Btrfs: add a log of past tree roots
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
eb60ceac 46
d1310b2e 47static struct extent_io_ops btree_extent_io_ops;
8b712842 48static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 49static void free_fs_root(struct btrfs_root *root);
acce952b 50static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51 int read_only);
52static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55 struct btrfs_root *root);
56static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62 struct extent_io_tree *pinned_extents);
63static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 64
d352ac68
CM
65/*
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
ce9adaa5
CM
70struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
22c59948 76 int metadata;
ce9adaa5 77 struct list_head list;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
d352ac68
CM
81/*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
44b8bd7e
CM
86struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
4a69a410
CM
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
92 int rw;
93 int mirror_num;
c8b97818 94 unsigned long bio_flags;
eaf25d93
CM
95 /*
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
98 */
99 u64 bio_offset;
8b712842 100 struct btrfs_work work;
44b8bd7e
CM
101};
102
85d4e461
CM
103/*
104 * Lockdep class keys for extent_buffer->lock's in this root. For a given
105 * eb, the lockdep key is determined by the btrfs_root it belongs to and
106 * the level the eb occupies in the tree.
107 *
108 * Different roots are used for different purposes and may nest inside each
109 * other and they require separate keysets. As lockdep keys should be
110 * static, assign keysets according to the purpose of the root as indicated
111 * by btrfs_root->objectid. This ensures that all special purpose roots
112 * have separate keysets.
4008c04a 113 *
85d4e461
CM
114 * Lock-nesting across peer nodes is always done with the immediate parent
115 * node locked thus preventing deadlock. As lockdep doesn't know this, use
116 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 117 *
85d4e461
CM
118 * The key is set by the readpage_end_io_hook after the buffer has passed
119 * csum validation but before the pages are unlocked. It is also set by
120 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 121 *
85d4e461
CM
122 * We also add a check to make sure the highest level of the tree is the
123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
124 * needs update as well.
4008c04a
CM
125 */
126#ifdef CONFIG_DEBUG_LOCK_ALLOC
127# if BTRFS_MAX_LEVEL != 8
128# error
129# endif
85d4e461
CM
130
131static struct btrfs_lockdep_keyset {
132 u64 id; /* root objectid */
133 const char *name_stem; /* lock name stem */
134 char names[BTRFS_MAX_LEVEL + 1][20];
135 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
136} btrfs_lockdep_keysets[] = {
137 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
138 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
139 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
140 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
141 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
142 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
143 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
144 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
145 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
146 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
147 { .id = 0, .name_stem = "tree" },
4008c04a 148};
85d4e461
CM
149
150void __init btrfs_init_lockdep(void)
151{
152 int i, j;
153
154 /* initialize lockdep class names */
155 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
156 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
157
158 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
159 snprintf(ks->names[j], sizeof(ks->names[j]),
160 "btrfs-%s-%02d", ks->name_stem, j);
161 }
162}
163
164void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
165 int level)
166{
167 struct btrfs_lockdep_keyset *ks;
168
169 BUG_ON(level >= ARRAY_SIZE(ks->keys));
170
171 /* find the matching keyset, id 0 is the default entry */
172 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
173 if (ks->id == objectid)
174 break;
175
176 lockdep_set_class_and_name(&eb->lock,
177 &ks->keys[level], ks->names[level]);
178}
179
4008c04a
CM
180#endif
181
d352ac68
CM
182/*
183 * extents on the btree inode are pretty simple, there's one extent
184 * that covers the entire device
185 */
b2950863 186static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 187 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 188 int create)
7eccb903 189{
5f39d397
CM
190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
191 struct extent_map *em;
192 int ret;
193
890871be 194 read_lock(&em_tree->lock);
d1310b2e 195 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
196 if (em) {
197 em->bdev =
198 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 199 read_unlock(&em_tree->lock);
5f39d397 200 goto out;
a061fc8d 201 }
890871be 202 read_unlock(&em_tree->lock);
7b13b7b1 203
172ddd60 204 em = alloc_extent_map();
5f39d397
CM
205 if (!em) {
206 em = ERR_PTR(-ENOMEM);
207 goto out;
208 }
209 em->start = 0;
0afbaf8c 210 em->len = (u64)-1;
c8b97818 211 em->block_len = (u64)-1;
5f39d397 212 em->block_start = 0;
a061fc8d 213 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 214
890871be 215 write_lock(&em_tree->lock);
5f39d397
CM
216 ret = add_extent_mapping(em_tree, em);
217 if (ret == -EEXIST) {
0afbaf8c
CM
218 u64 failed_start = em->start;
219 u64 failed_len = em->len;
220
5f39d397 221 free_extent_map(em);
7b13b7b1 222 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 223 if (em) {
7b13b7b1 224 ret = 0;
0afbaf8c
CM
225 } else {
226 em = lookup_extent_mapping(em_tree, failed_start,
227 failed_len);
7b13b7b1 228 ret = -EIO;
0afbaf8c 229 }
5f39d397 230 } else if (ret) {
7b13b7b1
CM
231 free_extent_map(em);
232 em = NULL;
5f39d397 233 }
890871be 234 write_unlock(&em_tree->lock);
7b13b7b1
CM
235
236 if (ret)
237 em = ERR_PTR(ret);
5f39d397
CM
238out:
239 return em;
7eccb903
CM
240}
241
19c00ddc
CM
242u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
243{
163e783e 244 return crc32c(seed, data, len);
19c00ddc
CM
245}
246
247void btrfs_csum_final(u32 crc, char *result)
248{
7e75bf3f 249 put_unaligned_le32(~crc, result);
19c00ddc
CM
250}
251
d352ac68
CM
252/*
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
255 */
19c00ddc
CM
256static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257 int verify)
258{
6c41761f 259 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 260 char *result = NULL;
19c00ddc
CM
261 unsigned long len;
262 unsigned long cur_len;
263 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
264 char *kaddr;
265 unsigned long map_start;
266 unsigned long map_len;
267 int err;
268 u32 crc = ~(u32)0;
607d432d 269 unsigned long inline_result;
19c00ddc
CM
270
271 len = buf->len - offset;
d397712b 272 while (len > 0) {
19c00ddc 273 err = map_private_extent_buffer(buf, offset, 32,
a6591715 274 &kaddr, &map_start, &map_len);
d397712b 275 if (err)
19c00ddc 276 return 1;
19c00ddc
CM
277 cur_len = min(len, map_len - (offset - map_start));
278 crc = btrfs_csum_data(root, kaddr + offset - map_start,
279 crc, cur_len);
280 len -= cur_len;
281 offset += cur_len;
19c00ddc 282 }
607d432d
JB
283 if (csum_size > sizeof(inline_result)) {
284 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
285 if (!result)
286 return 1;
287 } else {
288 result = (char *)&inline_result;
289 }
290
19c00ddc
CM
291 btrfs_csum_final(crc, result);
292
293 if (verify) {
607d432d 294 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
295 u32 val;
296 u32 found = 0;
607d432d 297 memcpy(&found, result, csum_size);
e4204ded 298
607d432d 299 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 300 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
301 "failed on %llu wanted %X found %X "
302 "level %d\n",
303 root->fs_info->sb->s_id,
304 (unsigned long long)buf->start, val, found,
305 btrfs_header_level(buf));
607d432d
JB
306 if (result != (char *)&inline_result)
307 kfree(result);
19c00ddc
CM
308 return 1;
309 }
310 } else {
607d432d 311 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 312 }
607d432d
JB
313 if (result != (char *)&inline_result)
314 kfree(result);
19c00ddc
CM
315 return 0;
316}
317
d352ac68
CM
318/*
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
323 */
1259ab75
CM
324static int verify_parent_transid(struct extent_io_tree *io_tree,
325 struct extent_buffer *eb, u64 parent_transid)
326{
2ac55d41 327 struct extent_state *cached_state = NULL;
1259ab75
CM
328 int ret;
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
2ac55d41
JB
333 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
334 0, &cached_state, GFP_NOFS);
335 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
336 btrfs_header_generation(eb) == parent_transid) {
337 ret = 0;
338 goto out;
339 }
7a36ddec 340 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
341 "found %llu\n",
342 (unsigned long long)eb->start,
343 (unsigned long long)parent_transid,
344 (unsigned long long)btrfs_header_generation(eb));
1259ab75 345 ret = 1;
2ac55d41 346 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 347out:
2ac55d41
JB
348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349 &cached_state, GFP_NOFS);
1259ab75 350 return ret;
1259ab75
CM
351}
352
d352ac68
CM
353/*
354 * helper to read a given tree block, doing retries as required when
355 * the checksums don't match and we have alternate mirrors to try.
356 */
f188591e
CM
357static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358 struct extent_buffer *eb,
ca7a79ad 359 u64 start, u64 parent_transid)
f188591e
CM
360{
361 struct extent_io_tree *io_tree;
362 int ret;
363 int num_copies = 0;
364 int mirror_num = 0;
365
a826d6dc 366 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
367 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
368 while (1) {
369 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
370 btree_get_extent, mirror_num);
1259ab75
CM
371 if (!ret &&
372 !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 373 return ret;
d397712b 374
a826d6dc
JB
375 /*
376 * This buffer's crc is fine, but its contents are corrupted, so
377 * there is no reason to read the other copies, they won't be
378 * any less wrong.
379 */
380 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
381 return ret;
382
f188591e
CM
383 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
384 eb->start, eb->len);
4235298e 385 if (num_copies == 1)
f188591e 386 return ret;
4235298e 387
f188591e 388 mirror_num++;
4235298e 389 if (mirror_num > num_copies)
f188591e 390 return ret;
f188591e 391 }
f188591e
CM
392 return -EIO;
393}
19c00ddc 394
d352ac68 395/*
d397712b
CM
396 * checksum a dirty tree block before IO. This has extra checks to make sure
397 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 398 */
d397712b 399
b2950863 400static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 401{
d1310b2e 402 struct extent_io_tree *tree;
35ebb934 403 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 404 u64 found_start;
19c00ddc
CM
405 unsigned long len;
406 struct extent_buffer *eb;
f188591e
CM
407 int ret;
408
d1310b2e 409 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 410
eb14ab8e
CM
411 if (page->private == EXTENT_PAGE_PRIVATE) {
412 WARN_ON(1);
19c00ddc 413 goto out;
eb14ab8e
CM
414 }
415 if (!page->private) {
416 WARN_ON(1);
19c00ddc 417 goto out;
eb14ab8e 418 }
19c00ddc 419 len = page->private >> 2;
d397712b
CM
420 WARN_ON(len == 0);
421
ba144192 422 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
423 if (eb == NULL) {
424 WARN_ON(1);
425 goto out;
426 }
ca7a79ad
CM
427 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
428 btrfs_header_generation(eb));
f188591e 429 BUG_ON(ret);
784b4e29
CM
430 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
431
19c00ddc
CM
432 found_start = btrfs_header_bytenr(eb);
433 if (found_start != start) {
55c69072
CM
434 WARN_ON(1);
435 goto err;
436 }
437 if (eb->first_page != page) {
55c69072
CM
438 WARN_ON(1);
439 goto err;
440 }
441 if (!PageUptodate(page)) {
55c69072
CM
442 WARN_ON(1);
443 goto err;
19c00ddc 444 }
19c00ddc 445 csum_tree_block(root, eb, 0);
55c69072 446err:
19c00ddc
CM
447 free_extent_buffer(eb);
448out:
449 return 0;
450}
451
2b82032c
YZ
452static int check_tree_block_fsid(struct btrfs_root *root,
453 struct extent_buffer *eb)
454{
455 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
456 u8 fsid[BTRFS_UUID_SIZE];
457 int ret = 1;
458
459 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
460 BTRFS_FSID_SIZE);
461 while (fs_devices) {
462 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
463 ret = 0;
464 break;
465 }
466 fs_devices = fs_devices->seed;
467 }
468 return ret;
469}
470
a826d6dc
JB
471#define CORRUPT(reason, eb, root, slot) \
472 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
473 "root=%llu, slot=%d\n", reason, \
474 (unsigned long long)btrfs_header_bytenr(eb), \
475 (unsigned long long)root->objectid, slot)
476
477static noinline int check_leaf(struct btrfs_root *root,
478 struct extent_buffer *leaf)
479{
480 struct btrfs_key key;
481 struct btrfs_key leaf_key;
482 u32 nritems = btrfs_header_nritems(leaf);
483 int slot;
484
485 if (nritems == 0)
486 return 0;
487
488 /* Check the 0 item */
489 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
490 BTRFS_LEAF_DATA_SIZE(root)) {
491 CORRUPT("invalid item offset size pair", leaf, root, 0);
492 return -EIO;
493 }
494
495 /*
496 * Check to make sure each items keys are in the correct order and their
497 * offsets make sense. We only have to loop through nritems-1 because
498 * we check the current slot against the next slot, which verifies the
499 * next slot's offset+size makes sense and that the current's slot
500 * offset is correct.
501 */
502 for (slot = 0; slot < nritems - 1; slot++) {
503 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
504 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
505
506 /* Make sure the keys are in the right order */
507 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
508 CORRUPT("bad key order", leaf, root, slot);
509 return -EIO;
510 }
511
512 /*
513 * Make sure the offset and ends are right, remember that the
514 * item data starts at the end of the leaf and grows towards the
515 * front.
516 */
517 if (btrfs_item_offset_nr(leaf, slot) !=
518 btrfs_item_end_nr(leaf, slot + 1)) {
519 CORRUPT("slot offset bad", leaf, root, slot);
520 return -EIO;
521 }
522
523 /*
524 * Check to make sure that we don't point outside of the leaf,
525 * just incase all the items are consistent to eachother, but
526 * all point outside of the leaf.
