aeb935a4 2149 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2150 free_root_extent_buffers(info->block_group_root);
4273eaff 2151 if (free_chunk_root)
2e9f5954 2152 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2153}
2154
8c38938c
JB
2155void btrfs_put_root(struct btrfs_root *root)
2156{
2157 if (!root)
2158 return;
2159
2160 if (refcount_dec_and_test(&root->refs)) {
2161 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2162 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2163 if (root->anon_dev)
2164 free_anon_bdev(root->anon_dev);
2165 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2166 free_root_extent_buffers(root);
8c38938c 2167#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2168 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2169 list_del_init(&root->leak_list);
fc7cbcd4 2170 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2171#endif
2172 kfree(root);
2173 }
2174}
2175
faa2dbf0 2176void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2177{
fc7cbcd4
DS
2178 int ret;
2179 struct btrfs_root *gang[8];
2180 int i;
171f6537
JB
2181
2182 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2183 gang[0] = list_entry(fs_info->dead_roots.next,
2184 struct btrfs_root, root_list);
2185 list_del(&gang[0]->root_list);
171f6537 2186
fc7cbcd4
DS
2187 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2188 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2189 btrfs_put_root(gang[0]);
171f6537
JB
2190 }
2191
fc7cbcd4
DS
2192 while (1) {
2193 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2194 (void **)gang, 0,
2195 ARRAY_SIZE(gang));
2196 if (!ret)
2197 break;
2198 for (i = 0; i < ret; i++)
2199 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2200 }
2201}
af31f5e5 2202
638aa7ed
ES
2203static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2204{
2205 mutex_init(&fs_info->scrub_lock);
2206 atomic_set(&fs_info->scrubs_running, 0);
2207 atomic_set(&fs_info->scrub_pause_req, 0);
2208 atomic_set(&fs_info->scrubs_paused, 0);
2209 atomic_set(&fs_info->scrub_cancel_req, 0);
2210 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2211 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2212}
2213
779a65a4
ES
2214static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2215{
2216 spin_lock_init(&fs_info->balance_lock);
2217 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2218 atomic_set(&fs_info->balance_pause_req, 0);
2219 atomic_set(&fs_info->balance_cancel_req, 0);
2220 fs_info->balance_ctl = NULL;
2221 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2222 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2223}
2224
6bccf3ab 2225static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2226{
2ff7e61e
JM
2227 struct inode *inode = fs_info->btree_inode;
2228
2229 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2230 set_nlink(inode, 1);
f37938e0
ES
2231 /*
2232 * we set the i_size on the btree inode to the max possible int.
2233 * the real end of the address space is determined by all of
2234 * the devices in the system
2235 */
2ff7e61e
JM
2236 inode->i_size = OFFSET_MAX;
2237 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2238
2ff7e61e 2239 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2240 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2241 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2242 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2243 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2244
5c8fd99f 2245 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
2246 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2247 BTRFS_I(inode)->location.type = 0;
2248 BTRFS_I(inode)->location.offset = 0;
2ff7e61e
JM
2249 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2250 btrfs_insert_inode_hash(inode);
f37938e0
ES
2251}
2252
ad618368
ES
2253static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2254{
ad618368 2255 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2256 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2257 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2258}
2259
f9e92e40
ES
2260static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2261{
2262 spin_lock_init(&fs_info->qgroup_lock);
2263 mutex_init(&fs_info->qgroup_ioctl_lock);
2264 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2265 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2266 fs_info->qgroup_seq = 1;
f9e92e40 2267 fs_info->qgroup_ulist = NULL;
d2c609b8 2268 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2269 mutex_init(&fs_info->qgroup_rescan_lock);
2270}
2271
d21deec5 2272static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2273{
f7b885be 2274 u32 max_active = fs_info->thread_pool_size;
6f011058 2275 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2276
2277 fs_info->workers =
a31b4a43
CH
2278 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2279 fs_info->hipri_workers =
2280 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2281 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2282
2283 fs_info->delalloc_workers =
cb001095
JM
2284 btrfs_alloc_workqueue(fs_info, "delalloc",
2285 flags, max_active, 2);
2a458198
ES
2286
2287 fs_info->flush_workers =
cb001095
JM
2288 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2289 flags, max_active, 0);
2a458198
ES
2290
2291 fs_info->caching_workers =
cb001095 2292 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2293
2a458198 2294 fs_info->fixup_workers =
cb001095 2295 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198 2296
2a458198 2297 fs_info->endio_workers =
d7b9416f 2298 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2299 fs_info->endio_meta_workers =
d7b9416f 2300 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2a458198 2301 fs_info->endio_raid56_workers =
d34e123d 2302 alloc_workqueue("btrfs-endio-raid56", flags, max_active);
385de0ef 2303 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2304 fs_info->endio_write_workers =
cb001095
JM
2305 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2306 max_active, 2);
fed8a72d
CH
2307 fs_info->compressed_write_workers =
2308 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2309 fs_info->endio_freespace_worker =
cb001095
JM
2310 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2311 max_active, 0);
2a458198 2312 fs_info->delayed_workers =
cb001095
JM
2313 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2314 max_active, 0);
2a458198 2315 fs_info->qgroup_rescan_workers =
cb001095 2316 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2317 fs_info->discard_ctl.discard_workers =
2318 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2319
a31b4a43
CH
2320 if (!(fs_info->workers && fs_info->hipri_workers &&
2321 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2322 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2323 fs_info->compressed_write_workers &&
2a458198
ES
2324 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2325 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2326 fs_info->caching_workers && fs_info->fixup_workers &&
2327 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2328 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2329 return -ENOMEM;
2330 }
2331
2332 return 0;
2333}
2334
6d97c6e3
JT
2335static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2336{
2337 struct crypto_shash *csum_shash;
b4e967be 2338 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2339
b4e967be 2340 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2341
2342 if (IS_ERR(csum_shash)) {
2343 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2344 csum_driver);
6d97c6e3
JT
2345 return PTR_ERR(csum_shash);
2346 }
2347
2348 fs_info->csum_shash = csum_shash;
2349
c8a5f8ca
DS
2350 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2351 btrfs_super_csum_name(csum_type),
2352 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2353 return 0;
2354}
2355
63443bf5
ES
2356static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2357 struct btrfs_fs_devices *fs_devices)
2358{
2359 int ret;
63443bf5
ES
2360 struct btrfs_root *log_tree_root;
2361 struct btrfs_super_block *disk_super = fs_info->super_copy;
2362 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2363 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2364
2365 if (fs_devices->rw_devices == 0) {
f14d104d 2366 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2367 return -EIO;
2368 }
2369
96dfcb46
JB
2370 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2371 GFP_KERNEL);
63443bf5
ES
2372 if (!log_tree_root)
2373 return -ENOMEM;
2374
2ff7e61e 2375 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2376 BTRFS_TREE_LOG_OBJECTID,
2377 fs_info->generation + 1, level,
2378 NULL);
64c043de 2379 if (IS_ERR(log_tree_root->node)) {
f14d104d 2380 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2381 ret = PTR_ERR(log_tree_root->node);
8c38938c 2382 log_tree_root->node = NULL;
00246528 2383 btrfs_put_root(log_tree_root);
0eeff236 2384 return ret;
4eb150d6
QW
2385 }
2386 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2387 btrfs_err(fs_info, "failed to read log tree");
00246528 2388 btrfs_put_root(log_tree_root);
63443bf5
ES
2389 return -EIO;
2390 }
4eb150d6 2391
63443bf5
ES
2392 /* returns with log_tree_root freed on success */
2393 ret = btrfs_recover_log_trees(log_tree_root);
2394 if (ret) {
0b246afa
JM
2395 btrfs_handle_fs_error(fs_info, ret,
2396 "Failed to recover log tree");
00246528 2397 btrfs_put_root(log_tree_root);
63443bf5
ES
2398 return ret;
2399 }
2400
bc98a42c 2401 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2402 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2403 if (ret)
2404 return ret;
2405 }
2406
2407 return 0;
2408}
2409
abed4aaa
JB
2410static int load_global_roots_objectid(struct btrfs_root *tree_root,
2411 struct btrfs_path *path, u64 objectid,
2412 const char *name)
2413{
2414 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2415 struct btrfs_root *root;
f7238e50 2416 u64 max_global_id = 0;
abed4aaa
JB
2417 int ret;
2418 struct btrfs_key key = {
2419 .objectid = objectid,
2420 .type = BTRFS_ROOT_ITEM_KEY,
2421 .offset = 0,
2422 };
2423 bool found = false;
2424
2425 /* If we have IGNOREDATACSUMS skip loading these roots. */
2426 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2427 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2428 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2429 return 0;
2430 }
2431
2432 while (1) {
2433 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2434 if (ret < 0)
2435 break;
2436
2437 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2438 ret = btrfs_next_leaf(tree_root, path);
2439 if (ret) {
2440 if (ret > 0)
2441 ret = 0;
2442 break;
2443 }
2444 }
2445 ret = 0;
2446
2447 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2448 if (key.objectid != objectid)
2449 break;
2450 btrfs_release_path(path);
2451
f7238e50
JB
2452 /*
2453 * Just worry about this for extent tree, it'll be the same for
2454 * everybody.
2455 */
2456 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2457 max_global_id = max(max_global_id, key.offset);
2458
abed4aaa
JB
2459 found = true;
2460 root = read_tree_root_path(tree_root, path, &key);
2461 if (IS_ERR(root)) {
2462 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2463 ret = PTR_ERR(root);
2464 break;
2465 }
2466 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2467 ret = btrfs_global_root_insert(root);
2468 if (ret) {
2469 btrfs_put_root(root);
2470 break;
2471 }
2472 key.offset++;
2473 }
2474 btrfs_release_path(path);
2475
f7238e50
JB
2476 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2477 fs_info->nr_global_roots = max_global_id + 1;
2478
abed4aaa
JB
2479 if (!found || ret) {
2480 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2481 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2482
2483 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2484 ret = ret ? ret : -ENOENT;
2485 else
2486 ret = 0;
2487 btrfs_err(fs_info, "failed to load root %s", name);
2488 }
2489 return ret;
2490}
2491
2492static int load_global_roots(struct btrfs_root *tree_root)
2493{
2494 struct btrfs_path *path;
2495 int ret = 0;
2496
2497 path = btrfs_alloc_path();
2498 if (!path)
2499 return -ENOMEM;
2500
2501 ret = load_global_roots_objectid(tree_root, path,
2502 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2503 if (ret)
2504 goto out;
2505 ret = load_global_roots_objectid(tree_root, path,
2506 BTRFS_CSUM_TREE_OBJECTID, "csum");
2507 if (ret)
2508 goto out;
2509 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2510 goto out;
2511 ret = load_global_roots_objectid(tree_root, path,
2512 BTRFS_FREE_SPACE_TREE_OBJECTID,
2513 "free space");
2514out:
2515 btrfs_free_path(path);
2516 return ret;
2517}
2518
6bccf3ab 2519static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2520{
6bccf3ab 2521 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2522 struct btrfs_root *root;
4bbcaa64
ES
2523 struct btrfs_key location;
2524 int ret;
2525
6bccf3ab
JM
2526 BUG_ON(!fs_info->tree_root);
2527
abed4aaa
JB
2528 ret = load_global_roots(tree_root);
2529 if (ret)
2530 return ret;
2531
2532 location.objectid = BTRFS_DEV_TREE_OBJECTID;
4bbcaa64
ES
2533 location.type = BTRFS_ROOT_ITEM_KEY;
2534 location.offset = 0;
2535
a4f3d2c4 2536 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2537 if (IS_ERR(root)) {
42437a63
JB
2538 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2539 ret = PTR_ERR(root);
2540 goto out;
2541 }
2542 } else {
2543 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2544 fs_info->dev_root = root;
f50f4353 2545 }
820a49da
JB
2546 /* Initialize fs_info for all devices in any case */
2547 btrfs_init_devices_late(fs_info);
4bbcaa64 2548
aeb935a4
QW
2549 /*
2550 * This tree can share blocks with some other fs tree during relocation
2551 * and we need a proper setup by btrfs_get_fs_root
2552 */
56e9357a
DS
2553 root = btrfs_get_fs_root(tree_root->fs_info,
2554 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2555 if (IS_ERR(root)) {
42437a63
JB
2556 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2557 ret = PTR_ERR(root);
2558 goto out;
2559 }
2560 } else {
2561 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2562 fs_info->data_reloc_root = root;
aeb935a4 2563 }
aeb935a4 2564
4bbcaa64 2565 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2566 root = btrfs_read_tree_root(tree_root, &location);
2567 if (!IS_ERR(root)) {
2568 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2569 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2570 fs_info->quota_root = root;
4bbcaa64
ES
2571 }
2572
2573 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2574 root = btrfs_read_tree_root(tree_root, &location);
2575 if (IS_ERR(root)) {
42437a63
JB
2576 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2577 ret = PTR_ERR(root);
2578 if (ret != -ENOENT)
2579 goto out;
2580 }
4bbcaa64 2581 } else {
a4f3d2c4
DS
2582 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2583 fs_info->uuid_root = root;
4bbcaa64
ES
2584 }
2585
2586 return 0;
f50f4353
LB
2587out:
2588 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2589 location.objectid, ret);
2590 return ret;
4bbcaa64
ES
2591}
2592
069ec957
QW
2593/*
2594 * Real super block validation
2595 * NOTE: super csum type and incompat features will not be checked here.
