btrfs: add filesystems state details to error messages
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
8896a08d 113 struct inode *inode;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
1941b64b
QW
117
118 /* Optional parameter for submit_bio_start used by direct io */
119 u64 dio_file_offset;
8b712842 120 struct btrfs_work work;
4e4cbee9 121 blk_status_t status;
44b8bd7e
CM
122};
123
85d4e461
CM
124/*
125 * Lockdep class keys for extent_buffer->lock's in this root. For a given
126 * eb, the lockdep key is determined by the btrfs_root it belongs to and
127 * the level the eb occupies in the tree.
128 *
129 * Different roots are used for different purposes and may nest inside each
130 * other and they require separate keysets. As lockdep keys should be
131 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
132 * by btrfs_root->root_key.objectid. This ensures that all special purpose
133 * roots have separate keysets.
4008c04a 134 *
85d4e461
CM
135 * Lock-nesting across peer nodes is always done with the immediate parent
136 * node locked thus preventing deadlock. As lockdep doesn't know this, use
137 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 138 *
85d4e461
CM
139 * The key is set by the readpage_end_io_hook after the buffer has passed
140 * csum validation but before the pages are unlocked. It is also set by
141 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 142 *
85d4e461
CM
143 * We also add a check to make sure the highest level of the tree is the
144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
145 * needs update as well.
4008c04a
CM
146 */
147#ifdef CONFIG_DEBUG_LOCK_ALLOC
148# if BTRFS_MAX_LEVEL != 8
149# error
150# endif
85d4e461 151
ab1405aa
DS
152#define DEFINE_LEVEL(stem, level) \
153 .names[level] = "btrfs-" stem "-0" #level,
154
155#define DEFINE_NAME(stem) \
156 DEFINE_LEVEL(stem, 0) \
157 DEFINE_LEVEL(stem, 1) \
158 DEFINE_LEVEL(stem, 2) \
159 DEFINE_LEVEL(stem, 3) \
160 DEFINE_LEVEL(stem, 4) \
161 DEFINE_LEVEL(stem, 5) \
162 DEFINE_LEVEL(stem, 6) \
163 DEFINE_LEVEL(stem, 7)
164
85d4e461
CM
165static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
ab1405aa 167 /* Longest entry: btrfs-free-space-00 */
387824af
DS
168 char names[BTRFS_MAX_LEVEL][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 170} btrfs_lockdep_keysets[] = {
ab1405aa
DS
171 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
174 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
175 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
176 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
177 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
178 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
180 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182 { .id = 0, DEFINE_NAME("tree") },
4008c04a 183};
85d4e461 184
ab1405aa
DS
185#undef DEFINE_LEVEL
186#undef DEFINE_NAME
85d4e461
CM
187
188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190{
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202}
203
4008c04a
CM
204#endif
205
d352ac68 206/*
2996e1f8 207 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 208 */
c67b3892 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 210{
d5178578 211 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 212 const int num_pages = num_extent_pages(buf);
a26663e7 213 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 215 char *kaddr;
e9be5a30 216 int i;
d5178578
JT
217
218 shash->tfm = fs_info->csum_shash;
219 crypto_shash_init(shash);
a26663e7 220 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 222 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 223
e9be5a30
DS
224 for (i = 1; i < num_pages; i++) {
225 kaddr = page_address(buf->pages[i]);
226 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 227 }
71a63551 228 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 229 crypto_shash_final(shash, result);
19c00ddc
CM
230}
231
d352ac68
CM
232/*
233 * we can't consider a given block up to date unless the transid of the
234 * block matches the transid in the parent node's pointer. This is how we
235 * detect blocks that either didn't get written at all or got written
236 * in the wrong place.
237 */
1259ab75 238static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
239 struct extent_buffer *eb, u64 parent_transid,
240 int atomic)
1259ab75 241{
2ac55d41 242 struct extent_state *cached_state = NULL;
1259ab75
CM
243 int ret;
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
b9fab919
CM
248 if (atomic)
249 return -EAGAIN;
250
2ac55d41 251 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 252 &cached_state);
0b32f4bb 253 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
254 btrfs_header_generation(eb) == parent_transid) {
255 ret = 0;
256 goto out;
257 }
94647322
DS
258 btrfs_err_rl(eb->fs_info,
259 "parent transid verify failed on %llu wanted %llu found %llu",
260 eb->start,
29549aec 261 parent_transid, btrfs_header_generation(eb));
1259ab75 262 ret = 1;
35b22c19 263 clear_extent_buffer_uptodate(eb);
33958dc6 264out:
2ac55d41 265 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 266 &cached_state);
1259ab75 267 return ret;
1259ab75
CM
268}
269
e7e16f48
JT
270static bool btrfs_supported_super_csum(u16 csum_type)
271{
272 switch (csum_type) {
273 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 274 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 275 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 276 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
277 return true;
278 default:
279 return false;
280 }
281}
282
1104a885
DS
283/*
284 * Return 0 if the superblock checksum type matches the checksum value of that
285 * algorithm. Pass the raw disk superblock data.
286 */
ab8d0fc4
JM
287static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288 char *raw_disk_sb)
1104a885
DS
289{
290 struct btrfs_super_block *disk_sb =
291 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 292 char result[BTRFS_CSUM_SIZE];
d5178578
JT
293 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294
295 shash->tfm = fs_info->csum_shash;
1104a885 296
51bce6c9
JT
297 /*
298 * The super_block structure does not span the whole
299 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300 * filled with zeros and is included in the checksum.
301 */
fd08001f
EB
302 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 304
55fc29be 305 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 306 return 1;
1104a885 307
e7e16f48 308 return 0;
1104a885
DS
309}
310
e064d5e9 311int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 312 struct btrfs_key *first_key, u64 parent_transid)
581c1760 313{
e064d5e9 314 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
315 int found_level;
316 struct btrfs_key found_key;
317 int ret;
318
319 found_level = btrfs_header_level(eb);
320 if (found_level != level) {
63489055
QW
321 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
323 btrfs_err(fs_info,
324"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325 eb->start, level, found_level);
581c1760
QW
326 return -EIO;
327 }
328
329 if (!first_key)
330 return 0;
331
5d41be6f
QW
332 /*
333 * For live tree block (new tree blocks in current transaction),
334 * we need proper lock context to avoid race, which is impossible here.
335 * So we only checks tree blocks which is read from disk, whose
336 * generation <= fs_info->last_trans_committed.
337 */
338 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339 return 0;
62fdaa52
QW
340
341 /* We have @first_key, so this @eb must have at least one item */
342 if (btrfs_header_nritems(eb) == 0) {
343 btrfs_err(fs_info,
344 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345 eb->start);
346 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347 return -EUCLEAN;
348 }
349
581c1760
QW
350 if (found_level)
351 btrfs_node_key_to_cpu(eb, &found_key, 0);
352 else
353 btrfs_item_key_to_cpu(eb, &found_key, 0);
354 ret = btrfs_comp_cpu_keys(first_key, &found_key);
355
581c1760 356 if (ret) {
63489055
QW
357 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 359 btrfs_err(fs_info,
ff76a864
LB
360"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361 eb->start, parent_transid, first_key->objectid,
362 first_key->type, first_key->offset,
363 found_key.objectid, found_key.type,
364 found_key.offset);
581c1760 365 }
581c1760
QW
366 return ret;
367}
368
d352ac68
CM
369/*
370 * helper to read a given tree block, doing retries as required when
371 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
372 *
373 * @parent_transid: expected transid, skip check if 0
374 * @level: expected level, mandatory check
375 * @first_key: expected key of first slot, skip check if NULL
d352ac68 376 */
5ab12d1f 377static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
378 u64 parent_transid, int level,
379 struct btrfs_key *first_key)
f188591e 380{
5ab12d1f 381 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 382 struct extent_io_tree *io_tree;
ea466794 383 int failed = 0;
f188591e
CM
384 int ret;
385 int num_copies = 0;
386 int mirror_num = 0;
ea466794 387 int failed_mirror = 0;
f188591e 388
0b246afa 389 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 390 while (1) {
f8397d69 391 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 392 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 393 if (!ret) {
581c1760 394 if (verify_parent_transid(io_tree, eb,
b9fab919 395 parent_transid, 0))
256dd1bb 396 ret = -EIO;
e064d5e9 397 else if (btrfs_verify_level_key(eb, level,
448de471 398 first_key, parent_transid))
581c1760
QW
399 ret = -EUCLEAN;
400 else
401 break;
256dd1bb 402 }
d397712b 403
0b246afa 404 num_copies = btrfs_num_copies(fs_info,
f188591e 405 eb->start, eb->len);
4235298e 406 if (num_copies == 1)
ea466794 407 break;
4235298e 408
5cf1ab56
JB
409 if (!failed_mirror) {
410 failed = 1;
411 failed_mirror = eb->read_mirror;
412 }
413
f188591e 414 mirror_num++;
ea466794
JB
415 if (mirror_num == failed_mirror)
416 mirror_num++;
417
4235298e 418 if (mirror_num > num_copies)
ea466794 419 break;
f188591e 420 }
ea466794 421
c0901581 422 if (failed && !ret && failed_mirror)
20a1fbf9 423 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
424
425 return ret;
f188591e 426}
19c00ddc 427
eca0f6f6
QW
428static int csum_one_extent_buffer(struct extent_buffer *eb)
429{
430 struct btrfs_fs_info *fs_info = eb->fs_info;
431 u8 result[BTRFS_CSUM_SIZE];
432 int ret;
433
434 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435 offsetof(struct btrfs_header, fsid),
436 BTRFS_FSID_SIZE) == 0);
437 csum_tree_block(eb, result);
438
439 if (btrfs_header_level(eb))
440 ret = btrfs_check_node(eb);
441 else
442 ret = btrfs_check_leaf_full(eb);
443
444 if (ret < 0) {
445 btrfs_print_tree(eb, 0);
446 btrfs_err(fs_info,
447 "block=%llu write time tree block corruption detected",
448 eb->start);
449 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
450 return ret;
451 }
452 write_extent_buffer(eb, result, 0, fs_info->csum_size);
453
454 return 0;
455}
456
457/* Checksum all dirty extent buffers in one bio_vec */
458static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
459 struct bio_vec *bvec)
460{
461 struct page *page = bvec->bv_page;
462 u64 bvec_start = page_offset(page) + bvec->bv_offset;
463 u64 cur;
464 int ret = 0;
465
466 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
467 cur += fs_info->nodesize) {
468 struct extent_buffer *eb;
469 bool uptodate;
470
471 eb = find_extent_buffer(fs_info, cur);
472 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
473 fs_info->nodesize);
474
475 /* A dirty eb shouldn't disappear from buffer_radix */
476 if (WARN_ON(!eb))
477 return -EUCLEAN;
478
479 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
480 free_extent_buffer(eb);
481 return -EUCLEAN;
482 }
483 if (WARN_ON(!uptodate)) {
484 free_extent_buffer(eb);
485 return -EUCLEAN;
486 }
487
488 ret = csum_one_extent_buffer(eb);
489 free_extent_buffer(eb);
490 if (ret < 0)
491 return ret;
492 }
493 return ret;
494}
495
d352ac68 496/*
ac303b69
QW
497 * Checksum a dirty tree block before IO. This has extra checks to make sure
498 * we only fill in the checksum field in the first page of a multi-page block.
499 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 500 */
ac303b69 501static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 502{
ac303b69 503 struct page *page = bvec->bv_page;
4eee4fa4 504 u64 start = page_offset(page);
19c00ddc 505 u64 found_start;
19c00ddc 506 struct extent_buffer *eb;
eca0f6f6
QW
507
508 if (fs_info->sectorsize < PAGE_SIZE)
509 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 510
4f2de97a
JB
511 eb = (struct extent_buffer *)page->private;
512 if (page != eb->pages[0])
513 return 0;
0f805531 514
19c00ddc 515 found_start = btrfs_header_bytenr(eb);
d3575156
NA
516
517 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
518 WARN_ON(found_start != 0);
519 return 0;
520 }
521
0f805531
AL
522 /*
523 * Please do not consolidate these warnings into a single if.
524 * It is useful to know what went wrong.
525 */
526 if (WARN_ON(found_start != start))
527 return -EUCLEAN;
528 if (WARN_ON(!PageUptodate(page)))
529 return -EUCLEAN;
530
eca0f6f6 531 return csum_one_extent_buffer(eb);
19c00ddc
CM
532}
533
b0c9b3b0 534static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 535{
b0c9b3b0 536 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 537 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 538 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 539 u8 *metadata_uuid;
2b82032c 540
9a8658e3
DS
541 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
542 BTRFS_FSID_SIZE);
944d3f9f
NB
543 /*
544 * Checking the incompat flag is only valid for the current fs. For
545 * seed devices it's forbidden to have their uuid changed so reading
546 * ->fsid in this case is fine
547 */
548 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
549 metadata_uuid = fs_devices->metadata_uuid;
550 else
551 metadata_uuid = fs_devices->fsid;
552
553 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
554 return 0;
555
556 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
557 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
558 return 0;
559
560 return 1;
2b82032c
YZ
561}
562
77bf40a2
QW
563/* Do basic extent buffer checks at read time */
564static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 565{
77bf40a2 566 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 567 u64 found_start;
77bf40a2
QW
568 const u32 csum_size = fs_info->csum_size;
569 u8 found_level;
2996e1f8 570 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 571 const u8 *header_csum;
77bf40a2 572 int ret = 0;
ea466794 573
ce9adaa5 574 found_start = btrfs_header_bytenr(eb);
727011e0 575 if (found_start != eb->start) {
893bf4b1
SY
576 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
577 eb->start, found_start);
f188591e 578 ret = -EIO;
77bf40a2 579 goto out;
ce9adaa5 580 }
b0c9b3b0 581 if (check_tree_block_fsid(eb)) {
02873e43
ZL
582 btrfs_err_rl(fs_info, "bad fsid on block %llu",
583 eb->start);
1259ab75 584 ret = -EIO;
77bf40a2 585 goto out;
1259ab75 586 }
ce9adaa5 587 found_level = btrfs_header_level(eb);
1c24c3ce 588 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
589 btrfs_err(fs_info, "bad tree block level %d on %llu",
590 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 591 ret = -EIO;
77bf40a2 592 goto out;
1c24c3ce 593 }
ce9adaa5 594
c67b3892 595 csum_tree_block(eb, result);
dfd29eed
DS
596 header_csum = page_address(eb->pages[0]) +
597 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 598
dfd29eed 599 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 600 btrfs_warn_rl(fs_info,
ff14aa79
DS
601 "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
602 eb->start,
dfd29eed 603 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
604 CSUM_FMT_VALUE(csum_size, result),
605 btrfs_header_level(eb));
2996e1f8 606 ret = -EUCLEAN;
77bf40a2 607 goto out;
2996e1f8
JT
608 }
609
a826d6dc
JB
610 /*
611 * If this is a leaf block and it is corrupt, set the corrupt bit so
612 * that we don't try and read the other copies of this block, just
613 * return -EIO.
614 */
1c4360ee 615 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
616 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
617 ret = -EIO;
618 }
ce9adaa5 619
813fd1dc 620 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
621 ret = -EIO;
622
0b32f4bb
JB
623 if (!ret)
624 set_extent_buffer_uptodate(eb);
75391f0d
QW
625 else
626 btrfs_err(fs_info,
627 "block=%llu read time tree block corruption detected",
628 eb->start);
77bf40a2
QW
629out:
630 return ret;
631}
632
371cdc07
QW
633static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
634 int mirror)
635{
636 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
637 struct extent_buffer *eb;
638 bool reads_done;
639 int ret = 0;
640
641 /*
642 * We don't allow bio merge for subpage metadata read, so we should
643 * only get one eb for each endio hook.
644 */
645 ASSERT(end == start + fs_info->nodesize - 1);
646 ASSERT(PagePrivate(page));
647
648 eb = find_extent_buffer(fs_info, start);
649 /*
650 * When we are reading one tree block, eb must have been inserted into
651 * the radix tree. If not, something is wrong.
652 */
653 ASSERT(eb);
654
655 reads_done = atomic_dec_and_test(&eb->io_pages);
656 /* Subpage read must finish in page read */
657 ASSERT(reads_done);
658
659 eb->read_mirror = mirror;
660 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
661 ret = -EIO;
662 goto err;
663 }
664 ret = validate_extent_buffer(eb);
665 if (ret < 0)
666 goto err;
667
371cdc07
QW
668 set_extent_buffer_uptodate(eb);
669
670 free_extent_buffer(eb);
671 return ret;
672err:
673 /*
674 * end_bio_extent_readpage decrements io_pages in case of error,
675 * make sure it has something to decrement.
676 */
677 atomic_inc(&eb->io_pages);
678 clear_extent_buffer_uptodate(eb);
679 free_extent_buffer(eb);
680 return ret;
681}
682
c3a3b19b 683int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
684 struct page *page, u64 start, u64 end,
685 int mirror)
686{
687 struct extent_buffer *eb;
688 int ret = 0;
689 int reads_done;
690
691 ASSERT(page->private);
371cdc07
QW
692
693 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
694 return validate_subpage_buffer(page, start, end, mirror);
695
77bf40a2
QW
696 eb = (struct extent_buffer *)page->private;
697
698 /*
699 * The pending IO might have been the only thing that kept this buffer
700 * in memory. Make sure we have a ref for all this other checks
701 */
702 atomic_inc(&eb->refs);
703
704 reads_done = atomic_dec_and_test(&eb->io_pages);
705 if (!reads_done)
706 goto err;
707
708 eb->read_mirror = mirror;
709 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
710 ret = -EIO;
711 goto err;
712 }
713 ret = validate_extent_buffer(eb);
ce9adaa5 714err:
53b381b3
DW
715 if (ret) {
716 /*
717 * our io error hook is going to dec the io pages
718 * again, we have to make sure it has something
719 * to decrement
720 */
721 atomic_inc(&eb->io_pages);
0b32f4bb 722 clear_extent_buffer_uptodate(eb);
53b381b3 723 }
0b32f4bb 724 free_extent_buffer(eb);
77bf40a2 725
f188591e 726 return ret;
ce9adaa5
CM
727}
728
4246a0b6 729static void end_workqueue_bio(struct bio *bio)
ce9adaa5 730{
97eb6b69 731 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 732 struct btrfs_fs_info *fs_info;
9e0af237 733 struct btrfs_workqueue *wq;
ce9adaa5 734
ce9adaa5 735 fs_info = end_io_wq->info;
4e4cbee9 736 end_io_wq->status = bio->bi_status;
d20f7043 737
cfe94440 738 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
a0cac0ec 739 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 740 wq = fs_info->endio_meta_write_workers;
a0cac0ec 741 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 742 wq = fs_info->endio_freespace_worker;
a0cac0ec 743 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 744 wq = fs_info->endio_raid56_workers;
a0cac0ec 745 else
9e0af237 746 wq = fs_info->endio_write_workers;
d20f7043 747 } else {
5c047a69 748 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 749 wq = fs_info->endio_raid56_workers;
a0cac0ec 750 else if (end_io_wq->metadata)
9e0af237 751 wq = fs_info->endio_meta_workers;
a0cac0ec 752 else
9e0af237 753 wq = fs_info->endio_workers;
d20f7043 754 }
9e0af237 755
a0cac0ec 756 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 757 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
758}
759
4e4cbee9 760blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 761 enum btrfs_wq_endio_type metadata)
0b86a832 762{
97eb6b69 763 struct btrfs_end_io_wq *end_io_wq;
8b110e39 764
97eb6b69 765 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 766 if (!end_io_wq)
4e4cbee9 767 return BLK_STS_RESOURCE;
ce9adaa5
CM
768
769 end_io_wq->private = bio->bi_private;
770 end_io_wq->end_io = bio->bi_end_io;
22c59948 771 end_io_wq->info = info;
4e4cbee9 772 end_io_wq->status = 0;
ce9adaa5 773 end_io_wq->bio = bio;
22c59948 774 end_io_wq->metadata = metadata;
ce9adaa5
CM
775
776 bio->bi_private = end_io_wq;
777 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
778 return 0;
779}
780
4a69a410
CM
781static void run_one_async_start(struct btrfs_work *work)
782{
4a69a410 783 struct async_submit_bio *async;
4e4cbee9 784 blk_status_t ret;
4a69a410
CM
785
786 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
787 ret = async->submit_bio_start(async->inode, async->bio,
788 async->dio_file_offset);
79787eaa 789 if (ret)
4e4cbee9 790 async->status = ret;
4a69a410
CM
791}
792
06ea01b1
DS
793/*
794 * In order to insert checksums into the metadata in large chunks, we wait
795 * until bio submission time. All the pages in the bio are checksummed and
796 * sums are attached onto the ordered extent record.
