btrfs: return value from btrfs_mark_extent_written() in case of error
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
8896a08d 113 struct inode *inode;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
1941b64b
QW
117
118 /* Optional parameter for submit_bio_start used by direct io */
119 u64 dio_file_offset;
8b712842 120 struct btrfs_work work;
4e4cbee9 121 blk_status_t status;
44b8bd7e
CM
122};
123
85d4e461
CM
124/*
125 * Lockdep class keys for extent_buffer->lock's in this root. For a given
126 * eb, the lockdep key is determined by the btrfs_root it belongs to and
127 * the level the eb occupies in the tree.
128 *
129 * Different roots are used for different purposes and may nest inside each
130 * other and they require separate keysets. As lockdep keys should be
131 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
132 * by btrfs_root->root_key.objectid. This ensures that all special purpose
133 * roots have separate keysets.
4008c04a 134 *
85d4e461
CM
135 * Lock-nesting across peer nodes is always done with the immediate parent
136 * node locked thus preventing deadlock. As lockdep doesn't know this, use
137 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 138 *
85d4e461
CM
139 * The key is set by the readpage_end_io_hook after the buffer has passed
140 * csum validation but before the pages are unlocked. It is also set by
141 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 142 *
85d4e461
CM
143 * We also add a check to make sure the highest level of the tree is the
144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
145 * needs update as well.
4008c04a
CM
146 */
147#ifdef CONFIG_DEBUG_LOCK_ALLOC
148# if BTRFS_MAX_LEVEL != 8
149# error
150# endif
85d4e461 151
ab1405aa
DS
152#define DEFINE_LEVEL(stem, level) \
153 .names[level] = "btrfs-" stem "-0" #level,
154
155#define DEFINE_NAME(stem) \
156 DEFINE_LEVEL(stem, 0) \
157 DEFINE_LEVEL(stem, 1) \
158 DEFINE_LEVEL(stem, 2) \
159 DEFINE_LEVEL(stem, 3) \
160 DEFINE_LEVEL(stem, 4) \
161 DEFINE_LEVEL(stem, 5) \
162 DEFINE_LEVEL(stem, 6) \
163 DEFINE_LEVEL(stem, 7)
164
85d4e461
CM
165static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
ab1405aa 167 /* Longest entry: btrfs-free-space-00 */
387824af
DS
168 char names[BTRFS_MAX_LEVEL][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 170} btrfs_lockdep_keysets[] = {
ab1405aa
DS
171 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
174 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
175 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
176 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
177 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
178 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
180 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182 { .id = 0, DEFINE_NAME("tree") },
4008c04a 183};
85d4e461 184
ab1405aa
DS
185#undef DEFINE_LEVEL
186#undef DEFINE_NAME
85d4e461
CM
187
188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190{
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202}
203
4008c04a
CM
204#endif
205
d352ac68 206/*
2996e1f8 207 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 208 */
c67b3892 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 210{
d5178578 211 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
a26663e7 213 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 215 char *kaddr;
e9be5a30 216 int i;
d5178578
JT
217
218 shash->tfm = fs_info->csum_shash;
219 crypto_shash_init(shash);
a26663e7 220 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 222 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 223
e9be5a30
DS
224 for (i = 1; i < num_pages; i++) {
225 kaddr = page_address(buf->pages[i]);
226 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 227 }
71a63551 228 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 229 crypto_shash_final(shash, result);
19c00ddc
CM
230}
231
d352ac68
CM
232/*
233 * we can't consider a given block up to date unless the transid of the
234 * block matches the transid in the parent node's pointer. This is how we
235 * detect blocks that either didn't get written at all or got written
236 * in the wrong place.
237 */
1259ab75 238static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
239 struct extent_buffer *eb, u64 parent_transid,
240 int atomic)
1259ab75 241{
2ac55d41 242 struct extent_state *cached_state = NULL;
1259ab75 243 int ret;
2755a0de 244 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
245
246 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
247 return 0;
248
b9fab919
CM
249 if (atomic)
250 return -EAGAIN;
251
ac5887c8 252 if (need_lock)
a26e8c9f 253 btrfs_tree_read_lock(eb);
a26e8c9f 254
2ac55d41 255 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 256 &cached_state);
0b32f4bb 257 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
258 btrfs_header_generation(eb) == parent_transid) {
259 ret = 0;
260 goto out;
261 }
94647322
DS
262 btrfs_err_rl(eb->fs_info,
263 "parent transid verify failed on %llu wanted %llu found %llu",
264 eb->start,
29549aec 265 parent_transid, btrfs_header_generation(eb));
1259ab75 266 ret = 1;
a26e8c9f
JB
267
268 /*
269 * Things reading via commit roots that don't have normal protection,
270 * like send, can have a really old block in cache that may point at a
01327610 271 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
272 * if we find an eb that is under IO (dirty/writeback) because we could
273 * end up reading in the stale data and then writing it back out and
274 * making everybody very sad.
275 */
276 if (!extent_buffer_under_io(eb))
277 clear_extent_buffer_uptodate(eb);
33958dc6 278out:
2ac55d41 279 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 280 &cached_state);
472b909f 281 if (need_lock)
ac5887c8 282 btrfs_tree_read_unlock(eb);
1259ab75 283 return ret;
1259ab75
CM
284}
285
e7e16f48
JT
286static bool btrfs_supported_super_csum(u16 csum_type)
287{
288 switch (csum_type) {
289 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 290 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 291 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 292 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
293 return true;
294 default:
295 return false;
296 }
297}
298
1104a885
DS
299/*
300 * Return 0 if the superblock checksum type matches the checksum value of that
301 * algorithm. Pass the raw disk superblock data.
302 */
ab8d0fc4
JM
303static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
304 char *raw_disk_sb)
1104a885
DS
305{
306 struct btrfs_super_block *disk_sb =
307 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 308 char result[BTRFS_CSUM_SIZE];
d5178578
JT
309 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
310
311 shash->tfm = fs_info->csum_shash;
1104a885 312
51bce6c9
JT
313 /*
314 * The super_block structure does not span the whole
315 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
316 * filled with zeros and is included in the checksum.
317 */
fd08001f
EB
318 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
319 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 320
55fc29be 321 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 322 return 1;
1104a885 323
e7e16f48 324 return 0;
1104a885
DS
325}
326
e064d5e9 327int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 328 struct btrfs_key *first_key, u64 parent_transid)
581c1760 329{
e064d5e9 330 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
331 int found_level;
332 struct btrfs_key found_key;
333 int ret;
334
335 found_level = btrfs_header_level(eb);
336 if (found_level != level) {
63489055
QW
337 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
338 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
339 btrfs_err(fs_info,
340"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
341 eb->start, level, found_level);
581c1760
QW
342 return -EIO;
343 }
344
345 if (!first_key)
346 return 0;
347
5d41be6f
QW
348 /*
349 * For live tree block (new tree blocks in current transaction),
350 * we need proper lock context to avoid race, which is impossible here.
351 * So we only checks tree blocks which is read from disk, whose
352 * generation <= fs_info->last_trans_committed.
353 */
354 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
355 return 0;
62fdaa52
QW
356
357 /* We have @first_key, so this @eb must have at least one item */
358 if (btrfs_header_nritems(eb) == 0) {
359 btrfs_err(fs_info,
360 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
361 eb->start);
362 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
363 return -EUCLEAN;
364 }
365
581c1760
QW
366 if (found_level)
367 btrfs_node_key_to_cpu(eb, &found_key, 0);
368 else
369 btrfs_item_key_to_cpu(eb, &found_key, 0);
370 ret = btrfs_comp_cpu_keys(first_key, &found_key);
371
581c1760 372 if (ret) {
63489055
QW
373 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
374 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 375 btrfs_err(fs_info,
ff76a864
LB
376"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
377 eb->start, parent_transid, first_key->objectid,
378 first_key->type, first_key->offset,
379 found_key.objectid, found_key.type,
380 found_key.offset);
581c1760 381 }
581c1760
QW
382 return ret;
383}
384
d352ac68
CM
385/*
386 * helper to read a given tree block, doing retries as required when
387 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
388 *
389 * @parent_transid: expected transid, skip check if 0
390 * @level: expected level, mandatory check
391 * @first_key: expected key of first slot, skip check if NULL
d352ac68 392 */
5ab12d1f 393static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
394 u64 parent_transid, int level,
395 struct btrfs_key *first_key)
f188591e 396{
5ab12d1f 397 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 398 struct extent_io_tree *io_tree;
ea466794 399 int failed = 0;
f188591e
CM
400 int ret;
401 int num_copies = 0;
402 int mirror_num = 0;
ea466794 403 int failed_mirror = 0;
f188591e 404
0b246afa 405 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 406 while (1) {
f8397d69 407 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 408 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 409 if (!ret) {
581c1760 410 if (verify_parent_transid(io_tree, eb,
b9fab919 411 parent_transid, 0))
256dd1bb 412 ret = -EIO;
e064d5e9 413 else if (btrfs_verify_level_key(eb, level,
448de471 414 first_key, parent_transid))
581c1760
QW
415 ret = -EUCLEAN;
416 else
417 break;
256dd1bb 418 }
d397712b 419
0b246afa 420 num_copies = btrfs_num_copies(fs_info,
f188591e 421 eb->start, eb->len);
4235298e 422 if (num_copies == 1)
ea466794 423 break;
4235298e 424
5cf1ab56
JB
425 if (!failed_mirror) {
426 failed = 1;
427 failed_mirror = eb->read_mirror;
428 }
429
f188591e 430 mirror_num++;
ea466794
JB
431 if (mirror_num == failed_mirror)
432 mirror_num++;
433
4235298e 434 if (mirror_num > num_copies)
ea466794 435 break;
f188591e 436 }
ea466794 437
c0901581 438 if (failed && !ret && failed_mirror)
20a1fbf9 439 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
440
441 return ret;
f188591e 442}
19c00ddc 443
eca0f6f6
QW
444static int csum_one_extent_buffer(struct extent_buffer *eb)
445{
446 struct btrfs_fs_info *fs_info = eb->fs_info;
447 u8 result[BTRFS_CSUM_SIZE];
448 int ret;
449
450 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
451 offsetof(struct btrfs_header, fsid),
452 BTRFS_FSID_SIZE) == 0);
453 csum_tree_block(eb, result);
454
455 if (btrfs_header_level(eb))
456 ret = btrfs_check_node(eb);
457 else
458 ret = btrfs_check_leaf_full(eb);
459
460 if (ret < 0) {
461 btrfs_print_tree(eb, 0);
462 btrfs_err(fs_info,
463 "block=%llu write time tree block corruption detected",
464 eb->start);
465 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
466 return ret;
467 }
468 write_extent_buffer(eb, result, 0, fs_info->csum_size);
469
470 return 0;
471}
472
473/* Checksum all dirty extent buffers in one bio_vec */
474static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
475 struct bio_vec *bvec)
476{
477 struct page *page = bvec->bv_page;
478 u64 bvec_start = page_offset(page) + bvec->bv_offset;
479 u64 cur;
480 int ret = 0;
481
482 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
483 cur += fs_info->nodesize) {
484 struct extent_buffer *eb;
485 bool uptodate;
486
487 eb = find_extent_buffer(fs_info, cur);
488 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
489 fs_info->nodesize);
490
491 /* A dirty eb shouldn't disappear from buffer_radix */
492 if (WARN_ON(!eb))
493 return -EUCLEAN;
494
495 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
496 free_extent_buffer(eb);
497 return -EUCLEAN;
498 }
499 if (WARN_ON(!uptodate)) {
500 free_extent_buffer(eb);
501 return -EUCLEAN;
502 }
503
504 ret = csum_one_extent_buffer(eb);
505 free_extent_buffer(eb);
506 if (ret < 0)
507 return ret;
508 }
509 return ret;
510}
511
d352ac68 512/*
ac303b69
QW
513 * Checksum a dirty tree block before IO. This has extra checks to make sure
514 * we only fill in the checksum field in the first page of a multi-page block.
515 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 516 */
ac303b69 517static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 518{
ac303b69 519 struct page *page = bvec->bv_page;
4eee4fa4 520 u64 start = page_offset(page);
19c00ddc 521 u64 found_start;
19c00ddc 522 struct extent_buffer *eb;
eca0f6f6
QW
523
524 if (fs_info->sectorsize < PAGE_SIZE)
525 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 526
4f2de97a
JB
527 eb = (struct extent_buffer *)page->private;
528 if (page != eb->pages[0])
529 return 0;
0f805531 530
19c00ddc 531 found_start = btrfs_header_bytenr(eb);
d3575156
NA
532
533 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
534 WARN_ON(found_start != 0);
535 return 0;
536 }
537
0f805531
AL
538 /*
539 * Please do not consolidate these warnings into a single if.
540 * It is useful to know what went wrong.
541 */
542 if (WARN_ON(found_start != start))
543 return -EUCLEAN;
544 if (WARN_ON(!PageUptodate(page)))
545 return -EUCLEAN;
546
eca0f6f6 547 return csum_one_extent_buffer(eb);
19c00ddc
CM
548}
549
b0c9b3b0 550static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 551{
b0c9b3b0 552 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 553 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 554 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 555 u8 *metadata_uuid;
2b82032c 556
9a8658e3
DS
557 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
558 BTRFS_FSID_SIZE);
944d3f9f
NB
559 /*
560 * Checking the incompat flag is only valid for the current fs. For
561 * seed devices it's forbidden to have their uuid changed so reading
562 * ->fsid in this case is fine
563 */
564 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
565 metadata_uuid = fs_devices->metadata_uuid;
566 else
567 metadata_uuid = fs_devices->fsid;
568
569 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
570 return 0;
571
572 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
573 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
574 return 0;
575
576 return 1;
2b82032c
YZ
577}
578
77bf40a2
QW
579/* Do basic extent buffer checks at read time */
580static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 581{
77bf40a2 582 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 583 u64 found_start;
77bf40a2
QW
584 const u32 csum_size = fs_info->csum_size;
585 u8 found_level;
2996e1f8 586 u8 result[BTRFS_CSUM_SIZE];
77bf40a2 587 int ret = 0;
ea466794 588
ce9adaa5 589 found_start = btrfs_header_bytenr(eb);
727011e0 590 if (found_start != eb->start) {
893bf4b1
SY
591 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
592 eb->start, found_start);
f188591e 593 ret = -EIO;
77bf40a2 594 goto out;
ce9adaa5 595 }
b0c9b3b0 596 if (check_tree_block_fsid(eb)) {
02873e43
ZL
597 btrfs_err_rl(fs_info, "bad fsid on block %llu",
598 eb->start);
1259ab75 599 ret = -EIO;
77bf40a2 600 goto out;
1259ab75 601 }
ce9adaa5 602 found_level = btrfs_header_level(eb);
1c24c3ce 603 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
604 btrfs_err(fs_info, "bad tree block level %d on %llu",
605 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 606 ret = -EIO;
77bf40a2 607 goto out;
1c24c3ce 608 }
ce9adaa5 609
c67b3892 610 csum_tree_block(eb, result);
a826d6dc 611
2996e1f8 612 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 613 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
614
615 read_extent_buffer(eb, &val, 0, csum_size);
616 btrfs_warn_rl(fs_info,
35be8851 617 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 618 fs_info->sb->s_id, eb->start,
35be8851
JT
619 CSUM_FMT_VALUE(csum_size, val),
620 CSUM_FMT_VALUE(csum_size, result),
621 btrfs_header_level(eb));
2996e1f8 622 ret = -EUCLEAN;
77bf40a2 623 goto out;
2996e1f8
JT
624 }
625
a826d6dc
JB
626 /*
627 * If this is a leaf block and it is corrupt, set the corrupt bit so
628 * that we don't try and read the other copies of this block, just
629 * return -EIO.
630 */
1c4360ee 631 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
632 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633 ret = -EIO;
634 }
ce9adaa5 635
813fd1dc 636 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
637 ret = -EIO;
638
0b32f4bb
JB
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
75391f0d
QW
641 else
642 btrfs_err(fs_info,
643 "block=%llu read time tree block corruption detected",
644 eb->start);
77bf40a2
QW
645out:
646 return ret;
647}
648
371cdc07
QW
649static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
650 int mirror)
651{
652 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
653 struct extent_buffer *eb;
654 bool reads_done;
655 int ret = 0;
656
657 /*
658 * We don't allow bio merge for subpage metadata read, so we should
659 * only get one eb for each endio hook.
660 */
661 ASSERT(end == start + fs_info->nodesize - 1);
662 ASSERT(PagePrivate(page));
663
664 eb = find_extent_buffer(fs_info, start);
665 /*
666 * When we are reading one tree block, eb must have been inserted into
667 * the radix tree. If not, something is wrong.
668 */
669 ASSERT(eb);
670
671 reads_done = atomic_dec_and_test(&eb->io_pages);
672 /* Subpage read must finish in page read */
673 ASSERT(reads_done);
674
675 eb->read_mirror = mirror;
676 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
677 ret = -EIO;
678 goto err;
679 }
680 ret = validate_extent_buffer(eb);
681 if (ret < 0)
682 goto err;
683
684 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
685 btree_readahead_hook(eb, ret);
686
687 set_extent_buffer_uptodate(eb);
688
689 free_extent_buffer(eb);
690 return ret;
691err:
692 /*
693 * end_bio_extent_readpage decrements io_pages in case of error,
694 * make sure it has something to decrement.
