btrfs: fix qgroup_free_reserved_data int overflow
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
103c1972 26#include "bio.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
606686ee 32#include "rcu-string.h"
8dabb742 33#include "dev-replace.h"
53b381b3 34#include "raid56.h"
5ac1d209 35#include "sysfs.h"
fcebe456 36#include "qgroup.h"
ebb8765b 37#include "compression.h"
557ea5dd 38#include "tree-checker.h"
fd708b81 39#include "ref-verify.h"
aac0023c 40#include "block-group.h"
b0643e59 41#include "discard.h"
f603bb94 42#include "space-info.h"
b70f5097 43#include "zoned.h"
139e8cd3 44#include "subpage.h"
c7f13d42 45#include "fs.h"
07e81dc9 46#include "accessors.h"
a0231804 47#include "extent-tree.h"
45c40c8f 48#include "root-tree.h"
59b818e0 49#include "defrag.h"
c7a03b52 50#include "uuid-tree.h"
67707479 51#include "relocation.h"
2fc6822c 52#include "scrub.h"
c03b2207 53#include "super.h"
eb60ceac 54
319e4d06
QW
55#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
56 BTRFS_HEADER_FLAG_RELOC |\
57 BTRFS_SUPER_FLAG_ERROR |\
58 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
59 BTRFS_SUPER_FLAG_METADUMP |\
60 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 61
2ff7e61e
JM
62static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 64
141386e1
JB
65static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
66{
67 if (fs_info->csum_shash)
68 crypto_free_shash(fs_info->csum_shash);
69}
70
d352ac68 71/*
2996e1f8 72 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 73 */
c67b3892 74static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 75{
d5178578 76 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 77 const int num_pages = num_extent_pages(buf);
a26663e7 78 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 80 char *kaddr;
e9be5a30 81 int i;
d5178578
JT
82
83 shash->tfm = fs_info->csum_shash;
84 crypto_shash_init(shash);
a26663e7 85 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 86 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 87 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 88
5ad9b471 89 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
e9be5a30
DS
90 kaddr = page_address(buf->pages[i]);
91 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 92 }
71a63551 93 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 94 crypto_shash_final(shash, result);
19c00ddc
CM
95}
96
d352ac68
CM
97/*
98 * we can't consider a given block up to date unless the transid of the
99 * block matches the transid in the parent node's pointer. This is how we
100 * detect blocks that either didn't get written at all or got written
101 * in the wrong place.
102 */
d87e6575 103int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
1259ab75 104{
d87e6575 105 if (!extent_buffer_uptodate(eb))
1259ab75
CM
106 return 0;
107
d87e6575
CH
108 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
109 return 1;
110
b9fab919
CM
111 if (atomic)
112 return -EAGAIN;
113
d87e6575
CH
114 if (!extent_buffer_uptodate(eb) ||
115 btrfs_header_generation(eb) != parent_transid) {
116 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
117"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
118 eb->start, eb->read_mirror,
29549aec 119 parent_transid, btrfs_header_generation(eb));
d87e6575 120 clear_extent_buffer_uptodate(eb);
9e2aff90 121 return 0;
d87e6575 122 }
9e2aff90 123 return 1;
1259ab75
CM
124}
125
e7e16f48
JT
126static bool btrfs_supported_super_csum(u16 csum_type)
127{
128 switch (csum_type) {
129 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 130 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 131 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 132 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
133 return true;
134 default:
135 return false;
136 }
137}
138
1104a885
DS
139/*
140 * Return 0 if the superblock checksum type matches the checksum value of that
141 * algorithm. Pass the raw disk superblock data.
142 */
3d17adea
QW
143int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
144 const struct btrfs_super_block *disk_sb)
1104a885 145{
51bce6c9 146 char result[BTRFS_CSUM_SIZE];
d5178578
JT
147 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
148
149 shash->tfm = fs_info->csum_shash;
1104a885 150
51bce6c9
JT
151 /*
152 * The super_block structure does not span the whole
153 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
154 * filled with zeros and is included in the checksum.
155 */
3d17adea 156 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 157 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 158
55fc29be 159 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 160 return 1;
1104a885 161
e7e16f48 162 return 0;
1104a885
DS
163}
164
bacf60e5
CH
165static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
166 int mirror_num)
167{
168 struct btrfs_fs_info *fs_info = eb->fs_info;
bacf60e5
CH
169 int i, num_pages = num_extent_pages(eb);
170 int ret = 0;
171
172 if (sb_rdonly(fs_info->sb))
173 return -EROFS;
174
175 for (i = 0; i < num_pages; i++) {
176 struct page *p = eb->pages[i];
917ac778
QW
177 u64 start = max_t(u64, eb->start, page_offset(p));
178 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
179 u32 len = end - start;
bacf60e5 180
917ac778
QW
181 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
182 start, p, offset_in_page(start), mirror_num);
bacf60e5
CH
183 if (ret)
184 break;
bacf60e5
CH
185 }
186
187 return ret;
188}
189
d352ac68
CM
190/*
191 * helper to read a given tree block, doing retries as required when
192 * the checksums don't match and we have alternate mirrors to try.
581c1760 193 *
789d6a3a
QW
194 * @check: expected tree parentness check, see the comments of the
195 * structure for details.
d352ac68 196 */
6a2e9dc4 197int btrfs_read_extent_buffer(struct extent_buffer *eb,
789d6a3a 198 struct btrfs_tree_parent_check *check)
f188591e 199{
5ab12d1f 200 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 201 int failed = 0;
f188591e
CM
202 int ret;
203 int num_copies = 0;
204 int mirror_num = 0;
ea466794 205 int failed_mirror = 0;
f188591e 206
789d6a3a
QW
207 ASSERT(check);
208
f188591e 209 while (1) {
f8397d69 210 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
947a6299
QW
211 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
212 if (!ret)
213 break;
d397712b 214
0b246afa 215 num_copies = btrfs_num_copies(fs_info,
f188591e 216 eb->start, eb->len);
4235298e 217 if (num_copies == 1)
ea466794 218 break;
4235298e 219
5cf1ab56
JB
220 if (!failed_mirror) {
221 failed = 1;
222 failed_mirror = eb->read_mirror;
223 }
224
f188591e 225 mirror_num++;
ea466794
JB
226 if (mirror_num == failed_mirror)
227 mirror_num++;
228
4235298e 229 if (mirror_num > num_copies)
ea466794 230 break;
f188591e 231 }
ea466794 232
c0901581 233 if (failed && !ret && failed_mirror)
20a1fbf9 234 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
235
236 return ret;
f188591e 237}
19c00ddc 238
31d89399
CH
239/*
240 * Checksum a dirty tree block before IO.
241 */
242blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
eca0f6f6 243{
31d89399 244 struct extent_buffer *eb = bbio->private;
eca0f6f6 245 struct btrfs_fs_info *fs_info = eb->fs_info;
31d89399 246 u64 found_start = btrfs_header_bytenr(eb);
0124855f 247 u64 last_trans;
eca0f6f6
QW
248 u8 result[BTRFS_CSUM_SIZE];
249 int ret;
250
31d89399
CH
251 /* Btree blocks are always contiguous on disk. */
252 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253 return BLK_STS_IOERR;
254 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255 return BLK_STS_IOERR;
256
257 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258 WARN_ON_ONCE(found_start != 0);
259 return BLK_STS_OK;
260 }
261
262 if (WARN_ON_ONCE(found_start != eb->start))
263 return BLK_STS_IOERR;
264 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265 eb->len)))
266 return BLK_STS_IOERR;
267
eca0f6f6
QW
268 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269 offsetof(struct btrfs_header, fsid),
270 BTRFS_FSID_SIZE) == 0);
271 csum_tree_block(eb, result);
272
273 if (btrfs_header_level(eb))
274 ret = btrfs_check_node(eb);
275 else
85d8a826 276 ret = btrfs_check_leaf(eb);
eca0f6f6 277
3777369f
QW
278 if (ret < 0)
279 goto error;
280
281 /*
282 * Also check the generation, the eb reached here must be newer than
283 * last committed. Or something seriously wrong happened.
284 */
0124855f
FM
285 last_trans = btrfs_get_last_trans_committed(fs_info);
286 if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
3777369f 287 ret = -EUCLEAN;
eca0f6f6 288 btrfs_err(fs_info,
3777369f 289 "block=%llu bad generation, have %llu expect > %llu",
0124855f 290 eb->start, btrfs_header_generation(eb), last_trans);
3777369f 291 goto error;
eca0f6f6
QW
292 }
293 write_extent_buffer(eb, result, 0, fs_info->csum_size);
31d89399 294 return BLK_STS_OK;
3777369f
QW
295
296error:
297 btrfs_print_tree(eb, 0);
298 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299 eb->start);
16199ad9
FM
300 /*
301 * Be noisy if this is an extent buffer from a log tree. We don't abort
302 * a transaction in case there's a bad log tree extent buffer, we just
303 * fallback to a transaction commit. Still we want to know when there is
304 * a bad log tree extent buffer, as that may signal a bug somewhere.
305 */
306 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
deb6216f
CH
308 return errno_to_blk_status(ret);
309}
310
413fb1bc 311static bool check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 312{
b0c9b3b0 313 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 314 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 315 u8 fsid[BTRFS_FSID_SIZE];
2b82032c 316
9a8658e3
DS
317 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
318 BTRFS_FSID_SIZE);
67bc5ad0 319
944d3f9f 320 /*
f7361d8c
AJ
321 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
322 * This is then overwritten by metadata_uuid if it is present in the
323 * device_list_add(). The same true for a seed device as well. So use of
324 * fs_devices::metadata_uuid is appropriate here.
944d3f9f 325 */
67bc5ad0 326 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
413fb1bc 327 return false;
944d3f9f
NB
328
329 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
330 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
413fb1bc 331 return false;
944d3f9f 332
413fb1bc 333 return true;
2b82032c
YZ
334}
335
77bf40a2 336/* Do basic extent buffer checks at read time */
046b562b
CH
337int btrfs_validate_extent_buffer(struct extent_buffer *eb,
338 struct btrfs_tree_parent_check *check)
ce9adaa5 339{
77bf40a2 340 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 341 u64 found_start;
77bf40a2
QW
342 const u32 csum_size = fs_info->csum_size;
343 u8 found_level;
2996e1f8 344 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 345 const u8 *header_csum;
77bf40a2 346 int ret = 0;
ea466794 347
947a6299
QW
348 ASSERT(check);
349
ce9adaa5 350 found_start = btrfs_header_bytenr(eb);
727011e0 351 if (found_start != eb->start) {
8f0ed7d4
QW
352 btrfs_err_rl(fs_info,
353 "bad tree block start, mirror %u want %llu have %llu",
354 eb->read_mirror, eb->start, found_start);
f188591e 355 ret = -EIO;
77bf40a2 356 goto out;
ce9adaa5 357 }
b0c9b3b0 358 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
359 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
360 eb->start, eb->read_mirror);
1259ab75 361 ret = -EIO;
77bf40a2 362 goto out;
1259ab75 363 }
ce9adaa5 364 found_level = btrfs_header_level(eb);
1c24c3ce 365 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
366 btrfs_err(fs_info,
367 "bad tree block level, mirror %u level %d on logical %llu",
368 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 369 ret = -EIO;
77bf40a2 370 goto out;
1c24c3ce 371 }
ce9adaa5 372
c67b3892 373 csum_tree_block(eb, result);
dfd29eed
DS
374 header_csum = page_address(eb->pages[0]) +
375 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 376
dfd29eed 377 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 378 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
379"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
380 eb->start, eb->read_mirror,
dfd29eed 381 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
382 CSUM_FMT_VALUE(csum_size, result),
383 btrfs_header_level(eb));
2996e1f8 384 ret = -EUCLEAN;
77bf40a2 385 goto out;
2996e1f8
JT
386 }
387
947a6299 388 if (found_level != check->level) {
77177ed1
QW
389 btrfs_err(fs_info,
390 "level verify failed on logical %llu mirror %u wanted %u found %u",
391 eb->start, eb->read_mirror, check->level, found_level);
947a6299
QW
392 ret = -EIO;
393 goto out;
394 }
395 if (unlikely(check->transid &&
396 btrfs_header_generation(eb) != check->transid)) {
397 btrfs_err_rl(eb->fs_info,
398"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
399 eb->start, eb->read_mirror, check->transid,
400 btrfs_header_generation(eb));
401 ret = -EIO;
402 goto out;
403 }
404 if (check->has_first_key) {
405 struct btrfs_key *expect_key = &check->first_key;
406 struct btrfs_key found_key;
407
408 if (found_level)
409 btrfs_node_key_to_cpu(eb, &found_key, 0);
410 else
411 btrfs_item_key_to_cpu(eb, &found_key, 0);
412 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
413 btrfs_err(fs_info,
414"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
415 eb->start, check->transid,
416 expect_key->objectid,
417 expect_key->type, expect_key->offset,
418 found_key.objectid, found_key.type,
419 found_key.offset);
420 ret = -EUCLEAN;
421 goto out;
422 }
423 }
424 if (check->owner_root) {
425 ret = btrfs_check_eb_owner(eb, check->owner_root);
426 if (ret < 0)
427 goto out;
428 }
429
a826d6dc
JB
430 /*
431 * If this is a leaf block and it is corrupt, set the corrupt bit so
432 * that we don't try and read the other copies of this block, just
433 * return -EIO.
434 */
85d8a826 435 if (found_level == 0 && btrfs_check_leaf(eb)) {
a826d6dc
JB
436 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
437 ret = -EIO;
438 }
ce9adaa5 439
813fd1dc 440 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
441 ret = -EIO;
442
aebcc159 443 if (ret)
75391f0d 444 btrfs_err(fs_info,
8f0ed7d4
QW
445 "read time tree block corruption detected on logical %llu mirror %u",
446 eb->start, eb->read_mirror);
77bf40a2
QW
447out:
448 return ret;
449}
450
3dd1462e 451#ifdef CONFIG_MIGRATION
8958b551
MWO
452static int btree_migrate_folio(struct address_space *mapping,
453 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
454{
455 /*
456 * we can't safely write a btree page from here,
457 * we haven't done the locking hook
458 */
8958b551 459 if (folio_test_dirty(src))
784b4e29
CM
460 return -EAGAIN;
461 /*
462 * Buffers may be managed in a filesystem specific way.
463 * We must have no buffers or drop them.
464 */
8958b551
MWO
465 if (folio_get_private(src) &&
466 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 467 return -EAGAIN;
54184650 468 return migrate_folio(mapping, dst, src, mode);
784b4e29 469}
8958b551
MWO
470#else
471#define btree_migrate_folio NULL
3dd1462e 472#endif
784b4e29 473
0da5468f
CM
474static int btree_writepages(struct address_space *mapping,
475 struct writeback_control *wbc)
476{
e2d84521
MX
477 struct btrfs_fs_info *fs_info;
478 int ret;
479
d8d5f3e1 480 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
481
482 if (wbc->for_kupdate)
483 return 0;
484
e2d84521 485 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 486 /* this is a bit racy, but that's ok */
d814a491
EL
487 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
488 BTRFS_DIRTY_METADATA_THRESH,
489 fs_info->dirty_metadata_batch);
e2d84521 490 if (ret < 0)
793955bc 491 return 0;
793955bc 492 }
0b32f4bb 493 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
494}
495
f913cff3 496static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 497{
f913cff3
MWO
498 if (folio_test_writeback(folio) || folio_test_dirty(folio))
499 return false;
0c4e538b 500
f913cff3 501 return try_release_extent_buffer(&folio->page);
d98237b3
CM
502}
503
895586eb
MWO
504static void btree_invalidate_folio(struct folio *folio, size_t offset,
505 size_t length)
d98237b3 506{
d1310b2e 507 struct extent_io_tree *tree;
895586eb
MWO
508 tree = &BTRFS_I(folio->mapping->host)->io_tree;
509 extent_invalidate_folio(tree, folio, offset);
f913cff3 510 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
511 if (folio_get_private(folio)) {
512 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
513 "folio private not zero on folio %llu",
514 (unsigned long long)folio_pos(folio));
515 folio_detach_private(folio);
9ad6b7bc 516 }
d98237b3
CM
517}
518
bb146eb2 519#ifdef DEBUG
0079c3b1
MWO
520static bool btree_dirty_folio(struct address_space *mapping,
521 struct folio *folio)
522{
523 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
5e0e8799 524 struct btrfs_subpage_info *spi = fs_info->subpage_info;
139e8cd3 525 struct btrfs_subpage *subpage;
0b32f4bb 526 struct extent_buffer *eb;
139e8cd3 527 int cur_bit = 0;
0079c3b1 528 u64 page_start = folio_pos(folio);
139e8cd3
QW
529
530 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 531 eb = folio_get_private(folio);
139e8cd3
QW
532 BUG_ON(!eb);
533 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
534 BUG_ON(!atomic_read(&eb->refs));
49d0c642 535 btrfs_assert_tree_write_locked(eb);
0079c3b1 536 return filemap_dirty_folio(mapping, folio);
139e8cd3 537 }
5e0e8799
QW
538
539 ASSERT(spi);
0079c3b1 540 subpage = folio_get_private(folio);
139e8cd3 541
5e0e8799
QW
542 for (cur_bit = spi->dirty_offset;
543 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
544 cur_bit++) {
139e8cd3
QW
545 unsigned long flags;
546 u64 cur;
139e8cd3
QW
547
548 spin_lock_irqsave(&subpage->lock, flags);
5e0e8799 549 if (!test_bit(cur_bit, subpage->bitmaps)) {
139e8cd3 550 spin_unlock_irqrestore(&subpage->lock, flags);
139e8cd3
QW
551 continue;
552 }
553 spin_unlock_irqrestore(&subpage->lock, flags);
554 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 555
139e8cd3
QW
556 eb = find_extent_buffer(fs_info, cur);
557 ASSERT(eb);
558 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
559 ASSERT(atomic_read(&eb->refs));
49d0c642 560 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
561 free_extent_buffer(eb);
562
5e0e8799 563 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
139e8cd3 564 }
0079c3b1 565 return filemap_dirty_folio(mapping, folio);
0b32f4bb 566}
0079c3b1
MWO
567#else
568#define btree_dirty_folio filemap_dirty_folio
569#endif
0b32f4bb 570
7f09410b 571static const struct address_space_operations btree_aops = {
0da5468f 572 .writepages = btree_writepages,
f913cff3 573 .release_folio = btree_release_folio,
895586eb 574 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
575 .migrate_folio = btree_migrate_folio,
576 .dirty_folio = btree_dirty_folio,
d98237b3
CM
577};
578
2ff7e61e
JM
579struct extent_buffer *btrfs_find_create_tree_block(
580 struct btrfs_fs_info *fs_info,
3fbaf258
JB
581 u64 bytenr, u64 owner_root,
582 int level)
0999df54 583{
0b246afa
JM
584 if (btrfs_is_testing(fs_info))
585 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 586 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
587}
588
581c1760
QW
589/*
590 * Read tree block at logical address @bytenr and do variant basic but critical
591 * verification.
592 *
789d6a3a
QW
593 * @check: expected tree parentness check, see comments of the
594 * structure for details.