797 *
798 * At IO completion time the csums attached on the ordered extent record are
799 * inserted into the tree.
800 */
4a69a410 801static void run_one_async_done(struct btrfs_work *work)
8b712842 802{
8b712842 803 struct async_submit_bio *async;
06ea01b1
DS
804 struct inode *inode;
805 blk_status_t ret;
8b712842
CM
806
807 async = container_of(work, struct async_submit_bio, work);
8896a08d 808 inode = async->inode;
4854ddd0 809
bb7ab3b9 810 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
811 if (async->status) {
812 async->bio->bi_status = async->status;
4246a0b6 813 bio_endio(async->bio);
79787eaa
JM
814 return;
815 }
816
ec39f769
CM
817 /*
818 * All of the bios that pass through here are from async helpers.
819 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
820 * This changes nothing when cgroups aren't in use.
821 */
822 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 823 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
824 if (ret) {
825 async->bio->bi_status = ret;
826 bio_endio(async->bio);
827 }
4a69a410
CM
828}
829
830static void run_one_async_free(struct btrfs_work *work)
831{
832 struct async_submit_bio *async;
833
834 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
835 kfree(async);
836}
837
8896a08d 838blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 839 int mirror_num, unsigned long bio_flags,
1941b64b 840 u64 dio_file_offset,
e288c080 841 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 842{
8896a08d 843 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
844 struct async_submit_bio *async;
845
846 async = kmalloc(sizeof(*async), GFP_NOFS);
847 if (!async)
4e4cbee9 848 return BLK_STS_RESOURCE;
44b8bd7e 849
8896a08d 850 async->inode = inode;
44b8bd7e
CM
851 async->bio = bio;
852 async->mirror_num = mirror_num;
4a69a410 853 async->submit_bio_start = submit_bio_start;
4a69a410 854
a0cac0ec
OS
855 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
856 run_one_async_free);
4a69a410 857
1941b64b 858 async->dio_file_offset = dio_file_offset;
8c8bee1d 859
4e4cbee9 860 async->status = 0;
79787eaa 861
67f055c7 862 if (op_is_sync(bio->bi_opf))
5cdc7ad3 863 btrfs_set_work_high_priority(&async->work);
d313d7a3 864
5cdc7ad3 865 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
866 return 0;
867}
868
4e4cbee9 869static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 870{
2c30c71b 871 struct bio_vec *bvec;
ce3ed71a 872 struct btrfs_root *root;
2b070cfe 873 int ret = 0;
6dc4f100 874 struct bvec_iter_all iter_all;
ce3ed71a 875
c09abff8 876 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 877 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 878 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 879 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
880 if (ret)
881 break;
ce3ed71a 882 }
2c30c71b 883
4e4cbee9 884 return errno_to_blk_status(ret);
ce3ed71a
CM
885}
886
8896a08d 887static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 888 u64 dio_file_offset)
22c59948 889{
8b712842
CM
890 /*
891 * when we're called for a write, we're already in the async
5443be45 892 * submission context. Just jump into btrfs_map_bio
8b712842 893 */
79787eaa 894 return btree_csum_one_bio(bio);
4a69a410 895}
22c59948 896
f4dcfb30 897static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 898 struct btrfs_inode *bi)
de0022b9 899{
4eef29ef 900 if (btrfs_is_zoned(fs_info))
f4dcfb30 901 return false;
6300463b 902 if (atomic_read(&bi->sync_writers))
f4dcfb30 903 return false;
9b4e675a 904 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
905 return false;
906 return true;
de0022b9
JB
907}
908
1b36294a
NB
909blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
910 int mirror_num, unsigned long bio_flags)
44b8bd7e 911{
0b246afa 912 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 913 blk_status_t ret;
cad321ad 914
cfe94440 915 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
4a69a410
CM
916 /*
917 * called for a read, do the setup so that checksum validation
918 * can happen in the async kernel threads
919 */
0b246afa
JM
920 ret = btrfs_bio_wq_end_io(fs_info, bio,
921 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 922 if (ret)
61891923 923 goto out_w_error;
08635bae 924 ret = btrfs_map_bio(fs_info, bio, mirror_num);
f4dcfb30 925 } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
de0022b9
JB
926 ret = btree_csum_one_bio(bio);
927 if (ret)
61891923 928 goto out_w_error;
08635bae 929 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
930 } else {
931 /*
932 * kthread helpers are used to submit writes so that
933 * checksumming can happen in parallel across all CPUs
934 */
8896a08d
QW
935 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
936 0, btree_submit_bio_start);
44b8bd7e 937 }
d313d7a3 938
4246a0b6
CH
939 if (ret)
940 goto out_w_error;
941 return 0;
942
61891923 943out_w_error:
4e4cbee9 944 bio->bi_status = ret;
4246a0b6 945 bio_endio(bio);
61891923 946 return ret;
44b8bd7e
CM
947}
948
3dd1462e 949#ifdef CONFIG_MIGRATION
784b4e29 950static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
951 struct page *newpage, struct page *page,
952 enum migrate_mode mode)
784b4e29
CM
953{
954 /*
955 * we can't safely write a btree page from here,
956 * we haven't done the locking hook
957 */
958 if (PageDirty(page))
959 return -EAGAIN;
960 /*
961 * Buffers may be managed in a filesystem specific way.
962 * We must have no buffers or drop them.
963 */
964 if (page_has_private(page) &&
965 !try_to_release_page(page, GFP_KERNEL))
966 return -EAGAIN;
a6bc32b8 967 return migrate_page(mapping, newpage, page, mode);
784b4e29 968}
3dd1462e 969#endif
784b4e29 970
0da5468f
CM
971
972static int btree_writepages(struct address_space *mapping,
973 struct writeback_control *wbc)
974{
e2d84521
MX
975 struct btrfs_fs_info *fs_info;
976 int ret;
977
d8d5f3e1 978 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
979
980 if (wbc->for_kupdate)
981 return 0;
982
e2d84521 983 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 984 /* this is a bit racy, but that's ok */
d814a491
EL
985 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
986 BTRFS_DIRTY_METADATA_THRESH,
987 fs_info->dirty_metadata_batch);
e2d84521 988 if (ret < 0)
793955bc 989 return 0;
793955bc 990 }
0b32f4bb 991 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
992}
993
70dec807 994static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 995{
98509cfc 996 if (PageWriteback(page) || PageDirty(page))
d397712b 997 return 0;
0c4e538b 998
f7a52a40 999 return try_release_extent_buffer(page);
d98237b3
CM
1000}
1001
d47992f8
LC
1002static void btree_invalidatepage(struct page *page, unsigned int offset,
1003 unsigned int length)
d98237b3 1004{
d1310b2e
CM
1005 struct extent_io_tree *tree;
1006 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1007 extent_invalidatepage(tree, page, offset);
1008 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1009 if (PagePrivate(page)) {
efe120a0
FH
1010 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1011 "page private not zero on page %llu",
1012 (unsigned long long)page_offset(page));
d1b89bc0 1013 detach_page_private(page);
9ad6b7bc 1014 }
d98237b3
CM
1015}
1016
0b32f4bb
JB
1017static int btree_set_page_dirty(struct page *page)
1018{
bb146eb2 1019#ifdef DEBUG
139e8cd3
QW
1020 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1021 struct btrfs_subpage *subpage;
0b32f4bb 1022 struct extent_buffer *eb;
139e8cd3
QW
1023 int cur_bit = 0;
1024 u64 page_start = page_offset(page);
1025
1026 if (fs_info->sectorsize == PAGE_SIZE) {
1027 BUG_ON(!PagePrivate(page));
1028 eb = (struct extent_buffer *)page->private;
1029 BUG_ON(!eb);
1030 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1031 BUG_ON(!atomic_read(&eb->refs));
49d0c642 1032 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
1033 return __set_page_dirty_nobuffers(page);
1034 }
1035 ASSERT(PagePrivate(page) && page->private);
1036 subpage = (struct btrfs_subpage *)page->private;
1037
1038 ASSERT(subpage->dirty_bitmap);
1039 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1040 unsigned long flags;
1041 u64 cur;
1042 u16 tmp = (1 << cur_bit);
1043
1044 spin_lock_irqsave(&subpage->lock, flags);
1045 if (!(tmp & subpage->dirty_bitmap)) {
1046 spin_unlock_irqrestore(&subpage->lock, flags);
1047 cur_bit++;
1048 continue;
1049 }
1050 spin_unlock_irqrestore(&subpage->lock, flags);
1051 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 1052
139e8cd3
QW
1053 eb = find_extent_buffer(fs_info, cur);
1054 ASSERT(eb);
1055 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1056 ASSERT(atomic_read(&eb->refs));
49d0c642 1057 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
1058 free_extent_buffer(eb);
1059
1060 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1061 }
bb146eb2 1062#endif
0b32f4bb
JB
1063 return __set_page_dirty_nobuffers(page);
1064}
1065
7f09410b 1066static const struct address_space_operations btree_aops = {
0da5468f 1067 .writepages = btree_writepages,
5f39d397
CM
1068 .releasepage = btree_releasepage,
1069 .invalidatepage = btree_invalidatepage,
5a92bc88 1070#ifdef CONFIG_MIGRATION
784b4e29 1071 .migratepage = btree_migratepage,
5a92bc88 1072#endif
0b32f4bb 1073 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1074};
1075
2ff7e61e
JM
1076struct extent_buffer *btrfs_find_create_tree_block(
1077 struct btrfs_fs_info *fs_info,
3fbaf258
JB
1078 u64 bytenr, u64 owner_root,
1079 int level)
0999df54 1080{
0b246afa
JM
1081 if (btrfs_is_testing(fs_info))
1082 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 1083 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
1084}
1085
581c1760
QW
1086/*
1087 * Read tree block at logical address @bytenr and do variant basic but critical
1088 * verification.
1089 *
1b7ec85e 1090 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
1091 * @parent_transid: expected transid of this tree block, skip check if 0
1092 * @level: expected level, mandatory check
1093 * @first_key: expected key in slot 0, skip check if NULL
1094 */
2ff7e61e 1095struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
1096 u64 owner_root, u64 parent_transid,
1097 int level, struct btrfs_key *first_key)
0999df54
CM
1098{
1099 struct extent_buffer *buf = NULL;
0999df54
CM
1100 int ret;
1101
3fbaf258 1102 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
1103 if (IS_ERR(buf))
1104 return buf;
0999df54 1105
5ab12d1f 1106 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1107 level, first_key);
0f0fe8f7 1108 if (ret) {
537f38f0 1109 free_extent_buffer_stale(buf);
64c043de 1110 return ERR_PTR(ret);
0f0fe8f7 1111 }
5f39d397 1112 return buf;
ce9adaa5 1113
eb60ceac
CM
1114}
1115
6a884d7d 1116void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1117{
6a884d7d 1118 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1119 if (btrfs_header_generation(buf) ==
e2d84521 1120 fs_info->running_transaction->transid) {
49d0c642 1121 btrfs_assert_tree_write_locked(buf);
b4ce94de 1122
b9473439 1123 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1124 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1125 -buf->len,
1126 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1127 clear_extent_buffer_dirty(buf);
1128 }
925baedd 1129 }
5f39d397
CM
1130}
1131
da17066c 1132static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1133 u64 objectid)
d97e63b6 1134{
7c0260ee 1135 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
1136
1137 memset(&root->root_key, 0, sizeof(root->root_key));
1138 memset(&root->root_item, 0, sizeof(root->root_item));
1139 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 1140 root->fs_info = fs_info;
2e608bd1 1141 root->root_key.objectid = objectid;
cfaa7295 1142 root->node = NULL;
a28ec197 1143 root->commit_root = NULL;
27cdeb70 1144 root->state = 0;
abed4aaa 1145 RB_CLEAR_NODE(&root->rb_node);
0b86a832 1146
0f7d52f4 1147 root->last_trans = 0;
6b8fad57 1148 root->free_objectid = 0;
eb73c1b7 1149 root->nr_delalloc_inodes = 0;
199c2a9c 1150 root->nr_ordered_extents = 0;
6bef4d31 1151 root->inode_tree = RB_ROOT;
16cdcec7 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
1153
1154 btrfs_init_root_block_rsv(root);
0b86a832
CM
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1157 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1158 INIT_LIST_HEAD(&root->delalloc_inodes);
1159 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1160 INIT_LIST_HEAD(&root->ordered_extents);
1161 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1162 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1163 INIT_LIST_HEAD(&root->logged_list[0]);
1164 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1165 spin_lock_init(&root->inode_lock);
eb73c1b7 1166 spin_lock_init(&root->delalloc_lock);
199c2a9c 1167 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1168 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1169 spin_lock_init(&root->log_extents_lock[0]);
1170 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1171 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1172 mutex_init(&root->objectid_mutex);
e02119d5 1173 mutex_init(&root->log_mutex);
31f3d255 1174 mutex_init(&root->ordered_extent_mutex);
573bfb72 1175 mutex_init(&root->delalloc_mutex);
c53e9653 1176 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1177 init_waitqueue_head(&root->log_writer_wait);
1178 init_waitqueue_head(&root->log_commit_wait[0]);
1179 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1180 INIT_LIST_HEAD(&root->log_ctxs[0]);
1181 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1182 atomic_set(&root->log_commit[0], 0);
1183 atomic_set(&root->log_commit[1], 0);
1184 atomic_set(&root->log_writers, 0);
2ecb7923 1185 atomic_set(&root->log_batch, 0);
0700cea7 1186 refcount_set(&root->refs, 1);
8ecebf4d 1187 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1188 atomic_set(&root->nr_swapfiles, 0);
7237f183 1189 root->log_transid = 0;
d1433deb 1190 root->log_transid_committed = -1;
257c62e1 1191 root->last_log_commit = 0;
2e608bd1 1192 root->anon_dev = 0;
e289f03e 1193 if (!dummy) {
43eb5f29
QW
1194 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1195 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1196 extent_io_tree_init(fs_info, &root->log_csum_range,
1197 IO_TREE_LOG_CSUM_RANGE, NULL);
1198 }
017e5369 1199
5f3ab90a 1200 spin_lock_init(&root->root_item_lock);
370a11b8 1201 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1202#ifdef CONFIG_BTRFS_DEBUG
1203 INIT_LIST_HEAD(&root->leak_list);
1204 spin_lock(&fs_info->fs_roots_radix_lock);
1205 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1206 spin_unlock(&fs_info->fs_roots_radix_lock);
1207#endif
3768f368
CM
1208}
1209
74e4d827 1210static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1211 u64 objectid, gfp_t flags)
6f07e42e 1212{
74e4d827 1213 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1214 if (root)
96dfcb46 1215 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1216 return root;
1217}
1218
06ea65a3
JB
1219#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1220/* Should only be used by the testing infrastructure */
da17066c 1221struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1222{
1223 struct btrfs_root *root;
1224
7c0260ee
JM
1225 if (!fs_info)
1226 return ERR_PTR(-EINVAL);
1227
96dfcb46 1228 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1229 if (!root)
1230 return ERR_PTR(-ENOMEM);
da17066c 1231
b9ef22de 1232 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1233 root->alloc_bytenr = 0;
06ea65a3
JB
1234
1235 return root;
1236}
1237#endif
1238
abed4aaa
JB
1239static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1240{
1241 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1242 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1243
1244 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1245}
1246
1247static int global_root_key_cmp(const void *k, const struct rb_node *node)
1248{
1249 const struct btrfs_key *key = k;
1250 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1251
1252 return btrfs_comp_cpu_keys(key, &root->root_key);
1253}
1254
1255int btrfs_global_root_insert(struct btrfs_root *root)
1256{
1257 struct btrfs_fs_info *fs_info = root->fs_info;
1258 struct rb_node *tmp;
1259
1260 write_lock(&fs_info->global_root_lock);
1261 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1262 write_unlock(&fs_info->global_root_lock);
1263 ASSERT(!tmp);
1264
1265 return tmp ? -EEXIST : 0;
1266}
1267
1268void btrfs_global_root_delete(struct btrfs_root *root)
1269{
1270 struct btrfs_fs_info *fs_info = root->fs_info;
1271
1272 write_lock(&fs_info->global_root_lock);
1273 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1274 write_unlock(&fs_info->global_root_lock);
1275}
1276
1277struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1278 struct btrfs_key *key)
1279{
1280 struct rb_node *node;
1281 struct btrfs_root *root = NULL;
1282
1283 read_lock(&fs_info->global_root_lock);
1284 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1285 if (node)
1286 root = container_of(node, struct btrfs_root, rb_node);
1287 read_unlock(&fs_info->global_root_lock);
1288
1289 return root;
1290}
1291
f7238e50
JB
1292static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1293{
1294 struct btrfs_block_group *block_group;
1295 u64 ret;
1296
1297 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1298 return 0;
1299
1300 if (bytenr)
1301 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1302 else
1303 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1304 ASSERT(block_group);
1305 if (!block_group)
1306 return 0;
1307 ret = block_group->global_root_id;
1308 btrfs_put_block_group(block_group);
1309
1310 return ret;
1311}
1312
abed4aaa
JB
1313struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1314{
1315 struct btrfs_key key = {
1316 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1317 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1318 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1319 };
1320
1321 return btrfs_global_root(fs_info, &key);
1322}
1323
1324struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1325{
1326 struct btrfs_key key = {
1327 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1328 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1329 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1330 };
1331
1332 return btrfs_global_root(fs_info, &key);
1333}
1334
20897f5c 1335struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1336 u64 objectid)
1337{
9b7a2440 1338 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1339 struct extent_buffer *leaf;
1340 struct btrfs_root *tree_root = fs_info->tree_root;
1341 struct btrfs_root *root;
1342 struct btrfs_key key;
b89f6d1f 1343 unsigned int nofs_flag;
20897f5c 1344 int ret = 0;
20897f5c 1345
b89f6d1f
FM
1346 /*
1347 * We're holding a transaction handle, so use a NOFS memory allocation
1348 * context to avoid deadlock if reclaim happens.
1349 */
1350 nofs_flag = memalloc_nofs_save();
96dfcb46 1351 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1352 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1353 if (!root)
1354 return ERR_PTR(-ENOMEM);
1355
20897f5c
AJ
1356 root->root_key.objectid = objectid;
1357 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1358 root->root_key.offset = 0;
1359
9631e4cc
JB
1360 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1361 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1362 if (IS_ERR(leaf)) {
1363 ret = PTR_ERR(leaf);
1dd05682 1364 leaf = NULL;
8a6a87cd 1365 goto fail_unlock;
20897f5c
AJ
1366 }
1367
20897f5c 1368 root->node = leaf;
20897f5c
AJ
1369 btrfs_mark_buffer_dirty(leaf);
1370
1371 root->commit_root = btrfs_root_node(root);
27cdeb70 1372 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1373
f944d2cb
DS
1374 btrfs_set_root_flags(&root->root_item, 0);
1375 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1376 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1377 btrfs_set_root_generation(&root->root_item, trans->transid);
1378 btrfs_set_root_level(&root->root_item, 0);
1379 btrfs_set_root_refs(&root->root_item, 1);
1380 btrfs_set_root_used(&root->root_item, leaf->len);
1381 btrfs_set_root_last_snapshot(&root->root_item, 0);
1382 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1383 if (is_fstree(objectid))
807fc790
AS
1384 generate_random_guid(root->root_item.uuid);
1385 else
1386 export_guid(root->root_item.uuid, &guid_null);
c8422684 1387 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1388
8a6a87cd
BB
1389 btrfs_tree_unlock(leaf);
1390
20897f5c
AJ
1391 key.objectid = objectid;
1392 key.type = BTRFS_ROOT_ITEM_KEY;
1393 key.offset = 0;
1394 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1395 if (ret)
1396 goto fail;
1397
1dd05682
TI
1398 return root;
1399
8a6a87cd 1400fail_unlock:
8c38938c 1401 if (leaf)
1dd05682 1402 btrfs_tree_unlock(leaf);
8a6a87cd 1403fail:
00246528 1404 btrfs_put_root(root);
20897f5c 1405
1dd05682 1406 return ERR_PTR(ret);
20897f5c
AJ
1407}
1408
7237f183
YZ
1409static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1410 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1411{
1412 struct btrfs_root *root;
e02119d5 1413
96dfcb46 1414 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1415 if (!root)
7237f183 1416 return ERR_PTR(-ENOMEM);
e02119d5 1417
e02119d5
CM
1418 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1419 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1420 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1421
6ab6ebb7
NA
1422 return root;
1423}
1424
1425int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1426 struct btrfs_root *root)
1427{
1428 struct extent_buffer *leaf;
1429
7237f183 1430 /*
92a7cc42 1431 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1432 *
92a7cc42
QW
1433 * Log trees are not exposed to user space thus can't be snapshotted,
1434 * and they go away before a real commit is actually done.
