btrfs: use the correct superblock to compare fsid in btrfs_validate_super
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
103c1972 26#include "bio.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
c7f13d42 46#include "fs.h"
07e81dc9 47#include "accessors.h"
a0231804 48#include "extent-tree.h"
45c40c8f 49#include "root-tree.h"
59b818e0 50#include "defrag.h"
c7a03b52 51#include "uuid-tree.h"
67707479 52#include "relocation.h"
2fc6822c 53#include "scrub.h"
c03b2207 54#include "super.h"
eb60ceac 55
319e4d06
QW
56#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 BTRFS_HEADER_FLAG_RELOC |\
58 BTRFS_SUPER_FLAG_ERROR |\
59 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
60 BTRFS_SUPER_FLAG_METADUMP |\
61 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 62
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
141386e1
JB
66static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67{
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70}
71
d352ac68 72/*
2996e1f8 73 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 74 */
c67b3892 75static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 76{
d5178578 77 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 78 const int num_pages = num_extent_pages(buf);
a26663e7 79 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 80 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 81 char *kaddr;
e9be5a30 82 int i;
d5178578
JT
83
84 shash->tfm = fs_info->csum_shash;
85 crypto_shash_init(shash);
a26663e7 86 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 87 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 88 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 89
5ad9b471 90 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
e9be5a30
DS
91 kaddr = page_address(buf->pages[i]);
92 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 93 }
71a63551 94 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 95 crypto_shash_final(shash, result);
19c00ddc
CM
96}
97
d352ac68
CM
98/*
99 * we can't consider a given block up to date unless the transid of the
100 * block matches the transid in the parent node's pointer. This is how we
101 * detect blocks that either didn't get written at all or got written
102 * in the wrong place.
103 */
d87e6575 104int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
1259ab75 105{
d87e6575 106 if (!extent_buffer_uptodate(eb))
1259ab75
CM
107 return 0;
108
d87e6575
CH
109 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
110 return 1;
111
b9fab919
CM
112 if (atomic)
113 return -EAGAIN;
114
d87e6575
CH
115 if (!extent_buffer_uptodate(eb) ||
116 btrfs_header_generation(eb) != parent_transid) {
117 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
118"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
119 eb->start, eb->read_mirror,
29549aec 120 parent_transid, btrfs_header_generation(eb));
d87e6575 121 clear_extent_buffer_uptodate(eb);
9e2aff90 122 return 0;
d87e6575 123 }
9e2aff90 124 return 1;
1259ab75
CM
125}
126
e7e16f48
JT
127static bool btrfs_supported_super_csum(u16 csum_type)
128{
129 switch (csum_type) {
130 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 131 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 132 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 133 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
134 return true;
135 default:
136 return false;
137 }
138}
139
1104a885
DS
140/*
141 * Return 0 if the superblock checksum type matches the checksum value of that
142 * algorithm. Pass the raw disk superblock data.
143 */
3d17adea
QW
144int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
145 const struct btrfs_super_block *disk_sb)
1104a885 146{
51bce6c9 147 char result[BTRFS_CSUM_SIZE];
d5178578
JT
148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149
150 shash->tfm = fs_info->csum_shash;
1104a885 151
51bce6c9
JT
152 /*
153 * The super_block structure does not span the whole
154 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
155 * filled with zeros and is included in the checksum.
156 */
3d17adea 157 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 158 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 159
55fc29be 160 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 161 return 1;
1104a885 162
e7e16f48 163 return 0;
1104a885
DS
164}
165
bacf60e5
CH
166static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
167 int mirror_num)
168{
169 struct btrfs_fs_info *fs_info = eb->fs_info;
bacf60e5
CH
170 int i, num_pages = num_extent_pages(eb);
171 int ret = 0;
172
173 if (sb_rdonly(fs_info->sb))
174 return -EROFS;
175
176 for (i = 0; i < num_pages; i++) {
177 struct page *p = eb->pages[i];
917ac778
QW
178 u64 start = max_t(u64, eb->start, page_offset(p));
179 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
180 u32 len = end - start;
bacf60e5 181
917ac778
QW
182 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
183 start, p, offset_in_page(start), mirror_num);
bacf60e5
CH
184 if (ret)
185 break;
bacf60e5
CH
186 }
187
188 return ret;
189}
190
d352ac68
CM
191/*
192 * helper to read a given tree block, doing retries as required when
193 * the checksums don't match and we have alternate mirrors to try.
581c1760 194 *
789d6a3a
QW
195 * @check: expected tree parentness check, see the comments of the
196 * structure for details.
d352ac68 197 */
6a2e9dc4 198int btrfs_read_extent_buffer(struct extent_buffer *eb,
789d6a3a 199 struct btrfs_tree_parent_check *check)
f188591e 200{
5ab12d1f 201 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 202 int failed = 0;
f188591e
CM
203 int ret;
204 int num_copies = 0;
205 int mirror_num = 0;
ea466794 206 int failed_mirror = 0;
f188591e 207
789d6a3a
QW
208 ASSERT(check);
209
f188591e 210 while (1) {
f8397d69 211 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
947a6299
QW
212 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
213 if (!ret)
214 break;
d397712b 215
0b246afa 216 num_copies = btrfs_num_copies(fs_info,
f188591e 217 eb->start, eb->len);
4235298e 218 if (num_copies == 1)
ea466794 219 break;
4235298e 220
5cf1ab56
JB
221 if (!failed_mirror) {
222 failed = 1;
223 failed_mirror = eb->read_mirror;
224 }
225
f188591e 226 mirror_num++;
ea466794
JB
227 if (mirror_num == failed_mirror)
228 mirror_num++;
229
4235298e 230 if (mirror_num > num_copies)
ea466794 231 break;
f188591e 232 }
ea466794 233
c0901581 234 if (failed && !ret && failed_mirror)
20a1fbf9 235 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
236
237 return ret;
f188591e 238}
19c00ddc 239
31d89399
CH
240/*
241 * Checksum a dirty tree block before IO.
242 */
243blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
eca0f6f6 244{
31d89399 245 struct extent_buffer *eb = bbio->private;
eca0f6f6 246 struct btrfs_fs_info *fs_info = eb->fs_info;
31d89399 247 u64 found_start = btrfs_header_bytenr(eb);
eca0f6f6
QW
248 u8 result[BTRFS_CSUM_SIZE];
249 int ret;
250
31d89399
CH
251 /* Btree blocks are always contiguous on disk. */
252 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253 return BLK_STS_IOERR;
254 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255 return BLK_STS_IOERR;
256
257 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258 WARN_ON_ONCE(found_start != 0);
259 return BLK_STS_OK;
260 }
261
262 if (WARN_ON_ONCE(found_start != eb->start))
263 return BLK_STS_IOERR;
264 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265 eb->len)))
266 return BLK_STS_IOERR;
267
eca0f6f6
QW
268 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269 offsetof(struct btrfs_header, fsid),
270 BTRFS_FSID_SIZE) == 0);
271 csum_tree_block(eb, result);
272
273 if (btrfs_header_level(eb))
274 ret = btrfs_check_node(eb);
275 else
85d8a826 276 ret = btrfs_check_leaf(eb);
eca0f6f6 277
3777369f
QW
278 if (ret < 0)
279 goto error;
280
281 /*
282 * Also check the generation, the eb reached here must be newer than
283 * last committed. Or something seriously wrong happened.
284 */
285 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
286 ret = -EUCLEAN;
eca0f6f6 287 btrfs_err(fs_info,
3777369f
QW
288 "block=%llu bad generation, have %llu expect > %llu",
289 eb->start, btrfs_header_generation(eb),
290 fs_info->last_trans_committed);
291 goto error;
eca0f6f6
QW
292 }
293 write_extent_buffer(eb, result, 0, fs_info->csum_size);
31d89399 294 return BLK_STS_OK;
3777369f
QW
295
296error:
297 btrfs_print_tree(eb, 0);
298 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299 eb->start);
16199ad9
FM
300 /*
301 * Be noisy if this is an extent buffer from a log tree. We don't abort
302 * a transaction in case there's a bad log tree extent buffer, we just
303 * fallback to a transaction commit. Still we want to know when there is
304 * a bad log tree extent buffer, as that may signal a bug somewhere.
305 */
306 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
deb6216f
CH
308 return errno_to_blk_status(ret);
309}
310
413fb1bc 311static bool check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 312{
b0c9b3b0 313 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 314 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 315 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 316 u8 *metadata_uuid;
2b82032c 317
9a8658e3
DS
318 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
319 BTRFS_FSID_SIZE);
944d3f9f
NB
320 /*
321 * Checking the incompat flag is only valid for the current fs. For
322 * seed devices it's forbidden to have their uuid changed so reading
323 * ->fsid in this case is fine
324 */
325 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
326 metadata_uuid = fs_devices->metadata_uuid;
327 else
328 metadata_uuid = fs_devices->fsid;
329
330 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
413fb1bc 331 return false;
944d3f9f
NB
332
333 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
334 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
413fb1bc 335 return false;
944d3f9f 336
413fb1bc 337 return true;
2b82032c
YZ
338}
339
77bf40a2 340/* Do basic extent buffer checks at read time */
046b562b
CH
341int btrfs_validate_extent_buffer(struct extent_buffer *eb,
342 struct btrfs_tree_parent_check *check)
ce9adaa5 343{
77bf40a2 344 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 345 u64 found_start;
77bf40a2
QW
346 const u32 csum_size = fs_info->csum_size;
347 u8 found_level;
2996e1f8 348 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 349 const u8 *header_csum;
77bf40a2 350 int ret = 0;
ea466794 351
947a6299
QW
352 ASSERT(check);
353
ce9adaa5 354 found_start = btrfs_header_bytenr(eb);
727011e0 355 if (found_start != eb->start) {
8f0ed7d4
QW
356 btrfs_err_rl(fs_info,
357 "bad tree block start, mirror %u want %llu have %llu",
358 eb->read_mirror, eb->start, found_start);
f188591e 359 ret = -EIO;
77bf40a2 360 goto out;
ce9adaa5 361 }
b0c9b3b0 362 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
363 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
364 eb->start, eb->read_mirror);
1259ab75 365 ret = -EIO;
77bf40a2 366 goto out;
1259ab75 367 }
ce9adaa5 368 found_level = btrfs_header_level(eb);
1c24c3ce 369 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
370 btrfs_err(fs_info,
371 "bad tree block level, mirror %u level %d on logical %llu",
372 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 373 ret = -EIO;
77bf40a2 374 goto out;
1c24c3ce 375 }
ce9adaa5 376
c67b3892 377 csum_tree_block(eb, result);
dfd29eed
DS
378 header_csum = page_address(eb->pages[0]) +
379 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 380
dfd29eed 381 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 382 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
383"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
384 eb->start, eb->read_mirror,
dfd29eed 385 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
386 CSUM_FMT_VALUE(csum_size, result),
387 btrfs_header_level(eb));
2996e1f8 388 ret = -EUCLEAN;
77bf40a2 389 goto out;
2996e1f8
JT
390 }
391
947a6299 392 if (found_level != check->level) {
77177ed1
QW
393 btrfs_err(fs_info,
394 "level verify failed on logical %llu mirror %u wanted %u found %u",
395 eb->start, eb->read_mirror, check->level, found_level);
947a6299
QW
396 ret = -EIO;
397 goto out;
398 }
399 if (unlikely(check->transid &&
400 btrfs_header_generation(eb) != check->transid)) {
401 btrfs_err_rl(eb->fs_info,
402"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
403 eb->start, eb->read_mirror, check->transid,
404 btrfs_header_generation(eb));
405 ret = -EIO;
406 goto out;
407 }
408 if (check->has_first_key) {
409 struct btrfs_key *expect_key = &check->first_key;
410 struct btrfs_key found_key;
411
412 if (found_level)
413 btrfs_node_key_to_cpu(eb, &found_key, 0);
414 else
415 btrfs_item_key_to_cpu(eb, &found_key, 0);
416 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
417 btrfs_err(fs_info,
418"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
419 eb->start, check->transid,
420 expect_key->objectid,
421 expect_key->type, expect_key->offset,
422 found_key.objectid, found_key.type,
423 found_key.offset);
424 ret = -EUCLEAN;
425 goto out;
426 }
427 }
428 if (check->owner_root) {
429 ret = btrfs_check_eb_owner(eb, check->owner_root);
430 if (ret < 0)
431 goto out;
432 }
433
a826d6dc
JB
434 /*
435 * If this is a leaf block and it is corrupt, set the corrupt bit so
436 * that we don't try and read the other copies of this block, just
437 * return -EIO.
438 */
85d8a826 439 if (found_level == 0 && btrfs_check_leaf(eb)) {
a826d6dc
JB
440 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
441 ret = -EIO;
442 }
ce9adaa5 443
813fd1dc 444 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
445 ret = -EIO;
446
aebcc159 447 if (ret)
75391f0d 448 btrfs_err(fs_info,
8f0ed7d4
QW
449 "read time tree block corruption detected on logical %llu mirror %u",
450 eb->start, eb->read_mirror);
77bf40a2
QW
451out:
452 return ret;
453}
454
3dd1462e 455#ifdef CONFIG_MIGRATION
8958b551
MWO
456static int btree_migrate_folio(struct address_space *mapping,
457 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
458{
459 /*
460 * we can't safely write a btree page from here,
461 * we haven't done the locking hook
462 */
8958b551 463 if (folio_test_dirty(src))
784b4e29
CM
464 return -EAGAIN;
465 /*
466 * Buffers may be managed in a filesystem specific way.
467 * We must have no buffers or drop them.
468 */
8958b551
MWO
469 if (folio_get_private(src) &&
470 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 471 return -EAGAIN;
54184650 472 return migrate_folio(mapping, dst, src, mode);
784b4e29 473}
8958b551
MWO
474#else
475#define btree_migrate_folio NULL
3dd1462e 476#endif
784b4e29 477
0da5468f
CM
478static int btree_writepages(struct address_space *mapping,
479 struct writeback_control *wbc)
480{
e2d84521
MX
481 struct btrfs_fs_info *fs_info;
482 int ret;
483
d8d5f3e1 484 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
485
486 if (wbc->for_kupdate)
487 return 0;
488
e2d84521 489 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 490 /* this is a bit racy, but that's ok */
d814a491
EL
491 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
492 BTRFS_DIRTY_METADATA_THRESH,
493 fs_info->dirty_metadata_batch);
e2d84521 494 if (ret < 0)
793955bc 495 return 0;
793955bc 496 }
0b32f4bb 497 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
498}
499
f913cff3 500static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 501{
f913cff3
MWO
502 if (folio_test_writeback(folio) || folio_test_dirty(folio))
503 return false;
0c4e538b 504
f913cff3 505 return try_release_extent_buffer(&folio->page);
d98237b3
CM
506}
507
895586eb
MWO
508static void btree_invalidate_folio(struct folio *folio, size_t offset,
509 size_t length)
d98237b3 510{
d1310b2e 511 struct extent_io_tree *tree;
895586eb
MWO
512 tree = &BTRFS_I(folio->mapping->host)->io_tree;
513 extent_invalidate_folio(tree, folio, offset);
f913cff3 514 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
515 if (folio_get_private(folio)) {
516 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
517 "folio private not zero on folio %llu",
518 (unsigned long long)folio_pos(folio));
519 folio_detach_private(folio);
9ad6b7bc 520 }
d98237b3
CM
521}
522
bb146eb2 523#ifdef DEBUG
0079c3b1
MWO
524static bool btree_dirty_folio(struct address_space *mapping,
525 struct folio *folio)
526{
527 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 528 struct btrfs_subpage *subpage;
0b32f4bb 529 struct extent_buffer *eb;
139e8cd3 530 int cur_bit = 0;
0079c3b1 531 u64 page_start = folio_pos(folio);
139e8cd3
QW
532
533 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 534 eb = folio_get_private(folio);
139e8cd3
QW
535 BUG_ON(!eb);
536 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
537 BUG_ON(!atomic_read(&eb->refs));
49d0c642 538 btrfs_assert_tree_write_locked(eb);
0079c3b1 539 return filemap_dirty_folio(mapping, folio);
139e8cd3 540 }
0079c3b1 541 subpage = folio_get_private(folio);
139e8cd3
QW
542
543 ASSERT(subpage->dirty_bitmap);
544 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
545 unsigned long flags;
546 u64 cur;
547 u16 tmp = (1 << cur_bit);
548
549 spin_lock_irqsave(&subpage->lock, flags);
550 if (!(tmp & subpage->dirty_bitmap)) {
551 spin_unlock_irqrestore(&subpage->lock, flags);
552 cur_bit++;
553 continue;
554 }
555 spin_unlock_irqrestore(&subpage->lock, flags);
556 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 557
139e8cd3
QW
558 eb = find_extent_buffer(fs_info, cur);
559 ASSERT(eb);
560 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
561 ASSERT(atomic_read(&eb->refs));
49d0c642 562 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
563 free_extent_buffer(eb);
564
565 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
566 }
0079c3b1 567 return filemap_dirty_folio(mapping, folio);
0b32f4bb 568}
0079c3b1
MWO
569#else
570#define btree_dirty_folio filemap_dirty_folio
571#endif
0b32f4bb 572
7f09410b 573static const struct address_space_operations btree_aops = {
0da5468f 574 .writepages = btree_writepages,
f913cff3 575 .release_folio = btree_release_folio,
895586eb 576 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
577 .migrate_folio = btree_migrate_folio,
578 .dirty_folio = btree_dirty_folio,
d98237b3
CM
579};
580
2ff7e61e
JM
581struct extent_buffer *btrfs_find_create_tree_block(
582 struct btrfs_fs_info *fs_info,
3fbaf258
JB
583 u64 bytenr, u64 owner_root,
584 int level)
0999df54 585{
0b246afa
JM
586 if (btrfs_is_testing(fs_info))
587 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 588 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
589}
590
581c1760
QW
591/*
592 * Read tree block at logical address @bytenr and do variant basic but critical
593 * verification.
594 *
789d6a3a
QW
595 * @check: expected tree parentness check, see comments of the
596 * structure for details.
