btrfs: add common checksum type validation
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
eb60ceac 42
319e4d06
QW
43#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
44 BTRFS_HEADER_FLAG_RELOC |\
45 BTRFS_SUPER_FLAG_ERROR |\
46 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
47 BTRFS_SUPER_FLAG_METADUMP |\
48 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 49
e8c9f186 50static const struct extent_io_ops btree_extent_io_ops;
8b712842 51static void end_workqueue_fn(struct btrfs_work *work);
143bede5 52static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 53static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 54 struct btrfs_fs_info *fs_info);
143bede5 55static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 56static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 57 struct extent_io_tree *dirty_pages,
58 int mark);
2ff7e61e 59static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
61static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 63
d352ac68 64/*
97eb6b69
DS
65 * btrfs_end_io_wq structs are used to do processing in task context when an IO
66 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
67 * by writes to insert metadata for new file extents after IO is complete.
68 */
97eb6b69 69struct btrfs_end_io_wq {
ce9adaa5
CM
70 struct bio *bio;
71 bio_end_io_t *end_io;
72 void *private;
73 struct btrfs_fs_info *info;
4e4cbee9 74 blk_status_t status;
bfebd8b5 75 enum btrfs_wq_endio_type metadata;
8b712842 76 struct btrfs_work work;
ce9adaa5 77};
0da5468f 78
97eb6b69
DS
79static struct kmem_cache *btrfs_end_io_wq_cache;
80
81int __init btrfs_end_io_wq_init(void)
82{
83 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
84 sizeof(struct btrfs_end_io_wq),
85 0,
fba4b697 86 SLAB_MEM_SPREAD,
97eb6b69
DS
87 NULL);
88 if (!btrfs_end_io_wq_cache)
89 return -ENOMEM;
90 return 0;
91}
92
e67c718b 93void __cold btrfs_end_io_wq_exit(void)
97eb6b69 94{
5598e900 95 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
96}
97
d352ac68
CM
98/*
99 * async submit bios are used to offload expensive checksumming
100 * onto the worker threads. They checksum file and metadata bios
101 * just before they are sent down the IO stack.
102 */
44b8bd7e 103struct async_submit_bio {
c6100a4b 104 void *private_data;
44b8bd7e 105 struct bio *bio;
a758781d 106 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 107 int mirror_num;
eaf25d93
CM
108 /*
109 * bio_offset is optional, can be used if the pages in the bio
110 * can't tell us where in the file the bio should go
111 */
112 u64 bio_offset;
8b712842 113 struct btrfs_work work;
4e4cbee9 114 blk_status_t status;
44b8bd7e
CM
115};
116
85d4e461
CM
117/*
118 * Lockdep class keys for extent_buffer->lock's in this root. For a given
119 * eb, the lockdep key is determined by the btrfs_root it belongs to and
120 * the level the eb occupies in the tree.
121 *
122 * Different roots are used for different purposes and may nest inside each
123 * other and they require separate keysets. As lockdep keys should be
124 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
125 * by btrfs_root->root_key.objectid. This ensures that all special purpose
126 * roots have separate keysets.
4008c04a 127 *
85d4e461
CM
128 * Lock-nesting across peer nodes is always done with the immediate parent
129 * node locked thus preventing deadlock. As lockdep doesn't know this, use
130 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 131 *
85d4e461
CM
132 * The key is set by the readpage_end_io_hook after the buffer has passed
133 * csum validation but before the pages are unlocked. It is also set by
134 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 135 *
85d4e461
CM
136 * We also add a check to make sure the highest level of the tree is the
137 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
138 * needs update as well.
4008c04a
CM
139 */
140#ifdef CONFIG_DEBUG_LOCK_ALLOC
141# if BTRFS_MAX_LEVEL != 8
142# error
143# endif
85d4e461
CM
144
145static struct btrfs_lockdep_keyset {
146 u64 id; /* root objectid */
147 const char *name_stem; /* lock name stem */
148 char names[BTRFS_MAX_LEVEL + 1][20];
149 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
150} btrfs_lockdep_keysets[] = {
151 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
152 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
153 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
154 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
155 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
156 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 157 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
158 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
159 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
160 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 161 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 162 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 163 { .id = 0, .name_stem = "tree" },
4008c04a 164};
85d4e461
CM
165
166void __init btrfs_init_lockdep(void)
167{
168 int i, j;
169
170 /* initialize lockdep class names */
171 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
172 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
173
174 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
175 snprintf(ks->names[j], sizeof(ks->names[j]),
176 "btrfs-%s-%02d", ks->name_stem, j);
177 }
178}
179
180void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
181 int level)
182{
183 struct btrfs_lockdep_keyset *ks;
184
185 BUG_ON(level >= ARRAY_SIZE(ks->keys));
186
187 /* find the matching keyset, id 0 is the default entry */
188 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
189 if (ks->id == objectid)
190 break;
191
192 lockdep_set_class_and_name(&eb->lock,
193 &ks->keys[level], ks->names[level]);
194}
195
4008c04a
CM
196#endif
197
d352ac68
CM
198/*
199 * extents on the btree inode are pretty simple, there's one extent
200 * that covers the entire device
201 */
6af49dbd 202struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 203 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 204 int create)
7eccb903 205{
3ffbd68c 206 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 207 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
208 struct extent_map *em;
209 int ret;
210
890871be 211 read_lock(&em_tree->lock);
d1310b2e 212 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 213 if (em) {
0b246afa 214 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 215 read_unlock(&em_tree->lock);
5f39d397 216 goto out;
a061fc8d 217 }
890871be 218 read_unlock(&em_tree->lock);
7b13b7b1 219
172ddd60 220 em = alloc_extent_map();
5f39d397
CM
221 if (!em) {
222 em = ERR_PTR(-ENOMEM);
223 goto out;
224 }
225 em->start = 0;
0afbaf8c 226 em->len = (u64)-1;
c8b97818 227 em->block_len = (u64)-1;
5f39d397 228 em->block_start = 0;
0b246afa 229 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 230
890871be 231 write_lock(&em_tree->lock);
09a2a8f9 232 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
233 if (ret == -EEXIST) {
234 free_extent_map(em);
7b13b7b1 235 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 236 if (!em)
0433f20d 237 em = ERR_PTR(-EIO);
5f39d397 238 } else if (ret) {
7b13b7b1 239 free_extent_map(em);
0433f20d 240 em = ERR_PTR(ret);
5f39d397 241 }
890871be 242 write_unlock(&em_tree->lock);
7b13b7b1 243
5f39d397
CM
244out:
245 return em;
7eccb903
CM
246}
247
9ed57367 248u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 249{
9678c543 250 return crc32c(seed, data, len);
19c00ddc
CM
251}
252
0b5e3daf 253void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 254{
7e75bf3f 255 put_unaligned_le32(~crc, result);
19c00ddc
CM
256}
257
d352ac68 258/*
2996e1f8
JT
259 * Compute the csum of a btree block and store the result to provided buffer.
260 *
261 * Returns error if the extent buffer cannot be mapped.
d352ac68 262 */
2996e1f8 263static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 264{
19c00ddc
CM
265 unsigned long len;
266 unsigned long cur_len;
267 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
268 char *kaddr;
269 unsigned long map_start;
270 unsigned long map_len;
271 int err;
272 u32 crc = ~(u32)0;
273
274 len = buf->len - offset;
d397712b 275 while (len > 0) {
d2e174d5
JT
276 /*
277 * Note: we don't need to check for the err == 1 case here, as
278 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
279 * and 'min_len = 32' and the currently implemented mapping
280 * algorithm we cannot cross a page boundary.
281 */
19c00ddc 282 err = map_private_extent_buffer(buf, offset, 32,
a6591715 283 &kaddr, &map_start, &map_len);
c53839fc 284 if (WARN_ON(err))
8bd98f0e 285 return err;
19c00ddc 286 cur_len = min(len, map_len - (offset - map_start));
b0496686 287 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
288 crc, cur_len);
289 len -= cur_len;
290 offset += cur_len;
19c00ddc 291 }
71a63551 292 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
19c00ddc
CM
296 return 0;
297}
298
d352ac68
CM
299/*
300 * we can't consider a given block up to date unless the transid of the
301 * block matches the transid in the parent node's pointer. This is how we
302 * detect blocks that either didn't get written at all or got written
303 * in the wrong place.
304 */
1259ab75 305static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
306 struct extent_buffer *eb, u64 parent_transid,
307 int atomic)
1259ab75 308{
2ac55d41 309 struct extent_state *cached_state = NULL;
1259ab75 310 int ret;
2755a0de 311 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
312
313 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
314 return 0;
315
b9fab919
CM
316 if (atomic)
317 return -EAGAIN;
318
a26e8c9f
JB
319 if (need_lock) {
320 btrfs_tree_read_lock(eb);
300aa896 321 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
322 }
323
2ac55d41 324 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 325 &cached_state);
0b32f4bb 326 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
327 btrfs_header_generation(eb) == parent_transid) {
328 ret = 0;
329 goto out;
330 }
94647322
DS
331 btrfs_err_rl(eb->fs_info,
332 "parent transid verify failed on %llu wanted %llu found %llu",
333 eb->start,
29549aec 334 parent_transid, btrfs_header_generation(eb));
1259ab75 335 ret = 1;
a26e8c9f
JB
336
337 /*
338 * Things reading via commit roots that don't have normal protection,
339 * like send, can have a really old block in cache that may point at a
01327610 340 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
341 * if we find an eb that is under IO (dirty/writeback) because we could
342 * end up reading in the stale data and then writing it back out and
343 * making everybody very sad.
344 */
345 if (!extent_buffer_under_io(eb))
346 clear_extent_buffer_uptodate(eb);
33958dc6 347out:
2ac55d41 348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 349 &cached_state);
472b909f
JB
350 if (need_lock)
351 btrfs_tree_read_unlock_blocking(eb);
1259ab75 352 return ret;
1259ab75
CM
353}
354
e7e16f48
JT
355static bool btrfs_supported_super_csum(u16 csum_type)
356{
357 switch (csum_type) {
358 case BTRFS_CSUM_TYPE_CRC32:
359 return true;
360 default:
361 return false;
362 }
363}
364
1104a885
DS
365/*
366 * Return 0 if the superblock checksum type matches the checksum value of that
367 * algorithm. Pass the raw disk superblock data.
368 */
ab8d0fc4
JM
369static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
370 char *raw_disk_sb)
1104a885
DS
371{
372 struct btrfs_super_block *disk_sb =
373 (struct btrfs_super_block *)raw_disk_sb;
374 u16 csum_type = btrfs_super_csum_type(disk_sb);
e7e16f48
JT
375
376 if (!btrfs_supported_super_csum(csum_type)) {
377 btrfs_err(fs_info, "unsupported checksum algorithm %u",
378 csum_type);
379 return 1;
380 }
1104a885
DS
381
382 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
383 u32 crc = ~(u32)0;
776c4a7c 384 char result[sizeof(crc)];
1104a885
DS
385
386 /*
387 * The super_block structure does not span the whole
388 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 389 * is filled with zeros and is included in the checksum.
1104a885
DS
390 */
391 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
392 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
393 btrfs_csum_final(crc, result);
394
776c4a7c 395 if (memcmp(raw_disk_sb, result, sizeof(result)))
e7e16f48 396 return 1;
1104a885
DS
397 }
398
e7e16f48 399 return 0;
1104a885
DS
400}
401
e064d5e9 402int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 403 struct btrfs_key *first_key, u64 parent_transid)
581c1760 404{
e064d5e9 405 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
406 int found_level;
407 struct btrfs_key found_key;
408 int ret;
409
410 found_level = btrfs_header_level(eb);
411 if (found_level != level) {
63489055
QW
412 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
413 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
414 btrfs_err(fs_info,
415"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
416 eb->start, level, found_level);
581c1760
QW
417 return -EIO;
418 }
419
420 if (!first_key)
421 return 0;
422
5d41be6f
QW
423 /*
424 * For live tree block (new tree blocks in current transaction),
425 * we need proper lock context to avoid race, which is impossible here.
426 * So we only checks tree blocks which is read from disk, whose
427 * generation <= fs_info->last_trans_committed.
428 */
429 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
430 return 0;
581c1760
QW
431 if (found_level)
432 btrfs_node_key_to_cpu(eb, &found_key, 0);
433 else
434 btrfs_item_key_to_cpu(eb, &found_key, 0);
435 ret = btrfs_comp_cpu_keys(first_key, &found_key);
436
581c1760 437 if (ret) {
63489055
QW
438 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
439 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 440 btrfs_err(fs_info,
ff76a864
LB
441"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442 eb->start, parent_transid, first_key->objectid,
443 first_key->type, first_key->offset,
444 found_key.objectid, found_key.type,
445 found_key.offset);
581c1760 446 }
581c1760
QW
447 return ret;
448}
449
d352ac68
CM
450/*
451 * helper to read a given tree block, doing retries as required when
452 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
453 *
454 * @parent_transid: expected transid, skip check if 0
455 * @level: expected level, mandatory check
456 * @first_key: expected key of first slot, skip check if NULL
d352ac68 457 */
5ab12d1f 458static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
459 u64 parent_transid, int level,
460 struct btrfs_key *first_key)
f188591e 461{
5ab12d1f 462 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 463 struct extent_io_tree *io_tree;
ea466794 464 int failed = 0;
f188591e
CM
465 int ret;
466 int num_copies = 0;
467 int mirror_num = 0;
ea466794 468 int failed_mirror = 0;
f188591e 469
0b246afa 470 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 471 while (1) {
f8397d69 472 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 473 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 474 if (!ret) {
581c1760 475 if (verify_parent_transid(io_tree, eb,
b9fab919 476 parent_transid, 0))
256dd1bb 477 ret = -EIO;
e064d5e9 478 else if (btrfs_verify_level_key(eb, level,
448de471 479 first_key, parent_transid))
581c1760
QW
480 ret = -EUCLEAN;
481 else
482 break;
256dd1bb 483 }
d397712b 484
0b246afa 485 num_copies = btrfs_num_copies(fs_info,
f188591e 486 eb->start, eb->len);
4235298e 487 if (num_copies == 1)
ea466794 488 break;
4235298e 489
5cf1ab56
JB
490 if (!failed_mirror) {
491 failed = 1;
492 failed_mirror = eb->read_mirror;
493 }
494
f188591e 495 mirror_num++;
ea466794
JB
496 if (mirror_num == failed_mirror)
497 mirror_num++;
498
4235298e 499 if (mirror_num > num_copies)
ea466794 500 break;
f188591e 501 }
ea466794 502
c0901581 503 if (failed && !ret && failed_mirror)
20a1fbf9 504 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
505
506 return ret;
f188591e 507}
19c00ddc 508
d352ac68 509/*
d397712b
CM
510 * checksum a dirty tree block before IO. This has extra checks to make sure
511 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 512 */
d397712b 513
01d58472 514static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 515{
4eee4fa4 516 u64 start = page_offset(page);
19c00ddc 517 u64 found_start;
2996e1f8
JT
518 u8 result[BTRFS_CSUM_SIZE];
519 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 520 struct extent_buffer *eb;
8d47a0d8 521 int ret;
f188591e 522
4f2de97a
JB
523 eb = (struct extent_buffer *)page->private;
524 if (page != eb->pages[0])
525 return 0;
0f805531 526
19c00ddc 527 found_start = btrfs_header_bytenr(eb);
0f805531
AL
528 /*
529 * Please do not consolidate these warnings into a single if.
530 * It is useful to know what went wrong.
531 */
532 if (WARN_ON(found_start != start))
533 return -EUCLEAN;
534 if (WARN_ON(!PageUptodate(page)))
535 return -EUCLEAN;
536
de37aa51 537 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
538 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
539
2996e1f8
JT
540 if (csum_tree_block(eb, result))
541 return -EINVAL;
542
8d47a0d8
QW
543 if (btrfs_header_level(eb))
544 ret = btrfs_check_node(eb);
545 else
546 ret = btrfs_check_leaf_full(eb);
547
548 if (ret < 0) {
549 btrfs_err(fs_info,
550 "block=%llu write time tree block corruption detected",
551 eb->start);
552 return ret;
553 }
2996e1f8 554 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 555
2996e1f8 556 return 0;
19c00ddc
CM
557}
558
b0c9b3b0 559static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 560{
b0c9b3b0 561 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 562 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 563 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
564 int ret = 1;
565
0a4e5586 566 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 567 while (fs_devices) {
7239ff4b
NB
568 u8 *metadata_uuid;
569
570 /*
571 * Checking the incompat flag is only valid for the current
572 * fs. For seed devices it's forbidden to have their uuid
573 * changed so reading ->fsid in this case is fine
574 */
575 if (fs_devices == fs_info->fs_devices &&
576 btrfs_fs_incompat(fs_info, METADATA_UUID))
577 metadata_uuid = fs_devices->metadata_uuid;
578 else
579 metadata_uuid = fs_devices->fsid;
580
581 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
582 ret = 0;
583 break;
584 }
585 fs_devices = fs_devices->seed;
586 }
587 return ret;
588}
589
facc8a22
MX
590static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
591 u64 phy_offset, struct page *page,
592 u64 start, u64 end, int mirror)
ce9adaa5 593{
ce9adaa5
CM
594 u64 found_start;
595 int found_level;
ce9adaa5
CM
596 struct extent_buffer *eb;
597 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 598 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 599 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 600 int ret = 0;
2996e1f8 601 u8 result[BTRFS_CSUM_SIZE];
727011e0 602 int reads_done;
ce9adaa5 603
ce9adaa5
CM
604 if (!page->private)
605 goto out;
d397712b 606
4f2de97a 607 eb = (struct extent_buffer *)page->private;
d397712b 608
0b32f4bb
JB
609 /* the pending IO might have been the only thing that kept this buffer
610 * in memory. Make sure we have a ref for all this other checks
611 */
612 extent_buffer_get(eb);
613
614 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
615 if (!reads_done)
616 goto err;
f188591e 617
5cf1ab56 618 eb->read_mirror = mirror;
656f30db 619 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
620 ret = -EIO;
621 goto err;
622 }
623
ce9adaa5 624 found_start = btrfs_header_bytenr(eb);
727011e0 625 if (found_start != eb->start) {
893bf4b1
SY
626 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
627 eb->start, found_start);
f188591e 628 ret = -EIO;
ce9adaa5
CM
629 goto err;
630 }
b0c9b3b0 631 if (check_tree_block_fsid(eb)) {
02873e43
ZL
632 btrfs_err_rl(fs_info, "bad fsid on block %llu",
633 eb->start);
1259ab75
CM
634 ret = -EIO;
635 goto err;
636 }
ce9adaa5 637 found_level = btrfs_header_level(eb);
1c24c3ce 638 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
639 btrfs_err(fs_info, "bad tree block level %d on %llu",
640 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
641 ret = -EIO;
642 goto err;
643 }
ce9adaa5 644
85d4e461
CM
645 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
646 eb, found_level);
4008c04a 647
2996e1f8 648 ret = csum_tree_block(eb, result);
8bd98f0e 649 if (ret)
a826d6dc 650 goto err;
a826d6dc 651
2996e1f8
JT
652 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
653 u32 val;
654 u32 found = 0;
655
656 memcpy(&found, result, csum_size);
657
658 read_extent_buffer(eb, &val, 0, csum_size);
659 btrfs_warn_rl(fs_info,
660 "%s checksum verify failed on %llu wanted %x found %x level %d",
661 fs_info->sb->s_id, eb->start,
662 val, found, btrfs_header_level(eb));
663 ret = -EUCLEAN;
664 goto err;
665 }
666
a826d6dc
JB
667 /*
668 * If this is a leaf block and it is corrupt, set the corrupt bit so
669 * that we don't try and read the other copies of this block, just
670 * return -EIO.