695 */
696 atomic_inc(&eb->io_pages);
697 clear_extent_buffer_uptodate(eb);
698 free_extent_buffer(eb);
699 return ret;
700}
701
8e1dc982 702int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
77bf40a2
QW
703 struct page *page, u64 start, u64 end,
704 int mirror)
705{
706 struct extent_buffer *eb;
707 int ret = 0;
708 int reads_done;
709
710 ASSERT(page->private);
371cdc07
QW
711
712 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
713 return validate_subpage_buffer(page, start, end, mirror);
714
77bf40a2
QW
715 eb = (struct extent_buffer *)page->private;
716
717 /*
718 * The pending IO might have been the only thing that kept this buffer
719 * in memory. Make sure we have a ref for all this other checks
720 */
721 atomic_inc(&eb->refs);
722
723 reads_done = atomic_dec_and_test(&eb->io_pages);
724 if (!reads_done)
725 goto err;
726
727 eb->read_mirror = mirror;
728 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
729 ret = -EIO;
730 goto err;
731 }
732 ret = validate_extent_buffer(eb);
ce9adaa5 733err:
79fb65a1
JB
734 if (reads_done &&
735 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 736 btree_readahead_hook(eb, ret);
4bb31e92 737
53b381b3
DW
738 if (ret) {
739 /*
740 * our io error hook is going to dec the io pages
741 * again, we have to make sure it has something
742 * to decrement
743 */
744 atomic_inc(&eb->io_pages);
0b32f4bb 745 clear_extent_buffer_uptodate(eb);
53b381b3 746 }
0b32f4bb 747 free_extent_buffer(eb);
77bf40a2 748
f188591e 749 return ret;
ce9adaa5
CM
750}
751
4246a0b6 752static void end_workqueue_bio(struct bio *bio)
ce9adaa5 753{
97eb6b69 754 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 755 struct btrfs_fs_info *fs_info;
9e0af237 756 struct btrfs_workqueue *wq;
ce9adaa5 757
ce9adaa5 758 fs_info = end_io_wq->info;
4e4cbee9 759 end_io_wq->status = bio->bi_status;
d20f7043 760
cfe94440 761 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
a0cac0ec 762 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 763 wq = fs_info->endio_meta_write_workers;
a0cac0ec 764 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 765 wq = fs_info->endio_freespace_worker;
a0cac0ec 766 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 767 wq = fs_info->endio_raid56_workers;
a0cac0ec 768 else
9e0af237 769 wq = fs_info->endio_write_workers;
d20f7043 770 } else {
5c047a69 771 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 772 wq = fs_info->endio_raid56_workers;
a0cac0ec 773 else if (end_io_wq->metadata)
9e0af237 774 wq = fs_info->endio_meta_workers;
a0cac0ec 775 else
9e0af237 776 wq = fs_info->endio_workers;
d20f7043 777 }
9e0af237 778
a0cac0ec 779 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 780 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
781}
782
4e4cbee9 783blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 784 enum btrfs_wq_endio_type metadata)
0b86a832 785{
97eb6b69 786 struct btrfs_end_io_wq *end_io_wq;
8b110e39 787
97eb6b69 788 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 789 if (!end_io_wq)
4e4cbee9 790 return BLK_STS_RESOURCE;
ce9adaa5
CM
791
792 end_io_wq->private = bio->bi_private;
793 end_io_wq->end_io = bio->bi_end_io;
22c59948 794 end_io_wq->info = info;
4e4cbee9 795 end_io_wq->status = 0;
ce9adaa5 796 end_io_wq->bio = bio;
22c59948 797 end_io_wq->metadata = metadata;
ce9adaa5
CM
798
799 bio->bi_private = end_io_wq;
800 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
801 return 0;
802}
803
4a69a410
CM
804static void run_one_async_start(struct btrfs_work *work)
805{
4a69a410 806 struct async_submit_bio *async;
4e4cbee9 807 blk_status_t ret;
4a69a410
CM
808
809 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
810 ret = async->submit_bio_start(async->inode, async->bio,
811 async->dio_file_offset);
79787eaa 812 if (ret)
4e4cbee9 813 async->status = ret;
4a69a410
CM
814}
815
06ea01b1
DS
816/*
817 * In order to insert checksums into the metadata in large chunks, we wait
818 * until bio submission time. All the pages in the bio are checksummed and
819 * sums are attached onto the ordered extent record.
820 *
821 * At IO completion time the csums attached on the ordered extent record are
822 * inserted into the tree.
823 */
4a69a410 824static void run_one_async_done(struct btrfs_work *work)
8b712842 825{
8b712842 826 struct async_submit_bio *async;
06ea01b1
DS
827 struct inode *inode;
828 blk_status_t ret;
8b712842
CM
829
830 async = container_of(work, struct async_submit_bio, work);
8896a08d 831 inode = async->inode;
4854ddd0 832
bb7ab3b9 833 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
834 if (async->status) {
835 async->bio->bi_status = async->status;
4246a0b6 836 bio_endio(async->bio);
79787eaa
JM
837 return;
838 }
839
ec39f769
CM
840 /*
841 * All of the bios that pass through here are from async helpers.
842 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
843 * This changes nothing when cgroups aren't in use.
844 */
845 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 846 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
847 if (ret) {
848 async->bio->bi_status = ret;
849 bio_endio(async->bio);
850 }
4a69a410
CM
851}
852
853static void run_one_async_free(struct btrfs_work *work)
854{
855 struct async_submit_bio *async;
856
857 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
858 kfree(async);
859}
860
8896a08d 861blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 862 int mirror_num, unsigned long bio_flags,
1941b64b 863 u64 dio_file_offset,
e288c080 864 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 865{
8896a08d 866 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
867 struct async_submit_bio *async;
868
869 async = kmalloc(sizeof(*async), GFP_NOFS);
870 if (!async)
4e4cbee9 871 return BLK_STS_RESOURCE;
44b8bd7e 872
8896a08d 873 async->inode = inode;
44b8bd7e
CM
874 async->bio = bio;
875 async->mirror_num = mirror_num;
4a69a410 876 async->submit_bio_start = submit_bio_start;
4a69a410 877
a0cac0ec
OS
878 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
879 run_one_async_free);
4a69a410 880
1941b64b 881 async->dio_file_offset = dio_file_offset;
8c8bee1d 882
4e4cbee9 883 async->status = 0;
79787eaa 884
67f055c7 885 if (op_is_sync(bio->bi_opf))
5cdc7ad3 886 btrfs_set_work_high_priority(&async->work);
d313d7a3 887
5cdc7ad3 888 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
889 return 0;
890}
891
4e4cbee9 892static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 893{
2c30c71b 894 struct bio_vec *bvec;
ce3ed71a 895 struct btrfs_root *root;
2b070cfe 896 int ret = 0;
6dc4f100 897 struct bvec_iter_all iter_all;
ce3ed71a 898
c09abff8 899 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 900 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 901 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 902 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
903 if (ret)
904 break;
ce3ed71a 905 }
2c30c71b 906
4e4cbee9 907 return errno_to_blk_status(ret);
ce3ed71a
CM
908}
909
8896a08d 910static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 911 u64 dio_file_offset)
22c59948 912{
8b712842
CM
913 /*
914 * when we're called for a write, we're already in the async
5443be45 915 * submission context. Just jump into btrfs_map_bio
8b712842 916 */
79787eaa 917 return btree_csum_one_bio(bio);
4a69a410 918}
22c59948 919
9b4e675a
DS
920static int check_async_write(struct btrfs_fs_info *fs_info,
921 struct btrfs_inode *bi)
de0022b9 922{
4eef29ef
NA
923 if (btrfs_is_zoned(fs_info))
924 return 0;
6300463b
LB
925 if (atomic_read(&bi->sync_writers))
926 return 0;
9b4e675a 927 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 928 return 0;
de0022b9
JB
929 return 1;
930}
931
1b36294a
NB
932blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
933 int mirror_num, unsigned long bio_flags)
44b8bd7e 934{
0b246afa 935 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 936 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 937 blk_status_t ret;
cad321ad 938
cfe94440 939 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
4a69a410
CM
940 /*
941 * called for a read, do the setup so that checksum validation
942 * can happen in the async kernel threads
943 */
0b246afa
JM
944 ret = btrfs_bio_wq_end_io(fs_info, bio,
945 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 946 if (ret)
61891923 947 goto out_w_error;
08635bae 948 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
949 } else if (!async) {
950 ret = btree_csum_one_bio(bio);
951 if (ret)
61891923 952 goto out_w_error;
08635bae 953 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
954 } else {
955 /*
956 * kthread helpers are used to submit writes so that
957 * checksumming can happen in parallel across all CPUs
958 */
8896a08d
QW
959 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
960 0, btree_submit_bio_start);
44b8bd7e 961 }
d313d7a3 962
4246a0b6
CH
963 if (ret)
964 goto out_w_error;
965 return 0;
966
61891923 967out_w_error:
4e4cbee9 968 bio->bi_status = ret;
4246a0b6 969 bio_endio(bio);
61891923 970 return ret;
44b8bd7e
CM
971}
972
3dd1462e 973#ifdef CONFIG_MIGRATION
784b4e29 974static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
975 struct page *newpage, struct page *page,
976 enum migrate_mode mode)
784b4e29
CM
977{
978 /*
979 * we can't safely write a btree page from here,
980 * we haven't done the locking hook
981 */
982 if (PageDirty(page))
983 return -EAGAIN;
984 /*
985 * Buffers may be managed in a filesystem specific way.
986 * We must have no buffers or drop them.
987 */
988 if (page_has_private(page) &&
989 !try_to_release_page(page, GFP_KERNEL))
990 return -EAGAIN;
a6bc32b8 991 return migrate_page(mapping, newpage, page, mode);
784b4e29 992}
3dd1462e 993#endif
784b4e29 994
0da5468f
CM
995
996static int btree_writepages(struct address_space *mapping,
997 struct writeback_control *wbc)
998{
e2d84521
MX
999 struct btrfs_fs_info *fs_info;
1000 int ret;
1001
d8d5f3e1 1002 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1003
1004 if (wbc->for_kupdate)
1005 return 0;
1006
e2d84521 1007 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1008 /* this is a bit racy, but that's ok */
d814a491
EL
1009 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1010 BTRFS_DIRTY_METADATA_THRESH,
1011 fs_info->dirty_metadata_batch);
e2d84521 1012 if (ret < 0)
793955bc 1013 return 0;
793955bc 1014 }
0b32f4bb 1015 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1016}
1017
70dec807 1018static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1019{
98509cfc 1020 if (PageWriteback(page) || PageDirty(page))
d397712b 1021 return 0;
0c4e538b 1022
f7a52a40 1023 return try_release_extent_buffer(page);
d98237b3
CM
1024}
1025
d47992f8
LC
1026static void btree_invalidatepage(struct page *page, unsigned int offset,
1027 unsigned int length)
d98237b3 1028{
d1310b2e
CM
1029 struct extent_io_tree *tree;
1030 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1031 extent_invalidatepage(tree, page, offset);
1032 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1033 if (PagePrivate(page)) {
efe120a0
FH
1034 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1035 "page private not zero on page %llu",
1036 (unsigned long long)page_offset(page));
d1b89bc0 1037 detach_page_private(page);
9ad6b7bc 1038 }
d98237b3
CM
1039}
1040
0b32f4bb
JB
1041static int btree_set_page_dirty(struct page *page)
1042{
bb146eb2 1043#ifdef DEBUG
139e8cd3
QW
1044 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1045 struct btrfs_subpage *subpage;
0b32f4bb 1046 struct extent_buffer *eb;
139e8cd3
QW
1047 int cur_bit = 0;
1048 u64 page_start = page_offset(page);
1049
1050 if (fs_info->sectorsize == PAGE_SIZE) {
1051 BUG_ON(!PagePrivate(page));
1052 eb = (struct extent_buffer *)page->private;
1053 BUG_ON(!eb);
1054 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1055 BUG_ON(!atomic_read(&eb->refs));
1056 btrfs_assert_tree_locked(eb);
1057 return __set_page_dirty_nobuffers(page);
1058 }
1059 ASSERT(PagePrivate(page) && page->private);
1060 subpage = (struct btrfs_subpage *)page->private;
1061
1062 ASSERT(subpage->dirty_bitmap);
1063 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1064 unsigned long flags;
1065 u64 cur;
1066 u16 tmp = (1 << cur_bit);
1067
1068 spin_lock_irqsave(&subpage->lock, flags);
1069 if (!(tmp & subpage->dirty_bitmap)) {
1070 spin_unlock_irqrestore(&subpage->lock, flags);
1071 cur_bit++;
1072 continue;
1073 }
1074 spin_unlock_irqrestore(&subpage->lock, flags);
1075 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 1076
139e8cd3
QW
1077 eb = find_extent_buffer(fs_info, cur);
1078 ASSERT(eb);
1079 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1080 ASSERT(atomic_read(&eb->refs));
1081 btrfs_assert_tree_locked(eb);
1082 free_extent_buffer(eb);
1083
1084 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1085 }
bb146eb2 1086#endif
0b32f4bb
JB
1087 return __set_page_dirty_nobuffers(page);
1088}
1089
7f09410b 1090static const struct address_space_operations btree_aops = {
0da5468f 1091 .writepages = btree_writepages,
5f39d397
CM
1092 .releasepage = btree_releasepage,
1093 .invalidatepage = btree_invalidatepage,
5a92bc88 1094#ifdef CONFIG_MIGRATION
784b4e29 1095 .migratepage = btree_migratepage,
5a92bc88 1096#endif
0b32f4bb 1097 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1098};
1099
2ff7e61e
JM
1100struct extent_buffer *btrfs_find_create_tree_block(
1101 struct btrfs_fs_info *fs_info,
3fbaf258
JB
1102 u64 bytenr, u64 owner_root,
1103 int level)
0999df54 1104{
0b246afa
JM
1105 if (btrfs_is_testing(fs_info))
1106 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 1107 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
1108}
1109
581c1760
QW
1110/*
1111 * Read tree block at logical address @bytenr and do variant basic but critical
1112 * verification.
1113 *
1b7ec85e 1114 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
1115 * @parent_transid: expected transid of this tree block, skip check if 0
1116 * @level: expected level, mandatory check
1117 * @first_key: expected key in slot 0, skip check if NULL
1118 */
2ff7e61e 1119struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
1120 u64 owner_root, u64 parent_transid,
1121 int level, struct btrfs_key *first_key)
0999df54
CM
1122{
1123 struct extent_buffer *buf = NULL;
0999df54
CM
1124 int ret;
1125
3fbaf258 1126 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
1127 if (IS_ERR(buf))
1128 return buf;
0999df54 1129
5ab12d1f 1130 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1131 level, first_key);
0f0fe8f7 1132 if (ret) {
537f38f0 1133 free_extent_buffer_stale(buf);
64c043de 1134 return ERR_PTR(ret);
0f0fe8f7 1135 }
5f39d397 1136 return buf;
ce9adaa5 1137
eb60ceac
CM
1138}
1139
6a884d7d 1140void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1141{
6a884d7d 1142 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1143 if (btrfs_header_generation(buf) ==
e2d84521 1144 fs_info->running_transaction->transid) {
b9447ef8 1145 btrfs_assert_tree_locked(buf);
b4ce94de 1146
b9473439 1147 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1148 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1149 -buf->len,
1150 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1151 clear_extent_buffer_dirty(buf);
1152 }
925baedd 1153 }
5f39d397
CM
1154}
1155
da17066c 1156static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1157 u64 objectid)
d97e63b6 1158{
7c0260ee 1159 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1160 root->fs_info = fs_info;
cfaa7295 1161 root->node = NULL;
a28ec197 1162 root->commit_root = NULL;
27cdeb70 1163 root->state = 0;
d68fc57b 1164 root->orphan_cleanup_state = 0;
0b86a832 1165
0f7d52f4 1166 root->last_trans = 0;
6b8fad57 1167 root->free_objectid = 0;
eb73c1b7 1168 root->nr_delalloc_inodes = 0;
199c2a9c 1169 root->nr_ordered_extents = 0;
6bef4d31 1170 root->inode_tree = RB_ROOT;
16cdcec7 1171 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1172 root->block_rsv = NULL;
0b86a832
CM
1173
1174 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1175 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1176 INIT_LIST_HEAD(&root->delalloc_inodes);
1177 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1178 INIT_LIST_HEAD(&root->ordered_extents);
1179 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1180 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1181 INIT_LIST_HEAD(&root->logged_list[0]);
1182 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1183 spin_lock_init(&root->inode_lock);
eb73c1b7 1184 spin_lock_init(&root->delalloc_lock);
199c2a9c 1185 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1186 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1187 spin_lock_init(&root->log_extents_lock[0]);
1188 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1189 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1190 mutex_init(&root->objectid_mutex);
e02119d5 1191 mutex_init(&root->log_mutex);
31f3d255 1192 mutex_init(&root->ordered_extent_mutex);
573bfb72 1193 mutex_init(&root->delalloc_mutex);
c53e9653 1194 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1195 init_waitqueue_head(&root->log_writer_wait);
1196 init_waitqueue_head(&root->log_commit_wait[0]);
1197 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1198 INIT_LIST_HEAD(&root->log_ctxs[0]);
1199 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1200 atomic_set(&root->log_commit[0], 0);
1201 atomic_set(&root->log_commit[1], 0);
1202 atomic_set(&root->log_writers, 0);
2ecb7923 1203 atomic_set(&root->log_batch, 0);
0700cea7 1204 refcount_set(&root->refs, 1);
8ecebf4d 1205 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1206 atomic_set(&root->nr_swapfiles, 0);
7237f183 1207 root->log_transid = 0;
d1433deb 1208 root->log_transid_committed = -1;
257c62e1 1209 root->last_log_commit = 0;
e289f03e 1210 if (!dummy) {
43eb5f29
QW
1211 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1212 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1213 extent_io_tree_init(fs_info, &root->log_csum_range,
1214 IO_TREE_LOG_CSUM_RANGE, NULL);
1215 }
017e5369 1216
3768f368
CM
1217 memset(&root->root_key, 0, sizeof(root->root_key));
1218 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1219 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1220 root->root_key.objectid = objectid;
0ee5dc67 1221 root->anon_dev = 0;
8ea05e3a 1222
5f3ab90a 1223 spin_lock_init(&root->root_item_lock);
370a11b8 1224 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1225#ifdef CONFIG_BTRFS_DEBUG
1226 INIT_LIST_HEAD(&root->leak_list);
1227 spin_lock(&fs_info->fs_roots_radix_lock);
1228 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1229 spin_unlock(&fs_info->fs_roots_radix_lock);
1230#endif
3768f368
CM
1231}
1232
74e4d827 1233static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1234 u64 objectid, gfp_t flags)
6f07e42e 1235{
74e4d827 1236 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1237 if (root)
96dfcb46 1238 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1239 return root;
1240}
1241
06ea65a3
JB
1242#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1243/* Should only be used by the testing infrastructure */
da17066c 1244struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1245{
1246 struct btrfs_root *root;
1247
7c0260ee
JM
1248 if (!fs_info)
1249 return ERR_PTR(-EINVAL);
1250
96dfcb46 1251 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1252 if (!root)
1253 return ERR_PTR(-ENOMEM);
da17066c 1254
b9ef22de 1255 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1256 root->alloc_bytenr = 0;
06ea65a3
JB
1257
1258 return root;
1259}
1260#endif
1261
20897f5c 1262struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1263 u64 objectid)
1264{
9b7a2440 1265 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1266 struct extent_buffer *leaf;
1267 struct btrfs_root *tree_root = fs_info->tree_root;
1268 struct btrfs_root *root;
1269 struct btrfs_key key;
b89f6d1f 1270 unsigned int nofs_flag;
20897f5c 1271 int ret = 0;
20897f5c 1272
b89f6d1f
FM
1273 /*
1274 * We're holding a transaction handle, so use a NOFS memory allocation
1275 * context to avoid deadlock if reclaim happens.
1276 */
1277 nofs_flag = memalloc_nofs_save();
96dfcb46 1278 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1279 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1280 if (!root)
1281 return ERR_PTR(-ENOMEM);
1282
20897f5c
AJ
1283 root->root_key.objectid = objectid;
1284 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1285 root->root_key.offset = 0;
1286
9631e4cc
JB
1287 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1288 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1289 if (IS_ERR(leaf)) {
1290 ret = PTR_ERR(leaf);
1dd05682 1291 leaf = NULL;
8a6a87cd 1292 goto fail_unlock;
20897f5c
AJ
1293 }
1294
20897f5c 1295 root->node = leaf;
20897f5c
AJ
1296 btrfs_mark_buffer_dirty(leaf);
1297
1298 root->commit_root = btrfs_root_node(root);
27cdeb70 1299 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1300
f944d2cb
DS
1301 btrfs_set_root_flags(&root->root_item, 0);
1302 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1303 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1304 btrfs_set_root_generation(&root->root_item, trans->transid);
1305 btrfs_set_root_level(&root->root_item, 0);
1306 btrfs_set_root_refs(&root->root_item, 1);
1307 btrfs_set_root_used(&root->root_item, leaf->len);
1308 btrfs_set_root_last_snapshot(&root->root_item, 0);
1309 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1310 if (is_fstree(objectid))
807fc790
AS
1311 generate_random_guid(root->root_item.uuid);
1312 else
1313 export_guid(root->root_item.uuid, &guid_null);
c8422684 1314 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1315
8a6a87cd
BB
1316 btrfs_tree_unlock(leaf);
1317
20897f5c
AJ
1318 key.objectid = objectid;
1319 key.type = BTRFS_ROOT_ITEM_KEY;
1320 key.offset = 0;
1321 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1322 if (ret)
1323 goto fail;
1324
1dd05682
TI
1325 return root;
1326
8a6a87cd 1327fail_unlock:
8c38938c 1328 if (leaf)
1dd05682 1329 btrfs_tree_unlock(leaf);
8a6a87cd 1330fail:
00246528 1331 btrfs_put_root(root);
20897f5c 1332
1dd05682 1333 return ERR_PTR(ret);
20897f5c
AJ
1334}
1335
7237f183
YZ
1336static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1337 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1338{
1339 struct btrfs_root *root;
e02119d5 1340
96dfcb46 1341 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1342 if (!root)
7237f183 1343 return ERR_PTR(-ENOMEM);
e02119d5 1344
e02119d5
CM
1345 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1346 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1347 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1348
6ab6ebb7
NA
1349 return root;
1350}
1351
1352int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1353 struct btrfs_root *root)
1354{
1355 struct extent_buffer *leaf;
1356
7237f183 1357 /*
92a7cc42 1358 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1359 *
92a7cc42
QW
1360 * Log trees are not exposed to user space thus can't be snapshotted,
1361 * and they go away before a real commit is actually done.