1435 *
1436 * They do store pointers to file data extents, and those reference
1437 * counts still get updated (along with back refs to the log tree).
7237f183 1438 */
e02119d5 1439
4d75f8a9 1440 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1441 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1442 if (IS_ERR(leaf))
1443 return PTR_ERR(leaf);
e02119d5 1444
7237f183 1445 root->node = leaf;
e02119d5 1446
e02119d5
CM
1447 btrfs_mark_buffer_dirty(root->node);
1448 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1449
1450 return 0;
7237f183
YZ
1451}
1452
1453int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1454 struct btrfs_fs_info *fs_info)
1455{
1456 struct btrfs_root *log_root;
1457
1458 log_root = alloc_log_tree(trans, fs_info);
1459 if (IS_ERR(log_root))
1460 return PTR_ERR(log_root);
6ab6ebb7 1461
3ddebf27
NA
1462 if (!btrfs_is_zoned(fs_info)) {
1463 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1464
1465 if (ret) {
1466 btrfs_put_root(log_root);
1467 return ret;
1468 }
6ab6ebb7
NA
1469 }
1470
7237f183
YZ
1471 WARN_ON(fs_info->log_root_tree);
1472 fs_info->log_root_tree = log_root;
1473 return 0;
1474}
1475
1476int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1477 struct btrfs_root *root)
1478{
0b246afa 1479 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1480 struct btrfs_root *log_root;
1481 struct btrfs_inode_item *inode_item;
6ab6ebb7 1482 int ret;
7237f183 1483
0b246afa 1484 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1485 if (IS_ERR(log_root))
1486 return PTR_ERR(log_root);
1487
6ab6ebb7
NA
1488 ret = btrfs_alloc_log_tree_node(trans, log_root);
1489 if (ret) {
1490 btrfs_put_root(log_root);
1491 return ret;
1492 }
1493
7237f183
YZ
1494 log_root->last_trans = trans->transid;
1495 log_root->root_key.offset = root->root_key.objectid;
1496
1497 inode_item = &log_root->root_item.inode;
3cae210f
QW
1498 btrfs_set_stack_inode_generation(inode_item, 1);
1499 btrfs_set_stack_inode_size(inode_item, 3);
1500 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1501 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1502 fs_info->nodesize);
3cae210f 1503 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1504
5d4f98a2 1505 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1506
1507 WARN_ON(root->log_root);
1508 root->log_root = log_root;
1509 root->log_transid = 0;
d1433deb 1510 root->log_transid_committed = -1;
257c62e1 1511 root->last_log_commit = 0;
e02119d5
CM
1512 return 0;
1513}
1514
49d11bea
JB
1515static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1516 struct btrfs_path *path,
1517 struct btrfs_key *key)
e02119d5
CM
1518{
1519 struct btrfs_root *root;
1520 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1521 u64 generation;
cb517eab 1522 int ret;
581c1760 1523 int level;
0f7d52f4 1524
96dfcb46 1525 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1526 if (!root)
1527 return ERR_PTR(-ENOMEM);
0f7d52f4 1528
cb517eab
MX
1529 ret = btrfs_find_root(tree_root, key, path,
1530 &root->root_item, &root->root_key);
0f7d52f4 1531 if (ret) {
13a8a7c8
YZ
1532 if (ret > 0)
1533 ret = -ENOENT;
49d11bea 1534 goto fail;
0f7d52f4 1535 }
13a8a7c8 1536
84234f3a 1537 generation = btrfs_root_generation(&root->root_item);
581c1760 1538 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1539 root->node = read_tree_block(fs_info,
1540 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1541 key->objectid, generation, level, NULL);
64c043de
LB
1542 if (IS_ERR(root->node)) {
1543 ret = PTR_ERR(root->node);
8c38938c 1544 root->node = NULL;
49d11bea 1545 goto fail;
cb517eab
MX
1546 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1547 ret = -EIO;
49d11bea 1548 goto fail;
416bc658 1549 }
5d4f98a2 1550 root->commit_root = btrfs_root_node(root);
cb517eab 1551 return root;
49d11bea 1552fail:
00246528 1553 btrfs_put_root(root);
49d11bea
JB
1554 return ERR_PTR(ret);
1555}
1556
1557struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1558 struct btrfs_key *key)
1559{
1560 struct btrfs_root *root;
1561 struct btrfs_path *path;
1562
1563 path = btrfs_alloc_path();
1564 if (!path)
1565 return ERR_PTR(-ENOMEM);
1566 root = read_tree_root_path(tree_root, path, key);
1567 btrfs_free_path(path);
1568
1569 return root;
cb517eab
MX
1570}
1571
2dfb1e43
QW
1572/*
1573 * Initialize subvolume root in-memory structure
1574 *
1575 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1576 */
1577static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1578{
1579 int ret;
dcc3eb96 1580 unsigned int nofs_flag;
cb517eab 1581
dcc3eb96
NB
1582 /*
1583 * We might be called under a transaction (e.g. indirect backref
1584 * resolution) which could deadlock if it triggers memory reclaim
1585 */
1586 nofs_flag = memalloc_nofs_save();
1587 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1588 memalloc_nofs_restore(nofs_flag);
1589 if (ret)
8257b2dc 1590 goto fail;
8257b2dc 1591
aeb935a4 1592 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1593 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1594 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1595 btrfs_check_and_init_root_item(&root->root_item);
1596 }
1597
851fd730
QW
1598 /*
1599 * Don't assign anonymous block device to roots that are not exposed to
1600 * userspace, the id pool is limited to 1M
1601 */
1602 if (is_fstree(root->root_key.objectid) &&
1603 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1604 if (!anon_dev) {
1605 ret = get_anon_bdev(&root->anon_dev);
1606 if (ret)
1607 goto fail;
1608 } else {
1609 root->anon_dev = anon_dev;
1610 }
851fd730 1611 }
f32e48e9
CR
1612
1613 mutex_lock(&root->objectid_mutex);
453e4873 1614 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1615 if (ret) {
1616 mutex_unlock(&root->objectid_mutex);
876d2cf1 1617 goto fail;
f32e48e9
CR
1618 }
1619
6b8fad57 1620 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1621
1622 mutex_unlock(&root->objectid_mutex);
1623
cb517eab
MX
1624 return 0;
1625fail:
84db5ccf 1626 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1627 return ret;
1628}
1629
a98db0f3
JB
1630static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1631 u64 root_id)
cb517eab
MX
1632{
1633 struct btrfs_root *root;
1634
1635 spin_lock(&fs_info->fs_roots_radix_lock);
1636 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1637 (unsigned long)root_id);
bc44d7c4 1638 if (root)
00246528 1639 root = btrfs_grab_root(root);
cb517eab
MX
1640 spin_unlock(&fs_info->fs_roots_radix_lock);
1641 return root;
1642}
1643
49d11bea
JB
1644static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1645 u64 objectid)
1646{
abed4aaa
JB
1647 struct btrfs_key key = {
1648 .objectid = objectid,
1649 .type = BTRFS_ROOT_ITEM_KEY,
1650 .offset = 0,
1651 };
1652
49d11bea
JB
1653 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1654 return btrfs_grab_root(fs_info->tree_root);
1655 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1656 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1657 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1658 return btrfs_grab_root(fs_info->chunk_root);
1659 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1660 return btrfs_grab_root(fs_info->dev_root);
1661 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1662 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1663 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1664 return btrfs_grab_root(fs_info->quota_root) ?
1665 fs_info->quota_root : ERR_PTR(-ENOENT);
1666 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1667 return btrfs_grab_root(fs_info->uuid_root) ?
1668 fs_info->uuid_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1669 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1670 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1671
1672 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1673 }
49d11bea
JB
1674 return NULL;
1675}
1676
cb517eab
MX
1677int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1678 struct btrfs_root *root)
1679{
1680 int ret;
1681
e1860a77 1682 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1683 if (ret)
1684 return ret;
1685
1686 spin_lock(&fs_info->fs_roots_radix_lock);
1687 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1688 (unsigned long)root->root_key.objectid,
1689 root);
af01d2e5 1690 if (ret == 0) {
00246528 1691 btrfs_grab_root(root);
27cdeb70 1692 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1693 }
cb517eab
MX
1694 spin_unlock(&fs_info->fs_roots_radix_lock);
1695 radix_tree_preload_end();
1696
1697 return ret;
1698}
1699
bd647ce3
JB
1700void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1701{
1702#ifdef CONFIG_BTRFS_DEBUG
1703 struct btrfs_root *root;
1704
1705 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1706 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1707
bd647ce3
JB
1708 root = list_first_entry(&fs_info->allocated_roots,
1709 struct btrfs_root, leak_list);
457f1864 1710 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1711 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1712 refcount_read(&root->refs));
1713 while (refcount_read(&root->refs) > 1)
00246528
JB
1714 btrfs_put_root(root);
1715 btrfs_put_root(root);
bd647ce3
JB
1716 }
1717#endif
1718}
1719
abed4aaa
JB
1720static void free_global_roots(struct btrfs_fs_info *fs_info)
1721{
1722 struct btrfs_root *root;
1723 struct rb_node *node;
1724
1725 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1726 root = rb_entry(node, struct btrfs_root, rb_node);
1727 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1728 btrfs_put_root(root);
1729 }
1730}
1731
0d4b0463
JB
1732void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1733{
141386e1
JB
1734 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1735 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1736 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1737 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1738 btrfs_free_csum_hash(fs_info);
1739 btrfs_free_stripe_hash_table(fs_info);
1740 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1741 kfree(fs_info->balance_ctl);
1742 kfree(fs_info->delayed_root);
abed4aaa 1743 free_global_roots(fs_info);
00246528
JB
1744 btrfs_put_root(fs_info->tree_root);
1745 btrfs_put_root(fs_info->chunk_root);
1746 btrfs_put_root(fs_info->dev_root);
00246528
JB
1747 btrfs_put_root(fs_info->quota_root);
1748 btrfs_put_root(fs_info->uuid_root);
00246528 1749 btrfs_put_root(fs_info->fs_root);
aeb935a4 1750 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1751 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1752 btrfs_check_leaked_roots(fs_info);
3fd63727 1753 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1754 kfree(fs_info->super_copy);
1755 kfree(fs_info->super_for_commit);
8481dd80 1756 kfree(fs_info->subpage_info);
0d4b0463
JB
1757 kvfree(fs_info);
1758}
1759
1760
2dfb1e43
QW
1761/*
1762 * Get an in-memory reference of a root structure.
1763 *
1764 * For essential trees like root/extent tree, we grab it from fs_info directly.
1765 * For subvolume trees, we check the cached filesystem roots first. If not
1766 * found, then read it from disk and add it to cached fs roots.
1767 *
1768 * Caller should release the root by calling btrfs_put_root() after the usage.
1769 *
1770 * NOTE: Reloc and log trees can't be read by this function as they share the
1771 * same root objectid.
1772 *
1773 * @objectid: root id
1774 * @anon_dev: preallocated anonymous block device number for new roots,
1775 * pass 0 for new allocation.
1776 * @check_ref: whether to check root item references, If true, return -ENOENT
1777 * for orphan roots
1778 */
1779static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1780 u64 objectid, dev_t anon_dev,
1781 bool check_ref)
5eda7b5e
CM
1782{
1783 struct btrfs_root *root;
381cf658 1784 struct btrfs_path *path;
1d4c08e0 1785 struct btrfs_key key;
5eda7b5e
CM
1786 int ret;
1787
49d11bea
JB
1788 root = btrfs_get_global_root(fs_info, objectid);
1789 if (root)
1790 return root;
4df27c4d 1791again:
56e9357a 1792 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1793 if (root) {
2dfb1e43
QW
1794 /* Shouldn't get preallocated anon_dev for cached roots */
1795 ASSERT(!anon_dev);
bc44d7c4 1796 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1797 btrfs_put_root(root);
48475471 1798 return ERR_PTR(-ENOENT);
bc44d7c4 1799 }
5eda7b5e 1800 return root;
48475471 1801 }
5eda7b5e 1802
56e9357a
DS
1803 key.objectid = objectid;
1804 key.type = BTRFS_ROOT_ITEM_KEY;
1805 key.offset = (u64)-1;
1806 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1807 if (IS_ERR(root))
1808 return root;
3394e160 1809
c00869f1 1810 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1811 ret = -ENOENT;
581bb050 1812 goto fail;
35a30d7c 1813 }
581bb050 1814
2dfb1e43 1815 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1816 if (ret)
1817 goto fail;
3394e160 1818
381cf658
DS
1819 path = btrfs_alloc_path();
1820 if (!path) {
1821 ret = -ENOMEM;
1822 goto fail;
1823 }
1d4c08e0
DS
1824 key.objectid = BTRFS_ORPHAN_OBJECTID;
1825 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1826 key.offset = objectid;
1d4c08e0
DS
1827
1828 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1829 btrfs_free_path(path);
d68fc57b
YZ
1830 if (ret < 0)
1831 goto fail;
1832 if (ret == 0)
27cdeb70 1833 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1834
cb517eab 1835 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1836 if (ret) {
00246528 1837 btrfs_put_root(root);
4785e24f 1838 if (ret == -EEXIST)
4df27c4d 1839 goto again;
4df27c4d 1840 goto fail;
0f7d52f4 1841 }
edbd8d4e 1842 return root;
4df27c4d 1843fail:
33fab972
FM
1844 /*
1845 * If our caller provided us an anonymous device, then it's his
1846 * responsability to free it in case we fail. So we have to set our
1847 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1848 * and once again by our caller.
1849 */
1850 if (anon_dev)
1851 root->anon_dev = 0;
8c38938c 1852 btrfs_put_root(root);
4df27c4d 1853 return ERR_PTR(ret);
edbd8d4e
CM
1854}
1855
2dfb1e43
QW
1856/*
1857 * Get in-memory reference of a root structure
1858 *
1859 * @objectid: tree objectid
1860 * @check_ref: if set, verify that the tree exists and the item has at least
1861 * one reference
1862 */
1863struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1864 u64 objectid, bool check_ref)
1865{
1866 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1867}
1868
1869/*
1870 * Get in-memory reference of a root structure, created as new, optionally pass
1871 * the anonymous block device id
1872 *
1873 * @objectid: tree objectid
1874 * @anon_dev: if zero, allocate a new anonymous block device or use the
1875 * parameter value
1876 */
1877struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1878 u64 objectid, dev_t anon_dev)
1879{
1880 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1881}
1882
49d11bea
JB
1883/*
1884 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1885 * @fs_info: the fs_info
1886 * @objectid: the objectid we need to lookup
1887 *
1888 * This is exclusively used for backref walking, and exists specifically because
1889 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1890 * creation time, which means we may have to read the tree_root in order to look
1891 * up a fs root that is not in memory. If the root is not in memory we will
1892 * read the tree root commit root and look up the fs root from there. This is a
1893 * temporary root, it will not be inserted into the radix tree as it doesn't
1894 * have the most uptodate information, it'll simply be discarded once the
1895 * backref code is finished using the root.
1896 */
1897struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1898 struct btrfs_path *path,
1899 u64 objectid)
1900{
1901 struct btrfs_root *root;
1902 struct btrfs_key key;
1903
1904 ASSERT(path->search_commit_root && path->skip_locking);
1905
1906 /*
1907 * This can return -ENOENT if we ask for a root that doesn't exist, but
1908 * since this is called via the backref walking code we won't be looking
1909 * up a root that doesn't exist, unless there's corruption. So if root
1910 * != NULL just return it.
1911 */
1912 root = btrfs_get_global_root(fs_info, objectid);
1913 if (root)
1914 return root;
1915
1916 root = btrfs_lookup_fs_root(fs_info, objectid);
1917 if (root)
1918 return root;
1919
1920 key.objectid = objectid;
1921 key.type = BTRFS_ROOT_ITEM_KEY;
1922 key.offset = (u64)-1;
1923 root = read_tree_root_path(fs_info->tree_root, path, &key);
1924 btrfs_release_path(path);
1925
1926 return root;
1927}
1928
8b712842
CM
1929/*
1930 * called by the kthread helper functions to finally call the bio end_io
1931 * functions. This is where read checksum verification actually happens
1932 */
1933static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1934{
ce9adaa5 1935 struct bio *bio;
97eb6b69 1936 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1937
97eb6b69 1938 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1939 bio = end_io_wq->bio;
ce9adaa5 1940
4e4cbee9 1941 bio->bi_status = end_io_wq->status;
8b712842
CM
1942 bio->bi_private = end_io_wq->private;
1943 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1944 bio_endio(bio);
9be490f1 1945 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1946}
1947
a74a4b97
CM
1948static int cleaner_kthread(void *arg)
1949{
1950 struct btrfs_root *root = arg;
0b246afa 1951 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1952 int again;
a74a4b97 1953
d6fd0ae2 1954 while (1) {
d0278245 1955 again = 0;
a74a4b97 1956
fd340d0f
JB
1957 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1958
d0278245 1959 /* Make the cleaner go to sleep early. */
2ff7e61e 1960 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1961 goto sleep;
1962
90c711ab
ZB
1963 /*
1964 * Do not do anything if we might cause open_ctree() to block
1965 * before we have finished mounting the filesystem.
1966 */
0b246afa 1967 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1968 goto sleep;
1969
0b246afa 1970 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1971 goto sleep;
1972
dc7f370c
MX
1973 /*
1974 * Avoid the problem that we change the status of the fs
1975 * during the above check and trylock.
1976 */
2ff7e61e 1977 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1978 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1979 goto sleep;
76dda93c 1980 }
a74a4b97 1981
2ff7e61e 1982 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1983
d0278245 1984 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1985 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1986
1987 /*
05323cd1
MX
1988 * The defragger has dealt with the R/O remount and umount,
1989 * needn't do anything special here.
d0278245 1990 */
0b246afa 1991 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1992
1993 /*
f3372065 1994 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1995 * with relocation (btrfs_relocate_chunk) and relocation
1996 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1997 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1998 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1999 * unused block groups.
2000 */
0b246afa 2001 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
2002
2003 /*
2004 * Reclaim block groups in the reclaim_bgs list after we deleted
2005 * all unused block_groups. This possibly gives us some more free
2006 * space.
2007 */
2008 btrfs_reclaim_bgs(fs_info);
d0278245 2009sleep:
a0a1db70 2010 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
2011 if (kthread_should_park())
2012 kthread_parkme();
2013 if (kthread_should_stop())
2014 return 0;
838fe188 2015 if (!again) {
a74a4b97 2016 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 2017 schedule();
a74a4b97
CM
2018 __set_current_state(TASK_RUNNING);
2019 }
da288d28 2020 }
a74a4b97
CM
2021}
2022
2023static int transaction_kthread(void *arg)
2024{
2025 struct btrfs_root *root = arg;
0b246afa 2026 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
2027 struct btrfs_trans_handle *trans;
2028 struct btrfs_transaction *cur;
8929ecfa 2029 u64 transid;
643900be 2030 time64_t delta;
a74a4b97 2031 unsigned long delay;
914b2007 2032 bool cannot_commit;
a74a4b97
CM
2033
2034 do {
914b2007 2035 cannot_commit = false;
ba1bc00f 2036 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 2037 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 2038
0b246afa
JM
2039 spin_lock(&fs_info->trans_lock);
2040 cur = fs_info->running_transaction;
a74a4b97 2041 if (!cur) {
0b246afa 2042 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
2043 goto sleep;
2044 }
31153d81 2045
643900be 2046 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
2047 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
2048 cur->state < TRANS_STATE_COMMIT_START &&
643900be 2049 delta < fs_info->commit_interval) {
0b246afa 2050 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
2051 delay -= msecs_to_jiffies((delta - 1) * 1000);
2052 delay = min(delay,
2053 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
2054 goto sleep;
2055 }
8929ecfa 2056 transid = cur->transid;
0b246afa 2057 spin_unlock(&fs_info->trans_lock);
56bec294 2058
79787eaa 2059 /* If the file system is aborted, this will always fail. */
354aa0fb 2060 trans = btrfs_attach_transaction(root);
914b2007 2061 if (IS_ERR(trans)) {
354aa0fb
MX
2062 if (PTR_ERR(trans) != -ENOENT)
2063 cannot_commit = true;
79787eaa 2064 goto sleep;
914b2007 2065 }
8929ecfa 2066 if (transid == trans->transid) {
3a45bb20 2067 btrfs_commit_transaction(trans);
8929ecfa 2068 } else {
3a45bb20 2069 btrfs_end_transaction(trans);
8929ecfa 2070 }
a74a4b97 2071sleep:
0b246afa
JM
2072 wake_up_process(fs_info->cleaner_kthread);
2073 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 2074
84961539 2075 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 2076 btrfs_cleanup_transaction(fs_info);
ce63f891 2077 if (!kthread_should_stop() &&
0b246afa 2078 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 2079 cannot_commit))
bc5511d0 2080 schedule_timeout_interruptible(delay);
a74a4b97
CM
2081 } while (!kthread_should_stop());
2082 return 0;
2083}
2084
af31f5e5 2085/*
01f0f9da
NB
2086 * This will find the highest generation in the array of root backups. The
2087 * index of the highest array is returned, or -EINVAL if we can't find
2088 * anything.
af31f5e5
CM
2089 *
2090 * We check to make sure the array is valid by comparing the
2091 * generation of the latest root in the array with the generation
2092 * in the super block. If they don't match we pitch it.
