btrfs: remove unused parameter from write_dev_supers
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
fcd1f065 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 68 int read_only);
143bede5 69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 71 struct btrfs_fs_info *fs_info);
143bede5 72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 73static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 74 struct extent_io_tree *dirty_pages,
75 int mark);
2ff7e61e 76static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 77 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
78static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
79static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 80
d352ac68 81/*
97eb6b69
DS
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
97eb6b69 86struct btrfs_end_io_wq {
ce9adaa5
CM
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
bfebd8b5 92 enum btrfs_wq_endio_type metadata;
ce9adaa5 93 struct list_head list;
8b712842 94 struct btrfs_work work;
ce9adaa5 95};
0da5468f 96
97eb6b69
DS
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
fba4b697 104 SLAB_MEM_SPREAD,
97eb6b69
DS
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
5598e900 113 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
114}
115
d352ac68
CM
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
44b8bd7e
CM
121struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
4a69a410
CM
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e 127 int mirror_num;
c8b97818 128 unsigned long bio_flags;
eaf25d93
CM
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
8b712842 134 struct btrfs_work work;
79787eaa 135 int error;
44b8bd7e
CM
136};
137
85d4e461
CM
138/*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
4008c04a 148 *
85d4e461
CM
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 152 *
85d4e461
CM
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 156 *
85d4e461
CM
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
4008c04a
CM
160 */
161#ifdef CONFIG_DEBUG_LOCK_ALLOC
162# if BTRFS_MAX_LEVEL != 8
163# error
164# endif
85d4e461
CM
165
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171} btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 184 { .id = 0, .name_stem = "tree" },
4008c04a 185};
85d4e461
CM
186
187void __init btrfs_init_lockdep(void)
188{
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199}
200
201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203{
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215}
216
4008c04a
CM
217#endif
218
d352ac68
CM
219/*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
b2950863 223static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 224 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 225 int create)
7eccb903 226{
0b246afa 227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5f39d397
CM
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
890871be 232 read_lock(&em_tree->lock);
d1310b2e 233 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 234 if (em) {
0b246afa 235 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 236 read_unlock(&em_tree->lock);
5f39d397 237 goto out;
a061fc8d 238 }
890871be 239 read_unlock(&em_tree->lock);
7b13b7b1 240
172ddd60 241 em = alloc_extent_map();
5f39d397
CM
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
0afbaf8c 247 em->len = (u64)-1;
c8b97818 248 em->block_len = (u64)-1;
5f39d397 249 em->block_start = 0;
0b246afa 250 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 251
890871be 252 write_lock(&em_tree->lock);
09a2a8f9 253 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
254 if (ret == -EEXIST) {
255 free_extent_map(em);
7b13b7b1 256 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 257 if (!em)
0433f20d 258 em = ERR_PTR(-EIO);
5f39d397 259 } else if (ret) {
7b13b7b1 260 free_extent_map(em);
0433f20d 261 em = ERR_PTR(ret);
5f39d397 262 }
890871be 263 write_unlock(&em_tree->lock);
7b13b7b1 264
5f39d397
CM
265out:
266 return em;
7eccb903
CM
267}
268
b0496686 269u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 270{
0b947aff 271 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
272}
273
0b5e3daf 274void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 275{
7e75bf3f 276 put_unaligned_le32(~crc, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
01d58472
DD
283static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
19c00ddc
CM
285 int verify)
286{
01d58472 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 288 char *result = NULL;
19c00ddc
CM
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
607d432d 297 unsigned long inline_result;
19c00ddc
CM
298
299 len = buf->len - offset;
d397712b 300 while (len > 0) {
19c00ddc 301 err = map_private_extent_buffer(buf, offset, 32,
a6591715 302 &kaddr, &map_start, &map_len);
d397712b 303 if (err)
8bd98f0e 304 return err;
19c00ddc 305 cur_len = min(len, map_len - (offset - map_start));
b0496686 306 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
19c00ddc 310 }
607d432d 311 if (csum_size > sizeof(inline_result)) {
31e818fe 312 result = kzalloc(csum_size, GFP_NOFS);
607d432d 313 if (!result)
8bd98f0e 314 return -ENOMEM;
607d432d
JB
315 } else {
316 result = (char *)&inline_result;
317 }
318
19c00ddc
CM
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
607d432d 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
323 u32 val;
324 u32 found = 0;
607d432d 325 memcpy(&found, result, csum_size);
e4204ded 326
607d432d 327 read_extent_buffer(buf, &val, 0, csum_size);
94647322 328 btrfs_warn_rl(fs_info,
5d163e0e 329 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 330 fs_info->sb->s_id, buf->start,
efe120a0 331 val, found, btrfs_header_level(buf));
607d432d
JB
332 if (result != (char *)&inline_result)
333 kfree(result);
8bd98f0e 334 return -EUCLEAN;
19c00ddc
CM
335 }
336 } else {
607d432d 337 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 338 }
607d432d
JB
339 if (result != (char *)&inline_result)
340 kfree(result);
19c00ddc
CM
341 return 0;
342}
343
d352ac68
CM
344/*
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
349 */
1259ab75 350static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
351 struct extent_buffer *eb, u64 parent_transid,
352 int atomic)
1259ab75 353{
2ac55d41 354 struct extent_state *cached_state = NULL;
1259ab75 355 int ret;
2755a0de 356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
357
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 return 0;
360
b9fab919
CM
361 if (atomic)
362 return -EAGAIN;
363
a26e8c9f
JB
364 if (need_lock) {
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 }
368
2ac55d41 369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 370 &cached_state);
0b32f4bb 371 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
372 btrfs_header_generation(eb) == parent_transid) {
373 ret = 0;
374 goto out;
375 }
94647322
DS
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
378 eb->start,
29549aec 379 parent_transid, btrfs_header_generation(eb));
1259ab75 380 ret = 1;
a26e8c9f
JB
381
382 /*
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
01327610 385 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
389 */
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
33958dc6 392out:
2ac55d41
JB
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
472b909f
JB
395 if (need_lock)
396 btrfs_tree_read_unlock_blocking(eb);
1259ab75 397 return ret;
1259ab75
CM
398}
399
1104a885
DS
400/*
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
403 */
ab8d0fc4
JM
404static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 char *raw_disk_sb)
1104a885
DS
406{
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 420 * is filled with zeros and is included in the checksum.
1104a885
DS
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437}
438
d352ac68
CM
439/*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
2ff7e61e 443static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 444 struct extent_buffer *eb,
8436ea91 445 u64 parent_transid)
f188591e
CM
446{
447 struct extent_io_tree *io_tree;
ea466794 448 int failed = 0;
f188591e
CM
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
ea466794 452 int failed_mirror = 0;
f188591e 453
a826d6dc 454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
0b246afa 455 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 456 while (1) {
8436ea91 457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
f188591e 458 btree_get_extent, mirror_num);
256dd1bb
SB
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
b9fab919 461 parent_transid, 0))
256dd1bb
SB
462 break;
463 else
464 ret = -EIO;
465 }
d397712b 466
a826d6dc
JB
467 /*
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
471 */
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
473 break;
474
0b246afa 475 num_copies = btrfs_num_copies(fs_info,
f188591e 476 eb->start, eb->len);
4235298e 477 if (num_copies == 1)
ea466794 478 break;
4235298e 479
5cf1ab56
JB
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
f188591e 485 mirror_num++;
ea466794
JB
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
4235298e 489 if (mirror_num > num_copies)
ea466794 490 break;
f188591e 491 }
ea466794 492
c0901581 493 if (failed && !ret && failed_mirror)
2ff7e61e 494 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
495
496 return ret;
f188591e 497}
19c00ddc 498
d352ac68 499/*
d397712b
CM
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 502 */
d397712b 503
01d58472 504static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 505{
4eee4fa4 506 u64 start = page_offset(page);
19c00ddc 507 u64 found_start;
19c00ddc 508 struct extent_buffer *eb;
f188591e 509
4f2de97a
JB
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
0f805531 513
19c00ddc 514 found_start = btrfs_header_bytenr(eb);
0f805531
AL
515 /*
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
518 */
519 if (WARN_ON(found_start != start))
520 return -EUCLEAN;
521 if (WARN_ON(!PageUptodate(page)))
522 return -EUCLEAN;
523
524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526
8bd98f0e 527 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
528}
529
01d58472 530static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
531 struct extent_buffer *eb)
532{
01d58472 533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
534 u8 fsid[BTRFS_UUID_SIZE];
535 int ret = 1;
536
0a4e5586 537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
538 while (fs_devices) {
539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 ret = 0;
541 break;
542 }
543 fs_devices = fs_devices->seed;
544 }
545 return ret;
546}
547
0b246afa
JM
548#define CORRUPT(reason, eb, root, slot) \
549 btrfs_crit(root->fs_info, \
550 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
551 btrfs_header_level(eb) == 0 ? "leaf" : "node", \
6b722c17 552 reason, btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
553
554static noinline int check_leaf(struct btrfs_root *root,
555 struct extent_buffer *leaf)
556{
0b246afa 557 struct btrfs_fs_info *fs_info = root->fs_info;
a826d6dc
JB
558 struct btrfs_key key;
559 struct btrfs_key leaf_key;
560 u32 nritems = btrfs_header_nritems(leaf);
561 int slot;
562
f177d739
FM
563 /*
564 * Extent buffers from a relocation tree have a owner field that
565 * corresponds to the subvolume tree they are based on. So just from an
566 * extent buffer alone we can not find out what is the id of the
567 * corresponding subvolume tree, so we can not figure out if the extent
568 * buffer corresponds to the root of the relocation tree or not. So skip
569 * this check for relocation trees.
570 */
571 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1ba98d08
LB
572 struct btrfs_root *check_root;
573
574 key.objectid = btrfs_header_owner(leaf);
575 key.type = BTRFS_ROOT_ITEM_KEY;
576 key.offset = (u64)-1;
577
0b246afa 578 check_root = btrfs_get_fs_root(fs_info, &key, false);
1ba98d08
LB
579 /*
580 * The only reason we also check NULL here is that during
581 * open_ctree() some roots has not yet been set up.
582 */
583 if (!IS_ERR_OR_NULL(check_root)) {
ef85b25e
LB
584 struct extent_buffer *eb;
585
586 eb = btrfs_root_node(check_root);
1ba98d08 587 /* if leaf is the root, then it's fine */
ef85b25e 588 if (leaf != eb) {
1ba98d08 589 CORRUPT("non-root leaf's nritems is 0",
ef85b25e
LB
590 leaf, check_root, 0);
591 free_extent_buffer(eb);
1ba98d08
LB
592 return -EIO;
593 }
ef85b25e 594 free_extent_buffer(eb);
1ba98d08 595 }
a826d6dc 596 return 0;
1ba98d08 597 }
a826d6dc 598
f177d739
FM
599 if (nritems == 0)
600 return 0;
601
a826d6dc
JB
602 /* Check the 0 item */
603 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
0b246afa 604 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
605 CORRUPT("invalid item offset size pair", leaf, root, 0);
606 return -EIO;
607 }
608
609 /*
610 * Check to make sure each items keys are in the correct order and their
611 * offsets make sense. We only have to loop through nritems-1 because
612 * we check the current slot against the next slot, which verifies the
613 * next slot's offset+size makes sense and that the current's slot
614 * offset is correct.
615 */
616 for (slot = 0; slot < nritems - 1; slot++) {
617 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
618 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
619
620 /* Make sure the keys are in the right order */
621 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
622 CORRUPT("bad key order", leaf, root, slot);
623 return -EIO;
624 }
625
626 /*
627 * Make sure the offset and ends are right, remember that the
628 * item data starts at the end of the leaf and grows towards the
629 * front.
630 */
631 if (btrfs_item_offset_nr(leaf, slot) !=
632 btrfs_item_end_nr(leaf, slot + 1)) {
633 CORRUPT("slot offset bad", leaf, root, slot);
634 return -EIO;
635 }
636
637 /*
638 * Check to make sure that we don't point outside of the leaf,
01327610 639 * just in case all the items are consistent to each other, but
a826d6dc
JB
640 * all point outside of the leaf.
641 */
642 if (btrfs_item_end_nr(leaf, slot) >
0b246afa 643 BTRFS_LEAF_DATA_SIZE(fs_info)) {
a826d6dc
JB
644 CORRUPT("slot end outside of leaf", leaf, root, slot);
645 return -EIO;
646 }
647 }
648
649 return 0;
650}
651
053ab70f
LB
652static int check_node(struct btrfs_root *root, struct extent_buffer *node)
653{
654 unsigned long nr = btrfs_header_nritems(node);
6b722c17
LB
655 struct btrfs_key key, next_key;
656 int slot;
657 u64 bytenr;
658 int ret = 0;
053ab70f 659
da17066c 660 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
053ab70f
LB
661 btrfs_crit(root->fs_info,
662 "corrupt node: block %llu root %llu nritems %lu",
663 node->start, root->objectid, nr);
664 return -EIO;
665 }
6b722c17
LB
666
667 for (slot = 0; slot < nr - 1; slot++) {
668 bytenr = btrfs_node_blockptr(node, slot);
669 btrfs_node_key_to_cpu(node, &key, slot);
670 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
671
672 if (!bytenr) {
673 CORRUPT("invalid item slot", node, root, slot);
674 ret = -EIO;
675 goto out;
676 }
677
678 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
679 CORRUPT("bad key order", node, root, slot);
680 ret = -EIO;
681 goto out;
682 }
683 }
684out:
685 return ret;
053ab70f
LB
686}
687
facc8a22
MX
688static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
689 u64 phy_offset, struct page *page,
690 u64 start, u64 end, int mirror)
ce9adaa5 691{
ce9adaa5
CM
692 u64 found_start;
693 int found_level;
ce9adaa5
CM
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 696 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 697 int ret = 0;
727011e0 698 int reads_done;
ce9adaa5 699
ce9adaa5
CM
700 if (!page->private)
701 goto out;
d397712b 702
4f2de97a 703 eb = (struct extent_buffer *)page->private;
d397712b 704
0b32f4bb
JB
705 /* the pending IO might have been the only thing that kept this buffer
706 * in memory. Make sure we have a ref for all this other checks
707 */
708 extent_buffer_get(eb);
709
710 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
711 if (!reads_done)
712 goto err;
f188591e 713
5cf1ab56 714 eb->read_mirror = mirror;
656f30db 715 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
716 ret = -EIO;
717 goto err;
718 }
719
ce9adaa5 720 found_start = btrfs_header_bytenr(eb);
727011e0 721 if (found_start != eb->start) {
02873e43
ZL
722 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
723 found_start, eb->start);
f188591e 724 ret = -EIO;
ce9adaa5
CM
725 goto err;
726 }
02873e43
ZL
727 if (check_tree_block_fsid(fs_info, eb)) {
728 btrfs_err_rl(fs_info, "bad fsid on block %llu",
729 eb->start);
1259ab75
CM
730 ret = -EIO;
731 goto err;
732 }
ce9adaa5 733 found_level = btrfs_header_level(eb);
1c24c3ce 734 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
735 btrfs_err(fs_info, "bad tree block level %d",
736 (int)btrfs_header_level(eb));
1c24c3ce
JB
737 ret = -EIO;
738 goto err;
739 }
ce9adaa5 740
85d4e461
CM
741 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
742 eb, found_level);
4008c04a 743
02873e43 744 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 745 if (ret)
a826d6dc 746 goto err;
a826d6dc
JB
747
748 /*
749 * If this is a leaf block and it is corrupt, set the corrupt bit so
750 * that we don't try and read the other copies of this block, just
751 * return -EIO.