1362 *
1363 * They do store pointers to file data extents, and those reference
1364 * counts still get updated (along with back refs to the log tree).
7237f183 1365 */
e02119d5 1366
4d75f8a9 1367 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1368 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1369 if (IS_ERR(leaf))
1370 return PTR_ERR(leaf);
e02119d5 1371
7237f183 1372 root->node = leaf;
e02119d5 1373
e02119d5
CM
1374 btrfs_mark_buffer_dirty(root->node);
1375 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1376
1377 return 0;
7237f183
YZ
1378}
1379
1380int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1381 struct btrfs_fs_info *fs_info)
1382{
1383 struct btrfs_root *log_root;
1384
1385 log_root = alloc_log_tree(trans, fs_info);
1386 if (IS_ERR(log_root))
1387 return PTR_ERR(log_root);
6ab6ebb7 1388
3ddebf27
NA
1389 if (!btrfs_is_zoned(fs_info)) {
1390 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1391
1392 if (ret) {
1393 btrfs_put_root(log_root);
1394 return ret;
1395 }
6ab6ebb7
NA
1396 }
1397
7237f183
YZ
1398 WARN_ON(fs_info->log_root_tree);
1399 fs_info->log_root_tree = log_root;
1400 return 0;
1401}
1402
1403int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1404 struct btrfs_root *root)
1405{
0b246afa 1406 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1407 struct btrfs_root *log_root;
1408 struct btrfs_inode_item *inode_item;
6ab6ebb7 1409 int ret;
7237f183 1410
0b246afa 1411 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1412 if (IS_ERR(log_root))
1413 return PTR_ERR(log_root);
1414
6ab6ebb7
NA
1415 ret = btrfs_alloc_log_tree_node(trans, log_root);
1416 if (ret) {
1417 btrfs_put_root(log_root);
1418 return ret;
1419 }
1420
7237f183
YZ
1421 log_root->last_trans = trans->transid;
1422 log_root->root_key.offset = root->root_key.objectid;
1423
1424 inode_item = &log_root->root_item.inode;
3cae210f
QW
1425 btrfs_set_stack_inode_generation(inode_item, 1);
1426 btrfs_set_stack_inode_size(inode_item, 3);
1427 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1428 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1429 fs_info->nodesize);
3cae210f 1430 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1431
5d4f98a2 1432 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1433
1434 WARN_ON(root->log_root);
1435 root->log_root = log_root;
1436 root->log_transid = 0;
d1433deb 1437 root->log_transid_committed = -1;
257c62e1 1438 root->last_log_commit = 0;
e02119d5
CM
1439 return 0;
1440}
1441
49d11bea
JB
1442static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1443 struct btrfs_path *path,
1444 struct btrfs_key *key)
e02119d5
CM
1445{
1446 struct btrfs_root *root;
1447 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1448 u64 generation;
cb517eab 1449 int ret;
581c1760 1450 int level;
0f7d52f4 1451
96dfcb46 1452 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1453 if (!root)
1454 return ERR_PTR(-ENOMEM);
0f7d52f4 1455
cb517eab
MX
1456 ret = btrfs_find_root(tree_root, key, path,
1457 &root->root_item, &root->root_key);
0f7d52f4 1458 if (ret) {
13a8a7c8
YZ
1459 if (ret > 0)
1460 ret = -ENOENT;
49d11bea 1461 goto fail;
0f7d52f4 1462 }
13a8a7c8 1463
84234f3a 1464 generation = btrfs_root_generation(&root->root_item);
581c1760 1465 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1466 root->node = read_tree_block(fs_info,
1467 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1468 key->objectid, generation, level, NULL);
64c043de
LB
1469 if (IS_ERR(root->node)) {
1470 ret = PTR_ERR(root->node);
8c38938c 1471 root->node = NULL;
49d11bea 1472 goto fail;
cb517eab
MX
1473 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1474 ret = -EIO;
49d11bea 1475 goto fail;
416bc658 1476 }
5d4f98a2 1477 root->commit_root = btrfs_root_node(root);
cb517eab 1478 return root;
49d11bea 1479fail:
00246528 1480 btrfs_put_root(root);
49d11bea
JB
1481 return ERR_PTR(ret);
1482}
1483
1484struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1485 struct btrfs_key *key)
1486{
1487 struct btrfs_root *root;
1488 struct btrfs_path *path;
1489
1490 path = btrfs_alloc_path();
1491 if (!path)
1492 return ERR_PTR(-ENOMEM);
1493 root = read_tree_root_path(tree_root, path, key);
1494 btrfs_free_path(path);
1495
1496 return root;
cb517eab
MX
1497}
1498
2dfb1e43
QW
1499/*
1500 * Initialize subvolume root in-memory structure
1501 *
1502 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1503 */
1504static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1505{
1506 int ret;
dcc3eb96 1507 unsigned int nofs_flag;
cb517eab 1508
dcc3eb96
NB
1509 /*
1510 * We might be called under a transaction (e.g. indirect backref
1511 * resolution) which could deadlock if it triggers memory reclaim
1512 */
1513 nofs_flag = memalloc_nofs_save();
1514 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1515 memalloc_nofs_restore(nofs_flag);
1516 if (ret)
8257b2dc 1517 goto fail;
8257b2dc 1518
aeb935a4
QW
1519 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1520 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1521 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1522 btrfs_check_and_init_root_item(&root->root_item);
1523 }
1524
851fd730
QW
1525 /*
1526 * Don't assign anonymous block device to roots that are not exposed to
1527 * userspace, the id pool is limited to 1M
1528 */
1529 if (is_fstree(root->root_key.objectid) &&
1530 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1531 if (!anon_dev) {
1532 ret = get_anon_bdev(&root->anon_dev);
1533 if (ret)
1534 goto fail;
1535 } else {
1536 root->anon_dev = anon_dev;
1537 }
851fd730 1538 }
f32e48e9
CR
1539
1540 mutex_lock(&root->objectid_mutex);
453e4873 1541 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1542 if (ret) {
1543 mutex_unlock(&root->objectid_mutex);
876d2cf1 1544 goto fail;
f32e48e9
CR
1545 }
1546
6b8fad57 1547 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1548
1549 mutex_unlock(&root->objectid_mutex);
1550
cb517eab
MX
1551 return 0;
1552fail:
84db5ccf 1553 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1554 return ret;
1555}
1556
a98db0f3
JB
1557static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1558 u64 root_id)
cb517eab
MX
1559{
1560 struct btrfs_root *root;
1561
1562 spin_lock(&fs_info->fs_roots_radix_lock);
1563 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1564 (unsigned long)root_id);
bc44d7c4 1565 if (root)
00246528 1566 root = btrfs_grab_root(root);
cb517eab
MX
1567 spin_unlock(&fs_info->fs_roots_radix_lock);
1568 return root;
1569}
1570
49d11bea
JB
1571static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1572 u64 objectid)
1573{
1574 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1575 return btrfs_grab_root(fs_info->tree_root);
1576 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1577 return btrfs_grab_root(fs_info->extent_root);
1578 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1579 return btrfs_grab_root(fs_info->chunk_root);
1580 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1581 return btrfs_grab_root(fs_info->dev_root);
1582 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1583 return btrfs_grab_root(fs_info->csum_root);
1584 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1585 return btrfs_grab_root(fs_info->quota_root) ?
1586 fs_info->quota_root : ERR_PTR(-ENOENT);
1587 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1588 return btrfs_grab_root(fs_info->uuid_root) ?
1589 fs_info->uuid_root : ERR_PTR(-ENOENT);
1590 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1591 return btrfs_grab_root(fs_info->free_space_root) ?
1592 fs_info->free_space_root : ERR_PTR(-ENOENT);
1593 return NULL;
1594}
1595
cb517eab
MX
1596int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1597 struct btrfs_root *root)
1598{
1599 int ret;
1600
e1860a77 1601 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1602 if (ret)
1603 return ret;
1604
1605 spin_lock(&fs_info->fs_roots_radix_lock);
1606 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1607 (unsigned long)root->root_key.objectid,
1608 root);
af01d2e5 1609 if (ret == 0) {
00246528 1610 btrfs_grab_root(root);
27cdeb70 1611 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1612 }
cb517eab
MX
1613 spin_unlock(&fs_info->fs_roots_radix_lock);
1614 radix_tree_preload_end();
1615
1616 return ret;
1617}
1618
bd647ce3
JB
1619void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1620{
1621#ifdef CONFIG_BTRFS_DEBUG
1622 struct btrfs_root *root;
1623
1624 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1625 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1626
bd647ce3
JB
1627 root = list_first_entry(&fs_info->allocated_roots,
1628 struct btrfs_root, leak_list);
457f1864 1629 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1630 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1631 refcount_read(&root->refs));
1632 while (refcount_read(&root->refs) > 1)
00246528
JB
1633 btrfs_put_root(root);
1634 btrfs_put_root(root);
bd647ce3
JB
1635 }
1636#endif
1637}
1638
0d4b0463
JB
1639void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1640{
141386e1
JB
1641 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1642 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1643 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1644 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1645 btrfs_free_csum_hash(fs_info);
1646 btrfs_free_stripe_hash_table(fs_info);
1647 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1648 kfree(fs_info->balance_ctl);
1649 kfree(fs_info->delayed_root);
00246528
JB
1650 btrfs_put_root(fs_info->extent_root);
1651 btrfs_put_root(fs_info->tree_root);
1652 btrfs_put_root(fs_info->chunk_root);
1653 btrfs_put_root(fs_info->dev_root);
1654 btrfs_put_root(fs_info->csum_root);
1655 btrfs_put_root(fs_info->quota_root);
1656 btrfs_put_root(fs_info->uuid_root);
1657 btrfs_put_root(fs_info->free_space_root);
1658 btrfs_put_root(fs_info->fs_root);
aeb935a4 1659 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1660 btrfs_check_leaked_roots(fs_info);
3fd63727 1661 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1662 kfree(fs_info->super_copy);
1663 kfree(fs_info->super_for_commit);
1664 kvfree(fs_info);
1665}
1666
1667
2dfb1e43
QW
1668/*
1669 * Get an in-memory reference of a root structure.
1670 *
1671 * For essential trees like root/extent tree, we grab it from fs_info directly.
1672 * For subvolume trees, we check the cached filesystem roots first. If not
1673 * found, then read it from disk and add it to cached fs roots.
1674 *
1675 * Caller should release the root by calling btrfs_put_root() after the usage.
1676 *
1677 * NOTE: Reloc and log trees can't be read by this function as they share the
1678 * same root objectid.
1679 *
1680 * @objectid: root id
1681 * @anon_dev: preallocated anonymous block device number for new roots,
1682 * pass 0 for new allocation.
1683 * @check_ref: whether to check root item references, If true, return -ENOENT
1684 * for orphan roots
1685 */
1686static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1687 u64 objectid, dev_t anon_dev,
1688 bool check_ref)
5eda7b5e
CM
1689{
1690 struct btrfs_root *root;
381cf658 1691 struct btrfs_path *path;
1d4c08e0 1692 struct btrfs_key key;
5eda7b5e
CM
1693 int ret;
1694
49d11bea
JB
1695 root = btrfs_get_global_root(fs_info, objectid);
1696 if (root)
1697 return root;
4df27c4d 1698again:
56e9357a 1699 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1700 if (root) {
2dfb1e43
QW
1701 /* Shouldn't get preallocated anon_dev for cached roots */
1702 ASSERT(!anon_dev);
bc44d7c4 1703 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1704 btrfs_put_root(root);
48475471 1705 return ERR_PTR(-ENOENT);
bc44d7c4 1706 }
5eda7b5e 1707 return root;
48475471 1708 }
5eda7b5e 1709
56e9357a
DS
1710 key.objectid = objectid;
1711 key.type = BTRFS_ROOT_ITEM_KEY;
1712 key.offset = (u64)-1;
1713 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1714 if (IS_ERR(root))
1715 return root;
3394e160 1716
c00869f1 1717 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1718 ret = -ENOENT;
581bb050 1719 goto fail;
35a30d7c 1720 }
581bb050 1721
2dfb1e43 1722 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1723 if (ret)
1724 goto fail;
3394e160 1725
381cf658
DS
1726 path = btrfs_alloc_path();
1727 if (!path) {
1728 ret = -ENOMEM;
1729 goto fail;
1730 }
1d4c08e0
DS
1731 key.objectid = BTRFS_ORPHAN_OBJECTID;
1732 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1733 key.offset = objectid;
1d4c08e0
DS
1734
1735 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1736 btrfs_free_path(path);
d68fc57b
YZ
1737 if (ret < 0)
1738 goto fail;
1739 if (ret == 0)
27cdeb70 1740 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1741
cb517eab 1742 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1743 if (ret) {
00246528 1744 btrfs_put_root(root);
4785e24f 1745 if (ret == -EEXIST)
4df27c4d 1746 goto again;
4df27c4d 1747 goto fail;
0f7d52f4 1748 }
edbd8d4e 1749 return root;
4df27c4d 1750fail:
8c38938c 1751 btrfs_put_root(root);
4df27c4d 1752 return ERR_PTR(ret);
edbd8d4e
CM
1753}
1754
2dfb1e43
QW
1755/*
1756 * Get in-memory reference of a root structure
1757 *
1758 * @objectid: tree objectid
1759 * @check_ref: if set, verify that the tree exists and the item has at least
1760 * one reference
1761 */
1762struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1763 u64 objectid, bool check_ref)
1764{
1765 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1766}
1767
1768/*
1769 * Get in-memory reference of a root structure, created as new, optionally pass
1770 * the anonymous block device id
1771 *
1772 * @objectid: tree objectid
1773 * @anon_dev: if zero, allocate a new anonymous block device or use the
1774 * parameter value
1775 */
1776struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1777 u64 objectid, dev_t anon_dev)
1778{
1779 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1780}
1781
49d11bea
JB
1782/*
1783 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1784 * @fs_info: the fs_info
1785 * @objectid: the objectid we need to lookup
1786 *
1787 * This is exclusively used for backref walking, and exists specifically because
1788 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1789 * creation time, which means we may have to read the tree_root in order to look
1790 * up a fs root that is not in memory. If the root is not in memory we will
1791 * read the tree root commit root and look up the fs root from there. This is a
1792 * temporary root, it will not be inserted into the radix tree as it doesn't
1793 * have the most uptodate information, it'll simply be discarded once the
1794 * backref code is finished using the root.
1795 */
1796struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1797 struct btrfs_path *path,
1798 u64 objectid)
1799{
1800 struct btrfs_root *root;
1801 struct btrfs_key key;
1802
1803 ASSERT(path->search_commit_root && path->skip_locking);
1804
1805 /*
1806 * This can return -ENOENT if we ask for a root that doesn't exist, but
1807 * since this is called via the backref walking code we won't be looking
1808 * up a root that doesn't exist, unless there's corruption. So if root
1809 * != NULL just return it.
1810 */
1811 root = btrfs_get_global_root(fs_info, objectid);
1812 if (root)
1813 return root;
1814
1815 root = btrfs_lookup_fs_root(fs_info, objectid);
1816 if (root)
1817 return root;
1818
1819 key.objectid = objectid;
1820 key.type = BTRFS_ROOT_ITEM_KEY;
1821 key.offset = (u64)-1;
1822 root = read_tree_root_path(fs_info->tree_root, path, &key);
1823 btrfs_release_path(path);
1824
1825 return root;
1826}
1827
8b712842
CM
1828/*
1829 * called by the kthread helper functions to finally call the bio end_io
1830 * functions. This is where read checksum verification actually happens
1831 */
1832static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1833{
ce9adaa5 1834 struct bio *bio;
97eb6b69 1835 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1836
97eb6b69 1837 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1838 bio = end_io_wq->bio;
ce9adaa5 1839
4e4cbee9 1840 bio->bi_status = end_io_wq->status;
8b712842
CM
1841 bio->bi_private = end_io_wq->private;
1842 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1843 bio_endio(bio);
9be490f1 1844 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1845}
1846
a74a4b97
CM
1847static int cleaner_kthread(void *arg)
1848{
1849 struct btrfs_root *root = arg;
0b246afa 1850 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1851 int again;
a74a4b97 1852
d6fd0ae2 1853 while (1) {
d0278245 1854 again = 0;
a74a4b97 1855
fd340d0f
JB
1856 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1857
d0278245 1858 /* Make the cleaner go to sleep early. */
2ff7e61e 1859 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1860 goto sleep;
1861
90c711ab
ZB
1862 /*
1863 * Do not do anything if we might cause open_ctree() to block
1864 * before we have finished mounting the filesystem.
1865 */
0b246afa 1866 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1867 goto sleep;
1868
0b246afa 1869 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1870 goto sleep;
1871
dc7f370c
MX
1872 /*
1873 * Avoid the problem that we change the status of the fs
1874 * during the above check and trylock.
1875 */
2ff7e61e 1876 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1877 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1878 goto sleep;
76dda93c 1879 }
a74a4b97 1880
2ff7e61e 1881 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1882
d0278245 1883 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1884 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1885
1886 /*
05323cd1
MX
1887 * The defragger has dealt with the R/O remount and umount,
1888 * needn't do anything special here.
d0278245 1889 */
0b246afa 1890 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1891
1892 /*
f3372065 1893 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1894 * with relocation (btrfs_relocate_chunk) and relocation
1895 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1896 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1897 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1898 * unused block groups.
1899 */
0b246afa 1900 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1901
1902 /*
1903 * Reclaim block groups in the reclaim_bgs list after we deleted
1904 * all unused block_groups. This possibly gives us some more free
1905 * space.