2093 */
01f0f9da 2094static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 2095{
01f0f9da 2096 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 2097 u64 cur;
af31f5e5
CM
2098 struct btrfs_root_backup *root_backup;
2099 int i;
2100
2101 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2102 root_backup = info->super_copy->super_roots + i;
2103 cur = btrfs_backup_tree_root_gen(root_backup);
2104 if (cur == newest_gen)
01f0f9da 2105 return i;
af31f5e5
CM
2106 }
2107
01f0f9da 2108 return -EINVAL;
af31f5e5
CM
2109}
2110
af31f5e5
CM
2111/*
2112 * copy all the root pointers into the super backup array.
2113 * this will bump the backup pointer by one when it is
2114 * done
2115 */
2116static void backup_super_roots(struct btrfs_fs_info *info)
2117{
6ef108dd 2118 const int next_backup = info->backup_root_index;
af31f5e5 2119 struct btrfs_root_backup *root_backup;
af31f5e5
CM
2120
2121 root_backup = info->super_for_commit->super_roots + next_backup;
2122
2123 /*
2124 * make sure all of our padding and empty slots get zero filled
2125 * regardless of which ones we use today
2126 */
2127 memset(root_backup, 0, sizeof(*root_backup));
2128
2129 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2130
2131 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2132 btrfs_set_backup_tree_root_gen(root_backup,
2133 btrfs_header_generation(info->tree_root->node));
2134
2135 btrfs_set_backup_tree_root_level(root_backup,
2136 btrfs_header_level(info->tree_root->node));
2137
2138 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2139 btrfs_set_backup_chunk_root_gen(root_backup,
2140 btrfs_header_generation(info->chunk_root->node));
2141 btrfs_set_backup_chunk_root_level(root_backup,
2142 btrfs_header_level(info->chunk_root->node));
2143
9c54e80d
JB
2144 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
2145 btrfs_set_backup_block_group_root(root_backup,
2146 info->block_group_root->node->start);
2147 btrfs_set_backup_block_group_root_gen(root_backup,
2148 btrfs_header_generation(info->block_group_root->node));
2149 btrfs_set_backup_block_group_root_level(root_backup,
2150 btrfs_header_level(info->block_group_root->node));
2151 } else {
2152 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 2153 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
2154
2155 btrfs_set_backup_extent_root(root_backup,
2156 extent_root->node->start);
2157 btrfs_set_backup_extent_root_gen(root_backup,
2158 btrfs_header_generation(extent_root->node));
2159 btrfs_set_backup_extent_root_level(root_backup,
2160 btrfs_header_level(extent_root->node));
f7238e50
JB
2161
2162 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2163 btrfs_set_backup_csum_root_gen(root_backup,
2164 btrfs_header_generation(csum_root->node));
2165 btrfs_set_backup_csum_root_level(root_backup,
2166 btrfs_header_level(csum_root->node));
9c54e80d 2167 }
af31f5e5 2168
7c7e82a7
CM
2169 /*
2170 * we might commit during log recovery, which happens before we set
2171 * the fs_root. Make sure it is valid before we fill it in.
2172 */
2173 if (info->fs_root && info->fs_root->node) {
2174 btrfs_set_backup_fs_root(root_backup,
2175 info->fs_root->node->start);
2176 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2177 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2178 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2179 btrfs_header_level(info->fs_root->node));
7c7e82a7 2180 }
af31f5e5
CM
2181
2182 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2183 btrfs_set_backup_dev_root_gen(root_backup,
2184 btrfs_header_generation(info->dev_root->node));
2185 btrfs_set_backup_dev_root_level(root_backup,
2186 btrfs_header_level(info->dev_root->node));
2187
af31f5e5
CM
2188 btrfs_set_backup_total_bytes(root_backup,
2189 btrfs_super_total_bytes(info->super_copy));
2190 btrfs_set_backup_bytes_used(root_backup,
2191 btrfs_super_bytes_used(info->super_copy));
2192 btrfs_set_backup_num_devices(root_backup,
2193 btrfs_super_num_devices(info->super_copy));
2194
2195 /*
2196 * if we don't copy this out to the super_copy, it won't get remembered
2197 * for the next commit
2198 */
2199 memcpy(&info->super_copy->super_roots,
2200 &info->super_for_commit->super_roots,
2201 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2202}
2203
bd2336b2
NB
2204/*
2205 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2206 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2207 *
2208 * fs_info - filesystem whose backup roots need to be read
2209 * priority - priority of backup root required
2210 *
2211 * Returns backup root index on success and -EINVAL otherwise.
2212 */
2213static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2214{
2215 int backup_index = find_newest_super_backup(fs_info);
2216 struct btrfs_super_block *super = fs_info->super_copy;
2217 struct btrfs_root_backup *root_backup;
2218
2219 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2220 if (priority == 0)
2221 return backup_index;
2222
2223 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2224 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2225 } else {
2226 return -EINVAL;
2227 }
2228
2229 root_backup = super->super_roots + backup_index;
2230
2231 btrfs_set_super_generation(super,
2232 btrfs_backup_tree_root_gen(root_backup));
2233 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2234 btrfs_set_super_root_level(super,
2235 btrfs_backup_tree_root_level(root_backup));
2236 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2237
2238 /*
2239 * Fixme: the total bytes and num_devices need to match or we should
2240 * need a fsck
2241 */
2242 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2243 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2244
2245 return backup_index;
2246}
2247
7abadb64
LB
2248/* helper to cleanup workers */
2249static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2250{
dc6e3209 2251 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2252 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2253 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2254 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2255 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2256 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2257 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2258 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2259 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2260 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2261 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2262 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2263 if (fs_info->discard_ctl.discard_workers)
2264 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2265 /*
2266 * Now that all other work queues are destroyed, we can safely destroy
2267 * the queues used for metadata I/O, since tasks from those other work
2268 * queues can do metadata I/O operations.
2269 */
2270 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2271 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2272}
2273
2e9f5954
R
2274static void free_root_extent_buffers(struct btrfs_root *root)
2275{
2276 if (root) {
2277 free_extent_buffer(root->node);
2278 free_extent_buffer(root->commit_root);
2279 root->node = NULL;
2280 root->commit_root = NULL;
2281 }
2282}
2283
abed4aaa
JB
2284static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2285{
2286 struct btrfs_root *root, *tmp;
2287
2288 rbtree_postorder_for_each_entry_safe(root, tmp,
2289 &fs_info->global_root_tree,
2290 rb_node)
2291 free_root_extent_buffers(root);
2292}
2293
af31f5e5 2294/* helper to cleanup tree roots */
4273eaff 2295static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2296{
2e9f5954 2297 free_root_extent_buffers(info->tree_root);
655b09fe 2298
abed4aaa 2299 free_global_root_pointers(info);
2e9f5954 2300 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2301 free_root_extent_buffers(info->quota_root);
2302 free_root_extent_buffers(info->uuid_root);
8c38938c 2303 free_root_extent_buffers(info->fs_root);
aeb935a4 2304 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2305 free_root_extent_buffers(info->block_group_root);
4273eaff 2306 if (free_chunk_root)
2e9f5954 2307 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2308}
2309
8c38938c
JB
2310void btrfs_put_root(struct btrfs_root *root)
2311{
2312 if (!root)
2313 return;
2314
2315 if (refcount_dec_and_test(&root->refs)) {
2316 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2317 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2318 if (root->anon_dev)
2319 free_anon_bdev(root->anon_dev);
2320 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2321 free_root_extent_buffers(root);
8c38938c
JB
2322#ifdef CONFIG_BTRFS_DEBUG
2323 spin_lock(&root->fs_info->fs_roots_radix_lock);
2324 list_del_init(&root->leak_list);
2325 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2326#endif
2327 kfree(root);
2328 }
2329}
2330
faa2dbf0 2331void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2332{
2333 int ret;
2334 struct btrfs_root *gang[8];
2335 int i;
2336
2337 while (!list_empty(&fs_info->dead_roots)) {
2338 gang[0] = list_entry(fs_info->dead_roots.next,
2339 struct btrfs_root, root_list);
2340 list_del(&gang[0]->root_list);
2341
8c38938c 2342 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2343 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2344 btrfs_put_root(gang[0]);
171f6537
JB
2345 }
2346
2347 while (1) {
2348 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2349 (void **)gang, 0,
2350 ARRAY_SIZE(gang));
2351 if (!ret)
2352 break;
2353 for (i = 0; i < ret; i++)
cb517eab 2354 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2355 }
2356}
af31f5e5 2357
638aa7ed
ES
2358static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2359{
2360 mutex_init(&fs_info->scrub_lock);
2361 atomic_set(&fs_info->scrubs_running, 0);
2362 atomic_set(&fs_info->scrub_pause_req, 0);
2363 atomic_set(&fs_info->scrubs_paused, 0);
2364 atomic_set(&fs_info->scrub_cancel_req, 0);
2365 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2366 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2367}
2368
779a65a4
ES
2369static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2370{
2371 spin_lock_init(&fs_info->balance_lock);
2372 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2373 atomic_set(&fs_info->balance_pause_req, 0);
2374 atomic_set(&fs_info->balance_cancel_req, 0);
2375 fs_info->balance_ctl = NULL;
2376 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2377 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2378}
2379
6bccf3ab 2380static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2381{
2ff7e61e
JM
2382 struct inode *inode = fs_info->btree_inode;
2383
2384 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2385 set_nlink(inode, 1);
f37938e0
ES
2386 /*
2387 * we set the i_size on the btree inode to the max possible int.
2388 * the real end of the address space is determined by all of
2389 * the devices in the system
2390 */
2ff7e61e
JM
2391 inode->i_size = OFFSET_MAX;
2392 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2393
2ff7e61e 2394 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2395 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2396 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2397 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2398 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2399
5c8fd99f 2400 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2401 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2402 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2403 btrfs_insert_inode_hash(inode);
f37938e0
ES
2404}
2405
ad618368
ES
2406static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2407{
ad618368 2408 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2409 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2410 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2411}
2412
f9e92e40
ES
2413static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2414{
2415 spin_lock_init(&fs_info->qgroup_lock);
2416 mutex_init(&fs_info->qgroup_ioctl_lock);
2417 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2418 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2419 fs_info->qgroup_seq = 1;
f9e92e40 2420 fs_info->qgroup_ulist = NULL;
d2c609b8 2421 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2422 mutex_init(&fs_info->qgroup_rescan_lock);
2423}
2424
d21deec5 2425static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2426{
f7b885be 2427 u32 max_active = fs_info->thread_pool_size;
6f011058 2428 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2429
2430 fs_info->workers =
cb001095
JM
2431 btrfs_alloc_workqueue(fs_info, "worker",
2432 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2433
2434 fs_info->delalloc_workers =
cb001095
JM
2435 btrfs_alloc_workqueue(fs_info, "delalloc",
2436 flags, max_active, 2);
2a458198
ES
2437
2438 fs_info->flush_workers =
cb001095
JM
2439 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2440 flags, max_active, 0);
2a458198
ES
2441
2442 fs_info->caching_workers =
cb001095 2443 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2444
2a458198 2445 fs_info->fixup_workers =
cb001095 2446 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2447
2448 /*
2449 * endios are largely parallel and should have a very
2450 * low idle thresh
2451 */
2452 fs_info->endio_workers =
cb001095 2453 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2454 fs_info->endio_meta_workers =
cb001095
JM
2455 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2456 max_active, 4);
2a458198 2457 fs_info->endio_meta_write_workers =
cb001095
JM
2458 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2459 max_active, 2);
2a458198 2460 fs_info->endio_raid56_workers =
cb001095
JM
2461 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2462 max_active, 4);
2a458198 2463 fs_info->rmw_workers =
cb001095 2464 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2465 fs_info->endio_write_workers =
cb001095
JM
2466 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2467 max_active, 2);
2a458198 2468 fs_info->endio_freespace_worker =
cb001095
JM
2469 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2470 max_active, 0);
2a458198 2471 fs_info->delayed_workers =
cb001095
JM
2472 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2473 max_active, 0);
2a458198 2474 fs_info->qgroup_rescan_workers =
cb001095 2475 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2476 fs_info->discard_ctl.discard_workers =
2477 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2478
2479 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2480 fs_info->flush_workers &&
2a458198
ES
2481 fs_info->endio_workers && fs_info->endio_meta_workers &&
2482 fs_info->endio_meta_write_workers &&
2a458198
ES
2483 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2484 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2485 fs_info->caching_workers && fs_info->fixup_workers &&
2486 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2487 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2488 return -ENOMEM;
2489 }
2490
2491 return 0;
2492}
2493
6d97c6e3
JT
2494static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2495{
2496 struct crypto_shash *csum_shash;
b4e967be 2497 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2498
b4e967be 2499 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2500
2501 if (IS_ERR(csum_shash)) {
2502 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2503 csum_driver);
6d97c6e3
JT
2504 return PTR_ERR(csum_shash);
2505 }
2506
2507 fs_info->csum_shash = csum_shash;
2508
2509 return 0;
2510}
2511
63443bf5
ES
2512static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2513 struct btrfs_fs_devices *fs_devices)
2514{
2515 int ret;
63443bf5
ES
2516 struct btrfs_root *log_tree_root;
2517 struct btrfs_super_block *disk_super = fs_info->super_copy;
2518 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2519 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2520
2521 if (fs_devices->rw_devices == 0) {
f14d104d 2522 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2523 return -EIO;
2524 }
2525
96dfcb46
JB
2526 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2527 GFP_KERNEL);
63443bf5
ES
2528 if (!log_tree_root)
2529 return -ENOMEM;
2530
2ff7e61e 2531 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2532 BTRFS_TREE_LOG_OBJECTID,
2533 fs_info->generation + 1, level,
2534 NULL);
64c043de 2535 if (IS_ERR(log_tree_root->node)) {
f14d104d 2536 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2537 ret = PTR_ERR(log_tree_root->node);
8c38938c 2538 log_tree_root->node = NULL;
00246528 2539 btrfs_put_root(log_tree_root);
0eeff236 2540 return ret;
64c043de 2541 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2542 btrfs_err(fs_info, "failed to read log tree");
00246528 2543 btrfs_put_root(log_tree_root);
63443bf5
ES
2544 return -EIO;
2545 }
2546 /* returns with log_tree_root freed on success */
2547 ret = btrfs_recover_log_trees(log_tree_root);
2548 if (ret) {
0b246afa
JM
2549 btrfs_handle_fs_error(fs_info, ret,
2550 "Failed to recover log tree");
00246528 2551 btrfs_put_root(log_tree_root);
63443bf5
ES
2552 return ret;
2553 }
2554
bc98a42c 2555 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2556 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2557 if (ret)
2558 return ret;
2559 }
2560
2561 return 0;
2562}
2563
abed4aaa
JB
2564static int load_global_roots_objectid(struct btrfs_root *tree_root,
2565 struct btrfs_path *path, u64 objectid,
2566 const char *name)
2567{
2568 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2569 struct btrfs_root *root;
f7238e50 2570 u64 max_global_id = 0;
abed4aaa
JB
2571 int ret;
2572 struct btrfs_key key = {
2573 .objectid = objectid,
2574 .type = BTRFS_ROOT_ITEM_KEY,
2575 .offset = 0,
2576 };
2577 bool found = false;
2578
2579 /* If we have IGNOREDATACSUMS skip loading these roots. */
2580 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2581 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2582 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2583 return 0;
2584 }
2585
2586 while (1) {
2587 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2588 if (ret < 0)
2589 break;
2590
2591 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2592 ret = btrfs_next_leaf(tree_root, path);
2593 if (ret) {
2594 if (ret > 0)
2595 ret = 0;
2596 break;
2597 }
2598 }
2599 ret = 0;
2600
2601 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2602 if (key.objectid != objectid)
2603 break;
2604 btrfs_release_path(path);
2605
f7238e50
JB
2606 /*
2607 * Just worry about this for extent tree, it'll be the same for
2608 * everybody.
2609 */
2610 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2611 max_global_id = max(max_global_id, key.offset);
2612
abed4aaa
JB
2613 found = true;
2614 root = read_tree_root_path(tree_root, path, &key);
2615 if (IS_ERR(root)) {
2616 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2617 ret = PTR_ERR(root);
2618 break;
2619 }
2620 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2621 ret = btrfs_global_root_insert(root);
2622 if (ret) {
2623 btrfs_put_root(root);
2624 break;
2625 }
2626 key.offset++;
2627 }
2628 btrfs_release_path(path);
2629
f7238e50
JB
2630 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2631 fs_info->nr_global_roots = max_global_id + 1;
2632
abed4aaa
JB
2633 if (!found || ret) {
2634 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2635 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2636
2637 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2638 ret = ret ? ret : -ENOENT;
2639 else
2640 ret = 0;
2641 btrfs_err(fs_info, "failed to load root %s", name);
2642 }
2643 return ret;
2644}
2645
2646static int load_global_roots(struct btrfs_root *tree_root)
2647{
2648 struct btrfs_path *path;
2649 int ret = 0;
2650
2651 path = btrfs_alloc_path();
2652 if (!path)
2653 return -ENOMEM;
2654
2655 ret = load_global_roots_objectid(tree_root, path,
2656 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2657 if (ret)
2658 goto out;
2659 ret = load_global_roots_objectid(tree_root, path,
2660 BTRFS_CSUM_TREE_OBJECTID, "csum");
2661 if (ret)
2662 goto out;
2663 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2664 goto out;
2665 ret = load_global_roots_objectid(tree_root, path,
2666 BTRFS_FREE_SPACE_TREE_OBJECTID,
2667 "free space");
2668out:
2669 btrfs_free_path(path);
2670 return ret;
2671}
2672
6bccf3ab 2673static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2674{
6bccf3ab 2675 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2676 struct btrfs_root *root;
4bbcaa64
ES
2677 struct btrfs_key location;
2678 int ret;
2679
6bccf3ab
JM
2680 BUG_ON(!fs_info->tree_root);
2681
abed4aaa
JB
2682 ret = load_global_roots(tree_root);
2683 if (ret)
2684 return ret;
2685
2686 location.objectid = BTRFS_DEV_TREE_OBJECTID;
4bbcaa64
ES
2687 location.type = BTRFS_ROOT_ITEM_KEY;
2688 location.offset = 0;
2689
a4f3d2c4 2690 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2691 if (IS_ERR(root)) {
42437a63
JB
2692 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2693 ret = PTR_ERR(root);
2694 goto out;
2695 }
2696 } else {
2697 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2698 fs_info->dev_root = root;
f50f4353 2699 }
820a49da
JB
2700 /* Initialize fs_info for all devices in any case */
2701 btrfs_init_devices_late(fs_info);
4bbcaa64 2702
aeb935a4
QW
2703 /*
2704 * This tree can share blocks with some other fs tree during relocation
2705 * and we need a proper setup by btrfs_get_fs_root
2706 */
56e9357a
DS
2707 root = btrfs_get_fs_root(tree_root->fs_info,
2708 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2709 if (IS_ERR(root)) {
42437a63
JB
2710 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2711 ret = PTR_ERR(root);
2712 goto out;
2713 }
2714 } else {
2715 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2716 fs_info->data_reloc_root = root;
aeb935a4 2717 }
aeb935a4 2718
4bbcaa64 2719 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2720 root = btrfs_read_tree_root(tree_root, &location);
2721 if (!IS_ERR(root)) {
2722 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2723 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2724 fs_info->quota_root = root;
4bbcaa64
ES
2725 }
2726
2727 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2728 root = btrfs_read_tree_root(tree_root, &location);
2729 if (IS_ERR(root)) {
42437a63
JB
2730 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2731 ret = PTR_ERR(root);
2732 if (ret != -ENOENT)
2733 goto out;
2734 }
4bbcaa64 2735 } else {
a4f3d2c4
DS
2736 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2737 fs_info->uuid_root = root;
4bbcaa64
ES
2738 }
2739
2740 return 0;
f50f4353
LB
2741out:
2742 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2743 location.objectid, ret);
2744 return ret;
4bbcaa64
ES
2745}
2746
069ec957
QW
2747/*
2748 * Real super block validation
2749 * NOTE: super csum type and incompat features will not be checked here.
