Btrfs: fix missing delayed iputs on unmount
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
7e75bf3f 20#include <asm/unaligned.h>
eb60ceac
CM
21#include "ctree.h"
22#include "disk-io.h"
e089f05c 23#include "transaction.h"
0f7d52f4 24#include "btrfs_inode.h"
0b86a832 25#include "volumes.h"
db94535d 26#include "print-tree.h"
925baedd 27#include "locking.h"
e02119d5 28#include "tree-log.h"
fa9c0d79 29#include "free-space-cache.h"
70f6d82e 30#include "free-space-tree.h"
581bb050 31#include "inode-map.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
eb60ceac 41
de0022b9
JB
42#ifdef CONFIG_X86
43#include <asm/cpufeature.h>
44#endif
45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
d352ac68
CM
101/*
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
105 */
44b8bd7e 106struct async_submit_bio {
c6100a4b 107 void *private_data;
44b8bd7e 108 struct bio *bio;
a758781d 109 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 110 int mirror_num;
eaf25d93
CM
111 /*
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
114 */
115 u64 bio_offset;
8b712842 116 struct btrfs_work work;
4e4cbee9 117 blk_status_t status;
44b8bd7e
CM
118};
119
85d4e461
CM
120/*
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
124 *
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
4008c04a 130 *
85d4e461
CM
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 134 *
85d4e461
CM
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 138 *
85d4e461
CM
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
4008c04a
CM
142 */
143#ifdef CONFIG_DEBUG_LOCK_ALLOC
144# if BTRFS_MAX_LEVEL != 8
145# error
146# endif
85d4e461
CM
147
148static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153} btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 166 { .id = 0, .name_stem = "tree" },
4008c04a 167};
85d4e461
CM
168
169void __init btrfs_init_lockdep(void)
170{
171 int i, j;
172
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
180 }
181}
182
183void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 int level)
185{
186 struct btrfs_lockdep_keyset *ks;
187
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
193 break;
194
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
197}
198
4008c04a
CM
199#endif
200
d352ac68
CM
201/*
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
204 */
6af49dbd 205struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 206 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 207 int create)
7eccb903 208{
3ffbd68c 209 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 210 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
211 struct extent_map *em;
212 int ret;
213
890871be 214 read_lock(&em_tree->lock);
d1310b2e 215 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 216 if (em) {
0b246afa 217 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 218 read_unlock(&em_tree->lock);
5f39d397 219 goto out;
a061fc8d 220 }
890871be 221 read_unlock(&em_tree->lock);
7b13b7b1 222
172ddd60 223 em = alloc_extent_map();
5f39d397
CM
224 if (!em) {
225 em = ERR_PTR(-ENOMEM);
226 goto out;
227 }
228 em->start = 0;
0afbaf8c 229 em->len = (u64)-1;
c8b97818 230 em->block_len = (u64)-1;
5f39d397 231 em->block_start = 0;
0b246afa 232 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 233
890871be 234 write_lock(&em_tree->lock);
09a2a8f9 235 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
236 if (ret == -EEXIST) {
237 free_extent_map(em);
7b13b7b1 238 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 239 if (!em)
0433f20d 240 em = ERR_PTR(-EIO);
5f39d397 241 } else if (ret) {
7b13b7b1 242 free_extent_map(em);
0433f20d 243 em = ERR_PTR(ret);
5f39d397 244 }
890871be 245 write_unlock(&em_tree->lock);
7b13b7b1 246
5f39d397
CM
247out:
248 return em;
7eccb903
CM
249}
250
9ed57367 251u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 252{
9678c543 253 return crc32c(seed, data, len);
19c00ddc
CM
254}
255
0b5e3daf 256void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 257{
7e75bf3f 258 put_unaligned_le32(~crc, result);
19c00ddc
CM
259}
260
d352ac68
CM
261/*
262 * compute the csum for a btree block, and either verify it or write it
263 * into the csum field of the block.
264 */
01d58472
DD
265static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 struct extent_buffer *buf,
19c00ddc
CM
267 int verify)
268{
01d58472 269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
71a63551 270 char result[BTRFS_CSUM_SIZE];
19c00ddc
CM
271 unsigned long len;
272 unsigned long cur_len;
273 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
274 char *kaddr;
275 unsigned long map_start;
276 unsigned long map_len;
277 int err;
278 u32 crc = ~(u32)0;
279
280 len = buf->len - offset;
d397712b 281 while (len > 0) {
19c00ddc 282 err = map_private_extent_buffer(buf, offset, 32,
a6591715 283 &kaddr, &map_start, &map_len);
d397712b 284 if (err)
8bd98f0e 285 return err;
19c00ddc 286 cur_len = min(len, map_len - (offset - map_start));
b0496686 287 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
288 crc, cur_len);
289 len -= cur_len;
290 offset += cur_len;
19c00ddc 291 }
71a63551 292 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
94647322 303 btrfs_warn_rl(fs_info,
5d163e0e 304 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 305 fs_info->sb->s_id, buf->start,
efe120a0 306 val, found, btrfs_header_level(buf));
8bd98f0e 307 return -EUCLEAN;
19c00ddc
CM
308 }
309 } else {
607d432d 310 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 311 }
71a63551 312
19c00ddc
CM
313 return 0;
314}
315
d352ac68
CM
316/*
317 * we can't consider a given block up to date unless the transid of the
318 * block matches the transid in the parent node's pointer. This is how we
319 * detect blocks that either didn't get written at all or got written
320 * in the wrong place.
321 */
1259ab75 322static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
323 struct extent_buffer *eb, u64 parent_transid,
324 int atomic)
1259ab75 325{
2ac55d41 326 struct extent_state *cached_state = NULL;
1259ab75 327 int ret;
2755a0de 328 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
b9fab919
CM
333 if (atomic)
334 return -EAGAIN;
335
a26e8c9f
JB
336 if (need_lock) {
337 btrfs_tree_read_lock(eb);
338 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
339 }
340
2ac55d41 341 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 342 &cached_state);
0b32f4bb 343 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
344 btrfs_header_generation(eb) == parent_transid) {
345 ret = 0;
346 goto out;
347 }
94647322
DS
348 btrfs_err_rl(eb->fs_info,
349 "parent transid verify failed on %llu wanted %llu found %llu",
350 eb->start,
29549aec 351 parent_transid, btrfs_header_generation(eb));
1259ab75 352 ret = 1;
a26e8c9f
JB
353
354 /*
355 * Things reading via commit roots that don't have normal protection,
356 * like send, can have a really old block in cache that may point at a
01327610 357 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
358 * if we find an eb that is under IO (dirty/writeback) because we could
359 * end up reading in the stale data and then writing it back out and
360 * making everybody very sad.
361 */
362 if (!extent_buffer_under_io(eb))
363 clear_extent_buffer_uptodate(eb);
33958dc6 364out:
2ac55d41 365 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 366 &cached_state);
472b909f
JB
367 if (need_lock)
368 btrfs_tree_read_unlock_blocking(eb);
1259ab75 369 return ret;
1259ab75
CM
370}
371
1104a885
DS
372/*
373 * Return 0 if the superblock checksum type matches the checksum value of that
374 * algorithm. Pass the raw disk superblock data.
375 */
ab8d0fc4
JM
376static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
377 char *raw_disk_sb)
1104a885
DS
378{
379 struct btrfs_super_block *disk_sb =
380 (struct btrfs_super_block *)raw_disk_sb;
381 u16 csum_type = btrfs_super_csum_type(disk_sb);
382 int ret = 0;
383
384 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
385 u32 crc = ~(u32)0;
776c4a7c 386 char result[sizeof(crc)];
1104a885
DS
387
388 /*
389 * The super_block structure does not span the whole
390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 391 * is filled with zeros and is included in the checksum.
1104a885
DS
392 */
393 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
394 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
395 btrfs_csum_final(crc, result);
396
776c4a7c 397 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
398 ret = 1;
399 }
400
401 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 402 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
403 csum_type);
404 ret = 1;
405 }
406
407 return ret;
408}
409
581c1760
QW
410static int verify_level_key(struct btrfs_fs_info *fs_info,
411 struct extent_buffer *eb, int level,
ff76a864 412 struct btrfs_key *first_key, u64 parent_transid)
581c1760
QW
413{
414 int found_level;
415 struct btrfs_key found_key;
416 int ret;
417
418 found_level = btrfs_header_level(eb);
419 if (found_level != level) {
420#ifdef CONFIG_BTRFS_DEBUG
421 WARN_ON(1);
422 btrfs_err(fs_info,
423"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424 eb->start, level, found_level);
425#endif
426 return -EIO;
427 }
428
429 if (!first_key)
430 return 0;
431
5d41be6f
QW
432 /*
433 * For live tree block (new tree blocks in current transaction),
434 * we need proper lock context to avoid race, which is impossible here.
435 * So we only checks tree blocks which is read from disk, whose
436 * generation <= fs_info->last_trans_committed.
437 */
438 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
439 return 0;
581c1760
QW
440 if (found_level)
441 btrfs_node_key_to_cpu(eb, &found_key, 0);
442 else
443 btrfs_item_key_to_cpu(eb, &found_key, 0);
444 ret = btrfs_comp_cpu_keys(first_key, &found_key);
445
446#ifdef CONFIG_BTRFS_DEBUG
447 if (ret) {
448 WARN_ON(1);
449 btrfs_err(fs_info,
ff76a864
LB
450"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451 eb->start, parent_transid, first_key->objectid,
452 first_key->type, first_key->offset,
453 found_key.objectid, found_key.type,
454 found_key.offset);
581c1760
QW
455 }
456#endif
457 return ret;
458}
459
d352ac68
CM
460/*
461 * helper to read a given tree block, doing retries as required when
462 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
463 *
464 * @parent_transid: expected transid, skip check if 0
465 * @level: expected level, mandatory check
466 * @first_key: expected key of first slot, skip check if NULL
d352ac68 467 */
2ff7e61e 468static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 469 struct extent_buffer *eb,
581c1760
QW
470 u64 parent_transid, int level,
471 struct btrfs_key *first_key)
f188591e
CM
472{
473 struct extent_io_tree *io_tree;
ea466794 474 int failed = 0;
f188591e
CM
475 int ret;
476 int num_copies = 0;
477 int mirror_num = 0;
ea466794 478 int failed_mirror = 0;
f188591e 479
a826d6dc 480 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
0b246afa 481 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 482 while (1) {
8436ea91 483 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 484 mirror_num);
256dd1bb 485 if (!ret) {
581c1760 486 if (verify_parent_transid(io_tree, eb,
b9fab919 487 parent_transid, 0))
256dd1bb 488 ret = -EIO;
581c1760 489 else if (verify_level_key(fs_info, eb, level,
ff76a864 490 first_key, parent_transid))
581c1760
QW
491 ret = -EUCLEAN;
492 else
493 break;
256dd1bb 494 }
d397712b 495
a826d6dc
JB
496 /*
497 * This buffer's crc is fine, but its contents are corrupted, so
498 * there is no reason to read the other copies, they won't be
499 * any less wrong.
500 */
581c1760
QW
501 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
502 ret == -EUCLEAN)
ea466794
JB
503 break;
504
0b246afa 505 num_copies = btrfs_num_copies(fs_info,
f188591e 506 eb->start, eb->len);
4235298e 507 if (num_copies == 1)
ea466794 508 break;
4235298e 509
5cf1ab56
JB
510 if (!failed_mirror) {
511 failed = 1;
512 failed_mirror = eb->read_mirror;
513 }
514
f188591e 515 mirror_num++;
ea466794
JB
516 if (mirror_num == failed_mirror)
517 mirror_num++;
518
4235298e 519 if (mirror_num > num_copies)
ea466794 520 break;
f188591e 521 }
ea466794 522
c0901581 523 if (failed && !ret && failed_mirror)
2ff7e61e 524 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
525
526 return ret;
f188591e 527}
19c00ddc 528
d352ac68 529/*
d397712b
CM
530 * checksum a dirty tree block before IO. This has extra checks to make sure
531 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 532 */
d397712b 533
01d58472 534static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 535{
4eee4fa4 536 u64 start = page_offset(page);
19c00ddc 537 u64 found_start;
19c00ddc 538 struct extent_buffer *eb;
f188591e 539
4f2de97a
JB
540 eb = (struct extent_buffer *)page->private;
541 if (page != eb->pages[0])
542 return 0;
0f805531 543
19c00ddc 544 found_start = btrfs_header_bytenr(eb);
0f805531
AL
545 /*
546 * Please do not consolidate these warnings into a single if.
547 * It is useful to know what went wrong.
548 */
549 if (WARN_ON(found_start != start))
550 return -EUCLEAN;
551 if (WARN_ON(!PageUptodate(page)))
552 return -EUCLEAN;
553
554 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
555 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
556
8bd98f0e 557 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
558}
559
01d58472 560static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
561 struct extent_buffer *eb)
562{
01d58472 563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 564 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
565 int ret = 1;
566
0a4e5586 567 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
568 while (fs_devices) {
569 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
570 ret = 0;
571 break;
572 }
573 fs_devices = fs_devices->seed;
574 }
575 return ret;
576}
577
facc8a22
MX
578static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
579 u64 phy_offset, struct page *page,
580 u64 start, u64 end, int mirror)
ce9adaa5 581{
ce9adaa5
CM
582 u64 found_start;
583 int found_level;
ce9adaa5
CM
584 struct extent_buffer *eb;
585 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 586 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 587 int ret = 0;
727011e0 588 int reads_done;
ce9adaa5 589
ce9adaa5
CM
590 if (!page->private)
591 goto out;
d397712b 592
4f2de97a 593 eb = (struct extent_buffer *)page->private;
d397712b 594
0b32f4bb
JB
595 /* the pending IO might have been the only thing that kept this buffer
596 * in memory. Make sure we have a ref for all this other checks
597 */
598 extent_buffer_get(eb);
599
600 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
601 if (!reads_done)
602 goto err;
f188591e 603
5cf1ab56 604 eb->read_mirror = mirror;
656f30db 605 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
606 ret = -EIO;
607 goto err;
608 }
609
ce9adaa5 610 found_start = btrfs_header_bytenr(eb);
727011e0 611 if (found_start != eb->start) {
893bf4b1
SY
612 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
613 eb->start, found_start);
f188591e 614 ret = -EIO;
ce9adaa5
CM
615 goto err;
616 }
02873e43
ZL
617 if (check_tree_block_fsid(fs_info, eb)) {
618 btrfs_err_rl(fs_info, "bad fsid on block %llu",
619 eb->start);
1259ab75
CM
620 ret = -EIO;
621 goto err;
622 }
ce9adaa5 623 found_level = btrfs_header_level(eb);
1c24c3ce 624 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
625 btrfs_err(fs_info, "bad tree block level %d on %llu",
626 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
627 ret = -EIO;
628 goto err;
629 }
ce9adaa5 630
85d4e461
CM
631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
632 eb, found_level);
4008c04a 633
02873e43 634 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 635 if (ret)
a826d6dc 636 goto err;
a826d6dc
JB
637
638 /*
639 * If this is a leaf block and it is corrupt, set the corrupt bit so
640 * that we don't try and read the other copies of this block, just
641 * return -EIO.
