btrfs: simplify tree block checksumming loop
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
c6100a4b 113 void *private_data;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
7eccb903 214{
fc4f21b1 215 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
216 struct extent_map *em;
217 int ret;
218
890871be 219 read_lock(&em_tree->lock);
d1310b2e 220 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 221 if (em) {
890871be 222 read_unlock(&em_tree->lock);
5f39d397 223 goto out;
a061fc8d 224 }
890871be 225 read_unlock(&em_tree->lock);
7b13b7b1 226
172ddd60 227 em = alloc_extent_map();
5f39d397
CM
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
0afbaf8c 233 em->len = (u64)-1;
c8b97818 234 em->block_len = (u64)-1;
5f39d397 235 em->block_start = 0;
d1310b2e 236
890871be 237 write_lock(&em_tree->lock);
09a2a8f9 238 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
239 if (ret == -EEXIST) {
240 free_extent_map(em);
7b13b7b1 241 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 242 if (!em)
0433f20d 243 em = ERR_PTR(-EIO);
5f39d397 244 } else if (ret) {
7b13b7b1 245 free_extent_map(em);
0433f20d 246 em = ERR_PTR(ret);
5f39d397 247 }
890871be 248 write_unlock(&em_tree->lock);
7b13b7b1 249
5f39d397
CM
250out:
251 return em;
7eccb903
CM
252}
253
d352ac68 254/*
2996e1f8
JT
255 * Compute the csum of a btree block and store the result to provided buffer.
256 *
257 * Returns error if the extent buffer cannot be mapped.
d352ac68 258 */
2996e1f8 259static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 260{
d5178578 261 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 262 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
d5178578 263 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 264 char *kaddr;
e9be5a30 265 int i;
d5178578
JT
266
267 shash->tfm = fs_info->csum_shash;
268 crypto_shash_init(shash);
e9be5a30
DS
269 kaddr = page_address(buf->pages[0]);
270 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
271 PAGE_SIZE - BTRFS_CSUM_SIZE);
19c00ddc 272
e9be5a30
DS
273 for (i = 1; i < num_pages; i++) {
274 kaddr = page_address(buf->pages[i]);
275 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 276 }
71a63551 277 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 278 crypto_shash_final(shash, result);
19c00ddc 279
19c00ddc
CM
280 return 0;
281}
282
d352ac68
CM
283/*
284 * we can't consider a given block up to date unless the transid of the
285 * block matches the transid in the parent node's pointer. This is how we
286 * detect blocks that either didn't get written at all or got written
287 * in the wrong place.
288 */
1259ab75 289static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
290 struct extent_buffer *eb, u64 parent_transid,
291 int atomic)
1259ab75 292{
2ac55d41 293 struct extent_state *cached_state = NULL;
1259ab75 294 int ret;
2755a0de 295 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
296
297 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
298 return 0;
299
b9fab919
CM
300 if (atomic)
301 return -EAGAIN;
302
a26e8c9f
JB
303 if (need_lock) {
304 btrfs_tree_read_lock(eb);
300aa896 305 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
306 }
307
2ac55d41 308 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 309 &cached_state);
0b32f4bb 310 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
311 btrfs_header_generation(eb) == parent_transid) {
312 ret = 0;
313 goto out;
314 }
94647322
DS
315 btrfs_err_rl(eb->fs_info,
316 "parent transid verify failed on %llu wanted %llu found %llu",
317 eb->start,
29549aec 318 parent_transid, btrfs_header_generation(eb));
1259ab75 319 ret = 1;
a26e8c9f
JB
320
321 /*
322 * Things reading via commit roots that don't have normal protection,
323 * like send, can have a really old block in cache that may point at a
01327610 324 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
325 * if we find an eb that is under IO (dirty/writeback) because we could
326 * end up reading in the stale data and then writing it back out and
327 * making everybody very sad.
328 */
329 if (!extent_buffer_under_io(eb))
330 clear_extent_buffer_uptodate(eb);
33958dc6 331out:
2ac55d41 332 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 333 &cached_state);
472b909f
JB
334 if (need_lock)
335 btrfs_tree_read_unlock_blocking(eb);
1259ab75 336 return ret;
1259ab75
CM
337}
338
e7e16f48
JT
339static bool btrfs_supported_super_csum(u16 csum_type)
340{
341 switch (csum_type) {
342 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 343 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 344 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 345 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
346 return true;
347 default:
348 return false;
349 }
350}
351
1104a885
DS
352/*
353 * Return 0 if the superblock checksum type matches the checksum value of that
354 * algorithm. Pass the raw disk superblock data.
355 */
ab8d0fc4
JM
356static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
357 char *raw_disk_sb)
1104a885
DS
358{
359 struct btrfs_super_block *disk_sb =
360 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 361 char result[BTRFS_CSUM_SIZE];
d5178578
JT
362 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
363
364 shash->tfm = fs_info->csum_shash;
365 crypto_shash_init(shash);
1104a885 366
51bce6c9
JT
367 /*
368 * The super_block structure does not span the whole
369 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
370 * filled with zeros and is included in the checksum.
371 */
d5178578
JT
372 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
373 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
374 crypto_shash_final(shash, result);
1104a885 375
51bce6c9
JT
376 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
377 return 1;
1104a885 378
e7e16f48 379 return 0;
1104a885
DS
380}
381
e064d5e9 382int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 383 struct btrfs_key *first_key, u64 parent_transid)
581c1760 384{
e064d5e9 385 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
386 int found_level;
387 struct btrfs_key found_key;
388 int ret;
389
390 found_level = btrfs_header_level(eb);
391 if (found_level != level) {
63489055
QW
392 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
393 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
394 btrfs_err(fs_info,
395"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
396 eb->start, level, found_level);
581c1760
QW
397 return -EIO;
398 }
399
400 if (!first_key)
401 return 0;
402
5d41be6f
QW
403 /*
404 * For live tree block (new tree blocks in current transaction),
405 * we need proper lock context to avoid race, which is impossible here.
406 * So we only checks tree blocks which is read from disk, whose
407 * generation <= fs_info->last_trans_committed.
408 */
409 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
410 return 0;
62fdaa52
QW
411
412 /* We have @first_key, so this @eb must have at least one item */
413 if (btrfs_header_nritems(eb) == 0) {
414 btrfs_err(fs_info,
415 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
416 eb->start);
417 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
418 return -EUCLEAN;
419 }
420
581c1760
QW
421 if (found_level)
422 btrfs_node_key_to_cpu(eb, &found_key, 0);
423 else
424 btrfs_item_key_to_cpu(eb, &found_key, 0);
425 ret = btrfs_comp_cpu_keys(first_key, &found_key);
426
581c1760 427 if (ret) {
63489055
QW
428 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
429 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 430 btrfs_err(fs_info,
ff76a864
LB
431"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
432 eb->start, parent_transid, first_key->objectid,
433 first_key->type, first_key->offset,
434 found_key.objectid, found_key.type,
435 found_key.offset);
581c1760 436 }
581c1760
QW
437 return ret;
438}
439
d352ac68
CM
440/*
441 * helper to read a given tree block, doing retries as required when
442 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
443 *
444 * @parent_transid: expected transid, skip check if 0
445 * @level: expected level, mandatory check
446 * @first_key: expected key of first slot, skip check if NULL
d352ac68 447 */
5ab12d1f 448static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
449 u64 parent_transid, int level,
450 struct btrfs_key *first_key)
f188591e 451{
5ab12d1f 452 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 453 struct extent_io_tree *io_tree;
ea466794 454 int failed = 0;
f188591e
CM
455 int ret;
456 int num_copies = 0;
457 int mirror_num = 0;
ea466794 458 int failed_mirror = 0;
f188591e 459
0b246afa 460 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 461 while (1) {
f8397d69 462 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 463 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 464 if (!ret) {
581c1760 465 if (verify_parent_transid(io_tree, eb,
b9fab919 466 parent_transid, 0))
256dd1bb 467 ret = -EIO;
e064d5e9 468 else if (btrfs_verify_level_key(eb, level,
448de471 469 first_key, parent_transid))
581c1760
QW
470 ret = -EUCLEAN;
471 else
472 break;
256dd1bb 473 }
d397712b 474
0b246afa 475 num_copies = btrfs_num_copies(fs_info,
f188591e 476 eb->start, eb->len);
4235298e 477 if (num_copies == 1)
ea466794 478 break;
4235298e 479
5cf1ab56
JB
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
f188591e 485 mirror_num++;
ea466794
JB
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
4235298e 489 if (mirror_num > num_copies)
ea466794 490 break;
f188591e 491 }
ea466794 492
c0901581 493 if (failed && !ret && failed_mirror)
20a1fbf9 494 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
495
496 return ret;
f188591e 497}
19c00ddc 498
d352ac68 499/*
d397712b
CM
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 502 */
d397712b 503
01d58472 504static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 505{
4eee4fa4 506 u64 start = page_offset(page);
19c00ddc 507 u64 found_start;
2996e1f8
JT
508 u8 result[BTRFS_CSUM_SIZE];
509 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 510 struct extent_buffer *eb;
8d47a0d8 511 int ret;
f188591e 512
4f2de97a
JB
513 eb = (struct extent_buffer *)page->private;
514 if (page != eb->pages[0])
515 return 0;
0f805531 516
19c00ddc 517 found_start = btrfs_header_bytenr(eb);
0f805531
AL
518 /*
519 * Please do not consolidate these warnings into a single if.
520 * It is useful to know what went wrong.
521 */
522 if (WARN_ON(found_start != start))
523 return -EUCLEAN;
524 if (WARN_ON(!PageUptodate(page)))
525 return -EUCLEAN;
526
de37aa51 527 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
528 offsetof(struct btrfs_header, fsid),
529 BTRFS_FSID_SIZE) == 0);
0f805531 530
2996e1f8
JT
531 if (csum_tree_block(eb, result))
532 return -EINVAL;
533
8d47a0d8
QW
534 if (btrfs_header_level(eb))
535 ret = btrfs_check_node(eb);
536 else
537 ret = btrfs_check_leaf_full(eb);
538
539 if (ret < 0) {
c06631b0 540 btrfs_print_tree(eb, 0);
8d47a0d8
QW
541 btrfs_err(fs_info,
542 "block=%llu write time tree block corruption detected",
543 eb->start);
c06631b0 544 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
545 return ret;
546 }
2996e1f8 547 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 548
2996e1f8 549 return 0;
19c00ddc
CM
550}
551
b0c9b3b0 552static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 553{
b0c9b3b0 554 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 555 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 556 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
557 int ret = 1;
558
9a8658e3
DS
559 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
560 BTRFS_FSID_SIZE);
2b82032c 561 while (fs_devices) {
7239ff4b
NB
562 u8 *metadata_uuid;
563
564 /*
565 * Checking the incompat flag is only valid for the current
566 * fs. For seed devices it's forbidden to have their uuid
567 * changed so reading ->fsid in this case is fine
568 */
569 if (fs_devices == fs_info->fs_devices &&
570 btrfs_fs_incompat(fs_info, METADATA_UUID))
571 metadata_uuid = fs_devices->metadata_uuid;
572 else
573 metadata_uuid = fs_devices->fsid;
574
575 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
576 ret = 0;
577 break;
578 }
579 fs_devices = fs_devices->seed;
580 }
581 return ret;
582}
583
facc8a22
MX
584static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
ce9adaa5 587{
ce9adaa5
CM
588 u64 found_start;
589 int found_level;
ce9adaa5 590 struct extent_buffer *eb;
15b6e8a8
DS
591 struct btrfs_fs_info *fs_info;
592 u16 csum_size;
f188591e 593 int ret = 0;
2996e1f8 594 u8 result[BTRFS_CSUM_SIZE];
727011e0 595 int reads_done;
ce9adaa5 596
ce9adaa5
CM
597 if (!page->private)
598 goto out;
d397712b 599
4f2de97a 600 eb = (struct extent_buffer *)page->private;
15b6e8a8
DS
601 fs_info = eb->fs_info;
602 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d397712b 603
0b32f4bb
JB
604 /* the pending IO might have been the only thing that kept this buffer
605 * in memory. Make sure we have a ref for all this other checks
606 */
67439dad 607 atomic_inc(&eb->refs);
0b32f4bb
JB
608
609 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
610 if (!reads_done)
611 goto err;
f188591e 612
5cf1ab56 613 eb->read_mirror = mirror;
656f30db 614 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
615 ret = -EIO;
616 goto err;
617 }
618
ce9adaa5 619 found_start = btrfs_header_bytenr(eb);
727011e0 620 if (found_start != eb->start) {
893bf4b1
SY
621 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
622 eb->start, found_start);
f188591e 623 ret = -EIO;
ce9adaa5
CM
624 goto err;
625 }
b0c9b3b0 626 if (check_tree_block_fsid(eb)) {
02873e43
ZL
627 btrfs_err_rl(fs_info, "bad fsid on block %llu",
628 eb->start);
1259ab75
CM
629 ret = -EIO;
630 goto err;
631 }
ce9adaa5 632 found_level = btrfs_header_level(eb);
1c24c3ce 633 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
634 btrfs_err(fs_info, "bad tree block level %d on %llu",
635 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
636 ret = -EIO;
637 goto err;
638 }
ce9adaa5 639
85d4e461
CM
640 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
641 eb, found_level);
4008c04a 642
2996e1f8 643 ret = csum_tree_block(eb, result);
8bd98f0e 644 if (ret)
a826d6dc 645 goto err;
a826d6dc 646
2996e1f8
JT
647 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
648 u32 val;
649 u32 found = 0;
650
651 memcpy(&found, result, csum_size);
652
653 read_extent_buffer(eb, &val, 0, csum_size);
654 btrfs_warn_rl(fs_info,
655 "%s checksum verify failed on %llu wanted %x found %x level %d",
656 fs_info->sb->s_id, eb->start,
657 val, found, btrfs_header_level(eb));
658 ret = -EUCLEAN;
659 goto err;
660 }
661
a826d6dc
JB
662 /*
663 * If this is a leaf block and it is corrupt, set the corrupt bit so
664 * that we don't try and read the other copies of this block, just
665 * return -EIO.
666 */
1c4360ee 667 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
668 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
669 ret = -EIO;
670 }
ce9adaa5 671
813fd1dc 672 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
673 ret = -EIO;
674
0b32f4bb
JB
675 if (!ret)
676 set_extent_buffer_uptodate(eb);
75391f0d
QW
677 else
678 btrfs_err(fs_info,
679 "block=%llu read time tree block corruption detected",
680 eb->start);
ce9adaa5 681err:
79fb65a1
JB
682 if (reads_done &&
683 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 684 btree_readahead_hook(eb, ret);
4bb31e92 685
53b381b3
DW
686 if (ret) {
687 /*
688 * our io error hook is going to dec the io pages
689 * again, we have to make sure it has something
690 * to decrement
691 */
692 atomic_inc(&eb->io_pages);
0b32f4bb 693 clear_extent_buffer_uptodate(eb);
53b381b3 694 }
0b32f4bb 695 free_extent_buffer(eb);
ce9adaa5 696out:
f188591e 697 return ret;
ce9adaa5
CM
698}
699
4246a0b6 700static void end_workqueue_bio(struct bio *bio)
ce9adaa5 701{
97eb6b69 702 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 703 struct btrfs_fs_info *fs_info;
9e0af237 704 struct btrfs_workqueue *wq;
ce9adaa5 705
ce9adaa5 706 fs_info = end_io_wq->info;
4e4cbee9 707 end_io_wq->status = bio->bi_status;
d20f7043 708
37226b21 709 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 710 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 711 wq = fs_info->endio_meta_write_workers;
a0cac0ec 712 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 713 wq = fs_info->endio_freespace_worker;
a0cac0ec 714 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 715 wq = fs_info->endio_raid56_workers;
a0cac0ec 716 else
9e0af237 717 wq = fs_info->endio_write_workers;
d20f7043 718 } else {
a0cac0ec 719 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 720 wq = fs_info->endio_repair_workers;
a0cac0ec 721 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 722 wq = fs_info->endio_raid56_workers;
a0cac0ec 723 else if (end_io_wq->metadata)
9e0af237 724 wq = fs_info->endio_meta_workers;
a0cac0ec 725 else
9e0af237 726 wq = fs_info->endio_workers;
d20f7043 727 }
9e0af237 728
a0cac0ec 729 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 730 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
731}
732
4e4cbee9 733blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 734 enum btrfs_wq_endio_type metadata)
0b86a832 735{
97eb6b69 736 struct btrfs_end_io_wq *end_io_wq;
8b110e39 737
97eb6b69 738 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 739 if (!end_io_wq)
4e4cbee9 740 return BLK_STS_RESOURCE;
ce9adaa5
CM
741
742 end_io_wq->private = bio->bi_private;
743 end_io_wq->end_io = bio->bi_end_io;
22c59948 744 end_io_wq->info = info;
4e4cbee9 745 end_io_wq->status = 0;
ce9adaa5 746 end_io_wq->bio = bio;
22c59948 747 end_io_wq->metadata = metadata;
ce9adaa5
CM
748
749 bio->bi_private = end_io_wq;
750 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
751 return 0;
752}
753
4a69a410
CM
754static void run_one_async_start(struct btrfs_work *work)
755{
4a69a410 756 struct async_submit_bio *async;
4e4cbee9 757 blk_status_t ret;
4a69a410
CM
758
759 async = container_of(work, struct async_submit_bio, work);
c6100a4b 760 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
761 async->bio_offset);
762 if (ret)
4e4cbee9 763 async->status = ret;
4a69a410
CM
764}
765
06ea01b1
DS
766/*
767 * In order to insert checksums into the metadata in large chunks, we wait
768 * until bio submission time. All the pages in the bio are checksummed and
769 * sums are attached onto the ordered extent record.
770 *
771 * At IO completion time the csums attached on the ordered extent record are
772 * inserted into the tree.