1906 */
1907 btrfs_reclaim_bgs(fs_info);
d0278245 1908sleep:
a0a1db70 1909 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1910 if (kthread_should_park())
1911 kthread_parkme();
1912 if (kthread_should_stop())
1913 return 0;
838fe188 1914 if (!again) {
a74a4b97 1915 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1916 schedule();
a74a4b97
CM
1917 __set_current_state(TASK_RUNNING);
1918 }
da288d28 1919 }
a74a4b97
CM
1920}
1921
1922static int transaction_kthread(void *arg)
1923{
1924 struct btrfs_root *root = arg;
0b246afa 1925 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1926 struct btrfs_trans_handle *trans;
1927 struct btrfs_transaction *cur;
8929ecfa 1928 u64 transid;
643900be 1929 time64_t delta;
a74a4b97 1930 unsigned long delay;
914b2007 1931 bool cannot_commit;
a74a4b97
CM
1932
1933 do {
914b2007 1934 cannot_commit = false;
ba1bc00f 1935 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1936 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1937
0b246afa
JM
1938 spin_lock(&fs_info->trans_lock);
1939 cur = fs_info->running_transaction;
a74a4b97 1940 if (!cur) {
0b246afa 1941 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1942 goto sleep;
1943 }
31153d81 1944
643900be 1945 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1946 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1947 delta < fs_info->commit_interval) {
0b246afa 1948 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1949 delay -= msecs_to_jiffies((delta - 1) * 1000);
1950 delay = min(delay,
1951 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1952 goto sleep;
1953 }
8929ecfa 1954 transid = cur->transid;
0b246afa 1955 spin_unlock(&fs_info->trans_lock);
56bec294 1956
79787eaa 1957 /* If the file system is aborted, this will always fail. */
354aa0fb 1958 trans = btrfs_attach_transaction(root);
914b2007 1959 if (IS_ERR(trans)) {
354aa0fb
MX
1960 if (PTR_ERR(trans) != -ENOENT)
1961 cannot_commit = true;
79787eaa 1962 goto sleep;
914b2007 1963 }
8929ecfa 1964 if (transid == trans->transid) {
3a45bb20 1965 btrfs_commit_transaction(trans);
8929ecfa 1966 } else {
3a45bb20 1967 btrfs_end_transaction(trans);
8929ecfa 1968 }
a74a4b97 1969sleep:
0b246afa
JM
1970 wake_up_process(fs_info->cleaner_kthread);
1971 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1972
4e121c06 1973 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1974 &fs_info->fs_state)))
2ff7e61e 1975 btrfs_cleanup_transaction(fs_info);
ce63f891 1976 if (!kthread_should_stop() &&
0b246afa 1977 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1978 cannot_commit))
bc5511d0 1979 schedule_timeout_interruptible(delay);
a74a4b97
CM
1980 } while (!kthread_should_stop());
1981 return 0;
1982}
1983
af31f5e5 1984/*
01f0f9da
NB
1985 * This will find the highest generation in the array of root backups. The
1986 * index of the highest array is returned, or -EINVAL if we can't find
1987 * anything.
af31f5e5
CM
1988 *
1989 * We check to make sure the array is valid by comparing the
1990 * generation of the latest root in the array with the generation
1991 * in the super block. If they don't match we pitch it.
1992 */
01f0f9da 1993static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1994{
01f0f9da 1995 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1996 u64 cur;
af31f5e5
CM
1997 struct btrfs_root_backup *root_backup;
1998 int i;
1999
2000 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2001 root_backup = info->super_copy->super_roots + i;
2002 cur = btrfs_backup_tree_root_gen(root_backup);
2003 if (cur == newest_gen)
01f0f9da 2004 return i;
af31f5e5
CM
2005 }
2006
01f0f9da 2007 return -EINVAL;
af31f5e5
CM
2008}
2009
af31f5e5
CM
2010/*
2011 * copy all the root pointers into the super backup array.
2012 * this will bump the backup pointer by one when it is
2013 * done
2014 */
2015static void backup_super_roots(struct btrfs_fs_info *info)
2016{
6ef108dd 2017 const int next_backup = info->backup_root_index;
af31f5e5 2018 struct btrfs_root_backup *root_backup;
af31f5e5
CM
2019
2020 root_backup = info->super_for_commit->super_roots + next_backup;
2021
2022 /*
2023 * make sure all of our padding and empty slots get zero filled
2024 * regardless of which ones we use today
2025 */
2026 memset(root_backup, 0, sizeof(*root_backup));
2027
2028 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2029
2030 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2031 btrfs_set_backup_tree_root_gen(root_backup,
2032 btrfs_header_generation(info->tree_root->node));
2033
2034 btrfs_set_backup_tree_root_level(root_backup,
2035 btrfs_header_level(info->tree_root->node));
2036
2037 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2038 btrfs_set_backup_chunk_root_gen(root_backup,
2039 btrfs_header_generation(info->chunk_root->node));
2040 btrfs_set_backup_chunk_root_level(root_backup,
2041 btrfs_header_level(info->chunk_root->node));
2042
2043 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2044 btrfs_set_backup_extent_root_gen(root_backup,
2045 btrfs_header_generation(info->extent_root->node));
2046 btrfs_set_backup_extent_root_level(root_backup,
2047 btrfs_header_level(info->extent_root->node));
2048
7c7e82a7
CM
2049 /*
2050 * we might commit during log recovery, which happens before we set
2051 * the fs_root. Make sure it is valid before we fill it in.
2052 */
2053 if (info->fs_root && info->fs_root->node) {
2054 btrfs_set_backup_fs_root(root_backup,
2055 info->fs_root->node->start);
2056 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2057 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2058 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2059 btrfs_header_level(info->fs_root->node));
7c7e82a7 2060 }
af31f5e5
CM
2061
2062 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2063 btrfs_set_backup_dev_root_gen(root_backup,
2064 btrfs_header_generation(info->dev_root->node));
2065 btrfs_set_backup_dev_root_level(root_backup,
2066 btrfs_header_level(info->dev_root->node));
2067
2068 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2069 btrfs_set_backup_csum_root_gen(root_backup,
2070 btrfs_header_generation(info->csum_root->node));
2071 btrfs_set_backup_csum_root_level(root_backup,
2072 btrfs_header_level(info->csum_root->node));
2073
2074 btrfs_set_backup_total_bytes(root_backup,
2075 btrfs_super_total_bytes(info->super_copy));
2076 btrfs_set_backup_bytes_used(root_backup,
2077 btrfs_super_bytes_used(info->super_copy));
2078 btrfs_set_backup_num_devices(root_backup,
2079 btrfs_super_num_devices(info->super_copy));
2080
2081 /*
2082 * if we don't copy this out to the super_copy, it won't get remembered
2083 * for the next commit
2084 */
2085 memcpy(&info->super_copy->super_roots,
2086 &info->super_for_commit->super_roots,
2087 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2088}
2089
bd2336b2
NB
2090/*
2091 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2092 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2093 *
2094 * fs_info - filesystem whose backup roots need to be read
2095 * priority - priority of backup root required
2096 *
2097 * Returns backup root index on success and -EINVAL otherwise.
2098 */
2099static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2100{
2101 int backup_index = find_newest_super_backup(fs_info);
2102 struct btrfs_super_block *super = fs_info->super_copy;
2103 struct btrfs_root_backup *root_backup;
2104
2105 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2106 if (priority == 0)
2107 return backup_index;
2108
2109 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2110 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2111 } else {
2112 return -EINVAL;
2113 }
2114
2115 root_backup = super->super_roots + backup_index;
2116
2117 btrfs_set_super_generation(super,
2118 btrfs_backup_tree_root_gen(root_backup));
2119 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2120 btrfs_set_super_root_level(super,
2121 btrfs_backup_tree_root_level(root_backup));
2122 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2123
2124 /*
2125 * Fixme: the total bytes and num_devices need to match or we should
2126 * need a fsck
2127 */
2128 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2129 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2130
2131 return backup_index;
2132}
2133
7abadb64
LB
2134/* helper to cleanup workers */
2135static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2136{
dc6e3209 2137 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2138 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2139 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2140 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2141 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2142 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2143 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2144 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2145 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2146 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2147 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2148 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2149 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2150 if (fs_info->discard_ctl.discard_workers)
2151 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2152 /*
2153 * Now that all other work queues are destroyed, we can safely destroy
2154 * the queues used for metadata I/O, since tasks from those other work
2155 * queues can do metadata I/O operations.
2156 */
2157 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2158 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2159}
2160
2e9f5954
R
2161static void free_root_extent_buffers(struct btrfs_root *root)
2162{
2163 if (root) {
2164 free_extent_buffer(root->node);
2165 free_extent_buffer(root->commit_root);
2166 root->node = NULL;
2167 root->commit_root = NULL;
2168 }
2169}
2170
af31f5e5 2171/* helper to cleanup tree roots */
4273eaff 2172static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2173{
2e9f5954 2174 free_root_extent_buffers(info->tree_root);
655b09fe 2175
2e9f5954
R
2176 free_root_extent_buffers(info->dev_root);
2177 free_root_extent_buffers(info->extent_root);
2178 free_root_extent_buffers(info->csum_root);
2179 free_root_extent_buffers(info->quota_root);
2180 free_root_extent_buffers(info->uuid_root);
8c38938c 2181 free_root_extent_buffers(info->fs_root);
aeb935a4 2182 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2183 if (free_chunk_root)
2e9f5954 2184 free_root_extent_buffers(info->chunk_root);
70f6d82e 2185 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2186}
2187
8c38938c
JB
2188void btrfs_put_root(struct btrfs_root *root)
2189{
2190 if (!root)
2191 return;
2192
2193 if (refcount_dec_and_test(&root->refs)) {
2194 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2195 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2196 if (root->anon_dev)
2197 free_anon_bdev(root->anon_dev);
2198 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2199 free_root_extent_buffers(root);
8c38938c
JB
2200#ifdef CONFIG_BTRFS_DEBUG
2201 spin_lock(&root->fs_info->fs_roots_radix_lock);
2202 list_del_init(&root->leak_list);
2203 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2204#endif
2205 kfree(root);
2206 }
2207}
2208
faa2dbf0 2209void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2210{
2211 int ret;
2212 struct btrfs_root *gang[8];
2213 int i;
2214
2215 while (!list_empty(&fs_info->dead_roots)) {
2216 gang[0] = list_entry(fs_info->dead_roots.next,
2217 struct btrfs_root, root_list);
2218 list_del(&gang[0]->root_list);
2219
8c38938c 2220 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2221 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2222 btrfs_put_root(gang[0]);
171f6537
JB
2223 }
2224
2225 while (1) {
2226 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2227 (void **)gang, 0,
2228 ARRAY_SIZE(gang));
2229 if (!ret)
2230 break;
2231 for (i = 0; i < ret; i++)
cb517eab 2232 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2233 }
2234}
af31f5e5 2235
638aa7ed
ES
2236static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2237{
2238 mutex_init(&fs_info->scrub_lock);
2239 atomic_set(&fs_info->scrubs_running, 0);
2240 atomic_set(&fs_info->scrub_pause_req, 0);
2241 atomic_set(&fs_info->scrubs_paused, 0);
2242 atomic_set(&fs_info->scrub_cancel_req, 0);
2243 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2244 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2245}
2246
779a65a4
ES
2247static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2248{
2249 spin_lock_init(&fs_info->balance_lock);
2250 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2251 atomic_set(&fs_info->balance_pause_req, 0);
2252 atomic_set(&fs_info->balance_cancel_req, 0);
2253 fs_info->balance_ctl = NULL;
2254 init_waitqueue_head(&fs_info->balance_wait_q);
2255}
2256
6bccf3ab 2257static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2258{
2ff7e61e
JM
2259 struct inode *inode = fs_info->btree_inode;
2260
2261 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2262 set_nlink(inode, 1);
f37938e0
ES
2263 /*
2264 * we set the i_size on the btree inode to the max possible int.
2265 * the real end of the address space is determined by all of
2266 * the devices in the system
2267 */
2ff7e61e
JM
2268 inode->i_size = OFFSET_MAX;
2269 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2270
2ff7e61e 2271 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2272 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2273 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2274 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2275 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2276
5c8fd99f 2277 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2278 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2279 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2280 btrfs_insert_inode_hash(inode);
f37938e0
ES
2281}
2282
ad618368
ES
2283static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2284{
ad618368 2285 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2286 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2287 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2288}
2289
f9e92e40
ES
2290static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2291{
2292 spin_lock_init(&fs_info->qgroup_lock);
2293 mutex_init(&fs_info->qgroup_ioctl_lock);
2294 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2295 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2296 fs_info->qgroup_seq = 1;
f9e92e40 2297 fs_info->qgroup_ulist = NULL;
d2c609b8 2298 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2299 mutex_init(&fs_info->qgroup_rescan_lock);
2300}
2301
2a458198
ES
2302static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2303 struct btrfs_fs_devices *fs_devices)
2304{
f7b885be 2305 u32 max_active = fs_info->thread_pool_size;
6f011058 2306 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2307
2308 fs_info->workers =
cb001095
JM
2309 btrfs_alloc_workqueue(fs_info, "worker",
2310 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2311
2312 fs_info->delalloc_workers =
cb001095
JM
2313 btrfs_alloc_workqueue(fs_info, "delalloc",
2314 flags, max_active, 2);
2a458198
ES
2315
2316 fs_info->flush_workers =
cb001095
JM
2317 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2318 flags, max_active, 0);
2a458198
ES
2319
2320 fs_info->caching_workers =
cb001095 2321 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2322
2a458198 2323 fs_info->fixup_workers =
cb001095 2324 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2325
2326 /*
2327 * endios are largely parallel and should have a very
2328 * low idle thresh
2329 */
2330 fs_info->endio_workers =
cb001095 2331 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2332 fs_info->endio_meta_workers =
cb001095
JM
2333 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2334 max_active, 4);
2a458198 2335 fs_info->endio_meta_write_workers =
cb001095
JM
2336 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2337 max_active, 2);
2a458198 2338 fs_info->endio_raid56_workers =
cb001095
JM
2339 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2340 max_active, 4);
2a458198 2341 fs_info->rmw_workers =
cb001095 2342 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2343 fs_info->endio_write_workers =
cb001095
JM
2344 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2345 max_active, 2);
2a458198 2346 fs_info->endio_freespace_worker =
cb001095
JM
2347 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2348 max_active, 0);
2a458198 2349 fs_info->delayed_workers =
cb001095
JM
2350 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2351 max_active, 0);
2a458198 2352 fs_info->readahead_workers =
cb001095
JM
2353 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2354 max_active, 2);
2a458198 2355 fs_info->qgroup_rescan_workers =
cb001095 2356 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2357 fs_info->discard_ctl.discard_workers =
2358 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2359
2360 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2361 fs_info->flush_workers &&
2a458198
ES
2362 fs_info->endio_workers && fs_info->endio_meta_workers &&
2363 fs_info->endio_meta_write_workers &&
2a458198
ES
2364 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2365 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2366 fs_info->caching_workers && fs_info->readahead_workers &&
2367 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2368 fs_info->qgroup_rescan_workers &&
2369 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2370 return -ENOMEM;
2371 }
2372
2373 return 0;
2374}
2375
6d97c6e3
JT
2376static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2377{
2378 struct crypto_shash *csum_shash;
b4e967be 2379 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2380
b4e967be 2381 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2382
2383 if (IS_ERR(csum_shash)) {
2384 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2385 csum_driver);
6d97c6e3
JT
2386 return PTR_ERR(csum_shash);
2387 }
2388
2389 fs_info->csum_shash = csum_shash;
2390
2391 return 0;
2392}
2393
63443bf5
ES
2394static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2395 struct btrfs_fs_devices *fs_devices)
2396{
2397 int ret;
63443bf5
ES
2398 struct btrfs_root *log_tree_root;
2399 struct btrfs_super_block *disk_super = fs_info->super_copy;
2400 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2401 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2402
2403 if (fs_devices->rw_devices == 0) {
f14d104d 2404 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2405 return -EIO;
2406 }
2407
96dfcb46
JB
2408 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2409 GFP_KERNEL);
63443bf5
ES
2410 if (!log_tree_root)
2411 return -ENOMEM;
2412
2ff7e61e 2413 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2414 BTRFS_TREE_LOG_OBJECTID,
2415 fs_info->generation + 1, level,
2416 NULL);
64c043de 2417 if (IS_ERR(log_tree_root->node)) {
f14d104d 2418 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2419 ret = PTR_ERR(log_tree_root->node);
8c38938c 2420 log_tree_root->node = NULL;
00246528 2421 btrfs_put_root(log_tree_root);
0eeff236 2422 return ret;
64c043de 2423 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2424 btrfs_err(fs_info, "failed to read log tree");
00246528 2425 btrfs_put_root(log_tree_root);
63443bf5
ES
2426 return -EIO;
2427 }
2428 /* returns with log_tree_root freed on success */
2429 ret = btrfs_recover_log_trees(log_tree_root);
2430 if (ret) {
0b246afa
JM
2431 btrfs_handle_fs_error(fs_info, ret,
2432 "Failed to recover log tree");
00246528 2433 btrfs_put_root(log_tree_root);
63443bf5
ES
2434 return ret;
2435 }
2436
bc98a42c 2437 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2438 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2439 if (ret)
2440 return ret;
2441 }
2442
2443 return 0;
2444}
2445
6bccf3ab 2446static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2447{
6bccf3ab 2448 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2449 struct btrfs_root *root;
4bbcaa64
ES
2450 struct btrfs_key location;
2451 int ret;
2452
6bccf3ab
JM
2453 BUG_ON(!fs_info->tree_root);
2454
4bbcaa64
ES
2455 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2456 location.type = BTRFS_ROOT_ITEM_KEY;
2457 location.offset = 0;
2458
a4f3d2c4 2459 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2460 if (IS_ERR(root)) {
42437a63
JB
2461 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2462 ret = PTR_ERR(root);
2463 goto out;
2464 }
2465 } else {
2466 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2467 fs_info->extent_root = root;
f50f4353 2468 }
4bbcaa64
ES
2469
2470 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2471 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2472 if (IS_ERR(root)) {
42437a63
JB
2473 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2474 ret = PTR_ERR(root);
2475 goto out;
2476 }
2477 } else {
2478 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2479 fs_info->dev_root = root;
f50f4353 2480 }
820a49da
JB
2481 /* Initialize fs_info for all devices in any case */
2482 btrfs_init_devices_late(fs_info);
4bbcaa64 2483
882dbe0c
JB
2484 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2485 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2486 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2487 root = btrfs_read_tree_root(tree_root, &location);
2488 if (IS_ERR(root)) {
2489 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2490 ret = PTR_ERR(root);
2491 goto out;
2492 }
2493 } else {
2494 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2495 fs_info->csum_root = root;
42437a63 2496 }
f50f4353 2497 }
4bbcaa64 2498
aeb935a4
QW
2499 /*
2500 * This tree can share blocks with some other fs tree during relocation
2501 * and we need a proper setup by btrfs_get_fs_root
2502 */
56e9357a
DS
2503 root = btrfs_get_fs_root(tree_root->fs_info,
2504 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2505 if (IS_ERR(root)) {
42437a63
JB
2506 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2507 ret = PTR_ERR(root);
2508 goto out;
2509 }
2510 } else {
2511 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2512 fs_info->data_reloc_root = root;
aeb935a4 2513 }
aeb935a4 2514
4bbcaa64 2515 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2516 root = btrfs_read_tree_root(tree_root, &location);
2517 if (!IS_ERR(root)) {
2518 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2519 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2520 fs_info->quota_root = root;
4bbcaa64
ES
2521 }
2522
2523 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2524 root = btrfs_read_tree_root(tree_root, &location);
2525 if (IS_ERR(root)) {
42437a63
JB
2526 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2527 ret = PTR_ERR(root);
2528 if (ret != -ENOENT)
2529 goto out;
2530 }
4bbcaa64 2531 } else {
a4f3d2c4
DS
2532 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2533 fs_info->uuid_root = root;
4bbcaa64
ES
2534 }
2535
70f6d82e
OS
2536 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2537 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2538 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2539 if (IS_ERR(root)) {
42437a63
JB
2540 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2541 ret = PTR_ERR(root);
2542 goto out;
2543 }
2544 } else {
2545 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2546 fs_info->free_space_root = root;
f50f4353 2547 }
70f6d82e
OS
2548 }
2549
4bbcaa64 2550 return 0;
f50f4353
LB
2551out:
2552 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2553 location.objectid, ret);
2554 return ret;
4bbcaa64
ES
2555}
2556
069ec957
QW
2557/*
2558 * Real super block validation
2559 * NOTE: super csum type and incompat features will not be checked here.