642 */
2f659546 643 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
a826d6dc
JB
644 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
645 ret = -EIO;
646 }
ce9adaa5 647
2f659546 648 if (found_level > 0 && btrfs_check_node(fs_info, eb))
053ab70f
LB
649 ret = -EIO;
650
0b32f4bb
JB
651 if (!ret)
652 set_extent_buffer_uptodate(eb);
ce9adaa5 653err:
79fb65a1
JB
654 if (reads_done &&
655 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 656 btree_readahead_hook(eb, ret);
4bb31e92 657
53b381b3
DW
658 if (ret) {
659 /*
660 * our io error hook is going to dec the io pages
661 * again, we have to make sure it has something
662 * to decrement
663 */
664 atomic_inc(&eb->io_pages);
0b32f4bb 665 clear_extent_buffer_uptodate(eb);
53b381b3 666 }
0b32f4bb 667 free_extent_buffer(eb);
ce9adaa5 668out:
f188591e 669 return ret;
ce9adaa5
CM
670}
671
ea466794 672static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 673{
4bb31e92 674 struct extent_buffer *eb;
4bb31e92 675
4f2de97a 676 eb = (struct extent_buffer *)page->private;
656f30db 677 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 678 eb->read_mirror = failed_mirror;
53b381b3 679 atomic_dec(&eb->io_pages);
ea466794 680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 681 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
682 return -EIO; /* we fixed nothing */
683}
684
4246a0b6 685static void end_workqueue_bio(struct bio *bio)
ce9adaa5 686{
97eb6b69 687 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 688 struct btrfs_fs_info *fs_info;
9e0af237
LB
689 struct btrfs_workqueue *wq;
690 btrfs_work_func_t func;
ce9adaa5 691
ce9adaa5 692 fs_info = end_io_wq->info;
4e4cbee9 693 end_io_wq->status = bio->bi_status;
d20f7043 694
37226b21 695 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
697 wq = fs_info->endio_meta_write_workers;
698 func = btrfs_endio_meta_write_helper;
699 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
700 wq = fs_info->endio_freespace_worker;
701 func = btrfs_freespace_write_helper;
702 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
703 wq = fs_info->endio_raid56_workers;
704 func = btrfs_endio_raid56_helper;
705 } else {
706 wq = fs_info->endio_write_workers;
707 func = btrfs_endio_write_helper;
708 }
d20f7043 709 } else {
8b110e39
MX
710 if (unlikely(end_io_wq->metadata ==
711 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
712 wq = fs_info->endio_repair_workers;
713 func = btrfs_endio_repair_helper;
714 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
715 wq = fs_info->endio_raid56_workers;
716 func = btrfs_endio_raid56_helper;
717 } else if (end_io_wq->metadata) {
718 wq = fs_info->endio_meta_workers;
719 func = btrfs_endio_meta_helper;
720 } else {
721 wq = fs_info->endio_workers;
722 func = btrfs_endio_helper;
723 }
d20f7043 724 }
9e0af237
LB
725
726 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
727 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
728}
729
4e4cbee9 730blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 731 enum btrfs_wq_endio_type metadata)
0b86a832 732{
97eb6b69 733 struct btrfs_end_io_wq *end_io_wq;
8b110e39 734
97eb6b69 735 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 736 if (!end_io_wq)
4e4cbee9 737 return BLK_STS_RESOURCE;
ce9adaa5
CM
738
739 end_io_wq->private = bio->bi_private;
740 end_io_wq->end_io = bio->bi_end_io;
22c59948 741 end_io_wq->info = info;
4e4cbee9 742 end_io_wq->status = 0;
ce9adaa5 743 end_io_wq->bio = bio;
22c59948 744 end_io_wq->metadata = metadata;
ce9adaa5
CM
745
746 bio->bi_private = end_io_wq;
747 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
748 return 0;
749}
750
4a69a410
CM
751static void run_one_async_start(struct btrfs_work *work)
752{
4a69a410 753 struct async_submit_bio *async;
4e4cbee9 754 blk_status_t ret;
4a69a410
CM
755
756 async = container_of(work, struct async_submit_bio, work);
c6100a4b 757 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
758 async->bio_offset);
759 if (ret)
4e4cbee9 760 async->status = ret;
4a69a410
CM
761}
762
763static void run_one_async_done(struct btrfs_work *work)
8b712842 764{
8b712842
CM
765 struct async_submit_bio *async;
766
767 async = container_of(work, struct async_submit_bio, work);
4854ddd0 768
bb7ab3b9 769 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
770 if (async->status) {
771 async->bio->bi_status = async->status;
4246a0b6 772 bio_endio(async->bio);
79787eaa
JM
773 return;
774 }
775
e288c080 776 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
4a69a410
CM
777}
778
779static void run_one_async_free(struct btrfs_work *work)
780{
781 struct async_submit_bio *async;
782
783 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
784 kfree(async);
785}
786
8c27cb35
LT
787blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
788 int mirror_num, unsigned long bio_flags,
789 u64 bio_offset, void *private_data,
e288c080 790 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
791{
792 struct async_submit_bio *async;
793
794 async = kmalloc(sizeof(*async), GFP_NOFS);
795 if (!async)
4e4cbee9 796 return BLK_STS_RESOURCE;
44b8bd7e 797
c6100a4b 798 async->private_data = private_data;
44b8bd7e
CM
799 async->bio = bio;
800 async->mirror_num = mirror_num;
4a69a410 801 async->submit_bio_start = submit_bio_start;
4a69a410 802
9e0af237 803 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 804 run_one_async_done, run_one_async_free);
4a69a410 805
eaf25d93 806 async->bio_offset = bio_offset;
8c8bee1d 807
4e4cbee9 808 async->status = 0;
79787eaa 809
67f055c7 810 if (op_is_sync(bio->bi_opf))
5cdc7ad3 811 btrfs_set_work_high_priority(&async->work);
d313d7a3 812
5cdc7ad3 813 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
814 return 0;
815}
816
4e4cbee9 817static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 818{
2c30c71b 819 struct bio_vec *bvec;
ce3ed71a 820 struct btrfs_root *root;
2c30c71b 821 int i, ret = 0;
ce3ed71a 822
c09abff8 823 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 824 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 825 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 826 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
827 if (ret)
828 break;
ce3ed71a 829 }
2c30c71b 830
4e4cbee9 831 return errno_to_blk_status(ret);
ce3ed71a
CM
832}
833
d0ee3934 834static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 835 u64 bio_offset)
22c59948 836{
8b712842
CM
837 /*
838 * when we're called for a write, we're already in the async
5443be45 839 * submission context. Just jump into btrfs_map_bio
8b712842 840 */
79787eaa 841 return btree_csum_one_bio(bio);
4a69a410 842}
22c59948 843
18fdc679 844static int check_async_write(struct btrfs_inode *bi)
de0022b9 845{
6300463b
LB
846 if (atomic_read(&bi->sync_writers))
847 return 0;
de0022b9 848#ifdef CONFIG_X86
bc696ca0 849 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
850 return 0;
851#endif
852 return 1;
853}
854
8c27cb35
LT
855static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
856 int mirror_num, unsigned long bio_flags,
857 u64 bio_offset)
44b8bd7e 858{
c6100a4b 859 struct inode *inode = private_data;
0b246afa 860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 861 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 862 blk_status_t ret;
cad321ad 863
37226b21 864 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
865 /*
866 * called for a read, do the setup so that checksum validation
867 * can happen in the async kernel threads
868 */
0b246afa
JM
869 ret = btrfs_bio_wq_end_io(fs_info, bio,
870 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 871 if (ret)
61891923 872 goto out_w_error;
2ff7e61e 873 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
874 } else if (!async) {
875 ret = btree_csum_one_bio(bio);
876 if (ret)
61891923 877 goto out_w_error;
2ff7e61e 878 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
879 } else {
880 /*
881 * kthread helpers are used to submit writes so that
882 * checksumming can happen in parallel across all CPUs
883 */
c6100a4b
JB
884 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
885 bio_offset, private_data,
e288c080 886 btree_submit_bio_start);
44b8bd7e 887 }
d313d7a3 888
4246a0b6
CH
889 if (ret)
890 goto out_w_error;
891 return 0;
892
61891923 893out_w_error:
4e4cbee9 894 bio->bi_status = ret;
4246a0b6 895 bio_endio(bio);
61891923 896 return ret;
44b8bd7e
CM
897}
898
3dd1462e 899#ifdef CONFIG_MIGRATION
784b4e29 900static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
901 struct page *newpage, struct page *page,
902 enum migrate_mode mode)
784b4e29
CM
903{
904 /*
905 * we can't safely write a btree page from here,
906 * we haven't done the locking hook
907 */
908 if (PageDirty(page))
909 return -EAGAIN;
910 /*
911 * Buffers may be managed in a filesystem specific way.
912 * We must have no buffers or drop them.
913 */
914 if (page_has_private(page) &&
915 !try_to_release_page(page, GFP_KERNEL))
916 return -EAGAIN;
a6bc32b8 917 return migrate_page(mapping, newpage, page, mode);
784b4e29 918}
3dd1462e 919#endif
784b4e29 920
0da5468f
CM
921
922static int btree_writepages(struct address_space *mapping,
923 struct writeback_control *wbc)
924{
e2d84521
MX
925 struct btrfs_fs_info *fs_info;
926 int ret;
927
d8d5f3e1 928 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
929
930 if (wbc->for_kupdate)
931 return 0;
932
e2d84521 933 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 934 /* this is a bit racy, but that's ok */
d814a491
EL
935 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
936 BTRFS_DIRTY_METADATA_THRESH,
937 fs_info->dirty_metadata_batch);
e2d84521 938 if (ret < 0)
793955bc 939 return 0;
793955bc 940 }
0b32f4bb 941 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
942}
943
b2950863 944static int btree_readpage(struct file *file, struct page *page)
5f39d397 945{
d1310b2e
CM
946 struct extent_io_tree *tree;
947 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 948 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 949}
22b0ebda 950
70dec807 951static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 952{
98509cfc 953 if (PageWriteback(page) || PageDirty(page))
d397712b 954 return 0;
0c4e538b 955
f7a52a40 956 return try_release_extent_buffer(page);
d98237b3
CM
957}
958
d47992f8
LC
959static void btree_invalidatepage(struct page *page, unsigned int offset,
960 unsigned int length)
d98237b3 961{
d1310b2e
CM
962 struct extent_io_tree *tree;
963 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
964 extent_invalidatepage(tree, page, offset);
965 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 966 if (PagePrivate(page)) {
efe120a0
FH
967 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
968 "page private not zero on page %llu",
969 (unsigned long long)page_offset(page));
9ad6b7bc
CM
970 ClearPagePrivate(page);
971 set_page_private(page, 0);
09cbfeaf 972 put_page(page);
9ad6b7bc 973 }
d98237b3
CM
974}
975
0b32f4bb
JB
976static int btree_set_page_dirty(struct page *page)
977{
bb146eb2 978#ifdef DEBUG
0b32f4bb
JB
979 struct extent_buffer *eb;
980
981 BUG_ON(!PagePrivate(page));
982 eb = (struct extent_buffer *)page->private;
983 BUG_ON(!eb);
984 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
985 BUG_ON(!atomic_read(&eb->refs));
986 btrfs_assert_tree_locked(eb);
bb146eb2 987#endif
0b32f4bb
JB
988 return __set_page_dirty_nobuffers(page);
989}
990
7f09410b 991static const struct address_space_operations btree_aops = {
d98237b3 992 .readpage = btree_readpage,
0da5468f 993 .writepages = btree_writepages,
5f39d397
CM
994 .releasepage = btree_releasepage,
995 .invalidatepage = btree_invalidatepage,
5a92bc88 996#ifdef CONFIG_MIGRATION
784b4e29 997 .migratepage = btree_migratepage,
5a92bc88 998#endif
0b32f4bb 999 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1000};
1001
2ff7e61e 1002void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1003{
5f39d397 1004 struct extent_buffer *buf = NULL;
2ff7e61e 1005 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1006
2ff7e61e 1007 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1008 if (IS_ERR(buf))
6197d86e 1009 return;
d1310b2e 1010 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
6af49dbd 1011 buf, WAIT_NONE, 0);
5f39d397 1012 free_extent_buffer(buf);
090d1875
CM
1013}
1014
2ff7e61e 1015int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1016 int mirror_num, struct extent_buffer **eb)
1017{
1018 struct extent_buffer *buf = NULL;
2ff7e61e 1019 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1020 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1021 int ret;
1022
2ff7e61e 1023 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1024 if (IS_ERR(buf))
ab0fff03
AJ
1025 return 0;
1026
1027 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1028
8436ea91 1029 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1030 mirror_num);
ab0fff03
AJ
1031 if (ret) {
1032 free_extent_buffer(buf);
1033 return ret;
1034 }
1035
1036 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1037 free_extent_buffer(buf);
1038 return -EIO;
0b32f4bb 1039 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1040 *eb = buf;
1041 } else {
1042 free_extent_buffer(buf);
1043 }
1044 return 0;
1045}
1046
2ff7e61e
JM
1047struct extent_buffer *btrfs_find_create_tree_block(
1048 struct btrfs_fs_info *fs_info,
1049 u64 bytenr)
0999df54 1050{
0b246afa
JM
1051 if (btrfs_is_testing(fs_info))
1052 return alloc_test_extent_buffer(fs_info, bytenr);
1053 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1054}
1055
1056
e02119d5
CM
1057int btrfs_write_tree_block(struct extent_buffer *buf)
1058{
727011e0 1059 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1060 buf->start + buf->len - 1);
e02119d5
CM
1061}
1062
3189ff77 1063void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1064{
3189ff77
JL
1065 filemap_fdatawait_range(buf->pages[0]->mapping,
1066 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1067}
1068
581c1760
QW
1069/*
1070 * Read tree block at logical address @bytenr and do variant basic but critical
1071 * verification.
1072 *
1073 * @parent_transid: expected transid of this tree block, skip check if 0
1074 * @level: expected level, mandatory check
1075 * @first_key: expected key in slot 0, skip check if NULL
1076 */
2ff7e61e 1077struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1078 u64 parent_transid, int level,
1079 struct btrfs_key *first_key)
0999df54
CM
1080{
1081 struct extent_buffer *buf = NULL;
0999df54
CM
1082 int ret;
1083
2ff7e61e 1084 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1085 if (IS_ERR(buf))
1086 return buf;
0999df54 1087
581c1760
QW
1088 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1089 level, first_key);
0f0fe8f7
FDBM
1090 if (ret) {
1091 free_extent_buffer(buf);
64c043de 1092 return ERR_PTR(ret);
0f0fe8f7 1093 }
5f39d397 1094 return buf;
ce9adaa5 1095
eb60ceac
CM
1096}
1097
7c302b49 1098void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1099 struct extent_buffer *buf)
ed2ff2cb 1100{
55c69072 1101 if (btrfs_header_generation(buf) ==
e2d84521 1102 fs_info->running_transaction->transid) {
b9447ef8 1103 btrfs_assert_tree_locked(buf);
b4ce94de 1104
b9473439 1105 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1106 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1107 -buf->len,
1108 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1109 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1110 btrfs_set_lock_blocking(buf);
1111 clear_extent_buffer_dirty(buf);
1112 }
925baedd 1113 }
5f39d397
CM
1114}
1115
8257b2dc
MX
1116static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1117{
1118 struct btrfs_subvolume_writers *writers;
1119 int ret;
1120
1121 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1122 if (!writers)
1123 return ERR_PTR(-ENOMEM);
1124
8a5a916d 1125 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1126 if (ret < 0) {
1127 kfree(writers);
1128 return ERR_PTR(ret);
1129 }
1130
1131 init_waitqueue_head(&writers->wait);
1132 return writers;
1133}
1134
1135static void
1136btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1137{
1138 percpu_counter_destroy(&writers->counter);
1139 kfree(writers);
1140}
1141
da17066c 1142static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1143 u64 objectid)
d97e63b6 1144{
7c0260ee 1145 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1146 root->node = NULL;
a28ec197 1147 root->commit_root = NULL;
27cdeb70 1148 root->state = 0;
d68fc57b 1149 root->orphan_cleanup_state = 0;
0b86a832 1150
0f7d52f4 1151 root->last_trans = 0;
13a8a7c8 1152 root->highest_objectid = 0;
eb73c1b7 1153 root->nr_delalloc_inodes = 0;
199c2a9c 1154 root->nr_ordered_extents = 0;
6bef4d31 1155 root->inode_tree = RB_ROOT;
16cdcec7 1156 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1157 root->block_rsv = NULL;
0b86a832
CM
1158
1159 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1160 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1161 INIT_LIST_HEAD(&root->delalloc_inodes);
1162 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1163 INIT_LIST_HEAD(&root->ordered_extents);
1164 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1165 INIT_LIST_HEAD(&root->logged_list[0]);
1166 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1167 spin_lock_init(&root->inode_lock);
eb73c1b7 1168 spin_lock_init(&root->delalloc_lock);
199c2a9c 1169 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1170 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1171 spin_lock_init(&root->log_extents_lock[0]);
1172 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1173 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1174 mutex_init(&root->objectid_mutex);
e02119d5 1175 mutex_init(&root->log_mutex);
31f3d255 1176 mutex_init(&root->ordered_extent_mutex);
573bfb72 1177 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1178 init_waitqueue_head(&root->log_writer_wait);
1179 init_waitqueue_head(&root->log_commit_wait[0]);
1180 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1181 INIT_LIST_HEAD(&root->log_ctxs[0]);
1182 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1183 atomic_set(&root->log_commit[0], 0);
1184 atomic_set(&root->log_commit[1], 0);
1185 atomic_set(&root->log_writers, 0);
2ecb7923 1186 atomic_set(&root->log_batch, 0);
0700cea7 1187 refcount_set(&root->refs, 1);
ea14b57f 1188 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1189 atomic_set(&root->snapshot_force_cow, 0);
7237f183 1190 root->log_transid = 0;
d1433deb 1191 root->log_transid_committed = -1;
257c62e1 1192 root->last_log_commit = 0;
7c0260ee 1193 if (!dummy)
c6100a4b 1194 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1195
3768f368
CM
1196 memset(&root->root_key, 0, sizeof(root->root_key));
1197 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1198 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1199 if (!dummy)
06ea65a3
JB
1200 root->defrag_trans_start = fs_info->generation;
1201 else
1202 root->defrag_trans_start = 0;
4d775673 1203 root->root_key.objectid = objectid;
0ee5dc67 1204 root->anon_dev = 0;
8ea05e3a 1205
5f3ab90a 1206 spin_lock_init(&root->root_item_lock);
3768f368
CM
1207}
1208
74e4d827
DS
1209static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1210 gfp_t flags)
6f07e42e 1211{
74e4d827 1212 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1213 if (root)
1214 root->fs_info = fs_info;
1215 return root;
1216}
1217
06ea65a3
JB
1218#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1219/* Should only be used by the testing infrastructure */
da17066c 1220struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1221{
1222 struct btrfs_root *root;
1223
7c0260ee
JM
1224 if (!fs_info)
1225 return ERR_PTR(-EINVAL);
1226
1227 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1228 if (!root)
1229 return ERR_PTR(-ENOMEM);
da17066c 1230
b9ef22de 1231 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1232 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1233 root->alloc_bytenr = 0;
06ea65a3
JB
1234
1235 return root;
1236}
1237#endif
1238
20897f5c
AJ
1239struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info,
1241 u64 objectid)
1242{
1243 struct extent_buffer *leaf;
1244 struct btrfs_root *tree_root = fs_info->tree_root;
1245 struct btrfs_root *root;
1246 struct btrfs_key key;
1247 int ret = 0;
33d85fda 1248 uuid_le uuid = NULL_UUID_LE;
20897f5c 1249
74e4d827 1250 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1251 if (!root)
1252 return ERR_PTR(-ENOMEM);
1253
da17066c 1254 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1255 root->root_key.objectid = objectid;
1256 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1257 root->root_key.offset = 0;
1258
4d75f8a9 1259 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1260 if (IS_ERR(leaf)) {
1261 ret = PTR_ERR(leaf);
1dd05682 1262 leaf = NULL;
20897f5c
AJ
1263 goto fail;
1264 }
1265
20897f5c 1266 root->node = leaf;
20897f5c
AJ
1267 btrfs_mark_buffer_dirty(leaf);
1268
1269 root->commit_root = btrfs_root_node(root);
27cdeb70 1270 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1271
1272 root->root_item.flags = 0;
1273 root->root_item.byte_limit = 0;
1274 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1275 btrfs_set_root_generation(&root->root_item, trans->transid);
1276 btrfs_set_root_level(&root->root_item, 0);
1277 btrfs_set_root_refs(&root->root_item, 1);
1278 btrfs_set_root_used(&root->root_item, leaf->len);
1279 btrfs_set_root_last_snapshot(&root->root_item, 0);
1280 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1281 if (is_fstree(objectid))
1282 uuid_le_gen(&uuid);
6463fe58 1283 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1284 root->root_item.drop_level = 0;
1285
1286 key.objectid = objectid;
1287 key.type = BTRFS_ROOT_ITEM_KEY;
1288 key.offset = 0;
1289 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1290 if (ret)
1291 goto fail;
1292
1293 btrfs_tree_unlock(leaf);
1294
1dd05682
TI
1295 return root;
1296
20897f5c 1297fail:
1dd05682
TI
1298 if (leaf) {
1299 btrfs_tree_unlock(leaf);
59885b39 1300 free_extent_buffer(root->commit_root);
1dd05682
TI
1301 free_extent_buffer(leaf);
1302 }
1303 kfree(root);
20897f5c 1304
1dd05682 1305 return ERR_PTR(ret);
20897f5c
AJ
1306}
1307
7237f183
YZ
1308static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1309 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1310{
1311 struct btrfs_root *root;
7237f183 1312 struct extent_buffer *leaf;
e02119d5 1313
74e4d827 1314 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1315 if (!root)
7237f183 1316 return ERR_PTR(-ENOMEM);
e02119d5 1317
da17066c 1318 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1319
1320 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1321 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1322 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1323
7237f183 1324 /*
27cdeb70
MX
1325 * DON'T set REF_COWS for log trees
1326 *
7237f183
YZ
1327 * log trees do not get reference counted because they go away
1328 * before a real commit is actually done. They do store pointers
1329 * to file data extents, and those reference counts still get
1330 * updated (along with back refs to the log tree).