773 */
4a69a410 774static void run_one_async_done(struct btrfs_work *work)
8b712842 775{
8b712842 776 struct async_submit_bio *async;
06ea01b1
DS
777 struct inode *inode;
778 blk_status_t ret;
8b712842
CM
779
780 async = container_of(work, struct async_submit_bio, work);
06ea01b1 781 inode = async->private_data;
4854ddd0 782
bb7ab3b9 783 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
784 if (async->status) {
785 async->bio->bi_status = async->status;
4246a0b6 786 bio_endio(async->bio);
79787eaa
JM
787 return;
788 }
789
ec39f769
CM
790 /*
791 * All of the bios that pass through here are from async helpers.
792 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
793 * This changes nothing when cgroups aren't in use.
794 */
795 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 796 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
797 if (ret) {
798 async->bio->bi_status = ret;
799 bio_endio(async->bio);
800 }
4a69a410
CM
801}
802
803static void run_one_async_free(struct btrfs_work *work)
804{
805 struct async_submit_bio *async;
806
807 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
808 kfree(async);
809}
810
8c27cb35
LT
811blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
812 int mirror_num, unsigned long bio_flags,
813 u64 bio_offset, void *private_data,
e288c080 814 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
815{
816 struct async_submit_bio *async;
817
818 async = kmalloc(sizeof(*async), GFP_NOFS);
819 if (!async)
4e4cbee9 820 return BLK_STS_RESOURCE;
44b8bd7e 821
c6100a4b 822 async->private_data = private_data;
44b8bd7e
CM
823 async->bio = bio;
824 async->mirror_num = mirror_num;
4a69a410 825 async->submit_bio_start = submit_bio_start;
4a69a410 826
a0cac0ec
OS
827 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
828 run_one_async_free);
4a69a410 829
eaf25d93 830 async->bio_offset = bio_offset;
8c8bee1d 831
4e4cbee9 832 async->status = 0;
79787eaa 833
67f055c7 834 if (op_is_sync(bio->bi_opf))
5cdc7ad3 835 btrfs_set_work_high_priority(&async->work);
d313d7a3 836
5cdc7ad3 837 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
838 return 0;
839}
840
4e4cbee9 841static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 842{
2c30c71b 843 struct bio_vec *bvec;
ce3ed71a 844 struct btrfs_root *root;
2b070cfe 845 int ret = 0;
6dc4f100 846 struct bvec_iter_all iter_all;
ce3ed71a 847
c09abff8 848 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 849 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 850 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 851 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
852 if (ret)
853 break;
ce3ed71a 854 }
2c30c71b 855
4e4cbee9 856 return errno_to_blk_status(ret);
ce3ed71a
CM
857}
858
d0ee3934 859static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 860 u64 bio_offset)
22c59948 861{
8b712842
CM
862 /*
863 * when we're called for a write, we're already in the async
5443be45 864 * submission context. Just jump into btrfs_map_bio
8b712842 865 */
79787eaa 866 return btree_csum_one_bio(bio);
4a69a410 867}
22c59948 868
9b4e675a
DS
869static int check_async_write(struct btrfs_fs_info *fs_info,
870 struct btrfs_inode *bi)
de0022b9 871{
6300463b
LB
872 if (atomic_read(&bi->sync_writers))
873 return 0;
9b4e675a 874 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 875 return 0;
de0022b9
JB
876 return 1;
877}
878
a56b1c7b 879static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
880 int mirror_num,
881 unsigned long bio_flags)
44b8bd7e 882{
0b246afa 883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 884 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 885 blk_status_t ret;
cad321ad 886
37226b21 887 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
888 /*
889 * called for a read, do the setup so that checksum validation
890 * can happen in the async kernel threads
891 */
0b246afa
JM
892 ret = btrfs_bio_wq_end_io(fs_info, bio,
893 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 894 if (ret)
61891923 895 goto out_w_error;
08635bae 896 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
897 } else if (!async) {
898 ret = btree_csum_one_bio(bio);
899 if (ret)
61891923 900 goto out_w_error;
08635bae 901 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
902 } else {
903 /*
904 * kthread helpers are used to submit writes so that
905 * checksumming can happen in parallel across all CPUs
906 */
c6100a4b 907 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 908 0, inode, btree_submit_bio_start);
44b8bd7e 909 }
d313d7a3 910
4246a0b6
CH
911 if (ret)
912 goto out_w_error;
913 return 0;
914
61891923 915out_w_error:
4e4cbee9 916 bio->bi_status = ret;
4246a0b6 917 bio_endio(bio);
61891923 918 return ret;
44b8bd7e
CM
919}
920
3dd1462e 921#ifdef CONFIG_MIGRATION
784b4e29 922static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
923 struct page *newpage, struct page *page,
924 enum migrate_mode mode)
784b4e29
CM
925{
926 /*
927 * we can't safely write a btree page from here,
928 * we haven't done the locking hook
929 */
930 if (PageDirty(page))
931 return -EAGAIN;
932 /*
933 * Buffers may be managed in a filesystem specific way.
934 * We must have no buffers or drop them.
935 */
936 if (page_has_private(page) &&
937 !try_to_release_page(page, GFP_KERNEL))
938 return -EAGAIN;
a6bc32b8 939 return migrate_page(mapping, newpage, page, mode);
784b4e29 940}
3dd1462e 941#endif
784b4e29 942
0da5468f
CM
943
944static int btree_writepages(struct address_space *mapping,
945 struct writeback_control *wbc)
946{
e2d84521
MX
947 struct btrfs_fs_info *fs_info;
948 int ret;
949
d8d5f3e1 950 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
951
952 if (wbc->for_kupdate)
953 return 0;
954
e2d84521 955 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 956 /* this is a bit racy, but that's ok */
d814a491
EL
957 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
958 BTRFS_DIRTY_METADATA_THRESH,
959 fs_info->dirty_metadata_batch);
e2d84521 960 if (ret < 0)
793955bc 961 return 0;
793955bc 962 }
0b32f4bb 963 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
964}
965
b2950863 966static int btree_readpage(struct file *file, struct page *page)
5f39d397 967{
71ad38b4 968 return extent_read_full_page(page, btree_get_extent, 0);
5f39d397 969}
22b0ebda 970
70dec807 971static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 972{
98509cfc 973 if (PageWriteback(page) || PageDirty(page))
d397712b 974 return 0;
0c4e538b 975
f7a52a40 976 return try_release_extent_buffer(page);
d98237b3
CM
977}
978
d47992f8
LC
979static void btree_invalidatepage(struct page *page, unsigned int offset,
980 unsigned int length)
d98237b3 981{
d1310b2e
CM
982 struct extent_io_tree *tree;
983 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
984 extent_invalidatepage(tree, page, offset);
985 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 986 if (PagePrivate(page)) {
efe120a0
FH
987 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
988 "page private not zero on page %llu",
989 (unsigned long long)page_offset(page));
9ad6b7bc
CM
990 ClearPagePrivate(page);
991 set_page_private(page, 0);
09cbfeaf 992 put_page(page);
9ad6b7bc 993 }
d98237b3
CM
994}
995
0b32f4bb
JB
996static int btree_set_page_dirty(struct page *page)
997{
bb146eb2 998#ifdef DEBUG
0b32f4bb
JB
999 struct extent_buffer *eb;
1000
1001 BUG_ON(!PagePrivate(page));
1002 eb = (struct extent_buffer *)page->private;
1003 BUG_ON(!eb);
1004 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1005 BUG_ON(!atomic_read(&eb->refs));
1006 btrfs_assert_tree_locked(eb);
bb146eb2 1007#endif
0b32f4bb
JB
1008 return __set_page_dirty_nobuffers(page);
1009}
1010
7f09410b 1011static const struct address_space_operations btree_aops = {
d98237b3 1012 .readpage = btree_readpage,
0da5468f 1013 .writepages = btree_writepages,
5f39d397
CM
1014 .releasepage = btree_releasepage,
1015 .invalidatepage = btree_invalidatepage,
5a92bc88 1016#ifdef CONFIG_MIGRATION
784b4e29 1017 .migratepage = btree_migratepage,
5a92bc88 1018#endif
0b32f4bb 1019 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1020};
1021
2ff7e61e 1022void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1023{
5f39d397 1024 struct extent_buffer *buf = NULL;
537f38f0 1025 int ret;
090d1875 1026
2ff7e61e 1027 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1028 if (IS_ERR(buf))
6197d86e 1029 return;
537f38f0 1030
c2ccfbc6 1031 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1032 if (ret < 0)
1033 free_extent_buffer_stale(buf);
1034 else
1035 free_extent_buffer(buf);
090d1875
CM
1036}
1037
2ff7e61e
JM
1038struct extent_buffer *btrfs_find_create_tree_block(
1039 struct btrfs_fs_info *fs_info,
1040 u64 bytenr)
0999df54 1041{
0b246afa
JM
1042 if (btrfs_is_testing(fs_info))
1043 return alloc_test_extent_buffer(fs_info, bytenr);
1044 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1045}
1046
581c1760
QW
1047/*
1048 * Read tree block at logical address @bytenr and do variant basic but critical
1049 * verification.
1050 *
1051 * @parent_transid: expected transid of this tree block, skip check if 0
1052 * @level: expected level, mandatory check
1053 * @first_key: expected key in slot 0, skip check if NULL
1054 */
2ff7e61e 1055struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1056 u64 parent_transid, int level,
1057 struct btrfs_key *first_key)
0999df54
CM
1058{
1059 struct extent_buffer *buf = NULL;
0999df54
CM
1060 int ret;
1061
2ff7e61e 1062 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1063 if (IS_ERR(buf))
1064 return buf;
0999df54 1065
5ab12d1f 1066 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1067 level, first_key);
0f0fe8f7 1068 if (ret) {
537f38f0 1069 free_extent_buffer_stale(buf);
64c043de 1070 return ERR_PTR(ret);
0f0fe8f7 1071 }
5f39d397 1072 return buf;
ce9adaa5 1073
eb60ceac
CM
1074}
1075
6a884d7d 1076void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1077{
6a884d7d 1078 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1079 if (btrfs_header_generation(buf) ==
e2d84521 1080 fs_info->running_transaction->transid) {
b9447ef8 1081 btrfs_assert_tree_locked(buf);
b4ce94de 1082
b9473439 1083 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1084 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1085 -buf->len,
1086 fs_info->dirty_metadata_batch);
ed7b63eb 1087 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1088 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1089 clear_extent_buffer_dirty(buf);
1090 }
925baedd 1091 }
5f39d397
CM
1092}
1093
da17066c 1094static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1095 u64 objectid)
d97e63b6 1096{
7c0260ee 1097 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1098 root->fs_info = fs_info;
cfaa7295 1099 root->node = NULL;
a28ec197 1100 root->commit_root = NULL;
27cdeb70 1101 root->state = 0;
d68fc57b 1102 root->orphan_cleanup_state = 0;
0b86a832 1103
0f7d52f4 1104 root->last_trans = 0;
13a8a7c8 1105 root->highest_objectid = 0;
eb73c1b7 1106 root->nr_delalloc_inodes = 0;
199c2a9c 1107 root->nr_ordered_extents = 0;
6bef4d31 1108 root->inode_tree = RB_ROOT;
16cdcec7 1109 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1110 root->block_rsv = NULL;
0b86a832
CM
1111
1112 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1113 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1114 INIT_LIST_HEAD(&root->delalloc_inodes);
1115 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1116 INIT_LIST_HEAD(&root->ordered_extents);
1117 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1118 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1119 INIT_LIST_HEAD(&root->logged_list[0]);
1120 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1121 spin_lock_init(&root->inode_lock);
eb73c1b7 1122 spin_lock_init(&root->delalloc_lock);
199c2a9c 1123 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1124 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1125 spin_lock_init(&root->log_extents_lock[0]);
1126 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1127 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1128 mutex_init(&root->objectid_mutex);
e02119d5 1129 mutex_init(&root->log_mutex);
31f3d255 1130 mutex_init(&root->ordered_extent_mutex);
573bfb72 1131 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1132 init_waitqueue_head(&root->log_writer_wait);
1133 init_waitqueue_head(&root->log_commit_wait[0]);
1134 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1135 INIT_LIST_HEAD(&root->log_ctxs[0]);
1136 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1137 atomic_set(&root->log_commit[0], 0);
1138 atomic_set(&root->log_commit[1], 0);
1139 atomic_set(&root->log_writers, 0);
2ecb7923 1140 atomic_set(&root->log_batch, 0);
0700cea7 1141 refcount_set(&root->refs, 1);
8ecebf4d 1142 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1143 atomic_set(&root->nr_swapfiles, 0);
7237f183 1144 root->log_transid = 0;
d1433deb 1145 root->log_transid_committed = -1;
257c62e1 1146 root->last_log_commit = 0;
7c0260ee 1147 if (!dummy)
43eb5f29
QW
1148 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1149 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1150
3768f368
CM
1151 memset(&root->root_key, 0, sizeof(root->root_key));
1152 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1153 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1154 if (!dummy)
06ea65a3
JB
1155 root->defrag_trans_start = fs_info->generation;
1156 else
1157 root->defrag_trans_start = 0;
4d775673 1158 root->root_key.objectid = objectid;
0ee5dc67 1159 root->anon_dev = 0;
8ea05e3a 1160
5f3ab90a 1161 spin_lock_init(&root->root_item_lock);
370a11b8 1162 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1163#ifdef CONFIG_BTRFS_DEBUG
1164 INIT_LIST_HEAD(&root->leak_list);
1165 spin_lock(&fs_info->fs_roots_radix_lock);
1166 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1167 spin_unlock(&fs_info->fs_roots_radix_lock);
1168#endif
3768f368
CM
1169}
1170
74e4d827 1171static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1172 u64 objectid, gfp_t flags)
6f07e42e 1173{
74e4d827 1174 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1175 if (root)
96dfcb46 1176 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1177 return root;
1178}
1179
06ea65a3
JB
1180#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1181/* Should only be used by the testing infrastructure */
da17066c 1182struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1183{
1184 struct btrfs_root *root;
1185
7c0260ee
JM
1186 if (!fs_info)
1187 return ERR_PTR(-EINVAL);
1188
96dfcb46 1189 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1190 if (!root)
1191 return ERR_PTR(-ENOMEM);
da17066c 1192
b9ef22de 1193 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1194 root->alloc_bytenr = 0;
06ea65a3
JB
1195
1196 return root;
1197}
1198#endif
1199
20897f5c 1200struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1201 u64 objectid)
1202{
9b7a2440 1203 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1204 struct extent_buffer *leaf;
1205 struct btrfs_root *tree_root = fs_info->tree_root;
1206 struct btrfs_root *root;
1207 struct btrfs_key key;
b89f6d1f 1208 unsigned int nofs_flag;
20897f5c 1209 int ret = 0;
20897f5c 1210
b89f6d1f
FM
1211 /*
1212 * We're holding a transaction handle, so use a NOFS memory allocation
1213 * context to avoid deadlock if reclaim happens.
1214 */
1215 nofs_flag = memalloc_nofs_save();
96dfcb46 1216 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1217 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1218 if (!root)
1219 return ERR_PTR(-ENOMEM);
1220
20897f5c
AJ
1221 root->root_key.objectid = objectid;
1222 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1223 root->root_key.offset = 0;
1224
4d75f8a9 1225 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1226 if (IS_ERR(leaf)) {
1227 ret = PTR_ERR(leaf);
1dd05682 1228 leaf = NULL;
20897f5c
AJ
1229 goto fail;
1230 }
1231
20897f5c 1232 root->node = leaf;
20897f5c
AJ
1233 btrfs_mark_buffer_dirty(leaf);
1234
1235 root->commit_root = btrfs_root_node(root);
27cdeb70 1236 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1237
1238 root->root_item.flags = 0;
1239 root->root_item.byte_limit = 0;
1240 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1241 btrfs_set_root_generation(&root->root_item, trans->transid);
1242 btrfs_set_root_level(&root->root_item, 0);
1243 btrfs_set_root_refs(&root->root_item, 1);
1244 btrfs_set_root_used(&root->root_item, leaf->len);
1245 btrfs_set_root_last_snapshot(&root->root_item, 0);
1246 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1247 if (is_fstree(objectid))
807fc790
AS
1248 generate_random_guid(root->root_item.uuid);
1249 else
1250 export_guid(root->root_item.uuid, &guid_null);
20897f5c
AJ
1251 root->root_item.drop_level = 0;
1252
1253 key.objectid = objectid;
1254 key.type = BTRFS_ROOT_ITEM_KEY;
1255 key.offset = 0;
1256 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1257 if (ret)
1258 goto fail;
1259
1260 btrfs_tree_unlock(leaf);
1261
1dd05682
TI
1262 return root;
1263
20897f5c 1264fail:
1dd05682
TI
1265 if (leaf) {
1266 btrfs_tree_unlock(leaf);
59885b39 1267 free_extent_buffer(root->commit_root);
1dd05682
TI
1268 free_extent_buffer(leaf);
1269 }
00246528 1270 btrfs_put_root(root);
20897f5c 1271
1dd05682 1272 return ERR_PTR(ret);
20897f5c
AJ
1273}
1274
7237f183
YZ
1275static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1276 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1277{
1278 struct btrfs_root *root;
7237f183 1279 struct extent_buffer *leaf;
e02119d5 1280
96dfcb46 1281 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1282 if (!root)
7237f183 1283 return ERR_PTR(-ENOMEM);
e02119d5 1284
e02119d5
CM
1285 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1286 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1287 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1288
7237f183 1289 /*
27cdeb70
MX
1290 * DON'T set REF_COWS for log trees
1291 *
7237f183
YZ
1292 * log trees do not get reference counted because they go away
1293 * before a real commit is actually done. They do store pointers
1294 * to file data extents, and those reference counts still get
1295 * updated (along with back refs to the log tree).