2596 *
2597 * @sb: super block to check
2598 * @mirror_num: the super block number to check its bytenr:
2599 * 0 the primary (1st) sb
2600 * 1, 2 2nd and 3rd backup copy
2601 * -1 skip bytenr check
2602 */
2603static int validate_super(struct btrfs_fs_info *fs_info,
2604 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2605{
21a852b0
QW
2606 u64 nodesize = btrfs_super_nodesize(sb);
2607 u64 sectorsize = btrfs_super_sectorsize(sb);
2608 int ret = 0;
2609
2610 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2611 btrfs_err(fs_info, "no valid FS found");
2612 ret = -EINVAL;
2613 }
2614 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2615 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2616 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2617 ret = -EINVAL;
2618 }
2619 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2620 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2621 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2622 ret = -EINVAL;
2623 }
2624 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2625 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2626 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2627 ret = -EINVAL;
2628 }
2629 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2630 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2631 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2632 ret = -EINVAL;
2633 }
2634
2635 /*
2636 * Check sectorsize and nodesize first, other check will need it.
2637 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2638 */
2639 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2640 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2641 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2642 ret = -EINVAL;
2643 }
0bb3eb3e
QW
2644
2645 /*
1a42daab
QW
2646 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2647 *
2648 * We can support 16K sectorsize with 64K page size without problem,
2649 * but such sectorsize/pagesize combination doesn't make much sense.
2650 * 4K will be our future standard, PAGE_SIZE is supported from the very
2651 * beginning.
0bb3eb3e 2652 */
1a42daab 2653 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2654 btrfs_err(fs_info,
0bb3eb3e 2655 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2656 sectorsize, PAGE_SIZE);
2657 ret = -EINVAL;
2658 }
0bb3eb3e 2659
21a852b0
QW
2660 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2661 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2662 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2663 ret = -EINVAL;
2664 }
2665 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2666 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2667 le32_to_cpu(sb->__unused_leafsize), nodesize);
2668 ret = -EINVAL;
2669 }
2670
2671 /* Root alignment check */
2672 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2673 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2674 btrfs_super_root(sb));
2675 ret = -EINVAL;
2676 }
2677 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2678 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2679 btrfs_super_chunk_root(sb));
2680 ret = -EINVAL;
2681 }
2682 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2683 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2684 btrfs_super_log_root(sb));
2685 ret = -EINVAL;
2686 }
2687
aefd7f70
NB
2688 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2689 BTRFS_FSID_SIZE)) {
2690 btrfs_err(fs_info,
2691 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2692 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2693 ret = -EINVAL;
2694 }
2695
2696 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2697 memcmp(fs_info->fs_devices->metadata_uuid,
2698 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2699 btrfs_err(fs_info,
2700"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2701 fs_info->super_copy->metadata_uuid,
2702 fs_info->fs_devices->metadata_uuid);
2703 ret = -EINVAL;
2704 }
2705
de37aa51 2706 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2707 BTRFS_FSID_SIZE) != 0) {
21a852b0 2708 btrfs_err(fs_info,
7239ff4b 2709 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2710 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2711 ret = -EINVAL;
2712 }
2713
2714 /*
2715 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2716 * done later
2717 */
2718 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2719 btrfs_err(fs_info, "bytes_used is too small %llu",
2720 btrfs_super_bytes_used(sb));
2721 ret = -EINVAL;
2722 }
2723 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2724 btrfs_err(fs_info, "invalid stripesize %u",
2725 btrfs_super_stripesize(sb));
2726 ret = -EINVAL;
2727 }
2728 if (btrfs_super_num_devices(sb) > (1UL << 31))
2729 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2730 btrfs_super_num_devices(sb));
2731 if (btrfs_super_num_devices(sb) == 0) {
2732 btrfs_err(fs_info, "number of devices is 0");
2733 ret = -EINVAL;
2734 }
2735
069ec957
QW
2736 if (mirror_num >= 0 &&
2737 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2738 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2739 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2740 ret = -EINVAL;
2741 }
2742
2743 /*
2744 * Obvious sys_chunk_array corruptions, it must hold at least one key
2745 * and one chunk
2746 */
2747 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2748 btrfs_err(fs_info, "system chunk array too big %u > %u",
2749 btrfs_super_sys_array_size(sb),
2750 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2751 ret = -EINVAL;
2752 }
2753 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2754 + sizeof(struct btrfs_chunk)) {
2755 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2756 btrfs_super_sys_array_size(sb),
2757 sizeof(struct btrfs_disk_key)
2758 + sizeof(struct btrfs_chunk));
2759 ret = -EINVAL;
2760 }
2761
2762 /*
2763 * The generation is a global counter, we'll trust it more than the others
2764 * but it's still possible that it's the one that's wrong.
2765 */
2766 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2767 btrfs_warn(fs_info,
2768 "suspicious: generation < chunk_root_generation: %llu < %llu",
2769 btrfs_super_generation(sb),
2770 btrfs_super_chunk_root_generation(sb));
2771 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2772 && btrfs_super_cache_generation(sb) != (u64)-1)
2773 btrfs_warn(fs_info,
2774 "suspicious: generation < cache_generation: %llu < %llu",
2775 btrfs_super_generation(sb),
2776 btrfs_super_cache_generation(sb));
2777
2778 return ret;
2779}
2780
069ec957
QW
2781/*
2782 * Validation of super block at mount time.
2783 * Some checks already done early at mount time, like csum type and incompat
2784 * flags will be skipped.
2785 */
2786static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2787{
2788 return validate_super(fs_info, fs_info->super_copy, 0);
2789}
2790
75cb857d
QW
2791/*
2792 * Validation of super block at write time.
2793 * Some checks like bytenr check will be skipped as their values will be
2794 * overwritten soon.
2795 * Extra checks like csum type and incompat flags will be done here.
2796 */
2797static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2798 struct btrfs_super_block *sb)
2799{
2800 int ret;
2801
2802 ret = validate_super(fs_info, sb, -1);
2803 if (ret < 0)
2804 goto out;
e7e16f48 2805 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2806 ret = -EUCLEAN;
2807 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2808 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2809 goto out;
2810 }
2811 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2812 ret = -EUCLEAN;
2813 btrfs_err(fs_info,
2814 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2815 btrfs_super_incompat_flags(sb),
2816 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2817 goto out;
2818 }
2819out:
2820 if (ret < 0)
2821 btrfs_err(fs_info,
2822 "super block corruption detected before writing it to disk");
2823 return ret;
2824}
2825
bd676446
JB
2826static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2827{
2828 int ret = 0;
2829
2830 root->node = read_tree_block(root->fs_info, bytenr,
2831 root->root_key.objectid, gen, level, NULL);
2832 if (IS_ERR(root->node)) {
2833 ret = PTR_ERR(root->node);
2834 root->node = NULL;
4eb150d6
QW
2835 return ret;
2836 }
2837 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2838 free_extent_buffer(root->node);
2839 root->node = NULL;
4eb150d6 2840 return -EIO;
bd676446
JB
2841 }
2842
bd676446
JB
2843 btrfs_set_root_node(&root->root_item, root->node);
2844 root->commit_root = btrfs_root_node(root);
2845 btrfs_set_root_refs(&root->root_item, 1);
2846 return ret;
2847}
2848
2849static int load_important_roots(struct btrfs_fs_info *fs_info)
2850{
2851 struct btrfs_super_block *sb = fs_info->super_copy;
2852 u64 gen, bytenr;
2853 int level, ret;
2854
2855 bytenr = btrfs_super_root(sb);
2856 gen = btrfs_super_generation(sb);
2857 level = btrfs_super_root_level(sb);
2858 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2859 if (ret) {
bd676446 2860 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2861 return ret;
2862 }
2863
2864 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2865 return 0;
2866
2867 bytenr = btrfs_super_block_group_root(sb);
2868 gen = btrfs_super_block_group_root_generation(sb);
2869 level = btrfs_super_block_group_root_level(sb);
2870 ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
2871 if (ret)
2872 btrfs_warn(fs_info, "couldn't read block group root");
bd676446
JB
2873 return ret;
2874}
2875
6ef108dd 2876static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2877{
6ef108dd 2878 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2879 struct btrfs_super_block *sb = fs_info->super_copy;
2880 struct btrfs_root *tree_root = fs_info->tree_root;
2881 bool handle_error = false;
2882 int ret = 0;
2883 int i;
2884
9c54e80d
JB
2885 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2886 struct btrfs_root *root;
2887
2888 root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
2889 GFP_KERNEL);
2890 if (!root)
2891 return -ENOMEM;
2892 fs_info->block_group_root = root;
2893 }
b8522a1e 2894
b8522a1e 2895 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2896 if (handle_error) {
2897 if (!IS_ERR(tree_root->node))
2898 free_extent_buffer(tree_root->node);
2899 tree_root->node = NULL;
2900
2901 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2902 break;
2903
2904 free_root_pointers(fs_info, 0);
2905
2906 /*
2907 * Don't use the log in recovery mode, it won't be
2908 * valid
2909 */
2910 btrfs_set_super_log_root(sb, 0);
2911
2912 /* We can't trust the free space cache either */
2913 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2914
2915 ret = read_backup_root(fs_info, i);
6ef108dd 2916 backup_index = ret;
b8522a1e
NB
2917 if (ret < 0)
2918 return ret;
2919 }
b8522a1e 2920
bd676446
JB
2921 ret = load_important_roots(fs_info);
2922 if (ret) {
217f5004 2923 handle_error = true;
b8522a1e
NB
2924 continue;
2925 }
2926
336a0d8d
NB
2927 /*
2928 * No need to hold btrfs_root::objectid_mutex since the fs
2929 * hasn't been fully initialised and we are the only user
2930 */
453e4873 2931 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2932 if (ret < 0) {
b8522a1e
NB
2933 handle_error = true;
2934 continue;
2935 }
2936
6b8fad57 2937 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2938
2939 ret = btrfs_read_roots(fs_info);
2940 if (ret < 0) {
2941 handle_error = true;
2942 continue;
2943 }
2944
2945 /* All successful */
bd676446
JB
2946 fs_info->generation = btrfs_header_generation(tree_root->node);
2947 fs_info->last_trans_committed = fs_info->generation;
d96b3424 2948 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2949
2950 /* Always begin writing backup roots after the one being used */
2951 if (backup_index < 0) {
2952 fs_info->backup_root_index = 0;
2953 } else {
2954 fs_info->backup_root_index = backup_index + 1;
2955 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2956 }
b8522a1e
NB
2957 break;
2958 }
2959
2960 return ret;
2961}
2962
8260edba 2963void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2964{
fc7cbcd4 2965 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2966 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2967 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2968 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2969 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2970 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2971 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2972 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2973 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2974 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2975 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2976 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2977 spin_lock_init(&fs_info->super_lock);
f28491e0 2978 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2979 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2980 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2981 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2982 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2983 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2984 rwlock_init(&fs_info->global_root_lock);
d7c15171 2985 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2986 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2987 mutex_init(&fs_info->reloc_mutex);
573bfb72 2988 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2989 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2990 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2991 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2992
e1489b4f 2993 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2994 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2995 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2996 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3e738c53
IA
2997 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2998 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2999 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3000 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3001 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3002 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3003 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3004 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 3005
0b86a832 3006 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3007 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3008 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3009 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3010 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3011 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3012#ifdef CONFIG_BTRFS_DEBUG
