btrfs: use EXPORT_FOR_TESTS for conditionally exported functions
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
7e75bf3f 20#include <asm/unaligned.h>
eb60ceac
CM
21#include "ctree.h"
22#include "disk-io.h"
e089f05c 23#include "transaction.h"
0f7d52f4 24#include "btrfs_inode.h"
0b86a832 25#include "volumes.h"
db94535d 26#include "print-tree.h"
925baedd 27#include "locking.h"
e02119d5 28#include "tree-log.h"
fa9c0d79 29#include "free-space-cache.h"
70f6d82e 30#include "free-space-tree.h"
581bb050 31#include "inode-map.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
eb60ceac 41
de0022b9
JB
42#ifdef CONFIG_X86
43#include <asm/cpufeature.h>
44#endif
45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
d352ac68
CM
101/*
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
105 */
44b8bd7e 106struct async_submit_bio {
c6100a4b 107 void *private_data;
44b8bd7e 108 struct bio *bio;
a758781d 109 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 110 int mirror_num;
eaf25d93
CM
111 /*
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
114 */
115 u64 bio_offset;
8b712842 116 struct btrfs_work work;
4e4cbee9 117 blk_status_t status;
44b8bd7e
CM
118};
119
85d4e461
CM
120/*
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
124 *
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
4008c04a 130 *
85d4e461
CM
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 134 *
85d4e461
CM
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 138 *
85d4e461
CM
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
4008c04a
CM
142 */
143#ifdef CONFIG_DEBUG_LOCK_ALLOC
144# if BTRFS_MAX_LEVEL != 8
145# error
146# endif
85d4e461
CM
147
148static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153} btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 166 { .id = 0, .name_stem = "tree" },
4008c04a 167};
85d4e461
CM
168
169void __init btrfs_init_lockdep(void)
170{
171 int i, j;
172
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
180 }
181}
182
183void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 int level)
185{
186 struct btrfs_lockdep_keyset *ks;
187
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
193 break;
194
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
197}
198
4008c04a
CM
199#endif
200
d352ac68
CM
201/*
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
204 */
6af49dbd 205struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 206 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 207 int create)
7eccb903 208{
3ffbd68c 209 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 210 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
211 struct extent_map *em;
212 int ret;
213
890871be 214 read_lock(&em_tree->lock);
d1310b2e 215 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 216 if (em) {
0b246afa 217 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 218 read_unlock(&em_tree->lock);
5f39d397 219 goto out;
a061fc8d 220 }
890871be 221 read_unlock(&em_tree->lock);
7b13b7b1 222
172ddd60 223 em = alloc_extent_map();
5f39d397
CM
224 if (!em) {
225 em = ERR_PTR(-ENOMEM);
226 goto out;
227 }
228 em->start = 0;
0afbaf8c 229 em->len = (u64)-1;
c8b97818 230 em->block_len = (u64)-1;
5f39d397 231 em->block_start = 0;
0b246afa 232 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 233
890871be 234 write_lock(&em_tree->lock);
09a2a8f9 235 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
236 if (ret == -EEXIST) {
237 free_extent_map(em);
7b13b7b1 238 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 239 if (!em)
0433f20d 240 em = ERR_PTR(-EIO);
5f39d397 241 } else if (ret) {
7b13b7b1 242 free_extent_map(em);
0433f20d 243 em = ERR_PTR(ret);
5f39d397 244 }
890871be 245 write_unlock(&em_tree->lock);
7b13b7b1 246
5f39d397
CM
247out:
248 return em;
7eccb903
CM
249}
250
9ed57367 251u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 252{
9678c543 253 return crc32c(seed, data, len);
19c00ddc
CM
254}
255
0b5e3daf 256void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 257{
7e75bf3f 258 put_unaligned_le32(~crc, result);
19c00ddc
CM
259}
260
d352ac68
CM
261/*
262 * compute the csum for a btree block, and either verify it or write it
263 * into the csum field of the block.
264 */
01d58472
DD
265static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 struct extent_buffer *buf,
19c00ddc
CM
267 int verify)
268{
01d58472 269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
71a63551 270 char result[BTRFS_CSUM_SIZE];
19c00ddc
CM
271 unsigned long len;
272 unsigned long cur_len;
273 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
274 char *kaddr;
275 unsigned long map_start;
276 unsigned long map_len;
277 int err;
278 u32 crc = ~(u32)0;
279
280 len = buf->len - offset;
d397712b 281 while (len > 0) {
19c00ddc 282 err = map_private_extent_buffer(buf, offset, 32,
a6591715 283 &kaddr, &map_start, &map_len);
d397712b 284 if (err)
8bd98f0e 285 return err;
19c00ddc 286 cur_len = min(len, map_len - (offset - map_start));
b0496686 287 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
288 crc, cur_len);
289 len -= cur_len;
290 offset += cur_len;
19c00ddc 291 }
71a63551 292 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
94647322 303 btrfs_warn_rl(fs_info,
5d163e0e 304 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 305 fs_info->sb->s_id, buf->start,
efe120a0 306 val, found, btrfs_header_level(buf));
8bd98f0e 307 return -EUCLEAN;
19c00ddc
CM
308 }
309 } else {
607d432d 310 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 311 }
71a63551 312
19c00ddc
CM
313 return 0;
314}
315
d352ac68
CM
316/*
317 * we can't consider a given block up to date unless the transid of the
318 * block matches the transid in the parent node's pointer. This is how we
319 * detect blocks that either didn't get written at all or got written
320 * in the wrong place.
321 */
1259ab75 322static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
323 struct extent_buffer *eb, u64 parent_transid,
324 int atomic)
1259ab75 325{
2ac55d41 326 struct extent_state *cached_state = NULL;
1259ab75 327 int ret;
2755a0de 328 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
b9fab919
CM
333 if (atomic)
334 return -EAGAIN;
335
a26e8c9f
JB
336 if (need_lock) {
337 btrfs_tree_read_lock(eb);
338 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
339 }
340
2ac55d41 341 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 342 &cached_state);
0b32f4bb 343 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
344 btrfs_header_generation(eb) == parent_transid) {
345 ret = 0;
346 goto out;
347 }
94647322
DS
348 btrfs_err_rl(eb->fs_info,
349 "parent transid verify failed on %llu wanted %llu found %llu",
350 eb->start,
29549aec 351 parent_transid, btrfs_header_generation(eb));
1259ab75 352 ret = 1;
a26e8c9f
JB
353
354 /*
355 * Things reading via commit roots that don't have normal protection,
356 * like send, can have a really old block in cache that may point at a
01327610 357 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
358 * if we find an eb that is under IO (dirty/writeback) because we could
359 * end up reading in the stale data and then writing it back out and
360 * making everybody very sad.
361 */
362 if (!extent_buffer_under_io(eb))
363 clear_extent_buffer_uptodate(eb);
33958dc6 364out:
2ac55d41 365 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 366 &cached_state);
472b909f
JB
367 if (need_lock)
368 btrfs_tree_read_unlock_blocking(eb);
1259ab75 369 return ret;
1259ab75
CM
370}
371
1104a885
DS
372/*
373 * Return 0 if the superblock checksum type matches the checksum value of that
374 * algorithm. Pass the raw disk superblock data.
375 */
ab8d0fc4
JM
376static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
377 char *raw_disk_sb)
1104a885
DS
378{
379 struct btrfs_super_block *disk_sb =
380 (struct btrfs_super_block *)raw_disk_sb;
381 u16 csum_type = btrfs_super_csum_type(disk_sb);
382 int ret = 0;
383
384 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
385 u32 crc = ~(u32)0;
776c4a7c 386 char result[sizeof(crc)];
1104a885
DS
387
388 /*
389 * The super_block structure does not span the whole
390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 391 * is filled with zeros and is included in the checksum.
1104a885
DS
392 */
393 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
394 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
395 btrfs_csum_final(crc, result);
396
776c4a7c 397 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
398 ret = 1;
399 }
400
401 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 402 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
403 csum_type);
404 ret = 1;
405 }
406
407 return ret;
408}
409
581c1760
QW
410static int verify_level_key(struct btrfs_fs_info *fs_info,
411 struct extent_buffer *eb, int level,
ff76a864 412 struct btrfs_key *first_key, u64 parent_transid)
581c1760
QW
413{
414 int found_level;
415 struct btrfs_key found_key;
416 int ret;
417
418 found_level = btrfs_header_level(eb);
419 if (found_level != level) {
420#ifdef CONFIG_BTRFS_DEBUG
421 WARN_ON(1);
422 btrfs_err(fs_info,
423"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424 eb->start, level, found_level);
425#endif
426 return -EIO;
427 }
428
429 if (!first_key)
430 return 0;
431
5d41be6f
QW
432 /*
433 * For live tree block (new tree blocks in current transaction),
434 * we need proper lock context to avoid race, which is impossible here.
435 * So we only checks tree blocks which is read from disk, whose
436 * generation <= fs_info->last_trans_committed.
437 */
438 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
439 return 0;
581c1760
QW
440 if (found_level)
441 btrfs_node_key_to_cpu(eb, &found_key, 0);
442 else
443 btrfs_item_key_to_cpu(eb, &found_key, 0);
444 ret = btrfs_comp_cpu_keys(first_key, &found_key);
445
446#ifdef CONFIG_BTRFS_DEBUG
447 if (ret) {
448 WARN_ON(1);
449 btrfs_err(fs_info,
ff76a864
LB
450"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451 eb->start, parent_transid, first_key->objectid,
452 first_key->type, first_key->offset,
453 found_key.objectid, found_key.type,
454 found_key.offset);
581c1760
QW
455 }
456#endif
457 return ret;
458}
459
d352ac68
CM
460/*
461 * helper to read a given tree block, doing retries as required when
462 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
463 *
464 * @parent_transid: expected transid, skip check if 0
465 * @level: expected level, mandatory check
466 * @first_key: expected key of first slot, skip check if NULL
d352ac68 467 */
2ff7e61e 468static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 469 struct extent_buffer *eb,
581c1760
QW
470 u64 parent_transid, int level,
471 struct btrfs_key *first_key)
f188591e
CM
472{
473 struct extent_io_tree *io_tree;
ea466794 474 int failed = 0;
f188591e
CM
475 int ret;
476 int num_copies = 0;
477 int mirror_num = 0;
ea466794 478 int failed_mirror = 0;
f188591e 479
0b246afa 480 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 481 while (1) {
f8397d69 482 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
8436ea91 483 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 484 mirror_num);
256dd1bb 485 if (!ret) {
581c1760 486 if (verify_parent_transid(io_tree, eb,
b9fab919 487 parent_transid, 0))
256dd1bb 488 ret = -EIO;
581c1760 489 else if (verify_level_key(fs_info, eb, level,
ff76a864 490 first_key, parent_transid))
581c1760
QW
491 ret = -EUCLEAN;
492 else
493 break;
256dd1bb 494 }
d397712b 495
0b246afa 496 num_copies = btrfs_num_copies(fs_info,
f188591e 497 eb->start, eb->len);
4235298e 498 if (num_copies == 1)
ea466794 499 break;
4235298e 500
5cf1ab56
JB
501 if (!failed_mirror) {
502 failed = 1;
503 failed_mirror = eb->read_mirror;
504 }
505
f188591e 506 mirror_num++;
ea466794
JB
507 if (mirror_num == failed_mirror)
508 mirror_num++;
509
4235298e 510 if (mirror_num > num_copies)
ea466794 511 break;
f188591e 512 }
ea466794 513
c0901581 514 if (failed && !ret && failed_mirror)
2ff7e61e 515 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
516
517 return ret;
f188591e 518}
19c00ddc 519
d352ac68 520/*
d397712b
CM
521 * checksum a dirty tree block before IO. This has extra checks to make sure
522 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 523 */
d397712b 524
01d58472 525static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 526{
4eee4fa4 527 u64 start = page_offset(page);
19c00ddc 528 u64 found_start;
19c00ddc 529 struct extent_buffer *eb;
f188591e 530
4f2de97a
JB
531 eb = (struct extent_buffer *)page->private;
532 if (page != eb->pages[0])
533 return 0;
0f805531 534
19c00ddc 535 found_start = btrfs_header_bytenr(eb);
0f805531
AL
536 /*
537 * Please do not consolidate these warnings into a single if.
538 * It is useful to know what went wrong.