2750 *
2751 * @sb: super block to check
2752 * @mirror_num: the super block number to check its bytenr:
2753 * 0 the primary (1st) sb
2754 * 1, 2 2nd and 3rd backup copy
2755 * -1 skip bytenr check
2756 */
2757static int validate_super(struct btrfs_fs_info *fs_info,
2758 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2759{
21a852b0
QW
2760 u64 nodesize = btrfs_super_nodesize(sb);
2761 u64 sectorsize = btrfs_super_sectorsize(sb);
2762 int ret = 0;
2763
2764 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2765 btrfs_err(fs_info, "no valid FS found");
2766 ret = -EINVAL;
2767 }
2768 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2769 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2770 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2771 ret = -EINVAL;
2772 }
2773 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2774 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2775 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2776 ret = -EINVAL;
2777 }
2778 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2779 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2780 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2781 ret = -EINVAL;
2782 }
2783 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2784 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2785 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2786 ret = -EINVAL;
2787 }
2788
2789 /*
2790 * Check sectorsize and nodesize first, other check will need it.
2791 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2792 */
2793 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2794 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2795 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2796 ret = -EINVAL;
2797 }
0bb3eb3e
QW
2798
2799 /*
2800 * For 4K page size, we only support 4K sector size.
50780d9b 2801 * For 64K page size, we support 64K and 4K sector sizes.
0bb3eb3e
QW
2802 */
2803 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2804 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2805 sectorsize != SZ_64K))) {
21a852b0 2806 btrfs_err(fs_info,
0bb3eb3e 2807 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2808 sectorsize, PAGE_SIZE);
2809 ret = -EINVAL;
2810 }
0bb3eb3e 2811
21a852b0
QW
2812 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2813 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2814 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2815 ret = -EINVAL;
2816 }
2817 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2818 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2819 le32_to_cpu(sb->__unused_leafsize), nodesize);
2820 ret = -EINVAL;
2821 }
2822
2823 /* Root alignment check */
2824 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2825 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2826 btrfs_super_root(sb));
2827 ret = -EINVAL;
2828 }
2829 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2830 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2831 btrfs_super_chunk_root(sb));
2832 ret = -EINVAL;
2833 }
2834 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2835 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2836 btrfs_super_log_root(sb));
2837 ret = -EINVAL;
2838 }
2839
aefd7f70
NB
2840 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2841 BTRFS_FSID_SIZE)) {
2842 btrfs_err(fs_info,
2843 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2844 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2845 ret = -EINVAL;
2846 }
2847
2848 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2849 memcmp(fs_info->fs_devices->metadata_uuid,
2850 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2851 btrfs_err(fs_info,
2852"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2853 fs_info->super_copy->metadata_uuid,
2854 fs_info->fs_devices->metadata_uuid);
2855 ret = -EINVAL;
2856 }
2857
de37aa51 2858 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2859 BTRFS_FSID_SIZE) != 0) {
21a852b0 2860 btrfs_err(fs_info,
7239ff4b 2861 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2862 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2863 ret = -EINVAL;
2864 }
2865
2866 /*
2867 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2868 * done later
2869 */
2870 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2871 btrfs_err(fs_info, "bytes_used is too small %llu",
2872 btrfs_super_bytes_used(sb));
2873 ret = -EINVAL;
2874 }
2875 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2876 btrfs_err(fs_info, "invalid stripesize %u",
2877 btrfs_super_stripesize(sb));
2878 ret = -EINVAL;
2879 }
2880 if (btrfs_super_num_devices(sb) > (1UL << 31))
2881 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2882 btrfs_super_num_devices(sb));
2883 if (btrfs_super_num_devices(sb) == 0) {
2884 btrfs_err(fs_info, "number of devices is 0");
2885 ret = -EINVAL;
2886 }
2887
069ec957
QW
2888 if (mirror_num >= 0 &&
2889 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2890 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2891 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2892 ret = -EINVAL;
2893 }
2894
2895 /*
2896 * Obvious sys_chunk_array corruptions, it must hold at least one key
2897 * and one chunk
2898 */
2899 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2900 btrfs_err(fs_info, "system chunk array too big %u > %u",
2901 btrfs_super_sys_array_size(sb),
2902 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2903 ret = -EINVAL;
2904 }
2905 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2906 + sizeof(struct btrfs_chunk)) {
2907 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2908 btrfs_super_sys_array_size(sb),
2909 sizeof(struct btrfs_disk_key)
2910 + sizeof(struct btrfs_chunk));
2911 ret = -EINVAL;
2912 }
2913
2914 /*
2915 * The generation is a global counter, we'll trust it more than the others
2916 * but it's still possible that it's the one that's wrong.
2917 */
2918 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2919 btrfs_warn(fs_info,
2920 "suspicious: generation < chunk_root_generation: %llu < %llu",
2921 btrfs_super_generation(sb),
2922 btrfs_super_chunk_root_generation(sb));
2923 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2924 && btrfs_super_cache_generation(sb) != (u64)-1)
2925 btrfs_warn(fs_info,
2926 "suspicious: generation < cache_generation: %llu < %llu",
2927 btrfs_super_generation(sb),
2928 btrfs_super_cache_generation(sb));
2929
2930 return ret;
2931}
2932
069ec957
QW
2933/*
2934 * Validation of super block at mount time.
2935 * Some checks already done early at mount time, like csum type and incompat
2936 * flags will be skipped.
2937 */
2938static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2939{
2940 return validate_super(fs_info, fs_info->super_copy, 0);
2941}
2942
75cb857d
QW
2943/*
2944 * Validation of super block at write time.
2945 * Some checks like bytenr check will be skipped as their values will be
2946 * overwritten soon.
2947 * Extra checks like csum type and incompat flags will be done here.
2948 */
2949static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2950 struct btrfs_super_block *sb)
2951{
2952 int ret;
2953
2954 ret = validate_super(fs_info, sb, -1);
2955 if (ret < 0)
2956 goto out;
e7e16f48 2957 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2958 ret = -EUCLEAN;
2959 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2960 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2961 goto out;
2962 }
2963 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2964 ret = -EUCLEAN;
2965 btrfs_err(fs_info,
2966 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2967 btrfs_super_incompat_flags(sb),
2968 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2969 goto out;
2970 }
2971out:
2972 if (ret < 0)
2973 btrfs_err(fs_info,
2974 "super block corruption detected before writing it to disk");
2975 return ret;
2976}
2977
bd676446
JB
2978static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2979{
2980 int ret = 0;
2981
2982 root->node = read_tree_block(root->fs_info, bytenr,
2983 root->root_key.objectid, gen, level, NULL);
2984 if (IS_ERR(root->node)) {
2985 ret = PTR_ERR(root->node);
2986 root->node = NULL;
2987 } else if (!extent_buffer_uptodate(root->node)) {
2988 free_extent_buffer(root->node);
2989 root->node = NULL;
2990 ret = -EIO;
2991 }
2992
2993 if (ret)
2994 return ret;
2995
2996 btrfs_set_root_node(&root->root_item, root->node);
2997 root->commit_root = btrfs_root_node(root);
2998 btrfs_set_root_refs(&root->root_item, 1);
2999 return ret;
3000}
3001
3002static int load_important_roots(struct btrfs_fs_info *fs_info)
3003{
3004 struct btrfs_super_block *sb = fs_info->super_copy;
3005 u64 gen, bytenr;
3006 int level, ret;
3007
3008 bytenr = btrfs_super_root(sb);
3009 gen = btrfs_super_generation(sb);
3010 level = btrfs_super_root_level(sb);
3011 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 3012 if (ret) {
bd676446 3013 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
3014 return ret;
3015 }
3016
3017 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3018 return 0;
3019
3020 bytenr = btrfs_super_block_group_root(sb);
3021 gen = btrfs_super_block_group_root_generation(sb);
3022 level = btrfs_super_block_group_root_level(sb);
3023 ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
3024 if (ret)
3025 btrfs_warn(fs_info, "couldn't read block group root");
bd676446
JB
3026 return ret;
3027}
3028
6ef108dd 3029static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 3030{
6ef108dd 3031 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
3032 struct btrfs_super_block *sb = fs_info->super_copy;
3033 struct btrfs_root *tree_root = fs_info->tree_root;
3034 bool handle_error = false;
3035 int ret = 0;
3036 int i;
3037
9c54e80d
JB
3038 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3039 struct btrfs_root *root;
3040
3041 root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
3042 GFP_KERNEL);
3043 if (!root)
3044 return -ENOMEM;
3045 fs_info->block_group_root = root;
3046 }
3047
b8522a1e 3048 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
3049 if (handle_error) {
3050 if (!IS_ERR(tree_root->node))
3051 free_extent_buffer(tree_root->node);
3052 tree_root->node = NULL;
3053
3054 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3055 break;
3056
3057 free_root_pointers(fs_info, 0);
3058
3059 /*
3060 * Don't use the log in recovery mode, it won't be
3061 * valid
3062 */
3063 btrfs_set_super_log_root(sb, 0);
3064
3065 /* We can't trust the free space cache either */
3066 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3067
3068 ret = read_backup_root(fs_info, i);
6ef108dd 3069 backup_index = ret;
b8522a1e
NB
3070 if (ret < 0)
3071 return ret;
3072 }
b8522a1e 3073
bd676446
JB
3074 ret = load_important_roots(fs_info);
3075 if (ret) {
217f5004 3076 handle_error = true;
b8522a1e
NB
3077 continue;
3078 }
3079
336a0d8d
NB
3080 /*
3081 * No need to hold btrfs_root::objectid_mutex since the fs
3082 * hasn't been fully initialised and we are the only user
3083 */
453e4873 3084 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 3085 if (ret < 0) {
b8522a1e
NB
3086 handle_error = true;
3087 continue;
3088 }
3089
6b8fad57 3090 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
3091
3092 ret = btrfs_read_roots(fs_info);
3093 if (ret < 0) {
3094 handle_error = true;
3095 continue;
3096 }
3097
3098 /* All successful */
bd676446
JB
3099 fs_info->generation = btrfs_header_generation(tree_root->node);
3100 fs_info->last_trans_committed = fs_info->generation;
d96b3424 3101 fs_info->last_reloc_trans = 0;
6ef108dd
NB
3102
3103 /* Always begin writing backup roots after the one being used */
3104 if (backup_index < 0) {
3105 fs_info->backup_root_index = 0;
3106 } else {
3107 fs_info->backup_root_index = backup_index + 1;
3108 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3109 }
b8522a1e
NB
3110 break;
3111 }
3112
3113 return ret;
3114}
3115
8260edba 3116void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 3117{
76dda93c 3118 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 3119 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 3120 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 3121 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 3122 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 3123 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 3124 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 3125 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 3126 spin_lock_init(&fs_info->trans_lock);
76dda93c 3127 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 3128 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 3129 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 3130 spin_lock_init(&fs_info->super_lock);
f28491e0 3131 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 3132 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 3133 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 3134 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 3135 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 3136 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 3137 rwlock_init(&fs_info->global_root_lock);
d7c15171 3138 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 3139 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 3140 mutex_init(&fs_info->reloc_mutex);
573bfb72 3141 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 3142 mutex_init(&fs_info->zoned_meta_io_lock);
de98ced9 3143 seqlock_init(&fs_info->profiles_lock);
19c00ddc 3144
0b86a832 3145 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3146 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3147 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3148 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3149 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3150 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3151#ifdef CONFIG_BTRFS_DEBUG
3152 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3153 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3154 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3155#endif
c8bf1b67 3156 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3157 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3158 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3159 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3160 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3161 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3162 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3163 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3164 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3165 BTRFS_BLOCK_RSV_DELREFS);
3166
771ed689 3167 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3168 atomic_set(&fs_info->defrag_running, 0);
034f784d 3169 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3170 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3171 fs_info->global_root_tree = RB_ROOT;
95ac567a 3172 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3173 fs_info->metadata_ratio = 0;
4cb5300b 3174 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3175 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3176 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3177 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3178 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3179 btrfs_init_ref_verify(fs_info);
c8b97818 3180
b34b086c
CM
3181 fs_info->thread_pool_size = min_t(unsigned long,
3182 num_online_cpus() + 2, 8);
0afbaf8c 3183
199c2a9c
MX
3184 INIT_LIST_HEAD(&fs_info->ordered_roots);
3185 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3186
638aa7ed 3187 btrfs_init_scrub(fs_info);
21adbd5c
SB
3188#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3189 fs_info->check_integrity_print_mask = 0;
3190#endif
779a65a4 3191 btrfs_init_balance(fs_info);
57056740 3192 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3193
0f9dd46c 3194 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 3195 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 3196 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 3197
fe119a6e
NB
3198 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3199 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3200
5a3f23d5 3201 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3202 mutex_init(&fs_info->tree_log_mutex);
925baedd 3203 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3204 mutex_init(&fs_info->transaction_kthread_mutex);
3205 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3206 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3207 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3208 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3209 init_rwsem(&fs_info->subvol_sem);
803b2f54 3210 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3211
ad618368 3212 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3213 btrfs_init_qgroup(fs_info);
b0643e59 3214 btrfs_discard_init(fs_info);
416ac51d 3215
fa9c0d79
CM
3216 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3217 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3218
e6dcd2dc 3219 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3220 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3221 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3222 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3223 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3224
da17066c
JM
3225 /* Usable values until the real ones are cached from the superblock */
3226 fs_info->nodesize = 4096;
3227 fs_info->sectorsize = 4096;
ab108d99 3228 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3229 fs_info->stripesize = 4096;
3230
eede2bf3
OS
3231 spin_lock_init(&fs_info->swapfile_pins_lock);
3232 fs_info->swapfile_pins = RB_ROOT;
3233
18bb8bbf
JT
3234 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3235 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3236}
3237
3238static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3239{
3240 int ret;
3241
3242 fs_info->sb = sb;
3243 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3244 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3245
5deb17e1 3246 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3247 if (ret)
c75e8394 3248 return ret;
ae18c37a
JB
3249
3250 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3251 if (ret)
c75e8394 3252 return ret;
ae18c37a
JB
3253
3254 fs_info->dirty_metadata_batch = PAGE_SIZE *
3255 (1 + ilog2(nr_cpu_ids));
3256
3257 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3258 if (ret)
c75e8394 3259 return ret;
ae18c37a
JB
3260
3261 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3262 GFP_KERNEL);
3263 if (ret)
c75e8394 3264 return ret;
ae18c37a
JB
3265
3266 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3267 GFP_KERNEL);
c75e8394
JB
3268 if (!fs_info->delayed_root)
3269 return -ENOMEM;
ae18c37a
JB
3270 btrfs_init_delayed_root(fs_info->delayed_root);
3271
a0a1db70
FM
3272 if (sb_rdonly(sb))
3273 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3274
c75e8394 3275 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3276}
3277
97f4dd09
NB
3278static int btrfs_uuid_rescan_kthread(void *data)
3279{
3280 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3281 int ret;
3282
3283 /*
3284 * 1st step is to iterate through the existing UUID tree and
3285 * to delete all entries that contain outdated data.
3286 * 2nd step is to add all missing entries to the UUID tree.
3287 */
3288 ret = btrfs_uuid_tree_iterate(fs_info);
3289 if (ret < 0) {
c94bec2c
JB
3290 if (ret != -EINTR)
3291 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3292 ret);
97f4dd09
NB
3293 up(&fs_info->uuid_tree_rescan_sem);
3294 return ret;
3295 }
3296 return btrfs_uuid_scan_kthread(data);
3297}
3298
3299static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3300{
3301 struct task_struct *task;
3302
3303 down(&fs_info->uuid_tree_rescan_sem);
3304 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3305 if (IS_ERR(task)) {
3306 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3307 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3308 up(&fs_info->uuid_tree_rescan_sem);
3309 return PTR_ERR(task);
3310 }
3311
3312 return 0;
3313}
3314
8cd29088
BB
3315/*
3316 * Some options only have meaning at mount time and shouldn't persist across
3317 * remounts, or be displayed. Clear these at the end of mount and remount
3318 * code paths.
3319 */
3320void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3321{
3322 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3323 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3324}
3325
44c0ca21
BB
3326/*
3327 * Mounting logic specific to read-write file systems. Shared by open_ctree
3328 * and btrfs_remount when remounting from read-only to read-write.
3329 */
3330int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3331{
3332 int ret;
94846229 3333 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3334 bool clear_free_space_tree = false;
3335
3336 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3337 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3338 clear_free_space_tree = true;
3339 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3340 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3341 btrfs_warn(fs_info, "free space tree is invalid");
3342 clear_free_space_tree = true;
3343 }
3344
3345 if (clear_free_space_tree) {
3346 btrfs_info(fs_info, "clearing free space tree");
3347 ret = btrfs_clear_free_space_tree(fs_info);
3348 if (ret) {
3349 btrfs_warn(fs_info,
3350 "failed to clear free space tree: %d", ret);
3351 goto out;
3352 }
3353 }
44c0ca21 3354
8d488a8c
FM
3355 /*
3356 * btrfs_find_orphan_roots() is responsible for finding all the dead
3357 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3358 * them into the fs_info->fs_roots_radix tree. This must be done before
3359 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3360 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3361 * item before the root's tree is deleted - this means that if we unmount
3362 * or crash before the deletion completes, on the next mount we will not
3363 * delete what remains of the tree because the orphan item does not
3364 * exists anymore, which is what tells us we have a pending deletion.
