btrfs: drop unused parameter from btrfs_item_nr
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
6463fe58 33#include <linux/uuid.h>
803b2f54 34#include <linux/semaphore.h>
7e75bf3f 35#include <asm/unaligned.h>
4b4e25f2 36#include "compat.h"
eb60ceac
CM
37#include "ctree.h"
38#include "disk-io.h"
e089f05c 39#include "transaction.h"
0f7d52f4 40#include "btrfs_inode.h"
0b86a832 41#include "volumes.h"
db94535d 42#include "print-tree.h"
8b712842 43#include "async-thread.h"
925baedd 44#include "locking.h"
e02119d5 45#include "tree-log.h"
fa9c0d79 46#include "free-space-cache.h"
581bb050 47#include "inode-map.h"
21adbd5c 48#include "check-integrity.h"
606686ee 49#include "rcu-string.h"
8dabb742 50#include "dev-replace.h"
53b381b3 51#include "raid56.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
569e0f35
JB
62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
143bede5 64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
aec8030a 67static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
143bede5 68static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 69static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70 struct extent_io_tree *dirty_pages,
71 int mark);
72static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73 struct extent_io_tree *pinned_extents);
48a3b636
ES
74static int btrfs_cleanup_transaction(struct btrfs_root *root);
75static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 76
d352ac68
CM
77/*
78 * end_io_wq structs are used to do processing in task context when an IO is
79 * complete. This is used during reads to verify checksums, and it is used
80 * by writes to insert metadata for new file extents after IO is complete.
81 */
ce9adaa5
CM
82struct end_io_wq {
83 struct bio *bio;
84 bio_end_io_t *end_io;
85 void *private;
86 struct btrfs_fs_info *info;
87 int error;
22c59948 88 int metadata;
ce9adaa5 89 struct list_head list;
8b712842 90 struct btrfs_work work;
ce9adaa5 91};
0da5468f 92
d352ac68
CM
93/*
94 * async submit bios are used to offload expensive checksumming
95 * onto the worker threads. They checksum file and metadata bios
96 * just before they are sent down the IO stack.
97 */
44b8bd7e
CM
98struct async_submit_bio {
99 struct inode *inode;
100 struct bio *bio;
101 struct list_head list;
4a69a410
CM
102 extent_submit_bio_hook_t *submit_bio_start;
103 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
104 int rw;
105 int mirror_num;
c8b97818 106 unsigned long bio_flags;
eaf25d93
CM
107 /*
108 * bio_offset is optional, can be used if the pages in the bio
109 * can't tell us where in the file the bio should go
110 */
111 u64 bio_offset;
8b712842 112 struct btrfs_work work;
79787eaa 113 int error;
44b8bd7e
CM
114};
115
85d4e461
CM
116/*
117 * Lockdep class keys for extent_buffer->lock's in this root. For a given
118 * eb, the lockdep key is determined by the btrfs_root it belongs to and
119 * the level the eb occupies in the tree.
120 *
121 * Different roots are used for different purposes and may nest inside each
122 * other and they require separate keysets. As lockdep keys should be
123 * static, assign keysets according to the purpose of the root as indicated
124 * by btrfs_root->objectid. This ensures that all special purpose roots
125 * have separate keysets.
4008c04a 126 *
85d4e461
CM
127 * Lock-nesting across peer nodes is always done with the immediate parent
128 * node locked thus preventing deadlock. As lockdep doesn't know this, use
129 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 130 *
85d4e461
CM
131 * The key is set by the readpage_end_io_hook after the buffer has passed
132 * csum validation but before the pages are unlocked. It is also set by
133 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 134 *
85d4e461
CM
135 * We also add a check to make sure the highest level of the tree is the
136 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
137 * needs update as well.
4008c04a
CM
138 */
139#ifdef CONFIG_DEBUG_LOCK_ALLOC
140# if BTRFS_MAX_LEVEL != 8
141# error
142# endif
85d4e461
CM
143
144static struct btrfs_lockdep_keyset {
145 u64 id; /* root objectid */
146 const char *name_stem; /* lock name stem */
147 char names[BTRFS_MAX_LEVEL + 1][20];
148 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
149} btrfs_lockdep_keysets[] = {
150 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
151 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
152 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
153 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
154 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
155 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 156 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
157 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
158 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
159 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 160 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 161 { .id = 0, .name_stem = "tree" },
4008c04a 162};
85d4e461
CM
163
164void __init btrfs_init_lockdep(void)
165{
166 int i, j;
167
168 /* initialize lockdep class names */
169 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
170 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171
172 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
173 snprintf(ks->names[j], sizeof(ks->names[j]),
174 "btrfs-%s-%02d", ks->name_stem, j);
175 }
176}
177
178void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179 int level)
180{
181 struct btrfs_lockdep_keyset *ks;
182
183 BUG_ON(level >= ARRAY_SIZE(ks->keys));
184
185 /* find the matching keyset, id 0 is the default entry */
186 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
187 if (ks->id == objectid)
188 break;
189
190 lockdep_set_class_and_name(&eb->lock,
191 &ks->keys[level], ks->names[level]);
192}
193
4008c04a
CM
194#endif
195
d352ac68
CM
196/*
197 * extents on the btree inode are pretty simple, there's one extent
198 * that covers the entire device
199 */
b2950863 200static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 201 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 202 int create)
7eccb903 203{
5f39d397
CM
204 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
205 struct extent_map *em;
206 int ret;
207
890871be 208 read_lock(&em_tree->lock);
d1310b2e 209 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
210 if (em) {
211 em->bdev =
212 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 213 read_unlock(&em_tree->lock);
5f39d397 214 goto out;
a061fc8d 215 }
890871be 216 read_unlock(&em_tree->lock);
7b13b7b1 217
172ddd60 218 em = alloc_extent_map();
5f39d397
CM
219 if (!em) {
220 em = ERR_PTR(-ENOMEM);
221 goto out;
222 }
223 em->start = 0;
0afbaf8c 224 em->len = (u64)-1;
c8b97818 225 em->block_len = (u64)-1;
5f39d397 226 em->block_start = 0;
a061fc8d 227 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 228
890871be 229 write_lock(&em_tree->lock);
09a2a8f9 230 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
231 if (ret == -EEXIST) {
232 free_extent_map(em);
7b13b7b1 233 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 234 if (!em)
0433f20d 235 em = ERR_PTR(-EIO);
5f39d397 236 } else if (ret) {
7b13b7b1 237 free_extent_map(em);
0433f20d 238 em = ERR_PTR(ret);
5f39d397 239 }
890871be 240 write_unlock(&em_tree->lock);
7b13b7b1 241
5f39d397
CM
242out:
243 return em;
7eccb903
CM
244}
245
b0496686 246u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 247{
163e783e 248 return crc32c(seed, data, len);
19c00ddc
CM
249}
250
251void btrfs_csum_final(u32 crc, char *result)
252{
7e75bf3f 253 put_unaligned_le32(~crc, result);
19c00ddc
CM
254}
255
d352ac68
CM
256/*
257 * compute the csum for a btree block, and either verify it or write it
258 * into the csum field of the block.
259 */
19c00ddc
CM
260static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261 int verify)
262{
6c41761f 263 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 264 char *result = NULL;
19c00ddc
CM
265 unsigned long len;
266 unsigned long cur_len;
267 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
268 char *kaddr;
269 unsigned long map_start;
270 unsigned long map_len;
271 int err;
272 u32 crc = ~(u32)0;
607d432d 273 unsigned long inline_result;
19c00ddc
CM
274
275 len = buf->len - offset;
d397712b 276 while (len > 0) {
19c00ddc 277 err = map_private_extent_buffer(buf, offset, 32,
a6591715 278 &kaddr, &map_start, &map_len);
d397712b 279 if (err)
19c00ddc 280 return 1;
19c00ddc 281 cur_len = min(len, map_len - (offset - map_start));
b0496686 282 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
283 crc, cur_len);
284 len -= cur_len;
285 offset += cur_len;
19c00ddc 286 }
607d432d
JB
287 if (csum_size > sizeof(inline_result)) {
288 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289 if (!result)
290 return 1;
291 } else {
292 result = (char *)&inline_result;
293 }
294
19c00ddc
CM
295 btrfs_csum_final(crc, result);
296
297 if (verify) {
607d432d 298 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
299 u32 val;
300 u32 found = 0;
607d432d 301 memcpy(&found, result, csum_size);
e4204ded 302
607d432d 303 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 304 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
305 "failed on %llu wanted %X found %X "
306 "level %d\n",
c1c9ff7c
GU
307 root->fs_info->sb->s_id, buf->start,
308 val, found, btrfs_header_level(buf));
607d432d
JB
309 if (result != (char *)&inline_result)
310 kfree(result);
19c00ddc
CM
311 return 1;
312 }
313 } else {
607d432d 314 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 315 }
607d432d
JB
316 if (result != (char *)&inline_result)
317 kfree(result);
19c00ddc
CM
318 return 0;
319}
320
d352ac68
CM
321/*
322 * we can't consider a given block up to date unless the transid of the
323 * block matches the transid in the parent node's pointer. This is how we
324 * detect blocks that either didn't get written at all or got written
325 * in the wrong place.
326 */
1259ab75 327static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
328 struct extent_buffer *eb, u64 parent_transid,
329 int atomic)
1259ab75 330{
2ac55d41 331 struct extent_state *cached_state = NULL;
1259ab75
CM
332 int ret;
333
334 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
335 return 0;
336
b9fab919
CM
337 if (atomic)
338 return -EAGAIN;
339
2ac55d41 340 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 341 0, &cached_state);
0b32f4bb 342 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
343 btrfs_header_generation(eb) == parent_transid) {
344 ret = 0;
345 goto out;
346 }
7a36ddec 347 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 348 "found %llu\n",
c1c9ff7c 349 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 350 ret = 1;
0b32f4bb 351 clear_extent_buffer_uptodate(eb);
33958dc6 352out:
2ac55d41
JB
353 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
354 &cached_state, GFP_NOFS);
1259ab75 355 return ret;
1259ab75
CM
356}
357
1104a885
DS
358/*
359 * Return 0 if the superblock checksum type matches the checksum value of that
360 * algorithm. Pass the raw disk superblock data.
361 */
362static int btrfs_check_super_csum(char *raw_disk_sb)
363{
364 struct btrfs_super_block *disk_sb =
365 (struct btrfs_super_block *)raw_disk_sb;
366 u16 csum_type = btrfs_super_csum_type(disk_sb);
367 int ret = 0;
368
369 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
370 u32 crc = ~(u32)0;
371 const int csum_size = sizeof(crc);
372 char result[csum_size];
373
374 /*
375 * The super_block structure does not span the whole
376 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
377 * is filled with zeros and is included in the checkum.
378 */
379 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
380 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
381 btrfs_csum_final(crc, result);
382
383 if (memcmp(raw_disk_sb, result, csum_size))
384 ret = 1;
667e7d94
CM
385
386 if (ret && btrfs_super_generation(disk_sb) < 10) {
387 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
388 ret = 0;
389 }
1104a885
DS
390 }
391
392 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
394 csum_type);
395 ret = 1;
396 }
397
398 return ret;
399}
400
d352ac68
CM
401/*
402 * helper to read a given tree block, doing retries as required when
403 * the checksums don't match and we have alternate mirrors to try.
404 */
f188591e
CM
405static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406 struct extent_buffer *eb,
ca7a79ad 407 u64 start, u64 parent_transid)
f188591e
CM
408{
409 struct extent_io_tree *io_tree;
ea466794 410 int failed = 0;
f188591e
CM
411 int ret;
412 int num_copies = 0;
413 int mirror_num = 0;
ea466794 414 int failed_mirror = 0;
f188591e 415
a826d6dc 416 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
417 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418 while (1) {
bb82ab88
AJ
419 ret = read_extent_buffer_pages(io_tree, eb, start,
420 WAIT_COMPLETE,
f188591e 421 btree_get_extent, mirror_num);
256dd1bb
SB
422 if (!ret) {
423 if (!verify_parent_transid(io_tree, eb,
b9fab919 424 parent_transid, 0))
256dd1bb
SB
425 break;
426 else
427 ret = -EIO;
428 }
d397712b 429
a826d6dc
JB
430 /*
431 * This buffer's crc is fine, but its contents are corrupted, so
432 * there is no reason to read the other copies, they won't be
433 * any less wrong.
434 */
435 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
436 break;
437
5d964051 438 num_copies = btrfs_num_copies(root->fs_info,
f188591e 439 eb->start, eb->len);
4235298e 440 if (num_copies == 1)
ea466794 441 break;
4235298e 442
5cf1ab56
JB
443 if (!failed_mirror) {
444 failed = 1;
445 failed_mirror = eb->read_mirror;
446 }
447
f188591e 448 mirror_num++;
ea466794
JB
449 if (mirror_num == failed_mirror)
450 mirror_num++;
451
4235298e 452 if (mirror_num > num_copies)
ea466794 453 break;
f188591e 454 }
ea466794 455
c0901581 456 if (failed && !ret && failed_mirror)
ea466794
JB
457 repair_eb_io_failure(root, eb, failed_mirror);
458
459 return ret;
f188591e 460}
19c00ddc 461
d352ac68 462/*
d397712b
CM
463 * checksum a dirty tree block before IO. This has extra checks to make sure
464 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 465 */
d397712b 466
b2950863 467static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 468{
d1310b2e 469 struct extent_io_tree *tree;
4eee4fa4 470 u64 start = page_offset(page);
19c00ddc 471 u64 found_start;
19c00ddc 472 struct extent_buffer *eb;
f188591e 473
d1310b2e 474 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 475
4f2de97a
JB
476 eb = (struct extent_buffer *)page->private;
477 if (page != eb->pages[0])
478 return 0;
19c00ddc
CM
479 found_start = btrfs_header_bytenr(eb);
480 if (found_start != start) {
55c69072 481 WARN_ON(1);
4f2de97a 482 return 0;
55c69072 483 }
55c69072 484 if (!PageUptodate(page)) {
55c69072 485 WARN_ON(1);
4f2de97a 486 return 0;
19c00ddc 487 }
19c00ddc 488 csum_tree_block(root, eb, 0);
19c00ddc
CM
489 return 0;
490}
491
2b82032c
YZ
492static int check_tree_block_fsid(struct btrfs_root *root,
493 struct extent_buffer *eb)
494{
495 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
496 u8 fsid[BTRFS_UUID_SIZE];
497 int ret = 1;
498
fba6aa75 499 read_extent_buffer(eb, fsid, btrfs_header_fsid(eb), BTRFS_FSID_SIZE);
2b82032c
YZ
500 while (fs_devices) {
501 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
502 ret = 0;
503 break;
504 }
505 fs_devices = fs_devices->seed;
506 }
507 return ret;
508}
509
a826d6dc
JB
510#define CORRUPT(reason, eb, root, slot) \
511 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
512 "root=%llu, slot=%d\n", reason, \
c1c9ff7c 513 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
514
515static noinline int check_leaf(struct btrfs_root *root,
516 struct extent_buffer *leaf)
517{
518 struct btrfs_key key;
519 struct btrfs_key leaf_key;
520 u32 nritems = btrfs_header_nritems(leaf);
521 int slot;
522
523 if (nritems == 0)
524 return 0;
525
526 /* Check the 0 item */
527 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
528 BTRFS_LEAF_DATA_SIZE(root)) {
529 CORRUPT("invalid item offset size pair", leaf, root, 0);
530 return -EIO;
531 }
532
533 /*
534 * Check to make sure each items keys are in the correct order and their
535 * offsets make sense. We only have to loop through nritems-1 because
536 * we check the current slot against the next slot, which verifies the
537 * next slot's offset+size makes sense and that the current's slot
538 * offset is correct.
539 */
540 for (slot = 0; slot < nritems - 1; slot++) {
541 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
542 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
543
544 /* Make sure the keys are in the right order */
545 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
546 CORRUPT("bad key order", leaf, root, slot);
547 return -EIO;
548 }
549
550 /*
551 * Make sure the offset and ends are right, remember that the
552 * item data starts at the end of the leaf and grows towards the
553 * front.
554 */
555 if (btrfs_item_offset_nr(leaf, slot) !=
556 btrfs_item_end_nr(leaf, slot + 1)) {
557 CORRUPT("slot offset bad", leaf, root, slot);
558 return -EIO;
559 }
560
561 /*
562 * Check to make sure that we don't point outside of the leaf,
563 * just incase all the items are consistent to eachother, but
564 * all point outside of the leaf.
