btrfs: make btrfs_check_uuid_tree private to disk-io.c
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
c6100a4b 113 void *private_data;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
7eccb903 214{
fc4f21b1 215 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
216 struct extent_map *em;
217 int ret;
218
890871be 219 read_lock(&em_tree->lock);
d1310b2e 220 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 221 if (em) {
890871be 222 read_unlock(&em_tree->lock);
5f39d397 223 goto out;
a061fc8d 224 }
890871be 225 read_unlock(&em_tree->lock);
7b13b7b1 226
172ddd60 227 em = alloc_extent_map();
5f39d397
CM
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
0afbaf8c 233 em->len = (u64)-1;
c8b97818 234 em->block_len = (u64)-1;
5f39d397 235 em->block_start = 0;
d1310b2e 236
890871be 237 write_lock(&em_tree->lock);
09a2a8f9 238 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
239 if (ret == -EEXIST) {
240 free_extent_map(em);
7b13b7b1 241 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 242 if (!em)
0433f20d 243 em = ERR_PTR(-EIO);
5f39d397 244 } else if (ret) {
7b13b7b1 245 free_extent_map(em);
0433f20d 246 em = ERR_PTR(ret);
5f39d397 247 }
890871be 248 write_unlock(&em_tree->lock);
7b13b7b1 249
5f39d397
CM
250out:
251 return em;
7eccb903
CM
252}
253
d352ac68 254/*
2996e1f8
JT
255 * Compute the csum of a btree block and store the result to provided buffer.
256 *
257 * Returns error if the extent buffer cannot be mapped.
d352ac68 258 */
2996e1f8 259static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 260{
d5178578
JT
261 struct btrfs_fs_info *fs_info = buf->fs_info;
262 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
d5178578
JT
270
271 shash->tfm = fs_info->csum_shash;
272 crypto_shash_init(shash);
19c00ddc
CM
273
274 len = buf->len - offset;
d5178578 275
d397712b 276 while (len > 0) {
d2e174d5
JT
277 /*
278 * Note: we don't need to check for the err == 1 case here, as
279 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
280 * and 'min_len = 32' and the currently implemented mapping
281 * algorithm we cannot cross a page boundary.
282 */
19c00ddc 283 err = map_private_extent_buffer(buf, offset, 32,
a6591715 284 &kaddr, &map_start, &map_len);
c53839fc 285 if (WARN_ON(err))
8bd98f0e 286 return err;
19c00ddc 287 cur_len = min(len, map_len - (offset - map_start));
d5178578 288 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
289 len -= cur_len;
290 offset += cur_len;
19c00ddc 291 }
71a63551 292 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 293
d5178578 294 crypto_shash_final(shash, result);
19c00ddc 295
19c00ddc
CM
296 return 0;
297}
298
d352ac68
CM
299/*
300 * we can't consider a given block up to date unless the transid of the
301 * block matches the transid in the parent node's pointer. This is how we
302 * detect blocks that either didn't get written at all or got written
303 * in the wrong place.
304 */
1259ab75 305static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
306 struct extent_buffer *eb, u64 parent_transid,
307 int atomic)
1259ab75 308{
2ac55d41 309 struct extent_state *cached_state = NULL;
1259ab75 310 int ret;
2755a0de 311 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
312
313 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
314 return 0;
315
b9fab919
CM
316 if (atomic)
317 return -EAGAIN;
318
a26e8c9f
JB
319 if (need_lock) {
320 btrfs_tree_read_lock(eb);
300aa896 321 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
322 }
323
2ac55d41 324 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 325 &cached_state);
0b32f4bb 326 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
327 btrfs_header_generation(eb) == parent_transid) {
328 ret = 0;
329 goto out;
330 }
94647322
DS
331 btrfs_err_rl(eb->fs_info,
332 "parent transid verify failed on %llu wanted %llu found %llu",
333 eb->start,
29549aec 334 parent_transid, btrfs_header_generation(eb));
1259ab75 335 ret = 1;
a26e8c9f
JB
336
337 /*
338 * Things reading via commit roots that don't have normal protection,
339 * like send, can have a really old block in cache that may point at a
01327610 340 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
341 * if we find an eb that is under IO (dirty/writeback) because we could
342 * end up reading in the stale data and then writing it back out and
343 * making everybody very sad.
344 */
345 if (!extent_buffer_under_io(eb))
346 clear_extent_buffer_uptodate(eb);
33958dc6 347out:
2ac55d41 348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 349 &cached_state);
472b909f
JB
350 if (need_lock)
351 btrfs_tree_read_unlock_blocking(eb);
1259ab75 352 return ret;
1259ab75
CM
353}
354
e7e16f48
JT
355static bool btrfs_supported_super_csum(u16 csum_type)
356{
357 switch (csum_type) {
358 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 359 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 360 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 361 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
362 return true;
363 default:
364 return false;
365 }
366}
367
1104a885
DS
368/*
369 * Return 0 if the superblock checksum type matches the checksum value of that
370 * algorithm. Pass the raw disk superblock data.
371 */
ab8d0fc4
JM
372static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
373 char *raw_disk_sb)
1104a885
DS
374{
375 struct btrfs_super_block *disk_sb =
376 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 377 char result[BTRFS_CSUM_SIZE];
d5178578
JT
378 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
379
380 shash->tfm = fs_info->csum_shash;
381 crypto_shash_init(shash);
1104a885 382
51bce6c9
JT
383 /*
384 * The super_block structure does not span the whole
385 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
386 * filled with zeros and is included in the checksum.
387 */
d5178578
JT
388 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
389 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
390 crypto_shash_final(shash, result);
1104a885 391
51bce6c9
JT
392 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
393 return 1;
1104a885 394
e7e16f48 395 return 0;
1104a885
DS
396}
397
e064d5e9 398int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 399 struct btrfs_key *first_key, u64 parent_transid)
581c1760 400{
e064d5e9 401 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
402 int found_level;
403 struct btrfs_key found_key;
404 int ret;
405
406 found_level = btrfs_header_level(eb);
407 if (found_level != level) {
63489055
QW
408 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
409 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
410 btrfs_err(fs_info,
411"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
412 eb->start, level, found_level);
581c1760
QW
413 return -EIO;
414 }
415
416 if (!first_key)
417 return 0;
418
5d41be6f
QW
419 /*
420 * For live tree block (new tree blocks in current transaction),
421 * we need proper lock context to avoid race, which is impossible here.
422 * So we only checks tree blocks which is read from disk, whose
423 * generation <= fs_info->last_trans_committed.
424 */
425 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
426 return 0;
62fdaa52
QW
427
428 /* We have @first_key, so this @eb must have at least one item */
429 if (btrfs_header_nritems(eb) == 0) {
430 btrfs_err(fs_info,
431 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
432 eb->start);
433 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
434 return -EUCLEAN;
435 }
436
581c1760
QW
437 if (found_level)
438 btrfs_node_key_to_cpu(eb, &found_key, 0);
439 else
440 btrfs_item_key_to_cpu(eb, &found_key, 0);
441 ret = btrfs_comp_cpu_keys(first_key, &found_key);
442
581c1760 443 if (ret) {
63489055
QW
444 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
445 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 446 btrfs_err(fs_info,
ff76a864
LB
447"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
448 eb->start, parent_transid, first_key->objectid,
449 first_key->type, first_key->offset,
450 found_key.objectid, found_key.type,
451 found_key.offset);
581c1760 452 }
581c1760
QW
453 return ret;
454}
455
d352ac68
CM
456/*
457 * helper to read a given tree block, doing retries as required when
458 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
459 *
460 * @parent_transid: expected transid, skip check if 0
461 * @level: expected level, mandatory check
462 * @first_key: expected key of first slot, skip check if NULL
d352ac68 463 */
5ab12d1f 464static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
465 u64 parent_transid, int level,
466 struct btrfs_key *first_key)
f188591e 467{
5ab12d1f 468 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 469 struct extent_io_tree *io_tree;
ea466794 470 int failed = 0;
f188591e
CM
471 int ret;
472 int num_copies = 0;
473 int mirror_num = 0;
ea466794 474 int failed_mirror = 0;
f188591e 475
0b246afa 476 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 477 while (1) {
f8397d69 478 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 479 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 480 if (!ret) {
581c1760 481 if (verify_parent_transid(io_tree, eb,
b9fab919 482 parent_transid, 0))
256dd1bb 483 ret = -EIO;
e064d5e9 484 else if (btrfs_verify_level_key(eb, level,
448de471 485 first_key, parent_transid))
581c1760
QW
486 ret = -EUCLEAN;
487 else
488 break;
256dd1bb 489 }
d397712b 490
0b246afa 491 num_copies = btrfs_num_copies(fs_info,
f188591e 492 eb->start, eb->len);
4235298e 493 if (num_copies == 1)
ea466794 494 break;
4235298e 495
5cf1ab56
JB
496 if (!failed_mirror) {
497 failed = 1;
498 failed_mirror = eb->read_mirror;
499 }
500
f188591e 501 mirror_num++;
ea466794
JB
502 if (mirror_num == failed_mirror)
503 mirror_num++;
504
4235298e 505 if (mirror_num > num_copies)
ea466794 506 break;
f188591e 507 }
ea466794 508
c0901581 509 if (failed && !ret && failed_mirror)
20a1fbf9 510 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
511
512 return ret;
f188591e 513}
19c00ddc 514
d352ac68 515/*
d397712b
CM
516 * checksum a dirty tree block before IO. This has extra checks to make sure
517 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 518 */
d397712b 519
01d58472 520static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 521{
4eee4fa4 522 u64 start = page_offset(page);
19c00ddc 523 u64 found_start;
2996e1f8
JT
524 u8 result[BTRFS_CSUM_SIZE];
525 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 526 struct extent_buffer *eb;
8d47a0d8 527 int ret;
f188591e 528
4f2de97a
JB
529 eb = (struct extent_buffer *)page->private;
530 if (page != eb->pages[0])
531 return 0;
0f805531 532
19c00ddc 533 found_start = btrfs_header_bytenr(eb);
0f805531
AL
534 /*
535 * Please do not consolidate these warnings into a single if.
536 * It is useful to know what went wrong.
537 */
538 if (WARN_ON(found_start != start))
539 return -EUCLEAN;
540 if (WARN_ON(!PageUptodate(page)))
541 return -EUCLEAN;
542
de37aa51 543 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
544 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
545
2996e1f8
JT
546 if (csum_tree_block(eb, result))
547 return -EINVAL;
548
8d47a0d8
QW
549 if (btrfs_header_level(eb))
550 ret = btrfs_check_node(eb);
551 else
552 ret = btrfs_check_leaf_full(eb);
553
554 if (ret < 0) {
c06631b0 555 btrfs_print_tree(eb, 0);
8d47a0d8
QW
556 btrfs_err(fs_info,
557 "block=%llu write time tree block corruption detected",
558 eb->start);
c06631b0 559 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
560 return ret;
561 }
2996e1f8 562 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 563
2996e1f8 564 return 0;
19c00ddc
CM
565}
566
b0c9b3b0 567static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 568{
b0c9b3b0 569 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 570 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 571 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
572 int ret = 1;
573
0a4e5586 574 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 575 while (fs_devices) {
7239ff4b
NB
576 u8 *metadata_uuid;
577
578 /*
579 * Checking the incompat flag is only valid for the current
580 * fs. For seed devices it's forbidden to have their uuid
581 * changed so reading ->fsid in this case is fine
582 */
583 if (fs_devices == fs_info->fs_devices &&
584 btrfs_fs_incompat(fs_info, METADATA_UUID))
585 metadata_uuid = fs_devices->metadata_uuid;
586 else
587 metadata_uuid = fs_devices->fsid;
588
589 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
590 ret = 0;
591 break;
592 }
593 fs_devices = fs_devices->seed;
594 }
595 return ret;
596}
597
facc8a22
MX
598static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
599 u64 phy_offset, struct page *page,
600 u64 start, u64 end, int mirror)
ce9adaa5 601{
ce9adaa5
CM
602 u64 found_start;
603 int found_level;
ce9adaa5
CM
604 struct extent_buffer *eb;
605 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 606 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 607 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 608 int ret = 0;
2996e1f8 609 u8 result[BTRFS_CSUM_SIZE];
727011e0 610 int reads_done;
ce9adaa5 611
ce9adaa5
CM
612 if (!page->private)
613 goto out;
d397712b 614
4f2de97a 615 eb = (struct extent_buffer *)page->private;
d397712b 616
0b32f4bb
JB
617 /* the pending IO might have been the only thing that kept this buffer
618 * in memory. Make sure we have a ref for all this other checks
619 */
67439dad 620 atomic_inc(&eb->refs);
0b32f4bb
JB
621
622 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
623 if (!reads_done)
624 goto err;
f188591e 625
5cf1ab56 626 eb->read_mirror = mirror;
656f30db 627 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
628 ret = -EIO;
629 goto err;
630 }
631
ce9adaa5 632 found_start = btrfs_header_bytenr(eb);
727011e0 633 if (found_start != eb->start) {
893bf4b1
SY
634 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
635 eb->start, found_start);
f188591e 636 ret = -EIO;
ce9adaa5
CM
637 goto err;
638 }
b0c9b3b0 639 if (check_tree_block_fsid(eb)) {
02873e43
ZL
640 btrfs_err_rl(fs_info, "bad fsid on block %llu",
641 eb->start);
1259ab75
CM
642 ret = -EIO;
643 goto err;
644 }
ce9adaa5 645 found_level = btrfs_header_level(eb);
1c24c3ce 646 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
647 btrfs_err(fs_info, "bad tree block level %d on %llu",
648 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
649 ret = -EIO;
650 goto err;
651 }
ce9adaa5 652
85d4e461
CM
653 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
654 eb, found_level);
4008c04a 655
2996e1f8 656 ret = csum_tree_block(eb, result);
8bd98f0e 657 if (ret)
a826d6dc 658 goto err;
a826d6dc 659
2996e1f8
JT
660 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
661 u32 val;
662 u32 found = 0;
663
664 memcpy(&found, result, csum_size);
665
666 read_extent_buffer(eb, &val, 0, csum_size);
667 btrfs_warn_rl(fs_info,
668 "%s checksum verify failed on %llu wanted %x found %x level %d",
669 fs_info->sb->s_id, eb->start,
670 val, found, btrfs_header_level(eb));
671 ret = -EUCLEAN;
672 goto err;
673 }
674
a826d6dc
JB
675 /*
676 * If this is a leaf block and it is corrupt, set the corrupt bit so
677 * that we don't try and read the other copies of this block, just
678 * return -EIO.