539 */
540 if (WARN_ON(found_start != start))
541 return -EUCLEAN;
542 if (WARN_ON(!PageUptodate(page)))
543 return -EUCLEAN;
544
545 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
546 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
547
8bd98f0e 548 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
549}
550
01d58472 551static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
552 struct extent_buffer *eb)
553{
01d58472 554 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 555 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
556 int ret = 1;
557
0a4e5586 558 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
559 while (fs_devices) {
560 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
561 ret = 0;
562 break;
563 }
564 fs_devices = fs_devices->seed;
565 }
566 return ret;
567}
568
facc8a22
MX
569static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
570 u64 phy_offset, struct page *page,
571 u64 start, u64 end, int mirror)
ce9adaa5 572{
ce9adaa5
CM
573 u64 found_start;
574 int found_level;
ce9adaa5
CM
575 struct extent_buffer *eb;
576 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 577 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 578 int ret = 0;
727011e0 579 int reads_done;
ce9adaa5 580
ce9adaa5
CM
581 if (!page->private)
582 goto out;
d397712b 583
4f2de97a 584 eb = (struct extent_buffer *)page->private;
d397712b 585
0b32f4bb
JB
586 /* the pending IO might have been the only thing that kept this buffer
587 * in memory. Make sure we have a ref for all this other checks
588 */
589 extent_buffer_get(eb);
590
591 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
592 if (!reads_done)
593 goto err;
f188591e 594
5cf1ab56 595 eb->read_mirror = mirror;
656f30db 596 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
597 ret = -EIO;
598 goto err;
599 }
600
ce9adaa5 601 found_start = btrfs_header_bytenr(eb);
727011e0 602 if (found_start != eb->start) {
893bf4b1
SY
603 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
604 eb->start, found_start);
f188591e 605 ret = -EIO;
ce9adaa5
CM
606 goto err;
607 }
02873e43
ZL
608 if (check_tree_block_fsid(fs_info, eb)) {
609 btrfs_err_rl(fs_info, "bad fsid on block %llu",
610 eb->start);
1259ab75
CM
611 ret = -EIO;
612 goto err;
613 }
ce9adaa5 614 found_level = btrfs_header_level(eb);
1c24c3ce 615 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
616 btrfs_err(fs_info, "bad tree block level %d on %llu",
617 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
618 ret = -EIO;
619 goto err;
620 }
ce9adaa5 621
85d4e461
CM
622 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
623 eb, found_level);
4008c04a 624
02873e43 625 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 626 if (ret)
a826d6dc 627 goto err;
a826d6dc
JB
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
2f659546 634 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
a826d6dc
JB
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
ce9adaa5 638
2f659546 639 if (found_level > 0 && btrfs_check_node(fs_info, eb))
053ab70f
LB
640 ret = -EIO;
641
0b32f4bb
JB
642 if (!ret)
643 set_extent_buffer_uptodate(eb);
ce9adaa5 644err:
79fb65a1
JB
645 if (reads_done &&
646 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 647 btree_readahead_hook(eb, ret);
4bb31e92 648
53b381b3
DW
649 if (ret) {
650 /*
651 * our io error hook is going to dec the io pages
652 * again, we have to make sure it has something
653 * to decrement
654 */
655 atomic_inc(&eb->io_pages);
0b32f4bb 656 clear_extent_buffer_uptodate(eb);
53b381b3 657 }
0b32f4bb 658 free_extent_buffer(eb);
ce9adaa5 659out:
f188591e 660 return ret;
ce9adaa5
CM
661}
662
ea466794 663static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 664{
4bb31e92 665 struct extent_buffer *eb;
4bb31e92 666
4f2de97a 667 eb = (struct extent_buffer *)page->private;
656f30db 668 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 669 eb->read_mirror = failed_mirror;
53b381b3 670 atomic_dec(&eb->io_pages);
ea466794 671 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 672 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
673 return -EIO; /* we fixed nothing */
674}
675
4246a0b6 676static void end_workqueue_bio(struct bio *bio)
ce9adaa5 677{
97eb6b69 678 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 679 struct btrfs_fs_info *fs_info;
9e0af237
LB
680 struct btrfs_workqueue *wq;
681 btrfs_work_func_t func;
ce9adaa5 682
ce9adaa5 683 fs_info = end_io_wq->info;
4e4cbee9 684 end_io_wq->status = bio->bi_status;
d20f7043 685
37226b21 686 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
687 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
688 wq = fs_info->endio_meta_write_workers;
689 func = btrfs_endio_meta_write_helper;
690 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
691 wq = fs_info->endio_freespace_worker;
692 func = btrfs_freespace_write_helper;
693 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
694 wq = fs_info->endio_raid56_workers;
695 func = btrfs_endio_raid56_helper;
696 } else {
697 wq = fs_info->endio_write_workers;
698 func = btrfs_endio_write_helper;
699 }
d20f7043 700 } else {
8b110e39
MX
701 if (unlikely(end_io_wq->metadata ==
702 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
703 wq = fs_info->endio_repair_workers;
704 func = btrfs_endio_repair_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
706 wq = fs_info->endio_raid56_workers;
707 func = btrfs_endio_raid56_helper;
708 } else if (end_io_wq->metadata) {
709 wq = fs_info->endio_meta_workers;
710 func = btrfs_endio_meta_helper;
711 } else {
712 wq = fs_info->endio_workers;
713 func = btrfs_endio_helper;
714 }
d20f7043 715 }
9e0af237
LB
716
717 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
718 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
719}
720
4e4cbee9 721blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 722 enum btrfs_wq_endio_type metadata)
0b86a832 723{
97eb6b69 724 struct btrfs_end_io_wq *end_io_wq;
8b110e39 725
97eb6b69 726 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 727 if (!end_io_wq)
4e4cbee9 728 return BLK_STS_RESOURCE;
ce9adaa5
CM
729
730 end_io_wq->private = bio->bi_private;
731 end_io_wq->end_io = bio->bi_end_io;
22c59948 732 end_io_wq->info = info;
4e4cbee9 733 end_io_wq->status = 0;
ce9adaa5 734 end_io_wq->bio = bio;
22c59948 735 end_io_wq->metadata = metadata;
ce9adaa5
CM
736
737 bio->bi_private = end_io_wq;
738 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
739 return 0;
740}
741
4a69a410
CM
742static void run_one_async_start(struct btrfs_work *work)
743{
4a69a410 744 struct async_submit_bio *async;
4e4cbee9 745 blk_status_t ret;
4a69a410
CM
746
747 async = container_of(work, struct async_submit_bio, work);
c6100a4b 748 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
749 async->bio_offset);
750 if (ret)
4e4cbee9 751 async->status = ret;
4a69a410
CM
752}
753
754static void run_one_async_done(struct btrfs_work *work)
8b712842 755{
8b712842
CM
756 struct async_submit_bio *async;
757
758 async = container_of(work, struct async_submit_bio, work);
4854ddd0 759
bb7ab3b9 760 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
761 if (async->status) {
762 async->bio->bi_status = async->status;
4246a0b6 763 bio_endio(async->bio);
79787eaa
JM
764 return;
765 }
766
e288c080 767 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
4a69a410
CM
768}
769
770static void run_one_async_free(struct btrfs_work *work)
771{
772 struct async_submit_bio *async;
773
774 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
775 kfree(async);
776}
777
8c27cb35
LT
778blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
779 int mirror_num, unsigned long bio_flags,
780 u64 bio_offset, void *private_data,
e288c080 781 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
782{
783 struct async_submit_bio *async;
784
785 async = kmalloc(sizeof(*async), GFP_NOFS);
786 if (!async)
4e4cbee9 787 return BLK_STS_RESOURCE;
44b8bd7e 788
c6100a4b 789 async->private_data = private_data;
44b8bd7e
CM
790 async->bio = bio;
791 async->mirror_num = mirror_num;
4a69a410 792 async->submit_bio_start = submit_bio_start;
4a69a410 793
9e0af237 794 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 795 run_one_async_done, run_one_async_free);
4a69a410 796
eaf25d93 797 async->bio_offset = bio_offset;
8c8bee1d 798
4e4cbee9 799 async->status = 0;
79787eaa 800
67f055c7 801 if (op_is_sync(bio->bi_opf))
5cdc7ad3 802 btrfs_set_work_high_priority(&async->work);
d313d7a3 803
5cdc7ad3 804 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
805 return 0;
806}
807
4e4cbee9 808static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 809{
2c30c71b 810 struct bio_vec *bvec;
ce3ed71a 811 struct btrfs_root *root;
2c30c71b 812 int i, ret = 0;
ce3ed71a 813
c09abff8 814 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 815 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 816 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 817 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
818 if (ret)
819 break;
ce3ed71a 820 }
2c30c71b 821
4e4cbee9 822 return errno_to_blk_status(ret);
ce3ed71a
CM
823}
824
d0ee3934 825static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 826 u64 bio_offset)
22c59948 827{
8b712842
CM
828 /*
829 * when we're called for a write, we're already in the async
5443be45 830 * submission context. Just jump into btrfs_map_bio
8b712842 831 */
79787eaa 832 return btree_csum_one_bio(bio);
4a69a410 833}
22c59948 834
18fdc679 835static int check_async_write(struct btrfs_inode *bi)
de0022b9 836{
6300463b
LB
837 if (atomic_read(&bi->sync_writers))
838 return 0;
de0022b9 839#ifdef CONFIG_X86
bc696ca0 840 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
841 return 0;
842#endif
843 return 1;
844}
845
8c27cb35
LT
846static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
847 int mirror_num, unsigned long bio_flags,
848 u64 bio_offset)
44b8bd7e 849{
c6100a4b 850 struct inode *inode = private_data;
0b246afa 851 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 852 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 853 blk_status_t ret;
cad321ad 854
37226b21 855 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
856 /*
857 * called for a read, do the setup so that checksum validation
858 * can happen in the async kernel threads
859 */
0b246afa
JM
860 ret = btrfs_bio_wq_end_io(fs_info, bio,
861 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 862 if (ret)
61891923 863 goto out_w_error;
2ff7e61e 864 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
865 } else if (!async) {
866 ret = btree_csum_one_bio(bio);
867 if (ret)
61891923 868 goto out_w_error;
2ff7e61e 869 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
870 } else {
871 /*
872 * kthread helpers are used to submit writes so that
873 * checksumming can happen in parallel across all CPUs
874 */
c6100a4b
JB
875 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
876 bio_offset, private_data,
e288c080 877 btree_submit_bio_start);
44b8bd7e 878 }
d313d7a3 879
4246a0b6
CH
880 if (ret)
881 goto out_w_error;
882 return 0;
883
61891923 884out_w_error:
4e4cbee9 885 bio->bi_status = ret;
4246a0b6 886 bio_endio(bio);
61891923 887 return ret;
44b8bd7e
CM
888}
889
3dd1462e 890#ifdef CONFIG_MIGRATION
784b4e29 891static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
892 struct page *newpage, struct page *page,
893 enum migrate_mode mode)
784b4e29
CM
894{
895 /*
896 * we can't safely write a btree page from here,
897 * we haven't done the locking hook
898 */
899 if (PageDirty(page))
900 return -EAGAIN;
901 /*
902 * Buffers may be managed in a filesystem specific way.
903 * We must have no buffers or drop them.
904 */
905 if (page_has_private(page) &&
906 !try_to_release_page(page, GFP_KERNEL))
907 return -EAGAIN;
a6bc32b8 908 return migrate_page(mapping, newpage, page, mode);
784b4e29 909}
3dd1462e 910#endif
784b4e29 911
0da5468f
CM
912
913static int btree_writepages(struct address_space *mapping,
914 struct writeback_control *wbc)
915{
e2d84521
MX
916 struct btrfs_fs_info *fs_info;
917 int ret;
918
d8d5f3e1 919 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
920
921 if (wbc->for_kupdate)
922 return 0;
923
e2d84521 924 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 925 /* this is a bit racy, but that's ok */
d814a491
EL
926 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
927 BTRFS_DIRTY_METADATA_THRESH,
928 fs_info->dirty_metadata_batch);
e2d84521 929 if (ret < 0)
793955bc 930 return 0;
793955bc 931 }
0b32f4bb 932 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
933}
934
b2950863 935static int btree_readpage(struct file *file, struct page *page)
5f39d397 936{
d1310b2e
CM
937 struct extent_io_tree *tree;
938 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 939 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 940}
22b0ebda 941
70dec807 942static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 943{
98509cfc 944 if (PageWriteback(page) || PageDirty(page))
d397712b 945 return 0;
0c4e538b 946
f7a52a40 947 return try_release_extent_buffer(page);
d98237b3
CM
948}
949
d47992f8
LC
950static void btree_invalidatepage(struct page *page, unsigned int offset,
951 unsigned int length)
d98237b3 952{
d1310b2e
CM
953 struct extent_io_tree *tree;
954 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
955 extent_invalidatepage(tree, page, offset);
956 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 957 if (PagePrivate(page)) {
efe120a0
FH
958 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
959 "page private not zero on page %llu",
960 (unsigned long long)page_offset(page));
9ad6b7bc
CM
961 ClearPagePrivate(page);
962 set_page_private(page, 0);
09cbfeaf 963 put_page(page);
9ad6b7bc 964 }
d98237b3
CM
965}
966
0b32f4bb
JB
967static int btree_set_page_dirty(struct page *page)
968{
bb146eb2 969#ifdef DEBUG
0b32f4bb
JB
970 struct extent_buffer *eb;
971
972 BUG_ON(!PagePrivate(page));
973 eb = (struct extent_buffer *)page->private;
974 BUG_ON(!eb);
975 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
976 BUG_ON(!atomic_read(&eb->refs));
977 btrfs_assert_tree_locked(eb);
bb146eb2 978#endif
0b32f4bb
JB
979 return __set_page_dirty_nobuffers(page);
980}
981
7f09410b 982static const struct address_space_operations btree_aops = {
d98237b3 983 .readpage = btree_readpage,
0da5468f 984 .writepages = btree_writepages,
5f39d397
CM
985 .releasepage = btree_releasepage,
986 .invalidatepage = btree_invalidatepage,
5a92bc88 987#ifdef CONFIG_MIGRATION
784b4e29 988 .migratepage = btree_migratepage,
5a92bc88 989#endif
0b32f4bb 990 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
991};
992
2ff7e61e 993void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 994{
5f39d397 995 struct extent_buffer *buf = NULL;
2ff7e61e 996 struct inode *btree_inode = fs_info->btree_inode;
090d1875 997
2ff7e61e 998 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 999 if (IS_ERR(buf))
6197d86e 1000 return;
d1310b2e 1001 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
6af49dbd 1002 buf, WAIT_NONE, 0);
5f39d397 1003 free_extent_buffer(buf);
090d1875
CM
1004}
1005
2ff7e61e 1006int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1007 int mirror_num, struct extent_buffer **eb)
1008{
1009 struct extent_buffer *buf = NULL;
2ff7e61e 1010 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1011 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1012 int ret;
1013
2ff7e61e 1014 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1015 if (IS_ERR(buf))
ab0fff03
AJ
1016 return 0;
1017
1018 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1019
8436ea91 1020 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1021 mirror_num);
ab0fff03
AJ
1022 if (ret) {
1023 free_extent_buffer(buf);
1024 return ret;
1025 }
1026
1027 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1028 free_extent_buffer(buf);
1029 return -EIO;
0b32f4bb 1030 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1031 *eb = buf;
1032 } else {
1033 free_extent_buffer(buf);
1034 }
1035 return 0;
1036}
1037
2ff7e61e
JM
1038struct extent_buffer *btrfs_find_create_tree_block(
1039 struct btrfs_fs_info *fs_info,
1040 u64 bytenr)
0999df54 1041{
0b246afa
JM
1042 if (btrfs_is_testing(fs_info))
1043 return alloc_test_extent_buffer(fs_info, bytenr);
1044 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1045}
1046
1047
e02119d5
CM
1048int btrfs_write_tree_block(struct extent_buffer *buf)
1049{
727011e0 1050 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1051 buf->start + buf->len - 1);
e02119d5
CM
1052}
1053
3189ff77 1054void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1055{
3189ff77
JL
1056 filemap_fdatawait_range(buf->pages[0]->mapping,
1057 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1058}
1059
581c1760
QW
1060/*
1061 * Read tree block at logical address @bytenr and do variant basic but critical
1062 * verification.
1063 *
1064 * @parent_transid: expected transid of this tree block, skip check if 0
1065 * @level: expected level, mandatory check
1066 * @first_key: expected key in slot 0, skip check if NULL
1067 */
2ff7e61e 1068struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1069 u64 parent_transid, int level,
1070 struct btrfs_key *first_key)
0999df54
CM
1071{
1072 struct extent_buffer *buf = NULL;
0999df54
CM
1073 int ret;
1074
2ff7e61e 1075 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1076 if (IS_ERR(buf))
1077 return buf;
0999df54 1078
581c1760
QW
1079 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1080 level, first_key);
0f0fe8f7
FDBM
1081 if (ret) {
1082 free_extent_buffer(buf);
64c043de 1083 return ERR_PTR(ret);
0f0fe8f7 1084 }
5f39d397 1085 return buf;
ce9adaa5 1086
eb60ceac
CM
1087}
1088
7c302b49 1089void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1090 struct extent_buffer *buf)
ed2ff2cb 1091{
55c69072 1092 if (btrfs_header_generation(buf) ==
e2d84521 1093 fs_info->running_transaction->transid) {
b9447ef8 1094 btrfs_assert_tree_locked(buf);
b4ce94de 1095
b9473439 1096 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1097 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1098 -buf->len,
1099 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1100 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1101 btrfs_set_lock_blocking(buf);
1102 clear_extent_buffer_dirty(buf);
1103 }
925baedd 1104 }
5f39d397
CM
1105}
1106
8257b2dc
MX
1107static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1108{
1109 struct btrfs_subvolume_writers *writers;
1110 int ret;
1111
1112 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1113 if (!writers)
1114 return ERR_PTR(-ENOMEM);
1115
8a5a916d 1116 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1117 if (ret < 0) {
1118 kfree(writers);
1119 return ERR_PTR(ret);
1120 }
1121
1122 init_waitqueue_head(&writers->wait);
1123 return writers;
1124}
1125
1126static void
1127btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1128{
1129 percpu_counter_destroy(&writers->counter);
1130 kfree(writers);
1131}
1132
da17066c 1133static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1134 u64 objectid)
d97e63b6 1135{
7c0260ee 1136 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1137 root->node = NULL;
a28ec197 1138 root->commit_root = NULL;
27cdeb70 1139 root->state = 0;
d68fc57b 1140 root->orphan_cleanup_state = 0;
0b86a832 1141
0f7d52f4 1142 root->last_trans = 0;
13a8a7c8 1143 root->highest_objectid = 0;
eb73c1b7 1144 root->nr_delalloc_inodes = 0;
199c2a9c 1145 root->nr_ordered_extents = 0;
6bef4d31 1146 root->inode_tree = RB_ROOT;
16cdcec7 1147 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1148 root->block_rsv = NULL;
0b86a832
CM
1149
1150 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1151 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1152 INIT_LIST_HEAD(&root->delalloc_inodes);
1153 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1154 INIT_LIST_HEAD(&root->ordered_extents);
1155 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1156 INIT_LIST_HEAD(&root->logged_list[0]);
1157 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1158 spin_lock_init(&root->inode_lock);
eb73c1b7 1159 spin_lock_init(&root->delalloc_lock);
199c2a9c 1160 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1161 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1162 spin_lock_init(&root->log_extents_lock[0]);
1163 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1164 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1165 mutex_init(&root->objectid_mutex);
e02119d5 1166 mutex_init(&root->log_mutex);
31f3d255 1167 mutex_init(&root->ordered_extent_mutex);
573bfb72 1168 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1169 init_waitqueue_head(&root->log_writer_wait);
1170 init_waitqueue_head(&root->log_commit_wait[0]);
1171 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1172 INIT_LIST_HEAD(&root->log_ctxs[0]);
1173 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1174 atomic_set(&root->log_commit[0], 0);
1175 atomic_set(&root->log_commit[1], 0);
1176 atomic_set(&root->log_writers, 0);
2ecb7923 1177 atomic_set(&root->log_batch, 0);
0700cea7 1178 refcount_set(&root->refs, 1);
ea14b57f 1179 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1180 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1181 atomic_set(&root->nr_swapfiles, 0);
7237f183 1182 root->log_transid = 0;
d1433deb 1183 root->log_transid_committed = -1;
257c62e1 1184 root->last_log_commit = 0;
7c0260ee 1185 if (!dummy)
c6100a4b 1186 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1187
3768f368
CM
1188 memset(&root->root_key, 0, sizeof(root->root_key));
1189 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1190 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1191 if (!dummy)
06ea65a3
JB
1192 root->defrag_trans_start = fs_info->generation;
1193 else
1194 root->defrag_trans_start = 0;
4d775673 1195 root->root_key.objectid = objectid;
0ee5dc67 1196 root->anon_dev = 0;
8ea05e3a 1197
5f3ab90a 1198 spin_lock_init(&root->root_item_lock);
3768f368
CM
1199}
1200
74e4d827
DS
1201static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1202 gfp_t flags)
6f07e42e 1203{
74e4d827 1204 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1205 if (root)
1206 root->fs_info = fs_info;
1207 return root;
1208}
1209
06ea65a3
JB
1210#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1211/* Should only be used by the testing infrastructure */
da17066c 1212struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1213{
1214 struct btrfs_root *root;
1215
7c0260ee
JM
1216 if (!fs_info)
1217 return ERR_PTR(-EINVAL);
1218
1219 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1220 if (!root)
1221 return ERR_PTR(-ENOMEM);
da17066c 1222
b9ef22de 1223 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1224 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1225 root->alloc_bytenr = 0;
06ea65a3
JB
1226
1227 return root;
1228}
1229#endif
1230
20897f5c
AJ
1231struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1232 struct btrfs_fs_info *fs_info,
1233 u64 objectid)
1234{
1235 struct extent_buffer *leaf;
1236 struct btrfs_root *tree_root = fs_info->tree_root;
1237 struct btrfs_root *root;
1238 struct btrfs_key key;
1239 int ret = 0;
33d85fda 1240 uuid_le uuid = NULL_UUID_LE;
20897f5c 1241
74e4d827 1242 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1243 if (!root)
1244 return ERR_PTR(-ENOMEM);
1245
da17066c 1246 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1247 root->root_key.objectid = objectid;
1248 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1249 root->root_key.offset = 0;
1250
4d75f8a9 1251 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1252 if (IS_ERR(leaf)) {
1253 ret = PTR_ERR(leaf);
1dd05682 1254 leaf = NULL;
20897f5c
AJ
1255 goto fail;
1256 }
1257
20897f5c 1258 root->node = leaf;
20897f5c
AJ
1259 btrfs_mark_buffer_dirty(leaf);
1260
1261 root->commit_root = btrfs_root_node(root);
27cdeb70 1262 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1263
1264 root->root_item.flags = 0;
1265 root->root_item.byte_limit = 0;
1266 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1267 btrfs_set_root_generation(&root->root_item, trans->transid);
1268 btrfs_set_root_level(&root->root_item, 0);
1269 btrfs_set_root_refs(&root->root_item, 1);
1270 btrfs_set_root_used(&root->root_item, leaf->len);
1271 btrfs_set_root_last_snapshot(&root->root_item, 0);
1272 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1273 if (is_fstree(objectid))
1274 uuid_le_gen(&uuid);
6463fe58 1275 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1276 root->root_item.drop_level = 0;
1277
1278 key.objectid = objectid;
1279 key.type = BTRFS_ROOT_ITEM_KEY;
1280 key.offset = 0;
1281 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1282 if (ret)
1283 goto fail;
1284
1285 btrfs_tree_unlock(leaf);
1286
1dd05682
TI
1287 return root;
1288
20897f5c 1289fail:
1dd05682
TI
1290 if (leaf) {
1291 btrfs_tree_unlock(leaf);
59885b39 1292 free_extent_buffer(root->commit_root);
1dd05682
TI
1293 free_extent_buffer(leaf);
1294 }
1295 kfree(root);
20897f5c 1296
1dd05682 1297 return ERR_PTR(ret);
20897f5c
AJ
1298}
1299
7237f183
YZ
1300static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1301 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1302{
1303 struct btrfs_root *root;
7237f183 1304 struct extent_buffer *leaf;
e02119d5 1305
74e4d827 1306 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1307 if (!root)
7237f183 1308 return ERR_PTR(-ENOMEM);
e02119d5 1309
da17066c 1310 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1311
1312 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1313 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1314 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1315
7237f183 1316 /*
27cdeb70
MX
1317 * DON'T set REF_COWS for log trees
1318 *
7237f183
YZ
1319 * log trees do not get reference counted because they go away
1320 * before a real commit is actually done. They do store pointers
1321 * to file data extents, and those reference counts still get
1322 * updated (along with back refs to the log tree).