1331 */
e02119d5 1332
4d75f8a9
DS
1333 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1334 NULL, 0, 0, 0);
7237f183
YZ
1335 if (IS_ERR(leaf)) {
1336 kfree(root);
1337 return ERR_CAST(leaf);
1338 }
e02119d5 1339
7237f183 1340 root->node = leaf;
e02119d5 1341
e02119d5
CM
1342 btrfs_mark_buffer_dirty(root->node);
1343 btrfs_tree_unlock(root->node);
7237f183
YZ
1344 return root;
1345}
1346
1347int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1348 struct btrfs_fs_info *fs_info)
1349{
1350 struct btrfs_root *log_root;
1351
1352 log_root = alloc_log_tree(trans, fs_info);
1353 if (IS_ERR(log_root))
1354 return PTR_ERR(log_root);
1355 WARN_ON(fs_info->log_root_tree);
1356 fs_info->log_root_tree = log_root;
1357 return 0;
1358}
1359
1360int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root)
1362{
0b246afa 1363 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1364 struct btrfs_root *log_root;
1365 struct btrfs_inode_item *inode_item;
1366
0b246afa 1367 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1368 if (IS_ERR(log_root))
1369 return PTR_ERR(log_root);
1370
1371 log_root->last_trans = trans->transid;
1372 log_root->root_key.offset = root->root_key.objectid;
1373
1374 inode_item = &log_root->root_item.inode;
3cae210f
QW
1375 btrfs_set_stack_inode_generation(inode_item, 1);
1376 btrfs_set_stack_inode_size(inode_item, 3);
1377 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1378 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1379 fs_info->nodesize);
3cae210f 1380 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1381
5d4f98a2 1382 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1383
1384 WARN_ON(root->log_root);
1385 root->log_root = log_root;
1386 root->log_transid = 0;
d1433deb 1387 root->log_transid_committed = -1;
257c62e1 1388 root->last_log_commit = 0;
e02119d5
CM
1389 return 0;
1390}
1391
35a3621b
SB
1392static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1393 struct btrfs_key *key)
e02119d5
CM
1394{
1395 struct btrfs_root *root;
1396 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1397 struct btrfs_path *path;
84234f3a 1398 u64 generation;
cb517eab 1399 int ret;
581c1760 1400 int level;
0f7d52f4 1401
cb517eab
MX
1402 path = btrfs_alloc_path();
1403 if (!path)
0f7d52f4 1404 return ERR_PTR(-ENOMEM);
cb517eab 1405
74e4d827 1406 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1407 if (!root) {
1408 ret = -ENOMEM;
1409 goto alloc_fail;
0f7d52f4
CM
1410 }
1411
da17066c 1412 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1413
cb517eab
MX
1414 ret = btrfs_find_root(tree_root, key, path,
1415 &root->root_item, &root->root_key);
0f7d52f4 1416 if (ret) {
13a8a7c8
YZ
1417 if (ret > 0)
1418 ret = -ENOENT;
cb517eab 1419 goto find_fail;
0f7d52f4 1420 }
13a8a7c8 1421
84234f3a 1422 generation = btrfs_root_generation(&root->root_item);
581c1760 1423 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1424 root->node = read_tree_block(fs_info,
1425 btrfs_root_bytenr(&root->root_item),
581c1760 1426 generation, level, NULL);
64c043de
LB
1427 if (IS_ERR(root->node)) {
1428 ret = PTR_ERR(root->node);
cb517eab
MX
1429 goto find_fail;
1430 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1431 ret = -EIO;
64c043de
LB
1432 free_extent_buffer(root->node);
1433 goto find_fail;
416bc658 1434 }
5d4f98a2 1435 root->commit_root = btrfs_root_node(root);
13a8a7c8 1436out:
cb517eab
MX
1437 btrfs_free_path(path);
1438 return root;
1439
cb517eab
MX
1440find_fail:
1441 kfree(root);
1442alloc_fail:
1443 root = ERR_PTR(ret);
1444 goto out;
1445}
1446
1447struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1448 struct btrfs_key *location)
1449{
1450 struct btrfs_root *root;
1451
1452 root = btrfs_read_tree_root(tree_root, location);
1453 if (IS_ERR(root))
1454 return root;
1455
1456 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1457 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1458 btrfs_check_and_init_root_item(&root->root_item);
1459 }
13a8a7c8 1460
5eda7b5e
CM
1461 return root;
1462}
1463
cb517eab
MX
1464int btrfs_init_fs_root(struct btrfs_root *root)
1465{
1466 int ret;
8257b2dc 1467 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1468
1469 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1470 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1471 GFP_NOFS);
1472 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1473 ret = -ENOMEM;
1474 goto fail;
1475 }
1476
8257b2dc
MX
1477 writers = btrfs_alloc_subvolume_writers();
1478 if (IS_ERR(writers)) {
1479 ret = PTR_ERR(writers);
1480 goto fail;
1481 }
1482 root->subv_writers = writers;
1483
cb517eab 1484 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1485 spin_lock_init(&root->ino_cache_lock);
1486 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1487
1488 ret = get_anon_bdev(&root->anon_dev);
1489 if (ret)
876d2cf1 1490 goto fail;
f32e48e9
CR
1491
1492 mutex_lock(&root->objectid_mutex);
1493 ret = btrfs_find_highest_objectid(root,
1494 &root->highest_objectid);
1495 if (ret) {
1496 mutex_unlock(&root->objectid_mutex);
876d2cf1 1497 goto fail;
f32e48e9
CR
1498 }
1499
1500 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1501
1502 mutex_unlock(&root->objectid_mutex);
1503
cb517eab
MX
1504 return 0;
1505fail:
84db5ccf 1506 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1507 return ret;
1508}
1509
35bbb97f
JM
1510struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1511 u64 root_id)
cb517eab
MX
1512{
1513 struct btrfs_root *root;
1514
1515 spin_lock(&fs_info->fs_roots_radix_lock);
1516 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1517 (unsigned long)root_id);
1518 spin_unlock(&fs_info->fs_roots_radix_lock);
1519 return root;
1520}
1521
1522int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1523 struct btrfs_root *root)
1524{
1525 int ret;
1526
e1860a77 1527 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1528 if (ret)
1529 return ret;
1530
1531 spin_lock(&fs_info->fs_roots_radix_lock);
1532 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1533 (unsigned long)root->root_key.objectid,
1534 root);
1535 if (ret == 0)
27cdeb70 1536 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1537 spin_unlock(&fs_info->fs_roots_radix_lock);
1538 radix_tree_preload_end();
1539
1540 return ret;
1541}
1542
c00869f1
MX
1543struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1544 struct btrfs_key *location,
1545 bool check_ref)
5eda7b5e
CM
1546{
1547 struct btrfs_root *root;
381cf658 1548 struct btrfs_path *path;
1d4c08e0 1549 struct btrfs_key key;
5eda7b5e
CM
1550 int ret;
1551
edbd8d4e
CM
1552 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1553 return fs_info->tree_root;
1554 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1555 return fs_info->extent_root;
8f18cf13
CM
1556 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1557 return fs_info->chunk_root;
1558 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1559 return fs_info->dev_root;
0403e47e
YZ
1560 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1561 return fs_info->csum_root;
bcef60f2
AJ
1562 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1563 return fs_info->quota_root ? fs_info->quota_root :
1564 ERR_PTR(-ENOENT);
f7a81ea4
SB
1565 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1566 return fs_info->uuid_root ? fs_info->uuid_root :
1567 ERR_PTR(-ENOENT);
70f6d82e
OS
1568 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1569 return fs_info->free_space_root ? fs_info->free_space_root :
1570 ERR_PTR(-ENOENT);
4df27c4d 1571again:
cb517eab 1572 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1573 if (root) {
c00869f1 1574 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1575 return ERR_PTR(-ENOENT);
5eda7b5e 1576 return root;
48475471 1577 }
5eda7b5e 1578
cb517eab 1579 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1580 if (IS_ERR(root))
1581 return root;
3394e160 1582
c00869f1 1583 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1584 ret = -ENOENT;
581bb050 1585 goto fail;
35a30d7c 1586 }
581bb050 1587
cb517eab 1588 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1589 if (ret)
1590 goto fail;
3394e160 1591
381cf658
DS
1592 path = btrfs_alloc_path();
1593 if (!path) {
1594 ret = -ENOMEM;
1595 goto fail;
1596 }
1d4c08e0
DS
1597 key.objectid = BTRFS_ORPHAN_OBJECTID;
1598 key.type = BTRFS_ORPHAN_ITEM_KEY;
1599 key.offset = location->objectid;
1600
1601 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1602 btrfs_free_path(path);
d68fc57b
YZ
1603 if (ret < 0)
1604 goto fail;
1605 if (ret == 0)
27cdeb70 1606 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1607
cb517eab 1608 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1609 if (ret) {
4df27c4d 1610 if (ret == -EEXIST) {
84db5ccf 1611 btrfs_free_fs_root(root);
4df27c4d
YZ
1612 goto again;
1613 }
1614 goto fail;
0f7d52f4 1615 }
edbd8d4e 1616 return root;
4df27c4d 1617fail:
84db5ccf 1618 btrfs_free_fs_root(root);
4df27c4d 1619 return ERR_PTR(ret);
edbd8d4e
CM
1620}
1621
04160088
CM
1622static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1623{
1624 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1625 int ret = 0;
04160088
CM
1626 struct btrfs_device *device;
1627 struct backing_dev_info *bdi;
b7967db7 1628
1f78160c
XG
1629 rcu_read_lock();
1630 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1631 if (!device->bdev)
1632 continue;
efa7c9f9 1633 bdi = device->bdev->bd_bdi;
ff9ea323 1634 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1635 ret = 1;
1636 break;
1637 }
1638 }
1f78160c 1639 rcu_read_unlock();
04160088
CM
1640 return ret;
1641}
1642
8b712842
CM
1643/*
1644 * called by the kthread helper functions to finally call the bio end_io
1645 * functions. This is where read checksum verification actually happens
1646 */
1647static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1648{
ce9adaa5 1649 struct bio *bio;
97eb6b69 1650 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1651
97eb6b69 1652 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1653 bio = end_io_wq->bio;
ce9adaa5 1654
4e4cbee9 1655 bio->bi_status = end_io_wq->status;
8b712842
CM
1656 bio->bi_private = end_io_wq->private;
1657 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1658 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1659 bio_endio(bio);
44b8bd7e
CM
1660}
1661
a74a4b97
CM
1662static int cleaner_kthread(void *arg)
1663{
1664 struct btrfs_root *root = arg;
0b246afa 1665 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1666 int again;
a74a4b97 1667
d6fd0ae2 1668 while (1) {
d0278245 1669 again = 0;
a74a4b97 1670
d0278245 1671 /* Make the cleaner go to sleep early. */
2ff7e61e 1672 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1673 goto sleep;
1674
90c711ab
ZB
1675 /*
1676 * Do not do anything if we might cause open_ctree() to block
1677 * before we have finished mounting the filesystem.
1678 */
0b246afa 1679 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1680 goto sleep;
1681
0b246afa 1682 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1683 goto sleep;
1684
dc7f370c
MX
1685 /*
1686 * Avoid the problem that we change the status of the fs
1687 * during the above check and trylock.
1688 */
2ff7e61e 1689 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1690 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1691 goto sleep;
76dda93c 1692 }
a74a4b97 1693
0b246afa 1694 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1695 btrfs_run_delayed_iputs(fs_info);
0b246afa 1696 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1697
d0278245 1698 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1699 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1700
1701 /*
05323cd1
MX
1702 * The defragger has dealt with the R/O remount and umount,
1703 * needn't do anything special here.
d0278245 1704 */
0b246afa 1705 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1706
1707 /*
1708 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1709 * with relocation (btrfs_relocate_chunk) and relocation
1710 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1711 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1712 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1713 * unused block groups.
1714 */
0b246afa 1715 btrfs_delete_unused_bgs(fs_info);
d0278245 1716sleep:
d6fd0ae2
OS
1717 if (kthread_should_park())
1718 kthread_parkme();
1719 if (kthread_should_stop())
1720 return 0;
838fe188 1721 if (!again) {
a74a4b97 1722 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1723 schedule();
a74a4b97
CM
1724 __set_current_state(TASK_RUNNING);
1725 }
da288d28 1726 }
a74a4b97
CM
1727}
1728
1729static int transaction_kthread(void *arg)
1730{
1731 struct btrfs_root *root = arg;
0b246afa 1732 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1733 struct btrfs_trans_handle *trans;
1734 struct btrfs_transaction *cur;
8929ecfa 1735 u64 transid;
a944442c 1736 time64_t now;
a74a4b97 1737 unsigned long delay;
914b2007 1738 bool cannot_commit;
a74a4b97
CM
1739
1740 do {
914b2007 1741 cannot_commit = false;
0b246afa
JM
1742 delay = HZ * fs_info->commit_interval;
1743 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1744
0b246afa
JM
1745 spin_lock(&fs_info->trans_lock);
1746 cur = fs_info->running_transaction;
a74a4b97 1747 if (!cur) {
0b246afa 1748 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1749 goto sleep;
1750 }
31153d81 1751
afd48513 1752 now = ktime_get_seconds();
4a9d8bde 1753 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1754 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1755 (now < cur->start_time ||
0b246afa
JM
1756 now - cur->start_time < fs_info->commit_interval)) {
1757 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1758 delay = HZ * 5;
1759 goto sleep;
1760 }
8929ecfa 1761 transid = cur->transid;
0b246afa 1762 spin_unlock(&fs_info->trans_lock);
56bec294 1763
79787eaa 1764 /* If the file system is aborted, this will always fail. */
354aa0fb 1765 trans = btrfs_attach_transaction(root);
914b2007 1766 if (IS_ERR(trans)) {
354aa0fb
MX
1767 if (PTR_ERR(trans) != -ENOENT)
1768 cannot_commit = true;
79787eaa 1769 goto sleep;
914b2007 1770 }
8929ecfa 1771 if (transid == trans->transid) {
3a45bb20 1772 btrfs_commit_transaction(trans);
8929ecfa 1773 } else {
3a45bb20 1774 btrfs_end_transaction(trans);
8929ecfa 1775 }
a74a4b97 1776sleep:
0b246afa
JM
1777 wake_up_process(fs_info->cleaner_kthread);
1778 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1779
4e121c06 1780 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1781 &fs_info->fs_state)))
2ff7e61e 1782 btrfs_cleanup_transaction(fs_info);
ce63f891 1783 if (!kthread_should_stop() &&
0b246afa 1784 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1785 cannot_commit))
bc5511d0 1786 schedule_timeout_interruptible(delay);
a74a4b97
CM
1787 } while (!kthread_should_stop());
1788 return 0;
1789}
1790
af31f5e5
CM
1791/*
1792 * this will find the highest generation in the array of
1793 * root backups. The index of the highest array is returned,
1794 * or -1 if we can't find anything.