565 */
566 if (btrfs_item_end_nr(leaf, slot) >
567 BTRFS_LEAF_DATA_SIZE(root)) {
568 CORRUPT("slot end outside of leaf", leaf, root, slot);
569 return -EIO;
570 }
571 }
572
573 return 0;
574}
575
facc8a22
MX
576static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
577 u64 phy_offset, struct page *page,
578 u64 start, u64 end, int mirror)
ce9adaa5
CM
579{
580 struct extent_io_tree *tree;
581 u64 found_start;
582 int found_level;
ce9adaa5
CM
583 struct extent_buffer *eb;
584 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 585 int ret = 0;
727011e0 586 int reads_done;
ce9adaa5 587
ce9adaa5
CM
588 if (!page->private)
589 goto out;
d397712b 590
727011e0 591 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 592 eb = (struct extent_buffer *)page->private;
d397712b 593
0b32f4bb
JB
594 /* the pending IO might have been the only thing that kept this buffer
595 * in memory. Make sure we have a ref for all this other checks
596 */
597 extent_buffer_get(eb);
598
599 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
600 if (!reads_done)
601 goto err;
f188591e 602
5cf1ab56 603 eb->read_mirror = mirror;
ea466794
JB
604 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
605 ret = -EIO;
606 goto err;
607 }
608
ce9adaa5 609 found_start = btrfs_header_bytenr(eb);
727011e0 610 if (found_start != eb->start) {
7a36ddec 611 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d 612 "%llu %llu\n",
c1c9ff7c 613 found_start, eb->start);
f188591e 614 ret = -EIO;
ce9adaa5
CM
615 goto err;
616 }
2b82032c 617 if (check_tree_block_fsid(root, eb)) {
7a36ddec 618 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
c1c9ff7c 619 eb->start);
1259ab75
CM
620 ret = -EIO;
621 goto err;
622 }
ce9adaa5 623 found_level = btrfs_header_level(eb);
1c24c3ce
JB
624 if (found_level >= BTRFS_MAX_LEVEL) {
625 btrfs_info(root->fs_info, "bad tree block level %d\n",
626 (int)btrfs_header_level(eb));
627 ret = -EIO;
628 goto err;
629 }
ce9adaa5 630
85d4e461
CM
631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
632 eb, found_level);
4008c04a 633
ce9adaa5 634 ret = csum_tree_block(root, eb, 1);
a826d6dc 635 if (ret) {
f188591e 636 ret = -EIO;
a826d6dc
JB
637 goto err;
638 }
639
640 /*
641 * If this is a leaf block and it is corrupt, set the corrupt bit so
642 * that we don't try and read the other copies of this block, just
643 * return -EIO.
644 */
645 if (found_level == 0 && check_leaf(root, eb)) {
646 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
647 ret = -EIO;
648 }
ce9adaa5 649
0b32f4bb
JB
650 if (!ret)
651 set_extent_buffer_uptodate(eb);
ce9adaa5 652err:
79fb65a1
JB
653 if (reads_done &&
654 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 655 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 656
53b381b3
DW
657 if (ret) {
658 /*
659 * our io error hook is going to dec the io pages
660 * again, we have to make sure it has something
661 * to decrement
662 */
663 atomic_inc(&eb->io_pages);
0b32f4bb 664 clear_extent_buffer_uptodate(eb);
53b381b3 665 }
0b32f4bb 666 free_extent_buffer(eb);
ce9adaa5 667out:
f188591e 668 return ret;
ce9adaa5
CM
669}
670
ea466794 671static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 672{
4bb31e92
AJ
673 struct extent_buffer *eb;
674 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
675
4f2de97a 676 eb = (struct extent_buffer *)page->private;
ea466794 677 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 678 eb->read_mirror = failed_mirror;
53b381b3 679 atomic_dec(&eb->io_pages);
ea466794 680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 681 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
682 return -EIO; /* we fixed nothing */
683}
684
ce9adaa5 685static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
686{
687 struct end_io_wq *end_io_wq = bio->bi_private;
688 struct btrfs_fs_info *fs_info;
ce9adaa5 689
ce9adaa5 690 fs_info = end_io_wq->info;
ce9adaa5 691 end_io_wq->error = err;
8b712842
CM
692 end_io_wq->work.func = end_workqueue_fn;
693 end_io_wq->work.flags = 0;
d20f7043 694
7b6d91da 695 if (bio->bi_rw & REQ_WRITE) {
53b381b3 696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
cad321ad
CM
697 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
698 &end_io_wq->work);
53b381b3 699 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
0cb59c99
JB
700 btrfs_queue_worker(&fs_info->endio_freespace_worker,
701 &end_io_wq->work);
53b381b3
DW
702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
703 btrfs_queue_worker(&fs_info->endio_raid56_workers,
704 &end_io_wq->work);
cad321ad
CM
705 else
706 btrfs_queue_worker(&fs_info->endio_write_workers,
707 &end_io_wq->work);
d20f7043 708 } else {
53b381b3
DW
709 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710 btrfs_queue_worker(&fs_info->endio_raid56_workers,
711 &end_io_wq->work);
712 else if (end_io_wq->metadata)
d20f7043
CM
713 btrfs_queue_worker(&fs_info->endio_meta_workers,
714 &end_io_wq->work);
715 else
716 btrfs_queue_worker(&fs_info->endio_workers,
717 &end_io_wq->work);
718 }
ce9adaa5
CM
719}
720
0cb59c99
JB
721/*
722 * For the metadata arg you want
723 *
724 * 0 - if data
725 * 1 - if normal metadta
726 * 2 - if writing to the free space cache area
53b381b3 727 * 3 - raid parity work
0cb59c99 728 */
22c59948
CM
729int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
730 int metadata)
0b86a832 731{
ce9adaa5 732 struct end_io_wq *end_io_wq;
ce9adaa5
CM
733 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
734 if (!end_io_wq)
735 return -ENOMEM;
736
737 end_io_wq->private = bio->bi_private;
738 end_io_wq->end_io = bio->bi_end_io;
22c59948 739 end_io_wq->info = info;
ce9adaa5
CM
740 end_io_wq->error = 0;
741 end_io_wq->bio = bio;
22c59948 742 end_io_wq->metadata = metadata;
ce9adaa5
CM
743
744 bio->bi_private = end_io_wq;
745 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
746 return 0;
747}
748
b64a2851 749unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 750{
4854ddd0
CM
751 unsigned long limit = min_t(unsigned long,
752 info->workers.max_workers,
753 info->fs_devices->open_devices);
754 return 256 * limit;
755}
0986fe9e 756
4a69a410
CM
757static void run_one_async_start(struct btrfs_work *work)
758{
4a69a410 759 struct async_submit_bio *async;
79787eaa 760 int ret;
4a69a410
CM
761
762 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
763 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
764 async->mirror_num, async->bio_flags,
765 async->bio_offset);
766 if (ret)
767 async->error = ret;
4a69a410
CM
768}
769
770static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
771{
772 struct btrfs_fs_info *fs_info;
773 struct async_submit_bio *async;
4854ddd0 774 int limit;
8b712842
CM
775
776 async = container_of(work, struct async_submit_bio, work);
777 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 778
b64a2851 779 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
780 limit = limit * 2 / 3;
781
66657b31 782 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 783 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
784 wake_up(&fs_info->async_submit_wait);
785
79787eaa
JM
786 /* If an error occured we just want to clean up the bio and move on */
787 if (async->error) {
788 bio_endio(async->bio, async->error);
789 return;
790 }
791
4a69a410 792 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
793 async->mirror_num, async->bio_flags,
794 async->bio_offset);
4a69a410
CM
795}
796
797static void run_one_async_free(struct btrfs_work *work)
798{
799 struct async_submit_bio *async;
800
801 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
802 kfree(async);
803}
804
44b8bd7e
CM
805int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
806 int rw, struct bio *bio, int mirror_num,
c8b97818 807 unsigned long bio_flags,
eaf25d93 808 u64 bio_offset,
4a69a410
CM
809 extent_submit_bio_hook_t *submit_bio_start,
810 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
811{
812 struct async_submit_bio *async;
813
814 async = kmalloc(sizeof(*async), GFP_NOFS);
815 if (!async)
816 return -ENOMEM;
817
818 async->inode = inode;
819 async->rw = rw;
820 async->bio = bio;
821 async->mirror_num = mirror_num;
4a69a410
CM
822 async->submit_bio_start = submit_bio_start;
823 async->submit_bio_done = submit_bio_done;
824
825 async->work.func = run_one_async_start;
826 async->work.ordered_func = run_one_async_done;
827 async->work.ordered_free = run_one_async_free;
828
8b712842 829 async->work.flags = 0;
c8b97818 830 async->bio_flags = bio_flags;
eaf25d93 831 async->bio_offset = bio_offset;
8c8bee1d 832
79787eaa
JM
833 async->error = 0;
834
cb03c743 835 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 836
7b6d91da 837 if (rw & REQ_SYNC)
d313d7a3
CM
838 btrfs_set_work_high_prio(&async->work);
839
8b712842 840 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 841
d397712b 842 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
843 atomic_read(&fs_info->nr_async_submits)) {
844 wait_event(fs_info->async_submit_wait,
845 (atomic_read(&fs_info->nr_async_submits) == 0));
846 }
847
44b8bd7e
CM
848 return 0;
849}
850
ce3ed71a
CM
851static int btree_csum_one_bio(struct bio *bio)
852{
853 struct bio_vec *bvec = bio->bi_io_vec;
854 int bio_index = 0;
855 struct btrfs_root *root;
79787eaa 856 int ret = 0;
ce3ed71a
CM
857
858 WARN_ON(bio->bi_vcnt <= 0);
d397712b 859 while (bio_index < bio->bi_vcnt) {
ce3ed71a 860 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
861 ret = csum_dirty_buffer(root, bvec->bv_page);
862 if (ret)
863 break;
ce3ed71a
CM
864 bio_index++;
865 bvec++;
866 }
79787eaa 867 return ret;
ce3ed71a
CM
868}
869
4a69a410
CM
870static int __btree_submit_bio_start(struct inode *inode, int rw,
871 struct bio *bio, int mirror_num,
eaf25d93
CM
872 unsigned long bio_flags,
873 u64 bio_offset)
22c59948 874{
8b712842
CM
875 /*
876 * when we're called for a write, we're already in the async
5443be45 877 * submission context. Just jump into btrfs_map_bio
8b712842 878 */
79787eaa 879 return btree_csum_one_bio(bio);
4a69a410 880}
22c59948 881
4a69a410 882static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
883 int mirror_num, unsigned long bio_flags,
884 u64 bio_offset)
4a69a410 885{
61891923
SB
886 int ret;
887
8b712842 888 /*
4a69a410
CM
889 * when we're called for a write, we're already in the async
890 * submission context. Just jump into btrfs_map_bio
8b712842 891 */
61891923
SB
892 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
893 if (ret)
894 bio_endio(bio, ret);
895 return ret;
0b86a832
CM
896}
897
de0022b9
JB
898static int check_async_write(struct inode *inode, unsigned long bio_flags)
899{
900 if (bio_flags & EXTENT_BIO_TREE_LOG)
901 return 0;
902#ifdef CONFIG_X86
903 if (cpu_has_xmm4_2)
904 return 0;
905#endif
906 return 1;
907}
908
44b8bd7e 909static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
910 int mirror_num, unsigned long bio_flags,
911 u64 bio_offset)
44b8bd7e 912{
de0022b9 913 int async = check_async_write(inode, bio_flags);
cad321ad
CM
914 int ret;
915
7b6d91da 916 if (!(rw & REQ_WRITE)) {
4a69a410
CM
917 /*
918 * called for a read, do the setup so that checksum validation
919 * can happen in the async kernel threads
920 */
f3f266ab
CM
921 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
922 bio, 1);
1d4284bd 923 if (ret)
61891923
SB
924 goto out_w_error;
925 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
926 mirror_num, 0);
de0022b9
JB
927 } else if (!async) {
928 ret = btree_csum_one_bio(bio);
929 if (ret)
61891923
SB
930 goto out_w_error;
931 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
932 mirror_num, 0);
933 } else {
934 /*
935 * kthread helpers are used to submit writes so that
936 * checksumming can happen in parallel across all CPUs
937 */
938 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
939 inode, rw, bio, mirror_num, 0,
940 bio_offset,
941 __btree_submit_bio_start,
942 __btree_submit_bio_done);
44b8bd7e 943 }
d313d7a3 944
61891923
SB
945 if (ret) {
946out_w_error:
947 bio_endio(bio, ret);
948 }
949 return ret;
44b8bd7e
CM
950}
951
3dd1462e 952#ifdef CONFIG_MIGRATION
784b4e29 953static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
954 struct page *newpage, struct page *page,
955 enum migrate_mode mode)
784b4e29
CM
956{
957 /*
958 * we can't safely write a btree page from here,
959 * we haven't done the locking hook
960 */
961 if (PageDirty(page))
962 return -EAGAIN;
963 /*
964 * Buffers may be managed in a filesystem specific way.
965 * We must have no buffers or drop them.
