btrfs: use normal workqueues for scrub
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
8896a08d 113 struct inode *inode;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
1941b64b
QW
117
118 /* Optional parameter for submit_bio_start used by direct io */
119 u64 dio_file_offset;
8b712842 120 struct btrfs_work work;
4e4cbee9 121 blk_status_t status;
44b8bd7e
CM
122};
123
85d4e461
CM
124/*
125 * Lockdep class keys for extent_buffer->lock's in this root. For a given
126 * eb, the lockdep key is determined by the btrfs_root it belongs to and
127 * the level the eb occupies in the tree.
128 *
129 * Different roots are used for different purposes and may nest inside each
130 * other and they require separate keysets. As lockdep keys should be
131 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
132 * by btrfs_root->root_key.objectid. This ensures that all special purpose
133 * roots have separate keysets.
4008c04a 134 *
85d4e461
CM
135 * Lock-nesting across peer nodes is always done with the immediate parent
136 * node locked thus preventing deadlock. As lockdep doesn't know this, use
137 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 138 *
85d4e461
CM
139 * The key is set by the readpage_end_io_hook after the buffer has passed
140 * csum validation but before the pages are unlocked. It is also set by
141 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 142 *
85d4e461
CM
143 * We also add a check to make sure the highest level of the tree is the
144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
145 * needs update as well.
4008c04a
CM
146 */
147#ifdef CONFIG_DEBUG_LOCK_ALLOC
148# if BTRFS_MAX_LEVEL != 8
149# error
150# endif
85d4e461 151
ab1405aa
DS
152#define DEFINE_LEVEL(stem, level) \
153 .names[level] = "btrfs-" stem "-0" #level,
154
155#define DEFINE_NAME(stem) \
156 DEFINE_LEVEL(stem, 0) \
157 DEFINE_LEVEL(stem, 1) \
158 DEFINE_LEVEL(stem, 2) \
159 DEFINE_LEVEL(stem, 3) \
160 DEFINE_LEVEL(stem, 4) \
161 DEFINE_LEVEL(stem, 5) \
162 DEFINE_LEVEL(stem, 6) \
163 DEFINE_LEVEL(stem, 7)
164
85d4e461
CM
165static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
ab1405aa 167 /* Longest entry: btrfs-free-space-00 */
387824af
DS
168 char names[BTRFS_MAX_LEVEL][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 170} btrfs_lockdep_keysets[] = {
ab1405aa
DS
171 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
174 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
175 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
176 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
177 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
178 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
180 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182 { .id = 0, DEFINE_NAME("tree") },
4008c04a 183};
85d4e461 184
ab1405aa
DS
185#undef DEFINE_LEVEL
186#undef DEFINE_NAME
85d4e461
CM
187
188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190{
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202}
203
4008c04a
CM
204#endif
205
d352ac68 206/*
2996e1f8 207 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 208 */
c67b3892 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 210{
d5178578 211 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 212 const int num_pages = num_extent_pages(buf);
a26663e7 213 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 215 char *kaddr;
e9be5a30 216 int i;
d5178578
JT
217
218 shash->tfm = fs_info->csum_shash;
219 crypto_shash_init(shash);
a26663e7 220 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 222 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 223
e9be5a30
DS
224 for (i = 1; i < num_pages; i++) {
225 kaddr = page_address(buf->pages[i]);
226 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 227 }
71a63551 228 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 229 crypto_shash_final(shash, result);
19c00ddc
CM
230}
231
d352ac68
CM
232/*
233 * we can't consider a given block up to date unless the transid of the
234 * block matches the transid in the parent node's pointer. This is how we
235 * detect blocks that either didn't get written at all or got written
236 * in the wrong place.
237 */
1259ab75 238static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
239 struct extent_buffer *eb, u64 parent_transid,
240 int atomic)
1259ab75 241{
2ac55d41 242 struct extent_state *cached_state = NULL;
1259ab75
CM
243 int ret;
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
b9fab919
CM
248 if (atomic)
249 return -EAGAIN;
250
2ac55d41 251 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 252 &cached_state);
0b32f4bb 253 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
254 btrfs_header_generation(eb) == parent_transid) {
255 ret = 0;
256 goto out;
257 }
94647322
DS
258 btrfs_err_rl(eb->fs_info,
259 "parent transid verify failed on %llu wanted %llu found %llu",
260 eb->start,
29549aec 261 parent_transid, btrfs_header_generation(eb));
1259ab75 262 ret = 1;
35b22c19 263 clear_extent_buffer_uptodate(eb);
33958dc6 264out:
2ac55d41 265 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 266 &cached_state);
1259ab75 267 return ret;
1259ab75
CM
268}
269
e7e16f48
JT
270static bool btrfs_supported_super_csum(u16 csum_type)
271{
272 switch (csum_type) {
273 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 274 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 275 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 276 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
277 return true;
278 default:
279 return false;
280 }
281}
282
1104a885
DS
283/*
284 * Return 0 if the superblock checksum type matches the checksum value of that
285 * algorithm. Pass the raw disk superblock data.
286 */
ab8d0fc4
JM
287static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288 char *raw_disk_sb)
1104a885
DS
289{
290 struct btrfs_super_block *disk_sb =
291 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 292 char result[BTRFS_CSUM_SIZE];
d5178578
JT
293 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294
295 shash->tfm = fs_info->csum_shash;
1104a885 296
51bce6c9
JT
297 /*
298 * The super_block structure does not span the whole
299 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300 * filled with zeros and is included in the checksum.
301 */
fd08001f
EB
302 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 304
55fc29be 305 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 306 return 1;
1104a885 307
e7e16f48 308 return 0;
1104a885
DS
309}
310
e064d5e9 311int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 312 struct btrfs_key *first_key, u64 parent_transid)
581c1760 313{
e064d5e9 314 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
315 int found_level;
316 struct btrfs_key found_key;
317 int ret;
318
319 found_level = btrfs_header_level(eb);
320 if (found_level != level) {
63489055
QW
321 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
323 btrfs_err(fs_info,
324"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325 eb->start, level, found_level);
581c1760
QW
326 return -EIO;
327 }
328
329 if (!first_key)
330 return 0;
331
5d41be6f
QW
332 /*
333 * For live tree block (new tree blocks in current transaction),
334 * we need proper lock context to avoid race, which is impossible here.
335 * So we only checks tree blocks which is read from disk, whose
336 * generation <= fs_info->last_trans_committed.
337 */
338 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339 return 0;
62fdaa52
QW
340
341 /* We have @first_key, so this @eb must have at least one item */
342 if (btrfs_header_nritems(eb) == 0) {
343 btrfs_err(fs_info,
344 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345 eb->start);
346 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347 return -EUCLEAN;
348 }
349
581c1760
QW
350 if (found_level)
351 btrfs_node_key_to_cpu(eb, &found_key, 0);
352 else
353 btrfs_item_key_to_cpu(eb, &found_key, 0);
354 ret = btrfs_comp_cpu_keys(first_key, &found_key);
355
581c1760 356 if (ret) {
63489055
QW
357 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 359 btrfs_err(fs_info,
ff76a864
LB
360"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361 eb->start, parent_transid, first_key->objectid,
362 first_key->type, first_key->offset,
363 found_key.objectid, found_key.type,
364 found_key.offset);
581c1760 365 }
581c1760
QW
366 return ret;
367}
368
d352ac68
CM
369/*
370 * helper to read a given tree block, doing retries as required when
371 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
372 *
373 * @parent_transid: expected transid, skip check if 0
374 * @level: expected level, mandatory check
375 * @first_key: expected key of first slot, skip check if NULL
d352ac68 376 */
6a2e9dc4
FM
377int btrfs_read_extent_buffer(struct extent_buffer *eb,
378 u64 parent_transid, int level,
379 struct btrfs_key *first_key)
f188591e 380{
5ab12d1f 381 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 382 struct extent_io_tree *io_tree;
ea466794 383 int failed = 0;
f188591e
CM
384 int ret;
385 int num_copies = 0;
386 int mirror_num = 0;
ea466794 387 int failed_mirror = 0;
f188591e 388
0b246afa 389 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 390 while (1) {
f8397d69 391 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 392 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 393 if (!ret) {
581c1760 394 if (verify_parent_transid(io_tree, eb,
b9fab919 395 parent_transid, 0))
256dd1bb 396 ret = -EIO;
e064d5e9 397 else if (btrfs_verify_level_key(eb, level,
448de471 398 first_key, parent_transid))
581c1760
QW
399 ret = -EUCLEAN;
400 else
401 break;
256dd1bb 402 }
d397712b 403
0b246afa 404 num_copies = btrfs_num_copies(fs_info,
f188591e 405 eb->start, eb->len);
4235298e 406 if (num_copies == 1)
ea466794 407 break;
4235298e 408
5cf1ab56
JB
409 if (!failed_mirror) {
410 failed = 1;
411 failed_mirror = eb->read_mirror;
412 }
413
f188591e 414 mirror_num++;
ea466794
JB
415 if (mirror_num == failed_mirror)
416 mirror_num++;
417
4235298e 418 if (mirror_num > num_copies)
ea466794 419 break;
f188591e 420 }
ea466794 421
c0901581 422 if (failed && !ret && failed_mirror)
20a1fbf9 423 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
424
425 return ret;
f188591e 426}
19c00ddc 427
eca0f6f6
QW
428static int csum_one_extent_buffer(struct extent_buffer *eb)
429{
430 struct btrfs_fs_info *fs_info = eb->fs_info;
431 u8 result[BTRFS_CSUM_SIZE];
432 int ret;
433
434 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435 offsetof(struct btrfs_header, fsid),
436 BTRFS_FSID_SIZE) == 0);
437 csum_tree_block(eb, result);
438
439 if (btrfs_header_level(eb))
440 ret = btrfs_check_node(eb);
441 else
442 ret = btrfs_check_leaf_full(eb);
443
3777369f
QW
444 if (ret < 0)
445 goto error;
446
447 /*
448 * Also check the generation, the eb reached here must be newer than
449 * last committed. Or something seriously wrong happened.
450 */
451 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
452 ret = -EUCLEAN;
eca0f6f6 453 btrfs_err(fs_info,
3777369f
QW
454 "block=%llu bad generation, have %llu expect > %llu",
455 eb->start, btrfs_header_generation(eb),
456 fs_info->last_trans_committed);
457 goto error;
eca0f6f6
QW
458 }
459 write_extent_buffer(eb, result, 0, fs_info->csum_size);
460
461 return 0;
3777369f
QW
462
463error:
464 btrfs_print_tree(eb, 0);
465 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
466 eb->start);
467 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
468 return ret;
eca0f6f6
QW
469}
470
471/* Checksum all dirty extent buffers in one bio_vec */
472static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
473 struct bio_vec *bvec)
474{
475 struct page *page = bvec->bv_page;
476 u64 bvec_start = page_offset(page) + bvec->bv_offset;
477 u64 cur;
478 int ret = 0;
479
480 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
481 cur += fs_info->nodesize) {
482 struct extent_buffer *eb;
483 bool uptodate;
484
485 eb = find_extent_buffer(fs_info, cur);
486 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
487 fs_info->nodesize);
488
489 /* A dirty eb shouldn't disappear from buffer_radix */
490 if (WARN_ON(!eb))
491 return -EUCLEAN;
492
493 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
494 free_extent_buffer(eb);
495 return -EUCLEAN;
496 }
497 if (WARN_ON(!uptodate)) {
498 free_extent_buffer(eb);
499 return -EUCLEAN;
500 }
501
502 ret = csum_one_extent_buffer(eb);
503 free_extent_buffer(eb);
504 if (ret < 0)
505 return ret;
506 }
507 return ret;
508}
509
d352ac68 510/*
ac303b69
QW
511 * Checksum a dirty tree block before IO. This has extra checks to make sure
512 * we only fill in the checksum field in the first page of a multi-page block.
513 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 514 */
ac303b69 515static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 516{
ac303b69 517 struct page *page = bvec->bv_page;
4eee4fa4 518 u64 start = page_offset(page);
19c00ddc 519 u64 found_start;
19c00ddc 520 struct extent_buffer *eb;
eca0f6f6 521
fbca46eb 522 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 523 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 524
4f2de97a
JB
525 eb = (struct extent_buffer *)page->private;
526 if (page != eb->pages[0])
527 return 0;
0f805531 528
19c00ddc 529 found_start = btrfs_header_bytenr(eb);
d3575156
NA
530
531 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
532 WARN_ON(found_start != 0);
533 return 0;
534 }
535
0f805531
AL
536 /*
537 * Please do not consolidate these warnings into a single if.
538 * It is useful to know what went wrong.
539 */
540 if (WARN_ON(found_start != start))
541 return -EUCLEAN;
542 if (WARN_ON(!PageUptodate(page)))
543 return -EUCLEAN;
544
eca0f6f6 545 return csum_one_extent_buffer(eb);
19c00ddc
CM
546}
547
b0c9b3b0 548static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 549{
b0c9b3b0 550 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 551 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 552 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 553 u8 *metadata_uuid;
2b82032c 554
9a8658e3
DS
555 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
556 BTRFS_FSID_SIZE);
944d3f9f
NB
557 /*
558 * Checking the incompat flag is only valid for the current fs. For
559 * seed devices it's forbidden to have their uuid changed so reading
560 * ->fsid in this case is fine
561 */
562 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
563 metadata_uuid = fs_devices->metadata_uuid;
564 else
565 metadata_uuid = fs_devices->fsid;
566
567 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
568 return 0;
569
570 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
571 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
572 return 0;
573
574 return 1;
2b82032c
YZ
575}
576
77bf40a2
QW
577/* Do basic extent buffer checks at read time */
578static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 579{
77bf40a2 580 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 581 u64 found_start;
77bf40a2
QW
582 const u32 csum_size = fs_info->csum_size;
583 u8 found_level;
2996e1f8 584 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 585 const u8 *header_csum;
77bf40a2 586 int ret = 0;
ea466794 587
ce9adaa5 588 found_start = btrfs_header_bytenr(eb);
727011e0 589 if (found_start != eb->start) {
893bf4b1
SY
590 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
591 eb->start, found_start);
f188591e 592 ret = -EIO;
77bf40a2 593 goto out;
ce9adaa5 594 }
b0c9b3b0 595 if (check_tree_block_fsid(eb)) {
02873e43
ZL
596 btrfs_err_rl(fs_info, "bad fsid on block %llu",
597 eb->start);
1259ab75 598 ret = -EIO;
77bf40a2 599 goto out;
1259ab75 600 }
ce9adaa5 601 found_level = btrfs_header_level(eb);
1c24c3ce 602 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
603 btrfs_err(fs_info, "bad tree block level %d on %llu",
604 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 605 ret = -EIO;
77bf40a2 606 goto out;
1c24c3ce 607 }
ce9adaa5 608
c67b3892 609 csum_tree_block(eb, result);
dfd29eed
DS
610 header_csum = page_address(eb->pages[0]) +
611 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 612
dfd29eed 613 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 614 btrfs_warn_rl(fs_info,
ff14aa79
DS
615 "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
616 eb->start,
dfd29eed 617 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
618 CSUM_FMT_VALUE(csum_size, result),
619 btrfs_header_level(eb));
2996e1f8 620 ret = -EUCLEAN;
77bf40a2 621 goto out;
2996e1f8
JT
622 }
623
a826d6dc
JB
624 /*
625 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 * that we don't try and read the other copies of this block, just
627 * return -EIO.
628 */
1c4360ee 629 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
630 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631 ret = -EIO;
632 }
ce9adaa5 633
813fd1dc 634 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
635 ret = -EIO;
636
0b32f4bb
JB
637 if (!ret)
638 set_extent_buffer_uptodate(eb);
75391f0d
QW
639 else
640 btrfs_err(fs_info,
641 "block=%llu read time tree block corruption detected",
642 eb->start);
77bf40a2
QW
643out:
644 return ret;
645}
646
371cdc07
QW
647static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
648 int mirror)
649{
650 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
651 struct extent_buffer *eb;
652 bool reads_done;
653 int ret = 0;
654
655 /*
656 * We don't allow bio merge for subpage metadata read, so we should
657 * only get one eb for each endio hook.
658 */
659 ASSERT(end == start + fs_info->nodesize - 1);
660 ASSERT(PagePrivate(page));
661
662 eb = find_extent_buffer(fs_info, start);
663 /*
664 * When we are reading one tree block, eb must have been inserted into
665 * the radix tree. If not, something is wrong.
666 */
667 ASSERT(eb);
668
669 reads_done = atomic_dec_and_test(&eb->io_pages);
670 /* Subpage read must finish in page read */
671 ASSERT(reads_done);
672
673 eb->read_mirror = mirror;
674 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
675 ret = -EIO;
676 goto err;
677 }
678 ret = validate_extent_buffer(eb);
679 if (ret < 0)
680 goto err;
681
371cdc07
QW
682 set_extent_buffer_uptodate(eb);
683
684 free_extent_buffer(eb);
685 return ret;
686err:
687 /*
688 * end_bio_extent_readpage decrements io_pages in case of error,
689 * make sure it has something to decrement.
690 */
691 atomic_inc(&eb->io_pages);
692 clear_extent_buffer_uptodate(eb);
693 free_extent_buffer(eb);
694 return ret;
695}
696
c3a3b19b 697int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
698 struct page *page, u64 start, u64 end,
699 int mirror)
700{
701 struct extent_buffer *eb;
702 int ret = 0;
703 int reads_done;
704
705 ASSERT(page->private);
371cdc07 706
fbca46eb 707 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
371cdc07
QW
708 return validate_subpage_buffer(page, start, end, mirror);
709
77bf40a2
QW
710 eb = (struct extent_buffer *)page->private;
711
712 /*
713 * The pending IO might have been the only thing that kept this buffer
714 * in memory. Make sure we have a ref for all this other checks
715 */
716 atomic_inc(&eb->refs);
717
718 reads_done = atomic_dec_and_test(&eb->io_pages);
719 if (!reads_done)
720 goto err;
721
722 eb->read_mirror = mirror;
723 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
724 ret = -EIO;
725 goto err;
726 }
727 ret = validate_extent_buffer(eb);
ce9adaa5 728err:
53b381b3
DW
729 if (ret) {
730 /*
731 * our io error hook is going to dec the io pages
732 * again, we have to make sure it has something
733 * to decrement
734 */
735 atomic_inc(&eb->io_pages);
0b32f4bb 736 clear_extent_buffer_uptodate(eb);
53b381b3 737 }
0b32f4bb 738 free_extent_buffer(eb);
77bf40a2 739
f188591e 740 return ret;
ce9adaa5
CM
741}
742
4246a0b6 743static void end_workqueue_bio(struct bio *bio)
ce9adaa5 744{
97eb6b69 745 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 746 struct btrfs_fs_info *fs_info;
9e0af237 747 struct btrfs_workqueue *wq;
ce9adaa5 748
ce9adaa5 749 fs_info = end_io_wq->info;
4e4cbee9 750 end_io_wq->status = bio->bi_status;
d20f7043 751
cfe94440 752 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
a0cac0ec 753 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 754 wq = fs_info->endio_meta_write_workers;
a0cac0ec 755 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 756 wq = fs_info->endio_freespace_worker;
a0cac0ec 757 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 758 wq = fs_info->endio_raid56_workers;
a0cac0ec 759 else
9e0af237 760 wq = fs_info->endio_write_workers;
d20f7043 761 } else {
5c047a69 762 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 763 wq = fs_info->endio_raid56_workers;
a0cac0ec 764 else if (end_io_wq->metadata)
9e0af237 765 wq = fs_info->endio_meta_workers;
a0cac0ec 766 else
9e0af237 767 wq = fs_info->endio_workers;
d20f7043 768 }
9e0af237 769
a0cac0ec 770 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 771 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
772}
773
4e4cbee9 774blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 775 enum btrfs_wq_endio_type metadata)
0b86a832 776{
97eb6b69 777 struct btrfs_end_io_wq *end_io_wq;
8b110e39 778
97eb6b69 779 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 780 if (!end_io_wq)
4e4cbee9 781 return BLK_STS_RESOURCE;
ce9adaa5
CM
782
783 end_io_wq->private = bio->bi_private;
784 end_io_wq->end_io = bio->bi_end_io;
22c59948 785 end_io_wq->info = info;
4e4cbee9 786 end_io_wq->status = 0;
ce9adaa5 787 end_io_wq->bio = bio;
22c59948 788 end_io_wq->metadata = metadata;
ce9adaa5
CM
789
790 bio->bi_private = end_io_wq;
791 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
792 return 0;
793}
794
4a69a410
CM
795static void run_one_async_start(struct btrfs_work *work)
796{
4a69a410 797 struct async_submit_bio *async;
4e4cbee9 798 blk_status_t ret;
4a69a410
CM
799
800 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
801 ret = async->submit_bio_start(async->inode, async->bio,
802 async->dio_file_offset);
79787eaa 803 if (ret)
4e4cbee9 804 async->status = ret;
4a69a410
CM
805}
806
06ea01b1
DS
807/*
808 * In order to insert checksums into the metadata in large chunks, we wait
809 * until bio submission time. All the pages in the bio are checksummed and
810 * sums are attached onto the ordered extent record.