3365 */
3366 ret = btrfs_find_orphan_roots(fs_info);
3367 if (ret)
3368 goto out;
3369
44c0ca21
BB
3370 ret = btrfs_cleanup_fs_roots(fs_info);
3371 if (ret)
3372 goto out;
3373
8f1c21d7
BB
3374 down_read(&fs_info->cleanup_work_sem);
3375 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3376 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3377 up_read(&fs_info->cleanup_work_sem);
3378 goto out;
3379 }
3380 up_read(&fs_info->cleanup_work_sem);
3381
44c0ca21
BB
3382 mutex_lock(&fs_info->cleaner_mutex);
3383 ret = btrfs_recover_relocation(fs_info->tree_root);
3384 mutex_unlock(&fs_info->cleaner_mutex);
3385 if (ret < 0) {
3386 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3387 goto out;
3388 }
3389
5011139a
BB
3390 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3391 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3392 btrfs_info(fs_info, "creating free space tree");
3393 ret = btrfs_create_free_space_tree(fs_info);
3394 if (ret) {
3395 btrfs_warn(fs_info,
3396 "failed to create free space tree: %d", ret);
3397 goto out;
3398 }
3399 }
3400
94846229
BB
3401 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3402 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3403 if (ret)
3404 goto out;
3405 }
3406
44c0ca21
BB
3407 ret = btrfs_resume_balance_async(fs_info);
3408 if (ret)
3409 goto out;
3410
3411 ret = btrfs_resume_dev_replace_async(fs_info);
3412 if (ret) {
3413 btrfs_warn(fs_info, "failed to resume dev_replace");
3414 goto out;
3415 }
3416
3417 btrfs_qgroup_rescan_resume(fs_info);
3418
3419 if (!fs_info->uuid_root) {
3420 btrfs_info(fs_info, "creating UUID tree");
3421 ret = btrfs_create_uuid_tree(fs_info);
3422 if (ret) {
3423 btrfs_warn(fs_info,
3424 "failed to create the UUID tree %d", ret);
3425 goto out;
3426 }
3427 }
3428
3429out:
3430 return ret;
3431}
3432
ae18c37a
JB
3433int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3434 char *options)
3435{
3436 u32 sectorsize;
3437 u32 nodesize;
3438 u32 stripesize;
3439 u64 generation;
3440 u64 features;
3441 u16 csum_type;
ae18c37a
JB
3442 struct btrfs_super_block *disk_super;
3443 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3444 struct btrfs_root *tree_root;
3445 struct btrfs_root *chunk_root;
3446 int ret;
3447 int err = -EINVAL;
ae18c37a
JB
3448 int level;
3449
8260edba 3450 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3451 if (ret) {
83c8266a 3452 err = ret;
ae18c37a 3453 goto fail;
53b381b3
DW
3454 }
3455
ae18c37a
JB
3456 /* These need to be init'ed before we start creating inodes and such. */
3457 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3458 GFP_KERNEL);
3459 fs_info->tree_root = tree_root;
3460 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3461 GFP_KERNEL);
3462 fs_info->chunk_root = chunk_root;
3463 if (!tree_root || !chunk_root) {
3464 err = -ENOMEM;
c75e8394 3465 goto fail;
ae18c37a
JB
3466 }
3467
3468 fs_info->btree_inode = new_inode(sb);
3469 if (!fs_info->btree_inode) {
3470 err = -ENOMEM;
c75e8394 3471 goto fail;
ae18c37a
JB
3472 }
3473 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3474 btrfs_init_btree_inode(fs_info);
3475
d24fa5c1 3476 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3477
3478 /*
3479 * Read super block and check the signature bytes only
3480 */
d24fa5c1 3481 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3482 if (IS_ERR(disk_super)) {
3483 err = PTR_ERR(disk_super);
16cdcec7 3484 goto fail_alloc;
20b45077 3485 }
39279cc3 3486
8dc3f22c 3487 /*
260db43c 3488 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3489 * corrupted, we'll find out
3490 */
8f32380d 3491 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3492 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3493 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3494 csum_type);
8dc3f22c 3495 err = -EINVAL;
8f32380d 3496 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3497 goto fail_alloc;
3498 }
3499
83c68bbc
SY
3500 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3501
6d97c6e3
JT
3502 ret = btrfs_init_csum_hash(fs_info, csum_type);
3503 if (ret) {
3504 err = ret;
8f32380d 3505 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3506 goto fail_alloc;
3507 }
3508
1104a885
DS
3509 /*
3510 * We want to check superblock checksum, the type is stored inside.
3511 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3512 */
8f32380d 3513 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3514 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3515 err = -EINVAL;
8f32380d 3516 btrfs_release_disk_super(disk_super);
141386e1 3517 goto fail_alloc;
1104a885
DS
3518 }
3519
3520 /*
3521 * super_copy is zeroed at allocation time and we never touch the
3522 * following bytes up to INFO_SIZE, the checksum is calculated from
3523 * the whole block of INFO_SIZE
3524 */
8f32380d
JT
3525 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3526 btrfs_release_disk_super(disk_super);
5f39d397 3527
fbc6feae
NB
3528 disk_super = fs_info->super_copy;
3529
0b86a832 3530
fbc6feae
NB
3531 features = btrfs_super_flags(disk_super);
3532 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3533 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3534 btrfs_set_super_flags(disk_super, features);
3535 btrfs_info(fs_info,
3536 "found metadata UUID change in progress flag, clearing");
3537 }
3538
3539 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3540 sizeof(*fs_info->super_for_commit));
de37aa51 3541
069ec957 3542 ret = btrfs_validate_mount_super(fs_info);
1104a885 3543 if (ret) {
05135f59 3544 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3545 err = -EINVAL;
141386e1 3546 goto fail_alloc;
1104a885
DS
3547 }
3548
0f7d52f4 3549 if (!btrfs_super_root(disk_super))
141386e1 3550 goto fail_alloc;
0f7d52f4 3551
acce952b 3552 /* check FS state, whether FS is broken. */
87533c47
MX
3553 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3554 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3555
75e7cb7f
LB
3556 /*
3557 * In the long term, we'll store the compression type in the super
3558 * block, and it'll be used for per file compression control.
3559 */
3560 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3561
6f93e834
AJ
3562 /*
3563 * Flag our filesystem as having big metadata blocks if they are bigger
3564 * than the page size.
3565 */
3566 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3567 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3568 btrfs_info(fs_info,
3569 "flagging fs with big metadata feature");
3570 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3571 }
3572
3573 /* Set up fs_info before parsing mount options */
3574 nodesize = btrfs_super_nodesize(disk_super);
3575 sectorsize = btrfs_super_sectorsize(disk_super);
3576 stripesize = sectorsize;
3577 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3578 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3579
3580 fs_info->nodesize = nodesize;
3581 fs_info->sectorsize = sectorsize;
3582 fs_info->sectorsize_bits = ilog2(sectorsize);
3583 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3584 fs_info->stripesize = stripesize;
3585
2ff7e61e 3586 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3587 if (ret) {
3588 err = ret;
141386e1 3589 goto fail_alloc;
2b82032c 3590 }
dfe25020 3591
f2b636e8
JB
3592 features = btrfs_super_incompat_flags(disk_super) &
3593 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3594 if (features) {
05135f59
DS
3595 btrfs_err(fs_info,
3596 "cannot mount because of unsupported optional features (%llx)",
3597 features);
f2b636e8 3598 err = -EINVAL;
141386e1 3599 goto fail_alloc;
f2b636e8
JB
3600 }
3601
5d4f98a2 3602 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3603 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3604 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3605 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3606 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3607 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3608
3173a18f 3609 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3610 btrfs_info(fs_info, "has skinny extents");
3173a18f 3611
bc3f116f
CM
3612 /*
3613 * mixed block groups end up with duplicate but slightly offset
3614 * extent buffers for the same range. It leads to corruptions
3615 */
3616 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3617 (sectorsize != nodesize)) {
05135f59
DS
3618 btrfs_err(fs_info,
3619"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3620 nodesize, sectorsize);
141386e1 3621 goto fail_alloc;
bc3f116f
CM
3622 }
3623
ceda0864
MX
3624 /*
3625 * Needn't use the lock because there is no other task which will
3626 * update the flag.
3627 */
a6fa6fae 3628 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3629
f2b636e8
JB
3630 features = btrfs_super_compat_ro_flags(disk_super) &
3631 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3632 if (!sb_rdonly(sb) && features) {
05135f59
DS
3633 btrfs_err(fs_info,
3634 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3635 features);
f2b636e8 3636 err = -EINVAL;
141386e1 3637 goto fail_alloc;
f2b636e8 3638 }
61d92c32 3639
8481dd80
QW
3640 if (sectorsize < PAGE_SIZE) {
3641 struct btrfs_subpage_info *subpage_info;
3642
95ea0486
QW
3643 btrfs_warn(fs_info,
3644 "read-write for sector size %u with page size %lu is experimental",
3645 sectorsize, PAGE_SIZE);
c8050b3b
QW
3646 if (btrfs_super_incompat_flags(fs_info->super_copy) &
3647 BTRFS_FEATURE_INCOMPAT_RAID56) {
3648 btrfs_err(fs_info,
3649 "RAID56 is not yet supported for sector size %u with page size %lu",
3650 sectorsize, PAGE_SIZE);
3651 err = -EINVAL;
3652 goto fail_alloc;
3653 }
8481dd80
QW
3654 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3655 if (!subpage_info)
3656 goto fail_alloc;
3657 btrfs_init_subpage_info(subpage_info, sectorsize);
3658 fs_info->subpage_info = subpage_info;
c8050b3b 3659 }
0bb3eb3e 3660
d21deec5 3661 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3662 if (ret) {
3663 err = ret;
0dc3b84a
JB
3664 goto fail_sb_buffer;
3665 }
4543df7e 3666
9e11ceee
JK
3667 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3668 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3669
a061fc8d
CM
3670 sb->s_blocksize = sectorsize;
3671 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3672 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3673
925baedd 3674 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3675 ret = btrfs_read_sys_array(fs_info);
925baedd 3676 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3677 if (ret) {
05135f59 3678 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3679 goto fail_sb_buffer;
84eed90f 3680 }
0b86a832 3681
84234f3a 3682 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3683 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3684 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3685 generation, level);
3686 if (ret) {
05135f59 3687 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3688 goto fail_tree_roots;
83121942 3689 }
0b86a832 3690
e17cade2 3691 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3692 offsetof(struct btrfs_header, chunk_tree_uuid),
3693 BTRFS_UUID_SIZE);
e17cade2 3694
5b4aacef 3695 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3696 if (ret) {
05135f59 3697 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3698 goto fail_tree_roots;
2b82032c 3699 }
0b86a832 3700
8dabb742 3701 /*
bacce86a
AJ
3702 * At this point we know all the devices that make this filesystem,
3703 * including the seed devices but we don't know yet if the replace
3704 * target is required. So free devices that are not part of this
1a9fd417 3705 * filesystem but skip the replace target device which is checked
bacce86a 3706 * below in btrfs_init_dev_replace().
8dabb742 3707 */
bacce86a 3708 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3709 if (!fs_devices->latest_dev->bdev) {
05135f59 3710 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3711 goto fail_tree_roots;
3712 }
3713
b8522a1e 3714 ret = init_tree_roots(fs_info);
4bbcaa64 3715 if (ret)
b8522a1e 3716 goto fail_tree_roots;
8929ecfa 3717
73651042
NA
3718 /*
3719 * Get zone type information of zoned block devices. This will also
3720 * handle emulation of a zoned filesystem if a regular device has the
3721 * zoned incompat feature flag set.
3722 */
3723 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3724 if (ret) {
3725 btrfs_err(fs_info,
3726 "zoned: failed to read device zone info: %d",
3727 ret);
3728 goto fail_block_groups;
3729 }
3730
75ec1db8
JB
3731 /*
3732 * If we have a uuid root and we're not being told to rescan we need to
3733 * check the generation here so we can set the
3734 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3735 * transaction during a balance or the log replay without updating the
3736 * uuid generation, and then if we crash we would rescan the uuid tree,
3737 * even though it was perfectly fine.
3738 */
3739 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3740 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3741 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3742
cf90d884
QW
3743 ret = btrfs_verify_dev_extents(fs_info);
3744 if (ret) {
3745 btrfs_err(fs_info,
3746 "failed to verify dev extents against chunks: %d",
3747 ret);
3748 goto fail_block_groups;
3749 }
68310a5e
ID
3750 ret = btrfs_recover_balance(fs_info);
3751 if (ret) {
05135f59 3752 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3753 goto fail_block_groups;
3754 }
3755
733f4fbb
SB
3756 ret = btrfs_init_dev_stats(fs_info);
3757 if (ret) {
05135f59 3758 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3759 goto fail_block_groups;
3760 }
3761
8dabb742
SB
3762 ret = btrfs_init_dev_replace(fs_info);
3763 if (ret) {
05135f59 3764 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3765 goto fail_block_groups;
3766 }
3767
b70f5097
NA
3768 ret = btrfs_check_zoned_mode(fs_info);
3769 if (ret) {
3770 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3771 ret);
3772 goto fail_block_groups;
3773 }
3774
c6761a9e 3775 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3776 if (ret) {
05135f59
DS
3777 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3778 ret);
b7c35e81
AJ
3779 goto fail_block_groups;
3780 }
3781
96f3136e 3782 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3783 if (ret) {
05135f59 3784 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3785 goto fail_fsdev_sysfs;
c59021f8 3786 }
3787
c59021f8 3788 ret = btrfs_init_space_info(fs_info);
3789 if (ret) {
05135f59 3790 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3791 goto fail_sysfs;
c59021f8 3792 }
3793
5b4aacef 3794 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3795 if (ret) {
05135f59 3796 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3797 goto fail_sysfs;
1b1d1f66 3798 }
4330e183 3799
16beac87
NA
3800 btrfs_free_zone_cache(fs_info);
3801
5c78a5e7
AJ
3802 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3803 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3804 btrfs_warn(fs_info,
52042d8e 3805 "writable mount is not allowed due to too many missing devices");
2365dd3c 3806 goto fail_sysfs;
292fd7fc 3807 }
9078a3e1 3808
a74a4b97
CM
3809 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3810 "btrfs-cleaner");
57506d50 3811 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3812 goto fail_sysfs;
a74a4b97
CM
3813
3814 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3815 tree_root,
3816 "btrfs-transaction");
57506d50 3817 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3818 goto fail_cleaner;
a74a4b97 3819
583b7231 3820 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3821 !fs_info->fs_devices->rotating) {
583b7231 3822 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3823 }
3824
572d9ab7 3825 /*
01327610 3826 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3827 * not have to wait for transaction commit
3828 */
3829 btrfs_apply_pending_changes(fs_info);
3818aea2 3830
21adbd5c 3831#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3832 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3833 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3834 btrfs_test_opt(fs_info,
cbeaae4f 3835 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3836 fs_info->check_integrity_print_mask);
3837 if (ret)
05135f59
DS
3838 btrfs_warn(fs_info,
3839 "failed to initialize integrity check module: %d",
3840 ret);
21adbd5c
SB
3841 }
3842#endif
bcef60f2
AJ
3843 ret = btrfs_read_qgroup_config(fs_info);
3844 if (ret)
3845 goto fail_trans_kthread;
21adbd5c 3846
fd708b81
JB
3847 if (btrfs_build_ref_tree(fs_info))
3848 btrfs_err(fs_info, "couldn't build ref tree");
3849
96da0919
QW
3850 /* do not make disk changes in broken FS or nologreplay is given */
3851 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3852 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3853 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3854 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3855 if (ret) {
63443bf5 3856 err = ret;
28c16cbb 3857 goto fail_qgroup;
79787eaa 3858 }
e02119d5 3859 }
1a40e23b 3860
56e9357a 3861 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3862 if (IS_ERR(fs_info->fs_root)) {
3863 err = PTR_ERR(fs_info->fs_root);
f50f4353 3864 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3865 fs_info->fs_root = NULL;
bcef60f2 3866 goto fail_qgroup;
3140c9a3 3867 }
c289811c 3868
bc98a42c 3869 if (sb_rdonly(sb))
8cd29088 3870 goto clear_oneshot;
59641015 3871
44c0ca21 3872 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3873 if (ret) {
6bccf3ab 3874 close_ctree(fs_info);
2b6ba629 3875 return ret;
e3acc2a6 3876 }
b0643e59 3877 btrfs_discard_resume(fs_info);
b382a324 3878
44c0ca21
BB
3879 if (fs_info->uuid_root &&
3880 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3881 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3882 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3883 ret = btrfs_check_uuid_tree(fs_info);
3884 if (ret) {
05135f59
DS
3885 btrfs_warn(fs_info,
3886 "failed to check the UUID tree: %d", ret);
6bccf3ab 3887 close_ctree(fs_info);
70f80175
SB
3888 return ret;
3889 }
f7a81ea4 3890 }
94846229 3891
afcdd129 3892 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3893
b4be6aef
JB
3894 /* Kick the cleaner thread so it'll start deleting snapshots. */
3895 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3896 wake_up_process(fs_info->cleaner_kthread);
3897
8cd29088
BB
3898clear_oneshot:
3899 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3900 return 0;
39279cc3 3901
bcef60f2
AJ
3902fail_qgroup:
3903 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3904fail_trans_kthread:
3905 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3906 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3907 btrfs_free_fs_roots(fs_info);
3f157a2f 3908fail_cleaner:
a74a4b97 3909 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3910
3911 /*
3912 * make sure we're done with the btree inode before we stop our
3913 * kthreads
3914 */
3915 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3916
2365dd3c 3917fail_sysfs:
6618a59b 3918 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3919
b7c35e81
AJ
3920fail_fsdev_sysfs:
3921 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3922
1b1d1f66 3923fail_block_groups:
54067ae9 3924 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3925
3926fail_tree_roots:
9e3aa805
JB
3927 if (fs_info->data_reloc_root)
3928 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3929 free_root_pointers(fs_info, true);
2b8195bb 3930 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3931
39279cc3 3932fail_sb_buffer:
7abadb64 3933 btrfs_stop_all_workers(fs_info);
5cdd7db6 3934 btrfs_free_block_groups(fs_info);
16cdcec7 3935fail_alloc:
586e46e2
ID
3936 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3937
4543df7e 3938 iput(fs_info->btree_inode);
7e662854 3939fail:
586e46e2 3940 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3941 return err;
eb60ceac 3942}
663faf9f 3943ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3944
314b6dd0 3945static void btrfs_end_super_write(struct bio *bio)
f2984462 3946{
314b6dd0
JT
3947 struct btrfs_device *device = bio->bi_private;
3948 struct bio_vec *bvec;
3949 struct bvec_iter_all iter_all;
3950 struct page *page;
3951
3952 bio_for_each_segment_all(bvec, bio, iter_all) {
3953 page = bvec->bv_page;
3954
3955 if (bio->bi_status) {
3956 btrfs_warn_rl_in_rcu(device->fs_info,
3957 "lost page write due to IO error on %s (%d)",
3958 rcu_str_deref(device->name),
3959 blk_status_to_errno(bio->bi_status));
3960 ClearPageUptodate(page);
3961 SetPageError(page);
3962 btrfs_dev_stat_inc_and_print(device,
3963 BTRFS_DEV_STAT_WRITE_ERRS);
3964 } else {
3965 SetPageUptodate(page);
3966 }
3967
3968 put_page(page);
3969 unlock_page(page);
f2984462 3970 }
314b6dd0
JT
3971
3972 bio_put(bio);
f2984462
CM
3973}
3974
8f32380d
JT
3975struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3976 int copy_num)
29c36d72 3977{
29c36d72 3978 struct btrfs_super_block *super;
8f32380d 3979 struct page *page;
12659251 3980 u64 bytenr, bytenr_orig;
8f32380d 3981 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3982 int ret;
3983
3984 bytenr_orig = btrfs_sb_offset(copy_num);
3985 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3986 if (ret == -ENOENT)
3987 return ERR_PTR(-EINVAL);
3988 else if (ret)
3989 return ERR_PTR(ret);
29c36d72 3990
cda00eba 3991 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3992 return ERR_PTR(-EINVAL);
29c36d72 3993
8f32380d
JT
3994 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3995 if (IS_ERR(page))
3996 return ERR_CAST(page);
29c36d72 3997
8f32380d 3998 super = page_address(page);
96c2e067
AJ
3999 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4000 btrfs_release_disk_super(super);
4001 return ERR_PTR(-ENODATA);
4002 }
4003
12659251 4004 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
4005 btrfs_release_disk_super(super);
4006 return ERR_PTR(-EINVAL);
29c36d72
AJ
4007 }
4008
8f32380d 4009 return super;
29c36d72
AJ
4010}
4011
4012
8f32380d 4013struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 4014{
8f32380d 4015 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
4016 int i;
4017 u64 transid = 0;
a512bbf8
YZ
4018
4019 /* we would like to check all the supers, but that would make
4020 * a btrfs mount succeed after a mkfs from a different FS.
4021 * So, we need to add a special mount option to scan for
4022 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4023 */
4024 for (i = 0; i < 1; i++) {
8f32380d
JT
4025 super = btrfs_read_dev_one_super(bdev, i);
4026 if (IS_ERR(super))
a512bbf8
YZ
4027 continue;
4028
a512bbf8 4029 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
4030 if (latest)
4031 btrfs_release_disk_super(super);
4032
4033 latest = super;
a512bbf8 4034 transid = btrfs_super_generation(super);
a512bbf8
YZ
4035 }
4036 }
92fc03fb 4037
8f32380d 4038 return super;
a512bbf8
YZ
4039}
4040
4eedeb75 4041/*
abbb3b8e 4042 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 4043 * pages we use for writing are locked.
4eedeb75 4044 *
abbb3b8e
DS
4045 * Write @max_mirrors copies of the superblock, where 0 means default that fit
4046 * the expected device size at commit time. Note that max_mirrors must be
4047 * same for write and wait phases.
4eedeb75 4048 *
314b6dd0 4049 * Return number of errors when page is not found or submission fails.