527 */
528 if (btrfs_item_end_nr(leaf, slot) >
529 BTRFS_LEAF_DATA_SIZE(root)) {
530 CORRUPT("slot end outside of leaf", leaf, root, slot);
531 return -EIO;
532 }
533 }
534
535 return 0;
536}
537
b2950863 538static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
539 struct extent_state *state)
540{
541 struct extent_io_tree *tree;
542 u64 found_start;
543 int found_level;
544 unsigned long len;
545 struct extent_buffer *eb;
546 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 547 int ret = 0;
ce9adaa5
CM
548
549 tree = &BTRFS_I(page->mapping->host)->io_tree;
550 if (page->private == EXTENT_PAGE_PRIVATE)
551 goto out;
552 if (!page->private)
553 goto out;
d397712b 554
ce9adaa5 555 len = page->private >> 2;
d397712b
CM
556 WARN_ON(len == 0);
557
ba144192 558 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
559 if (eb == NULL) {
560 ret = -EIO;
561 goto out;
562 }
f188591e 563
ce9adaa5 564 found_start = btrfs_header_bytenr(eb);
23a07867 565 if (found_start != start) {
7a36ddec 566 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
567 "%llu %llu\n",
568 (unsigned long long)found_start,
569 (unsigned long long)eb->start);
f188591e 570 ret = -EIO;
ce9adaa5
CM
571 goto err;
572 }
573 if (eb->first_page != page) {
d397712b
CM
574 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
575 eb->first_page->index, page->index);
ce9adaa5 576 WARN_ON(1);
f188591e 577 ret = -EIO;
ce9adaa5
CM
578 goto err;
579 }
2b82032c 580 if (check_tree_block_fsid(root, eb)) {
7a36ddec 581 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 582 (unsigned long long)eb->start);
1259ab75
CM
583 ret = -EIO;
584 goto err;
585 }
ce9adaa5
CM
586 found_level = btrfs_header_level(eb);
587
85d4e461
CM
588 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
589 eb, found_level);
4008c04a 590
ce9adaa5 591 ret = csum_tree_block(root, eb, 1);
a826d6dc 592 if (ret) {
f188591e 593 ret = -EIO;
a826d6dc
JB
594 goto err;
595 }
596
597 /*
598 * If this is a leaf block and it is corrupt, set the corrupt bit so
599 * that we don't try and read the other copies of this block, just
600 * return -EIO.
601 */
602 if (found_level == 0 && check_leaf(root, eb)) {
603 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
604 ret = -EIO;
605 }
ce9adaa5
CM
606
607 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
608 end = eb->start + end - 1;
ce9adaa5
CM
609err:
610 free_extent_buffer(eb);
611out:
f188591e 612 return ret;
ce9adaa5
CM
613}
614
ce9adaa5 615static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
616{
617 struct end_io_wq *end_io_wq = bio->bi_private;
618 struct btrfs_fs_info *fs_info;
ce9adaa5 619
ce9adaa5 620 fs_info = end_io_wq->info;
ce9adaa5 621 end_io_wq->error = err;
8b712842
CM
622 end_io_wq->work.func = end_workqueue_fn;
623 end_io_wq->work.flags = 0;
d20f7043 624
7b6d91da 625 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 626 if (end_io_wq->metadata == 1)
cad321ad
CM
627 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
628 &end_io_wq->work);
0cb59c99
JB
629 else if (end_io_wq->metadata == 2)
630 btrfs_queue_worker(&fs_info->endio_freespace_worker,
631 &end_io_wq->work);
cad321ad
CM
632 else
633 btrfs_queue_worker(&fs_info->endio_write_workers,
634 &end_io_wq->work);
d20f7043
CM
635 } else {
636 if (end_io_wq->metadata)
637 btrfs_queue_worker(&fs_info->endio_meta_workers,
638 &end_io_wq->work);
639 else
640 btrfs_queue_worker(&fs_info->endio_workers,
641 &end_io_wq->work);
642 }
ce9adaa5
CM
643}
644
0cb59c99
JB
645/*
646 * For the metadata arg you want
647 *
648 * 0 - if data
649 * 1 - if normal metadta
650 * 2 - if writing to the free space cache area
651 */
22c59948
CM
652int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
653 int metadata)
0b86a832 654{
ce9adaa5 655 struct end_io_wq *end_io_wq;
ce9adaa5
CM
656 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
657 if (!end_io_wq)
658 return -ENOMEM;
659
660 end_io_wq->private = bio->bi_private;
661 end_io_wq->end_io = bio->bi_end_io;
22c59948 662 end_io_wq->info = info;
ce9adaa5
CM
663 end_io_wq->error = 0;
664 end_io_wq->bio = bio;
22c59948 665 end_io_wq->metadata = metadata;
ce9adaa5
CM
666
667 bio->bi_private = end_io_wq;
668 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
669 return 0;
670}
671
b64a2851 672unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 673{
4854ddd0
CM
674 unsigned long limit = min_t(unsigned long,
675 info->workers.max_workers,
676 info->fs_devices->open_devices);
677 return 256 * limit;
678}
0986fe9e 679
4a69a410
CM
680static void run_one_async_start(struct btrfs_work *work)
681{
4a69a410
CM
682 struct async_submit_bio *async;
683
684 async = container_of(work, struct async_submit_bio, work);
4a69a410 685 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
686 async->mirror_num, async->bio_flags,
687 async->bio_offset);
4a69a410
CM
688}
689
690static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
691{
692 struct btrfs_fs_info *fs_info;
693 struct async_submit_bio *async;
4854ddd0 694 int limit;
8b712842
CM
695
696 async = container_of(work, struct async_submit_bio, work);
697 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 698
b64a2851 699 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
700 limit = limit * 2 / 3;
701
8b712842 702 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 703
b64a2851
CM
704 if (atomic_read(&fs_info->nr_async_submits) < limit &&
705 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
706 wake_up(&fs_info->async_submit_wait);
707
4a69a410 708 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
709 async->mirror_num, async->bio_flags,
710 async->bio_offset);
4a69a410
CM
711}
712
713static void run_one_async_free(struct btrfs_work *work)
714{
715 struct async_submit_bio *async;
716
717 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
718 kfree(async);
719}
720
44b8bd7e
CM
721int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
722 int rw, struct bio *bio, int mirror_num,
c8b97818 723 unsigned long bio_flags,
eaf25d93 724 u64 bio_offset,
4a69a410
CM
725 extent_submit_bio_hook_t *submit_bio_start,
726 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
727{
728 struct async_submit_bio *async;
729
730 async = kmalloc(sizeof(*async), GFP_NOFS);
731 if (!async)
732 return -ENOMEM;
733
734 async->inode = inode;
735 async->rw = rw;
736 async->bio = bio;
737 async->mirror_num = mirror_num;
4a69a410
CM
738 async->submit_bio_start = submit_bio_start;
739 async->submit_bio_done = submit_bio_done;
740
741 async->work.func = run_one_async_start;
742 async->work.ordered_func = run_one_async_done;
743 async->work.ordered_free = run_one_async_free;
744
8b712842 745 async->work.flags = 0;
c8b97818 746 async->bio_flags = bio_flags;
eaf25d93 747 async->bio_offset = bio_offset;
8c8bee1d 748
cb03c743 749 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 750
7b6d91da 751 if (rw & REQ_SYNC)
d313d7a3
CM
752 btrfs_set_work_high_prio(&async->work);
753
8b712842 754 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 755
d397712b 756 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
757 atomic_read(&fs_info->nr_async_submits)) {
758 wait_event(fs_info->async_submit_wait,
759 (atomic_read(&fs_info->nr_async_submits) == 0));
760 }
761
44b8bd7e
CM
762 return 0;
763}
764
ce3ed71a
CM
765static int btree_csum_one_bio(struct bio *bio)
766{
767 struct bio_vec *bvec = bio->bi_io_vec;
768 int bio_index = 0;
769 struct btrfs_root *root;
770
771 WARN_ON(bio->bi_vcnt <= 0);
d397712b 772 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
773 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
774 csum_dirty_buffer(root, bvec->bv_page);
775 bio_index++;
776 bvec++;
777 }
778 return 0;
779}
780
4a69a410
CM
781static int __btree_submit_bio_start(struct inode *inode, int rw,
782 struct bio *bio, int mirror_num,
eaf25d93
CM
783 unsigned long bio_flags,
784 u64 bio_offset)
22c59948 785{
8b712842
CM
786 /*
787 * when we're called for a write, we're already in the async
5443be45 788 * submission context. Just jump into btrfs_map_bio
8b712842 789 */
4a69a410
CM
790 btree_csum_one_bio(bio);
791 return 0;
792}
22c59948 793
4a69a410 794static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
795 int mirror_num, unsigned long bio_flags,
796 u64 bio_offset)
4a69a410 797{
8b712842 798 /*
4a69a410
CM
799 * when we're called for a write, we're already in the async
800 * submission context. Just jump into btrfs_map_bio
8b712842 801 */
8b712842 802 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
803}
804
44b8bd7e 805static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
806 int mirror_num, unsigned long bio_flags,
807 u64 bio_offset)
44b8bd7e 808{
cad321ad
CM
809 int ret;
810
811 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
812 bio, 1);
813 BUG_ON(ret);
814
7b6d91da 815 if (!(rw & REQ_WRITE)) {
4a69a410
CM
816 /*
817 * called for a read, do the setup so that checksum validation
818 * can happen in the async kernel threads
819 */
4a69a410 820 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 821 mirror_num, 0);
44b8bd7e 822 }
d313d7a3 823
cad321ad
CM
824 /*
825 * kthread helpers are used to submit writes so that checksumming
826 * can happen in parallel across all CPUs
827 */
44b8bd7e 828 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 829 inode, rw, bio, mirror_num, 0,
eaf25d93 830 bio_offset,
4a69a410
CM
831 __btree_submit_bio_start,
832 __btree_submit_bio_done);
44b8bd7e
CM
833}
834
3dd1462e 835#ifdef CONFIG_MIGRATION
784b4e29
CM
836static int btree_migratepage(struct address_space *mapping,
837 struct page *newpage, struct page *page)
838{
839 /*
840 * we can't safely write a btree page from here,
841 * we haven't done the locking hook
842 */
843 if (PageDirty(page))
844 return -EAGAIN;
845 /*
846 * Buffers may be managed in a filesystem specific way.
847 * We must have no buffers or drop them.