811 *
812 * At IO completion time the csums attached on the ordered extent record are
813 * inserted into the tree.
814 */
4a69a410 815static void run_one_async_done(struct btrfs_work *work)
8b712842 816{
8b712842 817 struct async_submit_bio *async;
06ea01b1
DS
818 struct inode *inode;
819 blk_status_t ret;
8b712842
CM
820
821 async = container_of(work, struct async_submit_bio, work);
8896a08d 822 inode = async->inode;
4854ddd0 823
bb7ab3b9 824 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
825 if (async->status) {
826 async->bio->bi_status = async->status;
4246a0b6 827 bio_endio(async->bio);
79787eaa
JM
828 return;
829 }
830
ec39f769
CM
831 /*
832 * All of the bios that pass through here are from async helpers.
833 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
834 * This changes nothing when cgroups aren't in use.
835 */
836 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 837 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
838 if (ret) {
839 async->bio->bi_status = ret;
840 bio_endio(async->bio);
841 }
4a69a410
CM
842}
843
844static void run_one_async_free(struct btrfs_work *work)
845{
846 struct async_submit_bio *async;
847
848 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
849 kfree(async);
850}
851
8896a08d 852blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 853 int mirror_num, unsigned long bio_flags,
1941b64b 854 u64 dio_file_offset,
e288c080 855 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 856{
8896a08d 857 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
858 struct async_submit_bio *async;
859
860 async = kmalloc(sizeof(*async), GFP_NOFS);
861 if (!async)
4e4cbee9 862 return BLK_STS_RESOURCE;
44b8bd7e 863
8896a08d 864 async->inode = inode;
44b8bd7e
CM
865 async->bio = bio;
866 async->mirror_num = mirror_num;
4a69a410 867 async->submit_bio_start = submit_bio_start;
4a69a410 868
a0cac0ec
OS
869 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
870 run_one_async_free);
4a69a410 871
1941b64b 872 async->dio_file_offset = dio_file_offset;
8c8bee1d 873
4e4cbee9 874 async->status = 0;
79787eaa 875
67f055c7 876 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
877 btrfs_queue_work(fs_info->hipri_workers, &async->work);
878 else
879 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
880 return 0;
881}
882
4e4cbee9 883static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 884{
2c30c71b 885 struct bio_vec *bvec;
ce3ed71a 886 struct btrfs_root *root;
2b070cfe 887 int ret = 0;
6dc4f100 888 struct bvec_iter_all iter_all;
ce3ed71a 889
c09abff8 890 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 891 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 892 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 893 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
894 if (ret)
895 break;
ce3ed71a 896 }
2c30c71b 897
4e4cbee9 898 return errno_to_blk_status(ret);
ce3ed71a
CM
899}
900
8896a08d 901static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 902 u64 dio_file_offset)
22c59948 903{
8b712842
CM
904 /*
905 * when we're called for a write, we're already in the async
5443be45 906 * submission context. Just jump into btrfs_map_bio
8b712842 907 */
79787eaa 908 return btree_csum_one_bio(bio);
4a69a410 909}
22c59948 910
f4dcfb30 911static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 912 struct btrfs_inode *bi)
de0022b9 913{
4eef29ef 914 if (btrfs_is_zoned(fs_info))
f4dcfb30 915 return false;
6300463b 916 if (atomic_read(&bi->sync_writers))
f4dcfb30 917 return false;
9b4e675a 918 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
919 return false;
920 return true;
de0022b9
JB
921}
922
94d9e11b 923void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 924{
0b246afa 925 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 926 blk_status_t ret;
cad321ad 927
cfe94440 928 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
4a69a410
CM
929 /*
930 * called for a read, do the setup so that checksum validation
931 * can happen in the async kernel threads
932 */
0b246afa
JM
933 ret = btrfs_bio_wq_end_io(fs_info, bio,
934 BTRFS_WQ_ENDIO_METADATA);
94d9e11b
CH
935 if (!ret)
936 ret = btrfs_map_bio(fs_info, bio, mirror_num);
f4dcfb30 937 } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
de0022b9 938 ret = btree_csum_one_bio(bio);
94d9e11b
CH
939 if (!ret)
940 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
941 } else {
942 /*
943 * kthread helpers are used to submit writes so that
944 * checksumming can happen in parallel across all CPUs
945 */
8896a08d
QW
946 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
947 0, btree_submit_bio_start);
44b8bd7e 948 }
d313d7a3 949
94d9e11b
CH
950 if (ret) {
951 bio->bi_status = ret;
952 bio_endio(bio);
953 }
44b8bd7e
CM
954}
955
3dd1462e 956#ifdef CONFIG_MIGRATION
784b4e29 957static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
958 struct page *newpage, struct page *page,
959 enum migrate_mode mode)
784b4e29
CM
960{
961 /*
962 * we can't safely write a btree page from here,
963 * we haven't done the locking hook
964 */
965 if (PageDirty(page))
966 return -EAGAIN;
967 /*
968 * Buffers may be managed in a filesystem specific way.
969 * We must have no buffers or drop them.
970 */
971 if (page_has_private(page) &&
972 !try_to_release_page(page, GFP_KERNEL))
973 return -EAGAIN;
a6bc32b8 974 return migrate_page(mapping, newpage, page, mode);
784b4e29 975}
3dd1462e 976#endif
784b4e29 977
0da5468f
CM
978
979static int btree_writepages(struct address_space *mapping,
980 struct writeback_control *wbc)
981{
e2d84521
MX
982 struct btrfs_fs_info *fs_info;
983 int ret;
984
d8d5f3e1 985 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
986
987 if (wbc->for_kupdate)
988 return 0;
989
e2d84521 990 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 991 /* this is a bit racy, but that's ok */
d814a491
EL
992 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
993 BTRFS_DIRTY_METADATA_THRESH,
994 fs_info->dirty_metadata_batch);
e2d84521 995 if (ret < 0)
793955bc 996 return 0;
793955bc 997 }
0b32f4bb 998 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
999}
1000
70dec807 1001static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1002{
98509cfc 1003 if (PageWriteback(page) || PageDirty(page))
d397712b 1004 return 0;
0c4e538b 1005
f7a52a40 1006 return try_release_extent_buffer(page);
d98237b3
CM
1007}
1008
895586eb
MWO
1009static void btree_invalidate_folio(struct folio *folio, size_t offset,
1010 size_t length)
d98237b3 1011{
d1310b2e 1012 struct extent_io_tree *tree;
895586eb
MWO
1013 tree = &BTRFS_I(folio->mapping->host)->io_tree;
1014 extent_invalidate_folio(tree, folio, offset);
1015 btree_releasepage(&folio->page, GFP_NOFS);
1016 if (folio_get_private(folio)) {
1017 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
1018 "folio private not zero on folio %llu",
1019 (unsigned long long)folio_pos(folio));
1020 folio_detach_private(folio);
9ad6b7bc 1021 }
d98237b3
CM
1022}
1023
bb146eb2 1024#ifdef DEBUG
0079c3b1
MWO
1025static bool btree_dirty_folio(struct address_space *mapping,
1026 struct folio *folio)
1027{
1028 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 1029 struct btrfs_subpage *subpage;
0b32f4bb 1030 struct extent_buffer *eb;
139e8cd3 1031 int cur_bit = 0;
0079c3b1 1032 u64 page_start = folio_pos(folio);
139e8cd3
QW
1033
1034 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 1035 eb = folio_get_private(folio);
139e8cd3
QW
1036 BUG_ON(!eb);
1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 BUG_ON(!atomic_read(&eb->refs));
49d0c642 1039 btrfs_assert_tree_write_locked(eb);
0079c3b1 1040 return filemap_dirty_folio(mapping, folio);
139e8cd3 1041 }
0079c3b1 1042 subpage = folio_get_private(folio);
139e8cd3
QW
1043
1044 ASSERT(subpage->dirty_bitmap);
1045 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1046 unsigned long flags;
1047 u64 cur;
1048 u16 tmp = (1 << cur_bit);
1049
1050 spin_lock_irqsave(&subpage->lock, flags);
1051 if (!(tmp & subpage->dirty_bitmap)) {
1052 spin_unlock_irqrestore(&subpage->lock, flags);
1053 cur_bit++;
1054 continue;
1055 }
1056 spin_unlock_irqrestore(&subpage->lock, flags);
1057 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 1058
139e8cd3
QW
1059 eb = find_extent_buffer(fs_info, cur);
1060 ASSERT(eb);
1061 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1062 ASSERT(atomic_read(&eb->refs));
49d0c642 1063 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
1064 free_extent_buffer(eb);
1065
1066 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1067 }
0079c3b1 1068 return filemap_dirty_folio(mapping, folio);
0b32f4bb 1069}
0079c3b1
MWO
1070#else
1071#define btree_dirty_folio filemap_dirty_folio
1072#endif
0b32f4bb 1073
7f09410b 1074static const struct address_space_operations btree_aops = {
0da5468f 1075 .writepages = btree_writepages,
5f39d397 1076 .releasepage = btree_releasepage,
895586eb 1077 .invalidate_folio = btree_invalidate_folio,
5a92bc88 1078#ifdef CONFIG_MIGRATION
784b4e29 1079 .migratepage = btree_migratepage,
5a92bc88 1080#endif
0079c3b1 1081 .dirty_folio = btree_dirty_folio,
d98237b3
CM
1082};
1083
2ff7e61e
JM
1084struct extent_buffer *btrfs_find_create_tree_block(
1085 struct btrfs_fs_info *fs_info,
3fbaf258
JB
1086 u64 bytenr, u64 owner_root,
1087 int level)
0999df54 1088{
0b246afa
JM
1089 if (btrfs_is_testing(fs_info))
1090 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 1091 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
1092}
1093
581c1760
QW
1094/*
1095 * Read tree block at logical address @bytenr and do variant basic but critical
1096 * verification.
1097 *
1b7ec85e 1098 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
1099 * @parent_transid: expected transid of this tree block, skip check if 0
1100 * @level: expected level, mandatory check
1101 * @first_key: expected key in slot 0, skip check if NULL
1102 */
2ff7e61e 1103struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
1104 u64 owner_root, u64 parent_transid,
1105 int level, struct btrfs_key *first_key)
0999df54
CM
1106{
1107 struct extent_buffer *buf = NULL;
0999df54
CM
1108 int ret;
1109
3fbaf258 1110 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
1111 if (IS_ERR(buf))
1112 return buf;
0999df54 1113
6a2e9dc4 1114 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
0f0fe8f7 1115 if (ret) {
537f38f0 1116 free_extent_buffer_stale(buf);
64c043de 1117 return ERR_PTR(ret);
0f0fe8f7 1118 }
88c602ab
QW
1119 if (btrfs_check_eb_owner(buf, owner_root)) {
1120 free_extent_buffer_stale(buf);
1121 return ERR_PTR(-EUCLEAN);
1122 }
5f39d397 1123 return buf;
ce9adaa5 1124
eb60ceac
CM
1125}
1126
6a884d7d 1127void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1128{
6a884d7d 1129 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1130 if (btrfs_header_generation(buf) ==
e2d84521 1131 fs_info->running_transaction->transid) {
49d0c642 1132 btrfs_assert_tree_write_locked(buf);
b4ce94de 1133
b9473439 1134 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1135 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1136 -buf->len,
1137 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1138 clear_extent_buffer_dirty(buf);
1139 }
925baedd 1140 }
5f39d397
CM
1141}
1142
da17066c 1143static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1144 u64 objectid)
d97e63b6 1145{
7c0260ee 1146 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
1147
1148 memset(&root->root_key, 0, sizeof(root->root_key));
1149 memset(&root->root_item, 0, sizeof(root->root_item));
1150 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 1151 root->fs_info = fs_info;
2e608bd1 1152 root->root_key.objectid = objectid;
cfaa7295 1153 root->node = NULL;
a28ec197 1154 root->commit_root = NULL;
27cdeb70 1155 root->state = 0;
abed4aaa 1156 RB_CLEAR_NODE(&root->rb_node);
0b86a832 1157
0f7d52f4 1158 root->last_trans = 0;
6b8fad57 1159 root->free_objectid = 0;
eb73c1b7 1160 root->nr_delalloc_inodes = 0;
199c2a9c 1161 root->nr_ordered_extents = 0;
6bef4d31 1162 root->inode_tree = RB_ROOT;
16cdcec7 1163 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
1164
1165 btrfs_init_root_block_rsv(root);
0b86a832
CM
1166
1167 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1168 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1169 INIT_LIST_HEAD(&root->delalloc_inodes);
1170 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1171 INIT_LIST_HEAD(&root->ordered_extents);
1172 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1173 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1174 INIT_LIST_HEAD(&root->logged_list[0]);
1175 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1176 spin_lock_init(&root->inode_lock);
eb73c1b7 1177 spin_lock_init(&root->delalloc_lock);
199c2a9c 1178 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1179 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1180 spin_lock_init(&root->log_extents_lock[0]);
1181 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1182 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1183 mutex_init(&root->objectid_mutex);
e02119d5 1184 mutex_init(&root->log_mutex);
31f3d255 1185 mutex_init(&root->ordered_extent_mutex);
573bfb72 1186 mutex_init(&root->delalloc_mutex);
c53e9653 1187 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1188 init_waitqueue_head(&root->log_writer_wait);
1189 init_waitqueue_head(&root->log_commit_wait[0]);
1190 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1191 INIT_LIST_HEAD(&root->log_ctxs[0]);
1192 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1193 atomic_set(&root->log_commit[0], 0);
1194 atomic_set(&root->log_commit[1], 0);
1195 atomic_set(&root->log_writers, 0);
2ecb7923 1196 atomic_set(&root->log_batch, 0);
0700cea7 1197 refcount_set(&root->refs, 1);
8ecebf4d 1198 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1199 atomic_set(&root->nr_swapfiles, 0);
7237f183 1200 root->log_transid = 0;
d1433deb 1201 root->log_transid_committed = -1;
257c62e1 1202 root->last_log_commit = 0;
2e608bd1 1203 root->anon_dev = 0;
e289f03e 1204 if (!dummy) {
43eb5f29
QW
1205 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1206 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1207 extent_io_tree_init(fs_info, &root->log_csum_range,
1208 IO_TREE_LOG_CSUM_RANGE, NULL);
1209 }
017e5369 1210
5f3ab90a 1211 spin_lock_init(&root->root_item_lock);
370a11b8 1212 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1213#ifdef CONFIG_BTRFS_DEBUG
1214 INIT_LIST_HEAD(&root->leak_list);
1215 spin_lock(&fs_info->fs_roots_radix_lock);
1216 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1217 spin_unlock(&fs_info->fs_roots_radix_lock);
1218#endif
3768f368
CM
1219}
1220
74e4d827 1221static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1222 u64 objectid, gfp_t flags)
6f07e42e 1223{
74e4d827 1224 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1225 if (root)
96dfcb46 1226 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1227 return root;
1228}
1229
06ea65a3
JB
1230#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1231/* Should only be used by the testing infrastructure */
da17066c 1232struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1233{
1234 struct btrfs_root *root;
1235
7c0260ee
JM
1236 if (!fs_info)
1237 return ERR_PTR(-EINVAL);
1238
96dfcb46 1239 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1240 if (!root)
1241 return ERR_PTR(-ENOMEM);
da17066c 1242
b9ef22de 1243 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1244 root->alloc_bytenr = 0;
06ea65a3
JB
1245
1246 return root;
1247}
1248#endif
1249
abed4aaa
JB
1250static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1251{
1252 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1253 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1254
1255 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1256}
1257
1258static int global_root_key_cmp(const void *k, const struct rb_node *node)
1259{
1260 const struct btrfs_key *key = k;
1261 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1262
1263 return btrfs_comp_cpu_keys(key, &root->root_key);
1264}
1265
1266int btrfs_global_root_insert(struct btrfs_root *root)
1267{
1268 struct btrfs_fs_info *fs_info = root->fs_info;
1269 struct rb_node *tmp;
1270
1271 write_lock(&fs_info->global_root_lock);
1272 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1273 write_unlock(&fs_info->global_root_lock);
1274 ASSERT(!tmp);
1275
1276 return tmp ? -EEXIST : 0;
1277}
1278
1279void btrfs_global_root_delete(struct btrfs_root *root)
1280{
1281 struct btrfs_fs_info *fs_info = root->fs_info;
1282
1283 write_lock(&fs_info->global_root_lock);
1284 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1285 write_unlock(&fs_info->global_root_lock);
1286}
1287
1288struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1289 struct btrfs_key *key)
1290{
1291 struct rb_node *node;
1292 struct btrfs_root *root = NULL;
1293
1294 read_lock(&fs_info->global_root_lock);
1295 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1296 if (node)
1297 root = container_of(node, struct btrfs_root, rb_node);
1298 read_unlock(&fs_info->global_root_lock);
1299
1300 return root;
1301}
1302
f7238e50
JB
1303static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1304{
1305 struct btrfs_block_group *block_group;
1306 u64 ret;
1307
1308 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1309 return 0;
1310
1311 if (bytenr)
1312 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1313 else
1314 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1315 ASSERT(block_group);
1316 if (!block_group)
1317 return 0;
1318 ret = block_group->global_root_id;
1319 btrfs_put_block_group(block_group);
1320
1321 return ret;
1322}
1323
abed4aaa
JB
1324struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1325{
1326 struct btrfs_key key = {
1327 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1328 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1329 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1330 };
1331
1332 return btrfs_global_root(fs_info, &key);
1333}
1334
1335struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1336{
1337 struct btrfs_key key = {
1338 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1339 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1340 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1341 };
1342
1343 return btrfs_global_root(fs_info, &key);
1344}
1345
20897f5c 1346struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1347 u64 objectid)
1348{
9b7a2440 1349 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1350 struct extent_buffer *leaf;
1351 struct btrfs_root *tree_root = fs_info->tree_root;
1352 struct btrfs_root *root;
1353 struct btrfs_key key;
b89f6d1f 1354 unsigned int nofs_flag;
20897f5c 1355 int ret = 0;
20897f5c 1356
b89f6d1f
FM
1357 /*
1358 * We're holding a transaction handle, so use a NOFS memory allocation
1359 * context to avoid deadlock if reclaim happens.
1360 */
1361 nofs_flag = memalloc_nofs_save();
96dfcb46 1362 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1363 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1364 if (!root)
1365 return ERR_PTR(-ENOMEM);
1366
20897f5c
AJ
1367 root->root_key.objectid = objectid;
1368 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1369 root->root_key.offset = 0;
1370
9631e4cc
JB
1371 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1372 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1373 if (IS_ERR(leaf)) {
1374 ret = PTR_ERR(leaf);
1dd05682 1375 leaf = NULL;
8a6a87cd 1376 goto fail_unlock;
20897f5c
AJ
1377 }
1378
20897f5c 1379 root->node = leaf;
20897f5c
AJ
1380 btrfs_mark_buffer_dirty(leaf);
1381
1382 root->commit_root = btrfs_root_node(root);
27cdeb70 1383 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1384
f944d2cb
DS
1385 btrfs_set_root_flags(&root->root_item, 0);
1386 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1387 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1388 btrfs_set_root_generation(&root->root_item, trans->transid);
1389 btrfs_set_root_level(&root->root_item, 0);
1390 btrfs_set_root_refs(&root->root_item, 1);
1391 btrfs_set_root_used(&root->root_item, leaf->len);
1392 btrfs_set_root_last_snapshot(&root->root_item, 0);
1393 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1394 if (is_fstree(objectid))
807fc790
AS
1395 generate_random_guid(root->root_item.uuid);
1396 else
1397 export_guid(root->root_item.uuid, &guid_null);
c8422684 1398 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1399
8a6a87cd
BB
1400 btrfs_tree_unlock(leaf);
1401
20897f5c
AJ
1402 key.objectid = objectid;
1403 key.type = BTRFS_ROOT_ITEM_KEY;
1404 key.offset = 0;
1405 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1406 if (ret)
1407 goto fail;
1408
1dd05682
TI
1409 return root;
1410
8a6a87cd 1411fail_unlock:
8c38938c 1412 if (leaf)
1dd05682 1413 btrfs_tree_unlock(leaf);
8a6a87cd 1414fail:
00246528 1415 btrfs_put_root(root);
20897f5c 1416
1dd05682 1417 return ERR_PTR(ret);
20897f5c
AJ
1418}
1419
7237f183
YZ
1420static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1421 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1422{
1423 struct btrfs_root *root;
e02119d5 1424
96dfcb46 1425 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1426 if (!root)
7237f183 1427 return ERR_PTR(-ENOMEM);
e02119d5 1428
e02119d5
CM
1429 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1430 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1431 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1432
6ab6ebb7
NA
1433 return root;
1434}
1435
1436int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1437 struct btrfs_root *root)
1438{
1439 struct extent_buffer *leaf;
1440
7237f183 1441 /*
92a7cc42 1442 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1443 *
92a7cc42
QW
1444 * Log trees are not exposed to user space thus can't be snapshotted,
1445 * and they go away before a real commit is actually done.
