btrfs: make csum_tree_block() handle node smaller than page
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
141386e1
JB
100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104}
105
d352ac68
CM
106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
44b8bd7e 111struct async_submit_bio {
8896a08d 112 struct inode *inode;
44b8bd7e 113 struct bio *bio;
a758781d 114 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 115 int mirror_num;
eaf25d93
CM
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
8b712842 121 struct btrfs_work work;
4e4cbee9 122 blk_status_t status;
44b8bd7e
CM
123};
124
85d4e461
CM
125/*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
4008c04a 135 *
85d4e461
CM
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 139 *
85d4e461
CM
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 143 *
85d4e461
CM
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
4008c04a
CM
147 */
148#ifdef CONFIG_DEBUG_LOCK_ALLOC
149# if BTRFS_MAX_LEVEL != 8
150# error
151# endif
85d4e461 152
ab1405aa
DS
153#define DEFINE_LEVEL(stem, level) \
154 .names[level] = "btrfs-" stem "-0" #level,
155
156#define DEFINE_NAME(stem) \
157 DEFINE_LEVEL(stem, 0) \
158 DEFINE_LEVEL(stem, 1) \
159 DEFINE_LEVEL(stem, 2) \
160 DEFINE_LEVEL(stem, 3) \
161 DEFINE_LEVEL(stem, 4) \
162 DEFINE_LEVEL(stem, 5) \
163 DEFINE_LEVEL(stem, 6) \
164 DEFINE_LEVEL(stem, 7)
165
85d4e461
CM
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
ab1405aa 168 /* Longest entry: btrfs-free-space-00 */
387824af
DS
169 char names[BTRFS_MAX_LEVEL][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 171} btrfs_lockdep_keysets[] = {
ab1405aa
DS
172 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
175 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
176 { .id = BTRFS_FS_TREE_OBJECTID, DEFINE_NAME("fs") },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
179 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
182 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
184 { .id = 0, DEFINE_NAME("tree") },
4008c04a 185};
85d4e461 186
ab1405aa
DS
187#undef DEFINE_LEVEL
188#undef DEFINE_NAME
85d4e461
CM
189
190void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
191 int level)
192{
193 struct btrfs_lockdep_keyset *ks;
194
195 BUG_ON(level >= ARRAY_SIZE(ks->keys));
196
197 /* find the matching keyset, id 0 is the default entry */
198 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
199 if (ks->id == objectid)
200 break;
201
202 lockdep_set_class_and_name(&eb->lock,
203 &ks->keys[level], ks->names[level]);
204}
205
4008c04a
CM
206#endif
207
d352ac68 208/*
2996e1f8 209 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 210 */
c67b3892 211static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 212{
d5178578 213 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 214 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
a26663e7 215 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 216 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 217 char *kaddr;
e9be5a30 218 int i;
d5178578
JT
219
220 shash->tfm = fs_info->csum_shash;
221 crypto_shash_init(shash);
a26663e7 222 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 223 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 224 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 225
e9be5a30
DS
226 for (i = 1; i < num_pages; i++) {
227 kaddr = page_address(buf->pages[i]);
228 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 229 }
71a63551 230 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 231 crypto_shash_final(shash, result);
19c00ddc
CM
232}
233
d352ac68
CM
234/*
235 * we can't consider a given block up to date unless the transid of the
236 * block matches the transid in the parent node's pointer. This is how we
237 * detect blocks that either didn't get written at all or got written
238 * in the wrong place.
239 */
1259ab75 240static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
241 struct extent_buffer *eb, u64 parent_transid,
242 int atomic)
1259ab75 243{
2ac55d41 244 struct extent_state *cached_state = NULL;
1259ab75 245 int ret;
2755a0de 246 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
247
248 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
249 return 0;
250
b9fab919
CM
251 if (atomic)
252 return -EAGAIN;
253
ac5887c8 254 if (need_lock)
a26e8c9f 255 btrfs_tree_read_lock(eb);
a26e8c9f 256
2ac55d41 257 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 258 &cached_state);
0b32f4bb 259 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
260 btrfs_header_generation(eb) == parent_transid) {
261 ret = 0;
262 goto out;
263 }
94647322
DS
264 btrfs_err_rl(eb->fs_info,
265 "parent transid verify failed on %llu wanted %llu found %llu",
266 eb->start,
29549aec 267 parent_transid, btrfs_header_generation(eb));
1259ab75 268 ret = 1;
a26e8c9f
JB
269
270 /*
271 * Things reading via commit roots that don't have normal protection,
272 * like send, can have a really old block in cache that may point at a
01327610 273 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
274 * if we find an eb that is under IO (dirty/writeback) because we could
275 * end up reading in the stale data and then writing it back out and
276 * making everybody very sad.
277 */
278 if (!extent_buffer_under_io(eb))
279 clear_extent_buffer_uptodate(eb);
33958dc6 280out:
2ac55d41 281 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 282 &cached_state);
472b909f 283 if (need_lock)
ac5887c8 284 btrfs_tree_read_unlock(eb);
1259ab75 285 return ret;
1259ab75
CM
286}
287
e7e16f48
JT
288static bool btrfs_supported_super_csum(u16 csum_type)
289{
290 switch (csum_type) {
291 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 292 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 293 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 294 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
295 return true;
296 default:
297 return false;
298 }
299}
300
1104a885
DS
301/*
302 * Return 0 if the superblock checksum type matches the checksum value of that
303 * algorithm. Pass the raw disk superblock data.
304 */
ab8d0fc4
JM
305static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
306 char *raw_disk_sb)
1104a885
DS
307{
308 struct btrfs_super_block *disk_sb =
309 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 310 char result[BTRFS_CSUM_SIZE];
d5178578
JT
311 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
312
313 shash->tfm = fs_info->csum_shash;
1104a885 314
51bce6c9
JT
315 /*
316 * The super_block structure does not span the whole
317 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
318 * filled with zeros and is included in the checksum.
319 */
fd08001f
EB
320 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
321 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 322
55fc29be 323 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 324 return 1;
1104a885 325
e7e16f48 326 return 0;
1104a885
DS
327}
328
e064d5e9 329int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 330 struct btrfs_key *first_key, u64 parent_transid)
581c1760 331{
e064d5e9 332 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
333 int found_level;
334 struct btrfs_key found_key;
335 int ret;
336
337 found_level = btrfs_header_level(eb);
338 if (found_level != level) {
63489055
QW
339 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
340 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
341 btrfs_err(fs_info,
342"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
343 eb->start, level, found_level);
581c1760
QW
344 return -EIO;
345 }
346
347 if (!first_key)
348 return 0;
349
5d41be6f
QW
350 /*
351 * For live tree block (new tree blocks in current transaction),
352 * we need proper lock context to avoid race, which is impossible here.
353 * So we only checks tree blocks which is read from disk, whose
354 * generation <= fs_info->last_trans_committed.
355 */
356 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
357 return 0;
62fdaa52
QW
358
359 /* We have @first_key, so this @eb must have at least one item */
360 if (btrfs_header_nritems(eb) == 0) {
361 btrfs_err(fs_info,
362 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
363 eb->start);
364 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
365 return -EUCLEAN;
366 }
367
581c1760
QW
368 if (found_level)
369 btrfs_node_key_to_cpu(eb, &found_key, 0);
370 else
371 btrfs_item_key_to_cpu(eb, &found_key, 0);
372 ret = btrfs_comp_cpu_keys(first_key, &found_key);
373
581c1760 374 if (ret) {
63489055
QW
375 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
376 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 377 btrfs_err(fs_info,
ff76a864
LB
378"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
379 eb->start, parent_transid, first_key->objectid,
380 first_key->type, first_key->offset,
381 found_key.objectid, found_key.type,
382 found_key.offset);
581c1760 383 }
581c1760
QW
384 return ret;
385}
386
d352ac68
CM
387/*
388 * helper to read a given tree block, doing retries as required when
389 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
390 *
391 * @parent_transid: expected transid, skip check if 0
392 * @level: expected level, mandatory check
393 * @first_key: expected key of first slot, skip check if NULL
d352ac68 394 */
5ab12d1f 395static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
396 u64 parent_transid, int level,
397 struct btrfs_key *first_key)
f188591e 398{
5ab12d1f 399 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 400 struct extent_io_tree *io_tree;
ea466794 401 int failed = 0;
f188591e
CM
402 int ret;
403 int num_copies = 0;
404 int mirror_num = 0;
ea466794 405 int failed_mirror = 0;
f188591e 406
0b246afa 407 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 408 while (1) {
f8397d69 409 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 410 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 411 if (!ret) {
581c1760 412 if (verify_parent_transid(io_tree, eb,
b9fab919 413 parent_transid, 0))
256dd1bb 414 ret = -EIO;
e064d5e9 415 else if (btrfs_verify_level_key(eb, level,
448de471 416 first_key, parent_transid))
581c1760
QW
417 ret = -EUCLEAN;
418 else
419 break;
256dd1bb 420 }
d397712b 421
0b246afa 422 num_copies = btrfs_num_copies(fs_info,
f188591e 423 eb->start, eb->len);
4235298e 424 if (num_copies == 1)
ea466794 425 break;
4235298e 426
5cf1ab56
JB
427 if (!failed_mirror) {
428 failed = 1;
429 failed_mirror = eb->read_mirror;
430 }
431
f188591e 432 mirror_num++;
ea466794
JB
433 if (mirror_num == failed_mirror)
434 mirror_num++;
435
4235298e 436 if (mirror_num > num_copies)
ea466794 437 break;
f188591e 438 }
ea466794 439
c0901581 440 if (failed && !ret && failed_mirror)
20a1fbf9 441 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
442
443 return ret;
f188591e 444}
19c00ddc 445
d352ac68 446/*
d397712b
CM
447 * checksum a dirty tree block before IO. This has extra checks to make sure
448 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 449 */
d397712b 450
01d58472 451static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 452{
4eee4fa4 453 u64 start = page_offset(page);
19c00ddc 454 u64 found_start;
2996e1f8 455 u8 result[BTRFS_CSUM_SIZE];
19c00ddc 456 struct extent_buffer *eb;
8d47a0d8 457 int ret;
f188591e 458
4f2de97a
JB
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
461 return 0;
0f805531 462
19c00ddc 463 found_start = btrfs_header_bytenr(eb);
0f805531
AL
464 /*
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
467 */
468 if (WARN_ON(found_start != start))
469 return -EUCLEAN;
470 if (WARN_ON(!PageUptodate(page)))
471 return -EUCLEAN;
472
de37aa51 473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
0f805531 476
c67b3892 477 csum_tree_block(eb, result);
2996e1f8 478
8d47a0d8
QW
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
481 else
482 ret = btrfs_check_leaf_full(eb);
483
484 if (ret < 0) {
c06631b0 485 btrfs_print_tree(eb, 0);
8d47a0d8
QW
486 btrfs_err(fs_info,
487 "block=%llu write time tree block corruption detected",
488 eb->start);
c06631b0 489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
490 return ret;
491 }
713cebfb 492 write_extent_buffer(eb, result, 0, fs_info->csum_size);
8d47a0d8 493
2996e1f8 494 return 0;
19c00ddc
CM
495}
496
b0c9b3b0 497static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 498{
b0c9b3b0 499 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 501 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 502 u8 *metadata_uuid;
2b82032c 503
9a8658e3
DS
504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 BTRFS_FSID_SIZE);
944d3f9f
NB
506 /*
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
510 */
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
513 else
514 metadata_uuid = fs_devices->fsid;
515
516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 return 0;
518
519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 return 0;
522
523 return 1;
2b82032c
YZ
524}
525
9a446d6a
NB
526int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 struct page *page, u64 start, u64 end,
528 int mirror)
ce9adaa5 529{
ce9adaa5
CM
530 u64 found_start;
531 int found_level;
ce9adaa5 532 struct extent_buffer *eb;
15b6e8a8
DS
533 struct btrfs_fs_info *fs_info;
534 u16 csum_size;
f188591e 535 int ret = 0;
2996e1f8 536 u8 result[BTRFS_CSUM_SIZE];
727011e0 537 int reads_done;
ce9adaa5 538
ce9adaa5
CM
539 if (!page->private)
540 goto out;
d397712b 541
4f2de97a 542 eb = (struct extent_buffer *)page->private;
15b6e8a8 543 fs_info = eb->fs_info;
55fc29be 544 csum_size = fs_info->csum_size;
d397712b 545
0b32f4bb
JB
546 /* the pending IO might have been the only thing that kept this buffer
547 * in memory. Make sure we have a ref for all this other checks
548 */
67439dad 549 atomic_inc(&eb->refs);
0b32f4bb
JB
550
551 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
552 if (!reads_done)
553 goto err;
f188591e 554
5cf1ab56 555 eb->read_mirror = mirror;
656f30db 556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
557 ret = -EIO;
558 goto err;
559 }
560
ce9adaa5 561 found_start = btrfs_header_bytenr(eb);
727011e0 562 if (found_start != eb->start) {
893bf4b1
SY
563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 eb->start, found_start);
f188591e 565 ret = -EIO;
ce9adaa5
CM
566 goto err;
567 }
b0c9b3b0 568 if (check_tree_block_fsid(eb)) {
02873e43
ZL
569 btrfs_err_rl(fs_info, "bad fsid on block %llu",
570 eb->start);
1259ab75
CM
571 ret = -EIO;
572 goto err;
573 }
ce9adaa5 574 found_level = btrfs_header_level(eb);
1c24c3ce 575 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
576 btrfs_err(fs_info, "bad tree block level %d on %llu",
577 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
578 ret = -EIO;
579 goto err;
580 }
ce9adaa5 581
85d4e461
CM
582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583 eb, found_level);
4008c04a 584
c67b3892 585 csum_tree_block(eb, result);
a826d6dc 586
2996e1f8 587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 588 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
589
590 read_extent_buffer(eb, &val, 0, csum_size);
591 btrfs_warn_rl(fs_info,
35be8851 592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 593 fs_info->sb->s_id, eb->start,
35be8851
JT
594 CSUM_FMT_VALUE(csum_size, val),
595 CSUM_FMT_VALUE(csum_size, result),
596 btrfs_header_level(eb));
2996e1f8
JT
597 ret = -EUCLEAN;
598 goto err;
599 }
600
a826d6dc
JB
601 /*
602 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 * that we don't try and read the other copies of this block, just
604 * return -EIO.
605 */
1c4360ee 606 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608 ret = -EIO;
609 }
ce9adaa5 610
813fd1dc 611 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
612 ret = -EIO;
613
0b32f4bb
JB
614 if (!ret)
615 set_extent_buffer_uptodate(eb);
75391f0d
QW
616 else
617 btrfs_err(fs_info,
618 "block=%llu read time tree block corruption detected",
619 eb->start);
ce9adaa5 620err:
79fb65a1
JB
621 if (reads_done &&
622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 623 btree_readahead_hook(eb, ret);
4bb31e92 624
53b381b3
DW
625 if (ret) {
626 /*
627 * our io error hook is going to dec the io pages
628 * again, we have to make sure it has something
629 * to decrement
630 */
631 atomic_inc(&eb->io_pages);
0b32f4bb 632 clear_extent_buffer_uptodate(eb);
53b381b3 633 }
0b32f4bb 634 free_extent_buffer(eb);
ce9adaa5 635out:
f188591e 636 return ret;
ce9adaa5
CM
637}
638
4246a0b6 639static void end_workqueue_bio(struct bio *bio)
ce9adaa5 640{
97eb6b69 641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 642 struct btrfs_fs_info *fs_info;
9e0af237 643 struct btrfs_workqueue *wq;
ce9adaa5 644
ce9adaa5 645 fs_info = end_io_wq->info;
4e4cbee9 646 end_io_wq->status = bio->bi_status;
d20f7043 647
37226b21 648 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 650 wq = fs_info->endio_meta_write_workers;
a0cac0ec 651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 652 wq = fs_info->endio_freespace_worker;
a0cac0ec 653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 654 wq = fs_info->endio_raid56_workers;
a0cac0ec 655 else
9e0af237 656 wq = fs_info->endio_write_workers;
d20f7043 657 } else {
5c047a69 658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 659 wq = fs_info->endio_raid56_workers;
a0cac0ec 660 else if (end_io_wq->metadata)
9e0af237 661 wq = fs_info->endio_meta_workers;
a0cac0ec 662 else
9e0af237 663 wq = fs_info->endio_workers;
d20f7043 664 }
9e0af237 665
a0cac0ec 666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 667 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
668}
669
4e4cbee9 670blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 671 enum btrfs_wq_endio_type metadata)
0b86a832 672{
97eb6b69 673 struct btrfs_end_io_wq *end_io_wq;
8b110e39 674
97eb6b69 675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 676 if (!end_io_wq)
4e4cbee9 677 return BLK_STS_RESOURCE;
ce9adaa5
CM
678
679 end_io_wq->private = bio->bi_private;
680 end_io_wq->end_io = bio->bi_end_io;
22c59948 681 end_io_wq->info = info;
4e4cbee9 682 end_io_wq->status = 0;
ce9adaa5 683 end_io_wq->bio = bio;
22c59948 684 end_io_wq->metadata = metadata;
ce9adaa5
CM
685
686 bio->bi_private = end_io_wq;
687 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
688 return 0;
689}
690
4a69a410
CM
691static void run_one_async_start(struct btrfs_work *work)
692{
4a69a410 693 struct async_submit_bio *async;
4e4cbee9 694 blk_status_t ret;
4a69a410
CM
695
696 async = container_of(work, struct async_submit_bio, work);
8896a08d 697 ret = async->submit_bio_start(async->inode, async->bio, async->bio_offset);
79787eaa 698 if (ret)
4e4cbee9 699 async->status = ret;
4a69a410
CM
700}
701
06ea01b1
DS
702/*
703 * In order to insert checksums into the metadata in large chunks, we wait
704 * until bio submission time. All the pages in the bio are checksummed and
705 * sums are attached onto the ordered extent record.
706 *
707 * At IO completion time the csums attached on the ordered extent record are
708 * inserted into the tree.