3013 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3014 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3015 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3016#endif
c8bf1b67 3017 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3018 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3019 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3020 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3021 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3022 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3023 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3024 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3025 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3026 BTRFS_BLOCK_RSV_DELREFS);
3027
771ed689 3028 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3029 atomic_set(&fs_info->defrag_running, 0);
034f784d 3030 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3031 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3032 fs_info->global_root_tree = RB_ROOT;
95ac567a 3033 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3034 fs_info->metadata_ratio = 0;
4cb5300b 3035 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3036 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3037 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3038 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3039 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3040 btrfs_init_ref_verify(fs_info);
c8b97818 3041
b34b086c
CM
3042 fs_info->thread_pool_size = min_t(unsigned long,
3043 num_online_cpus() + 2, 8);
0afbaf8c 3044
199c2a9c
MX
3045 INIT_LIST_HEAD(&fs_info->ordered_roots);
3046 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3047
638aa7ed 3048 btrfs_init_scrub(fs_info);
21adbd5c
SB
3049#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3050 fs_info->check_integrity_print_mask = 0;
3051#endif
779a65a4 3052 btrfs_init_balance(fs_info);
57056740 3053 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3054
16b0c258 3055 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3056 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3057
fe119a6e
NB
3058 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3059 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3060
5a3f23d5 3061 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3062 mutex_init(&fs_info->tree_log_mutex);
925baedd 3063 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3064 mutex_init(&fs_info->transaction_kthread_mutex);
3065 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3066 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3067 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3068 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3069 init_rwsem(&fs_info->subvol_sem);
803b2f54 3070 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3071
ad618368 3072 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3073 btrfs_init_qgroup(fs_info);
b0643e59 3074 btrfs_discard_init(fs_info);
416ac51d 3075
fa9c0d79
CM
3076 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3077 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3078
e6dcd2dc 3079 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3080 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3081 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3082 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3083 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3084
da17066c
JM
3085 /* Usable values until the real ones are cached from the superblock */
3086 fs_info->nodesize = 4096;
3087 fs_info->sectorsize = 4096;
ab108d99 3088 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3089 fs_info->stripesize = 4096;
3090
f7b12a62
NA
3091 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3092
eede2bf3
OS
3093 spin_lock_init(&fs_info->swapfile_pins_lock);
3094 fs_info->swapfile_pins = RB_ROOT;
3095
18bb8bbf
JT
3096 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3097 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3098}
3099
3100static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3101{
3102 int ret;
3103
3104 fs_info->sb = sb;
3105 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3106 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3107
5deb17e1 3108 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3109 if (ret)
c75e8394 3110 return ret;
ae18c37a
JB
3111
3112 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3113 if (ret)
c75e8394 3114 return ret;
ae18c37a
JB
3115
3116 fs_info->dirty_metadata_batch = PAGE_SIZE *
3117 (1 + ilog2(nr_cpu_ids));
3118
3119 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3120 if (ret)
c75e8394 3121 return ret;
ae18c37a
JB
3122
3123 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3124 GFP_KERNEL);
3125 if (ret)
c75e8394 3126 return ret;
ae18c37a
JB
3127
3128 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3129 GFP_KERNEL);
c75e8394
JB
3130 if (!fs_info->delayed_root)
3131 return -ENOMEM;
ae18c37a
JB
3132 btrfs_init_delayed_root(fs_info->delayed_root);
3133
a0a1db70
FM
3134 if (sb_rdonly(sb))
3135 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3136
c75e8394 3137 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3138}
3139
97f4dd09
NB
3140static int btrfs_uuid_rescan_kthread(void *data)
3141{
0d031dc4 3142 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3143 int ret;
3144
3145 /*
3146 * 1st step is to iterate through the existing UUID tree and
3147 * to delete all entries that contain outdated data.
3148 * 2nd step is to add all missing entries to the UUID tree.
3149 */
3150 ret = btrfs_uuid_tree_iterate(fs_info);
3151 if (ret < 0) {
c94bec2c
JB
3152 if (ret != -EINTR)
3153 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3154 ret);
97f4dd09
NB
3155 up(&fs_info->uuid_tree_rescan_sem);
3156 return ret;
3157 }
3158 return btrfs_uuid_scan_kthread(data);
3159}
3160
3161static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3162{
3163 struct task_struct *task;
3164
3165 down(&fs_info->uuid_tree_rescan_sem);
3166 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3167 if (IS_ERR(task)) {
3168 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3169 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3170 up(&fs_info->uuid_tree_rescan_sem);
3171 return PTR_ERR(task);
3172 }
3173
3174 return 0;
3175}
3176
8cd29088
BB
3177/*
3178 * Some options only have meaning at mount time and shouldn't persist across
3179 * remounts, or be displayed. Clear these at the end of mount and remount
3180 * code paths.
3181 */
3182void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3183{
3184 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3185 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3186}
3187
44c0ca21
BB
3188/*
3189 * Mounting logic specific to read-write file systems. Shared by open_ctree
3190 * and btrfs_remount when remounting from read-only to read-write.
3191 */
3192int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3193{
3194 int ret;
94846229 3195 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3196 bool clear_free_space_tree = false;
3197
3198 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3199 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3200 clear_free_space_tree = true;
3201 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3202 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3203 btrfs_warn(fs_info, "free space tree is invalid");
3204 clear_free_space_tree = true;
3205 }
3206
3207 if (clear_free_space_tree) {
3208 btrfs_info(fs_info, "clearing free space tree");
3209 ret = btrfs_clear_free_space_tree(fs_info);
3210 if (ret) {
3211 btrfs_warn(fs_info,
3212 "failed to clear free space tree: %d", ret);
3213 goto out;
3214 }
3215 }
44c0ca21 3216
8d488a8c
FM
3217 /*
3218 * btrfs_find_orphan_roots() is responsible for finding all the dead
3219 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3220 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3221 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3222 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3223 * item before the root's tree is deleted - this means that if we unmount
3224 * or crash before the deletion completes, on the next mount we will not
3225 * delete what remains of the tree because the orphan item does not
3226 * exists anymore, which is what tells us we have a pending deletion.
3227 */
3228 ret = btrfs_find_orphan_roots(fs_info);
3229 if (ret)
3230 goto out;
3231
44c0ca21
BB
3232 ret = btrfs_cleanup_fs_roots(fs_info);
3233 if (ret)
3234 goto out;
3235
8f1c21d7
BB
3236 down_read(&fs_info->cleanup_work_sem);
3237 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3238 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3239 up_read(&fs_info->cleanup_work_sem);
3240 goto out;
3241 }
3242 up_read(&fs_info->cleanup_work_sem);
3243
44c0ca21 3244 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3245 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3246 mutex_unlock(&fs_info->cleaner_mutex);
3247 if (ret < 0) {
3248 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3249 goto out;
3250 }
3251
5011139a
BB
3252 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3253 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3254 btrfs_info(fs_info, "creating free space tree");
3255 ret = btrfs_create_free_space_tree(fs_info);
3256 if (ret) {
3257 btrfs_warn(fs_info,
3258 "failed to create free space tree: %d", ret);
3259 goto out;
3260 }
3261 }
3262
94846229
BB
3263 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3264 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3265 if (ret)
3266 goto out;
3267 }
3268
44c0ca21
BB
3269 ret = btrfs_resume_balance_async(fs_info);
3270 if (ret)
3271 goto out;
3272
3273 ret = btrfs_resume_dev_replace_async(fs_info);
3274 if (ret) {
3275 btrfs_warn(fs_info, "failed to resume dev_replace");
3276 goto out;
3277 }
3278
3279 btrfs_qgroup_rescan_resume(fs_info);
3280
3281 if (!fs_info->uuid_root) {
3282 btrfs_info(fs_info, "creating UUID tree");
3283 ret = btrfs_create_uuid_tree(fs_info);
3284 if (ret) {
3285 btrfs_warn(fs_info,
3286 "failed to create the UUID tree %d", ret);
3287 goto out;
3288 }
3289 }
3290
3291out:
3292 return ret;
3293}
3294
ae18c37a
JB
3295int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3296 char *options)
3297{
3298 u32 sectorsize;
3299 u32 nodesize;
3300 u32 stripesize;
3301 u64 generation;
3302 u64 features;
3303 u16 csum_type;
ae18c37a
JB
3304 struct btrfs_super_block *disk_super;
3305 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3306 struct btrfs_root *tree_root;
3307 struct btrfs_root *chunk_root;
3308 int ret;
3309 int err = -EINVAL;
ae18c37a
JB
3310 int level;
3311
8260edba 3312 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3313 if (ret) {
83c8266a 3314 err = ret;
ae18c37a 3315 goto fail;
53b381b3
DW
3316 }
3317
ae18c37a
JB
3318 /* These need to be init'ed before we start creating inodes and such. */
3319 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3320 GFP_KERNEL);
3321 fs_info->tree_root = tree_root;
3322 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3323 GFP_KERNEL);
3324 fs_info->chunk_root = chunk_root;
3325 if (!tree_root || !chunk_root) {
3326 err = -ENOMEM;
c75e8394 3327 goto fail;
ae18c37a
JB
3328 }
3329
3330 fs_info->btree_inode = new_inode(sb);
3331 if (!fs_info->btree_inode) {
3332 err = -ENOMEM;
c75e8394 3333 goto fail;
ae18c37a
JB
3334 }
3335 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3336 btrfs_init_btree_inode(fs_info);
3337
d24fa5c1 3338 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3339
3340 /*
3341 * Read super block and check the signature bytes only
3342 */
d24fa5c1 3343 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3344 if (IS_ERR(disk_super)) {
3345 err = PTR_ERR(disk_super);
16cdcec7 3346 goto fail_alloc;
20b45077 3347 }
39279cc3 3348
8dc3f22c 3349 /*
260db43c 3350 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3351 * corrupted, we'll find out
3352 */
8f32380d 3353 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3354 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3355 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3356 csum_type);
8dc3f22c 3357 err = -EINVAL;
8f32380d 3358 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3359 goto fail_alloc;
3360 }
3361
83c68bbc
SY
3362 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3363
6d97c6e3
JT
3364 ret = btrfs_init_csum_hash(fs_info, csum_type);
3365 if (ret) {
3366 err = ret;
8f32380d 3367 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3368 goto fail_alloc;
3369 }
3370
1104a885
DS
3371 /*
3372 * We want to check superblock checksum, the type is stored inside.
3373 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3374 */
8f32380d 3375 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3376 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3377 err = -EINVAL;
8f32380d 3378 btrfs_release_disk_super(disk_super);
141386e1 3379 goto fail_alloc;
1104a885
DS
3380 }
3381
3382 /*
3383 * super_copy is zeroed at allocation time and we never touch the
3384 * following bytes up to INFO_SIZE, the checksum is calculated from
3385 * the whole block of INFO_SIZE
3386 */
8f32380d
JT
3387 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3388 btrfs_release_disk_super(disk_super);
5f39d397 3389
fbc6feae
NB
3390 disk_super = fs_info->super_copy;
3391
0b86a832 3392
fbc6feae
NB
3393 features = btrfs_super_flags(disk_super);
3394 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3395 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3396 btrfs_set_super_flags(disk_super, features);
3397 btrfs_info(fs_info,
3398 "found metadata UUID change in progress flag, clearing");
3399 }
3400
3401 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3402 sizeof(*fs_info->super_for_commit));
de37aa51 3403
069ec957 3404 ret = btrfs_validate_mount_super(fs_info);
1104a885 3405 if (ret) {
05135f59 3406 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3407 err = -EINVAL;
141386e1 3408 goto fail_alloc;
1104a885
DS
3409 }
3410
0f7d52f4 3411 if (!btrfs_super_root(disk_super))
141386e1 3412 goto fail_alloc;
0f7d52f4 3413
acce952b 3414 /* check FS state, whether FS is broken. */
87533c47
MX
3415 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3416 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3417
75e7cb7f
LB
3418 /*
3419 * In the long term, we'll store the compression type in the super
3420 * block, and it'll be used for per file compression control.
