btrfs: move btrfs_account_ro_block_groups_free_space into space-info.c
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
c7f13d42 46#include "fs.h"
07e81dc9 47#include "accessors.h"
eb60ceac 48
319e4d06
QW
49#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
50 BTRFS_HEADER_FLAG_RELOC |\
51 BTRFS_SUPER_FLAG_ERROR |\
52 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
53 BTRFS_SUPER_FLAG_METADUMP |\
54 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 55
143bede5 56static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 57static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 58 struct btrfs_fs_info *fs_info);
143bede5 59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 60static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 61 struct extent_io_tree *dirty_pages,
62 int mark);
2ff7e61e 63static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 64 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
65static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 67
141386e1
JB
68static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
69{
70 if (fs_info->csum_shash)
71 crypto_free_shash(fs_info->csum_shash);
72}
73
d352ac68
CM
74/*
75 * async submit bios are used to offload expensive checksumming
76 * onto the worker threads. They checksum file and metadata bios
77 * just before they are sent down the IO stack.
78 */
44b8bd7e 79struct async_submit_bio {
8896a08d 80 struct inode *inode;
44b8bd7e 81 struct bio *bio;
a758781d 82 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 83 int mirror_num;
1941b64b
QW
84
85 /* Optional parameter for submit_bio_start used by direct io */
86 u64 dio_file_offset;
8b712842 87 struct btrfs_work work;
4e4cbee9 88 blk_status_t status;
44b8bd7e
CM
89};
90
d352ac68 91/*
2996e1f8 92 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 93 */
c67b3892 94static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 95{
d5178578 96 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 97 const int num_pages = num_extent_pages(buf);
a26663e7 98 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 99 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 100 char *kaddr;
e9be5a30 101 int i;
d5178578
JT
102
103 shash->tfm = fs_info->csum_shash;
104 crypto_shash_init(shash);
a26663e7 105 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 106 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 107 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 108
e9be5a30
DS
109 for (i = 1; i < num_pages; i++) {
110 kaddr = page_address(buf->pages[i]);
111 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 112 }
71a63551 113 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 114 crypto_shash_final(shash, result);
19c00ddc
CM
115}
116
d352ac68
CM
117/*
118 * we can't consider a given block up to date unless the transid of the
119 * block matches the transid in the parent node's pointer. This is how we
120 * detect blocks that either didn't get written at all or got written
121 * in the wrong place.
122 */
1259ab75 123static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
124 struct extent_buffer *eb, u64 parent_transid,
125 int atomic)
1259ab75 126{
2ac55d41 127 struct extent_state *cached_state = NULL;
1259ab75
CM
128 int ret;
129
130 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
131 return 0;
132
b9fab919
CM
133 if (atomic)
134 return -EAGAIN;
135
570eb97b 136 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
0b32f4bb 137 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
138 btrfs_header_generation(eb) == parent_transid) {
139 ret = 0;
140 goto out;
141 }
94647322 142 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
143"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
144 eb->start, eb->read_mirror,
29549aec 145 parent_transid, btrfs_header_generation(eb));
1259ab75 146 ret = 1;
35b22c19 147 clear_extent_buffer_uptodate(eb);
33958dc6 148out:
570eb97b
JB
149 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
150 &cached_state);
1259ab75 151 return ret;
1259ab75
CM
152}
153
e7e16f48
JT
154static bool btrfs_supported_super_csum(u16 csum_type)
155{
156 switch (csum_type) {
157 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 158 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 159 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 160 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
161 return true;
162 default:
163 return false;
164 }
165}
166
1104a885
DS
167/*
168 * Return 0 if the superblock checksum type matches the checksum value of that
169 * algorithm. Pass the raw disk superblock data.
170 */
3d17adea
QW
171int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
172 const struct btrfs_super_block *disk_sb)
1104a885 173{
51bce6c9 174 char result[BTRFS_CSUM_SIZE];
d5178578
JT
175 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
176
177 shash->tfm = fs_info->csum_shash;
1104a885 178
51bce6c9
JT
179 /*
180 * The super_block structure does not span the whole
181 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
182 * filled with zeros and is included in the checksum.
183 */
3d17adea 184 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 185 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 186
55fc29be 187 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 188 return 1;
1104a885 189
e7e16f48 190 return 0;
1104a885
DS
191}
192
e064d5e9 193int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 194 struct btrfs_key *first_key, u64 parent_transid)
581c1760 195{
e064d5e9 196 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
197 int found_level;
198 struct btrfs_key found_key;
199 int ret;
200
201 found_level = btrfs_header_level(eb);
202 if (found_level != level) {
63489055
QW
203 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
204 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
205 btrfs_err(fs_info,
206"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
207 eb->start, level, found_level);
581c1760
QW
208 return -EIO;
209 }
210
211 if (!first_key)
212 return 0;
213
5d41be6f
QW
214 /*
215 * For live tree block (new tree blocks in current transaction),
216 * we need proper lock context to avoid race, which is impossible here.
217 * So we only checks tree blocks which is read from disk, whose
218 * generation <= fs_info->last_trans_committed.
219 */
220 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
221 return 0;
62fdaa52
QW
222
223 /* We have @first_key, so this @eb must have at least one item */
224 if (btrfs_header_nritems(eb) == 0) {
225 btrfs_err(fs_info,
226 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
227 eb->start);
228 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
229 return -EUCLEAN;
230 }
231
581c1760
QW
232 if (found_level)
233 btrfs_node_key_to_cpu(eb, &found_key, 0);
234 else
235 btrfs_item_key_to_cpu(eb, &found_key, 0);
236 ret = btrfs_comp_cpu_keys(first_key, &found_key);
237
581c1760 238 if (ret) {
63489055
QW
239 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
240 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 241 btrfs_err(fs_info,
ff76a864
LB
242"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
243 eb->start, parent_transid, first_key->objectid,
244 first_key->type, first_key->offset,
245 found_key.objectid, found_key.type,
246 found_key.offset);
581c1760 247 }
581c1760
QW
248 return ret;
249}
250
d352ac68
CM
251/*
252 * helper to read a given tree block, doing retries as required when
253 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
254 *
255 * @parent_transid: expected transid, skip check if 0
256 * @level: expected level, mandatory check
257 * @first_key: expected key of first slot, skip check if NULL
d352ac68 258 */
6a2e9dc4
FM
259int btrfs_read_extent_buffer(struct extent_buffer *eb,
260 u64 parent_transid, int level,
261 struct btrfs_key *first_key)
f188591e 262{
5ab12d1f 263 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 264 struct extent_io_tree *io_tree;
ea466794 265 int failed = 0;
f188591e
CM
266 int ret;
267 int num_copies = 0;
268 int mirror_num = 0;
ea466794 269 int failed_mirror = 0;
f188591e 270
0b246afa 271 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 272 while (1) {
f8397d69 273 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 274 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 275 if (!ret) {
581c1760 276 if (verify_parent_transid(io_tree, eb,
b9fab919 277 parent_transid, 0))
256dd1bb 278 ret = -EIO;
e064d5e9 279 else if (btrfs_verify_level_key(eb, level,
448de471 280 first_key, parent_transid))
581c1760
QW
281 ret = -EUCLEAN;
282 else
283 break;
256dd1bb 284 }
d397712b 285
0b246afa 286 num_copies = btrfs_num_copies(fs_info,
f188591e 287 eb->start, eb->len);
4235298e 288 if (num_copies == 1)
ea466794 289 break;
4235298e 290
5cf1ab56
JB
291 if (!failed_mirror) {
292 failed = 1;
293 failed_mirror = eb->read_mirror;
294 }
295
f188591e 296 mirror_num++;
ea466794
JB
297 if (mirror_num == failed_mirror)
298 mirror_num++;
299
4235298e 300 if (mirror_num > num_copies)
ea466794 301 break;
f188591e 302 }
ea466794 303
c0901581 304 if (failed && !ret && failed_mirror)
20a1fbf9 305 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
306
307 return ret;
f188591e 308}
19c00ddc 309
eca0f6f6
QW
310static int csum_one_extent_buffer(struct extent_buffer *eb)
311{
312 struct btrfs_fs_info *fs_info = eb->fs_info;
313 u8 result[BTRFS_CSUM_SIZE];
314 int ret;
315
316 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
317 offsetof(struct btrfs_header, fsid),
318 BTRFS_FSID_SIZE) == 0);
319 csum_tree_block(eb, result);
320
321 if (btrfs_header_level(eb))
322 ret = btrfs_check_node(eb);
323 else
324 ret = btrfs_check_leaf_full(eb);
325
3777369f
QW
326 if (ret < 0)
327 goto error;
328
329 /*
330 * Also check the generation, the eb reached here must be newer than
331 * last committed. Or something seriously wrong happened.
332 */
333 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
334 ret = -EUCLEAN;
eca0f6f6 335 btrfs_err(fs_info,
3777369f
QW
336 "block=%llu bad generation, have %llu expect > %llu",
337 eb->start, btrfs_header_generation(eb),
338 fs_info->last_trans_committed);
339 goto error;
eca0f6f6
QW
340 }
341 write_extent_buffer(eb, result, 0, fs_info->csum_size);
342
343 return 0;
3777369f
QW
344
345error:
346 btrfs_print_tree(eb, 0);
347 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
348 eb->start);
349 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
350 return ret;
eca0f6f6
QW
351}
352
353/* Checksum all dirty extent buffers in one bio_vec */
354static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
355 struct bio_vec *bvec)
356{
357 struct page *page = bvec->bv_page;
358 u64 bvec_start = page_offset(page) + bvec->bv_offset;
359 u64 cur;
360 int ret = 0;
361
362 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
363 cur += fs_info->nodesize) {
364 struct extent_buffer *eb;
365 bool uptodate;
366
367 eb = find_extent_buffer(fs_info, cur);
368 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
369 fs_info->nodesize);
370
01cd3909 371 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
372 if (WARN_ON(!eb))
373 return -EUCLEAN;
374
375 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
376 free_extent_buffer(eb);
377 return -EUCLEAN;
378 }
379 if (WARN_ON(!uptodate)) {
380 free_extent_buffer(eb);
381 return -EUCLEAN;
382 }
383
384 ret = csum_one_extent_buffer(eb);
385 free_extent_buffer(eb);
386 if (ret < 0)
387 return ret;
388 }
389 return ret;
390}
391
d352ac68 392/*
ac303b69
QW
393 * Checksum a dirty tree block before IO. This has extra checks to make sure
394 * we only fill in the checksum field in the first page of a multi-page block.
395 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 396 */
ac303b69 397static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 398{
ac303b69 399 struct page *page = bvec->bv_page;
4eee4fa4 400 u64 start = page_offset(page);
19c00ddc 401 u64 found_start;
19c00ddc 402 struct extent_buffer *eb;
eca0f6f6 403
fbca46eb 404 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 405 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 406
4f2de97a
JB
407 eb = (struct extent_buffer *)page->private;
408 if (page != eb->pages[0])
409 return 0;
0f805531 410
19c00ddc 411 found_start = btrfs_header_bytenr(eb);
d3575156
NA
412
413 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
414 WARN_ON(found_start != 0);
415 return 0;
416 }
417
0f805531
AL
418 /*
419 * Please do not consolidate these warnings into a single if.
420 * It is useful to know what went wrong.
421 */
422 if (WARN_ON(found_start != start))
423 return -EUCLEAN;
424 if (WARN_ON(!PageUptodate(page)))
425 return -EUCLEAN;
426
eca0f6f6 427 return csum_one_extent_buffer(eb);
19c00ddc
CM
428}
429
b0c9b3b0 430static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 431{
b0c9b3b0 432 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 433 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 434 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 435 u8 *metadata_uuid;
2b82032c 436
9a8658e3
DS
437 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
438 BTRFS_FSID_SIZE);
944d3f9f
NB
439 /*
440 * Checking the incompat flag is only valid for the current fs. For
441 * seed devices it's forbidden to have their uuid changed so reading
442 * ->fsid in this case is fine
443 */
444 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
445 metadata_uuid = fs_devices->metadata_uuid;
446 else
447 metadata_uuid = fs_devices->fsid;
448
449 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
450 return 0;
451
452 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
453 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
454 return 0;
455
456 return 1;
2b82032c
YZ
457}
458
77bf40a2
QW
459/* Do basic extent buffer checks at read time */
460static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 461{
77bf40a2 462 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 463 u64 found_start;
77bf40a2
QW
464 const u32 csum_size = fs_info->csum_size;
465 u8 found_level;
2996e1f8 466 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 467 const u8 *header_csum;
77bf40a2 468 int ret = 0;
ea466794 469
ce9adaa5 470 found_start = btrfs_header_bytenr(eb);
727011e0 471 if (found_start != eb->start) {
8f0ed7d4
QW
472 btrfs_err_rl(fs_info,
473 "bad tree block start, mirror %u want %llu have %llu",
474 eb->read_mirror, eb->start, found_start);
f188591e 475 ret = -EIO;
77bf40a2 476 goto out;
ce9adaa5 477 }
b0c9b3b0 478 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
479 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
480 eb->start, eb->read_mirror);
1259ab75 481 ret = -EIO;
77bf40a2 482 goto out;
1259ab75 483 }
ce9adaa5 484 found_level = btrfs_header_level(eb);
1c24c3ce 485 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
486 btrfs_err(fs_info,
487 "bad tree block level, mirror %u level %d on logical %llu",
488 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 489 ret = -EIO;
77bf40a2 490 goto out;
1c24c3ce 491 }
ce9adaa5 492
c67b3892 493 csum_tree_block(eb, result);
dfd29eed
DS
494 header_csum = page_address(eb->pages[0]) +
495 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 496
dfd29eed 497 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 498 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
499"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
500 eb->start, eb->read_mirror,
dfd29eed 501 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
502 CSUM_FMT_VALUE(csum_size, result),
503 btrfs_header_level(eb));
2996e1f8 504 ret = -EUCLEAN;
77bf40a2 505 goto out;
2996e1f8
JT
506 }
507
a826d6dc
JB
508 /*
509 * If this is a leaf block and it is corrupt, set the corrupt bit so
510 * that we don't try and read the other copies of this block, just
511 * return -EIO.
512 */
1c4360ee 513 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
514 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
515 ret = -EIO;
516 }
ce9adaa5 517
813fd1dc 518 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
519 ret = -EIO;
520
0b32f4bb
JB
521 if (!ret)
522 set_extent_buffer_uptodate(eb);
75391f0d
QW
523 else
524 btrfs_err(fs_info,
8f0ed7d4
QW
525 "read time tree block corruption detected on logical %llu mirror %u",
526 eb->start, eb->read_mirror);
77bf40a2
QW
527out:
528 return ret;
529}
530
371cdc07
QW
531static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
532 int mirror)
533{
534 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
535 struct extent_buffer *eb;
536 bool reads_done;
537 int ret = 0;
538
539 /*
540 * We don't allow bio merge for subpage metadata read, so we should
541 * only get one eb for each endio hook.
542 */
543 ASSERT(end == start + fs_info->nodesize - 1);
544 ASSERT(PagePrivate(page));
545
546 eb = find_extent_buffer(fs_info, start);
547 /*
548 * When we are reading one tree block, eb must have been inserted into
549 * the radix tree. If not, something is wrong.
550 */
551 ASSERT(eb);
552
553 reads_done = atomic_dec_and_test(&eb->io_pages);
554 /* Subpage read must finish in page read */
555 ASSERT(reads_done);
556
557 eb->read_mirror = mirror;
558 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
559 ret = -EIO;
560 goto err;
561 }
562 ret = validate_extent_buffer(eb);
563 if (ret < 0)
564 goto err;
565
371cdc07
QW
566 set_extent_buffer_uptodate(eb);
567
568 free_extent_buffer(eb);
569 return ret;
570err:
571 /*
572 * end_bio_extent_readpage decrements io_pages in case of error,
573 * make sure it has something to decrement.
574 */
575 atomic_inc(&eb->io_pages);
576 clear_extent_buffer_uptodate(eb);
577 free_extent_buffer(eb);
578 return ret;
579}
580
c3a3b19b 581int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
582 struct page *page, u64 start, u64 end,
583 int mirror)
584{
585 struct extent_buffer *eb;
586 int ret = 0;
587 int reads_done;
588
589 ASSERT(page->private);
371cdc07 590
fbca46eb 591 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
371cdc07
QW
592 return validate_subpage_buffer(page, start, end, mirror);
593
77bf40a2
QW
594 eb = (struct extent_buffer *)page->private;
595
596 /*
597 * The pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
600 atomic_inc(&eb->refs);
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
603 if (!reads_done)
604 goto err;
605
606 eb->read_mirror = mirror;
607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 ret = -EIO;
609 goto err;
610 }
611 ret = validate_extent_buffer(eb);
ce9adaa5 612err:
53b381b3
DW
613 if (ret) {
614 /*
615 * our io error hook is going to dec the io pages
616 * again, we have to make sure it has something
617 * to decrement
618 */
619 atomic_inc(&eb->io_pages);
0b32f4bb 620 clear_extent_buffer_uptodate(eb);
53b381b3 621 }
0b32f4bb 622 free_extent_buffer(eb);
77bf40a2 623
f188591e 624 return ret;
ce9adaa5
CM
625}
626
4a69a410
CM
627static void run_one_async_start(struct btrfs_work *work)
628{
4a69a410 629 struct async_submit_bio *async;
4e4cbee9 630 blk_status_t ret;
4a69a410
CM
631
632 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
633 ret = async->submit_bio_start(async->inode, async->bio,
634 async->dio_file_offset);
79787eaa 635 if (ret)
4e4cbee9 636 async->status = ret;
4a69a410
CM
637}
638
06ea01b1
DS
639/*
640 * In order to insert checksums into the metadata in large chunks, we wait
641 * until bio submission time. All the pages in the bio are checksummed and
642 * sums are attached onto the ordered extent record.
643 *
644 * At IO completion time the csums attached on the ordered extent record are
645 * inserted into the tree.
646 */
4a69a410 647static void run_one_async_done(struct btrfs_work *work)
8b712842 648{
917f32a2
CH
649 struct async_submit_bio *async =
650 container_of(work, struct async_submit_bio, work);
651 struct inode *inode = async->inode;
652 struct btrfs_bio *bbio = btrfs_bio(async->bio);
4854ddd0 653
bb7ab3b9 654 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9 655 if (async->status) {
917f32a2 656 btrfs_bio_end_io(bbio, async->status);
79787eaa
JM
657 return;
658 }
659
ec39f769
CM
660 /*
661 * All of the bios that pass through here are from async helpers.
662 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
663 * This changes nothing when cgroups aren't in use.
664 */
665 async->bio->bi_opf |= REQ_CGROUP_PUNT;
1a722d8f 666 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
4a69a410
CM
667}
668
669static void run_one_async_free(struct btrfs_work *work)
670{
671 struct async_submit_bio *async;
672
673 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
674 kfree(async);
675}
676
ea1f0ced
CH
677/*
678 * Submit bio to an async queue.
679 *
680 * Retrun:
681 * - true if the work has been succesfuly submitted
682 * - false in case of error
683 */
684bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
685 u64 dio_file_offset,
686 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 687{
8896a08d 688 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
689 struct async_submit_bio *async;
690
691 async = kmalloc(sizeof(*async), GFP_NOFS);
692 if (!async)
ea1f0ced 693 return false;
44b8bd7e 694
8896a08d 695 async->inode = inode;
44b8bd7e
CM
696 async->bio = bio;
697 async->mirror_num = mirror_num;
4a69a410 698 async->submit_bio_start = submit_bio_start;
4a69a410 699
a0cac0ec
OS
700 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
701 run_one_async_free);
4a69a410 702
1941b64b 703 async->dio_file_offset = dio_file_offset;
8c8bee1d 704
4e4cbee9 705 async->status = 0;
79787eaa 706
67f055c7 707 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
708 btrfs_queue_work(fs_info->hipri_workers, &async->work);
709 else
710 btrfs_queue_work(fs_info->workers, &async->work);
ea1f0ced 711 return true;
44b8bd7e
CM
712}
713
4e4cbee9 714static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 715{
2c30c71b 716 struct bio_vec *bvec;
ce3ed71a 717 struct btrfs_root *root;
2b070cfe 718 int ret = 0;
6dc4f100 719 struct bvec_iter_all iter_all;
ce3ed71a 720
c09abff8 721 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 722 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 723 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 724 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
725 if (ret)
726 break;
ce3ed71a 727 }
2c30c71b 728
4e4cbee9 729 return errno_to_blk_status(ret);
ce3ed71a
CM
730}
731
8896a08d 732static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 733 u64 dio_file_offset)
22c59948 734{
8b712842
CM
735 /*
736 * when we're called for a write, we're already in the async
1a722d8f 737 * submission context. Just jump into btrfs_submit_bio.