709 */
4a69a410 710static void run_one_async_done(struct btrfs_work *work)
8b712842 711{
8b712842 712 struct async_submit_bio *async;
06ea01b1
DS
713 struct inode *inode;
714 blk_status_t ret;
8b712842
CM
715
716 async = container_of(work, struct async_submit_bio, work);
8896a08d 717 inode = async->inode;
4854ddd0 718
bb7ab3b9 719 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
720 if (async->status) {
721 async->bio->bi_status = async->status;
4246a0b6 722 bio_endio(async->bio);
79787eaa
JM
723 return;
724 }
725
ec39f769
CM
726 /*
727 * All of the bios that pass through here are from async helpers.
728 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
729 * This changes nothing when cgroups aren't in use.
730 */
731 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 732 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
733 if (ret) {
734 async->bio->bi_status = ret;
735 bio_endio(async->bio);
736 }
4a69a410
CM
737}
738
739static void run_one_async_free(struct btrfs_work *work)
740{
741 struct async_submit_bio *async;
742
743 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
744 kfree(async);
745}
746
8896a08d 747blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 748 int mirror_num, unsigned long bio_flags,
8896a08d 749 u64 bio_offset,
e288c080 750 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 751{
8896a08d 752 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
753 struct async_submit_bio *async;
754
755 async = kmalloc(sizeof(*async), GFP_NOFS);
756 if (!async)
4e4cbee9 757 return BLK_STS_RESOURCE;
44b8bd7e 758
8896a08d 759 async->inode = inode;
44b8bd7e
CM
760 async->bio = bio;
761 async->mirror_num = mirror_num;
4a69a410 762 async->submit_bio_start = submit_bio_start;
4a69a410 763
a0cac0ec
OS
764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765 run_one_async_free);
4a69a410 766
eaf25d93 767 async->bio_offset = bio_offset;
8c8bee1d 768
4e4cbee9 769 async->status = 0;
79787eaa 770
67f055c7 771 if (op_is_sync(bio->bi_opf))
5cdc7ad3 772 btrfs_set_work_high_priority(&async->work);
d313d7a3 773
5cdc7ad3 774 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
775 return 0;
776}
777
4e4cbee9 778static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 779{
2c30c71b 780 struct bio_vec *bvec;
ce3ed71a 781 struct btrfs_root *root;
2b070cfe 782 int ret = 0;
6dc4f100 783 struct bvec_iter_all iter_all;
ce3ed71a 784
c09abff8 785 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 786 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 787 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
789 if (ret)
790 break;
ce3ed71a 791 }
2c30c71b 792
4e4cbee9 793 return errno_to_blk_status(ret);
ce3ed71a
CM
794}
795
8896a08d
QW
796static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
797 u64 bio_offset)
22c59948 798{
8b712842
CM
799 /*
800 * when we're called for a write, we're already in the async
5443be45 801 * submission context. Just jump into btrfs_map_bio
8b712842 802 */
79787eaa 803 return btree_csum_one_bio(bio);
4a69a410 804}
22c59948 805
9b4e675a
DS
806static int check_async_write(struct btrfs_fs_info *fs_info,
807 struct btrfs_inode *bi)
de0022b9 808{
6300463b
LB
809 if (atomic_read(&bi->sync_writers))
810 return 0;
9b4e675a 811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 812 return 0;
de0022b9
JB
813 return 1;
814}
815
1b36294a
NB
816blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 int mirror_num, unsigned long bio_flags)
44b8bd7e 818{
0b246afa 819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 820 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 821 blk_status_t ret;
cad321ad 822
37226b21 823 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
824 /*
825 * called for a read, do the setup so that checksum validation
826 * can happen in the async kernel threads
827 */
0b246afa
JM
828 ret = btrfs_bio_wq_end_io(fs_info, bio,
829 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 830 if (ret)
61891923 831 goto out_w_error;
08635bae 832 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
833 } else if (!async) {
834 ret = btree_csum_one_bio(bio);
835 if (ret)
61891923 836 goto out_w_error;
08635bae 837 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
838 } else {
839 /*
840 * kthread helpers are used to submit writes so that
841 * checksumming can happen in parallel across all CPUs
842 */
8896a08d
QW
843 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
844 0, btree_submit_bio_start);
44b8bd7e 845 }
d313d7a3 846
4246a0b6
CH
847 if (ret)
848 goto out_w_error;
849 return 0;
850
61891923 851out_w_error:
4e4cbee9 852 bio->bi_status = ret;
4246a0b6 853 bio_endio(bio);
61891923 854 return ret;
44b8bd7e
CM
855}
856
3dd1462e 857#ifdef CONFIG_MIGRATION
784b4e29 858static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
859 struct page *newpage, struct page *page,
860 enum migrate_mode mode)
784b4e29
CM
861{
862 /*
863 * we can't safely write a btree page from here,
864 * we haven't done the locking hook
865 */
866 if (PageDirty(page))
867 return -EAGAIN;
868 /*
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
871 */
872 if (page_has_private(page) &&
873 !try_to_release_page(page, GFP_KERNEL))
874 return -EAGAIN;
a6bc32b8 875 return migrate_page(mapping, newpage, page, mode);
784b4e29 876}
3dd1462e 877#endif
784b4e29 878
0da5468f
CM
879
880static int btree_writepages(struct address_space *mapping,
881 struct writeback_control *wbc)
882{
e2d84521
MX
883 struct btrfs_fs_info *fs_info;
884 int ret;
885
d8d5f3e1 886 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
887
888 if (wbc->for_kupdate)
889 return 0;
890
e2d84521 891 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 892 /* this is a bit racy, but that's ok */
d814a491
EL
893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 BTRFS_DIRTY_METADATA_THRESH,
895 fs_info->dirty_metadata_batch);
e2d84521 896 if (ret < 0)
793955bc 897 return 0;
793955bc 898 }
0b32f4bb 899 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
900}
901
70dec807 902static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 903{
98509cfc 904 if (PageWriteback(page) || PageDirty(page))
d397712b 905 return 0;
0c4e538b 906
f7a52a40 907 return try_release_extent_buffer(page);
d98237b3
CM
908}
909
d47992f8
LC
910static void btree_invalidatepage(struct page *page, unsigned int offset,
911 unsigned int length)
d98237b3 912{
d1310b2e
CM
913 struct extent_io_tree *tree;
914 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
915 extent_invalidatepage(tree, page, offset);
916 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 917 if (PagePrivate(page)) {
efe120a0
FH
918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 "page private not zero on page %llu",
920 (unsigned long long)page_offset(page));
d1b89bc0 921 detach_page_private(page);
9ad6b7bc 922 }
d98237b3
CM
923}
924
0b32f4bb
JB
925static int btree_set_page_dirty(struct page *page)
926{
bb146eb2 927#ifdef DEBUG
0b32f4bb
JB
928 struct extent_buffer *eb;
929
930 BUG_ON(!PagePrivate(page));
931 eb = (struct extent_buffer *)page->private;
932 BUG_ON(!eb);
933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 BUG_ON(!atomic_read(&eb->refs));
935 btrfs_assert_tree_locked(eb);
bb146eb2 936#endif
0b32f4bb
JB
937 return __set_page_dirty_nobuffers(page);
938}
939
7f09410b 940static const struct address_space_operations btree_aops = {
0da5468f 941 .writepages = btree_writepages,
5f39d397
CM
942 .releasepage = btree_releasepage,
943 .invalidatepage = btree_invalidatepage,
5a92bc88 944#ifdef CONFIG_MIGRATION
784b4e29 945 .migratepage = btree_migratepage,
5a92bc88 946#endif
0b32f4bb 947 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
948};
949
2ff7e61e 950void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 951{
5f39d397 952 struct extent_buffer *buf = NULL;
537f38f0 953 int ret;
090d1875 954
2ff7e61e 955 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 956 if (IS_ERR(buf))
6197d86e 957 return;
537f38f0 958
c2ccfbc6 959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
960 if (ret < 0)
961 free_extent_buffer_stale(buf);
962 else
963 free_extent_buffer(buf);
090d1875
CM
964}
965
2ff7e61e
JM
966struct extent_buffer *btrfs_find_create_tree_block(
967 struct btrfs_fs_info *fs_info,
968 u64 bytenr)
0999df54 969{
0b246afa
JM
970 if (btrfs_is_testing(fs_info))
971 return alloc_test_extent_buffer(fs_info, bytenr);
972 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
973}
974
581c1760
QW
975/*
976 * Read tree block at logical address @bytenr and do variant basic but critical
977 * verification.
978 *
979 * @parent_transid: expected transid of this tree block, skip check if 0
980 * @level: expected level, mandatory check
981 * @first_key: expected key in slot 0, skip check if NULL
982 */
2ff7e61e 983struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
984 u64 parent_transid, int level,
985 struct btrfs_key *first_key)
0999df54
CM
986{
987 struct extent_buffer *buf = NULL;
0999df54
CM
988 int ret;
989
2ff7e61e 990 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
991 if (IS_ERR(buf))
992 return buf;
0999df54 993
5ab12d1f 994 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 995 level, first_key);
0f0fe8f7 996 if (ret) {
537f38f0 997 free_extent_buffer_stale(buf);
64c043de 998 return ERR_PTR(ret);
0f0fe8f7 999 }
5f39d397 1000 return buf;
ce9adaa5 1001
eb60ceac
CM
1002}
1003
6a884d7d 1004void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1005{
6a884d7d 1006 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1007 if (btrfs_header_generation(buf) ==
e2d84521 1008 fs_info->running_transaction->transid) {
b9447ef8 1009 btrfs_assert_tree_locked(buf);
b4ce94de 1010
b9473439 1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013 -buf->len,
1014 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1015 clear_extent_buffer_dirty(buf);
1016 }
925baedd 1017 }
5f39d397
CM
1018}
1019
da17066c 1020static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1021 u64 objectid)
d97e63b6 1022{
7c0260ee 1023 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1024 root->fs_info = fs_info;
cfaa7295 1025 root->node = NULL;
a28ec197 1026 root->commit_root = NULL;
27cdeb70 1027 root->state = 0;
d68fc57b 1028 root->orphan_cleanup_state = 0;
0b86a832 1029
0f7d52f4 1030 root->last_trans = 0;
13a8a7c8 1031 root->highest_objectid = 0;
eb73c1b7 1032 root->nr_delalloc_inodes = 0;
199c2a9c 1033 root->nr_ordered_extents = 0;
6bef4d31 1034 root->inode_tree = RB_ROOT;
16cdcec7 1035 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1036 root->block_rsv = NULL;
0b86a832
CM
1037
1038 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1039 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1040 INIT_LIST_HEAD(&root->delalloc_inodes);
1041 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1042 INIT_LIST_HEAD(&root->ordered_extents);
1043 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1044 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1045 INIT_LIST_HEAD(&root->logged_list[0]);
1046 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1047 spin_lock_init(&root->inode_lock);
eb73c1b7 1048 spin_lock_init(&root->delalloc_lock);
199c2a9c 1049 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1050 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1051 spin_lock_init(&root->log_extents_lock[0]);
1052 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1053 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1054 mutex_init(&root->objectid_mutex);
e02119d5 1055 mutex_init(&root->log_mutex);
31f3d255 1056 mutex_init(&root->ordered_extent_mutex);
573bfb72 1057 mutex_init(&root->delalloc_mutex);
c53e9653 1058 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1059 init_waitqueue_head(&root->log_writer_wait);
1060 init_waitqueue_head(&root->log_commit_wait[0]);
1061 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1062 INIT_LIST_HEAD(&root->log_ctxs[0]);
1063 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1064 atomic_set(&root->log_commit[0], 0);
1065 atomic_set(&root->log_commit[1], 0);
1066 atomic_set(&root->log_writers, 0);
2ecb7923 1067 atomic_set(&root->log_batch, 0);
0700cea7 1068 refcount_set(&root->refs, 1);
8ecebf4d 1069 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1070 atomic_set(&root->nr_swapfiles, 0);
7237f183 1071 root->log_transid = 0;
d1433deb 1072 root->log_transid_committed = -1;
257c62e1 1073 root->last_log_commit = 0;
e289f03e 1074 if (!dummy) {
43eb5f29
QW
1075 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1076 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1077 extent_io_tree_init(fs_info, &root->log_csum_range,
1078 IO_TREE_LOG_CSUM_RANGE, NULL);
1079 }
017e5369 1080
3768f368
CM
1081 memset(&root->root_key, 0, sizeof(root->root_key));
1082 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1083 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1084 root->root_key.objectid = objectid;
0ee5dc67 1085 root->anon_dev = 0;
8ea05e3a 1086
5f3ab90a 1087 spin_lock_init(&root->root_item_lock);
370a11b8 1088 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1089#ifdef CONFIG_BTRFS_DEBUG
1090 INIT_LIST_HEAD(&root->leak_list);
1091 spin_lock(&fs_info->fs_roots_radix_lock);
1092 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1093 spin_unlock(&fs_info->fs_roots_radix_lock);
1094#endif
3768f368
CM
1095}
1096
74e4d827 1097static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1098 u64 objectid, gfp_t flags)
6f07e42e 1099{
74e4d827 1100 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1101 if (root)
96dfcb46 1102 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1103 return root;
1104}
1105
06ea65a3
JB
1106#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1107/* Should only be used by the testing infrastructure */
da17066c 1108struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1109{
1110 struct btrfs_root *root;
1111
7c0260ee
JM
1112 if (!fs_info)
1113 return ERR_PTR(-EINVAL);
1114
96dfcb46 1115 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1116 if (!root)
1117 return ERR_PTR(-ENOMEM);
da17066c 1118
b9ef22de 1119 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1120 root->alloc_bytenr = 0;
06ea65a3
JB
1121
1122 return root;
1123}
1124#endif
1125
20897f5c 1126struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1127 u64 objectid)
1128{
9b7a2440 1129 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1130 struct extent_buffer *leaf;
1131 struct btrfs_root *tree_root = fs_info->tree_root;
1132 struct btrfs_root *root;
1133 struct btrfs_key key;
b89f6d1f 1134 unsigned int nofs_flag;
20897f5c 1135 int ret = 0;
20897f5c 1136
b89f6d1f
FM
1137 /*
1138 * We're holding a transaction handle, so use a NOFS memory allocation
1139 * context to avoid deadlock if reclaim happens.
1140 */
1141 nofs_flag = memalloc_nofs_save();
96dfcb46 1142 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1143 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1144 if (!root)
1145 return ERR_PTR(-ENOMEM);
1146
20897f5c
AJ
1147 root->root_key.objectid = objectid;
1148 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1149 root->root_key.offset = 0;
1150
9631e4cc
JB
1151 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1152 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1153 if (IS_ERR(leaf)) {
1154 ret = PTR_ERR(leaf);
1dd05682 1155 leaf = NULL;
20897f5c
AJ
1156 goto fail;
1157 }
1158
20897f5c 1159 root->node = leaf;
20897f5c
AJ
1160 btrfs_mark_buffer_dirty(leaf);
1161
1162 root->commit_root = btrfs_root_node(root);
27cdeb70 1163 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1164
f944d2cb
DS
1165 btrfs_set_root_flags(&root->root_item, 0);
1166 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1167 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1168 btrfs_set_root_generation(&root->root_item, trans->transid);
1169 btrfs_set_root_level(&root->root_item, 0);
1170 btrfs_set_root_refs(&root->root_item, 1);
1171 btrfs_set_root_used(&root->root_item, leaf->len);
1172 btrfs_set_root_last_snapshot(&root->root_item, 0);
1173 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1174 if (is_fstree(objectid))
807fc790
AS
1175 generate_random_guid(root->root_item.uuid);
1176 else
1177 export_guid(root->root_item.uuid, &guid_null);
c8422684 1178 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c
AJ
1179
1180 key.objectid = objectid;
1181 key.type = BTRFS_ROOT_ITEM_KEY;
1182 key.offset = 0;
1183 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1184 if (ret)
1185 goto fail;
1186
1187 btrfs_tree_unlock(leaf);
1188
1dd05682
TI
1189 return root;
1190
20897f5c 1191fail:
8c38938c 1192 if (leaf)
1dd05682 1193 btrfs_tree_unlock(leaf);
00246528 1194 btrfs_put_root(root);
20897f5c 1195
1dd05682 1196 return ERR_PTR(ret);
20897f5c
AJ
1197}
1198
7237f183
YZ
1199static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1200 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1201{
1202 struct btrfs_root *root;
7237f183 1203 struct extent_buffer *leaf;
e02119d5 1204
96dfcb46 1205 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1206 if (!root)
7237f183 1207 return ERR_PTR(-ENOMEM);
e02119d5 1208
e02119d5
CM
1209 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1210 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1211 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1212
7237f183 1213 /*
92a7cc42 1214 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1215 *
92a7cc42
QW
1216 * Log trees are not exposed to user space thus can't be snapshotted,
1217 * and they go away before a real commit is actually done.
1218 *
1219 * They do store pointers to file data extents, and those reference
1220 * counts still get updated (along with back refs to the log tree).
