btrfs: use better definition of number of compression type
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
6d97c6e3 22#include <crypto/hash.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
aac0023c 43#include "block-group.h"
eb60ceac 44
319e4d06
QW
45#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
46 BTRFS_HEADER_FLAG_RELOC |\
47 BTRFS_SUPER_FLAG_ERROR |\
48 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
49 BTRFS_SUPER_FLAG_METADUMP |\
50 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 51
e8c9f186 52static const struct extent_io_ops btree_extent_io_ops;
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
d352ac68
CM
100/*
101 * async submit bios are used to offload expensive checksumming
102 * onto the worker threads. They checksum file and metadata bios
103 * just before they are sent down the IO stack.
104 */
44b8bd7e 105struct async_submit_bio {
c6100a4b 106 void *private_data;
44b8bd7e 107 struct bio *bio;
a758781d 108 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 109 int mirror_num;
eaf25d93
CM
110 /*
111 * bio_offset is optional, can be used if the pages in the bio
112 * can't tell us where in the file the bio should go
113 */
114 u64 bio_offset;
8b712842 115 struct btrfs_work work;
4e4cbee9 116 blk_status_t status;
44b8bd7e
CM
117};
118
85d4e461
CM
119/*
120 * Lockdep class keys for extent_buffer->lock's in this root. For a given
121 * eb, the lockdep key is determined by the btrfs_root it belongs to and
122 * the level the eb occupies in the tree.
123 *
124 * Different roots are used for different purposes and may nest inside each
125 * other and they require separate keysets. As lockdep keys should be
126 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
127 * by btrfs_root->root_key.objectid. This ensures that all special purpose
128 * roots have separate keysets.
4008c04a 129 *
85d4e461
CM
130 * Lock-nesting across peer nodes is always done with the immediate parent
131 * node locked thus preventing deadlock. As lockdep doesn't know this, use
132 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 133 *
85d4e461
CM
134 * The key is set by the readpage_end_io_hook after the buffer has passed
135 * csum validation but before the pages are unlocked. It is also set by
136 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 137 *
85d4e461
CM
138 * We also add a check to make sure the highest level of the tree is the
139 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
140 * needs update as well.
4008c04a
CM
141 */
142#ifdef CONFIG_DEBUG_LOCK_ALLOC
143# if BTRFS_MAX_LEVEL != 8
144# error
145# endif
85d4e461
CM
146
147static struct btrfs_lockdep_keyset {
148 u64 id; /* root objectid */
149 const char *name_stem; /* lock name stem */
150 char names[BTRFS_MAX_LEVEL + 1][20];
151 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
152} btrfs_lockdep_keysets[] = {
153 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
154 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
155 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
156 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
157 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
158 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 159 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
160 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
161 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
162 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 163 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 164 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 165 { .id = 0, .name_stem = "tree" },
4008c04a 166};
85d4e461
CM
167
168void __init btrfs_init_lockdep(void)
169{
170 int i, j;
171
172 /* initialize lockdep class names */
173 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177 snprintf(ks->names[j], sizeof(ks->names[j]),
178 "btrfs-%s-%02d", ks->name_stem, j);
179 }
180}
181
182void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183 int level)
184{
185 struct btrfs_lockdep_keyset *ks;
186
187 BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189 /* find the matching keyset, id 0 is the default entry */
190 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191 if (ks->id == objectid)
192 break;
193
194 lockdep_set_class_and_name(&eb->lock,
195 &ks->keys[level], ks->names[level]);
196}
197
4008c04a
CM
198#endif
199
d352ac68
CM
200/*
201 * extents on the btree inode are pretty simple, there's one extent
202 * that covers the entire device
203 */
6af49dbd 204struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 205 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 206 int create)
7eccb903 207{
3ffbd68c 208 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 209 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
210 struct extent_map *em;
211 int ret;
212
890871be 213 read_lock(&em_tree->lock);
d1310b2e 214 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 215 if (em) {
0b246afa 216 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 217 read_unlock(&em_tree->lock);
5f39d397 218 goto out;
a061fc8d 219 }
890871be 220 read_unlock(&em_tree->lock);
7b13b7b1 221
172ddd60 222 em = alloc_extent_map();
5f39d397
CM
223 if (!em) {
224 em = ERR_PTR(-ENOMEM);
225 goto out;
226 }
227 em->start = 0;
0afbaf8c 228 em->len = (u64)-1;
c8b97818 229 em->block_len = (u64)-1;
5f39d397 230 em->block_start = 0;
0b246afa 231 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 232
890871be 233 write_lock(&em_tree->lock);
09a2a8f9 234 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
235 if (ret == -EEXIST) {
236 free_extent_map(em);
7b13b7b1 237 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 238 if (!em)
0433f20d 239 em = ERR_PTR(-EIO);
5f39d397 240 } else if (ret) {
7b13b7b1 241 free_extent_map(em);
0433f20d 242 em = ERR_PTR(ret);
5f39d397 243 }
890871be 244 write_unlock(&em_tree->lock);
7b13b7b1 245
5f39d397
CM
246out:
247 return em;
7eccb903
CM
248}
249
d352ac68 250/*
2996e1f8
JT
251 * Compute the csum of a btree block and store the result to provided buffer.
252 *
253 * Returns error if the extent buffer cannot be mapped.
d352ac68 254 */
2996e1f8 255static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 256{
d5178578
JT
257 struct btrfs_fs_info *fs_info = buf->fs_info;
258 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
259 unsigned long len;
260 unsigned long cur_len;
261 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
262 char *kaddr;
263 unsigned long map_start;
264 unsigned long map_len;
265 int err;
d5178578
JT
266
267 shash->tfm = fs_info->csum_shash;
268 crypto_shash_init(shash);
19c00ddc
CM
269
270 len = buf->len - offset;
d5178578 271
d397712b 272 while (len > 0) {
d2e174d5
JT
273 /*
274 * Note: we don't need to check for the err == 1 case here, as
275 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276 * and 'min_len = 32' and the currently implemented mapping
277 * algorithm we cannot cross a page boundary.
278 */
19c00ddc 279 err = map_private_extent_buffer(buf, offset, 32,
a6591715 280 &kaddr, &map_start, &map_len);
c53839fc 281 if (WARN_ON(err))
8bd98f0e 282 return err;
19c00ddc 283 cur_len = min(len, map_len - (offset - map_start));
d5178578 284 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
285 len -= cur_len;
286 offset += cur_len;
19c00ddc 287 }
71a63551 288 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 289
d5178578 290 crypto_shash_final(shash, result);
19c00ddc 291
19c00ddc
CM
292 return 0;
293}
294
d352ac68
CM
295/*
296 * we can't consider a given block up to date unless the transid of the
297 * block matches the transid in the parent node's pointer. This is how we
298 * detect blocks that either didn't get written at all or got written
299 * in the wrong place.
300 */
1259ab75 301static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
302 struct extent_buffer *eb, u64 parent_transid,
303 int atomic)
1259ab75 304{
2ac55d41 305 struct extent_state *cached_state = NULL;
1259ab75 306 int ret;
2755a0de 307 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
308
309 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310 return 0;
311
b9fab919
CM
312 if (atomic)
313 return -EAGAIN;
314
a26e8c9f
JB
315 if (need_lock) {
316 btrfs_tree_read_lock(eb);
300aa896 317 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
318 }
319
2ac55d41 320 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 321 &cached_state);
0b32f4bb 322 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
323 btrfs_header_generation(eb) == parent_transid) {
324 ret = 0;
325 goto out;
326 }
94647322
DS
327 btrfs_err_rl(eb->fs_info,
328 "parent transid verify failed on %llu wanted %llu found %llu",
329 eb->start,
29549aec 330 parent_transid, btrfs_header_generation(eb));
1259ab75 331 ret = 1;
a26e8c9f
JB
332
333 /*
334 * Things reading via commit roots that don't have normal protection,
335 * like send, can have a really old block in cache that may point at a
01327610 336 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
337 * if we find an eb that is under IO (dirty/writeback) because we could
338 * end up reading in the stale data and then writing it back out and
339 * making everybody very sad.
340 */
341 if (!extent_buffer_under_io(eb))
342 clear_extent_buffer_uptodate(eb);
33958dc6 343out:
2ac55d41 344 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 345 &cached_state);
472b909f
JB
346 if (need_lock)
347 btrfs_tree_read_unlock_blocking(eb);
1259ab75 348 return ret;
1259ab75
CM
349}
350
e7e16f48
JT
351static bool btrfs_supported_super_csum(u16 csum_type)
352{
353 switch (csum_type) {
354 case BTRFS_CSUM_TYPE_CRC32:
355 return true;
356 default:
357 return false;
358 }
359}
360
1104a885
DS
361/*
362 * Return 0 if the superblock checksum type matches the checksum value of that
363 * algorithm. Pass the raw disk superblock data.
364 */
ab8d0fc4
JM
365static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366 char *raw_disk_sb)
1104a885
DS
367{
368 struct btrfs_super_block *disk_sb =
369 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 370 char result[BTRFS_CSUM_SIZE];
d5178578
JT
371 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372
373 shash->tfm = fs_info->csum_shash;
374 crypto_shash_init(shash);
1104a885 375
51bce6c9
JT
376 /*
377 * The super_block structure does not span the whole
378 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379 * filled with zeros and is included in the checksum.
380 */
d5178578
JT
381 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383 crypto_shash_final(shash, result);
1104a885 384
51bce6c9
JT
385 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386 return 1;
1104a885 387
e7e16f48 388 return 0;
1104a885
DS
389}
390
e064d5e9 391int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 392 struct btrfs_key *first_key, u64 parent_transid)
581c1760 393{
e064d5e9 394 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
395 int found_level;
396 struct btrfs_key found_key;
397 int ret;
398
399 found_level = btrfs_header_level(eb);
400 if (found_level != level) {
63489055
QW
401 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
403 btrfs_err(fs_info,
404"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405 eb->start, level, found_level);
581c1760
QW
406 return -EIO;
407 }
408
409 if (!first_key)
410 return 0;
411
5d41be6f
QW
412 /*
413 * For live tree block (new tree blocks in current transaction),
414 * we need proper lock context to avoid race, which is impossible here.
415 * So we only checks tree blocks which is read from disk, whose
416 * generation <= fs_info->last_trans_committed.
417 */
418 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419 return 0;
62fdaa52
QW
420
421 /* We have @first_key, so this @eb must have at least one item */
422 if (btrfs_header_nritems(eb) == 0) {
423 btrfs_err(fs_info,
424 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425 eb->start);
426 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427 return -EUCLEAN;
428 }
429
581c1760
QW
430 if (found_level)
431 btrfs_node_key_to_cpu(eb, &found_key, 0);
432 else
433 btrfs_item_key_to_cpu(eb, &found_key, 0);
434 ret = btrfs_comp_cpu_keys(first_key, &found_key);
435
581c1760 436 if (ret) {
63489055
QW
437 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 439 btrfs_err(fs_info,
ff76a864
LB
440"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441 eb->start, parent_transid, first_key->objectid,
442 first_key->type, first_key->offset,
443 found_key.objectid, found_key.type,
444 found_key.offset);
581c1760 445 }
581c1760
QW
446 return ret;
447}
448
d352ac68
CM
449/*
450 * helper to read a given tree block, doing retries as required when
451 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
452 *
453 * @parent_transid: expected transid, skip check if 0
454 * @level: expected level, mandatory check
455 * @first_key: expected key of first slot, skip check if NULL
d352ac68 456 */
5ab12d1f 457static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
458 u64 parent_transid, int level,
459 struct btrfs_key *first_key)
f188591e 460{
5ab12d1f 461 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 462 struct extent_io_tree *io_tree;
ea466794 463 int failed = 0;
f188591e
CM
464 int ret;
465 int num_copies = 0;
466 int mirror_num = 0;
ea466794 467 int failed_mirror = 0;
f188591e 468
0b246afa 469 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 470 while (1) {
f8397d69 471 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 472 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 473 if (!ret) {
581c1760 474 if (verify_parent_transid(io_tree, eb,
b9fab919 475 parent_transid, 0))
256dd1bb 476 ret = -EIO;
e064d5e9 477 else if (btrfs_verify_level_key(eb, level,
448de471 478 first_key, parent_transid))
581c1760
QW
479 ret = -EUCLEAN;
480 else
481 break;
256dd1bb 482 }
d397712b 483
0b246afa 484 num_copies = btrfs_num_copies(fs_info,
f188591e 485 eb->start, eb->len);
4235298e 486 if (num_copies == 1)
ea466794 487 break;
4235298e 488
5cf1ab56
JB
489 if (!failed_mirror) {
490 failed = 1;
491 failed_mirror = eb->read_mirror;
492 }
493
f188591e 494 mirror_num++;
ea466794
JB
495 if (mirror_num == failed_mirror)
496 mirror_num++;
497
4235298e 498 if (mirror_num > num_copies)
ea466794 499 break;
f188591e 500 }
ea466794 501
c0901581 502 if (failed && !ret && failed_mirror)
20a1fbf9 503 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
504
505 return ret;
f188591e 506}
19c00ddc 507
d352ac68 508/*
d397712b
CM
509 * checksum a dirty tree block before IO. This has extra checks to make sure
510 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 511 */
d397712b 512
01d58472 513static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 514{
4eee4fa4 515 u64 start = page_offset(page);
19c00ddc 516 u64 found_start;
2996e1f8
JT
517 u8 result[BTRFS_CSUM_SIZE];
518 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 519 struct extent_buffer *eb;
8d47a0d8 520 int ret;
f188591e 521
4f2de97a
JB
522 eb = (struct extent_buffer *)page->private;
523 if (page != eb->pages[0])
524 return 0;
0f805531 525
19c00ddc 526 found_start = btrfs_header_bytenr(eb);
0f805531
AL
527 /*
528 * Please do not consolidate these warnings into a single if.
529 * It is useful to know what went wrong.
530 */
531 if (WARN_ON(found_start != start))
532 return -EUCLEAN;
533 if (WARN_ON(!PageUptodate(page)))
534 return -EUCLEAN;
535
de37aa51 536 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
537 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538
2996e1f8
JT
539 if (csum_tree_block(eb, result))
540 return -EINVAL;
541
8d47a0d8
QW
542 if (btrfs_header_level(eb))
543 ret = btrfs_check_node(eb);
544 else
545 ret = btrfs_check_leaf_full(eb);
546
547 if (ret < 0) {
c06631b0 548 btrfs_print_tree(eb, 0);
8d47a0d8
QW
549 btrfs_err(fs_info,
550 "block=%llu write time tree block corruption detected",
551 eb->start);
c06631b0 552 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
553 return ret;
554 }
2996e1f8 555 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 556
2996e1f8 557 return 0;
19c00ddc
CM
558}
559
b0c9b3b0 560static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 561{
b0c9b3b0 562 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 564 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
565 int ret = 1;
566
0a4e5586 567 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 568 while (fs_devices) {
7239ff4b
NB
569 u8 *metadata_uuid;
570
571 /*
572 * Checking the incompat flag is only valid for the current
573 * fs. For seed devices it's forbidden to have their uuid
574 * changed so reading ->fsid in this case is fine
575 */
576 if (fs_devices == fs_info->fs_devices &&
577 btrfs_fs_incompat(fs_info, METADATA_UUID))
578 metadata_uuid = fs_devices->metadata_uuid;
579 else
580 metadata_uuid = fs_devices->fsid;
581
582 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
583 ret = 0;
584 break;
585 }
586 fs_devices = fs_devices->seed;
587 }
588 return ret;
589}
590
facc8a22
MX
591static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
592 u64 phy_offset, struct page *page,
593 u64 start, u64 end, int mirror)
ce9adaa5 594{
ce9adaa5
CM
595 u64 found_start;
596 int found_level;
ce9adaa5
CM
597 struct extent_buffer *eb;
598 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 599 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 600 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 601 int ret = 0;
2996e1f8 602 u8 result[BTRFS_CSUM_SIZE];
727011e0 603 int reads_done;
ce9adaa5 604
ce9adaa5
CM
605 if (!page->private)
606 goto out;
d397712b 607
4f2de97a 608 eb = (struct extent_buffer *)page->private;
d397712b 609
0b32f4bb
JB
610 /* the pending IO might have been the only thing that kept this buffer
611 * in memory. Make sure we have a ref for all this other checks
612 */
67439dad 613 atomic_inc(&eb->refs);
0b32f4bb
JB
614
615 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
616 if (!reads_done)
617 goto err;
f188591e 618
5cf1ab56 619 eb->read_mirror = mirror;
656f30db 620 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
621 ret = -EIO;
622 goto err;
623 }
624
ce9adaa5 625 found_start = btrfs_header_bytenr(eb);
727011e0 626 if (found_start != eb->start) {
893bf4b1
SY
627 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
628 eb->start, found_start);
f188591e 629 ret = -EIO;
ce9adaa5
CM
630 goto err;
631 }
b0c9b3b0 632 if (check_tree_block_fsid(eb)) {
02873e43
ZL
633 btrfs_err_rl(fs_info, "bad fsid on block %llu",
634 eb->start);
1259ab75
CM
635 ret = -EIO;
636 goto err;
637 }
ce9adaa5 638 found_level = btrfs_header_level(eb);
1c24c3ce 639 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
640 btrfs_err(fs_info, "bad tree block level %d on %llu",
641 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
642 ret = -EIO;
643 goto err;
644 }
ce9adaa5 645
85d4e461
CM
646 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
647 eb, found_level);
4008c04a 648
2996e1f8 649 ret = csum_tree_block(eb, result);
8bd98f0e 650 if (ret)
a826d6dc 651 goto err;
a826d6dc 652
2996e1f8
JT
653 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
654 u32 val;
655 u32 found = 0;
656
657 memcpy(&found, result, csum_size);
658
659 read_extent_buffer(eb, &val, 0, csum_size);
660 btrfs_warn_rl(fs_info,
661 "%s checksum verify failed on %llu wanted %x found %x level %d",
662 fs_info->sb->s_id, eb->start,
663 val, found, btrfs_header_level(eb));
664 ret = -EUCLEAN;
665 goto err;
666 }
667
a826d6dc
JB
668 /*
669 * If this is a leaf block and it is corrupt, set the corrupt bit so
670 * that we don't try and read the other copies of this block, just
671 * return -EIO.