1795 *
1796 * We check to make sure the array is valid by comparing the
1797 * generation of the latest root in the array with the generation
1798 * in the super block. If they don't match we pitch it.
1799 */
1800static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1801{
1802 u64 cur;
1803 int newest_index = -1;
1804 struct btrfs_root_backup *root_backup;
1805 int i;
1806
1807 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1808 root_backup = info->super_copy->super_roots + i;
1809 cur = btrfs_backup_tree_root_gen(root_backup);
1810 if (cur == newest_gen)
1811 newest_index = i;
1812 }
1813
1814 /* check to see if we actually wrapped around */
1815 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1816 root_backup = info->super_copy->super_roots;
1817 cur = btrfs_backup_tree_root_gen(root_backup);
1818 if (cur == newest_gen)
1819 newest_index = 0;
1820 }
1821 return newest_index;
1822}
1823
1824
1825/*
1826 * find the oldest backup so we know where to store new entries
1827 * in the backup array. This will set the backup_root_index
1828 * field in the fs_info struct
1829 */
1830static void find_oldest_super_backup(struct btrfs_fs_info *info,
1831 u64 newest_gen)
1832{
1833 int newest_index = -1;
1834
1835 newest_index = find_newest_super_backup(info, newest_gen);
1836 /* if there was garbage in there, just move along */
1837 if (newest_index == -1) {
1838 info->backup_root_index = 0;
1839 } else {
1840 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1841 }
1842}
1843
1844/*
1845 * copy all the root pointers into the super backup array.
1846 * this will bump the backup pointer by one when it is
1847 * done
1848 */
1849static void backup_super_roots(struct btrfs_fs_info *info)
1850{
1851 int next_backup;
1852 struct btrfs_root_backup *root_backup;
1853 int last_backup;
1854
1855 next_backup = info->backup_root_index;
1856 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1857 BTRFS_NUM_BACKUP_ROOTS;
1858
1859 /*
1860 * just overwrite the last backup if we're at the same generation
1861 * this happens only at umount
1862 */
1863 root_backup = info->super_for_commit->super_roots + last_backup;
1864 if (btrfs_backup_tree_root_gen(root_backup) ==
1865 btrfs_header_generation(info->tree_root->node))
1866 next_backup = last_backup;
1867
1868 root_backup = info->super_for_commit->super_roots + next_backup;
1869
1870 /*
1871 * make sure all of our padding and empty slots get zero filled
1872 * regardless of which ones we use today
1873 */
1874 memset(root_backup, 0, sizeof(*root_backup));
1875
1876 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1877
1878 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1879 btrfs_set_backup_tree_root_gen(root_backup,
1880 btrfs_header_generation(info->tree_root->node));
1881
1882 btrfs_set_backup_tree_root_level(root_backup,
1883 btrfs_header_level(info->tree_root->node));
1884
1885 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1886 btrfs_set_backup_chunk_root_gen(root_backup,
1887 btrfs_header_generation(info->chunk_root->node));
1888 btrfs_set_backup_chunk_root_level(root_backup,
1889 btrfs_header_level(info->chunk_root->node));
1890
1891 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1892 btrfs_set_backup_extent_root_gen(root_backup,
1893 btrfs_header_generation(info->extent_root->node));
1894 btrfs_set_backup_extent_root_level(root_backup,
1895 btrfs_header_level(info->extent_root->node));
1896
7c7e82a7
CM
1897 /*
1898 * we might commit during log recovery, which happens before we set
1899 * the fs_root. Make sure it is valid before we fill it in.
1900 */
1901 if (info->fs_root && info->fs_root->node) {
1902 btrfs_set_backup_fs_root(root_backup,
1903 info->fs_root->node->start);
1904 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1905 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1906 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1907 btrfs_header_level(info->fs_root->node));
7c7e82a7 1908 }
af31f5e5
CM
1909
1910 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1911 btrfs_set_backup_dev_root_gen(root_backup,
1912 btrfs_header_generation(info->dev_root->node));
1913 btrfs_set_backup_dev_root_level(root_backup,
1914 btrfs_header_level(info->dev_root->node));
1915
1916 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1917 btrfs_set_backup_csum_root_gen(root_backup,
1918 btrfs_header_generation(info->csum_root->node));
1919 btrfs_set_backup_csum_root_level(root_backup,
1920 btrfs_header_level(info->csum_root->node));
1921
1922 btrfs_set_backup_total_bytes(root_backup,
1923 btrfs_super_total_bytes(info->super_copy));
1924 btrfs_set_backup_bytes_used(root_backup,
1925 btrfs_super_bytes_used(info->super_copy));
1926 btrfs_set_backup_num_devices(root_backup,
1927 btrfs_super_num_devices(info->super_copy));
1928
1929 /*
1930 * if we don't copy this out to the super_copy, it won't get remembered
1931 * for the next commit
1932 */
1933 memcpy(&info->super_copy->super_roots,
1934 &info->super_for_commit->super_roots,
1935 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1936}
1937
1938/*
1939 * this copies info out of the root backup array and back into
1940 * the in-memory super block. It is meant to help iterate through
1941 * the array, so you send it the number of backups you've already
1942 * tried and the last backup index you used.
1943 *
1944 * this returns -1 when it has tried all the backups
1945 */
1946static noinline int next_root_backup(struct btrfs_fs_info *info,
1947 struct btrfs_super_block *super,
1948 int *num_backups_tried, int *backup_index)
1949{
1950 struct btrfs_root_backup *root_backup;
1951 int newest = *backup_index;
1952
1953 if (*num_backups_tried == 0) {
1954 u64 gen = btrfs_super_generation(super);
1955
1956 newest = find_newest_super_backup(info, gen);
1957 if (newest == -1)
1958 return -1;
1959
1960 *backup_index = newest;
1961 *num_backups_tried = 1;
1962 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1963 /* we've tried all the backups, all done */
1964 return -1;
1965 } else {
1966 /* jump to the next oldest backup */
1967 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1968 BTRFS_NUM_BACKUP_ROOTS;
1969 *backup_index = newest;
1970 *num_backups_tried += 1;
1971 }
1972 root_backup = super->super_roots + newest;
1973
1974 btrfs_set_super_generation(super,
1975 btrfs_backup_tree_root_gen(root_backup));
1976 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1977 btrfs_set_super_root_level(super,
1978 btrfs_backup_tree_root_level(root_backup));
1979 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1980
1981 /*
1982 * fixme: the total bytes and num_devices need to match or we should
1983 * need a fsck
1984 */
1985 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1986 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1987 return 0;
1988}
1989
7abadb64
LB
1990/* helper to cleanup workers */
1991static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1992{
dc6e3209 1993 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1994 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1995 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1996 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1997 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1998 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1999 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2000 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2001 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2002 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2003 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2004 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2005 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2006 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2007 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2008 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2009 /*
2010 * Now that all other work queues are destroyed, we can safely destroy
2011 * the queues used for metadata I/O, since tasks from those other work
2012 * queues can do metadata I/O operations.
2013 */
2014 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2015 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2016}
2017
2e9f5954
R
2018static void free_root_extent_buffers(struct btrfs_root *root)
2019{
2020 if (root) {
2021 free_extent_buffer(root->node);
2022 free_extent_buffer(root->commit_root);
2023 root->node = NULL;
2024 root->commit_root = NULL;
2025 }
2026}
2027
af31f5e5
CM
2028/* helper to cleanup tree roots */
2029static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2030{
2e9f5954 2031 free_root_extent_buffers(info->tree_root);
655b09fe 2032
2e9f5954
R
2033 free_root_extent_buffers(info->dev_root);
2034 free_root_extent_buffers(info->extent_root);
2035 free_root_extent_buffers(info->csum_root);
2036 free_root_extent_buffers(info->quota_root);
2037 free_root_extent_buffers(info->uuid_root);
2038 if (chunk_root)
2039 free_root_extent_buffers(info->chunk_root);
70f6d82e 2040 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2041}
2042
faa2dbf0 2043void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2044{
2045 int ret;
2046 struct btrfs_root *gang[8];
2047 int i;
2048
2049 while (!list_empty(&fs_info->dead_roots)) {
2050 gang[0] = list_entry(fs_info->dead_roots.next,
2051 struct btrfs_root, root_list);
2052 list_del(&gang[0]->root_list);
2053
27cdeb70 2054 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2055 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2056 } else {
2057 free_extent_buffer(gang[0]->node);
2058 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2059 btrfs_put_fs_root(gang[0]);
171f6537
JB
2060 }
2061 }
2062
2063 while (1) {
2064 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2065 (void **)gang, 0,
2066 ARRAY_SIZE(gang));
2067 if (!ret)
2068 break;
2069 for (i = 0; i < ret; i++)
cb517eab 2070 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2071 }
1a4319cc
LB
2072
2073 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2074 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2075 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2076 }
171f6537 2077}
af31f5e5 2078
638aa7ed
ES
2079static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2080{
2081 mutex_init(&fs_info->scrub_lock);
2082 atomic_set(&fs_info->scrubs_running, 0);
2083 atomic_set(&fs_info->scrub_pause_req, 0);
2084 atomic_set(&fs_info->scrubs_paused, 0);
2085 atomic_set(&fs_info->scrub_cancel_req, 0);
2086 init_waitqueue_head(&fs_info->scrub_pause_wait);
2087 fs_info->scrub_workers_refcnt = 0;
2088}
2089
779a65a4
ES
2090static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2091{
2092 spin_lock_init(&fs_info->balance_lock);
2093 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2094 atomic_set(&fs_info->balance_pause_req, 0);
2095 atomic_set(&fs_info->balance_cancel_req, 0);
2096 fs_info->balance_ctl = NULL;
2097 init_waitqueue_head(&fs_info->balance_wait_q);
2098}
2099
6bccf3ab 2100static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2101{
2ff7e61e
JM
2102 struct inode *inode = fs_info->btree_inode;
2103
2104 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2105 set_nlink(inode, 1);
f37938e0
ES
2106 /*
2107 * we set the i_size on the btree inode to the max possible int.
2108 * the real end of the address space is determined by all of
2109 * the devices in the system
2110 */
2ff7e61e
JM
2111 inode->i_size = OFFSET_MAX;
2112 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2113
2ff7e61e 2114 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2115 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2116 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2117 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2118
2ff7e61e 2119 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2120
2ff7e61e
JM
2121 BTRFS_I(inode)->root = fs_info->tree_root;
2122 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2123 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2124 btrfs_insert_inode_hash(inode);
f37938e0
ES
2125}
2126
ad618368
ES
2127static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2128{
ad618368 2129 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9 2130 rwlock_init(&fs_info->dev_replace.lock);
73beece9 2131 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
7f8d236a 2132 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
73beece9 2133 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2134}
2135
f9e92e40
ES
2136static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2137{
2138 spin_lock_init(&fs_info->qgroup_lock);
2139 mutex_init(&fs_info->qgroup_ioctl_lock);
2140 fs_info->qgroup_tree = RB_ROOT;
2141 fs_info->qgroup_op_tree = RB_ROOT;
2142 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143 fs_info->qgroup_seq = 1;
f9e92e40 2144 fs_info->qgroup_ulist = NULL;
d2c609b8 2145 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2146 mutex_init(&fs_info->qgroup_rescan_lock);
2147}
2148
2a458198
ES
2149static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150 struct btrfs_fs_devices *fs_devices)
2151{
f7b885be 2152 u32 max_active = fs_info->thread_pool_size;
6f011058 2153 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2154
2155 fs_info->workers =
cb001095
JM
2156 btrfs_alloc_workqueue(fs_info, "worker",
2157 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2158
2159 fs_info->delalloc_workers =
cb001095
JM
2160 btrfs_alloc_workqueue(fs_info, "delalloc",
2161 flags, max_active, 2);
2a458198
ES
2162
2163 fs_info->flush_workers =
cb001095
JM
2164 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165 flags, max_active, 0);
2a458198
ES
2166
2167 fs_info->caching_workers =
cb001095 2168 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2169
2170 /*
2171 * a higher idle thresh on the submit workers makes it much more
2172 * likely that bios will be send down in a sane order to the
2173 * devices
2174 */
2175 fs_info->submit_workers =
cb001095 2176 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2177 min_t(u64, fs_devices->num_devices,
2178 max_active), 64);
2179
2180 fs_info->fixup_workers =
cb001095 2181 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2182
2183 /*
2184 * endios are largely parallel and should have a very
2185 * low idle thresh
2186 */
2187 fs_info->endio_workers =
cb001095 2188 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2189 fs_info->endio_meta_workers =
cb001095
JM
2190 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2191 max_active, 4);
2a458198 2192 fs_info->endio_meta_write_workers =
cb001095
JM
2193 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2194 max_active, 2);
2a458198 2195 fs_info->endio_raid56_workers =
cb001095
JM
2196 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2197 max_active, 4);
2a458198 2198 fs_info->endio_repair_workers =
cb001095 2199 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2200 fs_info->rmw_workers =
cb001095 2201 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2202 fs_info->endio_write_workers =
cb001095
JM
2203 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2204 max_active, 2);
2a458198 2205 fs_info->endio_freespace_worker =
cb001095
JM
2206 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2207 max_active, 0);
2a458198 2208 fs_info->delayed_workers =
cb001095
JM
2209 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2210 max_active, 0);
2a458198 2211 fs_info->readahead_workers =
cb001095
JM
2212 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2213 max_active, 2);
2a458198 2214 fs_info->qgroup_rescan_workers =
cb001095 2215 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2216 fs_info->extent_workers =
cb001095 2217 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2218 min_t(u64, fs_devices->num_devices,
2219 max_active), 8);
2220
2221 if (!(fs_info->workers && fs_info->delalloc_workers &&
2222 fs_info->submit_workers && fs_info->flush_workers &&
2223 fs_info->endio_workers && fs_info->endio_meta_workers &&
2224 fs_info->endio_meta_write_workers &&
2225 fs_info->endio_repair_workers &&
2226 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2227 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2228 fs_info->caching_workers && fs_info->readahead_workers &&
2229 fs_info->fixup_workers && fs_info->delayed_workers &&
2230 fs_info->extent_workers &&
2231 fs_info->qgroup_rescan_workers)) {
2232 return -ENOMEM;
2233 }
2234
2235 return 0;
2236}
2237
63443bf5
ES
2238static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2239 struct btrfs_fs_devices *fs_devices)
2240{
2241 int ret;
63443bf5
ES
2242 struct btrfs_root *log_tree_root;
2243 struct btrfs_super_block *disk_super = fs_info->super_copy;
2244 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2245 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2246
2247 if (fs_devices->rw_devices == 0) {
f14d104d 2248 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2249 return -EIO;
2250 }
2251
74e4d827 2252 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2253 if (!log_tree_root)
2254 return -ENOMEM;
2255
da17066c 2256 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2257
2ff7e61e 2258 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2259 fs_info->generation + 1,
2260 level, NULL);
64c043de 2261 if (IS_ERR(log_tree_root->node)) {
f14d104d 2262 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2263 ret = PTR_ERR(log_tree_root->node);
64c043de 2264 kfree(log_tree_root);
0eeff236 2265 return ret;
64c043de 2266 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2267 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2268 free_extent_buffer(log_tree_root->node);
2269 kfree(log_tree_root);
2270 return -EIO;
2271 }
2272 /* returns with log_tree_root freed on success */
2273 ret = btrfs_recover_log_trees(log_tree_root);
2274 if (ret) {
0b246afa
JM
2275 btrfs_handle_fs_error(fs_info, ret,
2276 "Failed to recover log tree");
63443bf5
ES
2277 free_extent_buffer(log_tree_root->node);
2278 kfree(log_tree_root);
2279 return ret;
2280 }
2281
bc98a42c 2282 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2283 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2284 if (ret)
2285 return ret;
2286 }
2287
2288 return 0;
2289}
2290
6bccf3ab 2291static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2292{
6bccf3ab 2293 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2294 struct btrfs_root *root;
4bbcaa64
ES
2295 struct btrfs_key location;
2296 int ret;
2297
6bccf3ab
JM
2298 BUG_ON(!fs_info->tree_root);
2299
4bbcaa64
ES
2300 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2301 location.type = BTRFS_ROOT_ITEM_KEY;
2302 location.offset = 0;
2303
a4f3d2c4 2304 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2305 if (IS_ERR(root)) {
2306 ret = PTR_ERR(root);
2307 goto out;
2308 }
a4f3d2c4
DS
2309 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2310 fs_info->extent_root = root;
4bbcaa64
ES
2311
2312 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2313 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2314 if (IS_ERR(root)) {
2315 ret = PTR_ERR(root);
2316 goto out;
2317 }
a4f3d2c4
DS
2318 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319 fs_info->dev_root = root;
4bbcaa64
ES
2320 btrfs_init_devices_late(fs_info);
2321
2322 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2323 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2324 if (IS_ERR(root)) {
2325 ret = PTR_ERR(root);
2326 goto out;
2327 }
a4f3d2c4
DS
2328 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2329 fs_info->csum_root = root;
4bbcaa64
ES
2330
2331 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2332 root = btrfs_read_tree_root(tree_root, &location);
2333 if (!IS_ERR(root)) {
2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2335 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2336 fs_info->quota_root = root;
4bbcaa64
ES
2337 }
2338
2339 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2340 root = btrfs_read_tree_root(tree_root, &location);
2341 if (IS_ERR(root)) {
2342 ret = PTR_ERR(root);
4bbcaa64 2343 if (ret != -ENOENT)
f50f4353 2344 goto out;
4bbcaa64 2345 } else {
a4f3d2c4
DS
2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347 fs_info->uuid_root = root;
4bbcaa64
ES
2348 }
2349
70f6d82e
OS
2350 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2351 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2352 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2353 if (IS_ERR(root)) {
2354 ret = PTR_ERR(root);
2355 goto out;
2356 }
70f6d82e
OS
2357 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358 fs_info->free_space_root = root;
2359 }
2360
4bbcaa64 2361 return 0;
f50f4353
LB
2362out:
2363 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2364 location.objectid, ret);
2365 return ret;
4bbcaa64
ES
2366}
2367
069ec957
QW
2368/*
2369 * Real super block validation
2370 * NOTE: super csum type and incompat features will not be checked here.