2560 *
2561 * @sb: super block to check
2562 * @mirror_num: the super block number to check its bytenr:
2563 * 0 the primary (1st) sb
2564 * 1, 2 2nd and 3rd backup copy
2565 * -1 skip bytenr check
2566 */
2567static int validate_super(struct btrfs_fs_info *fs_info,
2568 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2569{
21a852b0
QW
2570 u64 nodesize = btrfs_super_nodesize(sb);
2571 u64 sectorsize = btrfs_super_sectorsize(sb);
2572 int ret = 0;
2573
2574 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2575 btrfs_err(fs_info, "no valid FS found");
2576 ret = -EINVAL;
2577 }
2578 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2579 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2580 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2581 ret = -EINVAL;
2582 }
2583 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2584 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2585 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2586 ret = -EINVAL;
2587 }
2588 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2589 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2590 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2591 ret = -EINVAL;
2592 }
2593 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2594 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2595 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2596 ret = -EINVAL;
2597 }
2598
2599 /*
2600 * Check sectorsize and nodesize first, other check will need it.
2601 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2602 */
2603 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2604 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2605 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2606 ret = -EINVAL;
2607 }
0bb3eb3e
QW
2608
2609 /*
2610 * For 4K page size, we only support 4K sector size.
2611 * For 64K page size, we support read-write for 64K sector size, and
2612 * read-only for 4K sector size.
2613 */
2614 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2615 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2616 sectorsize != SZ_64K))) {
21a852b0 2617 btrfs_err(fs_info,
0bb3eb3e 2618 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2619 sectorsize, PAGE_SIZE);
2620 ret = -EINVAL;
2621 }
0bb3eb3e 2622
21a852b0
QW
2623 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2624 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2625 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2626 ret = -EINVAL;
2627 }
2628 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2629 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2630 le32_to_cpu(sb->__unused_leafsize), nodesize);
2631 ret = -EINVAL;
2632 }
2633
2634 /* Root alignment check */
2635 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2636 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2637 btrfs_super_root(sb));
2638 ret = -EINVAL;
2639 }
2640 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2641 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2642 btrfs_super_chunk_root(sb));
2643 ret = -EINVAL;
2644 }
2645 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2646 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2647 btrfs_super_log_root(sb));
2648 ret = -EINVAL;
2649 }
2650
de37aa51 2651 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2652 BTRFS_FSID_SIZE) != 0) {
21a852b0 2653 btrfs_err(fs_info,
7239ff4b 2654 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2655 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2656 ret = -EINVAL;
2657 }
2658
2659 /*
2660 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2661 * done later
2662 */
2663 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2664 btrfs_err(fs_info, "bytes_used is too small %llu",
2665 btrfs_super_bytes_used(sb));
2666 ret = -EINVAL;
2667 }
2668 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2669 btrfs_err(fs_info, "invalid stripesize %u",
2670 btrfs_super_stripesize(sb));
2671 ret = -EINVAL;
2672 }
2673 if (btrfs_super_num_devices(sb) > (1UL << 31))
2674 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2675 btrfs_super_num_devices(sb));
2676 if (btrfs_super_num_devices(sb) == 0) {
2677 btrfs_err(fs_info, "number of devices is 0");
2678 ret = -EINVAL;
2679 }
2680
069ec957
QW
2681 if (mirror_num >= 0 &&
2682 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2683 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2684 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2685 ret = -EINVAL;
2686 }
2687
2688 /*
2689 * Obvious sys_chunk_array corruptions, it must hold at least one key
2690 * and one chunk
2691 */
2692 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2693 btrfs_err(fs_info, "system chunk array too big %u > %u",
2694 btrfs_super_sys_array_size(sb),
2695 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2696 ret = -EINVAL;
2697 }
2698 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2699 + sizeof(struct btrfs_chunk)) {
2700 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2701 btrfs_super_sys_array_size(sb),
2702 sizeof(struct btrfs_disk_key)
2703 + sizeof(struct btrfs_chunk));
2704 ret = -EINVAL;
2705 }
2706
2707 /*
2708 * The generation is a global counter, we'll trust it more than the others
2709 * but it's still possible that it's the one that's wrong.
2710 */
2711 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2712 btrfs_warn(fs_info,
2713 "suspicious: generation < chunk_root_generation: %llu < %llu",
2714 btrfs_super_generation(sb),
2715 btrfs_super_chunk_root_generation(sb));
2716 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2717 && btrfs_super_cache_generation(sb) != (u64)-1)
2718 btrfs_warn(fs_info,
2719 "suspicious: generation < cache_generation: %llu < %llu",
2720 btrfs_super_generation(sb),
2721 btrfs_super_cache_generation(sb));
2722
2723 return ret;
2724}
2725
069ec957
QW
2726/*
2727 * Validation of super block at mount time.
2728 * Some checks already done early at mount time, like csum type and incompat
2729 * flags will be skipped.
2730 */
2731static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2732{
2733 return validate_super(fs_info, fs_info->super_copy, 0);
2734}
2735
75cb857d
QW
2736/*
2737 * Validation of super block at write time.
2738 * Some checks like bytenr check will be skipped as their values will be
2739 * overwritten soon.
2740 * Extra checks like csum type and incompat flags will be done here.
2741 */
2742static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2743 struct btrfs_super_block *sb)
2744{
2745 int ret;
2746
2747 ret = validate_super(fs_info, sb, -1);
2748 if (ret < 0)
2749 goto out;
e7e16f48 2750 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2751 ret = -EUCLEAN;
2752 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2753 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2754 goto out;
2755 }
2756 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2757 ret = -EUCLEAN;
2758 btrfs_err(fs_info,
2759 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2760 btrfs_super_incompat_flags(sb),
2761 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2762 goto out;
2763 }
2764out:
2765 if (ret < 0)
2766 btrfs_err(fs_info,
2767 "super block corruption detected before writing it to disk");
2768 return ret;
2769}
2770
6ef108dd 2771static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2772{
6ef108dd 2773 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2774 struct btrfs_super_block *sb = fs_info->super_copy;
2775 struct btrfs_root *tree_root = fs_info->tree_root;
2776 bool handle_error = false;
2777 int ret = 0;
2778 int i;
2779
2780 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2781 u64 generation;
2782 int level;
2783
2784 if (handle_error) {
2785 if (!IS_ERR(tree_root->node))
2786 free_extent_buffer(tree_root->node);
2787 tree_root->node = NULL;
2788
2789 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2790 break;
2791
2792 free_root_pointers(fs_info, 0);
2793
2794 /*
2795 * Don't use the log in recovery mode, it won't be
2796 * valid
2797 */
2798 btrfs_set_super_log_root(sb, 0);
2799
2800 /* We can't trust the free space cache either */
2801 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2802
2803 ret = read_backup_root(fs_info, i);
6ef108dd 2804 backup_index = ret;
b8522a1e
NB
2805 if (ret < 0)
2806 return ret;
2807 }
2808 generation = btrfs_super_generation(sb);
2809 level = btrfs_super_root_level(sb);
2810 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
1b7ec85e 2811 BTRFS_ROOT_TREE_OBJECTID,
b8522a1e 2812 generation, level, NULL);
217f5004 2813 if (IS_ERR(tree_root->node)) {
b8522a1e 2814 handle_error = true;
217f5004
NB
2815 ret = PTR_ERR(tree_root->node);
2816 tree_root->node = NULL;
2817 btrfs_warn(fs_info, "couldn't read tree root");
2818 continue;
b8522a1e 2819
217f5004
NB
2820 } else if (!extent_buffer_uptodate(tree_root->node)) {
2821 handle_error = true;
2822 ret = -EIO;
2823 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2824 continue;
2825 }
2826
2827 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2828 tree_root->commit_root = btrfs_root_node(tree_root);
2829 btrfs_set_root_refs(&tree_root->root_item, 1);
2830
336a0d8d
NB
2831 /*
2832 * No need to hold btrfs_root::objectid_mutex since the fs
2833 * hasn't been fully initialised and we are the only user
2834 */
453e4873 2835 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2836 if (ret < 0) {
b8522a1e
NB
2837 handle_error = true;
2838 continue;
2839 }
2840
6b8fad57 2841 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2842
2843 ret = btrfs_read_roots(fs_info);
2844 if (ret < 0) {
2845 handle_error = true;
2846 continue;
2847 }
2848
2849 /* All successful */
2850 fs_info->generation = generation;
2851 fs_info->last_trans_committed = generation;
6ef108dd
NB
2852
2853 /* Always begin writing backup roots after the one being used */
2854 if (backup_index < 0) {
2855 fs_info->backup_root_index = 0;
2856 } else {
2857 fs_info->backup_root_index = backup_index + 1;
2858 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2859 }
b8522a1e
NB
2860 break;
2861 }
2862
2863 return ret;
2864}
2865
8260edba 2866void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2867{
76dda93c 2868 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2869 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2870 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2871 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2872 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2873 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2874 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2875 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2876 spin_lock_init(&fs_info->trans_lock);
76dda93c 2877 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2878 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2879 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2880 spin_lock_init(&fs_info->super_lock);
f28491e0 2881 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2882 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2883 spin_lock_init(&fs_info->treelog_bg_lock);
f29021b2 2884 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2885 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2886 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2887 mutex_init(&fs_info->reloc_mutex);
573bfb72 2888 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2889 mutex_init(&fs_info->zoned_meta_io_lock);
de98ced9 2890 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2891
0b86a832 2892 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2893 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2894 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2895 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2896 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
bd647ce3
JB
2897#ifdef CONFIG_BTRFS_DEBUG
2898 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2899 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2900 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2901#endif
c8bf1b67 2902 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2903 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2904 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2905 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2906 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2907 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2908 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2909 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2910 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2911 BTRFS_BLOCK_RSV_DELREFS);
2912
771ed689 2913 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2914 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2915 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2916 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2917 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2918 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2919 fs_info->metadata_ratio = 0;
4cb5300b 2920 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2921 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2922 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2923 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2924 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2925 /* readahead state */
d0164adc 2926 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2927 spin_lock_init(&fs_info->reada_lock);
fd708b81 2928 btrfs_init_ref_verify(fs_info);
c8b97818 2929
b34b086c
CM
2930 fs_info->thread_pool_size = min_t(unsigned long,
2931 num_online_cpus() + 2, 8);
0afbaf8c 2932
199c2a9c
MX
2933 INIT_LIST_HEAD(&fs_info->ordered_roots);
2934 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2935
638aa7ed 2936 btrfs_init_scrub(fs_info);
21adbd5c
SB
2937#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2938 fs_info->check_integrity_print_mask = 0;
2939#endif
779a65a4 2940 btrfs_init_balance(fs_info);
57056740 2941 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2942
0f9dd46c 2943 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2944 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2945 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2946
fe119a6e
NB
2947 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2948 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2949 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2950
5a3f23d5 2951 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2952 mutex_init(&fs_info->tree_log_mutex);
925baedd 2953 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2954 mutex_init(&fs_info->transaction_kthread_mutex);
2955 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2956 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2957 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2958 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2959 init_rwsem(&fs_info->subvol_sem);
803b2f54 2960 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2961
ad618368 2962 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2963 btrfs_init_qgroup(fs_info);
b0643e59 2964 btrfs_discard_init(fs_info);
416ac51d 2965
fa9c0d79
CM
2966 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2967 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2968
e6dcd2dc 2969 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2970 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2971 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2972 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2973 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2974
da17066c
JM
2975 /* Usable values until the real ones are cached from the superblock */
2976 fs_info->nodesize = 4096;
2977 fs_info->sectorsize = 4096;
ab108d99 2978 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2979 fs_info->stripesize = 4096;
2980
eede2bf3
OS
2981 spin_lock_init(&fs_info->swapfile_pins_lock);
2982 fs_info->swapfile_pins = RB_ROOT;
2983
9e967495 2984 fs_info->send_in_progress = 0;
18bb8bbf
JT
2985
2986 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2987 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
2988}
2989
2990static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2991{
2992 int ret;
2993
2994 fs_info->sb = sb;
2995 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2996 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2997
5deb17e1 2998 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 2999 if (ret)
c75e8394 3000 return ret;
ae18c37a
JB
3001
3002 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3003 if (ret)
c75e8394 3004 return ret;
ae18c37a
JB
3005
3006 fs_info->dirty_metadata_batch = PAGE_SIZE *
3007 (1 + ilog2(nr_cpu_ids));
3008
3009 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3010 if (ret)
c75e8394 3011 return ret;
ae18c37a
JB
3012
3013 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3014 GFP_KERNEL);
3015 if (ret)
c75e8394 3016 return ret;
ae18c37a
JB
3017
3018 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3019 GFP_KERNEL);
c75e8394
JB
3020 if (!fs_info->delayed_root)
3021 return -ENOMEM;
ae18c37a
JB
3022 btrfs_init_delayed_root(fs_info->delayed_root);
3023
a0a1db70
FM
3024 if (sb_rdonly(sb))
3025 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3026
c75e8394 3027 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3028}
3029
97f4dd09
NB
3030static int btrfs_uuid_rescan_kthread(void *data)
3031{
3032 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3033 int ret;
3034
3035 /*
3036 * 1st step is to iterate through the existing UUID tree and
3037 * to delete all entries that contain outdated data.
3038 * 2nd step is to add all missing entries to the UUID tree.
3039 */
3040 ret = btrfs_uuid_tree_iterate(fs_info);
3041 if (ret < 0) {
c94bec2c
JB
3042 if (ret != -EINTR)
3043 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3044 ret);
97f4dd09
NB
3045 up(&fs_info->uuid_tree_rescan_sem);
3046 return ret;
3047 }
3048 return btrfs_uuid_scan_kthread(data);
3049}
3050
3051static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3052{
3053 struct task_struct *task;
3054
3055 down(&fs_info->uuid_tree_rescan_sem);
3056 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3057 if (IS_ERR(task)) {
3058 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3059 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3060 up(&fs_info->uuid_tree_rescan_sem);
3061 return PTR_ERR(task);
3062 }
3063
3064 return 0;
3065}
3066
8cd29088
BB
3067/*
3068 * Some options only have meaning at mount time and shouldn't persist across
3069 * remounts, or be displayed. Clear these at the end of mount and remount
3070 * code paths.
3071 */
3072void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3073{
3074 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3075 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3076}
3077
44c0ca21
BB
3078/*
3079 * Mounting logic specific to read-write file systems. Shared by open_ctree
3080 * and btrfs_remount when remounting from read-only to read-write.
3081 */
3082int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3083{
3084 int ret;
94846229 3085 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3086 bool clear_free_space_tree = false;
3087
3088 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3089 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3090 clear_free_space_tree = true;
3091 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3092 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3093 btrfs_warn(fs_info, "free space tree is invalid");
3094 clear_free_space_tree = true;
3095 }
3096
3097 if (clear_free_space_tree) {
3098 btrfs_info(fs_info, "clearing free space tree");
3099 ret = btrfs_clear_free_space_tree(fs_info);
3100 if (ret) {
3101 btrfs_warn(fs_info,
3102 "failed to clear free space tree: %d", ret);
3103 goto out;
3104 }
3105 }
44c0ca21 3106
8d488a8c
FM
3107 /*
3108 * btrfs_find_orphan_roots() is responsible for finding all the dead
3109 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3110 * them into the fs_info->fs_roots_radix tree. This must be done before
3111 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3112 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3113 * item before the root's tree is deleted - this means that if we unmount
3114 * or crash before the deletion completes, on the next mount we will not
3115 * delete what remains of the tree because the orphan item does not
3116 * exists anymore, which is what tells us we have a pending deletion.
3117 */
3118 ret = btrfs_find_orphan_roots(fs_info);
3119 if (ret)
3120 goto out;
3121
44c0ca21
BB
3122 ret = btrfs_cleanup_fs_roots(fs_info);
3123 if (ret)
3124 goto out;
3125
8f1c21d7
BB
3126 down_read(&fs_info->cleanup_work_sem);
3127 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3128 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3129 up_read(&fs_info->cleanup_work_sem);
3130 goto out;
3131 }
3132 up_read(&fs_info->cleanup_work_sem);
3133
44c0ca21
BB
3134 mutex_lock(&fs_info->cleaner_mutex);
3135 ret = btrfs_recover_relocation(fs_info->tree_root);
3136 mutex_unlock(&fs_info->cleaner_mutex);
3137 if (ret < 0) {
3138 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3139 goto out;
3140 }
3141
5011139a
BB
3142 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3143 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3144 btrfs_info(fs_info, "creating free space tree");
3145 ret = btrfs_create_free_space_tree(fs_info);
3146 if (ret) {
3147 btrfs_warn(fs_info,
3148 "failed to create free space tree: %d", ret);
3149 goto out;
3150 }
3151 }
3152
94846229
BB
3153 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3154 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3155 if (ret)
3156 goto out;
3157 }
3158
44c0ca21
BB
3159 ret = btrfs_resume_balance_async(fs_info);
3160 if (ret)
3161 goto out;
3162
3163 ret = btrfs_resume_dev_replace_async(fs_info);
3164 if (ret) {
3165 btrfs_warn(fs_info, "failed to resume dev_replace");
3166 goto out;
3167 }
3168
3169 btrfs_qgroup_rescan_resume(fs_info);
3170
3171 if (!fs_info->uuid_root) {
3172 btrfs_info(fs_info, "creating UUID tree");
3173 ret = btrfs_create_uuid_tree(fs_info);
3174 if (ret) {
3175 btrfs_warn(fs_info,
3176 "failed to create the UUID tree %d", ret);
3177 goto out;
3178 }
3179 }
3180
3181out:
3182 return ret;
3183}
3184
ae18c37a
JB
3185int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3186 char *options)
3187{
3188 u32 sectorsize;
3189 u32 nodesize;
3190 u32 stripesize;
3191 u64 generation;
3192 u64 features;
3193 u16 csum_type;
ae18c37a
JB
3194 struct btrfs_super_block *disk_super;
3195 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3196 struct btrfs_root *tree_root;
3197 struct btrfs_root *chunk_root;
3198 int ret;
3199 int err = -EINVAL;
ae18c37a
JB
3200 int level;
3201
8260edba 3202 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3203 if (ret) {
83c8266a 3204 err = ret;
ae18c37a 3205 goto fail;
53b381b3
DW
3206 }
3207
ae18c37a
JB
3208 /* These need to be init'ed before we start creating inodes and such. */
3209 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3210 GFP_KERNEL);
3211 fs_info->tree_root = tree_root;
3212 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3213 GFP_KERNEL);
3214 fs_info->chunk_root = chunk_root;
3215 if (!tree_root || !chunk_root) {
3216 err = -ENOMEM;
c75e8394 3217 goto fail;
ae18c37a
JB
3218 }
3219
3220 fs_info->btree_inode = new_inode(sb);
3221 if (!fs_info->btree_inode) {
3222 err = -ENOMEM;
c75e8394 3223 goto fail;
ae18c37a
JB
3224 }
3225 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3226 btrfs_init_btree_inode(fs_info);
3227
3c4bb26b 3228 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
3229
3230 /*
3231 * Read super block and check the signature bytes only
3232 */
8f32380d
JT
3233 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3234 if (IS_ERR(disk_super)) {
3235 err = PTR_ERR(disk_super);
16cdcec7 3236 goto fail_alloc;
20b45077 3237 }
39279cc3 3238
8dc3f22c 3239 /*
260db43c 3240 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3241 * corrupted, we'll find out
3242 */
8f32380d 3243 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3244 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3245 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3246 csum_type);
8dc3f22c 3247 err = -EINVAL;
8f32380d 3248 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3249 goto fail_alloc;
3250 }
3251
83c68bbc
SY
3252 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3253
6d97c6e3
JT
3254 ret = btrfs_init_csum_hash(fs_info, csum_type);
3255 if (ret) {
3256 err = ret;
8f32380d 3257 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3258 goto fail_alloc;
3259 }
3260
1104a885
DS
3261 /*
3262 * We want to check superblock checksum, the type is stored inside.