672 */
1c4360ee 673 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
674 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
675 ret = -EIO;
676 }
ce9adaa5 677
813fd1dc 678 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
679 ret = -EIO;
680
0b32f4bb
JB
681 if (!ret)
682 set_extent_buffer_uptodate(eb);
75391f0d
QW
683 else
684 btrfs_err(fs_info,
685 "block=%llu read time tree block corruption detected",
686 eb->start);
ce9adaa5 687err:
79fb65a1
JB
688 if (reads_done &&
689 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 690 btree_readahead_hook(eb, ret);
4bb31e92 691
53b381b3
DW
692 if (ret) {
693 /*
694 * our io error hook is going to dec the io pages
695 * again, we have to make sure it has something
696 * to decrement
697 */
698 atomic_inc(&eb->io_pages);
0b32f4bb 699 clear_extent_buffer_uptodate(eb);
53b381b3 700 }
0b32f4bb 701 free_extent_buffer(eb);
ce9adaa5 702out:
f188591e 703 return ret;
ce9adaa5
CM
704}
705
4246a0b6 706static void end_workqueue_bio(struct bio *bio)
ce9adaa5 707{
97eb6b69 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 709 struct btrfs_fs_info *fs_info;
9e0af237 710 struct btrfs_workqueue *wq;
ce9adaa5 711
ce9adaa5 712 fs_info = end_io_wq->info;
4e4cbee9 713 end_io_wq->status = bio->bi_status;
d20f7043 714
37226b21 715 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 717 wq = fs_info->endio_meta_write_workers;
a0cac0ec 718 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 719 wq = fs_info->endio_freespace_worker;
a0cac0ec 720 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 721 wq = fs_info->endio_raid56_workers;
a0cac0ec 722 else
9e0af237 723 wq = fs_info->endio_write_workers;
d20f7043 724 } else {
a0cac0ec 725 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 726 wq = fs_info->endio_repair_workers;
a0cac0ec 727 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 728 wq = fs_info->endio_raid56_workers;
a0cac0ec 729 else if (end_io_wq->metadata)
9e0af237 730 wq = fs_info->endio_meta_workers;
a0cac0ec 731 else
9e0af237 732 wq = fs_info->endio_workers;
d20f7043 733 }
9e0af237 734
a0cac0ec 735 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 736 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
737}
738
4e4cbee9 739blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 740 enum btrfs_wq_endio_type metadata)
0b86a832 741{
97eb6b69 742 struct btrfs_end_io_wq *end_io_wq;
8b110e39 743
97eb6b69 744 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 745 if (!end_io_wq)
4e4cbee9 746 return BLK_STS_RESOURCE;
ce9adaa5
CM
747
748 end_io_wq->private = bio->bi_private;
749 end_io_wq->end_io = bio->bi_end_io;
22c59948 750 end_io_wq->info = info;
4e4cbee9 751 end_io_wq->status = 0;
ce9adaa5 752 end_io_wq->bio = bio;
22c59948 753 end_io_wq->metadata = metadata;
ce9adaa5
CM
754
755 bio->bi_private = end_io_wq;
756 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
757 return 0;
758}
759
4a69a410
CM
760static void run_one_async_start(struct btrfs_work *work)
761{
4a69a410 762 struct async_submit_bio *async;
4e4cbee9 763 blk_status_t ret;
4a69a410
CM
764
765 async = container_of(work, struct async_submit_bio, work);
c6100a4b 766 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
767 async->bio_offset);
768 if (ret)
4e4cbee9 769 async->status = ret;
4a69a410
CM
770}
771
06ea01b1
DS
772/*
773 * In order to insert checksums into the metadata in large chunks, we wait
774 * until bio submission time. All the pages in the bio are checksummed and
775 * sums are attached onto the ordered extent record.
776 *
777 * At IO completion time the csums attached on the ordered extent record are
778 * inserted into the tree.
779 */
4a69a410 780static void run_one_async_done(struct btrfs_work *work)
8b712842 781{
8b712842 782 struct async_submit_bio *async;
06ea01b1
DS
783 struct inode *inode;
784 blk_status_t ret;
8b712842
CM
785
786 async = container_of(work, struct async_submit_bio, work);
06ea01b1 787 inode = async->private_data;
4854ddd0 788
bb7ab3b9 789 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
790 if (async->status) {
791 async->bio->bi_status = async->status;
4246a0b6 792 bio_endio(async->bio);
79787eaa
JM
793 return;
794 }
795
ec39f769
CM
796 /*
797 * All of the bios that pass through here are from async helpers.
798 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
799 * This changes nothing when cgroups aren't in use.
800 */
801 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 802 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
803 if (ret) {
804 async->bio->bi_status = ret;
805 bio_endio(async->bio);
806 }
4a69a410
CM
807}
808
809static void run_one_async_free(struct btrfs_work *work)
810{
811 struct async_submit_bio *async;
812
813 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
814 kfree(async);
815}
816
8c27cb35
LT
817blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
818 int mirror_num, unsigned long bio_flags,
819 u64 bio_offset, void *private_data,
e288c080 820 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
821{
822 struct async_submit_bio *async;
823
824 async = kmalloc(sizeof(*async), GFP_NOFS);
825 if (!async)
4e4cbee9 826 return BLK_STS_RESOURCE;
44b8bd7e 827
c6100a4b 828 async->private_data = private_data;
44b8bd7e
CM
829 async->bio = bio;
830 async->mirror_num = mirror_num;
4a69a410 831 async->submit_bio_start = submit_bio_start;
4a69a410 832
a0cac0ec
OS
833 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
834 run_one_async_free);
4a69a410 835
eaf25d93 836 async->bio_offset = bio_offset;
8c8bee1d 837
4e4cbee9 838 async->status = 0;
79787eaa 839
67f055c7 840 if (op_is_sync(bio->bi_opf))
5cdc7ad3 841 btrfs_set_work_high_priority(&async->work);
d313d7a3 842
5cdc7ad3 843 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
844 return 0;
845}
846
4e4cbee9 847static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 848{
2c30c71b 849 struct bio_vec *bvec;
ce3ed71a 850 struct btrfs_root *root;
2b070cfe 851 int ret = 0;
6dc4f100 852 struct bvec_iter_all iter_all;
ce3ed71a 853
c09abff8 854 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 855 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 856 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 857 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
858 if (ret)
859 break;
ce3ed71a 860 }
2c30c71b 861
4e4cbee9 862 return errno_to_blk_status(ret);
ce3ed71a
CM
863}
864
d0ee3934 865static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 866 u64 bio_offset)
22c59948 867{
8b712842
CM
868 /*
869 * when we're called for a write, we're already in the async
5443be45 870 * submission context. Just jump into btrfs_map_bio
8b712842 871 */
79787eaa 872 return btree_csum_one_bio(bio);
4a69a410 873}
22c59948 874
9b4e675a
DS
875static int check_async_write(struct btrfs_fs_info *fs_info,
876 struct btrfs_inode *bi)
de0022b9 877{
6300463b
LB
878 if (atomic_read(&bi->sync_writers))
879 return 0;
9b4e675a 880 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 881 return 0;
de0022b9
JB
882 return 1;
883}
884
a56b1c7b 885static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
886 int mirror_num,
887 unsigned long bio_flags)
44b8bd7e 888{
0b246afa 889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 890 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 891 blk_status_t ret;
cad321ad 892
37226b21 893 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
894 /*
895 * called for a read, do the setup so that checksum validation
896 * can happen in the async kernel threads
897 */
0b246afa
JM
898 ret = btrfs_bio_wq_end_io(fs_info, bio,
899 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 900 if (ret)
61891923 901 goto out_w_error;
08635bae 902 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
903 } else if (!async) {
904 ret = btree_csum_one_bio(bio);
905 if (ret)
61891923 906 goto out_w_error;
08635bae 907 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
908 } else {
909 /*
910 * kthread helpers are used to submit writes so that
911 * checksumming can happen in parallel across all CPUs
912 */
c6100a4b 913 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 914 0, inode, btree_submit_bio_start);
44b8bd7e 915 }
d313d7a3 916
4246a0b6
CH
917 if (ret)
918 goto out_w_error;
919 return 0;
920
61891923 921out_w_error:
4e4cbee9 922 bio->bi_status = ret;
4246a0b6 923 bio_endio(bio);
61891923 924 return ret;
44b8bd7e
CM
925}
926
3dd1462e 927#ifdef CONFIG_MIGRATION
784b4e29 928static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
929 struct page *newpage, struct page *page,
930 enum migrate_mode mode)
784b4e29
CM
931{
932 /*
933 * we can't safely write a btree page from here,
934 * we haven't done the locking hook
935 */
936 if (PageDirty(page))
937 return -EAGAIN;
938 /*
939 * Buffers may be managed in a filesystem specific way.
940 * We must have no buffers or drop them.
941 */
942 if (page_has_private(page) &&
943 !try_to_release_page(page, GFP_KERNEL))
944 return -EAGAIN;
a6bc32b8 945 return migrate_page(mapping, newpage, page, mode);
784b4e29 946}
3dd1462e 947#endif
784b4e29 948
0da5468f
CM
949
950static int btree_writepages(struct address_space *mapping,
951 struct writeback_control *wbc)
952{
e2d84521
MX
953 struct btrfs_fs_info *fs_info;
954 int ret;
955
d8d5f3e1 956 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
957
958 if (wbc->for_kupdate)
959 return 0;
960
e2d84521 961 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 962 /* this is a bit racy, but that's ok */
d814a491
EL
963 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
964 BTRFS_DIRTY_METADATA_THRESH,
965 fs_info->dirty_metadata_batch);
e2d84521 966 if (ret < 0)
793955bc 967 return 0;
793955bc 968 }
0b32f4bb 969 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
970}
971
b2950863 972static int btree_readpage(struct file *file, struct page *page)
5f39d397 973{
d1310b2e
CM
974 struct extent_io_tree *tree;
975 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 976 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 977}
22b0ebda 978
70dec807 979static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 980{
98509cfc 981 if (PageWriteback(page) || PageDirty(page))
d397712b 982 return 0;
0c4e538b 983
f7a52a40 984 return try_release_extent_buffer(page);
d98237b3
CM
985}
986
d47992f8
LC
987static void btree_invalidatepage(struct page *page, unsigned int offset,
988 unsigned int length)
d98237b3 989{
d1310b2e
CM
990 struct extent_io_tree *tree;
991 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
992 extent_invalidatepage(tree, page, offset);
993 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 994 if (PagePrivate(page)) {
efe120a0
FH
995 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
996 "page private not zero on page %llu",
997 (unsigned long long)page_offset(page));
9ad6b7bc
CM
998 ClearPagePrivate(page);
999 set_page_private(page, 0);
09cbfeaf 1000 put_page(page);
9ad6b7bc 1001 }
d98237b3
CM
1002}
1003
0b32f4bb
JB
1004static int btree_set_page_dirty(struct page *page)
1005{
bb146eb2 1006#ifdef DEBUG
0b32f4bb
JB
1007 struct extent_buffer *eb;
1008
1009 BUG_ON(!PagePrivate(page));
1010 eb = (struct extent_buffer *)page->private;
1011 BUG_ON(!eb);
1012 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1013 BUG_ON(!atomic_read(&eb->refs));
1014 btrfs_assert_tree_locked(eb);
bb146eb2 1015#endif
0b32f4bb
JB
1016 return __set_page_dirty_nobuffers(page);
1017}
1018
7f09410b 1019static const struct address_space_operations btree_aops = {
d98237b3 1020 .readpage = btree_readpage,
0da5468f 1021 .writepages = btree_writepages,
5f39d397
CM
1022 .releasepage = btree_releasepage,
1023 .invalidatepage = btree_invalidatepage,
5a92bc88 1024#ifdef CONFIG_MIGRATION
784b4e29 1025 .migratepage = btree_migratepage,
5a92bc88 1026#endif
0b32f4bb 1027 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1028};
1029
2ff7e61e 1030void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1031{
5f39d397 1032 struct extent_buffer *buf = NULL;
537f38f0 1033 int ret;
090d1875 1034
2ff7e61e 1035 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1036 if (IS_ERR(buf))
6197d86e 1037 return;
537f38f0 1038
c2ccfbc6 1039 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1040 if (ret < 0)
1041 free_extent_buffer_stale(buf);
1042 else
1043 free_extent_buffer(buf);
090d1875
CM
1044}
1045
2ff7e61e
JM
1046struct extent_buffer *btrfs_find_create_tree_block(
1047 struct btrfs_fs_info *fs_info,
1048 u64 bytenr)
0999df54 1049{
0b246afa
JM
1050 if (btrfs_is_testing(fs_info))
1051 return alloc_test_extent_buffer(fs_info, bytenr);
1052 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1053}
1054
581c1760
QW
1055/*
1056 * Read tree block at logical address @bytenr and do variant basic but critical
1057 * verification.
1058 *
1059 * @parent_transid: expected transid of this tree block, skip check if 0
1060 * @level: expected level, mandatory check
1061 * @first_key: expected key in slot 0, skip check if NULL
1062 */
2ff7e61e 1063struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1064 u64 parent_transid, int level,
1065 struct btrfs_key *first_key)
0999df54
CM
1066{
1067 struct extent_buffer *buf = NULL;
0999df54
CM
1068 int ret;
1069
2ff7e61e 1070 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1071 if (IS_ERR(buf))
1072 return buf;
0999df54 1073
5ab12d1f 1074 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1075 level, first_key);
0f0fe8f7 1076 if (ret) {
537f38f0 1077 free_extent_buffer_stale(buf);
64c043de 1078 return ERR_PTR(ret);
0f0fe8f7 1079 }
5f39d397 1080 return buf;
ce9adaa5 1081
eb60ceac
CM
1082}
1083
6a884d7d 1084void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1085{
6a884d7d 1086 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1087 if (btrfs_header_generation(buf) ==
e2d84521 1088 fs_info->running_transaction->transid) {
b9447ef8 1089 btrfs_assert_tree_locked(buf);
b4ce94de 1090
b9473439 1091 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1092 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1093 -buf->len,
1094 fs_info->dirty_metadata_batch);
ed7b63eb 1095 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1096 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1097 clear_extent_buffer_dirty(buf);
1098 }
925baedd 1099 }
5f39d397
CM
1100}
1101
8257b2dc
MX
1102static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1103{
1104 struct btrfs_subvolume_writers *writers;
1105 int ret;
1106
1107 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1108 if (!writers)
1109 return ERR_PTR(-ENOMEM);
1110
8a5a916d 1111 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1112 if (ret < 0) {
1113 kfree(writers);
1114 return ERR_PTR(ret);
1115 }
1116
1117 init_waitqueue_head(&writers->wait);
1118 return writers;
1119}
1120
1121static void
1122btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1123{
1124 percpu_counter_destroy(&writers->counter);
1125 kfree(writers);
1126}
1127
da17066c 1128static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1129 u64 objectid)
d97e63b6 1130{
7c0260ee 1131 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1132 root->node = NULL;
a28ec197 1133 root->commit_root = NULL;
27cdeb70 1134 root->state = 0;
d68fc57b 1135 root->orphan_cleanup_state = 0;
0b86a832 1136
0f7d52f4 1137 root->last_trans = 0;
13a8a7c8 1138 root->highest_objectid = 0;
eb73c1b7 1139 root->nr_delalloc_inodes = 0;
199c2a9c 1140 root->nr_ordered_extents = 0;
6bef4d31 1141 root->inode_tree = RB_ROOT;
16cdcec7 1142 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1143 root->block_rsv = NULL;
0b86a832
CM
1144
1145 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1146 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1147 INIT_LIST_HEAD(&root->delalloc_inodes);
1148 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1149 INIT_LIST_HEAD(&root->ordered_extents);
1150 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1151 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1152 INIT_LIST_HEAD(&root->logged_list[0]);
1153 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1154 spin_lock_init(&root->inode_lock);
eb73c1b7 1155 spin_lock_init(&root->delalloc_lock);
199c2a9c 1156 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1157 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1158 spin_lock_init(&root->log_extents_lock[0]);
1159 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1160 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1161 mutex_init(&root->objectid_mutex);
e02119d5 1162 mutex_init(&root->log_mutex);
31f3d255 1163 mutex_init(&root->ordered_extent_mutex);
573bfb72 1164 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1165 init_waitqueue_head(&root->log_writer_wait);
1166 init_waitqueue_head(&root->log_commit_wait[0]);
1167 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1168 INIT_LIST_HEAD(&root->log_ctxs[0]);
1169 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1170 atomic_set(&root->log_commit[0], 0);
1171 atomic_set(&root->log_commit[1], 0);
1172 atomic_set(&root->log_writers, 0);
2ecb7923 1173 atomic_set(&root->log_batch, 0);
0700cea7 1174 refcount_set(&root->refs, 1);
ea14b57f 1175 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1176 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1177 atomic_set(&root->nr_swapfiles, 0);
7237f183 1178 root->log_transid = 0;
d1433deb 1179 root->log_transid_committed = -1;
257c62e1 1180 root->last_log_commit = 0;
7c0260ee 1181 if (!dummy)
43eb5f29
QW
1182 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1183 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1184
3768f368
CM
1185 memset(&root->root_key, 0, sizeof(root->root_key));
1186 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1187 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1188 if (!dummy)
06ea65a3
JB
1189 root->defrag_trans_start = fs_info->generation;
1190 else
1191 root->defrag_trans_start = 0;
4d775673 1192 root->root_key.objectid = objectid;
0ee5dc67 1193 root->anon_dev = 0;
8ea05e3a 1194
5f3ab90a 1195 spin_lock_init(&root->root_item_lock);
370a11b8 1196 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1197}
1198
74e4d827
DS
1199static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1200 gfp_t flags)
6f07e42e 1201{
74e4d827 1202 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1203 if (root)
1204 root->fs_info = fs_info;
1205 return root;
1206}
1207
06ea65a3
JB
1208#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1209/* Should only be used by the testing infrastructure */
da17066c 1210struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1211{
1212 struct btrfs_root *root;
1213
7c0260ee
JM
1214 if (!fs_info)
1215 return ERR_PTR(-EINVAL);
1216
1217 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1218 if (!root)
1219 return ERR_PTR(-ENOMEM);
da17066c 1220
b9ef22de 1221 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1222 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1223 root->alloc_bytenr = 0;
06ea65a3
JB
1224
1225 return root;
1226}
1227#endif
1228
20897f5c 1229struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1230 u64 objectid)
1231{
9b7a2440 1232 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1233 struct extent_buffer *leaf;
1234 struct btrfs_root *tree_root = fs_info->tree_root;
1235 struct btrfs_root *root;
1236 struct btrfs_key key;
b89f6d1f 1237 unsigned int nofs_flag;
20897f5c 1238 int ret = 0;
33d85fda 1239 uuid_le uuid = NULL_UUID_LE;
20897f5c 1240
b89f6d1f
FM
1241 /*
1242 * We're holding a transaction handle, so use a NOFS memory allocation
1243 * context to avoid deadlock if reclaim happens.