1446 *
1447 * They do store pointers to file data extents, and those reference
1448 * counts still get updated (along with back refs to the log tree).
7237f183 1449 */
e02119d5 1450
4d75f8a9 1451 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1452 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1453 if (IS_ERR(leaf))
1454 return PTR_ERR(leaf);
e02119d5 1455
7237f183 1456 root->node = leaf;
e02119d5 1457
e02119d5
CM
1458 btrfs_mark_buffer_dirty(root->node);
1459 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1460
1461 return 0;
7237f183
YZ
1462}
1463
1464int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1465 struct btrfs_fs_info *fs_info)
1466{
1467 struct btrfs_root *log_root;
1468
1469 log_root = alloc_log_tree(trans, fs_info);
1470 if (IS_ERR(log_root))
1471 return PTR_ERR(log_root);
6ab6ebb7 1472
3ddebf27
NA
1473 if (!btrfs_is_zoned(fs_info)) {
1474 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1475
1476 if (ret) {
1477 btrfs_put_root(log_root);
1478 return ret;
1479 }
6ab6ebb7
NA
1480 }
1481
7237f183
YZ
1482 WARN_ON(fs_info->log_root_tree);
1483 fs_info->log_root_tree = log_root;
1484 return 0;
1485}
1486
1487int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1488 struct btrfs_root *root)
1489{
0b246afa 1490 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1491 struct btrfs_root *log_root;
1492 struct btrfs_inode_item *inode_item;
6ab6ebb7 1493 int ret;
7237f183 1494
0b246afa 1495 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1496 if (IS_ERR(log_root))
1497 return PTR_ERR(log_root);
1498
6ab6ebb7
NA
1499 ret = btrfs_alloc_log_tree_node(trans, log_root);
1500 if (ret) {
1501 btrfs_put_root(log_root);
1502 return ret;
1503 }
1504
7237f183
YZ
1505 log_root->last_trans = trans->transid;
1506 log_root->root_key.offset = root->root_key.objectid;
1507
1508 inode_item = &log_root->root_item.inode;
3cae210f
QW
1509 btrfs_set_stack_inode_generation(inode_item, 1);
1510 btrfs_set_stack_inode_size(inode_item, 3);
1511 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1512 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1513 fs_info->nodesize);
3cae210f 1514 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1515
5d4f98a2 1516 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1517
1518 WARN_ON(root->log_root);
1519 root->log_root = log_root;
1520 root->log_transid = 0;
d1433deb 1521 root->log_transid_committed = -1;
257c62e1 1522 root->last_log_commit = 0;
e02119d5
CM
1523 return 0;
1524}
1525
49d11bea
JB
1526static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1527 struct btrfs_path *path,
1528 struct btrfs_key *key)
e02119d5
CM
1529{
1530 struct btrfs_root *root;
1531 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1532 u64 generation;
cb517eab 1533 int ret;
581c1760 1534 int level;
0f7d52f4 1535
96dfcb46 1536 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1537 if (!root)
1538 return ERR_PTR(-ENOMEM);
0f7d52f4 1539
cb517eab
MX
1540 ret = btrfs_find_root(tree_root, key, path,
1541 &root->root_item, &root->root_key);
0f7d52f4 1542 if (ret) {
13a8a7c8
YZ
1543 if (ret > 0)
1544 ret = -ENOENT;
49d11bea 1545 goto fail;
0f7d52f4 1546 }
13a8a7c8 1547
84234f3a 1548 generation = btrfs_root_generation(&root->root_item);
581c1760 1549 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1550 root->node = read_tree_block(fs_info,
1551 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1552 key->objectid, generation, level, NULL);
64c043de
LB
1553 if (IS_ERR(root->node)) {
1554 ret = PTR_ERR(root->node);
8c38938c 1555 root->node = NULL;
49d11bea 1556 goto fail;
4eb150d6
QW
1557 }
1558 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1559 ret = -EIO;
49d11bea 1560 goto fail;
416bc658 1561 }
88c602ab
QW
1562
1563 /*
1564 * For real fs, and not log/reloc trees, root owner must
1565 * match its root node owner
1566 */
1567 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1568 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1569 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1570 root->root_key.objectid != btrfs_header_owner(root->node)) {
1571 btrfs_crit(fs_info,
1572"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1573 root->root_key.objectid, root->node->start,
1574 btrfs_header_owner(root->node),
1575 root->root_key.objectid);
1576 ret = -EUCLEAN;
1577 goto fail;
1578 }
5d4f98a2 1579 root->commit_root = btrfs_root_node(root);
cb517eab 1580 return root;
49d11bea 1581fail:
00246528 1582 btrfs_put_root(root);
49d11bea
JB
1583 return ERR_PTR(ret);
1584}
1585
1586struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1587 struct btrfs_key *key)
1588{
1589 struct btrfs_root *root;
1590 struct btrfs_path *path;
1591
1592 path = btrfs_alloc_path();
1593 if (!path)
1594 return ERR_PTR(-ENOMEM);
1595 root = read_tree_root_path(tree_root, path, key);
1596 btrfs_free_path(path);
1597
1598 return root;
cb517eab
MX
1599}
1600
2dfb1e43
QW
1601/*
1602 * Initialize subvolume root in-memory structure
1603 *
1604 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1605 */
1606static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1607{
1608 int ret;
dcc3eb96 1609 unsigned int nofs_flag;
cb517eab 1610
dcc3eb96
NB
1611 /*
1612 * We might be called under a transaction (e.g. indirect backref
1613 * resolution) which could deadlock if it triggers memory reclaim
1614 */
1615 nofs_flag = memalloc_nofs_save();
1616 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1617 memalloc_nofs_restore(nofs_flag);
1618 if (ret)
8257b2dc 1619 goto fail;
8257b2dc 1620
aeb935a4 1621 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1622 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1623 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1624 btrfs_check_and_init_root_item(&root->root_item);
1625 }
1626
851fd730
QW
1627 /*
1628 * Don't assign anonymous block device to roots that are not exposed to
1629 * userspace, the id pool is limited to 1M
1630 */
1631 if (is_fstree(root->root_key.objectid) &&
1632 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1633 if (!anon_dev) {
1634 ret = get_anon_bdev(&root->anon_dev);
1635 if (ret)
1636 goto fail;
1637 } else {
1638 root->anon_dev = anon_dev;
1639 }
851fd730 1640 }
f32e48e9
CR
1641
1642 mutex_lock(&root->objectid_mutex);
453e4873 1643 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1644 if (ret) {
1645 mutex_unlock(&root->objectid_mutex);
876d2cf1 1646 goto fail;
f32e48e9
CR
1647 }
1648
6b8fad57 1649 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1650
1651 mutex_unlock(&root->objectid_mutex);
1652
cb517eab
MX
1653 return 0;
1654fail:
84db5ccf 1655 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1656 return ret;
1657}
1658
a98db0f3
JB
1659static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1660 u64 root_id)
cb517eab
MX
1661{
1662 struct btrfs_root *root;
1663
1664 spin_lock(&fs_info->fs_roots_radix_lock);
1665 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1666 (unsigned long)root_id);
bc44d7c4 1667 if (root)
00246528 1668 root = btrfs_grab_root(root);
cb517eab
MX
1669 spin_unlock(&fs_info->fs_roots_radix_lock);
1670 return root;
1671}
1672
49d11bea
JB
1673static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1674 u64 objectid)
1675{
abed4aaa
JB
1676 struct btrfs_key key = {
1677 .objectid = objectid,
1678 .type = BTRFS_ROOT_ITEM_KEY,
1679 .offset = 0,
1680 };
1681
49d11bea
JB
1682 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1683 return btrfs_grab_root(fs_info->tree_root);
1684 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1685 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1686 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1687 return btrfs_grab_root(fs_info->chunk_root);
1688 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1689 return btrfs_grab_root(fs_info->dev_root);
1690 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1691 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1692 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1693 return btrfs_grab_root(fs_info->quota_root) ?
1694 fs_info->quota_root : ERR_PTR(-ENOENT);
1695 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1696 return btrfs_grab_root(fs_info->uuid_root) ?
1697 fs_info->uuid_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1698 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1699 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1700
1701 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1702 }
49d11bea
JB
1703 return NULL;
1704}
1705
cb517eab
MX
1706int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1707 struct btrfs_root *root)
1708{
1709 int ret;
1710
e1860a77 1711 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1712 if (ret)
1713 return ret;
1714
1715 spin_lock(&fs_info->fs_roots_radix_lock);
1716 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1717 (unsigned long)root->root_key.objectid,
1718 root);
af01d2e5 1719 if (ret == 0) {
00246528 1720 btrfs_grab_root(root);
27cdeb70 1721 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1722 }
cb517eab
MX
1723 spin_unlock(&fs_info->fs_roots_radix_lock);
1724 radix_tree_preload_end();
1725
1726 return ret;
1727}
1728
bd647ce3
JB
1729void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1730{
1731#ifdef CONFIG_BTRFS_DEBUG
1732 struct btrfs_root *root;
1733
1734 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1735 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1736
bd647ce3
JB
1737 root = list_first_entry(&fs_info->allocated_roots,
1738 struct btrfs_root, leak_list);
457f1864 1739 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1740 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1741 refcount_read(&root->refs));
1742 while (refcount_read(&root->refs) > 1)
00246528
JB
1743 btrfs_put_root(root);
1744 btrfs_put_root(root);
bd647ce3
JB
1745 }
1746#endif
1747}
1748
abed4aaa
JB
1749static void free_global_roots(struct btrfs_fs_info *fs_info)
1750{
1751 struct btrfs_root *root;
1752 struct rb_node *node;
1753
1754 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1755 root = rb_entry(node, struct btrfs_root, rb_node);
1756 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1757 btrfs_put_root(root);
1758 }
1759}
1760
0d4b0463
JB
1761void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1762{
141386e1
JB
1763 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1764 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1765 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1766 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1767 btrfs_free_csum_hash(fs_info);
1768 btrfs_free_stripe_hash_table(fs_info);
1769 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1770 kfree(fs_info->balance_ctl);
1771 kfree(fs_info->delayed_root);
abed4aaa 1772 free_global_roots(fs_info);
00246528
JB
1773 btrfs_put_root(fs_info->tree_root);
1774 btrfs_put_root(fs_info->chunk_root);
1775 btrfs_put_root(fs_info->dev_root);
00246528
JB
1776 btrfs_put_root(fs_info->quota_root);
1777 btrfs_put_root(fs_info->uuid_root);
00246528 1778 btrfs_put_root(fs_info->fs_root);
aeb935a4 1779 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1780 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1781 btrfs_check_leaked_roots(fs_info);
3fd63727 1782 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1783 kfree(fs_info->super_copy);
1784 kfree(fs_info->super_for_commit);
8481dd80 1785 kfree(fs_info->subpage_info);
0d4b0463
JB
1786 kvfree(fs_info);
1787}
1788
1789
2dfb1e43
QW
1790/*
1791 * Get an in-memory reference of a root structure.
1792 *
1793 * For essential trees like root/extent tree, we grab it from fs_info directly.
1794 * For subvolume trees, we check the cached filesystem roots first. If not
1795 * found, then read it from disk and add it to cached fs roots.
1796 *
1797 * Caller should release the root by calling btrfs_put_root() after the usage.
1798 *
1799 * NOTE: Reloc and log trees can't be read by this function as they share the
1800 * same root objectid.
1801 *
1802 * @objectid: root id
1803 * @anon_dev: preallocated anonymous block device number for new roots,
1804 * pass 0 for new allocation.
1805 * @check_ref: whether to check root item references, If true, return -ENOENT
1806 * for orphan roots
1807 */
1808static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1809 u64 objectid, dev_t anon_dev,
1810 bool check_ref)
5eda7b5e
CM
1811{
1812 struct btrfs_root *root;
381cf658 1813 struct btrfs_path *path;
1d4c08e0 1814 struct btrfs_key key;
5eda7b5e
CM
1815 int ret;
1816
49d11bea
JB
1817 root = btrfs_get_global_root(fs_info, objectid);
1818 if (root)
1819 return root;
4df27c4d 1820again:
56e9357a 1821 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1822 if (root) {
2dfb1e43
QW
1823 /* Shouldn't get preallocated anon_dev for cached roots */
1824 ASSERT(!anon_dev);
bc44d7c4 1825 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1826 btrfs_put_root(root);
48475471 1827 return ERR_PTR(-ENOENT);
bc44d7c4 1828 }
5eda7b5e 1829 return root;
48475471 1830 }
5eda7b5e 1831
56e9357a
DS
1832 key.objectid = objectid;
1833 key.type = BTRFS_ROOT_ITEM_KEY;
1834 key.offset = (u64)-1;
1835 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1836 if (IS_ERR(root))
1837 return root;
3394e160 1838
c00869f1 1839 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1840 ret = -ENOENT;
581bb050 1841 goto fail;
35a30d7c 1842 }
581bb050 1843
2dfb1e43 1844 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1845 if (ret)
1846 goto fail;
3394e160 1847
381cf658
DS
1848 path = btrfs_alloc_path();
1849 if (!path) {
1850 ret = -ENOMEM;
1851 goto fail;
1852 }
1d4c08e0
DS
1853 key.objectid = BTRFS_ORPHAN_OBJECTID;
1854 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1855 key.offset = objectid;
1d4c08e0
DS
1856
1857 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1858 btrfs_free_path(path);
d68fc57b
YZ
1859 if (ret < 0)
1860 goto fail;
1861 if (ret == 0)
27cdeb70 1862 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1863
cb517eab 1864 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1865 if (ret) {
168a2f77
JJB
1866 if (ret == -EEXIST) {
1867 btrfs_put_root(root);
4df27c4d 1868 goto again;
168a2f77 1869 }
4df27c4d 1870 goto fail;
0f7d52f4 1871 }
edbd8d4e 1872 return root;
4df27c4d 1873fail:
33fab972
FM
1874 /*
1875 * If our caller provided us an anonymous device, then it's his
1876 * responsability to free it in case we fail. So we have to set our
1877 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1878 * and once again by our caller.
1879 */
1880 if (anon_dev)
1881 root->anon_dev = 0;
8c38938c 1882 btrfs_put_root(root);
4df27c4d 1883 return ERR_PTR(ret);
edbd8d4e
CM
1884}
1885
2dfb1e43
QW
1886/*
1887 * Get in-memory reference of a root structure
1888 *
1889 * @objectid: tree objectid
1890 * @check_ref: if set, verify that the tree exists and the item has at least
1891 * one reference
1892 */
1893struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1894 u64 objectid, bool check_ref)
1895{
1896 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1897}
1898
1899/*
1900 * Get in-memory reference of a root structure, created as new, optionally pass
1901 * the anonymous block device id
1902 *
1903 * @objectid: tree objectid
1904 * @anon_dev: if zero, allocate a new anonymous block device or use the
1905 * parameter value
1906 */
1907struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1908 u64 objectid, dev_t anon_dev)
1909{
1910 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1911}
1912
49d11bea
JB
1913/*
1914 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1915 * @fs_info: the fs_info
1916 * @objectid: the objectid we need to lookup
1917 *
1918 * This is exclusively used for backref walking, and exists specifically because
1919 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1920 * creation time, which means we may have to read the tree_root in order to look
1921 * up a fs root that is not in memory. If the root is not in memory we will
1922 * read the tree root commit root and look up the fs root from there. This is a
1923 * temporary root, it will not be inserted into the radix tree as it doesn't
1924 * have the most uptodate information, it'll simply be discarded once the
1925 * backref code is finished using the root.
1926 */
1927struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1928 struct btrfs_path *path,
1929 u64 objectid)
1930{
1931 struct btrfs_root *root;
1932 struct btrfs_key key;
1933
1934 ASSERT(path->search_commit_root && path->skip_locking);
1935
1936 /*
1937 * This can return -ENOENT if we ask for a root that doesn't exist, but
1938 * since this is called via the backref walking code we won't be looking
1939 * up a root that doesn't exist, unless there's corruption. So if root
1940 * != NULL just return it.
1941 */
1942 root = btrfs_get_global_root(fs_info, objectid);
1943 if (root)
1944 return root;
1945
1946 root = btrfs_lookup_fs_root(fs_info, objectid);
1947 if (root)
1948 return root;
1949
1950 key.objectid = objectid;
1951 key.type = BTRFS_ROOT_ITEM_KEY;
1952 key.offset = (u64)-1;
1953 root = read_tree_root_path(fs_info->tree_root, path, &key);
1954 btrfs_release_path(path);
1955
1956 return root;
1957}
1958
8b712842
CM
1959/*
1960 * called by the kthread helper functions to finally call the bio end_io
1961 * functions. This is where read checksum verification actually happens
1962 */
1963static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1964{
ce9adaa5 1965 struct bio *bio;
97eb6b69 1966 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1967
97eb6b69 1968 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1969 bio = end_io_wq->bio;
ce9adaa5 1970
4e4cbee9 1971 bio->bi_status = end_io_wq->status;
8b712842
CM
1972 bio->bi_private = end_io_wq->private;
1973 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1974 bio_endio(bio);
9be490f1 1975 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1976}
1977
a74a4b97
CM
1978static int cleaner_kthread(void *arg)
1979{
0d031dc4 1980 struct btrfs_fs_info *fs_info = arg;
d0278245 1981 int again;
a74a4b97 1982
d6fd0ae2 1983 while (1) {
d0278245 1984 again = 0;
a74a4b97 1985
fd340d0f
JB
1986 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1987
d0278245 1988 /* Make the cleaner go to sleep early. */
2ff7e61e 1989 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1990 goto sleep;
1991
90c711ab
ZB
1992 /*
1993 * Do not do anything if we might cause open_ctree() to block
1994 * before we have finished mounting the filesystem.
1995 */
0b246afa 1996 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1997 goto sleep;
1998
0b246afa 1999 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
2000 goto sleep;
2001
dc7f370c
MX
2002 /*
2003 * Avoid the problem that we change the status of the fs
2004 * during the above check and trylock.
2005 */
2ff7e61e 2006 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 2007 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 2008 goto sleep;
76dda93c 2009 }
a74a4b97 2010
2ff7e61e 2011 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 2012
33c44184 2013 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 2014 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
2015
2016 /*
05323cd1
MX
2017 * The defragger has dealt with the R/O remount and umount,
2018 * needn't do anything special here.
d0278245 2019 */
0b246afa 2020 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
2021
2022 /*
f3372065 2023 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
2024 * with relocation (btrfs_relocate_chunk) and relocation
2025 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 2026 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
2027 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
2028 * unused block groups.
2029 */
0b246afa 2030 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
2031
2032 /*
2033 * Reclaim block groups in the reclaim_bgs list after we deleted
2034 * all unused block_groups. This possibly gives us some more free
2035 * space.