752 */
753 if (found_level == 0 && check_leaf(root, eb)) {
754 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
755 ret = -EIO;
756 }
ce9adaa5 757
053ab70f
LB
758 if (found_level > 0 && check_node(root, eb))
759 ret = -EIO;
760
0b32f4bb
JB
761 if (!ret)
762 set_extent_buffer_uptodate(eb);
ce9adaa5 763err:
79fb65a1
JB
764 if (reads_done &&
765 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
fc2e901f 766 btree_readahead_hook(fs_info, eb, ret);
4bb31e92 767
53b381b3
DW
768 if (ret) {
769 /*
770 * our io error hook is going to dec the io pages
771 * again, we have to make sure it has something
772 * to decrement
773 */
774 atomic_inc(&eb->io_pages);
0b32f4bb 775 clear_extent_buffer_uptodate(eb);
53b381b3 776 }
0b32f4bb 777 free_extent_buffer(eb);
ce9adaa5 778out:
f188591e 779 return ret;
ce9adaa5
CM
780}
781
ea466794 782static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 783{
4bb31e92 784 struct extent_buffer *eb;
4bb31e92 785
4f2de97a 786 eb = (struct extent_buffer *)page->private;
656f30db 787 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 788 eb->read_mirror = failed_mirror;
53b381b3 789 atomic_dec(&eb->io_pages);
ea466794 790 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
fc2e901f 791 btree_readahead_hook(eb->fs_info, eb, -EIO);
4bb31e92
AJ
792 return -EIO; /* we fixed nothing */
793}
794
4246a0b6 795static void end_workqueue_bio(struct bio *bio)
ce9adaa5 796{
97eb6b69 797 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 798 struct btrfs_fs_info *fs_info;
9e0af237
LB
799 struct btrfs_workqueue *wq;
800 btrfs_work_func_t func;
ce9adaa5 801
ce9adaa5 802 fs_info = end_io_wq->info;
4246a0b6 803 end_io_wq->error = bio->bi_error;
d20f7043 804
37226b21 805 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
806 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
807 wq = fs_info->endio_meta_write_workers;
808 func = btrfs_endio_meta_write_helper;
809 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
810 wq = fs_info->endio_freespace_worker;
811 func = btrfs_freespace_write_helper;
812 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
813 wq = fs_info->endio_raid56_workers;
814 func = btrfs_endio_raid56_helper;
815 } else {
816 wq = fs_info->endio_write_workers;
817 func = btrfs_endio_write_helper;
818 }
d20f7043 819 } else {
8b110e39
MX
820 if (unlikely(end_io_wq->metadata ==
821 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
822 wq = fs_info->endio_repair_workers;
823 func = btrfs_endio_repair_helper;
824 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
825 wq = fs_info->endio_raid56_workers;
826 func = btrfs_endio_raid56_helper;
827 } else if (end_io_wq->metadata) {
828 wq = fs_info->endio_meta_workers;
829 func = btrfs_endio_meta_helper;
830 } else {
831 wq = fs_info->endio_workers;
832 func = btrfs_endio_helper;
833 }
d20f7043 834 }
9e0af237
LB
835
836 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
837 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
838}
839
22c59948 840int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 841 enum btrfs_wq_endio_type metadata)
0b86a832 842{
97eb6b69 843 struct btrfs_end_io_wq *end_io_wq;
8b110e39 844
97eb6b69 845 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
846 if (!end_io_wq)
847 return -ENOMEM;
848
849 end_io_wq->private = bio->bi_private;
850 end_io_wq->end_io = bio->bi_end_io;
22c59948 851 end_io_wq->info = info;
ce9adaa5
CM
852 end_io_wq->error = 0;
853 end_io_wq->bio = bio;
22c59948 854 end_io_wq->metadata = metadata;
ce9adaa5
CM
855
856 bio->bi_private = end_io_wq;
857 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
858 return 0;
859}
860
b64a2851 861unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 862{
4854ddd0 863 unsigned long limit = min_t(unsigned long,
5cdc7ad3 864 info->thread_pool_size,
4854ddd0
CM
865 info->fs_devices->open_devices);
866 return 256 * limit;
867}
0986fe9e 868
4a69a410
CM
869static void run_one_async_start(struct btrfs_work *work)
870{
4a69a410 871 struct async_submit_bio *async;
79787eaa 872 int ret;
4a69a410
CM
873
874 async = container_of(work, struct async_submit_bio, work);
81a75f67 875 ret = async->submit_bio_start(async->inode, async->bio,
79787eaa
JM
876 async->mirror_num, async->bio_flags,
877 async->bio_offset);
878 if (ret)
879 async->error = ret;
4a69a410
CM
880}
881
882static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
883{
884 struct btrfs_fs_info *fs_info;
885 struct async_submit_bio *async;
4854ddd0 886 int limit;
8b712842
CM
887
888 async = container_of(work, struct async_submit_bio, work);
889 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 890
b64a2851 891 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
892 limit = limit * 2 / 3;
893
ee863954
DS
894 /*
895 * atomic_dec_return implies a barrier for waitqueue_active
896 */
66657b31 897 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 898 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
899 wake_up(&fs_info->async_submit_wait);
900
bb7ab3b9 901 /* If an error occurred we just want to clean up the bio and move on */
79787eaa 902 if (async->error) {
4246a0b6
CH
903 async->bio->bi_error = async->error;
904 bio_endio(async->bio);
79787eaa
JM
905 return;
906 }
907
81a75f67
MC
908 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
909 async->bio_flags, async->bio_offset);
4a69a410
CM
910}
911
912static void run_one_async_free(struct btrfs_work *work)
913{
914 struct async_submit_bio *async;
915
916 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
917 kfree(async);
918}
919
44b8bd7e 920int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
81a75f67 921 struct bio *bio, int mirror_num,
c8b97818 922 unsigned long bio_flags,
eaf25d93 923 u64 bio_offset,
4a69a410
CM
924 extent_submit_bio_hook_t *submit_bio_start,
925 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
926{
927 struct async_submit_bio *async;
928
929 async = kmalloc(sizeof(*async), GFP_NOFS);
930 if (!async)
931 return -ENOMEM;
932
933 async->inode = inode;
44b8bd7e
CM
934 async->bio = bio;
935 async->mirror_num = mirror_num;
4a69a410
CM
936 async->submit_bio_start = submit_bio_start;
937 async->submit_bio_done = submit_bio_done;
938
9e0af237 939 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 940 run_one_async_done, run_one_async_free);
4a69a410 941
c8b97818 942 async->bio_flags = bio_flags;
eaf25d93 943 async->bio_offset = bio_offset;
8c8bee1d 944
79787eaa
JM
945 async->error = 0;
946
cb03c743 947 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 948
67f055c7 949 if (op_is_sync(bio->bi_opf))
5cdc7ad3 950 btrfs_set_work_high_priority(&async->work);
d313d7a3 951
5cdc7ad3 952 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 953
d397712b 954 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
955 atomic_read(&fs_info->nr_async_submits)) {
956 wait_event(fs_info->async_submit_wait,
957 (atomic_read(&fs_info->nr_async_submits) == 0));
958 }
959
44b8bd7e
CM
960 return 0;
961}
962
ce3ed71a
CM
963static int btree_csum_one_bio(struct bio *bio)
964{
2c30c71b 965 struct bio_vec *bvec;
ce3ed71a 966 struct btrfs_root *root;
2c30c71b 967 int i, ret = 0;
ce3ed71a 968
2c30c71b 969 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 970 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 971 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
972 if (ret)
973 break;
ce3ed71a 974 }
2c30c71b 975
79787eaa 976 return ret;
ce3ed71a
CM
977}
978
81a75f67
MC
979static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
980 int mirror_num, unsigned long bio_flags,
eaf25d93 981 u64 bio_offset)
22c59948 982{
8b712842
CM
983 /*
984 * when we're called for a write, we're already in the async
5443be45 985 * submission context. Just jump into btrfs_map_bio
8b712842 986 */
79787eaa 987 return btree_csum_one_bio(bio);
4a69a410 988}
22c59948 989
81a75f67 990static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
eaf25d93
CM
991 int mirror_num, unsigned long bio_flags,
992 u64 bio_offset)
4a69a410 993{
61891923
SB
994 int ret;
995
8b712842 996 /*
4a69a410
CM
997 * when we're called for a write, we're already in the async
998 * submission context. Just jump into btrfs_map_bio
8b712842 999 */
2ff7e61e 1000 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
4246a0b6
CH
1001 if (ret) {
1002 bio->bi_error = ret;
1003 bio_endio(bio);
1004 }
61891923 1005 return ret;
0b86a832
CM
1006}
1007
e27f6265 1008static int check_async_write(unsigned long bio_flags)
de0022b9
JB
1009{
1010 if (bio_flags & EXTENT_BIO_TREE_LOG)
1011 return 0;
1012#ifdef CONFIG_X86
bc696ca0 1013 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
1014 return 0;
1015#endif
1016 return 1;
1017}
1018
81a75f67 1019static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
eaf25d93
CM
1020 int mirror_num, unsigned long bio_flags,
1021 u64 bio_offset)
44b8bd7e 1022{
0b246afa 1023 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e27f6265 1024 int async = check_async_write(bio_flags);
cad321ad
CM
1025 int ret;
1026
37226b21 1027 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
1028 /*
1029 * called for a read, do the setup so that checksum validation
1030 * can happen in the async kernel threads
1031 */
0b246afa
JM
1032 ret = btrfs_bio_wq_end_io(fs_info, bio,
1033 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 1034 if (ret)
61891923 1035 goto out_w_error;
2ff7e61e 1036 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
1037 } else if (!async) {
1038 ret = btree_csum_one_bio(bio);
1039 if (ret)
61891923 1040 goto out_w_error;
2ff7e61e 1041 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1042 } else {
1043 /*
1044 * kthread helpers are used to submit writes so that
1045 * checksumming can happen in parallel across all CPUs
1046 */
0b246afa 1047 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
61891923
SB
1048 bio_offset,
1049 __btree_submit_bio_start,
1050 __btree_submit_bio_done);
44b8bd7e 1051 }
d313d7a3 1052
4246a0b6
CH
1053 if (ret)
1054 goto out_w_error;
1055 return 0;
1056
61891923 1057out_w_error:
4246a0b6
CH
1058 bio->bi_error = ret;
1059 bio_endio(bio);
61891923 1060 return ret;
44b8bd7e
CM
1061}
1062
3dd1462e 1063#ifdef CONFIG_MIGRATION
784b4e29 1064static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
1065 struct page *newpage, struct page *page,
1066 enum migrate_mode mode)
784b4e29
CM
1067{
1068 /*
1069 * we can't safely write a btree page from here,
1070 * we haven't done the locking hook
1071 */
1072 if (PageDirty(page))
1073 return -EAGAIN;
1074 /*
1075 * Buffers may be managed in a filesystem specific way.
1076 * We must have no buffers or drop them.
1077 */
1078 if (page_has_private(page) &&
1079 !try_to_release_page(page, GFP_KERNEL))
1080 return -EAGAIN;
a6bc32b8 1081 return migrate_page(mapping, newpage, page, mode);
784b4e29 1082}
3dd1462e 1083#endif
784b4e29 1084
0da5468f
CM
1085
1086static int btree_writepages(struct address_space *mapping,
1087 struct writeback_control *wbc)
1088{
e2d84521
MX
1089 struct btrfs_fs_info *fs_info;
1090 int ret;
1091
d8d5f3e1 1092 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1093
1094 if (wbc->for_kupdate)
1095 return 0;
1096
e2d84521 1097 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1098 /* this is a bit racy, but that's ok */
e2d84521
MX
1099 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1100 BTRFS_DIRTY_METADATA_THRESH);
1101 if (ret < 0)
793955bc 1102 return 0;
793955bc 1103 }
0b32f4bb 1104 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1105}
1106
b2950863 1107static int btree_readpage(struct file *file, struct page *page)
5f39d397 1108{
d1310b2e
CM
1109 struct extent_io_tree *tree;
1110 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1111 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1112}
22b0ebda 1113
70dec807 1114static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1115{
98509cfc 1116 if (PageWriteback(page) || PageDirty(page))
d397712b 1117 return 0;
0c4e538b 1118
f7a52a40 1119 return try_release_extent_buffer(page);
d98237b3
CM
1120}
1121
d47992f8
LC
1122static void btree_invalidatepage(struct page *page, unsigned int offset,
1123 unsigned int length)
d98237b3 1124{
d1310b2e
CM
1125 struct extent_io_tree *tree;
1126 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1127 extent_invalidatepage(tree, page, offset);
1128 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1129 if (PagePrivate(page)) {
efe120a0
FH
1130 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1131 "page private not zero on page %llu",
1132 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1133 ClearPagePrivate(page);
1134 set_page_private(page, 0);
09cbfeaf 1135 put_page(page);
9ad6b7bc 1136 }
d98237b3
CM
1137}
1138
0b32f4bb
JB
1139static int btree_set_page_dirty(struct page *page)
1140{
bb146eb2 1141#ifdef DEBUG
0b32f4bb
JB
1142 struct extent_buffer *eb;
1143
1144 BUG_ON(!PagePrivate(page));
1145 eb = (struct extent_buffer *)page->private;
1146 BUG_ON(!eb);
1147 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1148 BUG_ON(!atomic_read(&eb->refs));
1149 btrfs_assert_tree_locked(eb);
bb146eb2 1150#endif
0b32f4bb
JB
1151 return __set_page_dirty_nobuffers(page);
1152}
1153
7f09410b 1154static const struct address_space_operations btree_aops = {
d98237b3 1155 .readpage = btree_readpage,
0da5468f 1156 .writepages = btree_writepages,
5f39d397
CM
1157 .releasepage = btree_releasepage,
1158 .invalidatepage = btree_invalidatepage,
5a92bc88 1159#ifdef CONFIG_MIGRATION
784b4e29 1160 .migratepage = btree_migratepage,
5a92bc88 1161#endif
0b32f4bb 1162 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1163};
1164
2ff7e61e 1165void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1166{
5f39d397 1167 struct extent_buffer *buf = NULL;
2ff7e61e 1168 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1169
2ff7e61e 1170 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1171 if (IS_ERR(buf))
6197d86e 1172 return;
d1310b2e 1173 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
8436ea91 1174 buf, WAIT_NONE, btree_get_extent, 0);
5f39d397 1175 free_extent_buffer(buf);
090d1875
CM
1176}
1177
2ff7e61e 1178int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1179 int mirror_num, struct extent_buffer **eb)
1180{
1181 struct extent_buffer *buf = NULL;
2ff7e61e 1182 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1183 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1184 int ret;
1185
2ff7e61e 1186 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1187 if (IS_ERR(buf))
ab0fff03
AJ
1188 return 0;
1189
1190 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1191
8436ea91 1192 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
ab0fff03
AJ
1193 btree_get_extent, mirror_num);
1194 if (ret) {
1195 free_extent_buffer(buf);
1196 return ret;
1197 }
1198
1199 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1200 free_extent_buffer(buf);
1201 return -EIO;
0b32f4bb 1202 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1203 *eb = buf;
1204 } else {
1205 free_extent_buffer(buf);
1206 }
1207 return 0;
1208}
1209
2ff7e61e
JM
1210struct extent_buffer *btrfs_find_create_tree_block(
1211 struct btrfs_fs_info *fs_info,
1212 u64 bytenr)
0999df54 1213{
0b246afa
JM
1214 if (btrfs_is_testing(fs_info))
1215 return alloc_test_extent_buffer(fs_info, bytenr);
1216 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1217}
1218
1219
e02119d5
CM
1220int btrfs_write_tree_block(struct extent_buffer *buf)
1221{
727011e0 1222 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1223 buf->start + buf->len - 1);
e02119d5
CM
1224}
1225
1226int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1227{
727011e0 1228 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1229 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1230}
1231
2ff7e61e 1232struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
ce86cd59 1233 u64 parent_transid)
0999df54
CM
1234{
1235 struct extent_buffer *buf = NULL;
0999df54
CM
1236 int ret;
1237
2ff7e61e 1238 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1239 if (IS_ERR(buf))
1240 return buf;
0999df54 1241
2ff7e61e 1242 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
0f0fe8f7
FDBM
1243 if (ret) {
1244 free_extent_buffer(buf);
64c043de 1245 return ERR_PTR(ret);
0f0fe8f7 1246 }
5f39d397 1247 return buf;
ce9adaa5 1248
eb60ceac
CM
1249}
1250
7c302b49 1251void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1252 struct extent_buffer *buf)
ed2ff2cb 1253{
55c69072 1254 if (btrfs_header_generation(buf) ==
e2d84521 1255 fs_info->running_transaction->transid) {
b9447ef8 1256 btrfs_assert_tree_locked(buf);
b4ce94de 1257
b9473439 1258 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1259 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1260 -buf->len,
1261 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1262 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1263 btrfs_set_lock_blocking(buf);
1264 clear_extent_buffer_dirty(buf);
1265 }
925baedd 1266 }
5f39d397
CM
1267}
1268
8257b2dc
MX
1269static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1270{
1271 struct btrfs_subvolume_writers *writers;
1272 int ret;
1273
1274 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1275 if (!writers)
1276 return ERR_PTR(-ENOMEM);
1277
908c7f19 1278 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1279 if (ret < 0) {
1280 kfree(writers);
1281 return ERR_PTR(ret);
1282 }
1283
1284 init_waitqueue_head(&writers->wait);
1285 return writers;
1286}
1287
1288static void
1289btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1290{
1291 percpu_counter_destroy(&writers->counter);
1292 kfree(writers);
1293}
1294
da17066c 1295static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1296 u64 objectid)
d97e63b6 1297{
7c0260ee 1298 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1299 root->node = NULL;
a28ec197 1300 root->commit_root = NULL;
27cdeb70 1301 root->state = 0;
d68fc57b 1302 root->orphan_cleanup_state = 0;
0b86a832 1303
0f7d52f4
CM
1304 root->objectid = objectid;
1305 root->last_trans = 0;
13a8a7c8 1306 root->highest_objectid = 0;
eb73c1b7 1307 root->nr_delalloc_inodes = 0;
199c2a9c 1308 root->nr_ordered_extents = 0;
58176a96 1309 root->name = NULL;
6bef4d31 1310 root->inode_tree = RB_ROOT;
16cdcec7 1311 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1312 root->block_rsv = NULL;
d68fc57b 1313 root->orphan_block_rsv = NULL;
0b86a832
CM
1314
1315 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1316 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1317 INIT_LIST_HEAD(&root->delalloc_inodes);
1318 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1319 INIT_LIST_HEAD(&root->ordered_extents);
1320 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1321 INIT_LIST_HEAD(&root->logged_list[0]);
1322 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1323 spin_lock_init(&root->orphan_lock);
5d4f98a2 1324 spin_lock_init(&root->inode_lock);
eb73c1b7 1325 spin_lock_init(&root->delalloc_lock);
199c2a9c 1326 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1327 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1328 spin_lock_init(&root->log_extents_lock[0]);
1329 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1330 mutex_init(&root->objectid_mutex);
e02119d5 1331 mutex_init(&root->log_mutex);
31f3d255 1332 mutex_init(&root->ordered_extent_mutex);
573bfb72 1333 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1334 init_waitqueue_head(&root->log_writer_wait);
1335 init_waitqueue_head(&root->log_commit_wait[0]);
1336 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1337 INIT_LIST_HEAD(&root->log_ctxs[0]);
1338 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1339 atomic_set(&root->log_commit[0], 0);
1340 atomic_set(&root->log_commit[1], 0);
1341 atomic_set(&root->log_writers, 0);
2ecb7923 1342 atomic_set(&root->log_batch, 0);
8a35d95f 1343 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1344 atomic_set(&root->refs, 1);
8257b2dc 1345 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1346 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1347 root->log_transid = 0;
d1433deb 1348 root->log_transid_committed = -1;
257c62e1 1349 root->last_log_commit = 0;
7c0260ee 1350 if (!dummy)
06ea65a3
JB
1351 extent_io_tree_init(&root->dirty_log_pages,
1352 fs_info->btree_inode->i_mapping);
017e5369 1353
3768f368
CM
1354 memset(&root->root_key, 0, sizeof(root->root_key));
1355 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1356 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1357 if (!dummy)
06ea65a3
JB
1358 root->defrag_trans_start = fs_info->generation;
1359 else
1360 root->defrag_trans_start = 0;
4d775673 1361 root->root_key.objectid = objectid;
0ee5dc67 1362 root->anon_dev = 0;
8ea05e3a 1363
5f3ab90a 1364 spin_lock_init(&root->root_item_lock);
3768f368
CM
1365}
1366
74e4d827
DS
1367static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1368 gfp_t flags)
6f07e42e 1369{
74e4d827 1370 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1371 if (root)
1372 root->fs_info = fs_info;
1373 return root;
1374}
1375
06ea65a3
JB
1376#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1377/* Should only be used by the testing infrastructure */
da17066c 1378struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1379{
1380 struct btrfs_root *root;
1381
7c0260ee
JM
1382 if (!fs_info)
1383 return ERR_PTR(-EINVAL);
1384
1385 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1386 if (!root)
1387 return ERR_PTR(-ENOMEM);
da17066c 1388
b9ef22de 1389 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1390 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1391 root->alloc_bytenr = 0;
06ea65a3
JB
1392
1393 return root;
1394}
1395#endif
1396
20897f5c
AJ
1397struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1398 struct btrfs_fs_info *fs_info,
1399 u64 objectid)
1400{
1401 struct extent_buffer *leaf;
1402 struct btrfs_root *tree_root = fs_info->tree_root;
1403 struct btrfs_root *root;
1404 struct btrfs_key key;
1405 int ret = 0;
6463fe58 1406 uuid_le uuid;
20897f5c 1407
74e4d827 1408 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1409 if (!root)
1410 return ERR_PTR(-ENOMEM);
1411
da17066c 1412 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1413 root->root_key.objectid = objectid;
1414 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1415 root->root_key.offset = 0;
1416
4d75f8a9 1417 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1418 if (IS_ERR(leaf)) {
1419 ret = PTR_ERR(leaf);
1dd05682 1420 leaf = NULL;
20897f5c
AJ
1421 goto fail;
1422 }
1423
b159fa28 1424 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1425 btrfs_set_header_bytenr(leaf, leaf->start);
1426 btrfs_set_header_generation(leaf, trans->transid);
1427 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1428 btrfs_set_header_owner(leaf, objectid);
1429 root->node = leaf;
1430
d24ee97b
DS
1431 write_extent_buffer_fsid(leaf, fs_info->fsid);
1432 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1433 btrfs_mark_buffer_dirty(leaf);
1434
1435 root->commit_root = btrfs_root_node(root);
27cdeb70 1436 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1437
1438 root->root_item.flags = 0;
1439 root->root_item.byte_limit = 0;
1440 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1441 btrfs_set_root_generation(&root->root_item, trans->transid);
1442 btrfs_set_root_level(&root->root_item, 0);
1443 btrfs_set_root_refs(&root->root_item, 1);
1444 btrfs_set_root_used(&root->root_item, leaf->len);
1445 btrfs_set_root_last_snapshot(&root->root_item, 0);
1446 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1447 uuid_le_gen(&uuid);
1448 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1449 root->root_item.drop_level = 0;
1450
1451 key.objectid = objectid;
1452 key.type = BTRFS_ROOT_ITEM_KEY;
1453 key.offset = 0;
1454 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1455 if (ret)
1456 goto fail;
1457
1458 btrfs_tree_unlock(leaf);
1459
1dd05682
TI
1460 return root;
1461
20897f5c 1462fail:
1dd05682
TI
1463 if (leaf) {
1464 btrfs_tree_unlock(leaf);
59885b39 1465 free_extent_buffer(root->commit_root);
1dd05682
TI
1466 free_extent_buffer(leaf);
1467 }
1468 kfree(root);
20897f5c 1469
1dd05682 1470 return ERR_PTR(ret);
20897f5c
AJ
1471}
1472
7237f183
YZ
1473static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1474 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1475{
1476 struct btrfs_root *root;
7237f183 1477 struct extent_buffer *leaf;
e02119d5 1478
74e4d827 1479 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1480 if (!root)
7237f183 1481 return ERR_PTR(-ENOMEM);
e02119d5 1482
da17066c 1483 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1484
1485 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1486 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1487 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1488
7237f183 1489 /*
27cdeb70
MX
1490 * DON'T set REF_COWS for log trees
1491 *
7237f183
YZ
1492 * log trees do not get reference counted because they go away
1493 * before a real commit is actually done. They do store pointers
1494 * to file data extents, and those reference counts still get
1495 * updated (along with back refs to the log tree).