581c1760 597 */
2ff7e61e 598struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
789d6a3a 599 struct btrfs_tree_parent_check *check)
0999df54
CM
600{
601 struct extent_buffer *buf = NULL;
0999df54
CM
602 int ret;
603
789d6a3a
QW
604 ASSERT(check);
605
606 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
607 check->level);
c871b0f2
LB
608 if (IS_ERR(buf))
609 return buf;
0999df54 610
789d6a3a 611 ret = btrfs_read_extent_buffer(buf, check);
0f0fe8f7 612 if (ret) {
537f38f0 613 free_extent_buffer_stale(buf);
64c043de 614 return ERR_PTR(ret);
0f0fe8f7 615 }
789d6a3a 616 if (btrfs_check_eb_owner(buf, check->owner_root)) {
88c602ab
QW
617 free_extent_buffer_stale(buf);
618 return ERR_PTR(-EUCLEAN);
619 }
5f39d397 620 return buf;
ce9adaa5 621
eb60ceac
CM
622}
623
da17066c 624static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 625 u64 objectid)
d97e63b6 626{
7c0260ee 627 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
628
629 memset(&root->root_key, 0, sizeof(root->root_key));
630 memset(&root->root_item, 0, sizeof(root->root_item));
631 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 632 root->fs_info = fs_info;
2e608bd1 633 root->root_key.objectid = objectid;
cfaa7295 634 root->node = NULL;
a28ec197 635 root->commit_root = NULL;
27cdeb70 636 root->state = 0;
abed4aaa 637 RB_CLEAR_NODE(&root->rb_node);
0b86a832 638
0f7d52f4 639 root->last_trans = 0;
6b8fad57 640 root->free_objectid = 0;
eb73c1b7 641 root->nr_delalloc_inodes = 0;
199c2a9c 642 root->nr_ordered_extents = 0;
6bef4d31 643 root->inode_tree = RB_ROOT;
088aea3b 644 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
645
646 btrfs_init_root_block_rsv(root);
0b86a832
CM
647
648 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 649 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
650 INIT_LIST_HEAD(&root->delalloc_inodes);
651 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
652 INIT_LIST_HEAD(&root->ordered_extents);
653 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 654 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
655 INIT_LIST_HEAD(&root->logged_list[0]);
656 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 657 spin_lock_init(&root->inode_lock);
eb73c1b7 658 spin_lock_init(&root->delalloc_lock);
199c2a9c 659 spin_lock_init(&root->ordered_extent_lock);
f0486c68 660 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
661 spin_lock_init(&root->log_extents_lock[0]);
662 spin_lock_init(&root->log_extents_lock[1]);
8287475a 663 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 664 mutex_init(&root->objectid_mutex);
e02119d5 665 mutex_init(&root->log_mutex);
31f3d255 666 mutex_init(&root->ordered_extent_mutex);
573bfb72 667 mutex_init(&root->delalloc_mutex);
c53e9653 668 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
669 init_waitqueue_head(&root->log_writer_wait);
670 init_waitqueue_head(&root->log_commit_wait[0]);
671 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
672 INIT_LIST_HEAD(&root->log_ctxs[0]);
673 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
674 atomic_set(&root->log_commit[0], 0);
675 atomic_set(&root->log_commit[1], 0);
676 atomic_set(&root->log_writers, 0);
2ecb7923 677 atomic_set(&root->log_batch, 0);
0700cea7 678 refcount_set(&root->refs, 1);
8ecebf4d 679 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 680 atomic_set(&root->nr_swapfiles, 0);
7237f183 681 root->log_transid = 0;
d1433deb 682 root->log_transid_committed = -1;
257c62e1 683 root->last_log_commit = 0;
2e608bd1 684 root->anon_dev = 0;
e289f03e 685 if (!dummy) {
43eb5f29 686 extent_io_tree_init(fs_info, &root->dirty_log_pages,
35da5a7e 687 IO_TREE_ROOT_DIRTY_LOG_PAGES);
e289f03e 688 extent_io_tree_init(fs_info, &root->log_csum_range,
35da5a7e 689 IO_TREE_LOG_CSUM_RANGE);
e289f03e 690 }
017e5369 691
5f3ab90a 692 spin_lock_init(&root->root_item_lock);
370a11b8 693 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
694#ifdef CONFIG_BTRFS_DEBUG
695 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 696 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 697 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 698 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 699#endif
3768f368
CM
700}
701
74e4d827 702static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 703 u64 objectid, gfp_t flags)
6f07e42e 704{
74e4d827 705 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 706 if (root)
96dfcb46 707 __setup_root(root, fs_info, objectid);
6f07e42e
AV
708 return root;
709}
710
06ea65a3
JB
711#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
712/* Should only be used by the testing infrastructure */
da17066c 713struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
714{
715 struct btrfs_root *root;
716
7c0260ee
JM
717 if (!fs_info)
718 return ERR_PTR(-EINVAL);
719
96dfcb46 720 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
721 if (!root)
722 return ERR_PTR(-ENOMEM);
da17066c 723
b9ef22de 724 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 725 root->alloc_bytenr = 0;
06ea65a3
JB
726
727 return root;
728}
729#endif
730
abed4aaa
JB
731static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
732{
733 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
734 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
735
736 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
737}
738
739static int global_root_key_cmp(const void *k, const struct rb_node *node)
740{
741 const struct btrfs_key *key = k;
742 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
743
744 return btrfs_comp_cpu_keys(key, &root->root_key);
745}
746
747int btrfs_global_root_insert(struct btrfs_root *root)
748{
749 struct btrfs_fs_info *fs_info = root->fs_info;
750 struct rb_node *tmp;
745806fb 751 int ret = 0;
abed4aaa
JB
752
753 write_lock(&fs_info->global_root_lock);
754 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
755 write_unlock(&fs_info->global_root_lock);
abed4aaa 756
745806fb
QW
757 if (tmp) {
758 ret = -EEXIST;
759 btrfs_warn(fs_info, "global root %llu %llu already exists",
760 root->root_key.objectid, root->root_key.offset);
761 }
762 return ret;
abed4aaa
JB
763}
764
765void btrfs_global_root_delete(struct btrfs_root *root)
766{
767 struct btrfs_fs_info *fs_info = root->fs_info;
768
769 write_lock(&fs_info->global_root_lock);
770 rb_erase(&root->rb_node, &fs_info->global_root_tree);
771 write_unlock(&fs_info->global_root_lock);
772}
773
774struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
775 struct btrfs_key *key)
776{
777 struct rb_node *node;
778 struct btrfs_root *root = NULL;
779
780 read_lock(&fs_info->global_root_lock);
781 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
782 if (node)
783 root = container_of(node, struct btrfs_root, rb_node);
784 read_unlock(&fs_info->global_root_lock);
785
786 return root;
787}
788
f7238e50
JB
789static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
790{
791 struct btrfs_block_group *block_group;
792 u64 ret;
793
794 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
795 return 0;
796
797 if (bytenr)
798 block_group = btrfs_lookup_block_group(fs_info, bytenr);
799 else
800 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
801 ASSERT(block_group);
802 if (!block_group)
803 return 0;
804 ret = block_group->global_root_id;
805 btrfs_put_block_group(block_group);
806
807 return ret;
808}
809
abed4aaa
JB
810struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
811{
812 struct btrfs_key key = {
813 .objectid = BTRFS_CSUM_TREE_OBJECTID,
814 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 815 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
816 };
817
818 return btrfs_global_root(fs_info, &key);
819}
820
821struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
822{
823 struct btrfs_key key = {
824 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
825 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 826 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
827 };
828
829 return btrfs_global_root(fs_info, &key);
830}
831
51129b33
JB
832struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
833{
834 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
835 return fs_info->block_group_root;
836 return btrfs_extent_root(fs_info, 0);
837}
838
20897f5c 839struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
840 u64 objectid)
841{
9b7a2440 842 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
843 struct extent_buffer *leaf;
844 struct btrfs_root *tree_root = fs_info->tree_root;
845 struct btrfs_root *root;
846 struct btrfs_key key;
b89f6d1f 847 unsigned int nofs_flag;
20897f5c 848 int ret = 0;
20897f5c 849
b89f6d1f
FM
850 /*
851 * We're holding a transaction handle, so use a NOFS memory allocation
852 * context to avoid deadlock if reclaim happens.
853 */
854 nofs_flag = memalloc_nofs_save();
96dfcb46 855 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 856 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
857 if (!root)
858 return ERR_PTR(-ENOMEM);
859
20897f5c
AJ
860 root->root_key.objectid = objectid;
861 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
862 root->root_key.offset = 0;
863
9631e4cc
JB
864 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
865 BTRFS_NESTING_NORMAL);
20897f5c
AJ
866 if (IS_ERR(leaf)) {
867 ret = PTR_ERR(leaf);
1dd05682 868 leaf = NULL;
c1b07854 869 goto fail;
20897f5c
AJ
870 }
871
20897f5c 872 root->node = leaf;
20897f5c
AJ
873 btrfs_mark_buffer_dirty(leaf);
874
875 root->commit_root = btrfs_root_node(root);
27cdeb70 876 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 877
f944d2cb
DS
878 btrfs_set_root_flags(&root->root_item, 0);
879 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
880 btrfs_set_root_bytenr(&root->root_item, leaf->start);
881 btrfs_set_root_generation(&root->root_item, trans->transid);
882 btrfs_set_root_level(&root->root_item, 0);
883 btrfs_set_root_refs(&root->root_item, 1);
884 btrfs_set_root_used(&root->root_item, leaf->len);
885 btrfs_set_root_last_snapshot(&root->root_item, 0);
886 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 887 if (is_fstree(objectid))
807fc790
AS
888 generate_random_guid(root->root_item.uuid);
889 else
890 export_guid(root->root_item.uuid, &guid_null);
c8422684 891 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 892
8a6a87cd
BB
893 btrfs_tree_unlock(leaf);
894
20897f5c
AJ
895 key.objectid = objectid;
896 key.type = BTRFS_ROOT_ITEM_KEY;
897 key.offset = 0;
898 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
899 if (ret)
900 goto fail;
901
1dd05682
TI
902 return root;
903
8a6a87cd 904fail:
00246528 905 btrfs_put_root(root);
20897f5c 906
1dd05682 907 return ERR_PTR(ret);
20897f5c
AJ
908}
909
7237f183
YZ
910static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
911 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
912{
913 struct btrfs_root *root;
e02119d5 914
96dfcb46 915 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 916 if (!root)
7237f183 917 return ERR_PTR(-ENOMEM);
e02119d5 918
e02119d5
CM
919 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
920 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
921 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 922
6ab6ebb7
NA
923 return root;
924}
925
926int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
927 struct btrfs_root *root)
928{
929 struct extent_buffer *leaf;
930
7237f183 931 /*
92a7cc42 932 * DON'T set SHAREABLE bit for log trees.
27cdeb70 933 *
92a7cc42
QW
934 * Log trees are not exposed to user space thus can't be snapshotted,
935 * and they go away before a real commit is actually done.
936 *
937 * They do store pointers to file data extents, and those reference
938 * counts still get updated (along with back refs to the log tree).
7237f183 939 */
e02119d5 940
4d75f8a9 941 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 942 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
943 if (IS_ERR(leaf))
944 return PTR_ERR(leaf);
e02119d5 945
7237f183 946 root->node = leaf;
e02119d5 947
e02119d5
CM
948 btrfs_mark_buffer_dirty(root->node);
949 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
950
951 return 0;
7237f183
YZ
952}
953
954int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
955 struct btrfs_fs_info *fs_info)
956{
957 struct btrfs_root *log_root;
958
959 log_root = alloc_log_tree(trans, fs_info);
960 if (IS_ERR(log_root))
961 return PTR_ERR(log_root);
6ab6ebb7 962
3ddebf27
NA
963 if (!btrfs_is_zoned(fs_info)) {
964 int ret = btrfs_alloc_log_tree_node(trans, log_root);
965
966 if (ret) {
967 btrfs_put_root(log_root);
968 return ret;
969 }
6ab6ebb7
NA
970 }
971
7237f183
YZ
972 WARN_ON(fs_info->log_root_tree);
973 fs_info->log_root_tree = log_root;
974 return 0;
975}
976
977int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root)
979{
0b246afa 980 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
981 struct btrfs_root *log_root;
982 struct btrfs_inode_item *inode_item;
6ab6ebb7 983 int ret;
7237f183 984
0b246afa 985 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
986 if (IS_ERR(log_root))
987 return PTR_ERR(log_root);
988
6ab6ebb7
NA
989 ret = btrfs_alloc_log_tree_node(trans, log_root);
990 if (ret) {
991 btrfs_put_root(log_root);
992 return ret;
993 }
994
7237f183
YZ
995 log_root->last_trans = trans->transid;
996 log_root->root_key.offset = root->root_key.objectid;
997
998 inode_item = &log_root->root_item.inode;
3cae210f
QW
999 btrfs_set_stack_inode_generation(inode_item, 1);
1000 btrfs_set_stack_inode_size(inode_item, 3);
1001 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1002 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1003 fs_info->nodesize);
3cae210f 1004 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1005
5d4f98a2 1006 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1007
1008 WARN_ON(root->log_root);
1009 root->log_root = log_root;
1010 root->log_transid = 0;
d1433deb 1011 root->log_transid_committed = -1;
257c62e1 1012 root->last_log_commit = 0;
e02119d5
CM
1013 return 0;
1014}
1015
49d11bea
JB
1016static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1017 struct btrfs_path *path,
1018 struct btrfs_key *key)
e02119d5
CM
1019{
1020 struct btrfs_root *root;
789d6a3a 1021 struct btrfs_tree_parent_check check = { 0 };
e02119d5 1022 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1023 u64 generation;
cb517eab 1024 int ret;
581c1760 1025 int level;
0f7d52f4 1026
96dfcb46 1027 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1028 if (!root)
1029 return ERR_PTR(-ENOMEM);
0f7d52f4 1030
cb517eab
MX
1031 ret = btrfs_find_root(tree_root, key, path,
1032 &root->root_item, &root->root_key);
0f7d52f4 1033 if (ret) {
13a8a7c8
YZ
1034 if (ret > 0)
1035 ret = -ENOENT;
49d11bea 1036 goto fail;
0f7d52f4 1037 }
13a8a7c8 1038
84234f3a 1039 generation = btrfs_root_generation(&root->root_item);
581c1760 1040 level = btrfs_root_level(&root->root_item);
789d6a3a
QW
1041 check.level = level;
1042 check.transid = generation;
1043 check.owner_root = key->objectid;
1044 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1045 &check);
64c043de
LB
1046 if (IS_ERR(root->node)) {
1047 ret = PTR_ERR(root->node);
8c38938c 1048 root->node = NULL;
49d11bea 1049 goto fail;
4eb150d6
QW
1050 }
1051 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1052 ret = -EIO;
49d11bea 1053 goto fail;
416bc658 1054 }
88c602ab
QW
1055
1056 /*
1057 * For real fs, and not log/reloc trees, root owner must
1058 * match its root node owner
1059 */
1060 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1061 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1062 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1063 root->root_key.objectid != btrfs_header_owner(root->node)) {
1064 btrfs_crit(fs_info,
1065"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1066 root->root_key.objectid, root->node->start,
1067 btrfs_header_owner(root->node),
1068 root->root_key.objectid);
1069 ret = -EUCLEAN;
1070 goto fail;
1071 }
5d4f98a2 1072 root->commit_root = btrfs_root_node(root);
cb517eab 1073 return root;
49d11bea 1074fail:
00246528 1075 btrfs_put_root(root);
49d11bea
JB
1076 return ERR_PTR(ret);
1077}
1078
1079struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1080 struct btrfs_key *key)
1081{
1082 struct btrfs_root *root;
1083 struct btrfs_path *path;
1084
1085 path = btrfs_alloc_path();
1086 if (!path)
1087 return ERR_PTR(-ENOMEM);
1088 root = read_tree_root_path(tree_root, path, key);
1089 btrfs_free_path(path);
1090
1091 return root;
cb517eab
MX
1092}
1093
2dfb1e43
QW
1094/*
1095 * Initialize subvolume root in-memory structure
1096 *
1097 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1098 */
1099static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1100{
1101 int ret;
1102
0b548539 1103 btrfs_drew_lock_init(&root->snapshot_lock);
8257b2dc 1104
aeb935a4 1105 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
6ebcd021
QW
1106 !btrfs_is_data_reloc_root(root) &&
1107 is_fstree(root->root_key.objectid)) {
92a7cc42 1108 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1109 btrfs_check_and_init_root_item(&root->root_item);
1110 }
1111
851fd730
QW
1112 /*
1113 * Don't assign anonymous block device to roots that are not exposed to
1114 * userspace, the id pool is limited to 1M
1115 */
1116 if (is_fstree(root->root_key.objectid) &&
1117 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1118 if (!anon_dev) {
1119 ret = get_anon_bdev(&root->anon_dev);
1120 if (ret)
1121 goto fail;
1122 } else {
1123 root->anon_dev = anon_dev;
1124 }
851fd730 1125 }
f32e48e9
CR
1126
1127 mutex_lock(&root->objectid_mutex);
453e4873 1128 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1129 if (ret) {
1130 mutex_unlock(&root->objectid_mutex);
876d2cf1 1131 goto fail;
f32e48e9
CR
1132 }
1133
6b8fad57 1134 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1135
1136 mutex_unlock(&root->objectid_mutex);
1137
cb517eab
MX
1138 return 0;
1139fail:
84db5ccf 1140 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1141 return ret;
1142}
1143
a98db0f3
JB
1144static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1145 u64 root_id)
cb517eab
MX
1146{
1147 struct btrfs_root *root;
1148
fc7cbcd4
DS
1149 spin_lock(&fs_info->fs_roots_radix_lock);
1150 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1151 (unsigned long)root_id);
25ac047c 1152 root = btrfs_grab_root(root);
fc7cbcd4 1153 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1154 return root;
1155}
1156
49d11bea
JB
1157static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1158 u64 objectid)
1159{
abed4aaa
JB
1160 struct btrfs_key key = {
1161 .objectid = objectid,
1162 .type = BTRFS_ROOT_ITEM_KEY,
1163 .offset = 0,
1164 };
1165
e91909aa
CH
1166 switch (objectid) {
1167 case BTRFS_ROOT_TREE_OBJECTID:
49d11bea 1168 return btrfs_grab_root(fs_info->tree_root);
e91909aa 1169 case BTRFS_EXTENT_TREE_OBJECTID:
abed4aaa 1170 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1171 case BTRFS_CHUNK_TREE_OBJECTID:
49d11bea 1172 return btrfs_grab_root(fs_info->chunk_root);
e91909aa 1173 case BTRFS_DEV_TREE_OBJECTID:
49d11bea 1174 return btrfs_grab_root(fs_info->dev_root);
e91909aa 1175 case BTRFS_CSUM_TREE_OBJECTID:
abed4aaa 1176 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1177 case BTRFS_QUOTA_TREE_OBJECTID:
85724171 1178 return btrfs_grab_root(fs_info->quota_root);
e91909aa 1179 case BTRFS_UUID_TREE_OBJECTID:
85724171 1180 return btrfs_grab_root(fs_info->uuid_root);
e91909aa 1181 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
85724171 1182 return btrfs_grab_root(fs_info->block_group_root);
e91909aa 1183 case BTRFS_FREE_SPACE_TREE_OBJECTID:
85724171 1184 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa
CH
1185 default:
1186 return NULL;
1187 }
49d11bea
JB
1188}
1189
cb517eab
MX
1190int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1191 struct btrfs_root *root)
1192{
1193 int ret;
1194
fc7cbcd4
DS
1195 ret = radix_tree_preload(GFP_NOFS);
1196 if (ret)
1197 return ret;
1198
1199 spin_lock(&fs_info->fs_roots_radix_lock);
1200 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1201 (unsigned long)root->root_key.objectid,
1202 root);
af01d2e5 1203 if (ret == 0) {
00246528 1204 btrfs_grab_root(root);
fc7cbcd4 1205 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1206 }
fc7cbcd4
DS
1207 spin_unlock(&fs_info->fs_roots_radix_lock);
1208 radix_tree_preload_end();
cb517eab
MX
1209
1210 return ret;
1211}
1212
bd647ce3
JB
1213void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1214{
1215#ifdef CONFIG_BTRFS_DEBUG
1216 struct btrfs_root *root;
1217
1218 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1219 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1220
bd647ce3
JB
1221 root = list_first_entry(&fs_info->allocated_roots,
1222 struct btrfs_root, leak_list);
457f1864 1223 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1224 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1225 refcount_read(&root->refs));
1226 while (refcount_read(&root->refs) > 1)
00246528
JB
1227 btrfs_put_root(root);
1228 btrfs_put_root(root);
bd647ce3
JB
1229 }
1230#endif
1231}
1232
abed4aaa
JB
1233static void free_global_roots(struct btrfs_fs_info *fs_info)
1234{
1235 struct btrfs_root *root;
1236 struct rb_node *node;
1237
1238 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1239 root = rb_entry(node, struct btrfs_root, rb_node);
1240 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1241 btrfs_put_root(root);
1242 }
1243}
1244
0d4b0463
JB
1245void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1246{
141386e1
JB
1247 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1248 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1249 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1250 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1251 btrfs_free_csum_hash(fs_info);
1252 btrfs_free_stripe_hash_table(fs_info);
1253 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1254 kfree(fs_info->balance_ctl);
1255 kfree(fs_info->delayed_root);
abed4aaa 1256 free_global_roots(fs_info);
00246528
JB
1257 btrfs_put_root(fs_info->tree_root);
1258 btrfs_put_root(fs_info->chunk_root);
1259 btrfs_put_root(fs_info->dev_root);
00246528
JB
1260 btrfs_put_root(fs_info->quota_root);
1261 btrfs_put_root(fs_info->uuid_root);
00246528 1262 btrfs_put_root(fs_info->fs_root);
aeb935a4 1263 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1264 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1265 btrfs_check_leaked_roots(fs_info);
3fd63727 1266 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1267 kfree(fs_info->super_copy);
1268 kfree(fs_info->super_for_commit);
8481dd80 1269 kfree(fs_info->subpage_info);
0d4b0463
JB
1270 kvfree(fs_info);
1271}
1272
1273
2dfb1e43
QW
1274/*
1275 * Get an in-memory reference of a root structure.