1244 */
1245 nofs_flag = memalloc_nofs_save();
74e4d827 1246 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1247 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1248 if (!root)
1249 return ERR_PTR(-ENOMEM);
1250
da17066c 1251 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1252 root->root_key.objectid = objectid;
1253 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1254 root->root_key.offset = 0;
1255
4d75f8a9 1256 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1257 if (IS_ERR(leaf)) {
1258 ret = PTR_ERR(leaf);
1dd05682 1259 leaf = NULL;
20897f5c
AJ
1260 goto fail;
1261 }
1262
20897f5c 1263 root->node = leaf;
20897f5c
AJ
1264 btrfs_mark_buffer_dirty(leaf);
1265
1266 root->commit_root = btrfs_root_node(root);
27cdeb70 1267 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1268
1269 root->root_item.flags = 0;
1270 root->root_item.byte_limit = 0;
1271 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1272 btrfs_set_root_generation(&root->root_item, trans->transid);
1273 btrfs_set_root_level(&root->root_item, 0);
1274 btrfs_set_root_refs(&root->root_item, 1);
1275 btrfs_set_root_used(&root->root_item, leaf->len);
1276 btrfs_set_root_last_snapshot(&root->root_item, 0);
1277 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1278 if (is_fstree(objectid))
1279 uuid_le_gen(&uuid);
6463fe58 1280 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1281 root->root_item.drop_level = 0;
1282
1283 key.objectid = objectid;
1284 key.type = BTRFS_ROOT_ITEM_KEY;
1285 key.offset = 0;
1286 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1287 if (ret)
1288 goto fail;
1289
1290 btrfs_tree_unlock(leaf);
1291
1dd05682
TI
1292 return root;
1293
20897f5c 1294fail:
1dd05682
TI
1295 if (leaf) {
1296 btrfs_tree_unlock(leaf);
59885b39 1297 free_extent_buffer(root->commit_root);
1dd05682
TI
1298 free_extent_buffer(leaf);
1299 }
1300 kfree(root);
20897f5c 1301
1dd05682 1302 return ERR_PTR(ret);
20897f5c
AJ
1303}
1304
7237f183
YZ
1305static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1306 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1307{
1308 struct btrfs_root *root;
7237f183 1309 struct extent_buffer *leaf;
e02119d5 1310
74e4d827 1311 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1312 if (!root)
7237f183 1313 return ERR_PTR(-ENOMEM);
e02119d5 1314
da17066c 1315 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1316
1317 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1318 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1320
7237f183 1321 /*
27cdeb70
MX
1322 * DON'T set REF_COWS for log trees
1323 *
7237f183
YZ
1324 * log trees do not get reference counted because they go away
1325 * before a real commit is actually done. They do store pointers
1326 * to file data extents, and those reference counts still get
1327 * updated (along with back refs to the log tree).
1328 */
e02119d5 1329
4d75f8a9
DS
1330 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1331 NULL, 0, 0, 0);
7237f183
YZ
1332 if (IS_ERR(leaf)) {
1333 kfree(root);
1334 return ERR_CAST(leaf);
1335 }
e02119d5 1336
7237f183 1337 root->node = leaf;
e02119d5 1338
e02119d5
CM
1339 btrfs_mark_buffer_dirty(root->node);
1340 btrfs_tree_unlock(root->node);
7237f183
YZ
1341 return root;
1342}
1343
1344int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1345 struct btrfs_fs_info *fs_info)
1346{
1347 struct btrfs_root *log_root;
1348
1349 log_root = alloc_log_tree(trans, fs_info);
1350 if (IS_ERR(log_root))
1351 return PTR_ERR(log_root);
1352 WARN_ON(fs_info->log_root_tree);
1353 fs_info->log_root_tree = log_root;
1354 return 0;
1355}
1356
1357int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1358 struct btrfs_root *root)
1359{
0b246afa 1360 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1361 struct btrfs_root *log_root;
1362 struct btrfs_inode_item *inode_item;
1363
0b246afa 1364 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1365 if (IS_ERR(log_root))
1366 return PTR_ERR(log_root);
1367
1368 log_root->last_trans = trans->transid;
1369 log_root->root_key.offset = root->root_key.objectid;
1370
1371 inode_item = &log_root->root_item.inode;
3cae210f
QW
1372 btrfs_set_stack_inode_generation(inode_item, 1);
1373 btrfs_set_stack_inode_size(inode_item, 3);
1374 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1375 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1376 fs_info->nodesize);
3cae210f 1377 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1378
5d4f98a2 1379 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1380
1381 WARN_ON(root->log_root);
1382 root->log_root = log_root;
1383 root->log_transid = 0;
d1433deb 1384 root->log_transid_committed = -1;
257c62e1 1385 root->last_log_commit = 0;
e02119d5
CM
1386 return 0;
1387}
1388
35a3621b
SB
1389static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1390 struct btrfs_key *key)
e02119d5
CM
1391{
1392 struct btrfs_root *root;
1393 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1394 struct btrfs_path *path;
84234f3a 1395 u64 generation;
cb517eab 1396 int ret;
581c1760 1397 int level;
0f7d52f4 1398
cb517eab
MX
1399 path = btrfs_alloc_path();
1400 if (!path)
0f7d52f4 1401 return ERR_PTR(-ENOMEM);
cb517eab 1402
74e4d827 1403 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1404 if (!root) {
1405 ret = -ENOMEM;
1406 goto alloc_fail;
0f7d52f4
CM
1407 }
1408
da17066c 1409 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1410
cb517eab
MX
1411 ret = btrfs_find_root(tree_root, key, path,
1412 &root->root_item, &root->root_key);
0f7d52f4 1413 if (ret) {
13a8a7c8
YZ
1414 if (ret > 0)
1415 ret = -ENOENT;
cb517eab 1416 goto find_fail;
0f7d52f4 1417 }
13a8a7c8 1418
84234f3a 1419 generation = btrfs_root_generation(&root->root_item);
581c1760 1420 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1421 root->node = read_tree_block(fs_info,
1422 btrfs_root_bytenr(&root->root_item),
581c1760 1423 generation, level, NULL);
64c043de
LB
1424 if (IS_ERR(root->node)) {
1425 ret = PTR_ERR(root->node);
cb517eab
MX
1426 goto find_fail;
1427 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1428 ret = -EIO;
64c043de
LB
1429 free_extent_buffer(root->node);
1430 goto find_fail;
416bc658 1431 }
5d4f98a2 1432 root->commit_root = btrfs_root_node(root);
13a8a7c8 1433out:
cb517eab
MX
1434 btrfs_free_path(path);
1435 return root;
1436
cb517eab
MX
1437find_fail:
1438 kfree(root);
1439alloc_fail:
1440 root = ERR_PTR(ret);
1441 goto out;
1442}
1443
1444struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1445 struct btrfs_key *location)
1446{
1447 struct btrfs_root *root;
1448
1449 root = btrfs_read_tree_root(tree_root, location);
1450 if (IS_ERR(root))
1451 return root;
1452
1453 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1454 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1455 btrfs_check_and_init_root_item(&root->root_item);
1456 }
13a8a7c8 1457
5eda7b5e
CM
1458 return root;
1459}
1460
cb517eab
MX
1461int btrfs_init_fs_root(struct btrfs_root *root)
1462{
1463 int ret;
8257b2dc 1464 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1465
1466 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1467 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1468 GFP_NOFS);
1469 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1470 ret = -ENOMEM;
1471 goto fail;
1472 }
1473
8257b2dc
MX
1474 writers = btrfs_alloc_subvolume_writers();
1475 if (IS_ERR(writers)) {
1476 ret = PTR_ERR(writers);
1477 goto fail;
1478 }
1479 root->subv_writers = writers;
1480
cb517eab 1481 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1482 spin_lock_init(&root->ino_cache_lock);
1483 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1484
1485 ret = get_anon_bdev(&root->anon_dev);
1486 if (ret)
876d2cf1 1487 goto fail;
f32e48e9
CR
1488
1489 mutex_lock(&root->objectid_mutex);
1490 ret = btrfs_find_highest_objectid(root,
1491 &root->highest_objectid);
1492 if (ret) {
1493 mutex_unlock(&root->objectid_mutex);
876d2cf1 1494 goto fail;
f32e48e9
CR
1495 }
1496
1497 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1498
1499 mutex_unlock(&root->objectid_mutex);
1500
cb517eab
MX
1501 return 0;
1502fail:
84db5ccf 1503 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1504 return ret;
1505}
1506
35bbb97f
JM
1507struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1508 u64 root_id)
cb517eab
MX
1509{
1510 struct btrfs_root *root;
1511
1512 spin_lock(&fs_info->fs_roots_radix_lock);
1513 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1514 (unsigned long)root_id);
1515 spin_unlock(&fs_info->fs_roots_radix_lock);
1516 return root;
1517}
1518
1519int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1520 struct btrfs_root *root)
1521{
1522 int ret;
1523
e1860a77 1524 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1525 if (ret)
1526 return ret;
1527
1528 spin_lock(&fs_info->fs_roots_radix_lock);
1529 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1530 (unsigned long)root->root_key.objectid,
1531 root);
1532 if (ret == 0)
27cdeb70 1533 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1534 spin_unlock(&fs_info->fs_roots_radix_lock);
1535 radix_tree_preload_end();
1536
1537 return ret;
1538}
1539
c00869f1
MX
1540struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1541 struct btrfs_key *location,
1542 bool check_ref)
5eda7b5e
CM
1543{
1544 struct btrfs_root *root;
381cf658 1545 struct btrfs_path *path;
1d4c08e0 1546 struct btrfs_key key;
5eda7b5e
CM
1547 int ret;
1548
edbd8d4e
CM
1549 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1550 return fs_info->tree_root;
1551 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1552 return fs_info->extent_root;
8f18cf13
CM
1553 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1554 return fs_info->chunk_root;
1555 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1556 return fs_info->dev_root;
0403e47e
YZ
1557 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1558 return fs_info->csum_root;
bcef60f2
AJ
1559 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1560 return fs_info->quota_root ? fs_info->quota_root :
1561 ERR_PTR(-ENOENT);
f7a81ea4
SB
1562 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1563 return fs_info->uuid_root ? fs_info->uuid_root :
1564 ERR_PTR(-ENOENT);
70f6d82e
OS
1565 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1566 return fs_info->free_space_root ? fs_info->free_space_root :
1567 ERR_PTR(-ENOENT);
4df27c4d 1568again:
cb517eab 1569 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1570 if (root) {
c00869f1 1571 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1572 return ERR_PTR(-ENOENT);
5eda7b5e 1573 return root;
48475471 1574 }
5eda7b5e 1575
cb517eab 1576 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1577 if (IS_ERR(root))
1578 return root;
3394e160 1579
c00869f1 1580 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1581 ret = -ENOENT;
581bb050 1582 goto fail;
35a30d7c 1583 }
581bb050 1584
cb517eab 1585 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1586 if (ret)
1587 goto fail;
3394e160 1588
381cf658
DS
1589 path = btrfs_alloc_path();
1590 if (!path) {
1591 ret = -ENOMEM;
1592 goto fail;
1593 }
1d4c08e0
DS
1594 key.objectid = BTRFS_ORPHAN_OBJECTID;
1595 key.type = BTRFS_ORPHAN_ITEM_KEY;
1596 key.offset = location->objectid;
1597
1598 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1599 btrfs_free_path(path);
d68fc57b
YZ
1600 if (ret < 0)
1601 goto fail;
1602 if (ret == 0)
27cdeb70 1603 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1604
cb517eab 1605 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1606 if (ret) {
4df27c4d 1607 if (ret == -EEXIST) {
84db5ccf 1608 btrfs_free_fs_root(root);
4df27c4d
YZ
1609 goto again;
1610 }
1611 goto fail;
0f7d52f4 1612 }
edbd8d4e 1613 return root;
4df27c4d 1614fail:
84db5ccf 1615 btrfs_free_fs_root(root);
4df27c4d 1616 return ERR_PTR(ret);
edbd8d4e
CM
1617}
1618
04160088
CM
1619static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1620{
1621 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1622 int ret = 0;
04160088
CM
1623 struct btrfs_device *device;
1624 struct backing_dev_info *bdi;
b7967db7 1625
1f78160c
XG
1626 rcu_read_lock();
1627 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1628 if (!device->bdev)
1629 continue;
efa7c9f9 1630 bdi = device->bdev->bd_bdi;
ff9ea323 1631 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1632 ret = 1;
1633 break;
1634 }
1635 }
1f78160c 1636 rcu_read_unlock();
04160088
CM
1637 return ret;
1638}
1639
8b712842
CM
1640/*
1641 * called by the kthread helper functions to finally call the bio end_io
1642 * functions. This is where read checksum verification actually happens
1643 */
1644static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1645{
ce9adaa5 1646 struct bio *bio;
97eb6b69 1647 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1648
97eb6b69 1649 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1650 bio = end_io_wq->bio;
ce9adaa5 1651
4e4cbee9 1652 bio->bi_status = end_io_wq->status;
8b712842
CM
1653 bio->bi_private = end_io_wq->private;
1654 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1655 bio_endio(bio);
9be490f1 1656 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1657}
1658
a74a4b97
CM
1659static int cleaner_kthread(void *arg)
1660{
1661 struct btrfs_root *root = arg;
0b246afa 1662 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1663 int again;
a74a4b97 1664
d6fd0ae2 1665 while (1) {
d0278245 1666 again = 0;
a74a4b97 1667
fd340d0f
JB
1668 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1669
d0278245 1670 /* Make the cleaner go to sleep early. */
2ff7e61e 1671 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1672 goto sleep;
1673
90c711ab
ZB
1674 /*
1675 * Do not do anything if we might cause open_ctree() to block
1676 * before we have finished mounting the filesystem.
1677 */
0b246afa 1678 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1679 goto sleep;
1680
0b246afa 1681 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1682 goto sleep;
1683
dc7f370c
MX
1684 /*
1685 * Avoid the problem that we change the status of the fs
1686 * during the above check and trylock.
1687 */
2ff7e61e 1688 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1689 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1690 goto sleep;
76dda93c 1691 }
a74a4b97 1692
2ff7e61e 1693 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1694
d0278245 1695 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1696 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1697
1698 /*
05323cd1
MX
1699 * The defragger has dealt with the R/O remount and umount,
1700 * needn't do anything special here.
d0278245 1701 */
0b246afa 1702 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1703
1704 /*
1705 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1706 * with relocation (btrfs_relocate_chunk) and relocation
1707 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1708 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1709 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1710 * unused block groups.