7237f183 1221 */
e02119d5 1222
4d75f8a9 1223 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1224 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
7237f183 1225 if (IS_ERR(leaf)) {
00246528 1226 btrfs_put_root(root);
7237f183
YZ
1227 return ERR_CAST(leaf);
1228 }
e02119d5 1229
7237f183 1230 root->node = leaf;
e02119d5 1231
e02119d5
CM
1232 btrfs_mark_buffer_dirty(root->node);
1233 btrfs_tree_unlock(root->node);
7237f183
YZ
1234 return root;
1235}
1236
1237int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1238 struct btrfs_fs_info *fs_info)
1239{
1240 struct btrfs_root *log_root;
1241
1242 log_root = alloc_log_tree(trans, fs_info);
1243 if (IS_ERR(log_root))
1244 return PTR_ERR(log_root);
1245 WARN_ON(fs_info->log_root_tree);
1246 fs_info->log_root_tree = log_root;
1247 return 0;
1248}
1249
1250int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1251 struct btrfs_root *root)
1252{
0b246afa 1253 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1254 struct btrfs_root *log_root;
1255 struct btrfs_inode_item *inode_item;
1256
0b246afa 1257 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1258 if (IS_ERR(log_root))
1259 return PTR_ERR(log_root);
1260
1261 log_root->last_trans = trans->transid;
1262 log_root->root_key.offset = root->root_key.objectid;
1263
1264 inode_item = &log_root->root_item.inode;
3cae210f
QW
1265 btrfs_set_stack_inode_generation(inode_item, 1);
1266 btrfs_set_stack_inode_size(inode_item, 3);
1267 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1268 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1269 fs_info->nodesize);
3cae210f 1270 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1271
5d4f98a2 1272 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1273
1274 WARN_ON(root->log_root);
1275 root->log_root = log_root;
1276 root->log_transid = 0;
d1433deb 1277 root->log_transid_committed = -1;
257c62e1 1278 root->last_log_commit = 0;
e02119d5
CM
1279 return 0;
1280}
1281
49d11bea
JB
1282static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1283 struct btrfs_path *path,
1284 struct btrfs_key *key)
e02119d5
CM
1285{
1286 struct btrfs_root *root;
1287 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1288 u64 generation;
cb517eab 1289 int ret;
581c1760 1290 int level;
0f7d52f4 1291
96dfcb46 1292 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1293 if (!root)
1294 return ERR_PTR(-ENOMEM);
0f7d52f4 1295
cb517eab
MX
1296 ret = btrfs_find_root(tree_root, key, path,
1297 &root->root_item, &root->root_key);
0f7d52f4 1298 if (ret) {
13a8a7c8
YZ
1299 if (ret > 0)
1300 ret = -ENOENT;
49d11bea 1301 goto fail;
0f7d52f4 1302 }
13a8a7c8 1303
84234f3a 1304 generation = btrfs_root_generation(&root->root_item);
581c1760 1305 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1306 root->node = read_tree_block(fs_info,
1307 btrfs_root_bytenr(&root->root_item),
581c1760 1308 generation, level, NULL);
64c043de
LB
1309 if (IS_ERR(root->node)) {
1310 ret = PTR_ERR(root->node);
8c38938c 1311 root->node = NULL;
49d11bea 1312 goto fail;
cb517eab
MX
1313 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1314 ret = -EIO;
49d11bea 1315 goto fail;
416bc658 1316 }
5d4f98a2 1317 root->commit_root = btrfs_root_node(root);
cb517eab 1318 return root;
49d11bea 1319fail:
00246528 1320 btrfs_put_root(root);
49d11bea
JB
1321 return ERR_PTR(ret);
1322}
1323
1324struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1325 struct btrfs_key *key)
1326{
1327 struct btrfs_root *root;
1328 struct btrfs_path *path;
1329
1330 path = btrfs_alloc_path();
1331 if (!path)
1332 return ERR_PTR(-ENOMEM);
1333 root = read_tree_root_path(tree_root, path, key);
1334 btrfs_free_path(path);
1335
1336 return root;
cb517eab
MX
1337}
1338
2dfb1e43
QW
1339/*
1340 * Initialize subvolume root in-memory structure
1341 *
1342 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1343 */
1344static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1345{
1346 int ret;
dcc3eb96 1347 unsigned int nofs_flag;
cb517eab
MX
1348
1349 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1350 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1351 GFP_NOFS);
1352 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1353 ret = -ENOMEM;
1354 goto fail;
1355 }
1356
dcc3eb96
NB
1357 /*
1358 * We might be called under a transaction (e.g. indirect backref
1359 * resolution) which could deadlock if it triggers memory reclaim
1360 */
1361 nofs_flag = memalloc_nofs_save();
1362 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1363 memalloc_nofs_restore(nofs_flag);
1364 if (ret)
8257b2dc 1365 goto fail;
8257b2dc 1366
aeb935a4
QW
1367 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1368 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1369 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1370 btrfs_check_and_init_root_item(&root->root_item);
1371 }
1372
cb517eab 1373 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1374 spin_lock_init(&root->ino_cache_lock);
1375 init_waitqueue_head(&root->ino_cache_wait);
cb517eab 1376
851fd730
QW
1377 /*
1378 * Don't assign anonymous block device to roots that are not exposed to
1379 * userspace, the id pool is limited to 1M
1380 */
1381 if (is_fstree(root->root_key.objectid) &&
1382 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1383 if (!anon_dev) {
1384 ret = get_anon_bdev(&root->anon_dev);
1385 if (ret)
1386 goto fail;
1387 } else {
1388 root->anon_dev = anon_dev;
1389 }
851fd730 1390 }
f32e48e9
CR
1391
1392 mutex_lock(&root->objectid_mutex);
1393 ret = btrfs_find_highest_objectid(root,
1394 &root->highest_objectid);
1395 if (ret) {
1396 mutex_unlock(&root->objectid_mutex);
876d2cf1 1397 goto fail;
f32e48e9
CR
1398 }
1399
1400 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1401
1402 mutex_unlock(&root->objectid_mutex);
1403
cb517eab
MX
1404 return 0;
1405fail:
84db5ccf 1406 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1407 return ret;
1408}
1409
a98db0f3
JB
1410static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1411 u64 root_id)
cb517eab
MX
1412{
1413 struct btrfs_root *root;
1414
1415 spin_lock(&fs_info->fs_roots_radix_lock);
1416 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1417 (unsigned long)root_id);
bc44d7c4 1418 if (root)
00246528 1419 root = btrfs_grab_root(root);
cb517eab
MX
1420 spin_unlock(&fs_info->fs_roots_radix_lock);
1421 return root;
1422}
1423
49d11bea
JB
1424static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1425 u64 objectid)
1426{
1427 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1428 return btrfs_grab_root(fs_info->tree_root);
1429 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1430 return btrfs_grab_root(fs_info->extent_root);
1431 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1432 return btrfs_grab_root(fs_info->chunk_root);
1433 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->dev_root);
1435 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1436 return btrfs_grab_root(fs_info->csum_root);
1437 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1438 return btrfs_grab_root(fs_info->quota_root) ?
1439 fs_info->quota_root : ERR_PTR(-ENOENT);
1440 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1441 return btrfs_grab_root(fs_info->uuid_root) ?
1442 fs_info->uuid_root : ERR_PTR(-ENOENT);
1443 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1444 return btrfs_grab_root(fs_info->free_space_root) ?
1445 fs_info->free_space_root : ERR_PTR(-ENOENT);
1446 return NULL;
1447}
1448
cb517eab
MX
1449int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1450 struct btrfs_root *root)
1451{
1452 int ret;
1453
e1860a77 1454 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1455 if (ret)
1456 return ret;
1457
1458 spin_lock(&fs_info->fs_roots_radix_lock);
1459 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1460 (unsigned long)root->root_key.objectid,
1461 root);
af01d2e5 1462 if (ret == 0) {
00246528 1463 btrfs_grab_root(root);
27cdeb70 1464 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1465 }
cb517eab
MX
1466 spin_unlock(&fs_info->fs_roots_radix_lock);
1467 radix_tree_preload_end();
1468
1469 return ret;
1470}
1471
bd647ce3
JB
1472void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1473{
1474#ifdef CONFIG_BTRFS_DEBUG
1475 struct btrfs_root *root;
1476
1477 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1478 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1479
bd647ce3
JB
1480 root = list_first_entry(&fs_info->allocated_roots,
1481 struct btrfs_root, leak_list);
457f1864
JB
1482 btrfs_err(fs_info, "leaked root %s refcount %d",
1483 btrfs_root_name(root->root_key.objectid, buf),
bd647ce3
JB
1484 refcount_read(&root->refs));
1485 while (refcount_read(&root->refs) > 1)
00246528
JB
1486 btrfs_put_root(root);
1487 btrfs_put_root(root);
bd647ce3
JB
1488 }
1489#endif
1490}
1491
0d4b0463
JB
1492void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1493{
141386e1
JB
1494 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1495 percpu_counter_destroy(&fs_info->delalloc_bytes);
1496 percpu_counter_destroy(&fs_info->dio_bytes);
1497 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1498 btrfs_free_csum_hash(fs_info);
1499 btrfs_free_stripe_hash_table(fs_info);
1500 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1501 kfree(fs_info->balance_ctl);
1502 kfree(fs_info->delayed_root);
00246528
JB
1503 btrfs_put_root(fs_info->extent_root);
1504 btrfs_put_root(fs_info->tree_root);
1505 btrfs_put_root(fs_info->chunk_root);
1506 btrfs_put_root(fs_info->dev_root);
1507 btrfs_put_root(fs_info->csum_root);
1508 btrfs_put_root(fs_info->quota_root);
1509 btrfs_put_root(fs_info->uuid_root);
1510 btrfs_put_root(fs_info->free_space_root);
1511 btrfs_put_root(fs_info->fs_root);
aeb935a4 1512 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1513 btrfs_check_leaked_roots(fs_info);
3fd63727 1514 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1515 kfree(fs_info->super_copy);
1516 kfree(fs_info->super_for_commit);
1517 kvfree(fs_info);
1518}
1519
1520
2dfb1e43
QW
1521/*
1522 * Get an in-memory reference of a root structure.
1523 *
1524 * For essential trees like root/extent tree, we grab it from fs_info directly.
1525 * For subvolume trees, we check the cached filesystem roots first. If not
1526 * found, then read it from disk and add it to cached fs roots.
1527 *
1528 * Caller should release the root by calling btrfs_put_root() after the usage.
1529 *
1530 * NOTE: Reloc and log trees can't be read by this function as they share the
1531 * same root objectid.
1532 *
1533 * @objectid: root id
1534 * @anon_dev: preallocated anonymous block device number for new roots,
1535 * pass 0 for new allocation.
1536 * @check_ref: whether to check root item references, If true, return -ENOENT
1537 * for orphan roots
1538 */
1539static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1540 u64 objectid, dev_t anon_dev,
1541 bool check_ref)
5eda7b5e
CM
1542{
1543 struct btrfs_root *root;
381cf658 1544 struct btrfs_path *path;
1d4c08e0 1545 struct btrfs_key key;
5eda7b5e
CM
1546 int ret;
1547
49d11bea
JB
1548 root = btrfs_get_global_root(fs_info, objectid);
1549 if (root)
1550 return root;
4df27c4d 1551again:
56e9357a 1552 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1553 if (root) {
2dfb1e43
QW
1554 /* Shouldn't get preallocated anon_dev for cached roots */
1555 ASSERT(!anon_dev);
bc44d7c4 1556 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1557 btrfs_put_root(root);
48475471 1558 return ERR_PTR(-ENOENT);
bc44d7c4 1559 }
5eda7b5e 1560 return root;
48475471 1561 }
5eda7b5e 1562
56e9357a
DS
1563 key.objectid = objectid;
1564 key.type = BTRFS_ROOT_ITEM_KEY;
1565 key.offset = (u64)-1;
1566 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1567 if (IS_ERR(root))
1568 return root;
3394e160 1569
c00869f1 1570 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1571 ret = -ENOENT;
581bb050 1572 goto fail;
35a30d7c 1573 }
581bb050 1574
2dfb1e43 1575 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1576 if (ret)
1577 goto fail;
3394e160 1578
381cf658
DS
1579 path = btrfs_alloc_path();
1580 if (!path) {
1581 ret = -ENOMEM;
1582 goto fail;
1583 }
1d4c08e0
DS
1584 key.objectid = BTRFS_ORPHAN_OBJECTID;
1585 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1586 key.offset = objectid;
1d4c08e0
DS
1587
1588 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1589 btrfs_free_path(path);
d68fc57b
YZ
1590 if (ret < 0)
1591 goto fail;
1592 if (ret == 0)
27cdeb70 1593 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1594
cb517eab 1595 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1596 if (ret) {
00246528 1597 btrfs_put_root(root);
4785e24f 1598 if (ret == -EEXIST)
4df27c4d 1599 goto again;
4df27c4d 1600 goto fail;
0f7d52f4 1601 }
edbd8d4e 1602 return root;
4df27c4d 1603fail:
8c38938c 1604 btrfs_put_root(root);
4df27c4d 1605 return ERR_PTR(ret);
edbd8d4e
CM
1606}
1607
2dfb1e43
QW
1608/*
1609 * Get in-memory reference of a root structure
1610 *
1611 * @objectid: tree objectid
1612 * @check_ref: if set, verify that the tree exists and the item has at least
1613 * one reference
1614 */
1615struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1616 u64 objectid, bool check_ref)
1617{
1618 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1619}
1620
1621/*
1622 * Get in-memory reference of a root structure, created as new, optionally pass
1623 * the anonymous block device id
1624 *
1625 * @objectid: tree objectid
1626 * @anon_dev: if zero, allocate a new anonymous block device or use the
1627 * parameter value
1628 */
1629struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1630 u64 objectid, dev_t anon_dev)
1631{
1632 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1633}
1634
49d11bea
JB
1635/*
1636 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1637 * @fs_info: the fs_info
1638 * @objectid: the objectid we need to lookup
1639 *
1640 * This is exclusively used for backref walking, and exists specifically because
1641 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1642 * creation time, which means we may have to read the tree_root in order to look
1643 * up a fs root that is not in memory. If the root is not in memory we will
1644 * read the tree root commit root and look up the fs root from there. This is a
1645 * temporary root, it will not be inserted into the radix tree as it doesn't
1646 * have the most uptodate information, it'll simply be discarded once the
1647 * backref code is finished using the root.
1648 */
1649struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1650 struct btrfs_path *path,
1651 u64 objectid)
1652{
1653 struct btrfs_root *root;
1654 struct btrfs_key key;
1655
1656 ASSERT(path->search_commit_root && path->skip_locking);
1657
1658 /*
1659 * This can return -ENOENT if we ask for a root that doesn't exist, but
1660 * since this is called via the backref walking code we won't be looking
1661 * up a root that doesn't exist, unless there's corruption. So if root
1662 * != NULL just return it.
1663 */
1664 root = btrfs_get_global_root(fs_info, objectid);
1665 if (root)
1666 return root;
1667
1668 root = btrfs_lookup_fs_root(fs_info, objectid);
1669 if (root)
1670 return root;
1671
1672 key.objectid = objectid;
1673 key.type = BTRFS_ROOT_ITEM_KEY;
1674 key.offset = (u64)-1;
1675 root = read_tree_root_path(fs_info->tree_root, path, &key);
1676 btrfs_release_path(path);
1677
1678 return root;
1679}
1680
8b712842
CM
1681/*
1682 * called by the kthread helper functions to finally call the bio end_io
1683 * functions. This is where read checksum verification actually happens
1684 */
1685static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1686{
ce9adaa5 1687 struct bio *bio;
97eb6b69 1688 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1689
97eb6b69 1690 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1691 bio = end_io_wq->bio;
ce9adaa5 1692
4e4cbee9 1693 bio->bi_status = end_io_wq->status;
8b712842
CM
1694 bio->bi_private = end_io_wq->private;
1695 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1696 bio_endio(bio);
9be490f1 1697 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1698}
1699
a74a4b97
CM
1700static int cleaner_kthread(void *arg)
1701{
1702 struct btrfs_root *root = arg;
0b246afa 1703 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1704 int again;
a74a4b97 1705
d6fd0ae2 1706 while (1) {
d0278245 1707 again = 0;
a74a4b97 1708
fd340d0f
JB
1709 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1710
d0278245 1711 /* Make the cleaner go to sleep early. */
2ff7e61e 1712 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1713 goto sleep;
1714
90c711ab
ZB
1715 /*
1716 * Do not do anything if we might cause open_ctree() to block
1717 * before we have finished mounting the filesystem.
1718 */
0b246afa 1719 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1720 goto sleep;
1721
0b246afa 1722 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1723 goto sleep;
1724
dc7f370c
MX
1725 /*
1726 * Avoid the problem that we change the status of the fs
1727 * during the above check and trylock.
1728 */
2ff7e61e 1729 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1730 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1731 goto sleep;
76dda93c 1732 }
a74a4b97 1733
2ff7e61e 1734 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1735
d0278245 1736 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1737 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1738
1739 /*
05323cd1
MX
1740 * The defragger has dealt with the R/O remount and umount,
1741 * needn't do anything special here.
d0278245 1742 */
0b246afa 1743 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1744
1745 /*
1746 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1747 * with relocation (btrfs_relocate_chunk) and relocation
1748 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1749 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1750 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1751 * unused block groups.
1752 */
0b246afa 1753 btrfs_delete_unused_bgs(fs_info);
d0278245 1754sleep:
fd340d0f 1755 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1756 if (kthread_should_park())
1757 kthread_parkme();
1758 if (kthread_should_stop())
1759 return 0;
838fe188 1760 if (!again) {
a74a4b97 1761 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1762 schedule();
a74a4b97
CM
1763 __set_current_state(TASK_RUNNING);
1764 }
da288d28 1765 }
a74a4b97
CM
1766}
1767
1768static int transaction_kthread(void *arg)
1769{
1770 struct btrfs_root *root = arg;
0b246afa 1771 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1772 struct btrfs_trans_handle *trans;
1773 struct btrfs_transaction *cur;
8929ecfa 1774 u64 transid;
643900be 1775 time64_t delta;
a74a4b97 1776 unsigned long delay;
914b2007 1777 bool cannot_commit;
a74a4b97
CM
1778
1779 do {
914b2007 1780 cannot_commit = false;
ba1bc00f 1781 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1782 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1783
0b246afa
JM
1784 spin_lock(&fs_info->trans_lock);
1785 cur = fs_info->running_transaction;
a74a4b97 1786 if (!cur) {
0b246afa 1787 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1788 goto sleep;
1789 }
31153d81 1790
643900be 1791 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1792 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1793 delta < fs_info->commit_interval) {
0b246afa 1794 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1795 delay -= msecs_to_jiffies((delta - 1) * 1000);
1796 delay = min(delay,
1797 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1798 goto sleep;
1799 }
8929ecfa 1800 transid = cur->transid;
0b246afa 1801 spin_unlock(&fs_info->trans_lock);
56bec294 1802
79787eaa 1803 /* If the file system is aborted, this will always fail. */
354aa0fb 1804 trans = btrfs_attach_transaction(root);
914b2007 1805 if (IS_ERR(trans)) {
354aa0fb
MX
1806 if (PTR_ERR(trans) != -ENOENT)
1807 cannot_commit = true;
79787eaa 1808 goto sleep;
914b2007 1809 }
8929ecfa 1810 if (transid == trans->transid) {
3a45bb20 1811 btrfs_commit_transaction(trans);
8929ecfa 1812 } else {
3a45bb20 1813 btrfs_end_transaction(trans);
8929ecfa 1814 }
a74a4b97 1815sleep:
0b246afa
JM
1816 wake_up_process(fs_info->cleaner_kthread);
1817 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1818
4e121c06 1819 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1820 &fs_info->fs_state)))
2ff7e61e 1821 btrfs_cleanup_transaction(fs_info);
ce63f891 1822 if (!kthread_should_stop() &&
0b246afa 1823 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1824 cannot_commit))
bc5511d0 1825 schedule_timeout_interruptible(delay);
a74a4b97
CM
1826 } while (!kthread_should_stop());
1827 return 0;
1828}
1829
af31f5e5 1830/*
01f0f9da
NB
1831 * This will find the highest generation in the array of root backups. The
1832 * index of the highest array is returned, or -EINVAL if we can't find
1833 * anything.
af31f5e5
CM
1834 *
1835 * We check to make sure the array is valid by comparing the
1836 * generation of the latest root in the array with the generation
1837 * in the super block. If they don't match we pitch it.