8b712842 738 */
79787eaa 739 return btree_csum_one_bio(bio);
4a69a410 740}
22c59948 741
f4dcfb30 742static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 743 struct btrfs_inode *bi)
de0022b9 744{
4eef29ef 745 if (btrfs_is_zoned(fs_info))
f4dcfb30 746 return false;
6300463b 747 if (atomic_read(&bi->sync_writers))
f4dcfb30 748 return false;
9b4e675a 749 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
750 return false;
751 return true;
de0022b9
JB
752}
753
94d9e11b 754void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 755{
0b246afa 756 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
917f32a2 757 struct btrfs_bio *bbio = btrfs_bio(bio);
4e4cbee9 758 blk_status_t ret;
cad321ad 759
08a6f464
CH
760 bio->bi_opf |= REQ_META;
761
cfe94440 762 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
1a722d8f
CH
763 btrfs_submit_bio(fs_info, bio, mirror_num);
764 return;
44b8bd7e 765 }
d313d7a3 766
ea1f0ced
CH
767 /*
768 * Kthread helpers are used to submit writes so that checksumming can
769 * happen in parallel across all CPUs.
770 */
771 if (should_async_write(fs_info, BTRFS_I(inode)) &&
772 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
773 return;
774
775 ret = btree_csum_one_bio(bio);
94d9e11b 776 if (ret) {
917f32a2 777 btrfs_bio_end_io(bbio, ret);
ea1f0ced 778 return;
94d9e11b 779 }
ea1f0ced
CH
780
781 btrfs_submit_bio(fs_info, bio, mirror_num);
44b8bd7e
CM
782}
783
3dd1462e 784#ifdef CONFIG_MIGRATION
8958b551
MWO
785static int btree_migrate_folio(struct address_space *mapping,
786 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
787{
788 /*
789 * we can't safely write a btree page from here,
790 * we haven't done the locking hook
791 */
8958b551 792 if (folio_test_dirty(src))
784b4e29
CM
793 return -EAGAIN;
794 /*
795 * Buffers may be managed in a filesystem specific way.
796 * We must have no buffers or drop them.
797 */
8958b551
MWO
798 if (folio_get_private(src) &&
799 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 800 return -EAGAIN;
54184650 801 return migrate_folio(mapping, dst, src, mode);
784b4e29 802}
8958b551
MWO
803#else
804#define btree_migrate_folio NULL
3dd1462e 805#endif
784b4e29 806
0da5468f
CM
807static int btree_writepages(struct address_space *mapping,
808 struct writeback_control *wbc)
809{
e2d84521
MX
810 struct btrfs_fs_info *fs_info;
811 int ret;
812
d8d5f3e1 813 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
814
815 if (wbc->for_kupdate)
816 return 0;
817
e2d84521 818 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 819 /* this is a bit racy, but that's ok */
d814a491
EL
820 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
821 BTRFS_DIRTY_METADATA_THRESH,
822 fs_info->dirty_metadata_batch);
e2d84521 823 if (ret < 0)
793955bc 824 return 0;
793955bc 825 }
0b32f4bb 826 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
827}
828
f913cff3 829static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 830{
f913cff3
MWO
831 if (folio_test_writeback(folio) || folio_test_dirty(folio))
832 return false;
0c4e538b 833
f913cff3 834 return try_release_extent_buffer(&folio->page);
d98237b3
CM
835}
836
895586eb
MWO
837static void btree_invalidate_folio(struct folio *folio, size_t offset,
838 size_t length)
d98237b3 839{
d1310b2e 840 struct extent_io_tree *tree;
895586eb
MWO
841 tree = &BTRFS_I(folio->mapping->host)->io_tree;
842 extent_invalidate_folio(tree, folio, offset);
f913cff3 843 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
844 if (folio_get_private(folio)) {
845 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
846 "folio private not zero on folio %llu",
847 (unsigned long long)folio_pos(folio));
848 folio_detach_private(folio);
9ad6b7bc 849 }
d98237b3
CM
850}
851
bb146eb2 852#ifdef DEBUG
0079c3b1
MWO
853static bool btree_dirty_folio(struct address_space *mapping,
854 struct folio *folio)
855{
856 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 857 struct btrfs_subpage *subpage;
0b32f4bb 858 struct extent_buffer *eb;
139e8cd3 859 int cur_bit = 0;
0079c3b1 860 u64 page_start = folio_pos(folio);
139e8cd3
QW
861
862 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 863 eb = folio_get_private(folio);
139e8cd3
QW
864 BUG_ON(!eb);
865 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
866 BUG_ON(!atomic_read(&eb->refs));
49d0c642 867 btrfs_assert_tree_write_locked(eb);
0079c3b1 868 return filemap_dirty_folio(mapping, folio);
139e8cd3 869 }
0079c3b1 870 subpage = folio_get_private(folio);
139e8cd3
QW
871
872 ASSERT(subpage->dirty_bitmap);
873 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
874 unsigned long flags;
875 u64 cur;
876 u16 tmp = (1 << cur_bit);
877
878 spin_lock_irqsave(&subpage->lock, flags);
879 if (!(tmp & subpage->dirty_bitmap)) {
880 spin_unlock_irqrestore(&subpage->lock, flags);
881 cur_bit++;
882 continue;
883 }
884 spin_unlock_irqrestore(&subpage->lock, flags);
885 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 886
139e8cd3
QW
887 eb = find_extent_buffer(fs_info, cur);
888 ASSERT(eb);
889 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
890 ASSERT(atomic_read(&eb->refs));
49d0c642 891 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
892 free_extent_buffer(eb);
893
894 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
895 }
0079c3b1 896 return filemap_dirty_folio(mapping, folio);
0b32f4bb 897}
0079c3b1
MWO
898#else
899#define btree_dirty_folio filemap_dirty_folio
900#endif
0b32f4bb 901
7f09410b 902static const struct address_space_operations btree_aops = {
0da5468f 903 .writepages = btree_writepages,
f913cff3 904 .release_folio = btree_release_folio,
895586eb 905 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
906 .migrate_folio = btree_migrate_folio,
907 .dirty_folio = btree_dirty_folio,
d98237b3
CM
908};
909
2ff7e61e
JM
910struct extent_buffer *btrfs_find_create_tree_block(
911 struct btrfs_fs_info *fs_info,
3fbaf258
JB
912 u64 bytenr, u64 owner_root,
913 int level)
0999df54 914{
0b246afa
JM
915 if (btrfs_is_testing(fs_info))
916 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 917 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
918}
919
581c1760
QW
920/*
921 * Read tree block at logical address @bytenr and do variant basic but critical
922 * verification.
923 *
1b7ec85e 924 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
925 * @parent_transid: expected transid of this tree block, skip check if 0
926 * @level: expected level, mandatory check
927 * @first_key: expected key in slot 0, skip check if NULL
928 */
2ff7e61e 929struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
930 u64 owner_root, u64 parent_transid,
931 int level, struct btrfs_key *first_key)
0999df54
CM
932{
933 struct extent_buffer *buf = NULL;
0999df54
CM
934 int ret;
935
3fbaf258 936 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
937 if (IS_ERR(buf))
938 return buf;
0999df54 939
6a2e9dc4 940 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
0f0fe8f7 941 if (ret) {
537f38f0 942 free_extent_buffer_stale(buf);
64c043de 943 return ERR_PTR(ret);
0f0fe8f7 944 }
88c602ab
QW
945 if (btrfs_check_eb_owner(buf, owner_root)) {
946 free_extent_buffer_stale(buf);
947 return ERR_PTR(-EUCLEAN);
948 }
5f39d397 949 return buf;
ce9adaa5 950
eb60ceac
CM
951}
952
6a884d7d 953void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 954{
6a884d7d 955 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 956 if (btrfs_header_generation(buf) ==
e2d84521 957 fs_info->running_transaction->transid) {
49d0c642 958 btrfs_assert_tree_write_locked(buf);
b4ce94de 959
b9473439 960 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
961 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
962 -buf->len,
963 fs_info->dirty_metadata_batch);
ed7b63eb
JB
964 clear_extent_buffer_dirty(buf);
965 }
925baedd 966 }
5f39d397
CM
967}
968
da17066c 969static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 970 u64 objectid)
d97e63b6 971{
7c0260ee 972 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
973
974 memset(&root->root_key, 0, sizeof(root->root_key));
975 memset(&root->root_item, 0, sizeof(root->root_item));
976 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 977 root->fs_info = fs_info;
2e608bd1 978 root->root_key.objectid = objectid;
cfaa7295 979 root->node = NULL;
a28ec197 980 root->commit_root = NULL;
27cdeb70 981 root->state = 0;
abed4aaa 982 RB_CLEAR_NODE(&root->rb_node);
0b86a832 983
0f7d52f4 984 root->last_trans = 0;
6b8fad57 985 root->free_objectid = 0;
eb73c1b7 986 root->nr_delalloc_inodes = 0;
199c2a9c 987 root->nr_ordered_extents = 0;
6bef4d31 988 root->inode_tree = RB_ROOT;
088aea3b 989 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
990
991 btrfs_init_root_block_rsv(root);
0b86a832
CM
992
993 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 994 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
995 INIT_LIST_HEAD(&root->delalloc_inodes);
996 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
997 INIT_LIST_HEAD(&root->ordered_extents);
998 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 999 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1000 INIT_LIST_HEAD(&root->logged_list[0]);
1001 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1002 spin_lock_init(&root->inode_lock);
eb73c1b7 1003 spin_lock_init(&root->delalloc_lock);
199c2a9c 1004 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1005 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1006 spin_lock_init(&root->log_extents_lock[0]);
1007 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1008 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1009 mutex_init(&root->objectid_mutex);
e02119d5 1010 mutex_init(&root->log_mutex);
31f3d255 1011 mutex_init(&root->ordered_extent_mutex);
573bfb72 1012 mutex_init(&root->delalloc_mutex);
c53e9653 1013 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1014 init_waitqueue_head(&root->log_writer_wait);
1015 init_waitqueue_head(&root->log_commit_wait[0]);
1016 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1017 INIT_LIST_HEAD(&root->log_ctxs[0]);
1018 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1019 atomic_set(&root->log_commit[0], 0);
1020 atomic_set(&root->log_commit[1], 0);
1021 atomic_set(&root->log_writers, 0);
2ecb7923 1022 atomic_set(&root->log_batch, 0);
0700cea7 1023 refcount_set(&root->refs, 1);
8ecebf4d 1024 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1025 atomic_set(&root->nr_swapfiles, 0);
7237f183 1026 root->log_transid = 0;
d1433deb 1027 root->log_transid_committed = -1;
257c62e1 1028 root->last_log_commit = 0;
2e608bd1 1029 root->anon_dev = 0;
e289f03e 1030 if (!dummy) {
43eb5f29
QW
1031 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1032 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1033 extent_io_tree_init(fs_info, &root->log_csum_range,
1034 IO_TREE_LOG_CSUM_RANGE, NULL);
1035 }
017e5369 1036
5f3ab90a 1037 spin_lock_init(&root->root_item_lock);
370a11b8 1038 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1039#ifdef CONFIG_BTRFS_DEBUG
1040 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 1041 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 1042 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 1043 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 1044#endif
3768f368
CM
1045}
1046
74e4d827 1047static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1048 u64 objectid, gfp_t flags)
6f07e42e 1049{
74e4d827 1050 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1051 if (root)
96dfcb46 1052 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1053 return root;
1054}
1055
06ea65a3
JB
1056#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1057/* Should only be used by the testing infrastructure */
da17066c 1058struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1059{
1060 struct btrfs_root *root;
1061
7c0260ee
JM
1062 if (!fs_info)
1063 return ERR_PTR(-EINVAL);
1064
96dfcb46 1065 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1066 if (!root)
1067 return ERR_PTR(-ENOMEM);
da17066c 1068
b9ef22de 1069 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1070 root->alloc_bytenr = 0;
06ea65a3
JB
1071
1072 return root;
1073}
1074#endif
1075
abed4aaa
JB
1076static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1077{
1078 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1079 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1080
1081 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1082}
1083
1084static int global_root_key_cmp(const void *k, const struct rb_node *node)
1085{
1086 const struct btrfs_key *key = k;
1087 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1088
1089 return btrfs_comp_cpu_keys(key, &root->root_key);
1090}
1091
1092int btrfs_global_root_insert(struct btrfs_root *root)
1093{
1094 struct btrfs_fs_info *fs_info = root->fs_info;
1095 struct rb_node *tmp;
1096
1097 write_lock(&fs_info->global_root_lock);
1098 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1099 write_unlock(&fs_info->global_root_lock);
1100 ASSERT(!tmp);
1101
1102 return tmp ? -EEXIST : 0;
1103}
1104
1105void btrfs_global_root_delete(struct btrfs_root *root)
1106{
1107 struct btrfs_fs_info *fs_info = root->fs_info;
1108
1109 write_lock(&fs_info->global_root_lock);
1110 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1111 write_unlock(&fs_info->global_root_lock);
1112}
1113
1114struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1115 struct btrfs_key *key)
1116{
1117 struct rb_node *node;
1118 struct btrfs_root *root = NULL;
1119
1120 read_lock(&fs_info->global_root_lock);
1121 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1122 if (node)
1123 root = container_of(node, struct btrfs_root, rb_node);
1124 read_unlock(&fs_info->global_root_lock);
1125
1126 return root;
1127}
1128
f7238e50
JB
1129static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1130{
1131 struct btrfs_block_group *block_group;
1132 u64 ret;
1133
1134 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1135 return 0;
1136
1137 if (bytenr)
1138 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1139 else
1140 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1141 ASSERT(block_group);
1142 if (!block_group)
1143 return 0;
1144 ret = block_group->global_root_id;
1145 btrfs_put_block_group(block_group);
1146
1147 return ret;
1148}
1149
abed4aaa
JB
1150struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1151{
1152 struct btrfs_key key = {
1153 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1154 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1155 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1156 };
1157
1158 return btrfs_global_root(fs_info, &key);
1159}
1160
1161struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1162{
1163 struct btrfs_key key = {
1164 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1165 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1166 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1167 };
1168
1169 return btrfs_global_root(fs_info, &key);
1170}
1171
51129b33
JB
1172struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1173{
1174 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1175 return fs_info->block_group_root;
1176 return btrfs_extent_root(fs_info, 0);
1177}
1178
20897f5c 1179struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1180 u64 objectid)
1181{
9b7a2440 1182 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1183 struct extent_buffer *leaf;
1184 struct btrfs_root *tree_root = fs_info->tree_root;
1185 struct btrfs_root *root;
1186 struct btrfs_key key;
b89f6d1f 1187 unsigned int nofs_flag;
20897f5c 1188 int ret = 0;
20897f5c 1189
b89f6d1f
FM
1190 /*
1191 * We're holding a transaction handle, so use a NOFS memory allocation
1192 * context to avoid deadlock if reclaim happens.
1193 */
1194 nofs_flag = memalloc_nofs_save();
96dfcb46 1195 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1196 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1197 if (!root)
1198 return ERR_PTR(-ENOMEM);
1199
20897f5c
AJ
1200 root->root_key.objectid = objectid;
1201 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1202 root->root_key.offset = 0;
1203
9631e4cc
JB
1204 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1205 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1206 if (IS_ERR(leaf)) {
1207 ret = PTR_ERR(leaf);
1dd05682 1208 leaf = NULL;
c1b07854 1209 goto fail;
20897f5c
AJ
1210 }
1211
20897f5c 1212 root->node = leaf;
20897f5c
AJ
1213 btrfs_mark_buffer_dirty(leaf);
1214
1215 root->commit_root = btrfs_root_node(root);
27cdeb70 1216 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1217
f944d2cb
DS
1218 btrfs_set_root_flags(&root->root_item, 0);
1219 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1220 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1221 btrfs_set_root_generation(&root->root_item, trans->transid);
1222 btrfs_set_root_level(&root->root_item, 0);
1223 btrfs_set_root_refs(&root->root_item, 1);
1224 btrfs_set_root_used(&root->root_item, leaf->len);
1225 btrfs_set_root_last_snapshot(&root->root_item, 0);
1226 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1227 if (is_fstree(objectid))
807fc790
AS
1228 generate_random_guid(root->root_item.uuid);
1229 else
1230 export_guid(root->root_item.uuid, &guid_null);
c8422684 1231 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1232
8a6a87cd
BB
1233 btrfs_tree_unlock(leaf);
1234
20897f5c
AJ
1235 key.objectid = objectid;
1236 key.type = BTRFS_ROOT_ITEM_KEY;
1237 key.offset = 0;
1238 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1239 if (ret)
1240 goto fail;
1241
1dd05682
TI
1242 return root;
1243
8a6a87cd 1244fail:
00246528 1245 btrfs_put_root(root);
20897f5c 1246
1dd05682 1247 return ERR_PTR(ret);
20897f5c
AJ
1248}
1249
7237f183
YZ
1250static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1251 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1252{
1253 struct btrfs_root *root;
e02119d5 1254
96dfcb46 1255 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1256 if (!root)
7237f183 1257 return ERR_PTR(-ENOMEM);
e02119d5 1258
e02119d5
CM
1259 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1260 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1261 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1262
6ab6ebb7
NA
1263 return root;
1264}
1265
1266int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1267 struct btrfs_root *root)
1268{
1269 struct extent_buffer *leaf;
1270
7237f183 1271 /*
92a7cc42 1272 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1273 *
92a7cc42
QW
1274 * Log trees are not exposed to user space thus can't be snapshotted,
1275 * and they go away before a real commit is actually done.
1276 *
1277 * They do store pointers to file data extents, and those reference
1278 * counts still get updated (along with back refs to the log tree).