966 */
967 if (page_has_private(page) &&
968 !try_to_release_page(page, GFP_KERNEL))
969 return -EAGAIN;
a6bc32b8 970 return migrate_page(mapping, newpage, page, mode);
784b4e29 971}
3dd1462e 972#endif
784b4e29 973
0da5468f
CM
974
975static int btree_writepages(struct address_space *mapping,
976 struct writeback_control *wbc)
977{
d1310b2e 978 struct extent_io_tree *tree;
e2d84521
MX
979 struct btrfs_fs_info *fs_info;
980 int ret;
981
d1310b2e 982 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 983 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
984
985 if (wbc->for_kupdate)
986 return 0;
987
e2d84521 988 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 989 /* this is a bit racy, but that's ok */
e2d84521
MX
990 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
991 BTRFS_DIRTY_METADATA_THRESH);
992 if (ret < 0)
793955bc 993 return 0;
793955bc 994 }
0b32f4bb 995 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
996}
997
b2950863 998static int btree_readpage(struct file *file, struct page *page)
5f39d397 999{
d1310b2e
CM
1000 struct extent_io_tree *tree;
1001 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1002 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1003}
22b0ebda 1004
70dec807 1005static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1006{
98509cfc 1007 if (PageWriteback(page) || PageDirty(page))
d397712b 1008 return 0;
0c4e538b 1009
f7a52a40 1010 return try_release_extent_buffer(page);
d98237b3
CM
1011}
1012
d47992f8
LC
1013static void btree_invalidatepage(struct page *page, unsigned int offset,
1014 unsigned int length)
d98237b3 1015{
d1310b2e
CM
1016 struct extent_io_tree *tree;
1017 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1018 extent_invalidatepage(tree, page, offset);
1019 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1020 if (PagePrivate(page)) {
d397712b
CM
1021 printk(KERN_WARNING "btrfs warning page private not zero "
1022 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
1023 ClearPagePrivate(page);
1024 set_page_private(page, 0);
1025 page_cache_release(page);
1026 }
d98237b3
CM
1027}
1028
0b32f4bb
JB
1029static int btree_set_page_dirty(struct page *page)
1030{
bb146eb2 1031#ifdef DEBUG
0b32f4bb
JB
1032 struct extent_buffer *eb;
1033
1034 BUG_ON(!PagePrivate(page));
1035 eb = (struct extent_buffer *)page->private;
1036 BUG_ON(!eb);
1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 BUG_ON(!atomic_read(&eb->refs));
1039 btrfs_assert_tree_locked(eb);
bb146eb2 1040#endif
0b32f4bb
JB
1041 return __set_page_dirty_nobuffers(page);
1042}
1043
7f09410b 1044static const struct address_space_operations btree_aops = {
d98237b3 1045 .readpage = btree_readpage,
0da5468f 1046 .writepages = btree_writepages,
5f39d397
CM
1047 .releasepage = btree_releasepage,
1048 .invalidatepage = btree_invalidatepage,
5a92bc88 1049#ifdef CONFIG_MIGRATION
784b4e29 1050 .migratepage = btree_migratepage,
5a92bc88 1051#endif
0b32f4bb 1052 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1053};
1054
ca7a79ad
CM
1055int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056 u64 parent_transid)
090d1875 1057{
5f39d397
CM
1058 struct extent_buffer *buf = NULL;
1059 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1060 int ret = 0;
090d1875 1061
db94535d 1062 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1063 if (!buf)
090d1875 1064 return 0;
d1310b2e 1065 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1066 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1067 free_extent_buffer(buf);
de428b63 1068 return ret;
090d1875
CM
1069}
1070
ab0fff03
AJ
1071int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072 int mirror_num, struct extent_buffer **eb)
1073{
1074 struct extent_buffer *buf = NULL;
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077 int ret;
1078
1079 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080 if (!buf)
1081 return 0;
1082
1083 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084
1085 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086 btree_get_extent, mirror_num);
1087 if (ret) {
1088 free_extent_buffer(buf);
1089 return ret;
1090 }
1091
1092 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093 free_extent_buffer(buf);
1094 return -EIO;
0b32f4bb 1095 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1096 *eb = buf;
1097 } else {
1098 free_extent_buffer(buf);
1099 }
1100 return 0;
1101}
1102
0999df54
CM
1103struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104 u64 bytenr, u32 blocksize)
1105{
1106 struct inode *btree_inode = root->fs_info->btree_inode;
1107 struct extent_buffer *eb;
1108 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1109 bytenr, blocksize);
0999df54
CM
1110 return eb;
1111}
1112
1113struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1114 u64 bytenr, u32 blocksize)
1115{
1116 struct inode *btree_inode = root->fs_info->btree_inode;
1117 struct extent_buffer *eb;
1118
1119 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1120 bytenr, blocksize);
0999df54
CM
1121 return eb;
1122}
1123
1124
e02119d5
CM
1125int btrfs_write_tree_block(struct extent_buffer *buf)
1126{
727011e0 1127 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1128 buf->start + buf->len - 1);
e02119d5
CM
1129}
1130
1131int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1132{
727011e0 1133 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1134 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1135}
1136
0999df54 1137struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1138 u32 blocksize, u64 parent_transid)
0999df54
CM
1139{
1140 struct extent_buffer *buf = NULL;
0999df54
CM
1141 int ret;
1142
0999df54
CM
1143 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1144 if (!buf)
1145 return NULL;
0999df54 1146
ca7a79ad 1147 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1148 if (ret) {
1149 free_extent_buffer(buf);
1150 return NULL;
1151 }
5f39d397 1152 return buf;
ce9adaa5 1153
eb60ceac
CM
1154}
1155
d5c13f92
JM
1156void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1157 struct extent_buffer *buf)
ed2ff2cb 1158{
e2d84521
MX
1159 struct btrfs_fs_info *fs_info = root->fs_info;
1160
55c69072 1161 if (btrfs_header_generation(buf) ==
e2d84521 1162 fs_info->running_transaction->transid) {
b9447ef8 1163 btrfs_assert_tree_locked(buf);
b4ce94de 1164
b9473439 1165 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1166 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1167 -buf->len,
1168 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1169 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1170 btrfs_set_lock_blocking(buf);
1171 clear_extent_buffer_dirty(buf);
1172 }
925baedd 1173 }
5f39d397
CM
1174}
1175
143bede5
JM
1176static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1177 u32 stripesize, struct btrfs_root *root,
1178 struct btrfs_fs_info *fs_info,
1179 u64 objectid)
d97e63b6 1180{
cfaa7295 1181 root->node = NULL;
a28ec197 1182 root->commit_root = NULL;
db94535d
CM
1183 root->sectorsize = sectorsize;
1184 root->nodesize = nodesize;
1185 root->leafsize = leafsize;
87ee04eb 1186 root->stripesize = stripesize;
123abc88 1187 root->ref_cows = 0;
0b86a832 1188 root->track_dirty = 0;
c71bf099 1189 root->in_radix = 0;
d68fc57b
YZ
1190 root->orphan_item_inserted = 0;
1191 root->orphan_cleanup_state = 0;
0b86a832 1192
0f7d52f4
CM
1193 root->objectid = objectid;
1194 root->last_trans = 0;
13a8a7c8 1195 root->highest_objectid = 0;
eb73c1b7 1196 root->nr_delalloc_inodes = 0;
199c2a9c 1197 root->nr_ordered_extents = 0;
58176a96 1198 root->name = NULL;
6bef4d31 1199 root->inode_tree = RB_ROOT;
16cdcec7 1200 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1201 root->block_rsv = NULL;
d68fc57b 1202 root->orphan_block_rsv = NULL;
0b86a832
CM
1203
1204 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1205 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1206 INIT_LIST_HEAD(&root->delalloc_inodes);
1207 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1208 INIT_LIST_HEAD(&root->ordered_extents);
1209 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1210 INIT_LIST_HEAD(&root->logged_list[0]);
1211 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1212 spin_lock_init(&root->orphan_lock);
5d4f98a2 1213 spin_lock_init(&root->inode_lock);
eb73c1b7 1214 spin_lock_init(&root->delalloc_lock);
199c2a9c 1215 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1216 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1217 spin_lock_init(&root->log_extents_lock[0]);
1218 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1219 mutex_init(&root->objectid_mutex);
e02119d5 1220 mutex_init(&root->log_mutex);
7237f183
YZ
1221 init_waitqueue_head(&root->log_writer_wait);
1222 init_waitqueue_head(&root->log_commit_wait[0]);
1223 init_waitqueue_head(&root->log_commit_wait[1]);
1224 atomic_set(&root->log_commit[0], 0);
1225 atomic_set(&root->log_commit[1], 0);
1226 atomic_set(&root->log_writers, 0);
2ecb7923 1227 atomic_set(&root->log_batch, 0);
8a35d95f 1228 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1229 atomic_set(&root->refs, 1);
7237f183 1230 root->log_transid = 0;
257c62e1 1231 root->last_log_commit = 0;
d0c803c4 1232 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1233 fs_info->btree_inode->i_mapping);
017e5369 1234
3768f368
CM
1235 memset(&root->root_key, 0, sizeof(root->root_key));
1236 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1237 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1238 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1239 root->defrag_trans_start = fs_info->generation;
58176a96 1240 init_completion(&root->kobj_unregister);
6702ed49 1241 root->defrag_running = 0;
4d775673 1242 root->root_key.objectid = objectid;
0ee5dc67 1243 root->anon_dev = 0;
8ea05e3a 1244
5f3ab90a 1245 spin_lock_init(&root->root_item_lock);
3768f368
CM
1246}
1247
f84a8bd6 1248static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1249{
1250 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1251 if (root)
1252 root->fs_info = fs_info;
1253 return root;
1254}
1255
20897f5c
AJ
1256struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1257 struct btrfs_fs_info *fs_info,
1258 u64 objectid)
1259{
1260 struct extent_buffer *leaf;
1261 struct btrfs_root *tree_root = fs_info->tree_root;
1262 struct btrfs_root *root;
1263 struct btrfs_key key;
1264 int ret = 0;
1265 u64 bytenr;
6463fe58 1266 uuid_le uuid;
20897f5c
AJ
1267
1268 root = btrfs_alloc_root(fs_info);
1269 if (!root)
1270 return ERR_PTR(-ENOMEM);
1271
1272 __setup_root(tree_root->nodesize, tree_root->leafsize,
1273 tree_root->sectorsize, tree_root->stripesize,
1274 root, fs_info, objectid);
1275 root->root_key.objectid = objectid;
1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 root->root_key.offset = 0;
1278
1279 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1280 0, objectid, NULL, 0, 0, 0);
1281 if (IS_ERR(leaf)) {
1282 ret = PTR_ERR(leaf);
1dd05682 1283 leaf = NULL;
20897f5c
AJ
1284 goto fail;
1285 }
1286
1287 bytenr = leaf->start;
1288 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1289 btrfs_set_header_bytenr(leaf, leaf->start);
1290 btrfs_set_header_generation(leaf, trans->transid);
1291 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1292 btrfs_set_header_owner(leaf, objectid);
1293 root->node = leaf;
1294
fba6aa75 1295 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(leaf),
20897f5c
AJ
1296 BTRFS_FSID_SIZE);
1297 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1298 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1299 BTRFS_UUID_SIZE);
1300 btrfs_mark_buffer_dirty(leaf);
1301
1302 root->commit_root = btrfs_root_node(root);
1303 root->track_dirty = 1;
1304
1305
1306 root->root_item.flags = 0;
1307 root->root_item.byte_limit = 0;
1308 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1309 btrfs_set_root_generation(&root->root_item, trans->transid);
1310 btrfs_set_root_level(&root->root_item, 0);
1311 btrfs_set_root_refs(&root->root_item, 1);
1312 btrfs_set_root_used(&root->root_item, leaf->len);
1313 btrfs_set_root_last_snapshot(&root->root_item, 0);
1314 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1315 uuid_le_gen(&uuid);
1316 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1317 root->root_item.drop_level = 0;
1318
1319 key.objectid = objectid;
1320 key.type = BTRFS_ROOT_ITEM_KEY;
1321 key.offset = 0;
1322 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1323 if (ret)
1324 goto fail;
1325
1326 btrfs_tree_unlock(leaf);
1327
1dd05682
TI
1328 return root;
1329
20897f5c 1330fail:
1dd05682
TI
1331 if (leaf) {
1332 btrfs_tree_unlock(leaf);
1333 free_extent_buffer(leaf);
1334 }
1335 kfree(root);
20897f5c 1336
1dd05682 1337 return ERR_PTR(ret);
20897f5c
AJ
1338}
1339
7237f183
YZ
1340static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1341 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1342{
1343 struct btrfs_root *root;
1344 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1345 struct extent_buffer *leaf;
e02119d5 1346
6f07e42e 1347 root = btrfs_alloc_root(fs_info);
e02119d5 1348 if (!root)
7237f183 1349 return ERR_PTR(-ENOMEM);
e02119d5
CM
1350
1351 __setup_root(tree_root->nodesize, tree_root->leafsize,
1352 tree_root->sectorsize, tree_root->stripesize,
1353 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1354
1355 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1356 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1357 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1358 /*
1359 * log trees do not get reference counted because they go away
1360 * before a real commit is actually done. They do store pointers
1361 * to file data extents, and those reference counts still get
1362 * updated (along with back refs to the log tree).
1363 */
e02119d5
CM
1364 root->ref_cows = 0;
1365
5d4f98a2 1366 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1367 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1368 0, 0, 0);
7237f183
YZ
1369 if (IS_ERR(leaf)) {
1370 kfree(root);
1371 return ERR_CAST(leaf);
1372 }
e02119d5 1373
5d4f98a2
YZ
1374 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1375 btrfs_set_header_bytenr(leaf, leaf->start);
1376 btrfs_set_header_generation(leaf, trans->transid);
1377 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1378 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1379 root->node = leaf;
e02119d5
CM
1380
1381 write_extent_buffer(root->node, root->fs_info->fsid,
fba6aa75 1382 btrfs_header_fsid(root->node), BTRFS_FSID_SIZE);
e02119d5
CM
1383 btrfs_mark_buffer_dirty(root->node);
1384 btrfs_tree_unlock(root->node);
7237f183
YZ
1385 return root;
1386}
1387
1388int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1389 struct btrfs_fs_info *fs_info)
1390{
1391 struct btrfs_root *log_root;
1392
1393 log_root = alloc_log_tree(trans, fs_info);
1394 if (IS_ERR(log_root))
1395 return PTR_ERR(log_root);
1396 WARN_ON(fs_info->log_root_tree);
1397 fs_info->log_root_tree = log_root;
1398 return 0;
1399}
1400
1401int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root)
1403{
1404 struct btrfs_root *log_root;
1405 struct btrfs_inode_item *inode_item;
1406
1407 log_root = alloc_log_tree(trans, root->fs_info);
1408 if (IS_ERR(log_root))
1409 return PTR_ERR(log_root);
1410
1411 log_root->last_trans = trans->transid;
1412 log_root->root_key.offset = root->root_key.objectid;
1413
1414 inode_item = &log_root->root_item.inode;
3cae210f
QW
1415 btrfs_set_stack_inode_generation(inode_item, 1);
1416 btrfs_set_stack_inode_size(inode_item, 3);
1417 btrfs_set_stack_inode_nlink(inode_item, 1);
1418 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1419 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1420
5d4f98a2 1421 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1422
1423 WARN_ON(root->log_root);
1424 root->log_root = log_root;
1425 root->log_transid = 0;
257c62e1 1426 root->last_log_commit = 0;
e02119d5
CM
1427 return 0;
1428}
1429
35a3621b
SB
1430static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1431 struct btrfs_key *key)
e02119d5
CM
1432{
1433 struct btrfs_root *root;
1434 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1435 struct btrfs_path *path;
84234f3a 1436 u64 generation;
db94535d 1437 u32 blocksize;
cb517eab 1438 int ret;
0f7d52f4 1439
cb517eab
MX
1440 path = btrfs_alloc_path();
1441 if (!path)
0f7d52f4 1442 return ERR_PTR(-ENOMEM);
cb517eab
MX
1443
1444 root = btrfs_alloc_root(fs_info);
1445 if (!root) {
1446 ret = -ENOMEM;
1447 goto alloc_fail;
0f7d52f4
CM
1448 }
1449
db94535d 1450 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1451 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1452 root, fs_info, key->objectid);
0f7d52f4 1453
cb517eab
MX
1454 ret = btrfs_find_root(tree_root, key, path,
1455 &root->root_item, &root->root_key);
0f7d52f4 1456 if (ret) {
13a8a7c8
YZ
1457 if (ret > 0)
1458 ret = -ENOENT;
cb517eab 1459 goto find_fail;
0f7d52f4 1460 }
13a8a7c8 1461
84234f3a 1462 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1463 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1464 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1465 blocksize, generation);
cb517eab
MX
1466 if (!root->node) {
1467 ret = -ENOMEM;
1468 goto find_fail;
1469 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1470 ret = -EIO;
1471 goto read_fail;
416bc658 1472 }
5d4f98a2 1473 root->commit_root = btrfs_root_node(root);
13a8a7c8 1474out:
cb517eab
MX
1475 btrfs_free_path(path);
1476 return root;
1477
1478read_fail:
1479 free_extent_buffer(root->node);
1480find_fail:
1481 kfree(root);
1482alloc_fail:
1483 root = ERR_PTR(ret);
1484 goto out;
1485}
1486
1487struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1488 struct btrfs_key *location)
1489{
1490 struct btrfs_root *root;
1491
1492 root = btrfs_read_tree_root(tree_root, location);
1493 if (IS_ERR(root))
1494 return root;
1495
1496 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1497 root->ref_cows = 1;
08fe4db1
LZ
1498 btrfs_check_and_init_root_item(&root->root_item);
1499 }
13a8a7c8 1500
5eda7b5e
CM
1501 return root;
1502}
1503
cb517eab
MX
1504int btrfs_init_fs_root(struct btrfs_root *root)
1505{
1506 int ret;
1507
1508 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1509 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1510 GFP_NOFS);
1511 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1512 ret = -ENOMEM;
1513 goto fail;
1514 }
1515
1516 btrfs_init_free_ino_ctl(root);
1517 mutex_init(&root->fs_commit_mutex);
1518 spin_lock_init(&root->cache_lock);
1519 init_waitqueue_head(&root->cache_wait);
1520
1521 ret = get_anon_bdev(&root->anon_dev);
1522 if (ret)
1523 goto fail;
1524 return 0;
1525fail:
1526 kfree(root->free_ino_ctl);
1527 kfree(root->free_ino_pinned);
1528 return ret;
1529}
1530
171170c1
ST
1531static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1532 u64 root_id)
cb517eab
MX
1533{
1534 struct btrfs_root *root;
1535
1536 spin_lock(&fs_info->fs_roots_radix_lock);
1537 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1538 (unsigned long)root_id);
1539 spin_unlock(&fs_info->fs_roots_radix_lock);
1540 return root;
1541}
1542
1543int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1544 struct btrfs_root *root)
1545{
1546 int ret;
1547
1548 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1549 if (ret)
1550 return ret;
1551
1552 spin_lock(&fs_info->fs_roots_radix_lock);
1553 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1554 (unsigned long)root->root_key.objectid,
1555 root);
1556 if (ret == 0)
1557 root->in_radix = 1;
1558 spin_unlock(&fs_info->fs_roots_radix_lock);
1559 radix_tree_preload_end();
1560
1561 return ret;
1562}
1563
c00869f1
MX
1564struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1565 struct btrfs_key *location,
1566 bool check_ref)
5eda7b5e
CM
1567{
1568 struct btrfs_root *root;
1569 int ret;
1570
edbd8d4e
CM
1571 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1572 return fs_info->tree_root;
1573 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1574 return fs_info->extent_root;
8f18cf13
CM
1575 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1576 return fs_info->chunk_root;
1577 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1578 return fs_info->dev_root;
0403e47e
YZ
1579 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1580 return fs_info->csum_root;
bcef60f2
AJ
1581 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1582 return fs_info->quota_root ? fs_info->quota_root :
1583 ERR_PTR(-ENOENT);
f7a81ea4
SB
1584 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1585 return fs_info->uuid_root ? fs_info->uuid_root :
1586 ERR_PTR(-ENOENT);
4df27c4d 1587again:
cb517eab 1588 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1589 if (root) {
c00869f1 1590 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1591 return ERR_PTR(-ENOENT);
5eda7b5e 1592 return root;
48475471 1593 }
5eda7b5e 1594
cb517eab 1595 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1596 if (IS_ERR(root))
1597 return root;
3394e160 1598
c00869f1 1599 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1600 ret = -ENOENT;
581bb050 1601 goto fail;
35a30d7c 1602 }
581bb050 1603
cb517eab 1604 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1605 if (ret)
1606 goto fail;
3394e160 1607
d68fc57b
YZ
1608 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1609 if (ret < 0)
1610 goto fail;
1611 if (ret == 0)
1612 root->orphan_item_inserted = 1;
1613
cb517eab 1614 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1615 if (ret) {
4df27c4d
YZ
1616 if (ret == -EEXIST) {
1617 free_fs_root(root);
1618 goto again;
1619 }
1620 goto fail;
0f7d52f4 1621 }
edbd8d4e 1622 return root;
4df27c4d
YZ
1623fail:
1624 free_fs_root(root);
1625 return ERR_PTR(ret);
edbd8d4e
CM
1626}
1627
04160088
CM
1628static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1629{
1630 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1631 int ret = 0;
04160088
CM
1632 struct btrfs_device *device;
1633 struct backing_dev_info *bdi;
b7967db7 1634
1f78160c
XG
1635 rcu_read_lock();
1636 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1637 if (!device->bdev)
1638 continue;
04160088
CM
1639 bdi = blk_get_backing_dev_info(device->bdev);
1640 if (bdi && bdi_congested(bdi, bdi_bits)) {
1641 ret = 1;
1642 break;
1643 }
1644 }
1f78160c 1645 rcu_read_unlock();
04160088
CM
1646 return ret;
1647}
1648
ad081f14
JA
1649/*
1650 * If this fails, caller must call bdi_destroy() to get rid of the
1651 * bdi again.