2036 */
2037 btrfs_reclaim_bgs(fs_info);
d0278245 2038sleep:
a0a1db70 2039 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
2040 if (kthread_should_park())
2041 kthread_parkme();
2042 if (kthread_should_stop())
2043 return 0;
838fe188 2044 if (!again) {
a74a4b97 2045 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 2046 schedule();
a74a4b97
CM
2047 __set_current_state(TASK_RUNNING);
2048 }
da288d28 2049 }
a74a4b97
CM
2050}
2051
2052static int transaction_kthread(void *arg)
2053{
2054 struct btrfs_root *root = arg;
0b246afa 2055 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
2056 struct btrfs_trans_handle *trans;
2057 struct btrfs_transaction *cur;
8929ecfa 2058 u64 transid;
643900be 2059 time64_t delta;
a74a4b97 2060 unsigned long delay;
914b2007 2061 bool cannot_commit;
a74a4b97
CM
2062
2063 do {
914b2007 2064 cannot_commit = false;
ba1bc00f 2065 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 2066 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 2067
0b246afa
JM
2068 spin_lock(&fs_info->trans_lock);
2069 cur = fs_info->running_transaction;
a74a4b97 2070 if (!cur) {
0b246afa 2071 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
2072 goto sleep;
2073 }
31153d81 2074
643900be 2075 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
2076 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
2077 cur->state < TRANS_STATE_COMMIT_START &&
643900be 2078 delta < fs_info->commit_interval) {
0b246afa 2079 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
2080 delay -= msecs_to_jiffies((delta - 1) * 1000);
2081 delay = min(delay,
2082 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
2083 goto sleep;
2084 }
8929ecfa 2085 transid = cur->transid;
0b246afa 2086 spin_unlock(&fs_info->trans_lock);
56bec294 2087
79787eaa 2088 /* If the file system is aborted, this will always fail. */
354aa0fb 2089 trans = btrfs_attach_transaction(root);
914b2007 2090 if (IS_ERR(trans)) {
354aa0fb
MX
2091 if (PTR_ERR(trans) != -ENOENT)
2092 cannot_commit = true;
79787eaa 2093 goto sleep;
914b2007 2094 }
8929ecfa 2095 if (transid == trans->transid) {
3a45bb20 2096 btrfs_commit_transaction(trans);
8929ecfa 2097 } else {
3a45bb20 2098 btrfs_end_transaction(trans);
8929ecfa 2099 }
a74a4b97 2100sleep:
0b246afa
JM
2101 wake_up_process(fs_info->cleaner_kthread);
2102 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 2103
84961539 2104 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 2105 btrfs_cleanup_transaction(fs_info);
ce63f891 2106 if (!kthread_should_stop() &&
0b246afa 2107 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 2108 cannot_commit))
bc5511d0 2109 schedule_timeout_interruptible(delay);
a74a4b97
CM
2110 } while (!kthread_should_stop());
2111 return 0;
2112}
2113
af31f5e5 2114/*
01f0f9da
NB
2115 * This will find the highest generation in the array of root backups. The
2116 * index of the highest array is returned, or -EINVAL if we can't find
2117 * anything.
af31f5e5
CM
2118 *
2119 * We check to make sure the array is valid by comparing the
2120 * generation of the latest root in the array with the generation
2121 * in the super block. If they don't match we pitch it.
2122 */
01f0f9da 2123static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 2124{
01f0f9da 2125 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 2126 u64 cur;
af31f5e5
CM
2127 struct btrfs_root_backup *root_backup;
2128 int i;
2129
2130 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2131 root_backup = info->super_copy->super_roots + i;
2132 cur = btrfs_backup_tree_root_gen(root_backup);
2133 if (cur == newest_gen)
01f0f9da 2134 return i;
af31f5e5
CM
2135 }
2136
01f0f9da 2137 return -EINVAL;
af31f5e5
CM
2138}
2139
af31f5e5
CM
2140/*
2141 * copy all the root pointers into the super backup array.
2142 * this will bump the backup pointer by one when it is
2143 * done
2144 */
2145static void backup_super_roots(struct btrfs_fs_info *info)
2146{
6ef108dd 2147 const int next_backup = info->backup_root_index;
af31f5e5 2148 struct btrfs_root_backup *root_backup;
af31f5e5
CM
2149
2150 root_backup = info->super_for_commit->super_roots + next_backup;
2151
2152 /*
2153 * make sure all of our padding and empty slots get zero filled
2154 * regardless of which ones we use today
2155 */
2156 memset(root_backup, 0, sizeof(*root_backup));
2157
2158 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2159
2160 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2161 btrfs_set_backup_tree_root_gen(root_backup,
2162 btrfs_header_generation(info->tree_root->node));
2163
2164 btrfs_set_backup_tree_root_level(root_backup,
2165 btrfs_header_level(info->tree_root->node));
2166
2167 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2168 btrfs_set_backup_chunk_root_gen(root_backup,
2169 btrfs_header_generation(info->chunk_root->node));
2170 btrfs_set_backup_chunk_root_level(root_backup,
2171 btrfs_header_level(info->chunk_root->node));
2172
9c54e80d
JB
2173 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
2174 btrfs_set_backup_block_group_root(root_backup,
2175 info->block_group_root->node->start);
2176 btrfs_set_backup_block_group_root_gen(root_backup,
2177 btrfs_header_generation(info->block_group_root->node));
2178 btrfs_set_backup_block_group_root_level(root_backup,
2179 btrfs_header_level(info->block_group_root->node));
2180 } else {
2181 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 2182 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
2183
2184 btrfs_set_backup_extent_root(root_backup,
2185 extent_root->node->start);
2186 btrfs_set_backup_extent_root_gen(root_backup,
2187 btrfs_header_generation(extent_root->node));
2188 btrfs_set_backup_extent_root_level(root_backup,
2189 btrfs_header_level(extent_root->node));
f7238e50
JB
2190
2191 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2192 btrfs_set_backup_csum_root_gen(root_backup,
2193 btrfs_header_generation(csum_root->node));
2194 btrfs_set_backup_csum_root_level(root_backup,
2195 btrfs_header_level(csum_root->node));
9c54e80d 2196 }
af31f5e5 2197
7c7e82a7
CM
2198 /*
2199 * we might commit during log recovery, which happens before we set
2200 * the fs_root. Make sure it is valid before we fill it in.
2201 */
2202 if (info->fs_root && info->fs_root->node) {
2203 btrfs_set_backup_fs_root(root_backup,
2204 info->fs_root->node->start);
2205 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2206 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2207 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2208 btrfs_header_level(info->fs_root->node));
7c7e82a7 2209 }
af31f5e5
CM
2210
2211 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2212 btrfs_set_backup_dev_root_gen(root_backup,
2213 btrfs_header_generation(info->dev_root->node));
2214 btrfs_set_backup_dev_root_level(root_backup,
2215 btrfs_header_level(info->dev_root->node));
2216
af31f5e5
CM
2217 btrfs_set_backup_total_bytes(root_backup,
2218 btrfs_super_total_bytes(info->super_copy));
2219 btrfs_set_backup_bytes_used(root_backup,
2220 btrfs_super_bytes_used(info->super_copy));
2221 btrfs_set_backup_num_devices(root_backup,
2222 btrfs_super_num_devices(info->super_copy));
2223
2224 /*
2225 * if we don't copy this out to the super_copy, it won't get remembered
2226 * for the next commit
2227 */
2228 memcpy(&info->super_copy->super_roots,
2229 &info->super_for_commit->super_roots,
2230 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2231}
2232
bd2336b2
NB
2233/*
2234 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2235 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2236 *
2237 * fs_info - filesystem whose backup roots need to be read
2238 * priority - priority of backup root required
2239 *
2240 * Returns backup root index on success and -EINVAL otherwise.
2241 */
2242static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2243{
2244 int backup_index = find_newest_super_backup(fs_info);
2245 struct btrfs_super_block *super = fs_info->super_copy;
2246 struct btrfs_root_backup *root_backup;
2247
2248 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2249 if (priority == 0)
2250 return backup_index;
2251
2252 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2253 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2254 } else {
2255 return -EINVAL;
2256 }
2257
2258 root_backup = super->super_roots + backup_index;
2259
2260 btrfs_set_super_generation(super,
2261 btrfs_backup_tree_root_gen(root_backup));
2262 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2263 btrfs_set_super_root_level(super,
2264 btrfs_backup_tree_root_level(root_backup));
2265 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2266
2267 /*
2268 * Fixme: the total bytes and num_devices need to match or we should
2269 * need a fsck
2270 */
2271 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2272 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2273
2274 return backup_index;
2275}
2276
7abadb64
LB
2277/* helper to cleanup workers */
2278static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2279{
dc6e3209 2280 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2281 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2282 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2283 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2284 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2285 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2286 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2287 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2288 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2289 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2290 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2291 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2292 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2293 if (fs_info->discard_ctl.discard_workers)
2294 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2295 /*
2296 * Now that all other work queues are destroyed, we can safely destroy
2297 * the queues used for metadata I/O, since tasks from those other work
2298 * queues can do metadata I/O operations.
2299 */
2300 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2301 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2302}
2303
2e9f5954
R
2304static void free_root_extent_buffers(struct btrfs_root *root)
2305{
2306 if (root) {
2307 free_extent_buffer(root->node);
2308 free_extent_buffer(root->commit_root);
2309 root->node = NULL;
2310 root->commit_root = NULL;
2311 }
2312}
2313
abed4aaa
JB
2314static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2315{
2316 struct btrfs_root *root, *tmp;
2317
2318 rbtree_postorder_for_each_entry_safe(root, tmp,
2319 &fs_info->global_root_tree,
2320 rb_node)
2321 free_root_extent_buffers(root);
2322}
2323
af31f5e5 2324/* helper to cleanup tree roots */
4273eaff 2325static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2326{
2e9f5954 2327 free_root_extent_buffers(info->tree_root);
655b09fe 2328
abed4aaa 2329 free_global_root_pointers(info);
2e9f5954 2330 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2331 free_root_extent_buffers(info->quota_root);
2332 free_root_extent_buffers(info->uuid_root);
8c38938c 2333 free_root_extent_buffers(info->fs_root);
aeb935a4 2334 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2335 free_root_extent_buffers(info->block_group_root);
4273eaff 2336 if (free_chunk_root)
2e9f5954 2337 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2338}
2339
8c38938c
JB
2340void btrfs_put_root(struct btrfs_root *root)
2341{
2342 if (!root)
2343 return;
2344
2345 if (refcount_dec_and_test(&root->refs)) {
2346 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2347 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2348 if (root->anon_dev)
2349 free_anon_bdev(root->anon_dev);
2350 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2351 free_root_extent_buffers(root);
8c38938c
JB
2352#ifdef CONFIG_BTRFS_DEBUG
2353 spin_lock(&root->fs_info->fs_roots_radix_lock);
2354 list_del_init(&root->leak_list);
2355 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2356#endif
2357 kfree(root);
2358 }
2359}
2360
faa2dbf0 2361void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2362{
2363 int ret;
2364 struct btrfs_root *gang[8];
2365 int i;
2366
2367 while (!list_empty(&fs_info->dead_roots)) {
2368 gang[0] = list_entry(fs_info->dead_roots.next,
2369 struct btrfs_root, root_list);
2370 list_del(&gang[0]->root_list);
2371
8c38938c 2372 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2373 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2374 btrfs_put_root(gang[0]);
171f6537
JB
2375 }
2376
2377 while (1) {
2378 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2379 (void **)gang, 0,
2380 ARRAY_SIZE(gang));
2381 if (!ret)
2382 break;
2383 for (i = 0; i < ret; i++)
cb517eab 2384 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2385 }
2386}
af31f5e5 2387
638aa7ed
ES
2388static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2389{
2390 mutex_init(&fs_info->scrub_lock);
2391 atomic_set(&fs_info->scrubs_running, 0);
2392 atomic_set(&fs_info->scrub_pause_req, 0);
2393 atomic_set(&fs_info->scrubs_paused, 0);
2394 atomic_set(&fs_info->scrub_cancel_req, 0);
2395 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2396 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2397}
2398
779a65a4
ES
2399static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2400{
2401 spin_lock_init(&fs_info->balance_lock);
2402 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2403 atomic_set(&fs_info->balance_pause_req, 0);
2404 atomic_set(&fs_info->balance_cancel_req, 0);
2405 fs_info->balance_ctl = NULL;
2406 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2407 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2408}
2409
6bccf3ab 2410static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2411{
2ff7e61e
JM
2412 struct inode *inode = fs_info->btree_inode;
2413
2414 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2415 set_nlink(inode, 1);
f37938e0
ES
2416 /*
2417 * we set the i_size on the btree inode to the max possible int.
2418 * the real end of the address space is determined by all of
2419 * the devices in the system
2420 */
2ff7e61e
JM
2421 inode->i_size = OFFSET_MAX;
2422 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2423
2ff7e61e 2424 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2425 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2426 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2427 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2428 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2429
5c8fd99f 2430 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2431 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2432 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2433 btrfs_insert_inode_hash(inode);
f37938e0
ES
2434}
2435
ad618368
ES
2436static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2437{
ad618368 2438 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2439 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2440 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2441}
2442
f9e92e40
ES
2443static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2444{
2445 spin_lock_init(&fs_info->qgroup_lock);
2446 mutex_init(&fs_info->qgroup_ioctl_lock);
2447 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2448 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2449 fs_info->qgroup_seq = 1;
f9e92e40 2450 fs_info->qgroup_ulist = NULL;
d2c609b8 2451 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2452 mutex_init(&fs_info->qgroup_rescan_lock);
2453}
2454
d21deec5 2455static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2456{
f7b885be 2457 u32 max_active = fs_info->thread_pool_size;
6f011058 2458 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2459
2460 fs_info->workers =
a31b4a43
CH
2461 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2462 fs_info->hipri_workers =
2463 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2464 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2465
2466 fs_info->delalloc_workers =
cb001095
JM
2467 btrfs_alloc_workqueue(fs_info, "delalloc",
2468 flags, max_active, 2);
2a458198
ES
2469
2470 fs_info->flush_workers =
cb001095
JM
2471 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2472 flags, max_active, 0);
2a458198
ES
2473
2474 fs_info->caching_workers =
cb001095 2475 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2476
2a458198 2477 fs_info->fixup_workers =
cb001095 2478 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2479
2480 /*
2481 * endios are largely parallel and should have a very
2482 * low idle thresh
2483 */
2484 fs_info->endio_workers =
cb001095 2485 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2486 fs_info->endio_meta_workers =
cb001095
JM
2487 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2488 max_active, 4);
2a458198 2489 fs_info->endio_meta_write_workers =
cb001095
JM
2490 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2491 max_active, 2);
2a458198 2492 fs_info->endio_raid56_workers =
cb001095
JM
2493 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2494 max_active, 4);
2a458198 2495 fs_info->rmw_workers =
cb001095 2496 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2497 fs_info->endio_write_workers =
cb001095
JM
2498 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2499 max_active, 2);
2a458198 2500 fs_info->endio_freespace_worker =
cb001095
JM
2501 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2502 max_active, 0);
2a458198 2503 fs_info->delayed_workers =
cb001095
JM
2504 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2505 max_active, 0);
2a458198 2506 fs_info->qgroup_rescan_workers =
cb001095 2507 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2508 fs_info->discard_ctl.discard_workers =
2509 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2510
a31b4a43
CH
2511 if (!(fs_info->workers && fs_info->hipri_workers &&
2512 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198
ES
2513 fs_info->endio_workers && fs_info->endio_meta_workers &&
2514 fs_info->endio_meta_write_workers &&
2a458198
ES
2515 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2516 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2517 fs_info->caching_workers && fs_info->fixup_workers &&
2518 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2519 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2520 return -ENOMEM;
2521 }
2522
2523 return 0;
2524}
2525
6d97c6e3
JT
2526static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2527{
2528 struct crypto_shash *csum_shash;
b4e967be 2529 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2530
b4e967be 2531 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2532
2533 if (IS_ERR(csum_shash)) {
2534 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2535 csum_driver);
6d97c6e3
JT
2536 return PTR_ERR(csum_shash);
2537 }
2538
2539 fs_info->csum_shash = csum_shash;
2540
2541 return 0;
2542}
2543
63443bf5
ES
2544static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2545 struct btrfs_fs_devices *fs_devices)
2546{
2547 int ret;
63443bf5
ES
2548 struct btrfs_root *log_tree_root;
2549 struct btrfs_super_block *disk_super = fs_info->super_copy;
2550 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2551 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2552
2553 if (fs_devices->rw_devices == 0) {
f14d104d 2554 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2555 return -EIO;
2556 }
2557
96dfcb46
JB
2558 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2559 GFP_KERNEL);
63443bf5
ES
2560 if (!log_tree_root)
2561 return -ENOMEM;
2562
2ff7e61e 2563 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2564 BTRFS_TREE_LOG_OBJECTID,
2565 fs_info->generation + 1, level,
2566 NULL);
64c043de 2567 if (IS_ERR(log_tree_root->node)) {
f14d104d 2568 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2569 ret = PTR_ERR(log_tree_root->node);
8c38938c 2570 log_tree_root->node = NULL;
00246528 2571 btrfs_put_root(log_tree_root);
0eeff236 2572 return ret;
4eb150d6
QW
2573 }
2574 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2575 btrfs_err(fs_info, "failed to read log tree");
00246528 2576 btrfs_put_root(log_tree_root);
63443bf5
ES
2577 return -EIO;
2578 }
4eb150d6 2579
63443bf5
ES
2580 /* returns with log_tree_root freed on success */
2581 ret = btrfs_recover_log_trees(log_tree_root);
2582 if (ret) {
0b246afa
JM
2583 btrfs_handle_fs_error(fs_info, ret,
2584 "Failed to recover log tree");
00246528 2585 btrfs_put_root(log_tree_root);
63443bf5
ES
2586 return ret;
2587 }
2588
bc98a42c 2589 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2590 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2591 if (ret)
2592 return ret;
2593 }
2594
2595 return 0;
2596}
2597
abed4aaa
JB
2598static int load_global_roots_objectid(struct btrfs_root *tree_root,
2599 struct btrfs_path *path, u64 objectid,
2600 const char *name)
2601{
2602 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2603 struct btrfs_root *root;
f7238e50 2604 u64 max_global_id = 0;
abed4aaa
JB
2605 int ret;
2606 struct btrfs_key key = {
2607 .objectid = objectid,
2608 .type = BTRFS_ROOT_ITEM_KEY,
2609 .offset = 0,
2610 };
2611 bool found = false;
2612
2613 /* If we have IGNOREDATACSUMS skip loading these roots. */
2614 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2615 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2616 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2617 return 0;
2618 }
2619
2620 while (1) {
2621 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2622 if (ret < 0)
2623 break;
2624
2625 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2626 ret = btrfs_next_leaf(tree_root, path);
2627 if (ret) {
2628 if (ret > 0)
2629 ret = 0;
2630 break;
2631 }
2632 }
2633 ret = 0;
2634
2635 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2636 if (key.objectid != objectid)
2637 break;
2638 btrfs_release_path(path);
2639
f7238e50
JB
2640 /*
2641 * Just worry about this for extent tree, it'll be the same for
2642 * everybody.
2643 */
2644 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2645 max_global_id = max(max_global_id, key.offset);
2646
abed4aaa
JB
2647 found = true;
2648 root = read_tree_root_path(tree_root, path, &key);
2649 if (IS_ERR(root)) {
2650 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2651 ret = PTR_ERR(root);
2652 break;
2653 }
2654 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2655 ret = btrfs_global_root_insert(root);
2656 if (ret) {
2657 btrfs_put_root(root);
2658 break;
2659 }
2660 key.offset++;
2661 }
2662 btrfs_release_path(path);
2663
f7238e50
JB
2664 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2665 fs_info->nr_global_roots = max_global_id + 1;
2666
abed4aaa
JB
2667 if (!found || ret) {
2668 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2669 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2670
2671 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2672 ret = ret ? ret : -ENOENT;
2673 else
2674 ret = 0;
2675 btrfs_err(fs_info, "failed to load root %s", name);
2676 }
2677 return ret;
2678}
2679
2680static int load_global_roots(struct btrfs_root *tree_root)
2681{
2682 struct btrfs_path *path;
2683 int ret = 0;
2684
2685 path = btrfs_alloc_path();
2686 if (!path)
2687 return -ENOMEM;
2688
2689 ret = load_global_roots_objectid(tree_root, path,
2690 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2691 if (ret)
2692 goto out;
2693 ret = load_global_roots_objectid(tree_root, path,
2694 BTRFS_CSUM_TREE_OBJECTID, "csum");
2695 if (ret)
2696 goto out;
2697 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2698 goto out;
2699 ret = load_global_roots_objectid(tree_root, path,
2700 BTRFS_FREE_SPACE_TREE_OBJECTID,
2701 "free space");
2702out:
2703 btrfs_free_path(path);
2704 return ret;
2705}
2706
6bccf3ab 2707static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2708{
6bccf3ab 2709 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2710 struct btrfs_root *root;
4bbcaa64
ES
2711 struct btrfs_key location;
2712 int ret;
2713
6bccf3ab
JM
2714 BUG_ON(!fs_info->tree_root);
2715
abed4aaa
JB
2716 ret = load_global_roots(tree_root);
2717 if (ret)
2718 return ret;
2719
2720 location.objectid = BTRFS_DEV_TREE_OBJECTID;
4bbcaa64
ES
2721 location.type = BTRFS_ROOT_ITEM_KEY;
2722 location.offset = 0;
2723
a4f3d2c4 2724 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2725 if (IS_ERR(root)) {
42437a63
JB
2726 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2727 ret = PTR_ERR(root);
2728 goto out;
2729 }
2730 } else {
2731 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2732 fs_info->dev_root = root;
f50f4353 2733 }
820a49da
JB
2734 /* Initialize fs_info for all devices in any case */
2735 btrfs_init_devices_late(fs_info);
4bbcaa64 2736
aeb935a4
QW
2737 /*
2738 * This tree can share blocks with some other fs tree during relocation
2739 * and we need a proper setup by btrfs_get_fs_root
2740 */
56e9357a
DS
2741 root = btrfs_get_fs_root(tree_root->fs_info,
2742 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2743 if (IS_ERR(root)) {
42437a63
JB
2744 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2745 ret = PTR_ERR(root);
2746 goto out;
2747 }
2748 } else {
2749 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2750 fs_info->data_reloc_root = root;
aeb935a4 2751 }
aeb935a4 2752
4bbcaa64 2753 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2754 root = btrfs_read_tree_root(tree_root, &location);
2755 if (!IS_ERR(root)) {
2756 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2757 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2758 fs_info->quota_root = root;
4bbcaa64
ES
2759 }
2760
2761 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2762 root = btrfs_read_tree_root(tree_root, &location);
2763 if (IS_ERR(root)) {
42437a63
JB
2764 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2765 ret = PTR_ERR(root);
2766 if (ret != -ENOENT)
2767 goto out;
2768 }
4bbcaa64 2769 } else {
a4f3d2c4
DS
2770 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2771 fs_info->uuid_root = root;
4bbcaa64
ES
2772 }
2773
2774 return 0;
f50f4353
LB
2775out:
2776 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2777 location.objectid, ret);
2778 return ret;
4bbcaa64
ES
2779}
2780
069ec957
QW
2781/*
2782 * Real super block validation
2783 * NOTE: super csum type and incompat features will not be checked here.