848 */
849 if (page_has_private(page) &&
850 !try_to_release_page(page, GFP_KERNEL))
851 return -EAGAIN;
784b4e29
CM
852 return migrate_page(mapping, newpage, page);
853}
3dd1462e 854#endif
784b4e29 855
0da5468f
CM
856static int btree_writepage(struct page *page, struct writeback_control *wbc)
857{
d1310b2e 858 struct extent_io_tree *tree;
b9473439
CM
859 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
860 struct extent_buffer *eb;
861 int was_dirty;
862
d1310b2e 863 tree = &BTRFS_I(page->mapping->host)->io_tree;
b9473439
CM
864 if (!(current->flags & PF_MEMALLOC)) {
865 return extent_write_full_page(tree, page,
866 btree_get_extent, wbc);
867 }
5443be45 868
b9473439 869 redirty_page_for_writepage(wbc, page);
784b4e29 870 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
b9473439
CM
871 WARN_ON(!eb);
872
873 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
874 if (!was_dirty) {
875 spin_lock(&root->fs_info->delalloc_lock);
876 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
877 spin_unlock(&root->fs_info->delalloc_lock);
5443be45 878 }
b9473439
CM
879 free_extent_buffer(eb);
880
881 unlock_page(page);
882 return 0;
5f39d397 883}
0da5468f
CM
884
885static int btree_writepages(struct address_space *mapping,
886 struct writeback_control *wbc)
887{
d1310b2e
CM
888 struct extent_io_tree *tree;
889 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 890 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 891 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 892 u64 num_dirty;
24ab9cd8 893 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
894
895 if (wbc->for_kupdate)
896 return 0;
897
b9473439
CM
898 /* this is a bit racy, but that's ok */
899 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 900 if (num_dirty < thresh)
793955bc 901 return 0;
793955bc 902 }
0da5468f
CM
903 return extent_writepages(tree, mapping, btree_get_extent, wbc);
904}
905
b2950863 906static int btree_readpage(struct file *file, struct page *page)
5f39d397 907{
d1310b2e
CM
908 struct extent_io_tree *tree;
909 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
910 return extent_read_full_page(tree, page, btree_get_extent);
911}
22b0ebda 912
70dec807 913static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 914{
d1310b2e
CM
915 struct extent_io_tree *tree;
916 struct extent_map_tree *map;
5f39d397 917 int ret;
d98237b3 918
98509cfc 919 if (PageWriteback(page) || PageDirty(page))
d397712b 920 return 0;
98509cfc 921
d1310b2e
CM
922 tree = &BTRFS_I(page->mapping->host)->io_tree;
923 map = &BTRFS_I(page->mapping->host)->extent_tree;
6af118ce 924
7b13b7b1 925 ret = try_release_extent_state(map, tree, page, gfp_flags);
d397712b 926 if (!ret)
6af118ce 927 return 0;
6af118ce
CM
928
929 ret = try_release_extent_buffer(tree, page);
5f39d397
CM
930 if (ret == 1) {
931 ClearPagePrivate(page);
932 set_page_private(page, 0);
933 page_cache_release(page);
934 }
6af118ce 935
d98237b3
CM
936 return ret;
937}
938
5f39d397 939static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 940{
d1310b2e
CM
941 struct extent_io_tree *tree;
942 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
943 extent_invalidatepage(tree, page, offset);
944 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 945 if (PagePrivate(page)) {
d397712b
CM
946 printk(KERN_WARNING "btrfs warning page private not zero "
947 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
948 ClearPagePrivate(page);
949 set_page_private(page, 0);
950 page_cache_release(page);
951 }
d98237b3
CM
952}
953
7f09410b 954static const struct address_space_operations btree_aops = {
d98237b3
CM
955 .readpage = btree_readpage,
956 .writepage = btree_writepage,
0da5468f 957 .writepages = btree_writepages,
5f39d397
CM
958 .releasepage = btree_releasepage,
959 .invalidatepage = btree_invalidatepage,
5a92bc88 960#ifdef CONFIG_MIGRATION
784b4e29 961 .migratepage = btree_migratepage,
5a92bc88 962#endif
d98237b3
CM
963};
964
ca7a79ad
CM
965int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
966 u64 parent_transid)
090d1875 967{
5f39d397
CM
968 struct extent_buffer *buf = NULL;
969 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 970 int ret = 0;
090d1875 971
db94535d 972 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 973 if (!buf)
090d1875 974 return 0;
d1310b2e 975 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
f188591e 976 buf, 0, 0, btree_get_extent, 0);
5f39d397 977 free_extent_buffer(buf);
de428b63 978 return ret;
090d1875
CM
979}
980
0999df54
CM
981struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
982 u64 bytenr, u32 blocksize)
983{
984 struct inode *btree_inode = root->fs_info->btree_inode;
985 struct extent_buffer *eb;
986 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 987 bytenr, blocksize);
0999df54
CM
988 return eb;
989}
990
991struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
992 u64 bytenr, u32 blocksize)
993{
994 struct inode *btree_inode = root->fs_info->btree_inode;
995 struct extent_buffer *eb;
996
997 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
ba144192 998 bytenr, blocksize, NULL);
0999df54
CM
999 return eb;
1000}
1001
1002
e02119d5
CM
1003int btrfs_write_tree_block(struct extent_buffer *buf)
1004{
8aa38c31
CH
1005 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1006 buf->start + buf->len - 1);
e02119d5
CM
1007}
1008
1009int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1010{
8aa38c31
CH
1011 return filemap_fdatawait_range(buf->first_page->mapping,
1012 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1013}
1014
0999df54 1015struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1016 u32 blocksize, u64 parent_transid)
0999df54
CM
1017{
1018 struct extent_buffer *buf = NULL;
0999df54
CM
1019 int ret;
1020
0999df54
CM
1021 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1022 if (!buf)
1023 return NULL;
0999df54 1024
ca7a79ad 1025 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 1026
d397712b 1027 if (ret == 0)
b4ce94de 1028 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 1029 return buf;
ce9adaa5 1030
eb60ceac
CM
1031}
1032
e089f05c 1033int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5f39d397 1034 struct extent_buffer *buf)
ed2ff2cb 1035{
5f39d397 1036 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1037 if (btrfs_header_generation(buf) ==
925baedd 1038 root->fs_info->running_transaction->transid) {
b9447ef8 1039 btrfs_assert_tree_locked(buf);
b4ce94de 1040
b9473439
CM
1041 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1042 spin_lock(&root->fs_info->delalloc_lock);
1043 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1044 root->fs_info->dirty_metadata_bytes -= buf->len;
1045 else
1046 WARN_ON(1);
1047 spin_unlock(&root->fs_info->delalloc_lock);
1048 }
b4ce94de 1049
b9473439
CM
1050 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1051 btrfs_set_lock_blocking(buf);
d1310b2e 1052 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1053 buf);
925baedd 1054 }
5f39d397
CM
1055 return 0;
1056}
1057
db94535d 1058static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
87ee04eb 1059 u32 stripesize, struct btrfs_root *root,
9f5fae2f 1060 struct btrfs_fs_info *fs_info,
e20d96d6 1061 u64 objectid)
d97e63b6 1062{
cfaa7295 1063 root->node = NULL;
a28ec197 1064 root->commit_root = NULL;
db94535d
CM
1065 root->sectorsize = sectorsize;
1066 root->nodesize = nodesize;
1067 root->leafsize = leafsize;
87ee04eb 1068 root->stripesize = stripesize;
123abc88 1069 root->ref_cows = 0;
0b86a832 1070 root->track_dirty = 0;
c71bf099 1071 root->in_radix = 0;
d68fc57b
YZ
1072 root->orphan_item_inserted = 0;
1073 root->orphan_cleanup_state = 0;
0b86a832 1074
9f5fae2f 1075 root->fs_info = fs_info;
0f7d52f4
CM
1076 root->objectid = objectid;
1077 root->last_trans = 0;
13a8a7c8 1078 root->highest_objectid = 0;
58176a96 1079 root->name = NULL;
6bef4d31 1080 root->inode_tree = RB_ROOT;
16cdcec7 1081 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1082 root->block_rsv = NULL;
d68fc57b 1083 root->orphan_block_rsv = NULL;
0b86a832
CM
1084
1085 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1086 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1087 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1088 spin_lock_init(&root->orphan_lock);
5d4f98a2 1089 spin_lock_init(&root->inode_lock);
f0486c68 1090 spin_lock_init(&root->accounting_lock);
a2135011 1091 mutex_init(&root->objectid_mutex);
e02119d5 1092 mutex_init(&root->log_mutex);
7237f183
YZ
1093 init_waitqueue_head(&root->log_writer_wait);
1094 init_waitqueue_head(&root->log_commit_wait[0]);
1095 init_waitqueue_head(&root->log_commit_wait[1]);
1096 atomic_set(&root->log_commit[0], 0);
1097 atomic_set(&root->log_commit[1], 0);
1098 atomic_set(&root->log_writers, 0);
1099 root->log_batch = 0;
1100 root->log_transid = 0;
257c62e1 1101 root->last_log_commit = 0;
d0c803c4 1102 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1103 fs_info->btree_inode->i_mapping);
017e5369 1104
3768f368
CM
1105 memset(&root->root_key, 0, sizeof(root->root_key));
1106 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1107 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1108 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1109 root->defrag_trans_start = fs_info->generation;
58176a96 1110 init_completion(&root->kobj_unregister);
6702ed49 1111 root->defrag_running = 0;
4d775673 1112 root->root_key.objectid = objectid;
0ee5dc67 1113 root->anon_dev = 0;
3768f368
CM
1114 return 0;
1115}
1116
db94535d 1117static int find_and_setup_root(struct btrfs_root *tree_root,
9f5fae2f
CM
1118 struct btrfs_fs_info *fs_info,
1119 u64 objectid,
e20d96d6 1120 struct btrfs_root *root)
3768f368
CM
1121{
1122 int ret;
db94535d 1123 u32 blocksize;
84234f3a 1124 u64 generation;
3768f368 1125
db94535d 1126 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1127 tree_root->sectorsize, tree_root->stripesize,
1128 root, fs_info, objectid);
3768f368
CM
1129 ret = btrfs_find_last_root(tree_root, objectid,
1130 &root->root_item, &root->root_key);
4df27c4d
YZ
1131 if (ret > 0)
1132 return -ENOENT;
3768f368
CM
1133 BUG_ON(ret);
1134
84234f3a 1135 generation = btrfs_root_generation(&root->root_item);
db94535d 1136 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1137 root->commit_root = NULL;
db94535d 1138 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1139 blocksize, generation);
68433b73
CM
1140 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1141 free_extent_buffer(root->node);
af31f5e5 1142 root->node = NULL;
68433b73
CM
1143 return -EIO;
1144 }
4df27c4d 1145 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1146 return 0;
1147}
1148
7237f183
YZ
1149static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1150 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1151{
1152 struct btrfs_root *root;
1153 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1154 struct extent_buffer *leaf;
e02119d5
CM
1155
1156 root = kzalloc(sizeof(*root), GFP_NOFS);
1157 if (!root)
7237f183 1158 return ERR_PTR(-ENOMEM);
e02119d5
CM
1159
1160 __setup_root(tree_root->nodesize, tree_root->leafsize,
1161 tree_root->sectorsize, tree_root->stripesize,
1162 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1163
1164 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1165 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1166 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1167 /*
1168 * log trees do not get reference counted because they go away
1169 * before a real commit is actually done. They do store pointers
1170 * to file data extents, and those reference counts still get
1171 * updated (along with back refs to the log tree).
1172 */
e02119d5
CM
1173 root->ref_cows = 0;
1174
5d4f98a2
YZ
1175 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1176 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
7237f183
YZ
1177 if (IS_ERR(leaf)) {
1178 kfree(root);
1179 return ERR_CAST(leaf);
1180 }
e02119d5 1181
5d4f98a2
YZ
1182 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1183 btrfs_set_header_bytenr(leaf, leaf->start);
1184 btrfs_set_header_generation(leaf, trans->transid);
1185 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1186 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1187 root->node = leaf;
e02119d5
CM
1188
1189 write_extent_buffer(root->node, root->fs_info->fsid,
1190 (unsigned long)btrfs_header_fsid(root->node),
1191 BTRFS_FSID_SIZE);
1192 btrfs_mark_buffer_dirty(root->node);
1193 btrfs_tree_unlock(root->node);
7237f183
YZ
1194 return root;
1195}
1196
1197int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1198 struct btrfs_fs_info *fs_info)
1199{
1200 struct btrfs_root *log_root;
1201
1202 log_root = alloc_log_tree(trans, fs_info);
1203 if (IS_ERR(log_root))
1204 return PTR_ERR(log_root);
1205 WARN_ON(fs_info->log_root_tree);
1206 fs_info->log_root_tree = log_root;
1207 return 0;
1208}
1209
1210int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1211 struct btrfs_root *root)
1212{
1213 struct btrfs_root *log_root;
1214 struct btrfs_inode_item *inode_item;
1215
1216 log_root = alloc_log_tree(trans, root->fs_info);
1217 if (IS_ERR(log_root))
1218 return PTR_ERR(log_root);
1219
1220 log_root->last_trans = trans->transid;
1221 log_root->root_key.offset = root->root_key.objectid;
1222
1223 inode_item = &log_root->root_item.inode;
1224 inode_item->generation = cpu_to_le64(1);
1225 inode_item->size = cpu_to_le64(3);
1226 inode_item->nlink = cpu_to_le32(1);
1227 inode_item->nbytes = cpu_to_le64(root->leafsize);
1228 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1229
5d4f98a2 1230 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1231
1232 WARN_ON(root->log_root);
1233 root->log_root = log_root;
1234 root->log_transid = 0;
257c62e1 1235 root->last_log_commit = 0;
e02119d5
CM
1236 return 0;
1237}
1238
1239struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1240 struct btrfs_key *location)
1241{
1242 struct btrfs_root *root;
1243 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1244 struct btrfs_path *path;
5f39d397 1245 struct extent_buffer *l;
84234f3a 1246 u64 generation;
db94535d 1247 u32 blocksize;
0f7d52f4
CM
1248 int ret = 0;
1249
5eda7b5e 1250 root = kzalloc(sizeof(*root), GFP_NOFS);
0cf6c620 1251 if (!root)
0f7d52f4 1252 return ERR_PTR(-ENOMEM);
0f7d52f4 1253 if (location->offset == (u64)-1) {
db94535d 1254 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1255 location->objectid, root);
1256 if (ret) {
0f7d52f4
CM
1257 kfree(root);
1258 return ERR_PTR(ret);
1259 }
13a8a7c8 1260 goto out;
0f7d52f4
CM
1261 }
1262
db94535d 1263 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1264 tree_root->sectorsize, tree_root->stripesize,
1265 root, fs_info, location->objectid);
0f7d52f4
CM
1266
1267 path = btrfs_alloc_path();
db5b493a
TI
1268 if (!path) {
1269 kfree(root);
1270 return ERR_PTR(-ENOMEM);
1271 }
0f7d52f4 1272 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1273 if (ret == 0) {
1274 l = path->nodes[0];
1275 read_extent_buffer(l, &root->root_item,
1276 btrfs_item_ptr_offset(l, path->slots[0]),
1277 sizeof(root->root_item));
1278 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1279 }
0f7d52f4
CM
1280 btrfs_free_path(path);
1281 if (ret) {
5e540f77 1282 kfree(root);
13a8a7c8
YZ
1283 if (ret > 0)
1284 ret = -ENOENT;
0f7d52f4
CM
1285 return ERR_PTR(ret);
1286 }
13a8a7c8 1287
84234f3a 1288 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1289 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1290 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1291 blocksize, generation);
5d4f98a2 1292 root->commit_root = btrfs_root_node(root);
0f7d52f4 1293 BUG_ON(!root->node);
13a8a7c8 1294out:
08fe4db1 1295 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1296 root->ref_cows = 1;
08fe4db1
LZ
1297 btrfs_check_and_init_root_item(&root->root_item);
1298 }
13a8a7c8 1299
5eda7b5e
CM
1300 return root;
1301}
1302
edbd8d4e
CM
1303struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1304 struct btrfs_key *location)
5eda7b5e
CM
1305{
1306 struct btrfs_root *root;
1307 int ret;
1308
edbd8d4e
CM
1309 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1310 return fs_info->tree_root;
1311 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1312 return fs_info->extent_root;
8f18cf13
CM
1313 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1314 return fs_info->chunk_root;
1315 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1316 return fs_info->dev_root;
0403e47e
YZ
1317 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1318 return fs_info->csum_root;
4df27c4d
YZ
1319again:
1320 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1321 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1322 (unsigned long)location->objectid);
4df27c4d 1323 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1324 if (root)
1325 return root;
1326
e02119d5 1327 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1328 if (IS_ERR(root))
1329 return root;
3394e160 1330
581bb050 1331 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1332 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1333 GFP_NOFS);
35a30d7c
DS
1334 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1335 ret = -ENOMEM;
581bb050 1336 goto fail;
35a30d7c 1337 }
581bb050
LZ
1338
1339 btrfs_init_free_ino_ctl(root);
1340 mutex_init(&root->fs_commit_mutex);
1341 spin_lock_init(&root->cache_lock);
1342 init_waitqueue_head(&root->cache_wait);
1343
0ee5dc67 1344 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1345 if (ret)
1346 goto fail;
3394e160 1347
d68fc57b
YZ
1348 if (btrfs_root_refs(&root->root_item) == 0) {
1349 ret = -ENOENT;
1350 goto fail;
1351 }
1352
1353 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1354 if (ret < 0)
1355 goto fail;
1356 if (ret == 0)
1357 root->orphan_item_inserted = 1;
1358
4df27c4d
YZ
1359 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1360 if (ret)
1361 goto fail;
1362
1363 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1364 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1365 (unsigned long)root->root_key.objectid,
0f7d52f4 1366 root);
d68fc57b 1367 if (ret == 0)
4df27c4d 1368 root->in_radix = 1;
d68fc57b 1369
4df27c4d
YZ
1370 spin_unlock(&fs_info->fs_roots_radix_lock);
1371 radix_tree_preload_end();
0f7d52f4 1372 if (ret) {
4df27c4d
YZ
1373 if (ret == -EEXIST) {
1374 free_fs_root(root);
1375 goto again;
1376 }
1377 goto fail;
0f7d52f4 1378 }
4df27c4d
YZ
1379
1380 ret = btrfs_find_dead_roots(fs_info->tree_root,
1381 root->root_key.objectid);
1382 WARN_ON(ret);
edbd8d4e 1383 return root;
4df27c4d
YZ
1384fail:
1385 free_fs_root(root);
1386 return ERR_PTR(ret);
edbd8d4e
CM
1387}
1388
04160088
CM
1389static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1390{
1391 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1392 int ret = 0;
04160088
CM
1393 struct btrfs_device *device;
1394 struct backing_dev_info *bdi;
b7967db7 1395
1f78160c
XG
1396 rcu_read_lock();
1397 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1398 if (!device->bdev)
1399 continue;
04160088
CM
1400 bdi = blk_get_backing_dev_info(device->bdev);
1401 if (bdi && bdi_congested(bdi, bdi_bits)) {
1402 ret = 1;
1403 break;
1404 }
1405 }
1f78160c 1406 rcu_read_unlock();
04160088
CM
1407 return ret;
1408}
1409
ad081f14
JA
1410/*
1411 * If this fails, caller must call bdi_destroy() to get rid of the
1412 * bdi again.