3421 */
3422 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3423
6f93e834
AJ
3424
3425 /* Set up fs_info before parsing mount options */
3426 nodesize = btrfs_super_nodesize(disk_super);
3427 sectorsize = btrfs_super_sectorsize(disk_super);
3428 stripesize = sectorsize;
3429 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3430 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3431
3432 fs_info->nodesize = nodesize;
3433 fs_info->sectorsize = sectorsize;
3434 fs_info->sectorsize_bits = ilog2(sectorsize);
3435 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3436 fs_info->stripesize = stripesize;
3437
2ff7e61e 3438 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3439 if (ret) {
3440 err = ret;
141386e1 3441 goto fail_alloc;
2b82032c 3442 }
dfe25020 3443
f2b636e8
JB
3444 features = btrfs_super_incompat_flags(disk_super) &
3445 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3446 if (features) {
05135f59 3447 btrfs_err(fs_info,
d5321a0f 3448 "cannot mount because of unsupported optional features (0x%llx)",
05135f59 3449 features);
f2b636e8 3450 err = -EINVAL;
141386e1 3451 goto fail_alloc;
f2b636e8
JB
3452 }
3453
5d4f98a2 3454 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3455 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3456 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3457 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3458 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3459 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3460
e26b04c4
NB
3461 /*
3462 * Flag our filesystem as having big metadata blocks if they are bigger
3463 * than the page size.
3464 */
6b769dac 3465 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
e26b04c4 3466 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3173a18f 3467
bc3f116f
CM
3468 /*
3469 * mixed block groups end up with duplicate but slightly offset
3470 * extent buffers for the same range. It leads to corruptions
3471 */
3472 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3473 (sectorsize != nodesize)) {
05135f59
DS
3474 btrfs_err(fs_info,
3475"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3476 nodesize, sectorsize);
141386e1 3477 goto fail_alloc;
bc3f116f
CM
3478 }
3479
ceda0864
MX
3480 /*
3481 * Needn't use the lock because there is no other task which will
3482 * update the flag.
3483 */
a6fa6fae 3484 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3485
f2b636e8
JB
3486 features = btrfs_super_compat_ro_flags(disk_super) &
3487 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3488 if (!sb_rdonly(sb) && features) {
05135f59 3489 btrfs_err(fs_info,
d5321a0f 3490 "cannot mount read-write because of unsupported optional features (0x%llx)",
c1c9ff7c 3491 features);
f2b636e8 3492 err = -EINVAL;
141386e1 3493 goto fail_alloc;
f2b636e8 3494 }
dc4d3168
QW
3495 /*
3496 * We have unsupported RO compat features, although RO mounted, we
3497 * should not cause any metadata write, including log replay.
3498 * Or we could screw up whatever the new feature requires.
3499 */
3500 if (unlikely(features && btrfs_super_log_root(disk_super) &&
3501 !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3502 btrfs_err(fs_info,
3503"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3504 features);
3505 err = -EINVAL;
3506 goto fail_alloc;
3507 }
3508
61d92c32 3509
8481dd80
QW
3510 if (sectorsize < PAGE_SIZE) {
3511 struct btrfs_subpage_info *subpage_info;
3512
9f73f1ae
QW
3513 /*
3514 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3515 * going to be deprecated.
3516 *
3517 * Force to use v2 cache for subpage case.
3518 */
3519 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3520 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3521 "forcing free space tree for sector size %u with page size %lu",
3522 sectorsize, PAGE_SIZE);
3523
95ea0486
QW
3524 btrfs_warn(fs_info,
3525 "read-write for sector size %u with page size %lu is experimental",
3526 sectorsize, PAGE_SIZE);
8481dd80
QW
3527 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3528 if (!subpage_info)
3529 goto fail_alloc;
3530 btrfs_init_subpage_info(subpage_info, sectorsize);
3531 fs_info->subpage_info = subpage_info;
c8050b3b 3532 }
0bb3eb3e 3533
d21deec5 3534 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3535 if (ret) {
3536 err = ret;
0dc3b84a
JB
3537 goto fail_sb_buffer;
3538 }
4543df7e 3539
9e11ceee
JK
3540 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3541 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3542
a061fc8d
CM
3543 sb->s_blocksize = sectorsize;
3544 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3545 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3546
925baedd 3547 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3548 ret = btrfs_read_sys_array(fs_info);
925baedd 3549 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3550 if (ret) {
05135f59 3551 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3552 goto fail_sb_buffer;
84eed90f 3553 }
0b86a832 3554
84234f3a 3555 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3556 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3557 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3558 generation, level);
3559 if (ret) {
05135f59 3560 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3561 goto fail_tree_roots;
83121942 3562 }
0b86a832 3563
e17cade2 3564 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3565 offsetof(struct btrfs_header, chunk_tree_uuid),
3566 BTRFS_UUID_SIZE);
e17cade2 3567
5b4aacef 3568 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3569 if (ret) {
05135f59 3570 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3571 goto fail_tree_roots;
2b82032c 3572 }
0b86a832 3573
8dabb742 3574 /*
bacce86a
AJ
3575 * At this point we know all the devices that make this filesystem,
3576 * including the seed devices but we don't know yet if the replace
3577 * target is required. So free devices that are not part of this
1a9fd417 3578 * filesystem but skip the replace target device which is checked
bacce86a 3579 * below in btrfs_init_dev_replace().
8dabb742 3580 */
bacce86a 3581 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3582 if (!fs_devices->latest_dev->bdev) {
05135f59 3583 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3584 goto fail_tree_roots;
3585 }
3586
b8522a1e 3587 ret = init_tree_roots(fs_info);
4bbcaa64 3588 if (ret)
b8522a1e 3589 goto fail_tree_roots;
8929ecfa 3590
73651042
NA
3591 /*
3592 * Get zone type information of zoned block devices. This will also
3593 * handle emulation of a zoned filesystem if a regular device has the
3594 * zoned incompat feature flag set.
3595 */
3596 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3597 if (ret) {
3598 btrfs_err(fs_info,
3599 "zoned: failed to read device zone info: %d",
3600 ret);
3601 goto fail_block_groups;
3602 }
3603
75ec1db8
JB
3604 /*
3605 * If we have a uuid root and we're not being told to rescan we need to
3606 * check the generation here so we can set the
3607 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3608 * transaction during a balance or the log replay without updating the
3609 * uuid generation, and then if we crash we would rescan the uuid tree,
3610 * even though it was perfectly fine.
3611 */
3612 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3613 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3614 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3615
cf90d884
QW
3616 ret = btrfs_verify_dev_extents(fs_info);
3617 if (ret) {
3618 btrfs_err(fs_info,
3619 "failed to verify dev extents against chunks: %d",
3620 ret);
3621 goto fail_block_groups;
3622 }
68310a5e
ID
3623 ret = btrfs_recover_balance(fs_info);
3624 if (ret) {
05135f59 3625 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3626 goto fail_block_groups;
3627 }
3628
733f4fbb
SB
3629 ret = btrfs_init_dev_stats(fs_info);
3630 if (ret) {
05135f59 3631 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3632 goto fail_block_groups;
3633 }
3634
8dabb742
SB
3635 ret = btrfs_init_dev_replace(fs_info);
3636 if (ret) {
05135f59 3637 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3638 goto fail_block_groups;
3639 }
3640
b70f5097
NA
3641 ret = btrfs_check_zoned_mode(fs_info);
3642 if (ret) {
3643 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3644 ret);
3645 goto fail_block_groups;
3646 }
3647
c6761a9e 3648 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3649 if (ret) {
05135f59
DS
3650 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3651 ret);
b7c35e81
AJ
3652 goto fail_block_groups;
3653 }
3654
96f3136e 3655 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3656 if (ret) {
05135f59 3657 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3658 goto fail_fsdev_sysfs;
c59021f8 3659 }
3660
c59021f8 3661 ret = btrfs_init_space_info(fs_info);
3662 if (ret) {
05135f59 3663 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3664 goto fail_sysfs;
c59021f8 3665 }
3666
5b4aacef 3667 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3668 if (ret) {
05135f59 3669 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3670 goto fail_sysfs;
1b1d1f66 3671 }
4330e183 3672
16beac87
NA
3673 btrfs_free_zone_cache(fs_info);
3674
5c78a5e7
AJ
3675 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3676 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3677 btrfs_warn(fs_info,
52042d8e 3678 "writable mount is not allowed due to too many missing devices");
2365dd3c 3679 goto fail_sysfs;
292fd7fc 3680 }
9078a3e1 3681
33c44184 3682 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3683 "btrfs-cleaner");
57506d50 3684 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3685 goto fail_sysfs;
a74a4b97
CM
3686
3687 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3688 tree_root,
3689 "btrfs-transaction");
57506d50 3690 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3691 goto fail_cleaner;
a74a4b97 3692
583b7231 3693 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3694 !fs_info->fs_devices->rotating) {
583b7231 3695 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3696 }
3697
572d9ab7 3698 /*
01327610 3699 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3700 * not have to wait for transaction commit
3701 */
3702 btrfs_apply_pending_changes(fs_info);
3818aea2 3703
21adbd5c 3704#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3705 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3706 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3707 btrfs_test_opt(fs_info,
cbeaae4f 3708 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3709 fs_info->check_integrity_print_mask);
3710 if (ret)
05135f59
DS
3711 btrfs_warn(fs_info,
3712 "failed to initialize integrity check module: %d",
3713 ret);
21adbd5c
SB
3714 }
3715#endif
bcef60f2
AJ
3716 ret = btrfs_read_qgroup_config(fs_info);
3717 if (ret)
3718 goto fail_trans_kthread;
21adbd5c 3719
fd708b81
JB
3720 if (btrfs_build_ref_tree(fs_info))
3721 btrfs_err(fs_info, "couldn't build ref tree");
3722
96da0919
QW
3723 /* do not make disk changes in broken FS or nologreplay is given */
3724 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3725 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3726 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3727 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3728 if (ret) {
63443bf5 3729 err = ret;
28c16cbb 3730 goto fail_qgroup;
79787eaa 3731 }
e02119d5 3732 }
1a40e23b 3733
56e9357a 3734 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3735 if (IS_ERR(fs_info->fs_root)) {
3736 err = PTR_ERR(fs_info->fs_root);
f50f4353 3737 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3738 fs_info->fs_root = NULL;
bcef60f2 3739 goto fail_qgroup;
3140c9a3 3740 }
c289811c 3741
bc98a42c 3742 if (sb_rdonly(sb))
8cd29088 3743 goto clear_oneshot;
59641015 3744
44c0ca21 3745 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3746 if (ret) {
6bccf3ab 3747 close_ctree(fs_info);
2b6ba629 3748 return ret;
e3acc2a6 3749 }
b0643e59 3750 btrfs_discard_resume(fs_info);
b382a324 3751
44c0ca21
BB
3752 if (fs_info->uuid_root &&
3753 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3754 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3755 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3756 ret = btrfs_check_uuid_tree(fs_info);