2784 *
2785 * @sb: super block to check
2786 * @mirror_num: the super block number to check its bytenr:
2787 * 0 the primary (1st) sb
2788 * 1, 2 2nd and 3rd backup copy
2789 * -1 skip bytenr check
2790 */
2791static int validate_super(struct btrfs_fs_info *fs_info,
2792 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2793{
21a852b0
QW
2794 u64 nodesize = btrfs_super_nodesize(sb);
2795 u64 sectorsize = btrfs_super_sectorsize(sb);
2796 int ret = 0;
2797
2798 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2799 btrfs_err(fs_info, "no valid FS found");
2800 ret = -EINVAL;
2801 }
2802 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2803 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2804 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2805 ret = -EINVAL;
2806 }
2807 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2808 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2809 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2810 ret = -EINVAL;
2811 }
2812 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2813 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2814 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2815 ret = -EINVAL;
2816 }
2817 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2818 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2819 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2820 ret = -EINVAL;
2821 }
2822
2823 /*
2824 * Check sectorsize and nodesize first, other check will need it.
2825 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2826 */
2827 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2828 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2829 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2830 ret = -EINVAL;
2831 }
0bb3eb3e
QW
2832
2833 /*
1a42daab
QW
2834 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2835 *
2836 * We can support 16K sectorsize with 64K page size without problem,
2837 * but such sectorsize/pagesize combination doesn't make much sense.
2838 * 4K will be our future standard, PAGE_SIZE is supported from the very
2839 * beginning.
0bb3eb3e 2840 */
1a42daab 2841 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2842 btrfs_err(fs_info,
0bb3eb3e 2843 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2844 sectorsize, PAGE_SIZE);
2845 ret = -EINVAL;
2846 }
0bb3eb3e 2847
21a852b0
QW
2848 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2849 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2850 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2851 ret = -EINVAL;
2852 }
2853 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2854 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2855 le32_to_cpu(sb->__unused_leafsize), nodesize);
2856 ret = -EINVAL;
2857 }
2858
2859 /* Root alignment check */
2860 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2861 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2862 btrfs_super_root(sb));
2863 ret = -EINVAL;
2864 }
2865 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2866 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2867 btrfs_super_chunk_root(sb));
2868 ret = -EINVAL;
2869 }
2870 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2871 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2872 btrfs_super_log_root(sb));
2873 ret = -EINVAL;
2874 }
2875
aefd7f70
NB
2876 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2877 BTRFS_FSID_SIZE)) {
2878 btrfs_err(fs_info,
2879 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2880 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2881 ret = -EINVAL;
2882 }
2883
2884 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2885 memcmp(fs_info->fs_devices->metadata_uuid,
2886 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2887 btrfs_err(fs_info,
2888"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2889 fs_info->super_copy->metadata_uuid,
2890 fs_info->fs_devices->metadata_uuid);
2891 ret = -EINVAL;
2892 }
2893
de37aa51 2894 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2895 BTRFS_FSID_SIZE) != 0) {
21a852b0 2896 btrfs_err(fs_info,
7239ff4b 2897 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2898 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2899 ret = -EINVAL;
2900 }
2901
2902 /*
2903 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2904 * done later
2905 */
2906 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2907 btrfs_err(fs_info, "bytes_used is too small %llu",
2908 btrfs_super_bytes_used(sb));
2909 ret = -EINVAL;
2910 }
2911 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2912 btrfs_err(fs_info, "invalid stripesize %u",
2913 btrfs_super_stripesize(sb));
2914 ret = -EINVAL;
2915 }
2916 if (btrfs_super_num_devices(sb) > (1UL << 31))
2917 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2918 btrfs_super_num_devices(sb));
2919 if (btrfs_super_num_devices(sb) == 0) {
2920 btrfs_err(fs_info, "number of devices is 0");
2921 ret = -EINVAL;
2922 }
2923
069ec957
QW
2924 if (mirror_num >= 0 &&
2925 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2926 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2927 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2928 ret = -EINVAL;
2929 }
2930
2931 /*
2932 * Obvious sys_chunk_array corruptions, it must hold at least one key
2933 * and one chunk
2934 */
2935 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2936 btrfs_err(fs_info, "system chunk array too big %u > %u",
2937 btrfs_super_sys_array_size(sb),
2938 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2939 ret = -EINVAL;
2940 }
2941 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2942 + sizeof(struct btrfs_chunk)) {
2943 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2944 btrfs_super_sys_array_size(sb),
2945 sizeof(struct btrfs_disk_key)
2946 + sizeof(struct btrfs_chunk));
2947 ret = -EINVAL;
2948 }
2949
2950 /*
2951 * The generation is a global counter, we'll trust it more than the others
2952 * but it's still possible that it's the one that's wrong.
2953 */
2954 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2955 btrfs_warn(fs_info,
2956 "suspicious: generation < chunk_root_generation: %llu < %llu",
2957 btrfs_super_generation(sb),
2958 btrfs_super_chunk_root_generation(sb));
2959 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2960 && btrfs_super_cache_generation(sb) != (u64)-1)
2961 btrfs_warn(fs_info,
2962 "suspicious: generation < cache_generation: %llu < %llu",
2963 btrfs_super_generation(sb),
2964 btrfs_super_cache_generation(sb));
2965
2966 return ret;
2967}
2968
069ec957
QW
2969/*
2970 * Validation of super block at mount time.
2971 * Some checks already done early at mount time, like csum type and incompat
2972 * flags will be skipped.
2973 */
2974static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2975{
2976 return validate_super(fs_info, fs_info->super_copy, 0);
2977}
2978
75cb857d
QW
2979/*
2980 * Validation of super block at write time.
2981 * Some checks like bytenr check will be skipped as their values will be
2982 * overwritten soon.
2983 * Extra checks like csum type and incompat flags will be done here.
2984 */
2985static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2986 struct btrfs_super_block *sb)
2987{
2988 int ret;
2989
2990 ret = validate_super(fs_info, sb, -1);
2991 if (ret < 0)
2992 goto out;
e7e16f48 2993 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2994 ret = -EUCLEAN;
2995 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2996 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2997 goto out;
2998 }
2999 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3000 ret = -EUCLEAN;
3001 btrfs_err(fs_info,
3002 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
3003 btrfs_super_incompat_flags(sb),
3004 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
3005 goto out;
3006 }
3007out:
3008 if (ret < 0)
3009 btrfs_err(fs_info,
3010 "super block corruption detected before writing it to disk");
3011 return ret;
3012}
3013
bd676446
JB
3014static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
3015{
3016 int ret = 0;
3017
3018 root->node = read_tree_block(root->fs_info, bytenr,
3019 root->root_key.objectid, gen, level, NULL);
3020 if (IS_ERR(root->node)) {
3021 ret = PTR_ERR(root->node);
3022 root->node = NULL;
4eb150d6
QW
3023 return ret;
3024 }
3025 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
3026 free_extent_buffer(root->node);
3027 root->node = NULL;
4eb150d6 3028 return -EIO;
bd676446
JB
3029 }
3030
bd676446
JB
3031 btrfs_set_root_node(&root->root_item, root->node);
3032 root->commit_root = btrfs_root_node(root);
3033 btrfs_set_root_refs(&root->root_item, 1);
3034 return ret;
3035}
3036
3037static int load_important_roots(struct btrfs_fs_info *fs_info)
3038{
3039 struct btrfs_super_block *sb = fs_info->super_copy;
3040 u64 gen, bytenr;
3041 int level, ret;
3042
3043 bytenr = btrfs_super_root(sb);
3044 gen = btrfs_super_generation(sb);
3045 level = btrfs_super_root_level(sb);
3046 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 3047 if (ret) {
bd676446 3048 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
3049 return ret;
3050 }
3051
3052 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3053 return 0;
3054
3055 bytenr = btrfs_super_block_group_root(sb);
3056 gen = btrfs_super_block_group_root_generation(sb);
3057 level = btrfs_super_block_group_root_level(sb);
3058 ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
3059 if (ret)
3060 btrfs_warn(fs_info, "couldn't read block group root");
bd676446
JB
3061 return ret;
3062}
3063
6ef108dd 3064static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 3065{
6ef108dd 3066 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
3067 struct btrfs_super_block *sb = fs_info->super_copy;
3068 struct btrfs_root *tree_root = fs_info->tree_root;
3069 bool handle_error = false;
3070 int ret = 0;
3071 int i;
3072
9c54e80d
JB
3073 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3074 struct btrfs_root *root;
3075
3076 root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
3077 GFP_KERNEL);
3078 if (!root)
3079 return -ENOMEM;
3080 fs_info->block_group_root = root;
3081 }
b8522a1e 3082
b8522a1e 3083 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
3084 if (handle_error) {
3085 if (!IS_ERR(tree_root->node))
3086 free_extent_buffer(tree_root->node);
3087 tree_root->node = NULL;
3088
3089 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3090 break;
3091
3092 free_root_pointers(fs_info, 0);
3093
3094 /*
3095 * Don't use the log in recovery mode, it won't be
3096 * valid
3097 */
3098 btrfs_set_super_log_root(sb, 0);
3099
3100 /* We can't trust the free space cache either */
3101 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3102
3103 ret = read_backup_root(fs_info, i);
6ef108dd 3104 backup_index = ret;
b8522a1e
NB
3105 if (ret < 0)
3106 return ret;
3107 }
b8522a1e 3108
bd676446
JB
3109 ret = load_important_roots(fs_info);
3110 if (ret) {
217f5004 3111 handle_error = true;
b8522a1e
NB
3112 continue;
3113 }
3114
336a0d8d
NB
3115 /*
3116 * No need to hold btrfs_root::objectid_mutex since the fs
3117 * hasn't been fully initialised and we are the only user
3118 */
453e4873 3119 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 3120 if (ret < 0) {
b8522a1e
NB
3121 handle_error = true;
3122 continue;
3123 }
3124
6b8fad57 3125 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
3126
3127 ret = btrfs_read_roots(fs_info);
3128 if (ret < 0) {
3129 handle_error = true;
3130 continue;
3131 }
3132
3133 /* All successful */
bd676446
JB
3134 fs_info->generation = btrfs_header_generation(tree_root->node);
3135 fs_info->last_trans_committed = fs_info->generation;
d96b3424 3136 fs_info->last_reloc_trans = 0;
6ef108dd
NB
3137
3138 /* Always begin writing backup roots after the one being used */
3139 if (backup_index < 0) {
3140 fs_info->backup_root_index = 0;
3141 } else {
3142 fs_info->backup_root_index = backup_index + 1;
3143 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3144 }
b8522a1e
NB
3145 break;
3146 }
3147
3148 return ret;
3149}
3150
8260edba 3151void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 3152{
76dda93c 3153 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 3154 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 3155 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 3156 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 3157 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 3158 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 3159 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 3160 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 3161 spin_lock_init(&fs_info->trans_lock);
76dda93c 3162 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 3163 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 3164 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 3165 spin_lock_init(&fs_info->super_lock);
f28491e0 3166 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 3167 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 3168 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 3169 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 3170 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 3171 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 3172 rwlock_init(&fs_info->global_root_lock);
d7c15171 3173 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 3174 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 3175 mutex_init(&fs_info->reloc_mutex);
573bfb72 3176 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 3177 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 3178 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 3179 seqlock_init(&fs_info->profiles_lock);
19c00ddc 3180
0b86a832 3181 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3182 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3183 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3184 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3185 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3186 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3187#ifdef CONFIG_BTRFS_DEBUG
3188 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3189 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3190 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3191#endif
c8bf1b67 3192 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3193 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3194 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3195 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3196 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3197 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3198 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3199 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3200 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3201 BTRFS_BLOCK_RSV_DELREFS);
3202
771ed689 3203 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3204 atomic_set(&fs_info->defrag_running, 0);
034f784d 3205 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3206 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3207 fs_info->global_root_tree = RB_ROOT;
95ac567a 3208 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3209 fs_info->metadata_ratio = 0;
4cb5300b 3210 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3211 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3212 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3213 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3214 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3215 btrfs_init_ref_verify(fs_info);
c8b97818 3216
b34b086c
CM
3217 fs_info->thread_pool_size = min_t(unsigned long,
3218 num_online_cpus() + 2, 8);
0afbaf8c 3219
199c2a9c
MX
3220 INIT_LIST_HEAD(&fs_info->ordered_roots);
3221 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3222
638aa7ed 3223 btrfs_init_scrub(fs_info);
21adbd5c
SB
3224#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3225 fs_info->check_integrity_print_mask = 0;
3226#endif
779a65a4 3227 btrfs_init_balance(fs_info);
57056740 3228 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3229
16b0c258 3230 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3231 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3232
fe119a6e
NB
3233 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3234 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3235
5a3f23d5 3236 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3237 mutex_init(&fs_info->tree_log_mutex);
925baedd 3238 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3239 mutex_init(&fs_info->transaction_kthread_mutex);
3240 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3241 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3242 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3243 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3244 init_rwsem(&fs_info->subvol_sem);
803b2f54 3245 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3246
ad618368 3247 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3248 btrfs_init_qgroup(fs_info);
b0643e59 3249 btrfs_discard_init(fs_info);
416ac51d 3250
fa9c0d79
CM
3251 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3252 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3253
e6dcd2dc 3254 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3255 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3256 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3257 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3258 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3259
da17066c
JM
3260 /* Usable values until the real ones are cached from the superblock */
3261 fs_info->nodesize = 4096;
3262 fs_info->sectorsize = 4096;
ab108d99 3263 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3264 fs_info->stripesize = 4096;
3265
eede2bf3
OS
3266 spin_lock_init(&fs_info->swapfile_pins_lock);
3267 fs_info->swapfile_pins = RB_ROOT;
3268
18bb8bbf
JT
3269 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3270 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3271}
3272
3273static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3274{
3275 int ret;
3276
3277 fs_info->sb = sb;
3278 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3279 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3280
5deb17e1 3281 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3282 if (ret)
c75e8394 3283 return ret;
ae18c37a
JB
3284
3285 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3286 if (ret)
c75e8394 3287 return ret;
ae18c37a
JB
3288
3289 fs_info->dirty_metadata_batch = PAGE_SIZE *
3290 (1 + ilog2(nr_cpu_ids));
3291
3292 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3293 if (ret)
c75e8394 3294 return ret;
ae18c37a
JB
3295
3296 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3297 GFP_KERNEL);
3298 if (ret)
c75e8394 3299 return ret;
ae18c37a
JB
3300
3301 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3302 GFP_KERNEL);
c75e8394
JB
3303 if (!fs_info->delayed_root)
3304 return -ENOMEM;
ae18c37a
JB
3305 btrfs_init_delayed_root(fs_info->delayed_root);
3306
a0a1db70
FM
3307 if (sb_rdonly(sb))
3308 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3309
c75e8394 3310 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3311}
3312
97f4dd09
NB
3313static int btrfs_uuid_rescan_kthread(void *data)
3314{
0d031dc4 3315 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3316 int ret;
3317
3318 /*
3319 * 1st step is to iterate through the existing UUID tree and
3320 * to delete all entries that contain outdated data.
3321 * 2nd step is to add all missing entries to the UUID tree.
3322 */
3323 ret = btrfs_uuid_tree_iterate(fs_info);
3324 if (ret < 0) {
c94bec2c
JB
3325 if (ret != -EINTR)
3326 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3327 ret);
97f4dd09
NB
3328 up(&fs_info->uuid_tree_rescan_sem);
3329 return ret;
3330 }
3331 return btrfs_uuid_scan_kthread(data);
3332}
3333
3334static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3335{
3336 struct task_struct *task;
3337
3338 down(&fs_info->uuid_tree_rescan_sem);
3339 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3340 if (IS_ERR(task)) {
3341 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3342 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3343 up(&fs_info->uuid_tree_rescan_sem);
3344 return PTR_ERR(task);
3345 }
3346
3347 return 0;
3348}
3349
8cd29088
BB
3350/*
3351 * Some options only have meaning at mount time and shouldn't persist across
3352 * remounts, or be displayed. Clear these at the end of mount and remount
3353 * code paths.
3354 */
3355void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3356{
3357 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3358 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3359}
3360
44c0ca21
BB
3361/*
3362 * Mounting logic specific to read-write file systems. Shared by open_ctree
3363 * and btrfs_remount when remounting from read-only to read-write.
3364 */
3365int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3366{
3367 int ret;
94846229 3368 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3369 bool clear_free_space_tree = false;
3370
3371 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3372 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3373 clear_free_space_tree = true;
3374 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3375 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3376 btrfs_warn(fs_info, "free space tree is invalid");
3377 clear_free_space_tree = true;
3378 }
3379
3380 if (clear_free_space_tree) {
3381 btrfs_info(fs_info, "clearing free space tree");
3382 ret = btrfs_clear_free_space_tree(fs_info);
3383 if (ret) {
3384 btrfs_warn(fs_info,
3385 "failed to clear free space tree: %d", ret);
3386 goto out;
3387 }
3388 }
44c0ca21 3389
8d488a8c
FM
3390 /*
3391 * btrfs_find_orphan_roots() is responsible for finding all the dead
3392 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3393 * them into the fs_info->fs_roots_radix tree. This must be done before
3394 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3395 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3396 * item before the root's tree is deleted - this means that if we unmount
3397 * or crash before the deletion completes, on the next mount we will not
3398 * delete what remains of the tree because the orphan item does not
3399 * exists anymore, which is what tells us we have a pending deletion.