581c1760 595 */
2ff7e61e 596struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
789d6a3a 597 struct btrfs_tree_parent_check *check)
0999df54
CM
598{
599 struct extent_buffer *buf = NULL;
0999df54
CM
600 int ret;
601
789d6a3a
QW
602 ASSERT(check);
603
604 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
605 check->level);
c871b0f2
LB
606 if (IS_ERR(buf))
607 return buf;
0999df54 608
789d6a3a 609 ret = btrfs_read_extent_buffer(buf, check);
0f0fe8f7 610 if (ret) {
537f38f0 611 free_extent_buffer_stale(buf);
64c043de 612 return ERR_PTR(ret);
0f0fe8f7 613 }
789d6a3a 614 if (btrfs_check_eb_owner(buf, check->owner_root)) {
88c602ab
QW
615 free_extent_buffer_stale(buf);
616 return ERR_PTR(-EUCLEAN);
617 }
5f39d397 618 return buf;
ce9adaa5 619
eb60ceac
CM
620}
621
da17066c 622static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 623 u64 objectid)
d97e63b6 624{
7c0260ee 625 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
626
627 memset(&root->root_key, 0, sizeof(root->root_key));
628 memset(&root->root_item, 0, sizeof(root->root_item));
629 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 630 root->fs_info = fs_info;
2e608bd1 631 root->root_key.objectid = objectid;
cfaa7295 632 root->node = NULL;
a28ec197 633 root->commit_root = NULL;
27cdeb70 634 root->state = 0;
abed4aaa 635 RB_CLEAR_NODE(&root->rb_node);
0b86a832 636
0f7d52f4 637 root->last_trans = 0;
6b8fad57 638 root->free_objectid = 0;
eb73c1b7 639 root->nr_delalloc_inodes = 0;
199c2a9c 640 root->nr_ordered_extents = 0;
6bef4d31 641 root->inode_tree = RB_ROOT;
088aea3b 642 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
643
644 btrfs_init_root_block_rsv(root);
0b86a832
CM
645
646 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 647 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
648 INIT_LIST_HEAD(&root->delalloc_inodes);
649 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
650 INIT_LIST_HEAD(&root->ordered_extents);
651 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 652 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
653 INIT_LIST_HEAD(&root->logged_list[0]);
654 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 655 spin_lock_init(&root->inode_lock);
eb73c1b7 656 spin_lock_init(&root->delalloc_lock);
199c2a9c 657 spin_lock_init(&root->ordered_extent_lock);
f0486c68 658 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
659 spin_lock_init(&root->log_extents_lock[0]);
660 spin_lock_init(&root->log_extents_lock[1]);
8287475a 661 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 662 mutex_init(&root->objectid_mutex);
e02119d5 663 mutex_init(&root->log_mutex);
31f3d255 664 mutex_init(&root->ordered_extent_mutex);
573bfb72 665 mutex_init(&root->delalloc_mutex);
c53e9653 666 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
667 init_waitqueue_head(&root->log_writer_wait);
668 init_waitqueue_head(&root->log_commit_wait[0]);
669 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
670 INIT_LIST_HEAD(&root->log_ctxs[0]);
671 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
672 atomic_set(&root->log_commit[0], 0);
673 atomic_set(&root->log_commit[1], 0);
674 atomic_set(&root->log_writers, 0);
2ecb7923 675 atomic_set(&root->log_batch, 0);
0700cea7 676 refcount_set(&root->refs, 1);
8ecebf4d 677 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 678 atomic_set(&root->nr_swapfiles, 0);
6008859b 679 btrfs_set_root_log_transid(root, 0);
d1433deb 680 root->log_transid_committed = -1;
f9850787 681 btrfs_set_root_last_log_commit(root, 0);
2e608bd1 682 root->anon_dev = 0;
e289f03e 683 if (!dummy) {
43eb5f29 684 extent_io_tree_init(fs_info, &root->dirty_log_pages,
35da5a7e 685 IO_TREE_ROOT_DIRTY_LOG_PAGES);
e289f03e 686 extent_io_tree_init(fs_info, &root->log_csum_range,
35da5a7e 687 IO_TREE_LOG_CSUM_RANGE);
e289f03e 688 }
017e5369 689
5f3ab90a 690 spin_lock_init(&root->root_item_lock);
370a11b8 691 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
692#ifdef CONFIG_BTRFS_DEBUG
693 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 694 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 695 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 696 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 697#endif
3768f368
CM
698}
699
74e4d827 700static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 701 u64 objectid, gfp_t flags)
6f07e42e 702{
74e4d827 703 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 704 if (root)
96dfcb46 705 __setup_root(root, fs_info, objectid);
6f07e42e
AV
706 return root;
707}
708
06ea65a3
JB
709#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
710/* Should only be used by the testing infrastructure */
da17066c 711struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
712{
713 struct btrfs_root *root;
714
7c0260ee
JM
715 if (!fs_info)
716 return ERR_PTR(-EINVAL);
717
96dfcb46 718 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
719 if (!root)
720 return ERR_PTR(-ENOMEM);
da17066c 721
b9ef22de 722 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 723 root->alloc_bytenr = 0;
06ea65a3
JB
724
725 return root;
726}
727#endif
728
abed4aaa
JB
729static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
730{
731 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
732 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
733
734 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
735}
736
737static int global_root_key_cmp(const void *k, const struct rb_node *node)
738{
739 const struct btrfs_key *key = k;
740 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
741
742 return btrfs_comp_cpu_keys(key, &root->root_key);
743}
744
745int btrfs_global_root_insert(struct btrfs_root *root)
746{
747 struct btrfs_fs_info *fs_info = root->fs_info;
748 struct rb_node *tmp;
745806fb 749 int ret = 0;
abed4aaa
JB
750
751 write_lock(&fs_info->global_root_lock);
752 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
753 write_unlock(&fs_info->global_root_lock);
abed4aaa 754
745806fb
QW
755 if (tmp) {
756 ret = -EEXIST;
757 btrfs_warn(fs_info, "global root %llu %llu already exists",
758 root->root_key.objectid, root->root_key.offset);
759 }
760 return ret;
abed4aaa
JB
761}
762
763void btrfs_global_root_delete(struct btrfs_root *root)
764{
765 struct btrfs_fs_info *fs_info = root->fs_info;
766
767 write_lock(&fs_info->global_root_lock);
768 rb_erase(&root->rb_node, &fs_info->global_root_tree);
769 write_unlock(&fs_info->global_root_lock);
770}
771
772struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
773 struct btrfs_key *key)
774{
775 struct rb_node *node;
776 struct btrfs_root *root = NULL;
777
778 read_lock(&fs_info->global_root_lock);
779 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
780 if (node)
781 root = container_of(node, struct btrfs_root, rb_node);
782 read_unlock(&fs_info->global_root_lock);
783
784 return root;
785}
786
f7238e50
JB
787static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
788{
789 struct btrfs_block_group *block_group;
790 u64 ret;
791
792 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
793 return 0;
794
795 if (bytenr)
796 block_group = btrfs_lookup_block_group(fs_info, bytenr);
797 else
798 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
799 ASSERT(block_group);
800 if (!block_group)
801 return 0;
802 ret = block_group->global_root_id;
803 btrfs_put_block_group(block_group);
804
805 return ret;
806}
807
abed4aaa
JB
808struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
809{
810 struct btrfs_key key = {
811 .objectid = BTRFS_CSUM_TREE_OBJECTID,
812 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 813 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
814 };
815
816 return btrfs_global_root(fs_info, &key);
817}
818
819struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
820{
821 struct btrfs_key key = {
822 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
823 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 824 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
825 };
826
827 return btrfs_global_root(fs_info, &key);
828}
829
51129b33
JB
830struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
831{
832 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
833 return fs_info->block_group_root;
834 return btrfs_extent_root(fs_info, 0);
835}
836
20897f5c 837struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
838 u64 objectid)
839{
9b7a2440 840 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
841 struct extent_buffer *leaf;
842 struct btrfs_root *tree_root = fs_info->tree_root;
843 struct btrfs_root *root;
844 struct btrfs_key key;
b89f6d1f 845 unsigned int nofs_flag;
20897f5c 846 int ret = 0;
20897f5c 847
b89f6d1f
FM
848 /*
849 * We're holding a transaction handle, so use a NOFS memory allocation
850 * context to avoid deadlock if reclaim happens.
851 */
852 nofs_flag = memalloc_nofs_save();
96dfcb46 853 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 854 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
855 if (!root)
856 return ERR_PTR(-ENOMEM);
857
20897f5c
AJ
858 root->root_key.objectid = objectid;
859 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
860 root->root_key.offset = 0;
861
9631e4cc 862 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
60ea105a 863 0, BTRFS_NESTING_NORMAL);
20897f5c
AJ
864 if (IS_ERR(leaf)) {
865 ret = PTR_ERR(leaf);
1dd05682 866 leaf = NULL;
c1b07854 867 goto fail;
20897f5c
AJ
868 }
869
20897f5c 870 root->node = leaf;
50564b65 871 btrfs_mark_buffer_dirty(trans, leaf);
20897f5c
AJ
872
873 root->commit_root = btrfs_root_node(root);
27cdeb70 874 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 875
f944d2cb
DS
876 btrfs_set_root_flags(&root->root_item, 0);
877 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
878 btrfs_set_root_bytenr(&root->root_item, leaf->start);
879 btrfs_set_root_generation(&root->root_item, trans->transid);
880 btrfs_set_root_level(&root->root_item, 0);
881 btrfs_set_root_refs(&root->root_item, 1);
882 btrfs_set_root_used(&root->root_item, leaf->len);
883 btrfs_set_root_last_snapshot(&root->root_item, 0);
884 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 885 if (is_fstree(objectid))
807fc790
AS
886 generate_random_guid(root->root_item.uuid);
887 else
888 export_guid(root->root_item.uuid, &guid_null);
c8422684 889 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 890
8a6a87cd
BB
891 btrfs_tree_unlock(leaf);
892
20897f5c
AJ
893 key.objectid = objectid;
894 key.type = BTRFS_ROOT_ITEM_KEY;
895 key.offset = 0;
896 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
897 if (ret)
898 goto fail;
899
1dd05682
TI
900 return root;
901
8a6a87cd 902fail:
00246528 903 btrfs_put_root(root);
20897f5c 904
1dd05682 905 return ERR_PTR(ret);
20897f5c
AJ
906}
907
7237f183
YZ
908static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
909 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
910{
911 struct btrfs_root *root;
e02119d5 912
96dfcb46 913 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 914 if (!root)
7237f183 915 return ERR_PTR(-ENOMEM);
e02119d5 916
e02119d5
CM
917 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
918 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
919 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 920
6ab6ebb7
NA
921 return root;
922}
923
924int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
925 struct btrfs_root *root)
926{
927 struct extent_buffer *leaf;
928
7237f183 929 /*
92a7cc42 930 * DON'T set SHAREABLE bit for log trees.
27cdeb70 931 *
92a7cc42
QW
932 * Log trees are not exposed to user space thus can't be snapshotted,
933 * and they go away before a real commit is actually done.
934 *
935 * They do store pointers to file data extents, and those reference
936 * counts still get updated (along with back refs to the log tree).
7237f183 937 */
e02119d5 938
4d75f8a9 939 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
60ea105a 940 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
941 if (IS_ERR(leaf))
942 return PTR_ERR(leaf);
e02119d5 943
7237f183 944 root->node = leaf;
e02119d5 945
50564b65 946 btrfs_mark_buffer_dirty(trans, root->node);
e02119d5 947 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
948
949 return 0;
7237f183
YZ
950}
951
952int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
953 struct btrfs_fs_info *fs_info)
954{
955 struct btrfs_root *log_root;
956
957 log_root = alloc_log_tree(trans, fs_info);
958 if (IS_ERR(log_root))
959 return PTR_ERR(log_root);
6ab6ebb7 960
3ddebf27
NA
961 if (!btrfs_is_zoned(fs_info)) {
962 int ret = btrfs_alloc_log_tree_node(trans, log_root);
963
964 if (ret) {
965 btrfs_put_root(log_root);
966 return ret;
967 }
6ab6ebb7
NA
968 }
969
7237f183
YZ
970 WARN_ON(fs_info->log_root_tree);
971 fs_info->log_root_tree = log_root;
972 return 0;
973}
974
975int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
976 struct btrfs_root *root)
977{
0b246afa 978 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
979 struct btrfs_root *log_root;
980 struct btrfs_inode_item *inode_item;
6ab6ebb7 981 int ret;
7237f183 982
0b246afa 983 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
984 if (IS_ERR(log_root))
985 return PTR_ERR(log_root);
986
6ab6ebb7
NA
987 ret = btrfs_alloc_log_tree_node(trans, log_root);
988 if (ret) {
989 btrfs_put_root(log_root);
990 return ret;
991 }
992
7237f183
YZ
993 log_root->last_trans = trans->transid;
994 log_root->root_key.offset = root->root_key.objectid;
995
996 inode_item = &log_root->root_item.inode;
3cae210f
QW
997 btrfs_set_stack_inode_generation(inode_item, 1);
998 btrfs_set_stack_inode_size(inode_item, 3);
999 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1000 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1001 fs_info->nodesize);
3cae210f 1002 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1003
5d4f98a2 1004 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1005
1006 WARN_ON(root->log_root);
1007 root->log_root = log_root;
6008859b 1008 btrfs_set_root_log_transid(root, 0);
d1433deb 1009 root->log_transid_committed = -1;
f9850787 1010 btrfs_set_root_last_log_commit(root, 0);
e02119d5
CM
1011 return 0;
1012}
1013
49d11bea
JB
1014static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1015 struct btrfs_path *path,
1016 struct btrfs_key *key)
e02119d5
CM
1017{
1018 struct btrfs_root *root;
789d6a3a 1019 struct btrfs_tree_parent_check check = { 0 };
e02119d5 1020 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1021 u64 generation;
cb517eab 1022 int ret;
581c1760 1023 int level;
0f7d52f4 1024
96dfcb46 1025 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1026 if (!root)
1027 return ERR_PTR(-ENOMEM);
0f7d52f4 1028
cb517eab
MX
1029 ret = btrfs_find_root(tree_root, key, path,
1030 &root->root_item, &root->root_key);
0f7d52f4 1031 if (ret) {
13a8a7c8
YZ
1032 if (ret > 0)
1033 ret = -ENOENT;
49d11bea 1034 goto fail;
0f7d52f4 1035 }
13a8a7c8 1036
84234f3a 1037 generation = btrfs_root_generation(&root->root_item);
581c1760 1038 level = btrfs_root_level(&root->root_item);
789d6a3a
QW
1039 check.level = level;
1040 check.transid = generation;
1041 check.owner_root = key->objectid;
1042 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1043 &check);
64c043de
LB
1044 if (IS_ERR(root->node)) {
1045 ret = PTR_ERR(root->node);
8c38938c 1046 root->node = NULL;
49d11bea 1047 goto fail;
4eb150d6
QW
1048 }
1049 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1050 ret = -EIO;
49d11bea 1051 goto fail;
416bc658 1052 }
88c602ab
QW
1053
1054 /*
1055 * For real fs, and not log/reloc trees, root owner must
1056 * match its root node owner
1057 */
1058 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1059 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1060 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1061 root->root_key.objectid != btrfs_header_owner(root->node)) {
1062 btrfs_crit(fs_info,
1063"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1064 root->root_key.objectid, root->node->start,
1065 btrfs_header_owner(root->node),
1066 root->root_key.objectid);
1067 ret = -EUCLEAN;
1068 goto fail;
1069 }
5d4f98a2 1070 root->commit_root = btrfs_root_node(root);
cb517eab 1071 return root;
49d11bea 1072fail:
00246528 1073 btrfs_put_root(root);
49d11bea
JB
1074 return ERR_PTR(ret);
1075}
1076
1077struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1078 struct btrfs_key *key)
1079{
1080 struct btrfs_root *root;
1081 struct btrfs_path *path;
1082
1083 path = btrfs_alloc_path();
1084 if (!path)
1085 return ERR_PTR(-ENOMEM);
1086 root = read_tree_root_path(tree_root, path, key);
1087 btrfs_free_path(path);
1088
1089 return root;
cb517eab
MX
1090}
1091
2dfb1e43
QW
1092/*
1093 * Initialize subvolume root in-memory structure
1094 *
1095 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1096 */
1097static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1098{
1099 int ret;
1100
0b548539 1101 btrfs_drew_lock_init(&root->snapshot_lock);
8257b2dc 1102
aeb935a4 1103 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
6ebcd021
QW
1104 !btrfs_is_data_reloc_root(root) &&
1105 is_fstree(root->root_key.objectid)) {
92a7cc42 1106 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1107 btrfs_check_and_init_root_item(&root->root_item);
1108 }
1109
851fd730
QW
1110 /*
1111 * Don't assign anonymous block device to roots that are not exposed to
1112 * userspace, the id pool is limited to 1M
1113 */
1114 if (is_fstree(root->root_key.objectid) &&
1115 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1116 if (!anon_dev) {
1117 ret = get_anon_bdev(&root->anon_dev);
1118 if (ret)
1119 goto fail;
1120 } else {
1121 root->anon_dev = anon_dev;
1122 }
851fd730 1123 }
f32e48e9
CR
1124
1125 mutex_lock(&root->objectid_mutex);
453e4873 1126 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1127 if (ret) {
1128 mutex_unlock(&root->objectid_mutex);
876d2cf1 1129 goto fail;
f32e48e9
CR
1130 }
1131
6b8fad57 1132 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1133
1134 mutex_unlock(&root->objectid_mutex);
1135
cb517eab
MX
1136 return 0;
1137fail:
84db5ccf 1138 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1139 return ret;
1140}
1141
a98db0f3
JB
1142static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1143 u64 root_id)
cb517eab
MX
1144{
1145 struct btrfs_root *root;
1146
fc7cbcd4
DS
1147 spin_lock(&fs_info->fs_roots_radix_lock);
1148 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1149 (unsigned long)root_id);
25ac047c 1150 root = btrfs_grab_root(root);
fc7cbcd4 1151 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1152 return root;
1153}
1154
49d11bea
JB
1155static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1156 u64 objectid)
1157{
abed4aaa
JB
1158 struct btrfs_key key = {
1159 .objectid = objectid,
1160 .type = BTRFS_ROOT_ITEM_KEY,
1161 .offset = 0,
1162 };
1163
e91909aa
CH
1164 switch (objectid) {
1165 case BTRFS_ROOT_TREE_OBJECTID:
49d11bea 1166 return btrfs_grab_root(fs_info->tree_root);
e91909aa 1167 case BTRFS_EXTENT_TREE_OBJECTID:
abed4aaa 1168 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1169 case BTRFS_CHUNK_TREE_OBJECTID:
49d11bea 1170 return btrfs_grab_root(fs_info->chunk_root);
e91909aa 1171 case BTRFS_DEV_TREE_OBJECTID:
49d11bea 1172 return btrfs_grab_root(fs_info->dev_root);
e91909aa 1173 case BTRFS_CSUM_TREE_OBJECTID:
abed4aaa 1174 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1175 case BTRFS_QUOTA_TREE_OBJECTID:
85724171 1176 return btrfs_grab_root(fs_info->quota_root);
e91909aa 1177 case BTRFS_UUID_TREE_OBJECTID:
85724171 1178 return btrfs_grab_root(fs_info->uuid_root);
e91909aa 1179 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
85724171 1180 return btrfs_grab_root(fs_info->block_group_root);
e91909aa 1181 case BTRFS_FREE_SPACE_TREE_OBJECTID:
85724171 1182 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
51502090
JT
1183 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1184 return btrfs_grab_root(fs_info->stripe_root);
e91909aa
CH
1185 default:
1186 return NULL;
1187 }
49d11bea
JB
1188}
1189
cb517eab
MX
1190int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1191 struct btrfs_root *root)
1192{
1193 int ret;
1194
fc7cbcd4
DS
1195 ret = radix_tree_preload(GFP_NOFS);
1196 if (ret)
1197 return ret;
1198
1199 spin_lock(&fs_info->fs_roots_radix_lock);
1200 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1201 (unsigned long)root->root_key.objectid,
1202 root);
af01d2e5 1203 if (ret == 0) {
00246528 1204 btrfs_grab_root(root);
fc7cbcd4 1205 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1206 }
fc7cbcd4
DS
1207 spin_unlock(&fs_info->fs_roots_radix_lock);
1208 radix_tree_preload_end();
cb517eab
MX
1209
1210 return ret;
1211}
1212
bd647ce3
JB
1213void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1214{
1215#ifdef CONFIG_BTRFS_DEBUG
1216 struct btrfs_root *root;
1217
1218 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1219 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1220
bd647ce3
JB
1221 root = list_first_entry(&fs_info->allocated_roots,
1222 struct btrfs_root, leak_list);
457f1864 1223 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1224 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1225 refcount_read(&root->refs));
1226 while (refcount_read(&root->refs) > 1)
00246528
JB
1227 btrfs_put_root(root);
1228 btrfs_put_root(root);
bd647ce3
JB
1229 }
1230#endif
1231}
1232
abed4aaa
JB
1233static void free_global_roots(struct btrfs_fs_info *fs_info)
1234{
1235 struct btrfs_root *root;
1236 struct rb_node *node;
1237
1238 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1239 root = rb_entry(node, struct btrfs_root, rb_node);
1240 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1241 btrfs_put_root(root);
1242 }
1243}
1244
0d4b0463
JB
1245void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1246{
141386e1
JB
1247 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1248 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1249 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1250 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1251 btrfs_free_csum_hash(fs_info);
1252 btrfs_free_stripe_hash_table(fs_info);
1253 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1254 kfree(fs_info->balance_ctl);
1255 kfree(fs_info->delayed_root);
abed4aaa 1256 free_global_roots(fs_info);
00246528
JB
1257 btrfs_put_root(fs_info->tree_root);
1258 btrfs_put_root(fs_info->chunk_root);
1259 btrfs_put_root(fs_info->dev_root);
00246528
JB
1260 btrfs_put_root(fs_info->quota_root);
1261 btrfs_put_root(fs_info->uuid_root);
00246528 1262 btrfs_put_root(fs_info->fs_root);
aeb935a4 1263 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1264 btrfs_put_root(fs_info->block_group_root);
51502090 1265 btrfs_put_root(fs_info->stripe_root);
bd647ce3 1266 btrfs_check_leaked_roots(fs_info);
3fd63727 1267 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1268 kfree(fs_info->super_copy);
1269 kfree(fs_info->super_for_commit);
8481dd80 1270 kfree(fs_info->subpage_info);
0d4b0463
JB
1271 kvfree(fs_info);
1272}
1273
1274
2dfb1e43
QW
1275/*
1276 * Get an in-memory reference of a root structure.