7237f183 1279 */
e02119d5 1280
4d75f8a9 1281 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1282 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1283 if (IS_ERR(leaf))
1284 return PTR_ERR(leaf);
e02119d5 1285
7237f183 1286 root->node = leaf;
e02119d5 1287
e02119d5
CM
1288 btrfs_mark_buffer_dirty(root->node);
1289 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1290
1291 return 0;
7237f183
YZ
1292}
1293
1294int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1295 struct btrfs_fs_info *fs_info)
1296{
1297 struct btrfs_root *log_root;
1298
1299 log_root = alloc_log_tree(trans, fs_info);
1300 if (IS_ERR(log_root))
1301 return PTR_ERR(log_root);
6ab6ebb7 1302
3ddebf27
NA
1303 if (!btrfs_is_zoned(fs_info)) {
1304 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1305
1306 if (ret) {
1307 btrfs_put_root(log_root);
1308 return ret;
1309 }
6ab6ebb7
NA
1310 }
1311
7237f183
YZ
1312 WARN_ON(fs_info->log_root_tree);
1313 fs_info->log_root_tree = log_root;
1314 return 0;
1315}
1316
1317int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1318 struct btrfs_root *root)
1319{
0b246afa 1320 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1321 struct btrfs_root *log_root;
1322 struct btrfs_inode_item *inode_item;
6ab6ebb7 1323 int ret;
7237f183 1324
0b246afa 1325 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1326 if (IS_ERR(log_root))
1327 return PTR_ERR(log_root);
1328
6ab6ebb7
NA
1329 ret = btrfs_alloc_log_tree_node(trans, log_root);
1330 if (ret) {
1331 btrfs_put_root(log_root);
1332 return ret;
1333 }
1334
7237f183
YZ
1335 log_root->last_trans = trans->transid;
1336 log_root->root_key.offset = root->root_key.objectid;
1337
1338 inode_item = &log_root->root_item.inode;
3cae210f
QW
1339 btrfs_set_stack_inode_generation(inode_item, 1);
1340 btrfs_set_stack_inode_size(inode_item, 3);
1341 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1342 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1343 fs_info->nodesize);
3cae210f 1344 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1345
5d4f98a2 1346 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1347
1348 WARN_ON(root->log_root);
1349 root->log_root = log_root;
1350 root->log_transid = 0;
d1433deb 1351 root->log_transid_committed = -1;
257c62e1 1352 root->last_log_commit = 0;
e02119d5
CM
1353 return 0;
1354}
1355
49d11bea
JB
1356static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1357 struct btrfs_path *path,
1358 struct btrfs_key *key)
e02119d5
CM
1359{
1360 struct btrfs_root *root;
1361 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1362 u64 generation;
cb517eab 1363 int ret;
581c1760 1364 int level;
0f7d52f4 1365
96dfcb46 1366 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1367 if (!root)
1368 return ERR_PTR(-ENOMEM);
0f7d52f4 1369
cb517eab
MX
1370 ret = btrfs_find_root(tree_root, key, path,
1371 &root->root_item, &root->root_key);
0f7d52f4 1372 if (ret) {
13a8a7c8
YZ
1373 if (ret > 0)
1374 ret = -ENOENT;
49d11bea 1375 goto fail;
0f7d52f4 1376 }
13a8a7c8 1377
84234f3a 1378 generation = btrfs_root_generation(&root->root_item);
581c1760 1379 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1380 root->node = read_tree_block(fs_info,
1381 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1382 key->objectid, generation, level, NULL);
64c043de
LB
1383 if (IS_ERR(root->node)) {
1384 ret = PTR_ERR(root->node);
8c38938c 1385 root->node = NULL;
49d11bea 1386 goto fail;
4eb150d6
QW
1387 }
1388 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1389 ret = -EIO;
49d11bea 1390 goto fail;
416bc658 1391 }
88c602ab
QW
1392
1393 /*
1394 * For real fs, and not log/reloc trees, root owner must
1395 * match its root node owner
1396 */
1397 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1398 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1399 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1400 root->root_key.objectid != btrfs_header_owner(root->node)) {
1401 btrfs_crit(fs_info,
1402"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1403 root->root_key.objectid, root->node->start,
1404 btrfs_header_owner(root->node),
1405 root->root_key.objectid);
1406 ret = -EUCLEAN;
1407 goto fail;
1408 }
5d4f98a2 1409 root->commit_root = btrfs_root_node(root);
cb517eab 1410 return root;
49d11bea 1411fail:
00246528 1412 btrfs_put_root(root);
49d11bea
JB
1413 return ERR_PTR(ret);
1414}
1415
1416struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1417 struct btrfs_key *key)
1418{
1419 struct btrfs_root *root;
1420 struct btrfs_path *path;
1421
1422 path = btrfs_alloc_path();
1423 if (!path)
1424 return ERR_PTR(-ENOMEM);
1425 root = read_tree_root_path(tree_root, path, key);
1426 btrfs_free_path(path);
1427
1428 return root;
cb517eab
MX
1429}
1430
2dfb1e43
QW
1431/*
1432 * Initialize subvolume root in-memory structure
1433 *
1434 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1435 */
1436static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1437{
1438 int ret;
dcc3eb96 1439 unsigned int nofs_flag;
cb517eab 1440
dcc3eb96
NB
1441 /*
1442 * We might be called under a transaction (e.g. indirect backref
1443 * resolution) which could deadlock if it triggers memory reclaim
1444 */
1445 nofs_flag = memalloc_nofs_save();
1446 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1447 memalloc_nofs_restore(nofs_flag);
1448 if (ret)
8257b2dc 1449 goto fail;
8257b2dc 1450
aeb935a4 1451 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1452 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1453 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1454 btrfs_check_and_init_root_item(&root->root_item);
1455 }
1456
851fd730
QW
1457 /*
1458 * Don't assign anonymous block device to roots that are not exposed to
1459 * userspace, the id pool is limited to 1M
1460 */
1461 if (is_fstree(root->root_key.objectid) &&
1462 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1463 if (!anon_dev) {
1464 ret = get_anon_bdev(&root->anon_dev);
1465 if (ret)
1466 goto fail;
1467 } else {
1468 root->anon_dev = anon_dev;
1469 }
851fd730 1470 }
f32e48e9
CR
1471
1472 mutex_lock(&root->objectid_mutex);
453e4873 1473 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1474 if (ret) {
1475 mutex_unlock(&root->objectid_mutex);
876d2cf1 1476 goto fail;
f32e48e9
CR
1477 }
1478
6b8fad57 1479 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1480
1481 mutex_unlock(&root->objectid_mutex);
1482
cb517eab
MX
1483 return 0;
1484fail:
84db5ccf 1485 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1486 return ret;
1487}
1488
a98db0f3
JB
1489static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1490 u64 root_id)
cb517eab
MX
1491{
1492 struct btrfs_root *root;
1493
fc7cbcd4
DS
1494 spin_lock(&fs_info->fs_roots_radix_lock);
1495 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1496 (unsigned long)root_id);
bc44d7c4 1497 if (root)
00246528 1498 root = btrfs_grab_root(root);
fc7cbcd4 1499 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1500 return root;
1501}
1502
49d11bea
JB
1503static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1504 u64 objectid)
1505{
abed4aaa
JB
1506 struct btrfs_key key = {
1507 .objectid = objectid,
1508 .type = BTRFS_ROOT_ITEM_KEY,
1509 .offset = 0,
1510 };
1511
49d11bea
JB
1512 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1513 return btrfs_grab_root(fs_info->tree_root);
1514 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1515 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1516 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1517 return btrfs_grab_root(fs_info->chunk_root);
1518 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1519 return btrfs_grab_root(fs_info->dev_root);
1520 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1521 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1522 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1523 return btrfs_grab_root(fs_info->quota_root) ?
1524 fs_info->quota_root : ERR_PTR(-ENOENT);
1525 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1526 return btrfs_grab_root(fs_info->uuid_root) ?
1527 fs_info->uuid_root : ERR_PTR(-ENOENT);
14033b08
QW
1528 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1529 return btrfs_grab_root(fs_info->block_group_root) ?
1530 fs_info->block_group_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1531 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1532 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1533
1534 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1535 }
49d11bea
JB
1536 return NULL;
1537}
1538
cb517eab
MX
1539int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1540 struct btrfs_root *root)
1541{
1542 int ret;
1543
fc7cbcd4
DS
1544 ret = radix_tree_preload(GFP_NOFS);
1545 if (ret)
1546 return ret;
1547
1548 spin_lock(&fs_info->fs_roots_radix_lock);
1549 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1550 (unsigned long)root->root_key.objectid,
1551 root);
af01d2e5 1552 if (ret == 0) {
00246528 1553 btrfs_grab_root(root);
fc7cbcd4 1554 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1555 }
fc7cbcd4
DS
1556 spin_unlock(&fs_info->fs_roots_radix_lock);
1557 radix_tree_preload_end();
cb517eab
MX
1558
1559 return ret;
1560}
1561
bd647ce3
JB
1562void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1563{
1564#ifdef CONFIG_BTRFS_DEBUG
1565 struct btrfs_root *root;
1566
1567 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1568 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1569
bd647ce3
JB
1570 root = list_first_entry(&fs_info->allocated_roots,
1571 struct btrfs_root, leak_list);
457f1864 1572 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1573 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1574 refcount_read(&root->refs));
1575 while (refcount_read(&root->refs) > 1)
00246528
JB
1576 btrfs_put_root(root);
1577 btrfs_put_root(root);
bd647ce3
JB
1578 }
1579#endif
1580}
1581
abed4aaa
JB
1582static void free_global_roots(struct btrfs_fs_info *fs_info)
1583{
1584 struct btrfs_root *root;
1585 struct rb_node *node;
1586
1587 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1588 root = rb_entry(node, struct btrfs_root, rb_node);
1589 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1590 btrfs_put_root(root);
1591 }
1592}
1593
0d4b0463
JB
1594void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1595{
141386e1
JB
1596 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1597 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1598 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1599 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1600 btrfs_free_csum_hash(fs_info);
1601 btrfs_free_stripe_hash_table(fs_info);
1602 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1603 kfree(fs_info->balance_ctl);
1604 kfree(fs_info->delayed_root);
abed4aaa 1605 free_global_roots(fs_info);
00246528
JB
1606 btrfs_put_root(fs_info->tree_root);
1607 btrfs_put_root(fs_info->chunk_root);
1608 btrfs_put_root(fs_info->dev_root);
00246528
JB
1609 btrfs_put_root(fs_info->quota_root);
1610 btrfs_put_root(fs_info->uuid_root);
00246528 1611 btrfs_put_root(fs_info->fs_root);
aeb935a4 1612 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1613 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1614 btrfs_check_leaked_roots(fs_info);
3fd63727 1615 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1616 kfree(fs_info->super_copy);
1617 kfree(fs_info->super_for_commit);
8481dd80 1618 kfree(fs_info->subpage_info);
0d4b0463
JB
1619 kvfree(fs_info);
1620}
1621
1622
2dfb1e43
QW
1623/*
1624 * Get an in-memory reference of a root structure.
1625 *
1626 * For essential trees like root/extent tree, we grab it from fs_info directly.
1627 * For subvolume trees, we check the cached filesystem roots first. If not
1628 * found, then read it from disk and add it to cached fs roots.
1629 *
1630 * Caller should release the root by calling btrfs_put_root() after the usage.
1631 *
1632 * NOTE: Reloc and log trees can't be read by this function as they share the
1633 * same root objectid.
1634 *
1635 * @objectid: root id
1636 * @anon_dev: preallocated anonymous block device number for new roots,
1637 * pass 0 for new allocation.
1638 * @check_ref: whether to check root item references, If true, return -ENOENT
1639 * for orphan roots
1640 */
1641static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1642 u64 objectid, dev_t anon_dev,
1643 bool check_ref)
5eda7b5e
CM
1644{
1645 struct btrfs_root *root;
381cf658 1646 struct btrfs_path *path;
1d4c08e0 1647 struct btrfs_key key;
5eda7b5e
CM
1648 int ret;
1649
49d11bea
JB
1650 root = btrfs_get_global_root(fs_info, objectid);
1651 if (root)
1652 return root;
4df27c4d 1653again:
56e9357a 1654 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1655 if (root) {
2dfb1e43
QW
1656 /* Shouldn't get preallocated anon_dev for cached roots */
1657 ASSERT(!anon_dev);
bc44d7c4 1658 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1659 btrfs_put_root(root);
48475471 1660 return ERR_PTR(-ENOENT);
bc44d7c4 1661 }
5eda7b5e 1662 return root;
48475471 1663 }
5eda7b5e 1664
56e9357a
DS
1665 key.objectid = objectid;
1666 key.type = BTRFS_ROOT_ITEM_KEY;
1667 key.offset = (u64)-1;
1668 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1669 if (IS_ERR(root))
1670 return root;
3394e160 1671
c00869f1 1672 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1673 ret = -ENOENT;
581bb050 1674 goto fail;
35a30d7c 1675 }
581bb050 1676
2dfb1e43 1677 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1678 if (ret)
1679 goto fail;
3394e160 1680
381cf658
DS
1681 path = btrfs_alloc_path();
1682 if (!path) {
1683 ret = -ENOMEM;
1684 goto fail;
1685 }
1d4c08e0
DS
1686 key.objectid = BTRFS_ORPHAN_OBJECTID;
1687 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1688 key.offset = objectid;
1d4c08e0
DS
1689
1690 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1691 btrfs_free_path(path);
d68fc57b
YZ
1692 if (ret < 0)
1693 goto fail;
1694 if (ret == 0)
27cdeb70 1695 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1696
cb517eab 1697 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1698 if (ret) {
168a2f77
JJB
1699 if (ret == -EEXIST) {
1700 btrfs_put_root(root);
4df27c4d 1701 goto again;
168a2f77 1702 }
4df27c4d 1703 goto fail;
0f7d52f4 1704 }
edbd8d4e 1705 return root;
4df27c4d 1706fail:
33fab972
FM
1707 /*
1708 * If our caller provided us an anonymous device, then it's his
143823cf 1709 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1710 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1711 * and once again by our caller.
1712 */
1713 if (anon_dev)
1714 root->anon_dev = 0;
8c38938c 1715 btrfs_put_root(root);
4df27c4d 1716 return ERR_PTR(ret);
edbd8d4e
CM
1717}
1718
2dfb1e43
QW
1719/*
1720 * Get in-memory reference of a root structure
1721 *
1722 * @objectid: tree objectid
1723 * @check_ref: if set, verify that the tree exists and the item has at least
1724 * one reference
1725 */
1726struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1727 u64 objectid, bool check_ref)
1728{
1729 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1730}
1731
1732/*
1733 * Get in-memory reference of a root structure, created as new, optionally pass
1734 * the anonymous block device id
1735 *
1736 * @objectid: tree objectid
1737 * @anon_dev: if zero, allocate a new anonymous block device or use the
1738 * parameter value
1739 */
1740struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1741 u64 objectid, dev_t anon_dev)
1742{
1743 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1744}
1745
49d11bea
JB
1746/*
1747 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1748 * @fs_info: the fs_info
1749 * @objectid: the objectid we need to lookup
1750 *
1751 * This is exclusively used for backref walking, and exists specifically because
1752 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1753 * creation time, which means we may have to read the tree_root in order to look
1754 * up a fs root that is not in memory. If the root is not in memory we will
1755 * read the tree root commit root and look up the fs root from there. This is a
1756 * temporary root, it will not be inserted into the radix tree as it doesn't
1757 * have the most uptodate information, it'll simply be discarded once the
1758 * backref code is finished using the root.
1759 */
1760struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1761 struct btrfs_path *path,
1762 u64 objectid)
1763{
1764 struct btrfs_root *root;
1765 struct btrfs_key key;
1766
1767 ASSERT(path->search_commit_root && path->skip_locking);
1768
1769 /*
1770 * This can return -ENOENT if we ask for a root that doesn't exist, but
1771 * since this is called via the backref walking code we won't be looking
1772 * up a root that doesn't exist, unless there's corruption. So if root
1773 * != NULL just return it.
1774 */
1775 root = btrfs_get_global_root(fs_info, objectid);
1776 if (root)
1777 return root;
1778
1779 root = btrfs_lookup_fs_root(fs_info, objectid);
1780 if (root)
1781 return root;
1782
1783 key.objectid = objectid;
1784 key.type = BTRFS_ROOT_ITEM_KEY;
1785 key.offset = (u64)-1;
1786 root = read_tree_root_path(fs_info->tree_root, path, &key);
1787 btrfs_release_path(path);
1788
1789 return root;
1790}
1791
a74a4b97
CM
1792static int cleaner_kthread(void *arg)
1793{
0d031dc4 1794 struct btrfs_fs_info *fs_info = arg;
d0278245 1795 int again;
a74a4b97 1796
d6fd0ae2 1797 while (1) {
d0278245 1798 again = 0;
a74a4b97 1799
fd340d0f
JB
1800 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1801
d0278245 1802 /* Make the cleaner go to sleep early. */
2ff7e61e 1803 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1804 goto sleep;
1805
90c711ab
ZB
1806 /*
1807 * Do not do anything if we might cause open_ctree() to block
1808 * before we have finished mounting the filesystem.
1809 */
0b246afa 1810 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1811 goto sleep;
1812
0b246afa 1813 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1814 goto sleep;
1815
dc7f370c
MX
1816 /*
1817 * Avoid the problem that we change the status of the fs
1818 * during the above check and trylock.
1819 */
2ff7e61e 1820 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1821 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1822 goto sleep;
76dda93c 1823 }
a74a4b97 1824
2ff7e61e 1825 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1826
33c44184 1827 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1828 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1829
1830 /*
05323cd1
MX
1831 * The defragger has dealt with the R/O remount and umount,
1832 * needn't do anything special here.
d0278245 1833 */
0b246afa 1834 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1835
1836 /*
f3372065 1837 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1838 * with relocation (btrfs_relocate_chunk) and relocation
1839 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1840 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1841 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1842 * unused block groups.
1843 */
0b246afa 1844 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1845
1846 /*
1847 * Reclaim block groups in the reclaim_bgs list after we deleted
1848 * all unused block_groups. This possibly gives us some more free
1849 * space.
1850 */
1851 btrfs_reclaim_bgs(fs_info);
d0278245 1852sleep:
a0a1db70 1853 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1854 if (kthread_should_park())
1855 kthread_parkme();
1856 if (kthread_should_stop())
1857 return 0;
838fe188 1858 if (!again) {
a74a4b97 1859 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1860 schedule();
a74a4b97
CM
1861 __set_current_state(TASK_RUNNING);
1862 }
da288d28 1863 }
a74a4b97
CM
1864}
1865
1866static int transaction_kthread(void *arg)
1867{
1868 struct btrfs_root *root = arg;
0b246afa 1869 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1870 struct btrfs_trans_handle *trans;
1871 struct btrfs_transaction *cur;
8929ecfa 1872 u64 transid;
643900be 1873 time64_t delta;
a74a4b97 1874 unsigned long delay;
914b2007 1875 bool cannot_commit;
a74a4b97
CM
1876
1877 do {
914b2007 1878 cannot_commit = false;
ba1bc00f 1879 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1880 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1881
0b246afa
JM
1882 spin_lock(&fs_info->trans_lock);
1883 cur = fs_info->running_transaction;
a74a4b97 1884 if (!cur) {
0b246afa 1885 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1886 goto sleep;
1887 }
31153d81 1888
643900be 1889 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1890 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1891 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1892 delta < fs_info->commit_interval) {
0b246afa 1893 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1894 delay -= msecs_to_jiffies((delta - 1) * 1000);
1895 delay = min(delay,
1896 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1897 goto sleep;
1898 }
8929ecfa 1899 transid = cur->transid;
0b246afa 1900 spin_unlock(&fs_info->trans_lock);
56bec294 1901
79787eaa 1902 /* If the file system is aborted, this will always fail. */
354aa0fb 1903 trans = btrfs_attach_transaction(root);
914b2007 1904 if (IS_ERR(trans)) {
354aa0fb
MX
1905 if (PTR_ERR(trans) != -ENOENT)
1906 cannot_commit = true;
79787eaa 1907 goto sleep;
914b2007 1908 }
8929ecfa 1909 if (transid == trans->transid) {
3a45bb20 1910 btrfs_commit_transaction(trans);
8929ecfa 1911 } else {
3a45bb20 1912 btrfs_end_transaction(trans);
8929ecfa 1913 }
a74a4b97 1914sleep:
0b246afa
JM
1915 wake_up_process(fs_info->cleaner_kthread);
1916 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1917
84961539 1918 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1919 btrfs_cleanup_transaction(fs_info);
ce63f891 1920 if (!kthread_should_stop() &&
0b246afa 1921 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1922 cannot_commit))
bc5511d0 1923 schedule_timeout_interruptible(delay);
a74a4b97
CM
1924 } while (!kthread_should_stop());
1925 return 0;
1926}
1927
af31f5e5 1928/*
01f0f9da
NB
1929 * This will find the highest generation in the array of root backups. The
1930 * index of the highest array is returned, or -EINVAL if we can't find
1931 * anything.
af31f5e5
CM
1932 *
1933 * We check to make sure the array is valid by comparing the
1934 * generation of the latest root in the array with the generation
1935 * in the super block. If they don't match we pitch it.
1936 */
01f0f9da 1937static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1938{
01f0f9da 1939 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1940 u64 cur;
af31f5e5
CM
1941 struct btrfs_root_backup *root_backup;
1942 int i;
1943
1944 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1945 root_backup = info->super_copy->super_roots + i;
1946 cur = btrfs_backup_tree_root_gen(root_backup);
1947 if (cur == newest_gen)
01f0f9da 1948 return i;
af31f5e5
CM
1949 }
1950
01f0f9da 1951 return -EINVAL;
af31f5e5
CM
1952}
1953
af31f5e5
CM
1954/*
1955 * copy all the root pointers into the super backup array.
1956 * this will bump the backup pointer by one when it is
1957 * done
1958 */
1959static void backup_super_roots(struct btrfs_fs_info *info)
1960{
6ef108dd 1961 const int next_backup = info->backup_root_index;
af31f5e5 1962 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1963
1964 root_backup = info->super_for_commit->super_roots + next_backup;
1965
1966 /*
1967 * make sure all of our padding and empty slots get zero filled
1968 * regardless of which ones we use today
1969 */
1970 memset(root_backup, 0, sizeof(*root_backup));
1971
1972 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1973
1974 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1975 btrfs_set_backup_tree_root_gen(root_backup,
1976 btrfs_header_generation(info->tree_root->node));
1977
1978 btrfs_set_backup_tree_root_level(root_backup,
1979 btrfs_header_level(info->tree_root->node));
1980
1981 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1982 btrfs_set_backup_chunk_root_gen(root_backup,
1983 btrfs_header_generation(info->chunk_root->node));
1984 btrfs_set_backup_chunk_root_level(root_backup,
1985 btrfs_header_level(info->chunk_root->node));
1986
1c56ab99 1987 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1988 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1989 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1990
1991 btrfs_set_backup_extent_root(root_backup,
1992 extent_root->node->start);
1993 btrfs_set_backup_extent_root_gen(root_backup,
1994 btrfs_header_generation(extent_root->node));
1995 btrfs_set_backup_extent_root_level(root_backup,
1996 btrfs_header_level(extent_root->node));
f7238e50
JB
1997
1998 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1999 btrfs_set_backup_csum_root_gen(root_backup,
2000 btrfs_header_generation(csum_root->node));
2001 btrfs_set_backup_csum_root_level(root_backup,
2002 btrfs_header_level(csum_root->node));
9c54e80d 2003 }
af31f5e5 2004
7c7e82a7
CM
2005 /*
2006 * we might commit during log recovery, which happens before we set
2007 * the fs_root. Make sure it is valid before we fill it in.