1496 */
e02119d5 1497
4d75f8a9
DS
1498 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1499 NULL, 0, 0, 0);
7237f183
YZ
1500 if (IS_ERR(leaf)) {
1501 kfree(root);
1502 return ERR_CAST(leaf);
1503 }
e02119d5 1504
b159fa28 1505 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1506 btrfs_set_header_bytenr(leaf, leaf->start);
1507 btrfs_set_header_generation(leaf, trans->transid);
1508 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1509 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1510 root->node = leaf;
e02119d5 1511
0b246afa 1512 write_extent_buffer_fsid(root->node, fs_info->fsid);
e02119d5
CM
1513 btrfs_mark_buffer_dirty(root->node);
1514 btrfs_tree_unlock(root->node);
7237f183
YZ
1515 return root;
1516}
1517
1518int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1519 struct btrfs_fs_info *fs_info)
1520{
1521 struct btrfs_root *log_root;
1522
1523 log_root = alloc_log_tree(trans, fs_info);
1524 if (IS_ERR(log_root))
1525 return PTR_ERR(log_root);
1526 WARN_ON(fs_info->log_root_tree);
1527 fs_info->log_root_tree = log_root;
1528 return 0;
1529}
1530
1531int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root)
1533{
0b246afa 1534 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1535 struct btrfs_root *log_root;
1536 struct btrfs_inode_item *inode_item;
1537
0b246afa 1538 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1539 if (IS_ERR(log_root))
1540 return PTR_ERR(log_root);
1541
1542 log_root->last_trans = trans->transid;
1543 log_root->root_key.offset = root->root_key.objectid;
1544
1545 inode_item = &log_root->root_item.inode;
3cae210f
QW
1546 btrfs_set_stack_inode_generation(inode_item, 1);
1547 btrfs_set_stack_inode_size(inode_item, 3);
1548 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1549 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1550 fs_info->nodesize);
3cae210f 1551 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1552
5d4f98a2 1553 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1554
1555 WARN_ON(root->log_root);
1556 root->log_root = log_root;
1557 root->log_transid = 0;
d1433deb 1558 root->log_transid_committed = -1;
257c62e1 1559 root->last_log_commit = 0;
e02119d5
CM
1560 return 0;
1561}
1562
35a3621b
SB
1563static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1564 struct btrfs_key *key)
e02119d5
CM
1565{
1566 struct btrfs_root *root;
1567 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1568 struct btrfs_path *path;
84234f3a 1569 u64 generation;
cb517eab 1570 int ret;
0f7d52f4 1571
cb517eab
MX
1572 path = btrfs_alloc_path();
1573 if (!path)
0f7d52f4 1574 return ERR_PTR(-ENOMEM);
cb517eab 1575
74e4d827 1576 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1577 if (!root) {
1578 ret = -ENOMEM;
1579 goto alloc_fail;
0f7d52f4
CM
1580 }
1581
da17066c 1582 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1583
cb517eab
MX
1584 ret = btrfs_find_root(tree_root, key, path,
1585 &root->root_item, &root->root_key);
0f7d52f4 1586 if (ret) {
13a8a7c8
YZ
1587 if (ret > 0)
1588 ret = -ENOENT;
cb517eab 1589 goto find_fail;
0f7d52f4 1590 }
13a8a7c8 1591
84234f3a 1592 generation = btrfs_root_generation(&root->root_item);
2ff7e61e
JM
1593 root->node = read_tree_block(fs_info,
1594 btrfs_root_bytenr(&root->root_item),
ce86cd59 1595 generation);
64c043de
LB
1596 if (IS_ERR(root->node)) {
1597 ret = PTR_ERR(root->node);
cb517eab
MX
1598 goto find_fail;
1599 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1600 ret = -EIO;
64c043de
LB
1601 free_extent_buffer(root->node);
1602 goto find_fail;
416bc658 1603 }
5d4f98a2 1604 root->commit_root = btrfs_root_node(root);
13a8a7c8 1605out:
cb517eab
MX
1606 btrfs_free_path(path);
1607 return root;
1608
cb517eab
MX
1609find_fail:
1610 kfree(root);
1611alloc_fail:
1612 root = ERR_PTR(ret);
1613 goto out;
1614}
1615
1616struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1617 struct btrfs_key *location)
1618{
1619 struct btrfs_root *root;
1620
1621 root = btrfs_read_tree_root(tree_root, location);
1622 if (IS_ERR(root))
1623 return root;
1624
1625 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1626 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1627 btrfs_check_and_init_root_item(&root->root_item);
1628 }
13a8a7c8 1629
5eda7b5e
CM
1630 return root;
1631}
1632
cb517eab
MX
1633int btrfs_init_fs_root(struct btrfs_root *root)
1634{
1635 int ret;
8257b2dc 1636 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1637
1638 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1639 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1640 GFP_NOFS);
1641 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1642 ret = -ENOMEM;
1643 goto fail;
1644 }
1645
8257b2dc
MX
1646 writers = btrfs_alloc_subvolume_writers();
1647 if (IS_ERR(writers)) {
1648 ret = PTR_ERR(writers);
1649 goto fail;
1650 }
1651 root->subv_writers = writers;
1652
cb517eab 1653 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1654 spin_lock_init(&root->ino_cache_lock);
1655 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1656
1657 ret = get_anon_bdev(&root->anon_dev);
1658 if (ret)
876d2cf1 1659 goto fail;
f32e48e9
CR
1660
1661 mutex_lock(&root->objectid_mutex);
1662 ret = btrfs_find_highest_objectid(root,
1663 &root->highest_objectid);
1664 if (ret) {
1665 mutex_unlock(&root->objectid_mutex);
876d2cf1 1666 goto fail;
f32e48e9
CR
1667 }
1668
1669 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1670
1671 mutex_unlock(&root->objectid_mutex);
1672
cb517eab
MX
1673 return 0;
1674fail:
876d2cf1 1675 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1676 return ret;
1677}
1678
35bbb97f
JM
1679struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1680 u64 root_id)
cb517eab
MX
1681{
1682 struct btrfs_root *root;
1683
1684 spin_lock(&fs_info->fs_roots_radix_lock);
1685 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1686 (unsigned long)root_id);
1687 spin_unlock(&fs_info->fs_roots_radix_lock);
1688 return root;
1689}
1690
1691int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1692 struct btrfs_root *root)
1693{
1694 int ret;
1695
e1860a77 1696 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1697 if (ret)
1698 return ret;
1699
1700 spin_lock(&fs_info->fs_roots_radix_lock);
1701 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1702 (unsigned long)root->root_key.objectid,
1703 root);
1704 if (ret == 0)
27cdeb70 1705 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1706 spin_unlock(&fs_info->fs_roots_radix_lock);
1707 radix_tree_preload_end();
1708
1709 return ret;
1710}
1711
c00869f1
MX
1712struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1713 struct btrfs_key *location,
1714 bool check_ref)
5eda7b5e
CM
1715{
1716 struct btrfs_root *root;
381cf658 1717 struct btrfs_path *path;
1d4c08e0 1718 struct btrfs_key key;
5eda7b5e
CM
1719 int ret;
1720
edbd8d4e
CM
1721 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1722 return fs_info->tree_root;
1723 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1724 return fs_info->extent_root;
8f18cf13
CM
1725 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1726 return fs_info->chunk_root;
1727 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1728 return fs_info->dev_root;
0403e47e
YZ
1729 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1730 return fs_info->csum_root;
bcef60f2
AJ
1731 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1732 return fs_info->quota_root ? fs_info->quota_root :
1733 ERR_PTR(-ENOENT);
f7a81ea4
SB
1734 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1735 return fs_info->uuid_root ? fs_info->uuid_root :
1736 ERR_PTR(-ENOENT);
70f6d82e
OS
1737 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1738 return fs_info->free_space_root ? fs_info->free_space_root :
1739 ERR_PTR(-ENOENT);
4df27c4d 1740again:
cb517eab 1741 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1742 if (root) {
c00869f1 1743 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1744 return ERR_PTR(-ENOENT);
5eda7b5e 1745 return root;
48475471 1746 }
5eda7b5e 1747
cb517eab 1748 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1749 if (IS_ERR(root))
1750 return root;
3394e160 1751
c00869f1 1752 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1753 ret = -ENOENT;
581bb050 1754 goto fail;
35a30d7c 1755 }
581bb050 1756
cb517eab 1757 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1758 if (ret)
1759 goto fail;
3394e160 1760
381cf658
DS
1761 path = btrfs_alloc_path();
1762 if (!path) {
1763 ret = -ENOMEM;
1764 goto fail;
1765 }
1d4c08e0
DS
1766 key.objectid = BTRFS_ORPHAN_OBJECTID;
1767 key.type = BTRFS_ORPHAN_ITEM_KEY;
1768 key.offset = location->objectid;
1769
1770 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1771 btrfs_free_path(path);
d68fc57b
YZ
1772 if (ret < 0)
1773 goto fail;
1774 if (ret == 0)
27cdeb70 1775 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1776
cb517eab 1777 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1778 if (ret) {
4df27c4d
YZ
1779 if (ret == -EEXIST) {
1780 free_fs_root(root);
1781 goto again;
1782 }
1783 goto fail;
0f7d52f4 1784 }
edbd8d4e 1785 return root;
4df27c4d
YZ
1786fail:
1787 free_fs_root(root);
1788 return ERR_PTR(ret);
edbd8d4e
CM
1789}
1790
04160088
CM
1791static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1792{
1793 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1794 int ret = 0;
04160088
CM
1795 struct btrfs_device *device;
1796 struct backing_dev_info *bdi;
b7967db7 1797
1f78160c
XG
1798 rcu_read_lock();
1799 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1800 if (!device->bdev)
1801 continue;
04160088 1802 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1803 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1804 ret = 1;
1805 break;
1806 }
1807 }
1f78160c 1808 rcu_read_unlock();
04160088
CM
1809 return ret;
1810}
1811
04160088
CM
1812static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1813{
ad081f14
JA
1814 int err;
1815
b4caecd4 1816 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1817 if (err)
1818 return err;
1819
09cbfeaf 1820 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
04160088
CM
1821 bdi->congested_fn = btrfs_congested_fn;
1822 bdi->congested_data = info;
da2f0f74 1823 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1824 return 0;
1825}
1826
8b712842
CM
1827/*
1828 * called by the kthread helper functions to finally call the bio end_io
1829 * functions. This is where read checksum verification actually happens
1830 */
1831static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1832{
ce9adaa5 1833 struct bio *bio;
97eb6b69 1834 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1835
97eb6b69 1836 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1837 bio = end_io_wq->bio;
ce9adaa5 1838
4246a0b6 1839 bio->bi_error = end_io_wq->error;
8b712842
CM
1840 bio->bi_private = end_io_wq->private;
1841 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1842 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1843 bio_endio(bio);
44b8bd7e
CM
1844}
1845
a74a4b97
CM
1846static int cleaner_kthread(void *arg)
1847{
1848 struct btrfs_root *root = arg;
0b246afa 1849 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1850 int again;
da288d28 1851 struct btrfs_trans_handle *trans;
a74a4b97
CM
1852
1853 do {
d0278245 1854 again = 0;
a74a4b97 1855
d0278245 1856 /* Make the cleaner go to sleep early. */
2ff7e61e 1857 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1858 goto sleep;
1859
90c711ab
ZB
1860 /*
1861 * Do not do anything if we might cause open_ctree() to block
1862 * before we have finished mounting the filesystem.
1863 */
0b246afa 1864 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1865 goto sleep;
1866
0b246afa 1867 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1868 goto sleep;
1869
dc7f370c
MX
1870 /*
1871 * Avoid the problem that we change the status of the fs
1872 * during the above check and trylock.
1873 */
2ff7e61e 1874 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1875 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1876 goto sleep;
76dda93c 1877 }
a74a4b97 1878
0b246afa 1879 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1880 btrfs_run_delayed_iputs(fs_info);
0b246afa 1881 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1882
d0278245 1883 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1884 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1885
1886 /*
05323cd1
MX
1887 * The defragger has dealt with the R/O remount and umount,
1888 * needn't do anything special here.
d0278245 1889 */
0b246afa 1890 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1891
1892 /*
1893 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1894 * with relocation (btrfs_relocate_chunk) and relocation
1895 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1896 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1897 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1898 * unused block groups.
1899 */
0b246afa 1900 btrfs_delete_unused_bgs(fs_info);
d0278245 1901sleep:
838fe188 1902 if (!again) {
a74a4b97 1903 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1904 if (!kthread_should_stop())
1905 schedule();
a74a4b97
CM
1906 __set_current_state(TASK_RUNNING);
1907 }
1908 } while (!kthread_should_stop());
da288d28
FM
1909
1910 /*
1911 * Transaction kthread is stopped before us and wakes us up.
1912 * However we might have started a new transaction and COWed some
1913 * tree blocks when deleting unused block groups for example. So
1914 * make sure we commit the transaction we started to have a clean
1915 * shutdown when evicting the btree inode - if it has dirty pages
1916 * when we do the final iput() on it, eviction will trigger a
1917 * writeback for it which will fail with null pointer dereferences
1918 * since work queues and other resources were already released and
1919 * destroyed by the time the iput/eviction/writeback is made.