1413 */
04160088
CM
1414static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1415{
ad081f14
JA
1416 int err;
1417
1418 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1419 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1420 if (err)
1421 return err;
1422
4575c9cc 1423 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1424 bdi->congested_fn = btrfs_congested_fn;
1425 bdi->congested_data = info;
1426 return 0;
1427}
1428
ce9adaa5
CM
1429static int bio_ready_for_csum(struct bio *bio)
1430{
1431 u64 length = 0;
1432 u64 buf_len = 0;
1433 u64 start = 0;
1434 struct page *page;
1435 struct extent_io_tree *io_tree = NULL;
ce9adaa5
CM
1436 struct bio_vec *bvec;
1437 int i;
1438 int ret;
1439
1440 bio_for_each_segment(bvec, bio, i) {
1441 page = bvec->bv_page;
1442 if (page->private == EXTENT_PAGE_PRIVATE) {
1443 length += bvec->bv_len;
1444 continue;
1445 }
1446 if (!page->private) {
1447 length += bvec->bv_len;
1448 continue;
1449 }
1450 length = bvec->bv_len;
1451 buf_len = page->private >> 2;
1452 start = page_offset(page) + bvec->bv_offset;
1453 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
ce9adaa5
CM
1454 }
1455 /* are we fully contained in this bio? */
1456 if (buf_len <= length)
1457 return 1;
1458
1459 ret = extent_range_uptodate(io_tree, start + length,
1460 start + buf_len - 1);
ce9adaa5
CM
1461 return ret;
1462}
1463
8b712842
CM
1464/*
1465 * called by the kthread helper functions to finally call the bio end_io
1466 * functions. This is where read checksum verification actually happens
1467 */
1468static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1469{
ce9adaa5 1470 struct bio *bio;
8b712842
CM
1471 struct end_io_wq *end_io_wq;
1472 struct btrfs_fs_info *fs_info;
ce9adaa5 1473 int error;
ce9adaa5 1474
8b712842
CM
1475 end_io_wq = container_of(work, struct end_io_wq, work);
1476 bio = end_io_wq->bio;
1477 fs_info = end_io_wq->info;
ce9adaa5 1478
cad321ad 1479 /* metadata bio reads are special because the whole tree block must
8b712842
CM
1480 * be checksummed at once. This makes sure the entire block is in
1481 * ram and up to date before trying to verify things. For
1482 * blocksize <= pagesize, it is basically a noop
1483 */
7b6d91da 1484 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
cad321ad 1485 !bio_ready_for_csum(bio)) {
d20f7043 1486 btrfs_queue_worker(&fs_info->endio_meta_workers,
8b712842
CM
1487 &end_io_wq->work);
1488 return;
1489 }
1490 error = end_io_wq->error;
1491 bio->bi_private = end_io_wq->private;
1492 bio->bi_end_io = end_io_wq->end_io;
1493 kfree(end_io_wq);
8b712842 1494 bio_endio(bio, error);
44b8bd7e
CM
1495}
1496
a74a4b97
CM
1497static int cleaner_kthread(void *arg)
1498{
1499 struct btrfs_root *root = arg;
1500
1501 do {
a74a4b97 1502 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1503
1504 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1505 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1506 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1507 btrfs_clean_old_snapshots(root);
1508 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1509 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1510 }
a74a4b97
CM
1511
1512 if (freezing(current)) {
1513 refrigerator();
1514 } else {
a74a4b97 1515 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1516 if (!kthread_should_stop())
1517 schedule();
a74a4b97
CM
1518 __set_current_state(TASK_RUNNING);
1519 }
1520 } while (!kthread_should_stop());
1521 return 0;
1522}
1523
1524static int transaction_kthread(void *arg)
1525{
1526 struct btrfs_root *root = arg;
1527 struct btrfs_trans_handle *trans;
1528 struct btrfs_transaction *cur;
8929ecfa 1529 u64 transid;
a74a4b97
CM
1530 unsigned long now;
1531 unsigned long delay;
1532 int ret;
1533
1534 do {
a74a4b97
CM
1535 delay = HZ * 30;
1536 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1538
a4abeea4 1539 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1540 cur = root->fs_info->running_transaction;
1541 if (!cur) {
a4abeea4 1542 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1543 goto sleep;
1544 }
31153d81 1545
a74a4b97 1546 now = get_seconds();
8929ecfa
YZ
1547 if (!cur->blocked &&
1548 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1549 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1550 delay = HZ * 5;
1551 goto sleep;
1552 }
8929ecfa 1553 transid = cur->transid;
a4abeea4 1554 spin_unlock(&root->fs_info->trans_lock);
56bec294 1555
7a7eaa40 1556 trans = btrfs_join_transaction(root);
3612b495 1557 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1558 if (transid == trans->transid) {
1559 ret = btrfs_commit_transaction(trans, root);
1560 BUG_ON(ret);
1561 } else {
1562 btrfs_end_transaction(trans, root);
1563 }
a74a4b97
CM
1564sleep:
1565 wake_up_process(root->fs_info->cleaner_kthread);
1566 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1567
1568 if (freezing(current)) {
1569 refrigerator();
1570 } else {
a74a4b97 1571 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1572 if (!kthread_should_stop() &&
1573 !btrfs_transaction_blocked(root->fs_info))
1574 schedule_timeout(delay);
a74a4b97
CM
1575 __set_current_state(TASK_RUNNING);
1576 }
1577 } while (!kthread_should_stop());
1578 return 0;
1579}
1580
af31f5e5
CM
1581/*
1582 * this will find the highest generation in the array of
1583 * root backups. The index of the highest array is returned,
1584 * or -1 if we can't find anything.
1585 *
1586 * We check to make sure the array is valid by comparing the
1587 * generation of the latest root in the array with the generation
1588 * in the super block. If they don't match we pitch it.
1589 */
1590static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1591{
1592 u64 cur;
1593 int newest_index = -1;
1594 struct btrfs_root_backup *root_backup;
1595 int i;
1596
1597 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1598 root_backup = info->super_copy->super_roots + i;
1599 cur = btrfs_backup_tree_root_gen(root_backup);
1600 if (cur == newest_gen)
1601 newest_index = i;
1602 }
1603
1604 /* check to see if we actually wrapped around */
1605 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1606 root_backup = info->super_copy->super_roots;
1607 cur = btrfs_backup_tree_root_gen(root_backup);
1608 if (cur == newest_gen)
1609 newest_index = 0;
1610 }
1611 return newest_index;
1612}
1613
1614
1615/*
1616 * find the oldest backup so we know where to store new entries
1617 * in the backup array. This will set the backup_root_index
1618 * field in the fs_info struct
1619 */
1620static void find_oldest_super_backup(struct btrfs_fs_info *info,
1621 u64 newest_gen)
1622{
1623 int newest_index = -1;
1624
1625 newest_index = find_newest_super_backup(info, newest_gen);
1626 /* if there was garbage in there, just move along */
1627 if (newest_index == -1) {
1628 info->backup_root_index = 0;
1629 } else {
1630 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1631 }
1632}
1633
1634/*
1635 * copy all the root pointers into the super backup array.
1636 * this will bump the backup pointer by one when it is
1637 * done
1638 */
1639static void backup_super_roots(struct btrfs_fs_info *info)
1640{
1641 int next_backup;
1642 struct btrfs_root_backup *root_backup;
1643 int last_backup;
1644
1645 next_backup = info->backup_root_index;
1646 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1647 BTRFS_NUM_BACKUP_ROOTS;
1648
1649 /*
1650 * just overwrite the last backup if we're at the same generation
1651 * this happens only at umount
1652 */
1653 root_backup = info->super_for_commit->super_roots + last_backup;
1654 if (btrfs_backup_tree_root_gen(root_backup) ==
1655 btrfs_header_generation(info->tree_root->node))
1656 next_backup = last_backup;
1657
1658 root_backup = info->super_for_commit->super_roots + next_backup;
1659
1660 /*
1661 * make sure all of our padding and empty slots get zero filled
1662 * regardless of which ones we use today
1663 */
1664 memset(root_backup, 0, sizeof(*root_backup));
1665
1666 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1667
1668 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1669 btrfs_set_backup_tree_root_gen(root_backup,
1670 btrfs_header_generation(info->tree_root->node));
1671
1672 btrfs_set_backup_tree_root_level(root_backup,
1673 btrfs_header_level(info->tree_root->node));
1674
1675 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1676 btrfs_set_backup_chunk_root_gen(root_backup,
1677 btrfs_header_generation(info->chunk_root->node));
1678 btrfs_set_backup_chunk_root_level(root_backup,
1679 btrfs_header_level(info->chunk_root->node));
1680
1681 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1682 btrfs_set_backup_extent_root_gen(root_backup,
1683 btrfs_header_generation(info->extent_root->node));
1684 btrfs_set_backup_extent_root_level(root_backup,
1685 btrfs_header_level(info->extent_root->node));
1686
1687 btrfs_set_backup_fs_root(root_backup, info->fs_root->node->start);
1688 btrfs_set_backup_fs_root_gen(root_backup,
1689 btrfs_header_generation(info->fs_root->node));
1690 btrfs_set_backup_fs_root_level(root_backup,
1691 btrfs_header_level(info->fs_root->node));
1692
1693 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1694 btrfs_set_backup_dev_root_gen(root_backup,
1695 btrfs_header_generation(info->dev_root->node));
1696 btrfs_set_backup_dev_root_level(root_backup,
1697 btrfs_header_level(info->dev_root->node));
1698
1699 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1700 btrfs_set_backup_csum_root_gen(root_backup,
1701 btrfs_header_generation(info->csum_root->node));
1702 btrfs_set_backup_csum_root_level(root_backup,
1703 btrfs_header_level(info->csum_root->node));
1704
1705 btrfs_set_backup_total_bytes(root_backup,
1706 btrfs_super_total_bytes(info->super_copy));
1707 btrfs_set_backup_bytes_used(root_backup,
1708 btrfs_super_bytes_used(info->super_copy));
1709 btrfs_set_backup_num_devices(root_backup,
1710 btrfs_super_num_devices(info->super_copy));
1711
1712 /*
1713 * if we don't copy this out to the super_copy, it won't get remembered
1714 * for the next commit
1715 */
1716 memcpy(&info->super_copy->super_roots,
1717 &info->super_for_commit->super_roots,
1718 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1719}
1720
1721/*
1722 * this copies info out of the root backup array and back into
1723 * the in-memory super block. It is meant to help iterate through
1724 * the array, so you send it the number of backups you've already
1725 * tried and the last backup index you used.