3263 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3264 */
8f32380d 3265 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3266 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3267 err = -EINVAL;
8f32380d 3268 btrfs_release_disk_super(disk_super);
141386e1 3269 goto fail_alloc;
1104a885
DS
3270 }
3271
3272 /*
3273 * super_copy is zeroed at allocation time and we never touch the
3274 * following bytes up to INFO_SIZE, the checksum is calculated from
3275 * the whole block of INFO_SIZE
3276 */
8f32380d
JT
3277 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3278 btrfs_release_disk_super(disk_super);
5f39d397 3279
fbc6feae
NB
3280 disk_super = fs_info->super_copy;
3281
de37aa51
NB
3282 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3283 BTRFS_FSID_SIZE));
3284
7239ff4b 3285 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
3286 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3287 fs_info->super_copy->metadata_uuid,
3288 BTRFS_FSID_SIZE));
7239ff4b 3289 }
0b86a832 3290
fbc6feae
NB
3291 features = btrfs_super_flags(disk_super);
3292 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3293 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3294 btrfs_set_super_flags(disk_super, features);
3295 btrfs_info(fs_info,
3296 "found metadata UUID change in progress flag, clearing");
3297 }
3298
3299 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3300 sizeof(*fs_info->super_for_commit));
de37aa51 3301
069ec957 3302 ret = btrfs_validate_mount_super(fs_info);
1104a885 3303 if (ret) {
05135f59 3304 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3305 err = -EINVAL;
141386e1 3306 goto fail_alloc;
1104a885
DS
3307 }
3308
0f7d52f4 3309 if (!btrfs_super_root(disk_super))
141386e1 3310 goto fail_alloc;
0f7d52f4 3311
acce952b 3312 /* check FS state, whether FS is broken. */
87533c47
MX
3313 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3314 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3315
75e7cb7f
LB
3316 /*
3317 * In the long term, we'll store the compression type in the super
3318 * block, and it'll be used for per file compression control.
3319 */
3320 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3321
2ff7e61e 3322 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3323 if (ret) {
3324 err = ret;
141386e1 3325 goto fail_alloc;
2b82032c 3326 }
dfe25020 3327
f2b636e8
JB
3328 features = btrfs_super_incompat_flags(disk_super) &
3329 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3330 if (features) {
05135f59
DS
3331 btrfs_err(fs_info,
3332 "cannot mount because of unsupported optional features (%llx)",
3333 features);
f2b636e8 3334 err = -EINVAL;
141386e1 3335 goto fail_alloc;
f2b636e8
JB
3336 }
3337
5d4f98a2 3338 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3339 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3340 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3341 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3342 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3343 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3344
3173a18f 3345 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3346 btrfs_info(fs_info, "has skinny extents");
3173a18f 3347
727011e0
CM
3348 /*
3349 * flag our filesystem as having big metadata blocks if
3350 * they are bigger than the page size
3351 */
09cbfeaf 3352 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3353 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3354 btrfs_info(fs_info,
3355 "flagging fs with big metadata feature");
727011e0
CM
3356 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3357 }
3358
bc3f116f 3359 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3360 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3361 stripesize = sectorsize;
707e8a07 3362 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3363 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3364
da17066c
JM
3365 /* Cache block sizes */
3366 fs_info->nodesize = nodesize;
3367 fs_info->sectorsize = sectorsize;
ab108d99 3368 fs_info->sectorsize_bits = ilog2(sectorsize);
fe5ecbe8 3369 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
da17066c
JM
3370 fs_info->stripesize = stripesize;
3371
bc3f116f
CM
3372 /*
3373 * mixed block groups end up with duplicate but slightly offset
3374 * extent buffers for the same range. It leads to corruptions
3375 */
3376 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3377 (sectorsize != nodesize)) {
05135f59
DS
3378 btrfs_err(fs_info,
3379"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3380 nodesize, sectorsize);
141386e1 3381 goto fail_alloc;
bc3f116f
CM
3382 }
3383
ceda0864
MX
3384 /*
3385 * Needn't use the lock because there is no other task which will
3386 * update the flag.
3387 */
a6fa6fae 3388 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3389
f2b636e8
JB
3390 features = btrfs_super_compat_ro_flags(disk_super) &
3391 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3392 if (!sb_rdonly(sb) && features) {
05135f59
DS
3393 btrfs_err(fs_info,
3394 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3395 features);
f2b636e8 3396 err = -EINVAL;
141386e1 3397 goto fail_alloc;
f2b636e8 3398 }
61d92c32 3399
0bb3eb3e
QW
3400 /* For 4K sector size support, it's only read-only */
3401 if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) {
3402 if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) {
3403 btrfs_err(fs_info,
3404 "subpage sectorsize %u only supported read-only for page size %lu",
3405 sectorsize, PAGE_SIZE);
3406 err = -EINVAL;
3407 goto fail_alloc;
3408 }
3409 }
3410
2a458198
ES
3411 ret = btrfs_init_workqueues(fs_info, fs_devices);
3412 if (ret) {
3413 err = ret;
0dc3b84a
JB
3414 goto fail_sb_buffer;
3415 }
4543df7e 3416
9e11ceee
JK
3417 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3418 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3419
a061fc8d
CM
3420 sb->s_blocksize = sectorsize;
3421 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3422 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3423
925baedd 3424 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3425 ret = btrfs_read_sys_array(fs_info);
925baedd 3426 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3427 if (ret) {
05135f59 3428 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3429 goto fail_sb_buffer;
84eed90f 3430 }
0b86a832 3431
84234f3a 3432 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3433 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3434
2ff7e61e 3435 chunk_root->node = read_tree_block(fs_info,
0b86a832 3436 btrfs_super_chunk_root(disk_super),
1b7ec85e 3437 BTRFS_CHUNK_TREE_OBJECTID,
581c1760 3438 generation, level, NULL);
64c043de
LB
3439 if (IS_ERR(chunk_root->node) ||
3440 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3441 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3442 if (!IS_ERR(chunk_root->node))
3443 free_extent_buffer(chunk_root->node);
95ab1f64 3444 chunk_root->node = NULL;
af31f5e5 3445 goto fail_tree_roots;
83121942 3446 }
5d4f98a2
YZ
3447 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3448 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3449
e17cade2 3450 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3451 offsetof(struct btrfs_header, chunk_tree_uuid),
3452 BTRFS_UUID_SIZE);
e17cade2 3453
5b4aacef 3454 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3455 if (ret) {
05135f59 3456 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3457 goto fail_tree_roots;
2b82032c 3458 }
0b86a832 3459
8dabb742 3460 /*
bacce86a
AJ
3461 * At this point we know all the devices that make this filesystem,
3462 * including the seed devices but we don't know yet if the replace
3463 * target is required. So free devices that are not part of this
3464 * filesystem but skip the replace traget device which is checked
3465 * below in btrfs_init_dev_replace().
8dabb742 3466 */
bacce86a 3467 btrfs_free_extra_devids(fs_devices);
a6b0d5c8 3468 if (!fs_devices->latest_bdev) {
05135f59 3469 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3470 goto fail_tree_roots;
3471 }
3472
b8522a1e 3473 ret = init_tree_roots(fs_info);
4bbcaa64 3474 if (ret)
b8522a1e 3475 goto fail_tree_roots;
8929ecfa 3476
73651042
NA
3477 /*
3478 * Get zone type information of zoned block devices. This will also
3479 * handle emulation of a zoned filesystem if a regular device has the
3480 * zoned incompat feature flag set.
3481 */
3482 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3483 if (ret) {
3484 btrfs_err(fs_info,
3485 "zoned: failed to read device zone info: %d",
3486 ret);
3487 goto fail_block_groups;
3488 }
3489
75ec1db8
JB
3490 /*
3491 * If we have a uuid root and we're not being told to rescan we need to
3492 * check the generation here so we can set the
3493 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3494 * transaction during a balance or the log replay without updating the
3495 * uuid generation, and then if we crash we would rescan the uuid tree,
3496 * even though it was perfectly fine.
3497 */
3498 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3499 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3500 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3501
cf90d884
QW
3502 ret = btrfs_verify_dev_extents(fs_info);
3503 if (ret) {
3504 btrfs_err(fs_info,
3505 "failed to verify dev extents against chunks: %d",
3506 ret);
3507 goto fail_block_groups;
3508 }
68310a5e
ID
3509 ret = btrfs_recover_balance(fs_info);
3510 if (ret) {
05135f59 3511 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3512 goto fail_block_groups;
3513 }
3514
733f4fbb
SB
3515 ret = btrfs_init_dev_stats(fs_info);
3516 if (ret) {
05135f59 3517 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3518 goto fail_block_groups;
3519 }
3520
8dabb742
SB
3521 ret = btrfs_init_dev_replace(fs_info);
3522 if (ret) {
05135f59 3523 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3524 goto fail_block_groups;
3525 }
3526
b70f5097
NA
3527 ret = btrfs_check_zoned_mode(fs_info);
3528 if (ret) {
3529 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3530 ret);
3531 goto fail_block_groups;
3532 }
3533
c6761a9e 3534 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3535 if (ret) {
05135f59
DS
3536 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3537 ret);
b7c35e81
AJ
3538 goto fail_block_groups;
3539 }
3540
96f3136e 3541 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3542 if (ret) {
05135f59 3543 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3544 goto fail_fsdev_sysfs;
c59021f8 3545 }
3546
c59021f8 3547 ret = btrfs_init_space_info(fs_info);
3548 if (ret) {
05135f59 3549 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3550 goto fail_sysfs;
c59021f8 3551 }
3552
5b4aacef 3553 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3554 if (ret) {
05135f59 3555 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3556 goto fail_sysfs;
1b1d1f66 3557 }
4330e183 3558
6528b99d 3559 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3560 btrfs_warn(fs_info,
52042d8e 3561 "writable mount is not allowed due to too many missing devices");
2365dd3c 3562 goto fail_sysfs;
292fd7fc 3563 }
9078a3e1 3564
a74a4b97
CM
3565 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3566 "btrfs-cleaner");
57506d50 3567 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3568 goto fail_sysfs;
a74a4b97
CM
3569
3570 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3571 tree_root,
3572 "btrfs-transaction");
57506d50 3573 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3574 goto fail_cleaner;
a74a4b97 3575
583b7231 3576 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3577 !fs_info->fs_devices->rotating) {
583b7231 3578 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3579 }
3580
572d9ab7 3581 /*
01327610 3582 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3583 * not have to wait for transaction commit
3584 */
3585 btrfs_apply_pending_changes(fs_info);
3818aea2 3586
21adbd5c 3587#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3588 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3589 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3590 btrfs_test_opt(fs_info,
21adbd5c
SB
3591 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3592 1 : 0,
3593 fs_info->check_integrity_print_mask);
3594 if (ret)
05135f59
DS
3595 btrfs_warn(fs_info,
3596 "failed to initialize integrity check module: %d",
3597 ret);
21adbd5c
SB
3598 }
3599#endif
bcef60f2
AJ
3600 ret = btrfs_read_qgroup_config(fs_info);
3601 if (ret)
3602 goto fail_trans_kthread;
21adbd5c 3603
fd708b81
JB
3604 if (btrfs_build_ref_tree(fs_info))
3605 btrfs_err(fs_info, "couldn't build ref tree");
3606
96da0919
QW
3607 /* do not make disk changes in broken FS or nologreplay is given */
3608 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3609 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3610 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3611 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3612 if (ret) {
63443bf5 3613 err = ret;
28c16cbb 3614 goto fail_qgroup;
79787eaa 3615 }
e02119d5 3616 }
1a40e23b 3617
56e9357a 3618 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3619 if (IS_ERR(fs_info->fs_root)) {
3620 err = PTR_ERR(fs_info->fs_root);
f50f4353 3621 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3622 fs_info->fs_root = NULL;
bcef60f2 3623 goto fail_qgroup;
3140c9a3 3624 }
c289811c 3625
bc98a42c 3626 if (sb_rdonly(sb))
8cd29088 3627 goto clear_oneshot;
59641015 3628
44c0ca21 3629 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3630 if (ret) {
6bccf3ab 3631 close_ctree(fs_info);
2b6ba629 3632 return ret;
e3acc2a6 3633 }
b0643e59 3634 btrfs_discard_resume(fs_info);
b382a324 3635
44c0ca21
BB
3636 if (fs_info->uuid_root &&
3637 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3638 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3639 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3640 ret = btrfs_check_uuid_tree(fs_info);
3641 if (ret) {
05135f59
DS
3642 btrfs_warn(fs_info,
3643 "failed to check the UUID tree: %d", ret);
6bccf3ab 3644 close_ctree(fs_info);
70f80175
SB
3645 return ret;
3646 }
f7a81ea4 3647 }
94846229 3648
afcdd129 3649 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3650
8cd29088
BB
3651clear_oneshot:
3652 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3653 return 0;
39279cc3 3654
bcef60f2
AJ
3655fail_qgroup:
3656 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3657fail_trans_kthread:
3658 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3659 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3660 btrfs_free_fs_roots(fs_info);
3f157a2f 3661fail_cleaner:
a74a4b97 3662 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3663
3664 /*
3665 * make sure we're done with the btree inode before we stop our
3666 * kthreads
3667 */
3668 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3669
2365dd3c 3670fail_sysfs:
6618a59b 3671 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3672
b7c35e81
AJ
3673fail_fsdev_sysfs:
3674 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3675
1b1d1f66 3676fail_block_groups:
54067ae9 3677 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3678
3679fail_tree_roots:
9e3aa805
JB
3680 if (fs_info->data_reloc_root)
3681 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3682 free_root_pointers(fs_info, true);
2b8195bb 3683 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3684
39279cc3 3685fail_sb_buffer:
7abadb64 3686 btrfs_stop_all_workers(fs_info);
5cdd7db6 3687 btrfs_free_block_groups(fs_info);
16cdcec7 3688fail_alloc:
586e46e2
ID
3689 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3690
4543df7e 3691 iput(fs_info->btree_inode);
7e662854 3692fail:
586e46e2 3693 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3694 return err;
eb60ceac 3695}
663faf9f 3696ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3697
314b6dd0 3698static void btrfs_end_super_write(struct bio *bio)
f2984462 3699{
314b6dd0
JT
3700 struct btrfs_device *device = bio->bi_private;
3701 struct bio_vec *bvec;
3702 struct bvec_iter_all iter_all;
3703 struct page *page;
3704
3705 bio_for_each_segment_all(bvec, bio, iter_all) {
3706 page = bvec->bv_page;
3707
3708 if (bio->bi_status) {
3709 btrfs_warn_rl_in_rcu(device->fs_info,
3710 "lost page write due to IO error on %s (%d)",
3711 rcu_str_deref(device->name),
3712 blk_status_to_errno(bio->bi_status));
3713 ClearPageUptodate(page);
3714 SetPageError(page);
3715 btrfs_dev_stat_inc_and_print(device,
3716 BTRFS_DEV_STAT_WRITE_ERRS);
3717 } else {
3718 SetPageUptodate(page);
3719 }
3720
3721 put_page(page);
3722 unlock_page(page);
f2984462 3723 }
314b6dd0
JT
3724
3725 bio_put(bio);
f2984462
CM
3726}
3727
8f32380d
JT
3728struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3729 int copy_num)
29c36d72 3730{
29c36d72 3731 struct btrfs_super_block *super;
8f32380d 3732 struct page *page;
12659251 3733 u64 bytenr, bytenr_orig;
8f32380d 3734 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3735 int ret;
3736
3737 bytenr_orig = btrfs_sb_offset(copy_num);
3738 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3739 if (ret == -ENOENT)
3740 return ERR_PTR(-EINVAL);
3741 else if (ret)
3742 return ERR_PTR(ret);
29c36d72 3743
29c36d72 3744 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3745 return ERR_PTR(-EINVAL);
29c36d72 3746
8f32380d
JT
3747 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3748 if (IS_ERR(page))
3749 return ERR_CAST(page);
29c36d72 3750
8f32380d 3751 super = page_address(page);
96c2e067
AJ
3752 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3753 btrfs_release_disk_super(super);
3754 return ERR_PTR(-ENODATA);
3755 }
3756
12659251 3757 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3758 btrfs_release_disk_super(super);
3759 return ERR_PTR(-EINVAL);
29c36d72
AJ
3760 }
3761
8f32380d 3762 return super;
29c36d72
AJ
3763}
3764
3765
8f32380d 3766struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3767{
8f32380d 3768 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3769 int i;
3770 u64 transid = 0;
a512bbf8
YZ
3771
3772 /* we would like to check all the supers, but that would make
3773 * a btrfs mount succeed after a mkfs from a different FS.
3774 * So, we need to add a special mount option to scan for
3775 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3776 */
3777 for (i = 0; i < 1; i++) {
8f32380d
JT
3778 super = btrfs_read_dev_one_super(bdev, i);
3779 if (IS_ERR(super))
a512bbf8
YZ
3780 continue;
3781
a512bbf8 3782 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3783 if (latest)
3784 btrfs_release_disk_super(super);
3785
3786 latest = super;
a512bbf8 3787 transid = btrfs_super_generation(super);
a512bbf8
YZ
3788 }
3789 }
92fc03fb 3790
8f32380d 3791 return super;
a512bbf8
YZ
3792}
3793
4eedeb75 3794/*
abbb3b8e 3795 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3796 * pages we use for writing are locked.
4eedeb75 3797 *
abbb3b8e
DS
3798 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3799 * the expected device size at commit time. Note that max_mirrors must be
3800 * same for write and wait phases.
4eedeb75 3801 *
314b6dd0 3802 * Return number of errors when page is not found or submission fails.