1711 */
0b246afa 1712 btrfs_delete_unused_bgs(fs_info);
d0278245 1713sleep:
fd340d0f 1714 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1715 if (kthread_should_park())
1716 kthread_parkme();
1717 if (kthread_should_stop())
1718 return 0;
838fe188 1719 if (!again) {
a74a4b97 1720 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1721 schedule();
a74a4b97
CM
1722 __set_current_state(TASK_RUNNING);
1723 }
da288d28 1724 }
a74a4b97
CM
1725}
1726
1727static int transaction_kthread(void *arg)
1728{
1729 struct btrfs_root *root = arg;
0b246afa 1730 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1731 struct btrfs_trans_handle *trans;
1732 struct btrfs_transaction *cur;
8929ecfa 1733 u64 transid;
a944442c 1734 time64_t now;
a74a4b97 1735 unsigned long delay;
914b2007 1736 bool cannot_commit;
a74a4b97
CM
1737
1738 do {
914b2007 1739 cannot_commit = false;
0b246afa
JM
1740 delay = HZ * fs_info->commit_interval;
1741 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1742
0b246afa
JM
1743 spin_lock(&fs_info->trans_lock);
1744 cur = fs_info->running_transaction;
a74a4b97 1745 if (!cur) {
0b246afa 1746 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1747 goto sleep;
1748 }
31153d81 1749
afd48513 1750 now = ktime_get_seconds();
3296bf56 1751 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1752 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1753 (now < cur->start_time ||
0b246afa
JM
1754 now - cur->start_time < fs_info->commit_interval)) {
1755 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1756 delay = HZ * 5;
1757 goto sleep;
1758 }
8929ecfa 1759 transid = cur->transid;
0b246afa 1760 spin_unlock(&fs_info->trans_lock);
56bec294 1761
79787eaa 1762 /* If the file system is aborted, this will always fail. */
354aa0fb 1763 trans = btrfs_attach_transaction(root);
914b2007 1764 if (IS_ERR(trans)) {
354aa0fb
MX
1765 if (PTR_ERR(trans) != -ENOENT)
1766 cannot_commit = true;
79787eaa 1767 goto sleep;
914b2007 1768 }
8929ecfa 1769 if (transid == trans->transid) {
3a45bb20 1770 btrfs_commit_transaction(trans);
8929ecfa 1771 } else {
3a45bb20 1772 btrfs_end_transaction(trans);
8929ecfa 1773 }
a74a4b97 1774sleep:
0b246afa
JM
1775 wake_up_process(fs_info->cleaner_kthread);
1776 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1777
4e121c06 1778 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1779 &fs_info->fs_state)))
2ff7e61e 1780 btrfs_cleanup_transaction(fs_info);
ce63f891 1781 if (!kthread_should_stop() &&
0b246afa 1782 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1783 cannot_commit))
bc5511d0 1784 schedule_timeout_interruptible(delay);
a74a4b97
CM
1785 } while (!kthread_should_stop());
1786 return 0;
1787}
1788
af31f5e5
CM
1789/*
1790 * this will find the highest generation in the array of
1791 * root backups. The index of the highest array is returned,
1792 * or -1 if we can't find anything.
1793 *
1794 * We check to make sure the array is valid by comparing the
1795 * generation of the latest root in the array with the generation
1796 * in the super block. If they don't match we pitch it.
1797 */
1798static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1799{
1800 u64 cur;
1801 int newest_index = -1;
1802 struct btrfs_root_backup *root_backup;
1803 int i;
1804
1805 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1806 root_backup = info->super_copy->super_roots + i;
1807 cur = btrfs_backup_tree_root_gen(root_backup);
1808 if (cur == newest_gen)
1809 newest_index = i;
1810 }
1811
1812 /* check to see if we actually wrapped around */
1813 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1814 root_backup = info->super_copy->super_roots;
1815 cur = btrfs_backup_tree_root_gen(root_backup);
1816 if (cur == newest_gen)
1817 newest_index = 0;
1818 }
1819 return newest_index;
1820}
1821
1822
1823/*
1824 * find the oldest backup so we know where to store new entries
1825 * in the backup array. This will set the backup_root_index
1826 * field in the fs_info struct
1827 */
1828static void find_oldest_super_backup(struct btrfs_fs_info *info,
1829 u64 newest_gen)
1830{
1831 int newest_index = -1;
1832
1833 newest_index = find_newest_super_backup(info, newest_gen);
1834 /* if there was garbage in there, just move along */
1835 if (newest_index == -1) {
1836 info->backup_root_index = 0;
1837 } else {
1838 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1839 }
1840}
1841
1842/*
1843 * copy all the root pointers into the super backup array.
1844 * this will bump the backup pointer by one when it is
1845 * done
1846 */
1847static void backup_super_roots(struct btrfs_fs_info *info)
1848{
1849 int next_backup;
1850 struct btrfs_root_backup *root_backup;
1851 int last_backup;
1852
1853 next_backup = info->backup_root_index;
1854 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1855 BTRFS_NUM_BACKUP_ROOTS;
1856
1857 /*
1858 * just overwrite the last backup if we're at the same generation
1859 * this happens only at umount
1860 */
1861 root_backup = info->super_for_commit->super_roots + last_backup;
1862 if (btrfs_backup_tree_root_gen(root_backup) ==
1863 btrfs_header_generation(info->tree_root->node))
1864 next_backup = last_backup;
1865
1866 root_backup = info->super_for_commit->super_roots + next_backup;
1867
1868 /*
1869 * make sure all of our padding and empty slots get zero filled
1870 * regardless of which ones we use today
1871 */
1872 memset(root_backup, 0, sizeof(*root_backup));
1873
1874 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1875
1876 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1877 btrfs_set_backup_tree_root_gen(root_backup,
1878 btrfs_header_generation(info->tree_root->node));
1879
1880 btrfs_set_backup_tree_root_level(root_backup,
1881 btrfs_header_level(info->tree_root->node));
1882
1883 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1884 btrfs_set_backup_chunk_root_gen(root_backup,
1885 btrfs_header_generation(info->chunk_root->node));
1886 btrfs_set_backup_chunk_root_level(root_backup,
1887 btrfs_header_level(info->chunk_root->node));
1888
1889 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1890 btrfs_set_backup_extent_root_gen(root_backup,
1891 btrfs_header_generation(info->extent_root->node));
1892 btrfs_set_backup_extent_root_level(root_backup,
1893 btrfs_header_level(info->extent_root->node));
1894
7c7e82a7
CM
1895 /*
1896 * we might commit during log recovery, which happens before we set
1897 * the fs_root. Make sure it is valid before we fill it in.
1898 */
1899 if (info->fs_root && info->fs_root->node) {
1900 btrfs_set_backup_fs_root(root_backup,
1901 info->fs_root->node->start);
1902 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1903 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1904 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1905 btrfs_header_level(info->fs_root->node));
7c7e82a7 1906 }
af31f5e5
CM
1907
1908 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1909 btrfs_set_backup_dev_root_gen(root_backup,
1910 btrfs_header_generation(info->dev_root->node));
1911 btrfs_set_backup_dev_root_level(root_backup,
1912 btrfs_header_level(info->dev_root->node));
1913
1914 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1915 btrfs_set_backup_csum_root_gen(root_backup,
1916 btrfs_header_generation(info->csum_root->node));
1917 btrfs_set_backup_csum_root_level(root_backup,
1918 btrfs_header_level(info->csum_root->node));
1919
1920 btrfs_set_backup_total_bytes(root_backup,
1921 btrfs_super_total_bytes(info->super_copy));
1922 btrfs_set_backup_bytes_used(root_backup,
1923 btrfs_super_bytes_used(info->super_copy));
1924 btrfs_set_backup_num_devices(root_backup,
1925 btrfs_super_num_devices(info->super_copy));
1926
1927 /*
1928 * if we don't copy this out to the super_copy, it won't get remembered
1929 * for the next commit
1930 */
1931 memcpy(&info->super_copy->super_roots,
1932 &info->super_for_commit->super_roots,
1933 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1934}
1935
1936/*
1937 * this copies info out of the root backup array and back into
1938 * the in-memory super block. It is meant to help iterate through
1939 * the array, so you send it the number of backups you've already
1940 * tried and the last backup index you used.
1941 *
1942 * this returns -1 when it has tried all the backups
1943 */
1944static noinline int next_root_backup(struct btrfs_fs_info *info,
1945 struct btrfs_super_block *super,
1946 int *num_backups_tried, int *backup_index)
1947{
1948 struct btrfs_root_backup *root_backup;
1949 int newest = *backup_index;
1950
1951 if (*num_backups_tried == 0) {
1952 u64 gen = btrfs_super_generation(super);
1953
1954 newest = find_newest_super_backup(info, gen);
1955 if (newest == -1)
1956 return -1;
1957
1958 *backup_index = newest;
1959 *num_backups_tried = 1;
1960 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1961 /* we've tried all the backups, all done */
1962 return -1;
1963 } else {
1964 /* jump to the next oldest backup */
1965 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1966 BTRFS_NUM_BACKUP_ROOTS;
1967 *backup_index = newest;
1968 *num_backups_tried += 1;
1969 }
1970 root_backup = super->super_roots + newest;
1971
1972 btrfs_set_super_generation(super,
1973 btrfs_backup_tree_root_gen(root_backup));
1974 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1975 btrfs_set_super_root_level(super,
1976 btrfs_backup_tree_root_level(root_backup));
1977 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1978
1979 /*
1980 * fixme: the total bytes and num_devices need to match or we should
1981 * need a fsck
1982 */
1983 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1984 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1985 return 0;
1986}
1987
7abadb64
LB
1988/* helper to cleanup workers */
1989static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1990{
dc6e3209 1991 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1992 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1993 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1994 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1995 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1996 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1997 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1998 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1999 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2000 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2001 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2002 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2003 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2004 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a9b9477d
FM
2005 /*
2006 * Now that all other work queues are destroyed, we can safely destroy
2007 * the queues used for metadata I/O, since tasks from those other work
2008 * queues can do metadata I/O operations.
2009 */
2010 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2011 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2012}
2013
2e9f5954
R
2014static void free_root_extent_buffers(struct btrfs_root *root)
2015{
2016 if (root) {
2017 free_extent_buffer(root->node);
2018 free_extent_buffer(root->commit_root);
2019 root->node = NULL;
2020 root->commit_root = NULL;
2021 }
2022}
2023
af31f5e5
CM
2024/* helper to cleanup tree roots */
2025static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2026{
2e9f5954 2027 free_root_extent_buffers(info->tree_root);
655b09fe 2028
2e9f5954
R
2029 free_root_extent_buffers(info->dev_root);
2030 free_root_extent_buffers(info->extent_root);
2031 free_root_extent_buffers(info->csum_root);
2032 free_root_extent_buffers(info->quota_root);
2033 free_root_extent_buffers(info->uuid_root);
2034 if (chunk_root)
2035 free_root_extent_buffers(info->chunk_root);
70f6d82e 2036 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2037}
2038
faa2dbf0 2039void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2040{
2041 int ret;
2042 struct btrfs_root *gang[8];
2043 int i;
2044
2045 while (!list_empty(&fs_info->dead_roots)) {
2046 gang[0] = list_entry(fs_info->dead_roots.next,
2047 struct btrfs_root, root_list);
2048 list_del(&gang[0]->root_list);
2049
27cdeb70 2050 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2051 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2052 } else {
2053 free_extent_buffer(gang[0]->node);
2054 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2055 btrfs_put_fs_root(gang[0]);
171f6537
JB
2056 }
2057 }
2058
2059 while (1) {
2060 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2061 (void **)gang, 0,
2062 ARRAY_SIZE(gang));
2063 if (!ret)
2064 break;
2065 for (i = 0; i < ret; i++)
cb517eab 2066 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2067 }
1a4319cc
LB
2068
2069 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2070 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2071 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2072 }
171f6537 2073}
af31f5e5 2074
638aa7ed
ES
2075static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2076{
2077 mutex_init(&fs_info->scrub_lock);
2078 atomic_set(&fs_info->scrubs_running, 0);
2079 atomic_set(&fs_info->scrub_pause_req, 0);
2080 atomic_set(&fs_info->scrubs_paused, 0);
2081 atomic_set(&fs_info->scrub_cancel_req, 0);
2082 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2083 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2084}
2085
779a65a4
ES
2086static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2087{
2088 spin_lock_init(&fs_info->balance_lock);
2089 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2090 atomic_set(&fs_info->balance_pause_req, 0);
2091 atomic_set(&fs_info->balance_cancel_req, 0);
2092 fs_info->balance_ctl = NULL;
2093 init_waitqueue_head(&fs_info->balance_wait_q);
2094}
2095
6bccf3ab 2096static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2097{
2ff7e61e
JM
2098 struct inode *inode = fs_info->btree_inode;
2099
2100 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2101 set_nlink(inode, 1);
f37938e0
ES
2102 /*
2103 * we set the i_size on the btree inode to the max possible int.
2104 * the real end of the address space is determined by all of
2105 * the devices in the system
2106 */
2ff7e61e
JM
2107 inode->i_size = OFFSET_MAX;
2108 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2109
2ff7e61e 2110 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2111 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2112 IO_TREE_INODE_IO, inode);
7b439738 2113 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2114 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2115
2ff7e61e 2116 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2117
2ff7e61e
JM
2118 BTRFS_I(inode)->root = fs_info->tree_root;
2119 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2120 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2121 btrfs_insert_inode_hash(inode);
f37938e0
ES
2122}
2123
ad618368
ES
2124static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2125{
ad618368 2126 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2127 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2128 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2129}
2130
f9e92e40
ES
2131static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2132{
2133 spin_lock_init(&fs_info->qgroup_lock);
2134 mutex_init(&fs_info->qgroup_ioctl_lock);
2135 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2136 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2137 fs_info->qgroup_seq = 1;
f9e92e40 2138 fs_info->qgroup_ulist = NULL;
d2c609b8 2139 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2140 mutex_init(&fs_info->qgroup_rescan_lock);
2141}
2142
2a458198
ES
2143static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2144 struct btrfs_fs_devices *fs_devices)
2145{
f7b885be 2146 u32 max_active = fs_info->thread_pool_size;
6f011058 2147 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2148
2149 fs_info->workers =
cb001095
JM
2150 btrfs_alloc_workqueue(fs_info, "worker",
2151 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2152
2153 fs_info->delalloc_workers =
cb001095
JM
2154 btrfs_alloc_workqueue(fs_info, "delalloc",
2155 flags, max_active, 2);
2a458198
ES
2156
2157 fs_info->flush_workers =
cb001095
JM
2158 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2159 flags, max_active, 0);
2a458198
ES
2160
2161 fs_info->caching_workers =
cb001095 2162 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2163
2a458198 2164 fs_info->fixup_workers =
cb001095 2165 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2166
2167 /*
2168 * endios are largely parallel and should have a very
2169 * low idle thresh
2170 */
2171 fs_info->endio_workers =
cb001095 2172 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2173 fs_info->endio_meta_workers =
cb001095
JM
2174 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2175 max_active, 4);
2a458198 2176 fs_info->endio_meta_write_workers =
cb001095
JM
2177 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2178 max_active, 2);
2a458198 2179 fs_info->endio_raid56_workers =
cb001095
JM
2180 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2181 max_active, 4);
2a458198 2182 fs_info->endio_repair_workers =
cb001095 2183 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2184 fs_info->rmw_workers =
cb001095 2185 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2186 fs_info->endio_write_workers =
cb001095
JM
2187 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2188 max_active, 2);
2a458198 2189 fs_info->endio_freespace_worker =
cb001095
JM
2190 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2191 max_active, 0);
2a458198 2192 fs_info->delayed_workers =
cb001095
JM
2193 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2194 max_active, 0);
2a458198 2195 fs_info->readahead_workers =
cb001095
JM
2196 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2197 max_active, 2);
2a458198 2198 fs_info->qgroup_rescan_workers =
cb001095 2199 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198
ES
2200
2201 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2202 fs_info->flush_workers &&
2a458198
ES
2203 fs_info->endio_workers && fs_info->endio_meta_workers &&
2204 fs_info->endio_meta_write_workers &&
2205 fs_info->endio_repair_workers &&
2206 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2207 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2208 fs_info->caching_workers && fs_info->readahead_workers &&
2209 fs_info->fixup_workers && fs_info->delayed_workers &&
2a458198
ES
2210 fs_info->qgroup_rescan_workers)) {
2211 return -ENOMEM;
2212 }
2213
2214 return 0;
2215}
2216
6d97c6e3
JT
2217static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2218{
2219 struct crypto_shash *csum_shash;
2220 const char *csum_name = btrfs_super_csum_name(csum_type);
2221
2222 csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2223
2224 if (IS_ERR(csum_shash)) {
2225 btrfs_err(fs_info, "error allocating %s hash for checksum",
2226 csum_name);
2227 return PTR_ERR(csum_shash);
2228 }
2229
2230 fs_info->csum_shash = csum_shash;
2231
2232 return 0;
2233}
2234
2235static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2236{
2237 crypto_free_shash(fs_info->csum_shash);
2238}
2239
63443bf5
ES
2240static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2241 struct btrfs_fs_devices *fs_devices)
2242{
2243 int ret;
63443bf5
ES
2244 struct btrfs_root *log_tree_root;
2245 struct btrfs_super_block *disk_super = fs_info->super_copy;
2246 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2247 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2248
2249 if (fs_devices->rw_devices == 0) {
f14d104d 2250 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2251 return -EIO;
2252 }
2253
74e4d827 2254 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2255 if (!log_tree_root)
2256 return -ENOMEM;
2257
da17066c 2258 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2259
2ff7e61e 2260 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2261 fs_info->generation + 1,
2262 level, NULL);
64c043de 2263 if (IS_ERR(log_tree_root->node)) {
f14d104d 2264 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2265 ret = PTR_ERR(log_tree_root->node);
64c043de 2266 kfree(log_tree_root);
0eeff236 2267 return ret;
64c043de 2268 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2269 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2270 free_extent_buffer(log_tree_root->node);
2271 kfree(log_tree_root);
2272 return -EIO;
2273 }
2274 /* returns with log_tree_root freed on success */
2275 ret = btrfs_recover_log_trees(log_tree_root);
2276 if (ret) {
0b246afa
JM
2277 btrfs_handle_fs_error(fs_info, ret,
2278 "Failed to recover log tree");
63443bf5
ES
2279 free_extent_buffer(log_tree_root->node);
2280 kfree(log_tree_root);
2281 return ret;
2282 }
2283
bc98a42c 2284 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2285 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2286 if (ret)
2287 return ret;
2288 }
2289
2290 return 0;
2291}
2292
6bccf3ab 2293static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2294{
6bccf3ab 2295 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2296 struct btrfs_root *root;
4bbcaa64
ES
2297 struct btrfs_key location;
2298 int ret;
2299
6bccf3ab
JM
2300 BUG_ON(!fs_info->tree_root);
2301
4bbcaa64
ES
2302 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2303 location.type = BTRFS_ROOT_ITEM_KEY;
2304 location.offset = 0;
2305
a4f3d2c4 2306 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2307 if (IS_ERR(root)) {
2308 ret = PTR_ERR(root);
2309 goto out;
2310 }
a4f3d2c4
DS
2311 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2312 fs_info->extent_root = root;
4bbcaa64
ES
2313
2314 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2315 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2316 if (IS_ERR(root)) {
2317 ret = PTR_ERR(root);
2318 goto out;
2319 }
a4f3d2c4
DS
2320 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2321 fs_info->dev_root = root;
4bbcaa64
ES
2322 btrfs_init_devices_late(fs_info);
2323
2324 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2325 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2326 if (IS_ERR(root)) {
2327 ret = PTR_ERR(root);
2328 goto out;
2329 }
a4f3d2c4
DS
2330 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2331 fs_info->csum_root = root;
4bbcaa64
ES
2332
2333 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2334 root = btrfs_read_tree_root(tree_root, &location);
2335 if (!IS_ERR(root)) {
2336 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2337 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2338 fs_info->quota_root = root;
4bbcaa64
ES
2339 }
2340
2341 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2342 root = btrfs_read_tree_root(tree_root, &location);
2343 if (IS_ERR(root)) {
2344 ret = PTR_ERR(root);
4bbcaa64 2345 if (ret != -ENOENT)
f50f4353 2346 goto out;
4bbcaa64 2347 } else {
a4f3d2c4
DS
2348 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2349 fs_info->uuid_root = root;
4bbcaa64
ES
2350 }
2351
70f6d82e
OS
2352 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2353 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2354 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2355 if (IS_ERR(root)) {
2356 ret = PTR_ERR(root);
2357 goto out;
2358 }
70f6d82e
OS
2359 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2360 fs_info->free_space_root = root;
2361 }
2362
4bbcaa64 2363 return 0;
f50f4353
LB
2364out:
2365 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2366 location.objectid, ret);
2367 return ret;
4bbcaa64
ES
2368}
2369
069ec957
QW
2370/*
2371 * Real super block validation
2372 * NOTE: super csum type and incompat features will not be checked here.