671 */
1c4360ee 672 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
673 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
674 ret = -EIO;
675 }
ce9adaa5 676
813fd1dc 677 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
678 ret = -EIO;
679
0b32f4bb
JB
680 if (!ret)
681 set_extent_buffer_uptodate(eb);
75391f0d
QW
682 else
683 btrfs_err(fs_info,
684 "block=%llu read time tree block corruption detected",
685 eb->start);
ce9adaa5 686err:
79fb65a1
JB
687 if (reads_done &&
688 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 689 btree_readahead_hook(eb, ret);
4bb31e92 690
53b381b3
DW
691 if (ret) {
692 /*
693 * our io error hook is going to dec the io pages
694 * again, we have to make sure it has something
695 * to decrement
696 */
697 atomic_inc(&eb->io_pages);
0b32f4bb 698 clear_extent_buffer_uptodate(eb);
53b381b3 699 }
0b32f4bb 700 free_extent_buffer(eb);
ce9adaa5 701out:
f188591e 702 return ret;
ce9adaa5
CM
703}
704
4246a0b6 705static void end_workqueue_bio(struct bio *bio)
ce9adaa5 706{
97eb6b69 707 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 708 struct btrfs_fs_info *fs_info;
9e0af237
LB
709 struct btrfs_workqueue *wq;
710 btrfs_work_func_t func;
ce9adaa5 711
ce9adaa5 712 fs_info = end_io_wq->info;
4e4cbee9 713 end_io_wq->status = bio->bi_status;
d20f7043 714
37226b21 715 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717 wq = fs_info->endio_meta_write_workers;
718 func = btrfs_endio_meta_write_helper;
719 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720 wq = fs_info->endio_freespace_worker;
721 func = btrfs_freespace_write_helper;
722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723 wq = fs_info->endio_raid56_workers;
724 func = btrfs_endio_raid56_helper;
725 } else {
726 wq = fs_info->endio_write_workers;
727 func = btrfs_endio_write_helper;
728 }
d20f7043 729 } else {
8b110e39
MX
730 if (unlikely(end_io_wq->metadata ==
731 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732 wq = fs_info->endio_repair_workers;
733 func = btrfs_endio_repair_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
735 wq = fs_info->endio_raid56_workers;
736 func = btrfs_endio_raid56_helper;
737 } else if (end_io_wq->metadata) {
738 wq = fs_info->endio_meta_workers;
739 func = btrfs_endio_meta_helper;
740 } else {
741 wq = fs_info->endio_workers;
742 func = btrfs_endio_helper;
743 }
d20f7043 744 }
9e0af237
LB
745
746 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
748}
749
4e4cbee9 750blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 751 enum btrfs_wq_endio_type metadata)
0b86a832 752{
97eb6b69 753 struct btrfs_end_io_wq *end_io_wq;
8b110e39 754
97eb6b69 755 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 756 if (!end_io_wq)
4e4cbee9 757 return BLK_STS_RESOURCE;
ce9adaa5
CM
758
759 end_io_wq->private = bio->bi_private;
760 end_io_wq->end_io = bio->bi_end_io;
22c59948 761 end_io_wq->info = info;
4e4cbee9 762 end_io_wq->status = 0;
ce9adaa5 763 end_io_wq->bio = bio;
22c59948 764 end_io_wq->metadata = metadata;
ce9adaa5
CM
765
766 bio->bi_private = end_io_wq;
767 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
768 return 0;
769}
770
4a69a410
CM
771static void run_one_async_start(struct btrfs_work *work)
772{
4a69a410 773 struct async_submit_bio *async;
4e4cbee9 774 blk_status_t ret;
4a69a410
CM
775
776 async = container_of(work, struct async_submit_bio, work);
c6100a4b 777 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
778 async->bio_offset);
779 if (ret)
4e4cbee9 780 async->status = ret;
4a69a410
CM
781}
782
06ea01b1
DS
783/*
784 * In order to insert checksums into the metadata in large chunks, we wait
785 * until bio submission time. All the pages in the bio are checksummed and
786 * sums are attached onto the ordered extent record.
787 *
788 * At IO completion time the csums attached on the ordered extent record are
789 * inserted into the tree.
790 */
4a69a410 791static void run_one_async_done(struct btrfs_work *work)
8b712842 792{
8b712842 793 struct async_submit_bio *async;
06ea01b1
DS
794 struct inode *inode;
795 blk_status_t ret;
8b712842
CM
796
797 async = container_of(work, struct async_submit_bio, work);
06ea01b1 798 inode = async->private_data;
4854ddd0 799
bb7ab3b9 800 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
801 if (async->status) {
802 async->bio->bi_status = async->status;
4246a0b6 803 bio_endio(async->bio);
79787eaa
JM
804 return;
805 }
806
06ea01b1
DS
807 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
808 async->mirror_num, 1);
809 if (ret) {
810 async->bio->bi_status = ret;
811 bio_endio(async->bio);
812 }
4a69a410
CM
813}
814
815static void run_one_async_free(struct btrfs_work *work)
816{
817 struct async_submit_bio *async;
818
819 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
820 kfree(async);
821}
822
8c27cb35
LT
823blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
824 int mirror_num, unsigned long bio_flags,
825 u64 bio_offset, void *private_data,
e288c080 826 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
827{
828 struct async_submit_bio *async;
829
830 async = kmalloc(sizeof(*async), GFP_NOFS);
831 if (!async)
4e4cbee9 832 return BLK_STS_RESOURCE;
44b8bd7e 833
c6100a4b 834 async->private_data = private_data;
44b8bd7e
CM
835 async->bio = bio;
836 async->mirror_num = mirror_num;
4a69a410 837 async->submit_bio_start = submit_bio_start;
4a69a410 838
9e0af237 839 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 840 run_one_async_done, run_one_async_free);
4a69a410 841
eaf25d93 842 async->bio_offset = bio_offset;
8c8bee1d 843
4e4cbee9 844 async->status = 0;
79787eaa 845
67f055c7 846 if (op_is_sync(bio->bi_opf))
5cdc7ad3 847 btrfs_set_work_high_priority(&async->work);
d313d7a3 848
5cdc7ad3 849 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
850 return 0;
851}
852
4e4cbee9 853static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 854{
2c30c71b 855 struct bio_vec *bvec;
ce3ed71a 856 struct btrfs_root *root;
2b070cfe 857 int ret = 0;
6dc4f100 858 struct bvec_iter_all iter_all;
ce3ed71a 859
c09abff8 860 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 861 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 862 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 863 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
864 if (ret)
865 break;
ce3ed71a 866 }
2c30c71b 867
4e4cbee9 868 return errno_to_blk_status(ret);
ce3ed71a
CM
869}
870
d0ee3934 871static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 872 u64 bio_offset)
22c59948 873{
8b712842
CM
874 /*
875 * when we're called for a write, we're already in the async
5443be45 876 * submission context. Just jump into btrfs_map_bio
8b712842 877 */
79787eaa 878 return btree_csum_one_bio(bio);
4a69a410 879}
22c59948 880
9b4e675a
DS
881static int check_async_write(struct btrfs_fs_info *fs_info,
882 struct btrfs_inode *bi)
de0022b9 883{
6300463b
LB
884 if (atomic_read(&bi->sync_writers))
885 return 0;
9b4e675a 886 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 887 return 0;
de0022b9
JB
888 return 1;
889}
890
a56b1c7b 891static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
892 int mirror_num,
893 unsigned long bio_flags)
44b8bd7e 894{
0b246afa 895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 896 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 897 blk_status_t ret;
cad321ad 898
37226b21 899 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
900 /*
901 * called for a read, do the setup so that checksum validation
902 * can happen in the async kernel threads
903 */
0b246afa
JM
904 ret = btrfs_bio_wq_end_io(fs_info, bio,
905 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 906 if (ret)
61891923 907 goto out_w_error;
2ff7e61e 908 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
909 } else if (!async) {
910 ret = btree_csum_one_bio(bio);
911 if (ret)
61891923 912 goto out_w_error;
2ff7e61e 913 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
914 } else {
915 /*
916 * kthread helpers are used to submit writes so that
917 * checksumming can happen in parallel across all CPUs
918 */
c6100a4b 919 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 920 0, inode, btree_submit_bio_start);
44b8bd7e 921 }
d313d7a3 922
4246a0b6
CH
923 if (ret)
924 goto out_w_error;
925 return 0;
926
61891923 927out_w_error:
4e4cbee9 928 bio->bi_status = ret;
4246a0b6 929 bio_endio(bio);
61891923 930 return ret;
44b8bd7e
CM
931}
932
3dd1462e 933#ifdef CONFIG_MIGRATION
784b4e29 934static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
935 struct page *newpage, struct page *page,
936 enum migrate_mode mode)
784b4e29
CM
937{
938 /*
939 * we can't safely write a btree page from here,
940 * we haven't done the locking hook
941 */
942 if (PageDirty(page))
943 return -EAGAIN;
944 /*
945 * Buffers may be managed in a filesystem specific way.
946 * We must have no buffers or drop them.
947 */
948 if (page_has_private(page) &&
949 !try_to_release_page(page, GFP_KERNEL))
950 return -EAGAIN;
a6bc32b8 951 return migrate_page(mapping, newpage, page, mode);
784b4e29 952}
3dd1462e 953#endif
784b4e29 954
0da5468f
CM
955
956static int btree_writepages(struct address_space *mapping,
957 struct writeback_control *wbc)
958{
e2d84521
MX
959 struct btrfs_fs_info *fs_info;
960 int ret;
961
d8d5f3e1 962 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
963
964 if (wbc->for_kupdate)
965 return 0;
966
e2d84521 967 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 968 /* this is a bit racy, but that's ok */
d814a491
EL
969 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
970 BTRFS_DIRTY_METADATA_THRESH,
971 fs_info->dirty_metadata_batch);
e2d84521 972 if (ret < 0)
793955bc 973 return 0;
793955bc 974 }
0b32f4bb 975 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
976}
977
b2950863 978static int btree_readpage(struct file *file, struct page *page)
5f39d397 979{
d1310b2e
CM
980 struct extent_io_tree *tree;
981 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 982 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 983}
22b0ebda 984
70dec807 985static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 986{
98509cfc 987 if (PageWriteback(page) || PageDirty(page))
d397712b 988 return 0;
0c4e538b 989
f7a52a40 990 return try_release_extent_buffer(page);
d98237b3
CM
991}
992
d47992f8
LC
993static void btree_invalidatepage(struct page *page, unsigned int offset,
994 unsigned int length)
d98237b3 995{
d1310b2e
CM
996 struct extent_io_tree *tree;
997 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
998 extent_invalidatepage(tree, page, offset);
999 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1000 if (PagePrivate(page)) {
efe120a0
FH
1001 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1002 "page private not zero on page %llu",
1003 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1004 ClearPagePrivate(page);
1005 set_page_private(page, 0);
09cbfeaf 1006 put_page(page);
9ad6b7bc 1007 }
d98237b3
CM
1008}
1009
0b32f4bb
JB
1010static int btree_set_page_dirty(struct page *page)
1011{
bb146eb2 1012#ifdef DEBUG
0b32f4bb
JB
1013 struct extent_buffer *eb;
1014
1015 BUG_ON(!PagePrivate(page));
1016 eb = (struct extent_buffer *)page->private;
1017 BUG_ON(!eb);
1018 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1019 BUG_ON(!atomic_read(&eb->refs));
1020 btrfs_assert_tree_locked(eb);
bb146eb2 1021#endif
0b32f4bb
JB
1022 return __set_page_dirty_nobuffers(page);
1023}
1024
7f09410b 1025static const struct address_space_operations btree_aops = {
d98237b3 1026 .readpage = btree_readpage,
0da5468f 1027 .writepages = btree_writepages,
5f39d397
CM
1028 .releasepage = btree_releasepage,
1029 .invalidatepage = btree_invalidatepage,
5a92bc88 1030#ifdef CONFIG_MIGRATION
784b4e29 1031 .migratepage = btree_migratepage,
5a92bc88 1032#endif
0b32f4bb 1033 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1034};
1035
2ff7e61e 1036void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1037{
5f39d397 1038 struct extent_buffer *buf = NULL;
537f38f0 1039 int ret;
090d1875 1040
2ff7e61e 1041 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1042 if (IS_ERR(buf))
6197d86e 1043 return;
537f38f0 1044
c2ccfbc6 1045 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1046 if (ret < 0)
1047 free_extent_buffer_stale(buf);
1048 else
1049 free_extent_buffer(buf);
090d1875
CM
1050}
1051
2ff7e61e 1052int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1053 int mirror_num, struct extent_buffer **eb)
1054{
1055 struct extent_buffer *buf = NULL;
ab0fff03
AJ
1056 int ret;
1057
2ff7e61e 1058 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1059 if (IS_ERR(buf))
ab0fff03
AJ
1060 return 0;
1061
1062 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1063
c2ccfbc6 1064 ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
ab0fff03 1065 if (ret) {
537f38f0 1066 free_extent_buffer_stale(buf);
ab0fff03
AJ
1067 return ret;
1068 }
1069
1070 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
537f38f0 1071 free_extent_buffer_stale(buf);
ab0fff03 1072 return -EIO;
0b32f4bb 1073 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1074 *eb = buf;
1075 } else {
1076 free_extent_buffer(buf);
1077 }
1078 return 0;
1079}
1080
2ff7e61e
JM
1081struct extent_buffer *btrfs_find_create_tree_block(
1082 struct btrfs_fs_info *fs_info,
1083 u64 bytenr)
0999df54 1084{
0b246afa
JM
1085 if (btrfs_is_testing(fs_info))
1086 return alloc_test_extent_buffer(fs_info, bytenr);
1087 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1088}
1089
581c1760
QW
1090/*
1091 * Read tree block at logical address @bytenr and do variant basic but critical
1092 * verification.