1276 *
1277 * For essential trees like root/extent tree, we grab it from fs_info directly.
1278 * For subvolume trees, we check the cached filesystem roots first. If not
1279 * found, then read it from disk and add it to cached fs roots.
1280 *
1281 * Caller should release the root by calling btrfs_put_root() after the usage.
1282 *
1283 * NOTE: Reloc and log trees can't be read by this function as they share the
1284 * same root objectid.
1285 *
1286 * @objectid: root id
1287 * @anon_dev: preallocated anonymous block device number for new roots,
1288 * pass 0 for new allocation.
1289 * @check_ref: whether to check root item references, If true, return -ENOENT
1290 * for orphan roots
1291 */
1292static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1293 u64 objectid, dev_t anon_dev,
1294 bool check_ref)
5eda7b5e
CM
1295{
1296 struct btrfs_root *root;
381cf658 1297 struct btrfs_path *path;
1d4c08e0 1298 struct btrfs_key key;
5eda7b5e
CM
1299 int ret;
1300
49d11bea
JB
1301 root = btrfs_get_global_root(fs_info, objectid);
1302 if (root)
1303 return root;
773e722a
QW
1304
1305 /*
1306 * If we're called for non-subvolume trees, and above function didn't
1307 * find one, do not try to read it from disk.
1308 *
1309 * This is namely for free-space-tree and quota tree, which can change
1310 * at runtime and should only be grabbed from fs_info.
1311 */
1312 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1313 return ERR_PTR(-ENOENT);
4df27c4d 1314again:
56e9357a 1315 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1316 if (root) {
2dfb1e43
QW
1317 /* Shouldn't get preallocated anon_dev for cached roots */
1318 ASSERT(!anon_dev);
bc44d7c4 1319 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1320 btrfs_put_root(root);
48475471 1321 return ERR_PTR(-ENOENT);
bc44d7c4 1322 }
5eda7b5e 1323 return root;
48475471 1324 }
5eda7b5e 1325
56e9357a
DS
1326 key.objectid = objectid;
1327 key.type = BTRFS_ROOT_ITEM_KEY;
1328 key.offset = (u64)-1;
1329 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1330 if (IS_ERR(root))
1331 return root;
3394e160 1332
c00869f1 1333 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1334 ret = -ENOENT;
581bb050 1335 goto fail;
35a30d7c 1336 }
581bb050 1337
2dfb1e43 1338 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1339 if (ret)
1340 goto fail;
3394e160 1341
381cf658
DS
1342 path = btrfs_alloc_path();
1343 if (!path) {
1344 ret = -ENOMEM;
1345 goto fail;
1346 }
1d4c08e0
DS
1347 key.objectid = BTRFS_ORPHAN_OBJECTID;
1348 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1349 key.offset = objectid;
1d4c08e0
DS
1350
1351 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1352 btrfs_free_path(path);
d68fc57b
YZ
1353 if (ret < 0)
1354 goto fail;
1355 if (ret == 0)
27cdeb70 1356 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1357
cb517eab 1358 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1359 if (ret) {
168a2f77
JJB
1360 if (ret == -EEXIST) {
1361 btrfs_put_root(root);
4df27c4d 1362 goto again;
168a2f77 1363 }
4df27c4d 1364 goto fail;
0f7d52f4 1365 }
edbd8d4e 1366 return root;
4df27c4d 1367fail:
33fab972
FM
1368 /*
1369 * If our caller provided us an anonymous device, then it's his
143823cf 1370 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1371 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1372 * and once again by our caller.
1373 */
1374 if (anon_dev)
1375 root->anon_dev = 0;
8c38938c 1376 btrfs_put_root(root);
4df27c4d 1377 return ERR_PTR(ret);
edbd8d4e
CM
1378}
1379
2dfb1e43
QW
1380/*
1381 * Get in-memory reference of a root structure
1382 *
1383 * @objectid: tree objectid
1384 * @check_ref: if set, verify that the tree exists and the item has at least
1385 * one reference
1386 */
1387struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1388 u64 objectid, bool check_ref)
1389{
1390 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1391}
1392
1393/*
1394 * Get in-memory reference of a root structure, created as new, optionally pass
1395 * the anonymous block device id
1396 *
1397 * @objectid: tree objectid
1398 * @anon_dev: if zero, allocate a new anonymous block device or use the
1399 * parameter value
1400 */
1401struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1402 u64 objectid, dev_t anon_dev)
1403{
1404 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1405}
1406
49d11bea
JB
1407/*
1408 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1409 * @fs_info: the fs_info
1410 * @objectid: the objectid we need to lookup
1411 *
1412 * This is exclusively used for backref walking, and exists specifically because
1413 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1414 * creation time, which means we may have to read the tree_root in order to look
1415 * up a fs root that is not in memory. If the root is not in memory we will
1416 * read the tree root commit root and look up the fs root from there. This is a
1417 * temporary root, it will not be inserted into the radix tree as it doesn't
1418 * have the most uptodate information, it'll simply be discarded once the
1419 * backref code is finished using the root.
1420 */
1421struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1422 struct btrfs_path *path,
1423 u64 objectid)
1424{
1425 struct btrfs_root *root;
1426 struct btrfs_key key;
1427
1428 ASSERT(path->search_commit_root && path->skip_locking);
1429
1430 /*
1431 * This can return -ENOENT if we ask for a root that doesn't exist, but
1432 * since this is called via the backref walking code we won't be looking
1433 * up a root that doesn't exist, unless there's corruption. So if root
1434 * != NULL just return it.
1435 */
1436 root = btrfs_get_global_root(fs_info, objectid);
1437 if (root)
1438 return root;
1439
1440 root = btrfs_lookup_fs_root(fs_info, objectid);
1441 if (root)
1442 return root;
1443
1444 key.objectid = objectid;
1445 key.type = BTRFS_ROOT_ITEM_KEY;
1446 key.offset = (u64)-1;
1447 root = read_tree_root_path(fs_info->tree_root, path, &key);
1448 btrfs_release_path(path);
1449
1450 return root;
1451}
1452
a74a4b97
CM
1453static int cleaner_kthread(void *arg)
1454{
0d031dc4 1455 struct btrfs_fs_info *fs_info = arg;
d0278245 1456 int again;
a74a4b97 1457
d6fd0ae2 1458 while (1) {
d0278245 1459 again = 0;
a74a4b97 1460
fd340d0f
JB
1461 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1462
d0278245 1463 /* Make the cleaner go to sleep early. */
2ff7e61e 1464 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1465 goto sleep;
1466
90c711ab
ZB
1467 /*
1468 * Do not do anything if we might cause open_ctree() to block
1469 * before we have finished mounting the filesystem.
1470 */
0b246afa 1471 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1472 goto sleep;
1473
0b246afa 1474 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1475 goto sleep;
1476
dc7f370c
MX
1477 /*
1478 * Avoid the problem that we change the status of the fs
1479 * during the above check and trylock.
1480 */
2ff7e61e 1481 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1482 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1483 goto sleep;
76dda93c 1484 }
a74a4b97 1485
b7625f46
QW
1486 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1487 btrfs_sysfs_feature_update(fs_info);
1488
2ff7e61e 1489 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1490
33c44184 1491 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1492 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1493
1494 /*
05323cd1
MX
1495 * The defragger has dealt with the R/O remount and umount,
1496 * needn't do anything special here.
d0278245 1497 */
0b246afa 1498 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1499
1500 /*
f3372065 1501 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1502 * with relocation (btrfs_relocate_chunk) and relocation
1503 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1504 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1505 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1506 * unused block groups.
1507 */
0b246afa 1508 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1509
1510 /*
1511 * Reclaim block groups in the reclaim_bgs list after we deleted
1512 * all unused block_groups. This possibly gives us some more free
1513 * space.
1514 */
1515 btrfs_reclaim_bgs(fs_info);
d0278245 1516sleep:
a0a1db70 1517 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1518 if (kthread_should_park())
1519 kthread_parkme();
1520 if (kthread_should_stop())
1521 return 0;
838fe188 1522 if (!again) {
a74a4b97 1523 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1524 schedule();
a74a4b97
CM
1525 __set_current_state(TASK_RUNNING);
1526 }
da288d28 1527 }
a74a4b97
CM
1528}
1529
1530static int transaction_kthread(void *arg)
1531{
1532 struct btrfs_root *root = arg;
0b246afa 1533 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1534 struct btrfs_trans_handle *trans;
1535 struct btrfs_transaction *cur;
8929ecfa 1536 u64 transid;
643900be 1537 time64_t delta;
a74a4b97 1538 unsigned long delay;
914b2007 1539 bool cannot_commit;
a74a4b97
CM
1540
1541 do {
914b2007 1542 cannot_commit = false;
ba1bc00f 1543 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1544 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1545
0b246afa
JM
1546 spin_lock(&fs_info->trans_lock);
1547 cur = fs_info->running_transaction;
a74a4b97 1548 if (!cur) {
0b246afa 1549 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1550 goto sleep;
1551 }
31153d81 1552
643900be 1553 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1554 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1555 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1556 delta < fs_info->commit_interval) {
0b246afa 1557 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1558 delay -= msecs_to_jiffies((delta - 1) * 1000);
1559 delay = min(delay,
1560 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1561 goto sleep;
1562 }
8929ecfa 1563 transid = cur->transid;
0b246afa 1564 spin_unlock(&fs_info->trans_lock);
56bec294 1565
79787eaa 1566 /* If the file system is aborted, this will always fail. */
354aa0fb 1567 trans = btrfs_attach_transaction(root);
914b2007 1568 if (IS_ERR(trans)) {
354aa0fb
MX
1569 if (PTR_ERR(trans) != -ENOENT)
1570 cannot_commit = true;
79787eaa 1571 goto sleep;
914b2007 1572 }
8929ecfa 1573 if (transid == trans->transid) {
3a45bb20 1574 btrfs_commit_transaction(trans);
8929ecfa 1575 } else {
3a45bb20 1576 btrfs_end_transaction(trans);
8929ecfa 1577 }
a74a4b97 1578sleep:
0b246afa
JM
1579 wake_up_process(fs_info->cleaner_kthread);
1580 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1581
84961539 1582 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1583 btrfs_cleanup_transaction(fs_info);
ce63f891 1584 if (!kthread_should_stop() &&
0b246afa 1585 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1586 cannot_commit))
bc5511d0 1587 schedule_timeout_interruptible(delay);
a74a4b97
CM
1588 } while (!kthread_should_stop());
1589 return 0;
1590}
1591
af31f5e5 1592/*
01f0f9da
NB
1593 * This will find the highest generation in the array of root backups. The
1594 * index of the highest array is returned, or -EINVAL if we can't find
1595 * anything.
af31f5e5
CM
1596 *
1597 * We check to make sure the array is valid by comparing the
1598 * generation of the latest root in the array with the generation
1599 * in the super block. If they don't match we pitch it.
1600 */
01f0f9da 1601static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1602{
01f0f9da 1603 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1604 u64 cur;
af31f5e5
CM
1605 struct btrfs_root_backup *root_backup;
1606 int i;
1607
1608 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1609 root_backup = info->super_copy->super_roots + i;
1610 cur = btrfs_backup_tree_root_gen(root_backup);
1611 if (cur == newest_gen)
01f0f9da 1612 return i;
af31f5e5
CM
1613 }
1614
01f0f9da 1615 return -EINVAL;
af31f5e5
CM
1616}
1617
af31f5e5
CM
1618/*
1619 * copy all the root pointers into the super backup array.
1620 * this will bump the backup pointer by one when it is
1621 * done
1622 */
1623static void backup_super_roots(struct btrfs_fs_info *info)
1624{
6ef108dd 1625 const int next_backup = info->backup_root_index;
af31f5e5 1626 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1627
1628 root_backup = info->super_for_commit->super_roots + next_backup;
1629
1630 /*
1631 * make sure all of our padding and empty slots get zero filled
1632 * regardless of which ones we use today
1633 */
1634 memset(root_backup, 0, sizeof(*root_backup));
1635
1636 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1637
1638 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1639 btrfs_set_backup_tree_root_gen(root_backup,
1640 btrfs_header_generation(info->tree_root->node));
1641
1642 btrfs_set_backup_tree_root_level(root_backup,
1643 btrfs_header_level(info->tree_root->node));
1644
1645 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1646 btrfs_set_backup_chunk_root_gen(root_backup,
1647 btrfs_header_generation(info->chunk_root->node));
1648 btrfs_set_backup_chunk_root_level(root_backup,
1649 btrfs_header_level(info->chunk_root->node));
1650
1c56ab99 1651 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1652 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1653 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1654
1655 btrfs_set_backup_extent_root(root_backup,
1656 extent_root->node->start);
1657 btrfs_set_backup_extent_root_gen(root_backup,
1658 btrfs_header_generation(extent_root->node));
1659 btrfs_set_backup_extent_root_level(root_backup,
1660 btrfs_header_level(extent_root->node));
f7238e50
JB
1661
1662 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1663 btrfs_set_backup_csum_root_gen(root_backup,
1664 btrfs_header_generation(csum_root->node));
1665 btrfs_set_backup_csum_root_level(root_backup,
1666 btrfs_header_level(csum_root->node));
9c54e80d 1667 }
af31f5e5 1668
7c7e82a7
CM
1669 /*
1670 * we might commit during log recovery, which happens before we set
1671 * the fs_root. Make sure it is valid before we fill it in.
1672 */
1673 if (info->fs_root && info->fs_root->node) {
1674 btrfs_set_backup_fs_root(root_backup,
1675 info->fs_root->node->start);
1676 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1677 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1678 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1679 btrfs_header_level(info->fs_root->node));
7c7e82a7 1680 }
af31f5e5
CM
1681
1682 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1683 btrfs_set_backup_dev_root_gen(root_backup,
1684 btrfs_header_generation(info->dev_root->node));
1685 btrfs_set_backup_dev_root_level(root_backup,
1686 btrfs_header_level(info->dev_root->node));
1687
af31f5e5
CM
1688 btrfs_set_backup_total_bytes(root_backup,
1689 btrfs_super_total_bytes(info->super_copy));
1690 btrfs_set_backup_bytes_used(root_backup,
1691 btrfs_super_bytes_used(info->super_copy));
1692 btrfs_set_backup_num_devices(root_backup,
1693 btrfs_super_num_devices(info->super_copy));
1694
1695 /*
1696 * if we don't copy this out to the super_copy, it won't get remembered
1697 * for the next commit
1698 */
1699 memcpy(&info->super_copy->super_roots,
1700 &info->super_for_commit->super_roots,
1701 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1702}
1703
bd2336b2
NB
1704/*
1705 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1706 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1707 *
1708 * fs_info - filesystem whose backup roots need to be read
1709 * priority - priority of backup root required
1710 *
1711 * Returns backup root index on success and -EINVAL otherwise.
1712 */
1713static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1714{
1715 int backup_index = find_newest_super_backup(fs_info);
1716 struct btrfs_super_block *super = fs_info->super_copy;
1717 struct btrfs_root_backup *root_backup;
1718
1719 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1720 if (priority == 0)
1721 return backup_index;
1722
1723 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1724 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1725 } else {
1726 return -EINVAL;
1727 }
1728
1729 root_backup = super->super_roots + backup_index;
1730
1731 btrfs_set_super_generation(super,
1732 btrfs_backup_tree_root_gen(root_backup));
1733 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1734 btrfs_set_super_root_level(super,
1735 btrfs_backup_tree_root_level(root_backup));
1736 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1737
1738 /*
1739 * Fixme: the total bytes and num_devices need to match or we should
1740 * need a fsck
1741 */
1742 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1743 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1744
1745 return backup_index;
1746}
1747
7abadb64
LB
1748/* helper to cleanup workers */
1749static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1750{
dc6e3209 1751 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1752 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1753 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
1754 if (fs_info->endio_workers)
1755 destroy_workqueue(fs_info->endio_workers);
385de0ef
CH
1756 if (fs_info->rmw_workers)
1757 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
1758 if (fs_info->compressed_write_workers)
1759 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
1760 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1761 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1762 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1763 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 1764 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1765 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1766 if (fs_info->discard_ctl.discard_workers)
1767 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1768 /*
1769 * Now that all other work queues are destroyed, we can safely destroy
1770 * the queues used for metadata I/O, since tasks from those other work
1771 * queues can do metadata I/O operations.
1772 */
d7b9416f
CH
1773 if (fs_info->endio_meta_workers)
1774 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
1775}
1776
2e9f5954
R
1777static void free_root_extent_buffers(struct btrfs_root *root)
1778{
1779 if (root) {
1780 free_extent_buffer(root->node);
1781 free_extent_buffer(root->commit_root);
1782 root->node = NULL;
1783 root->commit_root = NULL;
1784 }
1785}
1786
abed4aaa
JB
1787static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1788{
1789 struct btrfs_root *root, *tmp;
1790
1791 rbtree_postorder_for_each_entry_safe(root, tmp,
1792 &fs_info->global_root_tree,
1793 rb_node)
1794 free_root_extent_buffers(root);
1795}
1796
af31f5e5 1797/* helper to cleanup tree roots */
4273eaff 1798static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1799{
2e9f5954 1800 free_root_extent_buffers(info->tree_root);
655b09fe 1801
abed4aaa 1802 free_global_root_pointers(info);
2e9f5954 1803 free_root_extent_buffers(info->dev_root);
2e9f5954
R
1804 free_root_extent_buffers(info->quota_root);
1805 free_root_extent_buffers(info->uuid_root);
8c38938c 1806 free_root_extent_buffers(info->fs_root);
aeb935a4 1807 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 1808 free_root_extent_buffers(info->block_group_root);
4273eaff 1809 if (free_chunk_root)
2e9f5954 1810 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
1811}
1812
8c38938c
JB
1813void btrfs_put_root(struct btrfs_root *root)
1814{
1815 if (!root)
1816 return;
1817
1818 if (refcount_dec_and_test(&root->refs)) {
1819 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 1820 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
1821 if (root->anon_dev)
1822 free_anon_bdev(root->anon_dev);
923eb523 1823 free_root_extent_buffers(root);
8c38938c 1824#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 1825 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 1826 list_del_init(&root->leak_list);
fc7cbcd4 1827 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
1828#endif
1829 kfree(root);
1830 }
1831}
1832
faa2dbf0 1833void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 1834{
fc7cbcd4
DS
1835 int ret;
1836 struct btrfs_root *gang[8];
1837 int i;
171f6537
JB
1838
1839 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
1840 gang[0] = list_entry(fs_info->dead_roots.next,
1841 struct btrfs_root, root_list);
1842 list_del(&gang[0]->root_list);
171f6537 1843
fc7cbcd4
DS
1844 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1845 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1846 btrfs_put_root(gang[0]);
171f6537
JB
1847 }
1848
fc7cbcd4
DS
1849 while (1) {
1850 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1851 (void **)gang, 0,
1852 ARRAY_SIZE(gang));
1853 if (!ret)
1854 break;
1855 for (i = 0; i < ret; i++)
1856 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
1857 }
1858}
af31f5e5 1859
638aa7ed
ES
1860static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1861{
1862 mutex_init(&fs_info->scrub_lock);
1863 atomic_set(&fs_info->scrubs_running, 0);
1864 atomic_set(&fs_info->scrub_pause_req, 0);
1865 atomic_set(&fs_info->scrubs_paused, 0);
1866 atomic_set(&fs_info->scrub_cancel_req, 0);
1867 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 1868 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
1869}
1870
779a65a4
ES
1871static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1872{
1873 spin_lock_init(&fs_info->balance_lock);
1874 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
1875 atomic_set(&fs_info->balance_pause_req, 0);
1876 atomic_set(&fs_info->balance_cancel_req, 0);
1877 fs_info->balance_ctl = NULL;
1878 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 1879 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
1880}
1881
dcb2137c 1882static int btrfs_init_btree_inode(struct super_block *sb)
f37938e0 1883{
dcb2137c 1884 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
e256927b
JB
1885 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1886 fs_info->tree_root);
dcb2137c
CH
1887 struct inode *inode;
1888
1889 inode = new_inode(sb);
1890 if (!inode)
1891 return -ENOMEM;
2ff7e61e
JM
1892
1893 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1894 set_nlink(inode, 1);
f37938e0
ES
1895 /*
1896 * we set the i_size on the btree inode to the max possible int.