4eedeb75 3803 */
a512bbf8 3804static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3805 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3806{
d5178578 3807 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3808 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3809 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3810 int i;
a512bbf8 3811 int errors = 0;
12659251
NA
3812 int ret;
3813 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3814
3815 if (max_mirrors == 0)
3816 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3817
d5178578
JT
3818 shash->tfm = fs_info->csum_shash;
3819
a512bbf8 3820 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3821 struct page *page;
3822 struct bio *bio;
3823 struct btrfs_super_block *disk_super;
3824
12659251
NA
3825 bytenr_orig = btrfs_sb_offset(i);
3826 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3827 if (ret == -ENOENT) {
3828 continue;
3829 } else if (ret < 0) {
3830 btrfs_err(device->fs_info,
3831 "couldn't get super block location for mirror %d",
3832 i);
3833 errors++;
3834 continue;
3835 }
935e5cc9
MX
3836 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3837 device->commit_total_bytes)
a512bbf8
YZ
3838 break;
3839
12659251 3840 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3841
fd08001f
EB
3842 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3843 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3844 sb->csum);
4eedeb75 3845
314b6dd0
JT
3846 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3847 GFP_NOFS);
3848 if (!page) {
abbb3b8e 3849 btrfs_err(device->fs_info,
314b6dd0 3850 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3851 bytenr);
3852 errors++;
4eedeb75 3853 continue;
abbb3b8e 3854 }
634554dc 3855
314b6dd0
JT
3856 /* Bump the refcount for wait_dev_supers() */
3857 get_page(page);
a512bbf8 3858
314b6dd0
JT
3859 disk_super = page_address(page);
3860 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3861
314b6dd0
JT
3862 /*
3863 * Directly use bios here instead of relying on the page cache
3864 * to do I/O, so we don't lose the ability to do integrity
3865 * checking.
3866 */
3867 bio = bio_alloc(GFP_NOFS, 1);
3868 bio_set_dev(bio, device->bdev);
3869 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3870 bio->bi_private = device;
3871 bio->bi_end_io = btrfs_end_super_write;
3872 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3873 offset_in_page(bytenr));
a512bbf8 3874
387125fc 3875 /*
314b6dd0
JT
3876 * We FUA only the first super block. The others we allow to
3877 * go down lazy and there's a short window where the on-disk
3878 * copies might still contain the older version.
387125fc 3879 */
314b6dd0 3880 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3881 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3882 bio->bi_opf |= REQ_FUA;
3883
3884 btrfsic_submit_bio(bio);
12659251 3885 btrfs_advance_sb_log(device, i);
a512bbf8
YZ
3886 }
3887 return errors < i ? 0 : -1;
3888}
3889
abbb3b8e
DS
3890/*
3891 * Wait for write completion of superblocks done by write_dev_supers,
3892 * @max_mirrors same for write and wait phases.
3893 *
314b6dd0 3894 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3895 * date.
3896 */
3897static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3898{
abbb3b8e
DS
3899 int i;
3900 int errors = 0;
b6a535fa 3901 bool primary_failed = false;
12659251 3902 int ret;
abbb3b8e
DS
3903 u64 bytenr;
3904
3905 if (max_mirrors == 0)
3906 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3907
3908 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3909 struct page *page;
3910
12659251
NA
3911 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3912 if (ret == -ENOENT) {
3913 break;
3914 } else if (ret < 0) {
3915 errors++;
3916 if (i == 0)
3917 primary_failed = true;
3918 continue;
3919 }
abbb3b8e
DS
3920 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3921 device->commit_total_bytes)
3922 break;
3923
314b6dd0
JT
3924 page = find_get_page(device->bdev->bd_inode->i_mapping,
3925 bytenr >> PAGE_SHIFT);
3926 if (!page) {
abbb3b8e 3927 errors++;
b6a535fa
HM
3928 if (i == 0)
3929 primary_failed = true;
abbb3b8e
DS
3930 continue;
3931 }
314b6dd0
JT
3932 /* Page is submitted locked and unlocked once the IO completes */
3933 wait_on_page_locked(page);
3934 if (PageError(page)) {
abbb3b8e 3935 errors++;
b6a535fa
HM
3936 if (i == 0)
3937 primary_failed = true;
3938 }
abbb3b8e 3939
314b6dd0
JT
3940 /* Drop our reference */
3941 put_page(page);
abbb3b8e 3942
314b6dd0
JT
3943 /* Drop the reference from the writing run */
3944 put_page(page);
abbb3b8e
DS
3945 }
3946
b6a535fa
HM
3947 /* log error, force error return */
3948 if (primary_failed) {
3949 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3950 device->devid);
3951 return -1;
3952 }
3953
abbb3b8e
DS
3954 return errors < i ? 0 : -1;
3955}
3956
387125fc
CM
3957/*
3958 * endio for the write_dev_flush, this will wake anyone waiting
3959 * for the barrier when it is done
3960 */
4246a0b6 3961static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3962{
e0ae9994 3963 complete(bio->bi_private);
387125fc
CM
3964}
3965
3966/*
4fc6441a
AJ
3967 * Submit a flush request to the device if it supports it. Error handling is
3968 * done in the waiting counterpart.
387125fc 3969 */
4fc6441a 3970static void write_dev_flush(struct btrfs_device *device)
387125fc 3971{
c2a9c7ab 3972 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3973 struct bio *bio = device->flush_bio;
387125fc 3974
c2a9c7ab 3975 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3976 return;
387125fc 3977
e0ae9994 3978 bio_reset(bio);
387125fc 3979 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3980 bio_set_dev(bio, device->bdev);
8d910125 3981 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3982 init_completion(&device->flush_wait);
3983 bio->bi_private = &device->flush_wait;
387125fc 3984
43a01111 3985 btrfsic_submit_bio(bio);
1c3063b6 3986 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3987}
387125fc 3988
4fc6441a
AJ
3989/*
3990 * If the flush bio has been submitted by write_dev_flush, wait for it.
3991 */
8c27cb35 3992static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3993{
4fc6441a 3994 struct bio *bio = device->flush_bio;
387125fc 3995
1c3063b6 3996 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3997 return BLK_STS_OK;
387125fc 3998
1c3063b6 3999 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4000 wait_for_completion_io(&device->flush_wait);
387125fc 4001
8c27cb35 4002 return bio->bi_status;
387125fc 4003}
387125fc 4004
d10b82fe 4005static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4006{
6528b99d 4007 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4008 return -EIO;
387125fc
CM
4009 return 0;
4010}
4011
4012/*
4013 * send an empty flush down to each device in parallel,
4014 * then wait for them
4015 */
4016static int barrier_all_devices(struct btrfs_fs_info *info)
4017{
4018 struct list_head *head;
4019 struct btrfs_device *dev;
5af3e8cc 4020 int errors_wait = 0;
4e4cbee9 4021 blk_status_t ret;
387125fc 4022
1538e6c5 4023 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4024 /* send down all the barriers */
4025 head = &info->fs_devices->devices;
1538e6c5 4026 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4027 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4028 continue;
cea7c8bf 4029 if (!dev->bdev)
387125fc 4030 continue;
e12c9621 4031 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4032 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4033 continue;
4034
4fc6441a 4035 write_dev_flush(dev);
58efbc9f 4036 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4037 }
4038
4039 /* wait for all the barriers */
1538e6c5 4040 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4041 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4042 continue;
387125fc 4043 if (!dev->bdev) {
5af3e8cc 4044 errors_wait++;
387125fc
CM
4045 continue;
4046 }
e12c9621 4047 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4048 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4049 continue;
4050
4fc6441a 4051 ret = wait_dev_flush(dev);
401b41e5
AJ
4052 if (ret) {
4053 dev->last_flush_error = ret;
66b4993e
DS
4054 btrfs_dev_stat_inc_and_print(dev,
4055 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4056 errors_wait++;
401b41e5
AJ
4057 }
4058 }
4059
cea7c8bf 4060 if (errors_wait) {
401b41e5
AJ
4061 /*
4062 * At some point we need the status of all disks
4063 * to arrive at the volume status. So error checking
4064 * is being pushed to a separate loop.
4065 */
d10b82fe 4066 return check_barrier_error(info);
387125fc 4067 }
387125fc
CM
4068 return 0;
4069}
4070
943c6e99
ZL
4071int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4072{
8789f4fe
ZL
4073 int raid_type;
4074 int min_tolerated = INT_MAX;
943c6e99 4075
8789f4fe
ZL
4076 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4077 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4078 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4079 btrfs_raid_array[BTRFS_RAID_SINGLE].
4080 tolerated_failures);
943c6e99 4081
8789f4fe
ZL
4082 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4083 if (raid_type == BTRFS_RAID_SINGLE)
4084 continue;
41a6e891 4085 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4086 continue;
8c3e3582 4087 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4088 btrfs_raid_array[raid_type].
4089 tolerated_failures);
4090 }
943c6e99 4091
8789f4fe 4092 if (min_tolerated == INT_MAX) {
ab8d0fc4 4093 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4094 min_tolerated = 0;
4095 }
4096
4097 return min_tolerated;
943c6e99
ZL
4098}
4099
eece6a9c 4100int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4101{
e5e9a520 4102 struct list_head *head;
f2984462 4103 struct btrfs_device *dev;
a061fc8d 4104 struct btrfs_super_block *sb;
f2984462 4105 struct btrfs_dev_item *dev_item;
f2984462
CM
4106 int ret;
4107 int do_barriers;
a236aed1
CM
4108 int max_errors;
4109 int total_errors = 0;
a061fc8d 4110 u64 flags;
f2984462 4111
0b246afa 4112 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4113
4114 /*
4115 * max_mirrors == 0 indicates we're from commit_transaction,
4116 * not from fsync where the tree roots in fs_info have not
4117 * been consistent on disk.
4118 */
4119 if (max_mirrors == 0)
4120 backup_super_roots(fs_info);
f2984462 4121
0b246afa 4122 sb = fs_info->super_for_commit;
a061fc8d 4123 dev_item = &sb->dev_item;
e5e9a520 4124
0b246afa
JM
4125 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4126 head = &fs_info->fs_devices->devices;
4127 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4128
5af3e8cc 4129 if (do_barriers) {
0b246afa 4130 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4131 if (ret) {
4132 mutex_unlock(
0b246afa
JM
4133 &fs_info->fs_devices->device_list_mutex);
4134 btrfs_handle_fs_error(fs_info, ret,
4135 "errors while submitting device barriers.");
5af3e8cc
SB
4136 return ret;
4137 }
4138 }
387125fc 4139
1538e6c5 4140 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4141 if (!dev->bdev) {
4142 total_errors++;
4143 continue;
4144 }
e12c9621 4145 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4146 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4147 continue;
4148
2b82032c 4149 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4150 btrfs_set_stack_device_type(dev_item, dev->type);
4151 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4152 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4153 dev->commit_total_bytes);
ce7213c7
MX
4154 btrfs_set_stack_device_bytes_used(dev_item,
4155 dev->commit_bytes_used);
a061fc8d
CM
4156 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4157 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4158 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4159 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4160 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4161 BTRFS_FSID_SIZE);
a512bbf8 4162
a061fc8d
CM
4163 flags = btrfs_super_flags(sb);
4164 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4165
75cb857d
QW
4166 ret = btrfs_validate_write_super(fs_info, sb);
4167 if (ret < 0) {
4168 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4169 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4170 "unexpected superblock corruption detected");
4171 return -EUCLEAN;
4172 }
4173
abbb3b8e 4174 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4175 if (ret)
4176 total_errors++;
f2984462 4177 }
a236aed1 4178 if (total_errors > max_errors) {
0b246afa
JM
4179 btrfs_err(fs_info, "%d errors while writing supers",
4180 total_errors);
4181 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4182
9d565ba4 4183 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4184 btrfs_handle_fs_error(fs_info, -EIO,
4185 "%d errors while writing supers",
4186 total_errors);
9d565ba4 4187 return -EIO;
a236aed1 4188 }
f2984462 4189
a512bbf8 4190 total_errors = 0;
1538e6c5 4191 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4192 if (!dev->bdev)
4193 continue;
e12c9621 4194 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4195 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4196 continue;
4197
abbb3b8e 4198 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4199 if (ret)
4200 total_errors++;
f2984462 4201 }
0b246afa 4202 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4203 if (total_errors > max_errors) {
0b246afa
JM
4204 btrfs_handle_fs_error(fs_info, -EIO,
4205 "%d errors while writing supers",
4206 total_errors);
79787eaa 4207 return -EIO;
a236aed1 4208 }
f2984462
CM
4209 return 0;
4210}
4211
cb517eab
MX
4212/* Drop a fs root from the radix tree and free it. */
4213void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4214 struct btrfs_root *root)
2619ba1f 4215{
4785e24f
JB
4216 bool drop_ref = false;
4217
4df27c4d 4218 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
4219 radix_tree_delete(&fs_info->fs_roots_radix,
4220 (unsigned long)root->root_key.objectid);
af01d2e5 4221 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4222 drop_ref = true;
4df27c4d 4223 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4224
1c1ea4f7 4225 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 4226 ASSERT(root->log_root == NULL);
1c1ea4f7 4227 if (root->reloc_root) {
00246528 4228 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4229 root->reloc_root = NULL;
4230 }
4231 }
3321719e 4232
4785e24f
JB
4233 if (drop_ref)
4234 btrfs_put_root(root);
2619ba1f
CM
4235}
4236
c146afad 4237int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4238{
c146afad
YZ
4239 u64 root_objectid = 0;
4240 struct btrfs_root *gang[8];
65d33fd7
QW
4241 int i = 0;
4242 int err = 0;
4243 unsigned int ret = 0;
e089f05c 4244
c146afad 4245 while (1) {
efc34534 4246 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
4247 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4248 (void **)gang, root_objectid,
4249 ARRAY_SIZE(gang));
65d33fd7 4250 if (!ret) {
efc34534 4251 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 4252 break;
65d33fd7 4253 }
5d4f98a2 4254 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4255
c146afad 4256 for (i = 0; i < ret; i++) {
65d33fd7
QW
4257 /* Avoid to grab roots in dead_roots */
4258 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4259 gang[i] = NULL;
4260 continue;
4261 }
4262 /* grab all the search result for later use */
00246528 4263 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4264 }
efc34534 4265 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4266
65d33fd7
QW
4267 for (i = 0; i < ret; i++) {
4268 if (!gang[i])
4269 continue;
c146afad 4270 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4271 err = btrfs_orphan_cleanup(gang[i]);
4272 if (err)
65d33fd7 4273 break;
00246528 4274 btrfs_put_root(gang[i]);
c146afad
YZ
4275 }
4276 root_objectid++;
4277 }
65d33fd7
QW
4278
4279 /* release the uncleaned roots due to error */
4280 for (; i < ret; i++) {
4281 if (gang[i])
00246528 4282 btrfs_put_root(gang[i]);
65d33fd7
QW
4283 }
4284 return err;
c146afad 4285}
a2135011 4286
6bccf3ab 4287int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4288{
6bccf3ab 4289 struct btrfs_root *root = fs_info->tree_root;
c146afad 4290 struct btrfs_trans_handle *trans;
a74a4b97 4291
0b246afa 4292 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4293 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4294 mutex_unlock(&fs_info->cleaner_mutex);
4295 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4296
4297 /* wait until ongoing cleanup work done */
0b246afa
JM
4298 down_write(&fs_info->cleanup_work_sem);
4299 up_write(&fs_info->cleanup_work_sem);
c71bf099 4300
7a7eaa40 4301 trans = btrfs_join_transaction(root);
3612b495
TI
4302 if (IS_ERR(trans))
4303 return PTR_ERR(trans);
3a45bb20 4304 return btrfs_commit_transaction(trans);
c146afad
YZ
4305}
4306
b105e927 4307void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4308{
c146afad
YZ
4309 int ret;
4310
afcdd129 4311 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4312 /*
4313 * We don't want the cleaner to start new transactions, add more delayed
4314 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4315 * because that frees the task_struct, and the transaction kthread might
4316 * still try to wake up the cleaner.
4317 */
4318 kthread_park(fs_info->cleaner_kthread);
c146afad 4319
7343dd61 4320 /* wait for the qgroup rescan worker to stop */
d06f23d6 4321 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4322
803b2f54
SB
4323 /* wait for the uuid_scan task to finish */
4324 down(&fs_info->uuid_tree_rescan_sem);
4325 /* avoid complains from lockdep et al., set sem back to initial state */
4326 up(&fs_info->uuid_tree_rescan_sem);
4327
837d5b6e 4328 /* pause restriper - we want to resume on mount */
aa1b8cd4 4329 btrfs_pause_balance(fs_info);
837d5b6e 4330
8dabb742
SB
4331 btrfs_dev_replace_suspend_for_unmount(fs_info);
4332
aa1b8cd4 4333 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4334
4335 /* wait for any defraggers to finish */
4336 wait_event(fs_info->transaction_wait,
4337 (atomic_read(&fs_info->defrag_running) == 0));
4338
4339 /* clear out the rbtree of defraggable inodes */
26176e7c 4340 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4341
21c7e756 4342 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4343 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4344 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4345
18bb8bbf
JT
4346 cancel_work_sync(&fs_info->reclaim_bgs_work);
4347
b0643e59
DZ
4348 /* Cancel or finish ongoing discard work */
4349 btrfs_discard_cleanup(fs_info);
4350
bc98a42c 4351 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4352 /*
d6fd0ae2
OS
4353 * The cleaner kthread is stopped, so do one final pass over
4354 * unused block groups.
e44163e1 4355 */
0b246afa 4356 btrfs_delete_unused_bgs(fs_info);
e44163e1 4357
f0cc2cd7
FM
4358 /*
4359 * There might be existing delayed inode workers still running
4360 * and holding an empty delayed inode item. We must wait for
4361 * them to complete first because they can create a transaction.
4362 * This happens when someone calls btrfs_balance_delayed_items()
4363 * and then a transaction commit runs the same delayed nodes
4364 * before any delayed worker has done something with the nodes.
4365 * We must wait for any worker here and not at transaction
4366 * commit time since that could cause a deadlock.
4367 * This is a very rare case.
4368 */
4369 btrfs_flush_workqueue(fs_info->delayed_workers);
4370
6bccf3ab 4371 ret = btrfs_commit_super(fs_info);
acce952b 4372 if (ret)
04892340 4373 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4374 }
4375
af722733
LB
4376 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4377 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4378 btrfs_error_commit_super(fs_info);
0f7d52f4 4379
e3029d9f
AV
4380 kthread_stop(fs_info->transaction_kthread);
4381 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4382
e187831e 4383 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4384 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4385
5958253c
QW
4386 if (btrfs_check_quota_leak(fs_info)) {
4387 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4388 btrfs_err(fs_info, "qgroup reserved space leaked");
4389 }
4390
04892340 4391 btrfs_free_qgroup_config(fs_info);
fe816d0f 4392 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4393
963d678b 4394 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4395 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4396 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4397 }
bcc63abb 4398
5deb17e1 4399 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4400 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4401 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4402
6618a59b 4403 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4404 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4405
1a4319cc
LB
4406 btrfs_put_block_group_cache(fs_info);
4407
de348ee0
WS
4408 /*
4409 * we must make sure there is not any read request to
4410 * submit after we stopping all workers.
4411 */
4412 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4413 btrfs_stop_all_workers(fs_info);
4414
0a31daa4
FM
4415 /* We shouldn't have any transaction open at this point */
4416 ASSERT(list_empty(&fs_info->trans_list));
4417
afcdd129 4418 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4419 free_root_pointers(fs_info, true);
8c38938c 4420 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4421
4e19443d
JB
4422 /*
4423 * We must free the block groups after dropping the fs_roots as we could
4424 * have had an IO error and have left over tree log blocks that aren't
4425 * cleaned up until the fs roots are freed. This makes the block group
4426 * accounting appear to be wrong because there's pending reserved bytes,
4427 * so make sure we do the block group cleanup afterwards.