1920 */
1921 trans = btrfs_attach_transaction(root);
1922 if (IS_ERR(trans)) {
1923 if (PTR_ERR(trans) != -ENOENT)
0b246afa 1924 btrfs_err(fs_info,
da288d28
FM
1925 "cleaner transaction attach returned %ld",
1926 PTR_ERR(trans));
1927 } else {
1928 int ret;
1929
3a45bb20 1930 ret = btrfs_commit_transaction(trans);
da288d28 1931 if (ret)
0b246afa 1932 btrfs_err(fs_info,
da288d28
FM
1933 "cleaner open transaction commit returned %d",
1934 ret);
1935 }
1936
a74a4b97
CM
1937 return 0;
1938}
1939
1940static int transaction_kthread(void *arg)
1941{
1942 struct btrfs_root *root = arg;
0b246afa 1943 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1944 struct btrfs_trans_handle *trans;
1945 struct btrfs_transaction *cur;
8929ecfa 1946 u64 transid;
a74a4b97
CM
1947 unsigned long now;
1948 unsigned long delay;
914b2007 1949 bool cannot_commit;
a74a4b97
CM
1950
1951 do {
914b2007 1952 cannot_commit = false;
0b246afa
JM
1953 delay = HZ * fs_info->commit_interval;
1954 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1955
0b246afa
JM
1956 spin_lock(&fs_info->trans_lock);
1957 cur = fs_info->running_transaction;
a74a4b97 1958 if (!cur) {
0b246afa 1959 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1960 goto sleep;
1961 }
31153d81 1962
a74a4b97 1963 now = get_seconds();
4a9d8bde 1964 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17 1965 (now < cur->start_time ||
0b246afa
JM
1966 now - cur->start_time < fs_info->commit_interval)) {
1967 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1968 delay = HZ * 5;
1969 goto sleep;
1970 }
8929ecfa 1971 transid = cur->transid;
0b246afa 1972 spin_unlock(&fs_info->trans_lock);
56bec294 1973
79787eaa 1974 /* If the file system is aborted, this will always fail. */
354aa0fb 1975 trans = btrfs_attach_transaction(root);
914b2007 1976 if (IS_ERR(trans)) {
354aa0fb
MX
1977 if (PTR_ERR(trans) != -ENOENT)
1978 cannot_commit = true;
79787eaa 1979 goto sleep;
914b2007 1980 }
8929ecfa 1981 if (transid == trans->transid) {
3a45bb20 1982 btrfs_commit_transaction(trans);
8929ecfa 1983 } else {
3a45bb20 1984 btrfs_end_transaction(trans);
8929ecfa 1985 }
a74a4b97 1986sleep:
0b246afa
JM
1987 wake_up_process(fs_info->cleaner_kthread);
1988 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1989
4e121c06 1990 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1991 &fs_info->fs_state)))
2ff7e61e 1992 btrfs_cleanup_transaction(fs_info);
ce63f891
JK
1993 set_current_state(TASK_INTERRUPTIBLE);
1994 if (!kthread_should_stop() &&
0b246afa 1995 (!btrfs_transaction_blocked(fs_info) ||
ce63f891
JK
1996 cannot_commit))
1997 schedule_timeout(delay);
1998 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1999 } while (!kthread_should_stop());
2000 return 0;
2001}
2002
af31f5e5
CM
2003/*
2004 * this will find the highest generation in the array of
2005 * root backups. The index of the highest array is returned,
2006 * or -1 if we can't find anything.
2007 *
2008 * We check to make sure the array is valid by comparing the
2009 * generation of the latest root in the array with the generation
2010 * in the super block. If they don't match we pitch it.
2011 */
2012static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2013{
2014 u64 cur;
2015 int newest_index = -1;
2016 struct btrfs_root_backup *root_backup;
2017 int i;
2018
2019 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2020 root_backup = info->super_copy->super_roots + i;
2021 cur = btrfs_backup_tree_root_gen(root_backup);
2022 if (cur == newest_gen)
2023 newest_index = i;
2024 }
2025
2026 /* check to see if we actually wrapped around */
2027 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2028 root_backup = info->super_copy->super_roots;
2029 cur = btrfs_backup_tree_root_gen(root_backup);
2030 if (cur == newest_gen)
2031 newest_index = 0;
2032 }
2033 return newest_index;
2034}
2035
2036
2037/*
2038 * find the oldest backup so we know where to store new entries
2039 * in the backup array. This will set the backup_root_index
2040 * field in the fs_info struct
2041 */
2042static void find_oldest_super_backup(struct btrfs_fs_info *info,
2043 u64 newest_gen)
2044{
2045 int newest_index = -1;
2046
2047 newest_index = find_newest_super_backup(info, newest_gen);
2048 /* if there was garbage in there, just move along */
2049 if (newest_index == -1) {
2050 info->backup_root_index = 0;
2051 } else {
2052 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2053 }
2054}
2055
2056/*
2057 * copy all the root pointers into the super backup array.
2058 * this will bump the backup pointer by one when it is
2059 * done
2060 */
2061static void backup_super_roots(struct btrfs_fs_info *info)
2062{
2063 int next_backup;
2064 struct btrfs_root_backup *root_backup;
2065 int last_backup;
2066
2067 next_backup = info->backup_root_index;
2068 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2069 BTRFS_NUM_BACKUP_ROOTS;
2070
2071 /*
2072 * just overwrite the last backup if we're at the same generation
2073 * this happens only at umount
2074 */
2075 root_backup = info->super_for_commit->super_roots + last_backup;
2076 if (btrfs_backup_tree_root_gen(root_backup) ==
2077 btrfs_header_generation(info->tree_root->node))
2078 next_backup = last_backup;
2079
2080 root_backup = info->super_for_commit->super_roots + next_backup;
2081
2082 /*
2083 * make sure all of our padding and empty slots get zero filled
2084 * regardless of which ones we use today
2085 */
2086 memset(root_backup, 0, sizeof(*root_backup));
2087
2088 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2089
2090 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2091 btrfs_set_backup_tree_root_gen(root_backup,
2092 btrfs_header_generation(info->tree_root->node));
2093
2094 btrfs_set_backup_tree_root_level(root_backup,
2095 btrfs_header_level(info->tree_root->node));
2096
2097 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2098 btrfs_set_backup_chunk_root_gen(root_backup,
2099 btrfs_header_generation(info->chunk_root->node));
2100 btrfs_set_backup_chunk_root_level(root_backup,
2101 btrfs_header_level(info->chunk_root->node));
2102
2103 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2104 btrfs_set_backup_extent_root_gen(root_backup,
2105 btrfs_header_generation(info->extent_root->node));
2106 btrfs_set_backup_extent_root_level(root_backup,
2107 btrfs_header_level(info->extent_root->node));
2108
7c7e82a7
CM
2109 /*
2110 * we might commit during log recovery, which happens before we set
2111 * the fs_root. Make sure it is valid before we fill it in.
2112 */
2113 if (info->fs_root && info->fs_root->node) {
2114 btrfs_set_backup_fs_root(root_backup,
2115 info->fs_root->node->start);
2116 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2117 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2118 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2119 btrfs_header_level(info->fs_root->node));
7c7e82a7 2120 }
af31f5e5
CM
2121
2122 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2123 btrfs_set_backup_dev_root_gen(root_backup,
2124 btrfs_header_generation(info->dev_root->node));
2125 btrfs_set_backup_dev_root_level(root_backup,
2126 btrfs_header_level(info->dev_root->node));
2127
2128 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2129 btrfs_set_backup_csum_root_gen(root_backup,
2130 btrfs_header_generation(info->csum_root->node));
2131 btrfs_set_backup_csum_root_level(root_backup,
2132 btrfs_header_level(info->csum_root->node));
2133
2134 btrfs_set_backup_total_bytes(root_backup,
2135 btrfs_super_total_bytes(info->super_copy));
2136 btrfs_set_backup_bytes_used(root_backup,
2137 btrfs_super_bytes_used(info->super_copy));
2138 btrfs_set_backup_num_devices(root_backup,
2139 btrfs_super_num_devices(info->super_copy));
2140
2141 /*
2142 * if we don't copy this out to the super_copy, it won't get remembered
2143 * for the next commit
2144 */
2145 memcpy(&info->super_copy->super_roots,
2146 &info->super_for_commit->super_roots,
2147 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2148}
2149
2150/*
2151 * this copies info out of the root backup array and back into
2152 * the in-memory super block. It is meant to help iterate through
2153 * the array, so you send it the number of backups you've already
2154 * tried and the last backup index you used.
2155 *
2156 * this returns -1 when it has tried all the backups
2157 */
2158static noinline int next_root_backup(struct btrfs_fs_info *info,
2159 struct btrfs_super_block *super,
2160 int *num_backups_tried, int *backup_index)
2161{
2162 struct btrfs_root_backup *root_backup;
2163 int newest = *backup_index;
2164
2165 if (*num_backups_tried == 0) {
2166 u64 gen = btrfs_super_generation(super);
2167
2168 newest = find_newest_super_backup(info, gen);
2169 if (newest == -1)
2170 return -1;
2171
2172 *backup_index = newest;
2173 *num_backups_tried = 1;
2174 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2175 /* we've tried all the backups, all done */
2176 return -1;
2177 } else {
2178 /* jump to the next oldest backup */
2179 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2180 BTRFS_NUM_BACKUP_ROOTS;
2181 *backup_index = newest;
2182 *num_backups_tried += 1;
2183 }
2184 root_backup = super->super_roots + newest;
2185
2186 btrfs_set_super_generation(super,
2187 btrfs_backup_tree_root_gen(root_backup));
2188 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2189 btrfs_set_super_root_level(super,
2190 btrfs_backup_tree_root_level(root_backup));
2191 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2192
2193 /*
2194 * fixme: the total bytes and num_devices need to match or we should
2195 * need a fsck
2196 */
2197 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2198 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2199 return 0;
2200}
2201
7abadb64
LB
2202/* helper to cleanup workers */
2203static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2204{
dc6e3209 2205 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2206 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2207 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2208 btrfs_destroy_workqueue(fs_info->endio_workers);
2209 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2210 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2211 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2212 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2213 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2214 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2215 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2216 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2217 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2218 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2219 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2220 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2221 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2222 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2223}
2224
2e9f5954
R
2225static void free_root_extent_buffers(struct btrfs_root *root)
2226{
2227 if (root) {
2228 free_extent_buffer(root->node);
2229 free_extent_buffer(root->commit_root);
2230 root->node = NULL;
2231 root->commit_root = NULL;
2232 }
2233}
2234
af31f5e5
CM
2235/* helper to cleanup tree roots */
2236static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2237{
2e9f5954 2238 free_root_extent_buffers(info->tree_root);
655b09fe 2239
2e9f5954
R
2240 free_root_extent_buffers(info->dev_root);
2241 free_root_extent_buffers(info->extent_root);
2242 free_root_extent_buffers(info->csum_root);
2243 free_root_extent_buffers(info->quota_root);
2244 free_root_extent_buffers(info->uuid_root);
2245 if (chunk_root)
2246 free_root_extent_buffers(info->chunk_root);
70f6d82e 2247 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2248}
2249
faa2dbf0 2250void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2251{
2252 int ret;
2253 struct btrfs_root *gang[8];
2254 int i;
2255
2256 while (!list_empty(&fs_info->dead_roots)) {
2257 gang[0] = list_entry(fs_info->dead_roots.next,
2258 struct btrfs_root, root_list);
2259 list_del(&gang[0]->root_list);
2260
27cdeb70 2261 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2262 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2263 } else {
2264 free_extent_buffer(gang[0]->node);
2265 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2266 btrfs_put_fs_root(gang[0]);
171f6537
JB
2267 }
2268 }
2269
2270 while (1) {
2271 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2272 (void **)gang, 0,
2273 ARRAY_SIZE(gang));
2274 if (!ret)
2275 break;
2276 for (i = 0; i < ret; i++)
cb517eab 2277 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2278 }
1a4319cc
LB
2279
2280 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2281 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2282 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2283 }
171f6537 2284}
af31f5e5 2285
638aa7ed
ES
2286static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2287{
2288 mutex_init(&fs_info->scrub_lock);
2289 atomic_set(&fs_info->scrubs_running, 0);
2290 atomic_set(&fs_info->scrub_pause_req, 0);
2291 atomic_set(&fs_info->scrubs_paused, 0);
2292 atomic_set(&fs_info->scrub_cancel_req, 0);
2293 init_waitqueue_head(&fs_info->scrub_pause_wait);
2294 fs_info->scrub_workers_refcnt = 0;
2295}
2296
779a65a4
ES
2297static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2298{
2299 spin_lock_init(&fs_info->balance_lock);
2300 mutex_init(&fs_info->balance_mutex);
2301 atomic_set(&fs_info->balance_running, 0);
2302 atomic_set(&fs_info->balance_pause_req, 0);
2303 atomic_set(&fs_info->balance_cancel_req, 0);
2304 fs_info->balance_ctl = NULL;
2305 init_waitqueue_head(&fs_info->balance_wait_q);
2306}
2307
6bccf3ab 2308static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2309{
2ff7e61e
JM
2310 struct inode *inode = fs_info->btree_inode;
2311
2312 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2313 set_nlink(inode, 1);
f37938e0
ES
2314 /*
2315 * we set the i_size on the btree inode to the max possible int.