1897 * the real end of the address space is determined by all of
1898 * the devices in the system
1899 */
2ff7e61e
JM
1900 inode->i_size = OFFSET_MAX;
1901 inode->i_mapping->a_ops = &btree_aops;
dcb2137c 1902 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
f37938e0 1903
2ff7e61e 1904 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 1905 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
35da5a7e 1906 IO_TREE_BTREE_INODE_IO);
2ff7e61e 1907 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 1908
5c8fd99f 1909 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
1910 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1911 BTRFS_I(inode)->location.type = 0;
1912 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 1913 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 1914 __insert_inode_hash(inode, hash);
dcb2137c
CH
1915 fs_info->btree_inode = inode;
1916
1917 return 0;
f37938e0
ES
1918}
1919
ad618368
ES
1920static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1921{
ad618368 1922 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 1923 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 1924 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
1925}
1926
f9e92e40
ES
1927static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1928{
1929 spin_lock_init(&fs_info->qgroup_lock);
1930 mutex_init(&fs_info->qgroup_ioctl_lock);
1931 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
1932 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1933 fs_info->qgroup_seq = 1;
f9e92e40 1934 fs_info->qgroup_ulist = NULL;
d2c609b8 1935 fs_info->qgroup_rescan_running = false;
011b46c3 1936 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
1937 mutex_init(&fs_info->qgroup_rescan_lock);
1938}
1939
d21deec5 1940static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 1941{
f7b885be 1942 u32 max_active = fs_info->thread_pool_size;
6f011058 1943 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
58e814fc 1944 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
2a458198
ES
1945
1946 fs_info->workers =
a31b4a43 1947 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2a458198
ES
1948
1949 fs_info->delalloc_workers =
cb001095
JM
1950 btrfs_alloc_workqueue(fs_info, "delalloc",
1951 flags, max_active, 2);
2a458198
ES
1952
1953 fs_info->flush_workers =
cb001095
JM
1954 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1955 flags, max_active, 0);
2a458198
ES
1956
1957 fs_info->caching_workers =
cb001095 1958 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 1959
2a458198 1960 fs_info->fixup_workers =
58e814fc 1961 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
2a458198 1962
2a458198 1963 fs_info->endio_workers =
d7b9416f 1964 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 1965 fs_info->endio_meta_workers =
d7b9416f 1966 alloc_workqueue("btrfs-endio-meta", flags, max_active);
385de0ef 1967 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 1968 fs_info->endio_write_workers =
cb001095
JM
1969 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1970 max_active, 2);
fed8a72d
CH
1971 fs_info->compressed_write_workers =
1972 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 1973 fs_info->endio_freespace_worker =
cb001095
JM
1974 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1975 max_active, 0);
2a458198 1976 fs_info->delayed_workers =
cb001095
JM
1977 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1978 max_active, 0);
2a458198 1979 fs_info->qgroup_rescan_workers =
58e814fc
TH
1980 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1981 ordered_flags);
b0643e59 1982 fs_info->discard_ctl.discard_workers =
58e814fc 1983 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2a458198 1984
8bfec2e4 1985 if (!(fs_info->workers &&
a31b4a43 1986 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 1987 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 1988 fs_info->compressed_write_workers &&
1a1a2851 1989 fs_info->endio_write_workers &&
2a458198 1990 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
1991 fs_info->caching_workers && fs_info->fixup_workers &&
1992 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 1993 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
1994 return -ENOMEM;
1995 }
1996
1997 return 0;
1998}
1999
6d97c6e3
JT
2000static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2001{
2002 struct crypto_shash *csum_shash;
b4e967be 2003 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2004
b4e967be 2005 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2006
2007 if (IS_ERR(csum_shash)) {
2008 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2009 csum_driver);
6d97c6e3
JT
2010 return PTR_ERR(csum_shash);
2011 }
2012
2013 fs_info->csum_shash = csum_shash;
2014
68d99ab0
CH
2015 /*
2016 * Check if the checksum implementation is a fast accelerated one.
2017 * As-is this is a bit of a hack and should be replaced once the csum
2018 * implementations provide that information themselves.
2019 */
2020 switch (csum_type) {
2021 case BTRFS_CSUM_TYPE_CRC32:
2022 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2023 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2024 break;
efcfcbc6
DS
2025 case BTRFS_CSUM_TYPE_XXHASH:
2026 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2027 break;
68d99ab0
CH
2028 default:
2029 break;
2030 }
2031
c8a5f8ca
DS
2032 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2033 btrfs_super_csum_name(csum_type),
2034 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2035 return 0;
2036}
2037
63443bf5
ES
2038static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2039 struct btrfs_fs_devices *fs_devices)
2040{
2041 int ret;
789d6a3a 2042 struct btrfs_tree_parent_check check = { 0 };
63443bf5
ES
2043 struct btrfs_root *log_tree_root;
2044 struct btrfs_super_block *disk_super = fs_info->super_copy;
2045 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2046 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2047
2048 if (fs_devices->rw_devices == 0) {
f14d104d 2049 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2050 return -EIO;
2051 }
2052
96dfcb46
JB
2053 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2054 GFP_KERNEL);
63443bf5
ES
2055 if (!log_tree_root)
2056 return -ENOMEM;
2057
789d6a3a
QW
2058 check.level = level;
2059 check.transid = fs_info->generation + 1;
2060 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2061 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
64c043de 2062 if (IS_ERR(log_tree_root->node)) {
f14d104d 2063 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2064 ret = PTR_ERR(log_tree_root->node);
8c38938c 2065 log_tree_root->node = NULL;
00246528 2066 btrfs_put_root(log_tree_root);
0eeff236 2067 return ret;
4eb150d6
QW
2068 }
2069 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2070 btrfs_err(fs_info, "failed to read log tree");
00246528 2071 btrfs_put_root(log_tree_root);
63443bf5
ES
2072 return -EIO;
2073 }
4eb150d6 2074
63443bf5
ES
2075 /* returns with log_tree_root freed on success */
2076 ret = btrfs_recover_log_trees(log_tree_root);
2077 if (ret) {
0b246afa
JM
2078 btrfs_handle_fs_error(fs_info, ret,
2079 "Failed to recover log tree");
00246528 2080 btrfs_put_root(log_tree_root);
63443bf5
ES
2081 return ret;
2082 }
2083
bc98a42c 2084 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2085 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2086 if (ret)
2087 return ret;
2088 }
2089
2090 return 0;
2091}
2092
abed4aaa
JB
2093static int load_global_roots_objectid(struct btrfs_root *tree_root,
2094 struct btrfs_path *path, u64 objectid,
2095 const char *name)
2096{
2097 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2098 struct btrfs_root *root;
f7238e50 2099 u64 max_global_id = 0;
abed4aaa
JB
2100 int ret;
2101 struct btrfs_key key = {
2102 .objectid = objectid,
2103 .type = BTRFS_ROOT_ITEM_KEY,
2104 .offset = 0,
2105 };
2106 bool found = false;
2107
2108 /* If we have IGNOREDATACSUMS skip loading these roots. */
2109 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2110 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2111 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2112 return 0;
2113 }
2114
2115 while (1) {
2116 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2117 if (ret < 0)
2118 break;
2119
2120 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2121 ret = btrfs_next_leaf(tree_root, path);
2122 if (ret) {
2123 if (ret > 0)
2124 ret = 0;
2125 break;
2126 }
2127 }
2128 ret = 0;
2129
2130 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2131 if (key.objectid != objectid)
2132 break;
2133 btrfs_release_path(path);
2134
f7238e50
JB
2135 /*
2136 * Just worry about this for extent tree, it'll be the same for
2137 * everybody.
2138 */
2139 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2140 max_global_id = max(max_global_id, key.offset);
2141
abed4aaa
JB
2142 found = true;
2143 root = read_tree_root_path(tree_root, path, &key);
2144 if (IS_ERR(root)) {
2145 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2146 ret = PTR_ERR(root);
2147 break;
2148 }
2149 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2150 ret = btrfs_global_root_insert(root);
2151 if (ret) {
2152 btrfs_put_root(root);
2153 break;
2154 }
2155 key.offset++;
2156 }
2157 btrfs_release_path(path);
2158
f7238e50
JB
2159 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2160 fs_info->nr_global_roots = max_global_id + 1;
2161
abed4aaa
JB
2162 if (!found || ret) {
2163 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2164 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2165
2166 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2167 ret = ret ? ret : -ENOENT;
2168 else
2169 ret = 0;
2170 btrfs_err(fs_info, "failed to load root %s", name);
2171 }
2172 return ret;
2173}
2174
2175static int load_global_roots(struct btrfs_root *tree_root)
2176{
2177 struct btrfs_path *path;
2178 int ret = 0;
2179
2180 path = btrfs_alloc_path();
2181 if (!path)
2182 return -ENOMEM;
2183
2184 ret = load_global_roots_objectid(tree_root, path,
2185 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2186 if (ret)
2187 goto out;
2188 ret = load_global_roots_objectid(tree_root, path,
2189 BTRFS_CSUM_TREE_OBJECTID, "csum");
2190 if (ret)
2191 goto out;
2192 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2193 goto out;
2194 ret = load_global_roots_objectid(tree_root, path,
2195 BTRFS_FREE_SPACE_TREE_OBJECTID,
2196 "free space");
2197out:
2198 btrfs_free_path(path);
2199 return ret;
2200}
2201
6bccf3ab 2202static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2203{
6bccf3ab 2204 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2205 struct btrfs_root *root;
4bbcaa64
ES
2206 struct btrfs_key location;
2207 int ret;
2208
6bccf3ab
JM
2209 BUG_ON(!fs_info->tree_root);
2210
abed4aaa
JB
2211 ret = load_global_roots(tree_root);
2212 if (ret)
2213 return ret;
2214
4bbcaa64
ES
2215 location.type = BTRFS_ROOT_ITEM_KEY;
2216 location.offset = 0;
2217
1c56ab99 2218 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2219 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2220 root = btrfs_read_tree_root(tree_root, &location);
2221 if (IS_ERR(root)) {
2222 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2223 ret = PTR_ERR(root);
2224 goto out;
2225 }
2226 } else {
2227 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2228 fs_info->block_group_root = root;
2229 }
2230 }
2231
2232 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2233 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2234 if (IS_ERR(root)) {
42437a63
JB
2235 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2236 ret = PTR_ERR(root);
2237 goto out;
2238 }
2239 } else {
2240 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2241 fs_info->dev_root = root;
f50f4353 2242 }
820a49da 2243 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2244 ret = btrfs_init_devices_late(fs_info);
2245 if (ret)
2246 goto out;
4bbcaa64 2247
aeb935a4
QW
2248 /*
2249 * This tree can share blocks with some other fs tree during relocation
2250 * and we need a proper setup by btrfs_get_fs_root
2251 */
56e9357a
DS
2252 root = btrfs_get_fs_root(tree_root->fs_info,
2253 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2254 if (IS_ERR(root)) {
42437a63
JB
2255 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2256 ret = PTR_ERR(root);
2257 goto out;
2258 }
2259 } else {
2260 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2261 fs_info->data_reloc_root = root;
aeb935a4 2262 }
aeb935a4 2263
4bbcaa64 2264 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2265 root = btrfs_read_tree_root(tree_root, &location);
2266 if (!IS_ERR(root)) {
2267 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2268 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2269 fs_info->quota_root = root;
4bbcaa64
ES
2270 }
2271
2272 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2273 root = btrfs_read_tree_root(tree_root, &location);
2274 if (IS_ERR(root)) {
42437a63
JB
2275 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2276 ret = PTR_ERR(root);
2277 if (ret != -ENOENT)
2278 goto out;
2279 }
4bbcaa64 2280 } else {
a4f3d2c4
DS
2281 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2282 fs_info->uuid_root = root;
4bbcaa64
ES
2283 }
2284
2285 return 0;
f50f4353
LB
2286out:
2287 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2288 location.objectid, ret);
2289 return ret;
4bbcaa64
ES
2290}
2291
069ec957
QW
2292/*
2293 * Real super block validation
2294 * NOTE: super csum type and incompat features will not be checked here.
2295 *
2296 * @sb: super block to check
2297 * @mirror_num: the super block number to check its bytenr:
2298 * 0 the primary (1st) sb
2299 * 1, 2 2nd and 3rd backup copy
2300 * -1 skip bytenr check
2301 */
a05d3c91
QW
2302int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2303 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2304{
21a852b0
QW
2305 u64 nodesize = btrfs_super_nodesize(sb);
2306 u64 sectorsize = btrfs_super_sectorsize(sb);
2307 int ret = 0;
2308
2309 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2310 btrfs_err(fs_info, "no valid FS found");
2311 ret = -EINVAL;
2312 }
2313 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2314 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2315 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2316 ret = -EINVAL;
2317 }
2318 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2319 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2320 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2321 ret = -EINVAL;
2322 }
2323 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2324 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2325 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2326 ret = -EINVAL;
2327 }
2328 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2329 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2330 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2331 ret = -EINVAL;
2332 }
2333
2334 /*
2335 * Check sectorsize and nodesize first, other check will need it.
2336 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2337 */
2338 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2339 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2340 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2341 ret = -EINVAL;
2342 }
0bb3eb3e
QW
2343
2344 /*
1a42daab
QW
2345 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2346 *
2347 * We can support 16K sectorsize with 64K page size without problem,
2348 * but such sectorsize/pagesize combination doesn't make much sense.
2349 * 4K will be our future standard, PAGE_SIZE is supported from the very
2350 * beginning.
0bb3eb3e 2351 */
1a42daab 2352 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2353 btrfs_err(fs_info,
0bb3eb3e 2354 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2355 sectorsize, PAGE_SIZE);
2356 ret = -EINVAL;
2357 }
0bb3eb3e 2358
21a852b0
QW
2359 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2360 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2361 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2362 ret = -EINVAL;
2363 }
2364 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2365 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2366 le32_to_cpu(sb->__unused_leafsize), nodesize);
2367 ret = -EINVAL;
2368 }
2369
2370 /* Root alignment check */
2371 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2372 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2373 btrfs_super_root(sb));
2374 ret = -EINVAL;
2375 }
2376 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2377 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2378 btrfs_super_chunk_root(sb));
2379 ret = -EINVAL;
2380 }
2381 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2382 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2383 btrfs_super_log_root(sb));
2384 ret = -EINVAL;
2385 }
2386
d167aa76 2387 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2388 btrfs_err(fs_info,
2389 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
d167aa76 2390 sb->fsid, fs_info->fs_devices->fsid);
aefd7f70
NB
2391 ret = -EINVAL;
2392 }
2393
2394 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2395 memcmp(fs_info->fs_devices->metadata_uuid,
2396 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2397 btrfs_err(fs_info,
2398"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2399 fs_info->super_copy->metadata_uuid,
2400 fs_info->fs_devices->metadata_uuid);
2401 ret = -EINVAL;
2402 }
2403
25984a5a
AJ
2404 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2405 BTRFS_FSID_SIZE) != 0) {
2406 btrfs_err(fs_info,
2407 "dev_item UUID does not match metadata fsid: %pU != %pU",
2408 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2409 ret = -EINVAL;
2410 }
2411
1c56ab99
QW
2412 /*
2413 * Artificial requirement for block-group-tree to force newer features
2414 * (free-space-tree, no-holes) so the test matrix is smaller.
2415 */
2416 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2417 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2418 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2419 btrfs_err(fs_info,
2420 "block-group-tree feature requires fres-space-tree and no-holes");
2421 ret = -EINVAL;
2422 }
2423
21a852b0
QW
2424 /*
2425 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2426 * done later
2427 */
2428 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2429 btrfs_err(fs_info, "bytes_used is too small %llu",
2430 btrfs_super_bytes_used(sb));
2431 ret = -EINVAL;
2432 }
2433 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2434 btrfs_err(fs_info, "invalid stripesize %u",
2435 btrfs_super_stripesize(sb));
2436 ret = -EINVAL;
2437 }
2438 if (btrfs_super_num_devices(sb) > (1UL << 31))
2439 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2440 btrfs_super_num_devices(sb));
2441 if (btrfs_super_num_devices(sb) == 0) {
2442 btrfs_err(fs_info, "number of devices is 0");
2443 ret = -EINVAL;
2444 }
2445
069ec957
QW
2446 if (mirror_num >= 0 &&
2447 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2448 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2449 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2450 ret = -EINVAL;
2451 }
2452
2453 /*
2454 * Obvious sys_chunk_array corruptions, it must hold at least one key
2455 * and one chunk
2456 */
2457 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2458 btrfs_err(fs_info, "system chunk array too big %u > %u",
2459 btrfs_super_sys_array_size(sb),
2460 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2461 ret = -EINVAL;
2462 }
2463 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2464 + sizeof(struct btrfs_chunk)) {
2465 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2466 btrfs_super_sys_array_size(sb),
2467 sizeof(struct btrfs_disk_key)
2468 + sizeof(struct btrfs_chunk));
2469 ret = -EINVAL;
2470 }
2471
2472 /*
2473 * The generation is a global counter, we'll trust it more than the others
2474 * but it's still possible that it's the one that's wrong.
2475 */
2476 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2477 btrfs_warn(fs_info,
2478 "suspicious: generation < chunk_root_generation: %llu < %llu",
2479 btrfs_super_generation(sb),
2480 btrfs_super_chunk_root_generation(sb));
2481 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2482 && btrfs_super_cache_generation(sb) != (u64)-1)
2483 btrfs_warn(fs_info,
2484 "suspicious: generation < cache_generation: %llu < %llu",
2485 btrfs_super_generation(sb),
2486 btrfs_super_cache_generation(sb));
2487
2488 return ret;
2489}
2490
069ec957
QW
2491/*
2492 * Validation of super block at mount time.
2493 * Some checks already done early at mount time, like csum type and incompat
2494 * flags will be skipped.
2495 */
2496static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2497{
a05d3c91 2498 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2499}
2500
75cb857d
QW
2501/*
2502 * Validation of super block at write time.
2503 * Some checks like bytenr check will be skipped as their values will be
2504 * overwritten soon.
2505 * Extra checks like csum type and incompat flags will be done here.