2373 *
2374 * @sb: super block to check
2375 * @mirror_num: the super block number to check its bytenr:
2376 * 0 the primary (1st) sb
2377 * 1, 2 2nd and 3rd backup copy
2378 * -1 skip bytenr check
2379 */
2380static int validate_super(struct btrfs_fs_info *fs_info,
2381 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2382{
21a852b0
QW
2383 u64 nodesize = btrfs_super_nodesize(sb);
2384 u64 sectorsize = btrfs_super_sectorsize(sb);
2385 int ret = 0;
2386
2387 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2388 btrfs_err(fs_info, "no valid FS found");
2389 ret = -EINVAL;
2390 }
2391 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2392 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2393 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2394 ret = -EINVAL;
2395 }
2396 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2397 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2398 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2399 ret = -EINVAL;
2400 }
2401 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2402 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2403 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2404 ret = -EINVAL;
2405 }
2406 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2407 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2408 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2409 ret = -EINVAL;
2410 }
2411
2412 /*
2413 * Check sectorsize and nodesize first, other check will need it.
2414 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2415 */
2416 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2417 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2418 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2419 ret = -EINVAL;
2420 }
2421 /* Only PAGE SIZE is supported yet */
2422 if (sectorsize != PAGE_SIZE) {
2423 btrfs_err(fs_info,
2424 "sectorsize %llu not supported yet, only support %lu",
2425 sectorsize, PAGE_SIZE);
2426 ret = -EINVAL;
2427 }
2428 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2429 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2430 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2431 ret = -EINVAL;
2432 }
2433 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2434 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2435 le32_to_cpu(sb->__unused_leafsize), nodesize);
2436 ret = -EINVAL;
2437 }
2438
2439 /* Root alignment check */
2440 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2441 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2442 btrfs_super_root(sb));
2443 ret = -EINVAL;
2444 }
2445 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2446 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2447 btrfs_super_chunk_root(sb));
2448 ret = -EINVAL;
2449 }
2450 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2451 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2452 btrfs_super_log_root(sb));
2453 ret = -EINVAL;
2454 }
2455
de37aa51 2456 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2457 BTRFS_FSID_SIZE) != 0) {
21a852b0 2458 btrfs_err(fs_info,
7239ff4b 2459 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2460 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2461 ret = -EINVAL;
2462 }
2463
2464 /*
2465 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2466 * done later
2467 */
2468 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2469 btrfs_err(fs_info, "bytes_used is too small %llu",
2470 btrfs_super_bytes_used(sb));
2471 ret = -EINVAL;
2472 }
2473 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2474 btrfs_err(fs_info, "invalid stripesize %u",
2475 btrfs_super_stripesize(sb));
2476 ret = -EINVAL;
2477 }
2478 if (btrfs_super_num_devices(sb) > (1UL << 31))
2479 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2480 btrfs_super_num_devices(sb));
2481 if (btrfs_super_num_devices(sb) == 0) {
2482 btrfs_err(fs_info, "number of devices is 0");
2483 ret = -EINVAL;
2484 }
2485
069ec957
QW
2486 if (mirror_num >= 0 &&
2487 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2488 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2489 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2490 ret = -EINVAL;
2491 }
2492
2493 /*
2494 * Obvious sys_chunk_array corruptions, it must hold at least one key
2495 * and one chunk
2496 */
2497 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2498 btrfs_err(fs_info, "system chunk array too big %u > %u",
2499 btrfs_super_sys_array_size(sb),
2500 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2501 ret = -EINVAL;
2502 }
2503 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2504 + sizeof(struct btrfs_chunk)) {
2505 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2506 btrfs_super_sys_array_size(sb),
2507 sizeof(struct btrfs_disk_key)
2508 + sizeof(struct btrfs_chunk));
2509 ret = -EINVAL;
2510 }
2511
2512 /*
2513 * The generation is a global counter, we'll trust it more than the others
2514 * but it's still possible that it's the one that's wrong.
2515 */
2516 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2517 btrfs_warn(fs_info,
2518 "suspicious: generation < chunk_root_generation: %llu < %llu",
2519 btrfs_super_generation(sb),
2520 btrfs_super_chunk_root_generation(sb));
2521 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2522 && btrfs_super_cache_generation(sb) != (u64)-1)
2523 btrfs_warn(fs_info,
2524 "suspicious: generation < cache_generation: %llu < %llu",
2525 btrfs_super_generation(sb),
2526 btrfs_super_cache_generation(sb));
2527
2528 return ret;
2529}
2530
069ec957
QW
2531/*
2532 * Validation of super block at mount time.
2533 * Some checks already done early at mount time, like csum type and incompat
2534 * flags will be skipped.
2535 */
2536static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2537{
2538 return validate_super(fs_info, fs_info->super_copy, 0);
2539}
2540
75cb857d
QW
2541/*
2542 * Validation of super block at write time.
2543 * Some checks like bytenr check will be skipped as their values will be
2544 * overwritten soon.
2545 * Extra checks like csum type and incompat flags will be done here.
2546 */
2547static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2548 struct btrfs_super_block *sb)
2549{
2550 int ret;
2551
2552 ret = validate_super(fs_info, sb, -1);
2553 if (ret < 0)
2554 goto out;
e7e16f48 2555 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2556 ret = -EUCLEAN;
2557 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2558 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2559 goto out;
2560 }
2561 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2562 ret = -EUCLEAN;
2563 btrfs_err(fs_info,
2564 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2565 btrfs_super_incompat_flags(sb),
2566 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2567 goto out;
2568 }
2569out:
2570 if (ret < 0)
2571 btrfs_err(fs_info,
2572 "super block corruption detected before writing it to disk");
2573 return ret;
2574}
2575
b105e927 2576int __cold open_ctree(struct super_block *sb,
ad2b2c80
AV
2577 struct btrfs_fs_devices *fs_devices,
2578 char *options)
2e635a27 2579{
db94535d
CM
2580 u32 sectorsize;
2581 u32 nodesize;
87ee04eb 2582 u32 stripesize;
84234f3a 2583 u64 generation;
f2b636e8 2584 u64 features;
51bce6c9 2585 u16 csum_type;
3de4586c 2586 struct btrfs_key location;
a061fc8d 2587 struct buffer_head *bh;
4d34b278 2588 struct btrfs_super_block *disk_super;
815745cf 2589 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2590 struct btrfs_root *tree_root;
4d34b278 2591 struct btrfs_root *chunk_root;
eb60ceac 2592 int ret;
e58ca020 2593 int err = -EINVAL;
af31f5e5
CM
2594 int num_backups_tried = 0;
2595 int backup_index = 0;
6675df31 2596 int clear_free_space_tree = 0;
581c1760 2597 int level;
4543df7e 2598
74e4d827
DS
2599 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2600 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2601 if (!tree_root || !chunk_root) {
39279cc3
CM
2602 err = -ENOMEM;
2603 goto fail;
2604 }
76dda93c
YZ
2605
2606 ret = init_srcu_struct(&fs_info->subvol_srcu);
2607 if (ret) {
2608 err = ret;
2609 goto fail;
2610 }
2611
4297ff84 2612 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2613 if (ret) {
2614 err = ret;
9e11ceee 2615 goto fail_srcu;
e2d84521 2616 }
4297ff84
JB
2617
2618 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2619 if (ret) {
2620 err = ret;
2621 goto fail_dio_bytes;
2622 }
09cbfeaf 2623 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2624 (1 + ilog2(nr_cpu_ids));
2625
908c7f19 2626 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2627 if (ret) {
2628 err = ret;
2629 goto fail_dirty_metadata_bytes;
2630 }
2631
7f8d236a
DS
2632 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2633 GFP_KERNEL);
c404e0dc
MX
2634 if (ret) {
2635 err = ret;
2636 goto fail_delalloc_bytes;
2637 }
2638
76dda93c 2639 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2640 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2641 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2642 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2643 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2644 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2645 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2646 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2647 spin_lock_init(&fs_info->trans_lock);
76dda93c 2648 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2649 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2650 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2651 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2652 spin_lock_init(&fs_info->super_lock);
f28491e0 2653 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2654 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2655 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2656 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2657 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2658 mutex_init(&fs_info->reloc_mutex);
573bfb72 2659 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2660 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2661
0b86a832 2662 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2663 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2664 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2665 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2666 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2667 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2668 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2669 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2670 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2671 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2672 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2673 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2674 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2675 BTRFS_BLOCK_RSV_DELREFS);
2676
771ed689 2677 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2678 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2679 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2680 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2681 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2682 fs_info->sb = sb;
95ac567a 2683 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2684 fs_info->metadata_ratio = 0;
4cb5300b 2685 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2686 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2687 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2688 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2689 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2690 /* readahead state */
d0164adc 2691 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2692 spin_lock_init(&fs_info->reada_lock);
fd708b81 2693 btrfs_init_ref_verify(fs_info);
c8b97818 2694
b34b086c
CM
2695 fs_info->thread_pool_size = min_t(unsigned long,
2696 num_online_cpus() + 2, 8);
0afbaf8c 2697
199c2a9c
MX
2698 INIT_LIST_HEAD(&fs_info->ordered_roots);
2699 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2700
2701 fs_info->btree_inode = new_inode(sb);
2702 if (!fs_info->btree_inode) {
2703 err = -ENOMEM;
2704 goto fail_bio_counter;
2705 }
2706 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2707
16cdcec7 2708 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2709 GFP_KERNEL);
16cdcec7
MX
2710 if (!fs_info->delayed_root) {
2711 err = -ENOMEM;
2712 goto fail_iput;
2713 }
2714 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2715
638aa7ed 2716 btrfs_init_scrub(fs_info);
21adbd5c
SB
2717#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2718 fs_info->check_integrity_print_mask = 0;
2719#endif
779a65a4 2720 btrfs_init_balance(fs_info);
21c7e756 2721 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2722
9f6d2510
DS
2723 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2724 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2725
6bccf3ab 2726 btrfs_init_btree_inode(fs_info);
76dda93c 2727
0f9dd46c 2728 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2729 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2730 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2731
43eb5f29
QW
2732 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2733 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2734 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2735 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2736 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2737 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2738
5a3f23d5 2739 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2740 mutex_init(&fs_info->tree_log_mutex);
925baedd 2741 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2742 mutex_init(&fs_info->transaction_kthread_mutex);
2743 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2744 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2745 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2746 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2747 init_rwsem(&fs_info->subvol_sem);
803b2f54 2748 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2749
ad618368 2750 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2751 btrfs_init_qgroup(fs_info);
416ac51d 2752
fa9c0d79
CM
2753 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2754 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2755
e6dcd2dc 2756 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2757 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2758 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2759 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2760 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2761
da17066c
JM
2762 /* Usable values until the real ones are cached from the superblock */
2763 fs_info->nodesize = 4096;
2764 fs_info->sectorsize = 4096;
2765 fs_info->stripesize = 4096;
2766
eede2bf3
OS
2767 spin_lock_init(&fs_info->swapfile_pins_lock);
2768 fs_info->swapfile_pins = RB_ROOT;
2769
9e967495
FM
2770 fs_info->send_in_progress = 0;
2771
53b381b3
DW
2772 ret = btrfs_alloc_stripe_hash_table(fs_info);
2773 if (ret) {
83c8266a 2774 err = ret;
53b381b3
DW
2775 goto fail_alloc;
2776 }
2777
da17066c 2778 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2779
3c4bb26b 2780 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2781
2782 /*
2783 * Read super block and check the signature bytes only
2784 */
a512bbf8 2785 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2786 if (IS_ERR(bh)) {
2787 err = PTR_ERR(bh);
16cdcec7 2788 goto fail_alloc;
20b45077 2789 }
39279cc3 2790
8dc3f22c
JT
2791 /*
2792 * Verify the type first, if that or the the checksum value are
2793 * corrupted, we'll find out
2794 */
51bce6c9
JT
2795 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2796 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2797 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2798 csum_type);
8dc3f22c
JT
2799 err = -EINVAL;
2800 brelse(bh);
2801 goto fail_alloc;
2802 }
2803
6d97c6e3
JT
2804 ret = btrfs_init_csum_hash(fs_info, csum_type);
2805 if (ret) {
2806 err = ret;
2807 goto fail_alloc;
2808 }
2809
1104a885
DS
2810 /*
2811 * We want to check superblock checksum, the type is stored inside.
2812 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2813 */
ab8d0fc4 2814 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2815 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2816 err = -EINVAL;
b2acdddf 2817 brelse(bh);
6d97c6e3 2818 goto fail_csum;
1104a885
DS
2819 }
2820
2821 /*
2822 * super_copy is zeroed at allocation time and we never touch the
2823 * following bytes up to INFO_SIZE, the checksum is calculated from
2824 * the whole block of INFO_SIZE
2825 */
6c41761f 2826 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2827 brelse(bh);
5f39d397 2828
fbc6feae
NB
2829 disk_super = fs_info->super_copy;
2830
de37aa51
NB
2831 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2832 BTRFS_FSID_SIZE));
2833
7239ff4b 2834 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2835 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2836 fs_info->super_copy->metadata_uuid,
2837 BTRFS_FSID_SIZE));
7239ff4b 2838 }
0b86a832 2839
fbc6feae
NB
2840 features = btrfs_super_flags(disk_super);
2841 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2842 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2843 btrfs_set_super_flags(disk_super, features);
2844 btrfs_info(fs_info,
2845 "found metadata UUID change in progress flag, clearing");
2846 }
2847
2848 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2849 sizeof(*fs_info->super_for_commit));
de37aa51 2850
069ec957 2851 ret = btrfs_validate_mount_super(fs_info);
1104a885 2852 if (ret) {
05135f59 2853 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2854 err = -EINVAL;
6d97c6e3 2855 goto fail_csum;
1104a885
DS
2856 }
2857
0f7d52f4 2858 if (!btrfs_super_root(disk_super))
6d97c6e3 2859 goto fail_csum;
0f7d52f4 2860
acce952b 2861 /* check FS state, whether FS is broken. */
87533c47
MX
2862 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2863 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2864
af31f5e5
CM
2865 /*
2866 * run through our array of backup supers and setup
2867 * our ring pointer to the oldest one
2868 */
2869 generation = btrfs_super_generation(disk_super);
2870 find_oldest_super_backup(fs_info, generation);
2871
75e7cb7f
LB
2872 /*
2873 * In the long term, we'll store the compression type in the super
2874 * block, and it'll be used for per file compression control.
2875 */
2876 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2877
2ff7e61e 2878 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2879 if (ret) {
2880 err = ret;
6d97c6e3 2881 goto fail_csum;
2b82032c 2882 }
dfe25020 2883
f2b636e8
JB
2884 features = btrfs_super_incompat_flags(disk_super) &
2885 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2886 if (features) {
05135f59
DS
2887 btrfs_err(fs_info,
2888 "cannot mount because of unsupported optional features (%llx)",
2889 features);
f2b636e8 2890 err = -EINVAL;
6d97c6e3 2891 goto fail_csum;
f2b636e8
JB
2892 }
2893
5d4f98a2 2894 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2895 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2896 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2897 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2898 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2899 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2900
3173a18f 2901 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2902 btrfs_info(fs_info, "has skinny extents");
3173a18f 2903
727011e0
CM
2904 /*
2905 * flag our filesystem as having big metadata blocks if
2906 * they are bigger than the page size
2907 */
09cbfeaf 2908 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2909 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2910 btrfs_info(fs_info,
2911 "flagging fs with big metadata feature");
727011e0
CM
2912 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2913 }
2914
bc3f116f 2915 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2916 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2917 stripesize = sectorsize;
707e8a07 2918 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2919 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2920
da17066c
JM
2921 /* Cache block sizes */
2922 fs_info->nodesize = nodesize;
2923 fs_info->sectorsize = sectorsize;
2924 fs_info->stripesize = stripesize;
2925
bc3f116f
CM
2926 /*
2927 * mixed block groups end up with duplicate but slightly offset
2928 * extent buffers for the same range. It leads to corruptions
2929 */
2930 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2931 (sectorsize != nodesize)) {
05135f59
DS
2932 btrfs_err(fs_info,
2933"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2934 nodesize, sectorsize);
6d97c6e3 2935 goto fail_csum;
bc3f116f
CM
2936 }
2937
ceda0864
MX
2938 /*
2939 * Needn't use the lock because there is no other task which will
2940 * update the flag.