1838 */
01f0f9da 1839static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1840{
01f0f9da 1841 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1842 u64 cur;
af31f5e5
CM
1843 struct btrfs_root_backup *root_backup;
1844 int i;
1845
1846 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1847 root_backup = info->super_copy->super_roots + i;
1848 cur = btrfs_backup_tree_root_gen(root_backup);
1849 if (cur == newest_gen)
01f0f9da 1850 return i;
af31f5e5
CM
1851 }
1852
01f0f9da 1853 return -EINVAL;
af31f5e5
CM
1854}
1855
af31f5e5
CM
1856/*
1857 * copy all the root pointers into the super backup array.
1858 * this will bump the backup pointer by one when it is
1859 * done
1860 */
1861static void backup_super_roots(struct btrfs_fs_info *info)
1862{
6ef108dd 1863 const int next_backup = info->backup_root_index;
af31f5e5 1864 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1865
1866 root_backup = info->super_for_commit->super_roots + next_backup;
1867
1868 /*
1869 * make sure all of our padding and empty slots get zero filled
1870 * regardless of which ones we use today
1871 */
1872 memset(root_backup, 0, sizeof(*root_backup));
1873
1874 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1875
1876 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1877 btrfs_set_backup_tree_root_gen(root_backup,
1878 btrfs_header_generation(info->tree_root->node));
1879
1880 btrfs_set_backup_tree_root_level(root_backup,
1881 btrfs_header_level(info->tree_root->node));
1882
1883 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1884 btrfs_set_backup_chunk_root_gen(root_backup,
1885 btrfs_header_generation(info->chunk_root->node));
1886 btrfs_set_backup_chunk_root_level(root_backup,
1887 btrfs_header_level(info->chunk_root->node));
1888
1889 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1890 btrfs_set_backup_extent_root_gen(root_backup,
1891 btrfs_header_generation(info->extent_root->node));
1892 btrfs_set_backup_extent_root_level(root_backup,
1893 btrfs_header_level(info->extent_root->node));
1894
7c7e82a7
CM
1895 /*
1896 * we might commit during log recovery, which happens before we set
1897 * the fs_root. Make sure it is valid before we fill it in.
1898 */
1899 if (info->fs_root && info->fs_root->node) {
1900 btrfs_set_backup_fs_root(root_backup,
1901 info->fs_root->node->start);
1902 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1903 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1904 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1905 btrfs_header_level(info->fs_root->node));
7c7e82a7 1906 }
af31f5e5
CM
1907
1908 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1909 btrfs_set_backup_dev_root_gen(root_backup,
1910 btrfs_header_generation(info->dev_root->node));
1911 btrfs_set_backup_dev_root_level(root_backup,
1912 btrfs_header_level(info->dev_root->node));
1913
1914 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1915 btrfs_set_backup_csum_root_gen(root_backup,
1916 btrfs_header_generation(info->csum_root->node));
1917 btrfs_set_backup_csum_root_level(root_backup,
1918 btrfs_header_level(info->csum_root->node));
1919
1920 btrfs_set_backup_total_bytes(root_backup,
1921 btrfs_super_total_bytes(info->super_copy));
1922 btrfs_set_backup_bytes_used(root_backup,
1923 btrfs_super_bytes_used(info->super_copy));
1924 btrfs_set_backup_num_devices(root_backup,
1925 btrfs_super_num_devices(info->super_copy));
1926
1927 /*
1928 * if we don't copy this out to the super_copy, it won't get remembered
1929 * for the next commit
1930 */
1931 memcpy(&info->super_copy->super_roots,
1932 &info->super_for_commit->super_roots,
1933 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1934}
1935
bd2336b2
NB
1936/*
1937 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1938 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1939 *
1940 * fs_info - filesystem whose backup roots need to be read
1941 * priority - priority of backup root required
1942 *
1943 * Returns backup root index on success and -EINVAL otherwise.
1944 */
1945static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1946{
1947 int backup_index = find_newest_super_backup(fs_info);
1948 struct btrfs_super_block *super = fs_info->super_copy;
1949 struct btrfs_root_backup *root_backup;
1950
1951 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1952 if (priority == 0)
1953 return backup_index;
1954
1955 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1956 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1957 } else {
1958 return -EINVAL;
1959 }
1960
1961 root_backup = super->super_roots + backup_index;
1962
1963 btrfs_set_super_generation(super,
1964 btrfs_backup_tree_root_gen(root_backup));
1965 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1966 btrfs_set_super_root_level(super,
1967 btrfs_backup_tree_root_level(root_backup));
1968 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1969
1970 /*
1971 * Fixme: the total bytes and num_devices need to match or we should
1972 * need a fsck
1973 */
1974 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1975 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1976
1977 return backup_index;
1978}
1979
7abadb64
LB
1980/* helper to cleanup workers */
1981static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1982{
dc6e3209 1983 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1984 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1985 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1986 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1987 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 1988 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1989 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1990 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1991 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1992 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1993 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1994 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1995 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1996 if (fs_info->discard_ctl.discard_workers)
1997 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1998 /*
1999 * Now that all other work queues are destroyed, we can safely destroy
2000 * the queues used for metadata I/O, since tasks from those other work
2001 * queues can do metadata I/O operations.
2002 */
2003 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2004 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2005}
2006
2e9f5954
R
2007static void free_root_extent_buffers(struct btrfs_root *root)
2008{
2009 if (root) {
2010 free_extent_buffer(root->node);
2011 free_extent_buffer(root->commit_root);
2012 root->node = NULL;
2013 root->commit_root = NULL;
2014 }
2015}
2016
af31f5e5 2017/* helper to cleanup tree roots */
4273eaff 2018static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2019{
2e9f5954 2020 free_root_extent_buffers(info->tree_root);
655b09fe 2021
2e9f5954
R
2022 free_root_extent_buffers(info->dev_root);
2023 free_root_extent_buffers(info->extent_root);
2024 free_root_extent_buffers(info->csum_root);
2025 free_root_extent_buffers(info->quota_root);
2026 free_root_extent_buffers(info->uuid_root);
8c38938c 2027 free_root_extent_buffers(info->fs_root);
aeb935a4 2028 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2029 if (free_chunk_root)
2e9f5954 2030 free_root_extent_buffers(info->chunk_root);
70f6d82e 2031 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2032}
2033
8c38938c
JB
2034void btrfs_put_root(struct btrfs_root *root)
2035{
2036 if (!root)
2037 return;
2038
2039 if (refcount_dec_and_test(&root->refs)) {
2040 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2041 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2042 if (root->anon_dev)
2043 free_anon_bdev(root->anon_dev);
2044 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2045 free_root_extent_buffers(root);
8c38938c
JB
2046 kfree(root->free_ino_ctl);
2047 kfree(root->free_ino_pinned);
2048#ifdef CONFIG_BTRFS_DEBUG
2049 spin_lock(&root->fs_info->fs_roots_radix_lock);
2050 list_del_init(&root->leak_list);
2051 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2052#endif
2053 kfree(root);
2054 }
2055}
2056
faa2dbf0 2057void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2058{
2059 int ret;
2060 struct btrfs_root *gang[8];
2061 int i;
2062
2063 while (!list_empty(&fs_info->dead_roots)) {
2064 gang[0] = list_entry(fs_info->dead_roots.next,
2065 struct btrfs_root, root_list);
2066 list_del(&gang[0]->root_list);
2067
8c38938c 2068 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2069 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2070 btrfs_put_root(gang[0]);
171f6537
JB
2071 }
2072
2073 while (1) {
2074 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2075 (void **)gang, 0,
2076 ARRAY_SIZE(gang));
2077 if (!ret)
2078 break;
2079 for (i = 0; i < ret; i++)
cb517eab 2080 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2081 }
2082}
af31f5e5 2083
638aa7ed
ES
2084static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2085{
2086 mutex_init(&fs_info->scrub_lock);
2087 atomic_set(&fs_info->scrubs_running, 0);
2088 atomic_set(&fs_info->scrub_pause_req, 0);
2089 atomic_set(&fs_info->scrubs_paused, 0);
2090 atomic_set(&fs_info->scrub_cancel_req, 0);
2091 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2092 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2093}
2094
779a65a4
ES
2095static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2096{
2097 spin_lock_init(&fs_info->balance_lock);
2098 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2099 atomic_set(&fs_info->balance_pause_req, 0);
2100 atomic_set(&fs_info->balance_cancel_req, 0);
2101 fs_info->balance_ctl = NULL;
2102 init_waitqueue_head(&fs_info->balance_wait_q);
2103}
2104
6bccf3ab 2105static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2106{
2ff7e61e
JM
2107 struct inode *inode = fs_info->btree_inode;
2108
2109 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2110 set_nlink(inode, 1);
f37938e0
ES
2111 /*
2112 * we set the i_size on the btree inode to the max possible int.
2113 * the real end of the address space is determined by all of
2114 * the devices in the system
2115 */
2ff7e61e
JM
2116 inode->i_size = OFFSET_MAX;
2117 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2118
2ff7e61e 2119 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2120 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2121 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2122 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2123 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2124
5c8fd99f 2125 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2126 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2127 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2128 btrfs_insert_inode_hash(inode);
f37938e0
ES
2129}
2130
ad618368
ES
2131static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2132{
ad618368 2133 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2134 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2135 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2136}
2137
f9e92e40
ES
2138static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2139{
2140 spin_lock_init(&fs_info->qgroup_lock);
2141 mutex_init(&fs_info->qgroup_ioctl_lock);
2142 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2143 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2144 fs_info->qgroup_seq = 1;
f9e92e40 2145 fs_info->qgroup_ulist = NULL;
d2c609b8 2146 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2147 mutex_init(&fs_info->qgroup_rescan_lock);
2148}
2149
2a458198
ES
2150static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2151 struct btrfs_fs_devices *fs_devices)
2152{
f7b885be 2153 u32 max_active = fs_info->thread_pool_size;
6f011058 2154 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2155
2156 fs_info->workers =
cb001095
JM
2157 btrfs_alloc_workqueue(fs_info, "worker",
2158 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2159
2160 fs_info->delalloc_workers =
cb001095
JM
2161 btrfs_alloc_workqueue(fs_info, "delalloc",
2162 flags, max_active, 2);
2a458198
ES
2163
2164 fs_info->flush_workers =
cb001095
JM
2165 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2166 flags, max_active, 0);
2a458198
ES
2167
2168 fs_info->caching_workers =
cb001095 2169 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2170
2a458198 2171 fs_info->fixup_workers =
cb001095 2172 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2173
2174 /*
2175 * endios are largely parallel and should have a very
2176 * low idle thresh
2177 */
2178 fs_info->endio_workers =
cb001095 2179 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2180 fs_info->endio_meta_workers =
cb001095
JM
2181 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2182 max_active, 4);
2a458198 2183 fs_info->endio_meta_write_workers =
cb001095
JM
2184 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2185 max_active, 2);
2a458198 2186 fs_info->endio_raid56_workers =
cb001095
JM
2187 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2188 max_active, 4);
2a458198 2189 fs_info->rmw_workers =
cb001095 2190 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2191 fs_info->endio_write_workers =
cb001095
JM
2192 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2193 max_active, 2);
2a458198 2194 fs_info->endio_freespace_worker =
cb001095
JM
2195 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2196 max_active, 0);
2a458198 2197 fs_info->delayed_workers =
cb001095
JM
2198 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2199 max_active, 0);
2a458198 2200 fs_info->readahead_workers =
cb001095
JM
2201 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2202 max_active, 2);
2a458198 2203 fs_info->qgroup_rescan_workers =
cb001095 2204 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2205 fs_info->discard_ctl.discard_workers =
2206 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2207
2208 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2209 fs_info->flush_workers &&
2a458198
ES
2210 fs_info->endio_workers && fs_info->endio_meta_workers &&
2211 fs_info->endio_meta_write_workers &&
2a458198
ES
2212 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2213 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2214 fs_info->caching_workers && fs_info->readahead_workers &&
2215 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2216 fs_info->qgroup_rescan_workers &&
2217 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2218 return -ENOMEM;
2219 }
2220
2221 return 0;
2222}
2223
6d97c6e3
JT
2224static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2225{
2226 struct crypto_shash *csum_shash;
b4e967be 2227 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2228
b4e967be 2229 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2230
2231 if (IS_ERR(csum_shash)) {
2232 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2233 csum_driver);
6d97c6e3
JT
2234 return PTR_ERR(csum_shash);
2235 }
2236
2237 fs_info->csum_shash = csum_shash;
2238
2239 return 0;
2240}
2241
63443bf5
ES
2242static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2243 struct btrfs_fs_devices *fs_devices)
2244{
2245 int ret;
63443bf5
ES
2246 struct btrfs_root *log_tree_root;
2247 struct btrfs_super_block *disk_super = fs_info->super_copy;
2248 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2249 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2250
2251 if (fs_devices->rw_devices == 0) {
f14d104d 2252 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2253 return -EIO;
2254 }
2255
96dfcb46
JB
2256 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2257 GFP_KERNEL);
63443bf5
ES
2258 if (!log_tree_root)
2259 return -ENOMEM;
2260
2ff7e61e 2261 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2262 fs_info->generation + 1,
2263 level, NULL);
64c043de 2264 if (IS_ERR(log_tree_root->node)) {
f14d104d 2265 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2266 ret = PTR_ERR(log_tree_root->node);
8c38938c 2267 log_tree_root->node = NULL;
00246528 2268 btrfs_put_root(log_tree_root);
0eeff236 2269 return ret;
64c043de 2270 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2271 btrfs_err(fs_info, "failed to read log tree");
00246528 2272 btrfs_put_root(log_tree_root);
63443bf5
ES
2273 return -EIO;
2274 }
2275 /* returns with log_tree_root freed on success */
2276 ret = btrfs_recover_log_trees(log_tree_root);
2277 if (ret) {
0b246afa
JM
2278 btrfs_handle_fs_error(fs_info, ret,
2279 "Failed to recover log tree");
00246528 2280 btrfs_put_root(log_tree_root);
63443bf5
ES
2281 return ret;
2282 }
2283
bc98a42c 2284 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2285 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2286 if (ret)
2287 return ret;
2288 }
2289
2290 return 0;
2291}
2292
6bccf3ab 2293static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2294{
6bccf3ab 2295 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2296 struct btrfs_root *root;
4bbcaa64
ES
2297 struct btrfs_key location;
2298 int ret;
2299
6bccf3ab
JM
2300 BUG_ON(!fs_info->tree_root);
2301
4bbcaa64
ES
2302 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2303 location.type = BTRFS_ROOT_ITEM_KEY;
2304 location.offset = 0;
2305
a4f3d2c4 2306 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2307 if (IS_ERR(root)) {
42437a63
JB
2308 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2309 ret = PTR_ERR(root);
2310 goto out;
2311 }
2312 } else {
2313 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314 fs_info->extent_root = root;
f50f4353 2315 }
4bbcaa64
ES
2316
2317 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2318 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2319 if (IS_ERR(root)) {
42437a63
JB
2320 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2321 ret = PTR_ERR(root);
2322 goto out;
2323 }
2324 } else {
2325 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2326 fs_info->dev_root = root;
2327 btrfs_init_devices_late(fs_info);
f50f4353 2328 }
4bbcaa64 2329
882dbe0c
JB
2330 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2331 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2332 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2333 root = btrfs_read_tree_root(tree_root, &location);
2334 if (IS_ERR(root)) {
2335 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2336 ret = PTR_ERR(root);
2337 goto out;
2338 }
2339 } else {
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 fs_info->csum_root = root;
42437a63 2342 }
f50f4353 2343 }
4bbcaa64 2344
aeb935a4
QW
2345 /*
2346 * This tree can share blocks with some other fs tree during relocation
2347 * and we need a proper setup by btrfs_get_fs_root
2348 */
56e9357a
DS
2349 root = btrfs_get_fs_root(tree_root->fs_info,
2350 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2351 if (IS_ERR(root)) {
42437a63
JB
2352 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2353 ret = PTR_ERR(root);
2354 goto out;
2355 }
2356 } else {
2357 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358 fs_info->data_reloc_root = root;
aeb935a4 2359 }
aeb935a4 2360
4bbcaa64 2361 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2362 root = btrfs_read_tree_root(tree_root, &location);
2363 if (!IS_ERR(root)) {
2364 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2365 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2366 fs_info->quota_root = root;
4bbcaa64
ES
2367 }
2368
2369 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2370 root = btrfs_read_tree_root(tree_root, &location);
2371 if (IS_ERR(root)) {
42437a63
JB
2372 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2373 ret = PTR_ERR(root);
2374 if (ret != -ENOENT)
2375 goto out;
2376 }
4bbcaa64 2377 } else {
a4f3d2c4
DS
2378 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2379 fs_info->uuid_root = root;
4bbcaa64
ES
2380 }
2381
70f6d82e
OS
2382 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2383 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2384 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2385 if (IS_ERR(root)) {
42437a63
JB
2386 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2387 ret = PTR_ERR(root);
2388 goto out;
2389 }
2390 } else {
2391 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2392 fs_info->free_space_root = root;
f50f4353 2393 }
70f6d82e
OS
2394 }
2395
4bbcaa64 2396 return 0;
f50f4353
LB
2397out:
2398 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2399 location.objectid, ret);
2400 return ret;
4bbcaa64
ES
2401}
2402
069ec957
QW
2403/*
2404 * Real super block validation
2405 * NOTE: super csum type and incompat features will not be checked here.