2316 * the real end of the address space is determined by all of
2317 * the devices in the system
2318 */
2ff7e61e
JM
2319 inode->i_size = OFFSET_MAX;
2320 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2321
2ff7e61e
JM
2322 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2323 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2324 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2325 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2326
2ff7e61e 2327 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2328
2ff7e61e
JM
2329 BTRFS_I(inode)->root = fs_info->tree_root;
2330 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2331 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2332 btrfs_insert_inode_hash(inode);
f37938e0
ES
2333}
2334
ad618368
ES
2335static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2336{
2337 fs_info->dev_replace.lock_owner = 0;
2338 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2339 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2340 rwlock_init(&fs_info->dev_replace.lock);
2341 atomic_set(&fs_info->dev_replace.read_locks, 0);
2342 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2343 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2344 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2345}
2346
f9e92e40
ES
2347static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2348{
2349 spin_lock_init(&fs_info->qgroup_lock);
2350 mutex_init(&fs_info->qgroup_ioctl_lock);
2351 fs_info->qgroup_tree = RB_ROOT;
2352 fs_info->qgroup_op_tree = RB_ROOT;
2353 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2354 fs_info->qgroup_seq = 1;
f9e92e40 2355 fs_info->qgroup_ulist = NULL;
d2c609b8 2356 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2357 mutex_init(&fs_info->qgroup_rescan_lock);
2358}
2359
2a458198
ES
2360static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2361 struct btrfs_fs_devices *fs_devices)
2362{
2363 int max_active = fs_info->thread_pool_size;
6f011058 2364 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2365
2366 fs_info->workers =
cb001095
JM
2367 btrfs_alloc_workqueue(fs_info, "worker",
2368 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2369
2370 fs_info->delalloc_workers =
cb001095
JM
2371 btrfs_alloc_workqueue(fs_info, "delalloc",
2372 flags, max_active, 2);
2a458198
ES
2373
2374 fs_info->flush_workers =
cb001095
JM
2375 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2376 flags, max_active, 0);
2a458198
ES
2377
2378 fs_info->caching_workers =
cb001095 2379 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2380
2381 /*
2382 * a higher idle thresh on the submit workers makes it much more
2383 * likely that bios will be send down in a sane order to the
2384 * devices
2385 */
2386 fs_info->submit_workers =
cb001095 2387 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2388 min_t(u64, fs_devices->num_devices,
2389 max_active), 64);
2390
2391 fs_info->fixup_workers =
cb001095 2392 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2393
2394 /*
2395 * endios are largely parallel and should have a very
2396 * low idle thresh
2397 */
2398 fs_info->endio_workers =
cb001095 2399 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2400 fs_info->endio_meta_workers =
cb001095
JM
2401 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2402 max_active, 4);
2a458198 2403 fs_info->endio_meta_write_workers =
cb001095
JM
2404 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2405 max_active, 2);
2a458198 2406 fs_info->endio_raid56_workers =
cb001095
JM
2407 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2408 max_active, 4);
2a458198 2409 fs_info->endio_repair_workers =
cb001095 2410 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2411 fs_info->rmw_workers =
cb001095 2412 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2413 fs_info->endio_write_workers =
cb001095
JM
2414 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2415 max_active, 2);
2a458198 2416 fs_info->endio_freespace_worker =
cb001095
JM
2417 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2418 max_active, 0);
2a458198 2419 fs_info->delayed_workers =
cb001095
JM
2420 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2421 max_active, 0);
2a458198 2422 fs_info->readahead_workers =
cb001095
JM
2423 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2424 max_active, 2);
2a458198 2425 fs_info->qgroup_rescan_workers =
cb001095 2426 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2427 fs_info->extent_workers =
cb001095 2428 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2429 min_t(u64, fs_devices->num_devices,
2430 max_active), 8);
2431
2432 if (!(fs_info->workers && fs_info->delalloc_workers &&
2433 fs_info->submit_workers && fs_info->flush_workers &&
2434 fs_info->endio_workers && fs_info->endio_meta_workers &&
2435 fs_info->endio_meta_write_workers &&
2436 fs_info->endio_repair_workers &&
2437 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2438 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2439 fs_info->caching_workers && fs_info->readahead_workers &&
2440 fs_info->fixup_workers && fs_info->delayed_workers &&
2441 fs_info->extent_workers &&
2442 fs_info->qgroup_rescan_workers)) {
2443 return -ENOMEM;
2444 }
2445
2446 return 0;
2447}
2448
63443bf5
ES
2449static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2450 struct btrfs_fs_devices *fs_devices)
2451{
2452 int ret;
63443bf5
ES
2453 struct btrfs_root *log_tree_root;
2454 struct btrfs_super_block *disk_super = fs_info->super_copy;
2455 u64 bytenr = btrfs_super_log_root(disk_super);
2456
2457 if (fs_devices->rw_devices == 0) {
f14d104d 2458 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2459 return -EIO;
2460 }
2461
74e4d827 2462 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2463 if (!log_tree_root)
2464 return -ENOMEM;
2465
da17066c 2466 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2467
2ff7e61e
JM
2468 log_tree_root->node = read_tree_block(fs_info, bytenr,
2469 fs_info->generation + 1);
64c043de 2470 if (IS_ERR(log_tree_root->node)) {
f14d104d 2471 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2472 ret = PTR_ERR(log_tree_root->node);
64c043de 2473 kfree(log_tree_root);
0eeff236 2474 return ret;
64c043de 2475 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2476 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2477 free_extent_buffer(log_tree_root->node);
2478 kfree(log_tree_root);
2479 return -EIO;
2480 }
2481 /* returns with log_tree_root freed on success */
2482 ret = btrfs_recover_log_trees(log_tree_root);
2483 if (ret) {
0b246afa
JM
2484 btrfs_handle_fs_error(fs_info, ret,
2485 "Failed to recover log tree");
63443bf5
ES
2486 free_extent_buffer(log_tree_root->node);
2487 kfree(log_tree_root);
2488 return ret;
2489 }
2490
2491 if (fs_info->sb->s_flags & MS_RDONLY) {
6bccf3ab 2492 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2493 if (ret)
2494 return ret;
2495 }
2496
2497 return 0;
2498}
2499
6bccf3ab 2500static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2501{
6bccf3ab 2502 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2503 struct btrfs_root *root;
4bbcaa64
ES
2504 struct btrfs_key location;
2505 int ret;
2506
6bccf3ab
JM
2507 BUG_ON(!fs_info->tree_root);
2508
4bbcaa64
ES
2509 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2510 location.type = BTRFS_ROOT_ITEM_KEY;
2511 location.offset = 0;
2512
a4f3d2c4
DS
2513 root = btrfs_read_tree_root(tree_root, &location);
2514 if (IS_ERR(root))
2515 return PTR_ERR(root);
2516 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2517 fs_info->extent_root = root;
4bbcaa64
ES
2518
2519 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2520 root = btrfs_read_tree_root(tree_root, &location);
2521 if (IS_ERR(root))
2522 return PTR_ERR(root);
2523 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2524 fs_info->dev_root = root;
4bbcaa64
ES
2525 btrfs_init_devices_late(fs_info);
2526
2527 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2528 root = btrfs_read_tree_root(tree_root, &location);
2529 if (IS_ERR(root))
2530 return PTR_ERR(root);
2531 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2532 fs_info->csum_root = root;
4bbcaa64
ES
2533
2534 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2535 root = btrfs_read_tree_root(tree_root, &location);
2536 if (!IS_ERR(root)) {
2537 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2538 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2539 fs_info->quota_root = root;
4bbcaa64
ES
2540 }
2541
2542 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2543 root = btrfs_read_tree_root(tree_root, &location);
2544 if (IS_ERR(root)) {
2545 ret = PTR_ERR(root);
4bbcaa64
ES
2546 if (ret != -ENOENT)
2547 return ret;
2548 } else {
a4f3d2c4
DS
2549 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2550 fs_info->uuid_root = root;
4bbcaa64
ES
2551 }
2552
70f6d82e
OS
2553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2554 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2555 root = btrfs_read_tree_root(tree_root, &location);
2556 if (IS_ERR(root))
2557 return PTR_ERR(root);
2558 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2559 fs_info->free_space_root = root;
2560 }
2561
4bbcaa64
ES
2562 return 0;
2563}
2564
ad2b2c80
AV
2565int open_ctree(struct super_block *sb,
2566 struct btrfs_fs_devices *fs_devices,
2567 char *options)
2e635a27 2568{
db94535d
CM
2569 u32 sectorsize;
2570 u32 nodesize;
87ee04eb 2571 u32 stripesize;
84234f3a 2572 u64 generation;
f2b636e8 2573 u64 features;
3de4586c 2574 struct btrfs_key location;
a061fc8d 2575 struct buffer_head *bh;
4d34b278 2576 struct btrfs_super_block *disk_super;
815745cf 2577 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2578 struct btrfs_root *tree_root;
4d34b278 2579 struct btrfs_root *chunk_root;
eb60ceac 2580 int ret;
e58ca020 2581 int err = -EINVAL;
af31f5e5
CM
2582 int num_backups_tried = 0;
2583 int backup_index = 0;
5cdc7ad3 2584 int max_active;
6675df31 2585 int clear_free_space_tree = 0;
4543df7e 2586
74e4d827
DS
2587 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2588 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2589 if (!tree_root || !chunk_root) {
39279cc3
CM
2590 err = -ENOMEM;
2591 goto fail;
2592 }
76dda93c
YZ
2593
2594 ret = init_srcu_struct(&fs_info->subvol_srcu);
2595 if (ret) {
2596 err = ret;
2597 goto fail;
2598 }
2599
2600 ret = setup_bdi(fs_info, &fs_info->bdi);
2601 if (ret) {
2602 err = ret;
2603 goto fail_srcu;
2604 }
2605
908c7f19 2606 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2607 if (ret) {
2608 err = ret;
2609 goto fail_bdi;
2610 }
09cbfeaf 2611 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2612 (1 + ilog2(nr_cpu_ids));
2613
908c7f19 2614 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2615 if (ret) {
2616 err = ret;
2617 goto fail_dirty_metadata_bytes;
2618 }
2619
908c7f19 2620 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2621 if (ret) {
2622 err = ret;
2623 goto fail_delalloc_bytes;
2624 }
2625
76dda93c
YZ
2626 fs_info->btree_inode = new_inode(sb);
2627 if (!fs_info->btree_inode) {
2628 err = -ENOMEM;
c404e0dc 2629 goto fail_bio_counter;
76dda93c
YZ
2630 }
2631
a6591715 2632 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2633
76dda93c 2634 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2635 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2636 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2637 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2638 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2639 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2640 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2641 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2642 spin_lock_init(&fs_info->trans_lock);
76dda93c 2643 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2644 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2645 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2646 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2647 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2648 spin_lock_init(&fs_info->super_lock);
fcebe456 2649 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2650 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2651 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2652 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2653 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2654 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2655 mutex_init(&fs_info->reloc_mutex);
573bfb72 2656 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2657 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2658 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2659
0b86a832 2660 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2661 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2662 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2663 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2664 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2665 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2666 BTRFS_BLOCK_RSV_GLOBAL);
2667 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2668 BTRFS_BLOCK_RSV_DELALLOC);
2669 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2670 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2671 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2672 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2673 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2674 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2675 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2676 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2677 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2678 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2679 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2680 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2681 atomic64_set(&fs_info->tree_mod_seq, 0);
9e7cc91a 2682 fs_info->fs_frozen = 0;
e20d96d6 2683 fs_info->sb = sb;
95ac567a 2684 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2685 fs_info->metadata_ratio = 0;
4cb5300b 2686 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2687 fs_info->free_chunk_space = 0;
f29021b2 2688 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2689 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2690 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2691 /* readahead state */
d0164adc 2692 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2693 spin_lock_init(&fs_info->reada_lock);
c8b97818 2694
b34b086c
CM
2695 fs_info->thread_pool_size = min_t(unsigned long,
2696 num_online_cpus() + 2, 8);
0afbaf8c 2697
199c2a9c
MX
2698 INIT_LIST_HEAD(&fs_info->ordered_roots);
2699 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2700 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2701 GFP_KERNEL);
16cdcec7
MX
2702 if (!fs_info->delayed_root) {
2703 err = -ENOMEM;
2704 goto fail_iput;
2705 }
2706 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2707
638aa7ed 2708 btrfs_init_scrub(fs_info);
21adbd5c
SB
2709#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2710 fs_info->check_integrity_print_mask = 0;
2711#endif
779a65a4 2712 btrfs_init_balance(fs_info);
21c7e756 2713 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2714
a061fc8d
CM
2715 sb->s_blocksize = 4096;
2716 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2717 sb->s_bdi = &fs_info->bdi;
a061fc8d 2718
6bccf3ab 2719 btrfs_init_btree_inode(fs_info);
76dda93c 2720
0f9dd46c 2721 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2722 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2723 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2724
11833d66 2725 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2726 fs_info->btree_inode->i_mapping);
11833d66 2727 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2728 fs_info->btree_inode->i_mapping);
11833d66 2729 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2730 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2731
5a3f23d5 2732 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2733 mutex_init(&fs_info->tree_log_mutex);
925baedd 2734 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2735 mutex_init(&fs_info->transaction_kthread_mutex);
2736 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2737 mutex_init(&fs_info->volume_mutex);
1bbc621e 2738 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2739 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2740 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2741 init_rwsem(&fs_info->subvol_sem);
803b2f54 2742 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2743
ad618368 2744 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2745 btrfs_init_qgroup(fs_info);
416ac51d 2746
fa9c0d79
CM
2747 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2748 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2749
e6dcd2dc 2750 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2751 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2752 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2753 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2754
04216820
FM
2755 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2756
da17066c
JM
2757 /* Usable values until the real ones are cached from the superblock */
2758 fs_info->nodesize = 4096;
2759 fs_info->sectorsize = 4096;
2760 fs_info->stripesize = 4096;
2761
53b381b3
DW
2762 ret = btrfs_alloc_stripe_hash_table(fs_info);
2763 if (ret) {
83c8266a 2764 err = ret;
53b381b3
DW
2765 goto fail_alloc;
2766 }
2767
da17066c 2768 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2769
3c4bb26b 2770 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2771
2772 /*
2773 * Read super block and check the signature bytes only
2774 */
a512bbf8 2775 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2776 if (IS_ERR(bh)) {
2777 err = PTR_ERR(bh);
16cdcec7 2778 goto fail_alloc;
20b45077 2779 }
39279cc3 2780
1104a885
DS
2781 /*
2782 * We want to check superblock checksum, the type is stored inside.
2783 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2784 */
ab8d0fc4 2785 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2786 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2787 err = -EINVAL;
b2acdddf 2788 brelse(bh);
1104a885
DS
2789 goto fail_alloc;
2790 }
2791
2792 /*
2793 * super_copy is zeroed at allocation time and we never touch the
2794 * following bytes up to INFO_SIZE, the checksum is calculated from
2795 * the whole block of INFO_SIZE
2796 */
6c41761f
DS
2797 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2798 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2799 sizeof(*fs_info->super_for_commit));
a061fc8d 2800 brelse(bh);
5f39d397 2801
6c41761f 2802 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2803
1104a885
DS
2804 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2805 if (ret) {
05135f59 2806 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2807 err = -EINVAL;
2808 goto fail_alloc;
2809 }
2810
6c41761f 2811 disk_super = fs_info->super_copy;
0f7d52f4 2812 if (!btrfs_super_root(disk_super))
16cdcec7 2813 goto fail_alloc;
0f7d52f4 2814
acce952b 2815 /* check FS state, whether FS is broken. */
87533c47
MX
2816 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2817 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2818
af31f5e5
CM
2819 /*
2820 * run through our array of backup supers and setup
2821 * our ring pointer to the oldest one
2822 */
2823 generation = btrfs_super_generation(disk_super);
2824 find_oldest_super_backup(fs_info, generation);
2825
75e7cb7f
LB
2826 /*
2827 * In the long term, we'll store the compression type in the super
2828 * block, and it'll be used for per file compression control.
2829 */
2830 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2831
2ff7e61e 2832 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2833 if (ret) {
2834 err = ret;
16cdcec7 2835 goto fail_alloc;
2b82032c 2836 }
dfe25020 2837
f2b636e8
JB
2838 features = btrfs_super_incompat_flags(disk_super) &
2839 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2840 if (features) {
05135f59
DS
2841 btrfs_err(fs_info,
2842 "cannot mount because of unsupported optional features (%llx)",
2843 features);
f2b636e8 2844 err = -EINVAL;
16cdcec7 2845 goto fail_alloc;
f2b636e8
JB
2846 }
2847
5d4f98a2 2848 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2849 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2850 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2851 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2852
3173a18f 2853 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2854 btrfs_info(fs_info, "has skinny extents");
3173a18f 2855
727011e0
CM
2856 /*
2857 * flag our filesystem as having big metadata blocks if
2858 * they are bigger than the page size
2859 */
09cbfeaf 2860 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2861 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2862 btrfs_info(fs_info,
2863 "flagging fs with big metadata feature");
727011e0
CM
2864 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2865 }
2866
bc3f116f 2867 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2868 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2869 stripesize = sectorsize;
707e8a07 2870 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2871 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2872
da17066c
JM
2873 /* Cache block sizes */
2874 fs_info->nodesize = nodesize;
2875 fs_info->sectorsize = sectorsize;
2876 fs_info->stripesize = stripesize;
2877
bc3f116f
CM
2878 /*
2879 * mixed block groups end up with duplicate but slightly offset
2880 * extent buffers for the same range. It leads to corruptions
2881 */
2882 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2883 (sectorsize != nodesize)) {
05135f59
DS
2884 btrfs_err(fs_info,
2885"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2886 nodesize, sectorsize);
bc3f116f
CM
2887 goto fail_alloc;
2888 }
2889
ceda0864
MX
2890 /*
2891 * Needn't use the lock because there is no other task which will
2892 * update the flag.