2371 *
2372 * @sb: super block to check
2373 * @mirror_num: the super block number to check its bytenr:
2374 * 0 the primary (1st) sb
2375 * 1, 2 2nd and 3rd backup copy
2376 * -1 skip bytenr check
2377 */
2378static int validate_super(struct btrfs_fs_info *fs_info,
2379 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2380{
21a852b0
QW
2381 u64 nodesize = btrfs_super_nodesize(sb);
2382 u64 sectorsize = btrfs_super_sectorsize(sb);
2383 int ret = 0;
2384
2385 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2386 btrfs_err(fs_info, "no valid FS found");
2387 ret = -EINVAL;
2388 }
2389 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2390 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2391 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2392 ret = -EINVAL;
2393 }
2394 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2395 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2396 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2397 ret = -EINVAL;
2398 }
2399 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2400 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2401 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2402 ret = -EINVAL;
2403 }
2404 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2405 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2406 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2407 ret = -EINVAL;
2408 }
2409
2410 /*
2411 * Check sectorsize and nodesize first, other check will need it.
2412 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2413 */
2414 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2415 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2416 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2417 ret = -EINVAL;
2418 }
2419 /* Only PAGE SIZE is supported yet */
2420 if (sectorsize != PAGE_SIZE) {
2421 btrfs_err(fs_info,
2422 "sectorsize %llu not supported yet, only support %lu",
2423 sectorsize, PAGE_SIZE);
2424 ret = -EINVAL;
2425 }
2426 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2427 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2428 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2429 ret = -EINVAL;
2430 }
2431 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2432 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2433 le32_to_cpu(sb->__unused_leafsize), nodesize);
2434 ret = -EINVAL;
2435 }
2436
2437 /* Root alignment check */
2438 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2439 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2440 btrfs_super_root(sb));
2441 ret = -EINVAL;
2442 }
2443 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2444 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2445 btrfs_super_chunk_root(sb));
2446 ret = -EINVAL;
2447 }
2448 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2449 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2450 btrfs_super_log_root(sb));
2451 ret = -EINVAL;
2452 }
2453
2454 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2455 btrfs_err(fs_info,
2456 "dev_item UUID does not match fsid: %pU != %pU",
2457 fs_info->fsid, sb->dev_item.fsid);
2458 ret = -EINVAL;
2459 }
2460
2461 /*
2462 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2463 * done later
2464 */
2465 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2466 btrfs_err(fs_info, "bytes_used is too small %llu",
2467 btrfs_super_bytes_used(sb));
2468 ret = -EINVAL;
2469 }
2470 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2471 btrfs_err(fs_info, "invalid stripesize %u",
2472 btrfs_super_stripesize(sb));
2473 ret = -EINVAL;
2474 }
2475 if (btrfs_super_num_devices(sb) > (1UL << 31))
2476 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2477 btrfs_super_num_devices(sb));
2478 if (btrfs_super_num_devices(sb) == 0) {
2479 btrfs_err(fs_info, "number of devices is 0");
2480 ret = -EINVAL;
2481 }
2482
069ec957
QW
2483 if (mirror_num >= 0 &&
2484 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2485 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2486 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2487 ret = -EINVAL;
2488 }
2489
2490 /*
2491 * Obvious sys_chunk_array corruptions, it must hold at least one key
2492 * and one chunk
2493 */
2494 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2495 btrfs_err(fs_info, "system chunk array too big %u > %u",
2496 btrfs_super_sys_array_size(sb),
2497 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2498 ret = -EINVAL;
2499 }
2500 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2501 + sizeof(struct btrfs_chunk)) {
2502 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2503 btrfs_super_sys_array_size(sb),
2504 sizeof(struct btrfs_disk_key)
2505 + sizeof(struct btrfs_chunk));
2506 ret = -EINVAL;
2507 }
2508
2509 /*
2510 * The generation is a global counter, we'll trust it more than the others
2511 * but it's still possible that it's the one that's wrong.
2512 */
2513 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2514 btrfs_warn(fs_info,
2515 "suspicious: generation < chunk_root_generation: %llu < %llu",
2516 btrfs_super_generation(sb),
2517 btrfs_super_chunk_root_generation(sb));
2518 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2519 && btrfs_super_cache_generation(sb) != (u64)-1)
2520 btrfs_warn(fs_info,
2521 "suspicious: generation < cache_generation: %llu < %llu",
2522 btrfs_super_generation(sb),
2523 btrfs_super_cache_generation(sb));
2524
2525 return ret;
2526}
2527
069ec957
QW
2528/*
2529 * Validation of super block at mount time.
2530 * Some checks already done early at mount time, like csum type and incompat
2531 * flags will be skipped.
2532 */
2533static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2534{
2535 return validate_super(fs_info, fs_info->super_copy, 0);
2536}
2537
75cb857d
QW
2538/*
2539 * Validation of super block at write time.
2540 * Some checks like bytenr check will be skipped as their values will be
2541 * overwritten soon.
2542 * Extra checks like csum type and incompat flags will be done here.
2543 */
2544static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2545 struct btrfs_super_block *sb)
2546{
2547 int ret;
2548
2549 ret = validate_super(fs_info, sb, -1);
2550 if (ret < 0)
2551 goto out;
2552 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2553 ret = -EUCLEAN;
2554 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2555 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2556 goto out;
2557 }
2558 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2559 ret = -EUCLEAN;
2560 btrfs_err(fs_info,
2561 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2562 btrfs_super_incompat_flags(sb),
2563 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2564 goto out;
2565 }
2566out:
2567 if (ret < 0)
2568 btrfs_err(fs_info,
2569 "super block corruption detected before writing it to disk");
2570 return ret;
2571}
2572
ad2b2c80
AV
2573int open_ctree(struct super_block *sb,
2574 struct btrfs_fs_devices *fs_devices,
2575 char *options)
2e635a27 2576{
db94535d
CM
2577 u32 sectorsize;
2578 u32 nodesize;
87ee04eb 2579 u32 stripesize;
84234f3a 2580 u64 generation;
f2b636e8 2581 u64 features;
3de4586c 2582 struct btrfs_key location;
a061fc8d 2583 struct buffer_head *bh;
4d34b278 2584 struct btrfs_super_block *disk_super;
815745cf 2585 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2586 struct btrfs_root *tree_root;
4d34b278 2587 struct btrfs_root *chunk_root;
eb60ceac 2588 int ret;
e58ca020 2589 int err = -EINVAL;
af31f5e5
CM
2590 int num_backups_tried = 0;
2591 int backup_index = 0;
6675df31 2592 int clear_free_space_tree = 0;
581c1760 2593 int level;
4543df7e 2594
74e4d827
DS
2595 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2596 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2597 if (!tree_root || !chunk_root) {
39279cc3
CM
2598 err = -ENOMEM;
2599 goto fail;
2600 }
76dda93c
YZ
2601
2602 ret = init_srcu_struct(&fs_info->subvol_srcu);
2603 if (ret) {
2604 err = ret;
2605 goto fail;
2606 }
2607
908c7f19 2608 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2609 if (ret) {
2610 err = ret;
9e11ceee 2611 goto fail_srcu;
e2d84521 2612 }
09cbfeaf 2613 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2614 (1 + ilog2(nr_cpu_ids));
2615
908c7f19 2616 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2617 if (ret) {
2618 err = ret;
2619 goto fail_dirty_metadata_bytes;
2620 }
2621
7f8d236a
DS
2622 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2623 GFP_KERNEL);
c404e0dc
MX
2624 if (ret) {
2625 err = ret;
2626 goto fail_delalloc_bytes;
2627 }
2628
76dda93c 2629 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2630 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2631 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2632 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2633 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2634 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2635 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2636 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2637 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2638 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2639 spin_lock_init(&fs_info->trans_lock);
76dda93c 2640 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2641 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2642 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2643 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2644 spin_lock_init(&fs_info->super_lock);
fcebe456 2645 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2646 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2647 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2648 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2649 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2650 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2651 mutex_init(&fs_info->reloc_mutex);
573bfb72 2652 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2653 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2654 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2655
0b86a832 2656 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2657 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2658 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2659 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2660 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2661 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2662 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2663 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2664 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2665 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2666 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2667 BTRFS_BLOCK_RSV_DELOPS);
771ed689 2668 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2669 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2670 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2671 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2672 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2673 fs_info->sb = sb;
95ac567a 2674 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2675 fs_info->metadata_ratio = 0;
4cb5300b 2676 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2677 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2678 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2679 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2680 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2681 /* readahead state */
d0164adc 2682 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2683 spin_lock_init(&fs_info->reada_lock);
fd708b81 2684 btrfs_init_ref_verify(fs_info);
c8b97818 2685
b34b086c
CM
2686 fs_info->thread_pool_size = min_t(unsigned long,
2687 num_online_cpus() + 2, 8);
0afbaf8c 2688
199c2a9c
MX
2689 INIT_LIST_HEAD(&fs_info->ordered_roots);
2690 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2691
2692 fs_info->btree_inode = new_inode(sb);
2693 if (!fs_info->btree_inode) {
2694 err = -ENOMEM;
2695 goto fail_bio_counter;
2696 }
2697 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2698
16cdcec7 2699 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2700 GFP_KERNEL);
16cdcec7
MX
2701 if (!fs_info->delayed_root) {
2702 err = -ENOMEM;
2703 goto fail_iput;
2704 }
2705 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2706
638aa7ed 2707 btrfs_init_scrub(fs_info);
21adbd5c
SB
2708#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2709 fs_info->check_integrity_print_mask = 0;
2710#endif
779a65a4 2711 btrfs_init_balance(fs_info);
21c7e756 2712 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2713
9f6d2510
DS
2714 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2715 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2716
6bccf3ab 2717 btrfs_init_btree_inode(fs_info);
76dda93c 2718
0f9dd46c 2719 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2720 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2721 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2722
c6100a4b
JB
2723 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2724 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2725 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2726 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2727
5a3f23d5 2728 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2729 mutex_init(&fs_info->tree_log_mutex);
925baedd 2730 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2731 mutex_init(&fs_info->transaction_kthread_mutex);
2732 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2733 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2734 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2735 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2736 init_rwsem(&fs_info->subvol_sem);
803b2f54 2737 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2738
ad618368 2739 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2740 btrfs_init_qgroup(fs_info);
416ac51d 2741
fa9c0d79
CM
2742 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2743 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2744
e6dcd2dc 2745 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2746 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2747 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2748 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2749
04216820
FM
2750 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2751
da17066c
JM
2752 /* Usable values until the real ones are cached from the superblock */
2753 fs_info->nodesize = 4096;
2754 fs_info->sectorsize = 4096;
2755 fs_info->stripesize = 4096;
2756
53b381b3
DW
2757 ret = btrfs_alloc_stripe_hash_table(fs_info);
2758 if (ret) {
83c8266a 2759 err = ret;
53b381b3
DW
2760 goto fail_alloc;
2761 }
2762
da17066c 2763 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2764
3c4bb26b 2765 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2766
2767 /*
2768 * Read super block and check the signature bytes only
2769 */
a512bbf8 2770 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2771 if (IS_ERR(bh)) {
2772 err = PTR_ERR(bh);
16cdcec7 2773 goto fail_alloc;
20b45077 2774 }
39279cc3 2775
1104a885
DS
2776 /*
2777 * We want to check superblock checksum, the type is stored inside.
2778 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2779 */
ab8d0fc4 2780 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2781 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2782 err = -EINVAL;
b2acdddf 2783 brelse(bh);
1104a885
DS
2784 goto fail_alloc;
2785 }
2786
2787 /*
2788 * super_copy is zeroed at allocation time and we never touch the
2789 * following bytes up to INFO_SIZE, the checksum is calculated from
2790 * the whole block of INFO_SIZE
2791 */
6c41761f
DS
2792 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2793 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2794 sizeof(*fs_info->super_for_commit));
a061fc8d 2795 brelse(bh);
5f39d397 2796
6c41761f 2797 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2798
069ec957 2799 ret = btrfs_validate_mount_super(fs_info);
1104a885 2800 if (ret) {
05135f59 2801 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2802 err = -EINVAL;
2803 goto fail_alloc;
2804 }
2805
6c41761f 2806 disk_super = fs_info->super_copy;
0f7d52f4 2807 if (!btrfs_super_root(disk_super))
16cdcec7 2808 goto fail_alloc;
0f7d52f4 2809
acce952b 2810 /* check FS state, whether FS is broken. */
87533c47
MX
2811 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2812 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2813
af31f5e5
CM
2814 /*
2815 * run through our array of backup supers and setup
2816 * our ring pointer to the oldest one
2817 */
2818 generation = btrfs_super_generation(disk_super);
2819 find_oldest_super_backup(fs_info, generation);
2820
75e7cb7f
LB
2821 /*
2822 * In the long term, we'll store the compression type in the super
2823 * block, and it'll be used for per file compression control.
2824 */
2825 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2826
2ff7e61e 2827 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2828 if (ret) {
2829 err = ret;
16cdcec7 2830 goto fail_alloc;
2b82032c 2831 }
dfe25020 2832
f2b636e8
JB
2833 features = btrfs_super_incompat_flags(disk_super) &
2834 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2835 if (features) {
05135f59
DS
2836 btrfs_err(fs_info,
2837 "cannot mount because of unsupported optional features (%llx)",
2838 features);
f2b636e8 2839 err = -EINVAL;
16cdcec7 2840 goto fail_alloc;
f2b636e8
JB
2841 }
2842
5d4f98a2 2843 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2844 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2845 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2846 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2847 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2848 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2849
3173a18f 2850 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2851 btrfs_info(fs_info, "has skinny extents");
3173a18f 2852
727011e0
CM
2853 /*
2854 * flag our filesystem as having big metadata blocks if
2855 * they are bigger than the page size
2856 */
09cbfeaf 2857 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2858 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2859 btrfs_info(fs_info,
2860 "flagging fs with big metadata feature");
727011e0
CM
2861 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2862 }
2863
bc3f116f 2864 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2865 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2866 stripesize = sectorsize;
707e8a07 2867 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2868 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2869
da17066c
JM
2870 /* Cache block sizes */
2871 fs_info->nodesize = nodesize;
2872 fs_info->sectorsize = sectorsize;
2873 fs_info->stripesize = stripesize;
2874
bc3f116f
CM
2875 /*
2876 * mixed block groups end up with duplicate but slightly offset
2877 * extent buffers for the same range. It leads to corruptions
2878 */
2879 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2880 (sectorsize != nodesize)) {
05135f59
DS
2881 btrfs_err(fs_info,
2882"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2883 nodesize, sectorsize);
bc3f116f
CM
2884 goto fail_alloc;
2885 }
2886
ceda0864
MX
2887 /*
2888 * Needn't use the lock because there is no other task which will
2889 * update the flag.