1323 */
e02119d5 1324
4d75f8a9
DS
1325 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1326 NULL, 0, 0, 0);
7237f183
YZ
1327 if (IS_ERR(leaf)) {
1328 kfree(root);
1329 return ERR_CAST(leaf);
1330 }
e02119d5 1331
7237f183 1332 root->node = leaf;
e02119d5 1333
e02119d5
CM
1334 btrfs_mark_buffer_dirty(root->node);
1335 btrfs_tree_unlock(root->node);
7237f183
YZ
1336 return root;
1337}
1338
1339int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1340 struct btrfs_fs_info *fs_info)
1341{
1342 struct btrfs_root *log_root;
1343
1344 log_root = alloc_log_tree(trans, fs_info);
1345 if (IS_ERR(log_root))
1346 return PTR_ERR(log_root);
1347 WARN_ON(fs_info->log_root_tree);
1348 fs_info->log_root_tree = log_root;
1349 return 0;
1350}
1351
1352int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1353 struct btrfs_root *root)
1354{
0b246afa 1355 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1356 struct btrfs_root *log_root;
1357 struct btrfs_inode_item *inode_item;
1358
0b246afa 1359 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1360 if (IS_ERR(log_root))
1361 return PTR_ERR(log_root);
1362
1363 log_root->last_trans = trans->transid;
1364 log_root->root_key.offset = root->root_key.objectid;
1365
1366 inode_item = &log_root->root_item.inode;
3cae210f
QW
1367 btrfs_set_stack_inode_generation(inode_item, 1);
1368 btrfs_set_stack_inode_size(inode_item, 3);
1369 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1370 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1371 fs_info->nodesize);
3cae210f 1372 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1373
5d4f98a2 1374 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1375
1376 WARN_ON(root->log_root);
1377 root->log_root = log_root;
1378 root->log_transid = 0;
d1433deb 1379 root->log_transid_committed = -1;
257c62e1 1380 root->last_log_commit = 0;
e02119d5
CM
1381 return 0;
1382}
1383
35a3621b
SB
1384static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1385 struct btrfs_key *key)
e02119d5
CM
1386{
1387 struct btrfs_root *root;
1388 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1389 struct btrfs_path *path;
84234f3a 1390 u64 generation;
cb517eab 1391 int ret;
581c1760 1392 int level;
0f7d52f4 1393
cb517eab
MX
1394 path = btrfs_alloc_path();
1395 if (!path)
0f7d52f4 1396 return ERR_PTR(-ENOMEM);
cb517eab 1397
74e4d827 1398 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1399 if (!root) {
1400 ret = -ENOMEM;
1401 goto alloc_fail;
0f7d52f4
CM
1402 }
1403
da17066c 1404 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1405
cb517eab
MX
1406 ret = btrfs_find_root(tree_root, key, path,
1407 &root->root_item, &root->root_key);
0f7d52f4 1408 if (ret) {
13a8a7c8
YZ
1409 if (ret > 0)
1410 ret = -ENOENT;
cb517eab 1411 goto find_fail;
0f7d52f4 1412 }
13a8a7c8 1413
84234f3a 1414 generation = btrfs_root_generation(&root->root_item);
581c1760 1415 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1416 root->node = read_tree_block(fs_info,
1417 btrfs_root_bytenr(&root->root_item),
581c1760 1418 generation, level, NULL);
64c043de
LB
1419 if (IS_ERR(root->node)) {
1420 ret = PTR_ERR(root->node);
cb517eab
MX
1421 goto find_fail;
1422 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1423 ret = -EIO;
64c043de
LB
1424 free_extent_buffer(root->node);
1425 goto find_fail;
416bc658 1426 }
5d4f98a2 1427 root->commit_root = btrfs_root_node(root);
13a8a7c8 1428out:
cb517eab
MX
1429 btrfs_free_path(path);
1430 return root;
1431
cb517eab
MX
1432find_fail:
1433 kfree(root);
1434alloc_fail:
1435 root = ERR_PTR(ret);
1436 goto out;
1437}
1438
1439struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1440 struct btrfs_key *location)
1441{
1442 struct btrfs_root *root;
1443
1444 root = btrfs_read_tree_root(tree_root, location);
1445 if (IS_ERR(root))
1446 return root;
1447
1448 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1449 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1450 btrfs_check_and_init_root_item(&root->root_item);
1451 }
13a8a7c8 1452
5eda7b5e
CM
1453 return root;
1454}
1455
cb517eab
MX
1456int btrfs_init_fs_root(struct btrfs_root *root)
1457{
1458 int ret;
8257b2dc 1459 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1460
1461 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1462 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1463 GFP_NOFS);
1464 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1465 ret = -ENOMEM;
1466 goto fail;
1467 }
1468
8257b2dc
MX
1469 writers = btrfs_alloc_subvolume_writers();
1470 if (IS_ERR(writers)) {
1471 ret = PTR_ERR(writers);
1472 goto fail;
1473 }
1474 root->subv_writers = writers;
1475
cb517eab 1476 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1477 spin_lock_init(&root->ino_cache_lock);
1478 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1479
1480 ret = get_anon_bdev(&root->anon_dev);
1481 if (ret)
876d2cf1 1482 goto fail;
f32e48e9
CR
1483
1484 mutex_lock(&root->objectid_mutex);
1485 ret = btrfs_find_highest_objectid(root,
1486 &root->highest_objectid);
1487 if (ret) {
1488 mutex_unlock(&root->objectid_mutex);
876d2cf1 1489 goto fail;
f32e48e9
CR
1490 }
1491
1492 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1493
1494 mutex_unlock(&root->objectid_mutex);
1495
cb517eab
MX
1496 return 0;
1497fail:
84db5ccf 1498 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1499 return ret;
1500}
1501
35bbb97f
JM
1502struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1503 u64 root_id)
cb517eab
MX
1504{
1505 struct btrfs_root *root;
1506
1507 spin_lock(&fs_info->fs_roots_radix_lock);
1508 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1509 (unsigned long)root_id);
1510 spin_unlock(&fs_info->fs_roots_radix_lock);
1511 return root;
1512}
1513
1514int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1515 struct btrfs_root *root)
1516{
1517 int ret;
1518
e1860a77 1519 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1520 if (ret)
1521 return ret;
1522
1523 spin_lock(&fs_info->fs_roots_radix_lock);
1524 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1525 (unsigned long)root->root_key.objectid,
1526 root);
1527 if (ret == 0)
27cdeb70 1528 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1529 spin_unlock(&fs_info->fs_roots_radix_lock);
1530 radix_tree_preload_end();
1531
1532 return ret;
1533}
1534
c00869f1
MX
1535struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1536 struct btrfs_key *location,
1537 bool check_ref)
5eda7b5e
CM
1538{
1539 struct btrfs_root *root;
381cf658 1540 struct btrfs_path *path;
1d4c08e0 1541 struct btrfs_key key;
5eda7b5e
CM
1542 int ret;
1543
edbd8d4e
CM
1544 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1545 return fs_info->tree_root;
1546 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1547 return fs_info->extent_root;
8f18cf13
CM
1548 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1549 return fs_info->chunk_root;
1550 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1551 return fs_info->dev_root;
0403e47e
YZ
1552 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1553 return fs_info->csum_root;
bcef60f2
AJ
1554 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1555 return fs_info->quota_root ? fs_info->quota_root :
1556 ERR_PTR(-ENOENT);
f7a81ea4
SB
1557 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1558 return fs_info->uuid_root ? fs_info->uuid_root :
1559 ERR_PTR(-ENOENT);
70f6d82e
OS
1560 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1561 return fs_info->free_space_root ? fs_info->free_space_root :
1562 ERR_PTR(-ENOENT);
4df27c4d 1563again:
cb517eab 1564 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1565 if (root) {
c00869f1 1566 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1567 return ERR_PTR(-ENOENT);
5eda7b5e 1568 return root;
48475471 1569 }
5eda7b5e 1570
cb517eab 1571 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1572 if (IS_ERR(root))
1573 return root;
3394e160 1574
c00869f1 1575 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1576 ret = -ENOENT;
581bb050 1577 goto fail;
35a30d7c 1578 }
581bb050 1579
cb517eab 1580 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1581 if (ret)
1582 goto fail;
3394e160 1583
381cf658
DS
1584 path = btrfs_alloc_path();
1585 if (!path) {
1586 ret = -ENOMEM;
1587 goto fail;
1588 }
1d4c08e0
DS
1589 key.objectid = BTRFS_ORPHAN_OBJECTID;
1590 key.type = BTRFS_ORPHAN_ITEM_KEY;
1591 key.offset = location->objectid;
1592
1593 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1594 btrfs_free_path(path);
d68fc57b
YZ
1595 if (ret < 0)
1596 goto fail;
1597 if (ret == 0)
27cdeb70 1598 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1599
cb517eab 1600 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1601 if (ret) {
4df27c4d 1602 if (ret == -EEXIST) {
84db5ccf 1603 btrfs_free_fs_root(root);
4df27c4d
YZ
1604 goto again;
1605 }
1606 goto fail;
0f7d52f4 1607 }
edbd8d4e 1608 return root;
4df27c4d 1609fail:
84db5ccf 1610 btrfs_free_fs_root(root);
4df27c4d 1611 return ERR_PTR(ret);
edbd8d4e
CM
1612}
1613
04160088
CM
1614static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1615{
1616 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1617 int ret = 0;
04160088
CM
1618 struct btrfs_device *device;
1619 struct backing_dev_info *bdi;
b7967db7 1620
1f78160c
XG
1621 rcu_read_lock();
1622 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1623 if (!device->bdev)
1624 continue;
efa7c9f9 1625 bdi = device->bdev->bd_bdi;
ff9ea323 1626 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1627 ret = 1;
1628 break;
1629 }
1630 }
1f78160c 1631 rcu_read_unlock();
04160088
CM
1632 return ret;
1633}
1634
8b712842
CM
1635/*
1636 * called by the kthread helper functions to finally call the bio end_io
1637 * functions. This is where read checksum verification actually happens
1638 */
1639static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1640{
ce9adaa5 1641 struct bio *bio;
97eb6b69 1642 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1643
97eb6b69 1644 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1645 bio = end_io_wq->bio;
ce9adaa5 1646
4e4cbee9 1647 bio->bi_status = end_io_wq->status;
8b712842
CM
1648 bio->bi_private = end_io_wq->private;
1649 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1650 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1651 bio_endio(bio);
44b8bd7e
CM
1652}
1653
a74a4b97
CM
1654static int cleaner_kthread(void *arg)
1655{
1656 struct btrfs_root *root = arg;
0b246afa 1657 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1658 int again;
a74a4b97 1659
d6fd0ae2 1660 while (1) {
d0278245 1661 again = 0;
a74a4b97 1662
d0278245 1663 /* Make the cleaner go to sleep early. */
2ff7e61e 1664 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1665 goto sleep;
1666
90c711ab
ZB
1667 /*
1668 * Do not do anything if we might cause open_ctree() to block
1669 * before we have finished mounting the filesystem.
1670 */
0b246afa 1671 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1672 goto sleep;
1673
0b246afa 1674 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1675 goto sleep;
1676
dc7f370c
MX
1677 /*
1678 * Avoid the problem that we change the status of the fs
1679 * during the above check and trylock.
1680 */
2ff7e61e 1681 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1682 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1683 goto sleep;
76dda93c 1684 }
a74a4b97 1685
0b246afa 1686 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1687 btrfs_run_delayed_iputs(fs_info);
0b246afa 1688 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1689
d0278245 1690 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1691 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1692
1693 /*
05323cd1
MX
1694 * The defragger has dealt with the R/O remount and umount,
1695 * needn't do anything special here.
d0278245 1696 */
0b246afa 1697 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1698
1699 /*
1700 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1701 * with relocation (btrfs_relocate_chunk) and relocation
1702 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1703 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1704 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1705 * unused block groups.
1706 */
0b246afa 1707 btrfs_delete_unused_bgs(fs_info);
d0278245 1708sleep:
d6fd0ae2
OS
1709 if (kthread_should_park())
1710 kthread_parkme();
1711 if (kthread_should_stop())
1712 return 0;
838fe188 1713 if (!again) {
a74a4b97 1714 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1715 schedule();
a74a4b97
CM
1716 __set_current_state(TASK_RUNNING);
1717 }
da288d28 1718 }
a74a4b97
CM
1719}
1720
1721static int transaction_kthread(void *arg)
1722{
1723 struct btrfs_root *root = arg;
0b246afa 1724 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1725 struct btrfs_trans_handle *trans;
1726 struct btrfs_transaction *cur;
8929ecfa 1727 u64 transid;
a944442c 1728 time64_t now;
a74a4b97 1729 unsigned long delay;
914b2007 1730 bool cannot_commit;
a74a4b97
CM
1731
1732 do {
914b2007 1733 cannot_commit = false;
0b246afa
JM
1734 delay = HZ * fs_info->commit_interval;
1735 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1736
0b246afa
JM
1737 spin_lock(&fs_info->trans_lock);
1738 cur = fs_info->running_transaction;
a74a4b97 1739 if (!cur) {
0b246afa 1740 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1741 goto sleep;
1742 }
31153d81 1743
afd48513 1744 now = ktime_get_seconds();
4a9d8bde 1745 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1746 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1747 (now < cur->start_time ||
0b246afa
JM
1748 now - cur->start_time < fs_info->commit_interval)) {
1749 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1750 delay = HZ * 5;
1751 goto sleep;
1752 }
8929ecfa 1753 transid = cur->transid;
0b246afa 1754 spin_unlock(&fs_info->trans_lock);
56bec294 1755
79787eaa 1756 /* If the file system is aborted, this will always fail. */
354aa0fb 1757 trans = btrfs_attach_transaction(root);
914b2007 1758 if (IS_ERR(trans)) {
354aa0fb
MX
1759 if (PTR_ERR(trans) != -ENOENT)
1760 cannot_commit = true;
79787eaa 1761 goto sleep;
914b2007 1762 }
8929ecfa 1763 if (transid == trans->transid) {
3a45bb20 1764 btrfs_commit_transaction(trans);
8929ecfa 1765 } else {
3a45bb20 1766 btrfs_end_transaction(trans);
8929ecfa 1767 }
a74a4b97 1768sleep:
0b246afa
JM
1769 wake_up_process(fs_info->cleaner_kthread);
1770 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1771
4e121c06 1772 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1773 &fs_info->fs_state)))
2ff7e61e 1774 btrfs_cleanup_transaction(fs_info);
ce63f891 1775 if (!kthread_should_stop() &&
0b246afa 1776 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1777 cannot_commit))
bc5511d0 1778 schedule_timeout_interruptible(delay);
a74a4b97
CM
1779 } while (!kthread_should_stop());
1780 return 0;
1781}
1782
af31f5e5
CM
1783/*
1784 * this will find the highest generation in the array of
1785 * root backups. The index of the highest array is returned,
1786 * or -1 if we can't find anything.