679 */
1c4360ee 680 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
681 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
682 ret = -EIO;
683 }
ce9adaa5 684
813fd1dc 685 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
686 ret = -EIO;
687
0b32f4bb
JB
688 if (!ret)
689 set_extent_buffer_uptodate(eb);
75391f0d
QW
690 else
691 btrfs_err(fs_info,
692 "block=%llu read time tree block corruption detected",
693 eb->start);
ce9adaa5 694err:
79fb65a1
JB
695 if (reads_done &&
696 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 697 btree_readahead_hook(eb, ret);
4bb31e92 698
53b381b3
DW
699 if (ret) {
700 /*
701 * our io error hook is going to dec the io pages
702 * again, we have to make sure it has something
703 * to decrement
704 */
705 atomic_inc(&eb->io_pages);
0b32f4bb 706 clear_extent_buffer_uptodate(eb);
53b381b3 707 }
0b32f4bb 708 free_extent_buffer(eb);
ce9adaa5 709out:
f188591e 710 return ret;
ce9adaa5
CM
711}
712
4246a0b6 713static void end_workqueue_bio(struct bio *bio)
ce9adaa5 714{
97eb6b69 715 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 716 struct btrfs_fs_info *fs_info;
9e0af237 717 struct btrfs_workqueue *wq;
ce9adaa5 718
ce9adaa5 719 fs_info = end_io_wq->info;
4e4cbee9 720 end_io_wq->status = bio->bi_status;
d20f7043 721
37226b21 722 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 723 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 724 wq = fs_info->endio_meta_write_workers;
a0cac0ec 725 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 726 wq = fs_info->endio_freespace_worker;
a0cac0ec 727 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 728 wq = fs_info->endio_raid56_workers;
a0cac0ec 729 else
9e0af237 730 wq = fs_info->endio_write_workers;
d20f7043 731 } else {
a0cac0ec 732 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 733 wq = fs_info->endio_repair_workers;
a0cac0ec 734 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 735 wq = fs_info->endio_raid56_workers;
a0cac0ec 736 else if (end_io_wq->metadata)
9e0af237 737 wq = fs_info->endio_meta_workers;
a0cac0ec 738 else
9e0af237 739 wq = fs_info->endio_workers;
d20f7043 740 }
9e0af237 741
a0cac0ec 742 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 743 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
744}
745
4e4cbee9 746blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 747 enum btrfs_wq_endio_type metadata)
0b86a832 748{
97eb6b69 749 struct btrfs_end_io_wq *end_io_wq;
8b110e39 750
97eb6b69 751 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 752 if (!end_io_wq)
4e4cbee9 753 return BLK_STS_RESOURCE;
ce9adaa5
CM
754
755 end_io_wq->private = bio->bi_private;
756 end_io_wq->end_io = bio->bi_end_io;
22c59948 757 end_io_wq->info = info;
4e4cbee9 758 end_io_wq->status = 0;
ce9adaa5 759 end_io_wq->bio = bio;
22c59948 760 end_io_wq->metadata = metadata;
ce9adaa5
CM
761
762 bio->bi_private = end_io_wq;
763 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
764 return 0;
765}
766
4a69a410
CM
767static void run_one_async_start(struct btrfs_work *work)
768{
4a69a410 769 struct async_submit_bio *async;
4e4cbee9 770 blk_status_t ret;
4a69a410
CM
771
772 async = container_of(work, struct async_submit_bio, work);
c6100a4b 773 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
774 async->bio_offset);
775 if (ret)
4e4cbee9 776 async->status = ret;
4a69a410
CM
777}
778
06ea01b1
DS
779/*
780 * In order to insert checksums into the metadata in large chunks, we wait
781 * until bio submission time. All the pages in the bio are checksummed and
782 * sums are attached onto the ordered extent record.
783 *
784 * At IO completion time the csums attached on the ordered extent record are
785 * inserted into the tree.
786 */
4a69a410 787static void run_one_async_done(struct btrfs_work *work)
8b712842 788{
8b712842 789 struct async_submit_bio *async;
06ea01b1
DS
790 struct inode *inode;
791 blk_status_t ret;
8b712842
CM
792
793 async = container_of(work, struct async_submit_bio, work);
06ea01b1 794 inode = async->private_data;
4854ddd0 795
bb7ab3b9 796 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
797 if (async->status) {
798 async->bio->bi_status = async->status;
4246a0b6 799 bio_endio(async->bio);
79787eaa
JM
800 return;
801 }
802
ec39f769
CM
803 /*
804 * All of the bios that pass through here are from async helpers.
805 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
806 * This changes nothing when cgroups aren't in use.
807 */
808 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 809 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
810 if (ret) {
811 async->bio->bi_status = ret;
812 bio_endio(async->bio);
813 }
4a69a410
CM
814}
815
816static void run_one_async_free(struct btrfs_work *work)
817{
818 struct async_submit_bio *async;
819
820 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
821 kfree(async);
822}
823
8c27cb35
LT
824blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
825 int mirror_num, unsigned long bio_flags,
826 u64 bio_offset, void *private_data,
e288c080 827 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
828{
829 struct async_submit_bio *async;
830
831 async = kmalloc(sizeof(*async), GFP_NOFS);
832 if (!async)
4e4cbee9 833 return BLK_STS_RESOURCE;
44b8bd7e 834
c6100a4b 835 async->private_data = private_data;
44b8bd7e
CM
836 async->bio = bio;
837 async->mirror_num = mirror_num;
4a69a410 838 async->submit_bio_start = submit_bio_start;
4a69a410 839
a0cac0ec
OS
840 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
841 run_one_async_free);
4a69a410 842
eaf25d93 843 async->bio_offset = bio_offset;
8c8bee1d 844
4e4cbee9 845 async->status = 0;
79787eaa 846
67f055c7 847 if (op_is_sync(bio->bi_opf))
5cdc7ad3 848 btrfs_set_work_high_priority(&async->work);
d313d7a3 849
5cdc7ad3 850 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
851 return 0;
852}
853
4e4cbee9 854static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 855{
2c30c71b 856 struct bio_vec *bvec;
ce3ed71a 857 struct btrfs_root *root;
2b070cfe 858 int ret = 0;
6dc4f100 859 struct bvec_iter_all iter_all;
ce3ed71a 860
c09abff8 861 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 862 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 863 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 864 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
865 if (ret)
866 break;
ce3ed71a 867 }
2c30c71b 868
4e4cbee9 869 return errno_to_blk_status(ret);
ce3ed71a
CM
870}
871
d0ee3934 872static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 873 u64 bio_offset)
22c59948 874{
8b712842
CM
875 /*
876 * when we're called for a write, we're already in the async
5443be45 877 * submission context. Just jump into btrfs_map_bio
8b712842 878 */
79787eaa 879 return btree_csum_one_bio(bio);
4a69a410 880}
22c59948 881
9b4e675a
DS
882static int check_async_write(struct btrfs_fs_info *fs_info,
883 struct btrfs_inode *bi)
de0022b9 884{
6300463b
LB
885 if (atomic_read(&bi->sync_writers))
886 return 0;
9b4e675a 887 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 888 return 0;
de0022b9
JB
889 return 1;
890}
891
a56b1c7b 892static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
893 int mirror_num,
894 unsigned long bio_flags)
44b8bd7e 895{
0b246afa 896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 897 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 898 blk_status_t ret;
cad321ad 899
37226b21 900 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
901 /*
902 * called for a read, do the setup so that checksum validation
903 * can happen in the async kernel threads
904 */
0b246afa
JM
905 ret = btrfs_bio_wq_end_io(fs_info, bio,
906 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 907 if (ret)
61891923 908 goto out_w_error;
08635bae 909 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
910 } else if (!async) {
911 ret = btree_csum_one_bio(bio);
912 if (ret)
61891923 913 goto out_w_error;
08635bae 914 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
915 } else {
916 /*
917 * kthread helpers are used to submit writes so that
918 * checksumming can happen in parallel across all CPUs
919 */
c6100a4b 920 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 921 0, inode, btree_submit_bio_start);
44b8bd7e 922 }
d313d7a3 923
4246a0b6
CH
924 if (ret)
925 goto out_w_error;
926 return 0;
927
61891923 928out_w_error:
4e4cbee9 929 bio->bi_status = ret;
4246a0b6 930 bio_endio(bio);
61891923 931 return ret;
44b8bd7e
CM
932}
933
3dd1462e 934#ifdef CONFIG_MIGRATION
784b4e29 935static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
936 struct page *newpage, struct page *page,
937 enum migrate_mode mode)
784b4e29
CM
938{
939 /*
940 * we can't safely write a btree page from here,
941 * we haven't done the locking hook
942 */
943 if (PageDirty(page))
944 return -EAGAIN;
945 /*
946 * Buffers may be managed in a filesystem specific way.
947 * We must have no buffers or drop them.
948 */
949 if (page_has_private(page) &&
950 !try_to_release_page(page, GFP_KERNEL))
951 return -EAGAIN;
a6bc32b8 952 return migrate_page(mapping, newpage, page, mode);
784b4e29 953}
3dd1462e 954#endif
784b4e29 955
0da5468f
CM
956
957static int btree_writepages(struct address_space *mapping,
958 struct writeback_control *wbc)
959{
e2d84521
MX
960 struct btrfs_fs_info *fs_info;
961 int ret;
962
d8d5f3e1 963 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
964
965 if (wbc->for_kupdate)
966 return 0;
967
e2d84521 968 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 969 /* this is a bit racy, but that's ok */
d814a491
EL
970 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
971 BTRFS_DIRTY_METADATA_THRESH,
972 fs_info->dirty_metadata_batch);
e2d84521 973 if (ret < 0)
793955bc 974 return 0;
793955bc 975 }
0b32f4bb 976 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
977}
978
b2950863 979static int btree_readpage(struct file *file, struct page *page)
5f39d397 980{
71ad38b4 981 return extent_read_full_page(page, btree_get_extent, 0);
5f39d397 982}
22b0ebda 983
70dec807 984static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 985{
98509cfc 986 if (PageWriteback(page) || PageDirty(page))
d397712b 987 return 0;
0c4e538b 988
f7a52a40 989 return try_release_extent_buffer(page);
d98237b3
CM
990}
991
d47992f8
LC
992static void btree_invalidatepage(struct page *page, unsigned int offset,
993 unsigned int length)
d98237b3 994{
d1310b2e
CM
995 struct extent_io_tree *tree;
996 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
997 extent_invalidatepage(tree, page, offset);
998 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 999 if (PagePrivate(page)) {
efe120a0
FH
1000 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1001 "page private not zero on page %llu",
1002 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1003 ClearPagePrivate(page);
1004 set_page_private(page, 0);
09cbfeaf 1005 put_page(page);
9ad6b7bc 1006 }
d98237b3
CM
1007}
1008
0b32f4bb
JB
1009static int btree_set_page_dirty(struct page *page)
1010{
bb146eb2 1011#ifdef DEBUG
0b32f4bb
JB
1012 struct extent_buffer *eb;
1013
1014 BUG_ON(!PagePrivate(page));
1015 eb = (struct extent_buffer *)page->private;
1016 BUG_ON(!eb);
1017 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1018 BUG_ON(!atomic_read(&eb->refs));
1019 btrfs_assert_tree_locked(eb);
bb146eb2 1020#endif
0b32f4bb
JB
1021 return __set_page_dirty_nobuffers(page);
1022}
1023
7f09410b 1024static const struct address_space_operations btree_aops = {
d98237b3 1025 .readpage = btree_readpage,
0da5468f 1026 .writepages = btree_writepages,
5f39d397
CM
1027 .releasepage = btree_releasepage,
1028 .invalidatepage = btree_invalidatepage,
5a92bc88 1029#ifdef CONFIG_MIGRATION
784b4e29 1030 .migratepage = btree_migratepage,
5a92bc88 1031#endif
0b32f4bb 1032 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1033};
1034
2ff7e61e 1035void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1036{
5f39d397 1037 struct extent_buffer *buf = NULL;
537f38f0 1038 int ret;
090d1875 1039
2ff7e61e 1040 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1041 if (IS_ERR(buf))
6197d86e 1042 return;
537f38f0 1043
c2ccfbc6 1044 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1045 if (ret < 0)
1046 free_extent_buffer_stale(buf);
1047 else
1048 free_extent_buffer(buf);
090d1875
CM
1049}
1050
2ff7e61e
JM
1051struct extent_buffer *btrfs_find_create_tree_block(
1052 struct btrfs_fs_info *fs_info,
1053 u64 bytenr)
0999df54 1054{
0b246afa
JM
1055 if (btrfs_is_testing(fs_info))
1056 return alloc_test_extent_buffer(fs_info, bytenr);
1057 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1058}
1059
581c1760
QW
1060/*
1061 * Read tree block at logical address @bytenr and do variant basic but critical
1062 * verification.