2506 */
2507static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2508 struct btrfs_super_block *sb)
2509{
2510 int ret;
2511
a05d3c91 2512 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2513 if (ret < 0)
2514 goto out;
e7e16f48 2515 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2516 ret = -EUCLEAN;
2517 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2518 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2519 goto out;
2520 }
2521 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2522 ret = -EUCLEAN;
2523 btrfs_err(fs_info,
2524 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2525 btrfs_super_incompat_flags(sb),
2526 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2527 goto out;
2528 }
2529out:
2530 if (ret < 0)
2531 btrfs_err(fs_info,
2532 "super block corruption detected before writing it to disk");
2533 return ret;
2534}
2535
bd676446
JB
2536static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2537{
789d6a3a
QW
2538 struct btrfs_tree_parent_check check = {
2539 .level = level,
2540 .transid = gen,
2541 .owner_root = root->root_key.objectid
2542 };
bd676446
JB
2543 int ret = 0;
2544
789d6a3a 2545 root->node = read_tree_block(root->fs_info, bytenr, &check);
bd676446
JB
2546 if (IS_ERR(root->node)) {
2547 ret = PTR_ERR(root->node);
2548 root->node = NULL;
4eb150d6
QW
2549 return ret;
2550 }
2551 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2552 free_extent_buffer(root->node);
2553 root->node = NULL;
4eb150d6 2554 return -EIO;
bd676446
JB
2555 }
2556
bd676446
JB
2557 btrfs_set_root_node(&root->root_item, root->node);
2558 root->commit_root = btrfs_root_node(root);
2559 btrfs_set_root_refs(&root->root_item, 1);
2560 return ret;
2561}
2562
2563static int load_important_roots(struct btrfs_fs_info *fs_info)
2564{
2565 struct btrfs_super_block *sb = fs_info->super_copy;
2566 u64 gen, bytenr;
2567 int level, ret;
2568
2569 bytenr = btrfs_super_root(sb);
2570 gen = btrfs_super_generation(sb);
2571 level = btrfs_super_root_level(sb);
2572 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2573 if (ret) {
bd676446 2574 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2575 return ret;
2576 }
14033b08 2577 return 0;
bd676446
JB
2578}
2579
6ef108dd 2580static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2581{
6ef108dd 2582 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2583 struct btrfs_super_block *sb = fs_info->super_copy;
2584 struct btrfs_root *tree_root = fs_info->tree_root;
2585 bool handle_error = false;
2586 int ret = 0;
2587 int i;
2588
2589 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2590 if (handle_error) {
2591 if (!IS_ERR(tree_root->node))
2592 free_extent_buffer(tree_root->node);
2593 tree_root->node = NULL;
2594
2595 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2596 break;
2597
2598 free_root_pointers(fs_info, 0);
2599
2600 /*
2601 * Don't use the log in recovery mode, it won't be
2602 * valid
2603 */
2604 btrfs_set_super_log_root(sb, 0);
2605
2606 /* We can't trust the free space cache either */
2607 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2608
745806fb 2609 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
b8522a1e 2610 ret = read_backup_root(fs_info, i);
6ef108dd 2611 backup_index = ret;
b8522a1e
NB
2612 if (ret < 0)
2613 return ret;
2614 }
b8522a1e 2615
bd676446
JB
2616 ret = load_important_roots(fs_info);
2617 if (ret) {
217f5004 2618 handle_error = true;
b8522a1e
NB
2619 continue;
2620 }
2621
336a0d8d
NB
2622 /*
2623 * No need to hold btrfs_root::objectid_mutex since the fs
2624 * hasn't been fully initialised and we are the only user
2625 */
453e4873 2626 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2627 if (ret < 0) {
b8522a1e
NB
2628 handle_error = true;
2629 continue;
2630 }
2631
6b8fad57 2632 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2633
2634 ret = btrfs_read_roots(fs_info);
2635 if (ret < 0) {
2636 handle_error = true;
2637 continue;
2638 }
2639
2640 /* All successful */
bd676446
JB
2641 fs_info->generation = btrfs_header_generation(tree_root->node);
2642 fs_info->last_trans_committed = fs_info->generation;
d96b3424 2643 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2644
2645 /* Always begin writing backup roots after the one being used */
2646 if (backup_index < 0) {
2647 fs_info->backup_root_index = 0;
2648 } else {
2649 fs_info->backup_root_index = backup_index + 1;
2650 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2651 }
b8522a1e
NB
2652 break;
2653 }
2654
2655 return ret;
2656}
2657
8260edba 2658void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2659{
fc7cbcd4 2660 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2661 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2662 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2663 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2664 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2665 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2666 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2667 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2668 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2669 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2670 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2671 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2672 spin_lock_init(&fs_info->super_lock);
f28491e0 2673 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2674 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2675 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2676 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2677 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2678 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2679 rwlock_init(&fs_info->global_root_lock);
d7c15171 2680 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2681 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2682 mutex_init(&fs_info->reloc_mutex);
573bfb72 2683 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2684 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2685 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2686 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2687
e1489b4f 2688 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2689 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2690 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2691 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3e738c53
IA
2692 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2693 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2694 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2695 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2696 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2697 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2698 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2699 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 2700
0b86a832 2701 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2702 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2703 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2704 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2705 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 2706 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
2707#ifdef CONFIG_BTRFS_DEBUG
2708 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2709 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2710 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2711#endif
c8bf1b67 2712 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2713 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2714 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2715 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2716 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2717 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2718 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2719 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2720 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2721 BTRFS_BLOCK_RSV_DELREFS);
2722
771ed689 2723 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2724 atomic_set(&fs_info->defrag_running, 0);
034f784d 2725 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2726 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 2727 fs_info->global_root_tree = RB_ROOT;
95ac567a 2728 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2729 fs_info->metadata_ratio = 0;
4cb5300b 2730 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2731 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2732 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2733 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
fd708b81 2734 btrfs_init_ref_verify(fs_info);
c8b97818 2735
b34b086c
CM
2736 fs_info->thread_pool_size = min_t(unsigned long,
2737 num_online_cpus() + 2, 8);
0afbaf8c 2738
199c2a9c
MX
2739 INIT_LIST_HEAD(&fs_info->ordered_roots);
2740 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2741
638aa7ed 2742 btrfs_init_scrub(fs_info);
21adbd5c
SB
2743#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2744 fs_info->check_integrity_print_mask = 0;
2745#endif
779a65a4 2746 btrfs_init_balance(fs_info);
57056740 2747 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2748
16b0c258 2749 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 2750 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 2751
fe119a6e 2752 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
35da5a7e 2753 IO_TREE_FS_EXCLUDED_EXTENTS);
39279cc3 2754
5a3f23d5 2755 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2756 mutex_init(&fs_info->tree_log_mutex);
925baedd 2757 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2758 mutex_init(&fs_info->transaction_kthread_mutex);
2759 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2760 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2761 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2762 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2763 init_rwsem(&fs_info->subvol_sem);
803b2f54 2764 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2765
ad618368 2766 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2767 btrfs_init_qgroup(fs_info);
b0643e59 2768 btrfs_discard_init(fs_info);
416ac51d 2769
fa9c0d79
CM
2770 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2771 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2772
e6dcd2dc 2773 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2774 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2775 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2776 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2777 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2778
da17066c
JM
2779 /* Usable values until the real ones are cached from the superblock */
2780 fs_info->nodesize = 4096;
2781 fs_info->sectorsize = 4096;
ab108d99 2782 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2783 fs_info->stripesize = 4096;
2784
f7b12a62
NA
2785 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2786
eede2bf3
OS
2787 spin_lock_init(&fs_info->swapfile_pins_lock);
2788 fs_info->swapfile_pins = RB_ROOT;
2789
18bb8bbf
JT
2790 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2791 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
2792}
2793
2794static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2795{
2796 int ret;
2797
2798 fs_info->sb = sb;
2799 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2800 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2801
5deb17e1 2802 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 2803 if (ret)
c75e8394 2804 return ret;
ae18c37a
JB
2805
2806 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2807 if (ret)
c75e8394 2808 return ret;
ae18c37a
JB
2809
2810 fs_info->dirty_metadata_batch = PAGE_SIZE *
2811 (1 + ilog2(nr_cpu_ids));
2812
2813 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2814 if (ret)
c75e8394 2815 return ret;
ae18c37a
JB
2816
2817 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2818 GFP_KERNEL);
2819 if (ret)
c75e8394 2820 return ret;
ae18c37a
JB
2821
2822 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2823 GFP_KERNEL);
c75e8394
JB
2824 if (!fs_info->delayed_root)
2825 return -ENOMEM;
ae18c37a
JB
2826 btrfs_init_delayed_root(fs_info->delayed_root);
2827
a0a1db70
FM
2828 if (sb_rdonly(sb))
2829 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2830
c75e8394 2831 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2832}
2833
97f4dd09
NB
2834static int btrfs_uuid_rescan_kthread(void *data)
2835{
0d031dc4 2836 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
2837 int ret;
2838
2839 /*
2840 * 1st step is to iterate through the existing UUID tree and
2841 * to delete all entries that contain outdated data.
2842 * 2nd step is to add all missing entries to the UUID tree.
2843 */
2844 ret = btrfs_uuid_tree_iterate(fs_info);
2845 if (ret < 0) {
c94bec2c
JB
2846 if (ret != -EINTR)
2847 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2848 ret);
97f4dd09
NB
2849 up(&fs_info->uuid_tree_rescan_sem);
2850 return ret;
2851 }
2852 return btrfs_uuid_scan_kthread(data);
2853}
2854
2855static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2856{
2857 struct task_struct *task;
2858
2859 down(&fs_info->uuid_tree_rescan_sem);
2860 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2861 if (IS_ERR(task)) {
2862 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2863 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2864 up(&fs_info->uuid_tree_rescan_sem);
2865 return PTR_ERR(task);
2866 }
2867
2868 return 0;
2869}
2870
504b1596
FM
2871static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2872{
2873 u64 root_objectid = 0;
2874 struct btrfs_root *gang[8];
2875 int i = 0;
2876 int err = 0;
2877 unsigned int ret = 0;
2878
2879 while (1) {
2880 spin_lock(&fs_info->fs_roots_radix_lock);
2881 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2882 (void **)gang, root_objectid,
2883 ARRAY_SIZE(gang));
2884 if (!ret) {
2885 spin_unlock(&fs_info->fs_roots_radix_lock);
2886 break;
2887 }
2888 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2889
2890 for (i = 0; i < ret; i++) {
2891 /* Avoid to grab roots in dead_roots. */
2892 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2893 gang[i] = NULL;
2894 continue;
2895 }
2896 /* Grab all the search result for later use. */
2897 gang[i] = btrfs_grab_root(gang[i]);
2898 }
2899 spin_unlock(&fs_info->fs_roots_radix_lock);
2900
2901 for (i = 0; i < ret; i++) {
2902 if (!gang[i])
2903 continue;
2904 root_objectid = gang[i]->root_key.objectid;
2905 err = btrfs_orphan_cleanup(gang[i]);
2906 if (err)
2907 goto out;
2908 btrfs_put_root(gang[i]);
2909 }
2910 root_objectid++;
2911 }
2912out:
2913 /* Release the uncleaned roots due to error. */
2914 for (; i < ret; i++) {
2915 if (gang[i])
2916 btrfs_put_root(gang[i]);
2917 }
2918 return err;
2919}
2920
8cd29088
BB
2921/*
2922 * Some options only have meaning at mount time and shouldn't persist across
2923 * remounts, or be displayed. Clear these at the end of mount and remount
2924 * code paths.
2925 */
2926void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2927{
2928 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 2929 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
2930}
2931
44c0ca21
BB
2932/*
2933 * Mounting logic specific to read-write file systems. Shared by open_ctree
2934 * and btrfs_remount when remounting from read-only to read-write.
2935 */
2936int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2937{
2938 int ret;
94846229 2939 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1d6a4fc8 2940 bool rebuild_free_space_tree = false;
8b228324
BB
2941
2942 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2943 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1d6a4fc8 2944 rebuild_free_space_tree = true;
8b228324
BB
2945 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2946 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2947 btrfs_warn(fs_info, "free space tree is invalid");
1d6a4fc8 2948 rebuild_free_space_tree = true;
8b228324
BB
2949 }
2950
1d6a4fc8
QW
2951 if (rebuild_free_space_tree) {
2952 btrfs_info(fs_info, "rebuilding free space tree");
2953 ret = btrfs_rebuild_free_space_tree(fs_info);
8b228324
BB
2954 if (ret) {
2955 btrfs_warn(fs_info,
1d6a4fc8
QW
2956 "failed to rebuild free space tree: %d", ret);
2957 goto out;
2958 }
2959 }
2960
2961 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2962 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2963 btrfs_info(fs_info, "disabling free space tree");
2964 ret = btrfs_delete_free_space_tree(fs_info);
2965 if (ret) {
2966 btrfs_warn(fs_info,
2967 "failed to disable free space tree: %d", ret);
8b228324
BB
2968 goto out;
2969 }
2970 }
44c0ca21 2971
8d488a8c
FM
2972 /*
2973 * btrfs_find_orphan_roots() is responsible for finding all the dead
2974 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 2975 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
2976 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2977 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2978 * item before the root's tree is deleted - this means that if we unmount
2979 * or crash before the deletion completes, on the next mount we will not
2980 * delete what remains of the tree because the orphan item does not
2981 * exists anymore, which is what tells us we have a pending deletion.
2982 */
2983 ret = btrfs_find_orphan_roots(fs_info);
2984 if (ret)
2985 goto out;
2986
44c0ca21
BB
2987 ret = btrfs_cleanup_fs_roots(fs_info);
2988 if (ret)
2989 goto out;
2990
8f1c21d7
BB
2991 down_read(&fs_info->cleanup_work_sem);
2992 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2993 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2994 up_read(&fs_info->cleanup_work_sem);
2995 goto out;
2996 }
2997 up_read(&fs_info->cleanup_work_sem);
2998
44c0ca21 2999 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3000 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3001 mutex_unlock(&fs_info->cleaner_mutex);
3002 if (ret < 0) {
3003 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3004 goto out;
3005 }
3006
5011139a
BB
3007 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3008 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3009 btrfs_info(fs_info, "creating free space tree");
3010 ret = btrfs_create_free_space_tree(fs_info);
3011 if (ret) {
3012 btrfs_warn(fs_info,
3013 "failed to create free space tree: %d", ret);
3014 goto out;
3015 }
3016 }
3017
94846229
BB
3018 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3019 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3020 if (ret)
3021 goto out;
3022 }
3023
44c0ca21
BB
3024 ret = btrfs_resume_balance_async(fs_info);
3025 if (ret)
3026 goto out;
3027
3028 ret = btrfs_resume_dev_replace_async(fs_info);
3029 if (ret) {
3030 btrfs_warn(fs_info, "failed to resume dev_replace");
3031 goto out;
3032 }
3033
3034 btrfs_qgroup_rescan_resume(fs_info);
3035
3036 if (!fs_info->uuid_root) {
3037 btrfs_info(fs_info, "creating UUID tree");
3038 ret = btrfs_create_uuid_tree(fs_info);
3039 if (ret) {
3040 btrfs_warn(fs_info,
3041 "failed to create the UUID tree %d", ret);
3042 goto out;
3043 }
3044 }
3045
3046out:
3047 return ret;
3048}
3049
d7f67ac9
QW
3050/*
3051 * Do various sanity and dependency checks of different features.
3052 *
2ba48b20
QW
3053 * @is_rw_mount: If the mount is read-write.
3054 *
d7f67ac9
QW
3055 * This is the place for less strict checks (like for subpage or artificial
3056 * feature dependencies).
3057 *
3058 * For strict checks or possible corruption detection, see
3059 * btrfs_validate_super().
3060 *
3061 * This should be called after btrfs_parse_options(), as some mount options
3062 * (space cache related) can modify on-disk format like free space tree and
3063 * screw up certain feature dependencies.
3064 */
2ba48b20 3065int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
d7f67ac9
QW
3066{
3067 struct btrfs_super_block *disk_super = fs_info->super_copy;
3068 u64 incompat = btrfs_super_incompat_flags(disk_super);
3069 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3070 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3071
3072 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3073 btrfs_err(fs_info,
3074 "cannot mount because of unknown incompat features (0x%llx)",
3075 incompat);
3076 return -EINVAL;
3077 }
3078
3079 /* Runtime limitation for mixed block groups. */
3080 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3081 (fs_info->sectorsize != fs_info->nodesize)) {
3082 btrfs_err(fs_info,
3083"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3084 fs_info->nodesize, fs_info->sectorsize);
3085 return -EINVAL;
3086 }
3087
3088 /* Mixed backref is an always-enabled feature. */
3089 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3090
3091 /* Set compression related flags just in case. */
3092 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3093 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3094 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3095 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3096
3097 /*
3098 * An ancient flag, which should really be marked deprecated.
3099 * Such runtime limitation doesn't really need a incompat flag.
3100 */
3101 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3102 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3103
2ba48b20 3104 if (compat_ro_unsupp && is_rw_mount) {
d7f67ac9
QW
3105 btrfs_err(fs_info,
3106 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3107 compat_ro);
3108 return -EINVAL;
3109 }
3110
3111 /*
3112 * We have unsupported RO compat features, although RO mounted, we
3113 * should not cause any metadata writes, including log replay.
3114 * Or we could screw up whatever the new feature requires.
3115 */
3116 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3117 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3118 btrfs_err(fs_info,
3119"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3120 compat_ro);
3121 return -EINVAL;
3122 }
3123
3124 /*
3125 * Artificial limitations for block group tree, to force
3126 * block-group-tree to rely on no-holes and free-space-tree.
3127 */
3128 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3129 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3130 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3131 btrfs_err(fs_info,
3132"block-group-tree feature requires no-holes and free-space-tree features");
3133 return -EINVAL;
3134 }
3135
3136 /*
3137 * Subpage runtime limitation on v1 cache.
3138 *
3139 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3140 * we're already defaulting to v2 cache, no need to bother v1 as it's
3141 * going to be deprecated anyway.
3142 */
3143 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3144 btrfs_warn(fs_info,
3145 "v1 space cache is not supported for page size %lu with sectorsize %u",
3146 PAGE_SIZE, fs_info->sectorsize);
3147 return -EINVAL;
3148 }
3149
3150 /* This can be called by remount, we need to protect the super block. */
3151 spin_lock(&fs_info->super_lock);
3152 btrfs_set_super_incompat_flags(disk_super, incompat);
3153 spin_unlock(&fs_info->super_lock);
3154
3155 return 0;
3156}
3157
ae18c37a
JB
3158int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3159 char *options)
3160{
3161 u32 sectorsize;
3162 u32 nodesize;
3163 u32 stripesize;
3164 u64 generation;
3165 u64 features;
3166 u16 csum_type;
ae18c37a
JB
3167 struct btrfs_super_block *disk_super;
3168 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3169 struct btrfs_root *tree_root;
3170 struct btrfs_root *chunk_root;
3171 int ret;
ae18c37a
JB
3172 int level;
3173
8260edba 3174 ret = init_mount_fs_info(fs_info, sb);
4871c33b 3175 if (ret)
ae18c37a 3176 goto fail;
53b381b3 3177
ae18c37a
JB
3178 /* These need to be init'ed before we start creating inodes and such. */
3179 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3180 GFP_KERNEL);
3181 fs_info->tree_root = tree_root;
3182 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3183 GFP_KERNEL);
3184 fs_info->chunk_root = chunk_root;
3185 if (!tree_root || !chunk_root) {
4871c33b 3186 ret = -ENOMEM;
c75e8394 3187 goto fail;
ae18c37a
JB
3188 }
3189
dcb2137c 3190 ret = btrfs_init_btree_inode(sb);
4871c33b 3191 if (ret)
c75e8394 3192 goto fail;
ae18c37a 3193
d24fa5c1 3194 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3195
3196 /*
3197 * Read super block and check the signature bytes only
3198 */
d24fa5c1 3199 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d 3200 if (IS_ERR(disk_super)) {
4871c33b 3201 ret = PTR_ERR(disk_super);
16cdcec7 3202 goto fail_alloc;
20b45077 3203 }
39279cc3 3204
8dc3f22c 3205 /*
260db43c 3206 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3207 * corrupted, we'll find out
3208 */
8f32380d 3209 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3210 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3211 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3212 csum_type);
4871c33b 3213 ret = -EINVAL;
8f32380d 3214 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3215 goto fail_alloc;
3216 }
3217
83c68bbc
SY
3218 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3219
6d97c6e3
JT
3220 ret = btrfs_init_csum_hash(fs_info, csum_type);
3221 if (ret) {
8f32380d 3222 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3223 goto fail_alloc;
3224 }
3225
1104a885
DS
3226 /*
3227 * We want to check superblock checksum, the type is stored inside.