1277 *
1278 * For essential trees like root/extent tree, we grab it from fs_info directly.
1279 * For subvolume trees, we check the cached filesystem roots first. If not
1280 * found, then read it from disk and add it to cached fs roots.
1281 *
1282 * Caller should release the root by calling btrfs_put_root() after the usage.
1283 *
1284 * NOTE: Reloc and log trees can't be read by this function as they share the
1285 * same root objectid.
1286 *
1287 * @objectid: root id
1288 * @anon_dev: preallocated anonymous block device number for new roots,
1289 * pass 0 for new allocation.
1290 * @check_ref: whether to check root item references, If true, return -ENOENT
1291 * for orphan roots
1292 */
1293static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1294 u64 objectid, dev_t anon_dev,
1295 bool check_ref)
5eda7b5e
CM
1296{
1297 struct btrfs_root *root;
381cf658 1298 struct btrfs_path *path;
1d4c08e0 1299 struct btrfs_key key;
5eda7b5e
CM
1300 int ret;
1301
49d11bea
JB
1302 root = btrfs_get_global_root(fs_info, objectid);
1303 if (root)
1304 return root;
773e722a
QW
1305
1306 /*
1307 * If we're called for non-subvolume trees, and above function didn't
1308 * find one, do not try to read it from disk.
1309 *
1310 * This is namely for free-space-tree and quota tree, which can change
1311 * at runtime and should only be grabbed from fs_info.
1312 */
1313 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1314 return ERR_PTR(-ENOENT);
4df27c4d 1315again:
56e9357a 1316 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1317 if (root) {
2dfb1e43
QW
1318 /* Shouldn't get preallocated anon_dev for cached roots */
1319 ASSERT(!anon_dev);
bc44d7c4 1320 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1321 btrfs_put_root(root);
48475471 1322 return ERR_PTR(-ENOENT);
bc44d7c4 1323 }
5eda7b5e 1324 return root;
48475471 1325 }
5eda7b5e 1326
56e9357a
DS
1327 key.objectid = objectid;
1328 key.type = BTRFS_ROOT_ITEM_KEY;
1329 key.offset = (u64)-1;
1330 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1331 if (IS_ERR(root))
1332 return root;
3394e160 1333
c00869f1 1334 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1335 ret = -ENOENT;
581bb050 1336 goto fail;
35a30d7c 1337 }
581bb050 1338
2dfb1e43 1339 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1340 if (ret)
1341 goto fail;
3394e160 1342
381cf658
DS
1343 path = btrfs_alloc_path();
1344 if (!path) {
1345 ret = -ENOMEM;
1346 goto fail;
1347 }
1d4c08e0
DS
1348 key.objectid = BTRFS_ORPHAN_OBJECTID;
1349 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1350 key.offset = objectid;
1d4c08e0
DS
1351
1352 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1353 btrfs_free_path(path);
d68fc57b
YZ
1354 if (ret < 0)
1355 goto fail;
1356 if (ret == 0)
27cdeb70 1357 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1358
cb517eab 1359 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1360 if (ret) {
168a2f77
JJB
1361 if (ret == -EEXIST) {
1362 btrfs_put_root(root);
4df27c4d 1363 goto again;
168a2f77 1364 }
4df27c4d 1365 goto fail;
0f7d52f4 1366 }
edbd8d4e 1367 return root;
4df27c4d 1368fail:
33fab972
FM
1369 /*
1370 * If our caller provided us an anonymous device, then it's his
143823cf 1371 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1372 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1373 * and once again by our caller.
1374 */
1375 if (anon_dev)
1376 root->anon_dev = 0;
8c38938c 1377 btrfs_put_root(root);
4df27c4d 1378 return ERR_PTR(ret);
edbd8d4e
CM
1379}
1380
2dfb1e43
QW
1381/*
1382 * Get in-memory reference of a root structure
1383 *
1384 * @objectid: tree objectid
1385 * @check_ref: if set, verify that the tree exists and the item has at least
1386 * one reference
1387 */
1388struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1389 u64 objectid, bool check_ref)
1390{
1391 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1392}
1393
1394/*
1395 * Get in-memory reference of a root structure, created as new, optionally pass
1396 * the anonymous block device id
1397 *
1398 * @objectid: tree objectid
1399 * @anon_dev: if zero, allocate a new anonymous block device or use the
1400 * parameter value
1401 */
1402struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1403 u64 objectid, dev_t anon_dev)
1404{
1405 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1406}
1407
49d11bea 1408/*
9580503b
DS
1409 * Return a root for the given objectid.
1410 *
49d11bea
JB
1411 * @fs_info: the fs_info
1412 * @objectid: the objectid we need to lookup
1413 *
1414 * This is exclusively used for backref walking, and exists specifically because
1415 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1416 * creation time, which means we may have to read the tree_root in order to look
1417 * up a fs root that is not in memory. If the root is not in memory we will
1418 * read the tree root commit root and look up the fs root from there. This is a
1419 * temporary root, it will not be inserted into the radix tree as it doesn't
1420 * have the most uptodate information, it'll simply be discarded once the
1421 * backref code is finished using the root.
1422 */
1423struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1424 struct btrfs_path *path,
1425 u64 objectid)
1426{
1427 struct btrfs_root *root;
1428 struct btrfs_key key;
1429
1430 ASSERT(path->search_commit_root && path->skip_locking);
1431
1432 /*
1433 * This can return -ENOENT if we ask for a root that doesn't exist, but
1434 * since this is called via the backref walking code we won't be looking
1435 * up a root that doesn't exist, unless there's corruption. So if root
1436 * != NULL just return it.
1437 */
1438 root = btrfs_get_global_root(fs_info, objectid);
1439 if (root)
1440 return root;
1441
1442 root = btrfs_lookup_fs_root(fs_info, objectid);
1443 if (root)
1444 return root;
1445
1446 key.objectid = objectid;
1447 key.type = BTRFS_ROOT_ITEM_KEY;
1448 key.offset = (u64)-1;
1449 root = read_tree_root_path(fs_info->tree_root, path, &key);
1450 btrfs_release_path(path);
1451
1452 return root;
1453}
1454
a74a4b97
CM
1455static int cleaner_kthread(void *arg)
1456{
0d031dc4 1457 struct btrfs_fs_info *fs_info = arg;
d0278245 1458 int again;
a74a4b97 1459
d6fd0ae2 1460 while (1) {
d0278245 1461 again = 0;
a74a4b97 1462
fd340d0f
JB
1463 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1464
d0278245 1465 /* Make the cleaner go to sleep early. */
2ff7e61e 1466 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1467 goto sleep;
1468
90c711ab
ZB
1469 /*
1470 * Do not do anything if we might cause open_ctree() to block
1471 * before we have finished mounting the filesystem.
1472 */
0b246afa 1473 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1474 goto sleep;
1475
0b246afa 1476 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1477 goto sleep;
1478
dc7f370c
MX
1479 /*
1480 * Avoid the problem that we change the status of the fs
1481 * during the above check and trylock.
1482 */
2ff7e61e 1483 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1484 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1485 goto sleep;
76dda93c 1486 }
a74a4b97 1487
b7625f46
QW
1488 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1489 btrfs_sysfs_feature_update(fs_info);
1490
2ff7e61e 1491 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1492
33c44184 1493 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1494 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1495
1496 /*
05323cd1
MX
1497 * The defragger has dealt with the R/O remount and umount,
1498 * needn't do anything special here.
d0278245 1499 */
0b246afa 1500 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1501
1502 /*
f3372065 1503 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1504 * with relocation (btrfs_relocate_chunk) and relocation
1505 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1506 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1507 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1508 * unused block groups.
1509 */
0b246afa 1510 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1511
1512 /*
1513 * Reclaim block groups in the reclaim_bgs list after we deleted
1514 * all unused block_groups. This possibly gives us some more free
1515 * space.
1516 */
1517 btrfs_reclaim_bgs(fs_info);
d0278245 1518sleep:
a0a1db70 1519 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1520 if (kthread_should_park())
1521 kthread_parkme();
1522 if (kthread_should_stop())
1523 return 0;
838fe188 1524 if (!again) {
a74a4b97 1525 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1526 schedule();
a74a4b97
CM
1527 __set_current_state(TASK_RUNNING);
1528 }
da288d28 1529 }
a74a4b97
CM
1530}
1531
1532static int transaction_kthread(void *arg)
1533{
1534 struct btrfs_root *root = arg;
0b246afa 1535 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1536 struct btrfs_trans_handle *trans;
1537 struct btrfs_transaction *cur;
8929ecfa 1538 u64 transid;
643900be 1539 time64_t delta;
a74a4b97 1540 unsigned long delay;
914b2007 1541 bool cannot_commit;
a74a4b97
CM
1542
1543 do {
914b2007 1544 cannot_commit = false;
ba1bc00f 1545 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1546 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1547
0b246afa
JM
1548 spin_lock(&fs_info->trans_lock);
1549 cur = fs_info->running_transaction;
a74a4b97 1550 if (!cur) {
0b246afa 1551 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1552 goto sleep;
1553 }
31153d81 1554
643900be 1555 delta = ktime_get_seconds() - cur->start_time;
fdfbf020 1556 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
77d20c68 1557 cur->state < TRANS_STATE_COMMIT_PREP &&
643900be 1558 delta < fs_info->commit_interval) {
0b246afa 1559 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1560 delay -= msecs_to_jiffies((delta - 1) * 1000);
1561 delay = min(delay,
1562 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1563 goto sleep;
1564 }
8929ecfa 1565 transid = cur->transid;
0b246afa 1566 spin_unlock(&fs_info->trans_lock);
56bec294 1567
79787eaa 1568 /* If the file system is aborted, this will always fail. */
354aa0fb 1569 trans = btrfs_attach_transaction(root);
914b2007 1570 if (IS_ERR(trans)) {
354aa0fb
MX
1571 if (PTR_ERR(trans) != -ENOENT)
1572 cannot_commit = true;
79787eaa 1573 goto sleep;
914b2007 1574 }
8929ecfa 1575 if (transid == trans->transid) {
3a45bb20 1576 btrfs_commit_transaction(trans);
8929ecfa 1577 } else {
3a45bb20 1578 btrfs_end_transaction(trans);
8929ecfa 1579 }
a74a4b97 1580sleep:
0b246afa
JM
1581 wake_up_process(fs_info->cleaner_kthread);
1582 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1583
84961539 1584 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1585 btrfs_cleanup_transaction(fs_info);
ce63f891 1586 if (!kthread_should_stop() &&
0b246afa 1587 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1588 cannot_commit))
bc5511d0 1589 schedule_timeout_interruptible(delay);
a74a4b97
CM
1590 } while (!kthread_should_stop());
1591 return 0;
1592}
1593
af31f5e5 1594/*
01f0f9da
NB
1595 * This will find the highest generation in the array of root backups. The
1596 * index of the highest array is returned, or -EINVAL if we can't find
1597 * anything.
af31f5e5
CM
1598 *
1599 * We check to make sure the array is valid by comparing the
1600 * generation of the latest root in the array with the generation
1601 * in the super block. If they don't match we pitch it.
1602 */
01f0f9da 1603static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1604{
01f0f9da 1605 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1606 u64 cur;
af31f5e5
CM
1607 struct btrfs_root_backup *root_backup;
1608 int i;
1609
1610 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1611 root_backup = info->super_copy->super_roots + i;
1612 cur = btrfs_backup_tree_root_gen(root_backup);
1613 if (cur == newest_gen)
01f0f9da 1614 return i;
af31f5e5
CM
1615 }
1616
01f0f9da 1617 return -EINVAL;
af31f5e5
CM
1618}
1619
af31f5e5
CM
1620/*
1621 * copy all the root pointers into the super backup array.
1622 * this will bump the backup pointer by one when it is
1623 * done
1624 */
1625static void backup_super_roots(struct btrfs_fs_info *info)
1626{
6ef108dd 1627 const int next_backup = info->backup_root_index;
af31f5e5 1628 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1629
1630 root_backup = info->super_for_commit->super_roots + next_backup;
1631
1632 /*
1633 * make sure all of our padding and empty slots get zero filled
1634 * regardless of which ones we use today
1635 */
1636 memset(root_backup, 0, sizeof(*root_backup));
1637
1638 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1639
1640 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1641 btrfs_set_backup_tree_root_gen(root_backup,
1642 btrfs_header_generation(info->tree_root->node));
1643
1644 btrfs_set_backup_tree_root_level(root_backup,
1645 btrfs_header_level(info->tree_root->node));
1646
1647 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1648 btrfs_set_backup_chunk_root_gen(root_backup,
1649 btrfs_header_generation(info->chunk_root->node));
1650 btrfs_set_backup_chunk_root_level(root_backup,
1651 btrfs_header_level(info->chunk_root->node));
1652
1c56ab99 1653 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1654 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1655 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1656
1657 btrfs_set_backup_extent_root(root_backup,
1658 extent_root->node->start);
1659 btrfs_set_backup_extent_root_gen(root_backup,
1660 btrfs_header_generation(extent_root->node));
1661 btrfs_set_backup_extent_root_level(root_backup,
1662 btrfs_header_level(extent_root->node));
f7238e50
JB
1663
1664 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1665 btrfs_set_backup_csum_root_gen(root_backup,
1666 btrfs_header_generation(csum_root->node));
1667 btrfs_set_backup_csum_root_level(root_backup,
1668 btrfs_header_level(csum_root->node));
9c54e80d 1669 }
af31f5e5 1670
7c7e82a7
CM
1671 /*
1672 * we might commit during log recovery, which happens before we set
1673 * the fs_root. Make sure it is valid before we fill it in.
1674 */
1675 if (info->fs_root && info->fs_root->node) {
1676 btrfs_set_backup_fs_root(root_backup,
1677 info->fs_root->node->start);
1678 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1679 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1680 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1681 btrfs_header_level(info->fs_root->node));
7c7e82a7 1682 }
af31f5e5
CM
1683
1684 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1685 btrfs_set_backup_dev_root_gen(root_backup,
1686 btrfs_header_generation(info->dev_root->node));
1687 btrfs_set_backup_dev_root_level(root_backup,
1688 btrfs_header_level(info->dev_root->node));
1689
af31f5e5
CM
1690 btrfs_set_backup_total_bytes(root_backup,
1691 btrfs_super_total_bytes(info->super_copy));
1692 btrfs_set_backup_bytes_used(root_backup,
1693 btrfs_super_bytes_used(info->super_copy));
1694 btrfs_set_backup_num_devices(root_backup,
1695 btrfs_super_num_devices(info->super_copy));
1696
1697 /*
1698 * if we don't copy this out to the super_copy, it won't get remembered
1699 * for the next commit
1700 */
1701 memcpy(&info->super_copy->super_roots,
1702 &info->super_for_commit->super_roots,
1703 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1704}
1705
bd2336b2 1706/*
9580503b
DS
1707 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1708 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
bd2336b2 1709 *
9580503b
DS
1710 * @fs_info: filesystem whose backup roots need to be read
1711 * @priority: priority of backup root required
bd2336b2
NB
1712 *
1713 * Returns backup root index on success and -EINVAL otherwise.
1714 */
1715static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1716{
1717 int backup_index = find_newest_super_backup(fs_info);
1718 struct btrfs_super_block *super = fs_info->super_copy;
1719 struct btrfs_root_backup *root_backup;
1720
1721 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1722 if (priority == 0)
1723 return backup_index;
1724
1725 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1726 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1727 } else {
1728 return -EINVAL;
1729 }
1730
1731 root_backup = super->super_roots + backup_index;
1732
1733 btrfs_set_super_generation(super,
1734 btrfs_backup_tree_root_gen(root_backup));
1735 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1736 btrfs_set_super_root_level(super,
1737 btrfs_backup_tree_root_level(root_backup));
1738 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1739
1740 /*
1741 * Fixme: the total bytes and num_devices need to match or we should
1742 * need a fsck
1743 */
1744 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1745 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1746
1747 return backup_index;
1748}
1749
7abadb64
LB
1750/* helper to cleanup workers */
1751static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1752{
dc6e3209 1753 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1754 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1755 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
1756 if (fs_info->endio_workers)
1757 destroy_workqueue(fs_info->endio_workers);
385de0ef
CH
1758 if (fs_info->rmw_workers)
1759 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
1760 if (fs_info->compressed_write_workers)
1761 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
1762 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1763 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1764 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1765 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 1766 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1767 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1768 if (fs_info->discard_ctl.discard_workers)
1769 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1770 /*
1771 * Now that all other work queues are destroyed, we can safely destroy
1772 * the queues used for metadata I/O, since tasks from those other work
1773 * queues can do metadata I/O operations.