2893 */
a6fa6fae 2894 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2895
f2b636e8
JB
2896 features = btrfs_super_compat_ro_flags(disk_super) &
2897 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2898 if (!(sb->s_flags & MS_RDONLY) && features) {
05135f59
DS
2899 btrfs_err(fs_info,
2900 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2901 features);
f2b636e8 2902 err = -EINVAL;
16cdcec7 2903 goto fail_alloc;
f2b636e8 2904 }
61d92c32 2905
5cdc7ad3 2906 max_active = fs_info->thread_pool_size;
61d92c32 2907
2a458198
ES
2908 ret = btrfs_init_workqueues(fs_info, fs_devices);
2909 if (ret) {
2910 err = ret;
0dc3b84a
JB
2911 goto fail_sb_buffer;
2912 }
4543df7e 2913
4575c9cc 2914 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818 2915 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
09cbfeaf 2916 SZ_4M / PAGE_SIZE);
4575c9cc 2917
a061fc8d
CM
2918 sb->s_blocksize = sectorsize;
2919 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2920
925baedd 2921 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2922 ret = btrfs_read_sys_array(fs_info);
925baedd 2923 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2924 if (ret) {
05135f59 2925 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2926 goto fail_sb_buffer;
84eed90f 2927 }
0b86a832 2928
84234f3a 2929 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2930
da17066c 2931 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2932
2ff7e61e 2933 chunk_root->node = read_tree_block(fs_info,
0b86a832 2934 btrfs_super_chunk_root(disk_super),
ce86cd59 2935 generation);
64c043de
LB
2936 if (IS_ERR(chunk_root->node) ||
2937 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2938 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2939 if (!IS_ERR(chunk_root->node))
2940 free_extent_buffer(chunk_root->node);
95ab1f64 2941 chunk_root->node = NULL;
af31f5e5 2942 goto fail_tree_roots;
83121942 2943 }
5d4f98a2
YZ
2944 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2945 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2946
e17cade2 2947 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2948 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2949
5b4aacef 2950 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2951 if (ret) {
05135f59 2952 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2953 goto fail_tree_roots;
2b82032c 2954 }
0b86a832 2955
8dabb742
SB
2956 /*
2957 * keep the device that is marked to be the target device for the
2958 * dev_replace procedure
2959 */
9eaed21e 2960 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2961
a6b0d5c8 2962 if (!fs_devices->latest_bdev) {
05135f59 2963 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2964 goto fail_tree_roots;
2965 }
2966
af31f5e5 2967retry_root_backup:
84234f3a 2968 generation = btrfs_super_generation(disk_super);
0b86a832 2969
2ff7e61e 2970 tree_root->node = read_tree_block(fs_info,
db94535d 2971 btrfs_super_root(disk_super),
ce86cd59 2972 generation);
64c043de
LB
2973 if (IS_ERR(tree_root->node) ||
2974 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2975 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2976 if (!IS_ERR(tree_root->node))
2977 free_extent_buffer(tree_root->node);
95ab1f64 2978 tree_root->node = NULL;
af31f5e5 2979 goto recovery_tree_root;
83121942 2980 }
af31f5e5 2981
5d4f98a2
YZ
2982 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2983 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2984 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2985
f32e48e9
CR
2986 mutex_lock(&tree_root->objectid_mutex);
2987 ret = btrfs_find_highest_objectid(tree_root,
2988 &tree_root->highest_objectid);
2989 if (ret) {
2990 mutex_unlock(&tree_root->objectid_mutex);
2991 goto recovery_tree_root;
2992 }
2993
2994 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2995
2996 mutex_unlock(&tree_root->objectid_mutex);
2997
6bccf3ab 2998 ret = btrfs_read_roots(fs_info);
4bbcaa64 2999 if (ret)
af31f5e5 3000 goto recovery_tree_root;
f7a81ea4 3001
8929ecfa
YZ
3002 fs_info->generation = generation;
3003 fs_info->last_trans_committed = generation;
8929ecfa 3004
68310a5e
ID
3005 ret = btrfs_recover_balance(fs_info);
3006 if (ret) {
05135f59 3007 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3008 goto fail_block_groups;
3009 }
3010
733f4fbb
SB
3011 ret = btrfs_init_dev_stats(fs_info);
3012 if (ret) {
05135f59 3013 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3014 goto fail_block_groups;
3015 }
3016
8dabb742
SB
3017 ret = btrfs_init_dev_replace(fs_info);
3018 if (ret) {
05135f59 3019 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3020 goto fail_block_groups;
3021 }
3022
9eaed21e 3023 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 3024
b7c35e81
AJ
3025 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3026 if (ret) {
05135f59
DS
3027 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3028 ret);
b7c35e81
AJ
3029 goto fail_block_groups;
3030 }
3031
3032 ret = btrfs_sysfs_add_device(fs_devices);
3033 if (ret) {
05135f59
DS
3034 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3035 ret);
b7c35e81
AJ
3036 goto fail_fsdev_sysfs;
3037 }
3038
96f3136e 3039 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3040 if (ret) {
05135f59 3041 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3042 goto fail_fsdev_sysfs;
c59021f8 3043 }
3044
c59021f8 3045 ret = btrfs_init_space_info(fs_info);
3046 if (ret) {
05135f59 3047 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3048 goto fail_sysfs;
c59021f8 3049 }
3050
5b4aacef 3051 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3052 if (ret) {
05135f59 3053 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3054 goto fail_sysfs;
1b1d1f66 3055 }
5af3e8cc
SB
3056 fs_info->num_tolerated_disk_barrier_failures =
3057 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
3058 if (fs_info->fs_devices->missing_devices >
3059 fs_info->num_tolerated_disk_barrier_failures &&
3060 !(sb->s_flags & MS_RDONLY)) {
05135f59
DS
3061 btrfs_warn(fs_info,
3062"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
78fa1770
ZL
3063 fs_info->fs_devices->missing_devices,
3064 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 3065 goto fail_sysfs;
292fd7fc 3066 }
9078a3e1 3067
a74a4b97
CM
3068 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3069 "btrfs-cleaner");
57506d50 3070 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3071 goto fail_sysfs;
a74a4b97
CM
3072
3073 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3074 tree_root,
3075 "btrfs-transaction");
57506d50 3076 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3077 goto fail_cleaner;
a74a4b97 3078
0b246afa
JM
3079 if (!btrfs_test_opt(fs_info, SSD) &&
3080 !btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3081 !fs_info->fs_devices->rotating) {
05135f59 3082 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
c289811c
CM
3083 btrfs_set_opt(fs_info->mount_opt, SSD);
3084 }
3085
572d9ab7 3086 /*
01327610 3087 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3088 * not have to wait for transaction commit
3089 */
3090 btrfs_apply_pending_changes(fs_info);
3818aea2 3091
21adbd5c 3092#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3093 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3094 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3095 btrfs_test_opt(fs_info,
21adbd5c
SB
3096 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3097 1 : 0,
3098 fs_info->check_integrity_print_mask);
3099 if (ret)
05135f59
DS
3100 btrfs_warn(fs_info,
3101 "failed to initialize integrity check module: %d",
3102 ret);
21adbd5c
SB
3103 }
3104#endif
bcef60f2
AJ
3105 ret = btrfs_read_qgroup_config(fs_info);
3106 if (ret)
3107 goto fail_trans_kthread;
21adbd5c 3108
96da0919
QW
3109 /* do not make disk changes in broken FS or nologreplay is given */
3110 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3111 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3112 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3113 if (ret) {
63443bf5 3114 err = ret;
28c16cbb 3115 goto fail_qgroup;
79787eaa 3116 }
e02119d5 3117 }
1a40e23b 3118
6bccf3ab 3119 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3120 if (ret)
28c16cbb 3121 goto fail_qgroup;
76dda93c 3122
7c2ca468 3123 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3124 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3125 if (ret)
28c16cbb 3126 goto fail_qgroup;
90c711ab
ZB
3127
3128 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3129 ret = btrfs_recover_relocation(tree_root);
90c711ab 3130 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3131 if (ret < 0) {
05135f59
DS
3132 btrfs_warn(fs_info, "failed to recover relocation: %d",
3133 ret);
d7ce5843 3134 err = -EINVAL;
bcef60f2 3135 goto fail_qgroup;
d7ce5843 3136 }
7c2ca468 3137 }
1a40e23b 3138
3de4586c
CM
3139 location.objectid = BTRFS_FS_TREE_OBJECTID;
3140 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3141 location.offset = 0;
3de4586c 3142
3de4586c 3143 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3144 if (IS_ERR(fs_info->fs_root)) {
3145 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3146 goto fail_qgroup;
3140c9a3 3147 }
c289811c 3148
2b6ba629
ID
3149 if (sb->s_flags & MS_RDONLY)
3150 return 0;
59641015 3151
f8d468a1
OS
3152 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3153 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3154 clear_free_space_tree = 1;
3155 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3156 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3157 btrfs_warn(fs_info, "free space tree is invalid");
3158 clear_free_space_tree = 1;
3159 }
3160
3161 if (clear_free_space_tree) {
f8d468a1
OS
3162 btrfs_info(fs_info, "clearing free space tree");
3163 ret = btrfs_clear_free_space_tree(fs_info);
3164 if (ret) {
3165 btrfs_warn(fs_info,
3166 "failed to clear free space tree: %d", ret);
6bccf3ab 3167 close_ctree(fs_info);
f8d468a1
OS
3168 return ret;
3169 }
3170 }
3171
0b246afa 3172 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3173 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3174 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3175 ret = btrfs_create_free_space_tree(fs_info);
3176 if (ret) {
05135f59
DS
3177 btrfs_warn(fs_info,
3178 "failed to create free space tree: %d", ret);
6bccf3ab 3179 close_ctree(fs_info);
511711af
CM
3180 return ret;
3181 }
3182 }
3183
2b6ba629
ID
3184 down_read(&fs_info->cleanup_work_sem);
3185 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3186 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3187 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3188 close_ctree(fs_info);
2b6ba629
ID
3189 return ret;
3190 }
3191 up_read(&fs_info->cleanup_work_sem);
59641015 3192
2b6ba629
ID
3193 ret = btrfs_resume_balance_async(fs_info);
3194 if (ret) {
05135f59 3195 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3196 close_ctree(fs_info);
2b6ba629 3197 return ret;
e3acc2a6
JB
3198 }
3199
8dabb742
SB
3200 ret = btrfs_resume_dev_replace_async(fs_info);
3201 if (ret) {
05135f59 3202 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3203 close_ctree(fs_info);
8dabb742
SB
3204 return ret;
3205 }
3206
b382a324
JS
3207 btrfs_qgroup_rescan_resume(fs_info);
3208
4bbcaa64 3209 if (!fs_info->uuid_root) {
05135f59 3210 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3211 ret = btrfs_create_uuid_tree(fs_info);
3212 if (ret) {
05135f59
DS
3213 btrfs_warn(fs_info,
3214 "failed to create the UUID tree: %d", ret);
6bccf3ab 3215 close_ctree(fs_info);
f7a81ea4
SB
3216 return ret;
3217 }
0b246afa 3218 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3219 fs_info->generation !=
3220 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3221 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3222 ret = btrfs_check_uuid_tree(fs_info);
3223 if (ret) {
05135f59
DS
3224 btrfs_warn(fs_info,
3225 "failed to check the UUID tree: %d", ret);
6bccf3ab 3226 close_ctree(fs_info);
70f80175
SB
3227 return ret;
3228 }
3229 } else {
afcdd129 3230 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3231 }
afcdd129 3232 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3233
8dcddfa0
QW
3234 /*
3235 * backuproot only affect mount behavior, and if open_ctree succeeded,
3236 * no need to keep the flag
3237 */
3238 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3239
ad2b2c80 3240 return 0;
39279cc3 3241
bcef60f2
AJ
3242fail_qgroup:
3243 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3244fail_trans_kthread:
3245 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3246 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3247 btrfs_free_fs_roots(fs_info);
3f157a2f 3248fail_cleaner:
a74a4b97 3249 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3250
3251 /*
3252 * make sure we're done with the btree inode before we stop our
3253 * kthreads
3254 */
3255 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3256
2365dd3c 3257fail_sysfs:
6618a59b 3258 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3259
b7c35e81
AJ
3260fail_fsdev_sysfs:
3261 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3262
1b1d1f66 3263fail_block_groups:
54067ae9 3264 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3265 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3266
3267fail_tree_roots:
3268 free_root_pointers(fs_info, 1);
2b8195bb 3269 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3270
39279cc3 3271fail_sb_buffer:
7abadb64 3272 btrfs_stop_all_workers(fs_info);
16cdcec7 3273fail_alloc:
4543df7e 3274fail_iput:
586e46e2
ID
3275 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3276
4543df7e 3277 iput(fs_info->btree_inode);
c404e0dc
MX
3278fail_bio_counter:
3279 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3280fail_delalloc_bytes:
3281 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3282fail_dirty_metadata_bytes:
3283 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3284fail_bdi:
7e662854 3285 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3286fail_srcu:
3287 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3288fail:
53b381b3 3289 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3290 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3291 return err;
af31f5e5
CM
3292
3293recovery_tree_root:
0b246afa 3294 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3295 goto fail_tree_roots;
3296
3297 free_root_pointers(fs_info, 0);
3298
3299 /* don't use the log in recovery mode, it won't be valid */
3300 btrfs_set_super_log_root(disk_super, 0);
3301
3302 /* we can't trust the free space cache either */
3303 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3304
3305 ret = next_root_backup(fs_info, fs_info->super_copy,
3306 &num_backups_tried, &backup_index);
3307 if (ret == -1)
3308 goto fail_block_groups;
3309 goto retry_root_backup;
eb60ceac
CM
3310}
3311
f2984462
CM
3312static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3313{
f2984462
CM
3314 if (uptodate) {
3315 set_buffer_uptodate(bh);
3316 } else {
442a4f63
SB
3317 struct btrfs_device *device = (struct btrfs_device *)
3318 bh->b_private;
3319
fb456252 3320 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3321 "lost page write due to IO error on %s",
606686ee 3322 rcu_str_deref(device->name));
01327610 3323 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3324 * our own ways of dealing with the IO errors
3325 */
f2984462 3326 clear_buffer_uptodate(bh);
442a4f63 3327 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3328 }
3329 unlock_buffer(bh);
3330 put_bh(bh);
3331}
3332
29c36d72
AJ
3333int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3334 struct buffer_head **bh_ret)
3335{
3336 struct buffer_head *bh;
3337 struct btrfs_super_block *super;
3338 u64 bytenr;
3339
3340 bytenr = btrfs_sb_offset(copy_num);
3341 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3342 return -EINVAL;
3343
3344 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3345 /*
3346 * If we fail to read from the underlying devices, as of now
3347 * the best option we have is to mark it EIO.
3348 */
3349 if (!bh)
3350 return -EIO;
3351
3352 super = (struct btrfs_super_block *)bh->b_data;
3353 if (btrfs_super_bytenr(super) != bytenr ||
3354 btrfs_super_magic(super) != BTRFS_MAGIC) {
3355 brelse(bh);
3356 return -EINVAL;
3357 }
3358
3359 *bh_ret = bh;
3360 return 0;
3361}
3362
3363
a512bbf8
YZ
3364struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3365{
3366 struct buffer_head *bh;
3367 struct buffer_head *latest = NULL;
3368 struct btrfs_super_block *super;
3369 int i;
3370 u64 transid = 0;
92fc03fb 3371 int ret = -EINVAL;
a512bbf8
YZ
3372
3373 /* we would like to check all the supers, but that would make
3374 * a btrfs mount succeed after a mkfs from a different FS.
3375 * So, we need to add a special mount option to scan for
3376 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3377 */
3378 for (i = 0; i < 1; i++) {
29c36d72
AJ
3379 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3380 if (ret)
a512bbf8
YZ
3381 continue;
3382
3383 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3384
3385 if (!latest || btrfs_super_generation(super) > transid) {
3386 brelse(latest);
3387 latest = bh;
3388 transid = btrfs_super_generation(super);
3389 } else {
3390 brelse(bh);
3391 }
3392 }
92fc03fb
AJ
3393
3394 if (!latest)
3395 return ERR_PTR(ret);
3396
a512bbf8
YZ
3397 return latest;
3398}
3399
4eedeb75
HH
3400/*
3401 * this should be called twice, once with wait == 0 and
3402 * once with wait == 1. When wait == 0 is done, all the buffer heads
3403 * we write are pinned.
3404 *
3405 * They are released when wait == 1 is done.
3406 * max_mirrors must be the same for both runs, and it indicates how
3407 * many supers on this one device should be written.
3408 *
3409 * max_mirrors == 0 means to write them all.
3410 */
a512bbf8
YZ
3411static int write_dev_supers(struct btrfs_device *device,
3412 struct btrfs_super_block *sb,
b75f5062 3413 int wait, int max_mirrors)
a512bbf8
YZ
3414{
3415 struct buffer_head *bh;
3416 int i;
3417 int ret;
3418 int errors = 0;
3419 u32 crc;
3420 u64 bytenr;
a512bbf8
YZ
3421
3422 if (max_mirrors == 0)
3423 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3424
a512bbf8
YZ
3425 for (i = 0; i < max_mirrors; i++) {
3426 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3427 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3428 device->commit_total_bytes)
a512bbf8
YZ
3429 break;
3430
3431 if (wait) {
3432 bh = __find_get_block(device->bdev, bytenr / 4096,
3433 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3434 if (!bh) {
3435 errors++;
3436 continue;
3437 }
a512bbf8 3438 wait_on_buffer(bh);
4eedeb75
HH
3439 if (!buffer_uptodate(bh))
3440 errors++;
3441
3442 /* drop our reference */
3443 brelse(bh);
3444
3445 /* drop the reference from the wait == 0 run */
3446 brelse(bh);
3447 continue;
a512bbf8
YZ
3448 } else {
3449 btrfs_set_super_bytenr(sb, bytenr);
3450
3451 crc = ~(u32)0;
b0496686 3452 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3453 BTRFS_CSUM_SIZE, crc,
3454 BTRFS_SUPER_INFO_SIZE -
3455 BTRFS_CSUM_SIZE);
3456 btrfs_csum_final(crc, sb->csum);
3457
4eedeb75
HH
3458 /*
3459 * one reference for us, and we leave it for the
3460 * caller
3461 */
a512bbf8
YZ
3462 bh = __getblk(device->bdev, bytenr / 4096,
3463 BTRFS_SUPER_INFO_SIZE);
634554dc 3464 if (!bh) {
fb456252 3465 btrfs_err(device->fs_info,
f14d104d
DS
3466 "couldn't get super buffer head for bytenr %llu",
3467 bytenr);
634554dc
JB
3468 errors++;
3469 continue;
3470 }
3471
a512bbf8
YZ
3472 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3473
4eedeb75 3474 /* one reference for submit_bh */
a512bbf8 3475 get_bh(bh);
4eedeb75
HH
3476
3477 set_buffer_uptodate(bh);
a512bbf8
YZ
3478 lock_buffer(bh);
3479 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3480 bh->b_private = device;
a512bbf8
YZ
3481 }
3482
387125fc
CM
3483 /*
3484 * we fua the first super. The others we allow
3485 * to go down lazy.
3486 */
e8117c26 3487 if (i == 0)
70fd7614 3488 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
e8117c26 3489 else
70fd7614 3490 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
4eedeb75 3491 if (ret)
a512bbf8 3492 errors++;
a512bbf8
YZ
3493 }
3494 return errors < i ? 0 : -1;
3495}
3496
387125fc
CM
3497/*
3498 * endio for the write_dev_flush, this will wake anyone waiting
3499 * for the barrier when it is done
3500 */
4246a0b6 3501static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3502{
387125fc
CM
3503 if (bio->bi_private)
3504 complete(bio->bi_private);
3505 bio_put(bio);
3506}
3507
3508/*
3509 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3510 * sent down. With wait == 1, it waits for the previous flush.
3511 *
3512 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3513 * capable
3514 */
3515static int write_dev_flush(struct btrfs_device *device, int wait)
3516{
3517 struct bio *bio;
3518 int ret = 0;
3519
3520 if (device->nobarriers)
3521 return 0;
3522
3523 if (wait) {
3524 bio = device->flush_bio;
3525 if (!bio)
3526 return 0;
3527
3528 wait_for_completion(&device->flush_wait);
3529
4246a0b6
CH
3530 if (bio->bi_error) {
3531 ret = bio->bi_error;
5af3e8cc
SB
3532 btrfs_dev_stat_inc_and_print(device,
3533 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3534 }
3535
3536 /* drop the reference from the wait == 0 run */
3537 bio_put(bio);
3538 device->flush_bio = NULL;
3539
3540 return ret;
3541 }
3542
3543 /*
3544 * one reference for us, and we leave it for the
3545 * caller
3546 */
9c017abc 3547 device->flush_bio = NULL;
9be3395b 3548 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3549 if (!bio)
3550 return -ENOMEM;
3551
3552 bio->bi_end_io = btrfs_end_empty_barrier;
3553 bio->bi_bdev = device->bdev;
70fd7614 3554 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
387125fc
CM
3555 init_completion(&device->flush_wait);
3556 bio->bi_private = &device->flush_wait;
3557 device->flush_bio = bio;
3558
3559 bio_get(bio);
4e49ea4a 3560 btrfsic_submit_bio(bio);
387125fc
CM
3561
3562 return 0;
3563}
3564
3565/*
3566 * send an empty flush down to each device in parallel,
3567 * then wait for them
3568 */
3569static int barrier_all_devices(struct btrfs_fs_info *info)
3570{
3571 struct list_head *head;
3572 struct btrfs_device *dev;
5af3e8cc
SB
3573 int errors_send = 0;
3574 int errors_wait = 0;
387125fc
CM
3575 int ret;
3576
3577 /* send down all the barriers */
3578 head = &info->fs_devices->devices;
3579 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3580 if (dev->missing)
3581 continue;
387125fc 3582 if (!dev->bdev) {
5af3e8cc 3583 errors_send++;
387125fc
CM
3584 continue;
3585 }
3586 if (!dev->in_fs_metadata || !dev->writeable)
3587 continue;
3588
3589 ret = write_dev_flush(dev, 0);
3590 if (ret)
5af3e8cc 3591 errors_send++;
387125fc
CM
3592 }
3593
3594 /* wait for all the barriers */
3595 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3596 if (dev->missing)
3597 continue;
387125fc 3598 if (!dev->bdev) {
5af3e8cc 3599 errors_wait++;
387125fc
CM
3600 continue;
3601 }
3602 if (!dev->in_fs_metadata || !dev->writeable)
3603 continue;
3604
3605 ret = write_dev_flush(dev, 1);
3606 if (ret)
5af3e8cc 3607 errors_wait++;
387125fc 3608 }
5af3e8cc
SB
3609 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3610 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3611 return -EIO;
3612 return 0;
3613}
3614
943c6e99
ZL
3615int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3616{
8789f4fe
ZL
3617 int raid_type;
3618 int min_tolerated = INT_MAX;
943c6e99 3619
8789f4fe
ZL
3620 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3621 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3622 min_tolerated = min(min_tolerated,
3623 btrfs_raid_array[BTRFS_RAID_SINGLE].