2008 */
2009 if (info->fs_root && info->fs_root->node) {
2010 btrfs_set_backup_fs_root(root_backup,
2011 info->fs_root->node->start);
2012 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2013 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2014 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2015 btrfs_header_level(info->fs_root->node));
7c7e82a7 2016 }
af31f5e5
CM
2017
2018 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2019 btrfs_set_backup_dev_root_gen(root_backup,
2020 btrfs_header_generation(info->dev_root->node));
2021 btrfs_set_backup_dev_root_level(root_backup,
2022 btrfs_header_level(info->dev_root->node));
2023
af31f5e5
CM
2024 btrfs_set_backup_total_bytes(root_backup,
2025 btrfs_super_total_bytes(info->super_copy));
2026 btrfs_set_backup_bytes_used(root_backup,
2027 btrfs_super_bytes_used(info->super_copy));
2028 btrfs_set_backup_num_devices(root_backup,
2029 btrfs_super_num_devices(info->super_copy));
2030
2031 /*
2032 * if we don't copy this out to the super_copy, it won't get remembered
2033 * for the next commit
2034 */
2035 memcpy(&info->super_copy->super_roots,
2036 &info->super_for_commit->super_roots,
2037 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2038}
2039
bd2336b2
NB
2040/*
2041 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2042 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2043 *
2044 * fs_info - filesystem whose backup roots need to be read
2045 * priority - priority of backup root required
2046 *
2047 * Returns backup root index on success and -EINVAL otherwise.
2048 */
2049static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2050{
2051 int backup_index = find_newest_super_backup(fs_info);
2052 struct btrfs_super_block *super = fs_info->super_copy;
2053 struct btrfs_root_backup *root_backup;
2054
2055 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2056 if (priority == 0)
2057 return backup_index;
2058
2059 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2060 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2061 } else {
2062 return -EINVAL;
2063 }
2064
2065 root_backup = super->super_roots + backup_index;
2066
2067 btrfs_set_super_generation(super,
2068 btrfs_backup_tree_root_gen(root_backup));
2069 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2070 btrfs_set_super_root_level(super,
2071 btrfs_backup_tree_root_level(root_backup));
2072 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2073
2074 /*
2075 * Fixme: the total bytes and num_devices need to match or we should
2076 * need a fsck
2077 */
2078 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2079 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2080
2081 return backup_index;
2082}
2083
7abadb64
LB
2084/* helper to cleanup workers */
2085static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2086{
dc6e3209 2087 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2088 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2089 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2090 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
2091 if (fs_info->endio_workers)
2092 destroy_workqueue(fs_info->endio_workers);
d34e123d
CH
2093 if (fs_info->endio_raid56_workers)
2094 destroy_workqueue(fs_info->endio_raid56_workers);
385de0ef
CH
2095 if (fs_info->rmw_workers)
2096 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
2097 if (fs_info->compressed_write_workers)
2098 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
2099 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2100 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2101 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2102 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2103 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2104 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2105 if (fs_info->discard_ctl.discard_workers)
2106 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2107 /*
2108 * Now that all other work queues are destroyed, we can safely destroy
2109 * the queues used for metadata I/O, since tasks from those other work
2110 * queues can do metadata I/O operations.
2111 */
d7b9416f
CH
2112 if (fs_info->endio_meta_workers)
2113 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2114}
2115
2e9f5954
R
2116static void free_root_extent_buffers(struct btrfs_root *root)
2117{
2118 if (root) {
2119 free_extent_buffer(root->node);
2120 free_extent_buffer(root->commit_root);
2121 root->node = NULL;
2122 root->commit_root = NULL;
2123 }
2124}
2125
abed4aaa
JB
2126static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2127{
2128 struct btrfs_root *root, *tmp;
2129
2130 rbtree_postorder_for_each_entry_safe(root, tmp,
2131 &fs_info->global_root_tree,
2132 rb_node)
2133 free_root_extent_buffers(root);
2134}
2135
af31f5e5 2136/* helper to cleanup tree roots */
4273eaff 2137static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2138{
2e9f5954 2139 free_root_extent_buffers(info->tree_root);
655b09fe 2140
abed4aaa 2141 free_global_root_pointers(info);
2e9f5954 2142 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2143 free_root_extent_buffers(info->quota_root);
2144 free_root_extent_buffers(info->uuid_root);
8c38938c 2145 free_root_extent_buffers(info->fs_root);
aeb935a4 2146 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2147 free_root_extent_buffers(info->block_group_root);
4273eaff 2148 if (free_chunk_root)
2e9f5954 2149 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2150}
2151
8c38938c
JB
2152void btrfs_put_root(struct btrfs_root *root)
2153{
2154 if (!root)
2155 return;
2156
2157 if (refcount_dec_and_test(&root->refs)) {
2158 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2159 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2160 if (root->anon_dev)
2161 free_anon_bdev(root->anon_dev);
2162 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2163 free_root_extent_buffers(root);
8c38938c 2164#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2165 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2166 list_del_init(&root->leak_list);
fc7cbcd4 2167 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2168#endif
2169 kfree(root);
2170 }
2171}
2172
faa2dbf0 2173void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2174{
fc7cbcd4
DS
2175 int ret;
2176 struct btrfs_root *gang[8];
2177 int i;
171f6537
JB
2178
2179 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2180 gang[0] = list_entry(fs_info->dead_roots.next,
2181 struct btrfs_root, root_list);
2182 list_del(&gang[0]->root_list);
171f6537 2183
fc7cbcd4
DS
2184 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2185 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2186 btrfs_put_root(gang[0]);
171f6537
JB
2187 }
2188
fc7cbcd4
DS
2189 while (1) {
2190 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2191 (void **)gang, 0,
2192 ARRAY_SIZE(gang));
2193 if (!ret)
2194 break;
2195 for (i = 0; i < ret; i++)
2196 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2197 }
2198}
af31f5e5 2199
638aa7ed
ES
2200static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2201{
2202 mutex_init(&fs_info->scrub_lock);
2203 atomic_set(&fs_info->scrubs_running, 0);
2204 atomic_set(&fs_info->scrub_pause_req, 0);
2205 atomic_set(&fs_info->scrubs_paused, 0);
2206 atomic_set(&fs_info->scrub_cancel_req, 0);
2207 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2208 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2209}
2210
779a65a4
ES
2211static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2212{
2213 spin_lock_init(&fs_info->balance_lock);
2214 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2215 atomic_set(&fs_info->balance_pause_req, 0);
2216 atomic_set(&fs_info->balance_cancel_req, 0);
2217 fs_info->balance_ctl = NULL;
2218 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2219 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2220}
2221
6bccf3ab 2222static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2223{
2ff7e61e 2224 struct inode *inode = fs_info->btree_inode;
e256927b
JB
2225 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2226 fs_info->tree_root);
2ff7e61e
JM
2227
2228 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2229 set_nlink(inode, 1);
f37938e0
ES
2230 /*
2231 * we set the i_size on the btree inode to the max possible int.
2232 * the real end of the address space is determined by all of
2233 * the devices in the system
2234 */
2ff7e61e
JM
2235 inode->i_size = OFFSET_MAX;
2236 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2237
2ff7e61e 2238 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2239 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
efb0645b 2240 IO_TREE_BTREE_INODE_IO, NULL);
2ff7e61e 2241 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2242
5c8fd99f 2243 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
2244 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2245 BTRFS_I(inode)->location.type = 0;
2246 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 2247 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 2248 __insert_inode_hash(inode, hash);
f37938e0
ES
2249}
2250
ad618368
ES
2251static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2252{
ad618368 2253 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2254 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2255 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2256}
2257
f9e92e40
ES
2258static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2259{
2260 spin_lock_init(&fs_info->qgroup_lock);
2261 mutex_init(&fs_info->qgroup_ioctl_lock);
2262 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2263 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2264 fs_info->qgroup_seq = 1;
f9e92e40 2265 fs_info->qgroup_ulist = NULL;
d2c609b8 2266 fs_info->qgroup_rescan_running = false;
011b46c3 2267 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
2268 mutex_init(&fs_info->qgroup_rescan_lock);
2269}
2270
d21deec5 2271static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2272{
f7b885be 2273 u32 max_active = fs_info->thread_pool_size;
6f011058 2274 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2275
2276 fs_info->workers =
a31b4a43
CH
2277 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2278 fs_info->hipri_workers =
2279 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2280 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2281
2282 fs_info->delalloc_workers =
cb001095
JM
2283 btrfs_alloc_workqueue(fs_info, "delalloc",
2284 flags, max_active, 2);
2a458198
ES
2285
2286 fs_info->flush_workers =
cb001095
JM
2287 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2288 flags, max_active, 0);
2a458198
ES
2289
2290 fs_info->caching_workers =
cb001095 2291 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2292
2a458198 2293 fs_info->fixup_workers =
cb001095 2294 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198 2295
2a458198 2296 fs_info->endio_workers =
d7b9416f 2297 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2298 fs_info->endio_meta_workers =
d7b9416f 2299 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2a458198 2300 fs_info->endio_raid56_workers =
d34e123d 2301 alloc_workqueue("btrfs-endio-raid56", flags, max_active);
385de0ef 2302 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2303 fs_info->endio_write_workers =
cb001095
JM
2304 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2305 max_active, 2);
fed8a72d
CH
2306 fs_info->compressed_write_workers =
2307 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2308 fs_info->endio_freespace_worker =
cb001095
JM
2309 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2310 max_active, 0);
2a458198 2311 fs_info->delayed_workers =
cb001095
JM
2312 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2313 max_active, 0);
2a458198 2314 fs_info->qgroup_rescan_workers =
cb001095 2315 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2316 fs_info->discard_ctl.discard_workers =
2317 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2318
a31b4a43
CH
2319 if (!(fs_info->workers && fs_info->hipri_workers &&
2320 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2321 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2322 fs_info->compressed_write_workers &&
2a458198
ES
2323 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2324 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2325 fs_info->caching_workers && fs_info->fixup_workers &&
2326 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2327 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2328 return -ENOMEM;
2329 }
2330
2331 return 0;
2332}
2333
6d97c6e3
JT
2334static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2335{
2336 struct crypto_shash *csum_shash;
b4e967be 2337 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2338
b4e967be 2339 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2340
2341 if (IS_ERR(csum_shash)) {
2342 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2343 csum_driver);
6d97c6e3
JT
2344 return PTR_ERR(csum_shash);
2345 }
2346
2347 fs_info->csum_shash = csum_shash;
2348
c8a5f8ca
DS
2349 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2350 btrfs_super_csum_name(csum_type),
2351 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2352 return 0;
2353}
2354
63443bf5
ES
2355static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2356 struct btrfs_fs_devices *fs_devices)
2357{
2358 int ret;
63443bf5
ES
2359 struct btrfs_root *log_tree_root;
2360 struct btrfs_super_block *disk_super = fs_info->super_copy;
2361 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2362 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2363
2364 if (fs_devices->rw_devices == 0) {
f14d104d 2365 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2366 return -EIO;
2367 }
2368
96dfcb46
JB
2369 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2370 GFP_KERNEL);
63443bf5
ES
2371 if (!log_tree_root)
2372 return -ENOMEM;
2373
2ff7e61e 2374 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2375 BTRFS_TREE_LOG_OBJECTID,
2376 fs_info->generation + 1, level,
2377 NULL);
64c043de 2378 if (IS_ERR(log_tree_root->node)) {
f14d104d 2379 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2380 ret = PTR_ERR(log_tree_root->node);
8c38938c 2381 log_tree_root->node = NULL;
00246528 2382 btrfs_put_root(log_tree_root);
0eeff236 2383 return ret;
4eb150d6
QW
2384 }
2385 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2386 btrfs_err(fs_info, "failed to read log tree");
00246528 2387 btrfs_put_root(log_tree_root);
63443bf5
ES
2388 return -EIO;
2389 }
4eb150d6 2390
63443bf5
ES
2391 /* returns with log_tree_root freed on success */
2392 ret = btrfs_recover_log_trees(log_tree_root);
2393 if (ret) {
0b246afa
JM
2394 btrfs_handle_fs_error(fs_info, ret,
2395 "Failed to recover log tree");
00246528 2396 btrfs_put_root(log_tree_root);
63443bf5
ES
2397 return ret;
2398 }
2399
bc98a42c 2400 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2401 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2402 if (ret)
2403 return ret;
2404 }
2405
2406 return 0;
2407}
2408
abed4aaa
JB
2409static int load_global_roots_objectid(struct btrfs_root *tree_root,
2410 struct btrfs_path *path, u64 objectid,
2411 const char *name)
2412{
2413 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2414 struct btrfs_root *root;
f7238e50 2415 u64 max_global_id = 0;
abed4aaa
JB
2416 int ret;
2417 struct btrfs_key key = {
2418 .objectid = objectid,
2419 .type = BTRFS_ROOT_ITEM_KEY,
2420 .offset = 0,
2421 };
2422 bool found = false;
2423
2424 /* If we have IGNOREDATACSUMS skip loading these roots. */
2425 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2426 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2427 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2428 return 0;
2429 }
2430
2431 while (1) {
2432 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2433 if (ret < 0)
2434 break;
2435
2436 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2437 ret = btrfs_next_leaf(tree_root, path);
2438 if (ret) {
2439 if (ret > 0)
2440 ret = 0;
2441 break;
2442 }
2443 }
2444 ret = 0;
2445
2446 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2447 if (key.objectid != objectid)
2448 break;
2449 btrfs_release_path(path);
2450
f7238e50
JB
2451 /*
2452 * Just worry about this for extent tree, it'll be the same for
2453 * everybody.
2454 */
2455 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2456 max_global_id = max(max_global_id, key.offset);
2457
abed4aaa
JB
2458 found = true;
2459 root = read_tree_root_path(tree_root, path, &key);
2460 if (IS_ERR(root)) {
2461 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2462 ret = PTR_ERR(root);
2463 break;
2464 }
2465 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2466 ret = btrfs_global_root_insert(root);
2467 if (ret) {
2468 btrfs_put_root(root);
2469 break;
2470 }
2471 key.offset++;
2472 }
2473 btrfs_release_path(path);
2474
f7238e50
JB
2475 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2476 fs_info->nr_global_roots = max_global_id + 1;
2477
abed4aaa
JB
2478 if (!found || ret) {
2479 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2480 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2481
2482 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2483 ret = ret ? ret : -ENOENT;
2484 else
2485 ret = 0;
2486 btrfs_err(fs_info, "failed to load root %s", name);
2487 }
2488 return ret;
2489}
2490
2491static int load_global_roots(struct btrfs_root *tree_root)
2492{
2493 struct btrfs_path *path;
2494 int ret = 0;
2495
2496 path = btrfs_alloc_path();
2497 if (!path)
2498 return -ENOMEM;
2499
2500 ret = load_global_roots_objectid(tree_root, path,
2501 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2502 if (ret)
2503 goto out;
2504 ret = load_global_roots_objectid(tree_root, path,
2505 BTRFS_CSUM_TREE_OBJECTID, "csum");
2506 if (ret)
2507 goto out;
2508 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2509 goto out;
2510 ret = load_global_roots_objectid(tree_root, path,
2511 BTRFS_FREE_SPACE_TREE_OBJECTID,
2512 "free space");
2513out:
2514 btrfs_free_path(path);
2515 return ret;
2516}
2517
6bccf3ab 2518static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2519{
6bccf3ab 2520 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2521 struct btrfs_root *root;
4bbcaa64
ES
2522 struct btrfs_key location;
2523 int ret;
2524
6bccf3ab
JM
2525 BUG_ON(!fs_info->tree_root);
2526
abed4aaa
JB
2527 ret = load_global_roots(tree_root);
2528 if (ret)
2529 return ret;
2530
4bbcaa64
ES
2531 location.type = BTRFS_ROOT_ITEM_KEY;
2532 location.offset = 0;
2533
1c56ab99 2534 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2535 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2536 root = btrfs_read_tree_root(tree_root, &location);
2537 if (IS_ERR(root)) {
2538 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2539 ret = PTR_ERR(root);
2540 goto out;
2541 }
2542 } else {
2543 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2544 fs_info->block_group_root = root;
2545 }
2546 }
2547
2548 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2549 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2550 if (IS_ERR(root)) {
42437a63
JB
2551 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2552 ret = PTR_ERR(root);
2553 goto out;
2554 }
2555 } else {
2556 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2557 fs_info->dev_root = root;
f50f4353 2558 }
820a49da 2559 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2560 ret = btrfs_init_devices_late(fs_info);
2561 if (ret)
2562 goto out;
4bbcaa64 2563
aeb935a4
QW
2564 /*
2565 * This tree can share blocks with some other fs tree during relocation
2566 * and we need a proper setup by btrfs_get_fs_root
2567 */
56e9357a
DS
2568 root = btrfs_get_fs_root(tree_root->fs_info,
2569 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2570 if (IS_ERR(root)) {
42437a63
JB
2571 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2572 ret = PTR_ERR(root);
2573 goto out;
2574 }
2575 } else {
2576 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2577 fs_info->data_reloc_root = root;
aeb935a4 2578 }
aeb935a4 2579
4bbcaa64 2580 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2581 root = btrfs_read_tree_root(tree_root, &location);
2582 if (!IS_ERR(root)) {
2583 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2584 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2585 fs_info->quota_root = root;
4bbcaa64
ES
2586 }
2587
2588 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2589 root = btrfs_read_tree_root(tree_root, &location);
2590 if (IS_ERR(root)) {
42437a63
JB
2591 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2592 ret = PTR_ERR(root);
2593 if (ret != -ENOENT)
2594 goto out;
2595 }
4bbcaa64 2596 } else {
a4f3d2c4
DS
2597 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2598 fs_info->uuid_root = root;
4bbcaa64
ES
2599 }
2600
2601 return 0;
f50f4353
LB
2602out:
2603 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2604 location.objectid, ret);
2605 return ret;
4bbcaa64
ES
2606}
2607
069ec957
QW
2608/*
2609 * Real super block validation
2610 * NOTE: super csum type and incompat features will not be checked here.
2611 *
2612 * @sb: super block to check
2613 * @mirror_num: the super block number to check its bytenr:
2614 * 0 the primary (1st) sb
2615 * 1, 2 2nd and 3rd backup copy
2616 * -1 skip bytenr check
2617 */
a05d3c91
QW
2618int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2619 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2620{
21a852b0
QW
2621 u64 nodesize = btrfs_super_nodesize(sb);
2622 u64 sectorsize = btrfs_super_sectorsize(sb);
2623 int ret = 0;
2624
2625 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2626 btrfs_err(fs_info, "no valid FS found");
2627 ret = -EINVAL;
2628 }
2629 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2630 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2631 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2632 ret = -EINVAL;
2633 }
2634 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2635 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2636 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2637 ret = -EINVAL;
2638 }
2639 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2640 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2641 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2642 ret = -EINVAL;
2643 }
2644 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2645 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2646 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2647 ret = -EINVAL;
2648 }
2649
2650 /*
2651 * Check sectorsize and nodesize first, other check will need it.
2652 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2653 */
2654 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2655 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2656 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2657 ret = -EINVAL;
2658 }
0bb3eb3e
QW
2659
2660 /*
1a42daab
QW
2661 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2662 *
2663 * We can support 16K sectorsize with 64K page size without problem,
2664 * but such sectorsize/pagesize combination doesn't make much sense.
2665 * 4K will be our future standard, PAGE_SIZE is supported from the very
2666 * beginning.