1774 */
d7b9416f
CH
1775 if (fs_info->endio_meta_workers)
1776 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
1777}
1778
2e9f5954
R
1779static void free_root_extent_buffers(struct btrfs_root *root)
1780{
1781 if (root) {
1782 free_extent_buffer(root->node);
1783 free_extent_buffer(root->commit_root);
1784 root->node = NULL;
1785 root->commit_root = NULL;
1786 }
1787}
1788
abed4aaa
JB
1789static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1790{
1791 struct btrfs_root *root, *tmp;
1792
1793 rbtree_postorder_for_each_entry_safe(root, tmp,
1794 &fs_info->global_root_tree,
1795 rb_node)
1796 free_root_extent_buffers(root);
1797}
1798
af31f5e5 1799/* helper to cleanup tree roots */
4273eaff 1800static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1801{
2e9f5954 1802 free_root_extent_buffers(info->tree_root);
655b09fe 1803
abed4aaa 1804 free_global_root_pointers(info);
2e9f5954 1805 free_root_extent_buffers(info->dev_root);
2e9f5954
R
1806 free_root_extent_buffers(info->quota_root);
1807 free_root_extent_buffers(info->uuid_root);
8c38938c 1808 free_root_extent_buffers(info->fs_root);
aeb935a4 1809 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 1810 free_root_extent_buffers(info->block_group_root);
51502090 1811 free_root_extent_buffers(info->stripe_root);
4273eaff 1812 if (free_chunk_root)
2e9f5954 1813 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
1814}
1815
8c38938c
JB
1816void btrfs_put_root(struct btrfs_root *root)
1817{
1818 if (!root)
1819 return;
1820
1821 if (refcount_dec_and_test(&root->refs)) {
1822 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 1823 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
1824 if (root->anon_dev)
1825 free_anon_bdev(root->anon_dev);
923eb523 1826 free_root_extent_buffers(root);
8c38938c 1827#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 1828 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 1829 list_del_init(&root->leak_list);
fc7cbcd4 1830 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
1831#endif
1832 kfree(root);
1833 }
1834}
1835
faa2dbf0 1836void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 1837{
fc7cbcd4
DS
1838 int ret;
1839 struct btrfs_root *gang[8];
1840 int i;
171f6537
JB
1841
1842 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
1843 gang[0] = list_entry(fs_info->dead_roots.next,
1844 struct btrfs_root, root_list);
1845 list_del(&gang[0]->root_list);
171f6537 1846
fc7cbcd4
DS
1847 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1848 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1849 btrfs_put_root(gang[0]);
171f6537
JB
1850 }
1851
fc7cbcd4
DS
1852 while (1) {
1853 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1854 (void **)gang, 0,
1855 ARRAY_SIZE(gang));
1856 if (!ret)
1857 break;
1858 for (i = 0; i < ret; i++)
1859 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
1860 }
1861}
af31f5e5 1862
638aa7ed
ES
1863static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1864{
1865 mutex_init(&fs_info->scrub_lock);
1866 atomic_set(&fs_info->scrubs_running, 0);
1867 atomic_set(&fs_info->scrub_pause_req, 0);
1868 atomic_set(&fs_info->scrubs_paused, 0);
1869 atomic_set(&fs_info->scrub_cancel_req, 0);
1870 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 1871 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
1872}
1873
779a65a4
ES
1874static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1875{
1876 spin_lock_init(&fs_info->balance_lock);
1877 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
1878 atomic_set(&fs_info->balance_pause_req, 0);
1879 atomic_set(&fs_info->balance_cancel_req, 0);
1880 fs_info->balance_ctl = NULL;
1881 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 1882 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
1883}
1884
dcb2137c 1885static int btrfs_init_btree_inode(struct super_block *sb)
f37938e0 1886{
dcb2137c 1887 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
e256927b
JB
1888 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1889 fs_info->tree_root);
dcb2137c
CH
1890 struct inode *inode;
1891
1892 inode = new_inode(sb);
1893 if (!inode)
1894 return -ENOMEM;
2ff7e61e
JM
1895
1896 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1897 set_nlink(inode, 1);
f37938e0
ES
1898 /*
1899 * we set the i_size on the btree inode to the max possible int.
1900 * the real end of the address space is determined by all of
1901 * the devices in the system
1902 */
2ff7e61e
JM
1903 inode->i_size = OFFSET_MAX;
1904 inode->i_mapping->a_ops = &btree_aops;
dcb2137c 1905 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
f37938e0 1906
2ff7e61e 1907 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 1908 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
35da5a7e 1909 IO_TREE_BTREE_INODE_IO);
2ff7e61e 1910 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 1911
5c8fd99f 1912 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
1913 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1914 BTRFS_I(inode)->location.type = 0;
1915 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 1916 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 1917 __insert_inode_hash(inode, hash);
dcb2137c
CH
1918 fs_info->btree_inode = inode;
1919
1920 return 0;
f37938e0
ES
1921}
1922
ad618368
ES
1923static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1924{
ad618368 1925 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 1926 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 1927 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
1928}
1929
f9e92e40
ES
1930static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1931{
1932 spin_lock_init(&fs_info->qgroup_lock);
1933 mutex_init(&fs_info->qgroup_ioctl_lock);
1934 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
1935 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1936 fs_info->qgroup_seq = 1;
f9e92e40 1937 fs_info->qgroup_ulist = NULL;
d2c609b8 1938 fs_info->qgroup_rescan_running = false;
011b46c3 1939 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
1940 mutex_init(&fs_info->qgroup_rescan_lock);
1941}
1942
d21deec5 1943static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 1944{
f7b885be 1945 u32 max_active = fs_info->thread_pool_size;
6f011058 1946 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
58e814fc 1947 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
2a458198
ES
1948
1949 fs_info->workers =
a31b4a43 1950 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2a458198
ES
1951
1952 fs_info->delalloc_workers =
cb001095
JM
1953 btrfs_alloc_workqueue(fs_info, "delalloc",
1954 flags, max_active, 2);
2a458198
ES
1955
1956 fs_info->flush_workers =
cb001095
JM
1957 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1958 flags, max_active, 0);
2a458198
ES
1959
1960 fs_info->caching_workers =
cb001095 1961 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 1962
2a458198 1963 fs_info->fixup_workers =
58e814fc 1964 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
2a458198 1965
2a458198 1966 fs_info->endio_workers =
d7b9416f 1967 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 1968 fs_info->endio_meta_workers =
d7b9416f 1969 alloc_workqueue("btrfs-endio-meta", flags, max_active);
385de0ef 1970 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 1971 fs_info->endio_write_workers =
cb001095
JM
1972 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1973 max_active, 2);
fed8a72d
CH
1974 fs_info->compressed_write_workers =
1975 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 1976 fs_info->endio_freespace_worker =
cb001095
JM
1977 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1978 max_active, 0);
2a458198 1979 fs_info->delayed_workers =
cb001095
JM
1980 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1981 max_active, 0);
2a458198 1982 fs_info->qgroup_rescan_workers =
58e814fc
TH
1983 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1984 ordered_flags);
b0643e59 1985 fs_info->discard_ctl.discard_workers =
58e814fc 1986 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2a458198 1987
8bfec2e4 1988 if (!(fs_info->workers &&
a31b4a43 1989 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 1990 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 1991 fs_info->compressed_write_workers &&
1a1a2851 1992 fs_info->endio_write_workers &&
2a458198 1993 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
1994 fs_info->caching_workers && fs_info->fixup_workers &&
1995 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 1996 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
1997 return -ENOMEM;
1998 }
1999
2000 return 0;
2001}
2002
6d97c6e3
JT
2003static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2004{
2005 struct crypto_shash *csum_shash;
b4e967be 2006 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2007
b4e967be 2008 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2009
2010 if (IS_ERR(csum_shash)) {
2011 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2012 csum_driver);
6d97c6e3
JT
2013 return PTR_ERR(csum_shash);
2014 }
2015
2016 fs_info->csum_shash = csum_shash;
2017
68d99ab0
CH
2018 /*
2019 * Check if the checksum implementation is a fast accelerated one.
2020 * As-is this is a bit of a hack and should be replaced once the csum
2021 * implementations provide that information themselves.
2022 */
2023 switch (csum_type) {
2024 case BTRFS_CSUM_TYPE_CRC32:
2025 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2026 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2027 break;
efcfcbc6
DS
2028 case BTRFS_CSUM_TYPE_XXHASH:
2029 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2030 break;
68d99ab0
CH
2031 default:
2032 break;
2033 }
2034
c8a5f8ca
DS
2035 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2036 btrfs_super_csum_name(csum_type),
2037 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2038 return 0;
2039}
2040
63443bf5
ES
2041static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2042 struct btrfs_fs_devices *fs_devices)
2043{
2044 int ret;
789d6a3a 2045 struct btrfs_tree_parent_check check = { 0 };
63443bf5
ES
2046 struct btrfs_root *log_tree_root;
2047 struct btrfs_super_block *disk_super = fs_info->super_copy;
2048 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2049 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2050
2051 if (fs_devices->rw_devices == 0) {
f14d104d 2052 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2053 return -EIO;
2054 }
2055
96dfcb46
JB
2056 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2057 GFP_KERNEL);
63443bf5
ES
2058 if (!log_tree_root)
2059 return -ENOMEM;
2060
789d6a3a
QW
2061 check.level = level;
2062 check.transid = fs_info->generation + 1;
2063 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2064 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
64c043de 2065 if (IS_ERR(log_tree_root->node)) {
f14d104d 2066 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2067 ret = PTR_ERR(log_tree_root->node);
8c38938c 2068 log_tree_root->node = NULL;
00246528 2069 btrfs_put_root(log_tree_root);
0eeff236 2070 return ret;
4eb150d6
QW
2071 }
2072 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2073 btrfs_err(fs_info, "failed to read log tree");
00246528 2074 btrfs_put_root(log_tree_root);
63443bf5
ES
2075 return -EIO;
2076 }
4eb150d6 2077
63443bf5
ES
2078 /* returns with log_tree_root freed on success */
2079 ret = btrfs_recover_log_trees(log_tree_root);
2080 if (ret) {
0b246afa
JM
2081 btrfs_handle_fs_error(fs_info, ret,
2082 "Failed to recover log tree");
00246528 2083 btrfs_put_root(log_tree_root);
63443bf5
ES
2084 return ret;
2085 }
2086
bc98a42c 2087 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2088 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2089 if (ret)
2090 return ret;
2091 }
2092
2093 return 0;
2094}
2095
abed4aaa
JB
2096static int load_global_roots_objectid(struct btrfs_root *tree_root,
2097 struct btrfs_path *path, u64 objectid,
2098 const char *name)
2099{
2100 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2101 struct btrfs_root *root;
f7238e50 2102 u64 max_global_id = 0;
abed4aaa
JB
2103 int ret;
2104 struct btrfs_key key = {
2105 .objectid = objectid,
2106 .type = BTRFS_ROOT_ITEM_KEY,
2107 .offset = 0,
2108 };
2109 bool found = false;
2110
2111 /* If we have IGNOREDATACSUMS skip loading these roots. */
2112 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2113 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2114 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2115 return 0;
2116 }
2117
2118 while (1) {
2119 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2120 if (ret < 0)
2121 break;
2122
2123 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2124 ret = btrfs_next_leaf(tree_root, path);
2125 if (ret) {
2126 if (ret > 0)
2127 ret = 0;
2128 break;
2129 }
2130 }
2131 ret = 0;
2132
2133 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2134 if (key.objectid != objectid)
2135 break;
2136 btrfs_release_path(path);
2137
f7238e50
JB
2138 /*
2139 * Just worry about this for extent tree, it'll be the same for
2140 * everybody.
2141 */
2142 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2143 max_global_id = max(max_global_id, key.offset);
2144
abed4aaa
JB
2145 found = true;
2146 root = read_tree_root_path(tree_root, path, &key);
2147 if (IS_ERR(root)) {
2148 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2149 ret = PTR_ERR(root);
2150 break;
2151 }
2152 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2153 ret = btrfs_global_root_insert(root);
2154 if (ret) {
2155 btrfs_put_root(root);
2156 break;
2157 }
2158 key.offset++;
2159 }
2160 btrfs_release_path(path);
2161
f7238e50
JB
2162 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2163 fs_info->nr_global_roots = max_global_id + 1;
2164
abed4aaa
JB
2165 if (!found || ret) {
2166 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2167 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2168
2169 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2170 ret = ret ? ret : -ENOENT;
2171 else
2172 ret = 0;
2173 btrfs_err(fs_info, "failed to load root %s", name);
2174 }
2175 return ret;
2176}
2177
2178static int load_global_roots(struct btrfs_root *tree_root)
2179{
2180 struct btrfs_path *path;
2181 int ret = 0;
2182
2183 path = btrfs_alloc_path();
2184 if (!path)
2185 return -ENOMEM;
2186
2187 ret = load_global_roots_objectid(tree_root, path,
2188 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2189 if (ret)
2190 goto out;
2191 ret = load_global_roots_objectid(tree_root, path,
2192 BTRFS_CSUM_TREE_OBJECTID, "csum");
2193 if (ret)
2194 goto out;
2195 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2196 goto out;
2197 ret = load_global_roots_objectid(tree_root, path,
2198 BTRFS_FREE_SPACE_TREE_OBJECTID,
2199 "free space");
2200out:
2201 btrfs_free_path(path);
2202 return ret;
2203}
2204
6bccf3ab 2205static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2206{
6bccf3ab 2207 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2208 struct btrfs_root *root;
4bbcaa64
ES
2209 struct btrfs_key location;
2210 int ret;
2211
6bccf3ab
JM
2212 BUG_ON(!fs_info->tree_root);
2213
abed4aaa
JB
2214 ret = load_global_roots(tree_root);
2215 if (ret)
2216 return ret;
2217
4bbcaa64
ES
2218 location.type = BTRFS_ROOT_ITEM_KEY;
2219 location.offset = 0;
2220
1c56ab99 2221 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2222 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2223 root = btrfs_read_tree_root(tree_root, &location);
2224 if (IS_ERR(root)) {
2225 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2226 ret = PTR_ERR(root);
2227 goto out;
2228 }
2229 } else {
2230 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2231 fs_info->block_group_root = root;
2232 }
2233 }
2234
2235 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2236 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2237 if (IS_ERR(root)) {
42437a63
JB
2238 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2239 ret = PTR_ERR(root);
2240 goto out;
2241 }
2242 } else {
2243 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2244 fs_info->dev_root = root;
f50f4353 2245 }
820a49da 2246 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2247 ret = btrfs_init_devices_late(fs_info);
2248 if (ret)
2249 goto out;
4bbcaa64 2250
aeb935a4
QW
2251 /*
2252 * This tree can share blocks with some other fs tree during relocation
2253 * and we need a proper setup by btrfs_get_fs_root
2254 */
56e9357a
DS
2255 root = btrfs_get_fs_root(tree_root->fs_info,
2256 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2257 if (IS_ERR(root)) {
42437a63
JB
2258 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2259 ret = PTR_ERR(root);
2260 goto out;
2261 }
2262 } else {
2263 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2264 fs_info->data_reloc_root = root;
aeb935a4 2265 }
aeb935a4 2266
4bbcaa64 2267 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2268 root = btrfs_read_tree_root(tree_root, &location);
2269 if (!IS_ERR(root)) {
2270 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
a4f3d2c4 2271 fs_info->quota_root = root;
4bbcaa64
ES
2272 }
2273
2274 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2275 root = btrfs_read_tree_root(tree_root, &location);
2276 if (IS_ERR(root)) {
42437a63
JB
2277 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2278 ret = PTR_ERR(root);
2279 if (ret != -ENOENT)
2280 goto out;
2281 }
4bbcaa64 2282 } else {
a4f3d2c4
DS
2283 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2284 fs_info->uuid_root = root;
4bbcaa64
ES
2285 }
2286
51502090
JT
2287 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2288 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2289 root = btrfs_read_tree_root(tree_root, &location);
2290 if (IS_ERR(root)) {
2291 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2292 ret = PTR_ERR(root);
2293 goto out;
2294 }
2295 } else {
2296 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2297 fs_info->stripe_root = root;
2298 }
2299 }
2300
4bbcaa64 2301 return 0;
f50f4353
LB
2302out:
2303 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2304 location.objectid, ret);
2305 return ret;
4bbcaa64
ES
2306}
2307
069ec957
QW
2308/*
2309 * Real super block validation
2310 * NOTE: super csum type and incompat features will not be checked here.
2311 *
2312 * @sb: super block to check
2313 * @mirror_num: the super block number to check its bytenr:
2314 * 0 the primary (1st) sb
2315 * 1, 2 2nd and 3rd backup copy
2316 * -1 skip bytenr check
2317 */
a05d3c91
QW
2318int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2319 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2320{
21a852b0
QW
2321 u64 nodesize = btrfs_super_nodesize(sb);
2322 u64 sectorsize = btrfs_super_sectorsize(sb);
2323 int ret = 0;
2324
2325 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2326 btrfs_err(fs_info, "no valid FS found");
2327 ret = -EINVAL;
2328 }
2329 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2330 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2331 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2332 ret = -EINVAL;
2333 }
2334 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2335 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2336 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2337 ret = -EINVAL;
2338 }
2339 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2340 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2341 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2342 ret = -EINVAL;
2343 }
2344 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2345 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2346 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2347 ret = -EINVAL;
2348 }
2349
2350 /*
2351 * Check sectorsize and nodesize first, other check will need it.
2352 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2353 */
2354 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2355 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2356 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2357 ret = -EINVAL;
2358 }
0bb3eb3e
QW
2359
2360 /*
1a42daab
QW
2361 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2362 *
2363 * We can support 16K sectorsize with 64K page size without problem,
2364 * but such sectorsize/pagesize combination doesn't make much sense.
2365 * 4K will be our future standard, PAGE_SIZE is supported from the very
2366 * beginning.
0bb3eb3e 2367 */
1a42daab 2368 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2369 btrfs_err(fs_info,
0bb3eb3e 2370 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2371 sectorsize, PAGE_SIZE);
2372 ret = -EINVAL;
2373 }
0bb3eb3e 2374
21a852b0
QW
2375 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2376 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2377 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2378 ret = -EINVAL;
2379 }
2380 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2381 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2382 le32_to_cpu(sb->__unused_leafsize), nodesize);
2383 ret = -EINVAL;
2384 }
2385
2386 /* Root alignment check */
2387 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2388 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2389 btrfs_super_root(sb));
2390 ret = -EINVAL;
2391 }
2392 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2393 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2394 btrfs_super_chunk_root(sb));
2395 ret = -EINVAL;
2396 }
2397 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2398 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2399 btrfs_super_log_root(sb));
2400 ret = -EINVAL;
2401 }
2402
a5b8a5f9
AJ
2403 if (!fs_info->fs_devices->temp_fsid &&
2404 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2405 btrfs_err(fs_info,
2406 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
d167aa76 2407 sb->fsid, fs_info->fs_devices->fsid);
aefd7f70
NB
2408 ret = -EINVAL;
2409 }
2410
6bfe3959
AJ
2411 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2412 BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2413 btrfs_err(fs_info,
2414"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
6bfe3959 2415 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
aefd7f70
NB
2416 ret = -EINVAL;
2417 }
2418
25984a5a
AJ
2419 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2420 BTRFS_FSID_SIZE) != 0) {
2421 btrfs_err(fs_info,
2422 "dev_item UUID does not match metadata fsid: %pU != %pU",
2423 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2424 ret = -EINVAL;
2425 }
2426
1c56ab99
QW
2427 /*
2428 * Artificial requirement for block-group-tree to force newer features
2429 * (free-space-tree, no-holes) so the test matrix is smaller.
2430 */
2431 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2432 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2433 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2434 btrfs_err(fs_info,
2435 "block-group-tree feature requires fres-space-tree and no-holes");
2436 ret = -EINVAL;
2437 }
2438
21a852b0
QW
2439 /*
2440 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2441 * done later
2442 */
2443 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2444 btrfs_err(fs_info, "bytes_used is too small %llu",
2445 btrfs_super_bytes_used(sb));
2446 ret = -EINVAL;
2447 }
2448 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2449 btrfs_err(fs_info, "invalid stripesize %u",
2450 btrfs_super_stripesize(sb));
2451 ret = -EINVAL;
2452 }
2453 if (btrfs_super_num_devices(sb) > (1UL << 31))
2454 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2455 btrfs_super_num_devices(sb));
2456 if (btrfs_super_num_devices(sb) == 0) {
2457 btrfs_err(fs_info, "number of devices is 0");
2458 ret = -EINVAL;
2459 }
2460
069ec957
QW
2461 if (mirror_num >= 0 &&
2462 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2463 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2464 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2465 ret = -EINVAL;
2466 }
2467
2468 /*
2469 * Obvious sys_chunk_array corruptions, it must hold at least one key
2470 * and one chunk
2471 */
2472 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2473 btrfs_err(fs_info, "system chunk array too big %u > %u",
2474 btrfs_super_sys_array_size(sb),
2475 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2476 ret = -EINVAL;
2477 }
2478 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2479 + sizeof(struct btrfs_chunk)) {
2480 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2481 btrfs_super_sys_array_size(sb),
2482 sizeof(struct btrfs_disk_key)
2483 + sizeof(struct btrfs_chunk));
2484 ret = -EINVAL;
2485 }
2486
2487 /*
2488 * The generation is a global counter, we'll trust it more than the others
2489 * but it's still possible that it's the one that's wrong.