1726 *
1727 * this returns -1 when it has tried all the backups
1728 */
1729static noinline int next_root_backup(struct btrfs_fs_info *info,
1730 struct btrfs_super_block *super,
1731 int *num_backups_tried, int *backup_index)
1732{
1733 struct btrfs_root_backup *root_backup;
1734 int newest = *backup_index;
1735
1736 if (*num_backups_tried == 0) {
1737 u64 gen = btrfs_super_generation(super);
1738
1739 newest = find_newest_super_backup(info, gen);
1740 if (newest == -1)
1741 return -1;
1742
1743 *backup_index = newest;
1744 *num_backups_tried = 1;
1745 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1746 /* we've tried all the backups, all done */
1747 return -1;
1748 } else {
1749 /* jump to the next oldest backup */
1750 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1751 BTRFS_NUM_BACKUP_ROOTS;
1752 *backup_index = newest;
1753 *num_backups_tried += 1;
1754 }
1755 root_backup = super->super_roots + newest;
1756
1757 btrfs_set_super_generation(super,
1758 btrfs_backup_tree_root_gen(root_backup));
1759 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1760 btrfs_set_super_root_level(super,
1761 btrfs_backup_tree_root_level(root_backup));
1762 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1763
1764 /*
1765 * fixme: the total bytes and num_devices need to match or we should
1766 * need a fsck
1767 */
1768 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1769 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1770 return 0;
1771}
1772
1773/* helper to cleanup tree roots */
1774static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1775{
1776 free_extent_buffer(info->tree_root->node);
1777 free_extent_buffer(info->tree_root->commit_root);
1778 free_extent_buffer(info->dev_root->node);
1779 free_extent_buffer(info->dev_root->commit_root);
1780 free_extent_buffer(info->extent_root->node);
1781 free_extent_buffer(info->extent_root->commit_root);
1782 free_extent_buffer(info->csum_root->node);
1783 free_extent_buffer(info->csum_root->commit_root);
1784
1785 info->tree_root->node = NULL;
1786 info->tree_root->commit_root = NULL;
1787 info->dev_root->node = NULL;
1788 info->dev_root->commit_root = NULL;
1789 info->extent_root->node = NULL;
1790 info->extent_root->commit_root = NULL;
1791 info->csum_root->node = NULL;
1792 info->csum_root->commit_root = NULL;
1793
1794 if (chunk_root) {
1795 free_extent_buffer(info->chunk_root->node);
1796 free_extent_buffer(info->chunk_root->commit_root);
1797 info->chunk_root->node = NULL;
1798 info->chunk_root->commit_root = NULL;
1799 }
1800}
1801
1802
8a4b83cc 1803struct btrfs_root *open_ctree(struct super_block *sb,
dfe25020
CM
1804 struct btrfs_fs_devices *fs_devices,
1805 char *options)
2e635a27 1806{
db94535d
CM
1807 u32 sectorsize;
1808 u32 nodesize;
1809 u32 leafsize;
1810 u32 blocksize;
87ee04eb 1811 u32 stripesize;
84234f3a 1812 u64 generation;
f2b636e8 1813 u64 features;
3de4586c 1814 struct btrfs_key location;
a061fc8d 1815 struct buffer_head *bh;
e02119d5 1816 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
e20d96d6 1817 GFP_NOFS);
d20f7043
CM
1818 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1819 GFP_NOFS);
450ba0ea 1820 struct btrfs_root *tree_root = btrfs_sb(sb);
4891aca2 1821 struct btrfs_fs_info *fs_info = NULL;
e02119d5 1822 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
0b86a832 1823 GFP_NOFS);
e02119d5 1824 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
0b86a832 1825 GFP_NOFS);
e02119d5
CM
1826 struct btrfs_root *log_tree_root;
1827
eb60ceac 1828 int ret;
e58ca020 1829 int err = -EINVAL;
af31f5e5
CM
1830 int num_backups_tried = 0;
1831 int backup_index = 0;
4543df7e 1832
2c90e5d6 1833 struct btrfs_super_block *disk_super;
8790d502 1834
4891aca2 1835 if (!extent_root || !tree_root || !tree_root->fs_info ||
d20f7043 1836 !chunk_root || !dev_root || !csum_root) {
39279cc3
CM
1837 err = -ENOMEM;
1838 goto fail;
1839 }
4891aca2 1840 fs_info = tree_root->fs_info;
76dda93c
YZ
1841
1842 ret = init_srcu_struct(&fs_info->subvol_srcu);
1843 if (ret) {
1844 err = ret;
1845 goto fail;
1846 }
1847
1848 ret = setup_bdi(fs_info, &fs_info->bdi);
1849 if (ret) {
1850 err = ret;
1851 goto fail_srcu;
1852 }
1853
1854 fs_info->btree_inode = new_inode(sb);
1855 if (!fs_info->btree_inode) {
1856 err = -ENOMEM;
1857 goto fail_bdi;
1858 }
1859
a6591715 1860 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1861
76dda93c 1862 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1863 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1864 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1865 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1866 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1867 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1868 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1869 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1870 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1871 spin_lock_init(&fs_info->trans_lock);
31153d81 1872 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1873 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1874 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1875 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1876 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1877 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1878
58176a96 1879 init_completion(&fs_info->kobj_unregister);
9f5fae2f
CM
1880 fs_info->tree_root = tree_root;
1881 fs_info->extent_root = extent_root;
d20f7043 1882 fs_info->csum_root = csum_root;
0b86a832
CM
1883 fs_info->chunk_root = chunk_root;
1884 fs_info->dev_root = dev_root;
8a4b83cc 1885 fs_info->fs_devices = fs_devices;
0b86a832 1886 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1887 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1888 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1889 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1890 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1891 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1892 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1893 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
cb03c743 1894 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1895 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1896 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1897 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1898 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1899 fs_info->sb = sb;
6f568d35 1900 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1901 fs_info->metadata_ratio = 0;
4cb5300b 1902 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1903 fs_info->trans_no_join = 0;
2bf64758 1904 fs_info->free_chunk_space = 0;
c8b97818 1905
b34b086c
CM
1906 fs_info->thread_pool_size = min_t(unsigned long,
1907 num_online_cpus() + 2, 8);
0afbaf8c 1908
3eaa2885
CM
1909 INIT_LIST_HEAD(&fs_info->ordered_extents);
1910 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
1911 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1912 GFP_NOFS);
1913 if (!fs_info->delayed_root) {
1914 err = -ENOMEM;
1915 goto fail_iput;
1916 }
1917 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 1918
a2de733c
AJ
1919 mutex_init(&fs_info->scrub_lock);
1920 atomic_set(&fs_info->scrubs_running, 0);
1921 atomic_set(&fs_info->scrub_pause_req, 0);
1922 atomic_set(&fs_info->scrubs_paused, 0);
1923 atomic_set(&fs_info->scrub_cancel_req, 0);
1924 init_waitqueue_head(&fs_info->scrub_pause_wait);
1925 init_rwsem(&fs_info->scrub_super_lock);
1926 fs_info->scrub_workers_refcnt = 0;
a2de733c 1927
a061fc8d
CM
1928 sb->s_blocksize = 4096;
1929 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 1930 sb->s_bdi = &fs_info->bdi;
a061fc8d 1931
76dda93c
YZ
1932 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1933 fs_info->btree_inode->i_nlink = 1;
0afbaf8c
CM
1934 /*
1935 * we set the i_size on the btree inode to the max possible int.
1936 * the real end of the address space is determined by all of
1937 * the devices in the system
1938 */
1939 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 1940 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
1941 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1942
5d4f98a2 1943 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 1944 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 1945 fs_info->btree_inode->i_mapping);
a8067e02 1946 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
1947
1948 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 1949
76dda93c
YZ
1950 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1951 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1952 sizeof(struct btrfs_key));
1953 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 1954 insert_inode_hash(fs_info->btree_inode);
76dda93c 1955
0f9dd46c 1956 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 1957 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 1958
11833d66 1959 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 1960 fs_info->btree_inode->i_mapping);
11833d66 1961 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 1962 fs_info->btree_inode->i_mapping);
11833d66 1963 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 1964 fs_info->do_barriers = 1;
e18e4809 1965
39279cc3 1966
5a3f23d5 1967 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 1968 mutex_init(&fs_info->tree_log_mutex);
925baedd 1969 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
1970 mutex_init(&fs_info->transaction_kthread_mutex);
1971 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 1972 mutex_init(&fs_info->volume_mutex);
276e680d 1973 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 1974 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 1975 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
1976
1977 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1978 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1979
e6dcd2dc 1980 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 1981 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 1982 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 1983 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 1984
0b86a832 1985 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 1986 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 1987
a512bbf8 1988 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
1989 if (!bh) {
1990 err = -EINVAL;
16cdcec7 1991 goto fail_alloc;
20b45077 1992 }
39279cc3 1993
6c41761f
DS
1994 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
1995 memcpy(fs_info->super_for_commit, fs_info->super_copy,
1996 sizeof(*fs_info->super_for_commit));
a061fc8d 1997 brelse(bh);
5f39d397 1998
6c41761f 1999 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2000
6c41761f 2001 disk_super = fs_info->super_copy;
0f7d52f4 2002 if (!btrfs_super_root(disk_super))
16cdcec7 2003 goto fail_alloc;
0f7d52f4 2004
acce952b 2005 /* check FS state, whether FS is broken. */
2006 fs_info->fs_state |= btrfs_super_flags(disk_super);
2007
2008 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2009
af31f5e5
CM
2010 /*
2011 * run through our array of backup supers and setup
2012 * our ring pointer to the oldest one
2013 */
2014 generation = btrfs_super_generation(disk_super);
2015 find_oldest_super_backup(fs_info, generation);
2016
75e7cb7f
LB
2017 /*
2018 * In the long term, we'll store the compression type in the super
2019 * block, and it'll be used for per file compression control.