2941 */
a6fa6fae 2942 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2943
f2b636e8
JB
2944 features = btrfs_super_compat_ro_flags(disk_super) &
2945 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2946 if (!sb_rdonly(sb) && features) {
05135f59
DS
2947 btrfs_err(fs_info,
2948 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2949 features);
f2b636e8 2950 err = -EINVAL;
6d97c6e3 2951 goto fail_csum;
f2b636e8 2952 }
61d92c32 2953
2a458198
ES
2954 ret = btrfs_init_workqueues(fs_info, fs_devices);
2955 if (ret) {
2956 err = ret;
0dc3b84a
JB
2957 goto fail_sb_buffer;
2958 }
4543df7e 2959
9e11ceee
JK
2960 sb->s_bdi->congested_fn = btrfs_congested_fn;
2961 sb->s_bdi->congested_data = fs_info;
2962 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 2963 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
2964 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2965 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2966
a061fc8d
CM
2967 sb->s_blocksize = sectorsize;
2968 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2969 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2970
925baedd 2971 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2972 ret = btrfs_read_sys_array(fs_info);
925baedd 2973 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2974 if (ret) {
05135f59 2975 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2976 goto fail_sb_buffer;
84eed90f 2977 }
0b86a832 2978
84234f3a 2979 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2980 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2981
da17066c 2982 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2983
2ff7e61e 2984 chunk_root->node = read_tree_block(fs_info,
0b86a832 2985 btrfs_super_chunk_root(disk_super),
581c1760 2986 generation, level, NULL);
64c043de
LB
2987 if (IS_ERR(chunk_root->node) ||
2988 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2989 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2990 if (!IS_ERR(chunk_root->node))
2991 free_extent_buffer(chunk_root->node);
95ab1f64 2992 chunk_root->node = NULL;
af31f5e5 2993 goto fail_tree_roots;
83121942 2994 }
5d4f98a2
YZ
2995 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2996 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2997
e17cade2 2998 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2999 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3000
5b4aacef 3001 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3002 if (ret) {
05135f59 3003 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3004 goto fail_tree_roots;
2b82032c 3005 }
0b86a832 3006
8dabb742 3007 /*
9b99b115
AJ
3008 * Keep the devid that is marked to be the target device for the
3009 * device replace procedure
8dabb742 3010 */
9b99b115 3011 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3012
a6b0d5c8 3013 if (!fs_devices->latest_bdev) {
05135f59 3014 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3015 goto fail_tree_roots;
3016 }
3017
af31f5e5 3018retry_root_backup:
84234f3a 3019 generation = btrfs_super_generation(disk_super);
581c1760 3020 level = btrfs_super_root_level(disk_super);
0b86a832 3021
2ff7e61e 3022 tree_root->node = read_tree_block(fs_info,
db94535d 3023 btrfs_super_root(disk_super),
581c1760 3024 generation, level, NULL);
64c043de
LB
3025 if (IS_ERR(tree_root->node) ||
3026 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3027 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3028 if (!IS_ERR(tree_root->node))
3029 free_extent_buffer(tree_root->node);
95ab1f64 3030 tree_root->node = NULL;
af31f5e5 3031 goto recovery_tree_root;
83121942 3032 }
af31f5e5 3033
5d4f98a2
YZ
3034 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3035 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3036 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3037
f32e48e9
CR
3038 mutex_lock(&tree_root->objectid_mutex);
3039 ret = btrfs_find_highest_objectid(tree_root,
3040 &tree_root->highest_objectid);
3041 if (ret) {
3042 mutex_unlock(&tree_root->objectid_mutex);
3043 goto recovery_tree_root;
3044 }
3045
3046 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3047
3048 mutex_unlock(&tree_root->objectid_mutex);
3049
6bccf3ab 3050 ret = btrfs_read_roots(fs_info);
4bbcaa64 3051 if (ret)
af31f5e5 3052 goto recovery_tree_root;
f7a81ea4 3053
8929ecfa
YZ
3054 fs_info->generation = generation;
3055 fs_info->last_trans_committed = generation;
8929ecfa 3056
cf90d884
QW
3057 ret = btrfs_verify_dev_extents(fs_info);
3058 if (ret) {
3059 btrfs_err(fs_info,
3060 "failed to verify dev extents against chunks: %d",
3061 ret);
3062 goto fail_block_groups;
3063 }
68310a5e
ID
3064 ret = btrfs_recover_balance(fs_info);
3065 if (ret) {
05135f59 3066 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3067 goto fail_block_groups;
3068 }
3069
733f4fbb
SB
3070 ret = btrfs_init_dev_stats(fs_info);
3071 if (ret) {
05135f59 3072 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3073 goto fail_block_groups;
3074 }
3075
8dabb742
SB
3076 ret = btrfs_init_dev_replace(fs_info);
3077 if (ret) {
05135f59 3078 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3079 goto fail_block_groups;
3080 }
3081
9b99b115 3082 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3083
b7c35e81
AJ
3084 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3085 if (ret) {
05135f59
DS
3086 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3087 ret);
b7c35e81
AJ
3088 goto fail_block_groups;
3089 }
3090
3091 ret = btrfs_sysfs_add_device(fs_devices);
3092 if (ret) {
05135f59
DS
3093 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3094 ret);
b7c35e81
AJ
3095 goto fail_fsdev_sysfs;
3096 }
3097
96f3136e 3098 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3099 if (ret) {
05135f59 3100 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3101 goto fail_fsdev_sysfs;
c59021f8 3102 }
3103
c59021f8 3104 ret = btrfs_init_space_info(fs_info);
3105 if (ret) {
05135f59 3106 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3107 goto fail_sysfs;
c59021f8 3108 }
3109
5b4aacef 3110 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3111 if (ret) {
05135f59 3112 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3113 goto fail_sysfs;
1b1d1f66 3114 }
4330e183 3115
6528b99d 3116 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3117 btrfs_warn(fs_info,
52042d8e 3118 "writable mount is not allowed due to too many missing devices");
2365dd3c 3119 goto fail_sysfs;
292fd7fc 3120 }
9078a3e1 3121
a74a4b97
CM
3122 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3123 "btrfs-cleaner");
57506d50 3124 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3125 goto fail_sysfs;
a74a4b97
CM
3126
3127 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3128 tree_root,
3129 "btrfs-transaction");
57506d50 3130 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3131 goto fail_cleaner;
a74a4b97 3132
583b7231 3133 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3134 !fs_info->fs_devices->rotating) {
583b7231 3135 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3136 }
3137
572d9ab7 3138 /*
01327610 3139 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3140 * not have to wait for transaction commit
3141 */
3142 btrfs_apply_pending_changes(fs_info);
3818aea2 3143
21adbd5c 3144#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3145 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3146 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3147 btrfs_test_opt(fs_info,
21adbd5c
SB
3148 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3149 1 : 0,
3150 fs_info->check_integrity_print_mask);
3151 if (ret)
05135f59
DS
3152 btrfs_warn(fs_info,
3153 "failed to initialize integrity check module: %d",
3154 ret);
21adbd5c
SB
3155 }
3156#endif
bcef60f2
AJ
3157 ret = btrfs_read_qgroup_config(fs_info);
3158 if (ret)
3159 goto fail_trans_kthread;
21adbd5c 3160
fd708b81
JB
3161 if (btrfs_build_ref_tree(fs_info))
3162 btrfs_err(fs_info, "couldn't build ref tree");
3163
96da0919
QW
3164 /* do not make disk changes in broken FS or nologreplay is given */
3165 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3166 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3167 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3168 if (ret) {
63443bf5 3169 err = ret;
28c16cbb 3170 goto fail_qgroup;
79787eaa 3171 }
e02119d5 3172 }
1a40e23b 3173
6bccf3ab 3174 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3175 if (ret)
28c16cbb 3176 goto fail_qgroup;
76dda93c 3177
bc98a42c 3178 if (!sb_rdonly(sb)) {
d68fc57b 3179 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3180 if (ret)
28c16cbb 3181 goto fail_qgroup;
90c711ab
ZB
3182
3183 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3184 ret = btrfs_recover_relocation(tree_root);
90c711ab 3185 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3186 if (ret < 0) {
05135f59
DS
3187 btrfs_warn(fs_info, "failed to recover relocation: %d",
3188 ret);
d7ce5843 3189 err = -EINVAL;
bcef60f2 3190 goto fail_qgroup;
d7ce5843 3191 }
7c2ca468 3192 }
1a40e23b 3193
3de4586c
CM
3194 location.objectid = BTRFS_FS_TREE_OBJECTID;
3195 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3196 location.offset = 0;
3de4586c 3197
3de4586c 3198 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3199 if (IS_ERR(fs_info->fs_root)) {
3200 err = PTR_ERR(fs_info->fs_root);
f50f4353 3201 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3202 goto fail_qgroup;
3140c9a3 3203 }
c289811c 3204
bc98a42c 3205 if (sb_rdonly(sb))
2b6ba629 3206 return 0;
59641015 3207
f8d468a1
OS
3208 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3209 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3210 clear_free_space_tree = 1;
3211 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3212 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3213 btrfs_warn(fs_info, "free space tree is invalid");
3214 clear_free_space_tree = 1;
3215 }
3216
3217 if (clear_free_space_tree) {
f8d468a1
OS
3218 btrfs_info(fs_info, "clearing free space tree");
3219 ret = btrfs_clear_free_space_tree(fs_info);
3220 if (ret) {
3221 btrfs_warn(fs_info,
3222 "failed to clear free space tree: %d", ret);
6bccf3ab 3223 close_ctree(fs_info);
f8d468a1
OS
3224 return ret;
3225 }
3226 }
3227
0b246afa 3228 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3229 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3230 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3231 ret = btrfs_create_free_space_tree(fs_info);
3232 if (ret) {
05135f59
DS
3233 btrfs_warn(fs_info,
3234 "failed to create free space tree: %d", ret);
6bccf3ab 3235 close_ctree(fs_info);
511711af
CM
3236 return ret;
3237 }
3238 }
3239
2b6ba629
ID
3240 down_read(&fs_info->cleanup_work_sem);
3241 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3242 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3243 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3244 close_ctree(fs_info);
2b6ba629
ID
3245 return ret;
3246 }
3247 up_read(&fs_info->cleanup_work_sem);
59641015 3248
2b6ba629
ID
3249 ret = btrfs_resume_balance_async(fs_info);
3250 if (ret) {
05135f59 3251 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3252 close_ctree(fs_info);
2b6ba629 3253 return ret;
e3acc2a6
JB
3254 }
3255
8dabb742
SB
3256 ret = btrfs_resume_dev_replace_async(fs_info);
3257 if (ret) {
05135f59 3258 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3259 close_ctree(fs_info);
8dabb742
SB
3260 return ret;
3261 }
3262
b382a324
JS
3263 btrfs_qgroup_rescan_resume(fs_info);
3264
4bbcaa64 3265 if (!fs_info->uuid_root) {
05135f59 3266 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3267 ret = btrfs_create_uuid_tree(fs_info);
3268 if (ret) {
05135f59
DS
3269 btrfs_warn(fs_info,
3270 "failed to create the UUID tree: %d", ret);
6bccf3ab 3271 close_ctree(fs_info);
f7a81ea4
SB
3272 return ret;
3273 }
0b246afa 3274 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3275 fs_info->generation !=
3276 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3277 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3278 ret = btrfs_check_uuid_tree(fs_info);
3279 if (ret) {
05135f59
DS
3280 btrfs_warn(fs_info,
3281 "failed to check the UUID tree: %d", ret);
6bccf3ab 3282 close_ctree(fs_info);
70f80175
SB
3283 return ret;
3284 }
3285 } else {
afcdd129 3286 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3287 }
afcdd129 3288 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3289
8dcddfa0
QW
3290 /*
3291 * backuproot only affect mount behavior, and if open_ctree succeeded,
3292 * no need to keep the flag
3293 */
3294 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3295
ad2b2c80 3296 return 0;
39279cc3 3297
bcef60f2
AJ
3298fail_qgroup:
3299 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3300fail_trans_kthread:
3301 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3302 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3303 btrfs_free_fs_roots(fs_info);
3f157a2f 3304fail_cleaner:
a74a4b97 3305 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3306
3307 /*
3308 * make sure we're done with the btree inode before we stop our
3309 * kthreads
3310 */
3311 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3312
2365dd3c 3313fail_sysfs:
6618a59b 3314 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3315
b7c35e81
AJ
3316fail_fsdev_sysfs:
3317 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3318
1b1d1f66 3319fail_block_groups:
54067ae9 3320 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3321
3322fail_tree_roots:
3323 free_root_pointers(fs_info, 1);
2b8195bb 3324 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3325
39279cc3 3326fail_sb_buffer:
7abadb64 3327 btrfs_stop_all_workers(fs_info);
5cdd7db6 3328 btrfs_free_block_groups(fs_info);
6d97c6e3
JT
3329fail_csum:
3330 btrfs_free_csum_hash(fs_info);
16cdcec7 3331fail_alloc:
4543df7e 3332fail_iput:
586e46e2
ID
3333 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3334
4543df7e 3335 iput(fs_info->btree_inode);
c404e0dc 3336fail_bio_counter:
7f8d236a 3337 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3338fail_delalloc_bytes:
3339 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3340fail_dirty_metadata_bytes:
3341 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3342fail_dio_bytes:
3343 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3344fail_srcu:
3345 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3346fail:
53b381b3 3347 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3348 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3349 return err;
af31f5e5
CM
3350
3351recovery_tree_root:
0b246afa 3352 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3353 goto fail_tree_roots;
3354
3355 free_root_pointers(fs_info, 0);
3356
3357 /* don't use the log in recovery mode, it won't be valid */
3358 btrfs_set_super_log_root(disk_super, 0);
3359
3360 /* we can't trust the free space cache either */
3361 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3362
3363 ret = next_root_backup(fs_info, fs_info->super_copy,
3364 &num_backups_tried, &backup_index);
3365 if (ret == -1)
3366 goto fail_block_groups;
3367 goto retry_root_backup;
eb60ceac 3368}
663faf9f 3369ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3370
f2984462
CM
3371static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3372{
f2984462
CM
3373 if (uptodate) {
3374 set_buffer_uptodate(bh);
3375 } else {
442a4f63
SB
3376 struct btrfs_device *device = (struct btrfs_device *)
3377 bh->b_private;
3378
fb456252 3379 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3380 "lost page write due to IO error on %s",
606686ee 3381 rcu_str_deref(device->name));
01327610 3382 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3383 * our own ways of dealing with the IO errors
3384 */
f2984462 3385 clear_buffer_uptodate(bh);
442a4f63 3386 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3387 }
3388 unlock_buffer(bh);
3389 put_bh(bh);
3390}
3391
29c36d72
AJ
3392int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3393 struct buffer_head **bh_ret)
3394{
3395 struct buffer_head *bh;
3396 struct btrfs_super_block *super;
3397 u64 bytenr;
3398
3399 bytenr = btrfs_sb_offset(copy_num);
3400 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3401 return -EINVAL;
3402
9f6d2510 3403 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3404 /*
3405 * If we fail to read from the underlying devices, as of now
3406 * the best option we have is to mark it EIO.
3407 */
3408 if (!bh)
3409 return -EIO;
3410
3411 super = (struct btrfs_super_block *)bh->b_data;
3412 if (btrfs_super_bytenr(super) != bytenr ||
3413 btrfs_super_magic(super) != BTRFS_MAGIC) {
3414 brelse(bh);
3415 return -EINVAL;
3416 }
3417
3418 *bh_ret = bh;
3419 return 0;
3420}
3421
3422
a512bbf8
YZ
3423struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3424{
3425 struct buffer_head *bh;
3426 struct buffer_head *latest = NULL;
3427 struct btrfs_super_block *super;
3428 int i;
3429 u64 transid = 0;
92fc03fb 3430 int ret = -EINVAL;
a512bbf8
YZ
3431
3432 /* we would like to check all the supers, but that would make
3433 * a btrfs mount succeed after a mkfs from a different FS.
3434 * So, we need to add a special mount option to scan for
3435 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3436 */
3437 for (i = 0; i < 1; i++) {
29c36d72
AJ
3438 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3439 if (ret)
a512bbf8
YZ
3440 continue;
3441
3442 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3443
3444 if (!latest || btrfs_super_generation(super) > transid) {
3445 brelse(latest);
3446 latest = bh;
3447 transid = btrfs_super_generation(super);
3448 } else {
3449 brelse(bh);
3450 }
3451 }
92fc03fb
AJ
3452
3453 if (!latest)
3454 return ERR_PTR(ret);
3455
a512bbf8
YZ
3456 return latest;
3457}
3458
4eedeb75 3459/*
abbb3b8e
DS
3460 * Write superblock @sb to the @device. Do not wait for completion, all the
3461 * buffer heads we write are pinned.
4eedeb75 3462 *
abbb3b8e
DS
3463 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3464 * the expected device size at commit time. Note that max_mirrors must be
3465 * same for write and wait phases.