2890 */
a6fa6fae 2891 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2892
f2b636e8
JB
2893 features = btrfs_super_compat_ro_flags(disk_super) &
2894 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2895 if (!sb_rdonly(sb) && features) {
05135f59
DS
2896 btrfs_err(fs_info,
2897 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2898 features);
f2b636e8 2899 err = -EINVAL;
16cdcec7 2900 goto fail_alloc;
f2b636e8 2901 }
61d92c32 2902
2a458198
ES
2903 ret = btrfs_init_workqueues(fs_info, fs_devices);
2904 if (ret) {
2905 err = ret;
0dc3b84a
JB
2906 goto fail_sb_buffer;
2907 }
4543df7e 2908
9e11ceee
JK
2909 sb->s_bdi->congested_fn = btrfs_congested_fn;
2910 sb->s_bdi->congested_data = fs_info;
2911 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2912 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2913 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2914 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2915
a061fc8d
CM
2916 sb->s_blocksize = sectorsize;
2917 sb->s_blocksize_bits = blksize_bits(sectorsize);
ee87cf5e 2918 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
db94535d 2919
925baedd 2920 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2921 ret = btrfs_read_sys_array(fs_info);
925baedd 2922 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2923 if (ret) {
05135f59 2924 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2925 goto fail_sb_buffer;
84eed90f 2926 }
0b86a832 2927
84234f3a 2928 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2929 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2930
da17066c 2931 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2932
2ff7e61e 2933 chunk_root->node = read_tree_block(fs_info,
0b86a832 2934 btrfs_super_chunk_root(disk_super),
581c1760 2935 generation, level, NULL);
64c043de
LB
2936 if (IS_ERR(chunk_root->node) ||
2937 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2938 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2939 if (!IS_ERR(chunk_root->node))
2940 free_extent_buffer(chunk_root->node);
95ab1f64 2941 chunk_root->node = NULL;
af31f5e5 2942 goto fail_tree_roots;
83121942 2943 }
5d4f98a2
YZ
2944 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2945 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2946
e17cade2 2947 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2948 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2949
5b4aacef 2950 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2951 if (ret) {
05135f59 2952 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2953 goto fail_tree_roots;
2b82032c 2954 }
0b86a832 2955
8dabb742 2956 /*
9b99b115
AJ
2957 * Keep the devid that is marked to be the target device for the
2958 * device replace procedure
8dabb742 2959 */
9b99b115 2960 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 2961
a6b0d5c8 2962 if (!fs_devices->latest_bdev) {
05135f59 2963 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2964 goto fail_tree_roots;
2965 }
2966
af31f5e5 2967retry_root_backup:
84234f3a 2968 generation = btrfs_super_generation(disk_super);
581c1760 2969 level = btrfs_super_root_level(disk_super);
0b86a832 2970
2ff7e61e 2971 tree_root->node = read_tree_block(fs_info,
db94535d 2972 btrfs_super_root(disk_super),
581c1760 2973 generation, level, NULL);
64c043de
LB
2974 if (IS_ERR(tree_root->node) ||
2975 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2976 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2977 if (!IS_ERR(tree_root->node))
2978 free_extent_buffer(tree_root->node);
95ab1f64 2979 tree_root->node = NULL;
af31f5e5 2980 goto recovery_tree_root;
83121942 2981 }
af31f5e5 2982
5d4f98a2
YZ
2983 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2984 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2985 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2986
f32e48e9
CR
2987 mutex_lock(&tree_root->objectid_mutex);
2988 ret = btrfs_find_highest_objectid(tree_root,
2989 &tree_root->highest_objectid);
2990 if (ret) {
2991 mutex_unlock(&tree_root->objectid_mutex);
2992 goto recovery_tree_root;
2993 }
2994
2995 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2996
2997 mutex_unlock(&tree_root->objectid_mutex);
2998
6bccf3ab 2999 ret = btrfs_read_roots(fs_info);
4bbcaa64 3000 if (ret)
af31f5e5 3001 goto recovery_tree_root;
f7a81ea4 3002
8929ecfa
YZ
3003 fs_info->generation = generation;
3004 fs_info->last_trans_committed = generation;
8929ecfa 3005
cf90d884
QW
3006 ret = btrfs_verify_dev_extents(fs_info);
3007 if (ret) {
3008 btrfs_err(fs_info,
3009 "failed to verify dev extents against chunks: %d",
3010 ret);
3011 goto fail_block_groups;
3012 }
68310a5e
ID
3013 ret = btrfs_recover_balance(fs_info);
3014 if (ret) {
05135f59 3015 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3016 goto fail_block_groups;
3017 }
3018
733f4fbb
SB
3019 ret = btrfs_init_dev_stats(fs_info);
3020 if (ret) {
05135f59 3021 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3022 goto fail_block_groups;
3023 }
3024
8dabb742
SB
3025 ret = btrfs_init_dev_replace(fs_info);
3026 if (ret) {
05135f59 3027 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3028 goto fail_block_groups;
3029 }
3030
9b99b115 3031 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3032
b7c35e81
AJ
3033 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3034 if (ret) {
05135f59
DS
3035 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3036 ret);
b7c35e81
AJ
3037 goto fail_block_groups;
3038 }
3039
3040 ret = btrfs_sysfs_add_device(fs_devices);
3041 if (ret) {
05135f59
DS
3042 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3043 ret);
b7c35e81
AJ
3044 goto fail_fsdev_sysfs;
3045 }
3046
96f3136e 3047 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3048 if (ret) {
05135f59 3049 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3050 goto fail_fsdev_sysfs;
c59021f8 3051 }
3052
c59021f8 3053 ret = btrfs_init_space_info(fs_info);
3054 if (ret) {
05135f59 3055 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3056 goto fail_sysfs;
c59021f8 3057 }
3058
5b4aacef 3059 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3060 if (ret) {
05135f59 3061 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3062 goto fail_sysfs;
1b1d1f66 3063 }
4330e183 3064
6528b99d 3065 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3066 btrfs_warn(fs_info,
4330e183 3067 "writeable mount is not allowed due to too many missing devices");
2365dd3c 3068 goto fail_sysfs;
292fd7fc 3069 }
9078a3e1 3070
a74a4b97
CM
3071 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3072 "btrfs-cleaner");
57506d50 3073 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3074 goto fail_sysfs;
a74a4b97
CM
3075
3076 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3077 tree_root,
3078 "btrfs-transaction");
57506d50 3079 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3080 goto fail_cleaner;
a74a4b97 3081
583b7231 3082 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3083 !fs_info->fs_devices->rotating) {
583b7231 3084 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3085 }
3086
572d9ab7 3087 /*
01327610 3088 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3089 * not have to wait for transaction commit
3090 */
3091 btrfs_apply_pending_changes(fs_info);
3818aea2 3092
21adbd5c 3093#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3094 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3095 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3096 btrfs_test_opt(fs_info,
21adbd5c
SB
3097 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3098 1 : 0,
3099 fs_info->check_integrity_print_mask);
3100 if (ret)
05135f59
DS
3101 btrfs_warn(fs_info,
3102 "failed to initialize integrity check module: %d",
3103 ret);
21adbd5c
SB
3104 }
3105#endif
bcef60f2
AJ
3106 ret = btrfs_read_qgroup_config(fs_info);
3107 if (ret)
3108 goto fail_trans_kthread;
21adbd5c 3109
fd708b81
JB
3110 if (btrfs_build_ref_tree(fs_info))
3111 btrfs_err(fs_info, "couldn't build ref tree");
3112
96da0919
QW
3113 /* do not make disk changes in broken FS or nologreplay is given */
3114 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3115 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3116 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3117 if (ret) {
63443bf5 3118 err = ret;
28c16cbb 3119 goto fail_qgroup;
79787eaa 3120 }
e02119d5 3121 }
1a40e23b 3122
6bccf3ab 3123 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3124 if (ret)
28c16cbb 3125 goto fail_qgroup;
76dda93c 3126
bc98a42c 3127 if (!sb_rdonly(sb)) {
d68fc57b 3128 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3129 if (ret)
28c16cbb 3130 goto fail_qgroup;
90c711ab
ZB
3131
3132 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3133 ret = btrfs_recover_relocation(tree_root);
90c711ab 3134 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3135 if (ret < 0) {
05135f59
DS
3136 btrfs_warn(fs_info, "failed to recover relocation: %d",
3137 ret);
d7ce5843 3138 err = -EINVAL;
bcef60f2 3139 goto fail_qgroup;
d7ce5843 3140 }
7c2ca468 3141 }
1a40e23b 3142
3de4586c
CM
3143 location.objectid = BTRFS_FS_TREE_OBJECTID;
3144 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3145 location.offset = 0;
3de4586c 3146
3de4586c 3147 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3148 if (IS_ERR(fs_info->fs_root)) {
3149 err = PTR_ERR(fs_info->fs_root);
f50f4353 3150 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3151 goto fail_qgroup;
3140c9a3 3152 }
c289811c 3153
bc98a42c 3154 if (sb_rdonly(sb))
2b6ba629 3155 return 0;
59641015 3156
f8d468a1
OS
3157 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3158 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3159 clear_free_space_tree = 1;
3160 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3161 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3162 btrfs_warn(fs_info, "free space tree is invalid");
3163 clear_free_space_tree = 1;
3164 }
3165
3166 if (clear_free_space_tree) {
f8d468a1
OS
3167 btrfs_info(fs_info, "clearing free space tree");
3168 ret = btrfs_clear_free_space_tree(fs_info);
3169 if (ret) {
3170 btrfs_warn(fs_info,
3171 "failed to clear free space tree: %d", ret);
6bccf3ab 3172 close_ctree(fs_info);
f8d468a1
OS
3173 return ret;
3174 }
3175 }
3176
0b246afa 3177 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3178 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3179 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3180 ret = btrfs_create_free_space_tree(fs_info);
3181 if (ret) {
05135f59
DS
3182 btrfs_warn(fs_info,
3183 "failed to create free space tree: %d", ret);
6bccf3ab 3184 close_ctree(fs_info);
511711af
CM
3185 return ret;
3186 }
3187 }
3188
2b6ba629
ID
3189 down_read(&fs_info->cleanup_work_sem);
3190 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3191 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3192 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3193 close_ctree(fs_info);
2b6ba629
ID
3194 return ret;
3195 }
3196 up_read(&fs_info->cleanup_work_sem);
59641015 3197
2b6ba629
ID
3198 ret = btrfs_resume_balance_async(fs_info);
3199 if (ret) {
05135f59 3200 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3201 close_ctree(fs_info);
2b6ba629 3202 return ret;
e3acc2a6
JB
3203 }
3204
8dabb742
SB
3205 ret = btrfs_resume_dev_replace_async(fs_info);
3206 if (ret) {
05135f59 3207 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3208 close_ctree(fs_info);
8dabb742
SB
3209 return ret;
3210 }
3211
b382a324
JS
3212 btrfs_qgroup_rescan_resume(fs_info);
3213
4bbcaa64 3214 if (!fs_info->uuid_root) {
05135f59 3215 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3216 ret = btrfs_create_uuid_tree(fs_info);
3217 if (ret) {
05135f59
DS
3218 btrfs_warn(fs_info,
3219 "failed to create the UUID tree: %d", ret);
6bccf3ab 3220 close_ctree(fs_info);
f7a81ea4
SB
3221 return ret;
3222 }
0b246afa 3223 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3224 fs_info->generation !=
3225 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3226 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3227 ret = btrfs_check_uuid_tree(fs_info);
3228 if (ret) {
05135f59
DS
3229 btrfs_warn(fs_info,
3230 "failed to check the UUID tree: %d", ret);
6bccf3ab 3231 close_ctree(fs_info);
70f80175
SB
3232 return ret;
3233 }
3234 } else {
afcdd129 3235 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3236 }
afcdd129 3237 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3238
8dcddfa0
QW
3239 /*
3240 * backuproot only affect mount behavior, and if open_ctree succeeded,
3241 * no need to keep the flag
3242 */
3243 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3244
ad2b2c80 3245 return 0;
39279cc3 3246
bcef60f2
AJ
3247fail_qgroup:
3248 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3249fail_trans_kthread:
3250 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3251 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3252 btrfs_free_fs_roots(fs_info);
3f157a2f 3253fail_cleaner:
a74a4b97 3254 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3255
3256 /*
3257 * make sure we're done with the btree inode before we stop our
3258 * kthreads
3259 */
3260 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3261
2365dd3c 3262fail_sysfs:
6618a59b 3263 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3264
b7c35e81
AJ
3265fail_fsdev_sysfs:
3266 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3267
1b1d1f66 3268fail_block_groups:
54067ae9 3269 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3270
3271fail_tree_roots:
3272 free_root_pointers(fs_info, 1);
2b8195bb 3273 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3274
39279cc3 3275fail_sb_buffer:
7abadb64 3276 btrfs_stop_all_workers(fs_info);
5cdd7db6 3277 btrfs_free_block_groups(fs_info);
16cdcec7 3278fail_alloc:
4543df7e 3279fail_iput:
586e46e2
ID
3280 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3281
4543df7e 3282 iput(fs_info->btree_inode);
c404e0dc 3283fail_bio_counter:
7f8d236a 3284 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3285fail_delalloc_bytes:
3286 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3287fail_dirty_metadata_bytes:
3288 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3289fail_srcu:
3290 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3291fail:
53b381b3 3292 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3293 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3294 return err;
af31f5e5
CM
3295
3296recovery_tree_root:
0b246afa 3297 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3298 goto fail_tree_roots;
3299
3300 free_root_pointers(fs_info, 0);
3301
3302 /* don't use the log in recovery mode, it won't be valid */
3303 btrfs_set_super_log_root(disk_super, 0);
3304
3305 /* we can't trust the free space cache either */
3306 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3307
3308 ret = next_root_backup(fs_info, fs_info->super_copy,
3309 &num_backups_tried, &backup_index);
3310 if (ret == -1)
3311 goto fail_block_groups;
3312 goto retry_root_backup;
eb60ceac 3313}
663faf9f 3314ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3315
f2984462
CM
3316static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3317{
f2984462
CM
3318 if (uptodate) {
3319 set_buffer_uptodate(bh);
3320 } else {
442a4f63
SB
3321 struct btrfs_device *device = (struct btrfs_device *)
3322 bh->b_private;
3323
fb456252 3324 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3325 "lost page write due to IO error on %s",
606686ee 3326 rcu_str_deref(device->name));
01327610 3327 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3328 * our own ways of dealing with the IO errors
3329 */
f2984462 3330 clear_buffer_uptodate(bh);
442a4f63 3331 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3332 }
3333 unlock_buffer(bh);
3334 put_bh(bh);
3335}
3336
29c36d72
AJ
3337int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3338 struct buffer_head **bh_ret)
3339{
3340 struct buffer_head *bh;
3341 struct btrfs_super_block *super;
3342 u64 bytenr;
3343
3344 bytenr = btrfs_sb_offset(copy_num);
3345 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3346 return -EINVAL;
3347
9f6d2510 3348 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3349 /*
3350 * If we fail to read from the underlying devices, as of now
3351 * the best option we have is to mark it EIO.
3352 */
3353 if (!bh)
3354 return -EIO;
3355
3356 super = (struct btrfs_super_block *)bh->b_data;
3357 if (btrfs_super_bytenr(super) != bytenr ||
3358 btrfs_super_magic(super) != BTRFS_MAGIC) {
3359 brelse(bh);
3360 return -EINVAL;
3361 }
3362
3363 *bh_ret = bh;
3364 return 0;
3365}
3366
3367
a512bbf8
YZ
3368struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3369{
3370 struct buffer_head *bh;
3371 struct buffer_head *latest = NULL;
3372 struct btrfs_super_block *super;
3373 int i;
3374 u64 transid = 0;
92fc03fb 3375 int ret = -EINVAL;
a512bbf8
YZ
3376
3377 /* we would like to check all the supers, but that would make
3378 * a btrfs mount succeed after a mkfs from a different FS.
3379 * So, we need to add a special mount option to scan for
3380 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3381 */
3382 for (i = 0; i < 1; i++) {
29c36d72
AJ
3383 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3384 if (ret)
a512bbf8
YZ
3385 continue;
3386
3387 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3388
3389 if (!latest || btrfs_super_generation(super) > transid) {
3390 brelse(latest);
3391 latest = bh;
3392 transid = btrfs_super_generation(super);
3393 } else {
3394 brelse(bh);
3395 }
3396 }
92fc03fb
AJ
3397
3398 if (!latest)
3399 return ERR_PTR(ret);
3400
a512bbf8
YZ
3401 return latest;
3402}
3403
4eedeb75 3404/*
abbb3b8e
DS
3405 * Write superblock @sb to the @device. Do not wait for completion, all the
3406 * buffer heads we write are pinned.
4eedeb75 3407 *
abbb3b8e
DS
3408 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3409 * the expected device size at commit time. Note that max_mirrors must be
3410 * same for write and wait phases.
4eedeb75 3411 *
abbb3b8e 3412 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3413 */
a512bbf8 3414static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3415 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3416{
3417 struct buffer_head *bh;
3418 int i;
3419 int ret;
3420 int errors = 0;
3421 u32 crc;
3422 u64 bytenr;
1b9e619c 3423 int op_flags;
a512bbf8
YZ
3424
3425 if (max_mirrors == 0)
3426 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3427
a512bbf8
YZ
3428 for (i = 0; i < max_mirrors; i++) {
3429 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3430 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3431 device->commit_total_bytes)
a512bbf8
YZ
3432 break;
3433
abbb3b8e 3434 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3435
abbb3b8e
DS
3436 crc = ~(u32)0;
3437 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3438 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3439 btrfs_csum_final(crc, sb->csum);
4eedeb75 3440
abbb3b8e 3441 /* One reference for us, and we leave it for the caller */
9f6d2510 3442 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3443 BTRFS_SUPER_INFO_SIZE);
3444 if (!bh) {
3445 btrfs_err(device->fs_info,
3446 "couldn't get super buffer head for bytenr %llu",
3447 bytenr);
3448 errors++;
4eedeb75 3449 continue;
abbb3b8e 3450 }
634554dc 3451
abbb3b8e 3452 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3453
abbb3b8e
DS
3454 /* one reference for submit_bh */
3455 get_bh(bh);
4eedeb75 3456
abbb3b8e
DS
3457 set_buffer_uptodate(bh);
3458 lock_buffer(bh);
3459 bh->b_end_io = btrfs_end_buffer_write_sync;
3460 bh->b_private = device;
a512bbf8 3461
387125fc
CM
3462 /*
3463 * we fua the first super. The others we allow
3464 * to go down lazy.