1063 *
1064 * @parent_transid: expected transid of this tree block, skip check if 0
1065 * @level: expected level, mandatory check
1066 * @first_key: expected key in slot 0, skip check if NULL
1067 */
2ff7e61e 1068struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1069 u64 parent_transid, int level,
1070 struct btrfs_key *first_key)
0999df54
CM
1071{
1072 struct extent_buffer *buf = NULL;
0999df54
CM
1073 int ret;
1074
2ff7e61e 1075 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1076 if (IS_ERR(buf))
1077 return buf;
0999df54 1078
5ab12d1f 1079 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1080 level, first_key);
0f0fe8f7 1081 if (ret) {
537f38f0 1082 free_extent_buffer_stale(buf);
64c043de 1083 return ERR_PTR(ret);
0f0fe8f7 1084 }
5f39d397 1085 return buf;
ce9adaa5 1086
eb60ceac
CM
1087}
1088
6a884d7d 1089void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1090{
6a884d7d 1091 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1092 if (btrfs_header_generation(buf) ==
e2d84521 1093 fs_info->running_transaction->transid) {
b9447ef8 1094 btrfs_assert_tree_locked(buf);
b4ce94de 1095
b9473439 1096 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1097 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1098 -buf->len,
1099 fs_info->dirty_metadata_batch);
ed7b63eb 1100 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1101 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1102 clear_extent_buffer_dirty(buf);
1103 }
925baedd 1104 }
5f39d397
CM
1105}
1106
8257b2dc
MX
1107static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1108{
1109 struct btrfs_subvolume_writers *writers;
1110 int ret;
1111
1112 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1113 if (!writers)
1114 return ERR_PTR(-ENOMEM);
1115
8a5a916d 1116 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1117 if (ret < 0) {
1118 kfree(writers);
1119 return ERR_PTR(ret);
1120 }
1121
1122 init_waitqueue_head(&writers->wait);
1123 return writers;
1124}
1125
1126static void
1127btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1128{
1129 percpu_counter_destroy(&writers->counter);
1130 kfree(writers);
1131}
1132
da17066c 1133static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1134 u64 objectid)
d97e63b6 1135{
7c0260ee 1136 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1137 root->fs_info = fs_info;
cfaa7295 1138 root->node = NULL;
a28ec197 1139 root->commit_root = NULL;
27cdeb70 1140 root->state = 0;
d68fc57b 1141 root->orphan_cleanup_state = 0;
0b86a832 1142
0f7d52f4 1143 root->last_trans = 0;
13a8a7c8 1144 root->highest_objectid = 0;
eb73c1b7 1145 root->nr_delalloc_inodes = 0;
199c2a9c 1146 root->nr_ordered_extents = 0;
6bef4d31 1147 root->inode_tree = RB_ROOT;
16cdcec7 1148 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1149 root->block_rsv = NULL;
0b86a832
CM
1150
1151 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1152 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1153 INIT_LIST_HEAD(&root->delalloc_inodes);
1154 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1155 INIT_LIST_HEAD(&root->ordered_extents);
1156 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1157 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1158 INIT_LIST_HEAD(&root->logged_list[0]);
1159 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1160 spin_lock_init(&root->inode_lock);
eb73c1b7 1161 spin_lock_init(&root->delalloc_lock);
199c2a9c 1162 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1163 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1164 spin_lock_init(&root->log_extents_lock[0]);
1165 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1166 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1167 mutex_init(&root->objectid_mutex);
e02119d5 1168 mutex_init(&root->log_mutex);
31f3d255 1169 mutex_init(&root->ordered_extent_mutex);
573bfb72 1170 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1171 init_waitqueue_head(&root->log_writer_wait);
1172 init_waitqueue_head(&root->log_commit_wait[0]);
1173 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1174 INIT_LIST_HEAD(&root->log_ctxs[0]);
1175 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1176 atomic_set(&root->log_commit[0], 0);
1177 atomic_set(&root->log_commit[1], 0);
1178 atomic_set(&root->log_writers, 0);
2ecb7923 1179 atomic_set(&root->log_batch, 0);
0700cea7 1180 refcount_set(&root->refs, 1);
ea14b57f 1181 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1182 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1183 atomic_set(&root->nr_swapfiles, 0);
7237f183 1184 root->log_transid = 0;
d1433deb 1185 root->log_transid_committed = -1;
257c62e1 1186 root->last_log_commit = 0;
7c0260ee 1187 if (!dummy)
43eb5f29
QW
1188 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1189 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1190
3768f368
CM
1191 memset(&root->root_key, 0, sizeof(root->root_key));
1192 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1193 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1194 if (!dummy)
06ea65a3
JB
1195 root->defrag_trans_start = fs_info->generation;
1196 else
1197 root->defrag_trans_start = 0;
4d775673 1198 root->root_key.objectid = objectid;
0ee5dc67 1199 root->anon_dev = 0;
8ea05e3a 1200
5f3ab90a 1201 spin_lock_init(&root->root_item_lock);
370a11b8 1202 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1203#ifdef CONFIG_BTRFS_DEBUG
1204 INIT_LIST_HEAD(&root->leak_list);
1205 spin_lock(&fs_info->fs_roots_radix_lock);
1206 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1207 spin_unlock(&fs_info->fs_roots_radix_lock);
1208#endif
3768f368
CM
1209}
1210
74e4d827 1211static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1212 u64 objectid, gfp_t flags)
6f07e42e 1213{
74e4d827 1214 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1215 if (root)
96dfcb46 1216 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1217 return root;
1218}
1219
06ea65a3
JB
1220#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1221/* Should only be used by the testing infrastructure */
da17066c 1222struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1223{
1224 struct btrfs_root *root;
1225
7c0260ee
JM
1226 if (!fs_info)
1227 return ERR_PTR(-EINVAL);
1228
96dfcb46 1229 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1230 if (!root)
1231 return ERR_PTR(-ENOMEM);
da17066c 1232
b9ef22de 1233 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1234 root->alloc_bytenr = 0;
06ea65a3
JB
1235
1236 return root;
1237}
1238#endif
1239
20897f5c 1240struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1241 u64 objectid)
1242{
9b7a2440 1243 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1244 struct extent_buffer *leaf;
1245 struct btrfs_root *tree_root = fs_info->tree_root;
1246 struct btrfs_root *root;
1247 struct btrfs_key key;
b89f6d1f 1248 unsigned int nofs_flag;
20897f5c 1249 int ret = 0;
33d85fda 1250 uuid_le uuid = NULL_UUID_LE;
20897f5c 1251
b89f6d1f
FM
1252 /*
1253 * We're holding a transaction handle, so use a NOFS memory allocation
1254 * context to avoid deadlock if reclaim happens.
1255 */
1256 nofs_flag = memalloc_nofs_save();
96dfcb46 1257 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1258 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1259 if (!root)
1260 return ERR_PTR(-ENOMEM);
1261
20897f5c
AJ
1262 root->root_key.objectid = objectid;
1263 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1264 root->root_key.offset = 0;
1265
4d75f8a9 1266 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1267 if (IS_ERR(leaf)) {
1268 ret = PTR_ERR(leaf);
1dd05682 1269 leaf = NULL;
20897f5c
AJ
1270 goto fail;
1271 }
1272
20897f5c 1273 root->node = leaf;
20897f5c
AJ
1274 btrfs_mark_buffer_dirty(leaf);
1275
1276 root->commit_root = btrfs_root_node(root);
27cdeb70 1277 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1278
1279 root->root_item.flags = 0;
1280 root->root_item.byte_limit = 0;
1281 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1282 btrfs_set_root_generation(&root->root_item, trans->transid);
1283 btrfs_set_root_level(&root->root_item, 0);
1284 btrfs_set_root_refs(&root->root_item, 1);
1285 btrfs_set_root_used(&root->root_item, leaf->len);
1286 btrfs_set_root_last_snapshot(&root->root_item, 0);
1287 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1288 if (is_fstree(objectid))
1289 uuid_le_gen(&uuid);
6463fe58 1290 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1291 root->root_item.drop_level = 0;
1292
1293 key.objectid = objectid;
1294 key.type = BTRFS_ROOT_ITEM_KEY;
1295 key.offset = 0;
1296 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1297 if (ret)
1298 goto fail;
1299
1300 btrfs_tree_unlock(leaf);
1301
1dd05682
TI
1302 return root;
1303
20897f5c 1304fail:
1dd05682
TI
1305 if (leaf) {
1306 btrfs_tree_unlock(leaf);
59885b39 1307 free_extent_buffer(root->commit_root);
1dd05682
TI
1308 free_extent_buffer(leaf);
1309 }
00246528 1310 btrfs_put_root(root);
20897f5c 1311
1dd05682 1312 return ERR_PTR(ret);
20897f5c
AJ
1313}
1314
7237f183
YZ
1315static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1316 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1317{
1318 struct btrfs_root *root;
7237f183 1319 struct extent_buffer *leaf;
e02119d5 1320
96dfcb46 1321 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1322 if (!root)
7237f183 1323 return ERR_PTR(-ENOMEM);
e02119d5 1324
e02119d5
CM
1325 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1326 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1327 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1328
7237f183 1329 /*
27cdeb70
MX
1330 * DON'T set REF_COWS for log trees
1331 *
7237f183
YZ
1332 * log trees do not get reference counted because they go away
1333 * before a real commit is actually done. They do store pointers
1334 * to file data extents, and those reference counts still get
1335 * updated (along with back refs to the log tree).