2406 *
2407 * @sb: super block to check
2408 * @mirror_num: the super block number to check its bytenr:
2409 * 0 the primary (1st) sb
2410 * 1, 2 2nd and 3rd backup copy
2411 * -1 skip bytenr check
2412 */
2413static int validate_super(struct btrfs_fs_info *fs_info,
2414 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2415{
21a852b0
QW
2416 u64 nodesize = btrfs_super_nodesize(sb);
2417 u64 sectorsize = btrfs_super_sectorsize(sb);
2418 int ret = 0;
2419
2420 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2421 btrfs_err(fs_info, "no valid FS found");
2422 ret = -EINVAL;
2423 }
2424 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2425 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2426 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2427 ret = -EINVAL;
2428 }
2429 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2430 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2431 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2432 ret = -EINVAL;
2433 }
2434 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2435 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2436 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2437 ret = -EINVAL;
2438 }
2439 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2440 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2441 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2442 ret = -EINVAL;
2443 }
2444
2445 /*
2446 * Check sectorsize and nodesize first, other check will need it.
2447 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2448 */
2449 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2450 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2451 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2452 ret = -EINVAL;
2453 }
2454 /* Only PAGE SIZE is supported yet */
2455 if (sectorsize != PAGE_SIZE) {
2456 btrfs_err(fs_info,
2457 "sectorsize %llu not supported yet, only support %lu",
2458 sectorsize, PAGE_SIZE);
2459 ret = -EINVAL;
2460 }
2461 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2462 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2463 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2464 ret = -EINVAL;
2465 }
2466 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2467 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2468 le32_to_cpu(sb->__unused_leafsize), nodesize);
2469 ret = -EINVAL;
2470 }
2471
2472 /* Root alignment check */
2473 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2474 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2475 btrfs_super_root(sb));
2476 ret = -EINVAL;
2477 }
2478 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2479 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2480 btrfs_super_chunk_root(sb));
2481 ret = -EINVAL;
2482 }
2483 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2484 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2485 btrfs_super_log_root(sb));
2486 ret = -EINVAL;
2487 }
2488
de37aa51 2489 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2490 BTRFS_FSID_SIZE) != 0) {
21a852b0 2491 btrfs_err(fs_info,
7239ff4b 2492 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2493 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2494 ret = -EINVAL;
2495 }
2496
2497 /*
2498 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2499 * done later
2500 */
2501 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2502 btrfs_err(fs_info, "bytes_used is too small %llu",
2503 btrfs_super_bytes_used(sb));
2504 ret = -EINVAL;
2505 }
2506 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2507 btrfs_err(fs_info, "invalid stripesize %u",
2508 btrfs_super_stripesize(sb));
2509 ret = -EINVAL;
2510 }
2511 if (btrfs_super_num_devices(sb) > (1UL << 31))
2512 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2513 btrfs_super_num_devices(sb));
2514 if (btrfs_super_num_devices(sb) == 0) {
2515 btrfs_err(fs_info, "number of devices is 0");
2516 ret = -EINVAL;
2517 }
2518
069ec957
QW
2519 if (mirror_num >= 0 &&
2520 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2521 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2522 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2523 ret = -EINVAL;
2524 }
2525
2526 /*
2527 * Obvious sys_chunk_array corruptions, it must hold at least one key
2528 * and one chunk
2529 */
2530 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2531 btrfs_err(fs_info, "system chunk array too big %u > %u",
2532 btrfs_super_sys_array_size(sb),
2533 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2534 ret = -EINVAL;
2535 }
2536 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2537 + sizeof(struct btrfs_chunk)) {
2538 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2539 btrfs_super_sys_array_size(sb),
2540 sizeof(struct btrfs_disk_key)
2541 + sizeof(struct btrfs_chunk));
2542 ret = -EINVAL;
2543 }
2544
2545 /*
2546 * The generation is a global counter, we'll trust it more than the others
2547 * but it's still possible that it's the one that's wrong.
2548 */
2549 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2550 btrfs_warn(fs_info,
2551 "suspicious: generation < chunk_root_generation: %llu < %llu",
2552 btrfs_super_generation(sb),
2553 btrfs_super_chunk_root_generation(sb));
2554 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2555 && btrfs_super_cache_generation(sb) != (u64)-1)
2556 btrfs_warn(fs_info,
2557 "suspicious: generation < cache_generation: %llu < %llu",
2558 btrfs_super_generation(sb),
2559 btrfs_super_cache_generation(sb));
2560
2561 return ret;
2562}
2563
069ec957
QW
2564/*
2565 * Validation of super block at mount time.
2566 * Some checks already done early at mount time, like csum type and incompat
2567 * flags will be skipped.
2568 */
2569static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2570{
2571 return validate_super(fs_info, fs_info->super_copy, 0);
2572}
2573
75cb857d
QW
2574/*
2575 * Validation of super block at write time.
2576 * Some checks like bytenr check will be skipped as their values will be
2577 * overwritten soon.
2578 * Extra checks like csum type and incompat flags will be done here.
2579 */
2580static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2581 struct btrfs_super_block *sb)
2582{
2583 int ret;
2584
2585 ret = validate_super(fs_info, sb, -1);
2586 if (ret < 0)
2587 goto out;
e7e16f48 2588 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2589 ret = -EUCLEAN;
2590 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2591 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2592 goto out;
2593 }
2594 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2595 ret = -EUCLEAN;
2596 btrfs_err(fs_info,
2597 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2598 btrfs_super_incompat_flags(sb),
2599 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2600 goto out;
2601 }
2602out:
2603 if (ret < 0)
2604 btrfs_err(fs_info,
2605 "super block corruption detected before writing it to disk");
2606 return ret;
2607}
2608
6ef108dd 2609static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2610{
6ef108dd 2611 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2612 struct btrfs_super_block *sb = fs_info->super_copy;
2613 struct btrfs_root *tree_root = fs_info->tree_root;
2614 bool handle_error = false;
2615 int ret = 0;
2616 int i;
2617
2618 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2619 u64 generation;
2620 int level;
2621
2622 if (handle_error) {
2623 if (!IS_ERR(tree_root->node))
2624 free_extent_buffer(tree_root->node);
2625 tree_root->node = NULL;
2626
2627 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2628 break;
2629
2630 free_root_pointers(fs_info, 0);
2631
2632 /*
2633 * Don't use the log in recovery mode, it won't be
2634 * valid
2635 */
2636 btrfs_set_super_log_root(sb, 0);
2637
2638 /* We can't trust the free space cache either */
2639 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2640
2641 ret = read_backup_root(fs_info, i);
6ef108dd 2642 backup_index = ret;
b8522a1e
NB
2643 if (ret < 0)
2644 return ret;
2645 }
2646 generation = btrfs_super_generation(sb);
2647 level = btrfs_super_root_level(sb);
2648 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2649 generation, level, NULL);
217f5004 2650 if (IS_ERR(tree_root->node)) {
b8522a1e 2651 handle_error = true;
217f5004
NB
2652 ret = PTR_ERR(tree_root->node);
2653 tree_root->node = NULL;
2654 btrfs_warn(fs_info, "couldn't read tree root");
2655 continue;
b8522a1e 2656
217f5004
NB
2657 } else if (!extent_buffer_uptodate(tree_root->node)) {
2658 handle_error = true;
2659 ret = -EIO;
2660 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2661 continue;
2662 }
2663
2664 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2665 tree_root->commit_root = btrfs_root_node(tree_root);
2666 btrfs_set_root_refs(&tree_root->root_item, 1);
2667
336a0d8d
NB
2668 /*
2669 * No need to hold btrfs_root::objectid_mutex since the fs
2670 * hasn't been fully initialised and we are the only user
2671 */
b8522a1e
NB
2672 ret = btrfs_find_highest_objectid(tree_root,
2673 &tree_root->highest_objectid);
2674 if (ret < 0) {
b8522a1e
NB
2675 handle_error = true;
2676 continue;
2677 }
2678
2679 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2680
2681 ret = btrfs_read_roots(fs_info);
2682 if (ret < 0) {
2683 handle_error = true;
2684 continue;
2685 }
2686
2687 /* All successful */
2688 fs_info->generation = generation;
2689 fs_info->last_trans_committed = generation;
6ef108dd
NB
2690
2691 /* Always begin writing backup roots after the one being used */
2692 if (backup_index < 0) {
2693 fs_info->backup_root_index = 0;
2694 } else {
2695 fs_info->backup_root_index = backup_index + 1;
2696 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2697 }
b8522a1e
NB
2698 break;
2699 }
2700
2701 return ret;
2702}
2703
8260edba 2704void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2705{
76dda93c 2706 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2707 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2708 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2709 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2710 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2711 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2712 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2713 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2714 spin_lock_init(&fs_info->trans_lock);
76dda93c 2715 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2716 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2717 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2718 spin_lock_init(&fs_info->super_lock);
f28491e0 2719 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2720 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2721 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2722 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2723 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2724 mutex_init(&fs_info->reloc_mutex);
573bfb72 2725 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2726 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2727
0b86a832 2728 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2729 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2730 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2731 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2732#ifdef CONFIG_BTRFS_DEBUG
2733 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2734 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2735 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2736#endif
c8bf1b67 2737 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2738 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2739 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2740 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2741 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2742 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2743 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2744 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2745 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2746 BTRFS_BLOCK_RSV_DELREFS);
2747
771ed689 2748 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2749 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2750 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2751 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2752 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2753 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2754 fs_info->metadata_ratio = 0;
4cb5300b 2755 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2756 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2757 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2758 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2759 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2760 /* readahead state */
d0164adc 2761 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2762 spin_lock_init(&fs_info->reada_lock);
fd708b81 2763 btrfs_init_ref_verify(fs_info);
c8b97818 2764
b34b086c
CM
2765 fs_info->thread_pool_size = min_t(unsigned long,
2766 num_online_cpus() + 2, 8);
0afbaf8c 2767
199c2a9c
MX
2768 INIT_LIST_HEAD(&fs_info->ordered_roots);
2769 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2770
638aa7ed 2771 btrfs_init_scrub(fs_info);
21adbd5c
SB
2772#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2773 fs_info->check_integrity_print_mask = 0;
2774#endif
779a65a4 2775 btrfs_init_balance(fs_info);
57056740 2776 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2777
0f9dd46c 2778 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2779 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2780 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2781
fe119a6e
NB
2782 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2783 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2784 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2785
5a3f23d5 2786 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2787 mutex_init(&fs_info->tree_log_mutex);
925baedd 2788 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2789 mutex_init(&fs_info->transaction_kthread_mutex);
2790 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2791 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2792 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2793 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2794 init_rwsem(&fs_info->subvol_sem);
803b2f54 2795 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2796
ad618368 2797 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2798 btrfs_init_qgroup(fs_info);
b0643e59 2799 btrfs_discard_init(fs_info);
416ac51d 2800
fa9c0d79
CM
2801 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2802 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2803
e6dcd2dc 2804 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2805 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2806 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2807 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2808 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2809
da17066c
JM
2810 /* Usable values until the real ones are cached from the superblock */
2811 fs_info->nodesize = 4096;
2812 fs_info->sectorsize = 4096;
ab108d99 2813 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2814 fs_info->stripesize = 4096;
2815
eede2bf3
OS
2816 spin_lock_init(&fs_info->swapfile_pins_lock);
2817 fs_info->swapfile_pins = RB_ROOT;
2818
9e967495 2819 fs_info->send_in_progress = 0;
8260edba
JB
2820}
2821
2822static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2823{
2824 int ret;
2825
2826 fs_info->sb = sb;
2827 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2828 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2829
ae18c37a
JB
2830 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2831 if (ret)
c75e8394 2832 return ret;
ae18c37a
JB
2833
2834 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2835 if (ret)
c75e8394 2836 return ret;
ae18c37a
JB
2837
2838 fs_info->dirty_metadata_batch = PAGE_SIZE *
2839 (1 + ilog2(nr_cpu_ids));
2840
2841 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2842 if (ret)
c75e8394 2843 return ret;
ae18c37a
JB
2844
2845 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2846 GFP_KERNEL);
2847 if (ret)
c75e8394 2848 return ret;
ae18c37a
JB
2849
2850 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2851 GFP_KERNEL);
c75e8394
JB
2852 if (!fs_info->delayed_root)
2853 return -ENOMEM;
ae18c37a
JB
2854 btrfs_init_delayed_root(fs_info->delayed_root);
2855
c75e8394 2856 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2857}
2858
97f4dd09
NB
2859static int btrfs_uuid_rescan_kthread(void *data)
2860{
2861 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2862 int ret;
2863
2864 /*
2865 * 1st step is to iterate through the existing UUID tree and
2866 * to delete all entries that contain outdated data.
2867 * 2nd step is to add all missing entries to the UUID tree.
2868 */
2869 ret = btrfs_uuid_tree_iterate(fs_info);
2870 if (ret < 0) {
c94bec2c
JB
2871 if (ret != -EINTR)
2872 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2873 ret);
97f4dd09
NB
2874 up(&fs_info->uuid_tree_rescan_sem);
2875 return ret;
2876 }
2877 return btrfs_uuid_scan_kthread(data);
2878}
2879
2880static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2881{
2882 struct task_struct *task;
2883
2884 down(&fs_info->uuid_tree_rescan_sem);
2885 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2886 if (IS_ERR(task)) {
2887 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2888 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2889 up(&fs_info->uuid_tree_rescan_sem);
2890 return PTR_ERR(task);
2891 }
2892
2893 return 0;
2894}
2895
ae18c37a
JB
2896int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2897 char *options)
2898{
2899 u32 sectorsize;
2900 u32 nodesize;
2901 u32 stripesize;
2902 u64 generation;
2903 u64 features;
2904 u16 csum_type;
ae18c37a
JB
2905 struct btrfs_super_block *disk_super;
2906 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2907 struct btrfs_root *tree_root;
2908 struct btrfs_root *chunk_root;
2909 int ret;
2910 int err = -EINVAL;
2911 int clear_free_space_tree = 0;
2912 int level;
2913
8260edba 2914 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2915 if (ret) {
83c8266a 2916 err = ret;
ae18c37a 2917 goto fail;
53b381b3
DW
2918 }
2919
ae18c37a
JB
2920 /* These need to be init'ed before we start creating inodes and such. */
2921 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2922 GFP_KERNEL);
2923 fs_info->tree_root = tree_root;
2924 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2925 GFP_KERNEL);
2926 fs_info->chunk_root = chunk_root;
2927 if (!tree_root || !chunk_root) {
2928 err = -ENOMEM;
c75e8394 2929 goto fail;
ae18c37a
JB
2930 }
2931
2932 fs_info->btree_inode = new_inode(sb);
2933 if (!fs_info->btree_inode) {
2934 err = -ENOMEM;
c75e8394 2935 goto fail;
ae18c37a
JB
2936 }
2937 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2938 btrfs_init_btree_inode(fs_info);
2939
3c4bb26b 2940 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2941
2942 /*
2943 * Read super block and check the signature bytes only
2944 */
8f32380d
JT
2945 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2946 if (IS_ERR(disk_super)) {
2947 err = PTR_ERR(disk_super);
16cdcec7 2948 goto fail_alloc;
20b45077 2949 }
39279cc3 2950
8dc3f22c 2951 /*
260db43c 2952 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
2953 * corrupted, we'll find out
2954 */
8f32380d 2955 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2956 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2957 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2958 csum_type);
8dc3f22c 2959 err = -EINVAL;
8f32380d 2960 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2961 goto fail_alloc;
2962 }
2963
6d97c6e3
JT
2964 ret = btrfs_init_csum_hash(fs_info, csum_type);
2965 if (ret) {
2966 err = ret;
8f32380d 2967 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2968 goto fail_alloc;
2969 }
2970
1104a885
DS
2971 /*
2972 * We want to check superblock checksum, the type is stored inside.
2973 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2974 */
8f32380d 2975 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2976 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2977 err = -EINVAL;
8f32380d 2978 btrfs_release_disk_super(disk_super);
141386e1 2979 goto fail_alloc;
1104a885
DS
2980 }
2981
2982 /*
2983 * super_copy is zeroed at allocation time and we never touch the
2984 * following bytes up to INFO_SIZE, the checksum is calculated from
2985 * the whole block of INFO_SIZE
2986 */
8f32380d
JT
2987 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2988 btrfs_release_disk_super(disk_super);
5f39d397 2989
fbc6feae
NB
2990 disk_super = fs_info->super_copy;
2991
de37aa51
NB
2992 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2993 BTRFS_FSID_SIZE));
2994
7239ff4b 2995 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2996 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2997 fs_info->super_copy->metadata_uuid,
2998 BTRFS_FSID_SIZE));
7239ff4b 2999 }
0b86a832 3000
fbc6feae
NB
3001 features = btrfs_super_flags(disk_super);
3002 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3003 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3004 btrfs_set_super_flags(disk_super, features);
3005 btrfs_info(fs_info,
3006 "found metadata UUID change in progress flag, clearing");
3007 }
3008
3009 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3010 sizeof(*fs_info->super_for_commit));
de37aa51 3011
069ec957 3012 ret = btrfs_validate_mount_super(fs_info);
1104a885 3013 if (ret) {
05135f59 3014 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3015 err = -EINVAL;
141386e1 3016 goto fail_alloc;
1104a885
DS
3017 }
3018
0f7d52f4 3019 if (!btrfs_super_root(disk_super))
141386e1 3020 goto fail_alloc;
0f7d52f4 3021
acce952b 3022 /* check FS state, whether FS is broken. */
87533c47
MX
3023 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3024 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3025
75e7cb7f
LB
3026 /*
3027 * In the long term, we'll store the compression type in the super
3028 * block, and it'll be used for per file compression control.