3465 */
1b9e619c
OS
3466 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3467 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3468 op_flags |= REQ_FUA;
3469 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3470 if (ret)
a512bbf8 3471 errors++;
a512bbf8
YZ
3472 }
3473 return errors < i ? 0 : -1;
3474}
3475
abbb3b8e
DS
3476/*
3477 * Wait for write completion of superblocks done by write_dev_supers,
3478 * @max_mirrors same for write and wait phases.
3479 *
3480 * Return number of errors when buffer head is not found or not marked up to
3481 * date.
3482 */
3483static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3484{
3485 struct buffer_head *bh;
3486 int i;
3487 int errors = 0;
b6a535fa 3488 bool primary_failed = false;
abbb3b8e
DS
3489 u64 bytenr;
3490
3491 if (max_mirrors == 0)
3492 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3493
3494 for (i = 0; i < max_mirrors; i++) {
3495 bytenr = btrfs_sb_offset(i);
3496 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3497 device->commit_total_bytes)
3498 break;
3499
9f6d2510
DS
3500 bh = __find_get_block(device->bdev,
3501 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3502 BTRFS_SUPER_INFO_SIZE);
3503 if (!bh) {
3504 errors++;
b6a535fa
HM
3505 if (i == 0)
3506 primary_failed = true;
abbb3b8e
DS
3507 continue;
3508 }
3509 wait_on_buffer(bh);
b6a535fa 3510 if (!buffer_uptodate(bh)) {
abbb3b8e 3511 errors++;
b6a535fa
HM
3512 if (i == 0)
3513 primary_failed = true;
3514 }
abbb3b8e
DS
3515
3516 /* drop our reference */
3517 brelse(bh);
3518
3519 /* drop the reference from the writing run */
3520 brelse(bh);
3521 }
3522
b6a535fa
HM
3523 /* log error, force error return */
3524 if (primary_failed) {
3525 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3526 device->devid);
3527 return -1;
3528 }
3529
abbb3b8e
DS
3530 return errors < i ? 0 : -1;
3531}
3532
387125fc
CM
3533/*
3534 * endio for the write_dev_flush, this will wake anyone waiting
3535 * for the barrier when it is done
3536 */
4246a0b6 3537static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3538{
e0ae9994 3539 complete(bio->bi_private);
387125fc
CM
3540}
3541
3542/*
4fc6441a
AJ
3543 * Submit a flush request to the device if it supports it. Error handling is
3544 * done in the waiting counterpart.
387125fc 3545 */
4fc6441a 3546static void write_dev_flush(struct btrfs_device *device)
387125fc 3547{
c2a9c7ab 3548 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3549 struct bio *bio = device->flush_bio;
387125fc 3550
c2a9c7ab 3551 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3552 return;
387125fc 3553
e0ae9994 3554 bio_reset(bio);
387125fc 3555 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3556 bio_set_dev(bio, device->bdev);
8d910125 3557 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3558 init_completion(&device->flush_wait);
3559 bio->bi_private = &device->flush_wait;
387125fc 3560
43a01111 3561 btrfsic_submit_bio(bio);
1c3063b6 3562 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3563}
387125fc 3564
4fc6441a
AJ
3565/*
3566 * If the flush bio has been submitted by write_dev_flush, wait for it.
3567 */
8c27cb35 3568static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3569{
4fc6441a 3570 struct bio *bio = device->flush_bio;
387125fc 3571
1c3063b6 3572 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3573 return BLK_STS_OK;
387125fc 3574
1c3063b6 3575 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3576 wait_for_completion_io(&device->flush_wait);
387125fc 3577
8c27cb35 3578 return bio->bi_status;
387125fc 3579}
387125fc 3580
d10b82fe 3581static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3582{
6528b99d 3583 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3584 return -EIO;
387125fc
CM
3585 return 0;
3586}
3587
3588/*
3589 * send an empty flush down to each device in parallel,
3590 * then wait for them
3591 */
3592static int barrier_all_devices(struct btrfs_fs_info *info)
3593{
3594 struct list_head *head;
3595 struct btrfs_device *dev;
5af3e8cc 3596 int errors_wait = 0;
4e4cbee9 3597 blk_status_t ret;
387125fc 3598
1538e6c5 3599 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3600 /* send down all the barriers */
3601 head = &info->fs_devices->devices;
1538e6c5 3602 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3603 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3604 continue;
cea7c8bf 3605 if (!dev->bdev)
387125fc 3606 continue;
e12c9621 3607 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3608 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3609 continue;
3610
4fc6441a 3611 write_dev_flush(dev);
58efbc9f 3612 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3613 }
3614
3615 /* wait for all the barriers */
1538e6c5 3616 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3617 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3618 continue;
387125fc 3619 if (!dev->bdev) {
5af3e8cc 3620 errors_wait++;
387125fc
CM
3621 continue;
3622 }
e12c9621 3623 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3624 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3625 continue;
3626
4fc6441a 3627 ret = wait_dev_flush(dev);
401b41e5
AJ
3628 if (ret) {
3629 dev->last_flush_error = ret;
66b4993e
DS
3630 btrfs_dev_stat_inc_and_print(dev,
3631 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3632 errors_wait++;
401b41e5
AJ
3633 }
3634 }
3635
cea7c8bf 3636 if (errors_wait) {
401b41e5
AJ
3637 /*
3638 * At some point we need the status of all disks
3639 * to arrive at the volume status. So error checking
3640 * is being pushed to a separate loop.
3641 */
d10b82fe 3642 return check_barrier_error(info);
387125fc 3643 }
387125fc
CM
3644 return 0;
3645}
3646
943c6e99
ZL
3647int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3648{
8789f4fe
ZL
3649 int raid_type;
3650 int min_tolerated = INT_MAX;
943c6e99 3651
8789f4fe
ZL
3652 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3653 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3654 min_tolerated = min(min_tolerated,
3655 btrfs_raid_array[BTRFS_RAID_SINGLE].
3656 tolerated_failures);
943c6e99 3657
8789f4fe
ZL
3658 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3659 if (raid_type == BTRFS_RAID_SINGLE)
3660 continue;
41a6e891 3661 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3662 continue;
3663 min_tolerated = min(min_tolerated,
3664 btrfs_raid_array[raid_type].
3665 tolerated_failures);
3666 }
943c6e99 3667
8789f4fe 3668 if (min_tolerated == INT_MAX) {
ab8d0fc4 3669 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3670 min_tolerated = 0;
3671 }
3672
3673 return min_tolerated;
943c6e99
ZL
3674}
3675
eece6a9c 3676int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3677{
e5e9a520 3678 struct list_head *head;
f2984462 3679 struct btrfs_device *dev;
a061fc8d 3680 struct btrfs_super_block *sb;
f2984462 3681 struct btrfs_dev_item *dev_item;
f2984462
CM
3682 int ret;
3683 int do_barriers;
a236aed1
CM
3684 int max_errors;
3685 int total_errors = 0;
a061fc8d 3686 u64 flags;
f2984462 3687
0b246afa 3688 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3689
3690 /*
3691 * max_mirrors == 0 indicates we're from commit_transaction,
3692 * not from fsync where the tree roots in fs_info have not
3693 * been consistent on disk.
3694 */
3695 if (max_mirrors == 0)
3696 backup_super_roots(fs_info);
f2984462 3697
0b246afa 3698 sb = fs_info->super_for_commit;
a061fc8d 3699 dev_item = &sb->dev_item;
e5e9a520 3700
0b246afa
JM
3701 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3702 head = &fs_info->fs_devices->devices;
3703 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3704
5af3e8cc 3705 if (do_barriers) {
0b246afa 3706 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3707 if (ret) {
3708 mutex_unlock(
0b246afa
JM
3709 &fs_info->fs_devices->device_list_mutex);
3710 btrfs_handle_fs_error(fs_info, ret,
3711 "errors while submitting device barriers.");
5af3e8cc
SB
3712 return ret;
3713 }
3714 }
387125fc 3715
1538e6c5 3716 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3717 if (!dev->bdev) {
3718 total_errors++;
3719 continue;
3720 }
e12c9621 3721 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3722 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3723 continue;
3724
2b82032c 3725 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3726 btrfs_set_stack_device_type(dev_item, dev->type);
3727 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3728 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3729 dev->commit_total_bytes);
ce7213c7
MX
3730 btrfs_set_stack_device_bytes_used(dev_item,
3731 dev->commit_bytes_used);
a061fc8d
CM
3732 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3733 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3734 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3735 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
44880fdc 3736 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
a512bbf8 3737
a061fc8d
CM
3738 flags = btrfs_super_flags(sb);
3739 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3740
75cb857d
QW
3741 ret = btrfs_validate_write_super(fs_info, sb);
3742 if (ret < 0) {
3743 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3744 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3745 "unexpected superblock corruption detected");
3746 return -EUCLEAN;
3747 }
3748
abbb3b8e 3749 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3750 if (ret)
3751 total_errors++;
f2984462 3752 }
a236aed1 3753 if (total_errors > max_errors) {
0b246afa
JM
3754 btrfs_err(fs_info, "%d errors while writing supers",
3755 total_errors);
3756 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3757
9d565ba4 3758 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3759 btrfs_handle_fs_error(fs_info, -EIO,
3760 "%d errors while writing supers",
3761 total_errors);
9d565ba4 3762 return -EIO;
a236aed1 3763 }
f2984462 3764
a512bbf8 3765 total_errors = 0;
1538e6c5 3766 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3767 if (!dev->bdev)
3768 continue;
e12c9621 3769 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3770 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3771 continue;
3772
abbb3b8e 3773 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3774 if (ret)
3775 total_errors++;
f2984462 3776 }
0b246afa 3777 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3778 if (total_errors > max_errors) {
0b246afa
JM
3779 btrfs_handle_fs_error(fs_info, -EIO,
3780 "%d errors while writing supers",
3781 total_errors);
79787eaa 3782 return -EIO;
a236aed1 3783 }
f2984462
CM
3784 return 0;
3785}
3786
cb517eab
MX
3787/* Drop a fs root from the radix tree and free it. */
3788void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3789 struct btrfs_root *root)
2619ba1f 3790{
4df27c4d 3791 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3792 radix_tree_delete(&fs_info->fs_roots_radix,
3793 (unsigned long)root->root_key.objectid);
4df27c4d 3794 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3795
3796 if (btrfs_root_refs(&root->root_item) == 0)
3797 synchronize_srcu(&fs_info->subvol_srcu);
3798
1c1ea4f7 3799 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3800 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3801 if (root->reloc_root) {
3802 free_extent_buffer(root->reloc_root->node);
3803 free_extent_buffer(root->reloc_root->commit_root);
3804 btrfs_put_fs_root(root->reloc_root);
3805 root->reloc_root = NULL;
3806 }
3807 }
3321719e 3808
faa2dbf0
JB
3809 if (root->free_ino_pinned)
3810 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3811 if (root->free_ino_ctl)
3812 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3813 btrfs_free_fs_root(root);
4df27c4d
YZ
3814}
3815
84db5ccf 3816void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3817{
57cdc8db 3818 iput(root->ino_cache_inode);
4df27c4d 3819 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3820 if (root->anon_dev)
3821 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3822 if (root->subv_writers)
3823 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3824 free_extent_buffer(root->node);
3825 free_extent_buffer(root->commit_root);
581bb050
LZ
3826 kfree(root->free_ino_ctl);
3827 kfree(root->free_ino_pinned);
b0feb9d9 3828 btrfs_put_fs_root(root);
2619ba1f
CM
3829}
3830
c146afad 3831int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3832{
c146afad
YZ
3833 u64 root_objectid = 0;
3834 struct btrfs_root *gang[8];
65d33fd7
QW
3835 int i = 0;
3836 int err = 0;
3837 unsigned int ret = 0;
3838 int index;
e089f05c 3839
c146afad 3840 while (1) {
65d33fd7 3841 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3842 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3843 (void **)gang, root_objectid,
3844 ARRAY_SIZE(gang));
65d33fd7
QW
3845 if (!ret) {
3846 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3847 break;
65d33fd7 3848 }
5d4f98a2 3849 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3850
c146afad 3851 for (i = 0; i < ret; i++) {
65d33fd7
QW
3852 /* Avoid to grab roots in dead_roots */
3853 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3854 gang[i] = NULL;
3855 continue;
3856 }
3857 /* grab all the search result for later use */
3858 gang[i] = btrfs_grab_fs_root(gang[i]);
3859 }
3860 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3861
65d33fd7
QW
3862 for (i = 0; i < ret; i++) {
3863 if (!gang[i])
3864 continue;
c146afad 3865 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3866 err = btrfs_orphan_cleanup(gang[i]);
3867 if (err)
65d33fd7
QW
3868 break;
3869 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3870 }
3871 root_objectid++;
3872 }
65d33fd7
QW
3873
3874 /* release the uncleaned roots due to error */
3875 for (; i < ret; i++) {
3876 if (gang[i])
3877 btrfs_put_fs_root(gang[i]);
3878 }
3879 return err;
c146afad 3880}
a2135011 3881
6bccf3ab 3882int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3883{
6bccf3ab 3884 struct btrfs_root *root = fs_info->tree_root;
c146afad 3885 struct btrfs_trans_handle *trans;
a74a4b97 3886
0b246afa 3887 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3888 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3889 mutex_unlock(&fs_info->cleaner_mutex);
3890 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3891
3892 /* wait until ongoing cleanup work done */
0b246afa
JM
3893 down_write(&fs_info->cleanup_work_sem);
3894 up_write(&fs_info->cleanup_work_sem);
c71bf099 3895
7a7eaa40 3896 trans = btrfs_join_transaction(root);
3612b495
TI
3897 if (IS_ERR(trans))
3898 return PTR_ERR(trans);
3a45bb20 3899 return btrfs_commit_transaction(trans);
c146afad
YZ
3900}
3901
6bccf3ab 3902void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3903{
c146afad
YZ
3904 int ret;
3905
afcdd129 3906 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3907 /*
3908 * We don't want the cleaner to start new transactions, add more delayed
3909 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3910 * because that frees the task_struct, and the transaction kthread might
3911 * still try to wake up the cleaner.
3912 */
3913 kthread_park(fs_info->cleaner_kthread);
c146afad 3914
7343dd61 3915 /* wait for the qgroup rescan worker to stop */
d06f23d6 3916 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3917
803b2f54
SB
3918 /* wait for the uuid_scan task to finish */
3919 down(&fs_info->uuid_tree_rescan_sem);
3920 /* avoid complains from lockdep et al., set sem back to initial state */
3921 up(&fs_info->uuid_tree_rescan_sem);
3922
837d5b6e 3923 /* pause restriper - we want to resume on mount */
aa1b8cd4 3924 btrfs_pause_balance(fs_info);
837d5b6e 3925
8dabb742
SB
3926 btrfs_dev_replace_suspend_for_unmount(fs_info);
3927
aa1b8cd4 3928 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3929
3930 /* wait for any defraggers to finish */
3931 wait_event(fs_info->transaction_wait,
3932 (atomic_read(&fs_info->defrag_running) == 0));
3933
3934 /* clear out the rbtree of defraggable inodes */
26176e7c 3935 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3936
21c7e756
MX
3937 cancel_work_sync(&fs_info->async_reclaim_work);
3938
bc98a42c 3939 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3940 /*
d6fd0ae2
OS
3941 * The cleaner kthread is stopped, so do one final pass over
3942 * unused block groups.
e44163e1 3943 */
0b246afa 3944 btrfs_delete_unused_bgs(fs_info);
e44163e1 3945
6bccf3ab 3946 ret = btrfs_commit_super(fs_info);
acce952b 3947 if (ret)
04892340 3948 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3949 }
3950
af722733
LB
3951 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3952 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 3953 btrfs_error_commit_super(fs_info);
0f7d52f4 3954
e3029d9f
AV
3955 kthread_stop(fs_info->transaction_kthread);
3956 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3957
e187831e 3958 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 3959 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3960
04892340 3961 btrfs_free_qgroup_config(fs_info);
fe816d0f 3962 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 3963
963d678b 3964 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3965 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3966 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3967 }
bcc63abb 3968
6618a59b 3969 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3970 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3971
faa2dbf0 3972 btrfs_free_fs_roots(fs_info);
d10c5f31 3973
1a4319cc
LB
3974 btrfs_put_block_group_cache(fs_info);
3975
de348ee0
WS
3976 /*
3977 * we must make sure there is not any read request to
3978 * submit after we stopping all workers.