1787 *
1788 * We check to make sure the array is valid by comparing the
1789 * generation of the latest root in the array with the generation
1790 * in the super block. If they don't match we pitch it.
1791 */
1792static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1793{
1794 u64 cur;
1795 int newest_index = -1;
1796 struct btrfs_root_backup *root_backup;
1797 int i;
1798
1799 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1800 root_backup = info->super_copy->super_roots + i;
1801 cur = btrfs_backup_tree_root_gen(root_backup);
1802 if (cur == newest_gen)
1803 newest_index = i;
1804 }
1805
1806 /* check to see if we actually wrapped around */
1807 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1808 root_backup = info->super_copy->super_roots;
1809 cur = btrfs_backup_tree_root_gen(root_backup);
1810 if (cur == newest_gen)
1811 newest_index = 0;
1812 }
1813 return newest_index;
1814}
1815
1816
1817/*
1818 * find the oldest backup so we know where to store new entries
1819 * in the backup array. This will set the backup_root_index
1820 * field in the fs_info struct
1821 */
1822static void find_oldest_super_backup(struct btrfs_fs_info *info,
1823 u64 newest_gen)
1824{
1825 int newest_index = -1;
1826
1827 newest_index = find_newest_super_backup(info, newest_gen);
1828 /* if there was garbage in there, just move along */
1829 if (newest_index == -1) {
1830 info->backup_root_index = 0;
1831 } else {
1832 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1833 }
1834}
1835
1836/*
1837 * copy all the root pointers into the super backup array.
1838 * this will bump the backup pointer by one when it is
1839 * done
1840 */
1841static void backup_super_roots(struct btrfs_fs_info *info)
1842{
1843 int next_backup;
1844 struct btrfs_root_backup *root_backup;
1845 int last_backup;
1846
1847 next_backup = info->backup_root_index;
1848 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1849 BTRFS_NUM_BACKUP_ROOTS;
1850
1851 /*
1852 * just overwrite the last backup if we're at the same generation
1853 * this happens only at umount
1854 */
1855 root_backup = info->super_for_commit->super_roots + last_backup;
1856 if (btrfs_backup_tree_root_gen(root_backup) ==
1857 btrfs_header_generation(info->tree_root->node))
1858 next_backup = last_backup;
1859
1860 root_backup = info->super_for_commit->super_roots + next_backup;
1861
1862 /*
1863 * make sure all of our padding and empty slots get zero filled
1864 * regardless of which ones we use today
1865 */
1866 memset(root_backup, 0, sizeof(*root_backup));
1867
1868 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1869
1870 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1871 btrfs_set_backup_tree_root_gen(root_backup,
1872 btrfs_header_generation(info->tree_root->node));
1873
1874 btrfs_set_backup_tree_root_level(root_backup,
1875 btrfs_header_level(info->tree_root->node));
1876
1877 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1878 btrfs_set_backup_chunk_root_gen(root_backup,
1879 btrfs_header_generation(info->chunk_root->node));
1880 btrfs_set_backup_chunk_root_level(root_backup,
1881 btrfs_header_level(info->chunk_root->node));
1882
1883 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1884 btrfs_set_backup_extent_root_gen(root_backup,
1885 btrfs_header_generation(info->extent_root->node));
1886 btrfs_set_backup_extent_root_level(root_backup,
1887 btrfs_header_level(info->extent_root->node));
1888
7c7e82a7
CM
1889 /*
1890 * we might commit during log recovery, which happens before we set
1891 * the fs_root. Make sure it is valid before we fill it in.
1892 */
1893 if (info->fs_root && info->fs_root->node) {
1894 btrfs_set_backup_fs_root(root_backup,
1895 info->fs_root->node->start);
1896 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1897 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1898 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1899 btrfs_header_level(info->fs_root->node));
7c7e82a7 1900 }
af31f5e5
CM
1901
1902 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1903 btrfs_set_backup_dev_root_gen(root_backup,
1904 btrfs_header_generation(info->dev_root->node));
1905 btrfs_set_backup_dev_root_level(root_backup,
1906 btrfs_header_level(info->dev_root->node));
1907
1908 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1909 btrfs_set_backup_csum_root_gen(root_backup,
1910 btrfs_header_generation(info->csum_root->node));
1911 btrfs_set_backup_csum_root_level(root_backup,
1912 btrfs_header_level(info->csum_root->node));
1913
1914 btrfs_set_backup_total_bytes(root_backup,
1915 btrfs_super_total_bytes(info->super_copy));
1916 btrfs_set_backup_bytes_used(root_backup,
1917 btrfs_super_bytes_used(info->super_copy));
1918 btrfs_set_backup_num_devices(root_backup,
1919 btrfs_super_num_devices(info->super_copy));
1920
1921 /*
1922 * if we don't copy this out to the super_copy, it won't get remembered
1923 * for the next commit
1924 */
1925 memcpy(&info->super_copy->super_roots,
1926 &info->super_for_commit->super_roots,
1927 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1928}
1929
1930/*
1931 * this copies info out of the root backup array and back into
1932 * the in-memory super block. It is meant to help iterate through
1933 * the array, so you send it the number of backups you've already
1934 * tried and the last backup index you used.
1935 *
1936 * this returns -1 when it has tried all the backups
1937 */
1938static noinline int next_root_backup(struct btrfs_fs_info *info,
1939 struct btrfs_super_block *super,
1940 int *num_backups_tried, int *backup_index)
1941{
1942 struct btrfs_root_backup *root_backup;
1943 int newest = *backup_index;
1944
1945 if (*num_backups_tried == 0) {
1946 u64 gen = btrfs_super_generation(super);
1947
1948 newest = find_newest_super_backup(info, gen);
1949 if (newest == -1)
1950 return -1;
1951
1952 *backup_index = newest;
1953 *num_backups_tried = 1;
1954 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1955 /* we've tried all the backups, all done */
1956 return -1;
1957 } else {
1958 /* jump to the next oldest backup */
1959 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1960 BTRFS_NUM_BACKUP_ROOTS;
1961 *backup_index = newest;
1962 *num_backups_tried += 1;
1963 }
1964 root_backup = super->super_roots + newest;
1965
1966 btrfs_set_super_generation(super,
1967 btrfs_backup_tree_root_gen(root_backup));
1968 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1969 btrfs_set_super_root_level(super,
1970 btrfs_backup_tree_root_level(root_backup));
1971 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1972
1973 /*
1974 * fixme: the total bytes and num_devices need to match or we should
1975 * need a fsck
1976 */
1977 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1978 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1979 return 0;
1980}
1981
7abadb64
LB
1982/* helper to cleanup workers */
1983static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1984{
dc6e3209 1985 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1986 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1987 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1988 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1989 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1990 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1991 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1992 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1993 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 1994 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 1995 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1996 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1997 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1998 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1999 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2000 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2001 /*
2002 * Now that all other work queues are destroyed, we can safely destroy
2003 * the queues used for metadata I/O, since tasks from those other work
2004 * queues can do metadata I/O operations.
2005 */
2006 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2007 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2008}
2009
2e9f5954
R
2010static void free_root_extent_buffers(struct btrfs_root *root)
2011{
2012 if (root) {
2013 free_extent_buffer(root->node);
2014 free_extent_buffer(root->commit_root);
2015 root->node = NULL;
2016 root->commit_root = NULL;
2017 }
2018}
2019
af31f5e5
CM
2020/* helper to cleanup tree roots */
2021static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2022{
2e9f5954 2023 free_root_extent_buffers(info->tree_root);
655b09fe 2024
2e9f5954
R
2025 free_root_extent_buffers(info->dev_root);
2026 free_root_extent_buffers(info->extent_root);
2027 free_root_extent_buffers(info->csum_root);
2028 free_root_extent_buffers(info->quota_root);
2029 free_root_extent_buffers(info->uuid_root);
2030 if (chunk_root)
2031 free_root_extent_buffers(info->chunk_root);
70f6d82e 2032 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2033}
2034
faa2dbf0 2035void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2036{
2037 int ret;
2038 struct btrfs_root *gang[8];
2039 int i;
2040
2041 while (!list_empty(&fs_info->dead_roots)) {
2042 gang[0] = list_entry(fs_info->dead_roots.next,
2043 struct btrfs_root, root_list);
2044 list_del(&gang[0]->root_list);
2045
27cdeb70 2046 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2047 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2048 } else {
2049 free_extent_buffer(gang[0]->node);
2050 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2051 btrfs_put_fs_root(gang[0]);
171f6537
JB
2052 }
2053 }
2054
2055 while (1) {
2056 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2057 (void **)gang, 0,
2058 ARRAY_SIZE(gang));
2059 if (!ret)
2060 break;
2061 for (i = 0; i < ret; i++)
cb517eab 2062 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2063 }
1a4319cc
LB
2064
2065 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2066 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2067 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2068 }
171f6537 2069}
af31f5e5 2070
638aa7ed
ES
2071static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2072{
2073 mutex_init(&fs_info->scrub_lock);
2074 atomic_set(&fs_info->scrubs_running, 0);
2075 atomic_set(&fs_info->scrub_pause_req, 0);
2076 atomic_set(&fs_info->scrubs_paused, 0);
2077 atomic_set(&fs_info->scrub_cancel_req, 0);
2078 init_waitqueue_head(&fs_info->scrub_pause_wait);
2079 fs_info->scrub_workers_refcnt = 0;
2080}
2081
779a65a4
ES
2082static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2083{
2084 spin_lock_init(&fs_info->balance_lock);
2085 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2086 atomic_set(&fs_info->balance_pause_req, 0);
2087 atomic_set(&fs_info->balance_cancel_req, 0);
2088 fs_info->balance_ctl = NULL;
2089 init_waitqueue_head(&fs_info->balance_wait_q);
2090}
2091
6bccf3ab 2092static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2093{
2ff7e61e
JM
2094 struct inode *inode = fs_info->btree_inode;
2095
2096 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2097 set_nlink(inode, 1);
f37938e0
ES
2098 /*
2099 * we set the i_size on the btree inode to the max possible int.
2100 * the real end of the address space is determined by all of
2101 * the devices in the system
2102 */
2ff7e61e
JM
2103 inode->i_size = OFFSET_MAX;
2104 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2105
2ff7e61e 2106 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2107 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2108 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2109 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2110
2ff7e61e 2111 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2112
2ff7e61e
JM
2113 BTRFS_I(inode)->root = fs_info->tree_root;
2114 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2115 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2116 btrfs_insert_inode_hash(inode);
f37938e0
ES
2117}
2118
ad618368
ES
2119static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2120{
ad618368 2121 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9 2122 rwlock_init(&fs_info->dev_replace.lock);
73beece9 2123 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
7f8d236a 2124 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
73beece9 2125 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2126}
2127
f9e92e40
ES
2128static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2129{
2130 spin_lock_init(&fs_info->qgroup_lock);
2131 mutex_init(&fs_info->qgroup_ioctl_lock);
2132 fs_info->qgroup_tree = RB_ROOT;
2133 fs_info->qgroup_op_tree = RB_ROOT;
2134 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2135 fs_info->qgroup_seq = 1;
f9e92e40 2136 fs_info->qgroup_ulist = NULL;
d2c609b8 2137 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2138 mutex_init(&fs_info->qgroup_rescan_lock);
2139}
2140
2a458198
ES
2141static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2142 struct btrfs_fs_devices *fs_devices)
2143{
f7b885be 2144 u32 max_active = fs_info->thread_pool_size;
6f011058 2145 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2146
2147 fs_info->workers =
cb001095
JM
2148 btrfs_alloc_workqueue(fs_info, "worker",
2149 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2150
2151 fs_info->delalloc_workers =
cb001095
JM
2152 btrfs_alloc_workqueue(fs_info, "delalloc",
2153 flags, max_active, 2);
2a458198
ES
2154
2155 fs_info->flush_workers =
cb001095
JM
2156 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2157 flags, max_active, 0);
2a458198
ES
2158
2159 fs_info->caching_workers =
cb001095 2160 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2161
2162 /*
2163 * a higher idle thresh on the submit workers makes it much more
2164 * likely that bios will be send down in a sane order to the
2165 * devices
2166 */
2167 fs_info->submit_workers =
cb001095 2168 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2169 min_t(u64, fs_devices->num_devices,
2170 max_active), 64);
2171
2172 fs_info->fixup_workers =
cb001095 2173 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2174
2175 /*
2176 * endios are largely parallel and should have a very
2177 * low idle thresh
2178 */
2179 fs_info->endio_workers =
cb001095 2180 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2181 fs_info->endio_meta_workers =
cb001095
JM
2182 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2183 max_active, 4);
2a458198 2184 fs_info->endio_meta_write_workers =
cb001095
JM
2185 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2186 max_active, 2);
2a458198 2187 fs_info->endio_raid56_workers =
cb001095
JM
2188 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2189 max_active, 4);
2a458198 2190 fs_info->endio_repair_workers =
cb001095 2191 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2192 fs_info->rmw_workers =
cb001095 2193 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2194 fs_info->endio_write_workers =
cb001095
JM
2195 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2196 max_active, 2);
2a458198 2197 fs_info->endio_freespace_worker =
cb001095
JM
2198 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2199 max_active, 0);
2a458198 2200 fs_info->delayed_workers =
cb001095
JM
2201 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2202 max_active, 0);
2a458198 2203 fs_info->readahead_workers =
cb001095
JM
2204 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2205 max_active, 2);
2a458198 2206 fs_info->qgroup_rescan_workers =
cb001095 2207 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2208 fs_info->extent_workers =
cb001095 2209 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2210 min_t(u64, fs_devices->num_devices,
2211 max_active), 8);
2212
2213 if (!(fs_info->workers && fs_info->delalloc_workers &&
2214 fs_info->submit_workers && fs_info->flush_workers &&
2215 fs_info->endio_workers && fs_info->endio_meta_workers &&
2216 fs_info->endio_meta_write_workers &&
2217 fs_info->endio_repair_workers &&
2218 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2219 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2220 fs_info->caching_workers && fs_info->readahead_workers &&
2221 fs_info->fixup_workers && fs_info->delayed_workers &&
2222 fs_info->extent_workers &&
2223 fs_info->qgroup_rescan_workers)) {
2224 return -ENOMEM;
2225 }
2226
2227 return 0;
2228}
2229
63443bf5
ES
2230static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2231 struct btrfs_fs_devices *fs_devices)
2232{
2233 int ret;
63443bf5
ES
2234 struct btrfs_root *log_tree_root;
2235 struct btrfs_super_block *disk_super = fs_info->super_copy;
2236 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2237 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2238
2239 if (fs_devices->rw_devices == 0) {
f14d104d 2240 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2241 return -EIO;
2242 }
2243
74e4d827 2244 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2245 if (!log_tree_root)
2246 return -ENOMEM;
2247
da17066c 2248 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2249
2ff7e61e 2250 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2251 fs_info->generation + 1,
2252 level, NULL);
64c043de 2253 if (IS_ERR(log_tree_root->node)) {
f14d104d 2254 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2255 ret = PTR_ERR(log_tree_root->node);
64c043de 2256 kfree(log_tree_root);
0eeff236 2257 return ret;
64c043de 2258 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2259 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2260 free_extent_buffer(log_tree_root->node);
2261 kfree(log_tree_root);
2262 return -EIO;
2263 }
2264 /* returns with log_tree_root freed on success */
2265 ret = btrfs_recover_log_trees(log_tree_root);
2266 if (ret) {
0b246afa
JM
2267 btrfs_handle_fs_error(fs_info, ret,
2268 "Failed to recover log tree");
63443bf5
ES
2269 free_extent_buffer(log_tree_root->node);
2270 kfree(log_tree_root);
2271 return ret;
2272 }
2273
bc98a42c 2274 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2275 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2276 if (ret)
2277 return ret;
2278 }
2279
2280 return 0;
2281}
2282
6bccf3ab 2283static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2284{
6bccf3ab 2285 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2286 struct btrfs_root *root;
4bbcaa64
ES
2287 struct btrfs_key location;
2288 int ret;
2289
6bccf3ab
JM
2290 BUG_ON(!fs_info->tree_root);
2291
4bbcaa64
ES
2292 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2293 location.type = BTRFS_ROOT_ITEM_KEY;
2294 location.offset = 0;
2295
a4f3d2c4 2296 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2297 if (IS_ERR(root)) {
2298 ret = PTR_ERR(root);
2299 goto out;
2300 }
a4f3d2c4
DS
2301 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302 fs_info->extent_root = root;
4bbcaa64
ES
2303
2304 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2305 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2306 if (IS_ERR(root)) {
2307 ret = PTR_ERR(root);
2308 goto out;
2309 }
a4f3d2c4
DS
2310 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311 fs_info->dev_root = root;
4bbcaa64
ES
2312 btrfs_init_devices_late(fs_info);
2313
2314 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2315 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2316 if (IS_ERR(root)) {
2317 ret = PTR_ERR(root);
2318 goto out;
2319 }
a4f3d2c4
DS
2320 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2321 fs_info->csum_root = root;
4bbcaa64
ES
2322
2323 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2324 root = btrfs_read_tree_root(tree_root, &location);
2325 if (!IS_ERR(root)) {
2326 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2327 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2328 fs_info->quota_root = root;
4bbcaa64
ES
2329 }
2330
2331 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2332 root = btrfs_read_tree_root(tree_root, &location);
2333 if (IS_ERR(root)) {
2334 ret = PTR_ERR(root);
4bbcaa64 2335 if (ret != -ENOENT)
f50f4353 2336 goto out;
4bbcaa64 2337 } else {
a4f3d2c4
DS
2338 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2339 fs_info->uuid_root = root;
4bbcaa64
ES
2340 }
2341
70f6d82e
OS
2342 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2343 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2344 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2345 if (IS_ERR(root)) {
2346 ret = PTR_ERR(root);
2347 goto out;
2348 }
70f6d82e
OS
2349 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2350 fs_info->free_space_root = root;
2351 }
2352
4bbcaa64 2353 return 0;
f50f4353
LB
2354out:
2355 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2356 location.objectid, ret);
2357 return ret;
4bbcaa64
ES
2358}
2359
069ec957
QW
2360/*
2361 * Real super block validation
2362 * NOTE: super csum type and incompat features will not be checked here.