3624 tolerated_failures);
943c6e99 3625
8789f4fe
ZL
3626 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3627 if (raid_type == BTRFS_RAID_SINGLE)
3628 continue;
3629 if (!(flags & btrfs_raid_group[raid_type]))
3630 continue;
3631 min_tolerated = min(min_tolerated,
3632 btrfs_raid_array[raid_type].
3633 tolerated_failures);
3634 }
943c6e99 3635
8789f4fe 3636 if (min_tolerated == INT_MAX) {
ab8d0fc4 3637 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3638 min_tolerated = 0;
3639 }
3640
3641 return min_tolerated;
943c6e99
ZL
3642}
3643
5af3e8cc
SB
3644int btrfs_calc_num_tolerated_disk_barrier_failures(
3645 struct btrfs_fs_info *fs_info)
3646{
3647 struct btrfs_ioctl_space_info space;
3648 struct btrfs_space_info *sinfo;
3649 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3650 BTRFS_BLOCK_GROUP_SYSTEM,
3651 BTRFS_BLOCK_GROUP_METADATA,
3652 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3653 int i;
3654 int c;
3655 int num_tolerated_disk_barrier_failures =
3656 (int)fs_info->fs_devices->num_devices;
3657
2c458045 3658 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3659 struct btrfs_space_info *tmp;
3660
3661 sinfo = NULL;
3662 rcu_read_lock();
3663 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3664 if (tmp->flags == types[i]) {
3665 sinfo = tmp;
3666 break;
3667 }
3668 }
3669 rcu_read_unlock();
3670
3671 if (!sinfo)
3672 continue;
3673
3674 down_read(&sinfo->groups_sem);
3675 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3676 u64 flags;
3677
3678 if (list_empty(&sinfo->block_groups[c]))
3679 continue;
3680
3681 btrfs_get_block_group_info(&sinfo->block_groups[c],
3682 &space);
3683 if (space.total_bytes == 0 || space.used_bytes == 0)
3684 continue;
3685 flags = space.flags;
943c6e99
ZL
3686
3687 num_tolerated_disk_barrier_failures = min(
3688 num_tolerated_disk_barrier_failures,
3689 btrfs_get_num_tolerated_disk_barrier_failures(
3690 flags));
5af3e8cc
SB
3691 }
3692 up_read(&sinfo->groups_sem);
3693 }
3694
3695 return num_tolerated_disk_barrier_failures;
3696}
3697
2ff7e61e 3698static int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3699{
e5e9a520 3700 struct list_head *head;
f2984462 3701 struct btrfs_device *dev;
a061fc8d 3702 struct btrfs_super_block *sb;
f2984462 3703 struct btrfs_dev_item *dev_item;
f2984462
CM
3704 int ret;
3705 int do_barriers;
a236aed1
CM
3706 int max_errors;
3707 int total_errors = 0;
a061fc8d 3708 u64 flags;
f2984462 3709
0b246afa
JM
3710 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3711 backup_super_roots(fs_info);
f2984462 3712
0b246afa 3713 sb = fs_info->super_for_commit;
a061fc8d 3714 dev_item = &sb->dev_item;
e5e9a520 3715
0b246afa
JM
3716 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3717 head = &fs_info->fs_devices->devices;
3718 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3719
5af3e8cc 3720 if (do_barriers) {
0b246afa 3721 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3722 if (ret) {
3723 mutex_unlock(
0b246afa
JM
3724 &fs_info->fs_devices->device_list_mutex);
3725 btrfs_handle_fs_error(fs_info, ret,
3726 "errors while submitting device barriers.");
5af3e8cc
SB
3727 return ret;
3728 }
3729 }
387125fc 3730
1f78160c 3731 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3732 if (!dev->bdev) {
3733 total_errors++;
3734 continue;
3735 }
2b82032c 3736 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3737 continue;
3738
2b82032c 3739 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3740 btrfs_set_stack_device_type(dev_item, dev->type);
3741 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3742 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3743 dev->commit_total_bytes);
ce7213c7
MX
3744 btrfs_set_stack_device_bytes_used(dev_item,
3745 dev->commit_bytes_used);
a061fc8d
CM
3746 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3747 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3748 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3749 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3750 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3751
a061fc8d
CM
3752 flags = btrfs_super_flags(sb);
3753 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3754
b75f5062 3755 ret = write_dev_supers(dev, sb, 0, max_mirrors);
a236aed1
CM
3756 if (ret)
3757 total_errors++;
f2984462 3758 }
a236aed1 3759 if (total_errors > max_errors) {
0b246afa
JM
3760 btrfs_err(fs_info, "%d errors while writing supers",
3761 total_errors);
3762 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3763
9d565ba4 3764 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3765 btrfs_handle_fs_error(fs_info, -EIO,
3766 "%d errors while writing supers",
3767 total_errors);
9d565ba4 3768 return -EIO;
a236aed1 3769 }
f2984462 3770
a512bbf8 3771 total_errors = 0;
1f78160c 3772 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3773 if (!dev->bdev)
3774 continue;
2b82032c 3775 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3776 continue;
3777
b75f5062 3778 ret = write_dev_supers(dev, sb, 1, max_mirrors);
a512bbf8
YZ
3779 if (ret)
3780 total_errors++;
f2984462 3781 }
0b246afa 3782 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3783 if (total_errors > max_errors) {
0b246afa
JM
3784 btrfs_handle_fs_error(fs_info, -EIO,
3785 "%d errors while writing supers",
3786 total_errors);
79787eaa 3787 return -EIO;
a236aed1 3788 }
f2984462
CM
3789 return 0;
3790}
3791
a512bbf8 3792int write_ctree_super(struct btrfs_trans_handle *trans,
2ff7e61e 3793 struct btrfs_fs_info *fs_info, int max_mirrors)
eb60ceac 3794{
2ff7e61e 3795 return write_all_supers(fs_info, max_mirrors);
cfaa7295
CM
3796}
3797
cb517eab
MX
3798/* Drop a fs root from the radix tree and free it. */
3799void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3800 struct btrfs_root *root)
2619ba1f 3801{
4df27c4d 3802 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3803 radix_tree_delete(&fs_info->fs_roots_radix,
3804 (unsigned long)root->root_key.objectid);
4df27c4d 3805 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3806
3807 if (btrfs_root_refs(&root->root_item) == 0)
3808 synchronize_srcu(&fs_info->subvol_srcu);
3809
1c1ea4f7 3810 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3811 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3812 if (root->reloc_root) {
3813 free_extent_buffer(root->reloc_root->node);
3814 free_extent_buffer(root->reloc_root->commit_root);
3815 btrfs_put_fs_root(root->reloc_root);
3816 root->reloc_root = NULL;
3817 }
3818 }
3321719e 3819
faa2dbf0
JB
3820 if (root->free_ino_pinned)
3821 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3822 if (root->free_ino_ctl)
3823 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3824 free_fs_root(root);
4df27c4d
YZ
3825}
3826
3827static void free_fs_root(struct btrfs_root *root)
3828{
57cdc8db 3829 iput(root->ino_cache_inode);
4df27c4d 3830 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2ff7e61e 3831 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
1cb048f5 3832 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3833 if (root->anon_dev)
3834 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3835 if (root->subv_writers)
3836 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3837 free_extent_buffer(root->node);
3838 free_extent_buffer(root->commit_root);
581bb050
LZ
3839 kfree(root->free_ino_ctl);
3840 kfree(root->free_ino_pinned);
d397712b 3841 kfree(root->name);
b0feb9d9 3842 btrfs_put_fs_root(root);
2619ba1f
CM
3843}
3844
cb517eab
MX
3845void btrfs_free_fs_root(struct btrfs_root *root)
3846{
3847 free_fs_root(root);
2619ba1f
CM
3848}
3849
c146afad 3850int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3851{
c146afad
YZ
3852 u64 root_objectid = 0;
3853 struct btrfs_root *gang[8];
65d33fd7
QW
3854 int i = 0;
3855 int err = 0;
3856 unsigned int ret = 0;
3857 int index;
e089f05c 3858
c146afad 3859 while (1) {
65d33fd7 3860 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3861 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3862 (void **)gang, root_objectid,
3863 ARRAY_SIZE(gang));
65d33fd7
QW
3864 if (!ret) {
3865 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3866 break;
65d33fd7 3867 }
5d4f98a2 3868 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3869
c146afad 3870 for (i = 0; i < ret; i++) {
65d33fd7
QW
3871 /* Avoid to grab roots in dead_roots */
3872 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3873 gang[i] = NULL;
3874 continue;
3875 }
3876 /* grab all the search result for later use */
3877 gang[i] = btrfs_grab_fs_root(gang[i]);
3878 }
3879 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3880
65d33fd7
QW
3881 for (i = 0; i < ret; i++) {
3882 if (!gang[i])
3883 continue;
c146afad 3884 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3885 err = btrfs_orphan_cleanup(gang[i]);
3886 if (err)
65d33fd7
QW
3887 break;
3888 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3889 }
3890 root_objectid++;
3891 }
65d33fd7
QW
3892
3893 /* release the uncleaned roots due to error */
3894 for (; i < ret; i++) {
3895 if (gang[i])
3896 btrfs_put_fs_root(gang[i]);
3897 }
3898 return err;
c146afad 3899}
a2135011 3900
6bccf3ab 3901int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3902{
6bccf3ab 3903 struct btrfs_root *root = fs_info->tree_root;
c146afad 3904 struct btrfs_trans_handle *trans;
a74a4b97 3905
0b246afa 3906 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3907 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3908 mutex_unlock(&fs_info->cleaner_mutex);
3909 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3910
3911 /* wait until ongoing cleanup work done */
0b246afa
JM
3912 down_write(&fs_info->cleanup_work_sem);
3913 up_write(&fs_info->cleanup_work_sem);
c71bf099 3914
7a7eaa40 3915 trans = btrfs_join_transaction(root);
3612b495
TI
3916 if (IS_ERR(trans))
3917 return PTR_ERR(trans);
3a45bb20 3918 return btrfs_commit_transaction(trans);
c146afad
YZ
3919}
3920
6bccf3ab 3921void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3922{
6bccf3ab 3923 struct btrfs_root *root = fs_info->tree_root;
c146afad
YZ
3924 int ret;
3925
afcdd129 3926 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
c146afad 3927
7343dd61 3928 /* wait for the qgroup rescan worker to stop */
d06f23d6 3929 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3930
803b2f54
SB
3931 /* wait for the uuid_scan task to finish */
3932 down(&fs_info->uuid_tree_rescan_sem);
3933 /* avoid complains from lockdep et al., set sem back to initial state */
3934 up(&fs_info->uuid_tree_rescan_sem);
3935
837d5b6e 3936 /* pause restriper - we want to resume on mount */
aa1b8cd4 3937 btrfs_pause_balance(fs_info);
837d5b6e 3938
8dabb742
SB
3939 btrfs_dev_replace_suspend_for_unmount(fs_info);
3940
aa1b8cd4 3941 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3942
3943 /* wait for any defraggers to finish */
3944 wait_event(fs_info->transaction_wait,
3945 (atomic_read(&fs_info->defrag_running) == 0));
3946
3947 /* clear out the rbtree of defraggable inodes */
26176e7c 3948 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3949
21c7e756
MX
3950 cancel_work_sync(&fs_info->async_reclaim_work);
3951
c146afad 3952 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3953 /*
3954 * If the cleaner thread is stopped and there are
3955 * block groups queued for removal, the deletion will be
3956 * skipped when we quit the cleaner thread.
3957 */
0b246afa 3958 btrfs_delete_unused_bgs(fs_info);
e44163e1 3959
6bccf3ab 3960 ret = btrfs_commit_super(fs_info);
acce952b 3961 if (ret)
04892340 3962 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3963 }
3964
87533c47 3965 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2ff7e61e 3966 btrfs_error_commit_super(fs_info);
0f7d52f4 3967
e3029d9f
AV
3968 kthread_stop(fs_info->transaction_kthread);
3969 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3970
afcdd129 3971 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3972
04892340 3973 btrfs_free_qgroup_config(fs_info);
bcef60f2 3974
963d678b 3975 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3976 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3977 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3978 }
bcc63abb 3979
6618a59b 3980 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3981 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3982
faa2dbf0 3983 btrfs_free_fs_roots(fs_info);
d10c5f31 3984
1a4319cc
LB
3985 btrfs_put_block_group_cache(fs_info);
3986
2b1360da
JB
3987 btrfs_free_block_groups(fs_info);
3988
de348ee0
WS
3989 /*
3990 * we must make sure there is not any read request to
3991 * submit after we stopping all workers.
3992 */
3993 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3994 btrfs_stop_all_workers(fs_info);
3995
afcdd129 3996 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3997 free_root_pointers(fs_info, 1);
9ad6b7bc 3998
13e6c37b 3999 iput(fs_info->btree_inode);
d6bfde87 4000
21adbd5c 4001#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4002 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4003 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4004#endif
4005
dfe25020 4006 btrfs_close_devices(fs_info->fs_devices);
0b86a832 4007 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 4008
e2d84521 4009 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4010 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 4011 percpu_counter_destroy(&fs_info->bio_counter);
04160088 4012 bdi_destroy(&fs_info->bdi);
76dda93c 4013 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4014
53b381b3
DW
4015 btrfs_free_stripe_hash_table(fs_info);
4016
cdfb080e 4017 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 4018 root->orphan_block_rsv = NULL;
04216820 4019
34441361 4020 mutex_lock(&fs_info->chunk_mutex);
04216820
FM
4021 while (!list_empty(&fs_info->pinned_chunks)) {
4022 struct extent_map *em;
4023
4024 em = list_first_entry(&fs_info->pinned_chunks,
4025 struct extent_map, list);
4026 list_del_init(&em->list);
4027 free_extent_map(em);
4028 }
34441361 4029 mutex_unlock(&fs_info->chunk_mutex);
eb60ceac
CM
4030}
4031
b9fab919
CM
4032int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4033 int atomic)
5f39d397 4034{
1259ab75 4035 int ret;
727011e0 4036 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4037
0b32f4bb 4038 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4039 if (!ret)
4040 return ret;
4041
4042 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4043 parent_transid, atomic);
4044 if (ret == -EAGAIN)
4045 return ret;
1259ab75 4046 return !ret;
5f39d397
CM
4047}
4048
5f39d397
CM
4049void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4050{
0b246afa 4051 struct btrfs_fs_info *fs_info;
06ea65a3 4052 struct btrfs_root *root;
5f39d397 4053 u64 transid = btrfs_header_generation(buf);
b9473439 4054 int was_dirty;
b4ce94de 4055
06ea65a3
JB
4056#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4057 /*
4058 * This is a fast path so only do this check if we have sanity tests
4059 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4060 * outside of the sanity tests.
4061 */
4062 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4063 return;
4064#endif
4065 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4066 fs_info = root->fs_info;
b9447ef8 4067 btrfs_assert_tree_locked(buf);
0b246afa 4068 if (transid != fs_info->generation)
5d163e0e 4069 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4070 buf->start, transid, fs_info->generation);
0b32f4bb 4071 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4072 if (!was_dirty)
0b246afa 4073 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
e2d84521 4074 buf->len,
0b246afa 4075 fs_info->dirty_metadata_batch);
1f21ef0a
FM
4076#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4077 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
2ff7e61e 4078 btrfs_print_leaf(fs_info, buf);
1f21ef0a
FM
4079 ASSERT(0);
4080 }
4081#endif
eb60ceac
CM
4082}
4083
2ff7e61e 4084static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4085 int flush_delayed)
16cdcec7
MX
4086{
4087 /*
4088 * looks as though older kernels can get into trouble with
4089 * this code, they end up stuck in balance_dirty_pages forever
4090 */
e2d84521 4091 int ret;
16cdcec7
MX
4092
4093 if (current->flags & PF_MEMALLOC)
4094 return;
4095
b53d3f5d 4096 if (flush_delayed)
2ff7e61e 4097 btrfs_balance_delayed_items(fs_info);
16cdcec7 4098
0b246afa 4099 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
e2d84521
MX
4100 BTRFS_DIRTY_METADATA_THRESH);
4101 if (ret > 0) {
0b246afa 4102 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4103 }
16cdcec7
MX
4104}
4105
2ff7e61e 4106void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4107{
2ff7e61e 4108 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4109}
585ad2c3 4110
2ff7e61e 4111void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4112{
2ff7e61e 4113 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4114}
6b80053d 4115
ca7a79ad 4116int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4117{
727011e0 4118 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4119 struct btrfs_fs_info *fs_info = root->fs_info;
4120
4121 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
6b80053d 4122}
0da5468f 4123
fcd1f065 4124static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 4125 int read_only)
4126{
c926093e 4127 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4128 u64 nodesize = btrfs_super_nodesize(sb);
4129 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4130 int ret = 0;
4131
319e4d06 4132 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
ab8d0fc4 4133 btrfs_err(fs_info, "no valid FS found");
319e4d06
QW
4134 ret = -EINVAL;
4135 }
4136 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
ab8d0fc4 4137 btrfs_warn(fs_info, "unrecognized super flag: %llu",
319e4d06 4138 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b 4139 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4140 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
21e7626b 4141 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4142 ret = -EINVAL;
4143 }
21e7626b 4144 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4145 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
21e7626b 4146 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4147 ret = -EINVAL;
4148 }
21e7626b 4149 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 4150 btrfs_err(fs_info, "log_root level too big: %d >= %d",
21e7626b 4151 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4152 ret = -EINVAL;
4153 }
4154
1104a885 4155 /*
319e4d06
QW
4156 * Check sectorsize and nodesize first, other check will need it.