2490 */
2491 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2492 btrfs_warn(fs_info,
2493 "suspicious: generation < chunk_root_generation: %llu < %llu",
2494 btrfs_super_generation(sb),
2495 btrfs_super_chunk_root_generation(sb));
2496 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2497 && btrfs_super_cache_generation(sb) != (u64)-1)
2498 btrfs_warn(fs_info,
2499 "suspicious: generation < cache_generation: %llu < %llu",
2500 btrfs_super_generation(sb),
2501 btrfs_super_cache_generation(sb));
2502
2503 return ret;
2504}
2505
069ec957
QW
2506/*
2507 * Validation of super block at mount time.
2508 * Some checks already done early at mount time, like csum type and incompat
2509 * flags will be skipped.
2510 */
2511static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2512{
a05d3c91 2513 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2514}
2515
75cb857d
QW
2516/*
2517 * Validation of super block at write time.
2518 * Some checks like bytenr check will be skipped as their values will be
2519 * overwritten soon.
2520 * Extra checks like csum type and incompat flags will be done here.
2521 */
2522static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2523 struct btrfs_super_block *sb)
2524{
2525 int ret;
2526
a05d3c91 2527 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2528 if (ret < 0)
2529 goto out;
e7e16f48 2530 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2531 ret = -EUCLEAN;
2532 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2533 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2534 goto out;
2535 }
2536 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2537 ret = -EUCLEAN;
2538 btrfs_err(fs_info,
2539 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2540 btrfs_super_incompat_flags(sb),
2541 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2542 goto out;
2543 }
2544out:
2545 if (ret < 0)
2546 btrfs_err(fs_info,
2547 "super block corruption detected before writing it to disk");
2548 return ret;
2549}
2550
bd676446
JB
2551static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2552{
789d6a3a
QW
2553 struct btrfs_tree_parent_check check = {
2554 .level = level,
2555 .transid = gen,
2556 .owner_root = root->root_key.objectid
2557 };
bd676446
JB
2558 int ret = 0;
2559
789d6a3a 2560 root->node = read_tree_block(root->fs_info, bytenr, &check);
bd676446
JB
2561 if (IS_ERR(root->node)) {
2562 ret = PTR_ERR(root->node);
2563 root->node = NULL;
4eb150d6
QW
2564 return ret;
2565 }
2566 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2567 free_extent_buffer(root->node);
2568 root->node = NULL;
4eb150d6 2569 return -EIO;
bd676446
JB
2570 }
2571
bd676446
JB
2572 btrfs_set_root_node(&root->root_item, root->node);
2573 root->commit_root = btrfs_root_node(root);
2574 btrfs_set_root_refs(&root->root_item, 1);
2575 return ret;
2576}
2577
2578static int load_important_roots(struct btrfs_fs_info *fs_info)
2579{
2580 struct btrfs_super_block *sb = fs_info->super_copy;
2581 u64 gen, bytenr;
2582 int level, ret;
2583
2584 bytenr = btrfs_super_root(sb);
2585 gen = btrfs_super_generation(sb);
2586 level = btrfs_super_root_level(sb);
2587 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2588 if (ret) {
bd676446 2589 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2590 return ret;
2591 }
14033b08 2592 return 0;
bd676446
JB
2593}
2594
6ef108dd 2595static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2596{
6ef108dd 2597 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2598 struct btrfs_super_block *sb = fs_info->super_copy;
2599 struct btrfs_root *tree_root = fs_info->tree_root;
2600 bool handle_error = false;
2601 int ret = 0;
2602 int i;
2603
2604 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2605 if (handle_error) {
2606 if (!IS_ERR(tree_root->node))
2607 free_extent_buffer(tree_root->node);
2608 tree_root->node = NULL;
2609
2610 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2611 break;
2612
2613 free_root_pointers(fs_info, 0);
2614
2615 /*
2616 * Don't use the log in recovery mode, it won't be
2617 * valid
2618 */
2619 btrfs_set_super_log_root(sb, 0);
2620
2621 /* We can't trust the free space cache either */
2622 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2623
745806fb 2624 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
b8522a1e 2625 ret = read_backup_root(fs_info, i);
6ef108dd 2626 backup_index = ret;
b8522a1e
NB
2627 if (ret < 0)
2628 return ret;
2629 }
b8522a1e 2630
bd676446
JB
2631 ret = load_important_roots(fs_info);
2632 if (ret) {
217f5004 2633 handle_error = true;
b8522a1e
NB
2634 continue;
2635 }
2636
336a0d8d
NB
2637 /*
2638 * No need to hold btrfs_root::objectid_mutex since the fs
2639 * hasn't been fully initialised and we are the only user
2640 */
453e4873 2641 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2642 if (ret < 0) {
b8522a1e
NB
2643 handle_error = true;
2644 continue;
2645 }
2646
6b8fad57 2647 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2648
2649 ret = btrfs_read_roots(fs_info);
2650 if (ret < 0) {
2651 handle_error = true;
2652 continue;
2653 }
2654
2655 /* All successful */
bd676446 2656 fs_info->generation = btrfs_header_generation(tree_root->node);
0124855f 2657 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
d96b3424 2658 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2659
2660 /* Always begin writing backup roots after the one being used */
2661 if (backup_index < 0) {
2662 fs_info->backup_root_index = 0;
2663 } else {
2664 fs_info->backup_root_index = backup_index + 1;
2665 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2666 }
b8522a1e
NB
2667 break;
2668 }
2669
2670 return ret;
2671}
2672
8260edba 2673void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2674{
fc7cbcd4 2675 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2676 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2677 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2678 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2679 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2680 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2681 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2682 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2683 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2684 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2685 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2686 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2687 spin_lock_init(&fs_info->super_lock);
f28491e0 2688 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2689 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2690 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2691 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2692 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2693 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2694 rwlock_init(&fs_info->global_root_lock);
d7c15171 2695 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2696 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2697 mutex_init(&fs_info->reloc_mutex);
573bfb72 2698 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2699 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2700 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2701 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2702
e1489b4f 2703 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2704 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2705 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2706 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
77d20c68
JB
2707 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2708 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
3e738c53
IA
2709 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2710 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2711 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2712 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2713 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2714 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 2715
0b86a832 2716 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2717 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2718 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2719 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2720 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 2721 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
2722#ifdef CONFIG_BTRFS_DEBUG
2723 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2724 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2725 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2726#endif
c8bf1b67 2727 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2728 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2729 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2730 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2731 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2732 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2733 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2734 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2735 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2736 BTRFS_BLOCK_RSV_DELREFS);
2737
771ed689 2738 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2739 atomic_set(&fs_info->defrag_running, 0);
034f784d 2740 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2741 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 2742 fs_info->global_root_tree = RB_ROOT;
95ac567a 2743 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2744 fs_info->metadata_ratio = 0;
4cb5300b 2745 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2746 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2747 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2748 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
fd708b81 2749 btrfs_init_ref_verify(fs_info);
c8b97818 2750
b34b086c
CM
2751 fs_info->thread_pool_size = min_t(unsigned long,
2752 num_online_cpus() + 2, 8);
0afbaf8c 2753
199c2a9c
MX
2754 INIT_LIST_HEAD(&fs_info->ordered_roots);
2755 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2756
638aa7ed 2757 btrfs_init_scrub(fs_info);
779a65a4 2758 btrfs_init_balance(fs_info);
57056740 2759 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2760
16b0c258 2761 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 2762 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 2763
fe119a6e 2764 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
35da5a7e 2765 IO_TREE_FS_EXCLUDED_EXTENTS);
39279cc3 2766
5a3f23d5 2767 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2768 mutex_init(&fs_info->tree_log_mutex);
925baedd 2769 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2770 mutex_init(&fs_info->transaction_kthread_mutex);
2771 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2772 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2773 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2774 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2775 init_rwsem(&fs_info->subvol_sem);
803b2f54 2776 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2777
ad618368 2778 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2779 btrfs_init_qgroup(fs_info);
b0643e59 2780 btrfs_discard_init(fs_info);
416ac51d 2781
fa9c0d79
CM
2782 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2783 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2784
e6dcd2dc 2785 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2786 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2787 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2788 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2789 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2790
da17066c
JM
2791 /* Usable values until the real ones are cached from the superblock */
2792 fs_info->nodesize = 4096;
2793 fs_info->sectorsize = 4096;
ab108d99 2794 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2795 fs_info->stripesize = 4096;
2796
f7b12a62
NA
2797 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2798
eede2bf3
OS
2799 spin_lock_init(&fs_info->swapfile_pins_lock);
2800 fs_info->swapfile_pins = RB_ROOT;
2801
18bb8bbf
JT
2802 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2803 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
2804}
2805
2806static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2807{
2808 int ret;
2809
2810 fs_info->sb = sb;
2811 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2812 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2813
5deb17e1 2814 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 2815 if (ret)
c75e8394 2816 return ret;
ae18c37a
JB
2817
2818 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2819 if (ret)
c75e8394 2820 return ret;
ae18c37a
JB
2821
2822 fs_info->dirty_metadata_batch = PAGE_SIZE *
2823 (1 + ilog2(nr_cpu_ids));
2824
2825 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2826 if (ret)
c75e8394 2827 return ret;
ae18c37a
JB
2828
2829 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2830 GFP_KERNEL);
2831 if (ret)
c75e8394 2832 return ret;
ae18c37a
JB
2833
2834 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2835 GFP_KERNEL);
c75e8394
JB
2836 if (!fs_info->delayed_root)
2837 return -ENOMEM;
ae18c37a
JB
2838 btrfs_init_delayed_root(fs_info->delayed_root);
2839
a0a1db70
FM
2840 if (sb_rdonly(sb))
2841 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2842
c75e8394 2843 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2844}
2845
97f4dd09
NB
2846static int btrfs_uuid_rescan_kthread(void *data)
2847{
0d031dc4 2848 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
2849 int ret;
2850
2851 /*
2852 * 1st step is to iterate through the existing UUID tree and
2853 * to delete all entries that contain outdated data.
2854 * 2nd step is to add all missing entries to the UUID tree.
2855 */
2856 ret = btrfs_uuid_tree_iterate(fs_info);
2857 if (ret < 0) {
c94bec2c
JB
2858 if (ret != -EINTR)
2859 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2860 ret);
97f4dd09
NB
2861 up(&fs_info->uuid_tree_rescan_sem);
2862 return ret;
2863 }
2864 return btrfs_uuid_scan_kthread(data);
2865}
2866
2867static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2868{
2869 struct task_struct *task;
2870
2871 down(&fs_info->uuid_tree_rescan_sem);
2872 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2873 if (IS_ERR(task)) {
2874 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2875 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2876 up(&fs_info->uuid_tree_rescan_sem);
2877 return PTR_ERR(task);
2878 }
2879
2880 return 0;
2881}
2882
504b1596
FM
2883static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2884{
2885 u64 root_objectid = 0;
2886 struct btrfs_root *gang[8];
2887 int i = 0;
2888 int err = 0;
2889 unsigned int ret = 0;
2890
2891 while (1) {
2892 spin_lock(&fs_info->fs_roots_radix_lock);
2893 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2894 (void **)gang, root_objectid,
2895 ARRAY_SIZE(gang));
2896 if (!ret) {
2897 spin_unlock(&fs_info->fs_roots_radix_lock);
2898 break;
2899 }
2900 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2901
2902 for (i = 0; i < ret; i++) {
2903 /* Avoid to grab roots in dead_roots. */
2904 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2905 gang[i] = NULL;
2906 continue;
2907 }
2908 /* Grab all the search result for later use. */
2909 gang[i] = btrfs_grab_root(gang[i]);
2910 }
2911 spin_unlock(&fs_info->fs_roots_radix_lock);
2912
2913 for (i = 0; i < ret; i++) {
2914 if (!gang[i])
2915 continue;
2916 root_objectid = gang[i]->root_key.objectid;
2917 err = btrfs_orphan_cleanup(gang[i]);
2918 if (err)
2919 goto out;
2920 btrfs_put_root(gang[i]);
2921 }
2922 root_objectid++;
2923 }
2924out:
2925 /* Release the uncleaned roots due to error. */
2926 for (; i < ret; i++) {
2927 if (gang[i])
2928 btrfs_put_root(gang[i]);
2929 }
2930 return err;
2931}
2932
8cd29088
BB
2933/*
2934 * Some options only have meaning at mount time and shouldn't persist across
2935 * remounts, or be displayed. Clear these at the end of mount and remount
2936 * code paths.
2937 */
2938void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2939{
2940 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 2941 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
2942}
2943
44c0ca21
BB
2944/*
2945 * Mounting logic specific to read-write file systems. Shared by open_ctree
2946 * and btrfs_remount when remounting from read-only to read-write.
2947 */
2948int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2949{
2950 int ret;
94846229 2951 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1d6a4fc8 2952 bool rebuild_free_space_tree = false;
8b228324
BB
2953
2954 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2955 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1d6a4fc8 2956 rebuild_free_space_tree = true;
8b228324
BB
2957 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2958 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2959 btrfs_warn(fs_info, "free space tree is invalid");
1d6a4fc8 2960 rebuild_free_space_tree = true;
8b228324
BB
2961 }
2962
1d6a4fc8
QW
2963 if (rebuild_free_space_tree) {
2964 btrfs_info(fs_info, "rebuilding free space tree");
2965 ret = btrfs_rebuild_free_space_tree(fs_info);
8b228324
BB
2966 if (ret) {
2967 btrfs_warn(fs_info,
1d6a4fc8
QW
2968 "failed to rebuild free space tree: %d", ret);
2969 goto out;
2970 }
2971 }
2972
2973 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2974 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2975 btrfs_info(fs_info, "disabling free space tree");
2976 ret = btrfs_delete_free_space_tree(fs_info);
2977 if (ret) {
2978 btrfs_warn(fs_info,
2979 "failed to disable free space tree: %d", ret);
8b228324
BB
2980 goto out;
2981 }
2982 }
44c0ca21 2983
8d488a8c
FM
2984 /*
2985 * btrfs_find_orphan_roots() is responsible for finding all the dead
2986 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 2987 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
2988 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2989 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2990 * item before the root's tree is deleted - this means that if we unmount
2991 * or crash before the deletion completes, on the next mount we will not
2992 * delete what remains of the tree because the orphan item does not
2993 * exists anymore, which is what tells us we have a pending deletion.
2994 */
2995 ret = btrfs_find_orphan_roots(fs_info);
2996 if (ret)
2997 goto out;
2998
44c0ca21
BB
2999 ret = btrfs_cleanup_fs_roots(fs_info);
3000 if (ret)
3001 goto out;
3002
8f1c21d7
BB
3003 down_read(&fs_info->cleanup_work_sem);
3004 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3005 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3006 up_read(&fs_info->cleanup_work_sem);
3007 goto out;
3008 }
3009 up_read(&fs_info->cleanup_work_sem);
3010
44c0ca21 3011 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3012 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3013 mutex_unlock(&fs_info->cleaner_mutex);
3014 if (ret < 0) {
3015 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3016 goto out;
3017 }
3018
5011139a
BB
3019 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3020 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3021 btrfs_info(fs_info, "creating free space tree");
3022 ret = btrfs_create_free_space_tree(fs_info);
3023 if (ret) {
3024 btrfs_warn(fs_info,
3025 "failed to create free space tree: %d", ret);
3026 goto out;
3027 }
3028 }
3029
94846229
BB
3030 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3031 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3032 if (ret)
3033 goto out;
3034 }
3035
44c0ca21
BB
3036 ret = btrfs_resume_balance_async(fs_info);
3037 if (ret)
3038 goto out;
3039
3040 ret = btrfs_resume_dev_replace_async(fs_info);
3041 if (ret) {
3042 btrfs_warn(fs_info, "failed to resume dev_replace");
3043 goto out;
3044 }
3045
3046 btrfs_qgroup_rescan_resume(fs_info);
3047
3048 if (!fs_info->uuid_root) {
3049 btrfs_info(fs_info, "creating UUID tree");
3050 ret = btrfs_create_uuid_tree(fs_info);
3051 if (ret) {
3052 btrfs_warn(fs_info,
3053 "failed to create the UUID tree %d", ret);
3054 goto out;
3055 }
3056 }
3057
3058out:
3059 return ret;
3060}
3061
d7f67ac9
QW
3062/*
3063 * Do various sanity and dependency checks of different features.
3064 *
2ba48b20
QW
3065 * @is_rw_mount: If the mount is read-write.
3066 *
d7f67ac9
QW
3067 * This is the place for less strict checks (like for subpage or artificial
3068 * feature dependencies).
3069 *
3070 * For strict checks or possible corruption detection, see
3071 * btrfs_validate_super().
3072 *
3073 * This should be called after btrfs_parse_options(), as some mount options
3074 * (space cache related) can modify on-disk format like free space tree and
3075 * screw up certain feature dependencies.
3076 */
2ba48b20 3077int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
d7f67ac9
QW
3078{
3079 struct btrfs_super_block *disk_super = fs_info->super_copy;
3080 u64 incompat = btrfs_super_incompat_flags(disk_super);
3081 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3082 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3083
3084 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3085 btrfs_err(fs_info,
3086 "cannot mount because of unknown incompat features (0x%llx)",
3087 incompat);
3088 return -EINVAL;
3089 }
3090
3091 /* Runtime limitation for mixed block groups. */
3092 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3093 (fs_info->sectorsize != fs_info->nodesize)) {
3094 btrfs_err(fs_info,
3095"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3096 fs_info->nodesize, fs_info->sectorsize);
3097 return -EINVAL;
3098 }
3099
3100 /* Mixed backref is an always-enabled feature. */
3101 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3102
3103 /* Set compression related flags just in case. */
3104 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3105 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3106 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3107 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3108
3109 /*
3110 * An ancient flag, which should really be marked deprecated.
3111 * Such runtime limitation doesn't really need a incompat flag.
3112 */
3113 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3114 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3115
2ba48b20 3116 if (compat_ro_unsupp && is_rw_mount) {
d7f67ac9
QW
3117 btrfs_err(fs_info,
3118 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3119 compat_ro);
3120 return -EINVAL;
3121 }
3122
3123 /*
3124 * We have unsupported RO compat features, although RO mounted, we
3125 * should not cause any metadata writes, including log replay.
3126 * Or we could screw up whatever the new feature requires.
3127 */
3128 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3129 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3130 btrfs_err(fs_info,
3131"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3132 compat_ro);
3133 return -EINVAL;
3134 }
3135
3136 /*
3137 * Artificial limitations for block group tree, to force
3138 * block-group-tree to rely on no-holes and free-space-tree.
3139 */
3140 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3141 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3142 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3143 btrfs_err(fs_info,
3144"block-group-tree feature requires no-holes and free-space-tree features");
3145 return -EINVAL;
3146 }
3147
3148 /*
3149 * Subpage runtime limitation on v1 cache.
3150 *
3151 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3152 * we're already defaulting to v2 cache, no need to bother v1 as it's
3153 * going to be deprecated anyway.