2363 *
2364 * @sb: super block to check
2365 * @mirror_num: the super block number to check its bytenr:
2366 * 0 the primary (1st) sb
2367 * 1, 2 2nd and 3rd backup copy
2368 * -1 skip bytenr check
2369 */
2370static int validate_super(struct btrfs_fs_info *fs_info,
2371 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2372{
21a852b0
QW
2373 u64 nodesize = btrfs_super_nodesize(sb);
2374 u64 sectorsize = btrfs_super_sectorsize(sb);
2375 int ret = 0;
2376
2377 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2378 btrfs_err(fs_info, "no valid FS found");
2379 ret = -EINVAL;
2380 }
2381 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2382 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2383 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2384 ret = -EINVAL;
2385 }
2386 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2387 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2388 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2389 ret = -EINVAL;
2390 }
2391 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2392 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2393 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2394 ret = -EINVAL;
2395 }
2396 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2397 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2398 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2399 ret = -EINVAL;
2400 }
2401
2402 /*
2403 * Check sectorsize and nodesize first, other check will need it.
2404 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2405 */
2406 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2407 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2408 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2409 ret = -EINVAL;
2410 }
2411 /* Only PAGE SIZE is supported yet */
2412 if (sectorsize != PAGE_SIZE) {
2413 btrfs_err(fs_info,
2414 "sectorsize %llu not supported yet, only support %lu",
2415 sectorsize, PAGE_SIZE);
2416 ret = -EINVAL;
2417 }
2418 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2419 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2420 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2421 ret = -EINVAL;
2422 }
2423 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2424 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2425 le32_to_cpu(sb->__unused_leafsize), nodesize);
2426 ret = -EINVAL;
2427 }
2428
2429 /* Root alignment check */
2430 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2431 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2432 btrfs_super_root(sb));
2433 ret = -EINVAL;
2434 }
2435 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2436 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2437 btrfs_super_chunk_root(sb));
2438 ret = -EINVAL;
2439 }
2440 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2441 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2442 btrfs_super_log_root(sb));
2443 ret = -EINVAL;
2444 }
2445
2446 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2447 btrfs_err(fs_info,
2448 "dev_item UUID does not match fsid: %pU != %pU",
2449 fs_info->fsid, sb->dev_item.fsid);
2450 ret = -EINVAL;
2451 }
2452
2453 /*
2454 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2455 * done later
2456 */
2457 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2458 btrfs_err(fs_info, "bytes_used is too small %llu",
2459 btrfs_super_bytes_used(sb));
2460 ret = -EINVAL;
2461 }
2462 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2463 btrfs_err(fs_info, "invalid stripesize %u",
2464 btrfs_super_stripesize(sb));
2465 ret = -EINVAL;
2466 }
2467 if (btrfs_super_num_devices(sb) > (1UL << 31))
2468 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2469 btrfs_super_num_devices(sb));
2470 if (btrfs_super_num_devices(sb) == 0) {
2471 btrfs_err(fs_info, "number of devices is 0");
2472 ret = -EINVAL;
2473 }
2474
069ec957
QW
2475 if (mirror_num >= 0 &&
2476 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2477 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2478 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2479 ret = -EINVAL;
2480 }
2481
2482 /*
2483 * Obvious sys_chunk_array corruptions, it must hold at least one key
2484 * and one chunk
2485 */
2486 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2487 btrfs_err(fs_info, "system chunk array too big %u > %u",
2488 btrfs_super_sys_array_size(sb),
2489 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2490 ret = -EINVAL;
2491 }
2492 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2493 + sizeof(struct btrfs_chunk)) {
2494 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2495 btrfs_super_sys_array_size(sb),
2496 sizeof(struct btrfs_disk_key)
2497 + sizeof(struct btrfs_chunk));
2498 ret = -EINVAL;
2499 }
2500
2501 /*
2502 * The generation is a global counter, we'll trust it more than the others
2503 * but it's still possible that it's the one that's wrong.
2504 */
2505 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2506 btrfs_warn(fs_info,
2507 "suspicious: generation < chunk_root_generation: %llu < %llu",
2508 btrfs_super_generation(sb),
2509 btrfs_super_chunk_root_generation(sb));
2510 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2511 && btrfs_super_cache_generation(sb) != (u64)-1)
2512 btrfs_warn(fs_info,
2513 "suspicious: generation < cache_generation: %llu < %llu",
2514 btrfs_super_generation(sb),
2515 btrfs_super_cache_generation(sb));
2516
2517 return ret;
2518}
2519
069ec957
QW
2520/*
2521 * Validation of super block at mount time.
2522 * Some checks already done early at mount time, like csum type and incompat
2523 * flags will be skipped.
2524 */
2525static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2526{
2527 return validate_super(fs_info, fs_info->super_copy, 0);
2528}
2529
75cb857d
QW
2530/*
2531 * Validation of super block at write time.
2532 * Some checks like bytenr check will be skipped as their values will be
2533 * overwritten soon.
2534 * Extra checks like csum type and incompat flags will be done here.
2535 */
2536static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2537 struct btrfs_super_block *sb)
2538{
2539 int ret;
2540
2541 ret = validate_super(fs_info, sb, -1);
2542 if (ret < 0)
2543 goto out;
2544 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2545 ret = -EUCLEAN;
2546 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2547 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2548 goto out;
2549 }
2550 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2551 ret = -EUCLEAN;
2552 btrfs_err(fs_info,
2553 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2554 btrfs_super_incompat_flags(sb),
2555 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2556 goto out;
2557 }
2558out:
2559 if (ret < 0)
2560 btrfs_err(fs_info,
2561 "super block corruption detected before writing it to disk");
2562 return ret;
2563}
2564
ad2b2c80
AV
2565int open_ctree(struct super_block *sb,
2566 struct btrfs_fs_devices *fs_devices,
2567 char *options)
2e635a27 2568{
db94535d
CM
2569 u32 sectorsize;
2570 u32 nodesize;
87ee04eb 2571 u32 stripesize;
84234f3a 2572 u64 generation;
f2b636e8 2573 u64 features;
3de4586c 2574 struct btrfs_key location;
a061fc8d 2575 struct buffer_head *bh;
4d34b278 2576 struct btrfs_super_block *disk_super;
815745cf 2577 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2578 struct btrfs_root *tree_root;
4d34b278 2579 struct btrfs_root *chunk_root;
eb60ceac 2580 int ret;
e58ca020 2581 int err = -EINVAL;
af31f5e5
CM
2582 int num_backups_tried = 0;
2583 int backup_index = 0;
6675df31 2584 int clear_free_space_tree = 0;
581c1760 2585 int level;
4543df7e 2586
74e4d827
DS
2587 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2588 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2589 if (!tree_root || !chunk_root) {
39279cc3
CM
2590 err = -ENOMEM;
2591 goto fail;
2592 }
76dda93c
YZ
2593
2594 ret = init_srcu_struct(&fs_info->subvol_srcu);
2595 if (ret) {
2596 err = ret;
2597 goto fail;
2598 }
2599
908c7f19 2600 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2601 if (ret) {
2602 err = ret;
9e11ceee 2603 goto fail_srcu;
e2d84521 2604 }
09cbfeaf 2605 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2606 (1 + ilog2(nr_cpu_ids));
2607
908c7f19 2608 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2609 if (ret) {
2610 err = ret;
2611 goto fail_dirty_metadata_bytes;
2612 }
2613
7f8d236a
DS
2614 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2615 GFP_KERNEL);
c404e0dc
MX
2616 if (ret) {
2617 err = ret;
2618 goto fail_delalloc_bytes;
2619 }
2620
76dda93c 2621 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2622 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2623 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2624 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2625 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2626 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2627 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2628 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2629 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2630 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2631 spin_lock_init(&fs_info->trans_lock);
76dda93c 2632 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2633 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2634 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2635 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2636 spin_lock_init(&fs_info->super_lock);
fcebe456 2637 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2638 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2639 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2640 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2641 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2642 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2643 mutex_init(&fs_info->reloc_mutex);
573bfb72 2644 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2645 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2646 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2647
0b86a832 2648 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2649 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2650 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2651 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2652 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2653 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2654 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2655 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2656 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2657 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2658 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2659 BTRFS_BLOCK_RSV_DELOPS);
771ed689 2660 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2661 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2662 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2663 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2664 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2665 fs_info->sb = sb;
95ac567a 2666 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2667 fs_info->metadata_ratio = 0;
4cb5300b 2668 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2669 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2670 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2671 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2672 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2673 /* readahead state */
d0164adc 2674 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2675 spin_lock_init(&fs_info->reada_lock);
fd708b81 2676 btrfs_init_ref_verify(fs_info);
c8b97818 2677
b34b086c
CM
2678 fs_info->thread_pool_size = min_t(unsigned long,
2679 num_online_cpus() + 2, 8);
0afbaf8c 2680
199c2a9c
MX
2681 INIT_LIST_HEAD(&fs_info->ordered_roots);
2682 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2683
2684 fs_info->btree_inode = new_inode(sb);
2685 if (!fs_info->btree_inode) {
2686 err = -ENOMEM;
2687 goto fail_bio_counter;
2688 }
2689 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2690
16cdcec7 2691 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2692 GFP_KERNEL);
16cdcec7
MX
2693 if (!fs_info->delayed_root) {
2694 err = -ENOMEM;
2695 goto fail_iput;
2696 }
2697 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2698
638aa7ed 2699 btrfs_init_scrub(fs_info);
21adbd5c
SB
2700#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2701 fs_info->check_integrity_print_mask = 0;
2702#endif
779a65a4 2703 btrfs_init_balance(fs_info);
21c7e756 2704 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2705
9f6d2510
DS
2706 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2707 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2708
6bccf3ab 2709 btrfs_init_btree_inode(fs_info);
76dda93c 2710
0f9dd46c 2711 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2712 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2713 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2714
c6100a4b
JB
2715 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2716 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2717 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2718 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2719
5a3f23d5 2720 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2721 mutex_init(&fs_info->tree_log_mutex);
925baedd 2722 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2723 mutex_init(&fs_info->transaction_kthread_mutex);
2724 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2725 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2726 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2727 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2728 init_rwsem(&fs_info->subvol_sem);
803b2f54 2729 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2730
ad618368 2731 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2732 btrfs_init_qgroup(fs_info);
416ac51d 2733
fa9c0d79
CM
2734 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2735 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2736
e6dcd2dc 2737 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2738 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2739 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2740 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2741
04216820
FM
2742 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2743
da17066c
JM
2744 /* Usable values until the real ones are cached from the superblock */
2745 fs_info->nodesize = 4096;
2746 fs_info->sectorsize = 4096;
2747 fs_info->stripesize = 4096;
2748
eede2bf3
OS
2749 spin_lock_init(&fs_info->swapfile_pins_lock);
2750 fs_info->swapfile_pins = RB_ROOT;
2751
53b381b3
DW
2752 ret = btrfs_alloc_stripe_hash_table(fs_info);
2753 if (ret) {
83c8266a 2754 err = ret;
53b381b3
DW
2755 goto fail_alloc;
2756 }
2757
da17066c 2758 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2759
3c4bb26b 2760 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2761
2762 /*
2763 * Read super block and check the signature bytes only
2764 */
a512bbf8 2765 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2766 if (IS_ERR(bh)) {
2767 err = PTR_ERR(bh);
16cdcec7 2768 goto fail_alloc;
20b45077 2769 }
39279cc3 2770
1104a885
DS
2771 /*
2772 * We want to check superblock checksum, the type is stored inside.
2773 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2774 */
ab8d0fc4 2775 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2776 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2777 err = -EINVAL;
b2acdddf 2778 brelse(bh);
1104a885
DS
2779 goto fail_alloc;
2780 }
2781
2782 /*
2783 * super_copy is zeroed at allocation time and we never touch the
2784 * following bytes up to INFO_SIZE, the checksum is calculated from
2785 * the whole block of INFO_SIZE
2786 */
6c41761f
DS
2787 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2788 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2789 sizeof(*fs_info->super_for_commit));
a061fc8d 2790 brelse(bh);
5f39d397 2791
6c41761f 2792 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2793
069ec957 2794 ret = btrfs_validate_mount_super(fs_info);
1104a885 2795 if (ret) {
05135f59 2796 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2797 err = -EINVAL;
2798 goto fail_alloc;
2799 }
2800
6c41761f 2801 disk_super = fs_info->super_copy;
0f7d52f4 2802 if (!btrfs_super_root(disk_super))
16cdcec7 2803 goto fail_alloc;
0f7d52f4 2804
acce952b 2805 /* check FS state, whether FS is broken. */
87533c47
MX
2806 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2807 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2808
af31f5e5
CM
2809 /*
2810 * run through our array of backup supers and setup
2811 * our ring pointer to the oldest one
2812 */
2813 generation = btrfs_super_generation(disk_super);
2814 find_oldest_super_backup(fs_info, generation);
2815
75e7cb7f
LB
2816 /*
2817 * In the long term, we'll store the compression type in the super
2818 * block, and it'll be used for per file compression control.
2819 */
2820 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2821
2ff7e61e 2822 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2823 if (ret) {
2824 err = ret;
16cdcec7 2825 goto fail_alloc;
2b82032c 2826 }
dfe25020 2827
f2b636e8
JB
2828 features = btrfs_super_incompat_flags(disk_super) &
2829 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2830 if (features) {
05135f59
DS
2831 btrfs_err(fs_info,
2832 "cannot mount because of unsupported optional features (%llx)",
2833 features);
f2b636e8 2834 err = -EINVAL;
16cdcec7 2835 goto fail_alloc;
f2b636e8
JB
2836 }
2837
5d4f98a2 2838 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2839 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2840 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2841 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2842 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2843 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2844
3173a18f 2845 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2846 btrfs_info(fs_info, "has skinny extents");
3173a18f 2847
727011e0
CM
2848 /*
2849 * flag our filesystem as having big metadata blocks if
2850 * they are bigger than the page size
2851 */
09cbfeaf 2852 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2853 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2854 btrfs_info(fs_info,
2855 "flagging fs with big metadata feature");
727011e0
CM
2856 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2857 }
2858
bc3f116f 2859 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2860 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2861 stripesize = sectorsize;
707e8a07 2862 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2863 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2864
da17066c
JM
2865 /* Cache block sizes */
2866 fs_info->nodesize = nodesize;
2867 fs_info->sectorsize = sectorsize;
2868 fs_info->stripesize = stripesize;
2869
bc3f116f
CM
2870 /*
2871 * mixed block groups end up with duplicate but slightly offset
2872 * extent buffers for the same range. It leads to corruptions
2873 */
2874 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2875 (sectorsize != nodesize)) {
05135f59
DS
2876 btrfs_err(fs_info,
2877"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2878 nodesize, sectorsize);
bc3f116f
CM
2879 goto fail_alloc;
2880 }
2881
ceda0864
MX
2882 /*
2883 * Needn't use the lock because there is no other task which will
2884 * update the flag.