1336 */
e02119d5 1337
4d75f8a9
DS
1338 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1339 NULL, 0, 0, 0);
7237f183 1340 if (IS_ERR(leaf)) {
00246528 1341 btrfs_put_root(root);
7237f183
YZ
1342 return ERR_CAST(leaf);
1343 }
e02119d5 1344
7237f183 1345 root->node = leaf;
e02119d5 1346
e02119d5
CM
1347 btrfs_mark_buffer_dirty(root->node);
1348 btrfs_tree_unlock(root->node);
7237f183
YZ
1349 return root;
1350}
1351
1352int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1353 struct btrfs_fs_info *fs_info)
1354{
1355 struct btrfs_root *log_root;
1356
1357 log_root = alloc_log_tree(trans, fs_info);
1358 if (IS_ERR(log_root))
1359 return PTR_ERR(log_root);
1360 WARN_ON(fs_info->log_root_tree);
1361 fs_info->log_root_tree = log_root;
1362 return 0;
1363}
1364
1365int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1366 struct btrfs_root *root)
1367{
0b246afa 1368 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1369 struct btrfs_root *log_root;
1370 struct btrfs_inode_item *inode_item;
1371
0b246afa 1372 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1373 if (IS_ERR(log_root))
1374 return PTR_ERR(log_root);
1375
1376 log_root->last_trans = trans->transid;
1377 log_root->root_key.offset = root->root_key.objectid;
1378
1379 inode_item = &log_root->root_item.inode;
3cae210f
QW
1380 btrfs_set_stack_inode_generation(inode_item, 1);
1381 btrfs_set_stack_inode_size(inode_item, 3);
1382 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1383 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1384 fs_info->nodesize);
3cae210f 1385 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1386
5d4f98a2 1387 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1388
1389 WARN_ON(root->log_root);
1390 root->log_root = log_root;
1391 root->log_transid = 0;
d1433deb 1392 root->log_transid_committed = -1;
257c62e1 1393 root->last_log_commit = 0;
e02119d5
CM
1394 return 0;
1395}
1396
62a2c73e
JB
1397struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1398 struct btrfs_key *key)
e02119d5
CM
1399{
1400 struct btrfs_root *root;
1401 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1402 struct btrfs_path *path;
84234f3a 1403 u64 generation;
cb517eab 1404 int ret;
581c1760 1405 int level;
0f7d52f4 1406
cb517eab
MX
1407 path = btrfs_alloc_path();
1408 if (!path)
0f7d52f4 1409 return ERR_PTR(-ENOMEM);
cb517eab 1410
96dfcb46 1411 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1412 if (!root) {
1413 ret = -ENOMEM;
1414 goto alloc_fail;
0f7d52f4
CM
1415 }
1416
cb517eab
MX
1417 ret = btrfs_find_root(tree_root, key, path,
1418 &root->root_item, &root->root_key);
0f7d52f4 1419 if (ret) {
13a8a7c8
YZ
1420 if (ret > 0)
1421 ret = -ENOENT;
cb517eab 1422 goto find_fail;
0f7d52f4 1423 }
13a8a7c8 1424
84234f3a 1425 generation = btrfs_root_generation(&root->root_item);
581c1760 1426 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1427 root->node = read_tree_block(fs_info,
1428 btrfs_root_bytenr(&root->root_item),
581c1760 1429 generation, level, NULL);
64c043de
LB
1430 if (IS_ERR(root->node)) {
1431 ret = PTR_ERR(root->node);
cb517eab
MX
1432 goto find_fail;
1433 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1434 ret = -EIO;
64c043de
LB
1435 free_extent_buffer(root->node);
1436 goto find_fail;
416bc658 1437 }
5d4f98a2 1438 root->commit_root = btrfs_root_node(root);
13a8a7c8 1439out:
cb517eab
MX
1440 btrfs_free_path(path);
1441 return root;
1442
cb517eab 1443find_fail:
00246528 1444 btrfs_put_root(root);
cb517eab
MX
1445alloc_fail:
1446 root = ERR_PTR(ret);
1447 goto out;
1448}
1449
a98db0f3 1450static int btrfs_init_fs_root(struct btrfs_root *root)
cb517eab
MX
1451{
1452 int ret;
8257b2dc 1453 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1454
1455 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1456 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1457 GFP_NOFS);
1458 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1459 ret = -ENOMEM;
1460 goto fail;
1461 }
1462
8257b2dc
MX
1463 writers = btrfs_alloc_subvolume_writers();
1464 if (IS_ERR(writers)) {
1465 ret = PTR_ERR(writers);
1466 goto fail;
1467 }
1468 root->subv_writers = writers;
1469
f39e4571
JB
1470 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1471 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1472 btrfs_check_and_init_root_item(&root->root_item);
1473 }
1474
cb517eab 1475 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1476 spin_lock_init(&root->ino_cache_lock);
1477 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1478
1479 ret = get_anon_bdev(&root->anon_dev);
1480 if (ret)
876d2cf1 1481 goto fail;
f32e48e9
CR
1482
1483 mutex_lock(&root->objectid_mutex);
1484 ret = btrfs_find_highest_objectid(root,
1485 &root->highest_objectid);
1486 if (ret) {
1487 mutex_unlock(&root->objectid_mutex);
876d2cf1 1488 goto fail;
f32e48e9
CR
1489 }
1490
1491 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1492
1493 mutex_unlock(&root->objectid_mutex);
1494
cb517eab
MX
1495 return 0;
1496fail:
84db5ccf 1497 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1498 return ret;
1499}
1500
a98db0f3
JB
1501static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1502 u64 root_id)
cb517eab
MX
1503{
1504 struct btrfs_root *root;
1505
1506 spin_lock(&fs_info->fs_roots_radix_lock);
1507 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1508 (unsigned long)root_id);
bc44d7c4 1509 if (root)
00246528 1510 root = btrfs_grab_root(root);
cb517eab
MX
1511 spin_unlock(&fs_info->fs_roots_radix_lock);
1512 return root;
1513}
1514
1515int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1516 struct btrfs_root *root)
1517{
1518 int ret;
1519
e1860a77 1520 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1521 if (ret)
1522 return ret;
1523
1524 spin_lock(&fs_info->fs_roots_radix_lock);
1525 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1526 (unsigned long)root->root_key.objectid,
1527 root);
af01d2e5 1528 if (ret == 0) {
00246528 1529 btrfs_grab_root(root);
27cdeb70 1530 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1531 }
cb517eab
MX
1532 spin_unlock(&fs_info->fs_roots_radix_lock);
1533 radix_tree_preload_end();
1534
1535 return ret;
1536}
1537
bd647ce3
JB
1538void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1539{
1540#ifdef CONFIG_BTRFS_DEBUG
1541 struct btrfs_root *root;
1542
1543 while (!list_empty(&fs_info->allocated_roots)) {
1544 root = list_first_entry(&fs_info->allocated_roots,
1545 struct btrfs_root, leak_list);
1546 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1547 root->root_key.objectid, root->root_key.offset,
1548 refcount_read(&root->refs));
1549 while (refcount_read(&root->refs) > 1)
00246528
JB
1550 btrfs_put_root(root);
1551 btrfs_put_root(root);
bd647ce3
JB
1552 }
1553#endif
1554}
1555
0d4b0463
JB
1556void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1557{
141386e1
JB
1558 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1559 percpu_counter_destroy(&fs_info->delalloc_bytes);
1560 percpu_counter_destroy(&fs_info->dio_bytes);
1561 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1562 btrfs_free_csum_hash(fs_info);
1563 btrfs_free_stripe_hash_table(fs_info);
1564 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1565 kfree(fs_info->balance_ctl);
1566 kfree(fs_info->delayed_root);
00246528
JB
1567 btrfs_put_root(fs_info->extent_root);
1568 btrfs_put_root(fs_info->tree_root);
1569 btrfs_put_root(fs_info->chunk_root);
1570 btrfs_put_root(fs_info->dev_root);
1571 btrfs_put_root(fs_info->csum_root);
1572 btrfs_put_root(fs_info->quota_root);
1573 btrfs_put_root(fs_info->uuid_root);
1574 btrfs_put_root(fs_info->free_space_root);
1575 btrfs_put_root(fs_info->fs_root);
bd647ce3 1576 btrfs_check_leaked_roots(fs_info);
0d4b0463
JB
1577 kfree(fs_info->super_copy);
1578 kfree(fs_info->super_for_commit);
1579 kvfree(fs_info);
1580}
1581
1582
c00869f1
MX
1583struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1584 struct btrfs_key *location,
1585 bool check_ref)
5eda7b5e
CM
1586{
1587 struct btrfs_root *root;
381cf658 1588 struct btrfs_path *path;
1d4c08e0 1589 struct btrfs_key key;
5eda7b5e
CM
1590 int ret;
1591
edbd8d4e 1592 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
00246528 1593 return btrfs_grab_root(fs_info->tree_root);
edbd8d4e 1594 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
00246528 1595 return btrfs_grab_root(fs_info->extent_root);
8f18cf13 1596 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
00246528 1597 return btrfs_grab_root(fs_info->chunk_root);
8f18cf13 1598 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
00246528 1599 return btrfs_grab_root(fs_info->dev_root);
0403e47e 1600 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
00246528 1601 return btrfs_grab_root(fs_info->csum_root);
bcef60f2 1602 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
00246528 1603 return btrfs_grab_root(fs_info->quota_root) ?
bc44d7c4 1604 fs_info->quota_root : ERR_PTR(-ENOENT);
f7a81ea4 1605 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
00246528 1606 return btrfs_grab_root(fs_info->uuid_root) ?
bc44d7c4 1607 fs_info->uuid_root : ERR_PTR(-ENOENT);
70f6d82e 1608 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
00246528 1609 return btrfs_grab_root(fs_info->free_space_root) ?
bc44d7c4 1610 fs_info->free_space_root : ERR_PTR(-ENOENT);
4df27c4d 1611again:
cb517eab 1612 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1613 if (root) {
bc44d7c4 1614 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1615 btrfs_put_root(root);
48475471 1616 return ERR_PTR(-ENOENT);
bc44d7c4 1617 }
5eda7b5e 1618 return root;
48475471 1619 }
5eda7b5e 1620
83db2aad 1621 root = btrfs_read_tree_root(fs_info->tree_root, location);
5eda7b5e
CM
1622 if (IS_ERR(root))
1623 return root;
3394e160 1624
c00869f1 1625 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1626 ret = -ENOENT;
581bb050 1627 goto fail;
35a30d7c 1628 }
581bb050 1629
cb517eab 1630 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1631 if (ret)
1632 goto fail;
3394e160 1633
381cf658
DS
1634 path = btrfs_alloc_path();
1635 if (!path) {
1636 ret = -ENOMEM;
1637 goto fail;
1638 }
1d4c08e0
DS
1639 key.objectid = BTRFS_ORPHAN_OBJECTID;
1640 key.type = BTRFS_ORPHAN_ITEM_KEY;
1641 key.offset = location->objectid;
1642
1643 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1644 btrfs_free_path(path);
d68fc57b
YZ
1645 if (ret < 0)
1646 goto fail;
1647 if (ret == 0)
27cdeb70 1648 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1649
bc44d7c4
JB
1650 /*
1651 * All roots have two refs on them at all times, one for the mounted fs,
1652 * and one for being in the radix tree. This way we only free the root
1653 * when we are unmounting or deleting the subvolume. We get one ref
1654 * from __setup_root, one for inserting it into the radix tree, and then
1655 * we have the third for returning it, and the caller will put it when
1656 * it's done with the root.
1657 */
00246528 1658 btrfs_grab_root(root);
cb517eab 1659 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1660 if (ret) {
00246528 1661 btrfs_put_root(root);
4df27c4d 1662 if (ret == -EEXIST) {
84db5ccf 1663 btrfs_free_fs_root(root);
4df27c4d
YZ
1664 goto again;
1665 }
1666 goto fail;
0f7d52f4 1667 }
edbd8d4e 1668 return root;
4df27c4d 1669fail:
84db5ccf 1670 btrfs_free_fs_root(root);
4df27c4d 1671 return ERR_PTR(ret);
edbd8d4e
CM
1672}
1673
04160088
CM
1674static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1675{
1676 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1677 int ret = 0;
04160088
CM
1678 struct btrfs_device *device;
1679 struct backing_dev_info *bdi;
b7967db7 1680
1f78160c
XG
1681 rcu_read_lock();
1682 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1683 if (!device->bdev)
1684 continue;
efa7c9f9 1685 bdi = device->bdev->bd_bdi;
ff9ea323 1686 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1687 ret = 1;
1688 break;
1689 }
1690 }
1f78160c 1691 rcu_read_unlock();
04160088
CM
1692 return ret;
1693}
1694
8b712842
CM
1695/*
1696 * called by the kthread helper functions to finally call the bio end_io
1697 * functions. This is where read checksum verification actually happens
1698 */
1699static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1700{
ce9adaa5 1701 struct bio *bio;
97eb6b69 1702 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1703
97eb6b69 1704 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1705 bio = end_io_wq->bio;
ce9adaa5 1706
4e4cbee9 1707 bio->bi_status = end_io_wq->status;
8b712842
CM
1708 bio->bi_private = end_io_wq->private;
1709 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1710 bio_endio(bio);
9be490f1 1711 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1712}
1713
a74a4b97
CM
1714static int cleaner_kthread(void *arg)
1715{
1716 struct btrfs_root *root = arg;
0b246afa 1717 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1718 int again;
a74a4b97 1719
d6fd0ae2 1720 while (1) {
d0278245 1721 again = 0;
a74a4b97 1722
fd340d0f
JB
1723 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1724
d0278245 1725 /* Make the cleaner go to sleep early. */
2ff7e61e 1726 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1727 goto sleep;
1728
90c711ab
ZB
1729 /*
1730 * Do not do anything if we might cause open_ctree() to block
1731 * before we have finished mounting the filesystem.
1732 */
0b246afa 1733 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1734 goto sleep;
1735
0b246afa 1736 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1737 goto sleep;
1738
dc7f370c
MX
1739 /*
1740 * Avoid the problem that we change the status of the fs
1741 * during the above check and trylock.
1742 */
2ff7e61e 1743 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1744 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1745 goto sleep;
76dda93c 1746 }
a74a4b97 1747
2ff7e61e 1748 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1749
d0278245 1750 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1751 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1752
1753 /*
05323cd1
MX
1754 * The defragger has dealt with the R/O remount and umount,
1755 * needn't do anything special here.
d0278245 1756 */
0b246afa 1757 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1758
1759 /*
1760 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1761 * with relocation (btrfs_relocate_chunk) and relocation
1762 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1763 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1764 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1765 * unused block groups.