1652 */
04160088
CM
1653static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1654{
ad081f14
JA
1655 int err;
1656
1657 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1658 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1659 if (err)
1660 return err;
1661
4575c9cc 1662 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1663 bdi->congested_fn = btrfs_congested_fn;
1664 bdi->congested_data = info;
1665 return 0;
1666}
1667
8b712842
CM
1668/*
1669 * called by the kthread helper functions to finally call the bio end_io
1670 * functions. This is where read checksum verification actually happens
1671 */
1672static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1673{
ce9adaa5 1674 struct bio *bio;
8b712842
CM
1675 struct end_io_wq *end_io_wq;
1676 struct btrfs_fs_info *fs_info;
ce9adaa5 1677 int error;
ce9adaa5 1678
8b712842
CM
1679 end_io_wq = container_of(work, struct end_io_wq, work);
1680 bio = end_io_wq->bio;
1681 fs_info = end_io_wq->info;
ce9adaa5 1682
8b712842
CM
1683 error = end_io_wq->error;
1684 bio->bi_private = end_io_wq->private;
1685 bio->bi_end_io = end_io_wq->end_io;
1686 kfree(end_io_wq);
8b712842 1687 bio_endio(bio, error);
44b8bd7e
CM
1688}
1689
a74a4b97
CM
1690static int cleaner_kthread(void *arg)
1691{
1692 struct btrfs_root *root = arg;
d0278245 1693 int again;
a74a4b97
CM
1694
1695 do {
d0278245 1696 again = 0;
a74a4b97 1697
d0278245 1698 /* Make the cleaner go to sleep early. */
babbf170 1699 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1700 goto sleep;
1701
1702 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1703 goto sleep;
1704
dc7f370c
MX
1705 /*
1706 * Avoid the problem that we change the status of the fs
1707 * during the above check and trylock.
1708 */
babbf170 1709 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1710 mutex_unlock(&root->fs_info->cleaner_mutex);
1711 goto sleep;
76dda93c 1712 }
a74a4b97 1713
d0278245
MX
1714 btrfs_run_delayed_iputs(root);
1715 again = btrfs_clean_one_deleted_snapshot(root);
1716 mutex_unlock(&root->fs_info->cleaner_mutex);
1717
1718 /*
05323cd1
MX
1719 * The defragger has dealt with the R/O remount and umount,
1720 * needn't do anything special here.
d0278245
MX
1721 */
1722 btrfs_run_defrag_inodes(root->fs_info);
1723sleep:
9d1a2a3a 1724 if (!try_to_freeze() && !again) {
a74a4b97 1725 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1726 if (!kthread_should_stop())
1727 schedule();
a74a4b97
CM
1728 __set_current_state(TASK_RUNNING);
1729 }
1730 } while (!kthread_should_stop());
1731 return 0;
1732}
1733
1734static int transaction_kthread(void *arg)
1735{
1736 struct btrfs_root *root = arg;
1737 struct btrfs_trans_handle *trans;
1738 struct btrfs_transaction *cur;
8929ecfa 1739 u64 transid;
a74a4b97
CM
1740 unsigned long now;
1741 unsigned long delay;
914b2007 1742 bool cannot_commit;
a74a4b97
CM
1743
1744 do {
914b2007 1745 cannot_commit = false;
8b87dc17 1746 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1747 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1748
a4abeea4 1749 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1750 cur = root->fs_info->running_transaction;
1751 if (!cur) {
a4abeea4 1752 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1753 goto sleep;
1754 }
31153d81 1755
a74a4b97 1756 now = get_seconds();
4a9d8bde 1757 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1758 (now < cur->start_time ||
1759 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1760 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1761 delay = HZ * 5;
1762 goto sleep;
1763 }
8929ecfa 1764 transid = cur->transid;
a4abeea4 1765 spin_unlock(&root->fs_info->trans_lock);
56bec294 1766
79787eaa 1767 /* If the file system is aborted, this will always fail. */
354aa0fb 1768 trans = btrfs_attach_transaction(root);
914b2007 1769 if (IS_ERR(trans)) {
354aa0fb
MX
1770 if (PTR_ERR(trans) != -ENOENT)
1771 cannot_commit = true;
79787eaa 1772 goto sleep;
914b2007 1773 }
8929ecfa 1774 if (transid == trans->transid) {
79787eaa 1775 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1776 } else {
1777 btrfs_end_transaction(trans, root);
1778 }
a74a4b97
CM
1779sleep:
1780 wake_up_process(root->fs_info->cleaner_kthread);
1781 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1782
a0acae0e 1783 if (!try_to_freeze()) {
a74a4b97 1784 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1785 if (!kthread_should_stop() &&
914b2007
JK
1786 (!btrfs_transaction_blocked(root->fs_info) ||
1787 cannot_commit))
8929ecfa 1788 schedule_timeout(delay);
a74a4b97
CM
1789 __set_current_state(TASK_RUNNING);
1790 }
1791 } while (!kthread_should_stop());
1792 return 0;
1793}
1794
af31f5e5
CM
1795/*
1796 * this will find the highest generation in the array of
1797 * root backups. The index of the highest array is returned,
1798 * or -1 if we can't find anything.
1799 *
1800 * We check to make sure the array is valid by comparing the
1801 * generation of the latest root in the array with the generation
1802 * in the super block. If they don't match we pitch it.
1803 */
1804static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1805{
1806 u64 cur;
1807 int newest_index = -1;
1808 struct btrfs_root_backup *root_backup;
1809 int i;
1810
1811 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1812 root_backup = info->super_copy->super_roots + i;
1813 cur = btrfs_backup_tree_root_gen(root_backup);
1814 if (cur == newest_gen)
1815 newest_index = i;
1816 }
1817
1818 /* check to see if we actually wrapped around */
1819 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1820 root_backup = info->super_copy->super_roots;
1821 cur = btrfs_backup_tree_root_gen(root_backup);
1822 if (cur == newest_gen)
1823 newest_index = 0;
1824 }
1825 return newest_index;
1826}
1827
1828
1829/*
1830 * find the oldest backup so we know where to store new entries
1831 * in the backup array. This will set the backup_root_index
1832 * field in the fs_info struct
1833 */
1834static void find_oldest_super_backup(struct btrfs_fs_info *info,
1835 u64 newest_gen)
1836{
1837 int newest_index = -1;
1838
1839 newest_index = find_newest_super_backup(info, newest_gen);
1840 /* if there was garbage in there, just move along */
1841 if (newest_index == -1) {
1842 info->backup_root_index = 0;
1843 } else {
1844 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1845 }
1846}
1847
1848/*
1849 * copy all the root pointers into the super backup array.
1850 * this will bump the backup pointer by one when it is
1851 * done
1852 */
1853static void backup_super_roots(struct btrfs_fs_info *info)
1854{
1855 int next_backup;
1856 struct btrfs_root_backup *root_backup;
1857 int last_backup;
1858
1859 next_backup = info->backup_root_index;
1860 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1861 BTRFS_NUM_BACKUP_ROOTS;
1862
1863 /*
1864 * just overwrite the last backup if we're at the same generation
1865 * this happens only at umount
1866 */
1867 root_backup = info->super_for_commit->super_roots + last_backup;
1868 if (btrfs_backup_tree_root_gen(root_backup) ==
1869 btrfs_header_generation(info->tree_root->node))
1870 next_backup = last_backup;
1871
1872 root_backup = info->super_for_commit->super_roots + next_backup;
1873
1874 /*
1875 * make sure all of our padding and empty slots get zero filled
1876 * regardless of which ones we use today
1877 */
1878 memset(root_backup, 0, sizeof(*root_backup));
1879
1880 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1881
1882 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1883 btrfs_set_backup_tree_root_gen(root_backup,
1884 btrfs_header_generation(info->tree_root->node));
1885
1886 btrfs_set_backup_tree_root_level(root_backup,
1887 btrfs_header_level(info->tree_root->node));
1888
1889 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1890 btrfs_set_backup_chunk_root_gen(root_backup,
1891 btrfs_header_generation(info->chunk_root->node));
1892 btrfs_set_backup_chunk_root_level(root_backup,
1893 btrfs_header_level(info->chunk_root->node));
1894
1895 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1896 btrfs_set_backup_extent_root_gen(root_backup,
1897 btrfs_header_generation(info->extent_root->node));
1898 btrfs_set_backup_extent_root_level(root_backup,
1899 btrfs_header_level(info->extent_root->node));
1900
7c7e82a7
CM
1901 /*
1902 * we might commit during log recovery, which happens before we set
1903 * the fs_root. Make sure it is valid before we fill it in.
1904 */
1905 if (info->fs_root && info->fs_root->node) {
1906 btrfs_set_backup_fs_root(root_backup,
1907 info->fs_root->node->start);
1908 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1909 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1910 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1911 btrfs_header_level(info->fs_root->node));
7c7e82a7 1912 }
af31f5e5
CM
1913
1914 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1915 btrfs_set_backup_dev_root_gen(root_backup,
1916 btrfs_header_generation(info->dev_root->node));
1917 btrfs_set_backup_dev_root_level(root_backup,
1918 btrfs_header_level(info->dev_root->node));
1919
1920 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1921 btrfs_set_backup_csum_root_gen(root_backup,
1922 btrfs_header_generation(info->csum_root->node));
1923 btrfs_set_backup_csum_root_level(root_backup,
1924 btrfs_header_level(info->csum_root->node));
1925
1926 btrfs_set_backup_total_bytes(root_backup,
1927 btrfs_super_total_bytes(info->super_copy));
1928 btrfs_set_backup_bytes_used(root_backup,
1929 btrfs_super_bytes_used(info->super_copy));
1930 btrfs_set_backup_num_devices(root_backup,
1931 btrfs_super_num_devices(info->super_copy));
1932
1933 /*
1934 * if we don't copy this out to the super_copy, it won't get remembered
1935 * for the next commit
1936 */
1937 memcpy(&info->super_copy->super_roots,
1938 &info->super_for_commit->super_roots,
1939 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1940}
1941
1942/*
1943 * this copies info out of the root backup array and back into
1944 * the in-memory super block. It is meant to help iterate through
1945 * the array, so you send it the number of backups you've already
1946 * tried and the last backup index you used.
1947 *
1948 * this returns -1 when it has tried all the backups
1949 */
1950static noinline int next_root_backup(struct btrfs_fs_info *info,
1951 struct btrfs_super_block *super,
1952 int *num_backups_tried, int *backup_index)
1953{
1954 struct btrfs_root_backup *root_backup;
1955 int newest = *backup_index;
1956
1957 if (*num_backups_tried == 0) {
1958 u64 gen = btrfs_super_generation(super);
1959
1960 newest = find_newest_super_backup(info, gen);
1961 if (newest == -1)
1962 return -1;
1963
1964 *backup_index = newest;
1965 *num_backups_tried = 1;
1966 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1967 /* we've tried all the backups, all done */
1968 return -1;
1969 } else {
1970 /* jump to the next oldest backup */
1971 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1972 BTRFS_NUM_BACKUP_ROOTS;
1973 *backup_index = newest;
1974 *num_backups_tried += 1;
1975 }
1976 root_backup = super->super_roots + newest;
1977
1978 btrfs_set_super_generation(super,
1979 btrfs_backup_tree_root_gen(root_backup));
1980 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1981 btrfs_set_super_root_level(super,
1982 btrfs_backup_tree_root_level(root_backup));
1983 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1984
1985 /*
1986 * fixme: the total bytes and num_devices need to match or we should
1987 * need a fsck
1988 */
1989 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1990 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1991 return 0;
1992}
1993
7abadb64
LB
1994/* helper to cleanup workers */
1995static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1996{
1997 btrfs_stop_workers(&fs_info->generic_worker);
1998 btrfs_stop_workers(&fs_info->fixup_workers);
1999 btrfs_stop_workers(&fs_info->delalloc_workers);
2000 btrfs_stop_workers(&fs_info->workers);
2001 btrfs_stop_workers(&fs_info->endio_workers);
2002 btrfs_stop_workers(&fs_info->endio_meta_workers);
2003 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2004 btrfs_stop_workers(&fs_info->rmw_workers);
2005 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2006 btrfs_stop_workers(&fs_info->endio_write_workers);
2007 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2008 btrfs_stop_workers(&fs_info->submit_workers);
2009 btrfs_stop_workers(&fs_info->delayed_workers);
2010 btrfs_stop_workers(&fs_info->caching_workers);
2011 btrfs_stop_workers(&fs_info->readahead_workers);
2012 btrfs_stop_workers(&fs_info->flush_workers);
2f232036 2013 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
7abadb64
LB
2014}
2015
af31f5e5
CM
2016/* helper to cleanup tree roots */
2017static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2018{
2019 free_extent_buffer(info->tree_root->node);
2020 free_extent_buffer(info->tree_root->commit_root);
af31f5e5
CM
2021 info->tree_root->node = NULL;
2022 info->tree_root->commit_root = NULL;
655b09fe
JB
2023
2024 if (info->dev_root) {
2025 free_extent_buffer(info->dev_root->node);
2026 free_extent_buffer(info->dev_root->commit_root);
2027 info->dev_root->node = NULL;
2028 info->dev_root->commit_root = NULL;
2029 }
2030 if (info->extent_root) {
2031 free_extent_buffer(info->extent_root->node);
2032 free_extent_buffer(info->extent_root->commit_root);
2033 info->extent_root->node = NULL;
2034 info->extent_root->commit_root = NULL;
2035 }
2036 if (info->csum_root) {
2037 free_extent_buffer(info->csum_root->node);
2038 free_extent_buffer(info->csum_root->commit_root);
2039 info->csum_root->node = NULL;
2040 info->csum_root->commit_root = NULL;
2041 }
bcef60f2 2042 if (info->quota_root) {
655b09fe
JB
2043 free_extent_buffer(info->quota_root->node);
2044 free_extent_buffer(info->quota_root->commit_root);
bcef60f2
AJ
2045 info->quota_root->node = NULL;
2046 info->quota_root->commit_root = NULL;
2047 }
f7a81ea4
SB
2048 if (info->uuid_root) {
2049 free_extent_buffer(info->uuid_root->node);
2050 free_extent_buffer(info->uuid_root->commit_root);
2051 info->uuid_root->node = NULL;
2052 info->uuid_root->commit_root = NULL;
2053 }
af31f5e5
CM
2054 if (chunk_root) {
2055 free_extent_buffer(info->chunk_root->node);
2056 free_extent_buffer(info->chunk_root->commit_root);
2057 info->chunk_root->node = NULL;
2058 info->chunk_root->commit_root = NULL;
2059 }
2060}
2061
171f6537
JB
2062static void del_fs_roots(struct btrfs_fs_info *fs_info)
2063{
2064 int ret;
2065 struct btrfs_root *gang[8];
2066 int i;
2067
2068 while (!list_empty(&fs_info->dead_roots)) {
2069 gang[0] = list_entry(fs_info->dead_roots.next,
2070 struct btrfs_root, root_list);
2071 list_del(&gang[0]->root_list);
2072
2073 if (gang[0]->in_radix) {
cb517eab 2074 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2075 } else {
2076 free_extent_buffer(gang[0]->node);
2077 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2078 btrfs_put_fs_root(gang[0]);
171f6537
JB
2079 }
2080 }
2081
2082 while (1) {
2083 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2084 (void **)gang, 0,
2085 ARRAY_SIZE(gang));
2086 if (!ret)
2087 break;
2088 for (i = 0; i < ret; i++)
cb517eab 2089 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2090 }
2091}
af31f5e5 2092
ad2b2c80
AV
2093int open_ctree(struct super_block *sb,
2094 struct btrfs_fs_devices *fs_devices,
2095 char *options)
2e635a27 2096{
db94535d
CM
2097 u32 sectorsize;
2098 u32 nodesize;
2099 u32 leafsize;
2100 u32 blocksize;
87ee04eb 2101 u32 stripesize;
84234f3a 2102 u64 generation;
f2b636e8 2103 u64 features;
3de4586c 2104 struct btrfs_key location;
a061fc8d 2105 struct buffer_head *bh;
4d34b278 2106 struct btrfs_super_block *disk_super;
815745cf 2107 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2108 struct btrfs_root *tree_root;
4d34b278
ID
2109 struct btrfs_root *extent_root;
2110 struct btrfs_root *csum_root;
2111 struct btrfs_root *chunk_root;
2112 struct btrfs_root *dev_root;
bcef60f2 2113 struct btrfs_root *quota_root;
f7a81ea4 2114 struct btrfs_root *uuid_root;
e02119d5 2115 struct btrfs_root *log_tree_root;
eb60ceac 2116 int ret;
e58ca020 2117 int err = -EINVAL;
af31f5e5
CM
2118 int num_backups_tried = 0;
2119 int backup_index = 0;
70f80175
SB
2120 bool create_uuid_tree;
2121 bool check_uuid_tree;
4543df7e 2122
f84a8bd6 2123 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2124 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2125 if (!tree_root || !chunk_root) {
39279cc3
CM
2126 err = -ENOMEM;
2127 goto fail;
2128 }
76dda93c
YZ
2129
2130 ret = init_srcu_struct(&fs_info->subvol_srcu);
2131 if (ret) {
2132 err = ret;
2133 goto fail;
2134 }
2135
2136 ret = setup_bdi(fs_info, &fs_info->bdi);
2137 if (ret) {
2138 err = ret;
2139 goto fail_srcu;
2140 }
2141
e2d84521
MX
2142 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2143 if (ret) {
2144 err = ret;
2145 goto fail_bdi;