1296 */
e02119d5 1297
4d75f8a9
DS
1298 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1299 NULL, 0, 0, 0);
7237f183 1300 if (IS_ERR(leaf)) {
00246528 1301 btrfs_put_root(root);
7237f183
YZ
1302 return ERR_CAST(leaf);
1303 }
e02119d5 1304
7237f183 1305 root->node = leaf;
e02119d5 1306
e02119d5
CM
1307 btrfs_mark_buffer_dirty(root->node);
1308 btrfs_tree_unlock(root->node);
7237f183
YZ
1309 return root;
1310}
1311
1312int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1313 struct btrfs_fs_info *fs_info)
1314{
1315 struct btrfs_root *log_root;
1316
1317 log_root = alloc_log_tree(trans, fs_info);
1318 if (IS_ERR(log_root))
1319 return PTR_ERR(log_root);
1320 WARN_ON(fs_info->log_root_tree);
1321 fs_info->log_root_tree = log_root;
1322 return 0;
1323}
1324
1325int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1326 struct btrfs_root *root)
1327{
0b246afa 1328 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1329 struct btrfs_root *log_root;
1330 struct btrfs_inode_item *inode_item;
1331
0b246afa 1332 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1333 if (IS_ERR(log_root))
1334 return PTR_ERR(log_root);
1335
1336 log_root->last_trans = trans->transid;
1337 log_root->root_key.offset = root->root_key.objectid;
1338
1339 inode_item = &log_root->root_item.inode;
3cae210f
QW
1340 btrfs_set_stack_inode_generation(inode_item, 1);
1341 btrfs_set_stack_inode_size(inode_item, 3);
1342 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1343 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1344 fs_info->nodesize);
3cae210f 1345 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1346
5d4f98a2 1347 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1348
1349 WARN_ON(root->log_root);
1350 root->log_root = log_root;
1351 root->log_transid = 0;
d1433deb 1352 root->log_transid_committed = -1;
257c62e1 1353 root->last_log_commit = 0;
e02119d5
CM
1354 return 0;
1355}
1356
62a2c73e
JB
1357struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1358 struct btrfs_key *key)
e02119d5
CM
1359{
1360 struct btrfs_root *root;
1361 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1362 struct btrfs_path *path;
84234f3a 1363 u64 generation;
cb517eab 1364 int ret;
581c1760 1365 int level;
0f7d52f4 1366
cb517eab
MX
1367 path = btrfs_alloc_path();
1368 if (!path)
0f7d52f4 1369 return ERR_PTR(-ENOMEM);
cb517eab 1370
96dfcb46 1371 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1372 if (!root) {
1373 ret = -ENOMEM;
1374 goto alloc_fail;
0f7d52f4
CM
1375 }
1376
cb517eab
MX
1377 ret = btrfs_find_root(tree_root, key, path,
1378 &root->root_item, &root->root_key);
0f7d52f4 1379 if (ret) {
13a8a7c8
YZ
1380 if (ret > 0)
1381 ret = -ENOENT;
cb517eab 1382 goto find_fail;
0f7d52f4 1383 }
13a8a7c8 1384
84234f3a 1385 generation = btrfs_root_generation(&root->root_item);
581c1760 1386 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1387 root->node = read_tree_block(fs_info,
1388 btrfs_root_bytenr(&root->root_item),
581c1760 1389 generation, level, NULL);
64c043de
LB
1390 if (IS_ERR(root->node)) {
1391 ret = PTR_ERR(root->node);
cb517eab
MX
1392 goto find_fail;
1393 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1394 ret = -EIO;
64c043de
LB
1395 free_extent_buffer(root->node);
1396 goto find_fail;
416bc658 1397 }
5d4f98a2 1398 root->commit_root = btrfs_root_node(root);
13a8a7c8 1399out:
cb517eab
MX
1400 btrfs_free_path(path);
1401 return root;
1402
cb517eab 1403find_fail:
00246528 1404 btrfs_put_root(root);
cb517eab
MX
1405alloc_fail:
1406 root = ERR_PTR(ret);
1407 goto out;
1408}
1409
a98db0f3 1410static int btrfs_init_fs_root(struct btrfs_root *root)
cb517eab
MX
1411{
1412 int ret;
dcc3eb96 1413 unsigned int nofs_flag;
cb517eab
MX
1414
1415 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1416 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1417 GFP_NOFS);
1418 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1419 ret = -ENOMEM;
1420 goto fail;
1421 }
1422
dcc3eb96
NB
1423 /*
1424 * We might be called under a transaction (e.g. indirect backref
1425 * resolution) which could deadlock if it triggers memory reclaim
1426 */
1427 nofs_flag = memalloc_nofs_save();
1428 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1429 memalloc_nofs_restore(nofs_flag);
1430 if (ret)
8257b2dc 1431 goto fail;
8257b2dc 1432
f39e4571
JB
1433 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1434 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1435 btrfs_check_and_init_root_item(&root->root_item);
1436 }
1437
cb517eab 1438 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1439 spin_lock_init(&root->ino_cache_lock);
1440 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1441
1442 ret = get_anon_bdev(&root->anon_dev);
1443 if (ret)
876d2cf1 1444 goto fail;
f32e48e9
CR
1445
1446 mutex_lock(&root->objectid_mutex);
1447 ret = btrfs_find_highest_objectid(root,
1448 &root->highest_objectid);
1449 if (ret) {
1450 mutex_unlock(&root->objectid_mutex);
876d2cf1 1451 goto fail;
f32e48e9
CR
1452 }
1453
1454 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1455
1456 mutex_unlock(&root->objectid_mutex);
1457
cb517eab
MX
1458 return 0;
1459fail:
84db5ccf 1460 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1461 return ret;
1462}
1463
a98db0f3
JB
1464static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1465 u64 root_id)
cb517eab
MX
1466{
1467 struct btrfs_root *root;
1468
1469 spin_lock(&fs_info->fs_roots_radix_lock);
1470 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1471 (unsigned long)root_id);
bc44d7c4 1472 if (root)
00246528 1473 root = btrfs_grab_root(root);
cb517eab
MX
1474 spin_unlock(&fs_info->fs_roots_radix_lock);
1475 return root;
1476}
1477
1478int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1479 struct btrfs_root *root)
1480{
1481 int ret;
1482
e1860a77 1483 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1484 if (ret)
1485 return ret;
1486
1487 spin_lock(&fs_info->fs_roots_radix_lock);
1488 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1489 (unsigned long)root->root_key.objectid,
1490 root);
af01d2e5 1491 if (ret == 0) {
00246528 1492 btrfs_grab_root(root);
27cdeb70 1493 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1494 }
cb517eab
MX
1495 spin_unlock(&fs_info->fs_roots_radix_lock);
1496 radix_tree_preload_end();
1497
1498 return ret;
1499}
1500
bd647ce3
JB
1501void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1502{
1503#ifdef CONFIG_BTRFS_DEBUG
1504 struct btrfs_root *root;
1505
1506 while (!list_empty(&fs_info->allocated_roots)) {
1507 root = list_first_entry(&fs_info->allocated_roots,
1508 struct btrfs_root, leak_list);
1509 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1510 root->root_key.objectid, root->root_key.offset,
1511 refcount_read(&root->refs));
1512 while (refcount_read(&root->refs) > 1)
00246528
JB
1513 btrfs_put_root(root);
1514 btrfs_put_root(root);
bd647ce3
JB
1515 }
1516#endif
1517}
1518
0d4b0463
JB
1519void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1520{
141386e1
JB
1521 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1522 percpu_counter_destroy(&fs_info->delalloc_bytes);
1523 percpu_counter_destroy(&fs_info->dio_bytes);
1524 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1525 btrfs_free_csum_hash(fs_info);
1526 btrfs_free_stripe_hash_table(fs_info);
1527 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1528 kfree(fs_info->balance_ctl);
1529 kfree(fs_info->delayed_root);
00246528
JB
1530 btrfs_put_root(fs_info->extent_root);
1531 btrfs_put_root(fs_info->tree_root);
1532 btrfs_put_root(fs_info->chunk_root);
1533 btrfs_put_root(fs_info->dev_root);
1534 btrfs_put_root(fs_info->csum_root);
1535 btrfs_put_root(fs_info->quota_root);
1536 btrfs_put_root(fs_info->uuid_root);
1537 btrfs_put_root(fs_info->free_space_root);
1538 btrfs_put_root(fs_info->fs_root);
bd647ce3 1539 btrfs_check_leaked_roots(fs_info);
0d4b0463
JB
1540 kfree(fs_info->super_copy);
1541 kfree(fs_info->super_for_commit);
1542 kvfree(fs_info);
1543}
1544
1545
c00869f1
MX
1546struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1547 struct btrfs_key *location,
1548 bool check_ref)
5eda7b5e
CM
1549{
1550 struct btrfs_root *root;
381cf658 1551 struct btrfs_path *path;
1d4c08e0 1552 struct btrfs_key key;
5eda7b5e
CM
1553 int ret;
1554
edbd8d4e 1555 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
00246528 1556 return btrfs_grab_root(fs_info->tree_root);
edbd8d4e 1557 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
00246528 1558 return btrfs_grab_root(fs_info->extent_root);
8f18cf13 1559 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
00246528 1560 return btrfs_grab_root(fs_info->chunk_root);
8f18cf13 1561 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
00246528 1562 return btrfs_grab_root(fs_info->dev_root);
0403e47e 1563 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
00246528 1564 return btrfs_grab_root(fs_info->csum_root);
bcef60f2 1565 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
00246528 1566 return btrfs_grab_root(fs_info->quota_root) ?
bc44d7c4 1567 fs_info->quota_root : ERR_PTR(-ENOENT);
f7a81ea4 1568 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
00246528 1569 return btrfs_grab_root(fs_info->uuid_root) ?
bc44d7c4 1570 fs_info->uuid_root : ERR_PTR(-ENOENT);
70f6d82e 1571 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
00246528 1572 return btrfs_grab_root(fs_info->free_space_root) ?
bc44d7c4 1573 fs_info->free_space_root : ERR_PTR(-ENOENT);
4df27c4d 1574again:
cb517eab 1575 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1576 if (root) {
bc44d7c4 1577 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1578 btrfs_put_root(root);
48475471 1579 return ERR_PTR(-ENOENT);
bc44d7c4 1580 }
5eda7b5e 1581 return root;
48475471 1582 }
5eda7b5e 1583
83db2aad 1584 root = btrfs_read_tree_root(fs_info->tree_root, location);
5eda7b5e
CM
1585 if (IS_ERR(root))
1586 return root;
3394e160 1587
c00869f1 1588 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1589 ret = -ENOENT;
581bb050 1590 goto fail;
35a30d7c 1591 }
581bb050 1592
cb517eab 1593 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1594 if (ret)
1595 goto fail;
3394e160 1596
381cf658
DS
1597 path = btrfs_alloc_path();
1598 if (!path) {
1599 ret = -ENOMEM;
1600 goto fail;
1601 }
1d4c08e0
DS
1602 key.objectid = BTRFS_ORPHAN_OBJECTID;
1603 key.type = BTRFS_ORPHAN_ITEM_KEY;
1604 key.offset = location->objectid;
1605
1606 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1607 btrfs_free_path(path);
d68fc57b
YZ
1608 if (ret < 0)
1609 goto fail;
1610 if (ret == 0)
27cdeb70 1611 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1612
bc44d7c4
JB
1613 /*
1614 * All roots have two refs on them at all times, one for the mounted fs,
1615 * and one for being in the radix tree. This way we only free the root
1616 * when we are unmounting or deleting the subvolume. We get one ref
1617 * from __setup_root, one for inserting it into the radix tree, and then
1618 * we have the third for returning it, and the caller will put it when
1619 * it's done with the root.
1620 */
00246528 1621 btrfs_grab_root(root);
cb517eab 1622 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1623 if (ret) {
00246528 1624 btrfs_put_root(root);
4df27c4d 1625 if (ret == -EEXIST) {
84db5ccf 1626 btrfs_free_fs_root(root);
4df27c4d
YZ
1627 goto again;
1628 }
1629 goto fail;
0f7d52f4 1630 }
edbd8d4e 1631 return root;
4df27c4d 1632fail:
84db5ccf 1633 btrfs_free_fs_root(root);
4df27c4d 1634 return ERR_PTR(ret);
edbd8d4e
CM
1635}
1636
04160088
CM
1637static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1638{
1639 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1640 int ret = 0;
04160088
CM
1641 struct btrfs_device *device;
1642 struct backing_dev_info *bdi;
b7967db7 1643
1f78160c
XG
1644 rcu_read_lock();
1645 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1646 if (!device->bdev)
1647 continue;
efa7c9f9 1648 bdi = device->bdev->bd_bdi;
ff9ea323 1649 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1650 ret = 1;
1651 break;
1652 }
1653 }
1f78160c 1654 rcu_read_unlock();
04160088
CM
1655 return ret;
1656}
1657
8b712842
CM
1658/*
1659 * called by the kthread helper functions to finally call the bio end_io
1660 * functions. This is where read checksum verification actually happens
1661 */
1662static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1663{
ce9adaa5 1664 struct bio *bio;
97eb6b69 1665 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1666
97eb6b69 1667 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1668 bio = end_io_wq->bio;
ce9adaa5 1669
4e4cbee9 1670 bio->bi_status = end_io_wq->status;
8b712842
CM
1671 bio->bi_private = end_io_wq->private;
1672 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1673 bio_endio(bio);
9be490f1 1674 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1675}
1676
a74a4b97
CM
1677static int cleaner_kthread(void *arg)
1678{
1679 struct btrfs_root *root = arg;
0b246afa 1680 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1681 int again;
a74a4b97 1682
d6fd0ae2 1683 while (1) {
d0278245 1684 again = 0;
a74a4b97 1685
fd340d0f
JB
1686 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1687
d0278245 1688 /* Make the cleaner go to sleep early. */
2ff7e61e 1689 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1690 goto sleep;
1691
90c711ab
ZB
1692 /*
1693 * Do not do anything if we might cause open_ctree() to block
1694 * before we have finished mounting the filesystem.
1695 */
0b246afa 1696 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1697 goto sleep;
1698
0b246afa 1699 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1700 goto sleep;
1701
dc7f370c
MX
1702 /*
1703 * Avoid the problem that we change the status of the fs
1704 * during the above check and trylock.
1705 */
2ff7e61e 1706 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1707 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1708 goto sleep;
76dda93c 1709 }
a74a4b97 1710
2ff7e61e 1711 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1712
d0278245 1713 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1714 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1715
1716 /*
05323cd1
MX
1717 * The defragger has dealt with the R/O remount and umount,
1718 * needn't do anything special here.
d0278245 1719 */
0b246afa 1720 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1721
1722 /*
1723 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1724 * with relocation (btrfs_relocate_chunk) and relocation
1725 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1726 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1727 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1728 * unused block groups.
1729 */
0b246afa 1730 btrfs_delete_unused_bgs(fs_info);
d0278245 1731sleep:
fd340d0f 1732 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1733 if (kthread_should_park())
1734 kthread_parkme();
1735 if (kthread_should_stop())
1736 return 0;
838fe188 1737 if (!again) {
a74a4b97 1738 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1739 schedule();
a74a4b97
CM
1740 __set_current_state(TASK_RUNNING);
1741 }
da288d28 1742 }
a74a4b97
CM
1743}
1744
1745static int transaction_kthread(void *arg)
1746{
1747 struct btrfs_root *root = arg;
0b246afa 1748 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1749 struct btrfs_trans_handle *trans;
1750 struct btrfs_transaction *cur;
8929ecfa 1751 u64 transid;
a944442c 1752 time64_t now;
a74a4b97 1753 unsigned long delay;
914b2007 1754 bool cannot_commit;
a74a4b97
CM
1755
1756 do {
914b2007 1757 cannot_commit = false;
0b246afa
JM
1758 delay = HZ * fs_info->commit_interval;
1759 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1760
0b246afa
JM
1761 spin_lock(&fs_info->trans_lock);
1762 cur = fs_info->running_transaction;
a74a4b97 1763 if (!cur) {
0b246afa 1764 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1765 goto sleep;
1766 }
31153d81 1767
afd48513 1768 now = ktime_get_seconds();
3296bf56 1769 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1770 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1771 (now < cur->start_time ||
0b246afa
JM
1772 now - cur->start_time < fs_info->commit_interval)) {
1773 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1774 delay = HZ * 5;
1775 goto sleep;
1776 }
8929ecfa 1777 transid = cur->transid;
0b246afa 1778 spin_unlock(&fs_info->trans_lock);
56bec294 1779
79787eaa 1780 /* If the file system is aborted, this will always fail. */
354aa0fb 1781 trans = btrfs_attach_transaction(root);
914b2007 1782 if (IS_ERR(trans)) {
354aa0fb
MX
1783 if (PTR_ERR(trans) != -ENOENT)
1784 cannot_commit = true;
79787eaa 1785 goto sleep;
914b2007 1786 }
8929ecfa 1787 if (transid == trans->transid) {
3a45bb20 1788 btrfs_commit_transaction(trans);
8929ecfa 1789 } else {
3a45bb20 1790 btrfs_end_transaction(trans);
8929ecfa 1791 }
a74a4b97 1792sleep:
0b246afa
JM
1793 wake_up_process(fs_info->cleaner_kthread);
1794 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1795
4e121c06 1796 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1797 &fs_info->fs_state)))
2ff7e61e 1798 btrfs_cleanup_transaction(fs_info);
ce63f891 1799 if (!kthread_should_stop() &&
0b246afa 1800 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1801 cannot_commit))
bc5511d0 1802 schedule_timeout_interruptible(delay);
a74a4b97
CM
1803 } while (!kthread_should_stop());
1804 return 0;
1805}
1806
af31f5e5 1807/*
01f0f9da
NB
1808 * This will find the highest generation in the array of root backups. The
1809 * index of the highest array is returned, or -EINVAL if we can't find
1810 * anything.
af31f5e5
CM
1811 *
1812 * We check to make sure the array is valid by comparing the
1813 * generation of the latest root in the array with the generation
1814 * in the super block. If they don't match we pitch it.