1766 */
0b246afa 1767 btrfs_delete_unused_bgs(fs_info);
d0278245 1768sleep:
fd340d0f 1769 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1770 if (kthread_should_park())
1771 kthread_parkme();
1772 if (kthread_should_stop())
1773 return 0;
838fe188 1774 if (!again) {
a74a4b97 1775 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1776 schedule();
a74a4b97
CM
1777 __set_current_state(TASK_RUNNING);
1778 }
da288d28 1779 }
a74a4b97
CM
1780}
1781
1782static int transaction_kthread(void *arg)
1783{
1784 struct btrfs_root *root = arg;
0b246afa 1785 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1786 struct btrfs_trans_handle *trans;
1787 struct btrfs_transaction *cur;
8929ecfa 1788 u64 transid;
a944442c 1789 time64_t now;
a74a4b97 1790 unsigned long delay;
914b2007 1791 bool cannot_commit;
a74a4b97
CM
1792
1793 do {
914b2007 1794 cannot_commit = false;
0b246afa
JM
1795 delay = HZ * fs_info->commit_interval;
1796 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1797
0b246afa
JM
1798 spin_lock(&fs_info->trans_lock);
1799 cur = fs_info->running_transaction;
a74a4b97 1800 if (!cur) {
0b246afa 1801 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1802 goto sleep;
1803 }
31153d81 1804
afd48513 1805 now = ktime_get_seconds();
3296bf56 1806 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1807 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1808 (now < cur->start_time ||
0b246afa
JM
1809 now - cur->start_time < fs_info->commit_interval)) {
1810 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1811 delay = HZ * 5;
1812 goto sleep;
1813 }
8929ecfa 1814 transid = cur->transid;
0b246afa 1815 spin_unlock(&fs_info->trans_lock);
56bec294 1816
79787eaa 1817 /* If the file system is aborted, this will always fail. */
354aa0fb 1818 trans = btrfs_attach_transaction(root);
914b2007 1819 if (IS_ERR(trans)) {
354aa0fb
MX
1820 if (PTR_ERR(trans) != -ENOENT)
1821 cannot_commit = true;
79787eaa 1822 goto sleep;
914b2007 1823 }
8929ecfa 1824 if (transid == trans->transid) {
3a45bb20 1825 btrfs_commit_transaction(trans);
8929ecfa 1826 } else {
3a45bb20 1827 btrfs_end_transaction(trans);
8929ecfa 1828 }
a74a4b97 1829sleep:
0b246afa
JM
1830 wake_up_process(fs_info->cleaner_kthread);
1831 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1832
4e121c06 1833 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1834 &fs_info->fs_state)))
2ff7e61e 1835 btrfs_cleanup_transaction(fs_info);
ce63f891 1836 if (!kthread_should_stop() &&
0b246afa 1837 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1838 cannot_commit))
bc5511d0 1839 schedule_timeout_interruptible(delay);
a74a4b97
CM
1840 } while (!kthread_should_stop());
1841 return 0;
1842}
1843
af31f5e5 1844/*
01f0f9da
NB
1845 * This will find the highest generation in the array of root backups. The
1846 * index of the highest array is returned, or -EINVAL if we can't find
1847 * anything.
af31f5e5
CM
1848 *
1849 * We check to make sure the array is valid by comparing the
1850 * generation of the latest root in the array with the generation
1851 * in the super block. If they don't match we pitch it.
1852 */
01f0f9da 1853static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1854{
01f0f9da 1855 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1856 u64 cur;
af31f5e5
CM
1857 struct btrfs_root_backup *root_backup;
1858 int i;
1859
1860 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1861 root_backup = info->super_copy->super_roots + i;
1862 cur = btrfs_backup_tree_root_gen(root_backup);
1863 if (cur == newest_gen)
01f0f9da 1864 return i;
af31f5e5
CM
1865 }
1866
01f0f9da 1867 return -EINVAL;
af31f5e5
CM
1868}
1869
af31f5e5
CM
1870/*
1871 * copy all the root pointers into the super backup array.
1872 * this will bump the backup pointer by one when it is
1873 * done
1874 */
1875static void backup_super_roots(struct btrfs_fs_info *info)
1876{
6ef108dd 1877 const int next_backup = info->backup_root_index;
af31f5e5 1878 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1879
1880 root_backup = info->super_for_commit->super_roots + next_backup;
1881
1882 /*
1883 * make sure all of our padding and empty slots get zero filled
1884 * regardless of which ones we use today
1885 */
1886 memset(root_backup, 0, sizeof(*root_backup));
1887
1888 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1889
1890 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1891 btrfs_set_backup_tree_root_gen(root_backup,
1892 btrfs_header_generation(info->tree_root->node));
1893
1894 btrfs_set_backup_tree_root_level(root_backup,
1895 btrfs_header_level(info->tree_root->node));
1896
1897 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1898 btrfs_set_backup_chunk_root_gen(root_backup,
1899 btrfs_header_generation(info->chunk_root->node));
1900 btrfs_set_backup_chunk_root_level(root_backup,
1901 btrfs_header_level(info->chunk_root->node));
1902
1903 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1904 btrfs_set_backup_extent_root_gen(root_backup,
1905 btrfs_header_generation(info->extent_root->node));
1906 btrfs_set_backup_extent_root_level(root_backup,
1907 btrfs_header_level(info->extent_root->node));
1908
7c7e82a7
CM
1909 /*
1910 * we might commit during log recovery, which happens before we set
1911 * the fs_root. Make sure it is valid before we fill it in.
1912 */
1913 if (info->fs_root && info->fs_root->node) {
1914 btrfs_set_backup_fs_root(root_backup,
1915 info->fs_root->node->start);
1916 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1917 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1918 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1919 btrfs_header_level(info->fs_root->node));
7c7e82a7 1920 }
af31f5e5
CM
1921
1922 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1923 btrfs_set_backup_dev_root_gen(root_backup,
1924 btrfs_header_generation(info->dev_root->node));
1925 btrfs_set_backup_dev_root_level(root_backup,
1926 btrfs_header_level(info->dev_root->node));
1927
1928 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1929 btrfs_set_backup_csum_root_gen(root_backup,
1930 btrfs_header_generation(info->csum_root->node));
1931 btrfs_set_backup_csum_root_level(root_backup,
1932 btrfs_header_level(info->csum_root->node));
1933
1934 btrfs_set_backup_total_bytes(root_backup,
1935 btrfs_super_total_bytes(info->super_copy));
1936 btrfs_set_backup_bytes_used(root_backup,
1937 btrfs_super_bytes_used(info->super_copy));
1938 btrfs_set_backup_num_devices(root_backup,
1939 btrfs_super_num_devices(info->super_copy));
1940
1941 /*
1942 * if we don't copy this out to the super_copy, it won't get remembered
1943 * for the next commit
1944 */
1945 memcpy(&info->super_copy->super_roots,
1946 &info->super_for_commit->super_roots,
1947 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1948}
1949
bd2336b2
NB
1950/*
1951 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1952 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1953 *
1954 * fs_info - filesystem whose backup roots need to be read
1955 * priority - priority of backup root required
1956 *
1957 * Returns backup root index on success and -EINVAL otherwise.
1958 */
1959static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1960{
1961 int backup_index = find_newest_super_backup(fs_info);
1962 struct btrfs_super_block *super = fs_info->super_copy;
1963 struct btrfs_root_backup *root_backup;
1964
1965 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1966 if (priority == 0)
1967 return backup_index;
1968
1969 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1970 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1971 } else {
1972 return -EINVAL;
1973 }
1974
1975 root_backup = super->super_roots + backup_index;
1976
1977 btrfs_set_super_generation(super,
1978 btrfs_backup_tree_root_gen(root_backup));
1979 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980 btrfs_set_super_root_level(super,
1981 btrfs_backup_tree_root_level(root_backup));
1982 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984 /*
1985 * Fixme: the total bytes and num_devices need to match or we should
1986 * need a fsck
1987 */
1988 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990
1991 return backup_index;
1992}
1993
7abadb64
LB
1994/* helper to cleanup workers */
1995static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1996{
dc6e3209 1997 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1998 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1999 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2000 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2001 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2002 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2003 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2004 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2005 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2006 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2007 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2008 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2009 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2010 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2011 if (fs_info->discard_ctl.discard_workers)
2012 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2013 /*
2014 * Now that all other work queues are destroyed, we can safely destroy
2015 * the queues used for metadata I/O, since tasks from those other work
2016 * queues can do metadata I/O operations.
2017 */
2018 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2019 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2020}
2021
2e9f5954
R
2022static void free_root_extent_buffers(struct btrfs_root *root)
2023{
2024 if (root) {
2025 free_extent_buffer(root->node);
2026 free_extent_buffer(root->commit_root);
2027 root->node = NULL;
2028 root->commit_root = NULL;
2029 }
2030}
2031
af31f5e5 2032/* helper to cleanup tree roots */
4273eaff 2033static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2034{
2e9f5954 2035 free_root_extent_buffers(info->tree_root);
655b09fe 2036
2e9f5954
R
2037 free_root_extent_buffers(info->dev_root);
2038 free_root_extent_buffers(info->extent_root);
2039 free_root_extent_buffers(info->csum_root);
2040 free_root_extent_buffers(info->quota_root);
2041 free_root_extent_buffers(info->uuid_root);
4273eaff 2042 if (free_chunk_root)
2e9f5954 2043 free_root_extent_buffers(info->chunk_root);
70f6d82e 2044 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2045}
2046
faa2dbf0 2047void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2048{
2049 int ret;
2050 struct btrfs_root *gang[8];
2051 int i;
2052
2053 while (!list_empty(&fs_info->dead_roots)) {
2054 gang[0] = list_entry(fs_info->dead_roots.next,
2055 struct btrfs_root, root_list);
2056 list_del(&gang[0]->root_list);
2057
27cdeb70 2058 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2059 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2060 } else {
2061 free_extent_buffer(gang[0]->node);
2062 free_extent_buffer(gang[0]->commit_root);
00246528 2063 btrfs_put_root(gang[0]);
171f6537
JB
2064 }
2065 }
2066
2067 while (1) {
2068 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2069 (void **)gang, 0,
2070 ARRAY_SIZE(gang));
2071 if (!ret)
2072 break;
2073 for (i = 0; i < ret; i++)
cb517eab 2074 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2075 }
1a4319cc 2076
fe119a6e 2077 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
1a4319cc 2078 btrfs_free_log_root_tree(NULL, fs_info);
171f6537 2079}
af31f5e5 2080
638aa7ed
ES
2081static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082{
2083 mutex_init(&fs_info->scrub_lock);
2084 atomic_set(&fs_info->scrubs_running, 0);
2085 atomic_set(&fs_info->scrub_pause_req, 0);
2086 atomic_set(&fs_info->scrubs_paused, 0);
2087 atomic_set(&fs_info->scrub_cancel_req, 0);
2088 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2089 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2090}
2091
779a65a4
ES
2092static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093{
2094 spin_lock_init(&fs_info->balance_lock);
2095 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2096 atomic_set(&fs_info->balance_pause_req, 0);
2097 atomic_set(&fs_info->balance_cancel_req, 0);
2098 fs_info->balance_ctl = NULL;
2099 init_waitqueue_head(&fs_info->balance_wait_q);
2100}
2101
6bccf3ab 2102static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2103{
2ff7e61e
JM
2104 struct inode *inode = fs_info->btree_inode;
2105
2106 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107 set_nlink(inode, 1);
f37938e0
ES
2108 /*
2109 * we set the i_size on the btree inode to the max possible int.