3029 */
3030 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3031
2ff7e61e 3032 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3033 if (ret) {
3034 err = ret;
141386e1 3035 goto fail_alloc;
2b82032c 3036 }
dfe25020 3037
f2b636e8
JB
3038 features = btrfs_super_incompat_flags(disk_super) &
3039 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3040 if (features) {
05135f59
DS
3041 btrfs_err(fs_info,
3042 "cannot mount because of unsupported optional features (%llx)",
3043 features);
f2b636e8 3044 err = -EINVAL;
141386e1 3045 goto fail_alloc;
f2b636e8
JB
3046 }
3047
5d4f98a2 3048 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3049 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3050 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3051 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3052 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3053 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3054
3173a18f 3055 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3056 btrfs_info(fs_info, "has skinny extents");
3173a18f 3057
727011e0
CM
3058 /*
3059 * flag our filesystem as having big metadata blocks if
3060 * they are bigger than the page size
3061 */
09cbfeaf 3062 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3063 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3064 btrfs_info(fs_info,
3065 "flagging fs with big metadata feature");
727011e0
CM
3066 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3067 }
3068
bc3f116f 3069 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3070 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3071 stripesize = sectorsize;
707e8a07 3072 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3073 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3074
da17066c
JM
3075 /* Cache block sizes */
3076 fs_info->nodesize = nodesize;
3077 fs_info->sectorsize = sectorsize;
ab108d99 3078 fs_info->sectorsize_bits = ilog2(sectorsize);
22b6331d 3079 fs_info->csum_size = btrfs_super_csum_size(disk_super);
fe5ecbe8 3080 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
da17066c
JM
3081 fs_info->stripesize = stripesize;
3082
bc3f116f
CM
3083 /*
3084 * mixed block groups end up with duplicate but slightly offset
3085 * extent buffers for the same range. It leads to corruptions
3086 */
3087 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3088 (sectorsize != nodesize)) {
05135f59
DS
3089 btrfs_err(fs_info,
3090"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3091 nodesize, sectorsize);
141386e1 3092 goto fail_alloc;
bc3f116f
CM
3093 }
3094
ceda0864
MX
3095 /*
3096 * Needn't use the lock because there is no other task which will
3097 * update the flag.
3098 */
a6fa6fae 3099 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3100
f2b636e8
JB
3101 features = btrfs_super_compat_ro_flags(disk_super) &
3102 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3103 if (!sb_rdonly(sb) && features) {
05135f59
DS
3104 btrfs_err(fs_info,
3105 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3106 features);
f2b636e8 3107 err = -EINVAL;
141386e1 3108 goto fail_alloc;
f2b636e8 3109 }
61d92c32 3110
2a458198
ES
3111 ret = btrfs_init_workqueues(fs_info, fs_devices);
3112 if (ret) {
3113 err = ret;
0dc3b84a
JB
3114 goto fail_sb_buffer;
3115 }
4543df7e 3116
9e11ceee
JK
3117 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3118 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3119
a061fc8d
CM
3120 sb->s_blocksize = sectorsize;
3121 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3122 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3123
925baedd 3124 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3125 ret = btrfs_read_sys_array(fs_info);
925baedd 3126 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3127 if (ret) {
05135f59 3128 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3129 goto fail_sb_buffer;
84eed90f 3130 }
0b86a832 3131
84234f3a 3132 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3133 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3134
2ff7e61e 3135 chunk_root->node = read_tree_block(fs_info,
0b86a832 3136 btrfs_super_chunk_root(disk_super),
581c1760 3137 generation, level, NULL);
64c043de
LB
3138 if (IS_ERR(chunk_root->node) ||
3139 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3140 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3141 if (!IS_ERR(chunk_root->node))
3142 free_extent_buffer(chunk_root->node);
95ab1f64 3143 chunk_root->node = NULL;
af31f5e5 3144 goto fail_tree_roots;
83121942 3145 }
5d4f98a2
YZ
3146 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3147 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3148
e17cade2 3149 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3150 offsetof(struct btrfs_header, chunk_tree_uuid),
3151 BTRFS_UUID_SIZE);
e17cade2 3152
5b4aacef 3153 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3154 if (ret) {
05135f59 3155 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3156 goto fail_tree_roots;
2b82032c 3157 }
0b86a832 3158
8dabb742 3159 /*
9b99b115
AJ
3160 * Keep the devid that is marked to be the target device for the
3161 * device replace procedure
8dabb742 3162 */
9b99b115 3163 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3164
a6b0d5c8 3165 if (!fs_devices->latest_bdev) {
05135f59 3166 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3167 goto fail_tree_roots;
3168 }
3169
b8522a1e 3170 ret = init_tree_roots(fs_info);
4bbcaa64 3171 if (ret)
b8522a1e 3172 goto fail_tree_roots;
8929ecfa 3173
75ec1db8
JB
3174 /*
3175 * If we have a uuid root and we're not being told to rescan we need to
3176 * check the generation here so we can set the
3177 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3178 * transaction during a balance or the log replay without updating the
3179 * uuid generation, and then if we crash we would rescan the uuid tree,
3180 * even though it was perfectly fine.
3181 */
3182 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3183 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3184 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3185
cf90d884
QW
3186 ret = btrfs_verify_dev_extents(fs_info);
3187 if (ret) {
3188 btrfs_err(fs_info,
3189 "failed to verify dev extents against chunks: %d",
3190 ret);
3191 goto fail_block_groups;
3192 }
68310a5e
ID
3193 ret = btrfs_recover_balance(fs_info);
3194 if (ret) {
05135f59 3195 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3196 goto fail_block_groups;
3197 }
3198
733f4fbb
SB
3199 ret = btrfs_init_dev_stats(fs_info);
3200 if (ret) {
05135f59 3201 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3202 goto fail_block_groups;
3203 }
3204
8dabb742
SB
3205 ret = btrfs_init_dev_replace(fs_info);
3206 if (ret) {
05135f59 3207 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3208 goto fail_block_groups;
3209 }
3210
9b99b115 3211 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3212
c6761a9e 3213 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3214 if (ret) {
05135f59
DS
3215 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3216 ret);
b7c35e81
AJ
3217 goto fail_block_groups;
3218 }
3219
96f3136e 3220 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3221 if (ret) {
05135f59 3222 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3223 goto fail_fsdev_sysfs;
c59021f8 3224 }
3225
c59021f8 3226 ret = btrfs_init_space_info(fs_info);
3227 if (ret) {
05135f59 3228 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3229 goto fail_sysfs;
c59021f8 3230 }
3231
5b4aacef 3232 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3233 if (ret) {
05135f59 3234 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3235 goto fail_sysfs;
1b1d1f66 3236 }
4330e183 3237
6528b99d 3238 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3239 btrfs_warn(fs_info,
52042d8e 3240 "writable mount is not allowed due to too many missing devices");
2365dd3c 3241 goto fail_sysfs;
292fd7fc 3242 }
9078a3e1 3243
a74a4b97
CM
3244 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3245 "btrfs-cleaner");
57506d50 3246 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3247 goto fail_sysfs;
a74a4b97
CM
3248
3249 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3250 tree_root,
3251 "btrfs-transaction");
57506d50 3252 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3253 goto fail_cleaner;
a74a4b97 3254
583b7231 3255 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3256 !fs_info->fs_devices->rotating) {
583b7231 3257 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3258 }
3259
572d9ab7 3260 /*
01327610 3261 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3262 * not have to wait for transaction commit
3263 */
3264 btrfs_apply_pending_changes(fs_info);
3818aea2 3265
21adbd5c 3266#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3267 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3268 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3269 btrfs_test_opt(fs_info,
21adbd5c
SB
3270 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3271 1 : 0,
3272 fs_info->check_integrity_print_mask);
3273 if (ret)
05135f59
DS
3274 btrfs_warn(fs_info,
3275 "failed to initialize integrity check module: %d",
3276 ret);
21adbd5c
SB
3277 }
3278#endif
bcef60f2
AJ
3279 ret = btrfs_read_qgroup_config(fs_info);
3280 if (ret)
3281 goto fail_trans_kthread;
21adbd5c 3282
fd708b81
JB
3283 if (btrfs_build_ref_tree(fs_info))
3284 btrfs_err(fs_info, "couldn't build ref tree");
3285
96da0919
QW
3286 /* do not make disk changes in broken FS or nologreplay is given */
3287 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3288 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3289 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3290 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3291 if (ret) {
63443bf5 3292 err = ret;
28c16cbb 3293 goto fail_qgroup;
79787eaa 3294 }
e02119d5 3295 }
1a40e23b 3296
6bccf3ab 3297 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3298 if (ret)
28c16cbb 3299 goto fail_qgroup;
76dda93c 3300
bc98a42c 3301 if (!sb_rdonly(sb)) {
d68fc57b 3302 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3303 if (ret)
28c16cbb 3304 goto fail_qgroup;
90c711ab
ZB
3305
3306 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3307 ret = btrfs_recover_relocation(tree_root);
90c711ab 3308 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3309 if (ret < 0) {
05135f59
DS
3310 btrfs_warn(fs_info, "failed to recover relocation: %d",
3311 ret);
d7ce5843 3312 err = -EINVAL;
bcef60f2 3313 goto fail_qgroup;
d7ce5843 3314 }
7c2ca468 3315 }
1a40e23b 3316
56e9357a 3317 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3318 if (IS_ERR(fs_info->fs_root)) {
3319 err = PTR_ERR(fs_info->fs_root);
f50f4353 3320 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3321 fs_info->fs_root = NULL;
bcef60f2 3322 goto fail_qgroup;
3140c9a3 3323 }
c289811c 3324
bc98a42c 3325 if (sb_rdonly(sb))
2b6ba629 3326 return 0;
59641015 3327
f8d468a1
OS
3328 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3329 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3330 clear_free_space_tree = 1;
3331 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3332 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3333 btrfs_warn(fs_info, "free space tree is invalid");
3334 clear_free_space_tree = 1;
3335 }
3336
3337 if (clear_free_space_tree) {
f8d468a1
OS
3338 btrfs_info(fs_info, "clearing free space tree");
3339 ret = btrfs_clear_free_space_tree(fs_info);
3340 if (ret) {
3341 btrfs_warn(fs_info,
3342 "failed to clear free space tree: %d", ret);
6bccf3ab 3343 close_ctree(fs_info);
f8d468a1
OS
3344 return ret;
3345 }
3346 }
3347
0b246afa 3348 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3349 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3350 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3351 ret = btrfs_create_free_space_tree(fs_info);
3352 if (ret) {
05135f59
DS
3353 btrfs_warn(fs_info,
3354 "failed to create free space tree: %d", ret);
6bccf3ab 3355 close_ctree(fs_info);
511711af
CM
3356 return ret;
3357 }
3358 }
3359
2b6ba629
ID
3360 down_read(&fs_info->cleanup_work_sem);
3361 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3362 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3363 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3364 close_ctree(fs_info);
2b6ba629
ID
3365 return ret;
3366 }
3367 up_read(&fs_info->cleanup_work_sem);
59641015 3368
2b6ba629
ID
3369 ret = btrfs_resume_balance_async(fs_info);
3370 if (ret) {
05135f59 3371 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3372 close_ctree(fs_info);
2b6ba629 3373 return ret;
e3acc2a6
JB
3374 }
3375
8dabb742
SB
3376 ret = btrfs_resume_dev_replace_async(fs_info);
3377 if (ret) {
05135f59 3378 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3379 close_ctree(fs_info);
8dabb742
SB
3380 return ret;
3381 }
3382
b382a324 3383 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3384 btrfs_discard_resume(fs_info);
b382a324 3385
4bbcaa64 3386 if (!fs_info->uuid_root) {
05135f59 3387 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3388 ret = btrfs_create_uuid_tree(fs_info);
3389 if (ret) {
05135f59
DS
3390 btrfs_warn(fs_info,
3391 "failed to create the UUID tree: %d", ret);
6bccf3ab 3392 close_ctree(fs_info);
f7a81ea4
SB
3393 return ret;
3394 }
0b246afa 3395 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3396 fs_info->generation !=
3397 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3398 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3399 ret = btrfs_check_uuid_tree(fs_info);
3400 if (ret) {
05135f59
DS
3401 btrfs_warn(fs_info,
3402 "failed to check the UUID tree: %d", ret);
6bccf3ab 3403 close_ctree(fs_info);
70f80175
SB
3404 return ret;
3405 }
f7a81ea4 3406 }
afcdd129 3407 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3408
ad2b2c80 3409 return 0;
39279cc3 3410
bcef60f2
AJ
3411fail_qgroup:
3412 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3413fail_trans_kthread:
3414 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3415 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3416 btrfs_free_fs_roots(fs_info);
3f157a2f 3417fail_cleaner:
a74a4b97 3418 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3419
3420 /*
3421 * make sure we're done with the btree inode before we stop our
3422 * kthreads
3423 */
3424 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3425
2365dd3c 3426fail_sysfs:
6618a59b 3427 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3428
b7c35e81
AJ
3429fail_fsdev_sysfs:
3430 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3431
1b1d1f66 3432fail_block_groups:
54067ae9 3433 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3434
3435fail_tree_roots:
9e3aa805
JB
3436 if (fs_info->data_reloc_root)
3437 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3438 free_root_pointers(fs_info, true);
2b8195bb 3439 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3440
39279cc3 3441fail_sb_buffer:
7abadb64 3442 btrfs_stop_all_workers(fs_info);
5cdd7db6 3443 btrfs_free_block_groups(fs_info);
16cdcec7 3444fail_alloc:
586e46e2
ID
3445 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3446
4543df7e 3447 iput(fs_info->btree_inode);
7e662854 3448fail:
586e46e2 3449 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3450 return err;
eb60ceac 3451}
663faf9f 3452ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3453
314b6dd0 3454static void btrfs_end_super_write(struct bio *bio)
f2984462 3455{
314b6dd0
JT
3456 struct btrfs_device *device = bio->bi_private;
3457 struct bio_vec *bvec;
3458 struct bvec_iter_all iter_all;
3459 struct page *page;
3460
3461 bio_for_each_segment_all(bvec, bio, iter_all) {
3462 page = bvec->bv_page;
3463
3464 if (bio->bi_status) {
3465 btrfs_warn_rl_in_rcu(device->fs_info,
3466 "lost page write due to IO error on %s (%d)",
3467 rcu_str_deref(device->name),
3468 blk_status_to_errno(bio->bi_status));
3469 ClearPageUptodate(page);
3470 SetPageError(page);
3471 btrfs_dev_stat_inc_and_print(device,
3472 BTRFS_DEV_STAT_WRITE_ERRS);
3473 } else {
3474 SetPageUptodate(page);
3475 }
3476
3477 put_page(page);
3478 unlock_page(page);
f2984462 3479 }
314b6dd0
JT
3480
3481 bio_put(bio);
f2984462
CM
3482}
3483
8f32380d
JT
3484struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3485 int copy_num)
29c36d72 3486{
29c36d72 3487 struct btrfs_super_block *super;
8f32380d 3488 struct page *page;
29c36d72 3489 u64 bytenr;
8f32380d 3490 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3491
3492 bytenr = btrfs_sb_offset(copy_num);
3493 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3494 return ERR_PTR(-EINVAL);
29c36d72 3495
8f32380d
JT
3496 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3497 if (IS_ERR(page))
3498 return ERR_CAST(page);
29c36d72 3499
8f32380d 3500 super = page_address(page);
96c2e067
AJ
3501 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3502 btrfs_release_disk_super(super);
3503 return ERR_PTR(-ENODATA);
3504 }
3505
3506 if (btrfs_super_bytenr(super) != bytenr) {
8f32380d
JT
3507 btrfs_release_disk_super(super);
3508 return ERR_PTR(-EINVAL);
29c36d72
AJ
3509 }
3510
8f32380d 3511 return super;
29c36d72
AJ
3512}
3513
3514
8f32380d 3515struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3516{
8f32380d 3517 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3518 int i;
3519 u64 transid = 0;
a512bbf8
YZ
3520
3521 /* we would like to check all the supers, but that would make
3522 * a btrfs mount succeed after a mkfs from a different FS.
3523 * So, we need to add a special mount option to scan for
3524 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3525 */
3526 for (i = 0; i < 1; i++) {
8f32380d
JT
3527 super = btrfs_read_dev_one_super(bdev, i);
3528 if (IS_ERR(super))
a512bbf8
YZ
3529 continue;
3530
a512bbf8 3531 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3532 if (latest)
3533 btrfs_release_disk_super(super);
3534
3535 latest = super;
a512bbf8 3536 transid = btrfs_super_generation(super);
a512bbf8
YZ
3537 }
3538 }
92fc03fb 3539
8f32380d 3540 return super;
a512bbf8
YZ
3541}
3542
4eedeb75 3543/*
abbb3b8e 3544 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3545 * pages we use for writing are locked.
4eedeb75 3546 *
abbb3b8e
DS
3547 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3548 * the expected device size at commit time. Note that max_mirrors must be
3549 * same for write and wait phases.
4eedeb75 3550 *
314b6dd0 3551 * Return number of errors when page is not found or submission fails.
4eedeb75 3552 */
a512bbf8 3553static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3554 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3555{
d5178578 3556 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3557 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3558 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3559 int i;
a512bbf8 3560 int errors = 0;
a512bbf8 3561 u64 bytenr;
a512bbf8
YZ
3562
3563 if (max_mirrors == 0)
3564 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3565
d5178578
JT
3566 shash->tfm = fs_info->csum_shash;
3567
a512bbf8 3568 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3569 struct page *page;
3570 struct bio *bio;
3571 struct btrfs_super_block *disk_super;
3572
a512bbf8 3573 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3574 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3575 device->commit_total_bytes)
a512bbf8
YZ
3576 break;
3577
abbb3b8e 3578 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3579
fd08001f
EB
3580 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3581 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3582 sb->csum);
4eedeb75 3583
314b6dd0
JT
3584 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3585 GFP_NOFS);
3586 if (!page) {
abbb3b8e 3587 btrfs_err(device->fs_info,
314b6dd0 3588 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3589 bytenr);
3590 errors++;
4eedeb75 3591 continue;
abbb3b8e 3592 }
634554dc 3593
314b6dd0
JT
3594 /* Bump the refcount for wait_dev_supers() */
3595 get_page(page);
a512bbf8 3596
314b6dd0
JT
3597 disk_super = page_address(page);
3598 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3599
314b6dd0
JT
3600 /*
3601 * Directly use bios here instead of relying on the page cache
3602 * to do I/O, so we don't lose the ability to do integrity
3603 * checking.