2146 }
2147 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2148 (1 + ilog2(nr_cpu_ids));
2149
963d678b
MX
2150 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2151 if (ret) {
2152 err = ret;
2153 goto fail_dirty_metadata_bytes;
2154 }
2155
76dda93c
YZ
2156 fs_info->btree_inode = new_inode(sb);
2157 if (!fs_info->btree_inode) {
2158 err = -ENOMEM;
963d678b 2159 goto fail_delalloc_bytes;
76dda93c
YZ
2160 }
2161
a6591715 2162 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2163
76dda93c 2164 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 2165 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2166 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2167 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2168 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2169 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2170 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2171 spin_lock_init(&fs_info->trans_lock);
76dda93c 2172 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2173 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2174 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2175 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2176 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2177 spin_lock_init(&fs_info->super_lock);
f29021b2 2178 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2179 mutex_init(&fs_info->reloc_mutex);
de98ced9 2180 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2181
58176a96 2182 init_completion(&fs_info->kobj_unregister);
0b86a832 2183 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2184 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2185 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2186 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2187 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2188 BTRFS_BLOCK_RSV_GLOBAL);
2189 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2190 BTRFS_BLOCK_RSV_DELALLOC);
2191 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2192 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2193 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2194 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2195 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2196 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2197 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2198 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2199 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2200 atomic_set(&fs_info->defrag_running, 0);
fc36ed7e 2201 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2202 fs_info->sb = sb;
6f568d35 2203 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2204 fs_info->metadata_ratio = 0;
4cb5300b 2205 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2206 fs_info->free_chunk_space = 0;
f29021b2 2207 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2208 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
c8b97818 2209
90519d66
AJ
2210 /* readahead state */
2211 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2212 spin_lock_init(&fs_info->reada_lock);
c8b97818 2213
b34b086c
CM
2214 fs_info->thread_pool_size = min_t(unsigned long,
2215 num_online_cpus() + 2, 8);
0afbaf8c 2216
199c2a9c
MX
2217 INIT_LIST_HEAD(&fs_info->ordered_roots);
2218 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2219 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2220 GFP_NOFS);
2221 if (!fs_info->delayed_root) {
2222 err = -ENOMEM;
2223 goto fail_iput;
2224 }
2225 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2226
a2de733c
AJ
2227 mutex_init(&fs_info->scrub_lock);
2228 atomic_set(&fs_info->scrubs_running, 0);
2229 atomic_set(&fs_info->scrub_pause_req, 0);
2230 atomic_set(&fs_info->scrubs_paused, 0);
2231 atomic_set(&fs_info->scrub_cancel_req, 0);
2232 init_waitqueue_head(&fs_info->scrub_pause_wait);
2233 init_rwsem(&fs_info->scrub_super_lock);
2234 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2235#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2236 fs_info->check_integrity_print_mask = 0;
2237#endif
a2de733c 2238
c9e9f97b
ID
2239 spin_lock_init(&fs_info->balance_lock);
2240 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2241 atomic_set(&fs_info->balance_running, 0);
2242 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2243 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2244 fs_info->balance_ctl = NULL;
837d5b6e 2245 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2246
a061fc8d
CM
2247 sb->s_blocksize = 4096;
2248 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2249 sb->s_bdi = &fs_info->bdi;
a061fc8d 2250
76dda93c 2251 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2252 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2253 /*
2254 * we set the i_size on the btree inode to the max possible int.
2255 * the real end of the address space is determined by all of
2256 * the devices in the system
2257 */
2258 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2259 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2260 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2261
5d4f98a2 2262 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2263 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2264 fs_info->btree_inode->i_mapping);
0b32f4bb 2265 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2266 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2267
2268 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2269
76dda93c
YZ
2270 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2271 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2272 sizeof(struct btrfs_key));
72ac3c0d
JB
2273 set_bit(BTRFS_INODE_DUMMY,
2274 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2275 insert_inode_hash(fs_info->btree_inode);
76dda93c 2276
0f9dd46c 2277 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2278 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2279 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2280
11833d66 2281 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2282 fs_info->btree_inode->i_mapping);
11833d66 2283 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2284 fs_info->btree_inode->i_mapping);
11833d66 2285 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2286 fs_info->do_barriers = 1;
e18e4809 2287
39279cc3 2288
5a3f23d5 2289 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2290 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2291 mutex_init(&fs_info->tree_log_mutex);
925baedd 2292 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2293 mutex_init(&fs_info->transaction_kthread_mutex);
2294 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2295 mutex_init(&fs_info->volume_mutex);
276e680d 2296 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2297 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2298 init_rwsem(&fs_info->subvol_sem);
803b2f54 2299 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2300 fs_info->dev_replace.lock_owner = 0;
2301 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2302 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2303 mutex_init(&fs_info->dev_replace.lock_management_lock);
2304 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2305
416ac51d 2306 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2307 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2308 fs_info->qgroup_tree = RB_ROOT;
2309 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2310 fs_info->qgroup_seq = 1;
2311 fs_info->quota_enabled = 0;
2312 fs_info->pending_quota_state = 0;
1e8f9158 2313 fs_info->qgroup_ulist = NULL;
2f232036 2314 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2315
fa9c0d79
CM
2316 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2317 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2318
e6dcd2dc 2319 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2320 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2321 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2322 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2323
53b381b3
DW
2324 ret = btrfs_alloc_stripe_hash_table(fs_info);
2325 if (ret) {
83c8266a 2326 err = ret;
53b381b3
DW
2327 goto fail_alloc;
2328 }
2329
0b86a832 2330 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2331 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2332
3c4bb26b 2333 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2334
2335 /*
2336 * Read super block and check the signature bytes only
2337 */
a512bbf8 2338 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2339 if (!bh) {
2340 err = -EINVAL;
16cdcec7 2341 goto fail_alloc;
20b45077 2342 }
39279cc3 2343
1104a885
DS
2344 /*
2345 * We want to check superblock checksum, the type is stored inside.
2346 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2347 */
2348 if (btrfs_check_super_csum(bh->b_data)) {
2349 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2350 err = -EINVAL;
2351 goto fail_alloc;
2352 }
2353
2354 /*
2355 * super_copy is zeroed at allocation time and we never touch the
2356 * following bytes up to INFO_SIZE, the checksum is calculated from
2357 * the whole block of INFO_SIZE
2358 */
6c41761f
DS
2359 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2360 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2361 sizeof(*fs_info->super_for_commit));
a061fc8d 2362 brelse(bh);
5f39d397 2363
6c41761f 2364 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2365
1104a885
DS
2366 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2367 if (ret) {
2368 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2369 err = -EINVAL;
2370 goto fail_alloc;
2371 }
2372
6c41761f 2373 disk_super = fs_info->super_copy;
0f7d52f4 2374 if (!btrfs_super_root(disk_super))
16cdcec7 2375 goto fail_alloc;
0f7d52f4 2376
acce952b 2377 /* check FS state, whether FS is broken. */
87533c47
MX
2378 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2379 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2380
af31f5e5
CM
2381 /*
2382 * run through our array of backup supers and setup
2383 * our ring pointer to the oldest one
2384 */
2385 generation = btrfs_super_generation(disk_super);
2386 find_oldest_super_backup(fs_info, generation);
2387
75e7cb7f
LB
2388 /*
2389 * In the long term, we'll store the compression type in the super
2390 * block, and it'll be used for per file compression control.
2391 */
2392 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2393
2b82032c
YZ
2394 ret = btrfs_parse_options(tree_root, options);
2395 if (ret) {
2396 err = ret;
16cdcec7 2397 goto fail_alloc;
2b82032c 2398 }
dfe25020 2399
f2b636e8
JB
2400 features = btrfs_super_incompat_flags(disk_super) &
2401 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2402 if (features) {
2403 printk(KERN_ERR "BTRFS: couldn't mount because of "
2404 "unsupported optional features (%Lx).\n",
c1c9ff7c 2405 features);
f2b636e8 2406 err = -EINVAL;
16cdcec7 2407 goto fail_alloc;
f2b636e8
JB
2408 }
2409
727011e0
CM
2410 if (btrfs_super_leafsize(disk_super) !=
2411 btrfs_super_nodesize(disk_super)) {
2412 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2413 "blocksizes don't match. node %d leaf %d\n",
2414 btrfs_super_nodesize(disk_super),
2415 btrfs_super_leafsize(disk_super));
2416 err = -EINVAL;
2417 goto fail_alloc;
2418 }
2419 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2420 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2421 "blocksize (%d) was too large\n",
2422 btrfs_super_leafsize(disk_super));
2423 err = -EINVAL;
2424 goto fail_alloc;
2425 }
2426
5d4f98a2 2427 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2428 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2429 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2430 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2431
3173a18f
JB
2432 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2433 printk(KERN_ERR "btrfs: has skinny extents\n");
2434
727011e0
CM
2435 /*
2436 * flag our filesystem as having big metadata blocks if
2437 * they are bigger than the page size
2438 */
2439 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2440 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2441 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2442 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2443 }
2444
bc3f116f
CM
2445 nodesize = btrfs_super_nodesize(disk_super);
2446 leafsize = btrfs_super_leafsize(disk_super);
2447 sectorsize = btrfs_super_sectorsize(disk_super);
2448 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2449 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2450 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2451
2452 /*
2453 * mixed block groups end up with duplicate but slightly offset
2454 * extent buffers for the same range. It leads to corruptions
2455 */
2456 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2457 (sectorsize != leafsize)) {
2458 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2459 "are not allowed for mixed block groups on %s\n",
2460 sb->s_id);
2461 goto fail_alloc;
2462 }
2463
ceda0864
MX
2464 /*
2465 * Needn't use the lock because there is no other task which will
2466 * update the flag.
2467 */
a6fa6fae 2468 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2469
f2b636e8
JB
2470 features = btrfs_super_compat_ro_flags(disk_super) &
2471 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2472 if (!(sb->s_flags & MS_RDONLY) && features) {
2473 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2474 "unsupported option features (%Lx).\n",
c1c9ff7c 2475 features);
f2b636e8 2476 err = -EINVAL;
16cdcec7 2477 goto fail_alloc;
f2b636e8 2478 }
61d92c32
CM
2479
2480 btrfs_init_workers(&fs_info->generic_worker,
2481 "genwork", 1, NULL);
2482
5443be45 2483 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2484 fs_info->thread_pool_size,
2485 &fs_info->generic_worker);
c8b97818 2486
771ed689 2487 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
45d5fd14 2488 fs_info->thread_pool_size, NULL);
771ed689 2489
8ccf6f19 2490 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
45d5fd14 2491 fs_info->thread_pool_size, NULL);
8ccf6f19 2492
5443be45 2493 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2494 min_t(u64, fs_devices->num_devices,
45d5fd14 2495 fs_info->thread_pool_size), NULL);
61b49440 2496
bab39bf9 2497 btrfs_init_workers(&fs_info->caching_workers, "cache",
45d5fd14 2498 fs_info->thread_pool_size, NULL);
bab39bf9 2499
61b49440
CM
2500 /* a higher idle thresh on the submit workers makes it much more
2501 * likely that bios will be send down in a sane order to the
2502 * devices
2503 */
2504 fs_info->submit_workers.idle_thresh = 64;
53863232 2505
771ed689 2506 fs_info->workers.idle_thresh = 16;
4a69a410 2507 fs_info->workers.ordered = 1;
61b49440 2508
771ed689
CM
2509 fs_info->delalloc_workers.idle_thresh = 2;
2510 fs_info->delalloc_workers.ordered = 1;
2511
61d92c32
CM
2512 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2513 &fs_info->generic_worker);
5443be45 2514 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2515 fs_info->thread_pool_size,
2516 &fs_info->generic_worker);
d20f7043 2517 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2518 fs_info->thread_pool_size,
2519 &fs_info->generic_worker);
cad321ad 2520 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2521 "endio-meta-write", fs_info->thread_pool_size,
2522 &fs_info->generic_worker);
53b381b3
DW
2523 btrfs_init_workers(&fs_info->endio_raid56_workers,
2524 "endio-raid56", fs_info->thread_pool_size,
2525 &fs_info->generic_worker);
2526 btrfs_init_workers(&fs_info->rmw_workers,
2527 "rmw", fs_info->thread_pool_size,
2528 &fs_info->generic_worker);
5443be45 2529 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2530 fs_info->thread_pool_size,
2531 &fs_info->generic_worker);
0cb59c99
JB
2532 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2533 1, &fs_info->generic_worker);
16cdcec7
MX
2534 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2535 fs_info->thread_pool_size,
2536 &fs_info->generic_worker);
90519d66
AJ
2537 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2538 fs_info->thread_pool_size,
2539 &fs_info->generic_worker);
2f232036
JS
2540 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2541 &fs_info->generic_worker);
61b49440
CM
2542
2543 /*
2544 * endios are largely parallel and should have a very
2545 * low idle thresh
2546 */
2547 fs_info->endio_workers.idle_thresh = 4;
b51912c9 2548 fs_info->endio_meta_workers.idle_thresh = 4;
53b381b3
DW
2549 fs_info->endio_raid56_workers.idle_thresh = 4;
2550 fs_info->rmw_workers.idle_thresh = 2;
b51912c9 2551
9042846b
CM
2552 fs_info->endio_write_workers.idle_thresh = 2;
2553 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2554 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2555
0dc3b84a
JB
2556 /*
2557 * btrfs_start_workers can really only fail because of ENOMEM so just
2558 * return -ENOMEM if any of these fail.