3228 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3229 */
3d17adea 3230 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3231 btrfs_err(fs_info, "superblock checksum mismatch");
4871c33b 3232 ret = -EINVAL;
8f32380d 3233 btrfs_release_disk_super(disk_super);
141386e1 3234 goto fail_alloc;
1104a885
DS
3235 }
3236
3237 /*
3238 * super_copy is zeroed at allocation time and we never touch the
3239 * following bytes up to INFO_SIZE, the checksum is calculated from
3240 * the whole block of INFO_SIZE
3241 */
8f32380d
JT
3242 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3243 btrfs_release_disk_super(disk_super);
5f39d397 3244
fbc6feae
NB
3245 disk_super = fs_info->super_copy;
3246
0b86a832 3247
fbc6feae
NB
3248 features = btrfs_super_flags(disk_super);
3249 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3250 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3251 btrfs_set_super_flags(disk_super, features);
3252 btrfs_info(fs_info,
3253 "found metadata UUID change in progress flag, clearing");
3254 }
3255
3256 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3257 sizeof(*fs_info->super_for_commit));
de37aa51 3258
069ec957 3259 ret = btrfs_validate_mount_super(fs_info);
1104a885 3260 if (ret) {
05135f59 3261 btrfs_err(fs_info, "superblock contains fatal errors");
4871c33b 3262 ret = -EINVAL;
141386e1 3263 goto fail_alloc;
1104a885
DS
3264 }
3265
4871c33b
QW
3266 if (!btrfs_super_root(disk_super)) {
3267 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3268 ret = -EINVAL;
141386e1 3269 goto fail_alloc;
4871c33b 3270 }
0f7d52f4 3271
acce952b 3272 /* check FS state, whether FS is broken. */
87533c47 3273 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
ae3364e5 3274 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
acce952b 3275
75e7cb7f
LB
3276 /*
3277 * In the long term, we'll store the compression type in the super
3278 * block, and it'll be used for per file compression control.
3279 */
3280 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3281
6f93e834
AJ
3282
3283 /* Set up fs_info before parsing mount options */
3284 nodesize = btrfs_super_nodesize(disk_super);
3285 sectorsize = btrfs_super_sectorsize(disk_super);
3286 stripesize = sectorsize;
3287 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3288 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3289
3290 fs_info->nodesize = nodesize;
3291 fs_info->sectorsize = sectorsize;
3292 fs_info->sectorsize_bits = ilog2(sectorsize);
3293 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3294 fs_info->stripesize = stripesize;
3295
2ff7e61e 3296 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
4871c33b 3297 if (ret)
141386e1 3298 goto fail_alloc;
dfe25020 3299
2ba48b20 3300 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
4871c33b 3301 if (ret < 0)
dc4d3168 3302 goto fail_alloc;
dc4d3168 3303
8481dd80
QW
3304 if (sectorsize < PAGE_SIZE) {
3305 struct btrfs_subpage_info *subpage_info;
3306
9f73f1ae
QW
3307 /*
3308 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3309 * going to be deprecated.
3310 *
3311 * Force to use v2 cache for subpage case.
3312 */
3313 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3314 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3315 "forcing free space tree for sector size %u with page size %lu",
3316 sectorsize, PAGE_SIZE);
3317
95ea0486
QW
3318 btrfs_warn(fs_info,
3319 "read-write for sector size %u with page size %lu is experimental",
3320 sectorsize, PAGE_SIZE);
8481dd80 3321 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
4871c33b
QW
3322 if (!subpage_info) {
3323 ret = -ENOMEM;
8481dd80 3324 goto fail_alloc;
4871c33b 3325 }
8481dd80
QW
3326 btrfs_init_subpage_info(subpage_info, sectorsize);
3327 fs_info->subpage_info = subpage_info;
c8050b3b 3328 }
0bb3eb3e 3329
d21deec5 3330 ret = btrfs_init_workqueues(fs_info);
4871c33b 3331 if (ret)
0dc3b84a 3332 goto fail_sb_buffer;
4543df7e 3333
9e11ceee
JK
3334 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3335 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3336
a061fc8d
CM
3337 sb->s_blocksize = sectorsize;
3338 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3339 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3340
925baedd 3341 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3342 ret = btrfs_read_sys_array(fs_info);
925baedd 3343 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3344 if (ret) {
05135f59 3345 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3346 goto fail_sb_buffer;
84eed90f 3347 }
0b86a832 3348
84234f3a 3349 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3350 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3351 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3352 generation, level);
3353 if (ret) {
05135f59 3354 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3355 goto fail_tree_roots;
83121942 3356 }
0b86a832 3357
e17cade2 3358 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3359 offsetof(struct btrfs_header, chunk_tree_uuid),
3360 BTRFS_UUID_SIZE);
e17cade2 3361
5b4aacef 3362 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3363 if (ret) {
05135f59 3364 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3365 goto fail_tree_roots;
2b82032c 3366 }
0b86a832 3367
8dabb742 3368 /*
bacce86a
AJ
3369 * At this point we know all the devices that make this filesystem,
3370 * including the seed devices but we don't know yet if the replace
3371 * target is required. So free devices that are not part of this
1a9fd417 3372 * filesystem but skip the replace target device which is checked
bacce86a 3373 * below in btrfs_init_dev_replace().
8dabb742 3374 */
bacce86a 3375 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3376 if (!fs_devices->latest_dev->bdev) {
05135f59 3377 btrfs_err(fs_info, "failed to read devices");
4871c33b 3378 ret = -EIO;
a6b0d5c8
CM
3379 goto fail_tree_roots;
3380 }
3381
b8522a1e 3382 ret = init_tree_roots(fs_info);
4bbcaa64 3383 if (ret)
b8522a1e 3384 goto fail_tree_roots;
8929ecfa 3385
73651042
NA
3386 /*
3387 * Get zone type information of zoned block devices. This will also
3388 * handle emulation of a zoned filesystem if a regular device has the
3389 * zoned incompat feature flag set.
3390 */
3391 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3392 if (ret) {
3393 btrfs_err(fs_info,
4871c33b 3394 "zoned: failed to read device zone info: %d", ret);
73651042
NA
3395 goto fail_block_groups;
3396 }
3397
75ec1db8
JB
3398 /*
3399 * If we have a uuid root and we're not being told to rescan we need to
3400 * check the generation here so we can set the
3401 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3402 * transaction during a balance or the log replay without updating the
3403 * uuid generation, and then if we crash we would rescan the uuid tree,
3404 * even though it was perfectly fine.
3405 */
3406 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3407 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3408 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3409
cf90d884
QW
3410 ret = btrfs_verify_dev_extents(fs_info);
3411 if (ret) {
3412 btrfs_err(fs_info,
3413 "failed to verify dev extents against chunks: %d",
3414 ret);
3415 goto fail_block_groups;
3416 }
68310a5e
ID
3417 ret = btrfs_recover_balance(fs_info);
3418 if (ret) {
05135f59 3419 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3420 goto fail_block_groups;
3421 }
3422
733f4fbb
SB
3423 ret = btrfs_init_dev_stats(fs_info);
3424 if (ret) {
05135f59 3425 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3426 goto fail_block_groups;
3427 }
3428
8dabb742
SB
3429 ret = btrfs_init_dev_replace(fs_info);
3430 if (ret) {
05135f59 3431 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3432 goto fail_block_groups;
3433 }
3434
b70f5097
NA
3435 ret = btrfs_check_zoned_mode(fs_info);
3436 if (ret) {
3437 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3438 ret);
3439 goto fail_block_groups;
3440 }
3441
c6761a9e 3442 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3443 if (ret) {
05135f59
DS
3444 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3445 ret);
b7c35e81
AJ
3446 goto fail_block_groups;
3447 }
3448
96f3136e 3449 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3450 if (ret) {
05135f59 3451 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3452 goto fail_fsdev_sysfs;
c59021f8 3453 }
3454
c59021f8 3455 ret = btrfs_init_space_info(fs_info);
3456 if (ret) {
05135f59 3457 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3458 goto fail_sysfs;
c59021f8 3459 }
3460
5b4aacef 3461 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3462 if (ret) {
05135f59 3463 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3464 goto fail_sysfs;
1b1d1f66 3465 }
4330e183 3466
16beac87
NA
3467 btrfs_free_zone_cache(fs_info);
3468
a7e1ac7b
NA
3469 btrfs_check_active_zone_reservation(fs_info);
3470
5c78a5e7
AJ
3471 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3472 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3473 btrfs_warn(fs_info,
52042d8e 3474 "writable mount is not allowed due to too many missing devices");
4871c33b 3475 ret = -EINVAL;
2365dd3c 3476 goto fail_sysfs;
292fd7fc 3477 }
9078a3e1 3478
33c44184 3479 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3480 "btrfs-cleaner");
4871c33b
QW
3481 if (IS_ERR(fs_info->cleaner_kthread)) {
3482 ret = PTR_ERR(fs_info->cleaner_kthread);
2365dd3c 3483 goto fail_sysfs;
4871c33b 3484 }
a74a4b97
CM
3485
3486 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3487 tree_root,
3488 "btrfs-transaction");
4871c33b
QW
3489 if (IS_ERR(fs_info->transaction_kthread)) {
3490 ret = PTR_ERR(fs_info->transaction_kthread);
3f157a2f 3491 goto fail_cleaner;
4871c33b 3492 }
a74a4b97 3493
583b7231 3494 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3495 !fs_info->fs_devices->rotating) {
583b7231 3496 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3497 }
3498
63a7cb13
DS
3499 /*
3500 * For devices supporting discard turn on discard=async automatically,
3501 * unless it's already set or disabled. This could be turned off by
3502 * nodiscard for the same mount.
95ca6599
NA
3503 *
3504 * The zoned mode piggy backs on the discard functionality for
3505 * resetting a zone. There is no reason to delay the zone reset as it is
3506 * fast enough. So, do not enable async discard for zoned mode.
63a7cb13
DS
3507 */
3508 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3509 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3510 btrfs_test_opt(fs_info, NODISCARD)) &&
95ca6599
NA
3511 fs_info->fs_devices->discardable &&
3512 !btrfs_is_zoned(fs_info)) {
63a7cb13
DS
3513 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3514 "auto enabling async discard");
63a7cb13
DS
3515 }
3516
21adbd5c 3517#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3518 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3519 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3520 btrfs_test_opt(fs_info,
cbeaae4f 3521 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3522 fs_info->check_integrity_print_mask);
3523 if (ret)
05135f59
DS
3524 btrfs_warn(fs_info,
3525 "failed to initialize integrity check module: %d",
3526 ret);
21adbd5c
SB
3527 }
3528#endif
bcef60f2
AJ
3529 ret = btrfs_read_qgroup_config(fs_info);
3530 if (ret)
3531 goto fail_trans_kthread;
21adbd5c 3532
fd708b81
JB
3533 if (btrfs_build_ref_tree(fs_info))
3534 btrfs_err(fs_info, "couldn't build ref tree");
3535
96da0919
QW
3536 /* do not make disk changes in broken FS or nologreplay is given */
3537 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3538 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3539 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3540 ret = btrfs_replay_log(fs_info, fs_devices);
4871c33b 3541 if (ret)
28c16cbb 3542 goto fail_qgroup;
e02119d5 3543 }
1a40e23b 3544
56e9357a 3545 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3 3546 if (IS_ERR(fs_info->fs_root)) {
4871c33b
QW
3547 ret = PTR_ERR(fs_info->fs_root);
3548 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
315bf8ef 3549 fs_info->fs_root = NULL;
bcef60f2 3550 goto fail_qgroup;
3140c9a3 3551 }
c289811c 3552
bc98a42c 3553 if (sb_rdonly(sb))
8cd29088 3554 goto clear_oneshot;
59641015 3555
44c0ca21 3556 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3557 if (ret) {
6bccf3ab 3558 close_ctree(fs_info);
2b6ba629 3559 return ret;
e3acc2a6 3560 }
b0643e59 3561 btrfs_discard_resume(fs_info);
b382a324 3562
44c0ca21
BB
3563 if (fs_info->uuid_root &&
3564 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3565 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3566 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3567 ret = btrfs_check_uuid_tree(fs_info);
3568 if (ret) {
05135f59
DS
3569 btrfs_warn(fs_info,
3570 "failed to check the UUID tree: %d", ret);
6bccf3ab 3571 close_ctree(fs_info);
70f80175
SB
3572 return ret;
3573 }
f7a81ea4 3574 }
94846229 3575
afcdd129 3576 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3577
b4be6aef
JB
3578 /* Kick the cleaner thread so it'll start deleting snapshots. */
3579 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3580 wake_up_process(fs_info->cleaner_kthread);
3581
8cd29088
BB
3582clear_oneshot:
3583 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3584 return 0;
39279cc3 3585
bcef60f2
AJ
3586fail_qgroup:
3587 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3588fail_trans_kthread:
3589 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3590 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3591 btrfs_free_fs_roots(fs_info);
3f157a2f 3592fail_cleaner:
a74a4b97 3593 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3594
3595 /*
3596 * make sure we're done with the btree inode before we stop our
3597 * kthreads
3598 */
3599 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3600
2365dd3c 3601fail_sysfs:
6618a59b 3602 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3603
b7c35e81
AJ
3604fail_fsdev_sysfs:
3605 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3606
1b1d1f66 3607fail_block_groups:
54067ae9 3608 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3609
3610fail_tree_roots:
9e3aa805
JB
3611 if (fs_info->data_reloc_root)
3612 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3613 free_root_pointers(fs_info, true);
2b8195bb 3614 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3615
39279cc3 3616fail_sb_buffer:
7abadb64 3617 btrfs_stop_all_workers(fs_info);
5cdd7db6 3618 btrfs_free_block_groups(fs_info);
16cdcec7 3619fail_alloc:
586e46e2
ID
3620 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3621
4543df7e 3622 iput(fs_info->btree_inode);
7e662854 3623fail:
586e46e2 3624 btrfs_close_devices(fs_info->fs_devices);
4871c33b
QW
3625 ASSERT(ret < 0);
3626 return ret;
eb60ceac 3627}
663faf9f 3628ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3629
314b6dd0 3630static void btrfs_end_super_write(struct bio *bio)
f2984462 3631{
314b6dd0
JT
3632 struct btrfs_device *device = bio->bi_private;
3633 struct bio_vec *bvec;
3634 struct bvec_iter_all iter_all;
3635 struct page *page;
3636
3637 bio_for_each_segment_all(bvec, bio, iter_all) {
3638 page = bvec->bv_page;
3639
3640 if (bio->bi_status) {
3641 btrfs_warn_rl_in_rcu(device->fs_info,
3642 "lost page write due to IO error on %s (%d)",
cb3e217b 3643 btrfs_dev_name(device),
314b6dd0
JT
3644 blk_status_to_errno(bio->bi_status));
3645 ClearPageUptodate(page);
3646 SetPageError(page);
3647 btrfs_dev_stat_inc_and_print(device,
3648 BTRFS_DEV_STAT_WRITE_ERRS);
3649 } else {
3650 SetPageUptodate(page);
3651 }
3652
3653 put_page(page);
3654 unlock_page(page);
f2984462 3655 }
314b6dd0
JT
3656
3657 bio_put(bio);
f2984462
CM
3658}
3659
8f32380d 3660struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3661 int copy_num, bool drop_cache)
29c36d72 3662{
29c36d72 3663 struct btrfs_super_block *super;
8f32380d 3664 struct page *page;
12659251 3665 u64 bytenr, bytenr_orig;
8f32380d 3666 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3667 int ret;
3668
3669 bytenr_orig = btrfs_sb_offset(copy_num);
3670 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3671 if (ret == -ENOENT)
3672 return ERR_PTR(-EINVAL);
3673 else if (ret)
3674 return ERR_PTR(ret);
29c36d72 3675
cda00eba 3676 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3677 return ERR_PTR(-EINVAL);
29c36d72 3678
a05d3c91
QW
3679 if (drop_cache) {
3680 /* This should only be called with the primary sb. */
3681 ASSERT(copy_num == 0);
3682
3683 /*
3684 * Drop the page of the primary superblock, so later read will
3685 * always read from the device.
3686 */
3687 invalidate_inode_pages2_range(mapping,
3688 bytenr >> PAGE_SHIFT,
3689 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3690 }
3691
8f32380d
JT
3692 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3693 if (IS_ERR(page))
3694 return ERR_CAST(page);
29c36d72 3695
8f32380d 3696 super = page_address(page);
96c2e067
AJ
3697 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3698 btrfs_release_disk_super(super);
3699 return ERR_PTR(-ENODATA);
3700 }
3701
12659251 3702 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3703 btrfs_release_disk_super(super);
3704 return ERR_PTR(-EINVAL);
29c36d72
AJ
3705 }
3706
8f32380d 3707 return super;
29c36d72
AJ
3708}
3709
3710
8f32380d 3711struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3712{
8f32380d 3713 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3714 int i;
3715 u64 transid = 0;
a512bbf8
YZ
3716
3717 /* we would like to check all the supers, but that would make
3718 * a btrfs mount succeed after a mkfs from a different FS.
3719 * So, we need to add a special mount option to scan for
3720 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3721 */
3722 for (i = 0; i < 1; i++) {
a05d3c91 3723 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3724 if (IS_ERR(super))
a512bbf8
YZ
3725 continue;
3726
a512bbf8 3727 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3728 if (latest)
3729 btrfs_release_disk_super(super);
3730
3731 latest = super;
a512bbf8 3732 transid = btrfs_super_generation(super);
a512bbf8
YZ
3733 }
3734 }
92fc03fb 3735
8f32380d 3736 return super;
a512bbf8
YZ
3737}
3738
4eedeb75 3739/*
abbb3b8e 3740 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3741 * pages we use for writing are locked.
4eedeb75 3742 *
abbb3b8e
DS
3743 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3744 * the expected device size at commit time. Note that max_mirrors must be
3745 * same for write and wait phases.
4eedeb75 3746 *
314b6dd0 3747 * Return number of errors when page is not found or submission fails.
4eedeb75 3748 */
a512bbf8 3749static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3750 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3751{
d5178578 3752 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3753 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3754 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3755 int i;
a512bbf8 3756 int errors = 0;
12659251
NA
3757 int ret;
3758 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3759
3760 if (max_mirrors == 0)
3761 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3762
d5178578
JT
3763 shash->tfm = fs_info->csum_shash;
3764
a512bbf8 3765 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3766 struct page *page;
3767 struct bio *bio;
3768 struct btrfs_super_block *disk_super;
3769
12659251
NA
3770 bytenr_orig = btrfs_sb_offset(i);
3771 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3772 if (ret == -ENOENT) {
3773 continue;
3774 } else if (ret < 0) {
3775 btrfs_err(device->fs_info,
3776 "couldn't get super block location for mirror %d",
3777 i);
3778 errors++;
3779 continue;
3780 }
935e5cc9
MX
3781 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3782 device->commit_total_bytes)
a512bbf8
YZ
3783 break;
3784
12659251 3785 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3786
fd08001f
EB
3787 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3788 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3789 sb->csum);
4eedeb75 3790
314b6dd0
JT
3791 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3792 GFP_NOFS);
3793 if (!page) {
abbb3b8e 3794 btrfs_err(device->fs_info,
314b6dd0 3795 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3796 bytenr);
3797 errors++;
4eedeb75 3798 continue;
abbb3b8e 3799 }
634554dc 3800
314b6dd0
JT
3801 /* Bump the refcount for wait_dev_supers() */
3802 get_page(page);
a512bbf8 3803
314b6dd0
JT
3804 disk_super = page_address(page);
3805 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3806
314b6dd0
JT
3807 /*
3808 * Directly use bios here instead of relying on the page cache
3809 * to do I/O, so we don't lose the ability to do integrity
3810 * checking.