3400 */
3401 ret = btrfs_find_orphan_roots(fs_info);
3402 if (ret)
3403 goto out;
3404
44c0ca21
BB
3405 ret = btrfs_cleanup_fs_roots(fs_info);
3406 if (ret)
3407 goto out;
3408
8f1c21d7
BB
3409 down_read(&fs_info->cleanup_work_sem);
3410 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3411 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3412 up_read(&fs_info->cleanup_work_sem);
3413 goto out;
3414 }
3415 up_read(&fs_info->cleanup_work_sem);
3416
44c0ca21 3417 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3418 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3419 mutex_unlock(&fs_info->cleaner_mutex);
3420 if (ret < 0) {
3421 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3422 goto out;
3423 }
3424
5011139a
BB
3425 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3426 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3427 btrfs_info(fs_info, "creating free space tree");
3428 ret = btrfs_create_free_space_tree(fs_info);
3429 if (ret) {
3430 btrfs_warn(fs_info,
3431 "failed to create free space tree: %d", ret);
3432 goto out;
3433 }
3434 }
3435
94846229
BB
3436 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3437 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3438 if (ret)
3439 goto out;
3440 }
3441
44c0ca21
BB
3442 ret = btrfs_resume_balance_async(fs_info);
3443 if (ret)
3444 goto out;
3445
3446 ret = btrfs_resume_dev_replace_async(fs_info);
3447 if (ret) {
3448 btrfs_warn(fs_info, "failed to resume dev_replace");
3449 goto out;
3450 }
3451
3452 btrfs_qgroup_rescan_resume(fs_info);
3453
3454 if (!fs_info->uuid_root) {
3455 btrfs_info(fs_info, "creating UUID tree");
3456 ret = btrfs_create_uuid_tree(fs_info);
3457 if (ret) {
3458 btrfs_warn(fs_info,
3459 "failed to create the UUID tree %d", ret);
3460 goto out;
3461 }
3462 }
3463
3464out:
3465 return ret;
3466}
3467
ae18c37a
JB
3468int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3469 char *options)
3470{
3471 u32 sectorsize;
3472 u32 nodesize;
3473 u32 stripesize;
3474 u64 generation;
3475 u64 features;
3476 u16 csum_type;
ae18c37a
JB
3477 struct btrfs_super_block *disk_super;
3478 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3479 struct btrfs_root *tree_root;
3480 struct btrfs_root *chunk_root;
3481 int ret;
3482 int err = -EINVAL;
ae18c37a
JB
3483 int level;
3484
8260edba 3485 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3486 if (ret) {
83c8266a 3487 err = ret;
ae18c37a 3488 goto fail;
53b381b3
DW
3489 }
3490
ae18c37a
JB
3491 /* These need to be init'ed before we start creating inodes and such. */
3492 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3493 GFP_KERNEL);
3494 fs_info->tree_root = tree_root;
3495 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3496 GFP_KERNEL);
3497 fs_info->chunk_root = chunk_root;
3498 if (!tree_root || !chunk_root) {
3499 err = -ENOMEM;
c75e8394 3500 goto fail;
ae18c37a
JB
3501 }
3502
3503 fs_info->btree_inode = new_inode(sb);
3504 if (!fs_info->btree_inode) {
3505 err = -ENOMEM;
c75e8394 3506 goto fail;
ae18c37a
JB
3507 }
3508 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3509 btrfs_init_btree_inode(fs_info);
3510
d24fa5c1 3511 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3512
3513 /*
3514 * Read super block and check the signature bytes only
3515 */
d24fa5c1 3516 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3517 if (IS_ERR(disk_super)) {
3518 err = PTR_ERR(disk_super);
16cdcec7 3519 goto fail_alloc;
20b45077 3520 }
39279cc3 3521
8dc3f22c 3522 /*
260db43c 3523 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3524 * corrupted, we'll find out
3525 */
8f32380d 3526 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3527 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3528 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3529 csum_type);
8dc3f22c 3530 err = -EINVAL;
8f32380d 3531 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3532 goto fail_alloc;
3533 }
3534
83c68bbc
SY
3535 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3536
6d97c6e3
JT
3537 ret = btrfs_init_csum_hash(fs_info, csum_type);
3538 if (ret) {
3539 err = ret;
8f32380d 3540 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3541 goto fail_alloc;
3542 }
3543
1104a885
DS
3544 /*
3545 * We want to check superblock checksum, the type is stored inside.
3546 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3547 */
8f32380d 3548 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3549 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3550 err = -EINVAL;
8f32380d 3551 btrfs_release_disk_super(disk_super);
141386e1 3552 goto fail_alloc;
1104a885
DS
3553 }
3554
3555 /*
3556 * super_copy is zeroed at allocation time and we never touch the
3557 * following bytes up to INFO_SIZE, the checksum is calculated from
3558 * the whole block of INFO_SIZE
3559 */
8f32380d
JT
3560 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3561 btrfs_release_disk_super(disk_super);
5f39d397 3562
fbc6feae
NB
3563 disk_super = fs_info->super_copy;
3564
0b86a832 3565
fbc6feae
NB
3566 features = btrfs_super_flags(disk_super);
3567 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3568 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3569 btrfs_set_super_flags(disk_super, features);
3570 btrfs_info(fs_info,
3571 "found metadata UUID change in progress flag, clearing");
3572 }
3573
3574 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3575 sizeof(*fs_info->super_for_commit));
de37aa51 3576
069ec957 3577 ret = btrfs_validate_mount_super(fs_info);
1104a885 3578 if (ret) {
05135f59 3579 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3580 err = -EINVAL;
141386e1 3581 goto fail_alloc;
1104a885
DS
3582 }
3583
0f7d52f4 3584 if (!btrfs_super_root(disk_super))
141386e1 3585 goto fail_alloc;
0f7d52f4 3586
acce952b 3587 /* check FS state, whether FS is broken. */
87533c47
MX
3588 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3589 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3590
75e7cb7f
LB
3591 /*
3592 * In the long term, we'll store the compression type in the super
3593 * block, and it'll be used for per file compression control.
3594 */
3595 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3596
6f93e834
AJ
3597 /*
3598 * Flag our filesystem as having big metadata blocks if they are bigger
3599 * than the page size.
3600 */
3601 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3602 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3603 btrfs_info(fs_info,
3604 "flagging fs with big metadata feature");
3605 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3606 }
3607
3608 /* Set up fs_info before parsing mount options */
3609 nodesize = btrfs_super_nodesize(disk_super);
3610 sectorsize = btrfs_super_sectorsize(disk_super);
3611 stripesize = sectorsize;
3612 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3613 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3614
3615 fs_info->nodesize = nodesize;
3616 fs_info->sectorsize = sectorsize;
3617 fs_info->sectorsize_bits = ilog2(sectorsize);
3618 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3619 fs_info->stripesize = stripesize;
3620
2ff7e61e 3621 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3622 if (ret) {
3623 err = ret;
141386e1 3624 goto fail_alloc;
2b82032c 3625 }
dfe25020 3626
f2b636e8
JB
3627 features = btrfs_super_incompat_flags(disk_super) &
3628 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3629 if (features) {
05135f59
DS
3630 btrfs_err(fs_info,
3631 "cannot mount because of unsupported optional features (%llx)",
3632 features);
f2b636e8 3633 err = -EINVAL;
141386e1 3634 goto fail_alloc;
f2b636e8
JB
3635 }
3636
5d4f98a2 3637 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3638 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3639 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3640 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3641 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3642 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3643
3173a18f 3644 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3645 btrfs_info(fs_info, "has skinny extents");
3173a18f 3646
bc3f116f
CM
3647 /*
3648 * mixed block groups end up with duplicate but slightly offset
3649 * extent buffers for the same range. It leads to corruptions
3650 */
3651 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3652 (sectorsize != nodesize)) {
05135f59
DS
3653 btrfs_err(fs_info,
3654"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3655 nodesize, sectorsize);
141386e1 3656 goto fail_alloc;
bc3f116f
CM
3657 }
3658
ceda0864
MX
3659 /*
3660 * Needn't use the lock because there is no other task which will
3661 * update the flag.
3662 */
a6fa6fae 3663 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3664
f2b636e8
JB
3665 features = btrfs_super_compat_ro_flags(disk_super) &
3666 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3667 if (!sb_rdonly(sb) && features) {
05135f59
DS
3668 btrfs_err(fs_info,
3669 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3670 features);
f2b636e8 3671 err = -EINVAL;
141386e1 3672 goto fail_alloc;
f2b636e8 3673 }
61d92c32 3674
8481dd80
QW
3675 if (sectorsize < PAGE_SIZE) {
3676 struct btrfs_subpage_info *subpage_info;
3677
9f73f1ae
QW
3678 /*
3679 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3680 * going to be deprecated.
3681 *
3682 * Force to use v2 cache for subpage case.
3683 */
3684 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3685 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3686 "forcing free space tree for sector size %u with page size %lu",
3687 sectorsize, PAGE_SIZE);
3688
95ea0486
QW
3689 btrfs_warn(fs_info,
3690 "read-write for sector size %u with page size %lu is experimental",
3691 sectorsize, PAGE_SIZE);
8481dd80
QW
3692 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3693 if (!subpage_info)
3694 goto fail_alloc;
3695 btrfs_init_subpage_info(subpage_info, sectorsize);
3696 fs_info->subpage_info = subpage_info;
c8050b3b 3697 }
0bb3eb3e 3698
d21deec5 3699 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3700 if (ret) {
3701 err = ret;
0dc3b84a
JB
3702 goto fail_sb_buffer;
3703 }
4543df7e 3704
9e11ceee
JK
3705 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3706 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3707
a061fc8d
CM
3708 sb->s_blocksize = sectorsize;
3709 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3710 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3711
925baedd 3712 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3713 ret = btrfs_read_sys_array(fs_info);
925baedd 3714 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3715 if (ret) {
05135f59 3716 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3717 goto fail_sb_buffer;
84eed90f 3718 }
0b86a832 3719
84234f3a 3720 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3721 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3722 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3723 generation, level);
3724 if (ret) {
05135f59 3725 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3726 goto fail_tree_roots;
83121942 3727 }
0b86a832 3728
e17cade2 3729 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3730 offsetof(struct btrfs_header, chunk_tree_uuid),
3731 BTRFS_UUID_SIZE);
e17cade2 3732
5b4aacef 3733 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3734 if (ret) {
05135f59 3735 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3736 goto fail_tree_roots;
2b82032c 3737 }
0b86a832 3738
8dabb742 3739 /*
bacce86a
AJ
3740 * At this point we know all the devices that make this filesystem,
3741 * including the seed devices but we don't know yet if the replace
3742 * target is required. So free devices that are not part of this
1a9fd417 3743 * filesystem but skip the replace target device which is checked
bacce86a 3744 * below in btrfs_init_dev_replace().
8dabb742 3745 */
bacce86a 3746 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3747 if (!fs_devices->latest_dev->bdev) {
05135f59 3748 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3749 goto fail_tree_roots;
3750 }
3751
b8522a1e 3752 ret = init_tree_roots(fs_info);
4bbcaa64 3753 if (ret)
b8522a1e 3754 goto fail_tree_roots;
8929ecfa 3755
73651042
NA
3756 /*
3757 * Get zone type information of zoned block devices. This will also
3758 * handle emulation of a zoned filesystem if a regular device has the
3759 * zoned incompat feature flag set.
3760 */
3761 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3762 if (ret) {
3763 btrfs_err(fs_info,
3764 "zoned: failed to read device zone info: %d",
3765 ret);
3766 goto fail_block_groups;
3767 }
3768
75ec1db8
JB
3769 /*
3770 * If we have a uuid root and we're not being told to rescan we need to
3771 * check the generation here so we can set the
3772 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3773 * transaction during a balance or the log replay without updating the
3774 * uuid generation, and then if we crash we would rescan the uuid tree,
3775 * even though it was perfectly fine.
3776 */
3777 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3778 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3779 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3780
cf90d884
QW
3781 ret = btrfs_verify_dev_extents(fs_info);
3782 if (ret) {
3783 btrfs_err(fs_info,
3784 "failed to verify dev extents against chunks: %d",
3785 ret);
3786 goto fail_block_groups;
3787 }
68310a5e
ID
3788 ret = btrfs_recover_balance(fs_info);
3789 if (ret) {
05135f59 3790 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3791 goto fail_block_groups;
3792 }
3793
733f4fbb
SB
3794 ret = btrfs_init_dev_stats(fs_info);
3795 if (ret) {
05135f59 3796 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3797 goto fail_block_groups;
3798 }
3799
8dabb742
SB
3800 ret = btrfs_init_dev_replace(fs_info);
3801 if (ret) {
05135f59 3802 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3803 goto fail_block_groups;
3804 }
3805
b70f5097
NA
3806 ret = btrfs_check_zoned_mode(fs_info);
3807 if (ret) {
3808 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3809 ret);
3810 goto fail_block_groups;
3811 }
3812
c6761a9e 3813 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3814 if (ret) {
05135f59
DS
3815 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3816 ret);
b7c35e81
AJ
3817 goto fail_block_groups;
3818 }
3819
96f3136e 3820 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3821 if (ret) {
05135f59 3822 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3823 goto fail_fsdev_sysfs;
c59021f8 3824 }
3825
c59021f8 3826 ret = btrfs_init_space_info(fs_info);
3827 if (ret) {
05135f59 3828 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3829 goto fail_sysfs;
c59021f8 3830 }
3831
5b4aacef 3832 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3833 if (ret) {
05135f59 3834 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3835 goto fail_sysfs;
1b1d1f66 3836 }
4330e183 3837
16beac87
NA
3838 btrfs_free_zone_cache(fs_info);
3839
5c78a5e7
AJ
3840 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3841 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3842 btrfs_warn(fs_info,
52042d8e 3843 "writable mount is not allowed due to too many missing devices");
2365dd3c 3844 goto fail_sysfs;
292fd7fc 3845 }
9078a3e1 3846
33c44184 3847 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3848 "btrfs-cleaner");
57506d50 3849 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3850 goto fail_sysfs;
a74a4b97
CM
3851
3852 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3853 tree_root,
3854 "btrfs-transaction");
57506d50 3855 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3856 goto fail_cleaner;
a74a4b97 3857
583b7231 3858 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3859 !fs_info->fs_devices->rotating) {
583b7231 3860 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3861 }
3862
572d9ab7 3863 /*
01327610 3864 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3865 * not have to wait for transaction commit
3866 */
3867 btrfs_apply_pending_changes(fs_info);
3818aea2 3868
21adbd5c 3869#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3870 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3871 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3872 btrfs_test_opt(fs_info,
cbeaae4f 3873 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3874 fs_info->check_integrity_print_mask);
3875 if (ret)
05135f59
DS
3876 btrfs_warn(fs_info,
3877 "failed to initialize integrity check module: %d",
3878 ret);
21adbd5c
SB
3879 }
3880#endif
bcef60f2
AJ
3881 ret = btrfs_read_qgroup_config(fs_info);
3882 if (ret)
3883 goto fail_trans_kthread;
21adbd5c 3884
fd708b81
JB
3885 if (btrfs_build_ref_tree(fs_info))
3886 btrfs_err(fs_info, "couldn't build ref tree");
3887
96da0919
QW
3888 /* do not make disk changes in broken FS or nologreplay is given */
3889 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3890 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3891 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3892 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3893 if (ret) {
63443bf5 3894 err = ret;
28c16cbb 3895 goto fail_qgroup;
79787eaa 3896 }
e02119d5 3897 }
1a40e23b 3898
56e9357a 3899 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3900 if (IS_ERR(fs_info->fs_root)) {
3901 err = PTR_ERR(fs_info->fs_root);
f50f4353 3902 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3903 fs_info->fs_root = NULL;
bcef60f2 3904 goto fail_qgroup;
3140c9a3 3905 }
c289811c 3906
bc98a42c 3907 if (sb_rdonly(sb))
8cd29088 3908 goto clear_oneshot;
59641015 3909
44c0ca21 3910 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3911 if (ret) {
6bccf3ab 3912 close_ctree(fs_info);
2b6ba629 3913 return ret;
e3acc2a6 3914 }
b0643e59 3915 btrfs_discard_resume(fs_info);
b382a324 3916
44c0ca21
BB
3917 if (fs_info->uuid_root &&
3918 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3919 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3920 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3921 ret = btrfs_check_uuid_tree(fs_info);
3922 if (ret) {
05135f59
DS
3923 btrfs_warn(fs_info,
3924 "failed to check the UUID tree: %d", ret);
6bccf3ab 3925 close_ctree(fs_info);
70f80175
SB
3926 return ret;
3927 }
f7a81ea4 3928 }
94846229 3929
afcdd129 3930 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3931
b4be6aef
JB
3932 /* Kick the cleaner thread so it'll start deleting snapshots. */
3933 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3934 wake_up_process(fs_info->cleaner_kthread);
3935
8cd29088
BB
3936clear_oneshot:
3937 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3938 return 0;
39279cc3 3939
bcef60f2
AJ
3940fail_qgroup:
3941 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3942fail_trans_kthread:
3943 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3944 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3945 btrfs_free_fs_roots(fs_info);
3f157a2f 3946fail_cleaner:
a74a4b97 3947 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3948
3949 /*
3950 * make sure we're done with the btree inode before we stop our
3951 * kthreads
3952 */
3953 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3954
2365dd3c 3955fail_sysfs:
6618a59b 3956 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3957
b7c35e81
AJ
3958fail_fsdev_sysfs:
3959 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3960
1b1d1f66 3961fail_block_groups:
54067ae9 3962 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3963
3964fail_tree_roots:
9e3aa805
JB
3965 if (fs_info->data_reloc_root)
3966 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3967 free_root_pointers(fs_info, true);
2b8195bb 3968 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3969
39279cc3 3970fail_sb_buffer:
7abadb64 3971 btrfs_stop_all_workers(fs_info);
5cdd7db6 3972 btrfs_free_block_groups(fs_info);
16cdcec7 3973fail_alloc:
586e46e2
ID
3974 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3975
4543df7e 3976 iput(fs_info->btree_inode);
7e662854 3977fail:
586e46e2 3978 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3979 return err;
eb60ceac 3980}
663faf9f 3981ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3982
314b6dd0 3983static void btrfs_end_super_write(struct bio *bio)
f2984462 3984{
314b6dd0
JT
3985 struct btrfs_device *device = bio->bi_private;
3986 struct bio_vec *bvec;
3987 struct bvec_iter_all iter_all;
3988 struct page *page;
3989
3990 bio_for_each_segment_all(bvec, bio, iter_all) {
3991 page = bvec->bv_page;
3992
3993 if (bio->bi_status) {
3994 btrfs_warn_rl_in_rcu(device->fs_info,
3995 "lost page write due to IO error on %s (%d)",
3996 rcu_str_deref(device->name),
3997 blk_status_to_errno(bio->bi_status));
3998 ClearPageUptodate(page);
3999 SetPageError(page);
4000 btrfs_dev_stat_inc_and_print(device,
4001 BTRFS_DEV_STAT_WRITE_ERRS);
4002 } else {
4003 SetPageUptodate(page);
4004 }
4005
4006 put_page(page);
4007 unlock_page(page);
f2984462 4008 }
314b6dd0
JT
4009
4010 bio_put(bio);
f2984462
CM
4011}
4012
8f32380d
JT
4013struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
4014 int copy_num)
29c36d72 4015{
29c36d72 4016 struct btrfs_super_block *super;
8f32380d 4017 struct page *page;
12659251 4018 u64 bytenr, bytenr_orig;
8f32380d 4019 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
4020 int ret;
4021
4022 bytenr_orig = btrfs_sb_offset(copy_num);
4023 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
4024 if (ret == -ENOENT)
4025 return ERR_PTR(-EINVAL);
4026 else if (ret)
4027 return ERR_PTR(ret);
29c36d72 4028
cda00eba 4029 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 4030 return ERR_PTR(-EINVAL);
29c36d72 4031
8f32380d
JT
4032 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
4033 if (IS_ERR(page))
4034 return ERR_CAST(page);
29c36d72 4035
8f32380d 4036 super = page_address(page);
96c2e067
AJ
4037 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4038 btrfs_release_disk_super(super);
4039 return ERR_PTR(-ENODATA);
4040 }
4041
12659251 4042 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
4043 btrfs_release_disk_super(super);
4044 return ERR_PTR(-EINVAL);
29c36d72
AJ
4045 }
4046
8f32380d 4047 return super;
29c36d72
AJ
4048}
4049
4050
8f32380d 4051struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 4052{
8f32380d 4053 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
4054 int i;
4055 u64 transid = 0;
a512bbf8
YZ
4056
4057 /* we would like to check all the supers, but that would make
4058 * a btrfs mount succeed after a mkfs from a different FS.
4059 * So, we need to add a special mount option to scan for
4060 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4061 */
4062 for (i = 0; i < 1; i++) {
8f32380d
JT
4063 super = btrfs_read_dev_one_super(bdev, i);
4064 if (IS_ERR(super))
a512bbf8
YZ
4065 continue;
4066
a512bbf8 4067 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
4068 if (latest)
4069 btrfs_release_disk_super(super);
4070
4071 latest = super;
a512bbf8 4072 transid = btrfs_super_generation(super);
a512bbf8
YZ
4073 }
4074 }
92fc03fb 4075
8f32380d 4076 return super;
a512bbf8
YZ
4077}
4078
4eedeb75 4079/*
abbb3b8e 4080 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 4081 * pages we use for writing are locked.
4eedeb75 4082 *
abbb3b8e
DS
4083 * Write @max_mirrors copies of the superblock, where 0 means default that fit
4084 * the expected device size at commit time. Note that max_mirrors must be
4085 * same for write and wait phases.
4eedeb75 4086 *
314b6dd0 4087 * Return number of errors when page is not found or submission fails.