4eedeb75 3466 *
abbb3b8e 3467 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3468 */
a512bbf8 3469static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3470 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3471{
d5178578
JT
3472 struct btrfs_fs_info *fs_info = device->fs_info;
3473 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8
YZ
3474 struct buffer_head *bh;
3475 int i;
3476 int ret;
3477 int errors = 0;
a512bbf8 3478 u64 bytenr;
1b9e619c 3479 int op_flags;
a512bbf8
YZ
3480
3481 if (max_mirrors == 0)
3482 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3483
d5178578
JT
3484 shash->tfm = fs_info->csum_shash;
3485
a512bbf8
YZ
3486 for (i = 0; i < max_mirrors; i++) {
3487 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3488 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3489 device->commit_total_bytes)
a512bbf8
YZ
3490 break;
3491
abbb3b8e 3492 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3493
d5178578
JT
3494 crypto_shash_init(shash);
3495 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3496 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3497 crypto_shash_final(shash, sb->csum);
4eedeb75 3498
abbb3b8e 3499 /* One reference for us, and we leave it for the caller */
9f6d2510 3500 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3501 BTRFS_SUPER_INFO_SIZE);
3502 if (!bh) {
3503 btrfs_err(device->fs_info,
3504 "couldn't get super buffer head for bytenr %llu",
3505 bytenr);
3506 errors++;
4eedeb75 3507 continue;
abbb3b8e 3508 }
634554dc 3509
abbb3b8e 3510 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3511
abbb3b8e
DS
3512 /* one reference for submit_bh */
3513 get_bh(bh);
4eedeb75 3514
abbb3b8e
DS
3515 set_buffer_uptodate(bh);
3516 lock_buffer(bh);
3517 bh->b_end_io = btrfs_end_buffer_write_sync;
3518 bh->b_private = device;
a512bbf8 3519
387125fc
CM
3520 /*
3521 * we fua the first super. The others we allow
3522 * to go down lazy.
3523 */
1b9e619c
OS
3524 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3525 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3526 op_flags |= REQ_FUA;
3527 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3528 if (ret)
a512bbf8 3529 errors++;
a512bbf8
YZ
3530 }
3531 return errors < i ? 0 : -1;
3532}
3533
abbb3b8e
DS
3534/*
3535 * Wait for write completion of superblocks done by write_dev_supers,
3536 * @max_mirrors same for write and wait phases.
3537 *
3538 * Return number of errors when buffer head is not found or not marked up to
3539 * date.
3540 */
3541static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3542{
3543 struct buffer_head *bh;
3544 int i;
3545 int errors = 0;
b6a535fa 3546 bool primary_failed = false;
abbb3b8e
DS
3547 u64 bytenr;
3548
3549 if (max_mirrors == 0)
3550 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3551
3552 for (i = 0; i < max_mirrors; i++) {
3553 bytenr = btrfs_sb_offset(i);
3554 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3555 device->commit_total_bytes)
3556 break;
3557
9f6d2510
DS
3558 bh = __find_get_block(device->bdev,
3559 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3560 BTRFS_SUPER_INFO_SIZE);
3561 if (!bh) {
3562 errors++;
b6a535fa
HM
3563 if (i == 0)
3564 primary_failed = true;
abbb3b8e
DS
3565 continue;
3566 }
3567 wait_on_buffer(bh);
b6a535fa 3568 if (!buffer_uptodate(bh)) {
abbb3b8e 3569 errors++;
b6a535fa
HM
3570 if (i == 0)
3571 primary_failed = true;
3572 }
abbb3b8e
DS
3573
3574 /* drop our reference */
3575 brelse(bh);
3576
3577 /* drop the reference from the writing run */
3578 brelse(bh);
3579 }
3580
b6a535fa
HM
3581 /* log error, force error return */
3582 if (primary_failed) {
3583 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3584 device->devid);
3585 return -1;
3586 }
3587
abbb3b8e
DS
3588 return errors < i ? 0 : -1;
3589}
3590
387125fc
CM
3591/*
3592 * endio for the write_dev_flush, this will wake anyone waiting
3593 * for the barrier when it is done
3594 */
4246a0b6 3595static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3596{
e0ae9994 3597 complete(bio->bi_private);
387125fc
CM
3598}
3599
3600/*
4fc6441a
AJ
3601 * Submit a flush request to the device if it supports it. Error handling is
3602 * done in the waiting counterpart.
387125fc 3603 */
4fc6441a 3604static void write_dev_flush(struct btrfs_device *device)
387125fc 3605{
c2a9c7ab 3606 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3607 struct bio *bio = device->flush_bio;
387125fc 3608
c2a9c7ab 3609 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3610 return;
387125fc 3611
e0ae9994 3612 bio_reset(bio);
387125fc 3613 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3614 bio_set_dev(bio, device->bdev);
8d910125 3615 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3616 init_completion(&device->flush_wait);
3617 bio->bi_private = &device->flush_wait;
387125fc 3618
43a01111 3619 btrfsic_submit_bio(bio);
1c3063b6 3620 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3621}
387125fc 3622
4fc6441a
AJ
3623/*
3624 * If the flush bio has been submitted by write_dev_flush, wait for it.
3625 */
8c27cb35 3626static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3627{
4fc6441a 3628 struct bio *bio = device->flush_bio;
387125fc 3629
1c3063b6 3630 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3631 return BLK_STS_OK;
387125fc 3632
1c3063b6 3633 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3634 wait_for_completion_io(&device->flush_wait);
387125fc 3635
8c27cb35 3636 return bio->bi_status;
387125fc 3637}
387125fc 3638
d10b82fe 3639static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3640{
6528b99d 3641 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3642 return -EIO;
387125fc
CM
3643 return 0;
3644}
3645
3646/*
3647 * send an empty flush down to each device in parallel,
3648 * then wait for them
3649 */
3650static int barrier_all_devices(struct btrfs_fs_info *info)
3651{
3652 struct list_head *head;
3653 struct btrfs_device *dev;
5af3e8cc 3654 int errors_wait = 0;
4e4cbee9 3655 blk_status_t ret;
387125fc 3656
1538e6c5 3657 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3658 /* send down all the barriers */
3659 head = &info->fs_devices->devices;
1538e6c5 3660 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3661 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3662 continue;
cea7c8bf 3663 if (!dev->bdev)
387125fc 3664 continue;
e12c9621 3665 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3666 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3667 continue;
3668
4fc6441a 3669 write_dev_flush(dev);
58efbc9f 3670 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3671 }
3672
3673 /* wait for all the barriers */
1538e6c5 3674 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3675 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3676 continue;
387125fc 3677 if (!dev->bdev) {
5af3e8cc 3678 errors_wait++;
387125fc
CM
3679 continue;
3680 }
e12c9621 3681 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3682 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3683 continue;
3684
4fc6441a 3685 ret = wait_dev_flush(dev);
401b41e5
AJ
3686 if (ret) {
3687 dev->last_flush_error = ret;
66b4993e
DS
3688 btrfs_dev_stat_inc_and_print(dev,
3689 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3690 errors_wait++;
401b41e5
AJ
3691 }
3692 }
3693
cea7c8bf 3694 if (errors_wait) {
401b41e5
AJ
3695 /*
3696 * At some point we need the status of all disks
3697 * to arrive at the volume status. So error checking
3698 * is being pushed to a separate loop.
3699 */
d10b82fe 3700 return check_barrier_error(info);
387125fc 3701 }
387125fc
CM
3702 return 0;
3703}
3704
943c6e99
ZL
3705int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3706{
8789f4fe
ZL
3707 int raid_type;
3708 int min_tolerated = INT_MAX;
943c6e99 3709
8789f4fe
ZL
3710 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3711 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3712 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3713 btrfs_raid_array[BTRFS_RAID_SINGLE].
3714 tolerated_failures);
943c6e99 3715
8789f4fe
ZL
3716 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3717 if (raid_type == BTRFS_RAID_SINGLE)
3718 continue;
41a6e891 3719 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3720 continue;
8c3e3582 3721 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3722 btrfs_raid_array[raid_type].
3723 tolerated_failures);
3724 }
943c6e99 3725
8789f4fe 3726 if (min_tolerated == INT_MAX) {
ab8d0fc4 3727 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3728 min_tolerated = 0;
3729 }
3730
3731 return min_tolerated;
943c6e99
ZL
3732}
3733
eece6a9c 3734int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3735{
e5e9a520 3736 struct list_head *head;
f2984462 3737 struct btrfs_device *dev;
a061fc8d 3738 struct btrfs_super_block *sb;
f2984462 3739 struct btrfs_dev_item *dev_item;
f2984462
CM
3740 int ret;
3741 int do_barriers;
a236aed1
CM
3742 int max_errors;
3743 int total_errors = 0;
a061fc8d 3744 u64 flags;
f2984462 3745
0b246afa 3746 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3747
3748 /*
3749 * max_mirrors == 0 indicates we're from commit_transaction,
3750 * not from fsync where the tree roots in fs_info have not
3751 * been consistent on disk.
3752 */
3753 if (max_mirrors == 0)
3754 backup_super_roots(fs_info);
f2984462 3755
0b246afa 3756 sb = fs_info->super_for_commit;
a061fc8d 3757 dev_item = &sb->dev_item;
e5e9a520 3758
0b246afa
JM
3759 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3760 head = &fs_info->fs_devices->devices;
3761 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3762
5af3e8cc 3763 if (do_barriers) {
0b246afa 3764 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3765 if (ret) {
3766 mutex_unlock(
0b246afa
JM
3767 &fs_info->fs_devices->device_list_mutex);
3768 btrfs_handle_fs_error(fs_info, ret,
3769 "errors while submitting device barriers.");
5af3e8cc
SB
3770 return ret;
3771 }
3772 }
387125fc 3773
1538e6c5 3774 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3775 if (!dev->bdev) {
3776 total_errors++;
3777 continue;
3778 }
e12c9621 3779 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3780 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3781 continue;
3782
2b82032c 3783 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3784 btrfs_set_stack_device_type(dev_item, dev->type);
3785 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3786 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3787 dev->commit_total_bytes);
ce7213c7
MX
3788 btrfs_set_stack_device_bytes_used(dev_item,
3789 dev->commit_bytes_used);
a061fc8d
CM
3790 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3791 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3792 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3793 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3794 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3795 BTRFS_FSID_SIZE);
a512bbf8 3796
a061fc8d
CM
3797 flags = btrfs_super_flags(sb);
3798 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3799
75cb857d
QW
3800 ret = btrfs_validate_write_super(fs_info, sb);
3801 if (ret < 0) {
3802 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3803 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3804 "unexpected superblock corruption detected");
3805 return -EUCLEAN;
3806 }
3807
abbb3b8e 3808 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3809 if (ret)
3810 total_errors++;
f2984462 3811 }
a236aed1 3812 if (total_errors > max_errors) {
0b246afa
JM
3813 btrfs_err(fs_info, "%d errors while writing supers",
3814 total_errors);
3815 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3816
9d565ba4 3817 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3818 btrfs_handle_fs_error(fs_info, -EIO,
3819 "%d errors while writing supers",
3820 total_errors);
9d565ba4 3821 return -EIO;
a236aed1 3822 }
f2984462 3823
a512bbf8 3824 total_errors = 0;
1538e6c5 3825 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3826 if (!dev->bdev)
3827 continue;
e12c9621 3828 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3829 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3830 continue;
3831
abbb3b8e 3832 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3833 if (ret)
3834 total_errors++;
f2984462 3835 }
0b246afa 3836 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3837 if (total_errors > max_errors) {
0b246afa
JM
3838 btrfs_handle_fs_error(fs_info, -EIO,
3839 "%d errors while writing supers",
3840 total_errors);
79787eaa 3841 return -EIO;
a236aed1 3842 }
f2984462
CM
3843 return 0;
3844}
3845
cb517eab
MX
3846/* Drop a fs root from the radix tree and free it. */
3847void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3848 struct btrfs_root *root)
2619ba1f 3849{
4df27c4d 3850 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3851 radix_tree_delete(&fs_info->fs_roots_radix,
3852 (unsigned long)root->root_key.objectid);
4df27c4d 3853 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3854
3855 if (btrfs_root_refs(&root->root_item) == 0)
3856 synchronize_srcu(&fs_info->subvol_srcu);
3857
1c1ea4f7 3858 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3859 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3860 if (root->reloc_root) {
3861 free_extent_buffer(root->reloc_root->node);
3862 free_extent_buffer(root->reloc_root->commit_root);
3863 btrfs_put_fs_root(root->reloc_root);
3864 root->reloc_root = NULL;
3865 }
3866 }
3321719e 3867
faa2dbf0
JB
3868 if (root->free_ino_pinned)
3869 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3870 if (root->free_ino_ctl)
3871 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3872 btrfs_free_fs_root(root);
4df27c4d
YZ
3873}
3874
84db5ccf 3875void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3876{
57cdc8db 3877 iput(root->ino_cache_inode);
4df27c4d 3878 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3879 if (root->anon_dev)
3880 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3881 if (root->subv_writers)
3882 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3883 free_extent_buffer(root->node);
3884 free_extent_buffer(root->commit_root);
581bb050
LZ
3885 kfree(root->free_ino_ctl);
3886 kfree(root->free_ino_pinned);
b0feb9d9 3887 btrfs_put_fs_root(root);
2619ba1f
CM
3888}
3889
c146afad 3890int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3891{
c146afad
YZ
3892 u64 root_objectid = 0;
3893 struct btrfs_root *gang[8];
65d33fd7
QW
3894 int i = 0;
3895 int err = 0;
3896 unsigned int ret = 0;
3897 int index;
e089f05c 3898
c146afad 3899 while (1) {
65d33fd7 3900 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3901 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3902 (void **)gang, root_objectid,
3903 ARRAY_SIZE(gang));
65d33fd7
QW
3904 if (!ret) {
3905 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3906 break;
65d33fd7 3907 }
5d4f98a2 3908 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3909
c146afad 3910 for (i = 0; i < ret; i++) {
65d33fd7
QW
3911 /* Avoid to grab roots in dead_roots */
3912 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3913 gang[i] = NULL;
3914 continue;
3915 }
3916 /* grab all the search result for later use */
3917 gang[i] = btrfs_grab_fs_root(gang[i]);
3918 }
3919 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3920
65d33fd7
QW
3921 for (i = 0; i < ret; i++) {
3922 if (!gang[i])
3923 continue;
c146afad 3924 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3925 err = btrfs_orphan_cleanup(gang[i]);
3926 if (err)
65d33fd7
QW
3927 break;
3928 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3929 }
3930 root_objectid++;
3931 }
65d33fd7
QW
3932
3933 /* release the uncleaned roots due to error */
3934 for (; i < ret; i++) {
3935 if (gang[i])
3936 btrfs_put_fs_root(gang[i]);
3937 }
3938 return err;
c146afad 3939}
a2135011 3940
6bccf3ab 3941int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3942{
6bccf3ab 3943 struct btrfs_root *root = fs_info->tree_root;
c146afad 3944 struct btrfs_trans_handle *trans;
a74a4b97 3945
0b246afa 3946 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3947 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3948 mutex_unlock(&fs_info->cleaner_mutex);
3949 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3950
3951 /* wait until ongoing cleanup work done */
0b246afa
JM
3952 down_write(&fs_info->cleanup_work_sem);
3953 up_write(&fs_info->cleanup_work_sem);
c71bf099 3954
7a7eaa40 3955 trans = btrfs_join_transaction(root);
3612b495
TI
3956 if (IS_ERR(trans))
3957 return PTR_ERR(trans);
3a45bb20 3958 return btrfs_commit_transaction(trans);
c146afad
YZ
3959}
3960
b105e927 3961void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3962{
c146afad
YZ
3963 int ret;
3964
afcdd129 3965 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3966 /*
3967 * We don't want the cleaner to start new transactions, add more delayed
3968 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3969 * because that frees the task_struct, and the transaction kthread might
3970 * still try to wake up the cleaner.
3971 */
3972 kthread_park(fs_info->cleaner_kthread);
c146afad 3973
7343dd61 3974 /* wait for the qgroup rescan worker to stop */
d06f23d6 3975 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3976
803b2f54
SB
3977 /* wait for the uuid_scan task to finish */
3978 down(&fs_info->uuid_tree_rescan_sem);
3979 /* avoid complains from lockdep et al., set sem back to initial state */
3980 up(&fs_info->uuid_tree_rescan_sem);
3981
837d5b6e 3982 /* pause restriper - we want to resume on mount */
aa1b8cd4 3983 btrfs_pause_balance(fs_info);
837d5b6e 3984
8dabb742
SB
3985 btrfs_dev_replace_suspend_for_unmount(fs_info);
3986
aa1b8cd4 3987 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3988
3989 /* wait for any defraggers to finish */
3990 wait_event(fs_info->transaction_wait,
3991 (atomic_read(&fs_info->defrag_running) == 0));
3992
3993 /* clear out the rbtree of defraggable inodes */
26176e7c 3994 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3995
21c7e756
MX
3996 cancel_work_sync(&fs_info->async_reclaim_work);
3997
bc98a42c 3998 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3999 /*
d6fd0ae2
OS
4000 * The cleaner kthread is stopped, so do one final pass over
4001 * unused block groups.
e44163e1 4002 */
0b246afa 4003 btrfs_delete_unused_bgs(fs_info);
e44163e1 4004
6bccf3ab 4005 ret = btrfs_commit_super(fs_info);
acce952b 4006 if (ret)
04892340 4007 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4008 }
4009
af722733
LB
4010 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4011 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4012 btrfs_error_commit_super(fs_info);
0f7d52f4 4013
e3029d9f
AV
4014 kthread_stop(fs_info->transaction_kthread);
4015 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4016
e187831e 4017 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4018 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4019
04892340 4020 btrfs_free_qgroup_config(fs_info);
fe816d0f 4021 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4022
963d678b 4023 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4024 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4025 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4026 }
bcc63abb 4027
4297ff84
JB
4028 if (percpu_counter_sum(&fs_info->dio_bytes))
4029 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4030 percpu_counter_sum(&fs_info->dio_bytes));
4031
6618a59b 4032 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4033 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4034
faa2dbf0 4035 btrfs_free_fs_roots(fs_info);
d10c5f31 4036
1a4319cc
LB
4037 btrfs_put_block_group_cache(fs_info);
4038
de348ee0
WS
4039 /*
4040 * we must make sure there is not any read request to
4041 * submit after we stopping all workers.