3604 */
3605 bio = bio_alloc(GFP_NOFS, 1);
3606 bio_set_dev(bio, device->bdev);
3607 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3608 bio->bi_private = device;
3609 bio->bi_end_io = btrfs_end_super_write;
3610 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3611 offset_in_page(bytenr));
a512bbf8 3612
387125fc 3613 /*
314b6dd0
JT
3614 * We FUA only the first super block. The others we allow to
3615 * go down lazy and there's a short window where the on-disk
3616 * copies might still contain the older version.
387125fc 3617 */
314b6dd0 3618 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3619 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3620 bio->bi_opf |= REQ_FUA;
3621
3622 btrfsic_submit_bio(bio);
a512bbf8
YZ
3623 }
3624 return errors < i ? 0 : -1;
3625}
3626
abbb3b8e
DS
3627/*
3628 * Wait for write completion of superblocks done by write_dev_supers,
3629 * @max_mirrors same for write and wait phases.
3630 *
314b6dd0 3631 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3632 * date.
3633 */
3634static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3635{
abbb3b8e
DS
3636 int i;
3637 int errors = 0;
b6a535fa 3638 bool primary_failed = false;
abbb3b8e
DS
3639 u64 bytenr;
3640
3641 if (max_mirrors == 0)
3642 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3643
3644 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3645 struct page *page;
3646
abbb3b8e
DS
3647 bytenr = btrfs_sb_offset(i);
3648 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3649 device->commit_total_bytes)
3650 break;
3651
314b6dd0
JT
3652 page = find_get_page(device->bdev->bd_inode->i_mapping,
3653 bytenr >> PAGE_SHIFT);
3654 if (!page) {
abbb3b8e 3655 errors++;
b6a535fa
HM
3656 if (i == 0)
3657 primary_failed = true;
abbb3b8e
DS
3658 continue;
3659 }
314b6dd0
JT
3660 /* Page is submitted locked and unlocked once the IO completes */
3661 wait_on_page_locked(page);
3662 if (PageError(page)) {
abbb3b8e 3663 errors++;
b6a535fa
HM
3664 if (i == 0)
3665 primary_failed = true;
3666 }
abbb3b8e 3667
314b6dd0
JT
3668 /* Drop our reference */
3669 put_page(page);
abbb3b8e 3670
314b6dd0
JT
3671 /* Drop the reference from the writing run */
3672 put_page(page);
abbb3b8e
DS
3673 }
3674
b6a535fa
HM
3675 /* log error, force error return */
3676 if (primary_failed) {
3677 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3678 device->devid);
3679 return -1;
3680 }
3681
abbb3b8e
DS
3682 return errors < i ? 0 : -1;
3683}
3684
387125fc
CM
3685/*
3686 * endio for the write_dev_flush, this will wake anyone waiting
3687 * for the barrier when it is done
3688 */
4246a0b6 3689static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3690{
e0ae9994 3691 complete(bio->bi_private);
387125fc
CM
3692}
3693
3694/*
4fc6441a
AJ
3695 * Submit a flush request to the device if it supports it. Error handling is
3696 * done in the waiting counterpart.
387125fc 3697 */
4fc6441a 3698static void write_dev_flush(struct btrfs_device *device)
387125fc 3699{
c2a9c7ab 3700 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3701 struct bio *bio = device->flush_bio;
387125fc 3702
c2a9c7ab 3703 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3704 return;
387125fc 3705
e0ae9994 3706 bio_reset(bio);
387125fc 3707 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3708 bio_set_dev(bio, device->bdev);
8d910125 3709 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3710 init_completion(&device->flush_wait);
3711 bio->bi_private = &device->flush_wait;
387125fc 3712
43a01111 3713 btrfsic_submit_bio(bio);
1c3063b6 3714 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3715}
387125fc 3716
4fc6441a
AJ
3717/*
3718 * If the flush bio has been submitted by write_dev_flush, wait for it.
3719 */
8c27cb35 3720static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3721{
4fc6441a 3722 struct bio *bio = device->flush_bio;
387125fc 3723
1c3063b6 3724 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3725 return BLK_STS_OK;
387125fc 3726
1c3063b6 3727 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3728 wait_for_completion_io(&device->flush_wait);
387125fc 3729
8c27cb35 3730 return bio->bi_status;
387125fc 3731}
387125fc 3732
d10b82fe 3733static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3734{
6528b99d 3735 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3736 return -EIO;
387125fc
CM
3737 return 0;
3738}
3739
3740/*
3741 * send an empty flush down to each device in parallel,
3742 * then wait for them
3743 */
3744static int barrier_all_devices(struct btrfs_fs_info *info)
3745{
3746 struct list_head *head;
3747 struct btrfs_device *dev;
5af3e8cc 3748 int errors_wait = 0;
4e4cbee9 3749 blk_status_t ret;
387125fc 3750
1538e6c5 3751 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3752 /* send down all the barriers */
3753 head = &info->fs_devices->devices;
1538e6c5 3754 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3755 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3756 continue;
cea7c8bf 3757 if (!dev->bdev)
387125fc 3758 continue;
e12c9621 3759 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3760 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3761 continue;
3762
4fc6441a 3763 write_dev_flush(dev);
58efbc9f 3764 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3765 }
3766
3767 /* wait for all the barriers */
1538e6c5 3768 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3769 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3770 continue;
387125fc 3771 if (!dev->bdev) {
5af3e8cc 3772 errors_wait++;
387125fc
CM
3773 continue;
3774 }
e12c9621 3775 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3776 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3777 continue;
3778
4fc6441a 3779 ret = wait_dev_flush(dev);
401b41e5
AJ
3780 if (ret) {
3781 dev->last_flush_error = ret;
66b4993e
DS
3782 btrfs_dev_stat_inc_and_print(dev,
3783 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3784 errors_wait++;
401b41e5
AJ
3785 }
3786 }
3787
cea7c8bf 3788 if (errors_wait) {
401b41e5
AJ
3789 /*
3790 * At some point we need the status of all disks
3791 * to arrive at the volume status. So error checking
3792 * is being pushed to a separate loop.
3793 */
d10b82fe 3794 return check_barrier_error(info);
387125fc 3795 }
387125fc
CM
3796 return 0;
3797}
3798
943c6e99
ZL
3799int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3800{
8789f4fe
ZL
3801 int raid_type;
3802 int min_tolerated = INT_MAX;
943c6e99 3803
8789f4fe
ZL
3804 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3805 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3806 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3807 btrfs_raid_array[BTRFS_RAID_SINGLE].
3808 tolerated_failures);
943c6e99 3809
8789f4fe
ZL
3810 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3811 if (raid_type == BTRFS_RAID_SINGLE)
3812 continue;
41a6e891 3813 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3814 continue;
8c3e3582 3815 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3816 btrfs_raid_array[raid_type].
3817 tolerated_failures);
3818 }
943c6e99 3819
8789f4fe 3820 if (min_tolerated == INT_MAX) {
ab8d0fc4 3821 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3822 min_tolerated = 0;
3823 }
3824
3825 return min_tolerated;
943c6e99
ZL
3826}
3827
eece6a9c 3828int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3829{
e5e9a520 3830 struct list_head *head;
f2984462 3831 struct btrfs_device *dev;
a061fc8d 3832 struct btrfs_super_block *sb;
f2984462 3833 struct btrfs_dev_item *dev_item;
f2984462
CM
3834 int ret;
3835 int do_barriers;
a236aed1
CM
3836 int max_errors;
3837 int total_errors = 0;
a061fc8d 3838 u64 flags;
f2984462 3839
0b246afa 3840 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3841
3842 /*
3843 * max_mirrors == 0 indicates we're from commit_transaction,
3844 * not from fsync where the tree roots in fs_info have not
3845 * been consistent on disk.
3846 */
3847 if (max_mirrors == 0)
3848 backup_super_roots(fs_info);
f2984462 3849
0b246afa 3850 sb = fs_info->super_for_commit;
a061fc8d 3851 dev_item = &sb->dev_item;
e5e9a520 3852
0b246afa
JM
3853 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3854 head = &fs_info->fs_devices->devices;
3855 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3856
5af3e8cc 3857 if (do_barriers) {
0b246afa 3858 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3859 if (ret) {
3860 mutex_unlock(
0b246afa
JM
3861 &fs_info->fs_devices->device_list_mutex);
3862 btrfs_handle_fs_error(fs_info, ret,
3863 "errors while submitting device barriers.");
5af3e8cc
SB
3864 return ret;
3865 }
3866 }
387125fc 3867
1538e6c5 3868 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3869 if (!dev->bdev) {
3870 total_errors++;
3871 continue;
3872 }
e12c9621 3873 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3874 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3875 continue;
3876
2b82032c 3877 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3878 btrfs_set_stack_device_type(dev_item, dev->type);
3879 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3880 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3881 dev->commit_total_bytes);
ce7213c7
MX
3882 btrfs_set_stack_device_bytes_used(dev_item,
3883 dev->commit_bytes_used);
a061fc8d
CM
3884 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3885 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3886 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3887 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3888 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3889 BTRFS_FSID_SIZE);
a512bbf8 3890
a061fc8d
CM
3891 flags = btrfs_super_flags(sb);
3892 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3893
75cb857d
QW
3894 ret = btrfs_validate_write_super(fs_info, sb);
3895 if (ret < 0) {
3896 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3897 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3898 "unexpected superblock corruption detected");
3899 return -EUCLEAN;
3900 }
3901
abbb3b8e 3902 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3903 if (ret)
3904 total_errors++;
f2984462 3905 }
a236aed1 3906 if (total_errors > max_errors) {
0b246afa
JM
3907 btrfs_err(fs_info, "%d errors while writing supers",
3908 total_errors);
3909 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3910
9d565ba4 3911 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3912 btrfs_handle_fs_error(fs_info, -EIO,
3913 "%d errors while writing supers",
3914 total_errors);
9d565ba4 3915 return -EIO;
a236aed1 3916 }
f2984462 3917
a512bbf8 3918 total_errors = 0;
1538e6c5 3919 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3920 if (!dev->bdev)
3921 continue;
e12c9621 3922 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3923 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3924 continue;
3925
abbb3b8e 3926 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3927 if (ret)
3928 total_errors++;
f2984462 3929 }
0b246afa 3930 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3931 if (total_errors > max_errors) {
0b246afa
JM
3932 btrfs_handle_fs_error(fs_info, -EIO,
3933 "%d errors while writing supers",
3934 total_errors);
79787eaa 3935 return -EIO;
a236aed1 3936 }
f2984462
CM
3937 return 0;
3938}
3939
cb517eab
MX
3940/* Drop a fs root from the radix tree and free it. */
3941void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3942 struct btrfs_root *root)
2619ba1f 3943{
4785e24f
JB
3944 bool drop_ref = false;
3945
4df27c4d 3946 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3947 radix_tree_delete(&fs_info->fs_roots_radix,
3948 (unsigned long)root->root_key.objectid);
af01d2e5 3949 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3950 drop_ref = true;
4df27c4d 3951 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3952
1c1ea4f7 3953 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3954 ASSERT(root->log_root == NULL);
1c1ea4f7 3955 if (root->reloc_root) {
00246528 3956 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3957 root->reloc_root = NULL;
3958 }
3959 }
3321719e 3960
faa2dbf0
JB
3961 if (root->free_ino_pinned)
3962 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3963 if (root->free_ino_ctl)
3964 __btrfs_remove_free_space_cache(root->free_ino_ctl);
0e996e7f
JB
3965 if (root->ino_cache_inode) {
3966 iput(root->ino_cache_inode);
3967 root->ino_cache_inode = NULL;
3968 }
4785e24f
JB
3969 if (drop_ref)
3970 btrfs_put_root(root);
2619ba1f
CM
3971}
3972
c146afad 3973int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3974{
c146afad
YZ
3975 u64 root_objectid = 0;
3976 struct btrfs_root *gang[8];
65d33fd7
QW
3977 int i = 0;
3978 int err = 0;
3979 unsigned int ret = 0;
e089f05c 3980
c146afad 3981 while (1) {
efc34534 3982 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
3983 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3984 (void **)gang, root_objectid,
3985 ARRAY_SIZE(gang));
65d33fd7 3986 if (!ret) {
efc34534 3987 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 3988 break;
65d33fd7 3989 }
5d4f98a2 3990 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3991
c146afad 3992 for (i = 0; i < ret; i++) {
65d33fd7
QW
3993 /* Avoid to grab roots in dead_roots */
3994 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3995 gang[i] = NULL;
3996 continue;
3997 }
3998 /* grab all the search result for later use */
00246528 3999 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4000 }
efc34534 4001 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4002
65d33fd7
QW
4003 for (i = 0; i < ret; i++) {
4004 if (!gang[i])
4005 continue;
c146afad 4006 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4007 err = btrfs_orphan_cleanup(gang[i]);
4008 if (err)
65d33fd7 4009 break;
00246528 4010 btrfs_put_root(gang[i]);
c146afad
YZ
4011 }
4012 root_objectid++;
4013 }
65d33fd7
QW
4014
4015 /* release the uncleaned roots due to error */
4016 for (; i < ret; i++) {
4017 if (gang[i])
00246528 4018 btrfs_put_root(gang[i]);
65d33fd7
QW
4019 }
4020 return err;
c146afad 4021}
a2135011 4022
6bccf3ab 4023int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4024{
6bccf3ab 4025 struct btrfs_root *root = fs_info->tree_root;
c146afad 4026 struct btrfs_trans_handle *trans;
a74a4b97 4027
0b246afa 4028 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4029 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4030 mutex_unlock(&fs_info->cleaner_mutex);
4031 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4032
4033 /* wait until ongoing cleanup work done */
0b246afa
JM
4034 down_write(&fs_info->cleanup_work_sem);
4035 up_write(&fs_info->cleanup_work_sem);
c71bf099 4036
7a7eaa40 4037 trans = btrfs_join_transaction(root);
3612b495
TI
4038 if (IS_ERR(trans))
4039 return PTR_ERR(trans);
3a45bb20 4040 return btrfs_commit_transaction(trans);
c146afad
YZ
4041}
4042
b105e927 4043void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4044{
c146afad
YZ
4045 int ret;
4046
afcdd129 4047 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4048 /*
4049 * We don't want the cleaner to start new transactions, add more delayed
4050 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4051 * because that frees the task_struct, and the transaction kthread might
4052 * still try to wake up the cleaner.
4053 */
4054 kthread_park(fs_info->cleaner_kthread);
c146afad 4055
7343dd61 4056 /* wait for the qgroup rescan worker to stop */
d06f23d6 4057 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4058
803b2f54
SB
4059 /* wait for the uuid_scan task to finish */
4060 down(&fs_info->uuid_tree_rescan_sem);
4061 /* avoid complains from lockdep et al., set sem back to initial state */
4062 up(&fs_info->uuid_tree_rescan_sem);
4063
837d5b6e 4064 /* pause restriper - we want to resume on mount */
aa1b8cd4 4065 btrfs_pause_balance(fs_info);
837d5b6e 4066
8dabb742
SB
4067 btrfs_dev_replace_suspend_for_unmount(fs_info);
4068
aa1b8cd4 4069 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4070
4071 /* wait for any defraggers to finish */
4072 wait_event(fs_info->transaction_wait,
4073 (atomic_read(&fs_info->defrag_running) == 0));
4074
4075 /* clear out the rbtree of defraggable inodes */
26176e7c 4076 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4077
21c7e756 4078 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4079 cancel_work_sync(&fs_info->async_data_reclaim_work);
21c7e756 4080
b0643e59
DZ
4081 /* Cancel or finish ongoing discard work */
4082 btrfs_discard_cleanup(fs_info);
4083
bc98a42c 4084 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4085 /*
d6fd0ae2
OS
4086 * The cleaner kthread is stopped, so do one final pass over
4087 * unused block groups.
e44163e1 4088 */
0b246afa 4089 btrfs_delete_unused_bgs(fs_info);
e44163e1 4090
f0cc2cd7
FM
4091 /*
4092 * There might be existing delayed inode workers still running
4093 * and holding an empty delayed inode item. We must wait for
4094 * them to complete first because they can create a transaction.
4095 * This happens when someone calls btrfs_balance_delayed_items()
4096 * and then a transaction commit runs the same delayed nodes
4097 * before any delayed worker has done something with the nodes.
4098 * We must wait for any worker here and not at transaction
4099 * commit time since that could cause a deadlock.
4100 * This is a very rare case.
4101 */
4102 btrfs_flush_workqueue(fs_info->delayed_workers);
4103
6bccf3ab 4104 ret = btrfs_commit_super(fs_info);
acce952b 4105 if (ret)
04892340 4106 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4107 }
4108
af722733
LB
4109 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4110 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4111 btrfs_error_commit_super(fs_info);
0f7d52f4 4112
e3029d9f
AV
4113 kthread_stop(fs_info->transaction_kthread);
4114 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4115
e187831e 4116 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4117 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4118
5958253c
QW
4119 if (btrfs_check_quota_leak(fs_info)) {
4120 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4121 btrfs_err(fs_info, "qgroup reserved space leaked");
4122 }
4123
04892340 4124 btrfs_free_qgroup_config(fs_info);
fe816d0f 4125 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4126
963d678b 4127 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4128 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4129 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4130 }
bcc63abb 4131
4297ff84
JB
4132 if (percpu_counter_sum(&fs_info->dio_bytes))
4133 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4134 percpu_counter_sum(&fs_info->dio_bytes));
4135
6618a59b 4136 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4137 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4138
1a4319cc
LB
4139 btrfs_put_block_group_cache(fs_info);
4140
de348ee0
WS
4141 /*
4142 * we must make sure there is not any read request to
4143 * submit after we stopping all workers.