2020 */
2021 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2022
2b82032c
YZ
2023 ret = btrfs_parse_options(tree_root, options);
2024 if (ret) {
2025 err = ret;
16cdcec7 2026 goto fail_alloc;
2b82032c 2027 }
dfe25020 2028
f2b636e8
JB
2029 features = btrfs_super_incompat_flags(disk_super) &
2030 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2031 if (features) {
2032 printk(KERN_ERR "BTRFS: couldn't mount because of "
2033 "unsupported optional features (%Lx).\n",
21380931 2034 (unsigned long long)features);
f2b636e8 2035 err = -EINVAL;
16cdcec7 2036 goto fail_alloc;
f2b636e8
JB
2037 }
2038
5d4f98a2 2039 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2040 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2041 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2042 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2043 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2044
f2b636e8
JB
2045 features = btrfs_super_compat_ro_flags(disk_super) &
2046 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2047 if (!(sb->s_flags & MS_RDONLY) && features) {
2048 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2049 "unsupported option features (%Lx).\n",
21380931 2050 (unsigned long long)features);
f2b636e8 2051 err = -EINVAL;
16cdcec7 2052 goto fail_alloc;
f2b636e8 2053 }
61d92c32
CM
2054
2055 btrfs_init_workers(&fs_info->generic_worker,
2056 "genwork", 1, NULL);
2057
5443be45 2058 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2059 fs_info->thread_pool_size,
2060 &fs_info->generic_worker);
c8b97818 2061
771ed689 2062 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2063 fs_info->thread_pool_size,
2064 &fs_info->generic_worker);
771ed689 2065
5443be45 2066 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2067 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2068 fs_info->thread_pool_size),
2069 &fs_info->generic_worker);
61b49440 2070
bab39bf9
JB
2071 btrfs_init_workers(&fs_info->caching_workers, "cache",
2072 2, &fs_info->generic_worker);
2073
61b49440
CM
2074 /* a higher idle thresh on the submit workers makes it much more
2075 * likely that bios will be send down in a sane order to the
2076 * devices
2077 */
2078 fs_info->submit_workers.idle_thresh = 64;
53863232 2079
771ed689 2080 fs_info->workers.idle_thresh = 16;
4a69a410 2081 fs_info->workers.ordered = 1;
61b49440 2082
771ed689
CM
2083 fs_info->delalloc_workers.idle_thresh = 2;
2084 fs_info->delalloc_workers.ordered = 1;
2085
61d92c32
CM
2086 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2087 &fs_info->generic_worker);
5443be45 2088 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2089 fs_info->thread_pool_size,
2090 &fs_info->generic_worker);
d20f7043 2091 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2092 fs_info->thread_pool_size,
2093 &fs_info->generic_worker);
cad321ad 2094 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2095 "endio-meta-write", fs_info->thread_pool_size,
2096 &fs_info->generic_worker);
5443be45 2097 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2098 fs_info->thread_pool_size,
2099 &fs_info->generic_worker);
0cb59c99
JB
2100 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2101 1, &fs_info->generic_worker);
16cdcec7
MX
2102 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2103 fs_info->thread_pool_size,
2104 &fs_info->generic_worker);
61b49440
CM
2105
2106 /*
2107 * endios are largely parallel and should have a very
2108 * low idle thresh
2109 */
2110 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2111 fs_info->endio_meta_workers.idle_thresh = 4;
2112
9042846b
CM
2113 fs_info->endio_write_workers.idle_thresh = 2;
2114 fs_info->endio_meta_write_workers.idle_thresh = 2;
2115
4543df7e 2116 btrfs_start_workers(&fs_info->workers, 1);
61d92c32 2117 btrfs_start_workers(&fs_info->generic_worker, 1);
1cc127b5 2118 btrfs_start_workers(&fs_info->submit_workers, 1);
771ed689 2119 btrfs_start_workers(&fs_info->delalloc_workers, 1);
247e743c 2120 btrfs_start_workers(&fs_info->fixup_workers, 1);
9042846b
CM
2121 btrfs_start_workers(&fs_info->endio_workers, 1);
2122 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
2123 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
2124 btrfs_start_workers(&fs_info->endio_write_workers, 1);
0cb59c99 2125 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
16cdcec7 2126 btrfs_start_workers(&fs_info->delayed_workers, 1);
bab39bf9 2127 btrfs_start_workers(&fs_info->caching_workers, 1);
4543df7e 2128
4575c9cc 2129 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2130 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2131 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2132
db94535d
CM
2133 nodesize = btrfs_super_nodesize(disk_super);
2134 leafsize = btrfs_super_leafsize(disk_super);
2135 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2136 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2137 tree_root->nodesize = nodesize;
2138 tree_root->leafsize = leafsize;
2139 tree_root->sectorsize = sectorsize;
87ee04eb 2140 tree_root->stripesize = stripesize;
a061fc8d
CM
2141
2142 sb->s_blocksize = sectorsize;
2143 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2144
39279cc3
CM
2145 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2146 sizeof(disk_super->magic))) {
d397712b 2147 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2148 goto fail_sb_buffer;
2149 }
19c00ddc 2150
925baedd 2151 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2152 ret = btrfs_read_sys_array(tree_root);
925baedd 2153 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2154 if (ret) {
d397712b
CM
2155 printk(KERN_WARNING "btrfs: failed to read the system "
2156 "array on %s\n", sb->s_id);
5d4f98a2 2157 goto fail_sb_buffer;
84eed90f 2158 }
0b86a832
CM
2159
2160 blocksize = btrfs_level_size(tree_root,
2161 btrfs_super_chunk_root_level(disk_super));
84234f3a 2162 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2163
2164 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2165 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2166
2167 chunk_root->node = read_tree_block(chunk_root,
2168 btrfs_super_chunk_root(disk_super),
84234f3a 2169 blocksize, generation);
0b86a832 2170 BUG_ON(!chunk_root->node);
83121942
DW
2171 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2172 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2173 sb->s_id);
af31f5e5 2174 goto fail_tree_roots;
83121942 2175 }
5d4f98a2
YZ
2176 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2177 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2178
e17cade2 2179 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2180 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2181 BTRFS_UUID_SIZE);
e17cade2 2182
925baedd 2183 mutex_lock(&fs_info->chunk_mutex);
0b86a832 2184 ret = btrfs_read_chunk_tree(chunk_root);
925baedd 2185 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2186 if (ret) {
d397712b
CM
2187 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2188 sb->s_id);
af31f5e5 2189 goto fail_tree_roots;
2b82032c 2190 }
0b86a832 2191
dfe25020
CM
2192 btrfs_close_extra_devices(fs_devices);
2193
af31f5e5 2194retry_root_backup:
db94535d
CM
2195 blocksize = btrfs_level_size(tree_root,
2196 btrfs_super_root_level(disk_super));
84234f3a 2197 generation = btrfs_super_generation(disk_super);
0b86a832 2198
e20d96d6 2199 tree_root->node = read_tree_block(tree_root,
db94535d 2200 btrfs_super_root(disk_super),
84234f3a 2201 blocksize, generation);
af31f5e5
CM
2202 if (!tree_root->node ||
2203 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2204 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2205 sb->s_id);
af31f5e5
CM
2206
2207 goto recovery_tree_root;
83121942 2208 }
af31f5e5 2209
5d4f98a2
YZ
2210 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2211 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2212
2213 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2214 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2215 if (ret)
af31f5e5 2216 goto recovery_tree_root;
0b86a832
CM
2217 extent_root->track_dirty = 1;
2218
2219 ret = find_and_setup_root(tree_root, fs_info,
2220 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2221 if (ret)
af31f5e5 2222 goto recovery_tree_root;
5d4f98a2 2223 dev_root->track_dirty = 1;
3768f368 2224
d20f7043
CM
2225 ret = find_and_setup_root(tree_root, fs_info,
2226 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2227 if (ret)
af31f5e5 2228 goto recovery_tree_root;
d20f7043
CM
2229
2230 csum_root->track_dirty = 1;
2231
8929ecfa
YZ
2232 fs_info->generation = generation;
2233 fs_info->last_trans_committed = generation;
2234 fs_info->data_alloc_profile = (u64)-1;
2235 fs_info->metadata_alloc_profile = (u64)-1;
2236 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2237
c59021f8 2238 ret = btrfs_init_space_info(fs_info);
2239 if (ret) {
2240 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2241 goto fail_block_groups;
2242 }
2243
1b1d1f66
JB
2244 ret = btrfs_read_block_groups(extent_root);
2245 if (ret) {
2246 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2247 goto fail_block_groups;
2248 }
9078a3e1 2249
a74a4b97
CM
2250 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2251 "btrfs-cleaner");
57506d50 2252 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2253 goto fail_block_groups;
a74a4b97
CM
2254
2255 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2256 tree_root,
2257 "btrfs-transaction");
57506d50 2258 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2259 goto fail_cleaner;
a74a4b97 2260
c289811c
CM
2261 if (!btrfs_test_opt(tree_root, SSD) &&
2262 !btrfs_test_opt(tree_root, NOSSD) &&
2263 !fs_info->fs_devices->rotating) {
2264 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2265 "mode\n");
2266 btrfs_set_opt(fs_info->mount_opt, SSD);
2267 }
2268
acce952b 2269 /* do not make disk changes in broken FS */
2270 if (btrfs_super_log_root(disk_super) != 0 &&
2271 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2272 u64 bytenr = btrfs_super_log_root(disk_super);
2273
7c2ca468 2274 if (fs_devices->rw_devices == 0) {
d397712b
CM
2275 printk(KERN_WARNING "Btrfs log replay required "
2276 "on RO media\n");
7c2ca468
CM
2277 err = -EIO;
2278 goto fail_trans_kthread;
2279 }
e02119d5
CM
2280 blocksize =
2281 btrfs_level_size(tree_root,
2282 btrfs_super_log_root_level(disk_super));
d18a2c44 2283
676e4c86
DC
2284 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2285 if (!log_tree_root) {
2286 err = -ENOMEM;
2287 goto fail_trans_kthread;
2288 }
e02119d5
CM
2289
2290 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2291 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2292
2293 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2294 blocksize,
2295 generation + 1);
e02119d5
CM
2296 ret = btrfs_recover_log_trees(log_tree_root);
2297 BUG_ON(ret);
e556ce2c
YZ
2298
2299 if (sb->s_flags & MS_RDONLY) {
2300 ret = btrfs_commit_super(tree_root);
2301 BUG_ON(ret);
2302 }
e02119d5 2303 }
1a40e23b 2304
76dda93c
YZ
2305 ret = btrfs_find_orphan_roots(tree_root);
2306 BUG_ON(ret);
2307
7c2ca468 2308 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2309 ret = btrfs_cleanup_fs_roots(fs_info);
2310 BUG_ON(ret);
2311
5d4f98a2 2312 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2313 if (ret < 0) {
2314 printk(KERN_WARNING
2315 "btrfs: failed to recover relocation\n");
2316 err = -EINVAL;
2317 goto fail_trans_kthread;
2318 }
7c2ca468 2319 }
1a40e23b 2320
3de4586c
CM
2321 location.objectid = BTRFS_FS_TREE_OBJECTID;
2322 location.type = BTRFS_ROOT_ITEM_KEY;
2323 location.offset = (u64)-1;
2324
3de4586c
CM
2325 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2326 if (!fs_info->fs_root)
7c2ca468 2327 goto fail_trans_kthread;
3140c9a3
DC
2328 if (IS_ERR(fs_info->fs_root)) {
2329 err = PTR_ERR(fs_info->fs_root);
2330 goto fail_trans_kthread;
2331 }
c289811c 2332
e3acc2a6
JB
2333 if (!(sb->s_flags & MS_RDONLY)) {
2334 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2335 err = btrfs_orphan_cleanup(fs_info->fs_root);
2336 if (!err)
2337 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2338 up_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2339 if (err) {
2340 close_ctree(tree_root);
2341 return ERR_PTR(err);
2342 }
e3acc2a6
JB
2343 }
2344
0f7d52f4 2345 return tree_root;
39279cc3 2346
7c2ca468
CM
2347fail_trans_kthread:
2348 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2349fail_cleaner:
a74a4b97 2350 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2351
2352 /*
2353 * make sure we're done with the btree inode before we stop our
2354 * kthreads
2355 */
2356 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2357 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2358
1b1d1f66
JB
2359fail_block_groups:
2360 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2361
2362fail_tree_roots:
2363 free_root_pointers(fs_info, 1);
2364
39279cc3 2365fail_sb_buffer:
61d92c32 2366 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 2367 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2368 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2369 btrfs_stop_workers(&fs_info->workers);
2370 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2371 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2372 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2373 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2374 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2375 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2376 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2377 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2378fail_alloc:
4543df7e 2379fail_iput:
7c2ca468 2380 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2381 iput(fs_info->btree_inode);
7e662854 2382
dfe25020 2383 btrfs_close_devices(fs_info->fs_devices);
84eed90f 2384 btrfs_mapping_tree_free(&fs_info->mapping_tree);
ad081f14 2385fail_bdi:
7e662854 2386 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2387fail_srcu:
2388 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2389fail:
6c41761f 2390 free_fs_info(fs_info);
39279cc3 2391 return ERR_PTR(err);
af31f5e5
CM
2392
2393recovery_tree_root:
2394
2395 if (!btrfs_test_opt(tree_root, RECOVERY))
2396 goto fail_tree_roots;
2397
2398 free_root_pointers(fs_info, 0);
2399
2400 /* don't use the log in recovery mode, it won't be valid */
2401 btrfs_set_super_log_root(disk_super, 0);
2402
2403 /* we can't trust the free space cache either */
2404 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2405
2406 ret = next_root_backup(fs_info, fs_info->super_copy,
2407 &num_backups_tried, &backup_index);
2408 if (ret == -1)
2409 goto fail_block_groups;
2410 goto retry_root_backup;
eb60ceac
CM
2411}
2412
f2984462
CM
2413static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2414{
2415 char b[BDEVNAME_SIZE];
2416
2417 if (uptodate) {
2418 set_buffer_uptodate(bh);
2419 } else {
7a36ddec 2420 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2421 "I/O error on %s\n",
2422 bdevname(bh->b_bdev, b));
1259ab75
CM
2423 /* note, we dont' set_buffer_write_io_error because we have
2424 * our own ways of dealing with the IO errors
2425 */
f2984462
CM
2426 clear_buffer_uptodate(bh);
2427 }
2428 unlock_buffer(bh);
2429 put_bh(bh);
2430}
2431
a512bbf8
YZ
2432struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2433{
2434 struct buffer_head *bh;
2435 struct buffer_head *latest = NULL;
2436 struct btrfs_super_block *super;
2437 int i;
2438 u64 transid = 0;
2439 u64 bytenr;
2440
2441 /* we would like to check all the supers, but that would make
2442 * a btrfs mount succeed after a mkfs from a different FS.
2443 * So, we need to add a special mount option to scan for
2444 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2445 */
2446 for (i = 0; i < 1; i++) {
2447 bytenr = btrfs_sb_offset(i);
2448 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2449 break;
2450 bh = __bread(bdev, bytenr / 4096, 4096);
2451 if (!bh)
2452 continue;
2453
2454 super = (struct btrfs_super_block *)bh->b_data;
2455 if (btrfs_super_bytenr(super) != bytenr ||
2456 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2457 sizeof(super->magic))) {
2458 brelse(bh);
2459 continue;
2460 }
2461
2462 if (!latest || btrfs_super_generation(super) > transid) {
2463 brelse(latest);
2464 latest = bh;
2465 transid = btrfs_super_generation(super);
2466 } else {
2467 brelse(bh);
2468 }
2469 }
2470 return latest;
2471}
2472
4eedeb75
HH
2473/*
2474 * this should be called twice, once with wait == 0 and
2475 * once with wait == 1. When wait == 0 is done, all the buffer heads
2476 * we write are pinned.
2477 *
2478 * They are released when wait == 1 is done.
2479 * max_mirrors must be the same for both runs, and it indicates how
2480 * many supers on this one device should be written.
2481 *
2482 * max_mirrors == 0 means to write them all.