4eedeb75 4050 */
a512bbf8 4051static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 4052 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 4053{
d5178578 4054 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 4055 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 4056 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 4057 int i;
a512bbf8 4058 int errors = 0;
12659251
NA
4059 int ret;
4060 u64 bytenr, bytenr_orig;
a512bbf8
YZ
4061
4062 if (max_mirrors == 0)
4063 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4064
d5178578
JT
4065 shash->tfm = fs_info->csum_shash;
4066
a512bbf8 4067 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4068 struct page *page;
4069 struct bio *bio;
4070 struct btrfs_super_block *disk_super;
4071
12659251
NA
4072 bytenr_orig = btrfs_sb_offset(i);
4073 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4074 if (ret == -ENOENT) {
4075 continue;
4076 } else if (ret < 0) {
4077 btrfs_err(device->fs_info,
4078 "couldn't get super block location for mirror %d",
4079 i);
4080 errors++;
4081 continue;
4082 }
935e5cc9
MX
4083 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4084 device->commit_total_bytes)
a512bbf8
YZ
4085 break;
4086
12659251 4087 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 4088
fd08001f
EB
4089 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4090 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4091 sb->csum);
4eedeb75 4092
314b6dd0
JT
4093 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4094 GFP_NOFS);
4095 if (!page) {
abbb3b8e 4096 btrfs_err(device->fs_info,
314b6dd0 4097 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
4098 bytenr);
4099 errors++;
4eedeb75 4100 continue;
abbb3b8e 4101 }
634554dc 4102
314b6dd0
JT
4103 /* Bump the refcount for wait_dev_supers() */
4104 get_page(page);
a512bbf8 4105
314b6dd0
JT
4106 disk_super = page_address(page);
4107 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 4108
314b6dd0
JT
4109 /*
4110 * Directly use bios here instead of relying on the page cache
4111 * to do I/O, so we don't lose the ability to do integrity
4112 * checking.
4113 */
4114 bio = bio_alloc(GFP_NOFS, 1);
4115 bio_set_dev(bio, device->bdev);
4116 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4117 bio->bi_private = device;
4118 bio->bi_end_io = btrfs_end_super_write;
4119 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4120 offset_in_page(bytenr));
a512bbf8 4121
387125fc 4122 /*
314b6dd0
JT
4123 * We FUA only the first super block. The others we allow to
4124 * go down lazy and there's a short window where the on-disk
4125 * copies might still contain the older version.
387125fc 4126 */
314b6dd0 4127 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 4128 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4129 bio->bi_opf |= REQ_FUA;
4130
4131 btrfsic_submit_bio(bio);
8376d9e1
NA
4132
4133 if (btrfs_advance_sb_log(device, i))
4134 errors++;
a512bbf8
YZ
4135 }
4136 return errors < i ? 0 : -1;
4137}
4138
abbb3b8e
DS
4139/*
4140 * Wait for write completion of superblocks done by write_dev_supers,
4141 * @max_mirrors same for write and wait phases.
4142 *
314b6dd0 4143 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4144 * date.
4145 */
4146static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4147{
abbb3b8e
DS
4148 int i;
4149 int errors = 0;
b6a535fa 4150 bool primary_failed = false;
12659251 4151 int ret;
abbb3b8e
DS
4152 u64 bytenr;
4153
4154 if (max_mirrors == 0)
4155 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4156
4157 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4158 struct page *page;
4159
12659251
NA
4160 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4161 if (ret == -ENOENT) {
4162 break;
4163 } else if (ret < 0) {
4164 errors++;
4165 if (i == 0)
4166 primary_failed = true;
4167 continue;
4168 }
abbb3b8e
DS
4169 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4170 device->commit_total_bytes)
4171 break;
4172
314b6dd0
JT
4173 page = find_get_page(device->bdev->bd_inode->i_mapping,
4174 bytenr >> PAGE_SHIFT);
4175 if (!page) {
abbb3b8e 4176 errors++;
b6a535fa
HM
4177 if (i == 0)
4178 primary_failed = true;
abbb3b8e
DS
4179 continue;
4180 }
314b6dd0
JT
4181 /* Page is submitted locked and unlocked once the IO completes */
4182 wait_on_page_locked(page);
4183 if (PageError(page)) {
abbb3b8e 4184 errors++;
b6a535fa
HM
4185 if (i == 0)
4186 primary_failed = true;
4187 }
abbb3b8e 4188
314b6dd0
JT
4189 /* Drop our reference */
4190 put_page(page);
abbb3b8e 4191
314b6dd0
JT
4192 /* Drop the reference from the writing run */
4193 put_page(page);
abbb3b8e
DS
4194 }
4195
b6a535fa
HM
4196 /* log error, force error return */
4197 if (primary_failed) {
4198 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4199 device->devid);
4200 return -1;
4201 }
4202
abbb3b8e
DS
4203 return errors < i ? 0 : -1;
4204}
4205
387125fc
CM
4206/*
4207 * endio for the write_dev_flush, this will wake anyone waiting
4208 * for the barrier when it is done
4209 */
4246a0b6 4210static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4211{
e0ae9994 4212 complete(bio->bi_private);
387125fc
CM
4213}
4214
4215/*
4fc6441a
AJ
4216 * Submit a flush request to the device if it supports it. Error handling is
4217 * done in the waiting counterpart.
387125fc 4218 */
4fc6441a 4219static void write_dev_flush(struct btrfs_device *device)
387125fc 4220{
e0ae9994 4221 struct bio *bio = device->flush_bio;
387125fc 4222
a91cf0ff
WY
4223#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4224 /*
4225 * When a disk has write caching disabled, we skip submission of a bio
4226 * with flush and sync requests before writing the superblock, since
4227 * it's not needed. However when the integrity checker is enabled, this
4228 * results in reports that there are metadata blocks referred by a
4229 * superblock that were not properly flushed. So don't skip the bio
4230 * submission only when the integrity checker is enabled for the sake
4231 * of simplicity, since this is a debug tool and not meant for use in
4232 * non-debug builds.
4233 */
4234 struct request_queue *q = bdev_get_queue(device->bdev);
c2a9c7ab 4235 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 4236 return;
a91cf0ff 4237#endif
387125fc 4238
e0ae9994 4239 bio_reset(bio);
387125fc 4240 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 4241 bio_set_dev(bio, device->bdev);
8d910125 4242 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
4243 init_completion(&device->flush_wait);
4244 bio->bi_private = &device->flush_wait;
387125fc 4245
43a01111 4246 btrfsic_submit_bio(bio);
1c3063b6 4247 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4248}
387125fc 4249
4fc6441a
AJ
4250/*
4251 * If the flush bio has been submitted by write_dev_flush, wait for it.
4252 */
8c27cb35 4253static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4254{
4fc6441a 4255 struct bio *bio = device->flush_bio;
387125fc 4256
1c3063b6 4257 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4258 return BLK_STS_OK;
387125fc 4259
1c3063b6 4260 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4261 wait_for_completion_io(&device->flush_wait);
387125fc 4262
8c27cb35 4263 return bio->bi_status;
387125fc 4264}
387125fc 4265
d10b82fe 4266static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4267{
6528b99d 4268 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4269 return -EIO;
387125fc
CM
4270 return 0;
4271}
4272
4273/*
4274 * send an empty flush down to each device in parallel,
4275 * then wait for them
4276 */
4277static int barrier_all_devices(struct btrfs_fs_info *info)
4278{
4279 struct list_head *head;
4280 struct btrfs_device *dev;
5af3e8cc 4281 int errors_wait = 0;
4e4cbee9 4282 blk_status_t ret;
387125fc 4283
1538e6c5 4284 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4285 /* send down all the barriers */
4286 head = &info->fs_devices->devices;
1538e6c5 4287 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4288 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4289 continue;
cea7c8bf 4290 if (!dev->bdev)
387125fc 4291 continue;
e12c9621 4292 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4293 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4294 continue;
4295
4fc6441a 4296 write_dev_flush(dev);
58efbc9f 4297 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4298 }
4299
4300 /* wait for all the barriers */
1538e6c5 4301 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4302 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4303 continue;
387125fc 4304 if (!dev->bdev) {
5af3e8cc 4305 errors_wait++;
387125fc
CM
4306 continue;
4307 }
e12c9621 4308 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4309 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4310 continue;
4311
4fc6441a 4312 ret = wait_dev_flush(dev);
401b41e5
AJ
4313 if (ret) {
4314 dev->last_flush_error = ret;
66b4993e
DS
4315 btrfs_dev_stat_inc_and_print(dev,
4316 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4317 errors_wait++;
401b41e5
AJ
4318 }
4319 }
4320
cea7c8bf 4321 if (errors_wait) {
401b41e5
AJ
4322 /*
4323 * At some point we need the status of all disks
4324 * to arrive at the volume status. So error checking
4325 * is being pushed to a separate loop.
4326 */
d10b82fe 4327 return check_barrier_error(info);
387125fc 4328 }
387125fc
CM
4329 return 0;
4330}
4331
943c6e99
ZL
4332int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4333{
8789f4fe
ZL
4334 int raid_type;
4335 int min_tolerated = INT_MAX;
943c6e99 4336
8789f4fe
ZL
4337 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4338 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4339 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4340 btrfs_raid_array[BTRFS_RAID_SINGLE].
4341 tolerated_failures);
943c6e99 4342
8789f4fe
ZL
4343 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4344 if (raid_type == BTRFS_RAID_SINGLE)
4345 continue;
41a6e891 4346 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4347 continue;
8c3e3582 4348 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4349 btrfs_raid_array[raid_type].
4350 tolerated_failures);
4351 }
943c6e99 4352
8789f4fe 4353 if (min_tolerated == INT_MAX) {
ab8d0fc4 4354 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4355 min_tolerated = 0;
4356 }
4357
4358 return min_tolerated;
943c6e99
ZL
4359}
4360
eece6a9c 4361int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4362{
e5e9a520 4363 struct list_head *head;
f2984462 4364 struct btrfs_device *dev;
a061fc8d 4365 struct btrfs_super_block *sb;
f2984462 4366 struct btrfs_dev_item *dev_item;
f2984462
CM
4367 int ret;
4368 int do_barriers;
a236aed1
CM
4369 int max_errors;
4370 int total_errors = 0;
a061fc8d 4371 u64 flags;
f2984462 4372
0b246afa 4373 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4374
4375 /*
4376 * max_mirrors == 0 indicates we're from commit_transaction,
4377 * not from fsync where the tree roots in fs_info have not
4378 * been consistent on disk.
4379 */
4380 if (max_mirrors == 0)
4381 backup_super_roots(fs_info);
f2984462 4382
0b246afa 4383 sb = fs_info->super_for_commit;
a061fc8d 4384 dev_item = &sb->dev_item;
e5e9a520 4385
0b246afa
JM
4386 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4387 head = &fs_info->fs_devices->devices;
4388 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4389
5af3e8cc 4390 if (do_barriers) {
0b246afa 4391 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4392 if (ret) {
4393 mutex_unlock(
0b246afa
JM
4394 &fs_info->fs_devices->device_list_mutex);
4395 btrfs_handle_fs_error(fs_info, ret,
4396 "errors while submitting device barriers.");
5af3e8cc
SB
4397 return ret;
4398 }
4399 }
387125fc 4400
1538e6c5 4401 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4402 if (!dev->bdev) {
4403 total_errors++;
4404 continue;
4405 }
e12c9621 4406 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4407 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4408 continue;
4409
2b82032c 4410 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4411 btrfs_set_stack_device_type(dev_item, dev->type);
4412 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4413 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4414 dev->commit_total_bytes);
ce7213c7
MX
4415 btrfs_set_stack_device_bytes_used(dev_item,
4416 dev->commit_bytes_used);
a061fc8d
CM
4417 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4418 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4419 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4420 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4421 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4422 BTRFS_FSID_SIZE);
a512bbf8 4423
a061fc8d
CM
4424 flags = btrfs_super_flags(sb);
4425 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4426
75cb857d
QW
4427 ret = btrfs_validate_write_super(fs_info, sb);
4428 if (ret < 0) {
4429 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4430 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4431 "unexpected superblock corruption detected");
4432 return -EUCLEAN;
4433 }
4434
abbb3b8e 4435 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4436 if (ret)
4437 total_errors++;
f2984462 4438 }
a236aed1 4439 if (total_errors > max_errors) {
0b246afa
JM
4440 btrfs_err(fs_info, "%d errors while writing supers",
4441 total_errors);
4442 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4443
9d565ba4 4444 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4445 btrfs_handle_fs_error(fs_info, -EIO,
4446 "%d errors while writing supers",
4447 total_errors);
9d565ba4 4448 return -EIO;
a236aed1 4449 }
f2984462 4450
a512bbf8 4451 total_errors = 0;
1538e6c5 4452 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4453 if (!dev->bdev)
4454 continue;
e12c9621 4455 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4456 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4457 continue;
4458
abbb3b8e 4459 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4460 if (ret)
4461 total_errors++;
f2984462 4462 }
0b246afa 4463 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4464 if (total_errors > max_errors) {
0b246afa
JM
4465 btrfs_handle_fs_error(fs_info, -EIO,
4466 "%d errors while writing supers",
4467 total_errors);
79787eaa 4468 return -EIO;
a236aed1 4469 }
f2984462
CM
4470 return 0;
4471}
4472
cb517eab
MX
4473/* Drop a fs root from the radix tree and free it. */
4474void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4475 struct btrfs_root *root)
2619ba1f 4476{
4785e24f
JB
4477 bool drop_ref = false;
4478
4df27c4d 4479 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
4480 radix_tree_delete(&fs_info->fs_roots_radix,
4481 (unsigned long)root->root_key.objectid);
af01d2e5 4482 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4483 drop_ref = true;
4df27c4d 4484 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4485
84961539 4486 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4487 ASSERT(root->log_root == NULL);
1c1ea4f7 4488 if (root->reloc_root) {
00246528 4489 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4490 root->reloc_root = NULL;
4491 }
4492 }
3321719e 4493
4785e24f
JB
4494 if (drop_ref)
4495 btrfs_put_root(root);
2619ba1f
CM
4496}
4497
c146afad 4498int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4499{
c146afad
YZ
4500 u64 root_objectid = 0;
4501 struct btrfs_root *gang[8];
65d33fd7
QW
4502 int i = 0;
4503 int err = 0;
4504 unsigned int ret = 0;
e089f05c 4505
c146afad 4506 while (1) {
efc34534 4507 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
4508 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4509 (void **)gang, root_objectid,
4510 ARRAY_SIZE(gang));
65d33fd7 4511 if (!ret) {
efc34534 4512 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 4513 break;
65d33fd7 4514 }
5d4f98a2 4515 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4516
c146afad 4517 for (i = 0; i < ret; i++) {
65d33fd7
QW
4518 /* Avoid to grab roots in dead_roots */
4519 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4520 gang[i] = NULL;
4521 continue;
4522 }
4523 /* grab all the search result for later use */
00246528 4524 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4525 }
efc34534 4526 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4527
65d33fd7
QW
4528 for (i = 0; i < ret; i++) {
4529 if (!gang[i])
4530 continue;
c146afad 4531 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4532 err = btrfs_orphan_cleanup(gang[i]);
4533 if (err)
65d33fd7 4534 break;
00246528 4535 btrfs_put_root(gang[i]);
c146afad
YZ
4536 }
4537 root_objectid++;
4538 }
65d33fd7
QW
4539
4540 /* release the uncleaned roots due to error */
4541 for (; i < ret; i++) {
4542 if (gang[i])
00246528 4543 btrfs_put_root(gang[i]);
65d33fd7
QW
4544 }
4545 return err;
c146afad 4546}
a2135011 4547
6bccf3ab 4548int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4549{
6bccf3ab 4550 struct btrfs_root *root = fs_info->tree_root;
c146afad 4551 struct btrfs_trans_handle *trans;
a74a4b97 4552
0b246afa 4553 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4554 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4555 mutex_unlock(&fs_info->cleaner_mutex);
4556 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4557
4558 /* wait until ongoing cleanup work done */
0b246afa
JM
4559 down_write(&fs_info->cleanup_work_sem);
4560 up_write(&fs_info->cleanup_work_sem);
c71bf099 4561
7a7eaa40 4562 trans = btrfs_join_transaction(root);
3612b495
TI
4563 if (IS_ERR(trans))
4564 return PTR_ERR(trans);
3a45bb20 4565 return btrfs_commit_transaction(trans);
c146afad
YZ
4566}
4567
36c86a9e
QW
4568static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4569{
4570 struct btrfs_transaction *trans;
4571 struct btrfs_transaction *tmp;
4572 bool found = false;
4573
4574 if (list_empty(&fs_info->trans_list))
4575 return;
4576
4577 /*
4578 * This function is only called at the very end of close_ctree(),
4579 * thus no other running transaction, no need to take trans_lock.
4580 */
4581 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4582 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4583 struct extent_state *cached = NULL;
4584 u64 dirty_bytes = 0;
4585 u64 cur = 0;
4586 u64 found_start;
4587 u64 found_end;
4588
4589 found = true;
4590 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4591 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4592 dirty_bytes += found_end + 1 - found_start;
4593 cur = found_end + 1;
4594 }
4595 btrfs_warn(fs_info,
4596 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4597 trans->transid, dirty_bytes);
4598 btrfs_cleanup_one_transaction(trans, fs_info);
4599
4600 if (trans == fs_info->running_transaction)
4601 fs_info->running_transaction = NULL;
4602 list_del_init(&trans->list);
4603
4604 btrfs_put_transaction(trans);
4605 trace_btrfs_transaction_commit(fs_info);
4606 }
4607 ASSERT(!found);
4608}
4609
b105e927 4610void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4611{
c146afad
YZ
4612 int ret;
4613
afcdd129 4614 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4615 /*
4616 * We don't want the cleaner to start new transactions, add more delayed
4617 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4618 * because that frees the task_struct, and the transaction kthread might
4619 * still try to wake up the cleaner.
4620 */
4621 kthread_park(fs_info->cleaner_kthread);
c146afad 4622
b4be6aef
JB
4623 /*
4624 * If we had UNFINISHED_DROPS we could still be processing them, so
4625 * clear that bit and wake up relocation so it can stop.
4626 */
4627 btrfs_wake_unfinished_drop(fs_info);
4628
7343dd61 4629 /* wait for the qgroup rescan worker to stop */
d06f23d6 4630 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4631
803b2f54
SB
4632 /* wait for the uuid_scan task to finish */
4633 down(&fs_info->uuid_tree_rescan_sem);
4634 /* avoid complains from lockdep et al., set sem back to initial state */
4635 up(&fs_info->uuid_tree_rescan_sem);
4636
837d5b6e 4637 /* pause restriper - we want to resume on mount */
aa1b8cd4 4638 btrfs_pause_balance(fs_info);
837d5b6e 4639
8dabb742
SB
4640 btrfs_dev_replace_suspend_for_unmount(fs_info);
4641
aa1b8cd4 4642 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4643
4644 /* wait for any defraggers to finish */
4645 wait_event(fs_info->transaction_wait,
4646 (atomic_read(&fs_info->defrag_running) == 0));
4647
4648 /* clear out the rbtree of defraggable inodes */
26176e7c 4649 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4650
21c7e756 4651 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4652 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4653 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4654
18bb8bbf
JT
4655 cancel_work_sync(&fs_info->reclaim_bgs_work);
4656
b0643e59
DZ
4657 /* Cancel or finish ongoing discard work */
4658 btrfs_discard_cleanup(fs_info);
4659
bc98a42c 4660 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4661 /*
d6fd0ae2
OS
4662 * The cleaner kthread is stopped, so do one final pass over
4663 * unused block groups.
e44163e1 4664 */
0b246afa 4665 btrfs_delete_unused_bgs(fs_info);
e44163e1 4666
f0cc2cd7
FM
4667 /*
4668 * There might be existing delayed inode workers still running
4669 * and holding an empty delayed inode item. We must wait for
4670 * them to complete first because they can create a transaction.
4671 * This happens when someone calls btrfs_balance_delayed_items()
4672 * and then a transaction commit runs the same delayed nodes
4673 * before any delayed worker has done something with the nodes.
4674 * We must wait for any worker here and not at transaction
4675 * commit time since that could cause a deadlock.
4676 * This is a very rare case.