1093 *
1094 * @parent_transid: expected transid of this tree block, skip check if 0
1095 * @level: expected level, mandatory check
1096 * @first_key: expected key in slot 0, skip check if NULL
1097 */
2ff7e61e 1098struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1099 u64 parent_transid, int level,
1100 struct btrfs_key *first_key)
0999df54
CM
1101{
1102 struct extent_buffer *buf = NULL;
0999df54
CM
1103 int ret;
1104
2ff7e61e 1105 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1106 if (IS_ERR(buf))
1107 return buf;
0999df54 1108
5ab12d1f 1109 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1110 level, first_key);
0f0fe8f7 1111 if (ret) {
537f38f0 1112 free_extent_buffer_stale(buf);
64c043de 1113 return ERR_PTR(ret);
0f0fe8f7 1114 }
5f39d397 1115 return buf;
ce9adaa5 1116
eb60ceac
CM
1117}
1118
6a884d7d 1119void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1120{
6a884d7d 1121 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1122 if (btrfs_header_generation(buf) ==
e2d84521 1123 fs_info->running_transaction->transid) {
b9447ef8 1124 btrfs_assert_tree_locked(buf);
b4ce94de 1125
b9473439 1126 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1127 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1128 -buf->len,
1129 fs_info->dirty_metadata_batch);
ed7b63eb 1130 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1131 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1132 clear_extent_buffer_dirty(buf);
1133 }
925baedd 1134 }
5f39d397
CM
1135}
1136
8257b2dc
MX
1137static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1138{
1139 struct btrfs_subvolume_writers *writers;
1140 int ret;
1141
1142 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1143 if (!writers)
1144 return ERR_PTR(-ENOMEM);
1145
8a5a916d 1146 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1147 if (ret < 0) {
1148 kfree(writers);
1149 return ERR_PTR(ret);
1150 }
1151
1152 init_waitqueue_head(&writers->wait);
1153 return writers;
1154}
1155
1156static void
1157btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1158{
1159 percpu_counter_destroy(&writers->counter);
1160 kfree(writers);
1161}
1162
da17066c 1163static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1164 u64 objectid)
d97e63b6 1165{
7c0260ee 1166 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1167 root->node = NULL;
a28ec197 1168 root->commit_root = NULL;
27cdeb70 1169 root->state = 0;
d68fc57b 1170 root->orphan_cleanup_state = 0;
0b86a832 1171
0f7d52f4 1172 root->last_trans = 0;
13a8a7c8 1173 root->highest_objectid = 0;
eb73c1b7 1174 root->nr_delalloc_inodes = 0;
199c2a9c 1175 root->nr_ordered_extents = 0;
6bef4d31 1176 root->inode_tree = RB_ROOT;
16cdcec7 1177 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1178 root->block_rsv = NULL;
0b86a832
CM
1179
1180 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1181 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1182 INIT_LIST_HEAD(&root->delalloc_inodes);
1183 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1184 INIT_LIST_HEAD(&root->ordered_extents);
1185 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1186 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1187 INIT_LIST_HEAD(&root->logged_list[0]);
1188 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1189 spin_lock_init(&root->inode_lock);
eb73c1b7 1190 spin_lock_init(&root->delalloc_lock);
199c2a9c 1191 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1192 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1193 spin_lock_init(&root->log_extents_lock[0]);
1194 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1195 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1196 mutex_init(&root->objectid_mutex);
e02119d5 1197 mutex_init(&root->log_mutex);
31f3d255 1198 mutex_init(&root->ordered_extent_mutex);
573bfb72 1199 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1200 init_waitqueue_head(&root->log_writer_wait);
1201 init_waitqueue_head(&root->log_commit_wait[0]);
1202 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1203 INIT_LIST_HEAD(&root->log_ctxs[0]);
1204 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1205 atomic_set(&root->log_commit[0], 0);
1206 atomic_set(&root->log_commit[1], 0);
1207 atomic_set(&root->log_writers, 0);
2ecb7923 1208 atomic_set(&root->log_batch, 0);
0700cea7 1209 refcount_set(&root->refs, 1);
ea14b57f 1210 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1211 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1212 atomic_set(&root->nr_swapfiles, 0);
7237f183 1213 root->log_transid = 0;
d1433deb 1214 root->log_transid_committed = -1;
257c62e1 1215 root->last_log_commit = 0;
7c0260ee 1216 if (!dummy)
43eb5f29
QW
1217 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1218 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1219
3768f368
CM
1220 memset(&root->root_key, 0, sizeof(root->root_key));
1221 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1222 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1223 if (!dummy)
06ea65a3
JB
1224 root->defrag_trans_start = fs_info->generation;
1225 else
1226 root->defrag_trans_start = 0;
4d775673 1227 root->root_key.objectid = objectid;
0ee5dc67 1228 root->anon_dev = 0;
8ea05e3a 1229
5f3ab90a 1230 spin_lock_init(&root->root_item_lock);
370a11b8 1231 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1232}
1233
74e4d827
DS
1234static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1235 gfp_t flags)
6f07e42e 1236{
74e4d827 1237 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1238 if (root)
1239 root->fs_info = fs_info;
1240 return root;
1241}
1242
06ea65a3
JB
1243#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1244/* Should only be used by the testing infrastructure */
da17066c 1245struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1246{
1247 struct btrfs_root *root;
1248
7c0260ee
JM
1249 if (!fs_info)
1250 return ERR_PTR(-EINVAL);
1251
1252 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1253 if (!root)
1254 return ERR_PTR(-ENOMEM);
da17066c 1255
b9ef22de 1256 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1257 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1258 root->alloc_bytenr = 0;
06ea65a3
JB
1259
1260 return root;
1261}
1262#endif
1263
20897f5c 1264struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1265 u64 objectid)
1266{
9b7a2440 1267 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1268 struct extent_buffer *leaf;
1269 struct btrfs_root *tree_root = fs_info->tree_root;
1270 struct btrfs_root *root;
1271 struct btrfs_key key;
b89f6d1f 1272 unsigned int nofs_flag;
20897f5c 1273 int ret = 0;
33d85fda 1274 uuid_le uuid = NULL_UUID_LE;
20897f5c 1275
b89f6d1f
FM
1276 /*
1277 * We're holding a transaction handle, so use a NOFS memory allocation
1278 * context to avoid deadlock if reclaim happens.
1279 */
1280 nofs_flag = memalloc_nofs_save();
74e4d827 1281 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1282 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1283 if (!root)
1284 return ERR_PTR(-ENOMEM);
1285
da17066c 1286 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1287 root->root_key.objectid = objectid;
1288 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1289 root->root_key.offset = 0;
1290
4d75f8a9 1291 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1292 if (IS_ERR(leaf)) {
1293 ret = PTR_ERR(leaf);
1dd05682 1294 leaf = NULL;
20897f5c
AJ
1295 goto fail;
1296 }
1297
20897f5c 1298 root->node = leaf;
20897f5c
AJ
1299 btrfs_mark_buffer_dirty(leaf);
1300
1301 root->commit_root = btrfs_root_node(root);
27cdeb70 1302 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1303
1304 root->root_item.flags = 0;
1305 root->root_item.byte_limit = 0;
1306 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1307 btrfs_set_root_generation(&root->root_item, trans->transid);
1308 btrfs_set_root_level(&root->root_item, 0);
1309 btrfs_set_root_refs(&root->root_item, 1);
1310 btrfs_set_root_used(&root->root_item, leaf->len);
1311 btrfs_set_root_last_snapshot(&root->root_item, 0);
1312 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1313 if (is_fstree(objectid))
1314 uuid_le_gen(&uuid);
6463fe58 1315 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1316 root->root_item.drop_level = 0;
1317
1318 key.objectid = objectid;
1319 key.type = BTRFS_ROOT_ITEM_KEY;
1320 key.offset = 0;
1321 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1322 if (ret)
1323 goto fail;
1324
1325 btrfs_tree_unlock(leaf);
1326
1dd05682
TI
1327 return root;
1328
20897f5c 1329fail:
1dd05682
TI
1330 if (leaf) {
1331 btrfs_tree_unlock(leaf);
59885b39 1332 free_extent_buffer(root->commit_root);
1dd05682
TI
1333 free_extent_buffer(leaf);
1334 }
1335 kfree(root);
20897f5c 1336
1dd05682 1337 return ERR_PTR(ret);
20897f5c
AJ
1338}
1339
7237f183
YZ
1340static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1341 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1342{
1343 struct btrfs_root *root;
7237f183 1344 struct extent_buffer *leaf;
e02119d5 1345
74e4d827 1346 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1347 if (!root)
7237f183 1348 return ERR_PTR(-ENOMEM);
e02119d5 1349
da17066c 1350 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1351
1352 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1353 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1355
7237f183 1356 /*
27cdeb70
MX
1357 * DON'T set REF_COWS for log trees
1358 *
7237f183
YZ
1359 * log trees do not get reference counted because they go away
1360 * before a real commit is actually done. They do store pointers
1361 * to file data extents, and those reference counts still get
1362 * updated (along with back refs to the log tree).
1363 */
e02119d5 1364
4d75f8a9
DS
1365 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1366 NULL, 0, 0, 0);
7237f183
YZ
1367 if (IS_ERR(leaf)) {
1368 kfree(root);
1369 return ERR_CAST(leaf);
1370 }
e02119d5 1371
7237f183 1372 root->node = leaf;
e02119d5 1373
e02119d5
CM
1374 btrfs_mark_buffer_dirty(root->node);
1375 btrfs_tree_unlock(root->node);
7237f183
YZ
1376 return root;
1377}
1378
1379int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1380 struct btrfs_fs_info *fs_info)
1381{
1382 struct btrfs_root *log_root;
1383
1384 log_root = alloc_log_tree(trans, fs_info);
1385 if (IS_ERR(log_root))
1386 return PTR_ERR(log_root);
1387 WARN_ON(fs_info->log_root_tree);
1388 fs_info->log_root_tree = log_root;
1389 return 0;
1390}
1391
1392int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1393 struct btrfs_root *root)
1394{
0b246afa 1395 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1396 struct btrfs_root *log_root;
1397 struct btrfs_inode_item *inode_item;
1398
0b246afa 1399 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1400 if (IS_ERR(log_root))
1401 return PTR_ERR(log_root);
1402
1403 log_root->last_trans = trans->transid;
1404 log_root->root_key.offset = root->root_key.objectid;
1405
1406 inode_item = &log_root->root_item.inode;
3cae210f
QW
1407 btrfs_set_stack_inode_generation(inode_item, 1);
1408 btrfs_set_stack_inode_size(inode_item, 3);
1409 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1410 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1411 fs_info->nodesize);
3cae210f 1412 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1413
5d4f98a2 1414 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1415
1416 WARN_ON(root->log_root);
1417 root->log_root = log_root;
1418 root->log_transid = 0;
d1433deb 1419 root->log_transid_committed = -1;
257c62e1 1420 root->last_log_commit = 0;
e02119d5
CM
1421 return 0;
1422}
1423
35a3621b
SB
1424static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1425 struct btrfs_key *key)
e02119d5
CM
1426{
1427 struct btrfs_root *root;
1428 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1429 struct btrfs_path *path;
84234f3a 1430 u64 generation;
cb517eab 1431 int ret;
581c1760 1432 int level;
0f7d52f4 1433
cb517eab
MX
1434 path = btrfs_alloc_path();
1435 if (!path)
0f7d52f4 1436 return ERR_PTR(-ENOMEM);
cb517eab 1437
74e4d827 1438 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1439 if (!root) {
1440 ret = -ENOMEM;
1441 goto alloc_fail;
0f7d52f4
CM
1442 }
1443
da17066c 1444 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1445
cb517eab
MX
1446 ret = btrfs_find_root(tree_root, key, path,
1447 &root->root_item, &root->root_key);
0f7d52f4 1448 if (ret) {
13a8a7c8
YZ
1449 if (ret > 0)
1450 ret = -ENOENT;
cb517eab 1451 goto find_fail;
0f7d52f4 1452 }
13a8a7c8 1453
84234f3a 1454 generation = btrfs_root_generation(&root->root_item);
581c1760 1455 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1456 root->node = read_tree_block(fs_info,
1457 btrfs_root_bytenr(&root->root_item),
581c1760 1458 generation, level, NULL);
64c043de
LB
1459 if (IS_ERR(root->node)) {
1460 ret = PTR_ERR(root->node);
cb517eab
MX
1461 goto find_fail;
1462 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1463 ret = -EIO;
64c043de
LB
1464 free_extent_buffer(root->node);
1465 goto find_fail;
416bc658 1466 }
5d4f98a2 1467 root->commit_root = btrfs_root_node(root);
13a8a7c8 1468out:
cb517eab
MX
1469 btrfs_free_path(path);
1470 return root;
1471
cb517eab
MX
1472find_fail:
1473 kfree(root);
1474alloc_fail:
1475 root = ERR_PTR(ret);
1476 goto out;
1477}
1478
1479struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1480 struct btrfs_key *location)
1481{
1482 struct btrfs_root *root;
1483
1484 root = btrfs_read_tree_root(tree_root, location);
1485 if (IS_ERR(root))
1486 return root;
1487
1488 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1489 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1490 btrfs_check_and_init_root_item(&root->root_item);
1491 }
13a8a7c8 1492
5eda7b5e
CM
1493 return root;
1494}
1495
cb517eab
MX
1496int btrfs_init_fs_root(struct btrfs_root *root)
1497{
1498 int ret;
8257b2dc 1499 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1500
1501 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1502 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1503 GFP_NOFS);
1504 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1505 ret = -ENOMEM;
1506 goto fail;
1507 }
1508
8257b2dc
MX
1509 writers = btrfs_alloc_subvolume_writers();
1510 if (IS_ERR(writers)) {
1511 ret = PTR_ERR(writers);
1512 goto fail;
1513 }
1514 root->subv_writers = writers;
1515
cb517eab 1516 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1517 spin_lock_init(&root->ino_cache_lock);
1518 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1519
1520 ret = get_anon_bdev(&root->anon_dev);
1521 if (ret)
876d2cf1 1522 goto fail;
f32e48e9
CR
1523
1524 mutex_lock(&root->objectid_mutex);
1525 ret = btrfs_find_highest_objectid(root,
1526 &root->highest_objectid);
1527 if (ret) {
1528 mutex_unlock(&root->objectid_mutex);
876d2cf1 1529 goto fail;
f32e48e9
CR
1530 }
1531
1532 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1533
1534 mutex_unlock(&root->objectid_mutex);
1535
cb517eab
MX
1536 return 0;
1537fail:
84db5ccf 1538 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1539 return ret;
1540}
1541
35bbb97f
JM
1542struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1543 u64 root_id)
cb517eab
MX
1544{
1545 struct btrfs_root *root;
1546
1547 spin_lock(&fs_info->fs_roots_radix_lock);
1548 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1549 (unsigned long)root_id);
1550 spin_unlock(&fs_info->fs_roots_radix_lock);
1551 return root;
1552}
1553
1554int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1555 struct btrfs_root *root)
1556{
1557 int ret;
1558
e1860a77 1559 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1560 if (ret)
1561 return ret;
1562
1563 spin_lock(&fs_info->fs_roots_radix_lock);
1564 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1565 (unsigned long)root->root_key.objectid,
1566 root);
1567 if (ret == 0)
27cdeb70 1568 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1569 spin_unlock(&fs_info->fs_roots_radix_lock);
1570 radix_tree_preload_end();
1571
1572 return ret;
1573}
1574
c00869f1
MX
1575struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1576 struct btrfs_key *location,
1577 bool check_ref)
5eda7b5e
CM
1578{
1579 struct btrfs_root *root;
381cf658 1580 struct btrfs_path *path;
1d4c08e0 1581 struct btrfs_key key;
5eda7b5e
CM
1582 int ret;
1583
edbd8d4e
CM
1584 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1585 return fs_info->tree_root;
1586 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1587 return fs_info->extent_root;
8f18cf13
CM
1588 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1589 return fs_info->chunk_root;
1590 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1591 return fs_info->dev_root;
0403e47e
YZ
1592 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1593 return fs_info->csum_root;
bcef60f2
AJ
1594 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1595 return fs_info->quota_root ? fs_info->quota_root :
1596 ERR_PTR(-ENOENT);
f7a81ea4
SB
1597 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1598 return fs_info->uuid_root ? fs_info->uuid_root :
1599 ERR_PTR(-ENOENT);
70f6d82e
OS
1600 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1601 return fs_info->free_space_root ? fs_info->free_space_root :
1602 ERR_PTR(-ENOENT);
4df27c4d 1603again:
cb517eab 1604 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1605 if (root) {
c00869f1 1606 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1607 return ERR_PTR(-ENOENT);
5eda7b5e 1608 return root;
48475471 1609 }
5eda7b5e 1610
cb517eab 1611 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1612 if (IS_ERR(root))
1613 return root;
3394e160 1614
c00869f1 1615 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1616 ret = -ENOENT;
581bb050 1617 goto fail;
35a30d7c 1618 }
581bb050 1619
cb517eab 1620 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1621 if (ret)
1622 goto fail;
3394e160 1623
381cf658
DS
1624 path = btrfs_alloc_path();
1625 if (!path) {
1626 ret = -ENOMEM;
1627 goto fail;
1628 }
1d4c08e0
DS
1629 key.objectid = BTRFS_ORPHAN_OBJECTID;
1630 key.type = BTRFS_ORPHAN_ITEM_KEY;
1631 key.offset = location->objectid;
1632
1633 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1634 btrfs_free_path(path);
d68fc57b
YZ
1635 if (ret < 0)
1636 goto fail;
1637 if (ret == 0)
27cdeb70 1638 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1639
cb517eab 1640 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1641 if (ret) {
4df27c4d 1642 if (ret == -EEXIST) {
84db5ccf 1643 btrfs_free_fs_root(root);
4df27c4d
YZ
1644 goto again;
1645 }
1646 goto fail;
0f7d52f4 1647 }
edbd8d4e 1648 return root;
4df27c4d 1649fail:
84db5ccf 1650 btrfs_free_fs_root(root);
4df27c4d 1651 return ERR_PTR(ret);
edbd8d4e
CM
1652}
1653
04160088
CM
1654static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1655{
1656 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1657 int ret = 0;
04160088
CM
1658 struct btrfs_device *device;
1659 struct backing_dev_info *bdi;
b7967db7 1660
1f78160c
XG
1661 rcu_read_lock();
1662 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1663 if (!device->bdev)
1664 continue;
efa7c9f9 1665 bdi = device->bdev->bd_bdi;
ff9ea323 1666 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1667 ret = 1;
1668 break;
1669 }
1670 }
1f78160c 1671 rcu_read_unlock();
04160088
CM
1672 return ret;
1673}
1674
8b712842
CM
1675/*
1676 * called by the kthread helper functions to finally call the bio end_io
1677 * functions. This is where read checksum verification actually happens
1678 */
1679static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1680{
ce9adaa5 1681 struct bio *bio;
97eb6b69 1682 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1683
97eb6b69 1684 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1685 bio = end_io_wq->bio;
ce9adaa5 1686
4e4cbee9 1687 bio->bi_status = end_io_wq->status;
8b712842
CM
1688 bio->bi_private = end_io_wq->private;
1689 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1690 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1691 bio_endio(bio);
44b8bd7e
CM
1692}
1693
a74a4b97
CM
1694static int cleaner_kthread(void *arg)
1695{
1696 struct btrfs_root *root = arg;
0b246afa 1697 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1698 int again;
a74a4b97 1699
d6fd0ae2 1700 while (1) {
d0278245 1701 again = 0;
a74a4b97 1702
fd340d0f
JB
1703 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1704
d0278245 1705 /* Make the cleaner go to sleep early. */
2ff7e61e 1706 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1707 goto sleep;
1708
90c711ab
ZB
1709 /*
1710 * Do not do anything if we might cause open_ctree() to block
1711 * before we have finished mounting the filesystem.