0bb3eb3e 2667 */
1a42daab 2668 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2669 btrfs_err(fs_info,
0bb3eb3e 2670 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2671 sectorsize, PAGE_SIZE);
2672 ret = -EINVAL;
2673 }
0bb3eb3e 2674
21a852b0
QW
2675 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2676 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2677 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2678 ret = -EINVAL;
2679 }
2680 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2681 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2682 le32_to_cpu(sb->__unused_leafsize), nodesize);
2683 ret = -EINVAL;
2684 }
2685
2686 /* Root alignment check */
2687 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2688 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2689 btrfs_super_root(sb));
2690 ret = -EINVAL;
2691 }
2692 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2693 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2694 btrfs_super_chunk_root(sb));
2695 ret = -EINVAL;
2696 }
2697 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2698 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2699 btrfs_super_log_root(sb));
2700 ret = -EINVAL;
2701 }
2702
aefd7f70
NB
2703 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2704 BTRFS_FSID_SIZE)) {
2705 btrfs_err(fs_info,
2706 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2707 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2708 ret = -EINVAL;
2709 }
2710
2711 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2712 memcmp(fs_info->fs_devices->metadata_uuid,
2713 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2714 btrfs_err(fs_info,
2715"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2716 fs_info->super_copy->metadata_uuid,
2717 fs_info->fs_devices->metadata_uuid);
2718 ret = -EINVAL;
2719 }
2720
1c56ab99
QW
2721 /*
2722 * Artificial requirement for block-group-tree to force newer features
2723 * (free-space-tree, no-holes) so the test matrix is smaller.
2724 */
2725 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2726 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2727 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2728 btrfs_err(fs_info,
2729 "block-group-tree feature requires fres-space-tree and no-holes");
2730 ret = -EINVAL;
2731 }
2732
de37aa51 2733 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2734 BTRFS_FSID_SIZE) != 0) {
21a852b0 2735 btrfs_err(fs_info,
7239ff4b 2736 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2737 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2738 ret = -EINVAL;
2739 }
2740
2741 /*
2742 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2743 * done later
2744 */
2745 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2746 btrfs_err(fs_info, "bytes_used is too small %llu",
2747 btrfs_super_bytes_used(sb));
2748 ret = -EINVAL;
2749 }
2750 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2751 btrfs_err(fs_info, "invalid stripesize %u",
2752 btrfs_super_stripesize(sb));
2753 ret = -EINVAL;
2754 }
2755 if (btrfs_super_num_devices(sb) > (1UL << 31))
2756 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2757 btrfs_super_num_devices(sb));
2758 if (btrfs_super_num_devices(sb) == 0) {
2759 btrfs_err(fs_info, "number of devices is 0");
2760 ret = -EINVAL;
2761 }
2762
069ec957
QW
2763 if (mirror_num >= 0 &&
2764 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2765 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2766 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2767 ret = -EINVAL;
2768 }
2769
2770 /*
2771 * Obvious sys_chunk_array corruptions, it must hold at least one key
2772 * and one chunk
2773 */
2774 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2775 btrfs_err(fs_info, "system chunk array too big %u > %u",
2776 btrfs_super_sys_array_size(sb),
2777 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2778 ret = -EINVAL;
2779 }
2780 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2781 + sizeof(struct btrfs_chunk)) {
2782 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2783 btrfs_super_sys_array_size(sb),
2784 sizeof(struct btrfs_disk_key)
2785 + sizeof(struct btrfs_chunk));
2786 ret = -EINVAL;
2787 }
2788
2789 /*
2790 * The generation is a global counter, we'll trust it more than the others
2791 * but it's still possible that it's the one that's wrong.
2792 */
2793 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2794 btrfs_warn(fs_info,
2795 "suspicious: generation < chunk_root_generation: %llu < %llu",
2796 btrfs_super_generation(sb),
2797 btrfs_super_chunk_root_generation(sb));
2798 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2799 && btrfs_super_cache_generation(sb) != (u64)-1)
2800 btrfs_warn(fs_info,
2801 "suspicious: generation < cache_generation: %llu < %llu",
2802 btrfs_super_generation(sb),
2803 btrfs_super_cache_generation(sb));
2804
2805 return ret;
2806}
2807
069ec957
QW
2808/*
2809 * Validation of super block at mount time.
2810 * Some checks already done early at mount time, like csum type and incompat
2811 * flags will be skipped.
2812 */
2813static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2814{
a05d3c91 2815 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2816}
2817
75cb857d
QW
2818/*
2819 * Validation of super block at write time.
2820 * Some checks like bytenr check will be skipped as their values will be
2821 * overwritten soon.
2822 * Extra checks like csum type and incompat flags will be done here.
2823 */
2824static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2825 struct btrfs_super_block *sb)
2826{
2827 int ret;
2828
a05d3c91 2829 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2830 if (ret < 0)
2831 goto out;
e7e16f48 2832 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2833 ret = -EUCLEAN;
2834 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2835 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2836 goto out;
2837 }
2838 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2839 ret = -EUCLEAN;
2840 btrfs_err(fs_info,
2841 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2842 btrfs_super_incompat_flags(sb),
2843 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2844 goto out;
2845 }
2846out:
2847 if (ret < 0)
2848 btrfs_err(fs_info,
2849 "super block corruption detected before writing it to disk");
2850 return ret;
2851}
2852
bd676446
JB
2853static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2854{
2855 int ret = 0;
2856
2857 root->node = read_tree_block(root->fs_info, bytenr,
2858 root->root_key.objectid, gen, level, NULL);
2859 if (IS_ERR(root->node)) {
2860 ret = PTR_ERR(root->node);
2861 root->node = NULL;
4eb150d6
QW
2862 return ret;
2863 }
2864 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2865 free_extent_buffer(root->node);
2866 root->node = NULL;
4eb150d6 2867 return -EIO;
bd676446
JB
2868 }
2869
bd676446
JB
2870 btrfs_set_root_node(&root->root_item, root->node);
2871 root->commit_root = btrfs_root_node(root);
2872 btrfs_set_root_refs(&root->root_item, 1);
2873 return ret;
2874}
2875
2876static int load_important_roots(struct btrfs_fs_info *fs_info)
2877{
2878 struct btrfs_super_block *sb = fs_info->super_copy;
2879 u64 gen, bytenr;
2880 int level, ret;
2881
2882 bytenr = btrfs_super_root(sb);
2883 gen = btrfs_super_generation(sb);
2884 level = btrfs_super_root_level(sb);
2885 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2886 if (ret) {
bd676446 2887 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2888 return ret;
2889 }
14033b08 2890 return 0;
bd676446
JB
2891}
2892
6ef108dd 2893static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2894{
6ef108dd 2895 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2896 struct btrfs_super_block *sb = fs_info->super_copy;
2897 struct btrfs_root *tree_root = fs_info->tree_root;
2898 bool handle_error = false;
2899 int ret = 0;
2900 int i;
2901
2902 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2903 if (handle_error) {
2904 if (!IS_ERR(tree_root->node))
2905 free_extent_buffer(tree_root->node);
2906 tree_root->node = NULL;
2907
2908 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2909 break;
2910
2911 free_root_pointers(fs_info, 0);
2912
2913 /*
2914 * Don't use the log in recovery mode, it won't be
2915 * valid
2916 */
2917 btrfs_set_super_log_root(sb, 0);
2918
2919 /* We can't trust the free space cache either */
2920 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2921
2922 ret = read_backup_root(fs_info, i);
6ef108dd 2923 backup_index = ret;
b8522a1e
NB
2924 if (ret < 0)
2925 return ret;
2926 }
b8522a1e 2927
bd676446
JB
2928 ret = load_important_roots(fs_info);
2929 if (ret) {
217f5004 2930 handle_error = true;
b8522a1e
NB
2931 continue;
2932 }
2933
336a0d8d
NB
2934 /*
2935 * No need to hold btrfs_root::objectid_mutex since the fs
2936 * hasn't been fully initialised and we are the only user
2937 */
453e4873 2938 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2939 if (ret < 0) {
b8522a1e
NB
2940 handle_error = true;
2941 continue;
2942 }
2943
6b8fad57 2944 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2945
2946 ret = btrfs_read_roots(fs_info);
2947 if (ret < 0) {
2948 handle_error = true;
2949 continue;
2950 }
2951
2952 /* All successful */
bd676446
JB
2953 fs_info->generation = btrfs_header_generation(tree_root->node);
2954 fs_info->last_trans_committed = fs_info->generation;
d96b3424 2955 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2956
2957 /* Always begin writing backup roots after the one being used */
2958 if (backup_index < 0) {
2959 fs_info->backup_root_index = 0;
2960 } else {
2961 fs_info->backup_root_index = backup_index + 1;
2962 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2963 }
b8522a1e
NB
2964 break;
2965 }
2966
2967 return ret;
2968}
2969
8260edba 2970void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2971{
fc7cbcd4 2972 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2973 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2974 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2975 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2976 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2977 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2978 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2979 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2980 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2981 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2982 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2983 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2984 spin_lock_init(&fs_info->super_lock);
f28491e0 2985 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2986 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2987 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2988 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2989 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2990 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2991 rwlock_init(&fs_info->global_root_lock);
d7c15171 2992 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2993 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2994 mutex_init(&fs_info->reloc_mutex);
573bfb72 2995 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2996 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2997 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2998 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2999
e1489b4f 3000 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 3001 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 3002 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 3003 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3e738c53
IA
3004 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
3005 BTRFS_LOCKDEP_TRANS_COMMIT_START);
3006 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3007 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3008 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3009 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3010 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3011 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 3012
0b86a832 3013 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3014 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3015 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3016 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3017 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3018 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3019#ifdef CONFIG_BTRFS_DEBUG
3020 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3021 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3022 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3023#endif
c8bf1b67 3024 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3025 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3026 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3027 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3028 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3029 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3030 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3031 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3032 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3033 BTRFS_BLOCK_RSV_DELREFS);
3034
771ed689 3035 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3036 atomic_set(&fs_info->defrag_running, 0);
034f784d 3037 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3038 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3039 fs_info->global_root_tree = RB_ROOT;
95ac567a 3040 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3041 fs_info->metadata_ratio = 0;
4cb5300b 3042 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3043 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3044 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3045 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3046 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3047 btrfs_init_ref_verify(fs_info);
c8b97818 3048
b34b086c
CM
3049 fs_info->thread_pool_size = min_t(unsigned long,
3050 num_online_cpus() + 2, 8);
0afbaf8c 3051
199c2a9c
MX
3052 INIT_LIST_HEAD(&fs_info->ordered_roots);
3053 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3054
638aa7ed 3055 btrfs_init_scrub(fs_info);
21adbd5c
SB
3056#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3057 fs_info->check_integrity_print_mask = 0;
3058#endif
779a65a4 3059 btrfs_init_balance(fs_info);
57056740 3060 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3061
16b0c258 3062 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3063 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3064
fe119a6e
NB
3065 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3066 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3067
5a3f23d5 3068 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3069 mutex_init(&fs_info->tree_log_mutex);
925baedd 3070 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3071 mutex_init(&fs_info->transaction_kthread_mutex);
3072 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3073 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3074 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3075 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3076 init_rwsem(&fs_info->subvol_sem);
803b2f54 3077 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3078
ad618368 3079 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3080 btrfs_init_qgroup(fs_info);
b0643e59 3081 btrfs_discard_init(fs_info);
416ac51d 3082
fa9c0d79
CM
3083 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3084 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3085
e6dcd2dc 3086 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3087 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3088 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3089 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3090 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3091
da17066c
JM
3092 /* Usable values until the real ones are cached from the superblock */
3093 fs_info->nodesize = 4096;
3094 fs_info->sectorsize = 4096;
ab108d99 3095 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3096 fs_info->stripesize = 4096;
3097
f7b12a62
NA
3098 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3099
eede2bf3
OS
3100 spin_lock_init(&fs_info->swapfile_pins_lock);
3101 fs_info->swapfile_pins = RB_ROOT;
3102
18bb8bbf
JT
3103 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3104 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3105}
3106
3107static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3108{
3109 int ret;
3110
3111 fs_info->sb = sb;
3112 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3113 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3114
5deb17e1 3115 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3116 if (ret)
c75e8394 3117 return ret;
ae18c37a
JB
3118
3119 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3120 if (ret)
c75e8394 3121 return ret;
ae18c37a
JB
3122
3123 fs_info->dirty_metadata_batch = PAGE_SIZE *
3124 (1 + ilog2(nr_cpu_ids));
3125
3126 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3127 if (ret)
c75e8394 3128 return ret;
ae18c37a
JB
3129
3130 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3131 GFP_KERNEL);
3132 if (ret)
c75e8394 3133 return ret;
ae18c37a
JB
3134
3135 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3136 GFP_KERNEL);
c75e8394
JB
3137 if (!fs_info->delayed_root)
3138 return -ENOMEM;
ae18c37a
JB
3139 btrfs_init_delayed_root(fs_info->delayed_root);
3140
a0a1db70
FM
3141 if (sb_rdonly(sb))
3142 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3143
c75e8394 3144 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3145}
3146
97f4dd09
NB
3147static int btrfs_uuid_rescan_kthread(void *data)
3148{
0d031dc4 3149 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3150 int ret;
3151
3152 /*
3153 * 1st step is to iterate through the existing UUID tree and
3154 * to delete all entries that contain outdated data.
3155 * 2nd step is to add all missing entries to the UUID tree.
3156 */
3157 ret = btrfs_uuid_tree_iterate(fs_info);
3158 if (ret < 0) {
c94bec2c
JB
3159 if (ret != -EINTR)
3160 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3161 ret);
97f4dd09
NB
3162 up(&fs_info->uuid_tree_rescan_sem);
3163 return ret;
3164 }
3165 return btrfs_uuid_scan_kthread(data);
3166}
3167
3168static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3169{
3170 struct task_struct *task;
3171
3172 down(&fs_info->uuid_tree_rescan_sem);
3173 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3174 if (IS_ERR(task)) {
3175 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3176 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3177 up(&fs_info->uuid_tree_rescan_sem);
3178 return PTR_ERR(task);
3179 }
3180
3181 return 0;
3182}
3183
8cd29088
BB
3184/*
3185 * Some options only have meaning at mount time and shouldn't persist across
3186 * remounts, or be displayed. Clear these at the end of mount and remount
3187 * code paths.
3188 */
3189void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3190{
3191 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3192 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3193}
3194
44c0ca21
BB
3195/*
3196 * Mounting logic specific to read-write file systems. Shared by open_ctree
3197 * and btrfs_remount when remounting from read-only to read-write.
3198 */
3199int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3200{
3201 int ret;
94846229 3202 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3203 bool clear_free_space_tree = false;
3204
3205 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3206 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3207 clear_free_space_tree = true;
3208 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3209 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3210 btrfs_warn(fs_info, "free space tree is invalid");
3211 clear_free_space_tree = true;
3212 }
3213
3214 if (clear_free_space_tree) {
3215 btrfs_info(fs_info, "clearing free space tree");
3216 ret = btrfs_clear_free_space_tree(fs_info);
3217 if (ret) {
3218 btrfs_warn(fs_info,
3219 "failed to clear free space tree: %d", ret);
3220 goto out;
3221 }
3222 }
44c0ca21 3223
8d488a8c
FM
3224 /*
3225 * btrfs_find_orphan_roots() is responsible for finding all the dead
3226 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3227 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3228 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3229 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3230 * item before the root's tree is deleted - this means that if we unmount
3231 * or crash before the deletion completes, on the next mount we will not
3232 * delete what remains of the tree because the orphan item does not
3233 * exists anymore, which is what tells us we have a pending deletion.
3234 */
3235 ret = btrfs_find_orphan_roots(fs_info);
3236 if (ret)
3237 goto out;
3238
44c0ca21
BB
3239 ret = btrfs_cleanup_fs_roots(fs_info);
3240 if (ret)
3241 goto out;
3242
8f1c21d7
BB
3243 down_read(&fs_info->cleanup_work_sem);
3244 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3245 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3246 up_read(&fs_info->cleanup_work_sem);
3247 goto out;
3248 }
3249 up_read(&fs_info->cleanup_work_sem);
3250
44c0ca21 3251 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3252 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3253 mutex_unlock(&fs_info->cleaner_mutex);
3254 if (ret < 0) {
3255 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3256 goto out;
3257 }
3258
5011139a
BB
3259 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3260 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3261 btrfs_info(fs_info, "creating free space tree");
3262 ret = btrfs_create_free_space_tree(fs_info);
3263 if (ret) {
3264 btrfs_warn(fs_info,
3265 "failed to create free space tree: %d", ret);
3266 goto out;
3267 }
3268 }
3269
94846229
BB
3270 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3271 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3272 if (ret)
3273 goto out;
3274 }
3275
44c0ca21
BB
3276 ret = btrfs_resume_balance_async(fs_info);
3277 if (ret)
3278 goto out;
3279
3280 ret = btrfs_resume_dev_replace_async(fs_info);
3281 if (ret) {
3282 btrfs_warn(fs_info, "failed to resume dev_replace");
3283 goto out;
3284 }
3285
3286 btrfs_qgroup_rescan_resume(fs_info);
3287
3288 if (!fs_info->uuid_root) {
3289 btrfs_info(fs_info, "creating UUID tree");
3290 ret = btrfs_create_uuid_tree(fs_info);
3291 if (ret) {
3292 btrfs_warn(fs_info,
3293 "failed to create the UUID tree %d", ret);
3294 goto out;
3295 }
3296 }
3297
3298out:
3299 return ret;
3300}
3301
d7f67ac9
QW
3302/*
3303 * Do various sanity and dependency checks of different features.
3304 *
3305 * This is the place for less strict checks (like for subpage or artificial
3306 * feature dependencies).
3307 *
3308 * For strict checks or possible corruption detection, see
3309 * btrfs_validate_super().
3310 *
3311 * This should be called after btrfs_parse_options(), as some mount options
3312 * (space cache related) can modify on-disk format like free space tree and
3313 * screw up certain feature dependencies.
3314 */
3315int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb)
3316{
3317 struct btrfs_super_block *disk_super = fs_info->super_copy;
3318 u64 incompat = btrfs_super_incompat_flags(disk_super);
3319 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3320 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3321
3322 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3323 btrfs_err(fs_info,
3324 "cannot mount because of unknown incompat features (0x%llx)",
3325 incompat);
3326 return -EINVAL;
3327 }
3328
3329 /* Runtime limitation for mixed block groups. */
3330 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3331 (fs_info->sectorsize != fs_info->nodesize)) {
3332 btrfs_err(fs_info,
3333"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3334 fs_info->nodesize, fs_info->sectorsize);
3335 return -EINVAL;
3336 }
3337
3338 /* Mixed backref is an always-enabled feature. */
3339 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3340
3341 /* Set compression related flags just in case. */
3342 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3343 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3344 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3345 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3346
3347 /*
3348 * An ancient flag, which should really be marked deprecated.
3349 * Such runtime limitation doesn't really need a incompat flag.
3350 */
3351 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3352 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3353
3354 if (compat_ro_unsupp && !sb_rdonly(sb)) {
3355 btrfs_err(fs_info,
3356 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3357 compat_ro);
3358 return -EINVAL;
3359 }
3360
3361 /*
3362 * We have unsupported RO compat features, although RO mounted, we
3363 * should not cause any metadata writes, including log replay.
3364 * Or we could screw up whatever the new feature requires.
3365 */
3366 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3367 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3368 btrfs_err(fs_info,
3369"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3370 compat_ro);
3371 return -EINVAL;
3372 }
3373
3374 /*
3375 * Artificial limitations for block group tree, to force
3376 * block-group-tree to rely on no-holes and free-space-tree.
3377 */
3378 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3379 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3380 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3381 btrfs_err(fs_info,
3382"block-group-tree feature requires no-holes and free-space-tree features");
3383 return -EINVAL;
3384 }
3385
3386 /*
3387 * Subpage runtime limitation on v1 cache.
3388 *
3389 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3390 * we're already defaulting to v2 cache, no need to bother v1 as it's
3391 * going to be deprecated anyway.