3154 */
3155 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3156 btrfs_warn(fs_info,
3157 "v1 space cache is not supported for page size %lu with sectorsize %u",
3158 PAGE_SIZE, fs_info->sectorsize);
3159 return -EINVAL;
3160 }
3161
3162 /* This can be called by remount, we need to protect the super block. */
3163 spin_lock(&fs_info->super_lock);
3164 btrfs_set_super_incompat_flags(disk_super, incompat);
3165 spin_unlock(&fs_info->super_lock);
3166
3167 return 0;
3168}
3169
ae18c37a
JB
3170int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3171 char *options)
3172{
3173 u32 sectorsize;
3174 u32 nodesize;
3175 u32 stripesize;
3176 u64 generation;
ae18c37a 3177 u16 csum_type;
ae18c37a
JB
3178 struct btrfs_super_block *disk_super;
3179 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3180 struct btrfs_root *tree_root;
3181 struct btrfs_root *chunk_root;
3182 int ret;
ae18c37a
JB
3183 int level;
3184
8260edba 3185 ret = init_mount_fs_info(fs_info, sb);
4871c33b 3186 if (ret)
ae18c37a 3187 goto fail;
53b381b3 3188
ae18c37a
JB
3189 /* These need to be init'ed before we start creating inodes and such. */
3190 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3191 GFP_KERNEL);
3192 fs_info->tree_root = tree_root;
3193 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3194 GFP_KERNEL);
3195 fs_info->chunk_root = chunk_root;
3196 if (!tree_root || !chunk_root) {
4871c33b 3197 ret = -ENOMEM;
c75e8394 3198 goto fail;
ae18c37a
JB
3199 }
3200
dcb2137c 3201 ret = btrfs_init_btree_inode(sb);
4871c33b 3202 if (ret)
c75e8394 3203 goto fail;
ae18c37a 3204
d24fa5c1 3205 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3206
3207 /*
3208 * Read super block and check the signature bytes only
3209 */
d24fa5c1 3210 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d 3211 if (IS_ERR(disk_super)) {
4871c33b 3212 ret = PTR_ERR(disk_super);
16cdcec7 3213 goto fail_alloc;
20b45077 3214 }
39279cc3 3215
2db31320 3216 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
8dc3f22c 3217 /*
260db43c 3218 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3219 * corrupted, we'll find out
3220 */
8f32380d 3221 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3222 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3223 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3224 csum_type);
4871c33b 3225 ret = -EINVAL;
8f32380d 3226 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3227 goto fail_alloc;
3228 }
3229
83c68bbc
SY
3230 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3231
6d97c6e3
JT
3232 ret = btrfs_init_csum_hash(fs_info, csum_type);
3233 if (ret) {
8f32380d 3234 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3235 goto fail_alloc;
3236 }
3237
1104a885
DS
3238 /*
3239 * We want to check superblock checksum, the type is stored inside.
3240 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3241 */
3d17adea 3242 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3243 btrfs_err(fs_info, "superblock checksum mismatch");
4871c33b 3244 ret = -EINVAL;
8f32380d 3245 btrfs_release_disk_super(disk_super);
141386e1 3246 goto fail_alloc;
1104a885
DS
3247 }
3248
3249 /*
3250 * super_copy is zeroed at allocation time and we never touch the
3251 * following bytes up to INFO_SIZE, the checksum is calculated from
3252 * the whole block of INFO_SIZE
3253 */
8f32380d
JT
3254 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3255 btrfs_release_disk_super(disk_super);
5f39d397 3256
fbc6feae
NB
3257 disk_super = fs_info->super_copy;
3258
fbc6feae
NB
3259 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3260 sizeof(*fs_info->super_for_commit));
de37aa51 3261
069ec957 3262 ret = btrfs_validate_mount_super(fs_info);
1104a885 3263 if (ret) {
05135f59 3264 btrfs_err(fs_info, "superblock contains fatal errors");
4871c33b 3265 ret = -EINVAL;
141386e1 3266 goto fail_alloc;
1104a885
DS
3267 }
3268
4871c33b
QW
3269 if (!btrfs_super_root(disk_super)) {
3270 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3271 ret = -EINVAL;
141386e1 3272 goto fail_alloc;
4871c33b 3273 }
0f7d52f4 3274
acce952b 3275 /* check FS state, whether FS is broken. */
87533c47 3276 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
ae3364e5 3277 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
acce952b 3278
75e7cb7f
LB
3279 /*
3280 * In the long term, we'll store the compression type in the super
3281 * block, and it'll be used for per file compression control.
3282 */
3283 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3284
6f93e834
AJ
3285
3286 /* Set up fs_info before parsing mount options */
3287 nodesize = btrfs_super_nodesize(disk_super);
3288 sectorsize = btrfs_super_sectorsize(disk_super);
3289 stripesize = sectorsize;
3290 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3291 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3292
3293 fs_info->nodesize = nodesize;
3294 fs_info->sectorsize = sectorsize;
3295 fs_info->sectorsize_bits = ilog2(sectorsize);
3296 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3297 fs_info->stripesize = stripesize;
3298
2ff7e61e 3299 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
4871c33b 3300 if (ret)
141386e1 3301 goto fail_alloc;
dfe25020 3302
2ba48b20 3303 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
4871c33b 3304 if (ret < 0)
dc4d3168 3305 goto fail_alloc;
dc4d3168 3306
8481dd80
QW
3307 if (sectorsize < PAGE_SIZE) {
3308 struct btrfs_subpage_info *subpage_info;
3309
9f73f1ae
QW
3310 /*
3311 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3312 * going to be deprecated.
3313 *
3314 * Force to use v2 cache for subpage case.
3315 */
3316 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3317 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3318 "forcing free space tree for sector size %u with page size %lu",
3319 sectorsize, PAGE_SIZE);
3320
95ea0486
QW
3321 btrfs_warn(fs_info,
3322 "read-write for sector size %u with page size %lu is experimental",
3323 sectorsize, PAGE_SIZE);
8481dd80 3324 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
4871c33b
QW
3325 if (!subpage_info) {
3326 ret = -ENOMEM;
8481dd80 3327 goto fail_alloc;
4871c33b 3328 }
8481dd80
QW
3329 btrfs_init_subpage_info(subpage_info, sectorsize);
3330 fs_info->subpage_info = subpage_info;
c8050b3b 3331 }
0bb3eb3e 3332
d21deec5 3333 ret = btrfs_init_workqueues(fs_info);
4871c33b 3334 if (ret)
0dc3b84a 3335 goto fail_sb_buffer;
4543df7e 3336
9e11ceee
JK
3337 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3338 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3339
a061fc8d
CM
3340 sb->s_blocksize = sectorsize;
3341 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3342 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3343
925baedd 3344 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3345 ret = btrfs_read_sys_array(fs_info);
925baedd 3346 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3347 if (ret) {
05135f59 3348 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3349 goto fail_sb_buffer;
84eed90f 3350 }
0b86a832 3351
84234f3a 3352 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3353 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3354 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3355 generation, level);
3356 if (ret) {
05135f59 3357 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3358 goto fail_tree_roots;
83121942 3359 }
0b86a832 3360
e17cade2 3361 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3362 offsetof(struct btrfs_header, chunk_tree_uuid),
3363 BTRFS_UUID_SIZE);
e17cade2 3364
5b4aacef 3365 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3366 if (ret) {
05135f59 3367 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3368 goto fail_tree_roots;
2b82032c 3369 }
0b86a832 3370
8dabb742 3371 /*
bacce86a
AJ
3372 * At this point we know all the devices that make this filesystem,
3373 * including the seed devices but we don't know yet if the replace
3374 * target is required. So free devices that are not part of this
1a9fd417 3375 * filesystem but skip the replace target device which is checked
bacce86a 3376 * below in btrfs_init_dev_replace().
8dabb742 3377 */
bacce86a 3378 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3379 if (!fs_devices->latest_dev->bdev) {
05135f59 3380 btrfs_err(fs_info, "failed to read devices");
4871c33b 3381 ret = -EIO;
a6b0d5c8
CM
3382 goto fail_tree_roots;
3383 }
3384
b8522a1e 3385 ret = init_tree_roots(fs_info);
4bbcaa64 3386 if (ret)
b8522a1e 3387 goto fail_tree_roots;
8929ecfa 3388
73651042
NA
3389 /*
3390 * Get zone type information of zoned block devices. This will also
3391 * handle emulation of a zoned filesystem if a regular device has the
3392 * zoned incompat feature flag set.
3393 */
3394 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3395 if (ret) {
3396 btrfs_err(fs_info,
4871c33b 3397 "zoned: failed to read device zone info: %d", ret);
73651042
NA
3398 goto fail_block_groups;
3399 }
3400
75ec1db8
JB
3401 /*
3402 * If we have a uuid root and we're not being told to rescan we need to
3403 * check the generation here so we can set the
3404 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3405 * transaction during a balance or the log replay without updating the
3406 * uuid generation, and then if we crash we would rescan the uuid tree,
3407 * even though it was perfectly fine.
3408 */
3409 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3410 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3411 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3412
cf90d884
QW
3413 ret = btrfs_verify_dev_extents(fs_info);
3414 if (ret) {
3415 btrfs_err(fs_info,
3416 "failed to verify dev extents against chunks: %d",
3417 ret);
3418 goto fail_block_groups;
3419 }
68310a5e
ID
3420 ret = btrfs_recover_balance(fs_info);
3421 if (ret) {
05135f59 3422 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3423 goto fail_block_groups;
3424 }
3425
733f4fbb
SB
3426 ret = btrfs_init_dev_stats(fs_info);
3427 if (ret) {
05135f59 3428 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3429 goto fail_block_groups;
3430 }
3431
8dabb742
SB
3432 ret = btrfs_init_dev_replace(fs_info);
3433 if (ret) {
05135f59 3434 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3435 goto fail_block_groups;
3436 }
3437
b70f5097
NA
3438 ret = btrfs_check_zoned_mode(fs_info);
3439 if (ret) {
3440 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3441 ret);
3442 goto fail_block_groups;
3443 }
3444
c6761a9e 3445 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3446 if (ret) {
05135f59
DS
3447 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3448 ret);
b7c35e81
AJ
3449 goto fail_block_groups;
3450 }
3451
96f3136e 3452 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3453 if (ret) {
05135f59 3454 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3455 goto fail_fsdev_sysfs;
c59021f8 3456 }
3457
c59021f8 3458 ret = btrfs_init_space_info(fs_info);
3459 if (ret) {
05135f59 3460 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3461 goto fail_sysfs;
c59021f8 3462 }
3463
5b4aacef 3464 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3465 if (ret) {
05135f59 3466 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3467 goto fail_sysfs;
1b1d1f66 3468 }
4330e183 3469
16beac87
NA
3470 btrfs_free_zone_cache(fs_info);
3471
a7e1ac7b
NA
3472 btrfs_check_active_zone_reservation(fs_info);
3473
5c78a5e7
AJ
3474 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3475 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3476 btrfs_warn(fs_info,
52042d8e 3477 "writable mount is not allowed due to too many missing devices");
4871c33b 3478 ret = -EINVAL;
2365dd3c 3479 goto fail_sysfs;
292fd7fc 3480 }
9078a3e1 3481
33c44184 3482 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3483 "btrfs-cleaner");
4871c33b
QW
3484 if (IS_ERR(fs_info->cleaner_kthread)) {
3485 ret = PTR_ERR(fs_info->cleaner_kthread);
2365dd3c 3486 goto fail_sysfs;
4871c33b 3487 }
a74a4b97
CM
3488
3489 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3490 tree_root,
3491 "btrfs-transaction");
4871c33b
QW
3492 if (IS_ERR(fs_info->transaction_kthread)) {
3493 ret = PTR_ERR(fs_info->transaction_kthread);
3f157a2f 3494 goto fail_cleaner;
4871c33b 3495 }
a74a4b97 3496
583b7231 3497 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3498 !fs_info->fs_devices->rotating) {
583b7231 3499 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3500 }
3501
63a7cb13
DS
3502 /*
3503 * For devices supporting discard turn on discard=async automatically,
3504 * unless it's already set or disabled. This could be turned off by
3505 * nodiscard for the same mount.
95ca6599
NA
3506 *
3507 * The zoned mode piggy backs on the discard functionality for
3508 * resetting a zone. There is no reason to delay the zone reset as it is
3509 * fast enough. So, do not enable async discard for zoned mode.
63a7cb13
DS
3510 */
3511 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3512 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3513 btrfs_test_opt(fs_info, NODISCARD)) &&
95ca6599
NA
3514 fs_info->fs_devices->discardable &&
3515 !btrfs_is_zoned(fs_info)) {
63a7cb13
DS
3516 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3517 "auto enabling async discard");
63a7cb13
DS
3518 }
3519
bcef60f2
AJ
3520 ret = btrfs_read_qgroup_config(fs_info);
3521 if (ret)
3522 goto fail_trans_kthread;
21adbd5c 3523
fd708b81
JB
3524 if (btrfs_build_ref_tree(fs_info))
3525 btrfs_err(fs_info, "couldn't build ref tree");
3526
96da0919
QW
3527 /* do not make disk changes in broken FS or nologreplay is given */
3528 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3529 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3530 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3531 ret = btrfs_replay_log(fs_info, fs_devices);
4871c33b 3532 if (ret)
28c16cbb 3533 goto fail_qgroup;
e02119d5 3534 }
1a40e23b 3535
56e9357a 3536 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3 3537 if (IS_ERR(fs_info->fs_root)) {
4871c33b
QW
3538 ret = PTR_ERR(fs_info->fs_root);
3539 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
315bf8ef 3540 fs_info->fs_root = NULL;
bcef60f2 3541 goto fail_qgroup;
3140c9a3 3542 }
c289811c 3543
bc98a42c 3544 if (sb_rdonly(sb))
8cd29088 3545 goto clear_oneshot;
59641015 3546
44c0ca21 3547 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3548 if (ret) {
6bccf3ab 3549 close_ctree(fs_info);
2b6ba629 3550 return ret;
e3acc2a6 3551 }
b0643e59 3552 btrfs_discard_resume(fs_info);
b382a324 3553
44c0ca21
BB
3554 if (fs_info->uuid_root &&
3555 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3556 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3557 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3558 ret = btrfs_check_uuid_tree(fs_info);
3559 if (ret) {
05135f59
DS
3560 btrfs_warn(fs_info,
3561 "failed to check the UUID tree: %d", ret);
6bccf3ab 3562 close_ctree(fs_info);
70f80175
SB
3563 return ret;
3564 }
f7a81ea4 3565 }
94846229 3566
afcdd129 3567 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3568
b4be6aef
JB
3569 /* Kick the cleaner thread so it'll start deleting snapshots. */
3570 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3571 wake_up_process(fs_info->cleaner_kthread);
3572
8cd29088
BB
3573clear_oneshot:
3574 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3575 return 0;
39279cc3 3576
bcef60f2
AJ
3577fail_qgroup:
3578 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3579fail_trans_kthread:
3580 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3581 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3582 btrfs_free_fs_roots(fs_info);
3f157a2f 3583fail_cleaner:
a74a4b97 3584 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3585
3586 /*
3587 * make sure we're done with the btree inode before we stop our
3588 * kthreads
3589 */
3590 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3591
2365dd3c 3592fail_sysfs:
6618a59b 3593 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3594
b7c35e81
AJ
3595fail_fsdev_sysfs:
3596 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3597
1b1d1f66 3598fail_block_groups:
54067ae9 3599 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3600
3601fail_tree_roots:
9e3aa805
JB
3602 if (fs_info->data_reloc_root)
3603 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3604 free_root_pointers(fs_info, true);
2b8195bb 3605 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3606
39279cc3 3607fail_sb_buffer:
7abadb64 3608 btrfs_stop_all_workers(fs_info);
5cdd7db6 3609 btrfs_free_block_groups(fs_info);
16cdcec7 3610fail_alloc:
586e46e2
ID
3611 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3612
4543df7e 3613 iput(fs_info->btree_inode);
7e662854 3614fail:
586e46e2 3615 btrfs_close_devices(fs_info->fs_devices);
4871c33b
QW
3616 ASSERT(ret < 0);
3617 return ret;
eb60ceac 3618}
663faf9f 3619ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3620
314b6dd0 3621static void btrfs_end_super_write(struct bio *bio)
f2984462 3622{
314b6dd0
JT
3623 struct btrfs_device *device = bio->bi_private;
3624 struct bio_vec *bvec;
3625 struct bvec_iter_all iter_all;
3626 struct page *page;
3627
3628 bio_for_each_segment_all(bvec, bio, iter_all) {
3629 page = bvec->bv_page;
3630
3631 if (bio->bi_status) {
3632 btrfs_warn_rl_in_rcu(device->fs_info,
3633 "lost page write due to IO error on %s (%d)",
cb3e217b 3634 btrfs_dev_name(device),
314b6dd0
JT
3635 blk_status_to_errno(bio->bi_status));
3636 ClearPageUptodate(page);
3637 SetPageError(page);
3638 btrfs_dev_stat_inc_and_print(device,
3639 BTRFS_DEV_STAT_WRITE_ERRS);
3640 } else {
3641 SetPageUptodate(page);
3642 }
3643
3644 put_page(page);
3645 unlock_page(page);
f2984462 3646 }
314b6dd0
JT
3647
3648 bio_put(bio);
f2984462
CM
3649}
3650
8f32380d 3651struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3652 int copy_num, bool drop_cache)
29c36d72 3653{
29c36d72 3654 struct btrfs_super_block *super;
8f32380d 3655 struct page *page;
12659251 3656 u64 bytenr, bytenr_orig;
8f32380d 3657 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3658 int ret;
3659
3660 bytenr_orig = btrfs_sb_offset(copy_num);
3661 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3662 if (ret == -ENOENT)
3663 return ERR_PTR(-EINVAL);
3664 else if (ret)
3665 return ERR_PTR(ret);
29c36d72 3666
cda00eba 3667 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3668 return ERR_PTR(-EINVAL);
29c36d72 3669
a05d3c91
QW
3670 if (drop_cache) {
3671 /* This should only be called with the primary sb. */
3672 ASSERT(copy_num == 0);
3673
3674 /*
3675 * Drop the page of the primary superblock, so later read will
3676 * always read from the device.
3677 */
3678 invalidate_inode_pages2_range(mapping,
3679 bytenr >> PAGE_SHIFT,
3680 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3681 }
3682
8f32380d
JT
3683 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3684 if (IS_ERR(page))
3685 return ERR_CAST(page);
29c36d72 3686
8f32380d 3687 super = page_address(page);
96c2e067
AJ
3688 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3689 btrfs_release_disk_super(super);
3690 return ERR_PTR(-ENODATA);
3691 }
3692
12659251 3693 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3694 btrfs_release_disk_super(super);
3695 return ERR_PTR(-EINVAL);
29c36d72
AJ
3696 }
3697
8f32380d 3698 return super;
29c36d72
AJ
3699}
3700
3701
8f32380d 3702struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3703{
8f32380d 3704 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3705 int i;
3706 u64 transid = 0;
a512bbf8
YZ
3707
3708 /* we would like to check all the supers, but that would make
3709 * a btrfs mount succeed after a mkfs from a different FS.
3710 * So, we need to add a special mount option to scan for
3711 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3712 */
3713 for (i = 0; i < 1; i++) {
a05d3c91 3714 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3715 if (IS_ERR(super))
a512bbf8
YZ
3716 continue;
3717
a512bbf8 3718 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3719 if (latest)
3720 btrfs_release_disk_super(super);
3721
3722 latest = super;
a512bbf8 3723 transid = btrfs_super_generation(super);
a512bbf8
YZ
3724 }
3725 }
92fc03fb 3726
8f32380d 3727 return super;
a512bbf8
YZ
3728}
3729
4eedeb75 3730/*
abbb3b8e 3731 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3732 * pages we use for writing are locked.
4eedeb75 3733 *
abbb3b8e
DS
3734 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3735 * the expected device size at commit time. Note that max_mirrors must be
3736 * same for write and wait phases.
4eedeb75 3737 *
314b6dd0 3738 * Return number of errors when page is not found or submission fails.