1712 */
0b246afa 1713 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1714 goto sleep;
1715
0b246afa 1716 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1717 goto sleep;
1718
dc7f370c
MX
1719 /*
1720 * Avoid the problem that we change the status of the fs
1721 * during the above check and trylock.
1722 */
2ff7e61e 1723 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1724 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1725 goto sleep;
76dda93c 1726 }
a74a4b97 1727
2ff7e61e 1728 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1729
d0278245 1730 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1731 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1732
1733 /*
05323cd1
MX
1734 * The defragger has dealt with the R/O remount and umount,
1735 * needn't do anything special here.
d0278245 1736 */
0b246afa 1737 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1738
1739 /*
1740 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1741 * with relocation (btrfs_relocate_chunk) and relocation
1742 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1743 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1744 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1745 * unused block groups.
1746 */
0b246afa 1747 btrfs_delete_unused_bgs(fs_info);
d0278245 1748sleep:
fd340d0f 1749 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1750 if (kthread_should_park())
1751 kthread_parkme();
1752 if (kthread_should_stop())
1753 return 0;
838fe188 1754 if (!again) {
a74a4b97 1755 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1756 schedule();
a74a4b97
CM
1757 __set_current_state(TASK_RUNNING);
1758 }
da288d28 1759 }
a74a4b97
CM
1760}
1761
1762static int transaction_kthread(void *arg)
1763{
1764 struct btrfs_root *root = arg;
0b246afa 1765 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1766 struct btrfs_trans_handle *trans;
1767 struct btrfs_transaction *cur;
8929ecfa 1768 u64 transid;
a944442c 1769 time64_t now;
a74a4b97 1770 unsigned long delay;
914b2007 1771 bool cannot_commit;
a74a4b97
CM
1772
1773 do {
914b2007 1774 cannot_commit = false;
0b246afa
JM
1775 delay = HZ * fs_info->commit_interval;
1776 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1777
0b246afa
JM
1778 spin_lock(&fs_info->trans_lock);
1779 cur = fs_info->running_transaction;
a74a4b97 1780 if (!cur) {
0b246afa 1781 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1782 goto sleep;
1783 }
31153d81 1784
afd48513 1785 now = ktime_get_seconds();
4a9d8bde 1786 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1787 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1788 (now < cur->start_time ||
0b246afa
JM
1789 now - cur->start_time < fs_info->commit_interval)) {
1790 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1791 delay = HZ * 5;
1792 goto sleep;
1793 }
8929ecfa 1794 transid = cur->transid;
0b246afa 1795 spin_unlock(&fs_info->trans_lock);
56bec294 1796
79787eaa 1797 /* If the file system is aborted, this will always fail. */
354aa0fb 1798 trans = btrfs_attach_transaction(root);
914b2007 1799 if (IS_ERR(trans)) {
354aa0fb
MX
1800 if (PTR_ERR(trans) != -ENOENT)
1801 cannot_commit = true;
79787eaa 1802 goto sleep;
914b2007 1803 }
8929ecfa 1804 if (transid == trans->transid) {
3a45bb20 1805 btrfs_commit_transaction(trans);
8929ecfa 1806 } else {
3a45bb20 1807 btrfs_end_transaction(trans);
8929ecfa 1808 }
a74a4b97 1809sleep:
0b246afa
JM
1810 wake_up_process(fs_info->cleaner_kthread);
1811 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1812
4e121c06 1813 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1814 &fs_info->fs_state)))
2ff7e61e 1815 btrfs_cleanup_transaction(fs_info);
ce63f891 1816 if (!kthread_should_stop() &&
0b246afa 1817 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1818 cannot_commit))
bc5511d0 1819 schedule_timeout_interruptible(delay);
a74a4b97
CM
1820 } while (!kthread_should_stop());
1821 return 0;
1822}
1823
af31f5e5
CM
1824/*
1825 * this will find the highest generation in the array of
1826 * root backups. The index of the highest array is returned,
1827 * or -1 if we can't find anything.
1828 *
1829 * We check to make sure the array is valid by comparing the
1830 * generation of the latest root in the array with the generation
1831 * in the super block. If they don't match we pitch it.
1832 */
1833static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1834{
1835 u64 cur;
1836 int newest_index = -1;
1837 struct btrfs_root_backup *root_backup;
1838 int i;
1839
1840 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1841 root_backup = info->super_copy->super_roots + i;
1842 cur = btrfs_backup_tree_root_gen(root_backup);
1843 if (cur == newest_gen)
1844 newest_index = i;
1845 }
1846
1847 /* check to see if we actually wrapped around */
1848 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1849 root_backup = info->super_copy->super_roots;
1850 cur = btrfs_backup_tree_root_gen(root_backup);
1851 if (cur == newest_gen)
1852 newest_index = 0;
1853 }
1854 return newest_index;
1855}
1856
1857
1858/*
1859 * find the oldest backup so we know where to store new entries
1860 * in the backup array. This will set the backup_root_index
1861 * field in the fs_info struct
1862 */
1863static void find_oldest_super_backup(struct btrfs_fs_info *info,
1864 u64 newest_gen)
1865{
1866 int newest_index = -1;
1867
1868 newest_index = find_newest_super_backup(info, newest_gen);
1869 /* if there was garbage in there, just move along */
1870 if (newest_index == -1) {
1871 info->backup_root_index = 0;
1872 } else {
1873 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1874 }
1875}
1876
1877/*
1878 * copy all the root pointers into the super backup array.
1879 * this will bump the backup pointer by one when it is
1880 * done
1881 */
1882static void backup_super_roots(struct btrfs_fs_info *info)
1883{
1884 int next_backup;
1885 struct btrfs_root_backup *root_backup;
1886 int last_backup;
1887
1888 next_backup = info->backup_root_index;
1889 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1890 BTRFS_NUM_BACKUP_ROOTS;
1891
1892 /*
1893 * just overwrite the last backup if we're at the same generation
1894 * this happens only at umount
1895 */
1896 root_backup = info->super_for_commit->super_roots + last_backup;
1897 if (btrfs_backup_tree_root_gen(root_backup) ==
1898 btrfs_header_generation(info->tree_root->node))
1899 next_backup = last_backup;
1900
1901 root_backup = info->super_for_commit->super_roots + next_backup;
1902
1903 /*
1904 * make sure all of our padding and empty slots get zero filled
1905 * regardless of which ones we use today
1906 */
1907 memset(root_backup, 0, sizeof(*root_backup));
1908
1909 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1910
1911 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1912 btrfs_set_backup_tree_root_gen(root_backup,
1913 btrfs_header_generation(info->tree_root->node));
1914
1915 btrfs_set_backup_tree_root_level(root_backup,
1916 btrfs_header_level(info->tree_root->node));
1917
1918 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1919 btrfs_set_backup_chunk_root_gen(root_backup,
1920 btrfs_header_generation(info->chunk_root->node));
1921 btrfs_set_backup_chunk_root_level(root_backup,
1922 btrfs_header_level(info->chunk_root->node));
1923
1924 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1925 btrfs_set_backup_extent_root_gen(root_backup,
1926 btrfs_header_generation(info->extent_root->node));
1927 btrfs_set_backup_extent_root_level(root_backup,
1928 btrfs_header_level(info->extent_root->node));
1929
7c7e82a7
CM
1930 /*
1931 * we might commit during log recovery, which happens before we set
1932 * the fs_root. Make sure it is valid before we fill it in.
1933 */
1934 if (info->fs_root && info->fs_root->node) {
1935 btrfs_set_backup_fs_root(root_backup,
1936 info->fs_root->node->start);
1937 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1938 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1939 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1940 btrfs_header_level(info->fs_root->node));
7c7e82a7 1941 }
af31f5e5
CM
1942
1943 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1944 btrfs_set_backup_dev_root_gen(root_backup,
1945 btrfs_header_generation(info->dev_root->node));
1946 btrfs_set_backup_dev_root_level(root_backup,
1947 btrfs_header_level(info->dev_root->node));
1948
1949 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1950 btrfs_set_backup_csum_root_gen(root_backup,
1951 btrfs_header_generation(info->csum_root->node));
1952 btrfs_set_backup_csum_root_level(root_backup,
1953 btrfs_header_level(info->csum_root->node));
1954
1955 btrfs_set_backup_total_bytes(root_backup,
1956 btrfs_super_total_bytes(info->super_copy));
1957 btrfs_set_backup_bytes_used(root_backup,
1958 btrfs_super_bytes_used(info->super_copy));
1959 btrfs_set_backup_num_devices(root_backup,
1960 btrfs_super_num_devices(info->super_copy));
1961
1962 /*
1963 * if we don't copy this out to the super_copy, it won't get remembered
1964 * for the next commit
1965 */
1966 memcpy(&info->super_copy->super_roots,
1967 &info->super_for_commit->super_roots,
1968 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1969}
1970
1971/*
1972 * this copies info out of the root backup array and back into
1973 * the in-memory super block. It is meant to help iterate through
1974 * the array, so you send it the number of backups you've already
1975 * tried and the last backup index you used.
1976 *
1977 * this returns -1 when it has tried all the backups
1978 */
1979static noinline int next_root_backup(struct btrfs_fs_info *info,
1980 struct btrfs_super_block *super,
1981 int *num_backups_tried, int *backup_index)
1982{
1983 struct btrfs_root_backup *root_backup;
1984 int newest = *backup_index;
1985
1986 if (*num_backups_tried == 0) {
1987 u64 gen = btrfs_super_generation(super);
1988
1989 newest = find_newest_super_backup(info, gen);
1990 if (newest == -1)
1991 return -1;
1992
1993 *backup_index = newest;
1994 *num_backups_tried = 1;
1995 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1996 /* we've tried all the backups, all done */
1997 return -1;
1998 } else {
1999 /* jump to the next oldest backup */
2000 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2001 BTRFS_NUM_BACKUP_ROOTS;
2002 *backup_index = newest;
2003 *num_backups_tried += 1;
2004 }
2005 root_backup = super->super_roots + newest;
2006
2007 btrfs_set_super_generation(super,
2008 btrfs_backup_tree_root_gen(root_backup));
2009 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2010 btrfs_set_super_root_level(super,
2011 btrfs_backup_tree_root_level(root_backup));
2012 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2013
2014 /*
2015 * fixme: the total bytes and num_devices need to match or we should
2016 * need a fsck
2017 */
2018 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2019 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2020 return 0;
2021}
2022
7abadb64
LB
2023/* helper to cleanup workers */
2024static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2025{
dc6e3209 2026 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2027 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2028 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2029 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2030 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2031 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2032 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2033 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2034 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2035 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2036 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2037 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2038 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2039 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2040 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2041 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2042 /*
2043 * Now that all other work queues are destroyed, we can safely destroy
2044 * the queues used for metadata I/O, since tasks from those other work
2045 * queues can do metadata I/O operations.
2046 */
2047 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2048 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2049}
2050
2e9f5954
R
2051static void free_root_extent_buffers(struct btrfs_root *root)
2052{
2053 if (root) {
2054 free_extent_buffer(root->node);
2055 free_extent_buffer(root->commit_root);
2056 root->node = NULL;
2057 root->commit_root = NULL;
2058 }
2059}
2060
af31f5e5
CM
2061/* helper to cleanup tree roots */
2062static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2063{
2e9f5954 2064 free_root_extent_buffers(info->tree_root);
655b09fe 2065
2e9f5954
R
2066 free_root_extent_buffers(info->dev_root);
2067 free_root_extent_buffers(info->extent_root);
2068 free_root_extent_buffers(info->csum_root);
2069 free_root_extent_buffers(info->quota_root);
2070 free_root_extent_buffers(info->uuid_root);
2071 if (chunk_root)
2072 free_root_extent_buffers(info->chunk_root);
70f6d82e 2073 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2074}
2075
faa2dbf0 2076void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2077{
2078 int ret;
2079 struct btrfs_root *gang[8];
2080 int i;
2081
2082 while (!list_empty(&fs_info->dead_roots)) {
2083 gang[0] = list_entry(fs_info->dead_roots.next,
2084 struct btrfs_root, root_list);
2085 list_del(&gang[0]->root_list);
2086
27cdeb70 2087 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2088 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2089 } else {
2090 free_extent_buffer(gang[0]->node);
2091 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2092 btrfs_put_fs_root(gang[0]);
171f6537
JB
2093 }
2094 }
2095
2096 while (1) {
2097 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2098 (void **)gang, 0,
2099 ARRAY_SIZE(gang));
2100 if (!ret)
2101 break;
2102 for (i = 0; i < ret; i++)
cb517eab 2103 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2104 }
1a4319cc
LB
2105
2106 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2107 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2108 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2109 }
171f6537 2110}
af31f5e5 2111
638aa7ed
ES
2112static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2113{
2114 mutex_init(&fs_info->scrub_lock);
2115 atomic_set(&fs_info->scrubs_running, 0);
2116 atomic_set(&fs_info->scrub_pause_req, 0);
2117 atomic_set(&fs_info->scrubs_paused, 0);
2118 atomic_set(&fs_info->scrub_cancel_req, 0);
2119 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2120 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2121}
2122
779a65a4
ES
2123static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2124{
2125 spin_lock_init(&fs_info->balance_lock);
2126 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2127 atomic_set(&fs_info->balance_pause_req, 0);
2128 atomic_set(&fs_info->balance_cancel_req, 0);
2129 fs_info->balance_ctl = NULL;
2130 init_waitqueue_head(&fs_info->balance_wait_q);
2131}
2132
6bccf3ab 2133static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2134{
2ff7e61e
JM
2135 struct inode *inode = fs_info->btree_inode;
2136
2137 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2138 set_nlink(inode, 1);
f37938e0
ES
2139 /*
2140 * we set the i_size on the btree inode to the max possible int.
2141 * the real end of the address space is determined by all of
2142 * the devices in the system
2143 */
2ff7e61e
JM
2144 inode->i_size = OFFSET_MAX;
2145 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2146
2ff7e61e 2147 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2148 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2149 IO_TREE_INODE_IO, inode);
7b439738 2150 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2151 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2152
2ff7e61e 2153 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2154
2ff7e61e
JM
2155 BTRFS_I(inode)->root = fs_info->tree_root;
2156 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2157 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2158 btrfs_insert_inode_hash(inode);
f37938e0
ES
2159}
2160
ad618368
ES
2161static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2162{
ad618368 2163 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2164 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2165 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2166}
2167
f9e92e40
ES
2168static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2169{
2170 spin_lock_init(&fs_info->qgroup_lock);
2171 mutex_init(&fs_info->qgroup_ioctl_lock);
2172 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2173 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2174 fs_info->qgroup_seq = 1;
f9e92e40 2175 fs_info->qgroup_ulist = NULL;
d2c609b8 2176 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2177 mutex_init(&fs_info->qgroup_rescan_lock);
2178}
2179
2a458198
ES
2180static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2181 struct btrfs_fs_devices *fs_devices)
2182{
f7b885be 2183 u32 max_active = fs_info->thread_pool_size;
6f011058 2184 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2185
2186 fs_info->workers =
cb001095
JM
2187 btrfs_alloc_workqueue(fs_info, "worker",
2188 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2189
2190 fs_info->delalloc_workers =
cb001095
JM
2191 btrfs_alloc_workqueue(fs_info, "delalloc",
2192 flags, max_active, 2);
2a458198
ES
2193
2194 fs_info->flush_workers =
cb001095
JM
2195 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2196 flags, max_active, 0);
2a458198
ES
2197
2198 fs_info->caching_workers =
cb001095 2199 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2200
2201 /*
2202 * a higher idle thresh on the submit workers makes it much more
2203 * likely that bios will be send down in a sane order to the
2204 * devices
2205 */
2206 fs_info->submit_workers =
cb001095 2207 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2208 min_t(u64, fs_devices->num_devices,
2209 max_active), 64);
2210
2211 fs_info->fixup_workers =
cb001095 2212 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2213
2214 /*
2215 * endios are largely parallel and should have a very
2216 * low idle thresh
2217 */
2218 fs_info->endio_workers =
cb001095 2219 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2220 fs_info->endio_meta_workers =
cb001095
JM
2221 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2222 max_active, 4);
2a458198 2223 fs_info->endio_meta_write_workers =
cb001095
JM
2224 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2225 max_active, 2);
2a458198 2226 fs_info->endio_raid56_workers =
cb001095
JM
2227 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2228 max_active, 4);
2a458198 2229 fs_info->endio_repair_workers =
cb001095 2230 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2231 fs_info->rmw_workers =
cb001095 2232 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2233 fs_info->endio_write_workers =
cb001095
JM
2234 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2235 max_active, 2);
2a458198 2236 fs_info->endio_freespace_worker =
cb001095
JM
2237 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2238 max_active, 0);
2a458198 2239 fs_info->delayed_workers =
cb001095
JM
2240 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2241 max_active, 0);
2a458198 2242 fs_info->readahead_workers =
cb001095
JM
2243 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2244 max_active, 2);
2a458198 2245 fs_info->qgroup_rescan_workers =
cb001095 2246 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2247 fs_info->extent_workers =
cb001095 2248 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2249 min_t(u64, fs_devices->num_devices,
2250 max_active), 8);
2251
2252 if (!(fs_info->workers && fs_info->delalloc_workers &&
2253 fs_info->submit_workers && fs_info->flush_workers &&
2254 fs_info->endio_workers && fs_info->endio_meta_workers &&
2255 fs_info->endio_meta_write_workers &&
2256 fs_info->endio_repair_workers &&
2257 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2258 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2259 fs_info->caching_workers && fs_info->readahead_workers &&
2260 fs_info->fixup_workers && fs_info->delayed_workers &&
2261 fs_info->extent_workers &&
2262 fs_info->qgroup_rescan_workers)) {
2263 return -ENOMEM;
2264 }
2265
2266 return 0;
2267}
2268
63443bf5
ES
2269static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2270 struct btrfs_fs_devices *fs_devices)
2271{
2272 int ret;
63443bf5
ES
2273 struct btrfs_root *log_tree_root;
2274 struct btrfs_super_block *disk_super = fs_info->super_copy;
2275 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2276 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2277
2278 if (fs_devices->rw_devices == 0) {
f14d104d 2279 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2280 return -EIO;
2281 }
2282
74e4d827 2283 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2284 if (!log_tree_root)
2285 return -ENOMEM;
2286
da17066c 2287 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2288
2ff7e61e 2289 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2290 fs_info->generation + 1,
2291 level, NULL);
64c043de 2292 if (IS_ERR(log_tree_root->node)) {
f14d104d 2293 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2294 ret = PTR_ERR(log_tree_root->node);
64c043de 2295 kfree(log_tree_root);
0eeff236 2296 return ret;
64c043de 2297 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2298 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2299 free_extent_buffer(log_tree_root->node);
2300 kfree(log_tree_root);
2301 return -EIO;
2302 }
2303 /* returns with log_tree_root freed on success */
2304 ret = btrfs_recover_log_trees(log_tree_root);
2305 if (ret) {
0b246afa
JM
2306 btrfs_handle_fs_error(fs_info, ret,
2307 "Failed to recover log tree");
63443bf5
ES
2308 free_extent_buffer(log_tree_root->node);
2309 kfree(log_tree_root);
2310 return ret;
2311 }
2312
bc98a42c 2313 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2314 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2315 if (ret)
2316 return ret;
2317 }
2318
2319 return 0;
2320}
2321
6bccf3ab 2322static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2323{
6bccf3ab 2324 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2325 struct btrfs_root *root;
4bbcaa64
ES
2326 struct btrfs_key location;
2327 int ret;
2328
6bccf3ab
JM
2329 BUG_ON(!fs_info->tree_root);
2330
4bbcaa64
ES
2331 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2332 location.type = BTRFS_ROOT_ITEM_KEY;
2333 location.offset = 0;
2334
a4f3d2c4 2335 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2336 if (IS_ERR(root)) {
2337 ret = PTR_ERR(root);
2338 goto out;
2339 }
a4f3d2c4
DS
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 fs_info->extent_root = root;
4bbcaa64
ES
2342
2343 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2344 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2345 if (IS_ERR(root)) {
2346 ret = PTR_ERR(root);
2347 goto out;
2348 }
a4f3d2c4
DS
2349 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2350 fs_info->dev_root = root;
4bbcaa64
ES
2351 btrfs_init_devices_late(fs_info);
2352
2353 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2354 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2355 if (IS_ERR(root)) {
2356 ret = PTR_ERR(root);
2357 goto out;
2358 }
a4f3d2c4
DS
2359 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2360 fs_info->csum_root = root;
4bbcaa64
ES
2361
2362 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2363 root = btrfs_read_tree_root(tree_root, &location);
2364 if (!IS_ERR(root)) {
2365 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2366 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2367 fs_info->quota_root = root;
4bbcaa64
ES
2368 }
2369
2370 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2371 root = btrfs_read_tree_root(tree_root, &location);
2372 if (IS_ERR(root)) {
2373 ret = PTR_ERR(root);
4bbcaa64 2374 if (ret != -ENOENT)
f50f4353 2375 goto out;
4bbcaa64 2376 } else {
a4f3d2c4
DS
2377 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2378 fs_info->uuid_root = root;
4bbcaa64
ES
2379 }
2380
70f6d82e
OS
2381 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2382 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2383 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2384 if (IS_ERR(root)) {
2385 ret = PTR_ERR(root);
2386 goto out;
2387 }
70f6d82e
OS
2388 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389 fs_info->free_space_root = root;
2390 }
2391
4bbcaa64 2392 return 0;
f50f4353
LB
2393out:
2394 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2395 location.objectid, ret);
2396 return ret;
4bbcaa64
ES
2397}
2398
069ec957
QW
2399/*
2400 * Real super block validation
2401 * NOTE: super csum type and incompat features will not be checked here.