4144 */
4145 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4146 btrfs_stop_all_workers(fs_info);
4147
afcdd129 4148 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4149 free_root_pointers(fs_info, true);
8c38938c 4150 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4151
4e19443d
JB
4152 /*
4153 * We must free the block groups after dropping the fs_roots as we could
4154 * have had an IO error and have left over tree log blocks that aren't
4155 * cleaned up until the fs roots are freed. This makes the block group
4156 * accounting appear to be wrong because there's pending reserved bytes,
4157 * so make sure we do the block group cleanup afterwards.
4158 */
4159 btrfs_free_block_groups(fs_info);
4160
13e6c37b 4161 iput(fs_info->btree_inode);
d6bfde87 4162
21adbd5c 4163#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4164 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4165 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4166#endif
4167
0b86a832 4168 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4169 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4170}
4171
b9fab919
CM
4172int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4173 int atomic)
5f39d397 4174{
1259ab75 4175 int ret;
727011e0 4176 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4177
0b32f4bb 4178 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4179 if (!ret)
4180 return ret;
4181
4182 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4183 parent_transid, atomic);
4184 if (ret == -EAGAIN)
4185 return ret;
1259ab75 4186 return !ret;
5f39d397
CM
4187}
4188
5f39d397
CM
4189void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4190{
2f4d60df 4191 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4192 u64 transid = btrfs_header_generation(buf);
b9473439 4193 int was_dirty;
b4ce94de 4194
06ea65a3
JB
4195#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4196 /*
4197 * This is a fast path so only do this check if we have sanity tests
52042d8e 4198 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4199 * outside of the sanity tests.
4200 */
b0132a3b 4201 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4202 return;
4203#endif
b9447ef8 4204 btrfs_assert_tree_locked(buf);
0b246afa 4205 if (transid != fs_info->generation)
5d163e0e 4206 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4207 buf->start, transid, fs_info->generation);
0b32f4bb 4208 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4209 if (!was_dirty)
104b4e51
NB
4210 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4211 buf->len,
4212 fs_info->dirty_metadata_batch);
1f21ef0a 4213#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4214 /*
4215 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4216 * but item data not updated.
4217 * So here we should only check item pointers, not item data.
4218 */
4219 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4220 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4221 btrfs_print_leaf(buf);
1f21ef0a
FM
4222 ASSERT(0);
4223 }
4224#endif
eb60ceac
CM
4225}
4226
2ff7e61e 4227static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4228 int flush_delayed)
16cdcec7
MX
4229{
4230 /*
4231 * looks as though older kernels can get into trouble with
4232 * this code, they end up stuck in balance_dirty_pages forever
4233 */
e2d84521 4234 int ret;
16cdcec7
MX
4235
4236 if (current->flags & PF_MEMALLOC)
4237 return;
4238
b53d3f5d 4239 if (flush_delayed)
2ff7e61e 4240 btrfs_balance_delayed_items(fs_info);
16cdcec7 4241
d814a491
EL
4242 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4243 BTRFS_DIRTY_METADATA_THRESH,
4244 fs_info->dirty_metadata_batch);
e2d84521 4245 if (ret > 0) {
0b246afa 4246 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4247 }
16cdcec7
MX
4248}
4249
2ff7e61e 4250void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4251{
2ff7e61e 4252 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4253}
585ad2c3 4254
2ff7e61e 4255void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4256{
2ff7e61e 4257 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4258}
6b80053d 4259
581c1760
QW
4260int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4261 struct btrfs_key *first_key)
6b80053d 4262{
5ab12d1f 4263 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4264 level, first_key);
6b80053d 4265}
0da5468f 4266
2ff7e61e 4267static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4268{
fe816d0f
NB
4269 /* cleanup FS via transaction */
4270 btrfs_cleanup_transaction(fs_info);
4271
0b246afa 4272 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4273 btrfs_run_delayed_iputs(fs_info);
0b246afa 4274 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4275
0b246afa
JM
4276 down_write(&fs_info->cleanup_work_sem);
4277 up_write(&fs_info->cleanup_work_sem);
acce952b 4278}
4279
ef67963d
JB
4280static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4281{
4282 struct btrfs_root *gang[8];
4283 u64 root_objectid = 0;
4284 int ret;
4285
4286 spin_lock(&fs_info->fs_roots_radix_lock);
4287 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4288 (void **)gang, root_objectid,
4289 ARRAY_SIZE(gang))) != 0) {
4290 int i;
4291
4292 for (i = 0; i < ret; i++)
4293 gang[i] = btrfs_grab_root(gang[i]);
4294 spin_unlock(&fs_info->fs_roots_radix_lock);
4295
4296 for (i = 0; i < ret; i++) {
4297 if (!gang[i])
4298 continue;
4299 root_objectid = gang[i]->root_key.objectid;
4300 btrfs_free_log(NULL, gang[i]);
4301 btrfs_put_root(gang[i]);
4302 }
4303 root_objectid++;
4304 spin_lock(&fs_info->fs_roots_radix_lock);
4305 }
4306 spin_unlock(&fs_info->fs_roots_radix_lock);
4307 btrfs_free_log_root_tree(NULL, fs_info);
4308}
4309
143bede5 4310static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4311{
acce952b 4312 struct btrfs_ordered_extent *ordered;
acce952b 4313
199c2a9c 4314 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4315 /*
4316 * This will just short circuit the ordered completion stuff which will
4317 * make sure the ordered extent gets properly cleaned up.
4318 */
199c2a9c 4319 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4320 root_extent_list)
4321 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4322 spin_unlock(&root->ordered_extent_lock);
4323}
4324
4325static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4326{
4327 struct btrfs_root *root;
4328 struct list_head splice;
4329
4330 INIT_LIST_HEAD(&splice);
4331
4332 spin_lock(&fs_info->ordered_root_lock);
4333 list_splice_init(&fs_info->ordered_roots, &splice);
4334 while (!list_empty(&splice)) {
4335 root = list_first_entry(&splice, struct btrfs_root,
4336 ordered_root);
1de2cfde
JB
4337 list_move_tail(&root->ordered_root,
4338 &fs_info->ordered_roots);
199c2a9c 4339
2a85d9ca 4340 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4341 btrfs_destroy_ordered_extents(root);
4342
2a85d9ca
LB
4343 cond_resched();
4344 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4345 }
4346 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4347
4348 /*
4349 * We need this here because if we've been flipped read-only we won't
4350 * get sync() from the umount, so we need to make sure any ordered
4351 * extents that haven't had their dirty pages IO start writeout yet
4352 * actually get run and error out properly.
4353 */
4354 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4355}
4356
35a3621b 4357static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4358 struct btrfs_fs_info *fs_info)
acce952b 4359{
4360 struct rb_node *node;
4361 struct btrfs_delayed_ref_root *delayed_refs;
4362 struct btrfs_delayed_ref_node *ref;
4363 int ret = 0;
4364
4365 delayed_refs = &trans->delayed_refs;
4366
4367 spin_lock(&delayed_refs->lock);
d7df2c79 4368 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4369 spin_unlock(&delayed_refs->lock);
b79ce3dd 4370 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4371 return ret;
4372 }
4373
5c9d028b 4374 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4375 struct btrfs_delayed_ref_head *head;
0e0adbcf 4376 struct rb_node *n;
e78417d1 4377 bool pin_bytes = false;
acce952b 4378
d7df2c79
JB
4379 head = rb_entry(node, struct btrfs_delayed_ref_head,
4380 href_node);
3069bd26 4381 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4382 continue;
3069bd26 4383
d7df2c79 4384 spin_lock(&head->lock);
e3d03965 4385 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4386 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4387 ref_node);
d7df2c79 4388 ref->in_tree = 0;
e3d03965 4389 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4390 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4391 if (!list_empty(&ref->add_list))
4392 list_del(&ref->add_list);
d7df2c79
JB
4393 atomic_dec(&delayed_refs->num_entries);
4394 btrfs_put_delayed_ref(ref);
e78417d1 4395 }
d7df2c79
JB
4396 if (head->must_insert_reserved)
4397 pin_bytes = true;
4398 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4399 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4400 spin_unlock(&head->lock);
4401 spin_unlock(&delayed_refs->lock);
4402 mutex_unlock(&head->mutex);
acce952b 4403
f603bb94
NB
4404 if (pin_bytes) {
4405 struct btrfs_block_group *cache;
4406
4407 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4408 BUG_ON(!cache);
4409
4410 spin_lock(&cache->space_info->lock);
4411 spin_lock(&cache->lock);
4412 cache->pinned += head->num_bytes;
4413 btrfs_space_info_update_bytes_pinned(fs_info,
4414 cache->space_info, head->num_bytes);
4415 cache->reserved -= head->num_bytes;
4416 cache->space_info->bytes_reserved -= head->num_bytes;
4417 spin_unlock(&cache->lock);
4418 spin_unlock(&cache->space_info->lock);
4419 percpu_counter_add_batch(
4420 &cache->space_info->total_bytes_pinned,
4421 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4422
4423 btrfs_put_block_group(cache);
4424
4425 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4426 head->bytenr + head->num_bytes - 1);
4427 }
31890da0 4428 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4429 btrfs_put_delayed_ref_head(head);
acce952b 4430 cond_resched();
4431 spin_lock(&delayed_refs->lock);
4432 }
81f7eb00 4433 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4434
4435 spin_unlock(&delayed_refs->lock);
4436
4437 return ret;
4438}
4439
143bede5 4440static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4441{
4442 struct btrfs_inode *btrfs_inode;
4443 struct list_head splice;
4444
4445 INIT_LIST_HEAD(&splice);
4446
eb73c1b7
MX
4447 spin_lock(&root->delalloc_lock);
4448 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4449
4450 while (!list_empty(&splice)) {
fe816d0f 4451 struct inode *inode = NULL;
eb73c1b7
MX
4452 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4453 delalloc_inodes);
fe816d0f 4454 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4455 spin_unlock(&root->delalloc_lock);
acce952b 4456
fe816d0f
NB
4457 /*
4458 * Make sure we get a live inode and that it'll not disappear
4459 * meanwhile.
4460 */
4461 inode = igrab(&btrfs_inode->vfs_inode);
4462 if (inode) {
4463 invalidate_inode_pages2(inode->i_mapping);
4464 iput(inode);
4465 }
eb73c1b7 4466 spin_lock(&root->delalloc_lock);
acce952b 4467 }
eb73c1b7
MX
4468 spin_unlock(&root->delalloc_lock);
4469}
4470
4471static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4472{
4473 struct btrfs_root *root;
4474 struct list_head splice;
4475
4476 INIT_LIST_HEAD(&splice);
4477
4478 spin_lock(&fs_info->delalloc_root_lock);
4479 list_splice_init(&fs_info->delalloc_roots, &splice);
4480 while (!list_empty(&splice)) {
4481 root = list_first_entry(&splice, struct btrfs_root,
4482 delalloc_root);
00246528 4483 root = btrfs_grab_root(root);
eb73c1b7
MX
4484 BUG_ON(!root);
4485 spin_unlock(&fs_info->delalloc_root_lock);
4486
4487 btrfs_destroy_delalloc_inodes(root);
00246528 4488 btrfs_put_root(root);
eb73c1b7
MX
4489
4490 spin_lock(&fs_info->delalloc_root_lock);
4491 }
4492 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4493}
4494
2ff7e61e 4495static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4496 struct extent_io_tree *dirty_pages,
4497 int mark)
4498{
4499 int ret;
acce952b 4500 struct extent_buffer *eb;
4501 u64 start = 0;
4502 u64 end;
acce952b 4503
4504 while (1) {
4505 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4506 mark, NULL);
acce952b 4507 if (ret)
4508 break;
4509
91166212 4510 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4511 while (start <= end) {
0b246afa
JM
4512 eb = find_extent_buffer(fs_info, start);
4513 start += fs_info->nodesize;
fd8b2b61 4514 if (!eb)
acce952b 4515 continue;
fd8b2b61 4516 wait_on_extent_buffer_writeback(eb);
acce952b 4517
fd8b2b61
JB
4518 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4519 &eb->bflags))
4520 clear_extent_buffer_dirty(eb);
4521 free_extent_buffer_stale(eb);
acce952b 4522 }
4523 }
4524
4525 return ret;
4526}
4527
2ff7e61e 4528static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4529 struct extent_io_tree *unpin)
acce952b 4530{
acce952b 4531 u64 start;
4532 u64 end;
4533 int ret;
4534
acce952b 4535 while (1) {
0e6ec385
FM
4536 struct extent_state *cached_state = NULL;
4537
fcd5e742
LF
4538 /*
4539 * The btrfs_finish_extent_commit() may get the same range as
4540 * ours between find_first_extent_bit and clear_extent_dirty.
4541 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4542 * the same extent range.
4543 */
4544 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4545 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4546 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4547 if (ret) {
4548 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4549 break;
fcd5e742 4550 }
acce952b 4551
0e6ec385
FM
4552 clear_extent_dirty(unpin, start, end, &cached_state);
4553 free_extent_state(cached_state);
2ff7e61e 4554 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4555 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4556 cond_resched();
4557 }
4558
4559 return 0;
4560}
4561
32da5386 4562static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4563{
4564 struct inode *inode;
4565
4566 inode = cache->io_ctl.inode;
4567 if (inode) {
4568 invalidate_inode_pages2(inode->i_mapping);
4569 BTRFS_I(inode)->generation = 0;
4570 cache->io_ctl.inode = NULL;
4571 iput(inode);
4572 }
bbc37d6e 4573 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4574 btrfs_put_block_group(cache);
4575}
4576
4577void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4578 struct btrfs_fs_info *fs_info)
c79a1751 4579{
32da5386 4580 struct btrfs_block_group *cache;
c79a1751
LB
4581
4582 spin_lock(&cur_trans->dirty_bgs_lock);
4583 while (!list_empty(&cur_trans->dirty_bgs)) {
4584 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4585 struct btrfs_block_group,
c79a1751 4586 dirty_list);
c79a1751
LB
4587
4588 if (!list_empty(&cache->io_list)) {
4589 spin_unlock(&cur_trans->dirty_bgs_lock);
4590 list_del_init(&cache->io_list);
4591 btrfs_cleanup_bg_io(cache);
4592 spin_lock(&cur_trans->dirty_bgs_lock);
4593 }
4594
4595 list_del_init(&cache->dirty_list);
4596 spin_lock(&cache->lock);
4597 cache->disk_cache_state = BTRFS_DC_ERROR;
4598 spin_unlock(&cache->lock);
4599
4600 spin_unlock(&cur_trans->dirty_bgs_lock);
4601 btrfs_put_block_group(cache);
ba2c4d4e 4602 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4603 spin_lock(&cur_trans->dirty_bgs_lock);
4604 }
4605 spin_unlock(&cur_trans->dirty_bgs_lock);
4606
45ae2c18
NB
4607 /*
4608 * Refer to the definition of io_bgs member for details why it's safe
4609 * to use it without any locking
4610 */
c79a1751
LB
4611 while (!list_empty(&cur_trans->io_bgs)) {
4612 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4613 struct btrfs_block_group,
c79a1751 4614 io_list);
c79a1751
LB
4615
4616 list_del_init(&cache->io_list);
4617 spin_lock(&cache->lock);
4618 cache->disk_cache_state = BTRFS_DC_ERROR;
4619 spin_unlock(&cache->lock);
4620 btrfs_cleanup_bg_io(cache);
4621 }
4622}
4623
49b25e05 4624void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4625 struct btrfs_fs_info *fs_info)
49b25e05 4626{
bbbf7243
NB
4627 struct btrfs_device *dev, *tmp;
4628
2ff7e61e 4629 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4630 ASSERT(list_empty(&cur_trans->dirty_bgs));
4631 ASSERT(list_empty(&cur_trans->io_bgs));
4632
bbbf7243
NB
4633 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4634 post_commit_list) {
4635 list_del_init(&dev->post_commit_list);
4636 }
4637
2ff7e61e 4638 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4639
4a9d8bde 4640 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4641 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4642
4a9d8bde 4643 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4644 wake_up(&fs_info->transaction_wait);
49b25e05 4645
ccdf9b30 4646 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4647
2ff7e61e 4648 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4649 EXTENT_DIRTY);
fe119a6e 4650 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4651
4a9d8bde
MX
4652 cur_trans->state =TRANS_STATE_COMPLETED;
4653 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4654}
4655
2ff7e61e 4656static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4657{
4658 struct btrfs_transaction *t;
acce952b 4659
0b246afa 4660 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4661
0b246afa
JM
4662 spin_lock(&fs_info->trans_lock);
4663 while (!list_empty(&fs_info->trans_list)) {
4664 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4665 struct btrfs_transaction, list);
4666 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4667 refcount_inc(&t->use_count);
0b246afa 4668 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4669 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4670 btrfs_put_transaction(t);
0b246afa 4671 spin_lock(&fs_info->trans_lock);
724e2315
JB
4672 continue;
4673 }
0b246afa 4674 if (t == fs_info->running_transaction) {
724e2315 4675 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4676 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4677 /*
4678 * We wait for 0 num_writers since we don't hold a trans
4679 * handle open currently for this transaction.
4680 */
4681 wait_event(t->writer_wait,
4682 atomic_read(&t->num_writers) == 0);
4683 } else {
0b246afa 4684 spin_unlock(&fs_info->trans_lock);
724e2315 4685 }
2ff7e61e 4686 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4687
0b246afa
JM
4688 spin_lock(&fs_info->trans_lock);
4689 if (t == fs_info->running_transaction)
4690 fs_info->running_transaction = NULL;
acce952b 4691 list_del_init(&t->list);
0b246afa 4692 spin_unlock(&fs_info->trans_lock);
acce952b 4693
724e2315 4694 btrfs_put_transaction(t);
2ff7e61e 4695 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4696 spin_lock(&fs_info->trans_lock);
724e2315 4697 }
0b246afa
JM
4698 spin_unlock(&fs_info->trans_lock);
4699 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4700 btrfs_destroy_delayed_inodes(fs_info);
4701 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4702 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4703 btrfs_drop_all_logs(fs_info);
0b246afa 4704 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4705
4706 return 0;
4707}