3392 */
3393 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3394 btrfs_warn(fs_info,
3395 "v1 space cache is not supported for page size %lu with sectorsize %u",
3396 PAGE_SIZE, fs_info->sectorsize);
3397 return -EINVAL;
3398 }
3399
3400 /* This can be called by remount, we need to protect the super block. */
3401 spin_lock(&fs_info->super_lock);
3402 btrfs_set_super_incompat_flags(disk_super, incompat);
3403 spin_unlock(&fs_info->super_lock);
3404
3405 return 0;
3406}
3407
ae18c37a
JB
3408int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3409 char *options)
3410{
3411 u32 sectorsize;
3412 u32 nodesize;
3413 u32 stripesize;
3414 u64 generation;
3415 u64 features;
3416 u16 csum_type;
ae18c37a
JB
3417 struct btrfs_super_block *disk_super;
3418 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3419 struct btrfs_root *tree_root;
3420 struct btrfs_root *chunk_root;
3421 int ret;
3422 int err = -EINVAL;
ae18c37a
JB
3423 int level;
3424
8260edba 3425 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3426 if (ret) {
83c8266a 3427 err = ret;
ae18c37a 3428 goto fail;
53b381b3
DW
3429 }
3430
ae18c37a
JB
3431 /* These need to be init'ed before we start creating inodes and such. */
3432 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3433 GFP_KERNEL);
3434 fs_info->tree_root = tree_root;
3435 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3436 GFP_KERNEL);
3437 fs_info->chunk_root = chunk_root;
3438 if (!tree_root || !chunk_root) {
3439 err = -ENOMEM;
c75e8394 3440 goto fail;
ae18c37a
JB
3441 }
3442
3443 fs_info->btree_inode = new_inode(sb);
3444 if (!fs_info->btree_inode) {
3445 err = -ENOMEM;
c75e8394 3446 goto fail;
ae18c37a
JB
3447 }
3448 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3449 btrfs_init_btree_inode(fs_info);
3450
d24fa5c1 3451 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3452
3453 /*
3454 * Read super block and check the signature bytes only
3455 */
d24fa5c1 3456 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3457 if (IS_ERR(disk_super)) {
3458 err = PTR_ERR(disk_super);
16cdcec7 3459 goto fail_alloc;
20b45077 3460 }
39279cc3 3461
8dc3f22c 3462 /*
260db43c 3463 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3464 * corrupted, we'll find out
3465 */
8f32380d 3466 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3467 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3468 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3469 csum_type);
8dc3f22c 3470 err = -EINVAL;
8f32380d 3471 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3472 goto fail_alloc;
3473 }
3474
83c68bbc
SY
3475 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3476
6d97c6e3
JT
3477 ret = btrfs_init_csum_hash(fs_info, csum_type);
3478 if (ret) {
3479 err = ret;
8f32380d 3480 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3481 goto fail_alloc;
3482 }
3483
1104a885
DS
3484 /*
3485 * We want to check superblock checksum, the type is stored inside.
3486 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3487 */
3d17adea 3488 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3489 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3490 err = -EINVAL;
8f32380d 3491 btrfs_release_disk_super(disk_super);
141386e1 3492 goto fail_alloc;
1104a885
DS
3493 }
3494
3495 /*
3496 * super_copy is zeroed at allocation time and we never touch the
3497 * following bytes up to INFO_SIZE, the checksum is calculated from
3498 * the whole block of INFO_SIZE
3499 */
8f32380d
JT
3500 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3501 btrfs_release_disk_super(disk_super);
5f39d397 3502
fbc6feae
NB
3503 disk_super = fs_info->super_copy;
3504
0b86a832 3505
fbc6feae
NB
3506 features = btrfs_super_flags(disk_super);
3507 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3508 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3509 btrfs_set_super_flags(disk_super, features);
3510 btrfs_info(fs_info,
3511 "found metadata UUID change in progress flag, clearing");
3512 }
3513
3514 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3515 sizeof(*fs_info->super_for_commit));
de37aa51 3516
069ec957 3517 ret = btrfs_validate_mount_super(fs_info);
1104a885 3518 if (ret) {
05135f59 3519 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3520 err = -EINVAL;
141386e1 3521 goto fail_alloc;
1104a885
DS
3522 }
3523
0f7d52f4 3524 if (!btrfs_super_root(disk_super))
141386e1 3525 goto fail_alloc;
0f7d52f4 3526
acce952b 3527 /* check FS state, whether FS is broken. */
87533c47
MX
3528 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3529 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3530
75e7cb7f
LB
3531 /*
3532 * In the long term, we'll store the compression type in the super
3533 * block, and it'll be used for per file compression control.
3534 */
3535 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3536
6f93e834
AJ
3537
3538 /* Set up fs_info before parsing mount options */
3539 nodesize = btrfs_super_nodesize(disk_super);
3540 sectorsize = btrfs_super_sectorsize(disk_super);
3541 stripesize = sectorsize;
3542 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3543 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3544
3545 fs_info->nodesize = nodesize;
3546 fs_info->sectorsize = sectorsize;
3547 fs_info->sectorsize_bits = ilog2(sectorsize);
3548 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3549 fs_info->stripesize = stripesize;
3550
2ff7e61e 3551 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3552 if (ret) {
3553 err = ret;
141386e1 3554 goto fail_alloc;
2b82032c 3555 }
dfe25020 3556
d7f67ac9
QW
3557 ret = btrfs_check_features(fs_info, sb);
3558 if (ret < 0) {
3559 err = ret;
dc4d3168
QW
3560 goto fail_alloc;
3561 }
3562
8481dd80
QW
3563 if (sectorsize < PAGE_SIZE) {
3564 struct btrfs_subpage_info *subpage_info;
3565
9f73f1ae
QW
3566 /*
3567 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3568 * going to be deprecated.
3569 *
3570 * Force to use v2 cache for subpage case.
3571 */
3572 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3573 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3574 "forcing free space tree for sector size %u with page size %lu",
3575 sectorsize, PAGE_SIZE);
3576
95ea0486
QW
3577 btrfs_warn(fs_info,
3578 "read-write for sector size %u with page size %lu is experimental",
3579 sectorsize, PAGE_SIZE);
8481dd80
QW
3580 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3581 if (!subpage_info)
3582 goto fail_alloc;
3583 btrfs_init_subpage_info(subpage_info, sectorsize);
3584 fs_info->subpage_info = subpage_info;
c8050b3b 3585 }
0bb3eb3e 3586
d21deec5 3587 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3588 if (ret) {
3589 err = ret;
0dc3b84a
JB
3590 goto fail_sb_buffer;
3591 }
4543df7e 3592
9e11ceee
JK
3593 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3594 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3595
a061fc8d
CM
3596 sb->s_blocksize = sectorsize;
3597 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3598 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3599
925baedd 3600 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3601 ret = btrfs_read_sys_array(fs_info);
925baedd 3602 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3603 if (ret) {
05135f59 3604 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3605 goto fail_sb_buffer;
84eed90f 3606 }
0b86a832 3607
84234f3a 3608 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3609 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3610 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3611 generation, level);
3612 if (ret) {
05135f59 3613 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3614 goto fail_tree_roots;
83121942 3615 }
0b86a832 3616
e17cade2 3617 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3618 offsetof(struct btrfs_header, chunk_tree_uuid),
3619 BTRFS_UUID_SIZE);
e17cade2 3620
5b4aacef 3621 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3622 if (ret) {
05135f59 3623 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3624 goto fail_tree_roots;
2b82032c 3625 }
0b86a832 3626
8dabb742 3627 /*
bacce86a
AJ
3628 * At this point we know all the devices that make this filesystem,
3629 * including the seed devices but we don't know yet if the replace
3630 * target is required. So free devices that are not part of this
1a9fd417 3631 * filesystem but skip the replace target device which is checked
bacce86a 3632 * below in btrfs_init_dev_replace().
8dabb742 3633 */
bacce86a 3634 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3635 if (!fs_devices->latest_dev->bdev) {
05135f59 3636 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3637 goto fail_tree_roots;
3638 }
3639
b8522a1e 3640 ret = init_tree_roots(fs_info);
4bbcaa64 3641 if (ret)
b8522a1e 3642 goto fail_tree_roots;
8929ecfa 3643
73651042
NA
3644 /*
3645 * Get zone type information of zoned block devices. This will also
3646 * handle emulation of a zoned filesystem if a regular device has the
3647 * zoned incompat feature flag set.
3648 */
3649 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3650 if (ret) {
3651 btrfs_err(fs_info,
3652 "zoned: failed to read device zone info: %d",
3653 ret);
3654 goto fail_block_groups;
3655 }
3656
75ec1db8
JB
3657 /*
3658 * If we have a uuid root and we're not being told to rescan we need to
3659 * check the generation here so we can set the
3660 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3661 * transaction during a balance or the log replay without updating the
3662 * uuid generation, and then if we crash we would rescan the uuid tree,
3663 * even though it was perfectly fine.
3664 */
3665 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3666 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3667 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3668
cf90d884
QW
3669 ret = btrfs_verify_dev_extents(fs_info);
3670 if (ret) {
3671 btrfs_err(fs_info,
3672 "failed to verify dev extents against chunks: %d",
3673 ret);
3674 goto fail_block_groups;
3675 }
68310a5e
ID
3676 ret = btrfs_recover_balance(fs_info);
3677 if (ret) {
05135f59 3678 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3679 goto fail_block_groups;
3680 }
3681
733f4fbb
SB
3682 ret = btrfs_init_dev_stats(fs_info);
3683 if (ret) {
05135f59 3684 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3685 goto fail_block_groups;
3686 }
3687
8dabb742
SB
3688 ret = btrfs_init_dev_replace(fs_info);
3689 if (ret) {
05135f59 3690 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3691 goto fail_block_groups;
3692 }
3693
b70f5097
NA
3694 ret = btrfs_check_zoned_mode(fs_info);
3695 if (ret) {
3696 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3697 ret);
3698 goto fail_block_groups;
3699 }
3700
c6761a9e 3701 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3702 if (ret) {
05135f59
DS
3703 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3704 ret);
b7c35e81
AJ
3705 goto fail_block_groups;
3706 }
3707
96f3136e 3708 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3709 if (ret) {
05135f59 3710 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3711 goto fail_fsdev_sysfs;
c59021f8 3712 }
3713
c59021f8 3714 ret = btrfs_init_space_info(fs_info);
3715 if (ret) {
05135f59 3716 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3717 goto fail_sysfs;
c59021f8 3718 }
3719
5b4aacef 3720 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3721 if (ret) {
05135f59 3722 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3723 goto fail_sysfs;
1b1d1f66 3724 }
4330e183 3725
16beac87
NA
3726 btrfs_free_zone_cache(fs_info);
3727
5c78a5e7
AJ
3728 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3729 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3730 btrfs_warn(fs_info,
52042d8e 3731 "writable mount is not allowed due to too many missing devices");
2365dd3c 3732 goto fail_sysfs;
292fd7fc 3733 }
9078a3e1 3734
33c44184 3735 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3736 "btrfs-cleaner");
57506d50 3737 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3738 goto fail_sysfs;
a74a4b97
CM
3739
3740 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3741 tree_root,
3742 "btrfs-transaction");
57506d50 3743 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3744 goto fail_cleaner;
a74a4b97 3745
583b7231 3746 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3747 !fs_info->fs_devices->rotating) {
583b7231 3748 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3749 }
3750
63a7cb13
DS
3751 /*
3752 * For devices supporting discard turn on discard=async automatically,
3753 * unless it's already set or disabled. This could be turned off by
3754 * nodiscard for the same mount.
3755 */
3756 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3757 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3758 btrfs_test_opt(fs_info, NODISCARD)) &&
3759 fs_info->fs_devices->discardable) {
3760 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3761 "auto enabling async discard");
3762 btrfs_clear_opt(fs_info->mount_opt, NODISCARD);
3763 }
3764
21adbd5c 3765#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3766 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3767 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3768 btrfs_test_opt(fs_info,
cbeaae4f 3769 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3770 fs_info->check_integrity_print_mask);
3771 if (ret)
05135f59
DS
3772 btrfs_warn(fs_info,
3773 "failed to initialize integrity check module: %d",
3774 ret);
21adbd5c
SB
3775 }
3776#endif
bcef60f2
AJ
3777 ret = btrfs_read_qgroup_config(fs_info);
3778 if (ret)
3779 goto fail_trans_kthread;
21adbd5c 3780
fd708b81
JB
3781 if (btrfs_build_ref_tree(fs_info))
3782 btrfs_err(fs_info, "couldn't build ref tree");
3783
96da0919
QW
3784 /* do not make disk changes in broken FS or nologreplay is given */
3785 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3786 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3787 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3788 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3789 if (ret) {
63443bf5 3790 err = ret;
28c16cbb 3791 goto fail_qgroup;
79787eaa 3792 }
e02119d5 3793 }
1a40e23b 3794
56e9357a 3795 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3796 if (IS_ERR(fs_info->fs_root)) {
3797 err = PTR_ERR(fs_info->fs_root);
f50f4353 3798 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3799 fs_info->fs_root = NULL;
bcef60f2 3800 goto fail_qgroup;
3140c9a3 3801 }
c289811c 3802
bc98a42c 3803 if (sb_rdonly(sb))
8cd29088 3804 goto clear_oneshot;
59641015 3805
44c0ca21 3806 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3807 if (ret) {
6bccf3ab 3808 close_ctree(fs_info);
2b6ba629 3809 return ret;
e3acc2a6 3810 }
b0643e59 3811 btrfs_discard_resume(fs_info);
b382a324 3812
44c0ca21
BB
3813 if (fs_info->uuid_root &&
3814 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3815 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3816 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3817 ret = btrfs_check_uuid_tree(fs_info);
3818 if (ret) {
05135f59
DS
3819 btrfs_warn(fs_info,
3820 "failed to check the UUID tree: %d", ret);
6bccf3ab 3821 close_ctree(fs_info);
70f80175
SB
3822 return ret;
3823 }
f7a81ea4 3824 }
94846229 3825
afcdd129 3826 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3827
b4be6aef
JB
3828 /* Kick the cleaner thread so it'll start deleting snapshots. */
3829 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3830 wake_up_process(fs_info->cleaner_kthread);
3831
8cd29088
BB
3832clear_oneshot:
3833 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3834 return 0;
39279cc3 3835
bcef60f2
AJ
3836fail_qgroup:
3837 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3838fail_trans_kthread:
3839 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3840 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3841 btrfs_free_fs_roots(fs_info);
3f157a2f 3842fail_cleaner:
a74a4b97 3843 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3844
3845 /*
3846 * make sure we're done with the btree inode before we stop our
3847 * kthreads
3848 */
3849 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3850
2365dd3c 3851fail_sysfs:
6618a59b 3852 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3853
b7c35e81
AJ
3854fail_fsdev_sysfs:
3855 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3856
1b1d1f66 3857fail_block_groups:
54067ae9 3858 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3859
3860fail_tree_roots:
9e3aa805
JB
3861 if (fs_info->data_reloc_root)
3862 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3863 free_root_pointers(fs_info, true);
2b8195bb 3864 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3865
39279cc3 3866fail_sb_buffer:
7abadb64 3867 btrfs_stop_all_workers(fs_info);
5cdd7db6 3868 btrfs_free_block_groups(fs_info);
16cdcec7 3869fail_alloc:
586e46e2
ID
3870 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3871
4543df7e 3872 iput(fs_info->btree_inode);
7e662854 3873fail:
586e46e2 3874 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3875 return err;
eb60ceac 3876}
663faf9f 3877ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3878
314b6dd0 3879static void btrfs_end_super_write(struct bio *bio)
f2984462 3880{
314b6dd0
JT
3881 struct btrfs_device *device = bio->bi_private;
3882 struct bio_vec *bvec;
3883 struct bvec_iter_all iter_all;
3884 struct page *page;
3885
3886 bio_for_each_segment_all(bvec, bio, iter_all) {
3887 page = bvec->bv_page;
3888
3889 if (bio->bi_status) {
3890 btrfs_warn_rl_in_rcu(device->fs_info,
3891 "lost page write due to IO error on %s (%d)",
3892 rcu_str_deref(device->name),
3893 blk_status_to_errno(bio->bi_status));
3894 ClearPageUptodate(page);
3895 SetPageError(page);
3896 btrfs_dev_stat_inc_and_print(device,
3897 BTRFS_DEV_STAT_WRITE_ERRS);
3898 } else {
3899 SetPageUptodate(page);
3900 }
3901
3902 put_page(page);
3903 unlock_page(page);
f2984462 3904 }
314b6dd0
JT
3905
3906 bio_put(bio);
f2984462
CM
3907}
3908
8f32380d 3909struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3910 int copy_num, bool drop_cache)
29c36d72 3911{
29c36d72 3912 struct btrfs_super_block *super;
8f32380d 3913 struct page *page;
12659251 3914 u64 bytenr, bytenr_orig;
8f32380d 3915 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3916 int ret;
3917
3918 bytenr_orig = btrfs_sb_offset(copy_num);
3919 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3920 if (ret == -ENOENT)
3921 return ERR_PTR(-EINVAL);
3922 else if (ret)
3923 return ERR_PTR(ret);
29c36d72 3924
cda00eba 3925 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3926 return ERR_PTR(-EINVAL);
29c36d72 3927
a05d3c91
QW
3928 if (drop_cache) {
3929 /* This should only be called with the primary sb. */
3930 ASSERT(copy_num == 0);
3931
3932 /*
3933 * Drop the page of the primary superblock, so later read will
3934 * always read from the device.
3935 */
3936 invalidate_inode_pages2_range(mapping,
3937 bytenr >> PAGE_SHIFT,
3938 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3939 }
3940
8f32380d
JT
3941 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3942 if (IS_ERR(page))
3943 return ERR_CAST(page);
29c36d72 3944
8f32380d 3945 super = page_address(page);
96c2e067
AJ
3946 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3947 btrfs_release_disk_super(super);
3948 return ERR_PTR(-ENODATA);
3949 }
3950
12659251 3951 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3952 btrfs_release_disk_super(super);
3953 return ERR_PTR(-EINVAL);
29c36d72
AJ
3954 }
3955
8f32380d 3956 return super;
29c36d72
AJ
3957}
3958
3959
8f32380d 3960struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3961{
8f32380d 3962 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3963 int i;
3964 u64 transid = 0;
a512bbf8
YZ
3965
3966 /* we would like to check all the supers, but that would make
3967 * a btrfs mount succeed after a mkfs from a different FS.
3968 * So, we need to add a special mount option to scan for
3969 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3970 */
3971 for (i = 0; i < 1; i++) {
a05d3c91 3972 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3973 if (IS_ERR(super))
a512bbf8
YZ
3974 continue;
3975
a512bbf8 3976 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3977 if (latest)
3978 btrfs_release_disk_super(super);
3979
3980 latest = super;
a512bbf8 3981 transid = btrfs_super_generation(super);
a512bbf8
YZ
3982 }
3983 }
92fc03fb 3984
8f32380d 3985 return super;
a512bbf8
YZ
3986}
3987
4eedeb75 3988/*
abbb3b8e 3989 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3990 * pages we use for writing are locked.
4eedeb75 3991 *
abbb3b8e
DS
3992 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3993 * the expected device size at commit time. Note that max_mirrors must be
3994 * same for write and wait phases.
4eedeb75 3995 *
314b6dd0 3996 * Return number of errors when page is not found or submission fails.
4eedeb75 3997 */
a512bbf8 3998static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3999 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 4000{
d5178578 4001 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 4002 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 4003 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 4004 int i;
a512bbf8 4005 int errors = 0;
12659251
NA
4006 int ret;
4007 u64 bytenr, bytenr_orig;
a512bbf8
YZ
4008
4009 if (max_mirrors == 0)
4010 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4011
d5178578
JT
4012 shash->tfm = fs_info->csum_shash;
4013
a512bbf8 4014 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4015 struct page *page;
4016 struct bio *bio;
4017 struct btrfs_super_block *disk_super;
4018
12659251
NA
4019 bytenr_orig = btrfs_sb_offset(i);
4020 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4021 if (ret == -ENOENT) {
4022 continue;
4023 } else if (ret < 0) {
4024 btrfs_err(device->fs_info,
4025 "couldn't get super block location for mirror %d",
4026 i);
4027 errors++;
4028 continue;
4029 }
935e5cc9
MX
4030 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4031 device->commit_total_bytes)
a512bbf8
YZ
4032 break;
4033
12659251 4034 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 4035
fd08001f
EB
4036 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4037 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4038 sb->csum);
4eedeb75 4039
314b6dd0
JT
4040 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4041 GFP_NOFS);
4042 if (!page) {
abbb3b8e 4043 btrfs_err(device->fs_info,
314b6dd0 4044 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
4045 bytenr);
4046 errors++;
4eedeb75 4047 continue;
abbb3b8e 4048 }
634554dc 4049
314b6dd0
JT
4050 /* Bump the refcount for wait_dev_supers() */
4051 get_page(page);
a512bbf8 4052
314b6dd0
JT
4053 disk_super = page_address(page);
4054 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 4055
314b6dd0
JT
4056 /*
4057 * Directly use bios here instead of relying on the page cache
4058 * to do I/O, so we don't lose the ability to do integrity
4059 * checking.