2110 * the real end of the address space is determined by all of
2111 * the devices in the system
2112 */
2ff7e61e
JM
2113 inode->i_size = OFFSET_MAX;
2114 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2115
2ff7e61e 2116 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2117 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118 IO_TREE_INODE_IO, inode);
7b439738 2119 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2120 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2121
2ff7e61e 2122 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2123
2ff7e61e
JM
2124 BTRFS_I(inode)->root = fs_info->tree_root;
2125 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127 btrfs_insert_inode_hash(inode);
f37938e0
ES
2128}
2129
ad618368
ES
2130static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131{
ad618368 2132 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2133 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2134 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2135}
2136
f9e92e40
ES
2137static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138{
2139 spin_lock_init(&fs_info->qgroup_lock);
2140 mutex_init(&fs_info->qgroup_ioctl_lock);
2141 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2142 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143 fs_info->qgroup_seq = 1;
f9e92e40 2144 fs_info->qgroup_ulist = NULL;
d2c609b8 2145 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2146 mutex_init(&fs_info->qgroup_rescan_lock);
2147}
2148
2a458198
ES
2149static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150 struct btrfs_fs_devices *fs_devices)
2151{
f7b885be 2152 u32 max_active = fs_info->thread_pool_size;
6f011058 2153 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2154
2155 fs_info->workers =
cb001095
JM
2156 btrfs_alloc_workqueue(fs_info, "worker",
2157 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2158
2159 fs_info->delalloc_workers =
cb001095
JM
2160 btrfs_alloc_workqueue(fs_info, "delalloc",
2161 flags, max_active, 2);
2a458198
ES
2162
2163 fs_info->flush_workers =
cb001095
JM
2164 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165 flags, max_active, 0);
2a458198
ES
2166
2167 fs_info->caching_workers =
cb001095 2168 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2169
2a458198 2170 fs_info->fixup_workers =
cb001095 2171 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2172
2173 /*
2174 * endios are largely parallel and should have a very
2175 * low idle thresh
2176 */
2177 fs_info->endio_workers =
cb001095 2178 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2179 fs_info->endio_meta_workers =
cb001095
JM
2180 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2181 max_active, 4);
2a458198 2182 fs_info->endio_meta_write_workers =
cb001095
JM
2183 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2184 max_active, 2);
2a458198 2185 fs_info->endio_raid56_workers =
cb001095
JM
2186 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2187 max_active, 4);
2a458198 2188 fs_info->endio_repair_workers =
cb001095 2189 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2190 fs_info->rmw_workers =
cb001095 2191 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2192 fs_info->endio_write_workers =
cb001095
JM
2193 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2194 max_active, 2);
2a458198 2195 fs_info->endio_freespace_worker =
cb001095
JM
2196 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2197 max_active, 0);
2a458198 2198 fs_info->delayed_workers =
cb001095
JM
2199 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2200 max_active, 0);
2a458198 2201 fs_info->readahead_workers =
cb001095
JM
2202 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2203 max_active, 2);
2a458198 2204 fs_info->qgroup_rescan_workers =
cb001095 2205 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2206 fs_info->discard_ctl.discard_workers =
2207 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2208
2209 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2210 fs_info->flush_workers &&
2a458198
ES
2211 fs_info->endio_workers && fs_info->endio_meta_workers &&
2212 fs_info->endio_meta_write_workers &&
2213 fs_info->endio_repair_workers &&
2214 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2215 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2216 fs_info->caching_workers && fs_info->readahead_workers &&
2217 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2218 fs_info->qgroup_rescan_workers &&
2219 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2220 return -ENOMEM;
2221 }
2222
2223 return 0;
2224}
2225
6d97c6e3
JT
2226static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2227{
2228 struct crypto_shash *csum_shash;
b4e967be 2229 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2230
b4e967be 2231 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2232
2233 if (IS_ERR(csum_shash)) {
2234 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2235 csum_driver);
6d97c6e3
JT
2236 return PTR_ERR(csum_shash);
2237 }
2238
2239 fs_info->csum_shash = csum_shash;
2240
2241 return 0;
2242}
2243
63443bf5
ES
2244static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2245 struct btrfs_fs_devices *fs_devices)
2246{
2247 int ret;
63443bf5
ES
2248 struct btrfs_root *log_tree_root;
2249 struct btrfs_super_block *disk_super = fs_info->super_copy;
2250 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2251 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2252
2253 if (fs_devices->rw_devices == 0) {
f14d104d 2254 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2255 return -EIO;
2256 }
2257
96dfcb46
JB
2258 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2259 GFP_KERNEL);
63443bf5
ES
2260 if (!log_tree_root)
2261 return -ENOMEM;
2262
2ff7e61e 2263 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2264 fs_info->generation + 1,
2265 level, NULL);
64c043de 2266 if (IS_ERR(log_tree_root->node)) {
f14d104d 2267 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2268 ret = PTR_ERR(log_tree_root->node);
00246528 2269 btrfs_put_root(log_tree_root);
0eeff236 2270 return ret;
64c043de 2271 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2272 btrfs_err(fs_info, "failed to read log tree");
63443bf5 2273 free_extent_buffer(log_tree_root->node);
00246528 2274 btrfs_put_root(log_tree_root);
63443bf5
ES
2275 return -EIO;
2276 }
2277 /* returns with log_tree_root freed on success */
2278 ret = btrfs_recover_log_trees(log_tree_root);
2279 if (ret) {
0b246afa
JM
2280 btrfs_handle_fs_error(fs_info, ret,
2281 "Failed to recover log tree");
63443bf5 2282 free_extent_buffer(log_tree_root->node);
00246528 2283 btrfs_put_root(log_tree_root);
63443bf5
ES
2284 return ret;
2285 }
2286
bc98a42c 2287 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2288 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2289 if (ret)
2290 return ret;
2291 }
2292
2293 return 0;
2294}
2295
6bccf3ab 2296static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2297{
6bccf3ab 2298 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2299 struct btrfs_root *root;
4bbcaa64
ES
2300 struct btrfs_key location;
2301 int ret;
2302
6bccf3ab
JM
2303 BUG_ON(!fs_info->tree_root);
2304
4bbcaa64
ES
2305 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2306 location.type = BTRFS_ROOT_ITEM_KEY;
2307 location.offset = 0;
2308
a4f3d2c4 2309 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2310 if (IS_ERR(root)) {
2311 ret = PTR_ERR(root);
2312 goto out;
2313 }
a4f3d2c4
DS
2314 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315 fs_info->extent_root = root;
4bbcaa64
ES
2316
2317 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2318 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2319 if (IS_ERR(root)) {
2320 ret = PTR_ERR(root);
2321 goto out;
2322 }
a4f3d2c4
DS
2323 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2324 fs_info->dev_root = root;
4bbcaa64
ES
2325 btrfs_init_devices_late(fs_info);
2326
2327 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2328 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2329 if (IS_ERR(root)) {
2330 ret = PTR_ERR(root);
2331 goto out;
2332 }
a4f3d2c4
DS
2333 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2334 fs_info->csum_root = root;
4bbcaa64
ES
2335
2336 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2337 root = btrfs_read_tree_root(tree_root, &location);
2338 if (!IS_ERR(root)) {
2339 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2340 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2341 fs_info->quota_root = root;
4bbcaa64
ES
2342 }
2343
2344 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2345 root = btrfs_read_tree_root(tree_root, &location);
2346 if (IS_ERR(root)) {
2347 ret = PTR_ERR(root);
4bbcaa64 2348 if (ret != -ENOENT)
f50f4353 2349 goto out;
4bbcaa64 2350 } else {
a4f3d2c4
DS
2351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352 fs_info->uuid_root = root;
4bbcaa64
ES
2353 }
2354
70f6d82e
OS
2355 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2356 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2357 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2358 if (IS_ERR(root)) {
2359 ret = PTR_ERR(root);
2360 goto out;
2361 }
70f6d82e
OS
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 fs_info->free_space_root = root;
2364 }
2365
4bbcaa64 2366 return 0;
f50f4353
LB
2367out:
2368 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2369 location.objectid, ret);
2370 return ret;
4bbcaa64
ES
2371}
2372
069ec957
QW
2373/*
2374 * Real super block validation
2375 * NOTE: super csum type and incompat features will not be checked here.
2376 *
2377 * @sb: super block to check
2378 * @mirror_num: the super block number to check its bytenr:
2379 * 0 the primary (1st) sb
2380 * 1, 2 2nd and 3rd backup copy
2381 * -1 skip bytenr check
2382 */
2383static int validate_super(struct btrfs_fs_info *fs_info,
2384 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2385{
21a852b0
QW
2386 u64 nodesize = btrfs_super_nodesize(sb);
2387 u64 sectorsize = btrfs_super_sectorsize(sb);
2388 int ret = 0;
2389
2390 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2391 btrfs_err(fs_info, "no valid FS found");
2392 ret = -EINVAL;
2393 }
2394 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2395 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2396 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2397 ret = -EINVAL;
2398 }
2399 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2400 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2401 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2402 ret = -EINVAL;
2403 }
2404 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2405 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2406 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2407 ret = -EINVAL;
2408 }
2409 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2410 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2411 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2412 ret = -EINVAL;
2413 }
2414
2415 /*
2416 * Check sectorsize and nodesize first, other check will need it.
2417 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2418 */
2419 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2420 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2421 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2422 ret = -EINVAL;
2423 }
2424 /* Only PAGE SIZE is supported yet */
2425 if (sectorsize != PAGE_SIZE) {
2426 btrfs_err(fs_info,
2427 "sectorsize %llu not supported yet, only support %lu",
2428 sectorsize, PAGE_SIZE);
2429 ret = -EINVAL;
2430 }
2431 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2432 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2433 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2434 ret = -EINVAL;
2435 }
2436 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2437 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2438 le32_to_cpu(sb->__unused_leafsize), nodesize);
2439 ret = -EINVAL;
2440 }
2441
2442 /* Root alignment check */
2443 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2444 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2445 btrfs_super_root(sb));
2446 ret = -EINVAL;
2447 }
2448 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2449 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2450 btrfs_super_chunk_root(sb));
2451 ret = -EINVAL;
2452 }
2453 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2454 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2455 btrfs_super_log_root(sb));
2456 ret = -EINVAL;
2457 }
2458
de37aa51 2459 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2460 BTRFS_FSID_SIZE) != 0) {
21a852b0 2461 btrfs_err(fs_info,
7239ff4b 2462 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2463 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2464 ret = -EINVAL;
2465 }
2466
2467 /*
2468 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2469 * done later
2470 */
2471 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2472 btrfs_err(fs_info, "bytes_used is too small %llu",
2473 btrfs_super_bytes_used(sb));
2474 ret = -EINVAL;
2475 }
2476 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2477 btrfs_err(fs_info, "invalid stripesize %u",
2478 btrfs_super_stripesize(sb));
2479 ret = -EINVAL;
2480 }
2481 if (btrfs_super_num_devices(sb) > (1UL << 31))
2482 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2483 btrfs_super_num_devices(sb));
2484 if (btrfs_super_num_devices(sb) == 0) {
2485 btrfs_err(fs_info, "number of devices is 0");
2486 ret = -EINVAL;
2487 }
2488
069ec957
QW
2489 if (mirror_num >= 0 &&
2490 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2491 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2492 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2493 ret = -EINVAL;
2494 }
2495
2496 /*
2497 * Obvious sys_chunk_array corruptions, it must hold at least one key
2498 * and one chunk
2499 */
2500 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2501 btrfs_err(fs_info, "system chunk array too big %u > %u",
2502 btrfs_super_sys_array_size(sb),
2503 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2504 ret = -EINVAL;
2505 }
2506 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2507 + sizeof(struct btrfs_chunk)) {
2508 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2509 btrfs_super_sys_array_size(sb),
2510 sizeof(struct btrfs_disk_key)
2511 + sizeof(struct btrfs_chunk));
2512 ret = -EINVAL;
2513 }
2514
2515 /*
2516 * The generation is a global counter, we'll trust it more than the others
2517 * but it's still possible that it's the one that's wrong.
2518 */
2519 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2520 btrfs_warn(fs_info,
2521 "suspicious: generation < chunk_root_generation: %llu < %llu",
2522 btrfs_super_generation(sb),
2523 btrfs_super_chunk_root_generation(sb));
2524 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2525 && btrfs_super_cache_generation(sb) != (u64)-1)
2526 btrfs_warn(fs_info,
2527 "suspicious: generation < cache_generation: %llu < %llu",
2528 btrfs_super_generation(sb),
2529 btrfs_super_cache_generation(sb));
2530
2531 return ret;
2532}
2533
069ec957
QW
2534/*
2535 * Validation of super block at mount time.
2536 * Some checks already done early at mount time, like csum type and incompat
2537 * flags will be skipped.
2538 */
2539static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2540{
2541 return validate_super(fs_info, fs_info->super_copy, 0);
2542}
2543
75cb857d
QW
2544/*
2545 * Validation of super block at write time.
2546 * Some checks like bytenr check will be skipped as their values will be
2547 * overwritten soon.
2548 * Extra checks like csum type and incompat flags will be done here.