1815 */
01f0f9da 1816static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1817{
01f0f9da 1818 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1819 u64 cur;
af31f5e5
CM
1820 struct btrfs_root_backup *root_backup;
1821 int i;
1822
1823 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1824 root_backup = info->super_copy->super_roots + i;
1825 cur = btrfs_backup_tree_root_gen(root_backup);
1826 if (cur == newest_gen)
01f0f9da 1827 return i;
af31f5e5
CM
1828 }
1829
01f0f9da 1830 return -EINVAL;
af31f5e5
CM
1831}
1832
af31f5e5
CM
1833/*
1834 * copy all the root pointers into the super backup array.
1835 * this will bump the backup pointer by one when it is
1836 * done
1837 */
1838static void backup_super_roots(struct btrfs_fs_info *info)
1839{
6ef108dd 1840 const int next_backup = info->backup_root_index;
af31f5e5 1841 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1842
1843 root_backup = info->super_for_commit->super_roots + next_backup;
1844
1845 /*
1846 * make sure all of our padding and empty slots get zero filled
1847 * regardless of which ones we use today
1848 */
1849 memset(root_backup, 0, sizeof(*root_backup));
1850
1851 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1852
1853 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1854 btrfs_set_backup_tree_root_gen(root_backup,
1855 btrfs_header_generation(info->tree_root->node));
1856
1857 btrfs_set_backup_tree_root_level(root_backup,
1858 btrfs_header_level(info->tree_root->node));
1859
1860 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1861 btrfs_set_backup_chunk_root_gen(root_backup,
1862 btrfs_header_generation(info->chunk_root->node));
1863 btrfs_set_backup_chunk_root_level(root_backup,
1864 btrfs_header_level(info->chunk_root->node));
1865
1866 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1867 btrfs_set_backup_extent_root_gen(root_backup,
1868 btrfs_header_generation(info->extent_root->node));
1869 btrfs_set_backup_extent_root_level(root_backup,
1870 btrfs_header_level(info->extent_root->node));
1871
7c7e82a7
CM
1872 /*
1873 * we might commit during log recovery, which happens before we set
1874 * the fs_root. Make sure it is valid before we fill it in.
1875 */
1876 if (info->fs_root && info->fs_root->node) {
1877 btrfs_set_backup_fs_root(root_backup,
1878 info->fs_root->node->start);
1879 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1880 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1881 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1882 btrfs_header_level(info->fs_root->node));
7c7e82a7 1883 }
af31f5e5
CM
1884
1885 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1886 btrfs_set_backup_dev_root_gen(root_backup,
1887 btrfs_header_generation(info->dev_root->node));
1888 btrfs_set_backup_dev_root_level(root_backup,
1889 btrfs_header_level(info->dev_root->node));
1890
1891 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1892 btrfs_set_backup_csum_root_gen(root_backup,
1893 btrfs_header_generation(info->csum_root->node));
1894 btrfs_set_backup_csum_root_level(root_backup,
1895 btrfs_header_level(info->csum_root->node));
1896
1897 btrfs_set_backup_total_bytes(root_backup,
1898 btrfs_super_total_bytes(info->super_copy));
1899 btrfs_set_backup_bytes_used(root_backup,
1900 btrfs_super_bytes_used(info->super_copy));
1901 btrfs_set_backup_num_devices(root_backup,
1902 btrfs_super_num_devices(info->super_copy));
1903
1904 /*
1905 * if we don't copy this out to the super_copy, it won't get remembered
1906 * for the next commit
1907 */
1908 memcpy(&info->super_copy->super_roots,
1909 &info->super_for_commit->super_roots,
1910 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1911}
1912
bd2336b2
NB
1913/*
1914 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1915 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1916 *
1917 * fs_info - filesystem whose backup roots need to be read
1918 * priority - priority of backup root required
1919 *
1920 * Returns backup root index on success and -EINVAL otherwise.
1921 */
1922static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1923{
1924 int backup_index = find_newest_super_backup(fs_info);
1925 struct btrfs_super_block *super = fs_info->super_copy;
1926 struct btrfs_root_backup *root_backup;
1927
1928 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1929 if (priority == 0)
1930 return backup_index;
1931
1932 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1933 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1934 } else {
1935 return -EINVAL;
1936 }
1937
1938 root_backup = super->super_roots + backup_index;
1939
1940 btrfs_set_super_generation(super,
1941 btrfs_backup_tree_root_gen(root_backup));
1942 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1943 btrfs_set_super_root_level(super,
1944 btrfs_backup_tree_root_level(root_backup));
1945 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1946
1947 /*
1948 * Fixme: the total bytes and num_devices need to match or we should
1949 * need a fsck
1950 */
1951 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1952 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1953
1954 return backup_index;
1955}
1956
7abadb64
LB
1957/* helper to cleanup workers */
1958static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1959{
dc6e3209 1960 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1961 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1962 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1963 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1964 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1965 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1966 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1967 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1968 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1969 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1970 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1971 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1972 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1973 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1974 if (fs_info->discard_ctl.discard_workers)
1975 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1976 /*
1977 * Now that all other work queues are destroyed, we can safely destroy
1978 * the queues used for metadata I/O, since tasks from those other work
1979 * queues can do metadata I/O operations.
1980 */
1981 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1982 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1983}
1984
2e9f5954
R
1985static void free_root_extent_buffers(struct btrfs_root *root)
1986{
1987 if (root) {
1988 free_extent_buffer(root->node);
1989 free_extent_buffer(root->commit_root);
1990 root->node = NULL;
1991 root->commit_root = NULL;
1992 }
1993}
1994
af31f5e5 1995/* helper to cleanup tree roots */
4273eaff 1996static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1997{
2e9f5954 1998 free_root_extent_buffers(info->tree_root);
655b09fe 1999
2e9f5954
R
2000 free_root_extent_buffers(info->dev_root);
2001 free_root_extent_buffers(info->extent_root);
2002 free_root_extent_buffers(info->csum_root);
2003 free_root_extent_buffers(info->quota_root);
2004 free_root_extent_buffers(info->uuid_root);
4273eaff 2005 if (free_chunk_root)
2e9f5954 2006 free_root_extent_buffers(info->chunk_root);
70f6d82e 2007 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2008}
2009
faa2dbf0 2010void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2011{
2012 int ret;
2013 struct btrfs_root *gang[8];
2014 int i;
2015
2016 while (!list_empty(&fs_info->dead_roots)) {
2017 gang[0] = list_entry(fs_info->dead_roots.next,
2018 struct btrfs_root, root_list);
2019 list_del(&gang[0]->root_list);
2020
27cdeb70 2021 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2022 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2023 } else {
2024 free_extent_buffer(gang[0]->node);
2025 free_extent_buffer(gang[0]->commit_root);
00246528 2026 btrfs_put_root(gang[0]);
171f6537
JB
2027 }
2028 }
2029
2030 while (1) {
2031 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2032 (void **)gang, 0,
2033 ARRAY_SIZE(gang));
2034 if (!ret)
2035 break;
2036 for (i = 0; i < ret; i++)
cb517eab 2037 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2038 }
1a4319cc 2039
fe119a6e 2040 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
1a4319cc 2041 btrfs_free_log_root_tree(NULL, fs_info);
171f6537 2042}
af31f5e5 2043
638aa7ed
ES
2044static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2045{
2046 mutex_init(&fs_info->scrub_lock);
2047 atomic_set(&fs_info->scrubs_running, 0);
2048 atomic_set(&fs_info->scrub_pause_req, 0);
2049 atomic_set(&fs_info->scrubs_paused, 0);
2050 atomic_set(&fs_info->scrub_cancel_req, 0);
2051 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2052 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2053}
2054
779a65a4
ES
2055static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2056{
2057 spin_lock_init(&fs_info->balance_lock);
2058 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2059 atomic_set(&fs_info->balance_pause_req, 0);
2060 atomic_set(&fs_info->balance_cancel_req, 0);
2061 fs_info->balance_ctl = NULL;
2062 init_waitqueue_head(&fs_info->balance_wait_q);
2063}
2064
6bccf3ab 2065static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2066{
2ff7e61e
JM
2067 struct inode *inode = fs_info->btree_inode;
2068
2069 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2070 set_nlink(inode, 1);
f37938e0
ES
2071 /*
2072 * we set the i_size on the btree inode to the max possible int.
2073 * the real end of the address space is determined by all of
2074 * the devices in the system
2075 */
2ff7e61e
JM
2076 inode->i_size = OFFSET_MAX;
2077 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2078
2ff7e61e 2079 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2080 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2081 IO_TREE_INODE_IO, inode);
7b439738 2082 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2083 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2084
2ff7e61e 2085 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2086
2ff7e61e
JM
2087 BTRFS_I(inode)->root = fs_info->tree_root;
2088 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2089 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2090 btrfs_insert_inode_hash(inode);
f37938e0
ES
2091}
2092
ad618368
ES
2093static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2094{
ad618368 2095 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2096 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2097 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2098}
2099
f9e92e40
ES
2100static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2101{
2102 spin_lock_init(&fs_info->qgroup_lock);
2103 mutex_init(&fs_info->qgroup_ioctl_lock);
2104 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2105 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2106 fs_info->qgroup_seq = 1;
f9e92e40 2107 fs_info->qgroup_ulist = NULL;
d2c609b8 2108 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2109 mutex_init(&fs_info->qgroup_rescan_lock);
2110}
2111
2a458198
ES
2112static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2113 struct btrfs_fs_devices *fs_devices)
2114{
f7b885be 2115 u32 max_active = fs_info->thread_pool_size;
6f011058 2116 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2117
2118 fs_info->workers =
cb001095
JM
2119 btrfs_alloc_workqueue(fs_info, "worker",
2120 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2121
2122 fs_info->delalloc_workers =
cb001095
JM
2123 btrfs_alloc_workqueue(fs_info, "delalloc",
2124 flags, max_active, 2);
2a458198
ES
2125
2126 fs_info->flush_workers =
cb001095
JM
2127 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2128 flags, max_active, 0);
2a458198
ES
2129
2130 fs_info->caching_workers =
cb001095 2131 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2132
2a458198 2133 fs_info->fixup_workers =
cb001095 2134 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2135
2136 /*
2137 * endios are largely parallel and should have a very
2138 * low idle thresh
2139 */
2140 fs_info->endio_workers =
cb001095 2141 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2142 fs_info->endio_meta_workers =
cb001095
JM
2143 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2144 max_active, 4);
2a458198 2145 fs_info->endio_meta_write_workers =
cb001095
JM
2146 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2147 max_active, 2);
2a458198 2148 fs_info->endio_raid56_workers =
cb001095
JM
2149 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2150 max_active, 4);
2a458198 2151 fs_info->endio_repair_workers =
cb001095 2152 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2153 fs_info->rmw_workers =
cb001095 2154 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2155 fs_info->endio_write_workers =
cb001095
JM
2156 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2157 max_active, 2);
2a458198 2158 fs_info->endio_freespace_worker =
cb001095
JM
2159 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2160 max_active, 0);
2a458198 2161 fs_info->delayed_workers =
cb001095
JM
2162 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2163 max_active, 0);
2a458198 2164 fs_info->readahead_workers =
cb001095
JM
2165 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2166 max_active, 2);
2a458198 2167 fs_info->qgroup_rescan_workers =
cb001095 2168 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2169 fs_info->discard_ctl.discard_workers =
2170 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2171
2172 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2173 fs_info->flush_workers &&
2a458198
ES
2174 fs_info->endio_workers && fs_info->endio_meta_workers &&
2175 fs_info->endio_meta_write_workers &&
2176 fs_info->endio_repair_workers &&
2177 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2178 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2179 fs_info->caching_workers && fs_info->readahead_workers &&
2180 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2181 fs_info->qgroup_rescan_workers &&
2182 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2183 return -ENOMEM;
2184 }
2185
2186 return 0;
2187}
2188
6d97c6e3
JT
2189static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2190{
2191 struct crypto_shash *csum_shash;
b4e967be 2192 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2193
b4e967be 2194 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2195
2196 if (IS_ERR(csum_shash)) {
2197 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2198 csum_driver);
6d97c6e3
JT
2199 return PTR_ERR(csum_shash);
2200 }
2201
2202 fs_info->csum_shash = csum_shash;
2203
2204 return 0;
2205}
2206
63443bf5
ES
2207static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2208 struct btrfs_fs_devices *fs_devices)
2209{
2210 int ret;
63443bf5
ES
2211 struct btrfs_root *log_tree_root;
2212 struct btrfs_super_block *disk_super = fs_info->super_copy;
2213 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2214 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2215
2216 if (fs_devices->rw_devices == 0) {
f14d104d 2217 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2218 return -EIO;
2219 }
2220
96dfcb46
JB
2221 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2222 GFP_KERNEL);
63443bf5
ES
2223 if (!log_tree_root)
2224 return -ENOMEM;
2225
2ff7e61e 2226 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2227 fs_info->generation + 1,
2228 level, NULL);
64c043de 2229 if (IS_ERR(log_tree_root->node)) {
f14d104d 2230 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2231 ret = PTR_ERR(log_tree_root->node);
00246528 2232 btrfs_put_root(log_tree_root);
0eeff236 2233 return ret;
64c043de 2234 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2235 btrfs_err(fs_info, "failed to read log tree");
63443bf5 2236 free_extent_buffer(log_tree_root->node);
00246528 2237 btrfs_put_root(log_tree_root);
63443bf5
ES
2238 return -EIO;
2239 }
2240 /* returns with log_tree_root freed on success */
2241 ret = btrfs_recover_log_trees(log_tree_root);
2242 if (ret) {
0b246afa
JM
2243 btrfs_handle_fs_error(fs_info, ret,
2244 "Failed to recover log tree");
63443bf5 2245 free_extent_buffer(log_tree_root->node);
00246528 2246 btrfs_put_root(log_tree_root);
63443bf5
ES
2247 return ret;
2248 }
2249
bc98a42c 2250 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2251 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2252 if (ret)
2253 return ret;
2254 }
2255
2256 return 0;
2257}
2258
6bccf3ab 2259static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2260{
6bccf3ab 2261 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2262 struct btrfs_root *root;
4bbcaa64
ES
2263 struct btrfs_key location;
2264 int ret;
2265
6bccf3ab
JM
2266 BUG_ON(!fs_info->tree_root);
2267
4bbcaa64
ES
2268 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2269 location.type = BTRFS_ROOT_ITEM_KEY;
2270 location.offset = 0;
2271
a4f3d2c4 2272 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2273 if (IS_ERR(root)) {
2274 ret = PTR_ERR(root);
2275 goto out;
2276 }
a4f3d2c4
DS
2277 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2278 fs_info->extent_root = root;
4bbcaa64
ES
2279
2280 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2281 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2282 if (IS_ERR(root)) {
2283 ret = PTR_ERR(root);
2284 goto out;
2285 }
a4f3d2c4
DS
2286 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2287 fs_info->dev_root = root;
4bbcaa64
ES
2288 btrfs_init_devices_late(fs_info);
2289
2290 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2291 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2292 if (IS_ERR(root)) {
2293 ret = PTR_ERR(root);
2294 goto out;
2295 }
a4f3d2c4
DS
2296 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2297 fs_info->csum_root = root;
4bbcaa64
ES
2298
2299 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2300 root = btrfs_read_tree_root(tree_root, &location);
2301 if (!IS_ERR(root)) {
2302 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2303 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2304 fs_info->quota_root = root;
4bbcaa64
ES
2305 }
2306
2307 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2308 root = btrfs_read_tree_root(tree_root, &location);
2309 if (IS_ERR(root)) {
2310 ret = PTR_ERR(root);
4bbcaa64 2311 if (ret != -ENOENT)
f50f4353 2312 goto out;
4bbcaa64 2313 } else {
a4f3d2c4
DS
2314 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315 fs_info->uuid_root = root;
4bbcaa64
ES
2316 }
2317
70f6d82e
OS
2318 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2319 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2320 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2321 if (IS_ERR(root)) {
2322 ret = PTR_ERR(root);
2323 goto out;
2324 }
70f6d82e
OS
2325 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2326 fs_info->free_space_root = root;
2327 }
2328
4bbcaa64 2329 return 0;
f50f4353
LB
2330out:
2331 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2332 location.objectid, ret);
2333 return ret;
4bbcaa64
ES
2334}
2335
069ec957
QW
2336/*
2337 * Real super block validation
2338 * NOTE: super csum type and incompat features will not be checked here.
2339 *
2340 * @sb: super block to check
2341 * @mirror_num: the super block number to check its bytenr:
2342 * 0 the primary (1st) sb
2343 * 1, 2 2nd and 3rd backup copy
2344 * -1 skip bytenr check
2345 */
2346static int validate_super(struct btrfs_fs_info *fs_info,
2347 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2348{
21a852b0
QW
2349 u64 nodesize = btrfs_super_nodesize(sb);
2350 u64 sectorsize = btrfs_super_sectorsize(sb);
2351 int ret = 0;
2352
2353 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2354 btrfs_err(fs_info, "no valid FS found");
2355 ret = -EINVAL;
2356 }
2357 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2358 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2359 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2360 ret = -EINVAL;
2361 }
2362 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2363 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2364 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2365 ret = -EINVAL;
2366 }
2367 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2368 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2369 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2370 ret = -EINVAL;
2371 }
2372 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2373 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2374 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2375 ret = -EINVAL;
2376 }
2377
2378 /*
2379 * Check sectorsize and nodesize first, other check will need it.