4042 */
4043 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4044 btrfs_stop_all_workers(fs_info);
4045
5cdd7db6
FM
4046 btrfs_free_block_groups(fs_info);
4047
afcdd129 4048 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4049 free_root_pointers(fs_info, 1);
9ad6b7bc 4050
13e6c37b 4051 iput(fs_info->btree_inode);
d6bfde87 4052
21adbd5c 4053#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4054 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4055 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4056#endif
4057
0b86a832 4058 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4059 btrfs_close_devices(fs_info->fs_devices);
b248a415 4060
e2d84521 4061 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4062 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4063 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4064 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4065 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4066
bfcea1c6 4067 btrfs_free_csum_hash(fs_info);
53b381b3 4068 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4069 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4070}
4071
b9fab919
CM
4072int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4073 int atomic)
5f39d397 4074{
1259ab75 4075 int ret;
727011e0 4076 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4077
0b32f4bb 4078 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4079 if (!ret)
4080 return ret;
4081
4082 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4083 parent_transid, atomic);
4084 if (ret == -EAGAIN)
4085 return ret;
1259ab75 4086 return !ret;
5f39d397
CM
4087}
4088
5f39d397
CM
4089void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4090{
0b246afa 4091 struct btrfs_fs_info *fs_info;
06ea65a3 4092 struct btrfs_root *root;
5f39d397 4093 u64 transid = btrfs_header_generation(buf);
b9473439 4094 int was_dirty;
b4ce94de 4095
06ea65a3
JB
4096#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4097 /*
4098 * This is a fast path so only do this check if we have sanity tests
52042d8e 4099 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4100 * outside of the sanity tests.
4101 */
b0132a3b 4102 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4103 return;
4104#endif
4105 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4106 fs_info = root->fs_info;
b9447ef8 4107 btrfs_assert_tree_locked(buf);
0b246afa 4108 if (transid != fs_info->generation)
5d163e0e 4109 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4110 buf->start, transid, fs_info->generation);
0b32f4bb 4111 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4112 if (!was_dirty)
104b4e51
NB
4113 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4114 buf->len,
4115 fs_info->dirty_metadata_batch);
1f21ef0a 4116#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4117 /*
4118 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4119 * but item data not updated.
4120 * So here we should only check item pointers, not item data.
4121 */
4122 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4123 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4124 btrfs_print_leaf(buf);
1f21ef0a
FM
4125 ASSERT(0);
4126 }
4127#endif
eb60ceac
CM
4128}
4129
2ff7e61e 4130static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4131 int flush_delayed)
16cdcec7
MX
4132{
4133 /*
4134 * looks as though older kernels can get into trouble with
4135 * this code, they end up stuck in balance_dirty_pages forever
4136 */
e2d84521 4137 int ret;
16cdcec7
MX
4138
4139 if (current->flags & PF_MEMALLOC)
4140 return;
4141
b53d3f5d 4142 if (flush_delayed)
2ff7e61e 4143 btrfs_balance_delayed_items(fs_info);
16cdcec7 4144
d814a491
EL
4145 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4146 BTRFS_DIRTY_METADATA_THRESH,
4147 fs_info->dirty_metadata_batch);
e2d84521 4148 if (ret > 0) {
0b246afa 4149 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4150 }
16cdcec7
MX
4151}
4152
2ff7e61e 4153void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4154{
2ff7e61e 4155 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4156}
585ad2c3 4157
2ff7e61e 4158void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4159{
2ff7e61e 4160 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4161}
6b80053d 4162
581c1760
QW
4163int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4164 struct btrfs_key *first_key)
6b80053d 4165{
5ab12d1f 4166 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4167 level, first_key);
6b80053d 4168}
0da5468f 4169
2ff7e61e 4170static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4171{
fe816d0f
NB
4172 /* cleanup FS via transaction */
4173 btrfs_cleanup_transaction(fs_info);
4174
0b246afa 4175 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4176 btrfs_run_delayed_iputs(fs_info);
0b246afa 4177 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4178
0b246afa
JM
4179 down_write(&fs_info->cleanup_work_sem);
4180 up_write(&fs_info->cleanup_work_sem);
acce952b 4181}
4182
143bede5 4183static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4184{
acce952b 4185 struct btrfs_ordered_extent *ordered;
acce952b 4186
199c2a9c 4187 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4188 /*
4189 * This will just short circuit the ordered completion stuff which will
4190 * make sure the ordered extent gets properly cleaned up.
4191 */
199c2a9c 4192 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4193 root_extent_list)
4194 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4195 spin_unlock(&root->ordered_extent_lock);
4196}
4197
4198static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4199{
4200 struct btrfs_root *root;
4201 struct list_head splice;
4202
4203 INIT_LIST_HEAD(&splice);
4204
4205 spin_lock(&fs_info->ordered_root_lock);
4206 list_splice_init(&fs_info->ordered_roots, &splice);
4207 while (!list_empty(&splice)) {
4208 root = list_first_entry(&splice, struct btrfs_root,
4209 ordered_root);
1de2cfde
JB
4210 list_move_tail(&root->ordered_root,
4211 &fs_info->ordered_roots);
199c2a9c 4212
2a85d9ca 4213 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4214 btrfs_destroy_ordered_extents(root);
4215
2a85d9ca
LB
4216 cond_resched();
4217 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4218 }
4219 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4220
4221 /*
4222 * We need this here because if we've been flipped read-only we won't
4223 * get sync() from the umount, so we need to make sure any ordered
4224 * extents that haven't had their dirty pages IO start writeout yet
4225 * actually get run and error out properly.
4226 */
4227 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4228}
4229
35a3621b 4230static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4231 struct btrfs_fs_info *fs_info)
acce952b 4232{
4233 struct rb_node *node;
4234 struct btrfs_delayed_ref_root *delayed_refs;
4235 struct btrfs_delayed_ref_node *ref;
4236 int ret = 0;
4237
4238 delayed_refs = &trans->delayed_refs;
4239
4240 spin_lock(&delayed_refs->lock);
d7df2c79 4241 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4242 spin_unlock(&delayed_refs->lock);
0b246afa 4243 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4244 return ret;
4245 }
4246
5c9d028b 4247 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4248 struct btrfs_delayed_ref_head *head;
0e0adbcf 4249 struct rb_node *n;
e78417d1 4250 bool pin_bytes = false;
acce952b 4251
d7df2c79
JB
4252 head = rb_entry(node, struct btrfs_delayed_ref_head,
4253 href_node);
3069bd26 4254 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4255 continue;
3069bd26 4256
d7df2c79 4257 spin_lock(&head->lock);
e3d03965 4258 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4259 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4260 ref_node);
d7df2c79 4261 ref->in_tree = 0;
e3d03965 4262 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4263 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4264 if (!list_empty(&ref->add_list))
4265 list_del(&ref->add_list);
d7df2c79
JB
4266 atomic_dec(&delayed_refs->num_entries);
4267 btrfs_put_delayed_ref(ref);
e78417d1 4268 }
d7df2c79
JB
4269 if (head->must_insert_reserved)
4270 pin_bytes = true;
4271 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4272 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4273 spin_unlock(&head->lock);
4274 spin_unlock(&delayed_refs->lock);
4275 mutex_unlock(&head->mutex);
acce952b 4276
d7df2c79 4277 if (pin_bytes)
d278850e
JB
4278 btrfs_pin_extent(fs_info, head->bytenr,
4279 head->num_bytes, 1);
31890da0 4280 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4281 btrfs_put_delayed_ref_head(head);
acce952b 4282 cond_resched();
4283 spin_lock(&delayed_refs->lock);
4284 }
4285
4286 spin_unlock(&delayed_refs->lock);
4287
4288 return ret;
4289}
4290
143bede5 4291static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4292{
4293 struct btrfs_inode *btrfs_inode;
4294 struct list_head splice;
4295
4296 INIT_LIST_HEAD(&splice);
4297
eb73c1b7
MX
4298 spin_lock(&root->delalloc_lock);
4299 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4300
4301 while (!list_empty(&splice)) {
fe816d0f 4302 struct inode *inode = NULL;
eb73c1b7
MX
4303 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4304 delalloc_inodes);
fe816d0f 4305 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4306 spin_unlock(&root->delalloc_lock);
acce952b 4307
fe816d0f
NB
4308 /*
4309 * Make sure we get a live inode and that it'll not disappear
4310 * meanwhile.
4311 */
4312 inode = igrab(&btrfs_inode->vfs_inode);
4313 if (inode) {
4314 invalidate_inode_pages2(inode->i_mapping);
4315 iput(inode);
4316 }
eb73c1b7 4317 spin_lock(&root->delalloc_lock);
acce952b 4318 }
eb73c1b7
MX
4319 spin_unlock(&root->delalloc_lock);
4320}
4321
4322static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4323{
4324 struct btrfs_root *root;
4325 struct list_head splice;
4326
4327 INIT_LIST_HEAD(&splice);
4328
4329 spin_lock(&fs_info->delalloc_root_lock);
4330 list_splice_init(&fs_info->delalloc_roots, &splice);
4331 while (!list_empty(&splice)) {
4332 root = list_first_entry(&splice, struct btrfs_root,
4333 delalloc_root);
eb73c1b7
MX
4334 root = btrfs_grab_fs_root(root);
4335 BUG_ON(!root);
4336 spin_unlock(&fs_info->delalloc_root_lock);
4337
4338 btrfs_destroy_delalloc_inodes(root);
4339 btrfs_put_fs_root(root);
4340
4341 spin_lock(&fs_info->delalloc_root_lock);
4342 }
4343 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4344}
4345
2ff7e61e 4346static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4347 struct extent_io_tree *dirty_pages,
4348 int mark)
4349{
4350 int ret;
acce952b 4351 struct extent_buffer *eb;
4352 u64 start = 0;
4353 u64 end;
acce952b 4354
4355 while (1) {
4356 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4357 mark, NULL);
acce952b 4358 if (ret)
4359 break;
4360
91166212 4361 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4362 while (start <= end) {
0b246afa
JM
4363 eb = find_extent_buffer(fs_info, start);
4364 start += fs_info->nodesize;
fd8b2b61 4365 if (!eb)
acce952b 4366 continue;
fd8b2b61 4367 wait_on_extent_buffer_writeback(eb);
acce952b 4368
fd8b2b61
JB
4369 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4370 &eb->bflags))
4371 clear_extent_buffer_dirty(eb);
4372 free_extent_buffer_stale(eb);
acce952b 4373 }
4374 }
4375
4376 return ret;
4377}
4378
2ff7e61e 4379static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4380 struct extent_io_tree *pinned_extents)
4381{
4382 struct extent_io_tree *unpin;
4383 u64 start;
4384 u64 end;
4385 int ret;
ed0eaa14 4386 bool loop = true;
acce952b 4387
4388 unpin = pinned_extents;
ed0eaa14 4389again:
acce952b 4390 while (1) {
0e6ec385
FM
4391 struct extent_state *cached_state = NULL;
4392
fcd5e742
LF
4393 /*
4394 * The btrfs_finish_extent_commit() may get the same range as
4395 * ours between find_first_extent_bit and clear_extent_dirty.
4396 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4397 * the same extent range.
4398 */
4399 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4400 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4401 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4402 if (ret) {
4403 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4404 break;
fcd5e742 4405 }
acce952b 4406
0e6ec385
FM
4407 clear_extent_dirty(unpin, start, end, &cached_state);
4408 free_extent_state(cached_state);
2ff7e61e 4409 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4410 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4411 cond_resched();
4412 }
4413
ed0eaa14 4414 if (loop) {
0b246afa
JM
4415 if (unpin == &fs_info->freed_extents[0])
4416 unpin = &fs_info->freed_extents[1];
ed0eaa14 4417 else
0b246afa 4418 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4419 loop = false;
4420 goto again;
4421 }
4422
acce952b 4423 return 0;
4424}
4425
c79a1751
LB
4426static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4427{
4428 struct inode *inode;
4429
4430 inode = cache->io_ctl.inode;
4431 if (inode) {
4432 invalidate_inode_pages2(inode->i_mapping);
4433 BTRFS_I(inode)->generation = 0;
4434 cache->io_ctl.inode = NULL;
4435 iput(inode);
4436 }
4437 btrfs_put_block_group(cache);
4438}
4439
4440void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4441 struct btrfs_fs_info *fs_info)
c79a1751
LB
4442{
4443 struct btrfs_block_group_cache *cache;
4444
4445 spin_lock(&cur_trans->dirty_bgs_lock);
4446 while (!list_empty(&cur_trans->dirty_bgs)) {
4447 cache = list_first_entry(&cur_trans->dirty_bgs,
4448 struct btrfs_block_group_cache,
4449 dirty_list);
c79a1751
LB
4450
4451 if (!list_empty(&cache->io_list)) {
4452 spin_unlock(&cur_trans->dirty_bgs_lock);
4453 list_del_init(&cache->io_list);
4454 btrfs_cleanup_bg_io(cache);
4455 spin_lock(&cur_trans->dirty_bgs_lock);
4456 }
4457
4458 list_del_init(&cache->dirty_list);
4459 spin_lock(&cache->lock);
4460 cache->disk_cache_state = BTRFS_DC_ERROR;
4461 spin_unlock(&cache->lock);
4462
4463 spin_unlock(&cur_trans->dirty_bgs_lock);
4464 btrfs_put_block_group(cache);
ba2c4d4e 4465 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4466 spin_lock(&cur_trans->dirty_bgs_lock);
4467 }
4468 spin_unlock(&cur_trans->dirty_bgs_lock);
4469
45ae2c18
NB
4470 /*
4471 * Refer to the definition of io_bgs member for details why it's safe
4472 * to use it without any locking
4473 */
c79a1751
LB
4474 while (!list_empty(&cur_trans->io_bgs)) {
4475 cache = list_first_entry(&cur_trans->io_bgs,
4476 struct btrfs_block_group_cache,
4477 io_list);
c79a1751
LB
4478
4479 list_del_init(&cache->io_list);
4480 spin_lock(&cache->lock);
4481 cache->disk_cache_state = BTRFS_DC_ERROR;
4482 spin_unlock(&cache->lock);
4483 btrfs_cleanup_bg_io(cache);
4484 }
4485}
4486
49b25e05 4487void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4488 struct btrfs_fs_info *fs_info)
49b25e05 4489{
bbbf7243
NB
4490 struct btrfs_device *dev, *tmp;
4491
2ff7e61e 4492 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4493 ASSERT(list_empty(&cur_trans->dirty_bgs));
4494 ASSERT(list_empty(&cur_trans->io_bgs));
4495
bbbf7243
NB
4496 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4497 post_commit_list) {
4498 list_del_init(&dev->post_commit_list);
4499 }
4500
2ff7e61e 4501 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4502
4a9d8bde 4503 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4504 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4505
4a9d8bde 4506 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4507 wake_up(&fs_info->transaction_wait);
49b25e05 4508
ccdf9b30
JM
4509 btrfs_destroy_delayed_inodes(fs_info);
4510 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4511
2ff7e61e 4512 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4513 EXTENT_DIRTY);
2ff7e61e 4514 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4515 fs_info->pinned_extents);
49b25e05 4516
4a9d8bde
MX
4517 cur_trans->state =TRANS_STATE_COMPLETED;
4518 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4519}
4520
2ff7e61e 4521static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4522{
4523 struct btrfs_transaction *t;
acce952b 4524
0b246afa 4525 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4526
0b246afa
JM
4527 spin_lock(&fs_info->trans_lock);
4528 while (!list_empty(&fs_info->trans_list)) {
4529 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4530 struct btrfs_transaction, list);
4531 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4532 refcount_inc(&t->use_count);
0b246afa 4533 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4534 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4535 btrfs_put_transaction(t);
0b246afa 4536 spin_lock(&fs_info->trans_lock);
724e2315
JB
4537 continue;
4538 }
0b246afa 4539 if (t == fs_info->running_transaction) {
724e2315 4540 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4541 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4542 /*
4543 * We wait for 0 num_writers since we don't hold a trans
4544 * handle open currently for this transaction.
4545 */
4546 wait_event(t->writer_wait,
4547 atomic_read(&t->num_writers) == 0);
4548 } else {
0b246afa 4549 spin_unlock(&fs_info->trans_lock);
724e2315 4550 }
2ff7e61e 4551 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4552
0b246afa
JM
4553 spin_lock(&fs_info->trans_lock);
4554 if (t == fs_info->running_transaction)
4555 fs_info->running_transaction = NULL;
acce952b 4556 list_del_init(&t->list);
0b246afa 4557 spin_unlock(&fs_info->trans_lock);
acce952b 4558
724e2315 4559 btrfs_put_transaction(t);
2ff7e61e 4560 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4561 spin_lock(&fs_info->trans_lock);
724e2315 4562 }
0b246afa
JM
4563 spin_unlock(&fs_info->trans_lock);
4564 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4565 btrfs_destroy_delayed_inodes(fs_info);
4566 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4567 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4568 btrfs_destroy_all_delalloc_inodes(fs_info);
4569 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4570
4571 return 0;
4572}
4573
e8c9f186 4574static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4575 /* mandatory callbacks */
0b86a832 4576 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4577 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4578};