4eedeb75 3739 */
a512bbf8 3740static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3741 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3742{
d5178578 3743 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3744 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3745 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3746 int i;
a512bbf8 3747 int errors = 0;
12659251
NA
3748 int ret;
3749 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3750
3751 if (max_mirrors == 0)
3752 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3753
d5178578
JT
3754 shash->tfm = fs_info->csum_shash;
3755
a512bbf8 3756 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3757 struct page *page;
3758 struct bio *bio;
3759 struct btrfs_super_block *disk_super;
3760
12659251
NA
3761 bytenr_orig = btrfs_sb_offset(i);
3762 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3763 if (ret == -ENOENT) {
3764 continue;
3765 } else if (ret < 0) {
3766 btrfs_err(device->fs_info,
3767 "couldn't get super block location for mirror %d",
3768 i);
3769 errors++;
3770 continue;
3771 }
935e5cc9
MX
3772 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3773 device->commit_total_bytes)
a512bbf8
YZ
3774 break;
3775
12659251 3776 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3777
fd08001f
EB
3778 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3779 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3780 sb->csum);
4eedeb75 3781
314b6dd0
JT
3782 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3783 GFP_NOFS);
3784 if (!page) {
abbb3b8e 3785 btrfs_err(device->fs_info,
314b6dd0 3786 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3787 bytenr);
3788 errors++;
4eedeb75 3789 continue;
abbb3b8e 3790 }
634554dc 3791
314b6dd0
JT
3792 /* Bump the refcount for wait_dev_supers() */
3793 get_page(page);
a512bbf8 3794
314b6dd0
JT
3795 disk_super = page_address(page);
3796 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3797
314b6dd0
JT
3798 /*
3799 * Directly use bios here instead of relying on the page cache
3800 * to do I/O, so we don't lose the ability to do integrity
3801 * checking.
3802 */
07888c66
CH
3803 bio = bio_alloc(device->bdev, 1,
3804 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3805 GFP_NOFS);
314b6dd0
JT
3806 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3807 bio->bi_private = device;
3808 bio->bi_end_io = btrfs_end_super_write;
3809 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3810 offset_in_page(bytenr));
a512bbf8 3811
387125fc 3812 /*
314b6dd0
JT
3813 * We FUA only the first super block. The others we allow to
3814 * go down lazy and there's a short window where the on-disk
3815 * copies might still contain the older version.
387125fc 3816 */
1b9e619c 3817 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0 3818 bio->bi_opf |= REQ_FUA;
58ff51f1 3819 submit_bio(bio);
8376d9e1
NA
3820
3821 if (btrfs_advance_sb_log(device, i))
3822 errors++;
a512bbf8
YZ
3823 }
3824 return errors < i ? 0 : -1;
3825}
3826
abbb3b8e
DS
3827/*
3828 * Wait for write completion of superblocks done by write_dev_supers,
3829 * @max_mirrors same for write and wait phases.
3830 *
314b6dd0 3831 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3832 * date.
3833 */
3834static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3835{
abbb3b8e
DS
3836 int i;
3837 int errors = 0;
b6a535fa 3838 bool primary_failed = false;
12659251 3839 int ret;
abbb3b8e
DS
3840 u64 bytenr;
3841
3842 if (max_mirrors == 0)
3843 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3844
3845 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3846 struct page *page;
3847
12659251
NA
3848 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3849 if (ret == -ENOENT) {
3850 break;
3851 } else if (ret < 0) {
3852 errors++;
3853 if (i == 0)
3854 primary_failed = true;
3855 continue;
3856 }
abbb3b8e
DS
3857 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3858 device->commit_total_bytes)
3859 break;
3860
314b6dd0
JT
3861 page = find_get_page(device->bdev->bd_inode->i_mapping,
3862 bytenr >> PAGE_SHIFT);
3863 if (!page) {
abbb3b8e 3864 errors++;
b6a535fa
HM
3865 if (i == 0)
3866 primary_failed = true;
abbb3b8e
DS
3867 continue;
3868 }
314b6dd0
JT
3869 /* Page is submitted locked and unlocked once the IO completes */
3870 wait_on_page_locked(page);
3871 if (PageError(page)) {
abbb3b8e 3872 errors++;
b6a535fa
HM
3873 if (i == 0)
3874 primary_failed = true;
3875 }
abbb3b8e 3876
314b6dd0
JT
3877 /* Drop our reference */
3878 put_page(page);
abbb3b8e 3879
314b6dd0
JT
3880 /* Drop the reference from the writing run */
3881 put_page(page);
abbb3b8e
DS
3882 }
3883
b6a535fa
HM
3884 /* log error, force error return */
3885 if (primary_failed) {
3886 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3887 device->devid);
3888 return -1;
3889 }
3890
abbb3b8e
DS
3891 return errors < i ? 0 : -1;
3892}
3893
387125fc
CM
3894/*
3895 * endio for the write_dev_flush, this will wake anyone waiting
3896 * for the barrier when it is done
3897 */
4246a0b6 3898static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3899{
f9e69aa9 3900 bio_uninit(bio);
e0ae9994 3901 complete(bio->bi_private);
387125fc
CM
3902}
3903
3904/*
4fc6441a
AJ
3905 * Submit a flush request to the device if it supports it. Error handling is
3906 * done in the waiting counterpart.
387125fc 3907 */
4fc6441a 3908static void write_dev_flush(struct btrfs_device *device)
387125fc 3909{
f9e69aa9 3910 struct bio *bio = &device->flush_bio;
387125fc 3911
bfd3ea94
AJ
3912 device->last_flush_error = BLK_STS_OK;
3913
f9e69aa9
CH
3914 bio_init(bio, device->bdev, NULL, 0,
3915 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 3916 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
3917 init_completion(&device->flush_wait);
3918 bio->bi_private = &device->flush_wait;
58ff51f1 3919 submit_bio(bio);
1c3063b6 3920 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3921}
387125fc 3922
4fc6441a
AJ
3923/*
3924 * If the flush bio has been submitted by write_dev_flush, wait for it.
1b465784 3925 * Return true for any error, and false otherwise.
4fc6441a 3926 */
1b465784 3927static bool wait_dev_flush(struct btrfs_device *device)
4fc6441a 3928{
f9e69aa9 3929 struct bio *bio = &device->flush_bio;
387125fc 3930
7e812f20 3931 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
1b465784 3932 return false;
387125fc 3933
2980d574 3934 wait_for_completion_io(&device->flush_wait);
387125fc 3935
bfd3ea94
AJ
3936 if (bio->bi_status) {
3937 device->last_flush_error = bio->bi_status;
3938 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
1b465784 3939 return true;
bfd3ea94
AJ
3940 }
3941
1b465784 3942 return false;
387125fc 3943}
387125fc 3944
387125fc
CM
3945/*
3946 * send an empty flush down to each device in parallel,
3947 * then wait for them
3948 */
3949static int barrier_all_devices(struct btrfs_fs_info *info)
3950{
3951 struct list_head *head;
3952 struct btrfs_device *dev;
5af3e8cc 3953 int errors_wait = 0;
387125fc 3954
1538e6c5 3955 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3956 /* send down all the barriers */
3957 head = &info->fs_devices->devices;
1538e6c5 3958 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3959 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3960 continue;
cea7c8bf 3961 if (!dev->bdev)
387125fc 3962 continue;
e12c9621 3963 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3964 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3965 continue;
3966
4fc6441a 3967 write_dev_flush(dev);
387125fc
CM
3968 }
3969
3970 /* wait for all the barriers */
1538e6c5 3971 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3972 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3973 continue;
387125fc 3974 if (!dev->bdev) {
5af3e8cc 3975 errors_wait++;
387125fc
CM
3976 continue;
3977 }
e12c9621 3978 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3979 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3980 continue;
3981
1b465784 3982 if (wait_dev_flush(dev))
5af3e8cc 3983 errors_wait++;
401b41e5
AJ
3984 }
3985
de38a206
AJ
3986 /*
3987 * Checks last_flush_error of disks in order to determine the device
3988 * state.
3989 */
3990 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3991 return -EIO;
3992
387125fc
CM
3993 return 0;
3994}
3995
943c6e99
ZL
3996int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3997{
8789f4fe
ZL
3998 int raid_type;
3999 int min_tolerated = INT_MAX;
943c6e99 4000
8789f4fe
ZL
4001 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4002 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4003 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4004 btrfs_raid_array[BTRFS_RAID_SINGLE].
4005 tolerated_failures);
943c6e99 4006
8789f4fe
ZL
4007 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4008 if (raid_type == BTRFS_RAID_SINGLE)
4009 continue;
41a6e891 4010 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4011 continue;
8c3e3582 4012 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4013 btrfs_raid_array[raid_type].
4014 tolerated_failures);
4015 }
943c6e99 4016
8789f4fe 4017 if (min_tolerated == INT_MAX) {
ab8d0fc4 4018 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4019 min_tolerated = 0;
4020 }
4021
4022 return min_tolerated;
943c6e99
ZL
4023}
4024
eece6a9c 4025int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4026{
e5e9a520 4027 struct list_head *head;
f2984462 4028 struct btrfs_device *dev;
a061fc8d 4029 struct btrfs_super_block *sb;
f2984462 4030 struct btrfs_dev_item *dev_item;
f2984462
CM
4031 int ret;
4032 int do_barriers;
a236aed1
CM
4033 int max_errors;
4034 int total_errors = 0;
a061fc8d 4035 u64 flags;
f2984462 4036
0b246afa 4037 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4038
4039 /*
4040 * max_mirrors == 0 indicates we're from commit_transaction,
4041 * not from fsync where the tree roots in fs_info have not
4042 * been consistent on disk.
4043 */
4044 if (max_mirrors == 0)
4045 backup_super_roots(fs_info);
f2984462 4046
0b246afa 4047 sb = fs_info->super_for_commit;
a061fc8d 4048 dev_item = &sb->dev_item;
e5e9a520 4049
0b246afa
JM
4050 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4051 head = &fs_info->fs_devices->devices;
4052 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4053
5af3e8cc 4054 if (do_barriers) {
0b246afa 4055 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4056 if (ret) {
4057 mutex_unlock(
0b246afa
JM
4058 &fs_info->fs_devices->device_list_mutex);
4059 btrfs_handle_fs_error(fs_info, ret,
4060 "errors while submitting device barriers.");
5af3e8cc
SB
4061 return ret;
4062 }
4063 }
387125fc 4064
1538e6c5 4065 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4066 if (!dev->bdev) {
4067 total_errors++;
4068 continue;
4069 }
e12c9621 4070 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4071 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4072 continue;
4073
2b82032c 4074 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4075 btrfs_set_stack_device_type(dev_item, dev->type);
4076 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4077 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4078 dev->commit_total_bytes);
ce7213c7
MX
4079 btrfs_set_stack_device_bytes_used(dev_item,
4080 dev->commit_bytes_used);
a061fc8d
CM
4081 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4082 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4083 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4084 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4085 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4086 BTRFS_FSID_SIZE);
a512bbf8 4087
a061fc8d
CM
4088 flags = btrfs_super_flags(sb);
4089 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4090
75cb857d
QW
4091 ret = btrfs_validate_write_super(fs_info, sb);
4092 if (ret < 0) {
4093 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4094 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4095 "unexpected superblock corruption detected");
4096 return -EUCLEAN;
4097 }
4098
abbb3b8e 4099 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4100 if (ret)
4101 total_errors++;
f2984462 4102 }
a236aed1 4103 if (total_errors > max_errors) {
0b246afa
JM
4104 btrfs_err(fs_info, "%d errors while writing supers",
4105 total_errors);
4106 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4107
9d565ba4 4108 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4109 btrfs_handle_fs_error(fs_info, -EIO,
4110 "%d errors while writing supers",
4111 total_errors);
9d565ba4 4112 return -EIO;
a236aed1 4113 }
f2984462 4114
a512bbf8 4115 total_errors = 0;
1538e6c5 4116 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4117 if (!dev->bdev)
4118 continue;
e12c9621 4119 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4120 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4121 continue;
4122
abbb3b8e 4123 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4124 if (ret)
4125 total_errors++;
f2984462 4126 }
0b246afa 4127 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4128 if (total_errors > max_errors) {
0b246afa
JM
4129 btrfs_handle_fs_error(fs_info, -EIO,
4130 "%d errors while writing supers",
4131 total_errors);
79787eaa 4132 return -EIO;
a236aed1 4133 }
f2984462
CM
4134 return 0;
4135}
4136
cb517eab
MX
4137/* Drop a fs root from the radix tree and free it. */
4138void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4139 struct btrfs_root *root)
2619ba1f 4140{
4785e24f
JB
4141 bool drop_ref = false;
4142
fc7cbcd4
DS
4143 spin_lock(&fs_info->fs_roots_radix_lock);
4144 radix_tree_delete(&fs_info->fs_roots_radix,
4145 (unsigned long)root->root_key.objectid);
4146 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4147 drop_ref = true;
fc7cbcd4 4148 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4149
84961539 4150 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4151 ASSERT(root->log_root == NULL);
1c1ea4f7 4152 if (root->reloc_root) {
00246528 4153 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4154 root->reloc_root = NULL;
4155 }
4156 }
3321719e 4157
4785e24f
JB
4158 if (drop_ref)
4159 btrfs_put_root(root);
2619ba1f
CM
4160}
4161
6bccf3ab 4162int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4163{
6bccf3ab 4164 struct btrfs_root *root = fs_info->tree_root;
c146afad 4165 struct btrfs_trans_handle *trans;
a74a4b97 4166
0b246afa 4167 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4168 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4169 mutex_unlock(&fs_info->cleaner_mutex);
4170 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4171
4172 /* wait until ongoing cleanup work done */
0b246afa
JM
4173 down_write(&fs_info->cleanup_work_sem);
4174 up_write(&fs_info->cleanup_work_sem);
c71bf099 4175
7a7eaa40 4176 trans = btrfs_join_transaction(root);
3612b495
TI
4177 if (IS_ERR(trans))
4178 return PTR_ERR(trans);
3a45bb20 4179 return btrfs_commit_transaction(trans);
c146afad
YZ
4180}
4181
36c86a9e
QW
4182static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4183{
4184 struct btrfs_transaction *trans;
4185 struct btrfs_transaction *tmp;
4186 bool found = false;
4187
4188 if (list_empty(&fs_info->trans_list))
4189 return;
4190
4191 /*
4192 * This function is only called at the very end of close_ctree(),
4193 * thus no other running transaction, no need to take trans_lock.
4194 */
4195 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4196 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4197 struct extent_state *cached = NULL;
4198 u64 dirty_bytes = 0;
4199 u64 cur = 0;
4200 u64 found_start;
4201 u64 found_end;
4202
4203 found = true;
e5860f82 4204 while (find_first_extent_bit(&trans->dirty_pages, cur,
36c86a9e
QW
4205 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4206 dirty_bytes += found_end + 1 - found_start;
4207 cur = found_end + 1;
4208 }
4209 btrfs_warn(fs_info,
4210 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4211 trans->transid, dirty_bytes);
4212 btrfs_cleanup_one_transaction(trans, fs_info);
4213
4214 if (trans == fs_info->running_transaction)
4215 fs_info->running_transaction = NULL;
4216 list_del_init(&trans->list);
4217
4218 btrfs_put_transaction(trans);
4219 trace_btrfs_transaction_commit(fs_info);
4220 }
4221 ASSERT(!found);
4222}
4223
b105e927 4224void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4225{
c146afad
YZ
4226 int ret;
4227
afcdd129 4228 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4229
8a1f1e3d
FM
4230 /*
4231 * If we had UNFINISHED_DROPS we could still be processing them, so
4232 * clear that bit and wake up relocation so it can stop.
4233 * We must do this before stopping the block group reclaim task, because
4234 * at btrfs_relocate_block_group() we wait for this bit, and after the
4235 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4236 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4237 * return 1.
4238 */
4239 btrfs_wake_unfinished_drop(fs_info);
4240
31e70e52
FM
4241 /*
4242 * We may have the reclaim task running and relocating a data block group,
4243 * in which case it may create delayed iputs. So stop it before we park
4244 * the cleaner kthread otherwise we can get new delayed iputs after
4245 * parking the cleaner, and that can make the async reclaim task to hang
4246 * if it's waiting for delayed iputs to complete, since the cleaner is
4247 * parked and can not run delayed iputs - this will make us hang when
4248 * trying to stop the async reclaim task.
4249 */
4250 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4251 /*
4252 * We don't want the cleaner to start new transactions, add more delayed
4253 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4254 * because that frees the task_struct, and the transaction kthread might
4255 * still try to wake up the cleaner.
4256 */
4257 kthread_park(fs_info->cleaner_kthread);
c146afad 4258
7343dd61 4259 /* wait for the qgroup rescan worker to stop */
d06f23d6 4260 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4261
803b2f54
SB
4262 /* wait for the uuid_scan task to finish */
4263 down(&fs_info->uuid_tree_rescan_sem);
4264 /* avoid complains from lockdep et al., set sem back to initial state */
4265 up(&fs_info->uuid_tree_rescan_sem);
4266
837d5b6e 4267 /* pause restriper - we want to resume on mount */
aa1b8cd4 4268 btrfs_pause_balance(fs_info);
837d5b6e 4269
8dabb742
SB
4270 btrfs_dev_replace_suspend_for_unmount(fs_info);
4271
aa1b8cd4 4272 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4273
4274 /* wait for any defraggers to finish */
4275 wait_event(fs_info->transaction_wait,
4276 (atomic_read(&fs_info->defrag_running) == 0));
4277
4278 /* clear out the rbtree of defraggable inodes */
26176e7c 4279 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4280
a362bb86
FM
4281 /*
4282 * After we parked the cleaner kthread, ordered extents may have
4283 * completed and created new delayed iputs. If one of the async reclaim
4284 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4285 * can hang forever trying to stop it, because if a delayed iput is
4286 * added after it ran btrfs_run_delayed_iputs() and before it called
4287 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4288 * no one else to run iputs.
4289 *
4290 * So wait for all ongoing ordered extents to complete and then run
4291 * delayed iputs. This works because once we reach this point no one
4292 * can either create new ordered extents nor create delayed iputs
4293 * through some other means.
4294 *
4295 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4296 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4297 * but the delayed iput for the respective inode is made only when doing
4298 * the final btrfs_put_ordered_extent() (which must happen at
4299 * btrfs_finish_ordered_io() when we are unmounting).
4300 */
4301 btrfs_flush_workqueue(fs_info->endio_write_workers);
4302 /* Ordered extents for free space inodes. */
4303 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4304 btrfs_run_delayed_iputs(fs_info);
4305
21c7e756 4306 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4307 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4308 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4309
b0643e59
DZ
4310 /* Cancel or finish ongoing discard work */
4311 btrfs_discard_cleanup(fs_info);
4312
bc98a42c 4313 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4314 /*
d6fd0ae2
OS
4315 * The cleaner kthread is stopped, so do one final pass over
4316 * unused block groups.
e44163e1 4317 */
0b246afa 4318 btrfs_delete_unused_bgs(fs_info);
e44163e1 4319
f0cc2cd7
FM
4320 /*
4321 * There might be existing delayed inode workers still running
4322 * and holding an empty delayed inode item. We must wait for
4323 * them to complete first because they can create a transaction.
4324 * This happens when someone calls btrfs_balance_delayed_items()
4325 * and then a transaction commit runs the same delayed nodes
4326 * before any delayed worker has done something with the nodes.
4327 * We must wait for any worker here and not at transaction
4328 * commit time since that could cause a deadlock.
4329 * This is a very rare case.
4330 */
4331 btrfs_flush_workqueue(fs_info->delayed_workers);
4332
6bccf3ab 4333 ret = btrfs_commit_super(fs_info);
acce952b 4334 if (ret)
04892340 4335 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4336 }
4337
84961539 4338 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4339 btrfs_error_commit_super(fs_info);
0f7d52f4 4340
e3029d9f
AV
4341 kthread_stop(fs_info->transaction_kthread);
4342 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4343
e187831e 4344 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4345 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4346
5958253c
QW
4347 if (btrfs_check_quota_leak(fs_info)) {
4348 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4349 btrfs_err(fs_info, "qgroup reserved space leaked");
4350 }
4351
04892340 4352 btrfs_free_qgroup_config(fs_info);
fe816d0f 4353 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4354
963d678b 4355 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4356 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4357 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4358 }
bcc63abb 4359
5deb17e1 4360 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4361 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4362 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4363
6618a59b 4364 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4365 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4366
1a4319cc
LB
4367 btrfs_put_block_group_cache(fs_info);
4368
de348ee0
WS
4369 /*
4370 * we must make sure there is not any read request to
4371 * submit after we stopping all workers.