4060 */
07888c66
CH
4061 bio = bio_alloc(device->bdev, 1,
4062 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4063 GFP_NOFS);
314b6dd0
JT
4064 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4065 bio->bi_private = device;
4066 bio->bi_end_io = btrfs_end_super_write;
4067 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4068 offset_in_page(bytenr));
a512bbf8 4069
387125fc 4070 /*
314b6dd0
JT
4071 * We FUA only the first super block. The others we allow to
4072 * go down lazy and there's a short window where the on-disk
4073 * copies might still contain the older version.
387125fc 4074 */
1b9e619c 4075 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4076 bio->bi_opf |= REQ_FUA;
4077
58ff51f1
CH
4078 btrfsic_check_bio(bio);
4079 submit_bio(bio);
8376d9e1
NA
4080
4081 if (btrfs_advance_sb_log(device, i))
4082 errors++;
a512bbf8
YZ
4083 }
4084 return errors < i ? 0 : -1;
4085}
4086
abbb3b8e
DS
4087/*
4088 * Wait for write completion of superblocks done by write_dev_supers,
4089 * @max_mirrors same for write and wait phases.
4090 *
314b6dd0 4091 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4092 * date.
4093 */
4094static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4095{
abbb3b8e
DS
4096 int i;
4097 int errors = 0;
b6a535fa 4098 bool primary_failed = false;
12659251 4099 int ret;
abbb3b8e
DS
4100 u64 bytenr;
4101
4102 if (max_mirrors == 0)
4103 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4104
4105 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4106 struct page *page;
4107
12659251
NA
4108 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4109 if (ret == -ENOENT) {
4110 break;
4111 } else if (ret < 0) {
4112 errors++;
4113 if (i == 0)
4114 primary_failed = true;
4115 continue;
4116 }
abbb3b8e
DS
4117 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4118 device->commit_total_bytes)
4119 break;
4120
314b6dd0
JT
4121 page = find_get_page(device->bdev->bd_inode->i_mapping,
4122 bytenr >> PAGE_SHIFT);
4123 if (!page) {
abbb3b8e 4124 errors++;
b6a535fa
HM
4125 if (i == 0)
4126 primary_failed = true;
abbb3b8e
DS
4127 continue;
4128 }
314b6dd0
JT
4129 /* Page is submitted locked and unlocked once the IO completes */
4130 wait_on_page_locked(page);
4131 if (PageError(page)) {
abbb3b8e 4132 errors++;
b6a535fa
HM
4133 if (i == 0)
4134 primary_failed = true;
4135 }
abbb3b8e 4136
314b6dd0
JT
4137 /* Drop our reference */
4138 put_page(page);
abbb3b8e 4139
314b6dd0
JT
4140 /* Drop the reference from the writing run */
4141 put_page(page);
abbb3b8e
DS
4142 }
4143
b6a535fa
HM
4144 /* log error, force error return */
4145 if (primary_failed) {
4146 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4147 device->devid);
4148 return -1;
4149 }
4150
abbb3b8e
DS
4151 return errors < i ? 0 : -1;
4152}
4153
387125fc
CM
4154/*
4155 * endio for the write_dev_flush, this will wake anyone waiting
4156 * for the barrier when it is done
4157 */
4246a0b6 4158static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4159{
f9e69aa9 4160 bio_uninit(bio);
e0ae9994 4161 complete(bio->bi_private);
387125fc
CM
4162}
4163
4164/*
4fc6441a
AJ
4165 * Submit a flush request to the device if it supports it. Error handling is
4166 * done in the waiting counterpart.
387125fc 4167 */
4fc6441a 4168static void write_dev_flush(struct btrfs_device *device)
387125fc 4169{
f9e69aa9 4170 struct bio *bio = &device->flush_bio;
387125fc 4171
a91cf0ff
WY
4172#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4173 /*
4174 * When a disk has write caching disabled, we skip submission of a bio
4175 * with flush and sync requests before writing the superblock, since
4176 * it's not needed. However when the integrity checker is enabled, this
4177 * results in reports that there are metadata blocks referred by a
4178 * superblock that were not properly flushed. So don't skip the bio
4179 * submission only when the integrity checker is enabled for the sake
4180 * of simplicity, since this is a debug tool and not meant for use in
4181 * non-debug builds.
4182 */
08e688fd 4183 if (!bdev_write_cache(device->bdev))
4fc6441a 4184 return;
a91cf0ff 4185#endif
387125fc 4186
f9e69aa9
CH
4187 bio_init(bio, device->bdev, NULL, 0,
4188 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4189 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4190 init_completion(&device->flush_wait);
4191 bio->bi_private = &device->flush_wait;
387125fc 4192
58ff51f1
CH
4193 btrfsic_check_bio(bio);
4194 submit_bio(bio);
1c3063b6 4195 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4196}
387125fc 4197
4fc6441a
AJ
4198/*
4199 * If the flush bio has been submitted by write_dev_flush, wait for it.
4200 */
8c27cb35 4201static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4202{
f9e69aa9 4203 struct bio *bio = &device->flush_bio;
387125fc 4204
1c3063b6 4205 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4206 return BLK_STS_OK;
387125fc 4207
1c3063b6 4208 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4209 wait_for_completion_io(&device->flush_wait);
387125fc 4210
8c27cb35 4211 return bio->bi_status;
387125fc 4212}
387125fc 4213
d10b82fe 4214static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4215{
6528b99d 4216 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4217 return -EIO;
387125fc
CM
4218 return 0;
4219}
4220
4221/*
4222 * send an empty flush down to each device in parallel,
4223 * then wait for them
4224 */
4225static int barrier_all_devices(struct btrfs_fs_info *info)
4226{
4227 struct list_head *head;
4228 struct btrfs_device *dev;
5af3e8cc 4229 int errors_wait = 0;
4e4cbee9 4230 blk_status_t ret;
387125fc 4231
1538e6c5 4232 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4233 /* send down all the barriers */
4234 head = &info->fs_devices->devices;
1538e6c5 4235 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4236 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4237 continue;
cea7c8bf 4238 if (!dev->bdev)
387125fc 4239 continue;
e12c9621 4240 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4241 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4242 continue;
4243
4fc6441a 4244 write_dev_flush(dev);
58efbc9f 4245 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4246 }
4247
4248 /* wait for all the barriers */
1538e6c5 4249 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4250 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4251 continue;
387125fc 4252 if (!dev->bdev) {
5af3e8cc 4253 errors_wait++;
387125fc
CM
4254 continue;
4255 }
e12c9621 4256 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4257 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4258 continue;
4259
4fc6441a 4260 ret = wait_dev_flush(dev);
401b41e5
AJ
4261 if (ret) {
4262 dev->last_flush_error = ret;
66b4993e
DS
4263 btrfs_dev_stat_inc_and_print(dev,
4264 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4265 errors_wait++;
401b41e5
AJ
4266 }
4267 }
4268
cea7c8bf 4269 if (errors_wait) {
401b41e5
AJ
4270 /*
4271 * At some point we need the status of all disks
4272 * to arrive at the volume status. So error checking
4273 * is being pushed to a separate loop.
4274 */
d10b82fe 4275 return check_barrier_error(info);
387125fc 4276 }
387125fc
CM
4277 return 0;
4278}
4279
943c6e99
ZL
4280int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4281{
8789f4fe
ZL
4282 int raid_type;
4283 int min_tolerated = INT_MAX;
943c6e99 4284
8789f4fe
ZL
4285 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4286 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4287 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4288 btrfs_raid_array[BTRFS_RAID_SINGLE].
4289 tolerated_failures);
943c6e99 4290
8789f4fe
ZL
4291 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4292 if (raid_type == BTRFS_RAID_SINGLE)
4293 continue;
41a6e891 4294 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4295 continue;
8c3e3582 4296 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4297 btrfs_raid_array[raid_type].
4298 tolerated_failures);
4299 }
943c6e99 4300
8789f4fe 4301 if (min_tolerated == INT_MAX) {
ab8d0fc4 4302 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4303 min_tolerated = 0;
4304 }
4305
4306 return min_tolerated;
943c6e99
ZL
4307}
4308
eece6a9c 4309int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4310{
e5e9a520 4311 struct list_head *head;
f2984462 4312 struct btrfs_device *dev;
a061fc8d 4313 struct btrfs_super_block *sb;
f2984462 4314 struct btrfs_dev_item *dev_item;
f2984462
CM
4315 int ret;
4316 int do_barriers;
a236aed1
CM
4317 int max_errors;
4318 int total_errors = 0;
a061fc8d 4319 u64 flags;
f2984462 4320
0b246afa 4321 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4322
4323 /*
4324 * max_mirrors == 0 indicates we're from commit_transaction,
4325 * not from fsync where the tree roots in fs_info have not
4326 * been consistent on disk.
4327 */
4328 if (max_mirrors == 0)
4329 backup_super_roots(fs_info);
f2984462 4330
0b246afa 4331 sb = fs_info->super_for_commit;
a061fc8d 4332 dev_item = &sb->dev_item;
e5e9a520 4333
0b246afa
JM
4334 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4335 head = &fs_info->fs_devices->devices;
4336 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4337
5af3e8cc 4338 if (do_barriers) {
0b246afa 4339 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4340 if (ret) {
4341 mutex_unlock(
0b246afa
JM
4342 &fs_info->fs_devices->device_list_mutex);
4343 btrfs_handle_fs_error(fs_info, ret,
4344 "errors while submitting device barriers.");
5af3e8cc
SB
4345 return ret;
4346 }
4347 }
387125fc 4348
1538e6c5 4349 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4350 if (!dev->bdev) {
4351 total_errors++;
4352 continue;
4353 }
e12c9621 4354 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4355 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4356 continue;
4357
2b82032c 4358 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4359 btrfs_set_stack_device_type(dev_item, dev->type);
4360 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4361 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4362 dev->commit_total_bytes);
ce7213c7
MX
4363 btrfs_set_stack_device_bytes_used(dev_item,
4364 dev->commit_bytes_used);
a061fc8d
CM
4365 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4366 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4367 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4368 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4369 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4370 BTRFS_FSID_SIZE);
a512bbf8 4371
a061fc8d
CM
4372 flags = btrfs_super_flags(sb);
4373 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4374
75cb857d
QW
4375 ret = btrfs_validate_write_super(fs_info, sb);
4376 if (ret < 0) {
4377 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4378 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4379 "unexpected superblock corruption detected");
4380 return -EUCLEAN;
4381 }
4382
abbb3b8e 4383 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4384 if (ret)
4385 total_errors++;
f2984462 4386 }
a236aed1 4387 if (total_errors > max_errors) {
0b246afa
JM
4388 btrfs_err(fs_info, "%d errors while writing supers",
4389 total_errors);
4390 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4391
9d565ba4 4392 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4393 btrfs_handle_fs_error(fs_info, -EIO,
4394 "%d errors while writing supers",
4395 total_errors);
9d565ba4 4396 return -EIO;
a236aed1 4397 }
f2984462 4398
a512bbf8 4399 total_errors = 0;
1538e6c5 4400 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4401 if (!dev->bdev)
4402 continue;
e12c9621 4403 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4404 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4405 continue;
4406
abbb3b8e 4407 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4408 if (ret)
4409 total_errors++;
f2984462 4410 }
0b246afa 4411 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4412 if (total_errors > max_errors) {
0b246afa
JM
4413 btrfs_handle_fs_error(fs_info, -EIO,
4414 "%d errors while writing supers",
4415 total_errors);
79787eaa 4416 return -EIO;
a236aed1 4417 }
f2984462
CM
4418 return 0;
4419}
4420
cb517eab
MX
4421/* Drop a fs root from the radix tree and free it. */
4422void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4423 struct btrfs_root *root)
2619ba1f 4424{
4785e24f
JB
4425 bool drop_ref = false;
4426
fc7cbcd4
DS
4427 spin_lock(&fs_info->fs_roots_radix_lock);
4428 radix_tree_delete(&fs_info->fs_roots_radix,
4429 (unsigned long)root->root_key.objectid);
4430 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4431 drop_ref = true;
fc7cbcd4 4432 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4433
84961539 4434 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4435 ASSERT(root->log_root == NULL);
1c1ea4f7 4436 if (root->reloc_root) {
00246528 4437 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4438 root->reloc_root = NULL;
4439 }
4440 }
3321719e 4441
4785e24f
JB
4442 if (drop_ref)
4443 btrfs_put_root(root);
2619ba1f
CM
4444}
4445
c146afad 4446int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4447{
fc7cbcd4
DS
4448 u64 root_objectid = 0;
4449 struct btrfs_root *gang[8];
4450 int i = 0;
65d33fd7 4451 int err = 0;
fc7cbcd4 4452 unsigned int ret = 0;
e089f05c 4453
c146afad 4454 while (1) {
fc7cbcd4
DS
4455 spin_lock(&fs_info->fs_roots_radix_lock);
4456 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4457 (void **)gang, root_objectid,
4458 ARRAY_SIZE(gang));
4459 if (!ret) {
4460 spin_unlock(&fs_info->fs_roots_radix_lock);
4461 break;
65d33fd7 4462 }
fc7cbcd4 4463 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4464
fc7cbcd4
DS
4465 for (i = 0; i < ret; i++) {
4466 /* Avoid to grab roots in dead_roots */
4467 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4468 gang[i] = NULL;
4469 continue;
4470 }
4471 /* grab all the search result for later use */
4472 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4473 }
fc7cbcd4 4474 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4475
fc7cbcd4
DS
4476 for (i = 0; i < ret; i++) {
4477 if (!gang[i])
65d33fd7 4478 continue;
fc7cbcd4
DS
4479 root_objectid = gang[i]->root_key.objectid;
4480 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4481 if (err)
fc7cbcd4
DS
4482 break;
4483 btrfs_put_root(gang[i]);
c146afad 4484 }
fc7cbcd4 4485 root_objectid++;
c146afad 4486 }
65d33fd7 4487
fc7cbcd4
DS
4488 /* release the uncleaned roots due to error */
4489 for (; i < ret; i++) {
4490 if (gang[i])
4491 btrfs_put_root(gang[i]);
65d33fd7
QW
4492 }
4493 return err;
c146afad 4494}
a2135011 4495
6bccf3ab 4496int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4497{
6bccf3ab 4498 struct btrfs_root *root = fs_info->tree_root;
c146afad 4499 struct btrfs_trans_handle *trans;
a74a4b97 4500
0b246afa 4501 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4502 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4503 mutex_unlock(&fs_info->cleaner_mutex);
4504 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4505
4506 /* wait until ongoing cleanup work done */
0b246afa
JM
4507 down_write(&fs_info->cleanup_work_sem);
4508 up_write(&fs_info->cleanup_work_sem);
c71bf099 4509
7a7eaa40 4510 trans = btrfs_join_transaction(root);
3612b495
TI
4511 if (IS_ERR(trans))
4512 return PTR_ERR(trans);
3a45bb20 4513 return btrfs_commit_transaction(trans);
c146afad
YZ
4514}
4515
36c86a9e
QW
4516static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4517{
4518 struct btrfs_transaction *trans;
4519 struct btrfs_transaction *tmp;
4520 bool found = false;
4521
4522 if (list_empty(&fs_info->trans_list))
4523 return;
4524
4525 /*
4526 * This function is only called at the very end of close_ctree(),
4527 * thus no other running transaction, no need to take trans_lock.
4528 */
4529 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4530 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4531 struct extent_state *cached = NULL;
4532 u64 dirty_bytes = 0;
4533 u64 cur = 0;
4534 u64 found_start;
4535 u64 found_end;
4536
4537 found = true;
4538 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4539 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4540 dirty_bytes += found_end + 1 - found_start;
4541 cur = found_end + 1;
4542 }
4543 btrfs_warn(fs_info,
4544 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4545 trans->transid, dirty_bytes);
4546 btrfs_cleanup_one_transaction(trans, fs_info);
4547
4548 if (trans == fs_info->running_transaction)
4549 fs_info->running_transaction = NULL;
4550 list_del_init(&trans->list);
4551
4552 btrfs_put_transaction(trans);
4553 trace_btrfs_transaction_commit(fs_info);
4554 }
4555 ASSERT(!found);
4556}
4557
b105e927 4558void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4559{
c146afad
YZ
4560 int ret;
4561
afcdd129 4562 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4563
8a1f1e3d
FM
4564 /*
4565 * If we had UNFINISHED_DROPS we could still be processing them, so
4566 * clear that bit and wake up relocation so it can stop.
4567 * We must do this before stopping the block group reclaim task, because
4568 * at btrfs_relocate_block_group() we wait for this bit, and after the
4569 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4570 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4571 * return 1.
4572 */
4573 btrfs_wake_unfinished_drop(fs_info);
4574
31e70e52
FM
4575 /*
4576 * We may have the reclaim task running and relocating a data block group,
4577 * in which case it may create delayed iputs. So stop it before we park
4578 * the cleaner kthread otherwise we can get new delayed iputs after
4579 * parking the cleaner, and that can make the async reclaim task to hang
4580 * if it's waiting for delayed iputs to complete, since the cleaner is
4581 * parked and can not run delayed iputs - this will make us hang when
4582 * trying to stop the async reclaim task.
4583 */
4584 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4585 /*
4586 * We don't want the cleaner to start new transactions, add more delayed
4587 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4588 * because that frees the task_struct, and the transaction kthread might
4589 * still try to wake up the cleaner.
4590 */
4591 kthread_park(fs_info->cleaner_kthread);
c146afad 4592
7343dd61 4593 /* wait for the qgroup rescan worker to stop */
d06f23d6 4594 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4595
803b2f54
SB
4596 /* wait for the uuid_scan task to finish */
4597 down(&fs_info->uuid_tree_rescan_sem);
4598 /* avoid complains from lockdep et al., set sem back to initial state */
4599 up(&fs_info->uuid_tree_rescan_sem);
4600
837d5b6e 4601 /* pause restriper - we want to resume on mount */
aa1b8cd4 4602 btrfs_pause_balance(fs_info);
837d5b6e 4603
8dabb742
SB
4604 btrfs_dev_replace_suspend_for_unmount(fs_info);
4605
aa1b8cd4 4606 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4607
4608 /* wait for any defraggers to finish */
4609 wait_event(fs_info->transaction_wait,
4610 (atomic_read(&fs_info->defrag_running) == 0));
4611
4612 /* clear out the rbtree of defraggable inodes */
26176e7c 4613 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4614
a362bb86
FM
4615 /*
4616 * After we parked the cleaner kthread, ordered extents may have
4617 * completed and created new delayed iputs. If one of the async reclaim
4618 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4619 * can hang forever trying to stop it, because if a delayed iput is
4620 * added after it ran btrfs_run_delayed_iputs() and before it called
4621 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4622 * no one else to run iputs.
4623 *
4624 * So wait for all ongoing ordered extents to complete and then run
4625 * delayed iputs. This works because once we reach this point no one
4626 * can either create new ordered extents nor create delayed iputs
4627 * through some other means.
4628 *
4629 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4630 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4631 * but the delayed iput for the respective inode is made only when doing
4632 * the final btrfs_put_ordered_extent() (which must happen at
4633 * btrfs_finish_ordered_io() when we are unmounting).
4634 */
4635 btrfs_flush_workqueue(fs_info->endio_write_workers);
4636 /* Ordered extents for free space inodes. */
4637 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4638 btrfs_run_delayed_iputs(fs_info);
4639
21c7e756 4640 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4641 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4642 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4643
b0643e59
DZ
4644 /* Cancel or finish ongoing discard work */
4645 btrfs_discard_cleanup(fs_info);
4646
bc98a42c 4647 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4648 /*
d6fd0ae2
OS
4649 * The cleaner kthread is stopped, so do one final pass over
4650 * unused block groups.
e44163e1 4651 */
0b246afa 4652 btrfs_delete_unused_bgs(fs_info);
e44163e1 4653
f0cc2cd7
FM
4654 /*
4655 * There might be existing delayed inode workers still running
4656 * and holding an empty delayed inode item. We must wait for
4657 * them to complete first because they can create a transaction.
4658 * This happens when someone calls btrfs_balance_delayed_items()
4659 * and then a transaction commit runs the same delayed nodes
4660 * before any delayed worker has done something with the nodes.
4661 * We must wait for any worker here and not at transaction
4662 * commit time since that could cause a deadlock.
4663 * This is a very rare case.