3811 */
07888c66
CH
3812 bio = bio_alloc(device->bdev, 1,
3813 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3814 GFP_NOFS);
314b6dd0
JT
3815 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3816 bio->bi_private = device;
3817 bio->bi_end_io = btrfs_end_super_write;
3818 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3819 offset_in_page(bytenr));
a512bbf8 3820
387125fc 3821 /*
314b6dd0
JT
3822 * We FUA only the first super block. The others we allow to
3823 * go down lazy and there's a short window where the on-disk
3824 * copies might still contain the older version.
387125fc 3825 */
1b9e619c 3826 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3827 bio->bi_opf |= REQ_FUA;
3828
58ff51f1
CH
3829 btrfsic_check_bio(bio);
3830 submit_bio(bio);
8376d9e1
NA
3831
3832 if (btrfs_advance_sb_log(device, i))
3833 errors++;
a512bbf8
YZ
3834 }
3835 return errors < i ? 0 : -1;
3836}
3837
abbb3b8e
DS
3838/*
3839 * Wait for write completion of superblocks done by write_dev_supers,
3840 * @max_mirrors same for write and wait phases.
3841 *
314b6dd0 3842 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3843 * date.
3844 */
3845static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3846{
abbb3b8e
DS
3847 int i;
3848 int errors = 0;
b6a535fa 3849 bool primary_failed = false;
12659251 3850 int ret;
abbb3b8e
DS
3851 u64 bytenr;
3852
3853 if (max_mirrors == 0)
3854 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3855
3856 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3857 struct page *page;
3858
12659251
NA
3859 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3860 if (ret == -ENOENT) {
3861 break;
3862 } else if (ret < 0) {
3863 errors++;
3864 if (i == 0)
3865 primary_failed = true;
3866 continue;
3867 }
abbb3b8e
DS
3868 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3869 device->commit_total_bytes)
3870 break;
3871
314b6dd0
JT
3872 page = find_get_page(device->bdev->bd_inode->i_mapping,
3873 bytenr >> PAGE_SHIFT);
3874 if (!page) {
abbb3b8e 3875 errors++;
b6a535fa
HM
3876 if (i == 0)
3877 primary_failed = true;
abbb3b8e
DS
3878 continue;
3879 }
314b6dd0
JT
3880 /* Page is submitted locked and unlocked once the IO completes */
3881 wait_on_page_locked(page);
3882 if (PageError(page)) {
abbb3b8e 3883 errors++;
b6a535fa
HM
3884 if (i == 0)
3885 primary_failed = true;
3886 }
abbb3b8e 3887
314b6dd0
JT
3888 /* Drop our reference */
3889 put_page(page);
abbb3b8e 3890
314b6dd0
JT
3891 /* Drop the reference from the writing run */
3892 put_page(page);
abbb3b8e
DS
3893 }
3894
b6a535fa
HM
3895 /* log error, force error return */
3896 if (primary_failed) {
3897 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3898 device->devid);
3899 return -1;
3900 }
3901
abbb3b8e
DS
3902 return errors < i ? 0 : -1;
3903}
3904
387125fc
CM
3905/*
3906 * endio for the write_dev_flush, this will wake anyone waiting
3907 * for the barrier when it is done
3908 */
4246a0b6 3909static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3910{
f9e69aa9 3911 bio_uninit(bio);
e0ae9994 3912 complete(bio->bi_private);
387125fc
CM
3913}
3914
3915/*
4fc6441a
AJ
3916 * Submit a flush request to the device if it supports it. Error handling is
3917 * done in the waiting counterpart.
387125fc 3918 */
4fc6441a 3919static void write_dev_flush(struct btrfs_device *device)
387125fc 3920{
f9e69aa9 3921 struct bio *bio = &device->flush_bio;
387125fc 3922
bfd3ea94
AJ
3923 device->last_flush_error = BLK_STS_OK;
3924
a91cf0ff
WY
3925#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3926 /*
3927 * When a disk has write caching disabled, we skip submission of a bio
3928 * with flush and sync requests before writing the superblock, since
3929 * it's not needed. However when the integrity checker is enabled, this
3930 * results in reports that there are metadata blocks referred by a
3931 * superblock that were not properly flushed. So don't skip the bio
3932 * submission only when the integrity checker is enabled for the sake
3933 * of simplicity, since this is a debug tool and not meant for use in
3934 * non-debug builds.
3935 */
08e688fd 3936 if (!bdev_write_cache(device->bdev))
4fc6441a 3937 return;
a91cf0ff 3938#endif
387125fc 3939
f9e69aa9
CH
3940 bio_init(bio, device->bdev, NULL, 0,
3941 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 3942 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
3943 init_completion(&device->flush_wait);
3944 bio->bi_private = &device->flush_wait;
387125fc 3945
58ff51f1
CH
3946 btrfsic_check_bio(bio);
3947 submit_bio(bio);
1c3063b6 3948 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3949}
387125fc 3950
4fc6441a
AJ
3951/*
3952 * If the flush bio has been submitted by write_dev_flush, wait for it.
1b465784 3953 * Return true for any error, and false otherwise.
4fc6441a 3954 */
1b465784 3955static bool wait_dev_flush(struct btrfs_device *device)
4fc6441a 3956{
f9e69aa9 3957 struct bio *bio = &device->flush_bio;
387125fc 3958
7e812f20 3959 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
1b465784 3960 return false;
387125fc 3961
2980d574 3962 wait_for_completion_io(&device->flush_wait);
387125fc 3963
bfd3ea94
AJ
3964 if (bio->bi_status) {
3965 device->last_flush_error = bio->bi_status;
3966 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
1b465784 3967 return true;
bfd3ea94
AJ
3968 }
3969
1b465784 3970 return false;
387125fc 3971}
387125fc 3972
387125fc
CM
3973/*
3974 * send an empty flush down to each device in parallel,
3975 * then wait for them
3976 */
3977static int barrier_all_devices(struct btrfs_fs_info *info)
3978{
3979 struct list_head *head;
3980 struct btrfs_device *dev;
5af3e8cc 3981 int errors_wait = 0;
387125fc 3982
1538e6c5 3983 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3984 /* send down all the barriers */
3985 head = &info->fs_devices->devices;
1538e6c5 3986 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3987 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3988 continue;
cea7c8bf 3989 if (!dev->bdev)
387125fc 3990 continue;
e12c9621 3991 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3992 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3993 continue;
3994
4fc6441a 3995 write_dev_flush(dev);
387125fc
CM
3996 }
3997
3998 /* wait for all the barriers */
1538e6c5 3999 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4000 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4001 continue;
387125fc 4002 if (!dev->bdev) {
5af3e8cc 4003 errors_wait++;
387125fc
CM
4004 continue;
4005 }
e12c9621 4006 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4007 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4008 continue;
4009
1b465784 4010 if (wait_dev_flush(dev))
5af3e8cc 4011 errors_wait++;
401b41e5
AJ
4012 }
4013
de38a206
AJ
4014 /*
4015 * Checks last_flush_error of disks in order to determine the device
4016 * state.
4017 */
4018 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4019 return -EIO;
4020
387125fc
CM
4021 return 0;
4022}
4023
943c6e99
ZL
4024int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4025{
8789f4fe
ZL
4026 int raid_type;
4027 int min_tolerated = INT_MAX;
943c6e99 4028
8789f4fe
ZL
4029 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4030 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4031 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4032 btrfs_raid_array[BTRFS_RAID_SINGLE].
4033 tolerated_failures);
943c6e99 4034
8789f4fe
ZL
4035 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4036 if (raid_type == BTRFS_RAID_SINGLE)
4037 continue;
41a6e891 4038 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4039 continue;
8c3e3582 4040 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4041 btrfs_raid_array[raid_type].
4042 tolerated_failures);
4043 }
943c6e99 4044
8789f4fe 4045 if (min_tolerated == INT_MAX) {
ab8d0fc4 4046 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4047 min_tolerated = 0;
4048 }
4049
4050 return min_tolerated;
943c6e99
ZL
4051}
4052
eece6a9c 4053int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4054{
e5e9a520 4055 struct list_head *head;
f2984462 4056 struct btrfs_device *dev;
a061fc8d 4057 struct btrfs_super_block *sb;
f2984462 4058 struct btrfs_dev_item *dev_item;
f2984462
CM
4059 int ret;
4060 int do_barriers;
a236aed1
CM
4061 int max_errors;
4062 int total_errors = 0;
a061fc8d 4063 u64 flags;
f2984462 4064
0b246afa 4065 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4066
4067 /*
4068 * max_mirrors == 0 indicates we're from commit_transaction,
4069 * not from fsync where the tree roots in fs_info have not
4070 * been consistent on disk.
4071 */
4072 if (max_mirrors == 0)
4073 backup_super_roots(fs_info);
f2984462 4074
0b246afa 4075 sb = fs_info->super_for_commit;
a061fc8d 4076 dev_item = &sb->dev_item;
e5e9a520 4077
0b246afa
JM
4078 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4079 head = &fs_info->fs_devices->devices;
4080 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4081
5af3e8cc 4082 if (do_barriers) {
0b246afa 4083 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4084 if (ret) {
4085 mutex_unlock(
0b246afa
JM
4086 &fs_info->fs_devices->device_list_mutex);
4087 btrfs_handle_fs_error(fs_info, ret,
4088 "errors while submitting device barriers.");
5af3e8cc
SB
4089 return ret;
4090 }
4091 }
387125fc 4092
1538e6c5 4093 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4094 if (!dev->bdev) {
4095 total_errors++;
4096 continue;
4097 }
e12c9621 4098 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4099 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4100 continue;
4101
2b82032c 4102 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4103 btrfs_set_stack_device_type(dev_item, dev->type);
4104 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4105 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4106 dev->commit_total_bytes);
ce7213c7
MX
4107 btrfs_set_stack_device_bytes_used(dev_item,
4108 dev->commit_bytes_used);
a061fc8d
CM
4109 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4110 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4111 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4112 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4113 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4114 BTRFS_FSID_SIZE);
a512bbf8 4115
a061fc8d
CM
4116 flags = btrfs_super_flags(sb);
4117 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4118
75cb857d
QW
4119 ret = btrfs_validate_write_super(fs_info, sb);
4120 if (ret < 0) {
4121 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4123 "unexpected superblock corruption detected");
4124 return -EUCLEAN;
4125 }
4126
abbb3b8e 4127 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4128 if (ret)
4129 total_errors++;
f2984462 4130 }
a236aed1 4131 if (total_errors > max_errors) {
0b246afa
JM
4132 btrfs_err(fs_info, "%d errors while writing supers",
4133 total_errors);
4134 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4135
9d565ba4 4136 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4137 btrfs_handle_fs_error(fs_info, -EIO,
4138 "%d errors while writing supers",
4139 total_errors);
9d565ba4 4140 return -EIO;
a236aed1 4141 }
f2984462 4142
a512bbf8 4143 total_errors = 0;
1538e6c5 4144 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4145 if (!dev->bdev)
4146 continue;
e12c9621 4147 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4148 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4149 continue;
4150
abbb3b8e 4151 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4152 if (ret)
4153 total_errors++;
f2984462 4154 }
0b246afa 4155 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4156 if (total_errors > max_errors) {
0b246afa
JM
4157 btrfs_handle_fs_error(fs_info, -EIO,
4158 "%d errors while writing supers",
4159 total_errors);
79787eaa 4160 return -EIO;
a236aed1 4161 }
f2984462
CM
4162 return 0;
4163}
4164
cb517eab
MX
4165/* Drop a fs root from the radix tree and free it. */
4166void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4167 struct btrfs_root *root)
2619ba1f 4168{
4785e24f
JB
4169 bool drop_ref = false;
4170
fc7cbcd4
DS
4171 spin_lock(&fs_info->fs_roots_radix_lock);
4172 radix_tree_delete(&fs_info->fs_roots_radix,
4173 (unsigned long)root->root_key.objectid);
4174 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4175 drop_ref = true;
fc7cbcd4 4176 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4177
84961539 4178 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4179 ASSERT(root->log_root == NULL);
1c1ea4f7 4180 if (root->reloc_root) {
00246528 4181 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4182 root->reloc_root = NULL;
4183 }
4184 }
3321719e 4185
4785e24f
JB
4186 if (drop_ref)
4187 btrfs_put_root(root);
2619ba1f
CM
4188}
4189
6bccf3ab 4190int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4191{
6bccf3ab 4192 struct btrfs_root *root = fs_info->tree_root;
c146afad 4193 struct btrfs_trans_handle *trans;
a74a4b97 4194
0b246afa 4195 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4196 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4197 mutex_unlock(&fs_info->cleaner_mutex);
4198 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4199
4200 /* wait until ongoing cleanup work done */
0b246afa
JM
4201 down_write(&fs_info->cleanup_work_sem);
4202 up_write(&fs_info->cleanup_work_sem);
c71bf099 4203
7a7eaa40 4204 trans = btrfs_join_transaction(root);
3612b495
TI
4205 if (IS_ERR(trans))
4206 return PTR_ERR(trans);
3a45bb20 4207 return btrfs_commit_transaction(trans);
c146afad
YZ
4208}
4209
36c86a9e
QW
4210static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4211{
4212 struct btrfs_transaction *trans;
4213 struct btrfs_transaction *tmp;
4214 bool found = false;
4215
4216 if (list_empty(&fs_info->trans_list))
4217 return;
4218
4219 /*
4220 * This function is only called at the very end of close_ctree(),
4221 * thus no other running transaction, no need to take trans_lock.
4222 */
4223 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4224 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4225 struct extent_state *cached = NULL;
4226 u64 dirty_bytes = 0;
4227 u64 cur = 0;
4228 u64 found_start;
4229 u64 found_end;
4230
4231 found = true;
e5860f82 4232 while (find_first_extent_bit(&trans->dirty_pages, cur,
36c86a9e
QW
4233 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4234 dirty_bytes += found_end + 1 - found_start;
4235 cur = found_end + 1;
4236 }
4237 btrfs_warn(fs_info,
4238 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4239 trans->transid, dirty_bytes);
4240 btrfs_cleanup_one_transaction(trans, fs_info);
4241
4242 if (trans == fs_info->running_transaction)
4243 fs_info->running_transaction = NULL;
4244 list_del_init(&trans->list);
4245
4246 btrfs_put_transaction(trans);
4247 trace_btrfs_transaction_commit(fs_info);
4248 }
4249 ASSERT(!found);
4250}
4251
b105e927 4252void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4253{
c146afad
YZ
4254 int ret;
4255
afcdd129 4256 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4257
8a1f1e3d
FM
4258 /*
4259 * If we had UNFINISHED_DROPS we could still be processing them, so
4260 * clear that bit and wake up relocation so it can stop.
4261 * We must do this before stopping the block group reclaim task, because
4262 * at btrfs_relocate_block_group() we wait for this bit, and after the
4263 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4264 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4265 * return 1.
4266 */
4267 btrfs_wake_unfinished_drop(fs_info);
4268
31e70e52
FM
4269 /*
4270 * We may have the reclaim task running and relocating a data block group,
4271 * in which case it may create delayed iputs. So stop it before we park
4272 * the cleaner kthread otherwise we can get new delayed iputs after
4273 * parking the cleaner, and that can make the async reclaim task to hang
4274 * if it's waiting for delayed iputs to complete, since the cleaner is
4275 * parked and can not run delayed iputs - this will make us hang when
4276 * trying to stop the async reclaim task.
4277 */
4278 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4279 /*
4280 * We don't want the cleaner to start new transactions, add more delayed
4281 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4282 * because that frees the task_struct, and the transaction kthread might
4283 * still try to wake up the cleaner.
4284 */
4285 kthread_park(fs_info->cleaner_kthread);
c146afad 4286
7343dd61 4287 /* wait for the qgroup rescan worker to stop */
d06f23d6 4288 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4289
803b2f54
SB
4290 /* wait for the uuid_scan task to finish */
4291 down(&fs_info->uuid_tree_rescan_sem);
4292 /* avoid complains from lockdep et al., set sem back to initial state */
4293 up(&fs_info->uuid_tree_rescan_sem);
4294
837d5b6e 4295 /* pause restriper - we want to resume on mount */
aa1b8cd4 4296 btrfs_pause_balance(fs_info);
837d5b6e 4297
8dabb742
SB
4298 btrfs_dev_replace_suspend_for_unmount(fs_info);
4299
aa1b8cd4 4300 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4301
4302 /* wait for any defraggers to finish */
4303 wait_event(fs_info->transaction_wait,
4304 (atomic_read(&fs_info->defrag_running) == 0));
4305
4306 /* clear out the rbtree of defraggable inodes */
26176e7c 4307 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4308
a362bb86
FM
4309 /*
4310 * After we parked the cleaner kthread, ordered extents may have
4311 * completed and created new delayed iputs. If one of the async reclaim
4312 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4313 * can hang forever trying to stop it, because if a delayed iput is
4314 * added after it ran btrfs_run_delayed_iputs() and before it called
4315 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4316 * no one else to run iputs.
4317 *
4318 * So wait for all ongoing ordered extents to complete and then run
4319 * delayed iputs. This works because once we reach this point no one
4320 * can either create new ordered extents nor create delayed iputs
4321 * through some other means.
4322 *
4323 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4324 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4325 * but the delayed iput for the respective inode is made only when doing
4326 * the final btrfs_put_ordered_extent() (which must happen at
4327 * btrfs_finish_ordered_io() when we are unmounting).
4328 */
4329 btrfs_flush_workqueue(fs_info->endio_write_workers);
4330 /* Ordered extents for free space inodes. */
4331 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4332 btrfs_run_delayed_iputs(fs_info);
4333
21c7e756 4334 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4335 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4336 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4337
b0643e59
DZ
4338 /* Cancel or finish ongoing discard work */
4339 btrfs_discard_cleanup(fs_info);
4340
bc98a42c 4341 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4342 /*
d6fd0ae2
OS
4343 * The cleaner kthread is stopped, so do one final pass over
4344 * unused block groups.
e44163e1 4345 */
0b246afa 4346 btrfs_delete_unused_bgs(fs_info);
e44163e1 4347
f0cc2cd7
FM
4348 /*
4349 * There might be existing delayed inode workers still running
4350 * and holding an empty delayed inode item. We must wait for
4351 * them to complete first because they can create a transaction.
4352 * This happens when someone calls btrfs_balance_delayed_items()
4353 * and then a transaction commit runs the same delayed nodes
4354 * before any delayed worker has done something with the nodes.
4355 * We must wait for any worker here and not at transaction
4356 * commit time since that could cause a deadlock.
4357 * This is a very rare case.
4358 */
4359 btrfs_flush_workqueue(fs_info->delayed_workers);
4360
6bccf3ab 4361 ret = btrfs_commit_super(fs_info);
acce952b 4362 if (ret)
04892340 4363 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4364 }
4365
84961539 4366 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4367 btrfs_error_commit_super(fs_info);
0f7d52f4 4368
e3029d9f
AV
4369 kthread_stop(fs_info->transaction_kthread);
4370 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4371
e187831e 4372 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4373 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4374
5958253c
QW
4375 if (btrfs_check_quota_leak(fs_info)) {
4376 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4377 btrfs_err(fs_info, "qgroup reserved space leaked");
4378 }
4379
04892340 4380 btrfs_free_qgroup_config(fs_info);
fe816d0f 4381 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4382
963d678b 4383 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4384 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4385 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4386 }
bcc63abb 4387
5deb17e1 4388 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4389 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4390 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4391
6618a59b 4392 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4393 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4394
1a4319cc
LB
4395 btrfs_put_block_group_cache(fs_info);
4396
de348ee0
WS
4397 /*
4398 * we must make sure there is not any read request to
4399 * submit after we stopping all workers.