4eedeb75 4088 */
a512bbf8 4089static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 4090 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 4091{
d5178578 4092 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 4093 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 4094 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 4095 int i;
a512bbf8 4096 int errors = 0;
12659251
NA
4097 int ret;
4098 u64 bytenr, bytenr_orig;
a512bbf8
YZ
4099
4100 if (max_mirrors == 0)
4101 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4102
d5178578
JT
4103 shash->tfm = fs_info->csum_shash;
4104
a512bbf8 4105 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4106 struct page *page;
4107 struct bio *bio;
4108 struct btrfs_super_block *disk_super;
4109
12659251
NA
4110 bytenr_orig = btrfs_sb_offset(i);
4111 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4112 if (ret == -ENOENT) {
4113 continue;
4114 } else if (ret < 0) {
4115 btrfs_err(device->fs_info,
4116 "couldn't get super block location for mirror %d",
4117 i);
4118 errors++;
4119 continue;
4120 }
935e5cc9
MX
4121 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4122 device->commit_total_bytes)
a512bbf8
YZ
4123 break;
4124
12659251 4125 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 4126
fd08001f
EB
4127 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4128 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4129 sb->csum);
4eedeb75 4130
314b6dd0
JT
4131 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4132 GFP_NOFS);
4133 if (!page) {
abbb3b8e 4134 btrfs_err(device->fs_info,
314b6dd0 4135 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
4136 bytenr);
4137 errors++;
4eedeb75 4138 continue;
abbb3b8e 4139 }
634554dc 4140
314b6dd0
JT
4141 /* Bump the refcount for wait_dev_supers() */
4142 get_page(page);
a512bbf8 4143
314b6dd0
JT
4144 disk_super = page_address(page);
4145 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 4146
314b6dd0
JT
4147 /*
4148 * Directly use bios here instead of relying on the page cache
4149 * to do I/O, so we don't lose the ability to do integrity
4150 * checking.
4151 */
07888c66
CH
4152 bio = bio_alloc(device->bdev, 1,
4153 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4154 GFP_NOFS);
314b6dd0
JT
4155 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4156 bio->bi_private = device;
4157 bio->bi_end_io = btrfs_end_super_write;
4158 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4159 offset_in_page(bytenr));
a512bbf8 4160
387125fc 4161 /*
314b6dd0
JT
4162 * We FUA only the first super block. The others we allow to
4163 * go down lazy and there's a short window where the on-disk
4164 * copies might still contain the older version.
387125fc 4165 */
1b9e619c 4166 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4167 bio->bi_opf |= REQ_FUA;
4168
58ff51f1
CH
4169 btrfsic_check_bio(bio);
4170 submit_bio(bio);
8376d9e1
NA
4171
4172 if (btrfs_advance_sb_log(device, i))
4173 errors++;
a512bbf8
YZ
4174 }
4175 return errors < i ? 0 : -1;
4176}
4177
abbb3b8e
DS
4178/*
4179 * Wait for write completion of superblocks done by write_dev_supers,
4180 * @max_mirrors same for write and wait phases.
4181 *
314b6dd0 4182 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4183 * date.
4184 */
4185static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4186{
abbb3b8e
DS
4187 int i;
4188 int errors = 0;
b6a535fa 4189 bool primary_failed = false;
12659251 4190 int ret;
abbb3b8e
DS
4191 u64 bytenr;
4192
4193 if (max_mirrors == 0)
4194 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4195
4196 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4197 struct page *page;
4198
12659251
NA
4199 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4200 if (ret == -ENOENT) {
4201 break;
4202 } else if (ret < 0) {
4203 errors++;
4204 if (i == 0)
4205 primary_failed = true;
4206 continue;
4207 }
abbb3b8e
DS
4208 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4209 device->commit_total_bytes)
4210 break;
4211
314b6dd0
JT
4212 page = find_get_page(device->bdev->bd_inode->i_mapping,
4213 bytenr >> PAGE_SHIFT);
4214 if (!page) {
abbb3b8e 4215 errors++;
b6a535fa
HM
4216 if (i == 0)
4217 primary_failed = true;
abbb3b8e
DS
4218 continue;
4219 }
314b6dd0
JT
4220 /* Page is submitted locked and unlocked once the IO completes */
4221 wait_on_page_locked(page);
4222 if (PageError(page)) {
abbb3b8e 4223 errors++;
b6a535fa
HM
4224 if (i == 0)
4225 primary_failed = true;
4226 }
abbb3b8e 4227
314b6dd0
JT
4228 /* Drop our reference */
4229 put_page(page);
abbb3b8e 4230
314b6dd0
JT
4231 /* Drop the reference from the writing run */
4232 put_page(page);
abbb3b8e
DS
4233 }
4234
b6a535fa
HM
4235 /* log error, force error return */
4236 if (primary_failed) {
4237 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4238 device->devid);
4239 return -1;
4240 }
4241
abbb3b8e
DS
4242 return errors < i ? 0 : -1;
4243}
4244
387125fc
CM
4245/*
4246 * endio for the write_dev_flush, this will wake anyone waiting
4247 * for the barrier when it is done
4248 */
4246a0b6 4249static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4250{
e0ae9994 4251 complete(bio->bi_private);
387125fc
CM
4252}
4253
4254/*
4fc6441a
AJ
4255 * Submit a flush request to the device if it supports it. Error handling is
4256 * done in the waiting counterpart.
387125fc 4257 */
4fc6441a 4258static void write_dev_flush(struct btrfs_device *device)
387125fc 4259{
e0ae9994 4260 struct bio *bio = device->flush_bio;
387125fc 4261
a91cf0ff
WY
4262#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4263 /*
4264 * When a disk has write caching disabled, we skip submission of a bio
4265 * with flush and sync requests before writing the superblock, since
4266 * it's not needed. However when the integrity checker is enabled, this
4267 * results in reports that there are metadata blocks referred by a
4268 * superblock that were not properly flushed. So don't skip the bio
4269 * submission only when the integrity checker is enabled for the sake
4270 * of simplicity, since this is a debug tool and not meant for use in
4271 * non-debug builds.
4272 */
4273 struct request_queue *q = bdev_get_queue(device->bdev);
c2a9c7ab 4274 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 4275 return;
a91cf0ff 4276#endif
387125fc 4277
a7c50c94 4278 bio_reset(bio, device->bdev, REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4279 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4280 init_completion(&device->flush_wait);
4281 bio->bi_private = &device->flush_wait;
387125fc 4282
58ff51f1
CH
4283 btrfsic_check_bio(bio);
4284 submit_bio(bio);
1c3063b6 4285 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4286}
387125fc 4287
4fc6441a
AJ
4288/*
4289 * If the flush bio has been submitted by write_dev_flush, wait for it.
4290 */
8c27cb35 4291static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4292{
4fc6441a 4293 struct bio *bio = device->flush_bio;
387125fc 4294
1c3063b6 4295 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4296 return BLK_STS_OK;
387125fc 4297
1c3063b6 4298 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4299 wait_for_completion_io(&device->flush_wait);
387125fc 4300
8c27cb35 4301 return bio->bi_status;
387125fc 4302}
387125fc 4303
d10b82fe 4304static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4305{
6528b99d 4306 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4307 return -EIO;
387125fc
CM
4308 return 0;
4309}
4310
4311/*
4312 * send an empty flush down to each device in parallel,
4313 * then wait for them
4314 */
4315static int barrier_all_devices(struct btrfs_fs_info *info)
4316{
4317 struct list_head *head;
4318 struct btrfs_device *dev;
5af3e8cc 4319 int errors_wait = 0;
4e4cbee9 4320 blk_status_t ret;
387125fc 4321
1538e6c5 4322 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4323 /* send down all the barriers */
4324 head = &info->fs_devices->devices;
1538e6c5 4325 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4326 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4327 continue;
cea7c8bf 4328 if (!dev->bdev)
387125fc 4329 continue;
e12c9621 4330 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4331 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4332 continue;
4333
4fc6441a 4334 write_dev_flush(dev);
58efbc9f 4335 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4336 }
4337
4338 /* wait for all the barriers */
1538e6c5 4339 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4340 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4341 continue;
387125fc 4342 if (!dev->bdev) {
5af3e8cc 4343 errors_wait++;
387125fc
CM
4344 continue;
4345 }
e12c9621 4346 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4347 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4348 continue;
4349
4fc6441a 4350 ret = wait_dev_flush(dev);
401b41e5
AJ
4351 if (ret) {
4352 dev->last_flush_error = ret;
66b4993e
DS
4353 btrfs_dev_stat_inc_and_print(dev,
4354 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4355 errors_wait++;
401b41e5
AJ
4356 }
4357 }
4358
cea7c8bf 4359 if (errors_wait) {
401b41e5
AJ
4360 /*
4361 * At some point we need the status of all disks
4362 * to arrive at the volume status. So error checking
4363 * is being pushed to a separate loop.
4364 */
d10b82fe 4365 return check_barrier_error(info);
387125fc 4366 }
387125fc
CM
4367 return 0;
4368}
4369
943c6e99
ZL
4370int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4371{
8789f4fe
ZL
4372 int raid_type;
4373 int min_tolerated = INT_MAX;
943c6e99 4374
8789f4fe
ZL
4375 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4376 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4377 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4378 btrfs_raid_array[BTRFS_RAID_SINGLE].
4379 tolerated_failures);
943c6e99 4380
8789f4fe
ZL
4381 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4382 if (raid_type == BTRFS_RAID_SINGLE)
4383 continue;
41a6e891 4384 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4385 continue;
8c3e3582 4386 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4387 btrfs_raid_array[raid_type].
4388 tolerated_failures);
4389 }
943c6e99 4390
8789f4fe 4391 if (min_tolerated == INT_MAX) {
ab8d0fc4 4392 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4393 min_tolerated = 0;
4394 }
4395
4396 return min_tolerated;
943c6e99
ZL
4397}
4398
eece6a9c 4399int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4400{
e5e9a520 4401 struct list_head *head;
f2984462 4402 struct btrfs_device *dev;
a061fc8d 4403 struct btrfs_super_block *sb;
f2984462 4404 struct btrfs_dev_item *dev_item;
f2984462
CM
4405 int ret;
4406 int do_barriers;
a236aed1
CM
4407 int max_errors;
4408 int total_errors = 0;
a061fc8d 4409 u64 flags;
f2984462 4410
0b246afa 4411 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4412
4413 /*
4414 * max_mirrors == 0 indicates we're from commit_transaction,
4415 * not from fsync where the tree roots in fs_info have not
4416 * been consistent on disk.
4417 */
4418 if (max_mirrors == 0)
4419 backup_super_roots(fs_info);
f2984462 4420
0b246afa 4421 sb = fs_info->super_for_commit;
a061fc8d 4422 dev_item = &sb->dev_item;
e5e9a520 4423
0b246afa
JM
4424 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4425 head = &fs_info->fs_devices->devices;
4426 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4427
5af3e8cc 4428 if (do_barriers) {
0b246afa 4429 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4430 if (ret) {
4431 mutex_unlock(
0b246afa
JM
4432 &fs_info->fs_devices->device_list_mutex);
4433 btrfs_handle_fs_error(fs_info, ret,
4434 "errors while submitting device barriers.");
5af3e8cc
SB
4435 return ret;
4436 }
4437 }
387125fc 4438
1538e6c5 4439 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4440 if (!dev->bdev) {
4441 total_errors++;
4442 continue;
4443 }
e12c9621 4444 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4445 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4446 continue;
4447
2b82032c 4448 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4449 btrfs_set_stack_device_type(dev_item, dev->type);
4450 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4451 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4452 dev->commit_total_bytes);
ce7213c7
MX
4453 btrfs_set_stack_device_bytes_used(dev_item,
4454 dev->commit_bytes_used);
a061fc8d
CM
4455 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4456 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4457 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4458 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4459 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4460 BTRFS_FSID_SIZE);
a512bbf8 4461
a061fc8d
CM
4462 flags = btrfs_super_flags(sb);
4463 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4464
75cb857d
QW
4465 ret = btrfs_validate_write_super(fs_info, sb);
4466 if (ret < 0) {
4467 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4468 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4469 "unexpected superblock corruption detected");
4470 return -EUCLEAN;
4471 }
4472
abbb3b8e 4473 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4474 if (ret)
4475 total_errors++;
f2984462 4476 }
a236aed1 4477 if (total_errors > max_errors) {
0b246afa
JM
4478 btrfs_err(fs_info, "%d errors while writing supers",
4479 total_errors);
4480 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4481
9d565ba4 4482 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4483 btrfs_handle_fs_error(fs_info, -EIO,
4484 "%d errors while writing supers",
4485 total_errors);
9d565ba4 4486 return -EIO;
a236aed1 4487 }
f2984462 4488
a512bbf8 4489 total_errors = 0;
1538e6c5 4490 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4491 if (!dev->bdev)
4492 continue;
e12c9621 4493 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4494 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4495 continue;
4496
abbb3b8e 4497 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4498 if (ret)
4499 total_errors++;
f2984462 4500 }
0b246afa 4501 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4502 if (total_errors > max_errors) {
0b246afa
JM
4503 btrfs_handle_fs_error(fs_info, -EIO,
4504 "%d errors while writing supers",
4505 total_errors);
79787eaa 4506 return -EIO;
a236aed1 4507 }
f2984462
CM
4508 return 0;
4509}
4510
cb517eab
MX
4511/* Drop a fs root from the radix tree and free it. */
4512void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4513 struct btrfs_root *root)
2619ba1f 4514{
4785e24f
JB
4515 bool drop_ref = false;
4516
4df27c4d 4517 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
4518 radix_tree_delete(&fs_info->fs_roots_radix,
4519 (unsigned long)root->root_key.objectid);
af01d2e5 4520 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4521 drop_ref = true;
4df27c4d 4522 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4523
84961539 4524 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4525 ASSERT(root->log_root == NULL);
1c1ea4f7 4526 if (root->reloc_root) {
00246528 4527 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4528 root->reloc_root = NULL;
4529 }
4530 }
3321719e 4531
4785e24f
JB
4532 if (drop_ref)
4533 btrfs_put_root(root);
2619ba1f
CM
4534}
4535
c146afad 4536int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4537{
c146afad
YZ
4538 u64 root_objectid = 0;
4539 struct btrfs_root *gang[8];
65d33fd7
QW
4540 int i = 0;
4541 int err = 0;
4542 unsigned int ret = 0;
e089f05c 4543
c146afad 4544 while (1) {
efc34534 4545 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
4546 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4547 (void **)gang, root_objectid,
4548 ARRAY_SIZE(gang));
65d33fd7 4549 if (!ret) {
efc34534 4550 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 4551 break;
65d33fd7 4552 }
5d4f98a2 4553 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4554
c146afad 4555 for (i = 0; i < ret; i++) {
65d33fd7
QW
4556 /* Avoid to grab roots in dead_roots */
4557 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4558 gang[i] = NULL;
4559 continue;
4560 }
4561 /* grab all the search result for later use */
00246528 4562 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4563 }
efc34534 4564 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4565
65d33fd7
QW
4566 for (i = 0; i < ret; i++) {
4567 if (!gang[i])
4568 continue;
c146afad 4569 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4570 err = btrfs_orphan_cleanup(gang[i]);
4571 if (err)
65d33fd7 4572 break;
00246528 4573 btrfs_put_root(gang[i]);
c146afad
YZ
4574 }
4575 root_objectid++;
4576 }
65d33fd7
QW
4577
4578 /* release the uncleaned roots due to error */
4579 for (; i < ret; i++) {
4580 if (gang[i])
00246528 4581 btrfs_put_root(gang[i]);
65d33fd7
QW
4582 }
4583 return err;
c146afad 4584}
a2135011 4585
6bccf3ab 4586int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4587{
6bccf3ab 4588 struct btrfs_root *root = fs_info->tree_root;
c146afad 4589 struct btrfs_trans_handle *trans;
a74a4b97 4590
0b246afa 4591 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4592 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4593 mutex_unlock(&fs_info->cleaner_mutex);
4594 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4595
4596 /* wait until ongoing cleanup work done */
0b246afa
JM
4597 down_write(&fs_info->cleanup_work_sem);
4598 up_write(&fs_info->cleanup_work_sem);
c71bf099 4599
7a7eaa40 4600 trans = btrfs_join_transaction(root);
3612b495
TI
4601 if (IS_ERR(trans))
4602 return PTR_ERR(trans);
3a45bb20 4603 return btrfs_commit_transaction(trans);
c146afad
YZ
4604}
4605
36c86a9e
QW
4606static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4607{
4608 struct btrfs_transaction *trans;
4609 struct btrfs_transaction *tmp;
4610 bool found = false;
4611
4612 if (list_empty(&fs_info->trans_list))
4613 return;
4614
4615 /*
4616 * This function is only called at the very end of close_ctree(),
4617 * thus no other running transaction, no need to take trans_lock.
4618 */
4619 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4620 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4621 struct extent_state *cached = NULL;
4622 u64 dirty_bytes = 0;
4623 u64 cur = 0;
4624 u64 found_start;
4625 u64 found_end;
4626
4627 found = true;
4628 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4629 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4630 dirty_bytes += found_end + 1 - found_start;
4631 cur = found_end + 1;
4632 }
4633 btrfs_warn(fs_info,
4634 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4635 trans->transid, dirty_bytes);
4636 btrfs_cleanup_one_transaction(trans, fs_info);
4637
4638 if (trans == fs_info->running_transaction)
4639 fs_info->running_transaction = NULL;
4640 list_del_init(&trans->list);
4641
4642 btrfs_put_transaction(trans);
4643 trace_btrfs_transaction_commit(fs_info);
4644 }
4645 ASSERT(!found);
4646}
4647
b105e927 4648void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4649{
c146afad
YZ
4650 int ret;
4651
afcdd129 4652 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4653 /*
4654 * We don't want the cleaner to start new transactions, add more delayed
4655 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4656 * because that frees the task_struct, and the transaction kthread might
4657 * still try to wake up the cleaner.
4658 */
4659 kthread_park(fs_info->cleaner_kthread);
c146afad 4660
b4be6aef
JB
4661 /*
4662 * If we had UNFINISHED_DROPS we could still be processing them, so
4663 * clear that bit and wake up relocation so it can stop.
4664 */
4665 btrfs_wake_unfinished_drop(fs_info);
4666
7343dd61 4667 /* wait for the qgroup rescan worker to stop */
d06f23d6 4668 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4669
803b2f54
SB
4670 /* wait for the uuid_scan task to finish */
4671 down(&fs_info->uuid_tree_rescan_sem);
4672 /* avoid complains from lockdep et al., set sem back to initial state */
4673 up(&fs_info->uuid_tree_rescan_sem);
4674
837d5b6e 4675 /* pause restriper - we want to resume on mount */
aa1b8cd4 4676 btrfs_pause_balance(fs_info);
837d5b6e 4677
8dabb742
SB
4678 btrfs_dev_replace_suspend_for_unmount(fs_info);
4679
aa1b8cd4 4680 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4681
4682 /* wait for any defraggers to finish */
4683 wait_event(fs_info->transaction_wait,
4684 (atomic_read(&fs_info->defrag_running) == 0));
4685
4686 /* clear out the rbtree of defraggable inodes */
26176e7c 4687 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4688
21c7e756 4689 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4690 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4691 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4692
18bb8bbf
JT
4693 cancel_work_sync(&fs_info->reclaim_bgs_work);
4694
b0643e59
DZ
4695 /* Cancel or finish ongoing discard work */
4696 btrfs_discard_cleanup(fs_info);
4697
bc98a42c 4698 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4699 /*
d6fd0ae2
OS
4700 * The cleaner kthread is stopped, so do one final pass over
4701 * unused block groups.
e44163e1 4702 */
0b246afa 4703 btrfs_delete_unused_bgs(fs_info);
e44163e1 4704
f0cc2cd7
FM
4705 /*
4706 * There might be existing delayed inode workers still running
4707 * and holding an empty delayed inode item. We must wait for
4708 * them to complete first because they can create a transaction.
4709 * This happens when someone calls btrfs_balance_delayed_items()
4710 * and then a transaction commit runs the same delayed nodes
4711 * before any delayed worker has done something with the nodes.
4712 * We must wait for any worker here and not at transaction
4713 * commit time since that could cause a deadlock.
4714 * This is a very rare case.