2885 */
a6fa6fae 2886 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2887
f2b636e8
JB
2888 features = btrfs_super_compat_ro_flags(disk_super) &
2889 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2890 if (!sb_rdonly(sb) && features) {
05135f59
DS
2891 btrfs_err(fs_info,
2892 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2893 features);
f2b636e8 2894 err = -EINVAL;
16cdcec7 2895 goto fail_alloc;
f2b636e8 2896 }
61d92c32 2897
2a458198
ES
2898 ret = btrfs_init_workqueues(fs_info, fs_devices);
2899 if (ret) {
2900 err = ret;
0dc3b84a
JB
2901 goto fail_sb_buffer;
2902 }
4543df7e 2903
9e11ceee
JK
2904 sb->s_bdi->congested_fn = btrfs_congested_fn;
2905 sb->s_bdi->congested_data = fs_info;
2906 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2907 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2908 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2909 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2910
a061fc8d
CM
2911 sb->s_blocksize = sectorsize;
2912 sb->s_blocksize_bits = blksize_bits(sectorsize);
ee87cf5e 2913 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
db94535d 2914
925baedd 2915 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2916 ret = btrfs_read_sys_array(fs_info);
925baedd 2917 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2918 if (ret) {
05135f59 2919 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2920 goto fail_sb_buffer;
84eed90f 2921 }
0b86a832 2922
84234f3a 2923 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2924 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2925
da17066c 2926 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2927
2ff7e61e 2928 chunk_root->node = read_tree_block(fs_info,
0b86a832 2929 btrfs_super_chunk_root(disk_super),
581c1760 2930 generation, level, NULL);
64c043de
LB
2931 if (IS_ERR(chunk_root->node) ||
2932 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2933 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2934 if (!IS_ERR(chunk_root->node))
2935 free_extent_buffer(chunk_root->node);
95ab1f64 2936 chunk_root->node = NULL;
af31f5e5 2937 goto fail_tree_roots;
83121942 2938 }
5d4f98a2
YZ
2939 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2940 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2941
e17cade2 2942 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2943 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2944
5b4aacef 2945 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2946 if (ret) {
05135f59 2947 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2948 goto fail_tree_roots;
2b82032c 2949 }
0b86a832 2950
8dabb742 2951 /*
9b99b115
AJ
2952 * Keep the devid that is marked to be the target device for the
2953 * device replace procedure
8dabb742 2954 */
9b99b115 2955 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 2956
a6b0d5c8 2957 if (!fs_devices->latest_bdev) {
05135f59 2958 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2959 goto fail_tree_roots;
2960 }
2961
af31f5e5 2962retry_root_backup:
84234f3a 2963 generation = btrfs_super_generation(disk_super);
581c1760 2964 level = btrfs_super_root_level(disk_super);
0b86a832 2965
2ff7e61e 2966 tree_root->node = read_tree_block(fs_info,
db94535d 2967 btrfs_super_root(disk_super),
581c1760 2968 generation, level, NULL);
64c043de
LB
2969 if (IS_ERR(tree_root->node) ||
2970 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2971 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2972 if (!IS_ERR(tree_root->node))
2973 free_extent_buffer(tree_root->node);
95ab1f64 2974 tree_root->node = NULL;
af31f5e5 2975 goto recovery_tree_root;
83121942 2976 }
af31f5e5 2977
5d4f98a2
YZ
2978 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2979 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2980 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2981
f32e48e9
CR
2982 mutex_lock(&tree_root->objectid_mutex);
2983 ret = btrfs_find_highest_objectid(tree_root,
2984 &tree_root->highest_objectid);
2985 if (ret) {
2986 mutex_unlock(&tree_root->objectid_mutex);
2987 goto recovery_tree_root;
2988 }
2989
2990 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2991
2992 mutex_unlock(&tree_root->objectid_mutex);
2993
6bccf3ab 2994 ret = btrfs_read_roots(fs_info);
4bbcaa64 2995 if (ret)
af31f5e5 2996 goto recovery_tree_root;
f7a81ea4 2997
8929ecfa
YZ
2998 fs_info->generation = generation;
2999 fs_info->last_trans_committed = generation;
8929ecfa 3000
cf90d884
QW
3001 ret = btrfs_verify_dev_extents(fs_info);
3002 if (ret) {
3003 btrfs_err(fs_info,
3004 "failed to verify dev extents against chunks: %d",
3005 ret);
3006 goto fail_block_groups;
3007 }
68310a5e
ID
3008 ret = btrfs_recover_balance(fs_info);
3009 if (ret) {
05135f59 3010 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3011 goto fail_block_groups;
3012 }
3013
733f4fbb
SB
3014 ret = btrfs_init_dev_stats(fs_info);
3015 if (ret) {
05135f59 3016 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3017 goto fail_block_groups;
3018 }
3019
8dabb742
SB
3020 ret = btrfs_init_dev_replace(fs_info);
3021 if (ret) {
05135f59 3022 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3023 goto fail_block_groups;
3024 }
3025
9b99b115 3026 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3027
b7c35e81
AJ
3028 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3029 if (ret) {
05135f59
DS
3030 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3031 ret);
b7c35e81
AJ
3032 goto fail_block_groups;
3033 }
3034
3035 ret = btrfs_sysfs_add_device(fs_devices);
3036 if (ret) {
05135f59
DS
3037 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3038 ret);
b7c35e81
AJ
3039 goto fail_fsdev_sysfs;
3040 }
3041
96f3136e 3042 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3043 if (ret) {
05135f59 3044 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3045 goto fail_fsdev_sysfs;
c59021f8 3046 }
3047
c59021f8 3048 ret = btrfs_init_space_info(fs_info);
3049 if (ret) {
05135f59 3050 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3051 goto fail_sysfs;
c59021f8 3052 }
3053
5b4aacef 3054 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3055 if (ret) {
05135f59 3056 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3057 goto fail_sysfs;
1b1d1f66 3058 }
4330e183 3059
6528b99d 3060 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3061 btrfs_warn(fs_info,
4330e183 3062 "writeable mount is not allowed due to too many missing devices");
2365dd3c 3063 goto fail_sysfs;
292fd7fc 3064 }
9078a3e1 3065
a74a4b97
CM
3066 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3067 "btrfs-cleaner");
57506d50 3068 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3069 goto fail_sysfs;
a74a4b97
CM
3070
3071 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3072 tree_root,
3073 "btrfs-transaction");
57506d50 3074 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3075 goto fail_cleaner;
a74a4b97 3076
583b7231 3077 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3078 !fs_info->fs_devices->rotating) {
583b7231 3079 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3080 }
3081
572d9ab7 3082 /*
01327610 3083 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3084 * not have to wait for transaction commit
3085 */
3086 btrfs_apply_pending_changes(fs_info);
3818aea2 3087
21adbd5c 3088#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3089 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3090 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3091 btrfs_test_opt(fs_info,
21adbd5c
SB
3092 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3093 1 : 0,
3094 fs_info->check_integrity_print_mask);
3095 if (ret)
05135f59
DS
3096 btrfs_warn(fs_info,
3097 "failed to initialize integrity check module: %d",
3098 ret);
21adbd5c
SB
3099 }
3100#endif
bcef60f2
AJ
3101 ret = btrfs_read_qgroup_config(fs_info);
3102 if (ret)
3103 goto fail_trans_kthread;
21adbd5c 3104
fd708b81
JB
3105 if (btrfs_build_ref_tree(fs_info))
3106 btrfs_err(fs_info, "couldn't build ref tree");
3107
96da0919
QW
3108 /* do not make disk changes in broken FS or nologreplay is given */
3109 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3110 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3111 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3112 if (ret) {
63443bf5 3113 err = ret;
28c16cbb 3114 goto fail_qgroup;
79787eaa 3115 }
e02119d5 3116 }
1a40e23b 3117
6bccf3ab 3118 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3119 if (ret)
28c16cbb 3120 goto fail_qgroup;
76dda93c 3121
bc98a42c 3122 if (!sb_rdonly(sb)) {
d68fc57b 3123 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3124 if (ret)
28c16cbb 3125 goto fail_qgroup;
90c711ab
ZB
3126
3127 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3128 ret = btrfs_recover_relocation(tree_root);
90c711ab 3129 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3130 if (ret < 0) {
05135f59
DS
3131 btrfs_warn(fs_info, "failed to recover relocation: %d",
3132 ret);
d7ce5843 3133 err = -EINVAL;
bcef60f2 3134 goto fail_qgroup;
d7ce5843 3135 }
7c2ca468 3136 }
1a40e23b 3137
3de4586c
CM
3138 location.objectid = BTRFS_FS_TREE_OBJECTID;
3139 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3140 location.offset = 0;
3de4586c 3141
3de4586c 3142 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3143 if (IS_ERR(fs_info->fs_root)) {
3144 err = PTR_ERR(fs_info->fs_root);
f50f4353 3145 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3146 goto fail_qgroup;
3140c9a3 3147 }
c289811c 3148
bc98a42c 3149 if (sb_rdonly(sb))
2b6ba629 3150 return 0;
59641015 3151
f8d468a1
OS
3152 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3153 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3154 clear_free_space_tree = 1;
3155 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3156 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3157 btrfs_warn(fs_info, "free space tree is invalid");
3158 clear_free_space_tree = 1;
3159 }
3160
3161 if (clear_free_space_tree) {
f8d468a1
OS
3162 btrfs_info(fs_info, "clearing free space tree");
3163 ret = btrfs_clear_free_space_tree(fs_info);
3164 if (ret) {
3165 btrfs_warn(fs_info,
3166 "failed to clear free space tree: %d", ret);
6bccf3ab 3167 close_ctree(fs_info);
f8d468a1
OS
3168 return ret;
3169 }
3170 }
3171
0b246afa 3172 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3173 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3174 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3175 ret = btrfs_create_free_space_tree(fs_info);
3176 if (ret) {
05135f59
DS
3177 btrfs_warn(fs_info,
3178 "failed to create free space tree: %d", ret);
6bccf3ab 3179 close_ctree(fs_info);
511711af
CM
3180 return ret;
3181 }
3182 }
3183
2b6ba629
ID
3184 down_read(&fs_info->cleanup_work_sem);
3185 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3186 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3187 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3188 close_ctree(fs_info);
2b6ba629
ID
3189 return ret;
3190 }
3191 up_read(&fs_info->cleanup_work_sem);
59641015 3192
2b6ba629
ID
3193 ret = btrfs_resume_balance_async(fs_info);
3194 if (ret) {
05135f59 3195 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3196 close_ctree(fs_info);
2b6ba629 3197 return ret;
e3acc2a6
JB
3198 }
3199
8dabb742
SB
3200 ret = btrfs_resume_dev_replace_async(fs_info);
3201 if (ret) {
05135f59 3202 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3203 close_ctree(fs_info);
8dabb742
SB
3204 return ret;
3205 }
3206
b382a324
JS
3207 btrfs_qgroup_rescan_resume(fs_info);
3208
4bbcaa64 3209 if (!fs_info->uuid_root) {
05135f59 3210 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3211 ret = btrfs_create_uuid_tree(fs_info);
3212 if (ret) {
05135f59
DS
3213 btrfs_warn(fs_info,
3214 "failed to create the UUID tree: %d", ret);
6bccf3ab 3215 close_ctree(fs_info);
f7a81ea4
SB
3216 return ret;
3217 }
0b246afa 3218 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3219 fs_info->generation !=
3220 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3221 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3222 ret = btrfs_check_uuid_tree(fs_info);
3223 if (ret) {
05135f59
DS
3224 btrfs_warn(fs_info,
3225 "failed to check the UUID tree: %d", ret);
6bccf3ab 3226 close_ctree(fs_info);
70f80175
SB
3227 return ret;
3228 }
3229 } else {
afcdd129 3230 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3231 }
afcdd129 3232 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3233
8dcddfa0
QW
3234 /*
3235 * backuproot only affect mount behavior, and if open_ctree succeeded,
3236 * no need to keep the flag
3237 */
3238 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3239
ad2b2c80 3240 return 0;
39279cc3 3241
bcef60f2
AJ
3242fail_qgroup:
3243 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3244fail_trans_kthread:
3245 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3246 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3247 btrfs_free_fs_roots(fs_info);
3f157a2f 3248fail_cleaner:
a74a4b97 3249 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3250
3251 /*
3252 * make sure we're done with the btree inode before we stop our
3253 * kthreads
3254 */
3255 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3256
2365dd3c 3257fail_sysfs:
6618a59b 3258 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3259
b7c35e81
AJ
3260fail_fsdev_sysfs:
3261 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3262
1b1d1f66 3263fail_block_groups:
54067ae9 3264 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3265
3266fail_tree_roots:
3267 free_root_pointers(fs_info, 1);
2b8195bb 3268 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3269
39279cc3 3270fail_sb_buffer:
7abadb64 3271 btrfs_stop_all_workers(fs_info);
5cdd7db6 3272 btrfs_free_block_groups(fs_info);
16cdcec7 3273fail_alloc:
4543df7e 3274fail_iput:
586e46e2
ID
3275 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3276
4543df7e 3277 iput(fs_info->btree_inode);
c404e0dc 3278fail_bio_counter:
7f8d236a 3279 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3280fail_delalloc_bytes:
3281 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3282fail_dirty_metadata_bytes:
3283 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3284fail_srcu:
3285 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3286fail:
53b381b3 3287 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3288 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3289 return err;
af31f5e5
CM
3290
3291recovery_tree_root:
0b246afa 3292 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3293 goto fail_tree_roots;
3294
3295 free_root_pointers(fs_info, 0);
3296
3297 /* don't use the log in recovery mode, it won't be valid */
3298 btrfs_set_super_log_root(disk_super, 0);
3299
3300 /* we can't trust the free space cache either */
3301 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3302
3303 ret = next_root_backup(fs_info, fs_info->super_copy,
3304 &num_backups_tried, &backup_index);
3305 if (ret == -1)
3306 goto fail_block_groups;
3307 goto retry_root_backup;
eb60ceac 3308}
663faf9f 3309ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3310
f2984462
CM
3311static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3312{
f2984462
CM
3313 if (uptodate) {
3314 set_buffer_uptodate(bh);
3315 } else {
442a4f63
SB
3316 struct btrfs_device *device = (struct btrfs_device *)
3317 bh->b_private;
3318
fb456252 3319 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3320 "lost page write due to IO error on %s",
606686ee 3321 rcu_str_deref(device->name));
01327610 3322 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3323 * our own ways of dealing with the IO errors
3324 */
f2984462 3325 clear_buffer_uptodate(bh);
442a4f63 3326 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3327 }
3328 unlock_buffer(bh);
3329 put_bh(bh);
3330}
3331
29c36d72
AJ
3332int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3333 struct buffer_head **bh_ret)
3334{
3335 struct buffer_head *bh;
3336 struct btrfs_super_block *super;
3337 u64 bytenr;
3338
3339 bytenr = btrfs_sb_offset(copy_num);
3340 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3341 return -EINVAL;
3342
9f6d2510 3343 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3344 /*
3345 * If we fail to read from the underlying devices, as of now
3346 * the best option we have is to mark it EIO.
3347 */
3348 if (!bh)
3349 return -EIO;
3350
3351 super = (struct btrfs_super_block *)bh->b_data;
3352 if (btrfs_super_bytenr(super) != bytenr ||
3353 btrfs_super_magic(super) != BTRFS_MAGIC) {
3354 brelse(bh);
3355 return -EINVAL;
3356 }
3357
3358 *bh_ret = bh;
3359 return 0;
3360}
3361
3362
a512bbf8
YZ
3363struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3364{
3365 struct buffer_head *bh;
3366 struct buffer_head *latest = NULL;
3367 struct btrfs_super_block *super;
3368 int i;
3369 u64 transid = 0;
92fc03fb 3370 int ret = -EINVAL;
a512bbf8
YZ
3371
3372 /* we would like to check all the supers, but that would make
3373 * a btrfs mount succeed after a mkfs from a different FS.
3374 * So, we need to add a special mount option to scan for
3375 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3376 */
3377 for (i = 0; i < 1; i++) {
29c36d72
AJ
3378 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3379 if (ret)
a512bbf8
YZ
3380 continue;
3381
3382 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3383
3384 if (!latest || btrfs_super_generation(super) > transid) {
3385 brelse(latest);
3386 latest = bh;
3387 transid = btrfs_super_generation(super);
3388 } else {
3389 brelse(bh);
3390 }
3391 }
92fc03fb
AJ
3392
3393 if (!latest)
3394 return ERR_PTR(ret);
3395
a512bbf8
YZ
3396 return latest;
3397}
3398
4eedeb75 3399/*
abbb3b8e
DS
3400 * Write superblock @sb to the @device. Do not wait for completion, all the
3401 * buffer heads we write are pinned.
4eedeb75 3402 *
abbb3b8e
DS
3403 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3404 * the expected device size at commit time. Note that max_mirrors must be
3405 * same for write and wait phases.
4eedeb75 3406 *
abbb3b8e 3407 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3408 */
a512bbf8 3409static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3410 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3411{
3412 struct buffer_head *bh;
3413 int i;
3414 int ret;
3415 int errors = 0;
3416 u32 crc;
3417 u64 bytenr;
1b9e619c 3418 int op_flags;
a512bbf8
YZ
3419
3420 if (max_mirrors == 0)
3421 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3422
a512bbf8
YZ
3423 for (i = 0; i < max_mirrors; i++) {
3424 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3425 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3426 device->commit_total_bytes)
a512bbf8
YZ
3427 break;
3428
abbb3b8e 3429 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3430
abbb3b8e
DS
3431 crc = ~(u32)0;
3432 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3433 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3434 btrfs_csum_final(crc, sb->csum);
4eedeb75 3435
abbb3b8e 3436 /* One reference for us, and we leave it for the caller */
9f6d2510 3437 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3438 BTRFS_SUPER_INFO_SIZE);
3439 if (!bh) {
3440 btrfs_err(device->fs_info,
3441 "couldn't get super buffer head for bytenr %llu",
3442 bytenr);
3443 errors++;
4eedeb75 3444 continue;
abbb3b8e 3445 }
634554dc 3446
abbb3b8e 3447 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3448
abbb3b8e
DS
3449 /* one reference for submit_bh */
3450 get_bh(bh);
4eedeb75 3451
abbb3b8e
DS
3452 set_buffer_uptodate(bh);
3453 lock_buffer(bh);
3454 bh->b_end_io = btrfs_end_buffer_write_sync;
3455 bh->b_private = device;
a512bbf8 3456
387125fc
CM
3457 /*
3458 * we fua the first super. The others we allow
3459 * to go down lazy.