3757 if (ret) {
05135f59
DS
3758 btrfs_warn(fs_info,
3759 "failed to check the UUID tree: %d", ret);
6bccf3ab 3760 close_ctree(fs_info);
70f80175
SB
3761 return ret;
3762 }
f7a81ea4 3763 }
94846229 3764
afcdd129 3765 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3766
b4be6aef
JB
3767 /* Kick the cleaner thread so it'll start deleting snapshots. */
3768 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3769 wake_up_process(fs_info->cleaner_kthread);
3770
8cd29088
BB
3771clear_oneshot:
3772 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3773 return 0;
39279cc3 3774
bcef60f2
AJ
3775fail_qgroup:
3776 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3777fail_trans_kthread:
3778 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3779 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3780 btrfs_free_fs_roots(fs_info);
3f157a2f 3781fail_cleaner:
a74a4b97 3782 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3783
3784 /*
3785 * make sure we're done with the btree inode before we stop our
3786 * kthreads
3787 */
3788 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3789
2365dd3c 3790fail_sysfs:
6618a59b 3791 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3792
b7c35e81
AJ
3793fail_fsdev_sysfs:
3794 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3795
1b1d1f66 3796fail_block_groups:
54067ae9 3797 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3798
3799fail_tree_roots:
9e3aa805
JB
3800 if (fs_info->data_reloc_root)
3801 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3802 free_root_pointers(fs_info, true);
2b8195bb 3803 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3804
39279cc3 3805fail_sb_buffer:
7abadb64 3806 btrfs_stop_all_workers(fs_info);
5cdd7db6 3807 btrfs_free_block_groups(fs_info);
16cdcec7 3808fail_alloc:
586e46e2
ID
3809 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3810
4543df7e 3811 iput(fs_info->btree_inode);
7e662854 3812fail:
586e46e2 3813 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3814 return err;
eb60ceac 3815}
663faf9f 3816ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3817
314b6dd0 3818static void btrfs_end_super_write(struct bio *bio)
f2984462 3819{
314b6dd0
JT
3820 struct btrfs_device *device = bio->bi_private;
3821 struct bio_vec *bvec;
3822 struct bvec_iter_all iter_all;
3823 struct page *page;
3824
3825 bio_for_each_segment_all(bvec, bio, iter_all) {
3826 page = bvec->bv_page;
3827
3828 if (bio->bi_status) {
3829 btrfs_warn_rl_in_rcu(device->fs_info,
3830 "lost page write due to IO error on %s (%d)",
3831 rcu_str_deref(device->name),
3832 blk_status_to_errno(bio->bi_status));
3833 ClearPageUptodate(page);
3834 SetPageError(page);
3835 btrfs_dev_stat_inc_and_print(device,
3836 BTRFS_DEV_STAT_WRITE_ERRS);
3837 } else {
3838 SetPageUptodate(page);
3839 }
3840
3841 put_page(page);
3842 unlock_page(page);
f2984462 3843 }
314b6dd0
JT
3844
3845 bio_put(bio);
f2984462
CM
3846}
3847
8f32380d
JT
3848struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3849 int copy_num)
29c36d72 3850{
29c36d72 3851 struct btrfs_super_block *super;
8f32380d 3852 struct page *page;
12659251 3853 u64 bytenr, bytenr_orig;
8f32380d 3854 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3855 int ret;
3856
3857 bytenr_orig = btrfs_sb_offset(copy_num);
3858 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3859 if (ret == -ENOENT)
3860 return ERR_PTR(-EINVAL);
3861 else if (ret)
3862 return ERR_PTR(ret);
29c36d72 3863
cda00eba 3864 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3865 return ERR_PTR(-EINVAL);
29c36d72 3866
8f32380d
JT
3867 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3868 if (IS_ERR(page))
3869 return ERR_CAST(page);
29c36d72 3870
8f32380d 3871 super = page_address(page);
96c2e067
AJ
3872 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3873 btrfs_release_disk_super(super);
3874 return ERR_PTR(-ENODATA);
3875 }
3876
12659251 3877 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3878 btrfs_release_disk_super(super);
3879 return ERR_PTR(-EINVAL);
29c36d72
AJ
3880 }
3881
8f32380d 3882 return super;
29c36d72
AJ
3883}
3884
3885
8f32380d 3886struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3887{
8f32380d 3888 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3889 int i;
3890 u64 transid = 0;
a512bbf8
YZ
3891
3892 /* we would like to check all the supers, but that would make
3893 * a btrfs mount succeed after a mkfs from a different FS.
3894 * So, we need to add a special mount option to scan for
3895 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3896 */
3897 for (i = 0; i < 1; i++) {
8f32380d
JT
3898 super = btrfs_read_dev_one_super(bdev, i);
3899 if (IS_ERR(super))
a512bbf8
YZ
3900 continue;
3901
a512bbf8 3902 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3903 if (latest)
3904 btrfs_release_disk_super(super);
3905
3906 latest = super;
a512bbf8 3907 transid = btrfs_super_generation(super);
a512bbf8
YZ
3908 }
3909 }
92fc03fb 3910
8f32380d 3911 return super;
a512bbf8
YZ
3912}
3913
4eedeb75 3914/*
abbb3b8e 3915 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3916 * pages we use for writing are locked.
4eedeb75 3917 *
abbb3b8e
DS
3918 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3919 * the expected device size at commit time. Note that max_mirrors must be
3920 * same for write and wait phases.
4eedeb75 3921 *
314b6dd0 3922 * Return number of errors when page is not found or submission fails.
4eedeb75 3923 */
a512bbf8 3924static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3925 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3926{
d5178578 3927 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3928 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3929 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3930 int i;
a512bbf8 3931 int errors = 0;
12659251
NA
3932 int ret;
3933 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3934
3935 if (max_mirrors == 0)
3936 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3937
d5178578
JT
3938 shash->tfm = fs_info->csum_shash;
3939
a512bbf8 3940 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3941 struct page *page;
3942 struct bio *bio;
3943 struct btrfs_super_block *disk_super;
3944
12659251
NA
3945 bytenr_orig = btrfs_sb_offset(i);
3946 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3947 if (ret == -ENOENT) {
3948 continue;
3949 } else if (ret < 0) {
3950 btrfs_err(device->fs_info,
3951 "couldn't get super block location for mirror %d",
3952 i);
3953 errors++;
3954 continue;
3955 }
935e5cc9
MX
3956 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3957 device->commit_total_bytes)
a512bbf8
YZ
3958 break;
3959
12659251 3960 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3961
fd08001f
EB
3962 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3963 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3964 sb->csum);
4eedeb75 3965
314b6dd0
JT
3966 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3967 GFP_NOFS);
3968 if (!page) {
abbb3b8e 3969 btrfs_err(device->fs_info,
314b6dd0 3970 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3971 bytenr);
3972 errors++;
4eedeb75 3973 continue;
abbb3b8e 3974 }
634554dc 3975
314b6dd0
JT
3976 /* Bump the refcount for wait_dev_supers() */
3977 get_page(page);
a512bbf8 3978
314b6dd0
JT
3979 disk_super = page_address(page);
3980 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3981
314b6dd0
JT
3982 /*
3983 * Directly use bios here instead of relying on the page cache
3984 * to do I/O, so we don't lose the ability to do integrity
3985 * checking.
3986 */
07888c66
CH
3987 bio = bio_alloc(device->bdev, 1,
3988 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3989 GFP_NOFS);
314b6dd0
JT
3990 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3991 bio->bi_private = device;
3992 bio->bi_end_io = btrfs_end_super_write;
3993 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3994 offset_in_page(bytenr));
a512bbf8 3995
387125fc 3996 /*
314b6dd0
JT
3997 * We FUA only the first super block. The others we allow to
3998 * go down lazy and there's a short window where the on-disk
3999 * copies might still contain the older version.
387125fc 4000 */
1b9e619c 4001 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4002 bio->bi_opf |= REQ_FUA;
4003
58ff51f1
CH
4004 btrfsic_check_bio(bio);
4005 submit_bio(bio);
8376d9e1
NA
4006
4007 if (btrfs_advance_sb_log(device, i))
4008 errors++;
a512bbf8
YZ
4009 }
4010 return errors < i ? 0 : -1;
4011}
4012
abbb3b8e
DS
4013/*
4014 * Wait for write completion of superblocks done by write_dev_supers,
4015 * @max_mirrors same for write and wait phases.
4016 *
314b6dd0 4017 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4018 * date.
4019 */
4020static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4021{
abbb3b8e
DS
4022 int i;
4023 int errors = 0;
b6a535fa 4024 bool primary_failed = false;
12659251 4025 int ret;
abbb3b8e
DS
4026 u64 bytenr;
4027
4028 if (max_mirrors == 0)
4029 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4030
4031 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4032 struct page *page;
4033
12659251
NA
4034 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4035 if (ret == -ENOENT) {
4036 break;
4037 } else if (ret < 0) {
4038 errors++;
4039 if (i == 0)
4040 primary_failed = true;
4041 continue;
4042 }
abbb3b8e
DS
4043 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4044 device->commit_total_bytes)
4045 break;
4046
314b6dd0
JT
4047 page = find_get_page(device->bdev->bd_inode->i_mapping,
4048 bytenr >> PAGE_SHIFT);
4049 if (!page) {
abbb3b8e 4050 errors++;
b6a535fa
HM
4051 if (i == 0)
4052 primary_failed = true;
abbb3b8e
DS
4053 continue;
4054 }
314b6dd0
JT
4055 /* Page is submitted locked and unlocked once the IO completes */
4056 wait_on_page_locked(page);
4057 if (PageError(page)) {
abbb3b8e 4058 errors++;
b6a535fa
HM
4059 if (i == 0)
4060 primary_failed = true;
4061 }
abbb3b8e 4062
314b6dd0
JT
4063 /* Drop our reference */
4064 put_page(page);
abbb3b8e 4065
314b6dd0
JT
4066 /* Drop the reference from the writing run */
4067 put_page(page);
abbb3b8e
DS
4068 }
4069
b6a535fa
HM
4070 /* log error, force error return */
4071 if (primary_failed) {
4072 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4073 device->devid);
4074 return -1;
4075 }
4076
abbb3b8e
DS
4077 return errors < i ? 0 : -1;
4078}
4079
387125fc
CM
4080/*
4081 * endio for the write_dev_flush, this will wake anyone waiting
4082 * for the barrier when it is done
4083 */
4246a0b6 4084static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4085{
f9e69aa9 4086 bio_uninit(bio);
e0ae9994 4087 complete(bio->bi_private);
387125fc
CM
4088}
4089
4090/*
4fc6441a
AJ
4091 * Submit a flush request to the device if it supports it. Error handling is
4092 * done in the waiting counterpart.
387125fc 4093 */
4fc6441a 4094static void write_dev_flush(struct btrfs_device *device)
387125fc 4095{
f9e69aa9 4096 struct bio *bio = &device->flush_bio;
387125fc 4097
a91cf0ff
WY
4098#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4099 /*
4100 * When a disk has write caching disabled, we skip submission of a bio
4101 * with flush and sync requests before writing the superblock, since
4102 * it's not needed. However when the integrity checker is enabled, this
4103 * results in reports that there are metadata blocks referred by a
4104 * superblock that were not properly flushed. So don't skip the bio
4105 * submission only when the integrity checker is enabled for the sake
4106 * of simplicity, since this is a debug tool and not meant for use in
4107 * non-debug builds.
4108 */
08e688fd 4109 if (!bdev_write_cache(device->bdev))
4fc6441a 4110 return;
a91cf0ff 4111#endif
387125fc 4112
f9e69aa9
CH
4113 bio_init(bio, device->bdev, NULL, 0,
4114 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4115 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4116 init_completion(&device->flush_wait);
4117 bio->bi_private = &device->flush_wait;
387125fc 4118
58ff51f1
CH
4119 btrfsic_check_bio(bio);
4120 submit_bio(bio);
1c3063b6 4121 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4122}
387125fc 4123
4fc6441a
AJ
4124/*
4125 * If the flush bio has been submitted by write_dev_flush, wait for it.