2549 */
2550static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2551 struct btrfs_super_block *sb)
2552{
2553 int ret;
2554
2555 ret = validate_super(fs_info, sb, -1);
2556 if (ret < 0)
2557 goto out;
e7e16f48 2558 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2559 ret = -EUCLEAN;
2560 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2561 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2562 goto out;
2563 }
2564 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2565 ret = -EUCLEAN;
2566 btrfs_err(fs_info,
2567 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2568 btrfs_super_incompat_flags(sb),
2569 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2570 goto out;
2571 }
2572out:
2573 if (ret < 0)
2574 btrfs_err(fs_info,
2575 "super block corruption detected before writing it to disk");
2576 return ret;
2577}
2578
6ef108dd 2579static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2580{
6ef108dd 2581 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2582 struct btrfs_super_block *sb = fs_info->super_copy;
2583 struct btrfs_root *tree_root = fs_info->tree_root;
2584 bool handle_error = false;
2585 int ret = 0;
2586 int i;
2587
2588 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2589 u64 generation;
2590 int level;
2591
2592 if (handle_error) {
2593 if (!IS_ERR(tree_root->node))
2594 free_extent_buffer(tree_root->node);
2595 tree_root->node = NULL;
2596
2597 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2598 break;
2599
2600 free_root_pointers(fs_info, 0);
2601
2602 /*
2603 * Don't use the log in recovery mode, it won't be
2604 * valid
2605 */
2606 btrfs_set_super_log_root(sb, 0);
2607
2608 /* We can't trust the free space cache either */
2609 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2610
2611 ret = read_backup_root(fs_info, i);
6ef108dd 2612 backup_index = ret;
b8522a1e
NB
2613 if (ret < 0)
2614 return ret;
2615 }
2616 generation = btrfs_super_generation(sb);
2617 level = btrfs_super_root_level(sb);
2618 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2619 generation, level, NULL);
2620 if (IS_ERR(tree_root->node) ||
2621 !extent_buffer_uptodate(tree_root->node)) {
2622 handle_error = true;
2623
2624 if (IS_ERR(tree_root->node))
2625 ret = PTR_ERR(tree_root->node);
2626 else if (!extent_buffer_uptodate(tree_root->node))
2627 ret = -EUCLEAN;
2628
2629 btrfs_warn(fs_info, "failed to read tree root");
2630 continue;
2631 }
2632
2633 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2634 tree_root->commit_root = btrfs_root_node(tree_root);
2635 btrfs_set_root_refs(&tree_root->root_item, 1);
2636
336a0d8d
NB
2637 /*
2638 * No need to hold btrfs_root::objectid_mutex since the fs
2639 * hasn't been fully initialised and we are the only user
2640 */
b8522a1e
NB
2641 ret = btrfs_find_highest_objectid(tree_root,
2642 &tree_root->highest_objectid);
2643 if (ret < 0) {
b8522a1e
NB
2644 handle_error = true;
2645 continue;
2646 }
2647
2648 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2649
2650 ret = btrfs_read_roots(fs_info);
2651 if (ret < 0) {
2652 handle_error = true;
2653 continue;
2654 }
2655
2656 /* All successful */
2657 fs_info->generation = generation;
2658 fs_info->last_trans_committed = generation;
6ef108dd
NB
2659
2660 /* Always begin writing backup roots after the one being used */
2661 if (backup_index < 0) {
2662 fs_info->backup_root_index = 0;
2663 } else {
2664 fs_info->backup_root_index = backup_index + 1;
2665 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2666 }
b8522a1e
NB
2667 break;
2668 }
2669
2670 return ret;
2671}
2672
8260edba 2673void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2674{
76dda93c 2675 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2676 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2677 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2678 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2679 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2680 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2681 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2682 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2683 spin_lock_init(&fs_info->trans_lock);
76dda93c 2684 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2685 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2686 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2687 spin_lock_init(&fs_info->super_lock);
f28491e0 2688 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2689 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2690 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2691 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2692 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2693 mutex_init(&fs_info->reloc_mutex);
573bfb72 2694 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2695 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2696
0b86a832 2697 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2698 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2699 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2700 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2701#ifdef CONFIG_BTRFS_DEBUG
2702 INIT_LIST_HEAD(&fs_info->allocated_roots);
2703#endif
c8bf1b67 2704 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2705 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2706 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2707 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2708 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2709 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2710 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2711 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2712 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2713 BTRFS_BLOCK_RSV_DELREFS);
2714
771ed689 2715 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2716 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2717 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2718 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2719 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2720 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2721 fs_info->metadata_ratio = 0;
4cb5300b 2722 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2723 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2724 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2725 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2726 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2727 /* readahead state */
d0164adc 2728 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2729 spin_lock_init(&fs_info->reada_lock);
fd708b81 2730 btrfs_init_ref_verify(fs_info);
c8b97818 2731
b34b086c
CM
2732 fs_info->thread_pool_size = min_t(unsigned long,
2733 num_online_cpus() + 2, 8);
0afbaf8c 2734
199c2a9c
MX
2735 INIT_LIST_HEAD(&fs_info->ordered_roots);
2736 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2737
638aa7ed 2738 btrfs_init_scrub(fs_info);
21adbd5c
SB
2739#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2740 fs_info->check_integrity_print_mask = 0;
2741#endif
779a65a4 2742 btrfs_init_balance(fs_info);
21c7e756 2743 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2744
0f9dd46c 2745 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2746 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2747 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2748
fe119a6e
NB
2749 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2750 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2751 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2752
5a3f23d5 2753 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2754 mutex_init(&fs_info->tree_log_mutex);
925baedd 2755 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2756 mutex_init(&fs_info->transaction_kthread_mutex);
2757 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2758 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2759 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2760 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2761 init_rwsem(&fs_info->subvol_sem);
803b2f54 2762 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2763
ad618368 2764 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2765 btrfs_init_qgroup(fs_info);
b0643e59 2766 btrfs_discard_init(fs_info);
416ac51d 2767
fa9c0d79
CM
2768 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2769 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2770
e6dcd2dc 2771 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2772 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2773 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2774 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2775 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2776
da17066c
JM
2777 /* Usable values until the real ones are cached from the superblock */
2778 fs_info->nodesize = 4096;
2779 fs_info->sectorsize = 4096;
2780 fs_info->stripesize = 4096;
2781
eede2bf3
OS
2782 spin_lock_init(&fs_info->swapfile_pins_lock);
2783 fs_info->swapfile_pins = RB_ROOT;
2784
9e967495 2785 fs_info->send_in_progress = 0;
8260edba
JB
2786}
2787
2788static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2789{
2790 int ret;
2791
2792 fs_info->sb = sb;
2793 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2794 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2795
ae18c37a
JB
2796 ret = init_srcu_struct(&fs_info->subvol_srcu);
2797 if (ret)
2798 return ret;
2799
2800 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2801 if (ret)
2802 goto fail;
2803
2804 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2805 if (ret)
2806 goto fail;
2807
2808 fs_info->dirty_metadata_batch = PAGE_SIZE *
2809 (1 + ilog2(nr_cpu_ids));
2810
2811 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2812 if (ret)
2813 goto fail;
2814
2815 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2816 GFP_KERNEL);
2817 if (ret)
2818 goto fail;
2819
2820 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2821 GFP_KERNEL);
2822 if (!fs_info->delayed_root) {
2823 ret = -ENOMEM;
2824 goto fail;
2825 }
2826 btrfs_init_delayed_root(fs_info->delayed_root);
2827
53b381b3 2828 ret = btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2829 if (ret)
2830 goto fail;
2831
2832 return 0;
2833fail:
2834 cleanup_srcu_struct(&fs_info->subvol_srcu);
2835 return ret;
2836}
2837
97f4dd09
NB
2838static int btrfs_uuid_rescan_kthread(void *data)
2839{
2840 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2841 int ret;
2842
2843 /*
2844 * 1st step is to iterate through the existing UUID tree and
2845 * to delete all entries that contain outdated data.
2846 * 2nd step is to add all missing entries to the UUID tree.
2847 */
2848 ret = btrfs_uuid_tree_iterate(fs_info);
2849 if (ret < 0) {
2850 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
2851 up(&fs_info->uuid_tree_rescan_sem);
2852 return ret;
2853 }
2854 return btrfs_uuid_scan_kthread(data);
2855}
2856
2857static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2858{
2859 struct task_struct *task;
2860
2861 down(&fs_info->uuid_tree_rescan_sem);
2862 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2863 if (IS_ERR(task)) {
2864 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2865 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2866 up(&fs_info->uuid_tree_rescan_sem);
2867 return PTR_ERR(task);
2868 }
2869
2870 return 0;
2871}
2872
ae18c37a
JB
2873int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2874 char *options)
2875{
2876 u32 sectorsize;
2877 u32 nodesize;
2878 u32 stripesize;
2879 u64 generation;
2880 u64 features;
2881 u16 csum_type;
2882 struct btrfs_key location;
ae18c37a
JB
2883 struct btrfs_super_block *disk_super;
2884 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2885 struct btrfs_root *tree_root;
2886 struct btrfs_root *chunk_root;
2887 int ret;
2888 int err = -EINVAL;
2889 int clear_free_space_tree = 0;
2890 int level;
2891
8260edba 2892 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2893 if (ret) {
83c8266a 2894 err = ret;
ae18c37a 2895 goto fail;
53b381b3
DW
2896 }
2897
ae18c37a
JB
2898 /* These need to be init'ed before we start creating inodes and such. */
2899 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2900 GFP_KERNEL);
2901 fs_info->tree_root = tree_root;
2902 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2903 GFP_KERNEL);
2904 fs_info->chunk_root = chunk_root;
2905 if (!tree_root || !chunk_root) {
2906 err = -ENOMEM;
2907 goto fail_srcu;
2908 }
2909
2910 fs_info->btree_inode = new_inode(sb);
2911 if (!fs_info->btree_inode) {
2912 err = -ENOMEM;
2913 goto fail_srcu;
2914 }
2915 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2916 btrfs_init_btree_inode(fs_info);
2917
3c4bb26b 2918 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2919
2920 /*
2921 * Read super block and check the signature bytes only
2922 */
8f32380d
JT
2923 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2924 if (IS_ERR(disk_super)) {
2925 err = PTR_ERR(disk_super);
16cdcec7 2926 goto fail_alloc;
20b45077 2927 }
39279cc3 2928
8dc3f22c
JT
2929 /*
2930 * Verify the type first, if that or the the checksum value are
2931 * corrupted, we'll find out
2932 */
8f32380d 2933 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2934 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2935 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2936 csum_type);
8dc3f22c 2937 err = -EINVAL;
8f32380d 2938 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2939 goto fail_alloc;
2940 }
2941
6d97c6e3
JT
2942 ret = btrfs_init_csum_hash(fs_info, csum_type);
2943 if (ret) {
2944 err = ret;
8f32380d 2945 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2946 goto fail_alloc;
2947 }
2948
1104a885
DS
2949 /*
2950 * We want to check superblock checksum, the type is stored inside.
2951 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2952 */
8f32380d 2953 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2954 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2955 err = -EINVAL;
8f32380d 2956 btrfs_release_disk_super(disk_super);
141386e1 2957 goto fail_alloc;
1104a885
DS
2958 }
2959
2960 /*
2961 * super_copy is zeroed at allocation time and we never touch the
2962 * following bytes up to INFO_SIZE, the checksum is calculated from
2963 * the whole block of INFO_SIZE
2964 */
8f32380d
JT
2965 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2966 btrfs_release_disk_super(disk_super);
5f39d397 2967
fbc6feae
NB
2968 disk_super = fs_info->super_copy;
2969
de37aa51
NB
2970 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2971 BTRFS_FSID_SIZE));
2972
7239ff4b 2973 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2974 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2975 fs_info->super_copy->metadata_uuid,
2976 BTRFS_FSID_SIZE));
7239ff4b 2977 }
0b86a832 2978
fbc6feae
NB
2979 features = btrfs_super_flags(disk_super);
2980 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2981 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2982 btrfs_set_super_flags(disk_super, features);
2983 btrfs_info(fs_info,
2984 "found metadata UUID change in progress flag, clearing");
2985 }
2986
2987 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2988 sizeof(*fs_info->super_for_commit));
de37aa51 2989
069ec957 2990 ret = btrfs_validate_mount_super(fs_info);
1104a885 2991 if (ret) {
05135f59 2992 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2993 err = -EINVAL;
141386e1 2994 goto fail_alloc;
1104a885
DS
2995 }
2996
0f7d52f4 2997 if (!btrfs_super_root(disk_super))
141386e1 2998 goto fail_alloc;
0f7d52f4 2999
acce952b 3000 /* check FS state, whether FS is broken. */
87533c47
MX
3001 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3002 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3003
75e7cb7f
LB
3004 /*
3005 * In the long term, we'll store the compression type in the super
3006 * block, and it'll be used for per file compression control.
3007 */
3008 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3009
2ff7e61e 3010 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3011 if (ret) {
3012 err = ret;
141386e1 3013 goto fail_alloc;
2b82032c 3014 }
dfe25020 3015
f2b636e8
JB
3016 features = btrfs_super_incompat_flags(disk_super) &
3017 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3018 if (features) {
05135f59
DS
3019 btrfs_err(fs_info,
3020 "cannot mount because of unsupported optional features (%llx)",
3021 features);
f2b636e8 3022 err = -EINVAL;
141386e1 3023 goto fail_alloc;
f2b636e8
JB
3024 }
3025
5d4f98a2 3026 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3027 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3028 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3029 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3030 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3031 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3032
3173a18f 3033 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3034 btrfs_info(fs_info, "has skinny extents");
3173a18f 3035
727011e0
CM
3036 /*
3037 * flag our filesystem as having big metadata blocks if
3038 * they are bigger than the page size
3039 */
09cbfeaf 3040 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3041 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3042 btrfs_info(fs_info,
3043 "flagging fs with big metadata feature");
727011e0
CM
3044 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3045 }
3046
bc3f116f 3047 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3048 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3049 stripesize = sectorsize;
707e8a07 3050 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3051 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3052
da17066c
JM
3053 /* Cache block sizes */
3054 fs_info->nodesize = nodesize;
3055 fs_info->sectorsize = sectorsize;
3056 fs_info->stripesize = stripesize;
3057
bc3f116f
CM
3058 /*
3059 * mixed block groups end up with duplicate but slightly offset
3060 * extent buffers for the same range. It leads to corruptions
3061 */
3062 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3063 (sectorsize != nodesize)) {
05135f59
DS
3064 btrfs_err(fs_info,
3065"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3066 nodesize, sectorsize);
141386e1 3067 goto fail_alloc;
bc3f116f
CM
3068 }
3069
ceda0864
MX
3070 /*
3071 * Needn't use the lock because there is no other task which will
3072 * update the flag.