2402 *
2403 * @sb: super block to check
2404 * @mirror_num: the super block number to check its bytenr:
2405 * 0 the primary (1st) sb
2406 * 1, 2 2nd and 3rd backup copy
2407 * -1 skip bytenr check
2408 */
2409static int validate_super(struct btrfs_fs_info *fs_info,
2410 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2411{
21a852b0
QW
2412 u64 nodesize = btrfs_super_nodesize(sb);
2413 u64 sectorsize = btrfs_super_sectorsize(sb);
2414 int ret = 0;
2415
2416 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2417 btrfs_err(fs_info, "no valid FS found");
2418 ret = -EINVAL;
2419 }
2420 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2421 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2422 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2423 ret = -EINVAL;
2424 }
2425 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2426 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2427 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2428 ret = -EINVAL;
2429 }
2430 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2431 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2432 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2433 ret = -EINVAL;
2434 }
2435 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2436 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2437 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2438 ret = -EINVAL;
2439 }
2440
2441 /*
2442 * Check sectorsize and nodesize first, other check will need it.
2443 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2444 */
2445 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2446 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2447 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2448 ret = -EINVAL;
2449 }
2450 /* Only PAGE SIZE is supported yet */
2451 if (sectorsize != PAGE_SIZE) {
2452 btrfs_err(fs_info,
2453 "sectorsize %llu not supported yet, only support %lu",
2454 sectorsize, PAGE_SIZE);
2455 ret = -EINVAL;
2456 }
2457 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2458 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2459 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2460 ret = -EINVAL;
2461 }
2462 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2463 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2464 le32_to_cpu(sb->__unused_leafsize), nodesize);
2465 ret = -EINVAL;
2466 }
2467
2468 /* Root alignment check */
2469 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2470 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2471 btrfs_super_root(sb));
2472 ret = -EINVAL;
2473 }
2474 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2475 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2476 btrfs_super_chunk_root(sb));
2477 ret = -EINVAL;
2478 }
2479 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2480 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2481 btrfs_super_log_root(sb));
2482 ret = -EINVAL;
2483 }
2484
de37aa51 2485 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2486 BTRFS_FSID_SIZE) != 0) {
21a852b0 2487 btrfs_err(fs_info,
7239ff4b 2488 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2489 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2490 ret = -EINVAL;
2491 }
2492
2493 /*
2494 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2495 * done later
2496 */
2497 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2498 btrfs_err(fs_info, "bytes_used is too small %llu",
2499 btrfs_super_bytes_used(sb));
2500 ret = -EINVAL;
2501 }
2502 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2503 btrfs_err(fs_info, "invalid stripesize %u",
2504 btrfs_super_stripesize(sb));
2505 ret = -EINVAL;
2506 }
2507 if (btrfs_super_num_devices(sb) > (1UL << 31))
2508 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2509 btrfs_super_num_devices(sb));
2510 if (btrfs_super_num_devices(sb) == 0) {
2511 btrfs_err(fs_info, "number of devices is 0");
2512 ret = -EINVAL;
2513 }
2514
069ec957
QW
2515 if (mirror_num >= 0 &&
2516 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2517 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2518 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2519 ret = -EINVAL;
2520 }
2521
2522 /*
2523 * Obvious sys_chunk_array corruptions, it must hold at least one key
2524 * and one chunk
2525 */
2526 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2527 btrfs_err(fs_info, "system chunk array too big %u > %u",
2528 btrfs_super_sys_array_size(sb),
2529 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2530 ret = -EINVAL;
2531 }
2532 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2533 + sizeof(struct btrfs_chunk)) {
2534 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2535 btrfs_super_sys_array_size(sb),
2536 sizeof(struct btrfs_disk_key)
2537 + sizeof(struct btrfs_chunk));
2538 ret = -EINVAL;
2539 }
2540
2541 /*
2542 * The generation is a global counter, we'll trust it more than the others
2543 * but it's still possible that it's the one that's wrong.
2544 */
2545 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2546 btrfs_warn(fs_info,
2547 "suspicious: generation < chunk_root_generation: %llu < %llu",
2548 btrfs_super_generation(sb),
2549 btrfs_super_chunk_root_generation(sb));
2550 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2551 && btrfs_super_cache_generation(sb) != (u64)-1)
2552 btrfs_warn(fs_info,
2553 "suspicious: generation < cache_generation: %llu < %llu",
2554 btrfs_super_generation(sb),
2555 btrfs_super_cache_generation(sb));
2556
2557 return ret;
2558}
2559
069ec957
QW
2560/*
2561 * Validation of super block at mount time.
2562 * Some checks already done early at mount time, like csum type and incompat
2563 * flags will be skipped.
2564 */
2565static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2566{
2567 return validate_super(fs_info, fs_info->super_copy, 0);
2568}
2569
75cb857d
QW
2570/*
2571 * Validation of super block at write time.
2572 * Some checks like bytenr check will be skipped as their values will be
2573 * overwritten soon.
2574 * Extra checks like csum type and incompat flags will be done here.
2575 */
2576static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2577 struct btrfs_super_block *sb)
2578{
2579 int ret;
2580
2581 ret = validate_super(fs_info, sb, -1);
2582 if (ret < 0)
2583 goto out;
e7e16f48 2584 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2585 ret = -EUCLEAN;
2586 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2587 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2588 goto out;
2589 }
2590 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2591 ret = -EUCLEAN;
2592 btrfs_err(fs_info,
2593 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2594 btrfs_super_incompat_flags(sb),
2595 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2596 goto out;
2597 }
2598out:
2599 if (ret < 0)
2600 btrfs_err(fs_info,
2601 "super block corruption detected before writing it to disk");
2602 return ret;
2603}
2604
ad2b2c80
AV
2605int open_ctree(struct super_block *sb,
2606 struct btrfs_fs_devices *fs_devices,
2607 char *options)
2e635a27 2608{
db94535d
CM
2609 u32 sectorsize;
2610 u32 nodesize;
87ee04eb 2611 u32 stripesize;
84234f3a 2612 u64 generation;
f2b636e8 2613 u64 features;
3de4586c 2614 struct btrfs_key location;
a061fc8d 2615 struct buffer_head *bh;
4d34b278 2616 struct btrfs_super_block *disk_super;
815745cf 2617 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2618 struct btrfs_root *tree_root;
4d34b278 2619 struct btrfs_root *chunk_root;
eb60ceac 2620 int ret;
e58ca020 2621 int err = -EINVAL;
af31f5e5
CM
2622 int num_backups_tried = 0;
2623 int backup_index = 0;
6675df31 2624 int clear_free_space_tree = 0;
581c1760 2625 int level;
4543df7e 2626
74e4d827
DS
2627 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2628 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2629 if (!tree_root || !chunk_root) {
39279cc3
CM
2630 err = -ENOMEM;
2631 goto fail;
2632 }
76dda93c
YZ
2633
2634 ret = init_srcu_struct(&fs_info->subvol_srcu);
2635 if (ret) {
2636 err = ret;
2637 goto fail;
2638 }
2639
4297ff84 2640 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2641 if (ret) {
2642 err = ret;
9e11ceee 2643 goto fail_srcu;
e2d84521 2644 }
4297ff84
JB
2645
2646 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2647 if (ret) {
2648 err = ret;
2649 goto fail_dio_bytes;
2650 }
09cbfeaf 2651 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2652 (1 + ilog2(nr_cpu_ids));
2653
908c7f19 2654 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2655 if (ret) {
2656 err = ret;
2657 goto fail_dirty_metadata_bytes;
2658 }
2659
7f8d236a
DS
2660 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2661 GFP_KERNEL);
c404e0dc
MX
2662 if (ret) {
2663 err = ret;
2664 goto fail_delalloc_bytes;
2665 }
2666
76dda93c 2667 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2668 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2669 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2670 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2671 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2672 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2673 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2674 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2675 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2676 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2677 spin_lock_init(&fs_info->trans_lock);
76dda93c 2678 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2679 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2680 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2681 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2682 spin_lock_init(&fs_info->super_lock);
f28491e0 2683 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2684 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2685 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2686 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2687 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2688 mutex_init(&fs_info->reloc_mutex);
573bfb72 2689 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2690 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2691
0b86a832 2692 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2693 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2694 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2695 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2696 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2697 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2698 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2699 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2700 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2701 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2702 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2703 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2704 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2705 BTRFS_BLOCK_RSV_DELREFS);
2706
771ed689 2707 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2708 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2709 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2710 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2711 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2712 fs_info->sb = sb;
95ac567a 2713 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2714 fs_info->metadata_ratio = 0;
4cb5300b 2715 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2716 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2717 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2718 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2719 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2720 /* readahead state */
d0164adc 2721 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2722 spin_lock_init(&fs_info->reada_lock);
fd708b81 2723 btrfs_init_ref_verify(fs_info);
c8b97818 2724
b34b086c
CM
2725 fs_info->thread_pool_size = min_t(unsigned long,
2726 num_online_cpus() + 2, 8);
0afbaf8c 2727
199c2a9c
MX
2728 INIT_LIST_HEAD(&fs_info->ordered_roots);
2729 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2730
2731 fs_info->btree_inode = new_inode(sb);
2732 if (!fs_info->btree_inode) {
2733 err = -ENOMEM;
2734 goto fail_bio_counter;
2735 }
2736 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2737
16cdcec7 2738 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2739 GFP_KERNEL);
16cdcec7
MX
2740 if (!fs_info->delayed_root) {
2741 err = -ENOMEM;
2742 goto fail_iput;
2743 }
2744 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2745
638aa7ed 2746 btrfs_init_scrub(fs_info);
21adbd5c
SB
2747#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2748 fs_info->check_integrity_print_mask = 0;
2749#endif
779a65a4 2750 btrfs_init_balance(fs_info);
21c7e756 2751 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2752
9f6d2510
DS
2753 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2754 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2755
6bccf3ab 2756 btrfs_init_btree_inode(fs_info);
76dda93c 2757
0f9dd46c 2758 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2759 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2760 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2761
43eb5f29
QW
2762 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2763 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2764 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2765 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2766 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2767 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2768
5a3f23d5 2769 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2770 mutex_init(&fs_info->tree_log_mutex);
925baedd 2771 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2772 mutex_init(&fs_info->transaction_kthread_mutex);
2773 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2774 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2775 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2776 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2777 init_rwsem(&fs_info->subvol_sem);
803b2f54 2778 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2779
ad618368 2780 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2781 btrfs_init_qgroup(fs_info);
416ac51d 2782
fa9c0d79
CM
2783 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2784 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2785
e6dcd2dc 2786 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2787 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2788 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2789 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2790 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2791
da17066c
JM
2792 /* Usable values until the real ones are cached from the superblock */
2793 fs_info->nodesize = 4096;
2794 fs_info->sectorsize = 4096;
2795 fs_info->stripesize = 4096;
2796
eede2bf3
OS
2797 spin_lock_init(&fs_info->swapfile_pins_lock);
2798 fs_info->swapfile_pins = RB_ROOT;
2799
53b381b3
DW
2800 ret = btrfs_alloc_stripe_hash_table(fs_info);
2801 if (ret) {
83c8266a 2802 err = ret;
53b381b3
DW
2803 goto fail_alloc;
2804 }
2805
da17066c 2806 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2807
3c4bb26b 2808 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2809
2810 /*
2811 * Read super block and check the signature bytes only
2812 */
a512bbf8 2813 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2814 if (IS_ERR(bh)) {
2815 err = PTR_ERR(bh);
16cdcec7 2816 goto fail_alloc;
20b45077 2817 }
39279cc3 2818
1104a885
DS
2819 /*
2820 * We want to check superblock checksum, the type is stored inside.
2821 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2822 */
ab8d0fc4 2823 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2824 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2825 err = -EINVAL;
b2acdddf 2826 brelse(bh);
1104a885
DS
2827 goto fail_alloc;
2828 }
2829
2830 /*
2831 * super_copy is zeroed at allocation time and we never touch the
2832 * following bytes up to INFO_SIZE, the checksum is calculated from
2833 * the whole block of INFO_SIZE
2834 */
6c41761f 2835 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2836 brelse(bh);
5f39d397 2837
fbc6feae
NB
2838 disk_super = fs_info->super_copy;
2839
de37aa51
NB
2840 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2841 BTRFS_FSID_SIZE));
2842
7239ff4b 2843 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2844 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2845 fs_info->super_copy->metadata_uuid,
2846 BTRFS_FSID_SIZE));
7239ff4b 2847 }
0b86a832 2848
fbc6feae
NB
2849 features = btrfs_super_flags(disk_super);
2850 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2851 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2852 btrfs_set_super_flags(disk_super, features);
2853 btrfs_info(fs_info,
2854 "found metadata UUID change in progress flag, clearing");
2855 }
2856
2857 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2858 sizeof(*fs_info->super_for_commit));
de37aa51 2859
069ec957 2860 ret = btrfs_validate_mount_super(fs_info);
1104a885 2861 if (ret) {
05135f59 2862 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2863 err = -EINVAL;
2864 goto fail_alloc;
2865 }
2866
0f7d52f4 2867 if (!btrfs_super_root(disk_super))
16cdcec7 2868 goto fail_alloc;
0f7d52f4 2869
acce952b 2870 /* check FS state, whether FS is broken. */
87533c47
MX
2871 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2872 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2873
af31f5e5
CM
2874 /*
2875 * run through our array of backup supers and setup
2876 * our ring pointer to the oldest one
2877 */
2878 generation = btrfs_super_generation(disk_super);
2879 find_oldest_super_backup(fs_info, generation);
2880
75e7cb7f
LB
2881 /*
2882 * In the long term, we'll store the compression type in the super
2883 * block, and it'll be used for per file compression control.