2559 */
2560 ret = btrfs_start_workers(&fs_info->workers);
2561 ret |= btrfs_start_workers(&fs_info->generic_worker);
2562 ret |= btrfs_start_workers(&fs_info->submit_workers);
2563 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2564 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2565 ret |= btrfs_start_workers(&fs_info->endio_workers);
2566 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
53b381b3
DW
2567 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2568 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
0dc3b84a
JB
2569 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2570 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2571 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2572 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2573 ret |= btrfs_start_workers(&fs_info->caching_workers);
2574 ret |= btrfs_start_workers(&fs_info->readahead_workers);
8ccf6f19 2575 ret |= btrfs_start_workers(&fs_info->flush_workers);
2f232036 2576 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
0dc3b84a 2577 if (ret) {
fed425c7 2578 err = -ENOMEM;
0dc3b84a
JB
2579 goto fail_sb_buffer;
2580 }
4543df7e 2581
4575c9cc 2582 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2583 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2584 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2585
db94535d
CM
2586 tree_root->nodesize = nodesize;
2587 tree_root->leafsize = leafsize;
2588 tree_root->sectorsize = sectorsize;
87ee04eb 2589 tree_root->stripesize = stripesize;
a061fc8d
CM
2590
2591 sb->s_blocksize = sectorsize;
2592 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2593
3cae210f 2594 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
d397712b 2595 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2596 goto fail_sb_buffer;
2597 }
19c00ddc 2598
8d082fb7
LB
2599 if (sectorsize != PAGE_SIZE) {
2600 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2601 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2602 goto fail_sb_buffer;
2603 }
2604
925baedd 2605 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2606 ret = btrfs_read_sys_array(tree_root);
925baedd 2607 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2608 if (ret) {
d397712b
CM
2609 printk(KERN_WARNING "btrfs: failed to read the system "
2610 "array on %s\n", sb->s_id);
5d4f98a2 2611 goto fail_sb_buffer;
84eed90f 2612 }
0b86a832
CM
2613
2614 blocksize = btrfs_level_size(tree_root,
2615 btrfs_super_chunk_root_level(disk_super));
84234f3a 2616 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2617
2618 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2619 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2620
2621 chunk_root->node = read_tree_block(chunk_root,
2622 btrfs_super_chunk_root(disk_super),
84234f3a 2623 blocksize, generation);
416bc658
JB
2624 if (!chunk_root->node ||
2625 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
83121942
DW
2626 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2627 sb->s_id);
af31f5e5 2628 goto fail_tree_roots;
83121942 2629 }
5d4f98a2
YZ
2630 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2631 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2632
e17cade2 2633 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2634 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2635
0b86a832 2636 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2637 if (ret) {
d397712b
CM
2638 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2639 sb->s_id);
af31f5e5 2640 goto fail_tree_roots;
2b82032c 2641 }
0b86a832 2642
8dabb742
SB
2643 /*
2644 * keep the device that is marked to be the target device for the
2645 * dev_replace procedure
2646 */
2647 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2648
a6b0d5c8
CM
2649 if (!fs_devices->latest_bdev) {
2650 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2651 sb->s_id);
2652 goto fail_tree_roots;
2653 }
2654
af31f5e5 2655retry_root_backup:
db94535d
CM
2656 blocksize = btrfs_level_size(tree_root,
2657 btrfs_super_root_level(disk_super));
84234f3a 2658 generation = btrfs_super_generation(disk_super);
0b86a832 2659
e20d96d6 2660 tree_root->node = read_tree_block(tree_root,
db94535d 2661 btrfs_super_root(disk_super),
84234f3a 2662 blocksize, generation);
af31f5e5
CM
2663 if (!tree_root->node ||
2664 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2665 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2666 sb->s_id);
af31f5e5
CM
2667
2668 goto recovery_tree_root;
83121942 2669 }
af31f5e5 2670
5d4f98a2
YZ
2671 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2672 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2673 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2674
cb517eab
MX
2675 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2676 location.type = BTRFS_ROOT_ITEM_KEY;
2677 location.offset = 0;
2678
2679 extent_root = btrfs_read_tree_root(tree_root, &location);
2680 if (IS_ERR(extent_root)) {
2681 ret = PTR_ERR(extent_root);
af31f5e5 2682 goto recovery_tree_root;
cb517eab 2683 }
0b86a832 2684 extent_root->track_dirty = 1;
cb517eab 2685 fs_info->extent_root = extent_root;
0b86a832 2686
cb517eab
MX
2687 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2688 dev_root = btrfs_read_tree_root(tree_root, &location);
2689 if (IS_ERR(dev_root)) {
2690 ret = PTR_ERR(dev_root);
af31f5e5 2691 goto recovery_tree_root;
cb517eab 2692 }
5d4f98a2 2693 dev_root->track_dirty = 1;
cb517eab
MX
2694 fs_info->dev_root = dev_root;
2695 btrfs_init_devices_late(fs_info);
3768f368 2696
cb517eab
MX
2697 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2698 csum_root = btrfs_read_tree_root(tree_root, &location);
2699 if (IS_ERR(csum_root)) {
2700 ret = PTR_ERR(csum_root);
af31f5e5 2701 goto recovery_tree_root;
cb517eab 2702 }
d20f7043 2703 csum_root->track_dirty = 1;
cb517eab 2704 fs_info->csum_root = csum_root;
d20f7043 2705
cb517eab
MX
2706 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2707 quota_root = btrfs_read_tree_root(tree_root, &location);
2708 if (!IS_ERR(quota_root)) {
bcef60f2
AJ
2709 quota_root->track_dirty = 1;
2710 fs_info->quota_enabled = 1;
2711 fs_info->pending_quota_state = 1;
cb517eab 2712 fs_info->quota_root = quota_root;
bcef60f2
AJ
2713 }
2714
f7a81ea4
SB
2715 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2716 uuid_root = btrfs_read_tree_root(tree_root, &location);
2717 if (IS_ERR(uuid_root)) {
2718 ret = PTR_ERR(uuid_root);
2719 if (ret != -ENOENT)
2720 goto recovery_tree_root;
2721 create_uuid_tree = true;
70f80175 2722 check_uuid_tree = false;
f7a81ea4
SB
2723 } else {
2724 uuid_root->track_dirty = 1;
2725 fs_info->uuid_root = uuid_root;
70f80175
SB
2726 create_uuid_tree = false;
2727 check_uuid_tree =
2728 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2729 }
2730
8929ecfa
YZ
2731 fs_info->generation = generation;
2732 fs_info->last_trans_committed = generation;
8929ecfa 2733
68310a5e
ID
2734 ret = btrfs_recover_balance(fs_info);
2735 if (ret) {
2736 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2737 goto fail_block_groups;
2738 }
2739
733f4fbb
SB
2740 ret = btrfs_init_dev_stats(fs_info);
2741 if (ret) {
2742 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2743 ret);
2744 goto fail_block_groups;
2745 }
2746
8dabb742
SB
2747 ret = btrfs_init_dev_replace(fs_info);
2748 if (ret) {
2749 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2750 goto fail_block_groups;
2751 }
2752
2753 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2754
c59021f8 2755 ret = btrfs_init_space_info(fs_info);
2756 if (ret) {
2757 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2758 goto fail_block_groups;
2759 }
2760
1b1d1f66
JB
2761 ret = btrfs_read_block_groups(extent_root);
2762 if (ret) {
2763 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2764 goto fail_block_groups;
2765 }
5af3e8cc
SB
2766 fs_info->num_tolerated_disk_barrier_failures =
2767 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2768 if (fs_info->fs_devices->missing_devices >
2769 fs_info->num_tolerated_disk_barrier_failures &&
2770 !(sb->s_flags & MS_RDONLY)) {
2771 printk(KERN_WARNING
2772 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2773 goto fail_block_groups;
2774 }
9078a3e1 2775
a74a4b97
CM
2776 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2777 "btrfs-cleaner");
57506d50 2778 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2779 goto fail_block_groups;
a74a4b97
CM
2780
2781 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2782 tree_root,
2783 "btrfs-transaction");
57506d50 2784 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2785 goto fail_cleaner;
a74a4b97 2786
c289811c
CM
2787 if (!btrfs_test_opt(tree_root, SSD) &&
2788 !btrfs_test_opt(tree_root, NOSSD) &&
2789 !fs_info->fs_devices->rotating) {
2790 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2791 "mode\n");
2792 btrfs_set_opt(fs_info->mount_opt, SSD);
2793 }
2794
21adbd5c
SB
2795#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2796 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2797 ret = btrfsic_mount(tree_root, fs_devices,
2798 btrfs_test_opt(tree_root,
2799 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2800 1 : 0,
2801 fs_info->check_integrity_print_mask);
2802 if (ret)
2803 printk(KERN_WARNING "btrfs: failed to initialize"
2804 " integrity check module %s\n", sb->s_id);
2805 }
2806#endif
bcef60f2
AJ
2807 ret = btrfs_read_qgroup_config(fs_info);
2808 if (ret)
2809 goto fail_trans_kthread;
21adbd5c 2810
acce952b 2811 /* do not make disk changes in broken FS */
68ce9682 2812 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2813 u64 bytenr = btrfs_super_log_root(disk_super);
2814
7c2ca468 2815 if (fs_devices->rw_devices == 0) {
d397712b
CM
2816 printk(KERN_WARNING "Btrfs log replay required "
2817 "on RO media\n");
7c2ca468 2818 err = -EIO;
bcef60f2 2819 goto fail_qgroup;
7c2ca468 2820 }
e02119d5
CM
2821 blocksize =
2822 btrfs_level_size(tree_root,
2823 btrfs_super_log_root_level(disk_super));
d18a2c44 2824
6f07e42e 2825 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2826 if (!log_tree_root) {
2827 err = -ENOMEM;
bcef60f2 2828 goto fail_qgroup;
676e4c86 2829 }
e02119d5
CM
2830
2831 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2832 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2833
2834 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2835 blocksize,
2836 generation + 1);
416bc658
JB
2837 if (!log_tree_root->node ||
2838 !extent_buffer_uptodate(log_tree_root->node)) {
2839 printk(KERN_ERR "btrfs: failed to read log tree\n");
2840 free_extent_buffer(log_tree_root->node);
2841 kfree(log_tree_root);
2842 goto fail_trans_kthread;
2843 }
79787eaa 2844 /* returns with log_tree_root freed on success */
e02119d5 2845 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2846 if (ret) {
2847 btrfs_error(tree_root->fs_info, ret,
2848 "Failed to recover log tree");
2849 free_extent_buffer(log_tree_root->node);
2850 kfree(log_tree_root);
2851 goto fail_trans_kthread;
2852 }
e556ce2c
YZ
2853
2854 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2855 ret = btrfs_commit_super(tree_root);
2856 if (ret)
2857 goto fail_trans_kthread;
e556ce2c 2858 }
e02119d5 2859 }
1a40e23b 2860
76dda93c 2861 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2862 if (ret)
2863 goto fail_trans_kthread;
76dda93c 2864
7c2ca468 2865 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2866 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2867 if (ret)
2868 goto fail_trans_kthread;
d68fc57b 2869
5d4f98a2 2870 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2871 if (ret < 0) {
2872 printk(KERN_WARNING
2873 "btrfs: failed to recover relocation\n");
2874 err = -EINVAL;
bcef60f2 2875 goto fail_qgroup;
d7ce5843 2876 }
7c2ca468 2877 }
1a40e23b 2878
3de4586c
CM
2879 location.objectid = BTRFS_FS_TREE_OBJECTID;
2880 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2881 location.offset = 0;
3de4586c 2882
3de4586c 2883 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2884 if (IS_ERR(fs_info->fs_root)) {
2885 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2886 goto fail_qgroup;
3140c9a3 2887 }
c289811c 2888
2b6ba629
ID
2889 if (sb->s_flags & MS_RDONLY)
2890 return 0;
59641015 2891
2b6ba629
ID
2892 down_read(&fs_info->cleanup_work_sem);
2893 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2894 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2895 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2896 close_ctree(tree_root);
2897 return ret;
2898 }
2899 up_read(&fs_info->cleanup_work_sem);
59641015 2900
2b6ba629
ID
2901 ret = btrfs_resume_balance_async(fs_info);
2902 if (ret) {
2903 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2904 close_ctree(tree_root);
2905 return ret;
e3acc2a6
JB
2906 }
2907
8dabb742
SB
2908 ret = btrfs_resume_dev_replace_async(fs_info);
2909 if (ret) {
2910 pr_warn("btrfs: failed to resume dev_replace\n");
2911 close_ctree(tree_root);
2912 return ret;
2913 }
2914
b382a324
JS
2915 btrfs_qgroup_rescan_resume(fs_info);
2916
f7a81ea4
SB
2917 if (create_uuid_tree) {
2918 pr_info("btrfs: creating UUID tree\n");
2919 ret = btrfs_create_uuid_tree(fs_info);
2920 if (ret) {
2921 pr_warn("btrfs: failed to create the UUID tree %d\n",
2922 ret);
2923 close_ctree(tree_root);
2924 return ret;
2925 }
f420ee1e
SB
2926 } else if (check_uuid_tree ||
2927 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
70f80175
SB
2928 pr_info("btrfs: checking UUID tree\n");
2929 ret = btrfs_check_uuid_tree(fs_info);
2930 if (ret) {
2931 pr_warn("btrfs: failed to check the UUID tree %d\n",
2932 ret);
2933 close_ctree(tree_root);
2934 return ret;
2935 }
2936 } else {
2937 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2938 }
2939
ad2b2c80 2940 return 0;
39279cc3 2941
bcef60f2
AJ
2942fail_qgroup:
2943 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2944fail_trans_kthread:
2945 kthread_stop(fs_info->transaction_kthread);
54067ae9 2946 btrfs_cleanup_transaction(fs_info->tree_root);
7b5ff90e 2947 del_fs_roots(fs_info);
3f157a2f 2948fail_cleaner:
a74a4b97 2949 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2950
2951 /*
2952 * make sure we're done with the btree inode before we stop our
2953 * kthreads
2954 */
2955 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2956
1b1d1f66 2957fail_block_groups:
54067ae9 2958 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2959 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2960
2961fail_tree_roots:
2962 free_root_pointers(fs_info, 1);
2b8195bb 2963 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2964
39279cc3 2965fail_sb_buffer:
7abadb64 2966 btrfs_stop_all_workers(fs_info);
16cdcec7 2967fail_alloc:
4543df7e 2968fail_iput:
586e46e2
ID
2969 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2970
4543df7e 2971 iput(fs_info->btree_inode);
963d678b
MX
2972fail_delalloc_bytes:
2973 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
2974fail_dirty_metadata_bytes:
2975 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2976fail_bdi:
7e662854 2977 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2978fail_srcu:
2979 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2980fail:
53b381b3 2981 btrfs_free_stripe_hash_table(fs_info);
586e46e2 2982 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2983 return err;
af31f5e5
CM
2984
2985recovery_tree_root:
af31f5e5
CM
2986 if (!btrfs_test_opt(tree_root, RECOVERY))
2987 goto fail_tree_roots;
2988
2989 free_root_pointers(fs_info, 0);
2990
2991 /* don't use the log in recovery mode, it won't be valid */
2992 btrfs_set_super_log_root(disk_super, 0);
2993
2994 /* we can't trust the free space cache either */
2995 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2996
2997 ret = next_root_backup(fs_info, fs_info->super_copy,
2998 &num_backups_tried, &backup_index);
2999 if (ret == -1)
3000 goto fail_block_groups;
3001 goto retry_root_backup;
eb60ceac
CM
3002}
3003
f2984462
CM
3004static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3005{
f2984462
CM
3006 if (uptodate) {
3007 set_buffer_uptodate(bh);
3008 } else {
442a4f63
SB
3009 struct btrfs_device *device = (struct btrfs_device *)
3010 bh->b_private;
3011
606686ee
JB
3012 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3013 "I/O error on %s\n",
3014 rcu_str_deref(device->name));
1259ab75
CM
3015 /* note, we dont' set_buffer_write_io_error because we have
3016 * our own ways of dealing with the IO errors
3017 */
f2984462 3018 clear_buffer_uptodate(bh);
442a4f63 3019 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3020 }
3021 unlock_buffer(bh);
3022 put_bh(bh);
3023}
3024
a512bbf8
YZ
3025struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3026{
3027 struct buffer_head *bh;
3028 struct buffer_head *latest = NULL;
3029 struct btrfs_super_block *super;
3030 int i;
3031 u64 transid = 0;
3032 u64 bytenr;
3033
3034 /* we would like to check all the supers, but that would make
3035 * a btrfs mount succeed after a mkfs from a different FS.
3036 * So, we need to add a special mount option to scan for
3037 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3038 */
3039 for (i = 0; i < 1; i++) {
3040 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3041 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3042 i_size_read(bdev->bd_inode))
a512bbf8 3043 break;
8068a47e
AJ
3044 bh = __bread(bdev, bytenr / 4096,
3045 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3046 if (!bh)
3047 continue;
3048
3049 super = (struct btrfs_super_block *)bh->b_data;
3050 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3051 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3052 brelse(bh);
3053 continue;
3054 }
3055
3056 if (!latest || btrfs_super_generation(super) > transid) {
3057 brelse(latest);
3058 latest = bh;
3059 transid = btrfs_super_generation(super);
3060 } else {
3061 brelse(bh);
3062 }
3063 }
3064 return latest;
3065}
3066
4eedeb75
HH
3067/*
3068 * this should be called twice, once with wait == 0 and
3069 * once with wait == 1. When wait == 0 is done, all the buffer heads
3070 * we write are pinned.
3071 *
3072 * They are released when wait == 1 is done.
3073 * max_mirrors must be the same for both runs, and it indicates how
3074 * many supers on this one device should be written.
3075 *
3076 * max_mirrors == 0 means to write them all.