2380 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2381 */
2382 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2383 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2384 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2385 ret = -EINVAL;
2386 }
2387 /* Only PAGE SIZE is supported yet */
2388 if (sectorsize != PAGE_SIZE) {
2389 btrfs_err(fs_info,
2390 "sectorsize %llu not supported yet, only support %lu",
2391 sectorsize, PAGE_SIZE);
2392 ret = -EINVAL;
2393 }
2394 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2395 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2396 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2397 ret = -EINVAL;
2398 }
2399 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2400 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2401 le32_to_cpu(sb->__unused_leafsize), nodesize);
2402 ret = -EINVAL;
2403 }
2404
2405 /* Root alignment check */
2406 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2407 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2408 btrfs_super_root(sb));
2409 ret = -EINVAL;
2410 }
2411 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2412 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2413 btrfs_super_chunk_root(sb));
2414 ret = -EINVAL;
2415 }
2416 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2417 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2418 btrfs_super_log_root(sb));
2419 ret = -EINVAL;
2420 }
2421
de37aa51 2422 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2423 BTRFS_FSID_SIZE) != 0) {
21a852b0 2424 btrfs_err(fs_info,
7239ff4b 2425 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2426 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2427 ret = -EINVAL;
2428 }
2429
2430 /*
2431 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2432 * done later
2433 */
2434 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2435 btrfs_err(fs_info, "bytes_used is too small %llu",
2436 btrfs_super_bytes_used(sb));
2437 ret = -EINVAL;
2438 }
2439 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2440 btrfs_err(fs_info, "invalid stripesize %u",
2441 btrfs_super_stripesize(sb));
2442 ret = -EINVAL;
2443 }
2444 if (btrfs_super_num_devices(sb) > (1UL << 31))
2445 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2446 btrfs_super_num_devices(sb));
2447 if (btrfs_super_num_devices(sb) == 0) {
2448 btrfs_err(fs_info, "number of devices is 0");
2449 ret = -EINVAL;
2450 }
2451
069ec957
QW
2452 if (mirror_num >= 0 &&
2453 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2454 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2455 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2456 ret = -EINVAL;
2457 }
2458
2459 /*
2460 * Obvious sys_chunk_array corruptions, it must hold at least one key
2461 * and one chunk
2462 */
2463 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2464 btrfs_err(fs_info, "system chunk array too big %u > %u",
2465 btrfs_super_sys_array_size(sb),
2466 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2467 ret = -EINVAL;
2468 }
2469 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2470 + sizeof(struct btrfs_chunk)) {
2471 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2472 btrfs_super_sys_array_size(sb),
2473 sizeof(struct btrfs_disk_key)
2474 + sizeof(struct btrfs_chunk));
2475 ret = -EINVAL;
2476 }
2477
2478 /*
2479 * The generation is a global counter, we'll trust it more than the others
2480 * but it's still possible that it's the one that's wrong.
2481 */
2482 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2483 btrfs_warn(fs_info,
2484 "suspicious: generation < chunk_root_generation: %llu < %llu",
2485 btrfs_super_generation(sb),
2486 btrfs_super_chunk_root_generation(sb));
2487 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2488 && btrfs_super_cache_generation(sb) != (u64)-1)
2489 btrfs_warn(fs_info,
2490 "suspicious: generation < cache_generation: %llu < %llu",
2491 btrfs_super_generation(sb),
2492 btrfs_super_cache_generation(sb));
2493
2494 return ret;
2495}
2496
069ec957
QW
2497/*
2498 * Validation of super block at mount time.
2499 * Some checks already done early at mount time, like csum type and incompat
2500 * flags will be skipped.
2501 */
2502static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2503{
2504 return validate_super(fs_info, fs_info->super_copy, 0);
2505}
2506
75cb857d
QW
2507/*
2508 * Validation of super block at write time.
2509 * Some checks like bytenr check will be skipped as their values will be
2510 * overwritten soon.
2511 * Extra checks like csum type and incompat flags will be done here.
2512 */
2513static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2514 struct btrfs_super_block *sb)
2515{
2516 int ret;
2517
2518 ret = validate_super(fs_info, sb, -1);
2519 if (ret < 0)
2520 goto out;
e7e16f48 2521 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2522 ret = -EUCLEAN;
2523 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2524 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2525 goto out;
2526 }
2527 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2528 ret = -EUCLEAN;
2529 btrfs_err(fs_info,
2530 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2531 btrfs_super_incompat_flags(sb),
2532 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2533 goto out;
2534 }
2535out:
2536 if (ret < 0)
2537 btrfs_err(fs_info,
2538 "super block corruption detected before writing it to disk");
2539 return ret;
2540}
2541
6ef108dd 2542static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2543{
6ef108dd 2544 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2545 struct btrfs_super_block *sb = fs_info->super_copy;
2546 struct btrfs_root *tree_root = fs_info->tree_root;
2547 bool handle_error = false;
2548 int ret = 0;
2549 int i;
2550
2551 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2552 u64 generation;
2553 int level;
2554
2555 if (handle_error) {
2556 if (!IS_ERR(tree_root->node))
2557 free_extent_buffer(tree_root->node);
2558 tree_root->node = NULL;
2559
2560 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2561 break;
2562
2563 free_root_pointers(fs_info, 0);
2564
2565 /*
2566 * Don't use the log in recovery mode, it won't be
2567 * valid
2568 */
2569 btrfs_set_super_log_root(sb, 0);
2570
2571 /* We can't trust the free space cache either */
2572 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2573
2574 ret = read_backup_root(fs_info, i);
6ef108dd 2575 backup_index = ret;
b8522a1e
NB
2576 if (ret < 0)
2577 return ret;
2578 }
2579 generation = btrfs_super_generation(sb);
2580 level = btrfs_super_root_level(sb);
2581 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2582 generation, level, NULL);
2583 if (IS_ERR(tree_root->node) ||
2584 !extent_buffer_uptodate(tree_root->node)) {
2585 handle_error = true;
2586
2587 if (IS_ERR(tree_root->node))
2588 ret = PTR_ERR(tree_root->node);
2589 else if (!extent_buffer_uptodate(tree_root->node))
2590 ret = -EUCLEAN;
2591
2592 btrfs_warn(fs_info, "failed to read tree root");
2593 continue;
2594 }
2595
2596 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2597 tree_root->commit_root = btrfs_root_node(tree_root);
2598 btrfs_set_root_refs(&tree_root->root_item, 1);
2599
336a0d8d
NB
2600 /*
2601 * No need to hold btrfs_root::objectid_mutex since the fs
2602 * hasn't been fully initialised and we are the only user
2603 */
b8522a1e
NB
2604 ret = btrfs_find_highest_objectid(tree_root,
2605 &tree_root->highest_objectid);
2606 if (ret < 0) {
b8522a1e
NB
2607 handle_error = true;
2608 continue;
2609 }
2610
2611 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2612
2613 ret = btrfs_read_roots(fs_info);
2614 if (ret < 0) {
2615 handle_error = true;
2616 continue;
2617 }
2618
2619 /* All successful */
2620 fs_info->generation = generation;
2621 fs_info->last_trans_committed = generation;
6ef108dd
NB
2622
2623 /* Always begin writing backup roots after the one being used */
2624 if (backup_index < 0) {
2625 fs_info->backup_root_index = 0;
2626 } else {
2627 fs_info->backup_root_index = backup_index + 1;
2628 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2629 }
b8522a1e
NB
2630 break;
2631 }
2632
2633 return ret;
2634}
2635
8260edba 2636void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2637{
76dda93c 2638 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2639 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2640 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2641 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2642 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2643 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2644 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2645 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2646 spin_lock_init(&fs_info->trans_lock);
76dda93c 2647 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2648 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2649 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2650 spin_lock_init(&fs_info->super_lock);
f28491e0 2651 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2652 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2653 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2654 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2655 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2656 mutex_init(&fs_info->reloc_mutex);
573bfb72 2657 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2658 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2659
0b86a832 2660 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2661 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2662 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2663 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2664#ifdef CONFIG_BTRFS_DEBUG
2665 INIT_LIST_HEAD(&fs_info->allocated_roots);
2666#endif
c8bf1b67 2667 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2668 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2669 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2670 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2671 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2672 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2673 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2674 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2675 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2676 BTRFS_BLOCK_RSV_DELREFS);
2677
771ed689 2678 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2679 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2680 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2681 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2682 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2683 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2684 fs_info->metadata_ratio = 0;
4cb5300b 2685 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2686 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2687 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2688 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2689 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2690 /* readahead state */
d0164adc 2691 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2692 spin_lock_init(&fs_info->reada_lock);
fd708b81 2693 btrfs_init_ref_verify(fs_info);
c8b97818 2694
b34b086c
CM
2695 fs_info->thread_pool_size = min_t(unsigned long,
2696 num_online_cpus() + 2, 8);
0afbaf8c 2697
199c2a9c
MX
2698 INIT_LIST_HEAD(&fs_info->ordered_roots);
2699 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2700
638aa7ed 2701 btrfs_init_scrub(fs_info);
21adbd5c
SB
2702#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2703 fs_info->check_integrity_print_mask = 0;
2704#endif
779a65a4 2705 btrfs_init_balance(fs_info);
21c7e756 2706 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2707
0f9dd46c 2708 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2709 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2710 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2711
fe119a6e
NB
2712 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2713 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2714 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2715
5a3f23d5 2716 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2717 mutex_init(&fs_info->tree_log_mutex);
925baedd 2718 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2719 mutex_init(&fs_info->transaction_kthread_mutex);
2720 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2721 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2722 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2723 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2724 init_rwsem(&fs_info->subvol_sem);
803b2f54 2725 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2726
ad618368 2727 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2728 btrfs_init_qgroup(fs_info);
b0643e59 2729 btrfs_discard_init(fs_info);
416ac51d 2730
fa9c0d79
CM
2731 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2732 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2733
e6dcd2dc 2734 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2735 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2736 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2737 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2738 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2739
da17066c
JM
2740 /* Usable values until the real ones are cached from the superblock */
2741 fs_info->nodesize = 4096;
2742 fs_info->sectorsize = 4096;
2743 fs_info->stripesize = 4096;
2744
eede2bf3
OS
2745 spin_lock_init(&fs_info->swapfile_pins_lock);
2746 fs_info->swapfile_pins = RB_ROOT;
2747
9e967495 2748 fs_info->send_in_progress = 0;
8260edba
JB
2749}
2750
2751static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2752{
2753 int ret;
2754
2755 fs_info->sb = sb;
2756 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2757 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2758
ae18c37a
JB
2759 ret = init_srcu_struct(&fs_info->subvol_srcu);
2760 if (ret)
2761 return ret;
2762
2763 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2764 if (ret)
2765 goto fail;
2766
2767 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2768 if (ret)
2769 goto fail;
2770
2771 fs_info->dirty_metadata_batch = PAGE_SIZE *
2772 (1 + ilog2(nr_cpu_ids));
2773
2774 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2775 if (ret)
2776 goto fail;
2777
2778 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2779 GFP_KERNEL);
2780 if (ret)
2781 goto fail;
2782
2783 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2784 GFP_KERNEL);
2785 if (!fs_info->delayed_root) {
2786 ret = -ENOMEM;
2787 goto fail;
2788 }
2789 btrfs_init_delayed_root(fs_info->delayed_root);
2790
53b381b3 2791 ret = btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2792 if (ret)
2793 goto fail;
2794
2795 return 0;
2796fail:
2797 cleanup_srcu_struct(&fs_info->subvol_srcu);
2798 return ret;
2799}
2800
97f4dd09
NB
2801static int btrfs_uuid_rescan_kthread(void *data)
2802{
2803 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2804 int ret;
2805
2806 /*
2807 * 1st step is to iterate through the existing UUID tree and
2808 * to delete all entries that contain outdated data.
2809 * 2nd step is to add all missing entries to the UUID tree.
2810 */
2811 ret = btrfs_uuid_tree_iterate(fs_info);
2812 if (ret < 0) {
c94bec2c
JB
2813 if (ret != -EINTR)
2814 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2815 ret);
97f4dd09
NB
2816 up(&fs_info->uuid_tree_rescan_sem);
2817 return ret;
2818 }
2819 return btrfs_uuid_scan_kthread(data);
2820}
2821
2822static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2823{
2824 struct task_struct *task;
2825
2826 down(&fs_info->uuid_tree_rescan_sem);
2827 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2828 if (IS_ERR(task)) {
2829 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2830 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2831 up(&fs_info->uuid_tree_rescan_sem);
2832 return PTR_ERR(task);
2833 }
2834
2835 return 0;
2836}
2837
ae18c37a
JB
2838int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2839 char *options)
2840{
2841 u32 sectorsize;
2842 u32 nodesize;
2843 u32 stripesize;
2844 u64 generation;
2845 u64 features;
2846 u16 csum_type;
2847 struct btrfs_key location;
ae18c37a
JB
2848 struct btrfs_super_block *disk_super;
2849 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2850 struct btrfs_root *tree_root;
2851 struct btrfs_root *chunk_root;
2852 int ret;
2853 int err = -EINVAL;
2854 int clear_free_space_tree = 0;
2855 int level;
2856
8260edba 2857 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2858 if (ret) {
83c8266a 2859 err = ret;
ae18c37a 2860 goto fail;
53b381b3
DW
2861 }
2862
ae18c37a
JB
2863 /* These need to be init'ed before we start creating inodes and such. */
2864 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2865 GFP_KERNEL);
2866 fs_info->tree_root = tree_root;
2867 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2868 GFP_KERNEL);
2869 fs_info->chunk_root = chunk_root;
2870 if (!tree_root || !chunk_root) {
2871 err = -ENOMEM;
2872 goto fail_srcu;
2873 }
2874
2875 fs_info->btree_inode = new_inode(sb);
2876 if (!fs_info->btree_inode) {
2877 err = -ENOMEM;
2878 goto fail_srcu;
2879 }
2880 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2881 btrfs_init_btree_inode(fs_info);
2882
3c4bb26b 2883 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2884
2885 /*
2886 * Read super block and check the signature bytes only
2887 */
8f32380d
JT
2888 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2889 if (IS_ERR(disk_super)) {
2890 err = PTR_ERR(disk_super);
16cdcec7 2891 goto fail_alloc;
20b45077 2892 }
39279cc3 2893
8dc3f22c
JT
2894 /*
2895 * Verify the type first, if that or the the checksum value are
2896 * corrupted, we'll find out
2897 */
8f32380d 2898 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2899 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2900 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2901 csum_type);
8dc3f22c 2902 err = -EINVAL;
8f32380d 2903 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2904 goto fail_alloc;
2905 }
2906
6d97c6e3
JT
2907 ret = btrfs_init_csum_hash(fs_info, csum_type);
2908 if (ret) {
2909 err = ret;
8f32380d 2910 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2911 goto fail_alloc;
2912 }
2913
1104a885
DS
2914 /*
2915 * We want to check superblock checksum, the type is stored inside.
2916 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2917 */
8f32380d 2918 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2919 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2920 err = -EINVAL;
8f32380d 2921 btrfs_release_disk_super(disk_super);
141386e1 2922 goto fail_alloc;
1104a885
DS
2923 }
2924
2925 /*
2926 * super_copy is zeroed at allocation time and we never touch the
2927 * following bytes up to INFO_SIZE, the checksum is calculated from
2928 * the whole block of INFO_SIZE
2929 */
8f32380d
JT
2930 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2931 btrfs_release_disk_super(disk_super);
5f39d397 2932
fbc6feae
NB
2933 disk_super = fs_info->super_copy;
2934
de37aa51
NB
2935 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2936 BTRFS_FSID_SIZE));
2937
7239ff4b 2938 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2939 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2940 fs_info->super_copy->metadata_uuid,
2941 BTRFS_FSID_SIZE));
7239ff4b 2942 }
0b86a832 2943
fbc6feae
NB
2944 features = btrfs_super_flags(disk_super);
2945 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2946 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2947 btrfs_set_super_flags(disk_super, features);
2948 btrfs_info(fs_info,
2949 "found metadata UUID change in progress flag, clearing");
2950 }
2951
2952 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2953 sizeof(*fs_info->super_for_commit));
de37aa51 2954
069ec957 2955 ret = btrfs_validate_mount_super(fs_info);
1104a885 2956 if (ret) {
05135f59 2957 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2958 err = -EINVAL;
141386e1 2959 goto fail_alloc;
1104a885
DS
2960 }
2961
0f7d52f4 2962 if (!btrfs_super_root(disk_super))
141386e1 2963 goto fail_alloc;
0f7d52f4 2964
acce952b 2965 /* check FS state, whether FS is broken. */
87533c47
MX
2966 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2967 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2968
75e7cb7f
LB
2969 /*
2970 * In the long term, we'll store the compression type in the super
2971 * block, and it'll be used for per file compression control.
2972 */
2973 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2974
2ff7e61e 2975 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2976 if (ret) {
2977 err = ret;
141386e1 2978 goto fail_alloc;
2b82032c 2979 }
dfe25020 2980
f2b636e8
JB
2981 features = btrfs_super_incompat_flags(disk_super) &
2982 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2983 if (features) {
05135f59
DS
2984 btrfs_err(fs_info,
2985 "cannot mount because of unsupported optional features (%llx)",
2986 features);
f2b636e8 2987 err = -EINVAL;
141386e1 2988 goto fail_alloc;
f2b636e8
JB
2989 }
2990
5d4f98a2 2991 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2992 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2993 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2994 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2995 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2996 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2997
3173a18f 2998 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2999 btrfs_info(fs_info, "has skinny extents");
3173a18f 3000
727011e0
CM
3001 /*
3002 * flag our filesystem as having big metadata blocks if
3003 * they are bigger than the page size
3004 */
09cbfeaf 3005 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3006 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3007 btrfs_info(fs_info,
3008 "flagging fs with big metadata feature");
727011e0
CM
3009 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3010 }
3011
bc3f116f 3012 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3013 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3014 stripesize = sectorsize;
707e8a07 3015 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3016 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3017
da17066c
JM
3018 /* Cache block sizes */
3019 fs_info->nodesize = nodesize;
3020 fs_info->sectorsize = sectorsize;
3021 fs_info->stripesize = stripesize;
3022
bc3f116f
CM
3023 /*
3024 * mixed block groups end up with duplicate but slightly offset
3025 * extent buffers for the same range. It leads to corruptions
3026 */
3027 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3028 (sectorsize != nodesize)) {
05135f59
DS
3029 btrfs_err(fs_info,
3030"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3031 nodesize, sectorsize);
141386e1 3032 goto fail_alloc;
bc3f116f
CM
3033 }
3034
ceda0864
MX
3035 /*
3036 * Needn't use the lock because there is no other task which will
3037 * update the flag.