3460 */
1b9e619c
OS
3461 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3462 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3463 op_flags |= REQ_FUA;
3464 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3465 if (ret)
a512bbf8 3466 errors++;
a512bbf8
YZ
3467 }
3468 return errors < i ? 0 : -1;
3469}
3470
abbb3b8e
DS
3471/*
3472 * Wait for write completion of superblocks done by write_dev_supers,
3473 * @max_mirrors same for write and wait phases.
3474 *
3475 * Return number of errors when buffer head is not found or not marked up to
3476 * date.
3477 */
3478static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3479{
3480 struct buffer_head *bh;
3481 int i;
3482 int errors = 0;
b6a535fa 3483 bool primary_failed = false;
abbb3b8e
DS
3484 u64 bytenr;
3485
3486 if (max_mirrors == 0)
3487 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3488
3489 for (i = 0; i < max_mirrors; i++) {
3490 bytenr = btrfs_sb_offset(i);
3491 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3492 device->commit_total_bytes)
3493 break;
3494
9f6d2510
DS
3495 bh = __find_get_block(device->bdev,
3496 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3497 BTRFS_SUPER_INFO_SIZE);
3498 if (!bh) {
3499 errors++;
b6a535fa
HM
3500 if (i == 0)
3501 primary_failed = true;
abbb3b8e
DS
3502 continue;
3503 }
3504 wait_on_buffer(bh);
b6a535fa 3505 if (!buffer_uptodate(bh)) {
abbb3b8e 3506 errors++;
b6a535fa
HM
3507 if (i == 0)
3508 primary_failed = true;
3509 }
abbb3b8e
DS
3510
3511 /* drop our reference */
3512 brelse(bh);
3513
3514 /* drop the reference from the writing run */
3515 brelse(bh);
3516 }
3517
b6a535fa
HM
3518 /* log error, force error return */
3519 if (primary_failed) {
3520 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3521 device->devid);
3522 return -1;
3523 }
3524
abbb3b8e
DS
3525 return errors < i ? 0 : -1;
3526}
3527
387125fc
CM
3528/*
3529 * endio for the write_dev_flush, this will wake anyone waiting
3530 * for the barrier when it is done
3531 */
4246a0b6 3532static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3533{
e0ae9994 3534 complete(bio->bi_private);
387125fc
CM
3535}
3536
3537/*
4fc6441a
AJ
3538 * Submit a flush request to the device if it supports it. Error handling is
3539 * done in the waiting counterpart.
387125fc 3540 */
4fc6441a 3541static void write_dev_flush(struct btrfs_device *device)
387125fc 3542{
c2a9c7ab 3543 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3544 struct bio *bio = device->flush_bio;
387125fc 3545
c2a9c7ab 3546 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3547 return;
387125fc 3548
e0ae9994 3549 bio_reset(bio);
387125fc 3550 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3551 bio_set_dev(bio, device->bdev);
8d910125 3552 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3553 init_completion(&device->flush_wait);
3554 bio->bi_private = &device->flush_wait;
387125fc 3555
43a01111 3556 btrfsic_submit_bio(bio);
1c3063b6 3557 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3558}
387125fc 3559
4fc6441a
AJ
3560/*
3561 * If the flush bio has been submitted by write_dev_flush, wait for it.
3562 */
8c27cb35 3563static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3564{
4fc6441a 3565 struct bio *bio = device->flush_bio;
387125fc 3566
1c3063b6 3567 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3568 return BLK_STS_OK;
387125fc 3569
1c3063b6 3570 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3571 wait_for_completion_io(&device->flush_wait);
387125fc 3572
8c27cb35 3573 return bio->bi_status;
387125fc 3574}
387125fc 3575
d10b82fe 3576static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3577{
6528b99d 3578 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3579 return -EIO;
387125fc
CM
3580 return 0;
3581}
3582
3583/*
3584 * send an empty flush down to each device in parallel,
3585 * then wait for them
3586 */
3587static int barrier_all_devices(struct btrfs_fs_info *info)
3588{
3589 struct list_head *head;
3590 struct btrfs_device *dev;
5af3e8cc 3591 int errors_wait = 0;
4e4cbee9 3592 blk_status_t ret;
387125fc 3593
1538e6c5 3594 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3595 /* send down all the barriers */
3596 head = &info->fs_devices->devices;
1538e6c5 3597 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3598 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3599 continue;
cea7c8bf 3600 if (!dev->bdev)
387125fc 3601 continue;
e12c9621 3602 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3603 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3604 continue;
3605
4fc6441a 3606 write_dev_flush(dev);
58efbc9f 3607 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3608 }
3609
3610 /* wait for all the barriers */
1538e6c5 3611 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3612 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3613 continue;
387125fc 3614 if (!dev->bdev) {
5af3e8cc 3615 errors_wait++;
387125fc
CM
3616 continue;
3617 }
e12c9621 3618 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3619 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3620 continue;
3621
4fc6441a 3622 ret = wait_dev_flush(dev);
401b41e5
AJ
3623 if (ret) {
3624 dev->last_flush_error = ret;
66b4993e
DS
3625 btrfs_dev_stat_inc_and_print(dev,
3626 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3627 errors_wait++;
401b41e5
AJ
3628 }
3629 }
3630
cea7c8bf 3631 if (errors_wait) {
401b41e5
AJ
3632 /*
3633 * At some point we need the status of all disks
3634 * to arrive at the volume status. So error checking
3635 * is being pushed to a separate loop.
3636 */
d10b82fe 3637 return check_barrier_error(info);
387125fc 3638 }
387125fc
CM
3639 return 0;
3640}
3641
943c6e99
ZL
3642int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3643{
8789f4fe
ZL
3644 int raid_type;
3645 int min_tolerated = INT_MAX;
943c6e99 3646
8789f4fe
ZL
3647 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3648 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3649 min_tolerated = min(min_tolerated,
3650 btrfs_raid_array[BTRFS_RAID_SINGLE].
3651 tolerated_failures);
943c6e99 3652
8789f4fe
ZL
3653 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3654 if (raid_type == BTRFS_RAID_SINGLE)
3655 continue;
41a6e891 3656 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3657 continue;
3658 min_tolerated = min(min_tolerated,
3659 btrfs_raid_array[raid_type].
3660 tolerated_failures);
3661 }
943c6e99 3662
8789f4fe 3663 if (min_tolerated == INT_MAX) {
ab8d0fc4 3664 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3665 min_tolerated = 0;
3666 }
3667
3668 return min_tolerated;
943c6e99
ZL
3669}
3670
eece6a9c 3671int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3672{
e5e9a520 3673 struct list_head *head;
f2984462 3674 struct btrfs_device *dev;
a061fc8d 3675 struct btrfs_super_block *sb;
f2984462 3676 struct btrfs_dev_item *dev_item;
f2984462
CM
3677 int ret;
3678 int do_barriers;
a236aed1
CM
3679 int max_errors;
3680 int total_errors = 0;
a061fc8d 3681 u64 flags;
f2984462 3682
0b246afa 3683 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3684
3685 /*
3686 * max_mirrors == 0 indicates we're from commit_transaction,
3687 * not from fsync where the tree roots in fs_info have not
3688 * been consistent on disk.
3689 */
3690 if (max_mirrors == 0)
3691 backup_super_roots(fs_info);
f2984462 3692
0b246afa 3693 sb = fs_info->super_for_commit;
a061fc8d 3694 dev_item = &sb->dev_item;
e5e9a520 3695
0b246afa
JM
3696 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3697 head = &fs_info->fs_devices->devices;
3698 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3699
5af3e8cc 3700 if (do_barriers) {
0b246afa 3701 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3702 if (ret) {
3703 mutex_unlock(
0b246afa
JM
3704 &fs_info->fs_devices->device_list_mutex);
3705 btrfs_handle_fs_error(fs_info, ret,
3706 "errors while submitting device barriers.");
5af3e8cc
SB
3707 return ret;
3708 }
3709 }
387125fc 3710
1538e6c5 3711 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3712 if (!dev->bdev) {
3713 total_errors++;
3714 continue;
3715 }
e12c9621 3716 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3717 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3718 continue;
3719
2b82032c 3720 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3721 btrfs_set_stack_device_type(dev_item, dev->type);
3722 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3723 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3724 dev->commit_total_bytes);
ce7213c7
MX
3725 btrfs_set_stack_device_bytes_used(dev_item,
3726 dev->commit_bytes_used);
a061fc8d
CM
3727 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3728 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3729 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3730 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
44880fdc 3731 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
a512bbf8 3732
a061fc8d
CM
3733 flags = btrfs_super_flags(sb);
3734 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3735
75cb857d
QW
3736 ret = btrfs_validate_write_super(fs_info, sb);
3737 if (ret < 0) {
3738 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3739 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3740 "unexpected superblock corruption detected");
3741 return -EUCLEAN;
3742 }
3743
abbb3b8e 3744 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3745 if (ret)
3746 total_errors++;
f2984462 3747 }
a236aed1 3748 if (total_errors > max_errors) {
0b246afa
JM
3749 btrfs_err(fs_info, "%d errors while writing supers",
3750 total_errors);
3751 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3752
9d565ba4 3753 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3754 btrfs_handle_fs_error(fs_info, -EIO,
3755 "%d errors while writing supers",
3756 total_errors);
9d565ba4 3757 return -EIO;
a236aed1 3758 }
f2984462 3759
a512bbf8 3760 total_errors = 0;
1538e6c5 3761 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3762 if (!dev->bdev)
3763 continue;
e12c9621 3764 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3765 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3766 continue;
3767
abbb3b8e 3768 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3769 if (ret)
3770 total_errors++;
f2984462 3771 }
0b246afa 3772 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3773 if (total_errors > max_errors) {
0b246afa
JM
3774 btrfs_handle_fs_error(fs_info, -EIO,
3775 "%d errors while writing supers",
3776 total_errors);
79787eaa 3777 return -EIO;
a236aed1 3778 }
f2984462
CM
3779 return 0;
3780}
3781
cb517eab
MX
3782/* Drop a fs root from the radix tree and free it. */
3783void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3784 struct btrfs_root *root)
2619ba1f 3785{
4df27c4d 3786 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3787 radix_tree_delete(&fs_info->fs_roots_radix,
3788 (unsigned long)root->root_key.objectid);
4df27c4d 3789 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3790
3791 if (btrfs_root_refs(&root->root_item) == 0)
3792 synchronize_srcu(&fs_info->subvol_srcu);
3793
1c1ea4f7 3794 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3795 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3796 if (root->reloc_root) {
3797 free_extent_buffer(root->reloc_root->node);
3798 free_extent_buffer(root->reloc_root->commit_root);
3799 btrfs_put_fs_root(root->reloc_root);
3800 root->reloc_root = NULL;
3801 }
3802 }
3321719e 3803
faa2dbf0
JB
3804 if (root->free_ino_pinned)
3805 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3806 if (root->free_ino_ctl)
3807 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3808 btrfs_free_fs_root(root);
4df27c4d
YZ
3809}
3810
84db5ccf 3811void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3812{
57cdc8db 3813 iput(root->ino_cache_inode);
4df27c4d 3814 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3815 if (root->anon_dev)
3816 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3817 if (root->subv_writers)
3818 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3819 free_extent_buffer(root->node);
3820 free_extent_buffer(root->commit_root);
581bb050
LZ
3821 kfree(root->free_ino_ctl);
3822 kfree(root->free_ino_pinned);
b0feb9d9 3823 btrfs_put_fs_root(root);
2619ba1f
CM
3824}
3825
c146afad 3826int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3827{
c146afad
YZ
3828 u64 root_objectid = 0;
3829 struct btrfs_root *gang[8];
65d33fd7
QW
3830 int i = 0;
3831 int err = 0;
3832 unsigned int ret = 0;
3833 int index;
e089f05c 3834
c146afad 3835 while (1) {
65d33fd7 3836 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3837 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3838 (void **)gang, root_objectid,
3839 ARRAY_SIZE(gang));
65d33fd7
QW
3840 if (!ret) {
3841 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3842 break;
65d33fd7 3843 }
5d4f98a2 3844 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3845
c146afad 3846 for (i = 0; i < ret; i++) {
65d33fd7
QW
3847 /* Avoid to grab roots in dead_roots */
3848 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3849 gang[i] = NULL;
3850 continue;
3851 }
3852 /* grab all the search result for later use */
3853 gang[i] = btrfs_grab_fs_root(gang[i]);
3854 }
3855 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3856
65d33fd7
QW
3857 for (i = 0; i < ret; i++) {
3858 if (!gang[i])
3859 continue;
c146afad 3860 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3861 err = btrfs_orphan_cleanup(gang[i]);
3862 if (err)
65d33fd7
QW
3863 break;
3864 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3865 }
3866 root_objectid++;
3867 }
65d33fd7
QW
3868
3869 /* release the uncleaned roots due to error */
3870 for (; i < ret; i++) {
3871 if (gang[i])
3872 btrfs_put_fs_root(gang[i]);
3873 }
3874 return err;
c146afad 3875}
a2135011 3876
6bccf3ab 3877int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3878{
6bccf3ab 3879 struct btrfs_root *root = fs_info->tree_root;
c146afad 3880 struct btrfs_trans_handle *trans;
a74a4b97 3881
0b246afa 3882 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3883 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3884 mutex_unlock(&fs_info->cleaner_mutex);
3885 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3886
3887 /* wait until ongoing cleanup work done */
0b246afa
JM
3888 down_write(&fs_info->cleanup_work_sem);
3889 up_write(&fs_info->cleanup_work_sem);
c71bf099 3890
7a7eaa40 3891 trans = btrfs_join_transaction(root);
3612b495
TI
3892 if (IS_ERR(trans))
3893 return PTR_ERR(trans);
3a45bb20 3894 return btrfs_commit_transaction(trans);
c146afad
YZ
3895}
3896
6bccf3ab 3897void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3898{
c146afad
YZ
3899 int ret;
3900
afcdd129 3901 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3902 /*
3903 * We don't want the cleaner to start new transactions, add more delayed
3904 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3905 * because that frees the task_struct, and the transaction kthread might
3906 * still try to wake up the cleaner.
3907 */
3908 kthread_park(fs_info->cleaner_kthread);
c146afad 3909
7343dd61 3910 /* wait for the qgroup rescan worker to stop */
d06f23d6 3911 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3912
803b2f54
SB
3913 /* wait for the uuid_scan task to finish */
3914 down(&fs_info->uuid_tree_rescan_sem);
3915 /* avoid complains from lockdep et al., set sem back to initial state */
3916 up(&fs_info->uuid_tree_rescan_sem);
3917
837d5b6e 3918 /* pause restriper - we want to resume on mount */
aa1b8cd4 3919 btrfs_pause_balance(fs_info);
837d5b6e 3920
8dabb742
SB
3921 btrfs_dev_replace_suspend_for_unmount(fs_info);
3922
aa1b8cd4 3923 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3924
3925 /* wait for any defraggers to finish */
3926 wait_event(fs_info->transaction_wait,
3927 (atomic_read(&fs_info->defrag_running) == 0));
3928
3929 /* clear out the rbtree of defraggable inodes */
26176e7c 3930 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3931
21c7e756
MX
3932 cancel_work_sync(&fs_info->async_reclaim_work);
3933
bc98a42c 3934 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3935 /*
d6fd0ae2
OS
3936 * The cleaner kthread is stopped, so do one final pass over
3937 * unused block groups.
e44163e1 3938 */
0b246afa 3939 btrfs_delete_unused_bgs(fs_info);
e44163e1 3940
6bccf3ab 3941 ret = btrfs_commit_super(fs_info);
acce952b 3942 if (ret)
04892340 3943 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3944 }
3945
af722733
LB
3946 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3947 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 3948 btrfs_error_commit_super(fs_info);
0f7d52f4 3949
e3029d9f
AV
3950 kthread_stop(fs_info->transaction_kthread);
3951 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3952
e187831e 3953 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 3954 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3955
04892340 3956 btrfs_free_qgroup_config(fs_info);
fe816d0f 3957 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 3958
963d678b 3959 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3960 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3961 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3962 }
bcc63abb 3963
6618a59b 3964 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3965 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3966
faa2dbf0 3967 btrfs_free_fs_roots(fs_info);
d10c5f31 3968
1a4319cc
LB
3969 btrfs_put_block_group_cache(fs_info);
3970
de348ee0
WS
3971 /*
3972 * we must make sure there is not any read request to
3973 * submit after we stopping all workers.