4126 */
8c27cb35 4127static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4128{
f9e69aa9 4129 struct bio *bio = &device->flush_bio;
387125fc 4130
1c3063b6 4131 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4132 return BLK_STS_OK;
387125fc 4133
1c3063b6 4134 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4135 wait_for_completion_io(&device->flush_wait);
387125fc 4136
8c27cb35 4137 return bio->bi_status;
387125fc 4138}
387125fc 4139
d10b82fe 4140static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4141{
6528b99d 4142 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4143 return -EIO;
387125fc
CM
4144 return 0;
4145}
4146
4147/*
4148 * send an empty flush down to each device in parallel,
4149 * then wait for them
4150 */
4151static int barrier_all_devices(struct btrfs_fs_info *info)
4152{
4153 struct list_head *head;
4154 struct btrfs_device *dev;
5af3e8cc 4155 int errors_wait = 0;
4e4cbee9 4156 blk_status_t ret;
387125fc 4157
1538e6c5 4158 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4159 /* send down all the barriers */
4160 head = &info->fs_devices->devices;
1538e6c5 4161 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4162 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4163 continue;
cea7c8bf 4164 if (!dev->bdev)
387125fc 4165 continue;
e12c9621 4166 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4167 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4168 continue;
4169
4fc6441a 4170 write_dev_flush(dev);
58efbc9f 4171 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4172 }
4173
4174 /* wait for all the barriers */
1538e6c5 4175 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4176 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4177 continue;
387125fc 4178 if (!dev->bdev) {
5af3e8cc 4179 errors_wait++;
387125fc
CM
4180 continue;
4181 }
e12c9621 4182 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4183 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4184 continue;
4185
4fc6441a 4186 ret = wait_dev_flush(dev);
401b41e5
AJ
4187 if (ret) {
4188 dev->last_flush_error = ret;
66b4993e
DS
4189 btrfs_dev_stat_inc_and_print(dev,
4190 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4191 errors_wait++;
401b41e5
AJ
4192 }
4193 }
4194
cea7c8bf 4195 if (errors_wait) {
401b41e5
AJ
4196 /*
4197 * At some point we need the status of all disks
4198 * to arrive at the volume status. So error checking
4199 * is being pushed to a separate loop.
4200 */
d10b82fe 4201 return check_barrier_error(info);
387125fc 4202 }
387125fc
CM
4203 return 0;
4204}
4205
943c6e99
ZL
4206int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4207{
8789f4fe
ZL
4208 int raid_type;
4209 int min_tolerated = INT_MAX;
943c6e99 4210
8789f4fe
ZL
4211 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4212 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4213 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4214 btrfs_raid_array[BTRFS_RAID_SINGLE].
4215 tolerated_failures);
943c6e99 4216
8789f4fe
ZL
4217 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4218 if (raid_type == BTRFS_RAID_SINGLE)
4219 continue;
41a6e891 4220 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4221 continue;
8c3e3582 4222 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4223 btrfs_raid_array[raid_type].
4224 tolerated_failures);
4225 }
943c6e99 4226
8789f4fe 4227 if (min_tolerated == INT_MAX) {
ab8d0fc4 4228 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4229 min_tolerated = 0;
4230 }
4231
4232 return min_tolerated;
943c6e99
ZL
4233}
4234
eece6a9c 4235int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4236{
e5e9a520 4237 struct list_head *head;
f2984462 4238 struct btrfs_device *dev;
a061fc8d 4239 struct btrfs_super_block *sb;
f2984462 4240 struct btrfs_dev_item *dev_item;
f2984462
CM
4241 int ret;
4242 int do_barriers;
a236aed1
CM
4243 int max_errors;
4244 int total_errors = 0;
a061fc8d 4245 u64 flags;
f2984462 4246
0b246afa 4247 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4248
4249 /*
4250 * max_mirrors == 0 indicates we're from commit_transaction,
4251 * not from fsync where the tree roots in fs_info have not
4252 * been consistent on disk.
4253 */
4254 if (max_mirrors == 0)
4255 backup_super_roots(fs_info);
f2984462 4256
0b246afa 4257 sb = fs_info->super_for_commit;
a061fc8d 4258 dev_item = &sb->dev_item;
e5e9a520 4259
0b246afa
JM
4260 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4261 head = &fs_info->fs_devices->devices;
4262 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4263
5af3e8cc 4264 if (do_barriers) {
0b246afa 4265 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4266 if (ret) {
4267 mutex_unlock(
0b246afa
JM
4268 &fs_info->fs_devices->device_list_mutex);
4269 btrfs_handle_fs_error(fs_info, ret,
4270 "errors while submitting device barriers.");
5af3e8cc
SB
4271 return ret;
4272 }
4273 }
387125fc 4274
1538e6c5 4275 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4276 if (!dev->bdev) {
4277 total_errors++;
4278 continue;
4279 }
e12c9621 4280 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4281 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4282 continue;
4283
2b82032c 4284 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4285 btrfs_set_stack_device_type(dev_item, dev->type);
4286 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4287 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4288 dev->commit_total_bytes);
ce7213c7
MX
4289 btrfs_set_stack_device_bytes_used(dev_item,
4290 dev->commit_bytes_used);
a061fc8d
CM
4291 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4292 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4293 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4294 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4295 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4296 BTRFS_FSID_SIZE);
a512bbf8 4297
a061fc8d
CM
4298 flags = btrfs_super_flags(sb);
4299 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4300
75cb857d
QW
4301 ret = btrfs_validate_write_super(fs_info, sb);
4302 if (ret < 0) {
4303 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4304 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4305 "unexpected superblock corruption detected");
4306 return -EUCLEAN;
4307 }
4308
abbb3b8e 4309 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4310 if (ret)
4311 total_errors++;
f2984462 4312 }
a236aed1 4313 if (total_errors > max_errors) {
0b246afa
JM
4314 btrfs_err(fs_info, "%d errors while writing supers",
4315 total_errors);
4316 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4317
9d565ba4 4318 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4319 btrfs_handle_fs_error(fs_info, -EIO,
4320 "%d errors while writing supers",
4321 total_errors);
9d565ba4 4322 return -EIO;
a236aed1 4323 }
f2984462 4324
a512bbf8 4325 total_errors = 0;
1538e6c5 4326 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4327 if (!dev->bdev)
4328 continue;
e12c9621 4329 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4330 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4331 continue;
4332
abbb3b8e 4333 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4334 if (ret)
4335 total_errors++;
f2984462 4336 }
0b246afa 4337 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4338 if (total_errors > max_errors) {
0b246afa
JM
4339 btrfs_handle_fs_error(fs_info, -EIO,
4340 "%d errors while writing supers",
4341 total_errors);
79787eaa 4342 return -EIO;
a236aed1 4343 }
f2984462
CM
4344 return 0;
4345}
4346
cb517eab
MX
4347/* Drop a fs root from the radix tree and free it. */
4348void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4349 struct btrfs_root *root)
2619ba1f 4350{
4785e24f
JB
4351 bool drop_ref = false;
4352
fc7cbcd4
DS
4353 spin_lock(&fs_info->fs_roots_radix_lock);
4354 radix_tree_delete(&fs_info->fs_roots_radix,
4355 (unsigned long)root->root_key.objectid);
4356 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4357 drop_ref = true;
fc7cbcd4 4358 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4359
84961539 4360 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4361 ASSERT(root->log_root == NULL);
1c1ea4f7 4362 if (root->reloc_root) {
00246528 4363 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4364 root->reloc_root = NULL;
4365 }
4366 }
3321719e 4367
4785e24f
JB
4368 if (drop_ref)
4369 btrfs_put_root(root);
2619ba1f
CM
4370}
4371
c146afad 4372int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4373{
fc7cbcd4
DS
4374 u64 root_objectid = 0;
4375 struct btrfs_root *gang[8];
4376 int i = 0;
65d33fd7 4377 int err = 0;
fc7cbcd4 4378 unsigned int ret = 0;
e089f05c 4379
c146afad 4380 while (1) {
fc7cbcd4
DS
4381 spin_lock(&fs_info->fs_roots_radix_lock);
4382 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4383 (void **)gang, root_objectid,
4384 ARRAY_SIZE(gang));
4385 if (!ret) {
4386 spin_unlock(&fs_info->fs_roots_radix_lock);
4387 break;
65d33fd7 4388 }
fc7cbcd4 4389 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4390
fc7cbcd4
DS
4391 for (i = 0; i < ret; i++) {
4392 /* Avoid to grab roots in dead_roots */
4393 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4394 gang[i] = NULL;
4395 continue;
4396 }
4397 /* grab all the search result for later use */
4398 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4399 }
fc7cbcd4 4400 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4401
fc7cbcd4
DS
4402 for (i = 0; i < ret; i++) {
4403 if (!gang[i])
65d33fd7 4404 continue;
fc7cbcd4
DS
4405 root_objectid = gang[i]->root_key.objectid;
4406 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4407 if (err)
fc7cbcd4
DS
4408 break;
4409 btrfs_put_root(gang[i]);
c146afad 4410 }
fc7cbcd4 4411 root_objectid++;
c146afad 4412 }
65d33fd7 4413
fc7cbcd4
DS
4414 /* release the uncleaned roots due to error */
4415 for (; i < ret; i++) {
4416 if (gang[i])
4417 btrfs_put_root(gang[i]);
65d33fd7
QW
4418 }
4419 return err;
c146afad 4420}
a2135011 4421
6bccf3ab 4422int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4423{
6bccf3ab 4424 struct btrfs_root *root = fs_info->tree_root;
c146afad 4425 struct btrfs_trans_handle *trans;
a74a4b97 4426
0b246afa 4427 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4428 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4429 mutex_unlock(&fs_info->cleaner_mutex);
4430 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4431
4432 /* wait until ongoing cleanup work done */
0b246afa
JM
4433 down_write(&fs_info->cleanup_work_sem);
4434 up_write(&fs_info->cleanup_work_sem);
c71bf099 4435
7a7eaa40 4436 trans = btrfs_join_transaction(root);
3612b495
TI
4437 if (IS_ERR(trans))
4438 return PTR_ERR(trans);
3a45bb20 4439 return btrfs_commit_transaction(trans);
c146afad
YZ
4440}
4441
36c86a9e
QW
4442static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4443{
4444 struct btrfs_transaction *trans;
4445 struct btrfs_transaction *tmp;
4446 bool found = false;
4447
4448 if (list_empty(&fs_info->trans_list))
4449 return;
4450
4451 /*
4452 * This function is only called at the very end of close_ctree(),
4453 * thus no other running transaction, no need to take trans_lock.
4454 */
4455 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4456 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4457 struct extent_state *cached = NULL;
4458 u64 dirty_bytes = 0;
4459 u64 cur = 0;
4460 u64 found_start;
4461 u64 found_end;
4462
4463 found = true;
4464 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4465 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4466 dirty_bytes += found_end + 1 - found_start;
4467 cur = found_end + 1;
4468 }
4469 btrfs_warn(fs_info,
4470 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4471 trans->transid, dirty_bytes);
4472 btrfs_cleanup_one_transaction(trans, fs_info);
4473
4474 if (trans == fs_info->running_transaction)
4475 fs_info->running_transaction = NULL;
4476 list_del_init(&trans->list);
4477
4478 btrfs_put_transaction(trans);
4479 trace_btrfs_transaction_commit(fs_info);
4480 }
4481 ASSERT(!found);
4482}
4483
b105e927 4484void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4485{
c146afad
YZ
4486 int ret;
4487
afcdd129 4488 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4489
8a1f1e3d
FM
4490 /*
4491 * If we had UNFINISHED_DROPS we could still be processing them, so
4492 * clear that bit and wake up relocation so it can stop.
4493 * We must do this before stopping the block group reclaim task, because
4494 * at btrfs_relocate_block_group() we wait for this bit, and after the
4495 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4496 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4497 * return 1.
4498 */
4499 btrfs_wake_unfinished_drop(fs_info);
4500
31e70e52
FM
4501 /*
4502 * We may have the reclaim task running and relocating a data block group,
4503 * in which case it may create delayed iputs. So stop it before we park
4504 * the cleaner kthread otherwise we can get new delayed iputs after
4505 * parking the cleaner, and that can make the async reclaim task to hang
4506 * if it's waiting for delayed iputs to complete, since the cleaner is
4507 * parked and can not run delayed iputs - this will make us hang when
4508 * trying to stop the async reclaim task.