4715 */
4716 btrfs_flush_workqueue(fs_info->delayed_workers);
4717
6bccf3ab 4718 ret = btrfs_commit_super(fs_info);
acce952b 4719 if (ret)
04892340 4720 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4721 }
4722
84961539 4723 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4724 btrfs_error_commit_super(fs_info);
0f7d52f4 4725
e3029d9f
AV
4726 kthread_stop(fs_info->transaction_kthread);
4727 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4728
e187831e 4729 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4730 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4731
5958253c
QW
4732 if (btrfs_check_quota_leak(fs_info)) {
4733 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4734 btrfs_err(fs_info, "qgroup reserved space leaked");
4735 }
4736
04892340 4737 btrfs_free_qgroup_config(fs_info);
fe816d0f 4738 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4739
963d678b 4740 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4741 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4742 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4743 }
bcc63abb 4744
5deb17e1 4745 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4746 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4747 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4748
6618a59b 4749 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4750 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4751
1a4319cc
LB
4752 btrfs_put_block_group_cache(fs_info);
4753
de348ee0
WS
4754 /*
4755 * we must make sure there is not any read request to
4756 * submit after we stopping all workers.
4757 */
4758 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4759 btrfs_stop_all_workers(fs_info);
4760
0a31daa4 4761 /* We shouldn't have any transaction open at this point */
36c86a9e 4762 warn_about_uncommitted_trans(fs_info);
0a31daa4 4763
afcdd129 4764 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4765 free_root_pointers(fs_info, true);
8c38938c 4766 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4767
4e19443d
JB
4768 /*
4769 * We must free the block groups after dropping the fs_roots as we could
4770 * have had an IO error and have left over tree log blocks that aren't
4771 * cleaned up until the fs roots are freed. This makes the block group
4772 * accounting appear to be wrong because there's pending reserved bytes,
4773 * so make sure we do the block group cleanup afterwards.
4774 */
4775 btrfs_free_block_groups(fs_info);
4776
13e6c37b 4777 iput(fs_info->btree_inode);
d6bfde87 4778
21adbd5c 4779#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4780 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4781 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4782#endif
4783
0b86a832 4784 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4785 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4786}
4787
b9fab919
CM
4788int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4789 int atomic)
5f39d397 4790{
1259ab75 4791 int ret;
727011e0 4792 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4793
0b32f4bb 4794 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4795 if (!ret)
4796 return ret;
4797
4798 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4799 parent_transid, atomic);
4800 if (ret == -EAGAIN)
4801 return ret;
1259ab75 4802 return !ret;
5f39d397
CM
4803}
4804
5f39d397
CM
4805void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4806{
2f4d60df 4807 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4808 u64 transid = btrfs_header_generation(buf);
b9473439 4809 int was_dirty;
b4ce94de 4810
06ea65a3
JB
4811#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4812 /*
4813 * This is a fast path so only do this check if we have sanity tests
52042d8e 4814 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4815 * outside of the sanity tests.
4816 */
b0132a3b 4817 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4818 return;
4819#endif
49d0c642 4820 btrfs_assert_tree_write_locked(buf);
0b246afa 4821 if (transid != fs_info->generation)
5d163e0e 4822 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4823 buf->start, transid, fs_info->generation);
0b32f4bb 4824 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4825 if (!was_dirty)
104b4e51
NB
4826 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4827 buf->len,
4828 fs_info->dirty_metadata_batch);
1f21ef0a 4829#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4830 /*
4831 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4832 * but item data not updated.
4833 * So here we should only check item pointers, not item data.
4834 */
4835 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4836 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4837 btrfs_print_leaf(buf);
1f21ef0a
FM
4838 ASSERT(0);
4839 }
4840#endif
eb60ceac
CM
4841}
4842
2ff7e61e 4843static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4844 int flush_delayed)
16cdcec7
MX
4845{
4846 /*
4847 * looks as though older kernels can get into trouble with
4848 * this code, they end up stuck in balance_dirty_pages forever
4849 */
e2d84521 4850 int ret;
16cdcec7
MX
4851
4852 if (current->flags & PF_MEMALLOC)
4853 return;
4854
b53d3f5d 4855 if (flush_delayed)
2ff7e61e 4856 btrfs_balance_delayed_items(fs_info);
16cdcec7 4857
d814a491
EL
4858 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4859 BTRFS_DIRTY_METADATA_THRESH,
4860 fs_info->dirty_metadata_batch);
e2d84521 4861 if (ret > 0) {
0b246afa 4862 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4863 }
16cdcec7
MX
4864}
4865
2ff7e61e 4866void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4867{
2ff7e61e 4868 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4869}
585ad2c3 4870
2ff7e61e 4871void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4872{
2ff7e61e 4873 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4874}
6b80053d 4875
2ff7e61e 4876static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4877{
fe816d0f
NB
4878 /* cleanup FS via transaction */
4879 btrfs_cleanup_transaction(fs_info);
4880
0b246afa 4881 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4882 btrfs_run_delayed_iputs(fs_info);
0b246afa 4883 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4884
0b246afa
JM
4885 down_write(&fs_info->cleanup_work_sem);
4886 up_write(&fs_info->cleanup_work_sem);
acce952b 4887}
4888
ef67963d
JB
4889static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4890{
4891 struct btrfs_root *gang[8];
4892 u64 root_objectid = 0;
4893 int ret;
4894
4895 spin_lock(&fs_info->fs_roots_radix_lock);
4896 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4897 (void **)gang, root_objectid,
4898 ARRAY_SIZE(gang))) != 0) {
4899 int i;
4900
4901 for (i = 0; i < ret; i++)
4902 gang[i] = btrfs_grab_root(gang[i]);
4903 spin_unlock(&fs_info->fs_roots_radix_lock);
4904
4905 for (i = 0; i < ret; i++) {
4906 if (!gang[i])
4907 continue;
4908 root_objectid = gang[i]->root_key.objectid;
4909 btrfs_free_log(NULL, gang[i]);
4910 btrfs_put_root(gang[i]);
4911 }
4912 root_objectid++;
4913 spin_lock(&fs_info->fs_roots_radix_lock);
4914 }
4915 spin_unlock(&fs_info->fs_roots_radix_lock);
4916 btrfs_free_log_root_tree(NULL, fs_info);
4917}
4918
143bede5 4919static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4920{
acce952b 4921 struct btrfs_ordered_extent *ordered;
acce952b 4922
199c2a9c 4923 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4924 /*
4925 * This will just short circuit the ordered completion stuff which will
4926 * make sure the ordered extent gets properly cleaned up.
4927 */
199c2a9c 4928 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4929 root_extent_list)
4930 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4931 spin_unlock(&root->ordered_extent_lock);
4932}
4933
4934static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4935{
4936 struct btrfs_root *root;
4937 struct list_head splice;
4938
4939 INIT_LIST_HEAD(&splice);
4940
4941 spin_lock(&fs_info->ordered_root_lock);
4942 list_splice_init(&fs_info->ordered_roots, &splice);
4943 while (!list_empty(&splice)) {
4944 root = list_first_entry(&splice, struct btrfs_root,
4945 ordered_root);
1de2cfde
JB
4946 list_move_tail(&root->ordered_root,
4947 &fs_info->ordered_roots);
199c2a9c 4948
2a85d9ca 4949 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4950 btrfs_destroy_ordered_extents(root);
4951
2a85d9ca
LB
4952 cond_resched();
4953 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4954 }
4955 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4956
4957 /*
4958 * We need this here because if we've been flipped read-only we won't
4959 * get sync() from the umount, so we need to make sure any ordered
4960 * extents that haven't had their dirty pages IO start writeout yet
4961 * actually get run and error out properly.
4962 */
4963 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4964}
4965
35a3621b 4966static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4967 struct btrfs_fs_info *fs_info)
acce952b 4968{
4969 struct rb_node *node;
4970 struct btrfs_delayed_ref_root *delayed_refs;
4971 struct btrfs_delayed_ref_node *ref;
4972 int ret = 0;
4973
4974 delayed_refs = &trans->delayed_refs;
4975
4976 spin_lock(&delayed_refs->lock);
d7df2c79 4977 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4978 spin_unlock(&delayed_refs->lock);
b79ce3dd 4979 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4980 return ret;
4981 }
4982
5c9d028b 4983 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4984 struct btrfs_delayed_ref_head *head;
0e0adbcf 4985 struct rb_node *n;
e78417d1 4986 bool pin_bytes = false;
acce952b 4987
d7df2c79
JB
4988 head = rb_entry(node, struct btrfs_delayed_ref_head,
4989 href_node);
3069bd26 4990 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4991 continue;
3069bd26 4992
d7df2c79 4993 spin_lock(&head->lock);
e3d03965 4994 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4995 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4996 ref_node);
d7df2c79 4997 ref->in_tree = 0;
e3d03965 4998 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4999 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
5000 if (!list_empty(&ref->add_list))
5001 list_del(&ref->add_list);
d7df2c79
JB
5002 atomic_dec(&delayed_refs->num_entries);
5003 btrfs_put_delayed_ref(ref);
e78417d1 5004 }
d7df2c79
JB
5005 if (head->must_insert_reserved)
5006 pin_bytes = true;
5007 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 5008 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
5009 spin_unlock(&head->lock);
5010 spin_unlock(&delayed_refs->lock);
5011 mutex_unlock(&head->mutex);
acce952b 5012
f603bb94
NB
5013 if (pin_bytes) {
5014 struct btrfs_block_group *cache;
5015
5016 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5017 BUG_ON(!cache);
5018
5019 spin_lock(&cache->space_info->lock);
5020 spin_lock(&cache->lock);
5021 cache->pinned += head->num_bytes;
5022 btrfs_space_info_update_bytes_pinned(fs_info,
5023 cache->space_info, head->num_bytes);
5024 cache->reserved -= head->num_bytes;
5025 cache->space_info->bytes_reserved -= head->num_bytes;
5026 spin_unlock(&cache->lock);
5027 spin_unlock(&cache->space_info->lock);
f603bb94
NB
5028
5029 btrfs_put_block_group(cache);
5030
5031 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5032 head->bytenr + head->num_bytes - 1);
5033 }
31890da0 5034 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 5035 btrfs_put_delayed_ref_head(head);
acce952b 5036 cond_resched();
5037 spin_lock(&delayed_refs->lock);
5038 }
81f7eb00 5039 btrfs_qgroup_destroy_extent_records(trans);
acce952b 5040
5041 spin_unlock(&delayed_refs->lock);
5042
5043 return ret;
5044}
5045
143bede5 5046static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 5047{
5048 struct btrfs_inode *btrfs_inode;
5049 struct list_head splice;
5050
5051 INIT_LIST_HEAD(&splice);
5052
eb73c1b7
MX
5053 spin_lock(&root->delalloc_lock);
5054 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 5055
5056 while (!list_empty(&splice)) {
fe816d0f 5057 struct inode *inode = NULL;
eb73c1b7
MX
5058 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5059 delalloc_inodes);
fe816d0f 5060 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 5061 spin_unlock(&root->delalloc_lock);
acce952b 5062
fe816d0f
NB
5063 /*
5064 * Make sure we get a live inode and that it'll not disappear
5065 * meanwhile.
5066 */
5067 inode = igrab(&btrfs_inode->vfs_inode);
5068 if (inode) {
5069 invalidate_inode_pages2(inode->i_mapping);
5070 iput(inode);
5071 }
eb73c1b7 5072 spin_lock(&root->delalloc_lock);
acce952b 5073 }
eb73c1b7
MX
5074 spin_unlock(&root->delalloc_lock);
5075}
5076
5077static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5078{
5079 struct btrfs_root *root;
5080 struct list_head splice;
5081
5082 INIT_LIST_HEAD(&splice);
5083
5084 spin_lock(&fs_info->delalloc_root_lock);
5085 list_splice_init(&fs_info->delalloc_roots, &splice);
5086 while (!list_empty(&splice)) {
5087 root = list_first_entry(&splice, struct btrfs_root,
5088 delalloc_root);
00246528 5089 root = btrfs_grab_root(root);
eb73c1b7
MX
5090 BUG_ON(!root);
5091 spin_unlock(&fs_info->delalloc_root_lock);
5092
5093 btrfs_destroy_delalloc_inodes(root);
00246528 5094 btrfs_put_root(root);
eb73c1b7
MX
5095
5096 spin_lock(&fs_info->delalloc_root_lock);
5097 }
5098 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 5099}
5100
2ff7e61e 5101static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 5102 struct extent_io_tree *dirty_pages,
5103 int mark)
5104{
5105 int ret;
acce952b 5106 struct extent_buffer *eb;
5107 u64 start = 0;
5108 u64 end;
acce952b 5109
5110 while (1) {
5111 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 5112 mark, NULL);
acce952b 5113 if (ret)
5114 break;
5115
91166212 5116 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 5117 while (start <= end) {
0b246afa
JM
5118 eb = find_extent_buffer(fs_info, start);
5119 start += fs_info->nodesize;
fd8b2b61 5120 if (!eb)
acce952b 5121 continue;
fd8b2b61 5122 wait_on_extent_buffer_writeback(eb);
acce952b 5123
fd8b2b61
JB
5124 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5125 &eb->bflags))
5126 clear_extent_buffer_dirty(eb);
5127 free_extent_buffer_stale(eb);
acce952b 5128 }
5129 }
5130
5131 return ret;
5132}
5133
2ff7e61e 5134static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5135 struct extent_io_tree *unpin)
acce952b 5136{
acce952b 5137 u64 start;
5138 u64 end;
5139 int ret;
5140
acce952b 5141 while (1) {
0e6ec385
FM
5142 struct extent_state *cached_state = NULL;
5143
fcd5e742
LF
5144 /*
5145 * The btrfs_finish_extent_commit() may get the same range as
5146 * ours between find_first_extent_bit and clear_extent_dirty.
5147 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5148 * the same extent range.
5149 */
5150 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5151 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5152 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5153 if (ret) {
5154 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5155 break;
fcd5e742 5156 }
acce952b 5157
0e6ec385
FM
5158 clear_extent_dirty(unpin, start, end, &cached_state);
5159 free_extent_state(cached_state);
2ff7e61e 5160 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5161 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5162 cond_resched();
5163 }
5164
5165 return 0;
5166}
5167
32da5386 5168static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5169{
5170 struct inode *inode;
5171
5172 inode = cache->io_ctl.inode;
5173 if (inode) {
5174 invalidate_inode_pages2(inode->i_mapping);
5175 BTRFS_I(inode)->generation = 0;
5176 cache->io_ctl.inode = NULL;
5177 iput(inode);
5178 }
bbc37d6e 5179 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5180 btrfs_put_block_group(cache);
5181}
5182
5183void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5184 struct btrfs_fs_info *fs_info)
c79a1751 5185{
32da5386 5186 struct btrfs_block_group *cache;
c79a1751
LB
5187
5188 spin_lock(&cur_trans->dirty_bgs_lock);
5189 while (!list_empty(&cur_trans->dirty_bgs)) {
5190 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5191 struct btrfs_block_group,
c79a1751 5192 dirty_list);
c79a1751
LB
5193
5194 if (!list_empty(&cache->io_list)) {
5195 spin_unlock(&cur_trans->dirty_bgs_lock);
5196 list_del_init(&cache->io_list);
5197 btrfs_cleanup_bg_io(cache);
5198 spin_lock(&cur_trans->dirty_bgs_lock);
5199 }
5200
5201 list_del_init(&cache->dirty_list);
5202 spin_lock(&cache->lock);
5203 cache->disk_cache_state = BTRFS_DC_ERROR;
5204 spin_unlock(&cache->lock);
5205
5206 spin_unlock(&cur_trans->dirty_bgs_lock);
5207 btrfs_put_block_group(cache);
ba2c4d4e 5208 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5209 spin_lock(&cur_trans->dirty_bgs_lock);
5210 }
5211 spin_unlock(&cur_trans->dirty_bgs_lock);
5212
45ae2c18
NB
5213 /*
5214 * Refer to the definition of io_bgs member for details why it's safe
5215 * to use it without any locking
5216 */
c79a1751
LB
5217 while (!list_empty(&cur_trans->io_bgs)) {
5218 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5219 struct btrfs_block_group,
c79a1751 5220 io_list);
c79a1751
LB
5221
5222 list_del_init(&cache->io_list);
5223 spin_lock(&cache->lock);
5224 cache->disk_cache_state = BTRFS_DC_ERROR;
5225 spin_unlock(&cache->lock);
5226 btrfs_cleanup_bg_io(cache);
5227 }
5228}
5229
49b25e05 5230void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5231 struct btrfs_fs_info *fs_info)
49b25e05 5232{
bbbf7243
NB
5233 struct btrfs_device *dev, *tmp;
5234
2ff7e61e 5235 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5236 ASSERT(list_empty(&cur_trans->dirty_bgs));
5237 ASSERT(list_empty(&cur_trans->io_bgs));
5238
bbbf7243
NB
5239 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5240 post_commit_list) {
5241 list_del_init(&dev->post_commit_list);
5242 }
5243
2ff7e61e 5244 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5245
4a9d8bde 5246 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5247 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5248
4a9d8bde 5249 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5250 wake_up(&fs_info->transaction_wait);
49b25e05 5251
ccdf9b30 5252 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5253
2ff7e61e 5254 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5255 EXTENT_DIRTY);
fe119a6e 5256 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5257
d3575156
NA
5258 btrfs_free_redirty_list(cur_trans);
5259
4a9d8bde
MX
5260 cur_trans->state =TRANS_STATE_COMPLETED;
5261 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5262}
5263
2ff7e61e 5264static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5265{
5266 struct btrfs_transaction *t;
acce952b 5267
0b246afa 5268 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5269
0b246afa
JM
5270 spin_lock(&fs_info->trans_lock);
5271 while (!list_empty(&fs_info->trans_list)) {
5272 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5273 struct btrfs_transaction, list);
5274 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5275 refcount_inc(&t->use_count);
0b246afa 5276 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5277 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5278 btrfs_put_transaction(t);
0b246afa 5279 spin_lock(&fs_info->trans_lock);
724e2315
JB
5280 continue;
5281 }
0b246afa 5282 if (t == fs_info->running_transaction) {
724e2315 5283 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5284 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5285 /*
5286 * We wait for 0 num_writers since we don't hold a trans
5287 * handle open currently for this transaction.
5288 */
5289 wait_event(t->writer_wait,
5290 atomic_read(&t->num_writers) == 0);
5291 } else {
0b246afa 5292 spin_unlock(&fs_info->trans_lock);
724e2315 5293 }
2ff7e61e 5294 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5295
0b246afa
JM
5296 spin_lock(&fs_info->trans_lock);
5297 if (t == fs_info->running_transaction)
5298 fs_info->running_transaction = NULL;
acce952b 5299 list_del_init(&t->list);
0b246afa 5300 spin_unlock(&fs_info->trans_lock);
acce952b 5301
724e2315 5302 btrfs_put_transaction(t);
2e4e97ab 5303 trace_btrfs_transaction_commit(fs_info);
0b246afa 5304 spin_lock(&fs_info->trans_lock);
724e2315 5305 }
0b246afa
JM
5306 spin_unlock(&fs_info->trans_lock);
5307 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5308 btrfs_destroy_delayed_inodes(fs_info);
5309 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5310 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5311 btrfs_drop_all_logs(fs_info);
0b246afa 5312 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5313
5314 return 0;
5315}
ec7d6dfd 5316
453e4873 5317int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5318{
5319 struct btrfs_path *path;
5320 int ret;
5321 struct extent_buffer *l;
5322 struct btrfs_key search_key;
5323 struct btrfs_key found_key;
5324 int slot;
5325
5326 path = btrfs_alloc_path();
5327 if (!path)
5328 return -ENOMEM;
5329
5330 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5331 search_key.type = -1;
5332 search_key.offset = (u64)-1;
5333 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5334 if (ret < 0)
5335 goto error;
5336 BUG_ON(ret == 0); /* Corruption */
5337 if (path->slots[0] > 0) {
5338 slot = path->slots[0] - 1;
5339 l = path->nodes[0];
5340 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5341 root->free_objectid = max_t(u64, found_key.objectid + 1,
5342 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5343 } else {
23125104 5344 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5345 }
5346 ret = 0;
5347error:
5348 btrfs_free_path(path);
5349 return ret;
5350}
5351
543068a2 5352int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5353{
5354 int ret;
5355 mutex_lock(&root->objectid_mutex);
5356
6b8fad57 5357 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5358 btrfs_warn(root->fs_info,
5359 "the objectid of root %llu reaches its highest value",
5360 root->root_key.objectid);
5361 ret = -ENOSPC;
5362 goto out;
5363 }
5364
23125104 5365 *objectid = root->free_objectid++;
ec7d6dfd
NB
5366 ret = 0;
5367out:
5368 mutex_unlock(&root->objectid_mutex);
5369 return ret;
5370}