4664 */
4665 btrfs_flush_workqueue(fs_info->delayed_workers);
4666
6bccf3ab 4667 ret = btrfs_commit_super(fs_info);
acce952b 4668 if (ret)
04892340 4669 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4670 }
4671
84961539 4672 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4673 btrfs_error_commit_super(fs_info);
0f7d52f4 4674
e3029d9f
AV
4675 kthread_stop(fs_info->transaction_kthread);
4676 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4677
e187831e 4678 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4679 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4680
5958253c
QW
4681 if (btrfs_check_quota_leak(fs_info)) {
4682 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4683 btrfs_err(fs_info, "qgroup reserved space leaked");
4684 }
4685
04892340 4686 btrfs_free_qgroup_config(fs_info);
fe816d0f 4687 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4688
963d678b 4689 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4690 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4691 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4692 }
bcc63abb 4693
5deb17e1 4694 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4695 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4696 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4697
6618a59b 4698 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4699 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4700
1a4319cc
LB
4701 btrfs_put_block_group_cache(fs_info);
4702
de348ee0
WS
4703 /*
4704 * we must make sure there is not any read request to
4705 * submit after we stopping all workers.
4706 */
4707 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4708 btrfs_stop_all_workers(fs_info);
4709
0a31daa4 4710 /* We shouldn't have any transaction open at this point */
36c86a9e 4711 warn_about_uncommitted_trans(fs_info);
0a31daa4 4712
afcdd129 4713 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4714 free_root_pointers(fs_info, true);
8c38938c 4715 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4716
4e19443d
JB
4717 /*
4718 * We must free the block groups after dropping the fs_roots as we could
4719 * have had an IO error and have left over tree log blocks that aren't
4720 * cleaned up until the fs roots are freed. This makes the block group
4721 * accounting appear to be wrong because there's pending reserved bytes,
4722 * so make sure we do the block group cleanup afterwards.
4723 */
4724 btrfs_free_block_groups(fs_info);
4725
13e6c37b 4726 iput(fs_info->btree_inode);
d6bfde87 4727
21adbd5c 4728#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4729 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4730 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4731#endif
4732
0b86a832 4733 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4734 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4735}
4736
b9fab919
CM
4737int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4738 int atomic)
5f39d397 4739{
1259ab75 4740 int ret;
727011e0 4741 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4742
0b32f4bb 4743 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4744 if (!ret)
4745 return ret;
4746
4747 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4748 parent_transid, atomic);
4749 if (ret == -EAGAIN)
4750 return ret;
1259ab75 4751 return !ret;
5f39d397
CM
4752}
4753
5f39d397
CM
4754void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4755{
2f4d60df 4756 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4757 u64 transid = btrfs_header_generation(buf);
b9473439 4758 int was_dirty;
b4ce94de 4759
06ea65a3
JB
4760#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4761 /*
4762 * This is a fast path so only do this check if we have sanity tests
52042d8e 4763 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4764 * outside of the sanity tests.
4765 */
b0132a3b 4766 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4767 return;
4768#endif
49d0c642 4769 btrfs_assert_tree_write_locked(buf);
0b246afa 4770 if (transid != fs_info->generation)
5d163e0e 4771 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4772 buf->start, transid, fs_info->generation);
0b32f4bb 4773 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4774 if (!was_dirty)
104b4e51
NB
4775 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4776 buf->len,
4777 fs_info->dirty_metadata_batch);
1f21ef0a 4778#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4779 /*
4780 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4781 * but item data not updated.
4782 * So here we should only check item pointers, not item data.
4783 */
4784 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4785 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4786 btrfs_print_leaf(buf);
1f21ef0a
FM
4787 ASSERT(0);
4788 }
4789#endif
eb60ceac
CM
4790}
4791
2ff7e61e 4792static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4793 int flush_delayed)
16cdcec7
MX
4794{
4795 /*
4796 * looks as though older kernels can get into trouble with
4797 * this code, they end up stuck in balance_dirty_pages forever
4798 */
e2d84521 4799 int ret;
16cdcec7
MX
4800
4801 if (current->flags & PF_MEMALLOC)
4802 return;
4803
b53d3f5d 4804 if (flush_delayed)
2ff7e61e 4805 btrfs_balance_delayed_items(fs_info);
16cdcec7 4806
d814a491
EL
4807 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4808 BTRFS_DIRTY_METADATA_THRESH,
4809 fs_info->dirty_metadata_batch);
e2d84521 4810 if (ret > 0) {
0b246afa 4811 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4812 }
16cdcec7
MX
4813}
4814
2ff7e61e 4815void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4816{
2ff7e61e 4817 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4818}
585ad2c3 4819
2ff7e61e 4820void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4821{
2ff7e61e 4822 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4823}
6b80053d 4824
2ff7e61e 4825static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4826{
fe816d0f
NB
4827 /* cleanup FS via transaction */
4828 btrfs_cleanup_transaction(fs_info);
4829
0b246afa 4830 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4831 btrfs_run_delayed_iputs(fs_info);
0b246afa 4832 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4833
0b246afa
JM
4834 down_write(&fs_info->cleanup_work_sem);
4835 up_write(&fs_info->cleanup_work_sem);
acce952b 4836}
4837
ef67963d
JB
4838static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4839{
fc7cbcd4
DS
4840 struct btrfs_root *gang[8];
4841 u64 root_objectid = 0;
4842 int ret;
4843
4844 spin_lock(&fs_info->fs_roots_radix_lock);
4845 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4846 (void **)gang, root_objectid,
4847 ARRAY_SIZE(gang))) != 0) {
4848 int i;
4849
4850 for (i = 0; i < ret; i++)
4851 gang[i] = btrfs_grab_root(gang[i]);
4852 spin_unlock(&fs_info->fs_roots_radix_lock);
4853
4854 for (i = 0; i < ret; i++) {
4855 if (!gang[i])
ef67963d 4856 continue;
fc7cbcd4
DS
4857 root_objectid = gang[i]->root_key.objectid;
4858 btrfs_free_log(NULL, gang[i]);
4859 btrfs_put_root(gang[i]);
ef67963d 4860 }
fc7cbcd4
DS
4861 root_objectid++;
4862 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4863 }
fc7cbcd4 4864 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4865 btrfs_free_log_root_tree(NULL, fs_info);
4866}
4867
143bede5 4868static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4869{
acce952b 4870 struct btrfs_ordered_extent *ordered;
acce952b 4871
199c2a9c 4872 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4873 /*
4874 * This will just short circuit the ordered completion stuff which will
4875 * make sure the ordered extent gets properly cleaned up.
4876 */
199c2a9c 4877 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4878 root_extent_list)
4879 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4880 spin_unlock(&root->ordered_extent_lock);
4881}
4882
4883static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4884{
4885 struct btrfs_root *root;
4886 struct list_head splice;
4887
4888 INIT_LIST_HEAD(&splice);
4889
4890 spin_lock(&fs_info->ordered_root_lock);
4891 list_splice_init(&fs_info->ordered_roots, &splice);
4892 while (!list_empty(&splice)) {
4893 root = list_first_entry(&splice, struct btrfs_root,
4894 ordered_root);
1de2cfde
JB
4895 list_move_tail(&root->ordered_root,
4896 &fs_info->ordered_roots);
199c2a9c 4897
2a85d9ca 4898 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4899 btrfs_destroy_ordered_extents(root);
4900
2a85d9ca
LB
4901 cond_resched();
4902 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4903 }
4904 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4905
4906 /*
4907 * We need this here because if we've been flipped read-only we won't
4908 * get sync() from the umount, so we need to make sure any ordered
4909 * extents that haven't had their dirty pages IO start writeout yet
4910 * actually get run and error out properly.
4911 */
4912 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4913}
4914
35a3621b 4915static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4916 struct btrfs_fs_info *fs_info)
acce952b 4917{
4918 struct rb_node *node;
4919 struct btrfs_delayed_ref_root *delayed_refs;
4920 struct btrfs_delayed_ref_node *ref;
4921 int ret = 0;
4922
4923 delayed_refs = &trans->delayed_refs;
4924
4925 spin_lock(&delayed_refs->lock);
d7df2c79 4926 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4927 spin_unlock(&delayed_refs->lock);
b79ce3dd 4928 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4929 return ret;
4930 }
4931
5c9d028b 4932 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4933 struct btrfs_delayed_ref_head *head;
0e0adbcf 4934 struct rb_node *n;
e78417d1 4935 bool pin_bytes = false;
acce952b 4936
d7df2c79
JB
4937 head = rb_entry(node, struct btrfs_delayed_ref_head,
4938 href_node);
3069bd26 4939 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4940 continue;
3069bd26 4941
d7df2c79 4942 spin_lock(&head->lock);
e3d03965 4943 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4944 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4945 ref_node);
d7df2c79 4946 ref->in_tree = 0;
e3d03965 4947 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4948 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4949 if (!list_empty(&ref->add_list))
4950 list_del(&ref->add_list);
d7df2c79
JB
4951 atomic_dec(&delayed_refs->num_entries);
4952 btrfs_put_delayed_ref(ref);
e78417d1 4953 }
d7df2c79
JB
4954 if (head->must_insert_reserved)
4955 pin_bytes = true;
4956 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4957 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4958 spin_unlock(&head->lock);
4959 spin_unlock(&delayed_refs->lock);
4960 mutex_unlock(&head->mutex);
acce952b 4961
f603bb94
NB
4962 if (pin_bytes) {
4963 struct btrfs_block_group *cache;
4964
4965 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4966 BUG_ON(!cache);
4967
4968 spin_lock(&cache->space_info->lock);
4969 spin_lock(&cache->lock);
4970 cache->pinned += head->num_bytes;
4971 btrfs_space_info_update_bytes_pinned(fs_info,
4972 cache->space_info, head->num_bytes);
4973 cache->reserved -= head->num_bytes;
4974 cache->space_info->bytes_reserved -= head->num_bytes;
4975 spin_unlock(&cache->lock);
4976 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4977
4978 btrfs_put_block_group(cache);
4979
4980 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4981 head->bytenr + head->num_bytes - 1);
4982 }
31890da0 4983 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4984 btrfs_put_delayed_ref_head(head);
acce952b 4985 cond_resched();
4986 spin_lock(&delayed_refs->lock);
4987 }
81f7eb00 4988 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4989
4990 spin_unlock(&delayed_refs->lock);
4991
4992 return ret;
4993}
4994
143bede5 4995static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4996{
4997 struct btrfs_inode *btrfs_inode;
4998 struct list_head splice;
4999
5000 INIT_LIST_HEAD(&splice);
5001
eb73c1b7
MX
5002 spin_lock(&root->delalloc_lock);
5003 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 5004
5005 while (!list_empty(&splice)) {
fe816d0f 5006 struct inode *inode = NULL;
eb73c1b7
MX
5007 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5008 delalloc_inodes);
fe816d0f 5009 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 5010 spin_unlock(&root->delalloc_lock);
acce952b 5011
fe816d0f
NB
5012 /*
5013 * Make sure we get a live inode and that it'll not disappear
5014 * meanwhile.
5015 */
5016 inode = igrab(&btrfs_inode->vfs_inode);
5017 if (inode) {
5018 invalidate_inode_pages2(inode->i_mapping);
5019 iput(inode);
5020 }
eb73c1b7 5021 spin_lock(&root->delalloc_lock);
acce952b 5022 }
eb73c1b7
MX
5023 spin_unlock(&root->delalloc_lock);
5024}
5025
5026static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5027{
5028 struct btrfs_root *root;
5029 struct list_head splice;
5030
5031 INIT_LIST_HEAD(&splice);
5032
5033 spin_lock(&fs_info->delalloc_root_lock);
5034 list_splice_init(&fs_info->delalloc_roots, &splice);
5035 while (!list_empty(&splice)) {
5036 root = list_first_entry(&splice, struct btrfs_root,
5037 delalloc_root);
00246528 5038 root = btrfs_grab_root(root);
eb73c1b7
MX
5039 BUG_ON(!root);
5040 spin_unlock(&fs_info->delalloc_root_lock);
5041
5042 btrfs_destroy_delalloc_inodes(root);
00246528 5043 btrfs_put_root(root);
eb73c1b7
MX
5044
5045 spin_lock(&fs_info->delalloc_root_lock);
5046 }
5047 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 5048}
5049
2ff7e61e 5050static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 5051 struct extent_io_tree *dirty_pages,
5052 int mark)
5053{
5054 int ret;
acce952b 5055 struct extent_buffer *eb;
5056 u64 start = 0;
5057 u64 end;
acce952b 5058
5059 while (1) {
5060 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 5061 mark, NULL);
acce952b 5062 if (ret)
5063 break;
5064
91166212 5065 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 5066 while (start <= end) {
0b246afa
JM
5067 eb = find_extent_buffer(fs_info, start);
5068 start += fs_info->nodesize;
fd8b2b61 5069 if (!eb)
acce952b 5070 continue;
fd8b2b61 5071 wait_on_extent_buffer_writeback(eb);
acce952b 5072
fd8b2b61
JB
5073 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5074 &eb->bflags))
5075 clear_extent_buffer_dirty(eb);
5076 free_extent_buffer_stale(eb);
acce952b 5077 }
5078 }
5079
5080 return ret;
5081}
5082
2ff7e61e 5083static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5084 struct extent_io_tree *unpin)
acce952b 5085{
acce952b 5086 u64 start;
5087 u64 end;
5088 int ret;
5089
acce952b 5090 while (1) {
0e6ec385
FM
5091 struct extent_state *cached_state = NULL;
5092
fcd5e742
LF
5093 /*
5094 * The btrfs_finish_extent_commit() may get the same range as
5095 * ours between find_first_extent_bit and clear_extent_dirty.
5096 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5097 * the same extent range.
5098 */
5099 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5100 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5101 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5102 if (ret) {
5103 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5104 break;
fcd5e742 5105 }
acce952b 5106
0e6ec385
FM
5107 clear_extent_dirty(unpin, start, end, &cached_state);
5108 free_extent_state(cached_state);
2ff7e61e 5109 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5110 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5111 cond_resched();
5112 }
5113
5114 return 0;
5115}
5116
32da5386 5117static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5118{
5119 struct inode *inode;
5120
5121 inode = cache->io_ctl.inode;
5122 if (inode) {
5123 invalidate_inode_pages2(inode->i_mapping);
5124 BTRFS_I(inode)->generation = 0;
5125 cache->io_ctl.inode = NULL;
5126 iput(inode);
5127 }
bbc37d6e 5128 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5129 btrfs_put_block_group(cache);
5130}
5131
5132void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5133 struct btrfs_fs_info *fs_info)
c79a1751 5134{
32da5386 5135 struct btrfs_block_group *cache;
c79a1751
LB
5136
5137 spin_lock(&cur_trans->dirty_bgs_lock);
5138 while (!list_empty(&cur_trans->dirty_bgs)) {
5139 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5140 struct btrfs_block_group,
c79a1751 5141 dirty_list);
c79a1751
LB
5142
5143 if (!list_empty(&cache->io_list)) {
5144 spin_unlock(&cur_trans->dirty_bgs_lock);
5145 list_del_init(&cache->io_list);
5146 btrfs_cleanup_bg_io(cache);
5147 spin_lock(&cur_trans->dirty_bgs_lock);
5148 }
5149
5150 list_del_init(&cache->dirty_list);
5151 spin_lock(&cache->lock);
5152 cache->disk_cache_state = BTRFS_DC_ERROR;
5153 spin_unlock(&cache->lock);
5154
5155 spin_unlock(&cur_trans->dirty_bgs_lock);
5156 btrfs_put_block_group(cache);
ba2c4d4e 5157 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5158 spin_lock(&cur_trans->dirty_bgs_lock);
5159 }
5160 spin_unlock(&cur_trans->dirty_bgs_lock);
5161
45ae2c18
NB
5162 /*
5163 * Refer to the definition of io_bgs member for details why it's safe
5164 * to use it without any locking
5165 */
c79a1751
LB
5166 while (!list_empty(&cur_trans->io_bgs)) {
5167 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5168 struct btrfs_block_group,
c79a1751 5169 io_list);
c79a1751
LB
5170
5171 list_del_init(&cache->io_list);
5172 spin_lock(&cache->lock);
5173 cache->disk_cache_state = BTRFS_DC_ERROR;
5174 spin_unlock(&cache->lock);
5175 btrfs_cleanup_bg_io(cache);
5176 }
5177}
5178
49b25e05 5179void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5180 struct btrfs_fs_info *fs_info)
49b25e05 5181{
bbbf7243
NB
5182 struct btrfs_device *dev, *tmp;
5183
2ff7e61e 5184 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5185 ASSERT(list_empty(&cur_trans->dirty_bgs));
5186 ASSERT(list_empty(&cur_trans->io_bgs));
5187
bbbf7243
NB
5188 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5189 post_commit_list) {
5190 list_del_init(&dev->post_commit_list);
5191 }
5192
2ff7e61e 5193 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5194
4a9d8bde 5195 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5196 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5197
4a9d8bde 5198 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5199 wake_up(&fs_info->transaction_wait);
49b25e05 5200
ccdf9b30 5201 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5202
2ff7e61e 5203 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5204 EXTENT_DIRTY);
fe119a6e 5205 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5206
d3575156
NA
5207 btrfs_free_redirty_list(cur_trans);
5208
4a9d8bde
MX
5209 cur_trans->state =TRANS_STATE_COMPLETED;
5210 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5211}
5212
2ff7e61e 5213static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5214{
5215 struct btrfs_transaction *t;
acce952b 5216
0b246afa 5217 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5218
0b246afa
JM
5219 spin_lock(&fs_info->trans_lock);
5220 while (!list_empty(&fs_info->trans_list)) {
5221 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5222 struct btrfs_transaction, list);
5223 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5224 refcount_inc(&t->use_count);
0b246afa 5225 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5226 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5227 btrfs_put_transaction(t);
0b246afa 5228 spin_lock(&fs_info->trans_lock);
724e2315
JB
5229 continue;
5230 }
0b246afa 5231 if (t == fs_info->running_transaction) {
724e2315 5232 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5233 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5234 /*
5235 * We wait for 0 num_writers since we don't hold a trans
5236 * handle open currently for this transaction.
5237 */
5238 wait_event(t->writer_wait,
5239 atomic_read(&t->num_writers) == 0);
5240 } else {
0b246afa 5241 spin_unlock(&fs_info->trans_lock);
724e2315 5242 }
2ff7e61e 5243 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5244
0b246afa
JM
5245 spin_lock(&fs_info->trans_lock);
5246 if (t == fs_info->running_transaction)
5247 fs_info->running_transaction = NULL;
acce952b 5248 list_del_init(&t->list);
0b246afa 5249 spin_unlock(&fs_info->trans_lock);
acce952b 5250
724e2315 5251 btrfs_put_transaction(t);
2e4e97ab 5252 trace_btrfs_transaction_commit(fs_info);
0b246afa 5253 spin_lock(&fs_info->trans_lock);
724e2315 5254 }
0b246afa
JM
5255 spin_unlock(&fs_info->trans_lock);
5256 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5257 btrfs_destroy_delayed_inodes(fs_info);
5258 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5259 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5260 btrfs_drop_all_logs(fs_info);
0b246afa 5261 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5262
5263 return 0;
5264}
ec7d6dfd 5265
453e4873 5266int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5267{
5268 struct btrfs_path *path;
5269 int ret;
5270 struct extent_buffer *l;
5271 struct btrfs_key search_key;
5272 struct btrfs_key found_key;
5273 int slot;
5274
5275 path = btrfs_alloc_path();
5276 if (!path)
5277 return -ENOMEM;
5278
5279 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5280 search_key.type = -1;
5281 search_key.offset = (u64)-1;
5282 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5283 if (ret < 0)
5284 goto error;
5285 BUG_ON(ret == 0); /* Corruption */
5286 if (path->slots[0] > 0) {
5287 slot = path->slots[0] - 1;
5288 l = path->nodes[0];
5289 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5290 root->free_objectid = max_t(u64, found_key.objectid + 1,
5291 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5292 } else {
23125104 5293 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5294 }
5295 ret = 0;
5296error:
5297 btrfs_free_path(path);
5298 return ret;
5299}
5300
543068a2 5301int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5302{
5303 int ret;
5304 mutex_lock(&root->objectid_mutex);
5305
6b8fad57 5306 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5307 btrfs_warn(root->fs_info,
5308 "the objectid of root %llu reaches its highest value",
5309 root->root_key.objectid);
5310 ret = -ENOSPC;
5311 goto out;
5312 }
5313
23125104 5314 *objectid = root->free_objectid++;
ec7d6dfd
NB
5315 ret = 0;
5316out:
5317 mutex_unlock(&root->objectid_mutex);
5318 return ret;
5319}