2884 */
2885 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2886
2ff7e61e 2887 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2888 if (ret) {
2889 err = ret;
16cdcec7 2890 goto fail_alloc;
2b82032c 2891 }
dfe25020 2892
f2b636e8
JB
2893 features = btrfs_super_incompat_flags(disk_super) &
2894 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2895 if (features) {
05135f59
DS
2896 btrfs_err(fs_info,
2897 "cannot mount because of unsupported optional features (%llx)",
2898 features);
f2b636e8 2899 err = -EINVAL;
16cdcec7 2900 goto fail_alloc;
f2b636e8
JB
2901 }
2902
5d4f98a2 2903 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2904 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2905 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2906 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2907 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2908 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2909
3173a18f 2910 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2911 btrfs_info(fs_info, "has skinny extents");
3173a18f 2912
727011e0
CM
2913 /*
2914 * flag our filesystem as having big metadata blocks if
2915 * they are bigger than the page size
2916 */
09cbfeaf 2917 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2918 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2919 btrfs_info(fs_info,
2920 "flagging fs with big metadata feature");
727011e0
CM
2921 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2922 }
2923
bc3f116f 2924 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2925 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2926 stripesize = sectorsize;
707e8a07 2927 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2928 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2929
da17066c
JM
2930 /* Cache block sizes */
2931 fs_info->nodesize = nodesize;
2932 fs_info->sectorsize = sectorsize;
2933 fs_info->stripesize = stripesize;
2934
bc3f116f
CM
2935 /*
2936 * mixed block groups end up with duplicate but slightly offset
2937 * extent buffers for the same range. It leads to corruptions
2938 */
2939 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2940 (sectorsize != nodesize)) {
05135f59
DS
2941 btrfs_err(fs_info,
2942"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2943 nodesize, sectorsize);
bc3f116f
CM
2944 goto fail_alloc;
2945 }
2946
ceda0864
MX
2947 /*
2948 * Needn't use the lock because there is no other task which will
2949 * update the flag.
2950 */
a6fa6fae 2951 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2952
f2b636e8
JB
2953 features = btrfs_super_compat_ro_flags(disk_super) &
2954 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2955 if (!sb_rdonly(sb) && features) {
05135f59
DS
2956 btrfs_err(fs_info,
2957 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2958 features);
f2b636e8 2959 err = -EINVAL;
16cdcec7 2960 goto fail_alloc;
f2b636e8 2961 }
61d92c32 2962
2a458198
ES
2963 ret = btrfs_init_workqueues(fs_info, fs_devices);
2964 if (ret) {
2965 err = ret;
0dc3b84a
JB
2966 goto fail_sb_buffer;
2967 }
4543df7e 2968
9e11ceee
JK
2969 sb->s_bdi->congested_fn = btrfs_congested_fn;
2970 sb->s_bdi->congested_data = fs_info;
2971 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 2972 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
2973 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2974 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2975
a061fc8d
CM
2976 sb->s_blocksize = sectorsize;
2977 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2978 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2979
925baedd 2980 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2981 ret = btrfs_read_sys_array(fs_info);
925baedd 2982 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2983 if (ret) {
05135f59 2984 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2985 goto fail_sb_buffer;
84eed90f 2986 }
0b86a832 2987
84234f3a 2988 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2989 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2990
da17066c 2991 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2992
2ff7e61e 2993 chunk_root->node = read_tree_block(fs_info,
0b86a832 2994 btrfs_super_chunk_root(disk_super),
581c1760 2995 generation, level, NULL);
64c043de
LB
2996 if (IS_ERR(chunk_root->node) ||
2997 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2998 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2999 if (!IS_ERR(chunk_root->node))
3000 free_extent_buffer(chunk_root->node);
95ab1f64 3001 chunk_root->node = NULL;
af31f5e5 3002 goto fail_tree_roots;
83121942 3003 }
5d4f98a2
YZ
3004 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3005 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3006
e17cade2 3007 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3008 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3009
5b4aacef 3010 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3011 if (ret) {
05135f59 3012 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3013 goto fail_tree_roots;
2b82032c 3014 }
0b86a832 3015
8dabb742 3016 /*
9b99b115
AJ
3017 * Keep the devid that is marked to be the target device for the
3018 * device replace procedure
8dabb742 3019 */
9b99b115 3020 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3021
a6b0d5c8 3022 if (!fs_devices->latest_bdev) {
05135f59 3023 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3024 goto fail_tree_roots;
3025 }
3026
af31f5e5 3027retry_root_backup:
84234f3a 3028 generation = btrfs_super_generation(disk_super);
581c1760 3029 level = btrfs_super_root_level(disk_super);
0b86a832 3030
2ff7e61e 3031 tree_root->node = read_tree_block(fs_info,
db94535d 3032 btrfs_super_root(disk_super),
581c1760 3033 generation, level, NULL);
64c043de
LB
3034 if (IS_ERR(tree_root->node) ||
3035 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3036 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3037 if (!IS_ERR(tree_root->node))
3038 free_extent_buffer(tree_root->node);
95ab1f64 3039 tree_root->node = NULL;
af31f5e5 3040 goto recovery_tree_root;
83121942 3041 }
af31f5e5 3042
5d4f98a2
YZ
3043 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3044 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3045 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3046
f32e48e9
CR
3047 mutex_lock(&tree_root->objectid_mutex);
3048 ret = btrfs_find_highest_objectid(tree_root,
3049 &tree_root->highest_objectid);
3050 if (ret) {
3051 mutex_unlock(&tree_root->objectid_mutex);
3052 goto recovery_tree_root;
3053 }
3054
3055 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3056
3057 mutex_unlock(&tree_root->objectid_mutex);
3058
6bccf3ab 3059 ret = btrfs_read_roots(fs_info);
4bbcaa64 3060 if (ret)
af31f5e5 3061 goto recovery_tree_root;
f7a81ea4 3062
8929ecfa
YZ
3063 fs_info->generation = generation;
3064 fs_info->last_trans_committed = generation;
8929ecfa 3065
cf90d884
QW
3066 ret = btrfs_verify_dev_extents(fs_info);
3067 if (ret) {
3068 btrfs_err(fs_info,
3069 "failed to verify dev extents against chunks: %d",
3070 ret);
3071 goto fail_block_groups;
3072 }
68310a5e
ID
3073 ret = btrfs_recover_balance(fs_info);
3074 if (ret) {
05135f59 3075 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3076 goto fail_block_groups;
3077 }
3078
733f4fbb
SB
3079 ret = btrfs_init_dev_stats(fs_info);
3080 if (ret) {
05135f59 3081 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3082 goto fail_block_groups;
3083 }
3084
8dabb742
SB
3085 ret = btrfs_init_dev_replace(fs_info);
3086 if (ret) {
05135f59 3087 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3088 goto fail_block_groups;
3089 }
3090
9b99b115 3091 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3092
b7c35e81
AJ
3093 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3094 if (ret) {
05135f59
DS
3095 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3096 ret);
b7c35e81
AJ
3097 goto fail_block_groups;
3098 }
3099
3100 ret = btrfs_sysfs_add_device(fs_devices);
3101 if (ret) {
05135f59
DS
3102 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3103 ret);
b7c35e81
AJ
3104 goto fail_fsdev_sysfs;
3105 }
3106
96f3136e 3107 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3108 if (ret) {
05135f59 3109 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3110 goto fail_fsdev_sysfs;
c59021f8 3111 }
3112
c59021f8 3113 ret = btrfs_init_space_info(fs_info);
3114 if (ret) {
05135f59 3115 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3116 goto fail_sysfs;
c59021f8 3117 }
3118
5b4aacef 3119 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3120 if (ret) {
05135f59 3121 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3122 goto fail_sysfs;
1b1d1f66 3123 }
4330e183 3124
6528b99d 3125 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3126 btrfs_warn(fs_info,
52042d8e 3127 "writable mount is not allowed due to too many missing devices");
2365dd3c 3128 goto fail_sysfs;
292fd7fc 3129 }
9078a3e1 3130
a74a4b97
CM
3131 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3132 "btrfs-cleaner");
57506d50 3133 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3134 goto fail_sysfs;
a74a4b97
CM
3135
3136 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3137 tree_root,
3138 "btrfs-transaction");
57506d50 3139 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3140 goto fail_cleaner;
a74a4b97 3141
583b7231 3142 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3143 !fs_info->fs_devices->rotating) {
583b7231 3144 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3145 }
3146
572d9ab7 3147 /*
01327610 3148 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3149 * not have to wait for transaction commit
3150 */
3151 btrfs_apply_pending_changes(fs_info);
3818aea2 3152
21adbd5c 3153#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3154 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3155 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3156 btrfs_test_opt(fs_info,
21adbd5c
SB
3157 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3158 1 : 0,
3159 fs_info->check_integrity_print_mask);
3160 if (ret)
05135f59
DS
3161 btrfs_warn(fs_info,
3162 "failed to initialize integrity check module: %d",
3163 ret);
21adbd5c
SB
3164 }
3165#endif
bcef60f2
AJ
3166 ret = btrfs_read_qgroup_config(fs_info);
3167 if (ret)
3168 goto fail_trans_kthread;
21adbd5c 3169
fd708b81
JB
3170 if (btrfs_build_ref_tree(fs_info))
3171 btrfs_err(fs_info, "couldn't build ref tree");
3172
96da0919
QW
3173 /* do not make disk changes in broken FS or nologreplay is given */
3174 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3175 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3176 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3177 if (ret) {
63443bf5 3178 err = ret;
28c16cbb 3179 goto fail_qgroup;
79787eaa 3180 }
e02119d5 3181 }
1a40e23b 3182
6bccf3ab 3183 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3184 if (ret)
28c16cbb 3185 goto fail_qgroup;
76dda93c 3186
bc98a42c 3187 if (!sb_rdonly(sb)) {
d68fc57b 3188 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3189 if (ret)
28c16cbb 3190 goto fail_qgroup;
90c711ab
ZB
3191
3192 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3193 ret = btrfs_recover_relocation(tree_root);
90c711ab 3194 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3195 if (ret < 0) {
05135f59
DS
3196 btrfs_warn(fs_info, "failed to recover relocation: %d",
3197 ret);
d7ce5843 3198 err = -EINVAL;
bcef60f2 3199 goto fail_qgroup;
d7ce5843 3200 }
7c2ca468 3201 }
1a40e23b 3202
3de4586c
CM
3203 location.objectid = BTRFS_FS_TREE_OBJECTID;
3204 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3205 location.offset = 0;
3de4586c 3206
3de4586c 3207 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3208 if (IS_ERR(fs_info->fs_root)) {
3209 err = PTR_ERR(fs_info->fs_root);
f50f4353 3210 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3211 goto fail_qgroup;
3140c9a3 3212 }
c289811c 3213
bc98a42c 3214 if (sb_rdonly(sb))
2b6ba629 3215 return 0;
59641015 3216
f8d468a1
OS
3217 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3218 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3219 clear_free_space_tree = 1;
3220 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3221 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3222 btrfs_warn(fs_info, "free space tree is invalid");
3223 clear_free_space_tree = 1;
3224 }
3225
3226 if (clear_free_space_tree) {
f8d468a1
OS
3227 btrfs_info(fs_info, "clearing free space tree");
3228 ret = btrfs_clear_free_space_tree(fs_info);
3229 if (ret) {
3230 btrfs_warn(fs_info,
3231 "failed to clear free space tree: %d", ret);
6bccf3ab 3232 close_ctree(fs_info);
f8d468a1
OS
3233 return ret;
3234 }
3235 }
3236
0b246afa 3237 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3238 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3239 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3240 ret = btrfs_create_free_space_tree(fs_info);
3241 if (ret) {
05135f59
DS
3242 btrfs_warn(fs_info,
3243 "failed to create free space tree: %d", ret);
6bccf3ab 3244 close_ctree(fs_info);
511711af
CM
3245 return ret;
3246 }
3247 }
3248
2b6ba629
ID
3249 down_read(&fs_info->cleanup_work_sem);
3250 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3251 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3252 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3253 close_ctree(fs_info);
2b6ba629
ID
3254 return ret;
3255 }
3256 up_read(&fs_info->cleanup_work_sem);
59641015 3257
2b6ba629
ID
3258 ret = btrfs_resume_balance_async(fs_info);
3259 if (ret) {
05135f59 3260 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3261 close_ctree(fs_info);
2b6ba629 3262 return ret;
e3acc2a6
JB
3263 }
3264
8dabb742
SB
3265 ret = btrfs_resume_dev_replace_async(fs_info);
3266 if (ret) {
05135f59 3267 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3268 close_ctree(fs_info);
8dabb742
SB
3269 return ret;
3270 }
3271
b382a324
JS
3272 btrfs_qgroup_rescan_resume(fs_info);
3273
4bbcaa64 3274 if (!fs_info->uuid_root) {
05135f59 3275 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3276 ret = btrfs_create_uuid_tree(fs_info);
3277 if (ret) {
05135f59
DS
3278 btrfs_warn(fs_info,
3279 "failed to create the UUID tree: %d", ret);
6bccf3ab 3280 close_ctree(fs_info);
f7a81ea4
SB
3281 return ret;
3282 }
0b246afa 3283 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3284 fs_info->generation !=
3285 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3286 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3287 ret = btrfs_check_uuid_tree(fs_info);
3288 if (ret) {
05135f59
DS
3289 btrfs_warn(fs_info,
3290 "failed to check the UUID tree: %d", ret);
6bccf3ab 3291 close_ctree(fs_info);
70f80175
SB
3292 return ret;
3293 }
3294 } else {
afcdd129 3295 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3296 }
afcdd129 3297 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3298
8dcddfa0
QW
3299 /*
3300 * backuproot only affect mount behavior, and if open_ctree succeeded,
3301 * no need to keep the flag
3302 */
3303 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3304
ad2b2c80 3305 return 0;
39279cc3 3306
bcef60f2
AJ
3307fail_qgroup:
3308 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3309fail_trans_kthread:
3310 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3311 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3312 btrfs_free_fs_roots(fs_info);
3f157a2f 3313fail_cleaner:
a74a4b97 3314 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3315
3316 /*
3317 * make sure we're done with the btree inode before we stop our
3318 * kthreads
3319 */
3320 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3321
2365dd3c 3322fail_sysfs:
6618a59b 3323 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3324
b7c35e81
AJ
3325fail_fsdev_sysfs:
3326 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3327
1b1d1f66 3328fail_block_groups:
54067ae9 3329 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3330
3331fail_tree_roots:
3332 free_root_pointers(fs_info, 1);
2b8195bb 3333 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3334
39279cc3 3335fail_sb_buffer:
7abadb64 3336 btrfs_stop_all_workers(fs_info);
5cdd7db6 3337 btrfs_free_block_groups(fs_info);
16cdcec7 3338fail_alloc:
4543df7e 3339fail_iput:
586e46e2
ID
3340 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3341
4543df7e 3342 iput(fs_info->btree_inode);
c404e0dc 3343fail_bio_counter:
7f8d236a 3344 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3345fail_delalloc_bytes:
3346 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3347fail_dirty_metadata_bytes:
3348 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3349fail_dio_bytes:
3350 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3351fail_srcu:
3352 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3353fail:
53b381b3 3354 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3355 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3356 return err;
af31f5e5
CM
3357
3358recovery_tree_root:
0b246afa 3359 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3360 goto fail_tree_roots;
3361
3362 free_root_pointers(fs_info, 0);
3363
3364 /* don't use the log in recovery mode, it won't be valid */
3365 btrfs_set_super_log_root(disk_super, 0);
3366
3367 /* we can't trust the free space cache either */
3368 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3369
3370 ret = next_root_backup(fs_info, fs_info->super_copy,
3371 &num_backups_tried, &backup_index);
3372 if (ret == -1)
3373 goto fail_block_groups;
3374 goto retry_root_backup;
eb60ceac 3375}
663faf9f 3376ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3377
f2984462
CM
3378static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3379{
f2984462
CM
3380 if (uptodate) {
3381 set_buffer_uptodate(bh);
3382 } else {
442a4f63
SB
3383 struct btrfs_device *device = (struct btrfs_device *)
3384 bh->b_private;
3385
fb456252 3386 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3387 "lost page write due to IO error on %s",
606686ee 3388 rcu_str_deref(device->name));
01327610 3389 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3390 * our own ways of dealing with the IO errors
3391 */
f2984462 3392 clear_buffer_uptodate(bh);
442a4f63 3393 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3394 }
3395 unlock_buffer(bh);
3396 put_bh(bh);
3397}
3398
29c36d72
AJ
3399int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3400 struct buffer_head **bh_ret)
3401{
3402 struct buffer_head *bh;
3403 struct btrfs_super_block *super;
3404 u64 bytenr;
3405
3406 bytenr = btrfs_sb_offset(copy_num);
3407 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3408 return -EINVAL;
3409
9f6d2510 3410 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3411 /*
3412 * If we fail to read from the underlying devices, as of now
3413 * the best option we have is to mark it EIO.
3414 */
3415 if (!bh)
3416 return -EIO;
3417
3418 super = (struct btrfs_super_block *)bh->b_data;
3419 if (btrfs_super_bytenr(super) != bytenr ||
3420 btrfs_super_magic(super) != BTRFS_MAGIC) {
3421 brelse(bh);
3422 return -EINVAL;
3423 }
3424
3425 *bh_ret = bh;
3426 return 0;
3427}
3428
3429
a512bbf8
YZ
3430struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3431{
3432 struct buffer_head *bh;
3433 struct buffer_head *latest = NULL;
3434 struct btrfs_super_block *super;
3435 int i;
3436 u64 transid = 0;
92fc03fb 3437 int ret = -EINVAL;
a512bbf8
YZ
3438
3439 /* we would like to check all the supers, but that would make
3440 * a btrfs mount succeed after a mkfs from a different FS.
3441 * So, we need to add a special mount option to scan for
3442 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3443 */
3444 for (i = 0; i < 1; i++) {
29c36d72
AJ
3445 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3446 if (ret)
a512bbf8
YZ
3447 continue;
3448
3449 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3450
3451 if (!latest || btrfs_super_generation(super) > transid) {
3452 brelse(latest);
3453 latest = bh;
3454 transid = btrfs_super_generation(super);
3455 } else {
3456 brelse(bh);
3457 }
3458 }
92fc03fb
AJ
3459
3460 if (!latest)
3461 return ERR_PTR(ret);
3462
a512bbf8
YZ
3463 return latest;
3464}
3465
4eedeb75 3466/*
abbb3b8e
DS
3467 * Write superblock @sb to the @device. Do not wait for completion, all the
3468 * buffer heads we write are pinned.