3979 */
3980 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3981 btrfs_stop_all_workers(fs_info);
3982
5cdd7db6
FM
3983 btrfs_free_block_groups(fs_info);
3984
afcdd129 3985 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3986 free_root_pointers(fs_info, 1);
9ad6b7bc 3987
13e6c37b 3988 iput(fs_info->btree_inode);
d6bfde87 3989
21adbd5c 3990#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3991 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 3992 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
3993#endif
3994
dfe25020 3995 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3996 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3997
e2d84521 3998 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3999 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 4000 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4001 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4002
53b381b3 4003 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4004 btrfs_free_ref_cache(fs_info);
53b381b3 4005
04216820
FM
4006 while (!list_empty(&fs_info->pinned_chunks)) {
4007 struct extent_map *em;
4008
4009 em = list_first_entry(&fs_info->pinned_chunks,
4010 struct extent_map, list);
4011 list_del_init(&em->list);
4012 free_extent_map(em);
4013 }
eb60ceac
CM
4014}
4015
b9fab919
CM
4016int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4017 int atomic)
5f39d397 4018{
1259ab75 4019 int ret;
727011e0 4020 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4021
0b32f4bb 4022 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4023 if (!ret)
4024 return ret;
4025
4026 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4027 parent_transid, atomic);
4028 if (ret == -EAGAIN)
4029 return ret;
1259ab75 4030 return !ret;
5f39d397
CM
4031}
4032
5f39d397
CM
4033void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4034{
0b246afa 4035 struct btrfs_fs_info *fs_info;
06ea65a3 4036 struct btrfs_root *root;
5f39d397 4037 u64 transid = btrfs_header_generation(buf);
b9473439 4038 int was_dirty;
b4ce94de 4039
06ea65a3
JB
4040#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4041 /*
4042 * This is a fast path so only do this check if we have sanity tests
b0132a3b 4043 * enabled. Normal people shouldn't be using umapped buffers as dirty
06ea65a3
JB
4044 * outside of the sanity tests.
4045 */
b0132a3b 4046 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4047 return;
4048#endif
4049 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4050 fs_info = root->fs_info;
b9447ef8 4051 btrfs_assert_tree_locked(buf);
0b246afa 4052 if (transid != fs_info->generation)
5d163e0e 4053 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4054 buf->start, transid, fs_info->generation);
0b32f4bb 4055 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4056 if (!was_dirty)
104b4e51
NB
4057 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4058 buf->len,
4059 fs_info->dirty_metadata_batch);
1f21ef0a 4060#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4061 /*
4062 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4063 * but item data not updated.
4064 * So here we should only check item pointers, not item data.
4065 */
4066 if (btrfs_header_level(buf) == 0 &&
2f659546 4067 btrfs_check_leaf_relaxed(fs_info, buf)) {
a4f78750 4068 btrfs_print_leaf(buf);
1f21ef0a
FM
4069 ASSERT(0);
4070 }
4071#endif
eb60ceac
CM
4072}
4073
2ff7e61e 4074static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4075 int flush_delayed)
16cdcec7
MX
4076{
4077 /*
4078 * looks as though older kernels can get into trouble with
4079 * this code, they end up stuck in balance_dirty_pages forever
4080 */
e2d84521 4081 int ret;
16cdcec7
MX
4082
4083 if (current->flags & PF_MEMALLOC)
4084 return;
4085
b53d3f5d 4086 if (flush_delayed)
2ff7e61e 4087 btrfs_balance_delayed_items(fs_info);
16cdcec7 4088
d814a491
EL
4089 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4090 BTRFS_DIRTY_METADATA_THRESH,
4091 fs_info->dirty_metadata_batch);
e2d84521 4092 if (ret > 0) {
0b246afa 4093 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4094 }
16cdcec7
MX
4095}
4096
2ff7e61e 4097void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4098{
2ff7e61e 4099 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4100}
585ad2c3 4101
2ff7e61e 4102void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4103{
2ff7e61e 4104 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4105}
6b80053d 4106
581c1760
QW
4107int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4108 struct btrfs_key *first_key)
6b80053d 4109{
727011e0 4110 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4111 struct btrfs_fs_info *fs_info = root->fs_info;
4112
581c1760
QW
4113 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4114 level, first_key);
6b80053d 4115}
0da5468f 4116
2ff7e61e 4117static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4118{
fe816d0f
NB
4119 /* cleanup FS via transaction */
4120 btrfs_cleanup_transaction(fs_info);
4121
0b246afa 4122 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4123 btrfs_run_delayed_iputs(fs_info);
0b246afa 4124 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4125
0b246afa
JM
4126 down_write(&fs_info->cleanup_work_sem);
4127 up_write(&fs_info->cleanup_work_sem);
acce952b 4128}
4129
143bede5 4130static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4131{
acce952b 4132 struct btrfs_ordered_extent *ordered;
acce952b 4133
199c2a9c 4134 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4135 /*
4136 * This will just short circuit the ordered completion stuff which will
4137 * make sure the ordered extent gets properly cleaned up.
4138 */
199c2a9c 4139 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4140 root_extent_list)
4141 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4142 spin_unlock(&root->ordered_extent_lock);
4143}
4144
4145static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4146{
4147 struct btrfs_root *root;
4148 struct list_head splice;
4149
4150 INIT_LIST_HEAD(&splice);
4151
4152 spin_lock(&fs_info->ordered_root_lock);
4153 list_splice_init(&fs_info->ordered_roots, &splice);
4154 while (!list_empty(&splice)) {
4155 root = list_first_entry(&splice, struct btrfs_root,
4156 ordered_root);
1de2cfde
JB
4157 list_move_tail(&root->ordered_root,
4158 &fs_info->ordered_roots);
199c2a9c 4159
2a85d9ca 4160 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4161 btrfs_destroy_ordered_extents(root);
4162
2a85d9ca
LB
4163 cond_resched();
4164 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4165 }
4166 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4167}
4168
35a3621b 4169static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4170 struct btrfs_fs_info *fs_info)
acce952b 4171{
4172 struct rb_node *node;
4173 struct btrfs_delayed_ref_root *delayed_refs;
4174 struct btrfs_delayed_ref_node *ref;
4175 int ret = 0;
4176
4177 delayed_refs = &trans->delayed_refs;
4178
4179 spin_lock(&delayed_refs->lock);
d7df2c79 4180 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4181 spin_unlock(&delayed_refs->lock);
0b246afa 4182 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4183 return ret;
4184 }
4185
5c9d028b 4186 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4187 struct btrfs_delayed_ref_head *head;
0e0adbcf 4188 struct rb_node *n;
e78417d1 4189 bool pin_bytes = false;
acce952b 4190
d7df2c79
JB
4191 head = rb_entry(node, struct btrfs_delayed_ref_head,
4192 href_node);
4193 if (!mutex_trylock(&head->mutex)) {
d278850e 4194 refcount_inc(&head->refs);
d7df2c79 4195 spin_unlock(&delayed_refs->lock);
eb12db69 4196
d7df2c79 4197 mutex_lock(&head->mutex);
e78417d1 4198 mutex_unlock(&head->mutex);
d278850e 4199 btrfs_put_delayed_ref_head(head);
d7df2c79
JB
4200 spin_lock(&delayed_refs->lock);
4201 continue;
4202 }
4203 spin_lock(&head->lock);
e3d03965 4204 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4205 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4206 ref_node);
d7df2c79 4207 ref->in_tree = 0;
e3d03965 4208 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4209 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4210 if (!list_empty(&ref->add_list))
4211 list_del(&ref->add_list);
d7df2c79
JB
4212 atomic_dec(&delayed_refs->num_entries);
4213 btrfs_put_delayed_ref(ref);
e78417d1 4214 }
d7df2c79
JB
4215 if (head->must_insert_reserved)
4216 pin_bytes = true;
4217 btrfs_free_delayed_extent_op(head->extent_op);
4218 delayed_refs->num_heads--;
4219 if (head->processing == 0)
4220 delayed_refs->num_heads_ready--;
4221 atomic_dec(&delayed_refs->num_entries);
5c9d028b 4222 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
d278850e 4223 RB_CLEAR_NODE(&head->href_node);
d7df2c79
JB
4224 spin_unlock(&head->lock);
4225 spin_unlock(&delayed_refs->lock);
4226 mutex_unlock(&head->mutex);
acce952b 4227
d7df2c79 4228 if (pin_bytes)
d278850e
JB
4229 btrfs_pin_extent(fs_info, head->bytenr,
4230 head->num_bytes, 1);
4231 btrfs_put_delayed_ref_head(head);
acce952b 4232 cond_resched();
4233 spin_lock(&delayed_refs->lock);
4234 }
4235
4236 spin_unlock(&delayed_refs->lock);
4237
4238 return ret;
4239}
4240
143bede5 4241static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4242{
4243 struct btrfs_inode *btrfs_inode;
4244 struct list_head splice;
4245
4246 INIT_LIST_HEAD(&splice);
4247
eb73c1b7
MX
4248 spin_lock(&root->delalloc_lock);
4249 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4250
4251 while (!list_empty(&splice)) {
fe816d0f 4252 struct inode *inode = NULL;
eb73c1b7
MX
4253 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4254 delalloc_inodes);
fe816d0f 4255 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4256 spin_unlock(&root->delalloc_lock);
acce952b 4257
fe816d0f
NB
4258 /*
4259 * Make sure we get a live inode and that it'll not disappear
4260 * meanwhile.
4261 */
4262 inode = igrab(&btrfs_inode->vfs_inode);
4263 if (inode) {
4264 invalidate_inode_pages2(inode->i_mapping);
4265 iput(inode);
4266 }
eb73c1b7 4267 spin_lock(&root->delalloc_lock);
acce952b 4268 }
eb73c1b7
MX
4269 spin_unlock(&root->delalloc_lock);
4270}
4271
4272static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4273{
4274 struct btrfs_root *root;
4275 struct list_head splice;
4276
4277 INIT_LIST_HEAD(&splice);
4278
4279 spin_lock(&fs_info->delalloc_root_lock);
4280 list_splice_init(&fs_info->delalloc_roots, &splice);
4281 while (!list_empty(&splice)) {
4282 root = list_first_entry(&splice, struct btrfs_root,
4283 delalloc_root);
eb73c1b7
MX
4284 root = btrfs_grab_fs_root(root);
4285 BUG_ON(!root);
4286 spin_unlock(&fs_info->delalloc_root_lock);
4287
4288 btrfs_destroy_delalloc_inodes(root);
4289 btrfs_put_fs_root(root);
4290
4291 spin_lock(&fs_info->delalloc_root_lock);
4292 }
4293 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4294}
4295
2ff7e61e 4296static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4297 struct extent_io_tree *dirty_pages,
4298 int mark)
4299{
4300 int ret;
acce952b 4301 struct extent_buffer *eb;
4302 u64 start = 0;
4303 u64 end;
acce952b 4304
4305 while (1) {
4306 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4307 mark, NULL);
acce952b 4308 if (ret)
4309 break;
4310
91166212 4311 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4312 while (start <= end) {
0b246afa
JM
4313 eb = find_extent_buffer(fs_info, start);
4314 start += fs_info->nodesize;
fd8b2b61 4315 if (!eb)
acce952b 4316 continue;
fd8b2b61 4317 wait_on_extent_buffer_writeback(eb);
acce952b 4318
fd8b2b61
JB
4319 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4320 &eb->bflags))
4321 clear_extent_buffer_dirty(eb);
4322 free_extent_buffer_stale(eb);
acce952b 4323 }
4324 }
4325
4326 return ret;
4327}
4328
2ff7e61e 4329static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4330 struct extent_io_tree *pinned_extents)
4331{
4332 struct extent_io_tree *unpin;
4333 u64 start;
4334 u64 end;
4335 int ret;
ed0eaa14 4336 bool loop = true;
acce952b 4337
4338 unpin = pinned_extents;
ed0eaa14 4339again:
acce952b 4340 while (1) {
fcd5e742
LF
4341 /*
4342 * The btrfs_finish_extent_commit() may get the same range as
4343 * ours between find_first_extent_bit and clear_extent_dirty.
4344 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4345 * the same extent range.
4346 */
4347 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4348 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4349 EXTENT_DIRTY, NULL);
fcd5e742
LF
4350 if (ret) {
4351 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4352 break;
fcd5e742 4353 }
acce952b 4354
af6f8f60 4355 clear_extent_dirty(unpin, start, end);
2ff7e61e 4356 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4357 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4358 cond_resched();
4359 }
4360
ed0eaa14 4361 if (loop) {
0b246afa
JM
4362 if (unpin == &fs_info->freed_extents[0])
4363 unpin = &fs_info->freed_extents[1];
ed0eaa14 4364 else
0b246afa 4365 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4366 loop = false;
4367 goto again;
4368 }
4369
acce952b 4370 return 0;
4371}
4372
c79a1751
LB
4373static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4374{
4375 struct inode *inode;
4376
4377 inode = cache->io_ctl.inode;
4378 if (inode) {
4379 invalidate_inode_pages2(inode->i_mapping);
4380 BTRFS_I(inode)->generation = 0;
4381 cache->io_ctl.inode = NULL;
4382 iput(inode);
4383 }
4384 btrfs_put_block_group(cache);
4385}
4386
4387void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4388 struct btrfs_fs_info *fs_info)
c79a1751
LB
4389{
4390 struct btrfs_block_group_cache *cache;
4391
4392 spin_lock(&cur_trans->dirty_bgs_lock);
4393 while (!list_empty(&cur_trans->dirty_bgs)) {
4394 cache = list_first_entry(&cur_trans->dirty_bgs,
4395 struct btrfs_block_group_cache,
4396 dirty_list);
c79a1751
LB
4397
4398 if (!list_empty(&cache->io_list)) {
4399 spin_unlock(&cur_trans->dirty_bgs_lock);
4400 list_del_init(&cache->io_list);
4401 btrfs_cleanup_bg_io(cache);
4402 spin_lock(&cur_trans->dirty_bgs_lock);
4403 }
4404
4405 list_del_init(&cache->dirty_list);
4406 spin_lock(&cache->lock);
4407 cache->disk_cache_state = BTRFS_DC_ERROR;
4408 spin_unlock(&cache->lock);
4409
4410 spin_unlock(&cur_trans->dirty_bgs_lock);
4411 btrfs_put_block_group(cache);
4412 spin_lock(&cur_trans->dirty_bgs_lock);
4413 }
4414 spin_unlock(&cur_trans->dirty_bgs_lock);
4415
45ae2c18
NB
4416 /*
4417 * Refer to the definition of io_bgs member for details why it's safe
4418 * to use it without any locking
4419 */
c79a1751
LB
4420 while (!list_empty(&cur_trans->io_bgs)) {
4421 cache = list_first_entry(&cur_trans->io_bgs,
4422 struct btrfs_block_group_cache,
4423 io_list);
c79a1751
LB
4424
4425 list_del_init(&cache->io_list);
4426 spin_lock(&cache->lock);
4427 cache->disk_cache_state = BTRFS_DC_ERROR;
4428 spin_unlock(&cache->lock);
4429 btrfs_cleanup_bg_io(cache);
4430 }
4431}
4432
49b25e05 4433void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4434 struct btrfs_fs_info *fs_info)
49b25e05 4435{
2ff7e61e 4436 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4437 ASSERT(list_empty(&cur_trans->dirty_bgs));
4438 ASSERT(list_empty(&cur_trans->io_bgs));
4439
2ff7e61e 4440 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4441
4a9d8bde 4442 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4443 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4444
4a9d8bde 4445 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4446 wake_up(&fs_info->transaction_wait);
49b25e05 4447
ccdf9b30
JM
4448 btrfs_destroy_delayed_inodes(fs_info);
4449 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4450
2ff7e61e 4451 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4452 EXTENT_DIRTY);
2ff7e61e 4453 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4454 fs_info->pinned_extents);
49b25e05 4455
4a9d8bde
MX
4456 cur_trans->state =TRANS_STATE_COMPLETED;
4457 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4458}
4459
2ff7e61e 4460static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4461{
4462 struct btrfs_transaction *t;
acce952b 4463
0b246afa 4464 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4465
0b246afa
JM
4466 spin_lock(&fs_info->trans_lock);
4467 while (!list_empty(&fs_info->trans_list)) {
4468 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4469 struct btrfs_transaction, list);
4470 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4471 refcount_inc(&t->use_count);
0b246afa 4472 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4473 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4474 btrfs_put_transaction(t);
0b246afa 4475 spin_lock(&fs_info->trans_lock);
724e2315
JB
4476 continue;
4477 }
0b246afa 4478 if (t == fs_info->running_transaction) {
724e2315 4479 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4480 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4481 /*
4482 * We wait for 0 num_writers since we don't hold a trans
4483 * handle open currently for this transaction.
4484 */
4485 wait_event(t->writer_wait,
4486 atomic_read(&t->num_writers) == 0);
4487 } else {
0b246afa 4488 spin_unlock(&fs_info->trans_lock);
724e2315 4489 }
2ff7e61e 4490 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4491
0b246afa
JM
4492 spin_lock(&fs_info->trans_lock);
4493 if (t == fs_info->running_transaction)
4494 fs_info->running_transaction = NULL;
acce952b 4495 list_del_init(&t->list);
0b246afa 4496 spin_unlock(&fs_info->trans_lock);
acce952b 4497
724e2315 4498 btrfs_put_transaction(t);
2ff7e61e 4499 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4500 spin_lock(&fs_info->trans_lock);
724e2315 4501 }
0b246afa
JM
4502 spin_unlock(&fs_info->trans_lock);
4503 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4504 btrfs_destroy_delayed_inodes(fs_info);
4505 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4506 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4507 btrfs_destroy_all_delalloc_inodes(fs_info);
4508 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4509
4510 return 0;
4511}
4512
e8c9f186 4513static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4514 /* mandatory callbacks */
0b86a832 4515 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4516 .readpage_end_io_hook = btree_readpage_end_io_hook,
20a7db8a 4517 .readpage_io_failed_hook = btree_io_failed_hook,
4d53dddb
DS
4518
4519 /* optional callbacks */
0da5468f 4520};