2483 */
a512bbf8
YZ
2484static int write_dev_supers(struct btrfs_device *device,
2485 struct btrfs_super_block *sb,
2486 int do_barriers, int wait, int max_mirrors)
2487{
2488 struct buffer_head *bh;
2489 int i;
2490 int ret;
2491 int errors = 0;
2492 u32 crc;
2493 u64 bytenr;
2494 int last_barrier = 0;
2495
2496 if (max_mirrors == 0)
2497 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2498
2499 /* make sure only the last submit_bh does a barrier */
2500 if (do_barriers) {
2501 for (i = 0; i < max_mirrors; i++) {
2502 bytenr = btrfs_sb_offset(i);
2503 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2504 device->total_bytes)
2505 break;
2506 last_barrier = i;
2507 }
2508 }
2509
2510 for (i = 0; i < max_mirrors; i++) {
2511 bytenr = btrfs_sb_offset(i);
2512 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2513 break;
2514
2515 if (wait) {
2516 bh = __find_get_block(device->bdev, bytenr / 4096,
2517 BTRFS_SUPER_INFO_SIZE);
2518 BUG_ON(!bh);
a512bbf8 2519 wait_on_buffer(bh);
4eedeb75
HH
2520 if (!buffer_uptodate(bh))
2521 errors++;
2522
2523 /* drop our reference */
2524 brelse(bh);
2525
2526 /* drop the reference from the wait == 0 run */
2527 brelse(bh);
2528 continue;
a512bbf8
YZ
2529 } else {
2530 btrfs_set_super_bytenr(sb, bytenr);
2531
2532 crc = ~(u32)0;
2533 crc = btrfs_csum_data(NULL, (char *)sb +
2534 BTRFS_CSUM_SIZE, crc,
2535 BTRFS_SUPER_INFO_SIZE -
2536 BTRFS_CSUM_SIZE);
2537 btrfs_csum_final(crc, sb->csum);
2538
4eedeb75
HH
2539 /*
2540 * one reference for us, and we leave it for the
2541 * caller
2542 */
a512bbf8
YZ
2543 bh = __getblk(device->bdev, bytenr / 4096,
2544 BTRFS_SUPER_INFO_SIZE);
2545 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2546
4eedeb75 2547 /* one reference for submit_bh */
a512bbf8 2548 get_bh(bh);
4eedeb75
HH
2549
2550 set_buffer_uptodate(bh);
a512bbf8
YZ
2551 lock_buffer(bh);
2552 bh->b_end_io = btrfs_end_buffer_write_sync;
2553 }
2554
c3b9a62c
CH
2555 if (i == last_barrier && do_barriers)
2556 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2557 else
ffbd517d 2558 ret = submit_bh(WRITE_SYNC, bh);
a512bbf8 2559
4eedeb75 2560 if (ret)
a512bbf8 2561 errors++;
a512bbf8
YZ
2562 }
2563 return errors < i ? 0 : -1;
2564}
2565
2566int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2567{
e5e9a520 2568 struct list_head *head;
f2984462 2569 struct btrfs_device *dev;
a061fc8d 2570 struct btrfs_super_block *sb;
f2984462 2571 struct btrfs_dev_item *dev_item;
f2984462
CM
2572 int ret;
2573 int do_barriers;
a236aed1
CM
2574 int max_errors;
2575 int total_errors = 0;
a061fc8d 2576 u64 flags;
f2984462 2577
6c41761f 2578 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2579 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2580 backup_super_roots(root->fs_info);
f2984462 2581
6c41761f 2582 sb = root->fs_info->super_for_commit;
a061fc8d 2583 dev_item = &sb->dev_item;
e5e9a520 2584
174ba509 2585 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2586 head = &root->fs_info->fs_devices->devices;
1f78160c 2587 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2588 if (!dev->bdev) {
2589 total_errors++;
2590 continue;
2591 }
2b82032c 2592 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2593 continue;
2594
2b82032c 2595 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2596 btrfs_set_stack_device_type(dev_item, dev->type);
2597 btrfs_set_stack_device_id(dev_item, dev->devid);
2598 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2599 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2600 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2601 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2602 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2603 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2604 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2605
a061fc8d
CM
2606 flags = btrfs_super_flags(sb);
2607 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2608
a512bbf8 2609 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2610 if (ret)
2611 total_errors++;
f2984462 2612 }
a236aed1 2613 if (total_errors > max_errors) {
d397712b
CM
2614 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2615 total_errors);
a236aed1
CM
2616 BUG();
2617 }
f2984462 2618
a512bbf8 2619 total_errors = 0;
1f78160c 2620 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2621 if (!dev->bdev)
2622 continue;
2b82032c 2623 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2624 continue;
2625
a512bbf8
YZ
2626 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2627 if (ret)
2628 total_errors++;
f2984462 2629 }
174ba509 2630 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2631 if (total_errors > max_errors) {
d397712b
CM
2632 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2633 total_errors);
a236aed1
CM
2634 BUG();
2635 }
f2984462
CM
2636 return 0;
2637}
2638
a512bbf8
YZ
2639int write_ctree_super(struct btrfs_trans_handle *trans,
2640 struct btrfs_root *root, int max_mirrors)
eb60ceac 2641{
e66f709b 2642 int ret;
5f39d397 2643
a512bbf8 2644 ret = write_all_supers(root, max_mirrors);
5f39d397 2645 return ret;
cfaa7295
CM
2646}
2647
5eda7b5e 2648int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2649{
4df27c4d 2650 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2651 radix_tree_delete(&fs_info->fs_roots_radix,
2652 (unsigned long)root->root_key.objectid);
4df27c4d 2653 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2654
2655 if (btrfs_root_refs(&root->root_item) == 0)
2656 synchronize_srcu(&fs_info->subvol_srcu);
2657
581bb050
LZ
2658 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2659 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d
YZ
2660 free_fs_root(root);
2661 return 0;
2662}
2663
2664static void free_fs_root(struct btrfs_root *root)
2665{
82d5902d 2666 iput(root->cache_inode);
4df27c4d 2667 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2668 if (root->anon_dev)
2669 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2670 free_extent_buffer(root->node);
2671 free_extent_buffer(root->commit_root);
581bb050
LZ
2672 kfree(root->free_ino_ctl);
2673 kfree(root->free_ino_pinned);
d397712b 2674 kfree(root->name);
2619ba1f 2675 kfree(root);
2619ba1f
CM
2676}
2677
35b7e476 2678static int del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2679{
2680 int ret;
2681 struct btrfs_root *gang[8];
2682 int i;
2683
76dda93c
YZ
2684 while (!list_empty(&fs_info->dead_roots)) {
2685 gang[0] = list_entry(fs_info->dead_roots.next,
2686 struct btrfs_root, root_list);
2687 list_del(&gang[0]->root_list);
2688
2689 if (gang[0]->in_radix) {
2690 btrfs_free_fs_root(fs_info, gang[0]);
2691 } else {
2692 free_extent_buffer(gang[0]->node);
2693 free_extent_buffer(gang[0]->commit_root);
2694 kfree(gang[0]);
2695 }
2696 }
2697
d397712b 2698 while (1) {
0f7d52f4
CM
2699 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2700 (void **)gang, 0,
2701 ARRAY_SIZE(gang));
2702 if (!ret)
2703 break;
2619ba1f 2704 for (i = 0; i < ret; i++)
5eda7b5e 2705 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4
CM
2706 }
2707 return 0;
2708}
b4100d64 2709
c146afad 2710int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2711{
c146afad
YZ
2712 u64 root_objectid = 0;
2713 struct btrfs_root *gang[8];
2714 int i;
3768f368 2715 int ret;
e089f05c 2716
c146afad
YZ
2717 while (1) {
2718 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2719 (void **)gang, root_objectid,
2720 ARRAY_SIZE(gang));
2721 if (!ret)
2722 break;
5d4f98a2
YZ
2723
2724 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2725 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2726 int err;
2727
c146afad 2728 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2729 err = btrfs_orphan_cleanup(gang[i]);
2730 if (err)
2731 return err;
c146afad
YZ
2732 }
2733 root_objectid++;
2734 }
2735 return 0;
2736}
a2135011 2737
c146afad
YZ
2738int btrfs_commit_super(struct btrfs_root *root)
2739{
2740 struct btrfs_trans_handle *trans;
2741 int ret;
a74a4b97 2742
c146afad 2743 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2744 btrfs_run_delayed_iputs(root);
a74a4b97 2745 btrfs_clean_old_snapshots(root);
c146afad 2746 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2747
2748 /* wait until ongoing cleanup work done */
2749 down_write(&root->fs_info->cleanup_work_sem);
2750 up_write(&root->fs_info->cleanup_work_sem);
2751
7a7eaa40 2752 trans = btrfs_join_transaction(root);
3612b495
TI
2753 if (IS_ERR(trans))
2754 return PTR_ERR(trans);
54aa1f4d 2755 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
2756 BUG_ON(ret);
2757 /* run commit again to drop the original snapshot */
7a7eaa40 2758 trans = btrfs_join_transaction(root);
3612b495
TI
2759 if (IS_ERR(trans))
2760 return PTR_ERR(trans);
79154b1b
CM
2761 btrfs_commit_transaction(trans, root);
2762 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 2763 BUG_ON(ret);
d6bfde87 2764
a512bbf8 2765 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
2766 return ret;
2767}
2768
2769int close_ctree(struct btrfs_root *root)
2770{
2771 struct btrfs_fs_info *fs_info = root->fs_info;
2772 int ret;
2773
2774 fs_info->closing = 1;
2775 smp_mb();
2776
a2de733c 2777 btrfs_scrub_cancel(root);
4cb5300b
CM
2778
2779 /* wait for any defraggers to finish */
2780 wait_event(fs_info->transaction_wait,
2781 (atomic_read(&fs_info->defrag_running) == 0));
2782
2783 /* clear out the rbtree of defraggable inodes */
2784 btrfs_run_defrag_inodes(root->fs_info);
2785
acce952b 2786 /*
2787 * Here come 2 situations when btrfs is broken to flip readonly:
2788 *
2789 * 1. when btrfs flips readonly somewhere else before
2790 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2791 * and btrfs will skip to write sb directly to keep
2792 * ERROR state on disk.
2793 *
2794 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 2795 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 2796 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2797 * btrfs will cleanup all FS resources first and write sb then.
2798 */
c146afad 2799 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 2800 ret = btrfs_commit_super(root);
2801 if (ret)
2802 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2803 }
2804
2805 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2806 ret = btrfs_error_commit_super(root);
d397712b
CM
2807 if (ret)
2808 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 2809 }
0f7d52f4 2810
300e4f8a
JB
2811 btrfs_put_block_group_cache(fs_info);
2812
8929ecfa
YZ
2813 kthread_stop(root->fs_info->transaction_kthread);
2814 kthread_stop(root->fs_info->cleaner_kthread);
2815
f25784b3
YZ
2816 fs_info->closing = 2;
2817 smp_mb();
2818
b0c68f8b 2819 if (fs_info->delalloc_bytes) {
d397712b 2820 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 2821 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 2822 }
31153d81 2823 if (fs_info->total_ref_cache_size) {
d397712b
CM
2824 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2825 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 2826 }
bcc63abb 2827
5d4f98a2
YZ
2828 free_extent_buffer(fs_info->extent_root->node);
2829 free_extent_buffer(fs_info->extent_root->commit_root);
2830 free_extent_buffer(fs_info->tree_root->node);
2831 free_extent_buffer(fs_info->tree_root->commit_root);
2832 free_extent_buffer(root->fs_info->chunk_root->node);
2833 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2834 free_extent_buffer(root->fs_info->dev_root->node);
2835 free_extent_buffer(root->fs_info->dev_root->commit_root);
2836 free_extent_buffer(root->fs_info->csum_root->node);
2837 free_extent_buffer(root->fs_info->csum_root->commit_root);
d20f7043 2838
9078a3e1 2839 btrfs_free_block_groups(root->fs_info);
d10c5f31 2840
c146afad 2841 del_fs_roots(fs_info);
d10c5f31 2842
c146afad 2843 iput(fs_info->btree_inode);
9ad6b7bc 2844
61d92c32 2845 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 2846 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2847 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2848 btrfs_stop_workers(&fs_info->workers);
2849 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2850 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2851 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2852 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2853 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2854 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2855 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2856 btrfs_stop_workers(&fs_info->caching_workers);
d6bfde87 2857
dfe25020 2858 btrfs_close_devices(fs_info->fs_devices);
0b86a832 2859 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 2860
04160088 2861 bdi_destroy(&fs_info->bdi);
76dda93c 2862 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 2863
6c41761f 2864 free_fs_info(fs_info);
83a4d548 2865
eb60ceac
CM
2866 return 0;
2867}
2868
1259ab75 2869int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 2870{
1259ab75 2871 int ret;
810191ff 2872 struct inode *btree_inode = buf->first_page->mapping->host;
1259ab75 2873
2ac55d41
JB
2874 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2875 NULL);
1259ab75
CM
2876 if (!ret)
2877 return ret;
2878
2879 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2880 parent_transid);
2881 return !ret;
5f39d397
CM
2882}
2883
2884int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 2885{
810191ff 2886 struct inode *btree_inode = buf->first_page->mapping->host;
d1310b2e 2887 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
2888 buf);
2889}
6702ed49 2890
5f39d397
CM
2891void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2892{
810191ff 2893 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
5f39d397