4677 */
4678 btrfs_flush_workqueue(fs_info->delayed_workers);
4679
6bccf3ab 4680 ret = btrfs_commit_super(fs_info);
acce952b 4681 if (ret)
04892340 4682 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4683 }
4684
84961539 4685 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4686 btrfs_error_commit_super(fs_info);
0f7d52f4 4687
e3029d9f
AV
4688 kthread_stop(fs_info->transaction_kthread);
4689 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4690
e187831e 4691 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4692 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4693
5958253c
QW
4694 if (btrfs_check_quota_leak(fs_info)) {
4695 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4696 btrfs_err(fs_info, "qgroup reserved space leaked");
4697 }
4698
04892340 4699 btrfs_free_qgroup_config(fs_info);
fe816d0f 4700 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4701
963d678b 4702 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4703 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4704 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4705 }
bcc63abb 4706
5deb17e1 4707 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4708 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4709 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4710
6618a59b 4711 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4712 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4713
1a4319cc
LB
4714 btrfs_put_block_group_cache(fs_info);
4715
de348ee0
WS
4716 /*
4717 * we must make sure there is not any read request to
4718 * submit after we stopping all workers.
4719 */
4720 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4721 btrfs_stop_all_workers(fs_info);
4722
0a31daa4 4723 /* We shouldn't have any transaction open at this point */
36c86a9e 4724 warn_about_uncommitted_trans(fs_info);
0a31daa4 4725
afcdd129 4726 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4727 free_root_pointers(fs_info, true);
8c38938c 4728 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4729
4e19443d
JB
4730 /*
4731 * We must free the block groups after dropping the fs_roots as we could
4732 * have had an IO error and have left over tree log blocks that aren't
4733 * cleaned up until the fs roots are freed. This makes the block group
4734 * accounting appear to be wrong because there's pending reserved bytes,
4735 * so make sure we do the block group cleanup afterwards.
4736 */
4737 btrfs_free_block_groups(fs_info);
4738
13e6c37b 4739 iput(fs_info->btree_inode);
d6bfde87 4740
21adbd5c 4741#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4742 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4743 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4744#endif
4745
0b86a832 4746 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4747 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4748}
4749
b9fab919
CM
4750int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4751 int atomic)
5f39d397 4752{
1259ab75 4753 int ret;
727011e0 4754 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4755
0b32f4bb 4756 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4757 if (!ret)
4758 return ret;
4759
4760 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4761 parent_transid, atomic);
4762 if (ret == -EAGAIN)
4763 return ret;
1259ab75 4764 return !ret;
5f39d397
CM
4765}
4766
5f39d397
CM
4767void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4768{
2f4d60df 4769 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4770 u64 transid = btrfs_header_generation(buf);
b9473439 4771 int was_dirty;
b4ce94de 4772
06ea65a3
JB
4773#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4774 /*
4775 * This is a fast path so only do this check if we have sanity tests
52042d8e 4776 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4777 * outside of the sanity tests.
4778 */
b0132a3b 4779 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4780 return;
4781#endif
49d0c642 4782 btrfs_assert_tree_write_locked(buf);
0b246afa 4783 if (transid != fs_info->generation)
5d163e0e 4784 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4785 buf->start, transid, fs_info->generation);
0b32f4bb 4786 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4787 if (!was_dirty)
104b4e51
NB
4788 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4789 buf->len,
4790 fs_info->dirty_metadata_batch);
1f21ef0a 4791#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4792 /*
4793 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4794 * but item data not updated.
4795 * So here we should only check item pointers, not item data.
4796 */
4797 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4798 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4799 btrfs_print_leaf(buf);
1f21ef0a
FM
4800 ASSERT(0);
4801 }
4802#endif
eb60ceac
CM
4803}
4804
2ff7e61e 4805static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4806 int flush_delayed)
16cdcec7
MX
4807{
4808 /*
4809 * looks as though older kernels can get into trouble with
4810 * this code, they end up stuck in balance_dirty_pages forever
4811 */
e2d84521 4812 int ret;
16cdcec7
MX
4813
4814 if (current->flags & PF_MEMALLOC)
4815 return;
4816
b53d3f5d 4817 if (flush_delayed)
2ff7e61e 4818 btrfs_balance_delayed_items(fs_info);
16cdcec7 4819
d814a491
EL
4820 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4821 BTRFS_DIRTY_METADATA_THRESH,
4822 fs_info->dirty_metadata_batch);
e2d84521 4823 if (ret > 0) {
0b246afa 4824 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4825 }
16cdcec7
MX
4826}
4827
2ff7e61e 4828void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4829{
2ff7e61e 4830 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4831}
585ad2c3 4832
2ff7e61e 4833void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4834{
2ff7e61e 4835 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4836}
6b80053d 4837
581c1760
QW
4838int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4839 struct btrfs_key *first_key)
6b80053d 4840{
5ab12d1f 4841 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4842 level, first_key);
6b80053d 4843}
0da5468f 4844
2ff7e61e 4845static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4846{
fe816d0f
NB
4847 /* cleanup FS via transaction */
4848 btrfs_cleanup_transaction(fs_info);
4849
0b246afa 4850 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4851 btrfs_run_delayed_iputs(fs_info);
0b246afa 4852 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4853
0b246afa
JM
4854 down_write(&fs_info->cleanup_work_sem);
4855 up_write(&fs_info->cleanup_work_sem);
acce952b 4856}
4857
ef67963d
JB
4858static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4859{
4860 struct btrfs_root *gang[8];
4861 u64 root_objectid = 0;
4862 int ret;
4863
4864 spin_lock(&fs_info->fs_roots_radix_lock);
4865 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4866 (void **)gang, root_objectid,
4867 ARRAY_SIZE(gang))) != 0) {
4868 int i;
4869
4870 for (i = 0; i < ret; i++)
4871 gang[i] = btrfs_grab_root(gang[i]);
4872 spin_unlock(&fs_info->fs_roots_radix_lock);
4873
4874 for (i = 0; i < ret; i++) {
4875 if (!gang[i])
4876 continue;
4877 root_objectid = gang[i]->root_key.objectid;
4878 btrfs_free_log(NULL, gang[i]);
4879 btrfs_put_root(gang[i]);
4880 }
4881 root_objectid++;
4882 spin_lock(&fs_info->fs_roots_radix_lock);
4883 }
4884 spin_unlock(&fs_info->fs_roots_radix_lock);
4885 btrfs_free_log_root_tree(NULL, fs_info);
4886}
4887
143bede5 4888static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4889{
acce952b 4890 struct btrfs_ordered_extent *ordered;
acce952b 4891
199c2a9c 4892 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4893 /*
4894 * This will just short circuit the ordered completion stuff which will
4895 * make sure the ordered extent gets properly cleaned up.
4896 */
199c2a9c 4897 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4898 root_extent_list)
4899 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4900 spin_unlock(&root->ordered_extent_lock);
4901}
4902
4903static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4904{
4905 struct btrfs_root *root;
4906 struct list_head splice;
4907
4908 INIT_LIST_HEAD(&splice);
4909
4910 spin_lock(&fs_info->ordered_root_lock);
4911 list_splice_init(&fs_info->ordered_roots, &splice);
4912 while (!list_empty(&splice)) {
4913 root = list_first_entry(&splice, struct btrfs_root,
4914 ordered_root);
1de2cfde
JB
4915 list_move_tail(&root->ordered_root,
4916 &fs_info->ordered_roots);
199c2a9c 4917
2a85d9ca 4918 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4919 btrfs_destroy_ordered_extents(root);
4920
2a85d9ca
LB
4921 cond_resched();
4922 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4923 }
4924 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4925
4926 /*
4927 * We need this here because if we've been flipped read-only we won't
4928 * get sync() from the umount, so we need to make sure any ordered
4929 * extents that haven't had their dirty pages IO start writeout yet
4930 * actually get run and error out properly.
4931 */
4932 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4933}
4934
35a3621b 4935static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4936 struct btrfs_fs_info *fs_info)
acce952b 4937{
4938 struct rb_node *node;
4939 struct btrfs_delayed_ref_root *delayed_refs;
4940 struct btrfs_delayed_ref_node *ref;
4941 int ret = 0;
4942
4943 delayed_refs = &trans->delayed_refs;
4944
4945 spin_lock(&delayed_refs->lock);
d7df2c79 4946 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4947 spin_unlock(&delayed_refs->lock);
b79ce3dd 4948 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4949 return ret;
4950 }
4951
5c9d028b 4952 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4953 struct btrfs_delayed_ref_head *head;
0e0adbcf 4954 struct rb_node *n;
e78417d1 4955 bool pin_bytes = false;
acce952b 4956
d7df2c79
JB
4957 head = rb_entry(node, struct btrfs_delayed_ref_head,
4958 href_node);
3069bd26 4959 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4960 continue;
3069bd26 4961
d7df2c79 4962 spin_lock(&head->lock);
e3d03965 4963 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4964 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4965 ref_node);
d7df2c79 4966 ref->in_tree = 0;
e3d03965 4967 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4968 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4969 if (!list_empty(&ref->add_list))
4970 list_del(&ref->add_list);
d7df2c79
JB
4971 atomic_dec(&delayed_refs->num_entries);
4972 btrfs_put_delayed_ref(ref);
e78417d1 4973 }
d7df2c79
JB
4974 if (head->must_insert_reserved)
4975 pin_bytes = true;
4976 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4977 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4978 spin_unlock(&head->lock);
4979 spin_unlock(&delayed_refs->lock);
4980 mutex_unlock(&head->mutex);
acce952b 4981
f603bb94
NB
4982 if (pin_bytes) {
4983 struct btrfs_block_group *cache;
4984
4985 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4986 BUG_ON(!cache);
4987
4988 spin_lock(&cache->space_info->lock);
4989 spin_lock(&cache->lock);
4990 cache->pinned += head->num_bytes;
4991 btrfs_space_info_update_bytes_pinned(fs_info,
4992 cache->space_info, head->num_bytes);
4993 cache->reserved -= head->num_bytes;
4994 cache->space_info->bytes_reserved -= head->num_bytes;
4995 spin_unlock(&cache->lock);
4996 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4997
4998 btrfs_put_block_group(cache);
4999
5000 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5001 head->bytenr + head->num_bytes - 1);
5002 }
31890da0 5003 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 5004 btrfs_put_delayed_ref_head(head);
acce952b 5005 cond_resched();
5006 spin_lock(&delayed_refs->lock);
5007 }
81f7eb00 5008 btrfs_qgroup_destroy_extent_records(trans);
acce952b 5009
5010 spin_unlock(&delayed_refs->lock);
5011
5012 return ret;
5013}
5014
143bede5 5015static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 5016{
5017 struct btrfs_inode *btrfs_inode;
5018 struct list_head splice;
5019
5020 INIT_LIST_HEAD(&splice);
5021
eb73c1b7
MX
5022 spin_lock(&root->delalloc_lock);
5023 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 5024
5025 while (!list_empty(&splice)) {
fe816d0f 5026 struct inode *inode = NULL;
eb73c1b7
MX
5027 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5028 delalloc_inodes);
fe816d0f 5029 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 5030 spin_unlock(&root->delalloc_lock);
acce952b 5031
fe816d0f
NB
5032 /*
5033 * Make sure we get a live inode and that it'll not disappear
5034 * meanwhile.
5035 */
5036 inode = igrab(&btrfs_inode->vfs_inode);
5037 if (inode) {
5038 invalidate_inode_pages2(inode->i_mapping);
5039 iput(inode);
5040 }
eb73c1b7 5041 spin_lock(&root->delalloc_lock);
acce952b 5042 }
eb73c1b7
MX
5043 spin_unlock(&root->delalloc_lock);
5044}
5045
5046static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5047{
5048 struct btrfs_root *root;
5049 struct list_head splice;
5050
5051 INIT_LIST_HEAD(&splice);
5052
5053 spin_lock(&fs_info->delalloc_root_lock);
5054 list_splice_init(&fs_info->delalloc_roots, &splice);
5055 while (!list_empty(&splice)) {
5056 root = list_first_entry(&splice, struct btrfs_root,
5057 delalloc_root);
00246528 5058 root = btrfs_grab_root(root);
eb73c1b7
MX
5059 BUG_ON(!root);
5060 spin_unlock(&fs_info->delalloc_root_lock);
5061
5062 btrfs_destroy_delalloc_inodes(root);
00246528 5063 btrfs_put_root(root);
eb73c1b7
MX
5064
5065 spin_lock(&fs_info->delalloc_root_lock);
5066 }
5067 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 5068}
5069
2ff7e61e 5070static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 5071 struct extent_io_tree *dirty_pages,
5072 int mark)
5073{
5074 int ret;
acce952b 5075 struct extent_buffer *eb;
5076 u64 start = 0;
5077 u64 end;
acce952b 5078
5079 while (1) {
5080 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 5081 mark, NULL);
acce952b 5082 if (ret)
5083 break;
5084
91166212 5085 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 5086 while (start <= end) {
0b246afa
JM
5087 eb = find_extent_buffer(fs_info, start);
5088 start += fs_info->nodesize;
fd8b2b61 5089 if (!eb)
acce952b 5090 continue;
fd8b2b61 5091 wait_on_extent_buffer_writeback(eb);
acce952b 5092
fd8b2b61
JB
5093 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5094 &eb->bflags))
5095 clear_extent_buffer_dirty(eb);
5096 free_extent_buffer_stale(eb);
acce952b 5097 }
5098 }
5099
5100 return ret;
5101}
5102
2ff7e61e 5103static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5104 struct extent_io_tree *unpin)
acce952b 5105{
acce952b 5106 u64 start;
5107 u64 end;
5108 int ret;
5109
acce952b 5110 while (1) {
0e6ec385
FM
5111 struct extent_state *cached_state = NULL;
5112
fcd5e742
LF
5113 /*
5114 * The btrfs_finish_extent_commit() may get the same range as
5115 * ours between find_first_extent_bit and clear_extent_dirty.
5116 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5117 * the same extent range.
5118 */
5119 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5120 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5121 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5122 if (ret) {
5123 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5124 break;
fcd5e742 5125 }
acce952b 5126
0e6ec385
FM
5127 clear_extent_dirty(unpin, start, end, &cached_state);
5128 free_extent_state(cached_state);
2ff7e61e 5129 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5130 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5131 cond_resched();
5132 }
5133
5134 return 0;
5135}
5136
32da5386 5137static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5138{
5139 struct inode *inode;
5140
5141 inode = cache->io_ctl.inode;
5142 if (inode) {
5143 invalidate_inode_pages2(inode->i_mapping);
5144 BTRFS_I(inode)->generation = 0;
5145 cache->io_ctl.inode = NULL;
5146 iput(inode);
5147 }
bbc37d6e 5148 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5149 btrfs_put_block_group(cache);
5150}
5151
5152void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5153 struct btrfs_fs_info *fs_info)
c79a1751 5154{
32da5386 5155 struct btrfs_block_group *cache;
c79a1751
LB
5156
5157 spin_lock(&cur_trans->dirty_bgs_lock);
5158 while (!list_empty(&cur_trans->dirty_bgs)) {
5159 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5160 struct btrfs_block_group,
c79a1751 5161 dirty_list);
c79a1751
LB
5162
5163 if (!list_empty(&cache->io_list)) {
5164 spin_unlock(&cur_trans->dirty_bgs_lock);
5165 list_del_init(&cache->io_list);
5166 btrfs_cleanup_bg_io(cache);
5167 spin_lock(&cur_trans->dirty_bgs_lock);
5168 }
5169
5170 list_del_init(&cache->dirty_list);
5171 spin_lock(&cache->lock);
5172 cache->disk_cache_state = BTRFS_DC_ERROR;
5173 spin_unlock(&cache->lock);
5174
5175 spin_unlock(&cur_trans->dirty_bgs_lock);
5176 btrfs_put_block_group(cache);
ba2c4d4e 5177 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5178 spin_lock(&cur_trans->dirty_bgs_lock);
5179 }
5180 spin_unlock(&cur_trans->dirty_bgs_lock);
5181
45ae2c18
NB
5182 /*
5183 * Refer to the definition of io_bgs member for details why it's safe
5184 * to use it without any locking
5185 */
c79a1751
LB
5186 while (!list_empty(&cur_trans->io_bgs)) {
5187 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5188 struct btrfs_block_group,
c79a1751 5189 io_list);
c79a1751
LB
5190
5191 list_del_init(&cache->io_list);
5192 spin_lock(&cache->lock);
5193 cache->disk_cache_state = BTRFS_DC_ERROR;
5194 spin_unlock(&cache->lock);
5195 btrfs_cleanup_bg_io(cache);
5196 }
5197}
5198
49b25e05 5199void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5200 struct btrfs_fs_info *fs_info)
49b25e05 5201{
bbbf7243
NB
5202 struct btrfs_device *dev, *tmp;
5203
2ff7e61e 5204 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5205 ASSERT(list_empty(&cur_trans->dirty_bgs));
5206 ASSERT(list_empty(&cur_trans->io_bgs));
5207
bbbf7243
NB
5208 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5209 post_commit_list) {
5210 list_del_init(&dev->post_commit_list);
5211 }
5212
2ff7e61e 5213 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5214
4a9d8bde 5215 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5216 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5217
4a9d8bde 5218 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5219 wake_up(&fs_info->transaction_wait);
49b25e05 5220
ccdf9b30 5221 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5222
2ff7e61e 5223 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5224 EXTENT_DIRTY);
fe119a6e 5225 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5226
d3575156
NA
5227 btrfs_free_redirty_list(cur_trans);
5228
4a9d8bde
MX
5229 cur_trans->state =TRANS_STATE_COMPLETED;
5230 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5231}
5232
2ff7e61e 5233static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5234{
5235 struct btrfs_transaction *t;
acce952b 5236
0b246afa 5237 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5238
0b246afa
JM
5239 spin_lock(&fs_info->trans_lock);
5240 while (!list_empty(&fs_info->trans_list)) {
5241 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5242 struct btrfs_transaction, list);
5243 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5244 refcount_inc(&t->use_count);
0b246afa 5245 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5246 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5247 btrfs_put_transaction(t);
0b246afa 5248 spin_lock(&fs_info->trans_lock);
724e2315
JB
5249 continue;
5250 }
0b246afa 5251 if (t == fs_info->running_transaction) {
724e2315 5252 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5253 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5254 /*
5255 * We wait for 0 num_writers since we don't hold a trans
5256 * handle open currently for this transaction.
5257 */
5258 wait_event(t->writer_wait,
5259 atomic_read(&t->num_writers) == 0);
5260 } else {
0b246afa 5261 spin_unlock(&fs_info->trans_lock);
724e2315 5262 }
2ff7e61e 5263 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5264
0b246afa
JM
5265 spin_lock(&fs_info->trans_lock);
5266 if (t == fs_info->running_transaction)
5267 fs_info->running_transaction = NULL;
acce952b 5268 list_del_init(&t->list);
0b246afa 5269 spin_unlock(&fs_info->trans_lock);
acce952b 5270
724e2315 5271 btrfs_put_transaction(t);
2e4e97ab 5272 trace_btrfs_transaction_commit(fs_info);
0b246afa 5273 spin_lock(&fs_info->trans_lock);
724e2315 5274 }
0b246afa
JM
5275 spin_unlock(&fs_info->trans_lock);
5276 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5277 btrfs_destroy_delayed_inodes(fs_info);
5278 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5279 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5280 btrfs_drop_all_logs(fs_info);
0b246afa 5281 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5282
5283 return 0;
5284}
ec7d6dfd 5285
453e4873 5286int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5287{
5288 struct btrfs_path *path;
5289 int ret;
5290 struct extent_buffer *l;
5291 struct btrfs_key search_key;
5292 struct btrfs_key found_key;
5293 int slot;
5294
5295 path = btrfs_alloc_path();
5296 if (!path)
5297 return -ENOMEM;
5298
5299 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5300 search_key.type = -1;
5301 search_key.offset = (u64)-1;
5302 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5303 if (ret < 0)
5304 goto error;
5305 BUG_ON(ret == 0); /* Corruption */
5306 if (path->slots[0] > 0) {
5307 slot = path->slots[0] - 1;
5308 l = path->nodes[0];
5309 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5310 root->free_objectid = max_t(u64, found_key.objectid + 1,
5311 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5312 } else {
23125104 5313 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5314 }
5315 ret = 0;
5316error:
5317 btrfs_free_path(path);
5318 return ret;
5319}
5320
543068a2 5321int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5322{
5323 int ret;
5324 mutex_lock(&root->objectid_mutex);
5325
6b8fad57 5326 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5327 btrfs_warn(root->fs_info,
5328 "the objectid of root %llu reaches its highest value",
5329 root->root_key.objectid);
5330 ret = -ENOSPC;
5331 goto out;
5332 }
5333
23125104 5334 *objectid = root->free_objectid++;
ec7d6dfd
NB
5335 ret = 0;
5336out:
5337 mutex_unlock(&root->objectid_mutex);
5338 return ret;
5339}