4428 */
4429 btrfs_free_block_groups(fs_info);
4430
13e6c37b 4431 iput(fs_info->btree_inode);
d6bfde87 4432
21adbd5c 4433#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4434 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4435 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4436#endif
4437
0b86a832 4438 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4439 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4440}
4441
b9fab919
CM
4442int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4443 int atomic)
5f39d397 4444{
1259ab75 4445 int ret;
727011e0 4446 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4447
0b32f4bb 4448 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4449 if (!ret)
4450 return ret;
4451
4452 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4453 parent_transid, atomic);
4454 if (ret == -EAGAIN)
4455 return ret;
1259ab75 4456 return !ret;
5f39d397
CM
4457}
4458
5f39d397
CM
4459void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4460{
2f4d60df 4461 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4462 u64 transid = btrfs_header_generation(buf);
b9473439 4463 int was_dirty;
b4ce94de 4464
06ea65a3
JB
4465#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4466 /*
4467 * This is a fast path so only do this check if we have sanity tests
52042d8e 4468 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4469 * outside of the sanity tests.
4470 */
b0132a3b 4471 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4472 return;
4473#endif
b9447ef8 4474 btrfs_assert_tree_locked(buf);
0b246afa 4475 if (transid != fs_info->generation)
5d163e0e 4476 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4477 buf->start, transid, fs_info->generation);
0b32f4bb 4478 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4479 if (!was_dirty)
104b4e51
NB
4480 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4481 buf->len,
4482 fs_info->dirty_metadata_batch);
1f21ef0a 4483#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4484 /*
4485 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4486 * but item data not updated.
4487 * So here we should only check item pointers, not item data.
4488 */
4489 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4490 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4491 btrfs_print_leaf(buf);
1f21ef0a
FM
4492 ASSERT(0);
4493 }
4494#endif
eb60ceac
CM
4495}
4496
2ff7e61e 4497static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4498 int flush_delayed)
16cdcec7
MX
4499{
4500 /*
4501 * looks as though older kernels can get into trouble with
4502 * this code, they end up stuck in balance_dirty_pages forever
4503 */
e2d84521 4504 int ret;
16cdcec7
MX
4505
4506 if (current->flags & PF_MEMALLOC)
4507 return;
4508
b53d3f5d 4509 if (flush_delayed)
2ff7e61e 4510 btrfs_balance_delayed_items(fs_info);
16cdcec7 4511
d814a491
EL
4512 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4513 BTRFS_DIRTY_METADATA_THRESH,
4514 fs_info->dirty_metadata_batch);
e2d84521 4515 if (ret > 0) {
0b246afa 4516 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4517 }
16cdcec7
MX
4518}
4519
2ff7e61e 4520void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4521{
2ff7e61e 4522 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4523}
585ad2c3 4524
2ff7e61e 4525void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4526{
2ff7e61e 4527 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4528}
6b80053d 4529
581c1760
QW
4530int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4531 struct btrfs_key *first_key)
6b80053d 4532{
5ab12d1f 4533 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4534 level, first_key);
6b80053d 4535}
0da5468f 4536
2ff7e61e 4537static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4538{
fe816d0f
NB
4539 /* cleanup FS via transaction */
4540 btrfs_cleanup_transaction(fs_info);
4541
0b246afa 4542 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4543 btrfs_run_delayed_iputs(fs_info);
0b246afa 4544 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4545
0b246afa
JM
4546 down_write(&fs_info->cleanup_work_sem);
4547 up_write(&fs_info->cleanup_work_sem);
acce952b 4548}
4549
ef67963d
JB
4550static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4551{
4552 struct btrfs_root *gang[8];
4553 u64 root_objectid = 0;
4554 int ret;
4555
4556 spin_lock(&fs_info->fs_roots_radix_lock);
4557 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4558 (void **)gang, root_objectid,
4559 ARRAY_SIZE(gang))) != 0) {
4560 int i;
4561
4562 for (i = 0; i < ret; i++)
4563 gang[i] = btrfs_grab_root(gang[i]);
4564 spin_unlock(&fs_info->fs_roots_radix_lock);
4565
4566 for (i = 0; i < ret; i++) {
4567 if (!gang[i])
4568 continue;
4569 root_objectid = gang[i]->root_key.objectid;
4570 btrfs_free_log(NULL, gang[i]);
4571 btrfs_put_root(gang[i]);
4572 }
4573 root_objectid++;
4574 spin_lock(&fs_info->fs_roots_radix_lock);
4575 }
4576 spin_unlock(&fs_info->fs_roots_radix_lock);
4577 btrfs_free_log_root_tree(NULL, fs_info);
4578}
4579
143bede5 4580static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4581{
acce952b 4582 struct btrfs_ordered_extent *ordered;
acce952b 4583
199c2a9c 4584 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4585 /*
4586 * This will just short circuit the ordered completion stuff which will
4587 * make sure the ordered extent gets properly cleaned up.
4588 */
199c2a9c 4589 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4590 root_extent_list)
4591 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4592 spin_unlock(&root->ordered_extent_lock);
4593}
4594
4595static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4596{
4597 struct btrfs_root *root;
4598 struct list_head splice;
4599
4600 INIT_LIST_HEAD(&splice);
4601
4602 spin_lock(&fs_info->ordered_root_lock);
4603 list_splice_init(&fs_info->ordered_roots, &splice);
4604 while (!list_empty(&splice)) {
4605 root = list_first_entry(&splice, struct btrfs_root,
4606 ordered_root);
1de2cfde
JB
4607 list_move_tail(&root->ordered_root,
4608 &fs_info->ordered_roots);
199c2a9c 4609
2a85d9ca 4610 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4611 btrfs_destroy_ordered_extents(root);
4612
2a85d9ca
LB
4613 cond_resched();
4614 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4615 }
4616 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4617
4618 /*
4619 * We need this here because if we've been flipped read-only we won't
4620 * get sync() from the umount, so we need to make sure any ordered
4621 * extents that haven't had their dirty pages IO start writeout yet
4622 * actually get run and error out properly.
4623 */
4624 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4625}
4626
35a3621b 4627static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4628 struct btrfs_fs_info *fs_info)
acce952b 4629{
4630 struct rb_node *node;
4631 struct btrfs_delayed_ref_root *delayed_refs;
4632 struct btrfs_delayed_ref_node *ref;
4633 int ret = 0;
4634
4635 delayed_refs = &trans->delayed_refs;
4636
4637 spin_lock(&delayed_refs->lock);
d7df2c79 4638 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4639 spin_unlock(&delayed_refs->lock);
b79ce3dd 4640 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4641 return ret;
4642 }
4643
5c9d028b 4644 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4645 struct btrfs_delayed_ref_head *head;
0e0adbcf 4646 struct rb_node *n;
e78417d1 4647 bool pin_bytes = false;
acce952b 4648
d7df2c79
JB
4649 head = rb_entry(node, struct btrfs_delayed_ref_head,
4650 href_node);
3069bd26 4651 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4652 continue;
3069bd26 4653
d7df2c79 4654 spin_lock(&head->lock);
e3d03965 4655 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4656 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4657 ref_node);
d7df2c79 4658 ref->in_tree = 0;
e3d03965 4659 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4660 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4661 if (!list_empty(&ref->add_list))
4662 list_del(&ref->add_list);
d7df2c79
JB
4663 atomic_dec(&delayed_refs->num_entries);
4664 btrfs_put_delayed_ref(ref);
e78417d1 4665 }
d7df2c79
JB
4666 if (head->must_insert_reserved)
4667 pin_bytes = true;
4668 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4669 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4670 spin_unlock(&head->lock);
4671 spin_unlock(&delayed_refs->lock);
4672 mutex_unlock(&head->mutex);
acce952b 4673
f603bb94
NB
4674 if (pin_bytes) {
4675 struct btrfs_block_group *cache;
4676
4677 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4678 BUG_ON(!cache);
4679
4680 spin_lock(&cache->space_info->lock);
4681 spin_lock(&cache->lock);
4682 cache->pinned += head->num_bytes;
4683 btrfs_space_info_update_bytes_pinned(fs_info,
4684 cache->space_info, head->num_bytes);
4685 cache->reserved -= head->num_bytes;
4686 cache->space_info->bytes_reserved -= head->num_bytes;
4687 spin_unlock(&cache->lock);
4688 spin_unlock(&cache->space_info->lock);
4689 percpu_counter_add_batch(
4690 &cache->space_info->total_bytes_pinned,
4691 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4692
4693 btrfs_put_block_group(cache);
4694
4695 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4696 head->bytenr + head->num_bytes - 1);
4697 }
31890da0 4698 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4699 btrfs_put_delayed_ref_head(head);
acce952b 4700 cond_resched();
4701 spin_lock(&delayed_refs->lock);
4702 }
81f7eb00 4703 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4704
4705 spin_unlock(&delayed_refs->lock);
4706
4707 return ret;
4708}
4709
143bede5 4710static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4711{
4712 struct btrfs_inode *btrfs_inode;
4713 struct list_head splice;
4714
4715 INIT_LIST_HEAD(&splice);
4716
eb73c1b7
MX
4717 spin_lock(&root->delalloc_lock);
4718 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4719
4720 while (!list_empty(&splice)) {
fe816d0f 4721 struct inode *inode = NULL;
eb73c1b7
MX
4722 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4723 delalloc_inodes);
fe816d0f 4724 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4725 spin_unlock(&root->delalloc_lock);
acce952b 4726
fe816d0f
NB
4727 /*
4728 * Make sure we get a live inode and that it'll not disappear
4729 * meanwhile.
4730 */
4731 inode = igrab(&btrfs_inode->vfs_inode);
4732 if (inode) {
4733 invalidate_inode_pages2(inode->i_mapping);
4734 iput(inode);
4735 }
eb73c1b7 4736 spin_lock(&root->delalloc_lock);
acce952b 4737 }
eb73c1b7
MX
4738 spin_unlock(&root->delalloc_lock);
4739}
4740
4741static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4742{
4743 struct btrfs_root *root;
4744 struct list_head splice;
4745
4746 INIT_LIST_HEAD(&splice);
4747
4748 spin_lock(&fs_info->delalloc_root_lock);
4749 list_splice_init(&fs_info->delalloc_roots, &splice);
4750 while (!list_empty(&splice)) {
4751 root = list_first_entry(&splice, struct btrfs_root,
4752 delalloc_root);
00246528 4753 root = btrfs_grab_root(root);
eb73c1b7
MX
4754 BUG_ON(!root);
4755 spin_unlock(&fs_info->delalloc_root_lock);
4756
4757 btrfs_destroy_delalloc_inodes(root);
00246528 4758 btrfs_put_root(root);
eb73c1b7
MX
4759
4760 spin_lock(&fs_info->delalloc_root_lock);
4761 }
4762 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4763}
4764
2ff7e61e 4765static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4766 struct extent_io_tree *dirty_pages,
4767 int mark)
4768{
4769 int ret;
acce952b 4770 struct extent_buffer *eb;
4771 u64 start = 0;
4772 u64 end;
acce952b 4773
4774 while (1) {
4775 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4776 mark, NULL);
acce952b 4777 if (ret)
4778 break;
4779
91166212 4780 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4781 while (start <= end) {
0b246afa
JM
4782 eb = find_extent_buffer(fs_info, start);
4783 start += fs_info->nodesize;
fd8b2b61 4784 if (!eb)
acce952b 4785 continue;
fd8b2b61 4786 wait_on_extent_buffer_writeback(eb);
acce952b 4787
fd8b2b61
JB
4788 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4789 &eb->bflags))
4790 clear_extent_buffer_dirty(eb);
4791 free_extent_buffer_stale(eb);
acce952b 4792 }
4793 }
4794
4795 return ret;
4796}
4797
2ff7e61e 4798static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4799 struct extent_io_tree *unpin)
acce952b 4800{
acce952b 4801 u64 start;
4802 u64 end;
4803 int ret;
4804
acce952b 4805 while (1) {
0e6ec385
FM
4806 struct extent_state *cached_state = NULL;
4807
fcd5e742
LF
4808 /*
4809 * The btrfs_finish_extent_commit() may get the same range as
4810 * ours between find_first_extent_bit and clear_extent_dirty.
4811 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4812 * the same extent range.
4813 */
4814 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4815 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4816 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4817 if (ret) {
4818 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4819 break;
fcd5e742 4820 }
acce952b 4821
0e6ec385
FM
4822 clear_extent_dirty(unpin, start, end, &cached_state);
4823 free_extent_state(cached_state);
2ff7e61e 4824 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4825 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4826 cond_resched();
4827 }
4828
4829 return 0;
4830}
4831
32da5386 4832static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4833{
4834 struct inode *inode;
4835
4836 inode = cache->io_ctl.inode;
4837 if (inode) {
4838 invalidate_inode_pages2(inode->i_mapping);
4839 BTRFS_I(inode)->generation = 0;
4840 cache->io_ctl.inode = NULL;
4841 iput(inode);
4842 }
bbc37d6e 4843 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4844 btrfs_put_block_group(cache);
4845}
4846
4847void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4848 struct btrfs_fs_info *fs_info)
c79a1751 4849{
32da5386 4850 struct btrfs_block_group *cache;
c79a1751
LB
4851
4852 spin_lock(&cur_trans->dirty_bgs_lock);
4853 while (!list_empty(&cur_trans->dirty_bgs)) {
4854 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4855 struct btrfs_block_group,
c79a1751 4856 dirty_list);
c79a1751
LB
4857
4858 if (!list_empty(&cache->io_list)) {
4859 spin_unlock(&cur_trans->dirty_bgs_lock);
4860 list_del_init(&cache->io_list);
4861 btrfs_cleanup_bg_io(cache);
4862 spin_lock(&cur_trans->dirty_bgs_lock);
4863 }
4864
4865 list_del_init(&cache->dirty_list);
4866 spin_lock(&cache->lock);
4867 cache->disk_cache_state = BTRFS_DC_ERROR;
4868 spin_unlock(&cache->lock);
4869
4870 spin_unlock(&cur_trans->dirty_bgs_lock);
4871 btrfs_put_block_group(cache);
ba2c4d4e 4872 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4873 spin_lock(&cur_trans->dirty_bgs_lock);
4874 }
4875 spin_unlock(&cur_trans->dirty_bgs_lock);
4876
45ae2c18
NB
4877 /*
4878 * Refer to the definition of io_bgs member for details why it's safe
4879 * to use it without any locking
4880 */
c79a1751
LB
4881 while (!list_empty(&cur_trans->io_bgs)) {
4882 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4883 struct btrfs_block_group,
c79a1751 4884 io_list);
c79a1751
LB
4885
4886 list_del_init(&cache->io_list);
4887 spin_lock(&cache->lock);
4888 cache->disk_cache_state = BTRFS_DC_ERROR;
4889 spin_unlock(&cache->lock);
4890 btrfs_cleanup_bg_io(cache);
4891 }
4892}
4893
49b25e05 4894void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4895 struct btrfs_fs_info *fs_info)
49b25e05 4896{
bbbf7243
NB
4897 struct btrfs_device *dev, *tmp;
4898
2ff7e61e 4899 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4900 ASSERT(list_empty(&cur_trans->dirty_bgs));
4901 ASSERT(list_empty(&cur_trans->io_bgs));
4902
bbbf7243
NB
4903 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4904 post_commit_list) {
4905 list_del_init(&dev->post_commit_list);
4906 }
4907
2ff7e61e 4908 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4909
4a9d8bde 4910 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4911 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4912
4a9d8bde 4913 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4914 wake_up(&fs_info->transaction_wait);
49b25e05 4915
ccdf9b30 4916 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4917
2ff7e61e 4918 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4919 EXTENT_DIRTY);
fe119a6e 4920 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4921
d3575156
NA
4922 btrfs_free_redirty_list(cur_trans);
4923
4a9d8bde
MX
4924 cur_trans->state =TRANS_STATE_COMPLETED;
4925 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4926}
4927
2ff7e61e 4928static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4929{
4930 struct btrfs_transaction *t;
acce952b 4931
0b246afa 4932 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4933
0b246afa
JM
4934 spin_lock(&fs_info->trans_lock);
4935 while (!list_empty(&fs_info->trans_list)) {
4936 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4937 struct btrfs_transaction, list);
4938 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4939 refcount_inc(&t->use_count);
0b246afa 4940 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4941 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4942 btrfs_put_transaction(t);
0b246afa 4943 spin_lock(&fs_info->trans_lock);
724e2315
JB
4944 continue;
4945 }
0b246afa 4946 if (t == fs_info->running_transaction) {
724e2315 4947 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4948 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4949 /*
4950 * We wait for 0 num_writers since we don't hold a trans
4951 * handle open currently for this transaction.
4952 */
4953 wait_event(t->writer_wait,
4954 atomic_read(&t->num_writers) == 0);
4955 } else {
0b246afa 4956 spin_unlock(&fs_info->trans_lock);
724e2315 4957 }
2ff7e61e 4958 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4959
0b246afa
JM
4960 spin_lock(&fs_info->trans_lock);
4961 if (t == fs_info->running_transaction)
4962 fs_info->running_transaction = NULL;
acce952b 4963 list_del_init(&t->list);
0b246afa 4964 spin_unlock(&fs_info->trans_lock);
acce952b 4965
724e2315 4966 btrfs_put_transaction(t);
2ff7e61e 4967 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4968 spin_lock(&fs_info->trans_lock);
724e2315 4969 }
0b246afa
JM
4970 spin_unlock(&fs_info->trans_lock);
4971 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4972 btrfs_destroy_delayed_inodes(fs_info);
4973 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4974 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4975 btrfs_drop_all_logs(fs_info);
0b246afa 4976 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4977
4978 return 0;
4979}
ec7d6dfd 4980
453e4873 4981int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4982{
4983 struct btrfs_path *path;
4984 int ret;
4985 struct extent_buffer *l;
4986 struct btrfs_key search_key;
4987 struct btrfs_key found_key;
4988 int slot;
4989
4990 path = btrfs_alloc_path();
4991 if (!path)
4992 return -ENOMEM;
4993
4994 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4995 search_key.type = -1;
4996 search_key.offset = (u64)-1;
4997 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4998 if (ret < 0)
4999 goto error;
5000 BUG_ON(ret == 0); /* Corruption */
5001 if (path->slots[0] > 0) {
5002 slot = path->slots[0] - 1;
5003 l = path->nodes[0];
5004 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5005 root->free_objectid = max_t(u64, found_key.objectid + 1,
5006 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5007 } else {
23125104 5008 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5009 }
5010 ret = 0;
5011error:
5012 btrfs_free_path(path);
5013 return ret;
5014}
5015
543068a2 5016int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5017{
5018 int ret;
5019 mutex_lock(&root->objectid_mutex);
5020
6b8fad57 5021 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5022 btrfs_warn(root->fs_info,
5023 "the objectid of root %llu reaches its highest value",
5024 root->root_key.objectid);
5025 ret = -ENOSPC;
5026 goto out;
5027 }
5028
23125104 5029 *objectid = root->free_objectid++;
ec7d6dfd
NB
5030 ret = 0;
5031out:
5032 mutex_unlock(&root->objectid_mutex);
5033 return ret;
5034}