4eedeb75 3469 *
abbb3b8e
DS
3470 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3471 * the expected device size at commit time. Note that max_mirrors must be
3472 * same for write and wait phases.
4eedeb75 3473 *
abbb3b8e 3474 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3475 */
a512bbf8 3476static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3477 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3478{
3479 struct buffer_head *bh;
3480 int i;
3481 int ret;
3482 int errors = 0;
3483 u32 crc;
3484 u64 bytenr;
1b9e619c 3485 int op_flags;
a512bbf8
YZ
3486
3487 if (max_mirrors == 0)
3488 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3489
a512bbf8
YZ
3490 for (i = 0; i < max_mirrors; i++) {
3491 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3492 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3493 device->commit_total_bytes)
a512bbf8
YZ
3494 break;
3495
abbb3b8e 3496 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3497
abbb3b8e
DS
3498 crc = ~(u32)0;
3499 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3500 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3501 btrfs_csum_final(crc, sb->csum);
4eedeb75 3502
abbb3b8e 3503 /* One reference for us, and we leave it for the caller */
9f6d2510 3504 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3505 BTRFS_SUPER_INFO_SIZE);
3506 if (!bh) {
3507 btrfs_err(device->fs_info,
3508 "couldn't get super buffer head for bytenr %llu",
3509 bytenr);
3510 errors++;
4eedeb75 3511 continue;
abbb3b8e 3512 }
634554dc 3513
abbb3b8e 3514 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3515
abbb3b8e
DS
3516 /* one reference for submit_bh */
3517 get_bh(bh);
4eedeb75 3518
abbb3b8e
DS
3519 set_buffer_uptodate(bh);
3520 lock_buffer(bh);
3521 bh->b_end_io = btrfs_end_buffer_write_sync;
3522 bh->b_private = device;
a512bbf8 3523
387125fc
CM
3524 /*
3525 * we fua the first super. The others we allow
3526 * to go down lazy.
3527 */
1b9e619c
OS
3528 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3529 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3530 op_flags |= REQ_FUA;
3531 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3532 if (ret)
a512bbf8 3533 errors++;
a512bbf8
YZ
3534 }
3535 return errors < i ? 0 : -1;
3536}
3537
abbb3b8e
DS
3538/*
3539 * Wait for write completion of superblocks done by write_dev_supers,
3540 * @max_mirrors same for write and wait phases.
3541 *
3542 * Return number of errors when buffer head is not found or not marked up to
3543 * date.
3544 */
3545static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3546{
3547 struct buffer_head *bh;
3548 int i;
3549 int errors = 0;
b6a535fa 3550 bool primary_failed = false;
abbb3b8e
DS
3551 u64 bytenr;
3552
3553 if (max_mirrors == 0)
3554 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3555
3556 for (i = 0; i < max_mirrors; i++) {
3557 bytenr = btrfs_sb_offset(i);
3558 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3559 device->commit_total_bytes)
3560 break;
3561
9f6d2510
DS
3562 bh = __find_get_block(device->bdev,
3563 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3564 BTRFS_SUPER_INFO_SIZE);
3565 if (!bh) {
3566 errors++;
b6a535fa
HM
3567 if (i == 0)
3568 primary_failed = true;
abbb3b8e
DS
3569 continue;
3570 }
3571 wait_on_buffer(bh);
b6a535fa 3572 if (!buffer_uptodate(bh)) {
abbb3b8e 3573 errors++;
b6a535fa
HM
3574 if (i == 0)
3575 primary_failed = true;
3576 }
abbb3b8e
DS
3577
3578 /* drop our reference */
3579 brelse(bh);
3580
3581 /* drop the reference from the writing run */
3582 brelse(bh);
3583 }
3584
b6a535fa
HM
3585 /* log error, force error return */
3586 if (primary_failed) {
3587 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3588 device->devid);
3589 return -1;
3590 }
3591
abbb3b8e
DS
3592 return errors < i ? 0 : -1;
3593}
3594
387125fc
CM
3595/*
3596 * endio for the write_dev_flush, this will wake anyone waiting
3597 * for the barrier when it is done
3598 */
4246a0b6 3599static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3600{
e0ae9994 3601 complete(bio->bi_private);
387125fc
CM
3602}
3603
3604/*
4fc6441a
AJ
3605 * Submit a flush request to the device if it supports it. Error handling is
3606 * done in the waiting counterpart.
387125fc 3607 */
4fc6441a 3608static void write_dev_flush(struct btrfs_device *device)
387125fc 3609{
c2a9c7ab 3610 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3611 struct bio *bio = device->flush_bio;
387125fc 3612
c2a9c7ab 3613 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3614 return;
387125fc 3615
e0ae9994 3616 bio_reset(bio);
387125fc 3617 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3618 bio_set_dev(bio, device->bdev);
8d910125 3619 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3620 init_completion(&device->flush_wait);
3621 bio->bi_private = &device->flush_wait;
387125fc 3622
43a01111 3623 btrfsic_submit_bio(bio);
1c3063b6 3624 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3625}
387125fc 3626
4fc6441a
AJ
3627/*
3628 * If the flush bio has been submitted by write_dev_flush, wait for it.
3629 */
8c27cb35 3630static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3631{
4fc6441a 3632 struct bio *bio = device->flush_bio;
387125fc 3633
1c3063b6 3634 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3635 return BLK_STS_OK;
387125fc 3636
1c3063b6 3637 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3638 wait_for_completion_io(&device->flush_wait);
387125fc 3639
8c27cb35 3640 return bio->bi_status;
387125fc 3641}
387125fc 3642
d10b82fe 3643static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3644{
6528b99d 3645 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3646 return -EIO;
387125fc
CM
3647 return 0;
3648}
3649
3650/*
3651 * send an empty flush down to each device in parallel,
3652 * then wait for them
3653 */
3654static int barrier_all_devices(struct btrfs_fs_info *info)
3655{
3656 struct list_head *head;
3657 struct btrfs_device *dev;
5af3e8cc 3658 int errors_wait = 0;
4e4cbee9 3659 blk_status_t ret;
387125fc 3660
1538e6c5 3661 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3662 /* send down all the barriers */
3663 head = &info->fs_devices->devices;
1538e6c5 3664 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3665 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3666 continue;
cea7c8bf 3667 if (!dev->bdev)
387125fc 3668 continue;
e12c9621 3669 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3670 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3671 continue;
3672
4fc6441a 3673 write_dev_flush(dev);
58efbc9f 3674 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3675 }
3676
3677 /* wait for all the barriers */
1538e6c5 3678 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3679 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3680 continue;
387125fc 3681 if (!dev->bdev) {
5af3e8cc 3682 errors_wait++;
387125fc
CM
3683 continue;
3684 }
e12c9621 3685 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3686 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3687 continue;
3688
4fc6441a 3689 ret = wait_dev_flush(dev);
401b41e5
AJ
3690 if (ret) {
3691 dev->last_flush_error = ret;
66b4993e
DS
3692 btrfs_dev_stat_inc_and_print(dev,
3693 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3694 errors_wait++;
401b41e5
AJ
3695 }
3696 }
3697
cea7c8bf 3698 if (errors_wait) {
401b41e5
AJ
3699 /*
3700 * At some point we need the status of all disks
3701 * to arrive at the volume status. So error checking
3702 * is being pushed to a separate loop.
3703 */
d10b82fe 3704 return check_barrier_error(info);
387125fc 3705 }
387125fc
CM
3706 return 0;
3707}
3708
943c6e99
ZL
3709int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3710{
8789f4fe
ZL
3711 int raid_type;
3712 int min_tolerated = INT_MAX;
943c6e99 3713
8789f4fe
ZL
3714 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3715 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3716 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3717 btrfs_raid_array[BTRFS_RAID_SINGLE].
3718 tolerated_failures);
943c6e99 3719
8789f4fe
ZL
3720 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3721 if (raid_type == BTRFS_RAID_SINGLE)
3722 continue;
41a6e891 3723 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3724 continue;
8c3e3582 3725 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3726 btrfs_raid_array[raid_type].
3727 tolerated_failures);
3728 }
943c6e99 3729
8789f4fe 3730 if (min_tolerated == INT_MAX) {
ab8d0fc4 3731 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3732 min_tolerated = 0;
3733 }
3734
3735 return min_tolerated;
943c6e99
ZL
3736}
3737
eece6a9c 3738int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3739{
e5e9a520 3740 struct list_head *head;
f2984462 3741 struct btrfs_device *dev;
a061fc8d 3742 struct btrfs_super_block *sb;
f2984462 3743 struct btrfs_dev_item *dev_item;
f2984462
CM
3744 int ret;
3745 int do_barriers;
a236aed1
CM
3746 int max_errors;
3747 int total_errors = 0;
a061fc8d 3748 u64 flags;
f2984462 3749
0b246afa 3750 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3751
3752 /*
3753 * max_mirrors == 0 indicates we're from commit_transaction,
3754 * not from fsync where the tree roots in fs_info have not
3755 * been consistent on disk.
3756 */
3757 if (max_mirrors == 0)
3758 backup_super_roots(fs_info);
f2984462 3759
0b246afa 3760 sb = fs_info->super_for_commit;
a061fc8d 3761 dev_item = &sb->dev_item;
e5e9a520 3762
0b246afa
JM
3763 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3764 head = &fs_info->fs_devices->devices;
3765 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3766
5af3e8cc 3767 if (do_barriers) {
0b246afa 3768 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3769 if (ret) {
3770 mutex_unlock(
0b246afa
JM
3771 &fs_info->fs_devices->device_list_mutex);
3772 btrfs_handle_fs_error(fs_info, ret,
3773 "errors while submitting device barriers.");
5af3e8cc
SB
3774 return ret;
3775 }
3776 }
387125fc 3777
1538e6c5 3778 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3779 if (!dev->bdev) {
3780 total_errors++;
3781 continue;
3782 }
e12c9621 3783 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3784 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3785 continue;
3786
2b82032c 3787 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3788 btrfs_set_stack_device_type(dev_item, dev->type);
3789 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3790 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3791 dev->commit_total_bytes);
ce7213c7
MX
3792 btrfs_set_stack_device_bytes_used(dev_item,
3793 dev->commit_bytes_used);
a061fc8d
CM
3794 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3795 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3796 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3797 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3798 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3799 BTRFS_FSID_SIZE);
a512bbf8 3800
a061fc8d
CM
3801 flags = btrfs_super_flags(sb);
3802 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3803
75cb857d
QW
3804 ret = btrfs_validate_write_super(fs_info, sb);
3805 if (ret < 0) {
3806 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3807 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3808 "unexpected superblock corruption detected");
3809 return -EUCLEAN;
3810 }
3811
abbb3b8e 3812 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3813 if (ret)
3814 total_errors++;
f2984462 3815 }
a236aed1 3816 if (total_errors > max_errors) {
0b246afa
JM
3817 btrfs_err(fs_info, "%d errors while writing supers",
3818 total_errors);
3819 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3820
9d565ba4 3821 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3822 btrfs_handle_fs_error(fs_info, -EIO,
3823 "%d errors while writing supers",
3824 total_errors);
9d565ba4 3825 return -EIO;
a236aed1 3826 }
f2984462 3827
a512bbf8 3828 total_errors = 0;
1538e6c5 3829 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3830 if (!dev->bdev)
3831 continue;
e12c9621 3832 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3833 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3834 continue;
3835
abbb3b8e 3836 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3837 if (ret)
3838 total_errors++;
f2984462 3839 }
0b246afa 3840 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3841 if (total_errors > max_errors) {
0b246afa
JM
3842 btrfs_handle_fs_error(fs_info, -EIO,
3843 "%d errors while writing supers",
3844 total_errors);
79787eaa 3845 return -EIO;
a236aed1 3846 }
f2984462
CM
3847 return 0;
3848}
3849
cb517eab
MX
3850/* Drop a fs root from the radix tree and free it. */
3851void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3852 struct btrfs_root *root)
2619ba1f 3853{
4df27c4d 3854 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3855 radix_tree_delete(&fs_info->fs_roots_radix,
3856 (unsigned long)root->root_key.objectid);
4df27c4d 3857 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3858
3859 if (btrfs_root_refs(&root->root_item) == 0)
3860 synchronize_srcu(&fs_info->subvol_srcu);
3861
1c1ea4f7 3862 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3863 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3864 if (root->reloc_root) {
3865 free_extent_buffer(root->reloc_root->node);
3866 free_extent_buffer(root->reloc_root->commit_root);
3867 btrfs_put_fs_root(root->reloc_root);
3868 root->reloc_root = NULL;
3869 }
3870 }
3321719e 3871
faa2dbf0
JB
3872 if (root->free_ino_pinned)
3873 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3874 if (root->free_ino_ctl)
3875 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3876 btrfs_free_fs_root(root);
4df27c4d
YZ
3877}
3878
84db5ccf 3879void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3880{
57cdc8db 3881 iput(root->ino_cache_inode);
4df27c4d 3882 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3883 if (root->anon_dev)
3884 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3885 if (root->subv_writers)
3886 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3887 free_extent_buffer(root->node);
3888 free_extent_buffer(root->commit_root);
581bb050
LZ
3889 kfree(root->free_ino_ctl);
3890 kfree(root->free_ino_pinned);
b0feb9d9 3891 btrfs_put_fs_root(root);
2619ba1f
CM
3892}
3893
c146afad 3894int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3895{
c146afad
YZ
3896 u64 root_objectid = 0;
3897 struct btrfs_root *gang[8];
65d33fd7
QW
3898 int i = 0;
3899 int err = 0;
3900 unsigned int ret = 0;
3901 int index;
e089f05c 3902
c146afad 3903 while (1) {
65d33fd7 3904 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3905 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3906 (void **)gang, root_objectid,
3907 ARRAY_SIZE(gang));
65d33fd7
QW
3908 if (!ret) {
3909 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3910 break;
65d33fd7 3911 }
5d4f98a2 3912 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3913
c146afad 3914 for (i = 0; i < ret; i++) {
65d33fd7
QW
3915 /* Avoid to grab roots in dead_roots */
3916 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3917 gang[i] = NULL;
3918 continue;
3919 }
3920 /* grab all the search result for later use */
3921 gang[i] = btrfs_grab_fs_root(gang[i]);
3922 }
3923 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3924
65d33fd7
QW
3925 for (i = 0; i < ret; i++) {
3926 if (!gang[i])
3927 continue;
c146afad 3928 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3929 err = btrfs_orphan_cleanup(gang[i]);
3930 if (err)
65d33fd7
QW
3931 break;
3932 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3933 }
3934 root_objectid++;
3935 }
65d33fd7
QW
3936
3937 /* release the uncleaned roots due to error */
3938 for (; i < ret; i++) {
3939 if (gang[i])
3940 btrfs_put_fs_root(gang[i]);
3941 }
3942 return err;
c146afad 3943}
a2135011 3944
6bccf3ab 3945int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3946{
6bccf3ab 3947 struct btrfs_root *root = fs_info->tree_root;
c146afad 3948 struct btrfs_trans_handle *trans;
a74a4b97 3949
0b246afa 3950 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3951 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3952 mutex_unlock(&fs_info->cleaner_mutex);
3953 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3954
3955 /* wait until ongoing cleanup work done */
0b246afa
JM
3956 down_write(&fs_info->cleanup_work_sem);
3957 up_write(&fs_info->cleanup_work_sem);
c71bf099 3958
7a7eaa40 3959 trans = btrfs_join_transaction(root);
3612b495
TI
3960 if (IS_ERR(trans))
3961 return PTR_ERR(trans);
3a45bb20 3962 return btrfs_commit_transaction(trans);
c146afad
YZ
3963}
3964
6bccf3ab 3965void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3966{
c146afad
YZ
3967 int ret;
3968
afcdd129 3969 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3970 /*
3971 * We don't want the cleaner to start new transactions, add more delayed
3972 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3973 * because that frees the task_struct, and the transaction kthread might
3974 * still try to wake up the cleaner.
3975 */
3976 kthread_park(fs_info->cleaner_kthread);
c146afad 3977
7343dd61 3978 /* wait for the qgroup rescan worker to stop */
d06f23d6 3979 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3980
803b2f54
SB
3981 /* wait for the uuid_scan task to finish */
3982 down(&fs_info->uuid_tree_rescan_sem);
3983 /* avoid complains from lockdep et al., set sem back to initial state */
3984 up(&fs_info->uuid_tree_rescan_sem);
3985
837d5b6e 3986 /* pause restriper - we want to resume on mount */
aa1b8cd4 3987 btrfs_pause_balance(fs_info);
837d5b6e 3988
8dabb742
SB
3989 btrfs_dev_replace_suspend_for_unmount(fs_info);
3990
aa1b8cd4 3991 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3992
3993 /* wait for any defraggers to finish */
3994 wait_event(fs_info->transaction_wait,
3995 (atomic_read(&fs_info->defrag_running) == 0));
3996
3997 /* clear out the rbtree of defraggable inodes */
26176e7c 3998 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3999
21c7e756
MX
4000 cancel_work_sync(&fs_info->async_reclaim_work);
4001
bc98a42c 4002 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4003 /*
d6fd0ae2
OS
4004 * The cleaner kthread is stopped, so do one final pass over
4005 * unused block groups.
e44163e1 4006 */
0b246afa 4007 btrfs_delete_unused_bgs(fs_info);
e44163e1 4008
6bccf3ab 4009 ret = btrfs_commit_super(fs_info);
acce952b 4010 if (ret)
04892340 4011 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4012 }
4013
af722733
LB
4014 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4015 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4016 btrfs_error_commit_super(fs_info);
0f7d52f4 4017
e3029d9f
AV
4018 kthread_stop(fs_info->transaction_kthread);
4019 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4020
e187831e 4021 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4022 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4023
04892340 4024 btrfs_free_qgroup_config(fs_info);
fe816d0f 4025 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4026
963d678b 4027 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4028 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4029 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4030 }
bcc63abb 4031
4297ff84
JB
4032 if (percpu_counter_sum(&fs_info->dio_bytes))
4033 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4034 percpu_counter_sum(&fs_info->dio_bytes));
4035
6618a59b 4036 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4037 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4038
faa2dbf0 4039 btrfs_free_fs_roots(fs_info);
d10c5f31 4040
1a4319cc
LB
4041 btrfs_put_block_group_cache(fs_info);
4042
de348ee0
WS
4043 /*
4044 * we must make sure there is not any read request to
4045 * submit after we stopping all workers.