4509 */
4510 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4511 /*
4512 * We don't want the cleaner to start new transactions, add more delayed
4513 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4514 * because that frees the task_struct, and the transaction kthread might
4515 * still try to wake up the cleaner.
4516 */
4517 kthread_park(fs_info->cleaner_kthread);
c146afad 4518
7343dd61 4519 /* wait for the qgroup rescan worker to stop */
d06f23d6 4520 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4521
803b2f54
SB
4522 /* wait for the uuid_scan task to finish */
4523 down(&fs_info->uuid_tree_rescan_sem);
4524 /* avoid complains from lockdep et al., set sem back to initial state */
4525 up(&fs_info->uuid_tree_rescan_sem);
4526
837d5b6e 4527 /* pause restriper - we want to resume on mount */
aa1b8cd4 4528 btrfs_pause_balance(fs_info);
837d5b6e 4529
8dabb742
SB
4530 btrfs_dev_replace_suspend_for_unmount(fs_info);
4531
aa1b8cd4 4532 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4533
4534 /* wait for any defraggers to finish */
4535 wait_event(fs_info->transaction_wait,
4536 (atomic_read(&fs_info->defrag_running) == 0));
4537
4538 /* clear out the rbtree of defraggable inodes */
26176e7c 4539 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4540
a362bb86
FM
4541 /*
4542 * After we parked the cleaner kthread, ordered extents may have
4543 * completed and created new delayed iputs. If one of the async reclaim
4544 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4545 * can hang forever trying to stop it, because if a delayed iput is
4546 * added after it ran btrfs_run_delayed_iputs() and before it called
4547 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4548 * no one else to run iputs.
4549 *
4550 * So wait for all ongoing ordered extents to complete and then run
4551 * delayed iputs. This works because once we reach this point no one
4552 * can either create new ordered extents nor create delayed iputs
4553 * through some other means.
4554 *
4555 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4556 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4557 * but the delayed iput for the respective inode is made only when doing
4558 * the final btrfs_put_ordered_extent() (which must happen at
4559 * btrfs_finish_ordered_io() when we are unmounting).
4560 */
4561 btrfs_flush_workqueue(fs_info->endio_write_workers);
4562 /* Ordered extents for free space inodes. */
4563 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4564 btrfs_run_delayed_iputs(fs_info);
4565
21c7e756 4566 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4567 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4568 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4569
b0643e59
DZ
4570 /* Cancel or finish ongoing discard work */
4571 btrfs_discard_cleanup(fs_info);
4572
bc98a42c 4573 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4574 /*
d6fd0ae2
OS
4575 * The cleaner kthread is stopped, so do one final pass over
4576 * unused block groups.
e44163e1 4577 */
0b246afa 4578 btrfs_delete_unused_bgs(fs_info);
e44163e1 4579
f0cc2cd7
FM
4580 /*
4581 * There might be existing delayed inode workers still running
4582 * and holding an empty delayed inode item. We must wait for
4583 * them to complete first because they can create a transaction.
4584 * This happens when someone calls btrfs_balance_delayed_items()
4585 * and then a transaction commit runs the same delayed nodes
4586 * before any delayed worker has done something with the nodes.
4587 * We must wait for any worker here and not at transaction
4588 * commit time since that could cause a deadlock.
4589 * This is a very rare case.
4590 */
4591 btrfs_flush_workqueue(fs_info->delayed_workers);
4592
6bccf3ab 4593 ret = btrfs_commit_super(fs_info);
acce952b 4594 if (ret)
04892340 4595 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4596 }
4597
84961539 4598 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4599 btrfs_error_commit_super(fs_info);
0f7d52f4 4600
e3029d9f
AV
4601 kthread_stop(fs_info->transaction_kthread);
4602 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4603
e187831e 4604 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4605 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4606
5958253c
QW
4607 if (btrfs_check_quota_leak(fs_info)) {
4608 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4609 btrfs_err(fs_info, "qgroup reserved space leaked");
4610 }
4611
04892340 4612 btrfs_free_qgroup_config(fs_info);
fe816d0f 4613 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4614
963d678b 4615 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4616 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4617 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4618 }
bcc63abb 4619
5deb17e1 4620 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4621 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4622 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4623
6618a59b 4624 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4625 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4626
1a4319cc
LB
4627 btrfs_put_block_group_cache(fs_info);
4628
de348ee0
WS
4629 /*
4630 * we must make sure there is not any read request to
4631 * submit after we stopping all workers.
4632 */
4633 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4634 btrfs_stop_all_workers(fs_info);
4635
0a31daa4 4636 /* We shouldn't have any transaction open at this point */
36c86a9e 4637 warn_about_uncommitted_trans(fs_info);
0a31daa4 4638
afcdd129 4639 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4640 free_root_pointers(fs_info, true);
8c38938c 4641 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4642
4e19443d
JB
4643 /*
4644 * We must free the block groups after dropping the fs_roots as we could
4645 * have had an IO error and have left over tree log blocks that aren't
4646 * cleaned up until the fs roots are freed. This makes the block group
4647 * accounting appear to be wrong because there's pending reserved bytes,
4648 * so make sure we do the block group cleanup afterwards.
4649 */
4650 btrfs_free_block_groups(fs_info);
4651
13e6c37b 4652 iput(fs_info->btree_inode);
d6bfde87 4653
21adbd5c 4654#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4655 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4656 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4657#endif
4658
0b86a832 4659 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4660 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4661}
4662
b9fab919
CM
4663int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4664 int atomic)
5f39d397 4665{
1259ab75 4666 int ret;
727011e0 4667 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4668
0b32f4bb 4669 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4670 if (!ret)
4671 return ret;
4672
4673 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4674 parent_transid, atomic);
4675 if (ret == -EAGAIN)
4676 return ret;
1259ab75 4677 return !ret;
5f39d397
CM
4678}
4679
5f39d397
CM
4680void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4681{
2f4d60df 4682 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4683 u64 transid = btrfs_header_generation(buf);
b9473439 4684 int was_dirty;
b4ce94de 4685
06ea65a3
JB
4686#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4687 /*
4688 * This is a fast path so only do this check if we have sanity tests
52042d8e 4689 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4690 * outside of the sanity tests.
4691 */
b0132a3b 4692 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4693 return;
4694#endif
49d0c642 4695 btrfs_assert_tree_write_locked(buf);
0b246afa 4696 if (transid != fs_info->generation)
5d163e0e 4697 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4698 buf->start, transid, fs_info->generation);
0b32f4bb 4699 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4700 if (!was_dirty)
104b4e51
NB
4701 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4702 buf->len,
4703 fs_info->dirty_metadata_batch);
1f21ef0a 4704#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4705 /*
4706 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4707 * but item data not updated.
4708 * So here we should only check item pointers, not item data.
4709 */
4710 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4711 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4712 btrfs_print_leaf(buf);
1f21ef0a
FM
4713 ASSERT(0);
4714 }
4715#endif
eb60ceac
CM
4716}
4717
2ff7e61e 4718static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4719 int flush_delayed)
16cdcec7
MX
4720{
4721 /*
4722 * looks as though older kernels can get into trouble with
4723 * this code, they end up stuck in balance_dirty_pages forever
4724 */
e2d84521 4725 int ret;
16cdcec7
MX
4726
4727 if (current->flags & PF_MEMALLOC)
4728 return;
4729
b53d3f5d 4730 if (flush_delayed)
2ff7e61e 4731 btrfs_balance_delayed_items(fs_info);
16cdcec7 4732
d814a491
EL
4733 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4734 BTRFS_DIRTY_METADATA_THRESH,
4735 fs_info->dirty_metadata_batch);
e2d84521 4736 if (ret > 0) {
0b246afa 4737 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4738 }
16cdcec7
MX
4739}
4740
2ff7e61e 4741void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4742{
2ff7e61e 4743 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4744}
585ad2c3 4745
2ff7e61e 4746void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4747{
2ff7e61e 4748 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4749}
6b80053d 4750
2ff7e61e 4751static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4752{
fe816d0f
NB
4753 /* cleanup FS via transaction */
4754 btrfs_cleanup_transaction(fs_info);
4755
0b246afa 4756 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4757 btrfs_run_delayed_iputs(fs_info);
0b246afa 4758 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4759
0b246afa
JM
4760 down_write(&fs_info->cleanup_work_sem);
4761 up_write(&fs_info->cleanup_work_sem);
acce952b 4762}
4763
ef67963d
JB
4764static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4765{
fc7cbcd4
DS
4766 struct btrfs_root *gang[8];
4767 u64 root_objectid = 0;
4768 int ret;
4769
4770 spin_lock(&fs_info->fs_roots_radix_lock);
4771 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4772 (void **)gang, root_objectid,
4773 ARRAY_SIZE(gang))) != 0) {
4774 int i;
4775
4776 for (i = 0; i < ret; i++)
4777 gang[i] = btrfs_grab_root(gang[i]);
4778 spin_unlock(&fs_info->fs_roots_radix_lock);
4779
4780 for (i = 0; i < ret; i++) {
4781 if (!gang[i])
ef67963d 4782 continue;
fc7cbcd4
DS
4783 root_objectid = gang[i]->root_key.objectid;
4784 btrfs_free_log(NULL, gang[i]);
4785 btrfs_put_root(gang[i]);
ef67963d 4786 }
fc7cbcd4
DS
4787 root_objectid++;
4788 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4789 }
fc7cbcd4 4790 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4791 btrfs_free_log_root_tree(NULL, fs_info);
4792}
4793
143bede5 4794static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4795{
acce952b 4796 struct btrfs_ordered_extent *ordered;
acce952b 4797
199c2a9c 4798 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4799 /*
4800 * This will just short circuit the ordered completion stuff which will
4801 * make sure the ordered extent gets properly cleaned up.
4802 */
199c2a9c 4803 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4804 root_extent_list)
4805 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4806 spin_unlock(&root->ordered_extent_lock);
4807}
4808
4809static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4810{
4811 struct btrfs_root *root;
4812 struct list_head splice;
4813
4814 INIT_LIST_HEAD(&splice);
4815
4816 spin_lock(&fs_info->ordered_root_lock);
4817 list_splice_init(&fs_info->ordered_roots, &splice);
4818 while (!list_empty(&splice)) {
4819 root = list_first_entry(&splice, struct btrfs_root,
4820 ordered_root);
1de2cfde
JB
4821 list_move_tail(&root->ordered_root,
4822 &fs_info->ordered_roots);
199c2a9c 4823
2a85d9ca 4824 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4825 btrfs_destroy_ordered_extents(root);
4826
2a85d9ca
LB
4827 cond_resched();
4828 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4829 }
4830 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4831
4832 /*
4833 * We need this here because if we've been flipped read-only we won't
4834 * get sync() from the umount, so we need to make sure any ordered
4835 * extents that haven't had their dirty pages IO start writeout yet
4836 * actually get run and error out properly.