4400 */
4401 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4402 btrfs_stop_all_workers(fs_info);
4403
0a31daa4 4404 /* We shouldn't have any transaction open at this point */
36c86a9e 4405 warn_about_uncommitted_trans(fs_info);
0a31daa4 4406
afcdd129 4407 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4408 free_root_pointers(fs_info, true);
8c38938c 4409 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4410
4e19443d
JB
4411 /*
4412 * We must free the block groups after dropping the fs_roots as we could
4413 * have had an IO error and have left over tree log blocks that aren't
4414 * cleaned up until the fs roots are freed. This makes the block group
4415 * accounting appear to be wrong because there's pending reserved bytes,
4416 * so make sure we do the block group cleanup afterwards.
4417 */
4418 btrfs_free_block_groups(fs_info);
4419
13e6c37b 4420 iput(fs_info->btree_inode);
d6bfde87 4421
21adbd5c 4422#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4423 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4424 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4425#endif
4426
0b86a832 4427 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4428 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4429}
4430
5f39d397
CM
4431void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4432{
2f4d60df 4433 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4434 u64 transid = btrfs_header_generation(buf);
b4ce94de 4435
06ea65a3
JB
4436#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4437 /*
4438 * This is a fast path so only do this check if we have sanity tests
52042d8e 4439 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4440 * outside of the sanity tests.
4441 */
b0132a3b 4442 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4443 return;
4444#endif
49d0c642 4445 btrfs_assert_tree_write_locked(buf);
0b246afa 4446 if (transid != fs_info->generation)
5d163e0e 4447 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4448 buf->start, transid, fs_info->generation);
f18cc978 4449 set_extent_buffer_dirty(buf);
1f21ef0a 4450#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb 4451 /*
85d8a826
JB
4452 * btrfs_check_leaf() won't check item data if we don't have WRITTEN
4453 * set, so this will only validate the basic structure of the items.
69fc6cbb 4454 */
85d8a826 4455 if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) {
a4f78750 4456 btrfs_print_leaf(buf);
1f21ef0a
FM
4457 ASSERT(0);
4458 }
4459#endif
eb60ceac
CM
4460}
4461
2ff7e61e 4462static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4463 int flush_delayed)
16cdcec7
MX
4464{
4465 /*
4466 * looks as though older kernels can get into trouble with
4467 * this code, they end up stuck in balance_dirty_pages forever
4468 */
e2d84521 4469 int ret;
16cdcec7
MX
4470
4471 if (current->flags & PF_MEMALLOC)
4472 return;
4473
b53d3f5d 4474 if (flush_delayed)
2ff7e61e 4475 btrfs_balance_delayed_items(fs_info);
16cdcec7 4476
d814a491
EL
4477 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4478 BTRFS_DIRTY_METADATA_THRESH,
4479 fs_info->dirty_metadata_batch);
e2d84521 4480 if (ret > 0) {
0b246afa 4481 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4482 }
16cdcec7
MX
4483}
4484
2ff7e61e 4485void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4486{
2ff7e61e 4487 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4488}
585ad2c3 4489
2ff7e61e 4490void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4491{
2ff7e61e 4492 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4493}
6b80053d 4494
2ff7e61e 4495static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4496{
fe816d0f
NB
4497 /* cleanup FS via transaction */
4498 btrfs_cleanup_transaction(fs_info);
4499
0b246afa 4500 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4501 btrfs_run_delayed_iputs(fs_info);
0b246afa 4502 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4503
0b246afa
JM
4504 down_write(&fs_info->cleanup_work_sem);
4505 up_write(&fs_info->cleanup_work_sem);
acce952b 4506}
4507
ef67963d
JB
4508static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4509{
fc7cbcd4
DS
4510 struct btrfs_root *gang[8];
4511 u64 root_objectid = 0;
4512 int ret;
4513
4514 spin_lock(&fs_info->fs_roots_radix_lock);
4515 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4516 (void **)gang, root_objectid,
4517 ARRAY_SIZE(gang))) != 0) {
4518 int i;
4519
4520 for (i = 0; i < ret; i++)
4521 gang[i] = btrfs_grab_root(gang[i]);
4522 spin_unlock(&fs_info->fs_roots_radix_lock);
4523
4524 for (i = 0; i < ret; i++) {
4525 if (!gang[i])
ef67963d 4526 continue;
fc7cbcd4
DS
4527 root_objectid = gang[i]->root_key.objectid;
4528 btrfs_free_log(NULL, gang[i]);
4529 btrfs_put_root(gang[i]);
ef67963d 4530 }
fc7cbcd4
DS
4531 root_objectid++;
4532 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4533 }
fc7cbcd4 4534 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4535 btrfs_free_log_root_tree(NULL, fs_info);
4536}
4537
143bede5 4538static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4539{
acce952b 4540 struct btrfs_ordered_extent *ordered;
acce952b 4541
199c2a9c 4542 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4543 /*
4544 * This will just short circuit the ordered completion stuff which will
4545 * make sure the ordered extent gets properly cleaned up.
4546 */
199c2a9c 4547 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4548 root_extent_list)
4549 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4550 spin_unlock(&root->ordered_extent_lock);
4551}
4552
4553static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4554{
4555 struct btrfs_root *root;
84af994b 4556 LIST_HEAD(splice);
199c2a9c
MX
4557
4558 spin_lock(&fs_info->ordered_root_lock);
4559 list_splice_init(&fs_info->ordered_roots, &splice);
4560 while (!list_empty(&splice)) {
4561 root = list_first_entry(&splice, struct btrfs_root,
4562 ordered_root);
1de2cfde
JB
4563 list_move_tail(&root->ordered_root,
4564 &fs_info->ordered_roots);
199c2a9c 4565
2a85d9ca 4566 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4567 btrfs_destroy_ordered_extents(root);
4568
2a85d9ca
LB
4569 cond_resched();
4570 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4571 }
4572 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4573
4574 /*
4575 * We need this here because if we've been flipped read-only we won't
4576 * get sync() from the umount, so we need to make sure any ordered
4577 * extents that haven't had their dirty pages IO start writeout yet
4578 * actually get run and error out properly.
4579 */
4580 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4581}
4582
99f09ce3
FM
4583static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4584 struct btrfs_fs_info *fs_info)
acce952b 4585{
4586 struct rb_node *node;
4587 struct btrfs_delayed_ref_root *delayed_refs;
4588 struct btrfs_delayed_ref_node *ref;
acce952b 4589
4590 delayed_refs = &trans->delayed_refs;
4591
4592 spin_lock(&delayed_refs->lock);
d7df2c79 4593 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4594 spin_unlock(&delayed_refs->lock);
b79ce3dd 4595 btrfs_debug(fs_info, "delayed_refs has NO entry");
99f09ce3 4596 return;
acce952b 4597 }
4598
5c9d028b 4599 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4600 struct btrfs_delayed_ref_head *head;
0e0adbcf 4601 struct rb_node *n;
e78417d1 4602 bool pin_bytes = false;
acce952b 4603
d7df2c79
JB
4604 head = rb_entry(node, struct btrfs_delayed_ref_head,
4605 href_node);
3069bd26 4606 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4607 continue;
3069bd26 4608
d7df2c79 4609 spin_lock(&head->lock);
e3d03965 4610 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4611 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4612 ref_node);
e3d03965 4613 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4614 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4615 if (!list_empty(&ref->add_list))
4616 list_del(&ref->add_list);
d7df2c79
JB
4617 atomic_dec(&delayed_refs->num_entries);
4618 btrfs_put_delayed_ref(ref);
e78417d1 4619 }
d7df2c79
JB
4620 if (head->must_insert_reserved)
4621 pin_bytes = true;
4622 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4623 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4624 spin_unlock(&head->lock);
4625 spin_unlock(&delayed_refs->lock);
4626 mutex_unlock(&head->mutex);
acce952b 4627
f603bb94
NB
4628 if (pin_bytes) {
4629 struct btrfs_block_group *cache;
4630
4631 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4632 BUG_ON(!cache);
4633
4634 spin_lock(&cache->space_info->lock);
4635 spin_lock(&cache->lock);
4636 cache->pinned += head->num_bytes;
4637 btrfs_space_info_update_bytes_pinned(fs_info,
4638 cache->space_info, head->num_bytes);
4639 cache->reserved -= head->num_bytes;
4640 cache->space_info->bytes_reserved -= head->num_bytes;
4641 spin_unlock(&cache->lock);
4642 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4643
4644 btrfs_put_block_group(cache);
4645
4646 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4647 head->bytenr + head->num_bytes - 1);
4648 }
31890da0 4649 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4650 btrfs_put_delayed_ref_head(head);
acce952b 4651 cond_resched();
4652 spin_lock(&delayed_refs->lock);
4653 }
81f7eb00 4654 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4655
4656 spin_unlock(&delayed_refs->lock);
acce952b 4657}
4658
143bede5 4659static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4660{
4661 struct btrfs_inode *btrfs_inode;
84af994b 4662 LIST_HEAD(splice);
acce952b 4663
eb73c1b7
MX
4664 spin_lock(&root->delalloc_lock);
4665 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4666
4667 while (!list_empty(&splice)) {
fe816d0f 4668 struct inode *inode = NULL;
eb73c1b7
MX
4669 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4670 delalloc_inodes);
fe816d0f 4671 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4672 spin_unlock(&root->delalloc_lock);
acce952b 4673
fe816d0f
NB
4674 /*
4675 * Make sure we get a live inode and that it'll not disappear
4676 * meanwhile.
4677 */
4678 inode = igrab(&btrfs_inode->vfs_inode);
4679 if (inode) {
597441b3
JB
4680 unsigned int nofs_flag;
4681
4682 nofs_flag = memalloc_nofs_save();
fe816d0f 4683 invalidate_inode_pages2(inode->i_mapping);
597441b3 4684 memalloc_nofs_restore(nofs_flag);
fe816d0f
NB
4685 iput(inode);
4686 }
eb73c1b7 4687 spin_lock(&root->delalloc_lock);
acce952b 4688 }
eb73c1b7
MX
4689 spin_unlock(&root->delalloc_lock);
4690}
4691
4692static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4693{
4694 struct btrfs_root *root;
84af994b 4695 LIST_HEAD(splice);
eb73c1b7
MX
4696
4697 spin_lock(&fs_info->delalloc_root_lock);
4698 list_splice_init(&fs_info->delalloc_roots, &splice);
4699 while (!list_empty(&splice)) {
4700 root = list_first_entry(&splice, struct btrfs_root,
4701 delalloc_root);
00246528 4702 root = btrfs_grab_root(root);
eb73c1b7
MX
4703 BUG_ON(!root);
4704 spin_unlock(&fs_info->delalloc_root_lock);
4705
4706 btrfs_destroy_delalloc_inodes(root);
00246528 4707 btrfs_put_root(root);
eb73c1b7
MX
4708
4709 spin_lock(&fs_info->delalloc_root_lock);
4710 }
4711 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4712}
4713
aec5716c
FM
4714static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4715 struct extent_io_tree *dirty_pages,
4716 int mark)
acce952b 4717{
acce952b 4718 struct extent_buffer *eb;
4719 u64 start = 0;
4720 u64 end;
acce952b 4721
e5860f82
FM
4722 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4723 mark, NULL)) {
91166212 4724 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4725 while (start <= end) {
0b246afa
JM
4726 eb = find_extent_buffer(fs_info, start);
4727 start += fs_info->nodesize;
fd8b2b61 4728 if (!eb)
acce952b 4729 continue;
c4e54a65
JB
4730
4731 btrfs_tree_lock(eb);
fd8b2b61 4732 wait_on_extent_buffer_writeback(eb);
190a8339 4733 btrfs_clear_buffer_dirty(NULL, eb);
c4e54a65 4734 btrfs_tree_unlock(eb);
acce952b 4735
fd8b2b61 4736 free_extent_buffer_stale(eb);
acce952b 4737 }
4738 }
acce952b 4739}
4740
46d81ebd
FM
4741static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4742 struct extent_io_tree *unpin)
acce952b 4743{
acce952b 4744 u64 start;
4745 u64 end;
acce952b 4746
acce952b 4747 while (1) {
0e6ec385
FM
4748 struct extent_state *cached_state = NULL;
4749
fcd5e742
LF
4750 /*
4751 * The btrfs_finish_extent_commit() may get the same range as
4752 * ours between find_first_extent_bit and clear_extent_dirty.
4753 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4754 * the same extent range.
4755 */
4756 mutex_lock(&fs_info->unused_bg_unpin_mutex);
e5860f82
FM
4757 if (!find_first_extent_bit(unpin, 0, &start, &end,
4758 EXTENT_DIRTY, &cached_state)) {
fcd5e742 4759 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4760 break;
fcd5e742 4761 }
acce952b 4762
0e6ec385
FM
4763 clear_extent_dirty(unpin, start, end, &cached_state);
4764 free_extent_state(cached_state);
2ff7e61e 4765 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4766 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4767 cond_resched();
4768 }
acce952b 4769}
4770
32da5386 4771static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4772{
4773 struct inode *inode;
4774
4775 inode = cache->io_ctl.inode;
4776 if (inode) {
597441b3
JB
4777 unsigned int nofs_flag;
4778
4779 nofs_flag = memalloc_nofs_save();
c79a1751 4780 invalidate_inode_pages2(inode->i_mapping);
597441b3
JB
4781 memalloc_nofs_restore(nofs_flag);
4782
c79a1751
LB
4783 BTRFS_I(inode)->generation = 0;
4784 cache->io_ctl.inode = NULL;
4785 iput(inode);
4786 }
bbc37d6e 4787 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4788 btrfs_put_block_group(cache);
4789}
4790
4791void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4792 struct btrfs_fs_info *fs_info)
c79a1751 4793{
32da5386 4794 struct btrfs_block_group *cache;
c79a1751
LB
4795
4796 spin_lock(&cur_trans->dirty_bgs_lock);
4797 while (!list_empty(&cur_trans->dirty_bgs)) {
4798 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4799 struct btrfs_block_group,
c79a1751 4800 dirty_list);
c79a1751
LB
4801
4802 if (!list_empty(&cache->io_list)) {
4803 spin_unlock(&cur_trans->dirty_bgs_lock);
4804 list_del_init(&cache->io_list);
4805 btrfs_cleanup_bg_io(cache);
4806 spin_lock(&cur_trans->dirty_bgs_lock);
4807 }
4808
4809 list_del_init(&cache->dirty_list);
4810 spin_lock(&cache->lock);
4811 cache->disk_cache_state = BTRFS_DC_ERROR;
4812 spin_unlock(&cache->lock);
4813
4814 spin_unlock(&cur_trans->dirty_bgs_lock);
4815 btrfs_put_block_group(cache);
ba2c4d4e 4816 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4817 spin_lock(&cur_trans->dirty_bgs_lock);
4818 }
4819 spin_unlock(&cur_trans->dirty_bgs_lock);
4820
45ae2c18
NB
4821 /*
4822 * Refer to the definition of io_bgs member for details why it's safe
4823 * to use it without any locking
4824 */
c79a1751
LB
4825 while (!list_empty(&cur_trans->io_bgs)) {
4826 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4827 struct btrfs_block_group,
c79a1751 4828 io_list);
c79a1751
LB
4829
4830 list_del_init(&cache->io_list);
4831 spin_lock(&cache->lock);
4832 cache->disk_cache_state = BTRFS_DC_ERROR;
4833 spin_unlock(&cache->lock);
4834 btrfs_cleanup_bg_io(cache);
4835 }
4836}
4837
49b25e05 4838void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4839 struct btrfs_fs_info *fs_info)
49b25e05 4840{
bbbf7243
NB
4841 struct btrfs_device *dev, *tmp;
4842
2ff7e61e 4843 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4844 ASSERT(list_empty(&cur_trans->dirty_bgs));
4845 ASSERT(list_empty(&cur_trans->io_bgs));
4846
bbbf7243
NB
4847 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4848 post_commit_list) {
4849 list_del_init(&dev->post_commit_list);
4850 }
4851
2ff7e61e 4852 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4853
4a9d8bde 4854 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4855 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4856
4a9d8bde 4857 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4858 wake_up(&fs_info->transaction_wait);
49b25e05 4859
ccdf9b30 4860 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4861
2ff7e61e 4862 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4863 EXTENT_DIRTY);
fe119a6e 4864 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4865
4a9d8bde
MX
4866 cur_trans->state =TRANS_STATE_COMPLETED;
4867 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4868}
4869
2ff7e61e 4870static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4871{
4872 struct btrfs_transaction *t;
acce952b 4873
0b246afa 4874 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4875
0b246afa
JM
4876 spin_lock(&fs_info->trans_lock);
4877 while (!list_empty(&fs_info->trans_list)) {
4878 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4879 struct btrfs_transaction, list);
4880 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4881 refcount_inc(&t->use_count);
0b246afa 4882 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4883 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4884 btrfs_put_transaction(t);
0b246afa 4885 spin_lock(&fs_info->trans_lock);
724e2315
JB
4886 continue;
4887 }
0b246afa 4888 if (t == fs_info->running_transaction) {
724e2315 4889 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4890 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4891 /*
4892 * We wait for 0 num_writers since we don't hold a trans
4893 * handle open currently for this transaction.
4894 */
4895 wait_event(t->writer_wait,
4896 atomic_read(&t->num_writers) == 0);
4897 } else {
0b246afa 4898 spin_unlock(&fs_info->trans_lock);
724e2315 4899 }
2ff7e61e 4900 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4901
0b246afa
JM
4902 spin_lock(&fs_info->trans_lock);
4903 if (t == fs_info->running_transaction)
4904 fs_info->running_transaction = NULL;
acce952b 4905 list_del_init(&t->list);
0b246afa 4906 spin_unlock(&fs_info->trans_lock);
acce952b 4907
724e2315 4908 btrfs_put_transaction(t);
2e4e97ab 4909 trace_btrfs_transaction_commit(fs_info);
0b246afa 4910 spin_lock(&fs_info->trans_lock);
724e2315 4911 }
0b246afa
JM
4912 spin_unlock(&fs_info->trans_lock);
4913 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4914 btrfs_destroy_delayed_inodes(fs_info);
4915 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4916 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4917 btrfs_drop_all_logs(fs_info);
0b246afa 4918 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4919
4920 return 0;
4921}
ec7d6dfd 4922
453e4873 4923int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4924{
4925 struct btrfs_path *path;
4926 int ret;
4927 struct extent_buffer *l;
4928 struct btrfs_key search_key;
4929 struct btrfs_key found_key;
4930 int slot;
4931
4932 path = btrfs_alloc_path();
4933 if (!path)
4934 return -ENOMEM;
4935
4936 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4937 search_key.type = -1;
4938 search_key.offset = (u64)-1;
4939 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4940 if (ret < 0)
4941 goto error;
4942 BUG_ON(ret == 0); /* Corruption */
4943 if (path->slots[0] > 0) {
4944 slot = path->slots[0] - 1;
4945 l = path->nodes[0];
4946 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
4947 root->free_objectid = max_t(u64, found_key.objectid + 1,
4948 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 4949 } else {
23125104 4950 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
4951 }
4952 ret = 0;
4953error:
4954 btrfs_free_path(path);
4955 return ret;
4956}
4957
543068a2 4958int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
4959{
4960 int ret;
4961 mutex_lock(&root->objectid_mutex);
4962
6b8fad57 4963 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
4964 btrfs_warn(root->fs_info,
4965 "the objectid of root %llu reaches its highest value",
4966 root->root_key.objectid);
4967 ret = -ENOSPC;
4968 goto out;
4969 }
4970
23125104 4971 *objectid = root->free_objectid++;
ec7d6dfd
NB
4972 ret = 0;
4973out:
4974 mutex_unlock(&root->objectid_mutex);
4975 return ret;
4976}