4046 */
4047 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4048 btrfs_stop_all_workers(fs_info);
4049
5cdd7db6
FM
4050 btrfs_free_block_groups(fs_info);
4051
afcdd129 4052 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4053 free_root_pointers(fs_info, 1);
9ad6b7bc 4054
13e6c37b 4055 iput(fs_info->btree_inode);
d6bfde87 4056
21adbd5c 4057#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4058 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4059 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4060#endif
4061
0b86a832 4062 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4063 btrfs_close_devices(fs_info->fs_devices);
b248a415 4064
e2d84521 4065 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4066 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4067 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4068 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4069 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4070
53b381b3 4071 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4072 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4073}
4074
b9fab919
CM
4075int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4076 int atomic)
5f39d397 4077{
1259ab75 4078 int ret;
727011e0 4079 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4080
0b32f4bb 4081 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4082 if (!ret)
4083 return ret;
4084
4085 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4086 parent_transid, atomic);
4087 if (ret == -EAGAIN)
4088 return ret;
1259ab75 4089 return !ret;
5f39d397
CM
4090}
4091
5f39d397
CM
4092void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4093{
0b246afa 4094 struct btrfs_fs_info *fs_info;
06ea65a3 4095 struct btrfs_root *root;
5f39d397 4096 u64 transid = btrfs_header_generation(buf);
b9473439 4097 int was_dirty;
b4ce94de 4098
06ea65a3
JB
4099#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4100 /*
4101 * This is a fast path so only do this check if we have sanity tests
52042d8e 4102 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4103 * outside of the sanity tests.
4104 */
b0132a3b 4105 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4106 return;
4107#endif
4108 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4109 fs_info = root->fs_info;
b9447ef8 4110 btrfs_assert_tree_locked(buf);
0b246afa 4111 if (transid != fs_info->generation)
5d163e0e 4112 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4113 buf->start, transid, fs_info->generation);
0b32f4bb 4114 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4115 if (!was_dirty)
104b4e51
NB
4116 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4117 buf->len,
4118 fs_info->dirty_metadata_batch);
1f21ef0a 4119#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4120 /*
4121 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4122 * but item data not updated.
4123 * So here we should only check item pointers, not item data.
4124 */
4125 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4126 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4127 btrfs_print_leaf(buf);
1f21ef0a
FM
4128 ASSERT(0);
4129 }
4130#endif
eb60ceac
CM
4131}
4132
2ff7e61e 4133static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4134 int flush_delayed)
16cdcec7
MX
4135{
4136 /*
4137 * looks as though older kernels can get into trouble with
4138 * this code, they end up stuck in balance_dirty_pages forever
4139 */
e2d84521 4140 int ret;
16cdcec7
MX
4141
4142 if (current->flags & PF_MEMALLOC)
4143 return;
4144
b53d3f5d 4145 if (flush_delayed)
2ff7e61e 4146 btrfs_balance_delayed_items(fs_info);
16cdcec7 4147
d814a491
EL
4148 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4149 BTRFS_DIRTY_METADATA_THRESH,
4150 fs_info->dirty_metadata_batch);
e2d84521 4151 if (ret > 0) {
0b246afa 4152 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4153 }
16cdcec7
MX
4154}
4155
2ff7e61e 4156void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4157{
2ff7e61e 4158 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4159}
585ad2c3 4160
2ff7e61e 4161void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4162{
2ff7e61e 4163 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4164}
6b80053d 4165
581c1760
QW
4166int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4167 struct btrfs_key *first_key)
6b80053d 4168{
5ab12d1f 4169 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4170 level, first_key);
6b80053d 4171}
0da5468f 4172
2ff7e61e 4173static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4174{
fe816d0f
NB
4175 /* cleanup FS via transaction */
4176 btrfs_cleanup_transaction(fs_info);
4177
0b246afa 4178 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4179 btrfs_run_delayed_iputs(fs_info);
0b246afa 4180 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4181
0b246afa
JM
4182 down_write(&fs_info->cleanup_work_sem);
4183 up_write(&fs_info->cleanup_work_sem);
acce952b 4184}
4185
143bede5 4186static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4187{
acce952b 4188 struct btrfs_ordered_extent *ordered;
acce952b 4189
199c2a9c 4190 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4191 /*
4192 * This will just short circuit the ordered completion stuff which will
4193 * make sure the ordered extent gets properly cleaned up.
4194 */
199c2a9c 4195 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4196 root_extent_list)
4197 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4198 spin_unlock(&root->ordered_extent_lock);
4199}
4200
4201static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4202{
4203 struct btrfs_root *root;
4204 struct list_head splice;
4205
4206 INIT_LIST_HEAD(&splice);
4207
4208 spin_lock(&fs_info->ordered_root_lock);
4209 list_splice_init(&fs_info->ordered_roots, &splice);
4210 while (!list_empty(&splice)) {
4211 root = list_first_entry(&splice, struct btrfs_root,
4212 ordered_root);
1de2cfde
JB
4213 list_move_tail(&root->ordered_root,
4214 &fs_info->ordered_roots);
199c2a9c 4215
2a85d9ca 4216 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4217 btrfs_destroy_ordered_extents(root);
4218
2a85d9ca
LB
4219 cond_resched();
4220 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4221 }
4222 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4223
4224 /*
4225 * We need this here because if we've been flipped read-only we won't
4226 * get sync() from the umount, so we need to make sure any ordered
4227 * extents that haven't had their dirty pages IO start writeout yet
4228 * actually get run and error out properly.
4229 */
4230 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4231}
4232
35a3621b 4233static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4234 struct btrfs_fs_info *fs_info)
acce952b 4235{
4236 struct rb_node *node;
4237 struct btrfs_delayed_ref_root *delayed_refs;
4238 struct btrfs_delayed_ref_node *ref;
4239 int ret = 0;
4240
4241 delayed_refs = &trans->delayed_refs;
4242
4243 spin_lock(&delayed_refs->lock);
d7df2c79 4244 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4245 spin_unlock(&delayed_refs->lock);
0b246afa 4246 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4247 return ret;
4248 }
4249
5c9d028b 4250 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4251 struct btrfs_delayed_ref_head *head;
0e0adbcf 4252 struct rb_node *n;
e78417d1 4253 bool pin_bytes = false;
acce952b 4254
d7df2c79
JB
4255 head = rb_entry(node, struct btrfs_delayed_ref_head,
4256 href_node);
3069bd26 4257 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4258 continue;
3069bd26 4259
d7df2c79 4260 spin_lock(&head->lock);
e3d03965 4261 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4262 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4263 ref_node);
d7df2c79 4264 ref->in_tree = 0;
e3d03965 4265 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4266 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4267 if (!list_empty(&ref->add_list))
4268 list_del(&ref->add_list);
d7df2c79
JB
4269 atomic_dec(&delayed_refs->num_entries);
4270 btrfs_put_delayed_ref(ref);
e78417d1 4271 }
d7df2c79
JB
4272 if (head->must_insert_reserved)
4273 pin_bytes = true;
4274 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4275 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4276 spin_unlock(&head->lock);
4277 spin_unlock(&delayed_refs->lock);
4278 mutex_unlock(&head->mutex);
acce952b 4279
d7df2c79 4280 if (pin_bytes)
d278850e
JB
4281 btrfs_pin_extent(fs_info, head->bytenr,
4282 head->num_bytes, 1);
31890da0 4283 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4284 btrfs_put_delayed_ref_head(head);
acce952b 4285 cond_resched();
4286 spin_lock(&delayed_refs->lock);
4287 }
4288
4289 spin_unlock(&delayed_refs->lock);
4290
4291 return ret;
4292}
4293
143bede5 4294static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4295{
4296 struct btrfs_inode *btrfs_inode;
4297 struct list_head splice;
4298
4299 INIT_LIST_HEAD(&splice);
4300
eb73c1b7
MX
4301 spin_lock(&root->delalloc_lock);
4302 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4303
4304 while (!list_empty(&splice)) {
fe816d0f 4305 struct inode *inode = NULL;
eb73c1b7
MX
4306 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4307 delalloc_inodes);
fe816d0f 4308 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4309 spin_unlock(&root->delalloc_lock);
acce952b 4310
fe816d0f
NB
4311 /*
4312 * Make sure we get a live inode and that it'll not disappear
4313 * meanwhile.
4314 */
4315 inode = igrab(&btrfs_inode->vfs_inode);
4316 if (inode) {
4317 invalidate_inode_pages2(inode->i_mapping);
4318 iput(inode);
4319 }
eb73c1b7 4320 spin_lock(&root->delalloc_lock);
acce952b 4321 }
eb73c1b7
MX
4322 spin_unlock(&root->delalloc_lock);
4323}
4324
4325static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4326{
4327 struct btrfs_root *root;
4328 struct list_head splice;
4329
4330 INIT_LIST_HEAD(&splice);
4331
4332 spin_lock(&fs_info->delalloc_root_lock);
4333 list_splice_init(&fs_info->delalloc_roots, &splice);
4334 while (!list_empty(&splice)) {
4335 root = list_first_entry(&splice, struct btrfs_root,
4336 delalloc_root);
eb73c1b7
MX
4337 root = btrfs_grab_fs_root(root);
4338 BUG_ON(!root);
4339 spin_unlock(&fs_info->delalloc_root_lock);
4340
4341 btrfs_destroy_delalloc_inodes(root);
4342 btrfs_put_fs_root(root);
4343
4344 spin_lock(&fs_info->delalloc_root_lock);
4345 }
4346 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4347}
4348
2ff7e61e 4349static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4350 struct extent_io_tree *dirty_pages,
4351 int mark)
4352{
4353 int ret;
acce952b 4354 struct extent_buffer *eb;
4355 u64 start = 0;
4356 u64 end;
acce952b 4357
4358 while (1) {
4359 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4360 mark, NULL);
acce952b 4361 if (ret)
4362 break;
4363
91166212 4364 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4365 while (start <= end) {
0b246afa
JM
4366 eb = find_extent_buffer(fs_info, start);
4367 start += fs_info->nodesize;
fd8b2b61 4368 if (!eb)
acce952b 4369 continue;
fd8b2b61 4370 wait_on_extent_buffer_writeback(eb);
acce952b 4371
fd8b2b61
JB
4372 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4373 &eb->bflags))
4374 clear_extent_buffer_dirty(eb);
4375 free_extent_buffer_stale(eb);
acce952b 4376 }
4377 }
4378
4379 return ret;
4380}
4381
2ff7e61e 4382static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4383 struct extent_io_tree *pinned_extents)
4384{
4385 struct extent_io_tree *unpin;
4386 u64 start;
4387 u64 end;
4388 int ret;
ed0eaa14 4389 bool loop = true;
acce952b 4390
4391 unpin = pinned_extents;
ed0eaa14 4392again:
acce952b 4393 while (1) {
0e6ec385
FM
4394 struct extent_state *cached_state = NULL;
4395
fcd5e742
LF
4396 /*
4397 * The btrfs_finish_extent_commit() may get the same range as
4398 * ours between find_first_extent_bit and clear_extent_dirty.
4399 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4400 * the same extent range.
4401 */
4402 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4403 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4404 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4405 if (ret) {
4406 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4407 break;
fcd5e742 4408 }
acce952b 4409
0e6ec385
FM
4410 clear_extent_dirty(unpin, start, end, &cached_state);
4411 free_extent_state(cached_state);
2ff7e61e 4412 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4413 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4414 cond_resched();
4415 }
4416
ed0eaa14 4417 if (loop) {
0b246afa
JM
4418 if (unpin == &fs_info->freed_extents[0])
4419 unpin = &fs_info->freed_extents[1];
ed0eaa14 4420 else
0b246afa 4421 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4422 loop = false;
4423 goto again;
4424 }
4425
acce952b 4426 return 0;
4427}
4428
c79a1751
LB
4429static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4430{
4431 struct inode *inode;
4432
4433 inode = cache->io_ctl.inode;
4434 if (inode) {
4435 invalidate_inode_pages2(inode->i_mapping);
4436 BTRFS_I(inode)->generation = 0;
4437 cache->io_ctl.inode = NULL;
4438 iput(inode);
4439 }
4440 btrfs_put_block_group(cache);
4441}
4442
4443void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4444 struct btrfs_fs_info *fs_info)
c79a1751
LB
4445{
4446 struct btrfs_block_group_cache *cache;
4447
4448 spin_lock(&cur_trans->dirty_bgs_lock);
4449 while (!list_empty(&cur_trans->dirty_bgs)) {
4450 cache = list_first_entry(&cur_trans->dirty_bgs,
4451 struct btrfs_block_group_cache,
4452 dirty_list);
c79a1751
LB
4453
4454 if (!list_empty(&cache->io_list)) {
4455 spin_unlock(&cur_trans->dirty_bgs_lock);
4456 list_del_init(&cache->io_list);
4457 btrfs_cleanup_bg_io(cache);
4458 spin_lock(&cur_trans->dirty_bgs_lock);
4459 }
4460
4461 list_del_init(&cache->dirty_list);
4462 spin_lock(&cache->lock);
4463 cache->disk_cache_state = BTRFS_DC_ERROR;
4464 spin_unlock(&cache->lock);
4465
4466 spin_unlock(&cur_trans->dirty_bgs_lock);
4467 btrfs_put_block_group(cache);
ba2c4d4e 4468 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4469 spin_lock(&cur_trans->dirty_bgs_lock);
4470 }
4471 spin_unlock(&cur_trans->dirty_bgs_lock);
4472
45ae2c18
NB
4473 /*
4474 * Refer to the definition of io_bgs member for details why it's safe
4475 * to use it without any locking
4476 */
c79a1751
LB
4477 while (!list_empty(&cur_trans->io_bgs)) {
4478 cache = list_first_entry(&cur_trans->io_bgs,
4479 struct btrfs_block_group_cache,
4480 io_list);
c79a1751
LB
4481
4482 list_del_init(&cache->io_list);
4483 spin_lock(&cache->lock);
4484 cache->disk_cache_state = BTRFS_DC_ERROR;
4485 spin_unlock(&cache->lock);
4486 btrfs_cleanup_bg_io(cache);
4487 }
4488}
4489
49b25e05 4490void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4491 struct btrfs_fs_info *fs_info)
49b25e05 4492{
bbbf7243
NB
4493 struct btrfs_device *dev, *tmp;
4494
2ff7e61e 4495 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4496 ASSERT(list_empty(&cur_trans->dirty_bgs));
4497 ASSERT(list_empty(&cur_trans->io_bgs));
4498
bbbf7243
NB
4499 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4500 post_commit_list) {
4501 list_del_init(&dev->post_commit_list);
4502 }
4503
2ff7e61e 4504 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4505
4a9d8bde 4506 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4507 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4508
4a9d8bde 4509 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4510 wake_up(&fs_info->transaction_wait);
49b25e05 4511
ccdf9b30
JM
4512 btrfs_destroy_delayed_inodes(fs_info);
4513 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4514
2ff7e61e 4515 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4516 EXTENT_DIRTY);
2ff7e61e 4517 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4518 fs_info->pinned_extents);
49b25e05 4519
4a9d8bde
MX
4520 cur_trans->state =TRANS_STATE_COMPLETED;
4521 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4522}
4523
2ff7e61e 4524static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4525{
4526 struct btrfs_transaction *t;
acce952b 4527
0b246afa 4528 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4529
0b246afa
JM
4530 spin_lock(&fs_info->trans_lock);
4531 while (!list_empty(&fs_info->trans_list)) {
4532 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4533 struct btrfs_transaction, list);
4534 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4535 refcount_inc(&t->use_count);
0b246afa 4536 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4537 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4538 btrfs_put_transaction(t);
0b246afa 4539 spin_lock(&fs_info->trans_lock);
724e2315
JB
4540 continue;
4541 }
0b246afa 4542 if (t == fs_info->running_transaction) {
724e2315 4543 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4544 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4545 /*
4546 * We wait for 0 num_writers since we don't hold a trans
4547 * handle open currently for this transaction.
4548 */
4549 wait_event(t->writer_wait,
4550 atomic_read(&t->num_writers) == 0);
4551 } else {
0b246afa 4552 spin_unlock(&fs_info->trans_lock);
724e2315 4553 }
2ff7e61e 4554 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4555
0b246afa
JM
4556 spin_lock(&fs_info->trans_lock);
4557 if (t == fs_info->running_transaction)
4558 fs_info->running_transaction = NULL;
acce952b 4559 list_del_init(&t->list);
0b246afa 4560 spin_unlock(&fs_info->trans_lock);
acce952b 4561
724e2315 4562 btrfs_put_transaction(t);
2ff7e61e 4563 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4564 spin_lock(&fs_info->trans_lock);
724e2315 4565 }
0b246afa
JM
4566 spin_unlock(&fs_info->trans_lock);
4567 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4568 btrfs_destroy_delayed_inodes(fs_info);
4569 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4570 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4571 btrfs_destroy_all_delalloc_inodes(fs_info);
4572 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4573
4574 return 0;
4575}
4576
e8c9f186 4577static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4578 /* mandatory callbacks */
0b86a832 4579 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4580 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4581};