CM
2894 u64 transid = btrfs_header_generation(buf);
2895 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 2896 int was_dirty;
b4ce94de 2897
b9447ef8 2898 btrfs_assert_tree_locked(buf);
ccd467d6 2899 if (transid != root->fs_info->generation) {
d397712b
CM
2900 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2901 "found %llu running %llu\n",
db94535d 2902 (unsigned long long)buf->start,
d397712b
CM
2903 (unsigned long long)transid,
2904 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
2905 WARN_ON(1);
2906 }
b9473439
CM
2907 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2908 buf);
2909 if (!was_dirty) {
2910 spin_lock(&root->fs_info->delalloc_lock);
2911 root->fs_info->dirty_metadata_bytes += buf->len;
2912 spin_unlock(&root->fs_info->delalloc_lock);
2913 }
eb60ceac
CM
2914}
2915
d3c2fdcf 2916void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
2917{
2918 /*
2919 * looks as though older kernels can get into trouble with
2920 * this code, they end up stuck in balance_dirty_pages forever
2921 */
2922 u64 num_dirty;
2923 unsigned long thresh = 32 * 1024 * 1024;
2924
2925 if (current->flags & PF_MEMALLOC)
2926 return;
2927
2928 btrfs_balance_delayed_items(root);
2929
2930 num_dirty = root->fs_info->dirty_metadata_bytes;
2931
2932 if (num_dirty > thresh) {
2933 balance_dirty_pages_ratelimited_nr(
2934 root->fs_info->btree_inode->i_mapping, 1);
2935 }
2936 return;
2937}
2938
2939void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 2940{
188de649
CM
2941 /*
2942 * looks as though older kernels can get into trouble with
2943 * this code, they end up stuck in balance_dirty_pages forever
2944 */
d6bfde87 2945 u64 num_dirty;
771ed689 2946 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 2947
6933c02e 2948 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
2949 return;
2950
585ad2c3
CM
2951 num_dirty = root->fs_info->dirty_metadata_bytes;
2952
d6bfde87
CM
2953 if (num_dirty > thresh) {
2954 balance_dirty_pages_ratelimited_nr(
d7fc640e 2955 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 2956 }
188de649 2957 return;
35b7e476 2958}
6b80053d 2959
ca7a79ad 2960int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 2961{
810191ff 2962 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
ce9adaa5 2963 int ret;
ca7a79ad 2964 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 2965 if (ret == 0)
b4ce94de 2966 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 2967 return ret;
6b80053d 2968}
0da5468f 2969
01d658f2
CM
2970static int btree_lock_page_hook(struct page *page, void *data,
2971 void (*flush_fn)(void *))
4bef0848
CM
2972{
2973 struct inode *inode = page->mapping->host;
b9473439 2974 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848
CM
2975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2976 struct extent_buffer *eb;
2977 unsigned long len;
2978 u64 bytenr = page_offset(page);
2979
2980 if (page->private == EXTENT_PAGE_PRIVATE)
2981 goto out;
2982
2983 len = page->private >> 2;
f09d1f60 2984 eb = find_extent_buffer(io_tree, bytenr, len);
4bef0848
CM
2985 if (!eb)
2986 goto out;
2987
01d658f2
CM
2988 if (!btrfs_try_tree_write_lock(eb)) {
2989 flush_fn(data);
2990 btrfs_tree_lock(eb);
2991 }
4bef0848 2992 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
2993
2994 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2995 spin_lock(&root->fs_info->delalloc_lock);
2996 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2997 root->fs_info->dirty_metadata_bytes -= eb->len;
2998 else
2999 WARN_ON(1);
3000 spin_unlock(&root->fs_info->delalloc_lock);
3001 }
3002
4bef0848
CM
3003 btrfs_tree_unlock(eb);
3004 free_extent_buffer(eb);
3005out:
01d658f2
CM
3006 if (!trylock_page(page)) {
3007 flush_fn(data);
3008 lock_page(page);
3009 }
4bef0848
CM
3010 return 0;
3011}
3012
acce952b 3013static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3014 int read_only)
3015{
3016 if (read_only)
3017 return;
3018
3019 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3020 printk(KERN_WARNING "warning: mount fs with errors, "
3021 "running btrfsck is recommended\n");
3022}
3023
3024int btrfs_error_commit_super(struct btrfs_root *root)
3025{
3026 int ret;
3027
3028 mutex_lock(&root->fs_info->cleaner_mutex);
3029 btrfs_run_delayed_iputs(root);
3030 mutex_unlock(&root->fs_info->cleaner_mutex);
3031
3032 down_write(&root->fs_info->cleanup_work_sem);
3033 up_write(&root->fs_info->cleanup_work_sem);
3034
3035 /* cleanup FS via transaction */
3036 btrfs_cleanup_transaction(root);
3037
3038 ret = write_ctree_super(NULL, root, 0);
3039
3040 return ret;
3041}
3042
3043static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3044{
3045 struct btrfs_inode *btrfs_inode;
3046 struct list_head splice;
3047
3048 INIT_LIST_HEAD(&splice);
3049
3050 mutex_lock(&root->fs_info->ordered_operations_mutex);
3051 spin_lock(&root->fs_info->ordered_extent_lock);
3052
3053 list_splice_init(&root->fs_info->ordered_operations, &splice);
3054 while (!list_empty(&splice)) {
3055 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3056 ordered_operations);
3057
3058 list_del_init(&btrfs_inode->ordered_operations);
3059
3060 btrfs_invalidate_inodes(btrfs_inode->root);
3061 }
3062
3063 spin_unlock(&root->fs_info->ordered_extent_lock);
3064 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3065
3066 return 0;
3067}
3068
3069static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3070{
3071 struct list_head splice;
3072 struct btrfs_ordered_extent *ordered;
3073 struct inode *inode;
3074
3075 INIT_LIST_HEAD(&splice);
3076
3077 spin_lock(&root->fs_info->ordered_extent_lock);
3078
3079 list_splice_init(&root->fs_info->ordered_extents, &splice);
3080 while (!list_empty(&splice)) {
3081 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3082 root_extent_list);
3083
3084 list_del_init(&ordered->root_extent_list);
3085 atomic_inc(&ordered->refs);
3086
3087 /* the inode may be getting freed (in sys_unlink path). */
3088 inode = igrab(ordered->inode);
3089
3090 spin_unlock(&root->fs_info->ordered_extent_lock);
3091 if (inode)
3092 iput(inode);
3093
3094 atomic_set(&ordered->refs, 1);
3095 btrfs_put_ordered_extent(ordered);
3096
3097 spin_lock(&root->fs_info->ordered_extent_lock);
3098 }
3099
3100 spin_unlock(&root->fs_info->ordered_extent_lock);
3101
3102 return 0;
3103}
3104
3105static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3106 struct btrfs_root *root)
3107{
3108 struct rb_node *node;
3109 struct btrfs_delayed_ref_root *delayed_refs;
3110 struct btrfs_delayed_ref_node *ref;
3111 int ret = 0;
3112
3113 delayed_refs = &trans->delayed_refs;
3114
3115 spin_lock(&delayed_refs->lock);
3116 if (delayed_refs->num_entries == 0) {
cfece4db 3117 spin_unlock(&delayed_refs->lock);
acce952b 3118 printk(KERN_INFO "delayed_refs has NO entry\n");
3119 return ret;
3120 }
3121
3122 node = rb_first(&delayed_refs->root);
3123 while (node) {
3124 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3125 node = rb_next(node);
3126
3127 ref->in_tree = 0;
3128 rb_erase(&ref->rb_node, &delayed_refs->root);
3129 delayed_refs->num_entries--;
3130
3131 atomic_set(&ref->refs, 1);
3132 if (btrfs_delayed_ref_is_head(ref)) {
3133 struct btrfs_delayed_ref_head *head;
3134
3135 head = btrfs_delayed_node_to_head(ref);
3136 mutex_lock(&head->mutex);
3137 kfree(head->extent_op);
3138 delayed_refs->num_heads--;
3139 if (list_empty(&head->cluster))
3140 delayed_refs->num_heads_ready--;
3141 list_del_init(&head->cluster);
3142 mutex_unlock(&head->mutex);
3143 }
3144
3145 spin_unlock(&delayed_refs->lock);
3146 btrfs_put_delayed_ref(ref);
3147
3148 cond_resched();
3149 spin_lock(&delayed_refs->lock);
3150 }
3151
3152 spin_unlock(&delayed_refs->lock);
3153
3154 return ret;
3155}
3156
3157static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3158{
3159 struct btrfs_pending_snapshot *snapshot;
3160 struct list_head splice;
3161
3162 INIT_LIST_HEAD(&splice);
3163
3164 list_splice_init(&t->pending_snapshots, &splice);
3165
3166 while (!list_empty(&splice)) {
3167 snapshot = list_entry(splice.next,
3168 struct btrfs_pending_snapshot,
3169 list);
3170
3171 list_del_init(&snapshot->list);
3172
3173 kfree(snapshot);
3174 }
3175
3176 return 0;
3177}
3178
3179static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3180{
3181 struct btrfs_inode *btrfs_inode;
3182 struct list_head splice;
3183
3184 INIT_LIST_HEAD(&splice);
3185
acce952b 3186 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3187 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3188
3189 while (!list_empty(&splice)) {
3190 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3191 delalloc_inodes);
3192
3193 list_del_init(&btrfs_inode->delalloc_inodes);
3194
3195 btrfs_invalidate_inodes(btrfs_inode->root);
3196 }
3197
3198 spin_unlock(&root->fs_info->delalloc_lock);
3199
3200 return 0;
3201}
3202
3203static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3204 struct extent_io_tree *dirty_pages,
3205 int mark)
3206{
3207 int ret;
3208 struct page *page;
3209 struct inode *btree_inode = root->fs_info->btree_inode;
3210 struct extent_buffer *eb;
3211 u64 start = 0;
3212 u64 end;
3213 u64 offset;
3214 unsigned long index;
3215
3216 while (1) {
3217 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3218 mark);
3219 if (ret)
3220 break;
3221
3222 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3223 while (start <= end) {
3224 index = start >> PAGE_CACHE_SHIFT;
3225 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3226 page = find_get_page(btree_inode->i_mapping, index);
3227 if (!page)
3228 continue;
3229 offset = page_offset(page);
3230
3231 spin_lock(&dirty_pages->buffer_lock);
3232 eb = radix_tree_lookup(
3233 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3234 offset >> PAGE_CACHE_SHIFT);
3235 spin_unlock(&dirty_pages->buffer_lock);
3236 if (eb) {
3237 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3238 &eb->bflags);
3239 atomic_set(&eb->refs, 1);
3240 }
3241 if (PageWriteback(page))
3242 end_page_writeback(page);
3243
3244 lock_page(page);
3245 if (PageDirty(page)) {
3246 clear_page_dirty_for_io(page);
3247 spin_lock_irq(&page->mapping->tree_lock);
3248 radix_tree_tag_clear(&page->mapping->page_tree,
3249 page_index(page),
3250 PAGECACHE_TAG_DIRTY);
3251 spin_unlock_irq(&page->mapping->tree_lock);
3252 }
3253
3254 page->mapping->a_ops->invalidatepage(page, 0);
3255 unlock_page(page);
3256 }
3257 }
3258
3259 return ret;
3260}
3261
3262static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3263 struct extent_io_tree *pinned_extents)
3264{
3265 struct extent_io_tree *unpin;
3266 u64 start;
3267 u64 end;
3268 int ret;
3269
3270 unpin = pinned_extents;
3271 while (1) {
3272 ret = find_first_extent_bit(unpin, 0, &start, &end,
3273 EXTENT_DIRTY);
3274 if (ret)
3275 break;
3276
3277 /* opt_discard */
5378e607
LD
3278 if (btrfs_test_opt(root, DISCARD))
3279 ret = btrfs_error_discard_extent(root, start,
3280 end + 1 - start,
3281 NULL);
acce952b 3282
3283 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3284 btrfs_error_unpin_extent_range(root, start, end);
3285 cond_resched();
3286 }
3287
3288 return 0;
3289}
3290
3291static int btrfs_cleanup_transaction(struct btrfs_root *root)
3292{
3293 struct btrfs_transaction *t;
3294 LIST_HEAD(list);
3295
3296 WARN_ON(1);
3297
acce952b 3298 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3299
a4abeea4 3300 spin_lock(&root->fs_info->trans_lock);
acce952b 3301 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3302 root->fs_info->trans_no_join = 1;
3303 spin_unlock(&root->fs_info->trans_lock);
3304
acce952b 3305 while (!list_empty(&list)) {
3306 t = list_entry(list.next, struct btrfs_transaction, list);
3307 if (!t)
3308 break;
3309
3310 btrfs_destroy_ordered_operations(root);
3311
3312 btrfs_destroy_ordered_extents(root);
3313
3314 btrfs_destroy_delayed_refs(t, root);
3315
3316 btrfs_block_rsv_release(root,
3317 &root->fs_info->trans_block_rsv,
3318 t->dirty_pages.dirty_bytes);
3319
3320 /* FIXME: cleanup wait for commit */
3321 t->in_commit = 1;
3322 t->blocked = 1;
3323 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3324 wake_up(&root->fs_info->transaction_blocked_wait);
3325
3326 t->blocked = 0;
3327 if (waitqueue_active(&root->fs_info->transaction_wait))
3328 wake_up(&root->fs_info->transaction_wait);
acce952b 3329
acce952b 3330 t->commit_done = 1;
3331 if (waitqueue_active(&t->commit_wait))
3332 wake_up(&t->commit_wait);
acce952b 3333
3334 btrfs_destroy_pending_snapshots(t);
3335
3336 btrfs_destroy_delalloc_inodes(root);
3337
a4abeea4 3338 spin_lock(&root->fs_info->trans_lock);
acce952b 3339 root->fs_info->running_transaction = NULL;
a4abeea4 3340 spin_unlock(&root->fs_info->trans_lock);
acce952b 3341
3342 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3343 EXTENT_DIRTY);
3344
3345 btrfs_destroy_pinned_extent(root,
3346 root->fs_info->pinned_extents);
3347
13c5a93e 3348 atomic_set(&t->use_count, 0);
acce952b 3349 list_del_init(&t->list);
3350 memset(t, 0, sizeof(*t));
3351 kmem_cache_free(btrfs_transaction_cachep, t);
3352 }
3353
a4abeea4
JB
3354 spin_lock(&root->fs_info->trans_lock);
3355 root->fs_info->trans_no_join = 0;
3356 spin_unlock(&root->fs_info->trans_lock);
acce952b 3357 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3358
3359 return 0;
3360}
3361
d1310b2e 3362static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3363 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3364 .readpage_end_io_hook = btree_readpage_end_io_hook,
0b86a832 3365 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3366 /* note we're sharing with inode.c for the merge bio hook */
3367 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3368};