3974 */
3975 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3976 btrfs_stop_all_workers(fs_info);
3977
5cdd7db6
FM
3978 btrfs_free_block_groups(fs_info);
3979
afcdd129 3980 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3981 free_root_pointers(fs_info, 1);
9ad6b7bc 3982
13e6c37b 3983 iput(fs_info->btree_inode);
d6bfde87 3984
21adbd5c 3985#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3986 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 3987 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
3988#endif
3989
dfe25020 3990 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3991 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3992
e2d84521 3993 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3994 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 3995 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 3996 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3997
53b381b3 3998 btrfs_free_stripe_hash_table(fs_info);
fd708b81 3999 btrfs_free_ref_cache(fs_info);
53b381b3 4000
04216820
FM
4001 while (!list_empty(&fs_info->pinned_chunks)) {
4002 struct extent_map *em;
4003
4004 em = list_first_entry(&fs_info->pinned_chunks,
4005 struct extent_map, list);
4006 list_del_init(&em->list);
4007 free_extent_map(em);
4008 }
eb60ceac
CM
4009}
4010
b9fab919
CM
4011int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4012 int atomic)
5f39d397 4013{
1259ab75 4014 int ret;
727011e0 4015 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4016
0b32f4bb 4017 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4018 if (!ret)
4019 return ret;
4020
4021 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4022 parent_transid, atomic);
4023 if (ret == -EAGAIN)
4024 return ret;
1259ab75 4025 return !ret;
5f39d397
CM
4026}
4027
5f39d397
CM
4028void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4029{
0b246afa 4030 struct btrfs_fs_info *fs_info;
06ea65a3 4031 struct btrfs_root *root;
5f39d397 4032 u64 transid = btrfs_header_generation(buf);
b9473439 4033 int was_dirty;
b4ce94de 4034
06ea65a3
JB
4035#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4036 /*
4037 * This is a fast path so only do this check if we have sanity tests
b0132a3b 4038 * enabled. Normal people shouldn't be using umapped buffers as dirty
06ea65a3
JB
4039 * outside of the sanity tests.
4040 */
b0132a3b 4041 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4042 return;
4043#endif
4044 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4045 fs_info = root->fs_info;
b9447ef8 4046 btrfs_assert_tree_locked(buf);
0b246afa 4047 if (transid != fs_info->generation)
5d163e0e 4048 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4049 buf->start, transid, fs_info->generation);
0b32f4bb 4050 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4051 if (!was_dirty)
104b4e51
NB
4052 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4053 buf->len,
4054 fs_info->dirty_metadata_batch);
1f21ef0a 4055#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4056 /*
4057 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4058 * but item data not updated.
4059 * So here we should only check item pointers, not item data.
4060 */
4061 if (btrfs_header_level(buf) == 0 &&
2f659546 4062 btrfs_check_leaf_relaxed(fs_info, buf)) {
a4f78750 4063 btrfs_print_leaf(buf);
1f21ef0a
FM
4064 ASSERT(0);
4065 }
4066#endif
eb60ceac
CM
4067}
4068
2ff7e61e 4069static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4070 int flush_delayed)
16cdcec7
MX
4071{
4072 /*
4073 * looks as though older kernels can get into trouble with
4074 * this code, they end up stuck in balance_dirty_pages forever
4075 */
e2d84521 4076 int ret;
16cdcec7
MX
4077
4078 if (current->flags & PF_MEMALLOC)
4079 return;
4080
b53d3f5d 4081 if (flush_delayed)
2ff7e61e 4082 btrfs_balance_delayed_items(fs_info);
16cdcec7 4083
d814a491
EL
4084 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4085 BTRFS_DIRTY_METADATA_THRESH,
4086 fs_info->dirty_metadata_batch);
e2d84521 4087 if (ret > 0) {
0b246afa 4088 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4089 }
16cdcec7
MX
4090}
4091
2ff7e61e 4092void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4093{
2ff7e61e 4094 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4095}
585ad2c3 4096
2ff7e61e 4097void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4098{
2ff7e61e 4099 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4100}
6b80053d 4101
581c1760
QW
4102int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4103 struct btrfs_key *first_key)
6b80053d 4104{
727011e0 4105 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4106 struct btrfs_fs_info *fs_info = root->fs_info;
4107
581c1760
QW
4108 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4109 level, first_key);
6b80053d 4110}
0da5468f 4111
2ff7e61e 4112static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4113{
fe816d0f
NB
4114 /* cleanup FS via transaction */
4115 btrfs_cleanup_transaction(fs_info);
4116
0b246afa 4117 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4118 btrfs_run_delayed_iputs(fs_info);
0b246afa 4119 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4120
0b246afa
JM
4121 down_write(&fs_info->cleanup_work_sem);
4122 up_write(&fs_info->cleanup_work_sem);
acce952b 4123}
4124
143bede5 4125static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4126{
acce952b 4127 struct btrfs_ordered_extent *ordered;
acce952b 4128
199c2a9c 4129 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4130 /*
4131 * This will just short circuit the ordered completion stuff which will
4132 * make sure the ordered extent gets properly cleaned up.
4133 */
199c2a9c 4134 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4135 root_extent_list)
4136 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4137 spin_unlock(&root->ordered_extent_lock);
4138}
4139
4140static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4141{
4142 struct btrfs_root *root;
4143 struct list_head splice;
4144
4145 INIT_LIST_HEAD(&splice);
4146
4147 spin_lock(&fs_info->ordered_root_lock);
4148 list_splice_init(&fs_info->ordered_roots, &splice);
4149 while (!list_empty(&splice)) {
4150 root = list_first_entry(&splice, struct btrfs_root,
4151 ordered_root);
1de2cfde
JB
4152 list_move_tail(&root->ordered_root,
4153 &fs_info->ordered_roots);
199c2a9c 4154
2a85d9ca 4155 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4156 btrfs_destroy_ordered_extents(root);
4157
2a85d9ca
LB
4158 cond_resched();
4159 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4160 }
4161 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4162}
4163
35a3621b 4164static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4165 struct btrfs_fs_info *fs_info)
acce952b 4166{
4167 struct rb_node *node;
4168 struct btrfs_delayed_ref_root *delayed_refs;
4169 struct btrfs_delayed_ref_node *ref;
4170 int ret = 0;
4171
4172 delayed_refs = &trans->delayed_refs;
4173
4174 spin_lock(&delayed_refs->lock);
d7df2c79 4175 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4176 spin_unlock(&delayed_refs->lock);
0b246afa 4177 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4178 return ret;
4179 }
4180
5c9d028b 4181 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4182 struct btrfs_delayed_ref_head *head;
0e0adbcf 4183 struct rb_node *n;
e78417d1 4184 bool pin_bytes = false;
acce952b 4185
d7df2c79
JB
4186 head = rb_entry(node, struct btrfs_delayed_ref_head,
4187 href_node);
4188 if (!mutex_trylock(&head->mutex)) {
d278850e 4189 refcount_inc(&head->refs);
d7df2c79 4190 spin_unlock(&delayed_refs->lock);
eb12db69 4191
d7df2c79 4192 mutex_lock(&head->mutex);
e78417d1 4193 mutex_unlock(&head->mutex);
d278850e 4194 btrfs_put_delayed_ref_head(head);
d7df2c79
JB
4195 spin_lock(&delayed_refs->lock);
4196 continue;
4197 }
4198 spin_lock(&head->lock);
e3d03965 4199 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4200 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4201 ref_node);
d7df2c79 4202 ref->in_tree = 0;
e3d03965 4203 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4204 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4205 if (!list_empty(&ref->add_list))
4206 list_del(&ref->add_list);
d7df2c79
JB
4207 atomic_dec(&delayed_refs->num_entries);
4208 btrfs_put_delayed_ref(ref);
e78417d1 4209 }
d7df2c79
JB
4210 if (head->must_insert_reserved)
4211 pin_bytes = true;
4212 btrfs_free_delayed_extent_op(head->extent_op);
4213 delayed_refs->num_heads--;
4214 if (head->processing == 0)
4215 delayed_refs->num_heads_ready--;
4216 atomic_dec(&delayed_refs->num_entries);
5c9d028b 4217 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
d278850e 4218 RB_CLEAR_NODE(&head->href_node);
d7df2c79
JB
4219 spin_unlock(&head->lock);
4220 spin_unlock(&delayed_refs->lock);
4221 mutex_unlock(&head->mutex);
acce952b 4222
d7df2c79 4223 if (pin_bytes)
d278850e
JB
4224 btrfs_pin_extent(fs_info, head->bytenr,
4225 head->num_bytes, 1);
4226 btrfs_put_delayed_ref_head(head);
acce952b 4227 cond_resched();
4228 spin_lock(&delayed_refs->lock);
4229 }
4230
4231 spin_unlock(&delayed_refs->lock);
4232
4233 return ret;
4234}
4235
143bede5 4236static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4237{
4238 struct btrfs_inode *btrfs_inode;
4239 struct list_head splice;
4240
4241 INIT_LIST_HEAD(&splice);
4242
eb73c1b7
MX
4243 spin_lock(&root->delalloc_lock);
4244 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4245
4246 while (!list_empty(&splice)) {
fe816d0f 4247 struct inode *inode = NULL;
eb73c1b7
MX
4248 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4249 delalloc_inodes);
fe816d0f 4250 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4251 spin_unlock(&root->delalloc_lock);
acce952b 4252
fe816d0f
NB
4253 /*
4254 * Make sure we get a live inode and that it'll not disappear
4255 * meanwhile.
4256 */
4257 inode = igrab(&btrfs_inode->vfs_inode);
4258 if (inode) {
4259 invalidate_inode_pages2(inode->i_mapping);
4260 iput(inode);
4261 }
eb73c1b7 4262 spin_lock(&root->delalloc_lock);
acce952b 4263 }
eb73c1b7
MX
4264 spin_unlock(&root->delalloc_lock);
4265}
4266
4267static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4268{
4269 struct btrfs_root *root;
4270 struct list_head splice;
4271
4272 INIT_LIST_HEAD(&splice);
4273
4274 spin_lock(&fs_info->delalloc_root_lock);
4275 list_splice_init(&fs_info->delalloc_roots, &splice);
4276 while (!list_empty(&splice)) {
4277 root = list_first_entry(&splice, struct btrfs_root,
4278 delalloc_root);
eb73c1b7
MX
4279 root = btrfs_grab_fs_root(root);
4280 BUG_ON(!root);
4281 spin_unlock(&fs_info->delalloc_root_lock);
4282
4283 btrfs_destroy_delalloc_inodes(root);
4284 btrfs_put_fs_root(root);
4285
4286 spin_lock(&fs_info->delalloc_root_lock);
4287 }
4288 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4289}
4290
2ff7e61e 4291static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4292 struct extent_io_tree *dirty_pages,
4293 int mark)
4294{
4295 int ret;
acce952b 4296 struct extent_buffer *eb;
4297 u64 start = 0;
4298 u64 end;
acce952b 4299
4300 while (1) {
4301 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4302 mark, NULL);
acce952b 4303 if (ret)
4304 break;
4305
91166212 4306 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4307 while (start <= end) {
0b246afa
JM
4308 eb = find_extent_buffer(fs_info, start);
4309 start += fs_info->nodesize;
fd8b2b61 4310 if (!eb)
acce952b 4311 continue;
fd8b2b61 4312 wait_on_extent_buffer_writeback(eb);
acce952b 4313
fd8b2b61
JB
4314 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4315 &eb->bflags))
4316 clear_extent_buffer_dirty(eb);
4317 free_extent_buffer_stale(eb);
acce952b 4318 }
4319 }
4320
4321 return ret;
4322}
4323
2ff7e61e 4324static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4325 struct extent_io_tree *pinned_extents)
4326{
4327 struct extent_io_tree *unpin;
4328 u64 start;
4329 u64 end;
4330 int ret;
ed0eaa14 4331 bool loop = true;
acce952b 4332
4333 unpin = pinned_extents;
ed0eaa14 4334again:
acce952b 4335 while (1) {
fcd5e742
LF
4336 /*
4337 * The btrfs_finish_extent_commit() may get the same range as
4338 * ours between find_first_extent_bit and clear_extent_dirty.
4339 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4340 * the same extent range.
4341 */
4342 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4343 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4344 EXTENT_DIRTY, NULL);
fcd5e742
LF
4345 if (ret) {
4346 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4347 break;
fcd5e742 4348 }
acce952b 4349
af6f8f60 4350 clear_extent_dirty(unpin, start, end);
2ff7e61e 4351 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4352 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4353 cond_resched();
4354 }
4355
ed0eaa14 4356 if (loop) {
0b246afa
JM
4357 if (unpin == &fs_info->freed_extents[0])
4358 unpin = &fs_info->freed_extents[1];
ed0eaa14 4359 else
0b246afa 4360 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4361 loop = false;
4362 goto again;
4363 }
4364
acce952b 4365 return 0;
4366}
4367
c79a1751
LB
4368static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4369{
4370 struct inode *inode;
4371
4372 inode = cache->io_ctl.inode;
4373 if (inode) {
4374 invalidate_inode_pages2(inode->i_mapping);
4375 BTRFS_I(inode)->generation = 0;
4376 cache->io_ctl.inode = NULL;
4377 iput(inode);
4378 }
4379 btrfs_put_block_group(cache);
4380}
4381
4382void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4383 struct btrfs_fs_info *fs_info)
c79a1751
LB
4384{
4385 struct btrfs_block_group_cache *cache;
4386
4387 spin_lock(&cur_trans->dirty_bgs_lock);
4388 while (!list_empty(&cur_trans->dirty_bgs)) {
4389 cache = list_first_entry(&cur_trans->dirty_bgs,
4390 struct btrfs_block_group_cache,
4391 dirty_list);
c79a1751
LB
4392
4393 if (!list_empty(&cache->io_list)) {
4394 spin_unlock(&cur_trans->dirty_bgs_lock);
4395 list_del_init(&cache->io_list);
4396 btrfs_cleanup_bg_io(cache);
4397 spin_lock(&cur_trans->dirty_bgs_lock);
4398 }
4399
4400 list_del_init(&cache->dirty_list);
4401 spin_lock(&cache->lock);
4402 cache->disk_cache_state = BTRFS_DC_ERROR;
4403 spin_unlock(&cache->lock);
4404
4405 spin_unlock(&cur_trans->dirty_bgs_lock);
4406 btrfs_put_block_group(cache);
4407 spin_lock(&cur_trans->dirty_bgs_lock);
4408 }
4409 spin_unlock(&cur_trans->dirty_bgs_lock);
4410
45ae2c18
NB
4411 /*
4412 * Refer to the definition of io_bgs member for details why it's safe
4413 * to use it without any locking
4414 */
c79a1751
LB
4415 while (!list_empty(&cur_trans->io_bgs)) {
4416 cache = list_first_entry(&cur_trans->io_bgs,
4417 struct btrfs_block_group_cache,
4418 io_list);
c79a1751
LB
4419
4420 list_del_init(&cache->io_list);
4421 spin_lock(&cache->lock);
4422 cache->disk_cache_state = BTRFS_DC_ERROR;
4423 spin_unlock(&cache->lock);
4424 btrfs_cleanup_bg_io(cache);
4425 }
4426}
4427
49b25e05 4428void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4429 struct btrfs_fs_info *fs_info)
49b25e05 4430{
2ff7e61e 4431 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4432 ASSERT(list_empty(&cur_trans->dirty_bgs));
4433 ASSERT(list_empty(&cur_trans->io_bgs));
4434
2ff7e61e 4435 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4436
4a9d8bde 4437 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4438 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4439
4a9d8bde 4440 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4441 wake_up(&fs_info->transaction_wait);
49b25e05 4442
ccdf9b30
JM
4443 btrfs_destroy_delayed_inodes(fs_info);
4444 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4445
2ff7e61e 4446 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4447 EXTENT_DIRTY);
2ff7e61e 4448 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4449 fs_info->pinned_extents);
49b25e05 4450
4a9d8bde
MX
4451 cur_trans->state =TRANS_STATE_COMPLETED;
4452 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4453}
4454
2ff7e61e 4455static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4456{
4457 struct btrfs_transaction *t;
acce952b 4458
0b246afa 4459 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4460
0b246afa
JM
4461 spin_lock(&fs_info->trans_lock);
4462 while (!list_empty(&fs_info->trans_list)) {
4463 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4464 struct btrfs_transaction, list);
4465 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4466 refcount_inc(&t->use_count);
0b246afa 4467 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4468 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4469 btrfs_put_transaction(t);
0b246afa 4470 spin_lock(&fs_info->trans_lock);
724e2315
JB
4471 continue;
4472 }
0b246afa 4473 if (t == fs_info->running_transaction) {
724e2315 4474 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4475 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4476 /*
4477 * We wait for 0 num_writers since we don't hold a trans
4478 * handle open currently for this transaction.
4479 */
4480 wait_event(t->writer_wait,
4481 atomic_read(&t->num_writers) == 0);
4482 } else {
0b246afa 4483 spin_unlock(&fs_info->trans_lock);
724e2315 4484 }
2ff7e61e 4485 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4486
0b246afa
JM
4487 spin_lock(&fs_info->trans_lock);
4488 if (t == fs_info->running_transaction)
4489 fs_info->running_transaction = NULL;
acce952b 4490 list_del_init(&t->list);
0b246afa 4491 spin_unlock(&fs_info->trans_lock);
acce952b 4492
724e2315 4493 btrfs_put_transaction(t);
2ff7e61e 4494 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4495 spin_lock(&fs_info->trans_lock);
724e2315 4496 }
0b246afa
JM
4497 spin_unlock(&fs_info->trans_lock);
4498 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4499 btrfs_destroy_delayed_inodes(fs_info);
4500 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4501 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4502 btrfs_destroy_all_delalloc_inodes(fs_info);
4503 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4504
4505 return 0;
4506}
4507
e8c9f186 4508static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4509 /* mandatory callbacks */
0b86a832 4510 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4511 .readpage_end_io_hook = btree_readpage_end_io_hook,
20a7db8a 4512 .readpage_io_failed_hook = btree_io_failed_hook,
4d53dddb
DS
4513
4514 /* optional callbacks */
0da5468f 4515};