4372 */
4373 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4374 btrfs_stop_all_workers(fs_info);
4375
0a31daa4 4376 /* We shouldn't have any transaction open at this point */
36c86a9e 4377 warn_about_uncommitted_trans(fs_info);
0a31daa4 4378
afcdd129 4379 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4380 free_root_pointers(fs_info, true);
8c38938c 4381 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4382
4e19443d
JB
4383 /*
4384 * We must free the block groups after dropping the fs_roots as we could
4385 * have had an IO error and have left over tree log blocks that aren't
4386 * cleaned up until the fs roots are freed. This makes the block group
4387 * accounting appear to be wrong because there's pending reserved bytes,
4388 * so make sure we do the block group cleanup afterwards.
4389 */
4390 btrfs_free_block_groups(fs_info);
4391
13e6c37b 4392 iput(fs_info->btree_inode);
d6bfde87 4393
0b86a832 4394 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4395 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4396}
4397
50564b65
FM
4398void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4399 struct extent_buffer *buf)
5f39d397 4400{
2f4d60df 4401 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4402 u64 transid = btrfs_header_generation(buf);
b4ce94de 4403
06ea65a3
JB
4404#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4405 /*
4406 * This is a fast path so only do this check if we have sanity tests
52042d8e 4407 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4408 * outside of the sanity tests.
4409 */
b0132a3b 4410 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4411 return;
4412#endif
50564b65
FM
4413 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4414 ASSERT(trans->transid == fs_info->generation);
49d0c642 4415 btrfs_assert_tree_write_locked(buf);
4ebe8d47 4416 if (unlikely(transid != fs_info->generation)) {
50564b65 4417 btrfs_abort_transaction(trans, -EUCLEAN);
20cbe460
FM
4418 btrfs_crit(fs_info,
4419"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4420 buf->start, transid, fs_info->generation);
50564b65 4421 }
f18cc978 4422 set_extent_buffer_dirty(buf);
eb60ceac
CM
4423}
4424
2ff7e61e 4425static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4426 int flush_delayed)
16cdcec7
MX
4427{
4428 /*
4429 * looks as though older kernels can get into trouble with
4430 * this code, they end up stuck in balance_dirty_pages forever
4431 */
e2d84521 4432 int ret;
16cdcec7
MX
4433
4434 if (current->flags & PF_MEMALLOC)
4435 return;
4436
b53d3f5d 4437 if (flush_delayed)
2ff7e61e 4438 btrfs_balance_delayed_items(fs_info);
16cdcec7 4439
d814a491
EL
4440 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4441 BTRFS_DIRTY_METADATA_THRESH,
4442 fs_info->dirty_metadata_batch);
e2d84521 4443 if (ret > 0) {
0b246afa 4444 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4445 }
16cdcec7
MX
4446}
4447
2ff7e61e 4448void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4449{
2ff7e61e 4450 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4451}
585ad2c3 4452
2ff7e61e 4453void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4454{
2ff7e61e 4455 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4456}
6b80053d 4457
2ff7e61e 4458static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4459{
fe816d0f
NB
4460 /* cleanup FS via transaction */
4461 btrfs_cleanup_transaction(fs_info);
4462
0b246afa 4463 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4464 btrfs_run_delayed_iputs(fs_info);
0b246afa 4465 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4466
0b246afa
JM
4467 down_write(&fs_info->cleanup_work_sem);
4468 up_write(&fs_info->cleanup_work_sem);
acce952b 4469}
4470
ef67963d
JB
4471static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4472{
fc7cbcd4
DS
4473 struct btrfs_root *gang[8];
4474 u64 root_objectid = 0;
4475 int ret;
4476
4477 spin_lock(&fs_info->fs_roots_radix_lock);
4478 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4479 (void **)gang, root_objectid,
4480 ARRAY_SIZE(gang))) != 0) {
4481 int i;
4482
4483 for (i = 0; i < ret; i++)
4484 gang[i] = btrfs_grab_root(gang[i]);
4485 spin_unlock(&fs_info->fs_roots_radix_lock);
4486
4487 for (i = 0; i < ret; i++) {
4488 if (!gang[i])
ef67963d 4489 continue;
fc7cbcd4
DS
4490 root_objectid = gang[i]->root_key.objectid;
4491 btrfs_free_log(NULL, gang[i]);
4492 btrfs_put_root(gang[i]);
ef67963d 4493 }
fc7cbcd4
DS
4494 root_objectid++;
4495 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4496 }
fc7cbcd4 4497 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4498 btrfs_free_log_root_tree(NULL, fs_info);
4499}
4500
143bede5 4501static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4502{
acce952b 4503 struct btrfs_ordered_extent *ordered;
acce952b 4504
199c2a9c 4505 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4506 /*
4507 * This will just short circuit the ordered completion stuff which will
4508 * make sure the ordered extent gets properly cleaned up.
4509 */
199c2a9c 4510 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4511 root_extent_list)
4512 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4513 spin_unlock(&root->ordered_extent_lock);
4514}
4515
4516static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4517{
4518 struct btrfs_root *root;
84af994b 4519 LIST_HEAD(splice);
199c2a9c
MX
4520
4521 spin_lock(&fs_info->ordered_root_lock);
4522 list_splice_init(&fs_info->ordered_roots, &splice);
4523 while (!list_empty(&splice)) {
4524 root = list_first_entry(&splice, struct btrfs_root,
4525 ordered_root);
1de2cfde
JB
4526 list_move_tail(&root->ordered_root,
4527 &fs_info->ordered_roots);
199c2a9c 4528
2a85d9ca 4529 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4530 btrfs_destroy_ordered_extents(root);
4531
2a85d9ca
LB
4532 cond_resched();
4533 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4534 }
4535 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4536
4537 /*
4538 * We need this here because if we've been flipped read-only we won't
4539 * get sync() from the umount, so we need to make sure any ordered
4540 * extents that haven't had their dirty pages IO start writeout yet
4541 * actually get run and error out properly.
4542 */
4543 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4544}
4545
99f09ce3
FM
4546static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4547 struct btrfs_fs_info *fs_info)
acce952b 4548{
4549 struct rb_node *node;
4550 struct btrfs_delayed_ref_root *delayed_refs;
4551 struct btrfs_delayed_ref_node *ref;
acce952b 4552
4553 delayed_refs = &trans->delayed_refs;
4554
4555 spin_lock(&delayed_refs->lock);
d7df2c79 4556 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4557 spin_unlock(&delayed_refs->lock);
b79ce3dd 4558 btrfs_debug(fs_info, "delayed_refs has NO entry");
99f09ce3 4559 return;
acce952b 4560 }
4561
5c9d028b 4562 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4563 struct btrfs_delayed_ref_head *head;
0e0adbcf 4564 struct rb_node *n;
e78417d1 4565 bool pin_bytes = false;
acce952b 4566
d7df2c79
JB
4567 head = rb_entry(node, struct btrfs_delayed_ref_head,
4568 href_node);
3069bd26 4569 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4570 continue;
3069bd26 4571
d7df2c79 4572 spin_lock(&head->lock);
e3d03965 4573 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4574 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4575 ref_node);
e3d03965 4576 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4577 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4578 if (!list_empty(&ref->add_list))
4579 list_del(&ref->add_list);
d7df2c79
JB
4580 atomic_dec(&delayed_refs->num_entries);
4581 btrfs_put_delayed_ref(ref);
adb86dbe 4582 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
e78417d1 4583 }
d7df2c79
JB
4584 if (head->must_insert_reserved)
4585 pin_bytes = true;
4586 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4587 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4588 spin_unlock(&head->lock);
4589 spin_unlock(&delayed_refs->lock);
4590 mutex_unlock(&head->mutex);
acce952b 4591
f603bb94
NB
4592 if (pin_bytes) {
4593 struct btrfs_block_group *cache;
4594
4595 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4596 BUG_ON(!cache);
4597
4598 spin_lock(&cache->space_info->lock);
4599 spin_lock(&cache->lock);
4600 cache->pinned += head->num_bytes;
4601 btrfs_space_info_update_bytes_pinned(fs_info,
4602 cache->space_info, head->num_bytes);
4603 cache->reserved -= head->num_bytes;
4604 cache->space_info->bytes_reserved -= head->num_bytes;
4605 spin_unlock(&cache->lock);
4606 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4607
4608 btrfs_put_block_group(cache);
4609
4610 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4611 head->bytenr + head->num_bytes - 1);
4612 }
31890da0 4613 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4614 btrfs_put_delayed_ref_head(head);
acce952b 4615 cond_resched();
4616 spin_lock(&delayed_refs->lock);
4617 }
81f7eb00 4618 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4619
4620 spin_unlock(&delayed_refs->lock);
acce952b 4621}
4622
143bede5 4623static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4624{
4625 struct btrfs_inode *btrfs_inode;
84af994b 4626 LIST_HEAD(splice);
acce952b 4627
eb73c1b7
MX
4628 spin_lock(&root->delalloc_lock);
4629 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4630
4631 while (!list_empty(&splice)) {
fe816d0f 4632 struct inode *inode = NULL;
eb73c1b7
MX
4633 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4634 delalloc_inodes);
fe816d0f 4635 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4636 spin_unlock(&root->delalloc_lock);
acce952b 4637
fe816d0f
NB
4638 /*
4639 * Make sure we get a live inode and that it'll not disappear
4640 * meanwhile.
4641 */
4642 inode = igrab(&btrfs_inode->vfs_inode);
4643 if (inode) {
597441b3
JB
4644 unsigned int nofs_flag;
4645
4646 nofs_flag = memalloc_nofs_save();
fe816d0f 4647 invalidate_inode_pages2(inode->i_mapping);
597441b3 4648 memalloc_nofs_restore(nofs_flag);
fe816d0f
NB
4649 iput(inode);
4650 }
eb73c1b7 4651 spin_lock(&root->delalloc_lock);
acce952b 4652 }
eb73c1b7
MX
4653 spin_unlock(&root->delalloc_lock);
4654}
4655
4656static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4657{
4658 struct btrfs_root *root;
84af994b 4659 LIST_HEAD(splice);
eb73c1b7
MX
4660
4661 spin_lock(&fs_info->delalloc_root_lock);
4662 list_splice_init(&fs_info->delalloc_roots, &splice);
4663 while (!list_empty(&splice)) {
4664 root = list_first_entry(&splice, struct btrfs_root,
4665 delalloc_root);
00246528 4666 root = btrfs_grab_root(root);
eb73c1b7
MX
4667 BUG_ON(!root);
4668 spin_unlock(&fs_info->delalloc_root_lock);
4669
4670 btrfs_destroy_delalloc_inodes(root);
00246528 4671 btrfs_put_root(root);
eb73c1b7
MX
4672
4673 spin_lock(&fs_info->delalloc_root_lock);
4674 }
4675 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4676}
4677
aec5716c
FM
4678static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4679 struct extent_io_tree *dirty_pages,
4680 int mark)
acce952b 4681{
acce952b 4682 struct extent_buffer *eb;
4683 u64 start = 0;
4684 u64 end;
acce952b 4685
e5860f82
FM
4686 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4687 mark, NULL)) {
91166212 4688 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4689 while (start <= end) {
0b246afa
JM
4690 eb = find_extent_buffer(fs_info, start);
4691 start += fs_info->nodesize;
fd8b2b61 4692 if (!eb)
acce952b 4693 continue;
c4e54a65
JB
4694
4695 btrfs_tree_lock(eb);
fd8b2b61 4696 wait_on_extent_buffer_writeback(eb);
190a8339 4697 btrfs_clear_buffer_dirty(NULL, eb);
c4e54a65 4698 btrfs_tree_unlock(eb);
acce952b 4699
fd8b2b61 4700 free_extent_buffer_stale(eb);
acce952b 4701 }
4702 }
acce952b 4703}
4704
46d81ebd
FM
4705static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4706 struct extent_io_tree *unpin)
acce952b 4707{
acce952b 4708 u64 start;
4709 u64 end;
acce952b 4710
acce952b 4711 while (1) {
0e6ec385
FM
4712 struct extent_state *cached_state = NULL;
4713
fcd5e742
LF
4714 /*
4715 * The btrfs_finish_extent_commit() may get the same range as
4716 * ours between find_first_extent_bit and clear_extent_dirty.
4717 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4718 * the same extent range.
4719 */
4720 mutex_lock(&fs_info->unused_bg_unpin_mutex);
e5860f82
FM
4721 if (!find_first_extent_bit(unpin, 0, &start, &end,
4722 EXTENT_DIRTY, &cached_state)) {
fcd5e742 4723 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4724 break;
fcd5e742 4725 }
acce952b 4726
0e6ec385
FM
4727 clear_extent_dirty(unpin, start, end, &cached_state);
4728 free_extent_state(cached_state);
2ff7e61e 4729 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4730 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4731 cond_resched();
4732 }
acce952b 4733}
4734
32da5386 4735static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4736{
4737 struct inode *inode;
4738
4739 inode = cache->io_ctl.inode;
4740 if (inode) {
597441b3
JB
4741 unsigned int nofs_flag;
4742
4743 nofs_flag = memalloc_nofs_save();
c79a1751 4744 invalidate_inode_pages2(inode->i_mapping);
597441b3
JB
4745 memalloc_nofs_restore(nofs_flag);
4746
c79a1751
LB
4747 BTRFS_I(inode)->generation = 0;
4748 cache->io_ctl.inode = NULL;
4749 iput(inode);
4750 }
bbc37d6e 4751 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4752 btrfs_put_block_group(cache);
4753}
4754
4755void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4756 struct btrfs_fs_info *fs_info)
c79a1751 4757{
32da5386 4758 struct btrfs_block_group *cache;
c79a1751
LB
4759
4760 spin_lock(&cur_trans->dirty_bgs_lock);
4761 while (!list_empty(&cur_trans->dirty_bgs)) {
4762 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4763 struct btrfs_block_group,
c79a1751 4764 dirty_list);
c79a1751
LB
4765
4766 if (!list_empty(&cache->io_list)) {
4767 spin_unlock(&cur_trans->dirty_bgs_lock);
4768 list_del_init(&cache->io_list);
4769 btrfs_cleanup_bg_io(cache);
4770 spin_lock(&cur_trans->dirty_bgs_lock);
4771 }
4772
4773 list_del_init(&cache->dirty_list);
4774 spin_lock(&cache->lock);
4775 cache->disk_cache_state = BTRFS_DC_ERROR;
4776 spin_unlock(&cache->lock);
4777
4778 spin_unlock(&cur_trans->dirty_bgs_lock);
4779 btrfs_put_block_group(cache);
f66e0209 4780 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
c79a1751
LB
4781 spin_lock(&cur_trans->dirty_bgs_lock);
4782 }
4783 spin_unlock(&cur_trans->dirty_bgs_lock);
4784
45ae2c18
NB
4785 /*
4786 * Refer to the definition of io_bgs member for details why it's safe
4787 * to use it without any locking
4788 */
c79a1751
LB
4789 while (!list_empty(&cur_trans->io_bgs)) {
4790 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4791 struct btrfs_block_group,
c79a1751 4792 io_list);
c79a1751
LB
4793
4794 list_del_init(&cache->io_list);
4795 spin_lock(&cache->lock);
4796 cache->disk_cache_state = BTRFS_DC_ERROR;
4797 spin_unlock(&cache->lock);
4798 btrfs_cleanup_bg_io(cache);
4799 }
4800}
4801
49b25e05 4802void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4803 struct btrfs_fs_info *fs_info)
49b25e05 4804{
bbbf7243
NB
4805 struct btrfs_device *dev, *tmp;
4806
2ff7e61e 4807 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4808 ASSERT(list_empty(&cur_trans->dirty_bgs));
4809 ASSERT(list_empty(&cur_trans->io_bgs));
4810
bbbf7243
NB
4811 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4812 post_commit_list) {
4813 list_del_init(&dev->post_commit_list);
4814 }
4815
2ff7e61e 4816 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4817
4a9d8bde 4818 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4819 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4820
4a9d8bde 4821 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4822 wake_up(&fs_info->transaction_wait);
49b25e05 4823
ccdf9b30 4824 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4825
2ff7e61e 4826 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4827 EXTENT_DIRTY);
fe119a6e 4828 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4829
4a9d8bde
MX
4830 cur_trans->state =TRANS_STATE_COMPLETED;
4831 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4832}
4833
2ff7e61e 4834static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4835{
4836 struct btrfs_transaction *t;
acce952b 4837
0b246afa 4838 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4839
0b246afa
JM
4840 spin_lock(&fs_info->trans_lock);
4841 while (!list_empty(&fs_info->trans_list)) {
4842 t = list_first_entry(&fs_info->trans_list,
724e2315 4843 struct btrfs_transaction, list);
77d20c68 4844 if (t->state >= TRANS_STATE_COMMIT_PREP) {
9b64f57d 4845 refcount_inc(&t->use_count);
0b246afa 4846 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4847 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4848 btrfs_put_transaction(t);
0b246afa 4849 spin_lock(&fs_info->trans_lock);
724e2315
JB
4850 continue;
4851 }
0b246afa 4852 if (t == fs_info->running_transaction) {
724e2315 4853 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4854 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4855 /*
4856 * We wait for 0 num_writers since we don't hold a trans
4857 * handle open currently for this transaction.
4858 */
4859 wait_event(t->writer_wait,
4860 atomic_read(&t->num_writers) == 0);
4861 } else {
0b246afa 4862 spin_unlock(&fs_info->trans_lock);
724e2315 4863 }
2ff7e61e 4864 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4865
0b246afa
JM
4866 spin_lock(&fs_info->trans_lock);
4867 if (t == fs_info->running_transaction)
4868 fs_info->running_transaction = NULL;
acce952b 4869 list_del_init(&t->list);
0b246afa 4870 spin_unlock(&fs_info->trans_lock);
acce952b 4871
724e2315 4872 btrfs_put_transaction(t);
2e4e97ab 4873 trace_btrfs_transaction_commit(fs_info);
0b246afa 4874 spin_lock(&fs_info->trans_lock);
724e2315 4875 }
0b246afa
JM
4876 spin_unlock(&fs_info->trans_lock);
4877 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4878 btrfs_destroy_delayed_inodes(fs_info);
4879 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4880 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4881 btrfs_drop_all_logs(fs_info);
0b246afa 4882 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4883
4884 return 0;
4885}
ec7d6dfd 4886
453e4873 4887int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4888{
4889 struct btrfs_path *path;
4890 int ret;
4891 struct extent_buffer *l;
4892 struct btrfs_key search_key;
4893 struct btrfs_key found_key;
4894 int slot;
4895
4896 path = btrfs_alloc_path();
4897 if (!path)
4898 return -ENOMEM;
4899
4900 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4901 search_key.type = -1;
4902 search_key.offset = (u64)-1;
4903 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4904 if (ret < 0)
4905 goto error;
4906 BUG_ON(ret == 0); /* Corruption */
4907 if (path->slots[0] > 0) {
4908 slot = path->slots[0] - 1;
4909 l = path->nodes[0];
4910 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
4911 root->free_objectid = max_t(u64, found_key.objectid + 1,
4912 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 4913 } else {
23125104 4914 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
4915 }
4916 ret = 0;
4917error:
4918 btrfs_free_path(path);
4919 return ret;
4920}
4921
543068a2 4922int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
4923{
4924 int ret;
4925 mutex_lock(&root->objectid_mutex);
4926
6b8fad57 4927 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
4928 btrfs_warn(root->fs_info,
4929 "the objectid of root %llu reaches its highest value",
4930 root->root_key.objectid);
4931 ret = -ENOSPC;
4932 goto out;
4933 }
4934
23125104 4935 *objectid = root->free_objectid++;
ec7d6dfd
NB
4936 ret = 0;
4937out:
4938 mutex_unlock(&root->objectid_mutex);
4939 return ret;
4940}