3038 */
a6fa6fae 3039 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3040
f2b636e8
JB
3041 features = btrfs_super_compat_ro_flags(disk_super) &
3042 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3043 if (!sb_rdonly(sb) && features) {
05135f59
DS
3044 btrfs_err(fs_info,
3045 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3046 features);
f2b636e8 3047 err = -EINVAL;
141386e1 3048 goto fail_alloc;
f2b636e8 3049 }
61d92c32 3050
2a458198
ES
3051 ret = btrfs_init_workqueues(fs_info, fs_devices);
3052 if (ret) {
3053 err = ret;
0dc3b84a
JB
3054 goto fail_sb_buffer;
3055 }
4543df7e 3056
9e11ceee
JK
3057 sb->s_bdi->congested_fn = btrfs_congested_fn;
3058 sb->s_bdi->congested_data = fs_info;
3059 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3060 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3061 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3062 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3063
a061fc8d
CM
3064 sb->s_blocksize = sectorsize;
3065 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3066 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3067
925baedd 3068 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3069 ret = btrfs_read_sys_array(fs_info);
925baedd 3070 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3071 if (ret) {
05135f59 3072 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3073 goto fail_sb_buffer;
84eed90f 3074 }
0b86a832 3075
84234f3a 3076 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3077 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3078
2ff7e61e 3079 chunk_root->node = read_tree_block(fs_info,
0b86a832 3080 btrfs_super_chunk_root(disk_super),
581c1760 3081 generation, level, NULL);
64c043de
LB
3082 if (IS_ERR(chunk_root->node) ||
3083 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3084 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3085 if (!IS_ERR(chunk_root->node))
3086 free_extent_buffer(chunk_root->node);
95ab1f64 3087 chunk_root->node = NULL;
af31f5e5 3088 goto fail_tree_roots;
83121942 3089 }
5d4f98a2
YZ
3090 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3091 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3092
e17cade2 3093 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3094 offsetof(struct btrfs_header, chunk_tree_uuid),
3095 BTRFS_UUID_SIZE);
e17cade2 3096
5b4aacef 3097 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3098 if (ret) {
05135f59 3099 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3100 goto fail_tree_roots;
2b82032c 3101 }
0b86a832 3102
8dabb742 3103 /*
9b99b115
AJ
3104 * Keep the devid that is marked to be the target device for the
3105 * device replace procedure
8dabb742 3106 */
9b99b115 3107 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3108
a6b0d5c8 3109 if (!fs_devices->latest_bdev) {
05135f59 3110 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3111 goto fail_tree_roots;
3112 }
3113
b8522a1e 3114 ret = init_tree_roots(fs_info);
4bbcaa64 3115 if (ret)
b8522a1e 3116 goto fail_tree_roots;
8929ecfa 3117
75ec1db8
JB
3118 /*
3119 * If we have a uuid root and we're not being told to rescan we need to
3120 * check the generation here so we can set the
3121 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3122 * transaction during a balance or the log replay without updating the
3123 * uuid generation, and then if we crash we would rescan the uuid tree,
3124 * even though it was perfectly fine.
3125 */
3126 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3127 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3128 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3129
cf90d884
QW
3130 ret = btrfs_verify_dev_extents(fs_info);
3131 if (ret) {
3132 btrfs_err(fs_info,
3133 "failed to verify dev extents against chunks: %d",
3134 ret);
3135 goto fail_block_groups;
3136 }
68310a5e
ID
3137 ret = btrfs_recover_balance(fs_info);
3138 if (ret) {
05135f59 3139 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3140 goto fail_block_groups;
3141 }
3142
733f4fbb
SB
3143 ret = btrfs_init_dev_stats(fs_info);
3144 if (ret) {
05135f59 3145 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3146 goto fail_block_groups;
3147 }
3148
8dabb742
SB
3149 ret = btrfs_init_dev_replace(fs_info);
3150 if (ret) {
05135f59 3151 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3152 goto fail_block_groups;
3153 }
3154
9b99b115 3155 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3156
c6761a9e 3157 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3158 if (ret) {
05135f59
DS
3159 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3160 ret);
b7c35e81
AJ
3161 goto fail_block_groups;
3162 }
3163
96f3136e 3164 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3165 if (ret) {
05135f59 3166 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3167 goto fail_fsdev_sysfs;
c59021f8 3168 }
3169
c59021f8 3170 ret = btrfs_init_space_info(fs_info);
3171 if (ret) {
05135f59 3172 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3173 goto fail_sysfs;
c59021f8 3174 }
3175
5b4aacef 3176 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3177 if (ret) {
05135f59 3178 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3179 goto fail_sysfs;
1b1d1f66 3180 }
4330e183 3181
6528b99d 3182 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3183 btrfs_warn(fs_info,
52042d8e 3184 "writable mount is not allowed due to too many missing devices");
2365dd3c 3185 goto fail_sysfs;
292fd7fc 3186 }
9078a3e1 3187
a74a4b97
CM
3188 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3189 "btrfs-cleaner");
57506d50 3190 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3191 goto fail_sysfs;
a74a4b97
CM
3192
3193 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3194 tree_root,
3195 "btrfs-transaction");
57506d50 3196 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3197 goto fail_cleaner;
a74a4b97 3198
583b7231 3199 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3200 !fs_info->fs_devices->rotating) {
583b7231 3201 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3202 }
3203
572d9ab7 3204 /*
01327610 3205 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3206 * not have to wait for transaction commit
3207 */
3208 btrfs_apply_pending_changes(fs_info);
3818aea2 3209
21adbd5c 3210#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3211 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3212 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3213 btrfs_test_opt(fs_info,
21adbd5c
SB
3214 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3215 1 : 0,
3216 fs_info->check_integrity_print_mask);
3217 if (ret)
05135f59
DS
3218 btrfs_warn(fs_info,
3219 "failed to initialize integrity check module: %d",
3220 ret);
21adbd5c
SB
3221 }
3222#endif
bcef60f2
AJ
3223 ret = btrfs_read_qgroup_config(fs_info);
3224 if (ret)
3225 goto fail_trans_kthread;
21adbd5c 3226
fd708b81
JB
3227 if (btrfs_build_ref_tree(fs_info))
3228 btrfs_err(fs_info, "couldn't build ref tree");
3229
96da0919
QW
3230 /* do not make disk changes in broken FS or nologreplay is given */
3231 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3232 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3233 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3234 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3235 if (ret) {
63443bf5 3236 err = ret;
28c16cbb 3237 goto fail_qgroup;
79787eaa 3238 }
e02119d5 3239 }
1a40e23b 3240
6bccf3ab 3241 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3242 if (ret)
28c16cbb 3243 goto fail_qgroup;
76dda93c 3244
bc98a42c 3245 if (!sb_rdonly(sb)) {
d68fc57b 3246 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3247 if (ret)
28c16cbb 3248 goto fail_qgroup;
90c711ab
ZB
3249
3250 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3251 ret = btrfs_recover_relocation(tree_root);
90c711ab 3252 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3253 if (ret < 0) {
05135f59
DS
3254 btrfs_warn(fs_info, "failed to recover relocation: %d",
3255 ret);
d7ce5843 3256 err = -EINVAL;
bcef60f2 3257 goto fail_qgroup;
d7ce5843 3258 }
7c2ca468 3259 }
1a40e23b 3260
3de4586c
CM
3261 location.objectid = BTRFS_FS_TREE_OBJECTID;
3262 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3263 location.offset = 0;
3de4586c 3264
3619c94f 3265 fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3140c9a3
DC
3266 if (IS_ERR(fs_info->fs_root)) {
3267 err = PTR_ERR(fs_info->fs_root);
f50f4353 3268 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3269 fs_info->fs_root = NULL;
bcef60f2 3270 goto fail_qgroup;
3140c9a3 3271 }
c289811c 3272
bc98a42c 3273 if (sb_rdonly(sb))
2b6ba629 3274 return 0;
59641015 3275
f8d468a1
OS
3276 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3277 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3278 clear_free_space_tree = 1;
3279 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3280 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3281 btrfs_warn(fs_info, "free space tree is invalid");
3282 clear_free_space_tree = 1;
3283 }
3284
3285 if (clear_free_space_tree) {
f8d468a1
OS
3286 btrfs_info(fs_info, "clearing free space tree");
3287 ret = btrfs_clear_free_space_tree(fs_info);
3288 if (ret) {
3289 btrfs_warn(fs_info,
3290 "failed to clear free space tree: %d", ret);
6bccf3ab 3291 close_ctree(fs_info);
f8d468a1
OS
3292 return ret;
3293 }
3294 }
3295
0b246afa 3296 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3297 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3298 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3299 ret = btrfs_create_free_space_tree(fs_info);
3300 if (ret) {
05135f59
DS
3301 btrfs_warn(fs_info,
3302 "failed to create free space tree: %d", ret);
6bccf3ab 3303 close_ctree(fs_info);
511711af
CM
3304 return ret;
3305 }
3306 }
3307
2b6ba629
ID
3308 down_read(&fs_info->cleanup_work_sem);
3309 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3310 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3311 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3312 close_ctree(fs_info);
2b6ba629
ID
3313 return ret;
3314 }
3315 up_read(&fs_info->cleanup_work_sem);
59641015 3316
2b6ba629
ID
3317 ret = btrfs_resume_balance_async(fs_info);
3318 if (ret) {
05135f59 3319 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3320 close_ctree(fs_info);
2b6ba629 3321 return ret;
e3acc2a6
JB
3322 }
3323
8dabb742
SB
3324 ret = btrfs_resume_dev_replace_async(fs_info);
3325 if (ret) {
05135f59 3326 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3327 close_ctree(fs_info);
8dabb742
SB
3328 return ret;
3329 }
3330
b382a324 3331 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3332 btrfs_discard_resume(fs_info);
b382a324 3333
4bbcaa64 3334 if (!fs_info->uuid_root) {
05135f59 3335 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3336 ret = btrfs_create_uuid_tree(fs_info);
3337 if (ret) {
05135f59
DS
3338 btrfs_warn(fs_info,
3339 "failed to create the UUID tree: %d", ret);
6bccf3ab 3340 close_ctree(fs_info);
f7a81ea4
SB
3341 return ret;
3342 }
0b246afa 3343 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3344 fs_info->generation !=
3345 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3346 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3347 ret = btrfs_check_uuid_tree(fs_info);
3348 if (ret) {
05135f59
DS
3349 btrfs_warn(fs_info,
3350 "failed to check the UUID tree: %d", ret);
6bccf3ab 3351 close_ctree(fs_info);
70f80175
SB
3352 return ret;
3353 }
f7a81ea4 3354 }
afcdd129 3355 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3356
8dcddfa0
QW
3357 /*
3358 * backuproot only affect mount behavior, and if open_ctree succeeded,
3359 * no need to keep the flag
3360 */
3361 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3362
ad2b2c80 3363 return 0;
39279cc3 3364
bcef60f2
AJ
3365fail_qgroup:
3366 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3367fail_trans_kthread:
3368 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3369 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3370 btrfs_free_fs_roots(fs_info);
3f157a2f 3371fail_cleaner:
a74a4b97 3372 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3373
3374 /*
3375 * make sure we're done with the btree inode before we stop our
3376 * kthreads
3377 */
3378 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3379
2365dd3c 3380fail_sysfs:
6618a59b 3381 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3382
b7c35e81
AJ
3383fail_fsdev_sysfs:
3384 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3385
1b1d1f66 3386fail_block_groups:
54067ae9 3387 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3388
3389fail_tree_roots:
4273eaff 3390 free_root_pointers(fs_info, true);
2b8195bb 3391 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3392
39279cc3 3393fail_sb_buffer:
7abadb64 3394 btrfs_stop_all_workers(fs_info);
5cdd7db6 3395 btrfs_free_block_groups(fs_info);
16cdcec7 3396fail_alloc:
586e46e2
ID
3397 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3398
4543df7e 3399 iput(fs_info->btree_inode);
76dda93c
YZ
3400fail_srcu:
3401 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3402fail:
586e46e2 3403 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3404 return err;
eb60ceac 3405}
663faf9f 3406ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3407
314b6dd0 3408static void btrfs_end_super_write(struct bio *bio)
f2984462 3409{
314b6dd0
JT
3410 struct btrfs_device *device = bio->bi_private;
3411 struct bio_vec *bvec;
3412 struct bvec_iter_all iter_all;
3413 struct page *page;
3414
3415 bio_for_each_segment_all(bvec, bio, iter_all) {
3416 page = bvec->bv_page;
3417
3418 if (bio->bi_status) {
3419 btrfs_warn_rl_in_rcu(device->fs_info,
3420 "lost page write due to IO error on %s (%d)",
3421 rcu_str_deref(device->name),
3422 blk_status_to_errno(bio->bi_status));
3423 ClearPageUptodate(page);
3424 SetPageError(page);
3425 btrfs_dev_stat_inc_and_print(device,
3426 BTRFS_DEV_STAT_WRITE_ERRS);
3427 } else {
3428 SetPageUptodate(page);
3429 }
3430
3431 put_page(page);
3432 unlock_page(page);
f2984462 3433 }
314b6dd0
JT
3434
3435 bio_put(bio);
f2984462
CM
3436}
3437
8f32380d
JT
3438struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3439 int copy_num)
29c36d72 3440{
29c36d72 3441 struct btrfs_super_block *super;
8f32380d 3442 struct page *page;
29c36d72 3443 u64 bytenr;
8f32380d 3444 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3445
3446 bytenr = btrfs_sb_offset(copy_num);
3447 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3448 return ERR_PTR(-EINVAL);
29c36d72 3449
8f32380d
JT
3450 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3451 if (IS_ERR(page))
3452 return ERR_CAST(page);
29c36d72 3453
8f32380d 3454 super = page_address(page);
29c36d72
AJ
3455 if (btrfs_super_bytenr(super) != bytenr ||
3456 btrfs_super_magic(super) != BTRFS_MAGIC) {
8f32380d
JT
3457 btrfs_release_disk_super(super);
3458 return ERR_PTR(-EINVAL);
29c36d72
AJ
3459 }
3460
8f32380d 3461 return super;
29c36d72
AJ
3462}
3463
3464
8f32380d 3465struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3466{
8f32380d 3467 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3468 int i;
3469 u64 transid = 0;
a512bbf8
YZ
3470
3471 /* we would like to check all the supers, but that would make
3472 * a btrfs mount succeed after a mkfs from a different FS.
3473 * So, we need to add a special mount option to scan for
3474 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3475 */
3476 for (i = 0; i < 1; i++) {
8f32380d
JT
3477 super = btrfs_read_dev_one_super(bdev, i);
3478 if (IS_ERR(super))
a512bbf8
YZ
3479 continue;
3480
a512bbf8 3481 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3482 if (latest)
3483 btrfs_release_disk_super(super);
3484
3485 latest = super;
a512bbf8 3486 transid = btrfs_super_generation(super);
a512bbf8
YZ
3487 }
3488 }
92fc03fb 3489
8f32380d 3490 return super;
a512bbf8
YZ
3491}
3492
4eedeb75 3493/*
abbb3b8e 3494 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3495 * pages we use for writing are locked.
4eedeb75 3496 *
abbb3b8e
DS
3497 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3498 * the expected device size at commit time. Note that max_mirrors must be
3499 * same for write and wait phases.
4eedeb75 3500 *
314b6dd0 3501 * Return number of errors when page is not found or submission fails.
4eedeb75 3502 */
a512bbf8 3503static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3504 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3505{
d5178578 3506 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3507 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3508 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3509 int i;
a512bbf8 3510 int errors = 0;
a512bbf8 3511 u64 bytenr;
a512bbf8
YZ
3512
3513 if (max_mirrors == 0)
3514 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3515
d5178578
JT
3516 shash->tfm = fs_info->csum_shash;
3517
a512bbf8 3518 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3519 struct page *page;
3520 struct bio *bio;
3521 struct btrfs_super_block *disk_super;
3522
a512bbf8 3523 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3524 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3525 device->commit_total_bytes)
a512bbf8
YZ
3526 break;
3527
abbb3b8e 3528 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3529
d5178578
JT
3530 crypto_shash_init(shash);
3531 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3532 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3533 crypto_shash_final(shash, sb->csum);
4eedeb75 3534
314b6dd0
JT
3535 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3536 GFP_NOFS);
3537 if (!page) {
abbb3b8e 3538 btrfs_err(device->fs_info,
314b6dd0 3539 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3540 bytenr);
3541 errors++;
4eedeb75 3542 continue;
abbb3b8e 3543 }
634554dc 3544
314b6dd0
JT
3545 /* Bump the refcount for wait_dev_supers() */
3546 get_page(page);
a512bbf8 3547
314b6dd0
JT
3548 disk_super = page_address(page);
3549 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3550
314b6dd0
JT
3551 /*
3552 * Directly use bios here instead of relying on the page cache
3553 * to do I/O, so we don't lose the ability to do integrity
3554 * checking.