3077 */
a512bbf8
YZ
3078static int write_dev_supers(struct btrfs_device *device,
3079 struct btrfs_super_block *sb,
3080 int do_barriers, int wait, int max_mirrors)
3081{
3082 struct buffer_head *bh;
3083 int i;
3084 int ret;
3085 int errors = 0;
3086 u32 crc;
3087 u64 bytenr;
a512bbf8
YZ
3088
3089 if (max_mirrors == 0)
3090 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3091
a512bbf8
YZ
3092 for (i = 0; i < max_mirrors; i++) {
3093 bytenr = btrfs_sb_offset(i);
3094 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3095 break;
3096
3097 if (wait) {
3098 bh = __find_get_block(device->bdev, bytenr / 4096,
3099 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3100 if (!bh) {
3101 errors++;
3102 continue;
3103 }
a512bbf8 3104 wait_on_buffer(bh);
4eedeb75
HH
3105 if (!buffer_uptodate(bh))
3106 errors++;
3107
3108 /* drop our reference */
3109 brelse(bh);
3110
3111 /* drop the reference from the wait == 0 run */
3112 brelse(bh);
3113 continue;
a512bbf8
YZ
3114 } else {
3115 btrfs_set_super_bytenr(sb, bytenr);
3116
3117 crc = ~(u32)0;
b0496686 3118 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3119 BTRFS_CSUM_SIZE, crc,
3120 BTRFS_SUPER_INFO_SIZE -
3121 BTRFS_CSUM_SIZE);
3122 btrfs_csum_final(crc, sb->csum);
3123
4eedeb75
HH
3124 /*
3125 * one reference for us, and we leave it for the
3126 * caller
3127 */
a512bbf8
YZ
3128 bh = __getblk(device->bdev, bytenr / 4096,
3129 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3130 if (!bh) {
3131 printk(KERN_ERR "btrfs: couldn't get super "
3132 "buffer head for bytenr %Lu\n", bytenr);
3133 errors++;
3134 continue;
3135 }
3136
a512bbf8
YZ
3137 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3138
4eedeb75 3139 /* one reference for submit_bh */
a512bbf8 3140 get_bh(bh);
4eedeb75
HH
3141
3142 set_buffer_uptodate(bh);
a512bbf8
YZ
3143 lock_buffer(bh);
3144 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3145 bh->b_private = device;
a512bbf8
YZ
3146 }
3147
387125fc
CM
3148 /*
3149 * we fua the first super. The others we allow
3150 * to go down lazy.
3151 */
21adbd5c 3152 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 3153 if (ret)
a512bbf8 3154 errors++;
a512bbf8
YZ
3155 }
3156 return errors < i ? 0 : -1;
3157}
3158
387125fc
CM
3159/*
3160 * endio for the write_dev_flush, this will wake anyone waiting
3161 * for the barrier when it is done
3162 */
3163static void btrfs_end_empty_barrier(struct bio *bio, int err)
3164{
3165 if (err) {
3166 if (err == -EOPNOTSUPP)
3167 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3168 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3169 }
3170 if (bio->bi_private)
3171 complete(bio->bi_private);
3172 bio_put(bio);
3173}
3174
3175/*
3176 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3177 * sent down. With wait == 1, it waits for the previous flush.
3178 *
3179 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3180 * capable
3181 */
3182static int write_dev_flush(struct btrfs_device *device, int wait)
3183{
3184 struct bio *bio;
3185 int ret = 0;
3186
3187 if (device->nobarriers)
3188 return 0;
3189
3190 if (wait) {
3191 bio = device->flush_bio;
3192 if (!bio)
3193 return 0;
3194
3195 wait_for_completion(&device->flush_wait);
3196
3197 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
3198 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3199 rcu_str_deref(device->name));
387125fc 3200 device->nobarriers = 1;
5af3e8cc 3201 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3202 ret = -EIO;
5af3e8cc
SB
3203 btrfs_dev_stat_inc_and_print(device,
3204 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3205 }
3206
3207 /* drop the reference from the wait == 0 run */
3208 bio_put(bio);
3209 device->flush_bio = NULL;
3210
3211 return ret;
3212 }
3213
3214 /*
3215 * one reference for us, and we leave it for the
3216 * caller
3217 */
9c017abc 3218 device->flush_bio = NULL;
9be3395b 3219 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3220 if (!bio)
3221 return -ENOMEM;
3222
3223 bio->bi_end_io = btrfs_end_empty_barrier;
3224 bio->bi_bdev = device->bdev;
3225 init_completion(&device->flush_wait);
3226 bio->bi_private = &device->flush_wait;
3227 device->flush_bio = bio;
3228
3229 bio_get(bio);
21adbd5c 3230 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3231
3232 return 0;
3233}
3234
3235/*
3236 * send an empty flush down to each device in parallel,
3237 * then wait for them
3238 */
3239static int barrier_all_devices(struct btrfs_fs_info *info)
3240{
3241 struct list_head *head;
3242 struct btrfs_device *dev;
5af3e8cc
SB
3243 int errors_send = 0;
3244 int errors_wait = 0;
387125fc
CM
3245 int ret;
3246
3247 /* send down all the barriers */
3248 head = &info->fs_devices->devices;
3249 list_for_each_entry_rcu(dev, head, dev_list) {
3250 if (!dev->bdev) {
5af3e8cc 3251 errors_send++;
387125fc
CM
3252 continue;
3253 }
3254 if (!dev->in_fs_metadata || !dev->writeable)
3255 continue;
3256
3257 ret = write_dev_flush(dev, 0);
3258 if (ret)
5af3e8cc 3259 errors_send++;
387125fc
CM
3260 }
3261
3262 /* wait for all the barriers */
3263 list_for_each_entry_rcu(dev, head, dev_list) {
3264 if (!dev->bdev) {
5af3e8cc 3265 errors_wait++;
387125fc
CM
3266 continue;
3267 }
3268 if (!dev->in_fs_metadata || !dev->writeable)
3269 continue;
3270
3271 ret = write_dev_flush(dev, 1);
3272 if (ret)
5af3e8cc 3273 errors_wait++;
387125fc 3274 }
5af3e8cc
SB
3275 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3276 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3277 return -EIO;
3278 return 0;
3279}
3280
5af3e8cc
SB
3281int btrfs_calc_num_tolerated_disk_barrier_failures(
3282 struct btrfs_fs_info *fs_info)
3283{
3284 struct btrfs_ioctl_space_info space;
3285 struct btrfs_space_info *sinfo;
3286 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3287 BTRFS_BLOCK_GROUP_SYSTEM,
3288 BTRFS_BLOCK_GROUP_METADATA,
3289 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3290 int num_types = 4;
3291 int i;
3292 int c;
3293 int num_tolerated_disk_barrier_failures =
3294 (int)fs_info->fs_devices->num_devices;
3295
3296 for (i = 0; i < num_types; i++) {
3297 struct btrfs_space_info *tmp;
3298
3299 sinfo = NULL;
3300 rcu_read_lock();
3301 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3302 if (tmp->flags == types[i]) {
3303 sinfo = tmp;
3304 break;
3305 }
3306 }
3307 rcu_read_unlock();
3308
3309 if (!sinfo)
3310 continue;
3311
3312 down_read(&sinfo->groups_sem);
3313 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3314 if (!list_empty(&sinfo->block_groups[c])) {
3315 u64 flags;
3316
3317 btrfs_get_block_group_info(
3318 &sinfo->block_groups[c], &space);
3319 if (space.total_bytes == 0 ||
3320 space.used_bytes == 0)
3321 continue;
3322 flags = space.flags;
3323 /*
3324 * return
3325 * 0: if dup, single or RAID0 is configured for
3326 * any of metadata, system or data, else
3327 * 1: if RAID5 is configured, or if RAID1 or
3328 * RAID10 is configured and only two mirrors
3329 * are used, else
3330 * 2: if RAID6 is configured, else
3331 * num_mirrors - 1: if RAID1 or RAID10 is
3332 * configured and more than
3333 * 2 mirrors are used.
3334 */
3335 if (num_tolerated_disk_barrier_failures > 0 &&
3336 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3337 BTRFS_BLOCK_GROUP_RAID0)) ||
3338 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3339 == 0)))
3340 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3341 else if (num_tolerated_disk_barrier_failures > 1) {
3342 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3343 BTRFS_BLOCK_GROUP_RAID5 |
3344 BTRFS_BLOCK_GROUP_RAID10)) {
3345 num_tolerated_disk_barrier_failures = 1;
3346 } else if (flags &
15b0a89d 3347 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3348 num_tolerated_disk_barrier_failures = 2;
3349 }
3350 }
5af3e8cc
SB
3351 }
3352 }
3353 up_read(&sinfo->groups_sem);
3354 }
3355
3356 return num_tolerated_disk_barrier_failures;
3357}
3358
48a3b636 3359static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3360{
e5e9a520 3361 struct list_head *head;
f2984462 3362 struct btrfs_device *dev;
a061fc8d 3363 struct btrfs_super_block *sb;
f2984462 3364 struct btrfs_dev_item *dev_item;
f2984462
CM
3365 int ret;
3366 int do_barriers;
a236aed1
CM
3367 int max_errors;
3368 int total_errors = 0;
a061fc8d 3369 u64 flags;
f2984462
CM
3370
3371 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3372 backup_super_roots(root->fs_info);
f2984462 3373
6c41761f 3374 sb = root->fs_info->super_for_commit;
a061fc8d 3375 dev_item = &sb->dev_item;
e5e9a520 3376
174ba509 3377 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3378 head = &root->fs_info->fs_devices->devices;
d7306801 3379 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3380
5af3e8cc
SB
3381 if (do_barriers) {
3382 ret = barrier_all_devices(root->fs_info);
3383 if (ret) {
3384 mutex_unlock(
3385 &root->fs_info->fs_devices->device_list_mutex);
3386 btrfs_error(root->fs_info, ret,
3387 "errors while submitting device barriers.");
3388 return ret;
3389 }
3390 }
387125fc 3391
1f78160c 3392 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3393 if (!dev->bdev) {
3394 total_errors++;
3395 continue;
3396 }
2b82032c 3397 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3398 continue;
3399
2b82032c 3400 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3401 btrfs_set_stack_device_type(dev_item, dev->type);
3402 btrfs_set_stack_device_id(dev_item, dev->devid);
3403 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3404 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3405 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3406 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3407 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3408 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3409 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3410
a061fc8d
CM
3411 flags = btrfs_super_flags(sb);
3412 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3413
a512bbf8 3414 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3415 if (ret)
3416 total_errors++;
f2984462 3417 }
a236aed1 3418 if (total_errors > max_errors) {
d397712b
CM
3419 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3420 total_errors);
a724b436 3421 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3422
9d565ba4
SB
3423 /* FUA is masked off if unsupported and can't be the reason */
3424 btrfs_error(root->fs_info, -EIO,
3425 "%d errors while writing supers", total_errors);
3426 return -EIO;
a236aed1 3427 }
f2984462 3428
a512bbf8 3429 total_errors = 0;
1f78160c 3430 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3431 if (!dev->bdev)
3432 continue;
2b82032c 3433 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3434 continue;
3435
a512bbf8
YZ
3436 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3437 if (ret)
3438 total_errors++;
f2984462 3439 }
174ba509 3440 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3441 if (total_errors > max_errors) {
79787eaa
JM
3442 btrfs_error(root->fs_info, -EIO,
3443 "%d errors while writing supers", total_errors);
3444 return -EIO;
a236aed1 3445 }
f2984462
CM
3446 return 0;
3447}
3448
a512bbf8
YZ
3449int write_ctree_super(struct btrfs_trans_handle *trans,
3450 struct btrfs_root *root, int max_mirrors)
eb60ceac 3451{
e66f709b 3452 int ret;
5f39d397 3453
a512bbf8 3454 ret = write_all_supers(root, max_mirrors);
5f39d397 3455 return ret;
cfaa7295
CM
3456}
3457
cb517eab
MX
3458/* Drop a fs root from the radix tree and free it. */
3459void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3460 struct btrfs_root *root)
2619ba1f 3461{
4df27c4d 3462 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3463 radix_tree_delete(&fs_info->fs_roots_radix,
3464 (unsigned long)root->root_key.objectid);
4df27c4d 3465 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3466
3467 if (btrfs_root_refs(&root->root_item) == 0)
3468 synchronize_srcu(&fs_info->subvol_srcu);
3469
d7634482 3470 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e
LB
3471 btrfs_free_log(NULL, root);
3472 btrfs_free_log_root_tree(NULL, fs_info);
3473 }
3474
581bb050
LZ
3475 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3476 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3477 free_fs_root(root);
4df27c4d
YZ
3478}
3479
3480static void free_fs_root(struct btrfs_root *root)
3481{
82d5902d 3482 iput(root->cache_inode);
4df27c4d 3483 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3484 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3485 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3486 if (root->anon_dev)
3487 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3488 free_extent_buffer(root->node);
3489 free_extent_buffer(root->commit_root);
581bb050
LZ
3490 kfree(root->free_ino_ctl);
3491 kfree(root->free_ino_pinned);
d397712b 3492 kfree(root->name);
b0feb9d9 3493 btrfs_put_fs_root(root);
2619ba1f
CM
3494}
3495
cb517eab
MX
3496void btrfs_free_fs_root(struct btrfs_root *root)
3497{
3498 free_fs_root(root);
2619ba1f
CM
3499}
3500
c146afad 3501int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3502{
c146afad
YZ
3503 u64 root_objectid = 0;
3504 struct btrfs_root *gang[8];
3505 int i;
3768f368 3506 int ret;
e089f05c 3507
c146afad
YZ
3508 while (1) {
3509 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3510 (void **)gang, root_objectid,
3511 ARRAY_SIZE(gang));
3512 if (!ret)
3513 break;
5d4f98a2
YZ
3514
3515 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3516 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3517 int err;
3518
c146afad 3519 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3520 err = btrfs_orphan_cleanup(gang[i]);
3521 if (err)
3522 return err;
c146afad
YZ
3523 }
3524 root_objectid++;
3525 }
3526 return 0;
3527}
a2135011 3528
c146afad
YZ
3529int btrfs_commit_super(struct btrfs_root *root)
3530{
3531 struct btrfs_trans_handle *trans;
3532 int ret;
a74a4b97 3533
c146afad 3534 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3535 btrfs_run_delayed_iputs(root);
c146afad 3536 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3537 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3538
3539 /* wait until ongoing cleanup work done */
3540 down_write(&root->fs_info->cleanup_work_sem);
3541 up_write(&root->fs_info->cleanup_work_sem);
3542
7a7eaa40 3543 trans = btrfs_join_transaction(root);
3612b495
TI
3544 if (IS_ERR(trans))
3545 return PTR_ERR(trans);
54aa1f4d 3546 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3547 if (ret)
3548 return ret;
c146afad 3549 /* run commit again to drop the original snapshot */
7a7eaa40 3550 trans = btrfs_join_transaction(root);
3612b495
TI
3551 if (IS_ERR(trans))
3552 return PTR_ERR(trans);
79787eaa
JM
3553 ret = btrfs_commit_transaction(trans, root);
3554 if (ret)
3555 return ret;
79154b1b 3556 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3557 if (ret) {
3558 btrfs_error(root->fs_info, ret,
3559 "Failed to sync btree inode to disk.");
3560 return ret;
3561 }
d6bfde87 3562
a512bbf8 3563 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3564 return ret;
3565}
3566
3567int close_ctree(struct btrfs_root *root)
3568{
3569 struct btrfs_fs_info *fs_info = root->fs_info;
3570 int ret;
3571
3572 fs_info->closing = 1;
3573 smp_mb();
3574
803b2f54
SB
3575 /* wait for the uuid_scan task to finish */
3576 down(&fs_info->uuid_tree_rescan_sem);
3577 /* avoid complains from lockdep et al., set sem back to initial state */
3578 up(&fs_info->uuid_tree_rescan_sem);
3579
837d5b6e 3580 /* pause restriper - we want to resume on mount */
aa1b8cd4 3581 btrfs_pause_balance(fs_info);
837d5b6e 3582
8dabb742
SB
3583 btrfs_dev_replace_suspend_for_unmount(fs_info);
3584
aa1b8cd4 3585 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3586
3587 /* wait for any defraggers to finish */
3588 wait_event(fs_info->transaction_wait,
3589 (atomic_read(&fs_info->defrag_running) == 0));
3590
3591 /* clear out the rbtree of defraggable inodes */
26176e7c 3592 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3593
c146afad 3594 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3595 ret = btrfs_commit_super(root);
3596 if (ret)
3597 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3598 }
3599
87533c47 3600 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3601 btrfs_error_commit_super(root);
0f7d52f4 3602
300e4f8a
JB
3603 btrfs_put_block_group_cache(fs_info);
3604
e3029d9f
AV
3605 kthread_stop(fs_info->transaction_kthread);
3606 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3607
f25784b3
YZ
3608 fs_info->closing = 2;
3609 smp_mb();
3610
bcef60f2
AJ