4837 */
4838 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4839}
4840
35a3621b 4841static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4842 struct btrfs_fs_info *fs_info)
acce952b 4843{
4844 struct rb_node *node;
4845 struct btrfs_delayed_ref_root *delayed_refs;
4846 struct btrfs_delayed_ref_node *ref;
4847 int ret = 0;
4848
4849 delayed_refs = &trans->delayed_refs;
4850
4851 spin_lock(&delayed_refs->lock);
d7df2c79 4852 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4853 spin_unlock(&delayed_refs->lock);
b79ce3dd 4854 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4855 return ret;
4856 }
4857
5c9d028b 4858 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4859 struct btrfs_delayed_ref_head *head;
0e0adbcf 4860 struct rb_node *n;
e78417d1 4861 bool pin_bytes = false;
acce952b 4862
d7df2c79
JB
4863 head = rb_entry(node, struct btrfs_delayed_ref_head,
4864 href_node);
3069bd26 4865 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4866 continue;
3069bd26 4867
d7df2c79 4868 spin_lock(&head->lock);
e3d03965 4869 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4870 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4871 ref_node);
d7df2c79 4872 ref->in_tree = 0;
e3d03965 4873 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4874 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4875 if (!list_empty(&ref->add_list))
4876 list_del(&ref->add_list);
d7df2c79
JB
4877 atomic_dec(&delayed_refs->num_entries);
4878 btrfs_put_delayed_ref(ref);
e78417d1 4879 }
d7df2c79
JB
4880 if (head->must_insert_reserved)
4881 pin_bytes = true;
4882 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4883 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4884 spin_unlock(&head->lock);
4885 spin_unlock(&delayed_refs->lock);
4886 mutex_unlock(&head->mutex);
acce952b 4887
f603bb94
NB
4888 if (pin_bytes) {
4889 struct btrfs_block_group *cache;
4890
4891 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4892 BUG_ON(!cache);
4893
4894 spin_lock(&cache->space_info->lock);
4895 spin_lock(&cache->lock);
4896 cache->pinned += head->num_bytes;
4897 btrfs_space_info_update_bytes_pinned(fs_info,
4898 cache->space_info, head->num_bytes);
4899 cache->reserved -= head->num_bytes;
4900 cache->space_info->bytes_reserved -= head->num_bytes;
4901 spin_unlock(&cache->lock);
4902 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4903
4904 btrfs_put_block_group(cache);
4905
4906 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4907 head->bytenr + head->num_bytes - 1);
4908 }
31890da0 4909 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4910 btrfs_put_delayed_ref_head(head);
acce952b 4911 cond_resched();
4912 spin_lock(&delayed_refs->lock);
4913 }
81f7eb00 4914 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4915
4916 spin_unlock(&delayed_refs->lock);
4917
4918 return ret;
4919}
4920
143bede5 4921static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4922{
4923 struct btrfs_inode *btrfs_inode;
4924 struct list_head splice;
4925
4926 INIT_LIST_HEAD(&splice);
4927
eb73c1b7
MX
4928 spin_lock(&root->delalloc_lock);
4929 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4930
4931 while (!list_empty(&splice)) {
fe816d0f 4932 struct inode *inode = NULL;
eb73c1b7
MX
4933 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4934 delalloc_inodes);
fe816d0f 4935 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4936 spin_unlock(&root->delalloc_lock);
acce952b 4937
fe816d0f
NB
4938 /*
4939 * Make sure we get a live inode and that it'll not disappear
4940 * meanwhile.
4941 */
4942 inode = igrab(&btrfs_inode->vfs_inode);
4943 if (inode) {
4944 invalidate_inode_pages2(inode->i_mapping);
4945 iput(inode);
4946 }
eb73c1b7 4947 spin_lock(&root->delalloc_lock);
acce952b 4948 }
eb73c1b7
MX
4949 spin_unlock(&root->delalloc_lock);
4950}
4951
4952static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4953{
4954 struct btrfs_root *root;
4955 struct list_head splice;
4956
4957 INIT_LIST_HEAD(&splice);
4958
4959 spin_lock(&fs_info->delalloc_root_lock);
4960 list_splice_init(&fs_info->delalloc_roots, &splice);
4961 while (!list_empty(&splice)) {
4962 root = list_first_entry(&splice, struct btrfs_root,
4963 delalloc_root);
00246528 4964 root = btrfs_grab_root(root);
eb73c1b7
MX
4965 BUG_ON(!root);
4966 spin_unlock(&fs_info->delalloc_root_lock);
4967
4968 btrfs_destroy_delalloc_inodes(root);
00246528 4969 btrfs_put_root(root);
eb73c1b7
MX
4970
4971 spin_lock(&fs_info->delalloc_root_lock);
4972 }
4973 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4974}
4975
2ff7e61e 4976static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4977 struct extent_io_tree *dirty_pages,
4978 int mark)
4979{
4980 int ret;
acce952b 4981 struct extent_buffer *eb;
4982 u64 start = 0;
4983 u64 end;
acce952b 4984
4985 while (1) {
4986 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4987 mark, NULL);
acce952b 4988 if (ret)
4989 break;
4990
91166212 4991 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4992 while (start <= end) {
0b246afa
JM
4993 eb = find_extent_buffer(fs_info, start);
4994 start += fs_info->nodesize;
fd8b2b61 4995 if (!eb)
acce952b 4996 continue;
fd8b2b61 4997 wait_on_extent_buffer_writeback(eb);
acce952b 4998
fd8b2b61
JB
4999 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5000 &eb->bflags))
5001 clear_extent_buffer_dirty(eb);
5002 free_extent_buffer_stale(eb);
acce952b 5003 }
5004 }
5005
5006 return ret;
5007}
5008
2ff7e61e 5009static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5010 struct extent_io_tree *unpin)
acce952b 5011{
acce952b 5012 u64 start;
5013 u64 end;
5014 int ret;
5015
acce952b 5016 while (1) {
0e6ec385
FM
5017 struct extent_state *cached_state = NULL;
5018
fcd5e742
LF
5019 /*
5020 * The btrfs_finish_extent_commit() may get the same range as
5021 * ours between find_first_extent_bit and clear_extent_dirty.
5022 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5023 * the same extent range.
5024 */
5025 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5026 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5027 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5028 if (ret) {
5029 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5030 break;
fcd5e742 5031 }
acce952b 5032
0e6ec385
FM
5033 clear_extent_dirty(unpin, start, end, &cached_state);
5034 free_extent_state(cached_state);
2ff7e61e 5035 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5036 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5037 cond_resched();
5038 }
5039
5040 return 0;
5041}
5042
32da5386 5043static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5044{
5045 struct inode *inode;
5046
5047 inode = cache->io_ctl.inode;
5048 if (inode) {
5049 invalidate_inode_pages2(inode->i_mapping);
5050 BTRFS_I(inode)->generation = 0;
5051 cache->io_ctl.inode = NULL;
5052 iput(inode);
5053 }
bbc37d6e 5054 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5055 btrfs_put_block_group(cache);
5056}
5057
5058void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5059 struct btrfs_fs_info *fs_info)
c79a1751 5060{
32da5386 5061 struct btrfs_block_group *cache;
c79a1751
LB
5062
5063 spin_lock(&cur_trans->dirty_bgs_lock);
5064 while (!list_empty(&cur_trans->dirty_bgs)) {
5065 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5066 struct btrfs_block_group,
c79a1751 5067 dirty_list);
c79a1751
LB
5068
5069 if (!list_empty(&cache->io_list)) {
5070 spin_unlock(&cur_trans->dirty_bgs_lock);
5071 list_del_init(&cache->io_list);
5072 btrfs_cleanup_bg_io(cache);
5073 spin_lock(&cur_trans->dirty_bgs_lock);
5074 }
5075
5076 list_del_init(&cache->dirty_list);
5077 spin_lock(&cache->lock);
5078 cache->disk_cache_state = BTRFS_DC_ERROR;
5079 spin_unlock(&cache->lock);
5080
5081 spin_unlock(&cur_trans->dirty_bgs_lock);
5082 btrfs_put_block_group(cache);
ba2c4d4e 5083 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5084 spin_lock(&cur_trans->dirty_bgs_lock);
5085 }
5086 spin_unlock(&cur_trans->dirty_bgs_lock);
5087
45ae2c18
NB
5088 /*
5089 * Refer to the definition of io_bgs member for details why it's safe
5090 * to use it without any locking
5091 */
c79a1751
LB
5092 while (!list_empty(&cur_trans->io_bgs)) {
5093 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5094 struct btrfs_block_group,
c79a1751 5095 io_list);
c79a1751
LB
5096
5097 list_del_init(&cache->io_list);
5098 spin_lock(&cache->lock);
5099 cache->disk_cache_state = BTRFS_DC_ERROR;
5100 spin_unlock(&cache->lock);
5101 btrfs_cleanup_bg_io(cache);
5102 }
5103}
5104
49b25e05 5105void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5106 struct btrfs_fs_info *fs_info)
49b25e05 5107{
bbbf7243
NB
5108 struct btrfs_device *dev, *tmp;
5109
2ff7e61e 5110 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5111 ASSERT(list_empty(&cur_trans->dirty_bgs));
5112 ASSERT(list_empty(&cur_trans->io_bgs));
5113
bbbf7243
NB
5114 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5115 post_commit_list) {
5116 list_del_init(&dev->post_commit_list);
5117 }
5118
2ff7e61e 5119 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5120
4a9d8bde 5121 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5122 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5123
4a9d8bde 5124 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5125 wake_up(&fs_info->transaction_wait);
49b25e05 5126
ccdf9b30 5127 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5128
2ff7e61e 5129 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5130 EXTENT_DIRTY);
fe119a6e 5131 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5132
d3575156
NA
5133 btrfs_free_redirty_list(cur_trans);
5134
4a9d8bde
MX
5135 cur_trans->state =TRANS_STATE_COMPLETED;
5136 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5137}
5138
2ff7e61e 5139static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5140{
5141 struct btrfs_transaction *t;
acce952b 5142
0b246afa 5143 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5144
0b246afa
JM
5145 spin_lock(&fs_info->trans_lock);
5146 while (!list_empty(&fs_info->trans_list)) {
5147 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5148 struct btrfs_transaction, list);
5149 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5150 refcount_inc(&t->use_count);
0b246afa 5151 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5152 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5153 btrfs_put_transaction(t);
0b246afa 5154 spin_lock(&fs_info->trans_lock);
724e2315
JB
5155 continue;
5156 }
0b246afa 5157 if (t == fs_info->running_transaction) {
724e2315 5158 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5159 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5160 /*
5161 * We wait for 0 num_writers since we don't hold a trans
5162 * handle open currently for this transaction.
5163 */
5164 wait_event(t->writer_wait,
5165 atomic_read(&t->num_writers) == 0);
5166 } else {
0b246afa 5167 spin_unlock(&fs_info->trans_lock);
724e2315 5168 }
2ff7e61e 5169 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5170
0b246afa
JM
5171 spin_lock(&fs_info->trans_lock);
5172 if (t == fs_info->running_transaction)
5173 fs_info->running_transaction = NULL;
acce952b 5174 list_del_init(&t->list);
0b246afa 5175 spin_unlock(&fs_info->trans_lock);
acce952b 5176
724e2315 5177 btrfs_put_transaction(t);
2e4e97ab 5178 trace_btrfs_transaction_commit(fs_info);
0b246afa 5179 spin_lock(&fs_info->trans_lock);
724e2315 5180 }
0b246afa
JM
5181 spin_unlock(&fs_info->trans_lock);
5182 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5183 btrfs_destroy_delayed_inodes(fs_info);
5184 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5185 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5186 btrfs_drop_all_logs(fs_info);
0b246afa 5187 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5188
5189 return 0;
5190}
ec7d6dfd 5191
453e4873 5192int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5193{
5194 struct btrfs_path *path;
5195 int ret;
5196 struct extent_buffer *l;
5197 struct btrfs_key search_key;
5198 struct btrfs_key found_key;
5199 int slot;
5200
5201 path = btrfs_alloc_path();
5202 if (!path)
5203 return -ENOMEM;
5204
5205 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5206 search_key.type = -1;
5207 search_key.offset = (u64)-1;
5208 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5209 if (ret < 0)
5210 goto error;
5211 BUG_ON(ret == 0); /* Corruption */
5212 if (path->slots[0] > 0) {
5213 slot = path->slots[0] - 1;
5214 l = path->nodes[0];
5215 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5216 root->free_objectid = max_t(u64, found_key.objectid + 1,
5217 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5218 } else {
23125104 5219 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5220 }
5221 ret = 0;
5222error:
5223 btrfs_free_path(path);
5224 return ret;
5225}
5226
543068a2 5227int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5228{
5229 int ret;
5230 mutex_lock(&root->objectid_mutex);
5231
6b8fad57 5232 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5233 btrfs_warn(root->fs_info,
5234 "the objectid of root %llu reaches its highest value",
5235 root->root_key.objectid);
5236 ret = -ENOSPC;
5237 goto out;
5238 }
5239
23125104 5240 *objectid = root->free_objectid++;
ec7d6dfd
NB
5241 ret = 0;
5242out:
5243 mutex_unlock(&root->objectid_mutex);
5244 return ret;
5245}