3555 */
3556 bio = bio_alloc(GFP_NOFS, 1);
3557 bio_set_dev(bio, device->bdev);
3558 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3559 bio->bi_private = device;
3560 bio->bi_end_io = btrfs_end_super_write;
3561 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3562 offset_in_page(bytenr));
a512bbf8 3563
387125fc 3564 /*
314b6dd0
JT
3565 * We FUA only the first super block. The others we allow to
3566 * go down lazy and there's a short window where the on-disk
3567 * copies might still contain the older version.
387125fc 3568 */
314b6dd0 3569 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3570 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3571 bio->bi_opf |= REQ_FUA;
3572
3573 btrfsic_submit_bio(bio);
a512bbf8
YZ
3574 }
3575 return errors < i ? 0 : -1;
3576}
3577
abbb3b8e
DS
3578/*
3579 * Wait for write completion of superblocks done by write_dev_supers,
3580 * @max_mirrors same for write and wait phases.
3581 *
314b6dd0 3582 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3583 * date.
3584 */
3585static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3586{
abbb3b8e
DS
3587 int i;
3588 int errors = 0;
b6a535fa 3589 bool primary_failed = false;
abbb3b8e
DS
3590 u64 bytenr;
3591
3592 if (max_mirrors == 0)
3593 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3594
3595 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3596 struct page *page;
3597
abbb3b8e
DS
3598 bytenr = btrfs_sb_offset(i);
3599 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3600 device->commit_total_bytes)
3601 break;
3602
314b6dd0
JT
3603 page = find_get_page(device->bdev->bd_inode->i_mapping,
3604 bytenr >> PAGE_SHIFT);
3605 if (!page) {
abbb3b8e 3606 errors++;
b6a535fa
HM
3607 if (i == 0)
3608 primary_failed = true;
abbb3b8e
DS
3609 continue;
3610 }
314b6dd0
JT
3611 /* Page is submitted locked and unlocked once the IO completes */
3612 wait_on_page_locked(page);
3613 if (PageError(page)) {
abbb3b8e 3614 errors++;
b6a535fa
HM
3615 if (i == 0)
3616 primary_failed = true;
3617 }
abbb3b8e 3618
314b6dd0
JT
3619 /* Drop our reference */
3620 put_page(page);
abbb3b8e 3621
314b6dd0
JT
3622 /* Drop the reference from the writing run */
3623 put_page(page);
abbb3b8e
DS
3624 }
3625
b6a535fa
HM
3626 /* log error, force error return */
3627 if (primary_failed) {
3628 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3629 device->devid);
3630 return -1;
3631 }
3632
abbb3b8e
DS
3633 return errors < i ? 0 : -1;
3634}
3635
387125fc
CM
3636/*
3637 * endio for the write_dev_flush, this will wake anyone waiting
3638 * for the barrier when it is done
3639 */
4246a0b6 3640static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3641{
e0ae9994 3642 complete(bio->bi_private);
387125fc
CM
3643}
3644
3645/*
4fc6441a
AJ
3646 * Submit a flush request to the device if it supports it. Error handling is
3647 * done in the waiting counterpart.
387125fc 3648 */
4fc6441a 3649static void write_dev_flush(struct btrfs_device *device)
387125fc 3650{
c2a9c7ab 3651 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3652 struct bio *bio = device->flush_bio;
387125fc 3653
c2a9c7ab 3654 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3655 return;
387125fc 3656
e0ae9994 3657 bio_reset(bio);
387125fc 3658 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3659 bio_set_dev(bio, device->bdev);
8d910125 3660 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3661 init_completion(&device->flush_wait);
3662 bio->bi_private = &device->flush_wait;
387125fc 3663
43a01111 3664 btrfsic_submit_bio(bio);
1c3063b6 3665 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3666}
387125fc 3667
4fc6441a
AJ
3668/*
3669 * If the flush bio has been submitted by write_dev_flush, wait for it.
3670 */
8c27cb35 3671static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3672{
4fc6441a 3673 struct bio *bio = device->flush_bio;
387125fc 3674
1c3063b6 3675 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3676 return BLK_STS_OK;
387125fc 3677
1c3063b6 3678 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3679 wait_for_completion_io(&device->flush_wait);
387125fc 3680
8c27cb35 3681 return bio->bi_status;
387125fc 3682}
387125fc 3683
d10b82fe 3684static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3685{
6528b99d 3686 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3687 return -EIO;
387125fc
CM
3688 return 0;
3689}
3690
3691/*
3692 * send an empty flush down to each device in parallel,
3693 * then wait for them
3694 */
3695static int barrier_all_devices(struct btrfs_fs_info *info)
3696{
3697 struct list_head *head;
3698 struct btrfs_device *dev;
5af3e8cc 3699 int errors_wait = 0;
4e4cbee9 3700 blk_status_t ret;
387125fc 3701
1538e6c5 3702 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3703 /* send down all the barriers */
3704 head = &info->fs_devices->devices;
1538e6c5 3705 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3706 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3707 continue;
cea7c8bf 3708 if (!dev->bdev)
387125fc 3709 continue;
e12c9621 3710 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3711 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3712 continue;
3713
4fc6441a 3714 write_dev_flush(dev);
58efbc9f 3715 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3716 }
3717
3718 /* wait for all the barriers */
1538e6c5 3719 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3720 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3721 continue;
387125fc 3722 if (!dev->bdev) {
5af3e8cc 3723 errors_wait++;
387125fc
CM
3724 continue;
3725 }
e12c9621 3726 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3727 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3728 continue;
3729
4fc6441a 3730 ret = wait_dev_flush(dev);
401b41e5
AJ
3731 if (ret) {
3732 dev->last_flush_error = ret;
66b4993e
DS
3733 btrfs_dev_stat_inc_and_print(dev,
3734 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3735 errors_wait++;
401b41e5
AJ
3736 }
3737 }
3738
cea7c8bf 3739 if (errors_wait) {
401b41e5
AJ
3740 /*
3741 * At some point we need the status of all disks
3742 * to arrive at the volume status. So error checking
3743 * is being pushed to a separate loop.
3744 */
d10b82fe 3745 return check_barrier_error(info);
387125fc 3746 }
387125fc
CM
3747 return 0;
3748}
3749
943c6e99
ZL
3750int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3751{
8789f4fe
ZL
3752 int raid_type;
3753 int min_tolerated = INT_MAX;
943c6e99 3754
8789f4fe
ZL
3755 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3756 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3757 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3758 btrfs_raid_array[BTRFS_RAID_SINGLE].
3759 tolerated_failures);
943c6e99 3760
8789f4fe
ZL
3761 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3762 if (raid_type == BTRFS_RAID_SINGLE)
3763 continue;
41a6e891 3764 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3765 continue;
8c3e3582 3766 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3767 btrfs_raid_array[raid_type].
3768 tolerated_failures);
3769 }
943c6e99 3770
8789f4fe 3771 if (min_tolerated == INT_MAX) {
ab8d0fc4 3772 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3773 min_tolerated = 0;
3774 }
3775
3776 return min_tolerated;
943c6e99
ZL
3777}
3778
eece6a9c 3779int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3780{
e5e9a520 3781 struct list_head *head;
f2984462 3782 struct btrfs_device *dev;
a061fc8d 3783 struct btrfs_super_block *sb;
f2984462 3784 struct btrfs_dev_item *dev_item;
f2984462
CM
3785 int ret;
3786 int do_barriers;
a236aed1
CM
3787 int max_errors;
3788 int total_errors = 0;
a061fc8d 3789 u64 flags;
f2984462 3790
0b246afa 3791 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3792
3793 /*
3794 * max_mirrors == 0 indicates we're from commit_transaction,
3795 * not from fsync where the tree roots in fs_info have not
3796 * been consistent on disk.
3797 */
3798 if (max_mirrors == 0)
3799 backup_super_roots(fs_info);
f2984462 3800
0b246afa 3801 sb = fs_info->super_for_commit;
a061fc8d 3802 dev_item = &sb->dev_item;
e5e9a520 3803
0b246afa
JM
3804 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3805 head = &fs_info->fs_devices->devices;
3806 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3807
5af3e8cc 3808 if (do_barriers) {
0b246afa 3809 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3810 if (ret) {
3811 mutex_unlock(
0b246afa
JM
3812 &fs_info->fs_devices->device_list_mutex);
3813 btrfs_handle_fs_error(fs_info, ret,
3814 "errors while submitting device barriers.");
5af3e8cc
SB
3815 return ret;
3816 }
3817 }
387125fc 3818
1538e6c5 3819 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3820 if (!dev->bdev) {
3821 total_errors++;
3822 continue;
3823 }
e12c9621 3824 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3825 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3826 continue;
3827
2b82032c 3828 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3829 btrfs_set_stack_device_type(dev_item, dev->type);
3830 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3831 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3832 dev->commit_total_bytes);
ce7213c7
MX
3833 btrfs_set_stack_device_bytes_used(dev_item,
3834 dev->commit_bytes_used);
a061fc8d
CM
3835 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3836 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3837 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3838 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3839 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3840 BTRFS_FSID_SIZE);
a512bbf8 3841
a061fc8d
CM
3842 flags = btrfs_super_flags(sb);
3843 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3844
75cb857d
QW
3845 ret = btrfs_validate_write_super(fs_info, sb);
3846 if (ret < 0) {
3847 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3848 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3849 "unexpected superblock corruption detected");
3850 return -EUCLEAN;
3851 }
3852
abbb3b8e 3853 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3854 if (ret)
3855 total_errors++;
f2984462 3856 }
a236aed1 3857 if (total_errors > max_errors) {
0b246afa
JM
3858 btrfs_err(fs_info, "%d errors while writing supers",
3859 total_errors);
3860 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3861
9d565ba4 3862 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3863 btrfs_handle_fs_error(fs_info, -EIO,
3864 "%d errors while writing supers",
3865 total_errors);
9d565ba4 3866 return -EIO;
a236aed1 3867 }
f2984462 3868
a512bbf8 3869 total_errors = 0;
1538e6c5 3870 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3871 if (!dev->bdev)
3872 continue;
e12c9621 3873 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3874 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3875 continue;
3876
abbb3b8e 3877 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3878 if (ret)
3879 total_errors++;
f2984462 3880 }
0b246afa 3881 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3882 if (total_errors > max_errors) {
0b246afa
JM
3883 btrfs_handle_fs_error(fs_info, -EIO,
3884 "%d errors while writing supers",
3885 total_errors);
79787eaa 3886 return -EIO;
a236aed1 3887 }
f2984462
CM
3888 return 0;
3889}
3890
cb517eab
MX
3891/* Drop a fs root from the radix tree and free it. */
3892void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3893 struct btrfs_root *root)
2619ba1f 3894{
4df27c4d 3895 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3896 radix_tree_delete(&fs_info->fs_roots_radix,
3897 (unsigned long)root->root_key.objectid);
af01d2e5 3898 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
00246528 3899 btrfs_put_root(root);
4df27c4d 3900 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3901
3902 if (btrfs_root_refs(&root->root_item) == 0)
3903 synchronize_srcu(&fs_info->subvol_srcu);
3904
1c1ea4f7 3905 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3906 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3907 if (root->reloc_root) {
3908 free_extent_buffer(root->reloc_root->node);
3909 free_extent_buffer(root->reloc_root->commit_root);
00246528 3910 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3911 root->reloc_root = NULL;
3912 }
3913 }
3321719e 3914
faa2dbf0
JB
3915 if (root->free_ino_pinned)
3916 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3917 if (root->free_ino_ctl)
3918 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3919 btrfs_free_fs_root(root);
4df27c4d
YZ
3920}
3921
84db5ccf 3922void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3923{
57cdc8db 3924 iput(root->ino_cache_inode);
4df27c4d 3925 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3926 if (root->anon_dev)
3927 free_anon_bdev(root->anon_dev);
dcc3eb96 3928 btrfs_drew_lock_destroy(&root->snapshot_lock);
4df27c4d
YZ
3929 free_extent_buffer(root->node);
3930 free_extent_buffer(root->commit_root);
581bb050
LZ
3931 kfree(root->free_ino_ctl);
3932 kfree(root->free_ino_pinned);
00246528 3933 btrfs_put_root(root);
2619ba1f
CM
3934}
3935
c146afad 3936int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3937{
c146afad
YZ
3938 u64 root_objectid = 0;
3939 struct btrfs_root *gang[8];
65d33fd7
QW
3940 int i = 0;
3941 int err = 0;
3942 unsigned int ret = 0;
3943 int index;
e089f05c 3944
c146afad 3945 while (1) {
65d33fd7 3946 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3947 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3948 (void **)gang, root_objectid,
3949 ARRAY_SIZE(gang));
65d33fd7
QW
3950 if (!ret) {
3951 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3952 break;
65d33fd7 3953 }
5d4f98a2 3954 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3955
c146afad 3956 for (i = 0; i < ret; i++) {
65d33fd7
QW
3957 /* Avoid to grab roots in dead_roots */
3958 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3959 gang[i] = NULL;
3960 continue;
3961 }
3962 /* grab all the search result for later use */
00246528 3963 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7
QW
3964 }
3965 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3966
65d33fd7
QW
3967 for (i = 0; i < ret; i++) {
3968 if (!gang[i])
3969 continue;
c146afad 3970 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3971 err = btrfs_orphan_cleanup(gang[i]);
3972 if (err)
65d33fd7 3973 break;
00246528 3974 btrfs_put_root(gang[i]);
c146afad
YZ
3975 }
3976 root_objectid++;
3977 }
65d33fd7
QW
3978
3979 /* release the uncleaned roots due to error */
3980 for (; i < ret; i++) {
3981 if (gang[i])
00246528 3982 btrfs_put_root(gang[i]);
65d33fd7
QW
3983 }
3984 return err;
c146afad 3985}
a2135011 3986
6bccf3ab 3987int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3988{
6bccf3ab 3989 struct btrfs_root *root = fs_info->tree_root;
c146afad 3990 struct btrfs_trans_handle *trans;
a74a4b97 3991
0b246afa 3992 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3993 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3994 mutex_unlock(&fs_info->cleaner_mutex);
3995 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3996
3997 /* wait until ongoing cleanup work done */
0b246afa
JM
3998 down_write(&fs_info->cleanup_work_sem);
3999 up_write(&fs_info->cleanup_work_sem);
c71bf099 4000
7a7eaa40 4001 trans = btrfs_join_transaction(root);
3612b495
TI
4002 if (IS_ERR(trans))
4003 return PTR_ERR(trans);
3a45bb20 4004 return btrfs_commit_transaction(trans);
c146afad
YZ
4005}
4006
b105e927 4007void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4008{
c146afad
YZ
4009 int ret;
4010
afcdd129 4011 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4012 /*
4013 * We don't want the cleaner to start new transactions, add more delayed
4014 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4015 * because that frees the task_struct, and the transaction kthread might
4016 * still try to wake up the cleaner.
4017 */
4018 kthread_park(fs_info->cleaner_kthread);
c146afad 4019
7343dd61 4020 /* wait for the qgroup rescan worker to stop */
d06f23d6 4021 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4022
803b2f54
SB
4023 /* wait for the uuid_scan task to finish */
4024 down(&fs_info->uuid_tree_rescan_sem);
4025 /* avoid complains from lockdep et al., set sem back to initial state */
4026 up(&fs_info->uuid_tree_rescan_sem);
4027
837d5b6e 4028 /* pause restriper - we want to resume on mount */
aa1b8cd4 4029 btrfs_pause_balance(fs_info);
837d5b6e 4030
8dabb742
SB
4031 btrfs_dev_replace_suspend_for_unmount(fs_info);
4032
aa1b8cd4 4033 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4034
4035 /* wait for any defraggers to finish */
4036 wait_event(fs_info->transaction_wait,
4037 (atomic_read(&fs_info->defrag_running) == 0));
4038
4039 /* clear out the rbtree of defraggable inodes */
26176e7c 4040 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4041
21c7e756
MX
4042 cancel_work_sync(&fs_info->async_reclaim_work);
4043
b0643e59
DZ
4044 /* Cancel or finish ongoing discard work */
4045 btrfs_discard_cleanup(fs_info);
4046
bc98a42c 4047 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4048 /*
d6fd0ae2
OS
4049 * The cleaner kthread is stopped, so do one final pass over
4050 * unused block groups.
e44163e1 4051 */
0b246afa 4052 btrfs_delete_unused_bgs(fs_info);
e44163e1 4053
f0cc2cd7
FM
4054 /*
4055 * There might be existing delayed inode workers still running
4056 * and holding an empty delayed inode item. We must wait for
4057 * them to complete first because they can create a transaction.
4058 * This happens when someone calls btrfs_balance_delayed_items()
4059 * and then a transaction commit runs the same delayed nodes
4060 * before any delayed worker has done something with the nodes.
4061 * We must wait for any worker here and not at transaction
4062 * commit time since that could cause a deadlock.
4063 * This is a very rare case.
4064 */
4065 btrfs_flush_workqueue(fs_info->delayed_workers);
4066
6bccf3ab 4067 ret = btrfs_commit_super(fs_info);
acce952b 4068 if (ret)
04892340 4069 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4070 }
4071
af722733
LB
4072 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4073 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4074 btrfs_error_commit_super(fs_info);
0f7d52f4 4075
e3029d9f
AV
4076 kthread_stop(fs_info->transaction_kthread);
4077 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4078
e187831e 4079 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4080 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4081
04892340 4082 btrfs_free_qgroup_config(fs_info);
fe816d0f 4083 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4084
963d678b 4085 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4086 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4087 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4088 }
bcc63abb 4089
4297ff84
JB
4090 if (percpu_counter_sum(&fs_info->dio_bytes))
4091 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4092 percpu_counter_sum(&fs_info->dio_bytes));
4093
6618a59b 4094 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4095 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4096
faa2dbf0 4097 btrfs_free_fs_roots(fs_info);
d10c5f31 4098
1a4319cc
LB
4099 btrfs_put_block_group_cache(fs_info);
4100
de348ee0
WS
4101 /*
4102 * we must make sure there is not any read request to
4103 * submit after we stopping all workers.