3611 btrfs_free_qgroup_config(root->fs_info);
3612
963d678b
MX
3613 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3614 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3615 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3616 }
bcc63abb 3617
e3029d9f 3618 btrfs_free_block_groups(fs_info);
d10c5f31 3619
13e6c37b 3620 btrfs_stop_all_workers(fs_info);
2932505a 3621
c146afad 3622 del_fs_roots(fs_info);
d10c5f31 3623
13e6c37b 3624 free_root_pointers(fs_info, 1);
9ad6b7bc 3625
13e6c37b 3626 iput(fs_info->btree_inode);
d6bfde87 3627
21adbd5c
SB
3628#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3629 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3630 btrfsic_unmount(root, fs_info->fs_devices);
3631#endif
3632
dfe25020 3633 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3634 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3635
e2d84521 3636 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3637 percpu_counter_destroy(&fs_info->delalloc_bytes);
04160088 3638 bdi_destroy(&fs_info->bdi);
76dda93c 3639 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3640
53b381b3
DW
3641 btrfs_free_stripe_hash_table(fs_info);
3642
1cb048f5
FDBM
3643 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3644 root->orphan_block_rsv = NULL;
3645
eb60ceac
CM
3646 return 0;
3647}
3648
b9fab919
CM
3649int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3650 int atomic)
5f39d397 3651{
1259ab75 3652 int ret;
727011e0 3653 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3654
0b32f4bb 3655 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3656 if (!ret)
3657 return ret;
3658
3659 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3660 parent_transid, atomic);
3661 if (ret == -EAGAIN)
3662 return ret;
1259ab75 3663 return !ret;
5f39d397
CM
3664}
3665
3666int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3667{
0b32f4bb 3668 return set_extent_buffer_uptodate(buf);
5f39d397 3669}
6702ed49 3670
5f39d397
CM
3671void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3672{
727011e0 3673 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3674 u64 transid = btrfs_header_generation(buf);
b9473439 3675 int was_dirty;
b4ce94de 3676
b9447ef8 3677 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3678 if (transid != root->fs_info->generation)
3679 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3680 "found %llu running %llu\n",
c1c9ff7c 3681 buf->start, transid, root->fs_info->generation);
0b32f4bb 3682 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3683 if (!was_dirty)
3684 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3685 buf->len,
3686 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3687}
3688
b53d3f5d
LB
3689static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3690 int flush_delayed)
16cdcec7
MX
3691{
3692 /*
3693 * looks as though older kernels can get into trouble with
3694 * this code, they end up stuck in balance_dirty_pages forever
3695 */
e2d84521 3696 int ret;
16cdcec7
MX
3697
3698 if (current->flags & PF_MEMALLOC)
3699 return;
3700
b53d3f5d
LB
3701 if (flush_delayed)
3702 btrfs_balance_delayed_items(root);
16cdcec7 3703
e2d84521
MX
3704 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3705 BTRFS_DIRTY_METADATA_THRESH);
3706 if (ret > 0) {
d0e1d66b
NJ
3707 balance_dirty_pages_ratelimited(
3708 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3709 }
3710 return;
3711}
3712
b53d3f5d 3713void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3714{
b53d3f5d
LB
3715 __btrfs_btree_balance_dirty(root, 1);
3716}
585ad2c3 3717
b53d3f5d
LB
3718void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3719{
3720 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3721}
6b80053d 3722
ca7a79ad 3723int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3724{
727011e0 3725 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3726 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3727}
0da5468f 3728
fcd1f065 3729static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3730 int read_only)
3731{
1104a885
DS
3732 /*
3733 * Placeholder for checks
3734 */
fcd1f065 3735 return 0;
acce952b 3736}
3737
48a3b636 3738static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3739{
acce952b 3740 mutex_lock(&root->fs_info->cleaner_mutex);
3741 btrfs_run_delayed_iputs(root);
3742 mutex_unlock(&root->fs_info->cleaner_mutex);
3743
3744 down_write(&root->fs_info->cleanup_work_sem);
3745 up_write(&root->fs_info->cleanup_work_sem);
3746
3747 /* cleanup FS via transaction */
3748 btrfs_cleanup_transaction(root);
acce952b 3749}
3750
569e0f35
JB
3751static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3752 struct btrfs_root *root)
acce952b 3753{
3754 struct btrfs_inode *btrfs_inode;
3755 struct list_head splice;
3756
3757 INIT_LIST_HEAD(&splice);
3758
3759 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 3760 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3761
569e0f35 3762 list_splice_init(&t->ordered_operations, &splice);
acce952b 3763 while (!list_empty(&splice)) {
3764 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3765 ordered_operations);
3766
3767 list_del_init(&btrfs_inode->ordered_operations);
199c2a9c 3768 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3769
3770 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3771
199c2a9c 3772 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3773 }
3774
199c2a9c 3775 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3776 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3777}
3778
143bede5 3779static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3780{
acce952b 3781 struct btrfs_ordered_extent *ordered;
acce952b 3782
199c2a9c 3783 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3784 /*
3785 * This will just short circuit the ordered completion stuff which will
3786 * make sure the ordered extent gets properly cleaned up.
3787 */
199c2a9c 3788 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3789 root_extent_list)
3790 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3791 spin_unlock(&root->ordered_extent_lock);
3792}
3793
3794static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3795{
3796 struct btrfs_root *root;
3797 struct list_head splice;
3798
3799 INIT_LIST_HEAD(&splice);
3800
3801 spin_lock(&fs_info->ordered_root_lock);
3802 list_splice_init(&fs_info->ordered_roots, &splice);
3803 while (!list_empty(&splice)) {
3804 root = list_first_entry(&splice, struct btrfs_root,
3805 ordered_root);
3806 list_del_init(&root->ordered_root);
3807
3808 btrfs_destroy_ordered_extents(root);
3809
3810 cond_resched_lock(&fs_info->ordered_root_lock);
3811 }
3812 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3813}
3814
35a3621b
SB
3815static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3816 struct btrfs_root *root)
acce952b 3817{
3818 struct rb_node *node;
3819 struct btrfs_delayed_ref_root *delayed_refs;
3820 struct btrfs_delayed_ref_node *ref;
3821 int ret = 0;
3822
3823 delayed_refs = &trans->delayed_refs;
3824
3825 spin_lock(&delayed_refs->lock);
3826 if (delayed_refs->num_entries == 0) {
cfece4db 3827 spin_unlock(&delayed_refs->lock);
acce952b 3828 printk(KERN_INFO "delayed_refs has NO entry\n");
3829 return ret;
3830 }
3831
b939d1ab 3832 while ((node = rb_first(&delayed_refs->root)) != NULL) {
eb12db69 3833 struct btrfs_delayed_ref_head *head = NULL;
e78417d1 3834 bool pin_bytes = false;
acce952b 3835
eb12db69 3836 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3837 atomic_set(&ref->refs, 1);
3838 if (btrfs_delayed_ref_is_head(ref)) {
acce952b 3839
3840 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3841 if (!mutex_trylock(&head->mutex)) {
3842 atomic_inc(&ref->refs);
3843 spin_unlock(&delayed_refs->lock);
3844
3845 /* Need to wait for the delayed ref to run */
3846 mutex_lock(&head->mutex);
3847 mutex_unlock(&head->mutex);
3848 btrfs_put_delayed_ref(ref);
3849
e18fca73 3850 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3851 continue;
3852 }
3853
54067ae9 3854 if (head->must_insert_reserved)
e78417d1 3855 pin_bytes = true;
78a6184a 3856 btrfs_free_delayed_extent_op(head->extent_op);
acce952b 3857 delayed_refs->num_heads--;
3858 if (list_empty(&head->cluster))
3859 delayed_refs->num_heads_ready--;
3860 list_del_init(&head->cluster);
acce952b 3861 }
eb12db69 3862
b939d1ab
JB
3863 ref->in_tree = 0;
3864 rb_erase(&ref->rb_node, &delayed_refs->root);
3865 delayed_refs->num_entries--;
acce952b 3866 spin_unlock(&delayed_refs->lock);
e78417d1
JB
3867 if (head) {
3868 if (pin_bytes)
3869 btrfs_pin_extent(root, ref->bytenr,
3870 ref->num_bytes, 1);
3871 mutex_unlock(&head->mutex);
3872 }
acce952b 3873 btrfs_put_delayed_ref(ref);
3874
3875 cond_resched();
3876 spin_lock(&delayed_refs->lock);
3877 }
3878
3879 spin_unlock(&delayed_refs->lock);
3880
3881 return ret;
3882}
3883
aec8030a 3884static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
acce952b 3885{
3886 struct btrfs_pending_snapshot *snapshot;
3887 struct list_head splice;
3888
3889 INIT_LIST_HEAD(&splice);
3890
3891 list_splice_init(&t->pending_snapshots, &splice);
3892
3893 while (!list_empty(&splice)) {
3894 snapshot = list_entry(splice.next,
3895 struct btrfs_pending_snapshot,
3896 list);
aec8030a 3897 snapshot->error = -ECANCELED;
acce952b 3898 list_del_init(&snapshot->list);
acce952b 3899 }
acce952b 3900}
3901
143bede5 3902static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3903{
3904 struct btrfs_inode *btrfs_inode;
3905 struct list_head splice;
3906
3907 INIT_LIST_HEAD(&splice);
3908
eb73c1b7
MX
3909 spin_lock(&root->delalloc_lock);
3910 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3911
3912 while (!list_empty(&splice)) {
eb73c1b7
MX
3913 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3914 delalloc_inodes);
acce952b 3915
3916 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3917 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3918 &btrfs_inode->runtime_flags);
eb73c1b7 3919 spin_unlock(&root->delalloc_lock);
acce952b 3920
3921 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3922
eb73c1b7 3923 spin_lock(&root->delalloc_lock);
acce952b 3924 }
3925
eb73c1b7
MX
3926 spin_unlock(&root->delalloc_lock);
3927}
3928
3929static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3930{
3931 struct btrfs_root *root;
3932 struct list_head splice;
3933
3934 INIT_LIST_HEAD(&splice);
3935
3936 spin_lock(&fs_info->delalloc_root_lock);
3937 list_splice_init(&fs_info->delalloc_roots, &splice);
3938 while (!list_empty(&splice)) {
3939 root = list_first_entry(&splice, struct btrfs_root,
3940 delalloc_root);
3941 list_del_init(&root->delalloc_root);
3942 root = btrfs_grab_fs_root(root);
3943 BUG_ON(!root);
3944 spin_unlock(&fs_info->delalloc_root_lock);
3945
3946 btrfs_destroy_delalloc_inodes(root);
3947 btrfs_put_fs_root(root);
3948
3949 spin_lock(&fs_info->delalloc_root_lock);
3950 }
3951 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3952}
3953
3954static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3955 struct extent_io_tree *dirty_pages,
3956 int mark)
3957{
3958 int ret;
acce952b 3959 struct extent_buffer *eb;
3960 u64 start = 0;
3961 u64 end;
acce952b 3962
3963 while (1) {
3964 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3965 mark, NULL);
acce952b 3966 if (ret)
3967 break;
3968
3969 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3970 while (start <= end) {
fd8b2b61
JB
3971 eb = btrfs_find_tree_block(root, start,
3972 root->leafsize);
69a85bd8 3973 start += root->leafsize;
fd8b2b61 3974 if (!eb)
acce952b 3975 continue;
fd8b2b61 3976 wait_on_extent_buffer_writeback(eb);
acce952b 3977
fd8b2b61
JB
3978 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3979 &eb->bflags))
3980 clear_extent_buffer_dirty(eb);
3981 free_extent_buffer_stale(eb);
acce952b 3982 }
3983 }
3984
3985 return ret;
3986}
3987
3988static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3989 struct extent_io_tree *pinned_extents)
3990{
3991 struct extent_io_tree *unpin;
3992 u64 start;
3993 u64 end;
3994 int ret;
ed0eaa14 3995 bool loop = true;
acce952b 3996
3997 unpin = pinned_extents;
ed0eaa14 3998again:
acce952b 3999 while (1) {
4000 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4001 EXTENT_DIRTY, NULL);
acce952b 4002 if (ret)
4003 break;
4004
4005 /* opt_discard */
5378e607
LD
4006 if (btrfs_test_opt(root, DISCARD))
4007 ret = btrfs_error_discard_extent(root, start,
4008 end + 1 - start,
4009 NULL);
acce952b 4010
4011 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4012 btrfs_error_unpin_extent_range(root, start, end);
4013 cond_resched();
4014 }
4015
ed0eaa14
LB
4016 if (loop) {
4017 if (unpin == &root->fs_info->freed_extents[0])
4018 unpin = &root->fs_info->freed_extents[1];
4019 else
4020 unpin = &root->fs_info->freed_extents[0];
4021 loop = false;
4022 goto again;
4023 }
4024
acce952b 4025 return 0;
4026}
4027
49b25e05
JM
4028void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4029 struct btrfs_root *root)
4030{
4031 btrfs_destroy_delayed_refs(cur_trans, root);
4032 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
4033 cur_trans->dirty_pages.dirty_bytes);
4034
4a9d8bde 4035 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4036 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4037
aec8030a
MX
4038 btrfs_evict_pending_snapshots(cur_trans);
4039
4a9d8bde 4040 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4041 wake_up(&root->fs_info->transaction_wait);
49b25e05 4042
67cde344
MX
4043 btrfs_destroy_delayed_inodes(root);
4044 btrfs_assert_delayed_root_empty(root);
49b25e05 4045
49b25e05
JM
4046 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4047 EXTENT_DIRTY);
6e841e32
LB
4048 btrfs_destroy_pinned_extent(root,
4049 root->fs_info->pinned_extents);
49b25e05 4050
4a9d8bde
MX
4051 cur_trans->state =TRANS_STATE_COMPLETED;
4052 wake_up(&cur_trans->commit_wait);
4053
49b25e05
JM
4054 /*
4055 memset(cur_trans, 0, sizeof(*cur_trans));
4056 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4057 */
4058}
4059
48a3b636 4060static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4061{
4062 struct btrfs_transaction *t;
4063 LIST_HEAD(list);
4064
acce952b 4065 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4066
a4abeea4 4067 spin_lock(&root->fs_info->trans_lock);
acce952b 4068 list_splice_init(&root->fs_info->trans_list, &list);
ac673879 4069 root->fs_info->running_transaction = NULL;
a4abeea4
JB
4070 spin_unlock(&root->fs_info->trans_lock);
4071
acce952b 4072 while (!list_empty(&list)) {
4073 t = list_entry(list.next, struct btrfs_transaction, list);
acce952b 4074
569e0f35 4075 btrfs_destroy_ordered_operations(t, root);
acce952b 4076
199c2a9c 4077 btrfs_destroy_all_ordered_extents(root->fs_info);
acce952b 4078
4079 btrfs_destroy_delayed_refs(t, root);
4080
4a9d8bde
MX
4081 /*
4082 * FIXME: cleanup wait for commit
4083 * We needn't acquire the lock here, because we are during
4084 * the umount, there is no other task which will change it.
4085 */
4086 t->state = TRANS_STATE_COMMIT_START;
66657b31 4087 smp_mb();
acce952b 4088 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4089 wake_up(&root->fs_info->transaction_blocked_wait);
4090
aec8030a
MX
4091 btrfs_evict_pending_snapshots(t);
4092
4a9d8bde 4093 t->state = TRANS_STATE_UNBLOCKED;
66657b31 4094 smp_mb();
acce952b 4095 if (waitqueue_active(&root->fs_info->transaction_wait))
4096 wake_up(&root->fs_info->transaction_wait);
acce952b 4097
67cde344
MX
4098 btrfs_destroy_delayed_inodes(root);
4099 btrfs_assert_delayed_root_empty(root);
4100
eb73c1b7 4101 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4102
4103 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4104 EXTENT_DIRTY);
4105
4106 btrfs_destroy_pinned_extent(root,
4107 root->fs_info->pinned_extents);
4108
4a9d8bde
MX
4109 t->state = TRANS_STATE_COMPLETED;
4110 smp_mb();
4111 if (waitqueue_active(&t->commit_wait))
4112 wake_up(&t->commit_wait);
4113
13c5a93e 4114 atomic_set(&t->use_count, 0);
acce952b 4115 list_del_init(&t->list);
4116 memset(t, 0, sizeof(*t));
4117 kmem_cache_free(btrfs_transaction_cachep, t);
4118 }
4119
4120 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4121
4122 return 0;
4123}
4124
d1310b2e 4125static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4126 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4127 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4128 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4129 /* note we're sharing with inode.c for the merge bio hook */
4130 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4131};