4157 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4158 */
319e4d06
QW
4159 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4160 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4161 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
319e4d06
QW
4162 ret = -EINVAL;
4163 }
4164 /* Only PAGE SIZE is supported yet */
09cbfeaf 4165 if (sectorsize != PAGE_SIZE) {
ab8d0fc4
JM
4166 btrfs_err(fs_info,
4167 "sectorsize %llu not supported yet, only support %lu",
4168 sectorsize, PAGE_SIZE);
319e4d06
QW
4169 ret = -EINVAL;
4170 }
4171 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4172 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 4173 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
319e4d06
QW
4174 ret = -EINVAL;
4175 }
4176 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
ab8d0fc4
JM
4177 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4178 le32_to_cpu(sb->__unused_leafsize), nodesize);
319e4d06
QW
4179 ret = -EINVAL;
4180 }
4181
4182 /* Root alignment check */
4183 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
ab8d0fc4
JM
4184 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4185 btrfs_super_root(sb));
319e4d06
QW
4186 ret = -EINVAL;
4187 }
4188 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
ab8d0fc4
JM
4189 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4190 btrfs_super_chunk_root(sb));
75d6ad38
DS
4191 ret = -EINVAL;
4192 }
319e4d06 4193 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
ab8d0fc4
JM
4194 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4195 btrfs_super_log_root(sb));
75d6ad38
DS
4196 ret = -EINVAL;
4197 }
4198
c926093e 4199 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
ab8d0fc4
JM
4200 btrfs_err(fs_info,
4201 "dev_item UUID does not match fsid: %pU != %pU",
4202 fs_info->fsid, sb->dev_item.fsid);
c926093e
DS
4203 ret = -EINVAL;
4204 }
4205
4206 /*
4207 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4208 * done later
4209 */
99e3ecfc
LB
4210 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4211 btrfs_err(fs_info, "bytes_used is too small %llu",
ab8d0fc4 4212 btrfs_super_bytes_used(sb));
99e3ecfc
LB
4213 ret = -EINVAL;
4214 }
b7f67055 4215 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc 4216 btrfs_err(fs_info, "invalid stripesize %u",
ab8d0fc4 4217 btrfs_super_stripesize(sb));
99e3ecfc
LB
4218 ret = -EINVAL;
4219 }
21e7626b 4220 if (btrfs_super_num_devices(sb) > (1UL << 31))
ab8d0fc4
JM
4221 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4222 btrfs_super_num_devices(sb));
75d6ad38 4223 if (btrfs_super_num_devices(sb) == 0) {
ab8d0fc4 4224 btrfs_err(fs_info, "number of devices is 0");
75d6ad38
DS
4225 ret = -EINVAL;
4226 }
c926093e 4227
21e7626b 4228 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
ab8d0fc4
JM
4229 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4230 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4231 ret = -EINVAL;
4232 }
4233
ce7fca5f
DS
4234 /*
4235 * Obvious sys_chunk_array corruptions, it must hold at least one key
4236 * and one chunk
4237 */
4238 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
ab8d0fc4
JM
4239 btrfs_err(fs_info, "system chunk array too big %u > %u",
4240 btrfs_super_sys_array_size(sb),
4241 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ce7fca5f
DS
4242 ret = -EINVAL;
4243 }
4244 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4245 + sizeof(struct btrfs_chunk)) {
ab8d0fc4
JM
4246 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4247 btrfs_super_sys_array_size(sb),
4248 sizeof(struct btrfs_disk_key)
4249 + sizeof(struct btrfs_chunk));
ce7fca5f
DS
4250 ret = -EINVAL;
4251 }
4252
c926093e
DS
4253 /*
4254 * The generation is a global counter, we'll trust it more than the others
4255 * but it's still possible that it's the one that's wrong.
4256 */
21e7626b 4257 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
ab8d0fc4
JM
4258 btrfs_warn(fs_info,
4259 "suspicious: generation < chunk_root_generation: %llu < %llu",
4260 btrfs_super_generation(sb),
4261 btrfs_super_chunk_root_generation(sb));
21e7626b
DS
4262 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4263 && btrfs_super_cache_generation(sb) != (u64)-1)
ab8d0fc4
JM
4264 btrfs_warn(fs_info,
4265 "suspicious: generation < cache_generation: %llu < %llu",
4266 btrfs_super_generation(sb),
4267 btrfs_super_cache_generation(sb));
c926093e
DS
4268
4269 return ret;
acce952b 4270}
4271
2ff7e61e 4272static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4273{
0b246afa 4274 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4275 btrfs_run_delayed_iputs(fs_info);
0b246afa 4276 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4277
0b246afa
JM
4278 down_write(&fs_info->cleanup_work_sem);
4279 up_write(&fs_info->cleanup_work_sem);
acce952b 4280
4281 /* cleanup FS via transaction */
2ff7e61e 4282 btrfs_cleanup_transaction(fs_info);
acce952b 4283}
4284
143bede5 4285static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4286{
acce952b 4287 struct btrfs_ordered_extent *ordered;
acce952b 4288
199c2a9c 4289 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4290 /*
4291 * This will just short circuit the ordered completion stuff which will
4292 * make sure the ordered extent gets properly cleaned up.
4293 */
199c2a9c 4294 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4295 root_extent_list)
4296 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4297 spin_unlock(&root->ordered_extent_lock);
4298}
4299
4300static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4301{
4302 struct btrfs_root *root;
4303 struct list_head splice;
4304
4305 INIT_LIST_HEAD(&splice);
4306
4307 spin_lock(&fs_info->ordered_root_lock);
4308 list_splice_init(&fs_info->ordered_roots, &splice);
4309 while (!list_empty(&splice)) {
4310 root = list_first_entry(&splice, struct btrfs_root,
4311 ordered_root);
1de2cfde
JB
4312 list_move_tail(&root->ordered_root,
4313 &fs_info->ordered_roots);
199c2a9c 4314
2a85d9ca 4315 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4316 btrfs_destroy_ordered_extents(root);
4317
2a85d9ca
LB
4318 cond_resched();
4319 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4320 }
4321 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4322}
4323
35a3621b 4324static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4325 struct btrfs_fs_info *fs_info)
acce952b 4326{
4327 struct rb_node *node;
4328 struct btrfs_delayed_ref_root *delayed_refs;
4329 struct btrfs_delayed_ref_node *ref;
4330 int ret = 0;
4331
4332 delayed_refs = &trans->delayed_refs;
4333
4334 spin_lock(&delayed_refs->lock);
d7df2c79 4335 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4336 spin_unlock(&delayed_refs->lock);
0b246afa 4337 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4338 return ret;
4339 }
4340
d7df2c79
JB
4341 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4342 struct btrfs_delayed_ref_head *head;
c6fc2454 4343 struct btrfs_delayed_ref_node *tmp;
e78417d1 4344 bool pin_bytes = false;
acce952b 4345
d7df2c79
JB
4346 head = rb_entry(node, struct btrfs_delayed_ref_head,
4347 href_node);
4348 if (!mutex_trylock(&head->mutex)) {
4349 atomic_inc(&head->node.refs);
4350 spin_unlock(&delayed_refs->lock);
eb12db69 4351
d7df2c79 4352 mutex_lock(&head->mutex);
e78417d1 4353 mutex_unlock(&head->mutex);
d7df2c79
JB
4354 btrfs_put_delayed_ref(&head->node);
4355 spin_lock(&delayed_refs->lock);
4356 continue;
4357 }
4358 spin_lock(&head->lock);
c6fc2454
QW
4359 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4360 list) {
d7df2c79 4361 ref->in_tree = 0;
c6fc2454 4362 list_del(&ref->list);
1d57ee94
WX
4363 if (!list_empty(&ref->add_list))
4364 list_del(&ref->add_list);
d7df2c79
JB
4365 atomic_dec(&delayed_refs->num_entries);
4366 btrfs_put_delayed_ref(ref);
e78417d1 4367 }
d7df2c79
JB
4368 if (head->must_insert_reserved)
4369 pin_bytes = true;
4370 btrfs_free_delayed_extent_op(head->extent_op);
4371 delayed_refs->num_heads--;
4372 if (head->processing == 0)
4373 delayed_refs->num_heads_ready--;
4374 atomic_dec(&delayed_refs->num_entries);
4375 head->node.in_tree = 0;
4376 rb_erase(&head->href_node, &delayed_refs->href_root);
4377 spin_unlock(&head->lock);
4378 spin_unlock(&delayed_refs->lock);
4379 mutex_unlock(&head->mutex);
acce952b 4380
d7df2c79 4381 if (pin_bytes)
2ff7e61e 4382 btrfs_pin_extent(fs_info, head->node.bytenr,
d7df2c79
JB
4383 head->node.num_bytes, 1);
4384 btrfs_put_delayed_ref(&head->node);
acce952b 4385 cond_resched();
4386 spin_lock(&delayed_refs->lock);
4387 }
4388
4389 spin_unlock(&delayed_refs->lock);
4390
4391 return ret;
4392}
4393
143bede5 4394static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4395{
4396 struct btrfs_inode *btrfs_inode;
4397 struct list_head splice;
4398
4399 INIT_LIST_HEAD(&splice);
4400
eb73c1b7
MX
4401 spin_lock(&root->delalloc_lock);
4402 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4403
4404 while (!list_empty(&splice)) {
eb73c1b7
MX
4405 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4406 delalloc_inodes);
acce952b 4407
4408 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4409 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4410 &btrfs_inode->runtime_flags);
eb73c1b7 4411 spin_unlock(&root->delalloc_lock);
acce952b 4412
4413 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4414
eb73c1b7 4415 spin_lock(&root->delalloc_lock);
acce952b 4416 }
4417
eb73c1b7
MX
4418 spin_unlock(&root->delalloc_lock);
4419}
4420
4421static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4422{
4423 struct btrfs_root *root;
4424 struct list_head splice;
4425
4426 INIT_LIST_HEAD(&splice);
4427
4428 spin_lock(&fs_info->delalloc_root_lock);
4429 list_splice_init(&fs_info->delalloc_roots, &splice);
4430 while (!list_empty(&splice)) {
4431 root = list_first_entry(&splice, struct btrfs_root,
4432 delalloc_root);
4433 list_del_init(&root->delalloc_root);
4434 root = btrfs_grab_fs_root(root);
4435 BUG_ON(!root);
4436 spin_unlock(&fs_info->delalloc_root_lock);
4437
4438 btrfs_destroy_delalloc_inodes(root);
4439 btrfs_put_fs_root(root);
4440
4441 spin_lock(&fs_info->delalloc_root_lock);
4442 }
4443 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4444}
4445
2ff7e61e 4446static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4447 struct extent_io_tree *dirty_pages,
4448 int mark)
4449{
4450 int ret;
acce952b 4451 struct extent_buffer *eb;
4452 u64 start = 0;
4453 u64 end;
acce952b 4454
4455 while (1) {
4456 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4457 mark, NULL);
acce952b 4458 if (ret)
4459 break;
4460
91166212 4461 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4462 while (start <= end) {
0b246afa
JM
4463 eb = find_extent_buffer(fs_info, start);
4464 start += fs_info->nodesize;
fd8b2b61 4465 if (!eb)
acce952b 4466 continue;
fd8b2b61 4467 wait_on_extent_buffer_writeback(eb);
acce952b 4468
fd8b2b61
JB
4469 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4470 &eb->bflags))
4471 clear_extent_buffer_dirty(eb);
4472 free_extent_buffer_stale(eb);
acce952b 4473 }
4474 }
4475
4476 return ret;
4477}
4478
2ff7e61e 4479static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4480 struct extent_io_tree *pinned_extents)
4481{
4482 struct extent_io_tree *unpin;
4483 u64 start;
4484 u64 end;
4485 int ret;
ed0eaa14 4486 bool loop = true;
acce952b 4487
4488 unpin = pinned_extents;
ed0eaa14 4489again:
acce952b 4490 while (1) {
4491 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4492 EXTENT_DIRTY, NULL);
acce952b 4493 if (ret)
4494 break;
4495
af6f8f60 4496 clear_extent_dirty(unpin, start, end);
2ff7e61e 4497 btrfs_error_unpin_extent_range(fs_info, start, end);
acce952b 4498 cond_resched();
4499 }
4500
ed0eaa14 4501 if (loop) {
0b246afa
JM
4502 if (unpin == &fs_info->freed_extents[0])
4503 unpin = &fs_info->freed_extents[1];
ed0eaa14 4504 else
0b246afa 4505 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4506 loop = false;
4507 goto again;
4508 }
4509
acce952b 4510 return 0;
4511}
4512
c79a1751
LB
4513static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4514{
4515 struct inode *inode;
4516
4517 inode = cache->io_ctl.inode;
4518 if (inode) {
4519 invalidate_inode_pages2(inode->i_mapping);
4520 BTRFS_I(inode)->generation = 0;
4521 cache->io_ctl.inode = NULL;
4522 iput(inode);
4523 }
4524 btrfs_put_block_group(cache);
4525}
4526
4527void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4528 struct btrfs_fs_info *fs_info)
c79a1751
LB
4529{
4530 struct btrfs_block_group_cache *cache;
4531
4532 spin_lock(&cur_trans->dirty_bgs_lock);
4533 while (!list_empty(&cur_trans->dirty_bgs)) {
4534 cache = list_first_entry(&cur_trans->dirty_bgs,
4535 struct btrfs_block_group_cache,
4536 dirty_list);
4537 if (!cache) {
0b246afa 4538 btrfs_err(fs_info, "orphan block group dirty_bgs list");
c79a1751
LB
4539 spin_unlock(&cur_trans->dirty_bgs_lock);
4540 return;
4541 }
4542
4543 if (!list_empty(&cache->io_list)) {
4544 spin_unlock(&cur_trans->dirty_bgs_lock);
4545 list_del_init(&cache->io_list);
4546 btrfs_cleanup_bg_io(cache);
4547 spin_lock(&cur_trans->dirty_bgs_lock);
4548 }
4549
4550 list_del_init(&cache->dirty_list);
4551 spin_lock(&cache->lock);
4552 cache->disk_cache_state = BTRFS_DC_ERROR;
4553 spin_unlock(&cache->lock);
4554
4555 spin_unlock(&cur_trans->dirty_bgs_lock);
4556 btrfs_put_block_group(cache);
4557 spin_lock(&cur_trans->dirty_bgs_lock);
4558 }
4559 spin_unlock(&cur_trans->dirty_bgs_lock);
4560
4561 while (!list_empty(&cur_trans->io_bgs)) {
4562 cache = list_first_entry(&cur_trans->io_bgs,
4563 struct btrfs_block_group_cache,
4564 io_list);
4565 if (!cache) {
0b246afa 4566 btrfs_err(fs_info, "orphan block group on io_bgs list");
c79a1751
LB
4567 return;
4568 }
4569
4570 list_del_init(&cache->io_list);
4571 spin_lock(&cache->lock);
4572 cache->disk_cache_state = BTRFS_DC_ERROR;
4573 spin_unlock(&cache->lock);
4574 btrfs_cleanup_bg_io(cache);
4575 }
4576}
4577
49b25e05 4578void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4579 struct btrfs_fs_info *fs_info)
49b25e05 4580{
2ff7e61e 4581 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4582 ASSERT(list_empty(&cur_trans->dirty_bgs));
4583 ASSERT(list_empty(&cur_trans->io_bgs));
4584
2ff7e61e 4585 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4586
4a9d8bde 4587 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4588 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4589
4a9d8bde 4590 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4591 wake_up(&fs_info->transaction_wait);
49b25e05 4592
ccdf9b30
JM
4593 btrfs_destroy_delayed_inodes(fs_info);
4594 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4595
2ff7e61e 4596 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4597 EXTENT_DIRTY);
2ff7e61e 4598 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4599 fs_info->pinned_extents);
49b25e05 4600
4a9d8bde
MX
4601 cur_trans->state =TRANS_STATE_COMPLETED;
4602 wake_up(&cur_trans->commit_wait);
4603
49b25e05
JM
4604 /*
4605 memset(cur_trans, 0, sizeof(*cur_trans));
4606 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4607 */
4608}
4609
2ff7e61e 4610static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4611{
4612 struct btrfs_transaction *t;
acce952b 4613
0b246afa 4614 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4615
0b246afa
JM
4616 spin_lock(&fs_info->trans_lock);
4617 while (!list_empty(&fs_info->trans_list)) {
4618 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4619 struct btrfs_transaction, list);
4620 if (t->state >= TRANS_STATE_COMMIT_START) {
4621 atomic_inc(&t->use_count);
0b246afa 4622 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4623 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4624 btrfs_put_transaction(t);
0b246afa 4625 spin_lock(&fs_info->trans_lock);
724e2315
JB
4626 continue;
4627 }
0b246afa 4628 if (t == fs_info->running_transaction) {
724e2315 4629 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4630 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4631 /*
4632 * We wait for 0 num_writers since we don't hold a trans
4633 * handle open currently for this transaction.
4634 */
4635 wait_event(t->writer_wait,
4636 atomic_read(&t->num_writers) == 0);
4637 } else {
0b246afa 4638 spin_unlock(&fs_info->trans_lock);
724e2315 4639 }
2ff7e61e 4640 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4641
0b246afa
JM
4642 spin_lock(&fs_info->trans_lock);
4643 if (t == fs_info->running_transaction)
4644 fs_info->running_transaction = NULL;
acce952b 4645 list_del_init(&t->list);
0b246afa 4646 spin_unlock(&fs_info->trans_lock);
acce952b 4647
724e2315 4648 btrfs_put_transaction(t);
2ff7e61e 4649 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4650 spin_lock(&fs_info->trans_lock);
724e2315 4651 }
0b246afa
JM
4652 spin_unlock(&fs_info->trans_lock);
4653 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4654 btrfs_destroy_delayed_inodes(fs_info);
4655 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4656 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4657 btrfs_destroy_all_delalloc_inodes(fs_info);
4658 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4659
4660 return 0;
4661}
4662
e8c9f186 4663static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4664 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4665 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4666 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4667 /* note we're sharing with inode.c for the merge bio hook */
4668 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4669};