4104 */
4105 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4106 btrfs_stop_all_workers(fs_info);
4107
afcdd129 4108 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4109 free_root_pointers(fs_info, true);
9ad6b7bc 4110
4e19443d
JB
4111 /*
4112 * We must free the block groups after dropping the fs_roots as we could
4113 * have had an IO error and have left over tree log blocks that aren't
4114 * cleaned up until the fs roots are freed. This makes the block group
4115 * accounting appear to be wrong because there's pending reserved bytes,
4116 * so make sure we do the block group cleanup afterwards.
4117 */
4118 btrfs_free_block_groups(fs_info);
4119
13e6c37b 4120 iput(fs_info->btree_inode);
d6bfde87 4121
21adbd5c 4122#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4123 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4124 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4125#endif
4126
0b86a832 4127 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4128 btrfs_close_devices(fs_info->fs_devices);
76dda93c 4129 cleanup_srcu_struct(&fs_info->subvol_srcu);
eb60ceac
CM
4130}
4131
b9fab919
CM
4132int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4133 int atomic)
5f39d397 4134{
1259ab75 4135 int ret;
727011e0 4136 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4137
0b32f4bb 4138 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4139 if (!ret)
4140 return ret;
4141
4142 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4143 parent_transid, atomic);
4144 if (ret == -EAGAIN)
4145 return ret;
1259ab75 4146 return !ret;
5f39d397
CM
4147}
4148
5f39d397
CM
4149void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4150{
0b246afa 4151 struct btrfs_fs_info *fs_info;
06ea65a3 4152 struct btrfs_root *root;
5f39d397 4153 u64 transid = btrfs_header_generation(buf);
b9473439 4154 int was_dirty;
b4ce94de 4155
06ea65a3
JB
4156#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4157 /*
4158 * This is a fast path so only do this check if we have sanity tests
52042d8e 4159 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4160 * outside of the sanity tests.
4161 */
b0132a3b 4162 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4163 return;
4164#endif
4165 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4166 fs_info = root->fs_info;
b9447ef8 4167 btrfs_assert_tree_locked(buf);
0b246afa 4168 if (transid != fs_info->generation)
5d163e0e 4169 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4170 buf->start, transid, fs_info->generation);
0b32f4bb 4171 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4172 if (!was_dirty)
104b4e51
NB
4173 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4174 buf->len,
4175 fs_info->dirty_metadata_batch);
1f21ef0a 4176#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4177 /*
4178 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4179 * but item data not updated.
4180 * So here we should only check item pointers, not item data.
4181 */
4182 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4183 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4184 btrfs_print_leaf(buf);
1f21ef0a
FM
4185 ASSERT(0);
4186 }
4187#endif
eb60ceac
CM
4188}
4189
2ff7e61e 4190static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4191 int flush_delayed)
16cdcec7
MX
4192{
4193 /*
4194 * looks as though older kernels can get into trouble with
4195 * this code, they end up stuck in balance_dirty_pages forever
4196 */
e2d84521 4197 int ret;
16cdcec7
MX
4198
4199 if (current->flags & PF_MEMALLOC)
4200 return;
4201
b53d3f5d 4202 if (flush_delayed)
2ff7e61e 4203 btrfs_balance_delayed_items(fs_info);
16cdcec7 4204
d814a491
EL
4205 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4206 BTRFS_DIRTY_METADATA_THRESH,
4207 fs_info->dirty_metadata_batch);
e2d84521 4208 if (ret > 0) {
0b246afa 4209 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4210 }
16cdcec7
MX
4211}
4212
2ff7e61e 4213void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4214{
2ff7e61e 4215 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4216}
585ad2c3 4217
2ff7e61e 4218void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4219{
2ff7e61e 4220 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4221}
6b80053d 4222
581c1760
QW
4223int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4224 struct btrfs_key *first_key)
6b80053d 4225{
5ab12d1f 4226 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4227 level, first_key);
6b80053d 4228}
0da5468f 4229
2ff7e61e 4230static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4231{
fe816d0f
NB
4232 /* cleanup FS via transaction */
4233 btrfs_cleanup_transaction(fs_info);
4234
0b246afa 4235 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4236 btrfs_run_delayed_iputs(fs_info);
0b246afa 4237 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4238
0b246afa
JM
4239 down_write(&fs_info->cleanup_work_sem);
4240 up_write(&fs_info->cleanup_work_sem);
acce952b 4241}
4242
143bede5 4243static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4244{
acce952b 4245 struct btrfs_ordered_extent *ordered;
acce952b 4246
199c2a9c 4247 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4248 /*
4249 * This will just short circuit the ordered completion stuff which will
4250 * make sure the ordered extent gets properly cleaned up.
4251 */
199c2a9c 4252 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4253 root_extent_list)
4254 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4255 spin_unlock(&root->ordered_extent_lock);
4256}
4257
4258static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4259{
4260 struct btrfs_root *root;
4261 struct list_head splice;
4262
4263 INIT_LIST_HEAD(&splice);
4264
4265 spin_lock(&fs_info->ordered_root_lock);
4266 list_splice_init(&fs_info->ordered_roots, &splice);
4267 while (!list_empty(&splice)) {
4268 root = list_first_entry(&splice, struct btrfs_root,
4269 ordered_root);
1de2cfde
JB
4270 list_move_tail(&root->ordered_root,
4271 &fs_info->ordered_roots);
199c2a9c 4272
2a85d9ca 4273 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4274 btrfs_destroy_ordered_extents(root);
4275
2a85d9ca
LB
4276 cond_resched();
4277 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4278 }
4279 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4280
4281 /*
4282 * We need this here because if we've been flipped read-only we won't
4283 * get sync() from the umount, so we need to make sure any ordered
4284 * extents that haven't had their dirty pages IO start writeout yet
4285 * actually get run and error out properly.
4286 */
4287 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4288}
4289
35a3621b 4290static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4291 struct btrfs_fs_info *fs_info)
acce952b 4292{
4293 struct rb_node *node;
4294 struct btrfs_delayed_ref_root *delayed_refs;
4295 struct btrfs_delayed_ref_node *ref;
4296 int ret = 0;
4297
4298 delayed_refs = &trans->delayed_refs;
4299
4300 spin_lock(&delayed_refs->lock);
d7df2c79 4301 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4302 spin_unlock(&delayed_refs->lock);
b79ce3dd 4303 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4304 return ret;
4305 }
4306
5c9d028b 4307 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4308 struct btrfs_delayed_ref_head *head;
0e0adbcf 4309 struct rb_node *n;
e78417d1 4310 bool pin_bytes = false;
acce952b 4311
d7df2c79
JB
4312 head = rb_entry(node, struct btrfs_delayed_ref_head,
4313 href_node);
3069bd26 4314 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4315 continue;
3069bd26 4316
d7df2c79 4317 spin_lock(&head->lock);
e3d03965 4318 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4319 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4320 ref_node);
d7df2c79 4321 ref->in_tree = 0;
e3d03965 4322 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4323 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4324 if (!list_empty(&ref->add_list))
4325 list_del(&ref->add_list);
d7df2c79
JB
4326 atomic_dec(&delayed_refs->num_entries);
4327 btrfs_put_delayed_ref(ref);
e78417d1 4328 }
d7df2c79
JB
4329 if (head->must_insert_reserved)
4330 pin_bytes = true;
4331 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4332 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4333 spin_unlock(&head->lock);
4334 spin_unlock(&delayed_refs->lock);
4335 mutex_unlock(&head->mutex);
acce952b 4336
f603bb94
NB
4337 if (pin_bytes) {
4338 struct btrfs_block_group *cache;
4339
4340 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4341 BUG_ON(!cache);
4342
4343 spin_lock(&cache->space_info->lock);
4344 spin_lock(&cache->lock);
4345 cache->pinned += head->num_bytes;
4346 btrfs_space_info_update_bytes_pinned(fs_info,
4347 cache->space_info, head->num_bytes);
4348 cache->reserved -= head->num_bytes;
4349 cache->space_info->bytes_reserved -= head->num_bytes;
4350 spin_unlock(&cache->lock);
4351 spin_unlock(&cache->space_info->lock);
4352 percpu_counter_add_batch(
4353 &cache->space_info->total_bytes_pinned,
4354 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4355
4356 btrfs_put_block_group(cache);
4357
4358 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4359 head->bytenr + head->num_bytes - 1);
4360 }
31890da0 4361 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4362 btrfs_put_delayed_ref_head(head);
acce952b 4363 cond_resched();
4364 spin_lock(&delayed_refs->lock);
4365 }
81f7eb00 4366 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4367
4368 spin_unlock(&delayed_refs->lock);
4369
4370 return ret;
4371}
4372
143bede5 4373static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4374{
4375 struct btrfs_inode *btrfs_inode;
4376 struct list_head splice;
4377
4378 INIT_LIST_HEAD(&splice);
4379
eb73c1b7
MX
4380 spin_lock(&root->delalloc_lock);
4381 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4382
4383 while (!list_empty(&splice)) {
fe816d0f 4384 struct inode *inode = NULL;
eb73c1b7
MX
4385 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4386 delalloc_inodes);
fe816d0f 4387 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4388 spin_unlock(&root->delalloc_lock);
acce952b 4389
fe816d0f
NB
4390 /*
4391 * Make sure we get a live inode and that it'll not disappear
4392 * meanwhile.
4393 */
4394 inode = igrab(&btrfs_inode->vfs_inode);
4395 if (inode) {
4396 invalidate_inode_pages2(inode->i_mapping);
4397 iput(inode);
4398 }
eb73c1b7 4399 spin_lock(&root->delalloc_lock);
acce952b 4400 }
eb73c1b7
MX
4401 spin_unlock(&root->delalloc_lock);
4402}
4403
4404static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4405{
4406 struct btrfs_root *root;
4407 struct list_head splice;
4408
4409 INIT_LIST_HEAD(&splice);
4410
4411 spin_lock(&fs_info->delalloc_root_lock);
4412 list_splice_init(&fs_info->delalloc_roots, &splice);
4413 while (!list_empty(&splice)) {
4414 root = list_first_entry(&splice, struct btrfs_root,
4415 delalloc_root);
00246528 4416 root = btrfs_grab_root(root);
eb73c1b7
MX
4417 BUG_ON(!root);
4418 spin_unlock(&fs_info->delalloc_root_lock);
4419
4420 btrfs_destroy_delalloc_inodes(root);
00246528 4421 btrfs_put_root(root);
eb73c1b7
MX
4422
4423 spin_lock(&fs_info->delalloc_root_lock);
4424 }
4425 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4426}
4427
2ff7e61e 4428static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4429 struct extent_io_tree *dirty_pages,
4430 int mark)
4431{
4432 int ret;
acce952b 4433 struct extent_buffer *eb;
4434 u64 start = 0;
4435 u64 end;
acce952b 4436
4437 while (1) {
4438 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4439 mark, NULL);
acce952b 4440 if (ret)
4441 break;
4442
91166212 4443 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4444 while (start <= end) {
0b246afa
JM
4445 eb = find_extent_buffer(fs_info, start);
4446 start += fs_info->nodesize;
fd8b2b61 4447 if (!eb)
acce952b 4448 continue;
fd8b2b61 4449 wait_on_extent_buffer_writeback(eb);
acce952b 4450
fd8b2b61
JB
4451 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4452 &eb->bflags))
4453 clear_extent_buffer_dirty(eb);
4454 free_extent_buffer_stale(eb);
acce952b 4455 }
4456 }
4457
4458 return ret;
4459}
4460
2ff7e61e 4461static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4462 struct extent_io_tree *unpin)
acce952b 4463{
acce952b 4464 u64 start;
4465 u64 end;
4466 int ret;
4467
acce952b 4468 while (1) {
0e6ec385
FM
4469 struct extent_state *cached_state = NULL;
4470
fcd5e742
LF
4471 /*
4472 * The btrfs_finish_extent_commit() may get the same range as
4473 * ours between find_first_extent_bit and clear_extent_dirty.
4474 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4475 * the same extent range.
4476 */
4477 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4478 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4479 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4480 if (ret) {
4481 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4482 break;
fcd5e742 4483 }
acce952b 4484
0e6ec385
FM
4485 clear_extent_dirty(unpin, start, end, &cached_state);
4486 free_extent_state(cached_state);
2ff7e61e 4487 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4488 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4489 cond_resched();
4490 }
4491
4492 return 0;
4493}
4494
32da5386 4495static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4496{
4497 struct inode *inode;
4498
4499 inode = cache->io_ctl.inode;
4500 if (inode) {
4501 invalidate_inode_pages2(inode->i_mapping);
4502 BTRFS_I(inode)->generation = 0;
4503 cache->io_ctl.inode = NULL;
4504 iput(inode);
4505 }
4506 btrfs_put_block_group(cache);
4507}
4508
4509void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4510 struct btrfs_fs_info *fs_info)
c79a1751 4511{
32da5386 4512 struct btrfs_block_group *cache;
c79a1751
LB
4513
4514 spin_lock(&cur_trans->dirty_bgs_lock);
4515 while (!list_empty(&cur_trans->dirty_bgs)) {
4516 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4517 struct btrfs_block_group,
c79a1751 4518 dirty_list);
c79a1751
LB
4519
4520 if (!list_empty(&cache->io_list)) {
4521 spin_unlock(&cur_trans->dirty_bgs_lock);
4522 list_del_init(&cache->io_list);
4523 btrfs_cleanup_bg_io(cache);
4524 spin_lock(&cur_trans->dirty_bgs_lock);
4525 }
4526
4527 list_del_init(&cache->dirty_list);
4528 spin_lock(&cache->lock);
4529 cache->disk_cache_state = BTRFS_DC_ERROR;
4530 spin_unlock(&cache->lock);
4531
4532 spin_unlock(&cur_trans->dirty_bgs_lock);
4533 btrfs_put_block_group(cache);
ba2c4d4e 4534 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4535 spin_lock(&cur_trans->dirty_bgs_lock);
4536 }
4537 spin_unlock(&cur_trans->dirty_bgs_lock);
4538
45ae2c18
NB
4539 /*
4540 * Refer to the definition of io_bgs member for details why it's safe
4541 * to use it without any locking
4542 */
c79a1751
LB
4543 while (!list_empty(&cur_trans->io_bgs)) {
4544 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4545 struct btrfs_block_group,
c79a1751 4546 io_list);
c79a1751
LB
4547
4548 list_del_init(&cache->io_list);
4549 spin_lock(&cache->lock);
4550 cache->disk_cache_state = BTRFS_DC_ERROR;
4551 spin_unlock(&cache->lock);
4552 btrfs_cleanup_bg_io(cache);
4553 }
4554}
4555
49b25e05 4556void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4557 struct btrfs_fs_info *fs_info)
49b25e05 4558{
bbbf7243
NB
4559 struct btrfs_device *dev, *tmp;
4560
2ff7e61e 4561 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4562 ASSERT(list_empty(&cur_trans->dirty_bgs));
4563 ASSERT(list_empty(&cur_trans->io_bgs));
4564
bbbf7243
NB
4565 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4566 post_commit_list) {
4567 list_del_init(&dev->post_commit_list);
4568 }
4569
2ff7e61e 4570 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4571
4a9d8bde 4572 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4573 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4574
4a9d8bde 4575 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4576 wake_up(&fs_info->transaction_wait);
49b25e05 4577
ccdf9b30 4578 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4579
2ff7e61e 4580 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4581 EXTENT_DIRTY);
fe119a6e 4582 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4583
4a9d8bde
MX
4584 cur_trans->state =TRANS_STATE_COMPLETED;
4585 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4586}
4587
2ff7e61e 4588static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4589{
4590 struct btrfs_transaction *t;
acce952b 4591
0b246afa 4592 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4593
0b246afa
JM
4594 spin_lock(&fs_info->trans_lock);
4595 while (!list_empty(&fs_info->trans_list)) {
4596 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4597 struct btrfs_transaction, list);
4598 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4599 refcount_inc(&t->use_count);
0b246afa 4600 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4601 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4602 btrfs_put_transaction(t);
0b246afa 4603 spin_lock(&fs_info->trans_lock);
724e2315
JB
4604 continue;
4605 }
0b246afa 4606 if (t == fs_info->running_transaction) {
724e2315 4607 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4608 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4609 /*
4610 * We wait for 0 num_writers since we don't hold a trans
4611 * handle open currently for this transaction.
4612 */
4613 wait_event(t->writer_wait,
4614 atomic_read(&t->num_writers) == 0);
4615 } else {
0b246afa 4616 spin_unlock(&fs_info->trans_lock);
724e2315 4617 }
2ff7e61e 4618 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4619
0b246afa
JM
4620 spin_lock(&fs_info->trans_lock);
4621 if (t == fs_info->running_transaction)
4622 fs_info->running_transaction = NULL;
acce952b 4623 list_del_init(&t->list);
0b246afa 4624 spin_unlock(&fs_info->trans_lock);
acce952b 4625
724e2315 4626 btrfs_put_transaction(t);
2ff7e61e 4627 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4628 spin_lock(&fs_info->trans_lock);
724e2315 4629 }
0b246afa
JM
4630 spin_unlock(&fs_info->trans_lock);
4631 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4632 btrfs_destroy_delayed_inodes(fs_info);
4633 btrfs_assert_delayed_root_empty(fs_info);
0b246afa
JM
4634 btrfs_destroy_all_delalloc_inodes(fs_info);
4635 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4636
4637 return 0;
4638}
4639
e8c9f186 4640static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4641 /* mandatory callbacks */
0b86a832 4642 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4643 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4644};