3073 */
a6fa6fae 3074 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3075
f2b636e8
JB
3076 features = btrfs_super_compat_ro_flags(disk_super) &
3077 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3078 if (!sb_rdonly(sb) && features) {
05135f59
DS
3079 btrfs_err(fs_info,
3080 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3081 features);
f2b636e8 3082 err = -EINVAL;
141386e1 3083 goto fail_alloc;
f2b636e8 3084 }
61d92c32 3085
2a458198
ES
3086 ret = btrfs_init_workqueues(fs_info, fs_devices);
3087 if (ret) {
3088 err = ret;
0dc3b84a
JB
3089 goto fail_sb_buffer;
3090 }
4543df7e 3091
9e11ceee
JK
3092 sb->s_bdi->congested_fn = btrfs_congested_fn;
3093 sb->s_bdi->congested_data = fs_info;
3094 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3095 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3096 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3097 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3098
a061fc8d
CM
3099 sb->s_blocksize = sectorsize;
3100 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3101 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3102
925baedd 3103 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3104 ret = btrfs_read_sys_array(fs_info);
925baedd 3105 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3106 if (ret) {
05135f59 3107 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3108 goto fail_sb_buffer;
84eed90f 3109 }
0b86a832 3110
84234f3a 3111 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3112 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3113
2ff7e61e 3114 chunk_root->node = read_tree_block(fs_info,
0b86a832 3115 btrfs_super_chunk_root(disk_super),
581c1760 3116 generation, level, NULL);
64c043de
LB
3117 if (IS_ERR(chunk_root->node) ||
3118 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3119 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3120 if (!IS_ERR(chunk_root->node))
3121 free_extent_buffer(chunk_root->node);
95ab1f64 3122 chunk_root->node = NULL;
af31f5e5 3123 goto fail_tree_roots;
83121942 3124 }
5d4f98a2
YZ
3125 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3126 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3127
e17cade2 3128 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3129 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3130
5b4aacef 3131 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3132 if (ret) {
05135f59 3133 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3134 goto fail_tree_roots;
2b82032c 3135 }
0b86a832 3136
8dabb742 3137 /*
9b99b115
AJ
3138 * Keep the devid that is marked to be the target device for the
3139 * device replace procedure
8dabb742 3140 */
9b99b115 3141 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3142
a6b0d5c8 3143 if (!fs_devices->latest_bdev) {
05135f59 3144 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3145 goto fail_tree_roots;
3146 }
3147
b8522a1e 3148 ret = init_tree_roots(fs_info);
4bbcaa64 3149 if (ret)
b8522a1e 3150 goto fail_tree_roots;
8929ecfa 3151
cf90d884
QW
3152 ret = btrfs_verify_dev_extents(fs_info);
3153 if (ret) {
3154 btrfs_err(fs_info,
3155 "failed to verify dev extents against chunks: %d",
3156 ret);
3157 goto fail_block_groups;
3158 }
68310a5e
ID
3159 ret = btrfs_recover_balance(fs_info);
3160 if (ret) {
05135f59 3161 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3162 goto fail_block_groups;
3163 }
3164
733f4fbb
SB
3165 ret = btrfs_init_dev_stats(fs_info);
3166 if (ret) {
05135f59 3167 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3168 goto fail_block_groups;
3169 }
3170
8dabb742
SB
3171 ret = btrfs_init_dev_replace(fs_info);
3172 if (ret) {
05135f59 3173 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3174 goto fail_block_groups;
3175 }
3176
9b99b115 3177 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3178
c6761a9e 3179 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3180 if (ret) {
05135f59
DS
3181 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3182 ret);
b7c35e81
AJ
3183 goto fail_block_groups;
3184 }
3185
96f3136e 3186 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3187 if (ret) {
05135f59 3188 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3189 goto fail_fsdev_sysfs;
c59021f8 3190 }
3191
c59021f8 3192 ret = btrfs_init_space_info(fs_info);
3193 if (ret) {
05135f59 3194 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3195 goto fail_sysfs;
c59021f8 3196 }
3197
5b4aacef 3198 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3199 if (ret) {
05135f59 3200 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3201 goto fail_sysfs;
1b1d1f66 3202 }
4330e183 3203
6528b99d 3204 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3205 btrfs_warn(fs_info,
52042d8e 3206 "writable mount is not allowed due to too many missing devices");
2365dd3c 3207 goto fail_sysfs;
292fd7fc 3208 }
9078a3e1 3209
a74a4b97
CM
3210 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3211 "btrfs-cleaner");
57506d50 3212 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3213 goto fail_sysfs;
a74a4b97
CM
3214
3215 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3216 tree_root,
3217 "btrfs-transaction");
57506d50 3218 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3219 goto fail_cleaner;
a74a4b97 3220
583b7231 3221 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3222 !fs_info->fs_devices->rotating) {
583b7231 3223 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3224 }
3225
572d9ab7 3226 /*
01327610 3227 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3228 * not have to wait for transaction commit
3229 */
3230 btrfs_apply_pending_changes(fs_info);
3818aea2 3231
21adbd5c 3232#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3233 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3234 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3235 btrfs_test_opt(fs_info,
21adbd5c
SB
3236 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3237 1 : 0,
3238 fs_info->check_integrity_print_mask);
3239 if (ret)
05135f59
DS
3240 btrfs_warn(fs_info,
3241 "failed to initialize integrity check module: %d",
3242 ret);
21adbd5c
SB
3243 }
3244#endif
bcef60f2
AJ
3245 ret = btrfs_read_qgroup_config(fs_info);
3246 if (ret)
3247 goto fail_trans_kthread;
21adbd5c 3248
fd708b81
JB
3249 if (btrfs_build_ref_tree(fs_info))
3250 btrfs_err(fs_info, "couldn't build ref tree");
3251
96da0919
QW
3252 /* do not make disk changes in broken FS or nologreplay is given */
3253 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3254 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3255 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3256 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3257 if (ret) {
63443bf5 3258 err = ret;
28c16cbb 3259 goto fail_qgroup;
79787eaa 3260 }
e02119d5 3261 }
1a40e23b 3262
6bccf3ab 3263 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3264 if (ret)
28c16cbb 3265 goto fail_qgroup;
76dda93c 3266
bc98a42c 3267 if (!sb_rdonly(sb)) {
d68fc57b 3268 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3269 if (ret)
28c16cbb 3270 goto fail_qgroup;
90c711ab
ZB
3271
3272 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3273 ret = btrfs_recover_relocation(tree_root);
90c711ab 3274 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3275 if (ret < 0) {
05135f59
DS
3276 btrfs_warn(fs_info, "failed to recover relocation: %d",
3277 ret);
d7ce5843 3278 err = -EINVAL;
bcef60f2 3279 goto fail_qgroup;
d7ce5843 3280 }
7c2ca468 3281 }
1a40e23b 3282
3de4586c
CM
3283 location.objectid = BTRFS_FS_TREE_OBJECTID;
3284 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3285 location.offset = 0;
3de4586c 3286
3619c94f 3287 fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3140c9a3
DC
3288 if (IS_ERR(fs_info->fs_root)) {
3289 err = PTR_ERR(fs_info->fs_root);
f50f4353 3290 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3291 fs_info->fs_root = NULL;
bcef60f2 3292 goto fail_qgroup;
3140c9a3 3293 }
c289811c 3294
bc98a42c 3295 if (sb_rdonly(sb))
2b6ba629 3296 return 0;
59641015 3297
f8d468a1
OS
3298 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3299 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3300 clear_free_space_tree = 1;
3301 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3302 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3303 btrfs_warn(fs_info, "free space tree is invalid");
3304 clear_free_space_tree = 1;
3305 }
3306
3307 if (clear_free_space_tree) {
f8d468a1
OS
3308 btrfs_info(fs_info, "clearing free space tree");
3309 ret = btrfs_clear_free_space_tree(fs_info);
3310 if (ret) {
3311 btrfs_warn(fs_info,
3312 "failed to clear free space tree: %d", ret);
6bccf3ab 3313 close_ctree(fs_info);
f8d468a1
OS
3314 return ret;
3315 }
3316 }
3317
0b246afa 3318 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3319 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3320 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3321 ret = btrfs_create_free_space_tree(fs_info);
3322 if (ret) {
05135f59
DS
3323 btrfs_warn(fs_info,
3324 "failed to create free space tree: %d", ret);
6bccf3ab 3325 close_ctree(fs_info);
511711af
CM
3326 return ret;
3327 }
3328 }
3329
2b6ba629
ID
3330 down_read(&fs_info->cleanup_work_sem);
3331 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3332 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3333 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3334 close_ctree(fs_info);
2b6ba629
ID
3335 return ret;
3336 }
3337 up_read(&fs_info->cleanup_work_sem);
59641015 3338
2b6ba629
ID
3339 ret = btrfs_resume_balance_async(fs_info);
3340 if (ret) {
05135f59 3341 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3342 close_ctree(fs_info);
2b6ba629 3343 return ret;
e3acc2a6
JB
3344 }
3345
8dabb742
SB
3346 ret = btrfs_resume_dev_replace_async(fs_info);
3347 if (ret) {
05135f59 3348 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3349 close_ctree(fs_info);
8dabb742
SB
3350 return ret;
3351 }
3352
b382a324 3353 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3354 btrfs_discard_resume(fs_info);
b382a324 3355
4bbcaa64 3356 if (!fs_info->uuid_root) {
05135f59 3357 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3358 ret = btrfs_create_uuid_tree(fs_info);
3359 if (ret) {
05135f59
DS
3360 btrfs_warn(fs_info,
3361 "failed to create the UUID tree: %d", ret);
6bccf3ab 3362 close_ctree(fs_info);
f7a81ea4
SB
3363 return ret;
3364 }
0b246afa 3365 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3366 fs_info->generation !=
3367 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3368 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3369 ret = btrfs_check_uuid_tree(fs_info);
3370 if (ret) {
05135f59
DS
3371 btrfs_warn(fs_info,
3372 "failed to check the UUID tree: %d", ret);
6bccf3ab 3373 close_ctree(fs_info);
70f80175
SB
3374 return ret;
3375 }
3376 } else {
afcdd129 3377 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3378 }
afcdd129 3379 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3380
8dcddfa0
QW
3381 /*
3382 * backuproot only affect mount behavior, and if open_ctree succeeded,
3383 * no need to keep the flag
3384 */
3385 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3386
ad2b2c80 3387 return 0;
39279cc3 3388
bcef60f2
AJ
3389fail_qgroup:
3390 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3391fail_trans_kthread:
3392 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3393 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3394 btrfs_free_fs_roots(fs_info);
3f157a2f 3395fail_cleaner:
a74a4b97 3396 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3397
3398 /*
3399 * make sure we're done with the btree inode before we stop our
3400 * kthreads
3401 */
3402 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3403
2365dd3c 3404fail_sysfs:
6618a59b 3405 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3406
b7c35e81
AJ
3407fail_fsdev_sysfs:
3408 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3409
1b1d1f66 3410fail_block_groups:
54067ae9 3411 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3412
3413fail_tree_roots:
4273eaff 3414 free_root_pointers(fs_info, true);
2b8195bb 3415 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3416
39279cc3 3417fail_sb_buffer:
7abadb64 3418 btrfs_stop_all_workers(fs_info);
5cdd7db6 3419 btrfs_free_block_groups(fs_info);
16cdcec7 3420fail_alloc:
586e46e2
ID
3421 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3422
4543df7e 3423 iput(fs_info->btree_inode);
76dda93c
YZ
3424fail_srcu:
3425 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3426fail:
586e46e2 3427 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3428 return err;
eb60ceac 3429}
663faf9f 3430ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3431
314b6dd0 3432static void btrfs_end_super_write(struct bio *bio)
f2984462 3433{
314b6dd0
JT
3434 struct btrfs_device *device = bio->bi_private;
3435 struct bio_vec *bvec;
3436 struct bvec_iter_all iter_all;
3437 struct page *page;
3438
3439 bio_for_each_segment_all(bvec, bio, iter_all) {
3440 page = bvec->bv_page;
3441
3442 if (bio->bi_status) {
3443 btrfs_warn_rl_in_rcu(device->fs_info,
3444 "lost page write due to IO error on %s (%d)",
3445 rcu_str_deref(device->name),
3446 blk_status_to_errno(bio->bi_status));
3447 ClearPageUptodate(page);
3448 SetPageError(page);
3449 btrfs_dev_stat_inc_and_print(device,
3450 BTRFS_DEV_STAT_WRITE_ERRS);
3451 } else {
3452 SetPageUptodate(page);
3453 }
3454
3455 put_page(page);
3456 unlock_page(page);
f2984462 3457 }
314b6dd0
JT
3458
3459 bio_put(bio);
f2984462
CM
3460}
3461
8f32380d
JT
3462struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3463 int copy_num)
29c36d72 3464{
29c36d72 3465 struct btrfs_super_block *super;
8f32380d 3466 struct page *page;
29c36d72 3467 u64 bytenr;
8f32380d 3468 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3469
3470 bytenr = btrfs_sb_offset(copy_num);
3471 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3472 return ERR_PTR(-EINVAL);
29c36d72 3473
8f32380d
JT
3474 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3475 if (IS_ERR(page))
3476 return ERR_CAST(page);
29c36d72 3477
8f32380d 3478 super = page_address(page);
29c36d72
AJ
3479 if (btrfs_super_bytenr(super) != bytenr ||
3480 btrfs_super_magic(super) != BTRFS_MAGIC) {
8f32380d
JT
3481 btrfs_release_disk_super(super);
3482 return ERR_PTR(-EINVAL);
29c36d72
AJ
3483 }
3484
8f32380d 3485 return super;
29c36d72
AJ
3486}
3487
3488
8f32380d 3489struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3490{
8f32380d 3491 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3492 int i;
3493 u64 transid = 0;
a512bbf8
YZ
3494
3495 /* we would like to check all the supers, but that would make
3496 * a btrfs mount succeed after a mkfs from a different FS.
3497 * So, we need to add a special mount option to scan for
3498 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3499 */
3500 for (i = 0; i < 1; i++) {
8f32380d
JT
3501 super = btrfs_read_dev_one_super(bdev, i);
3502 if (IS_ERR(super))
a512bbf8
YZ
3503 continue;
3504
a512bbf8 3505 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3506 if (latest)
3507 btrfs_release_disk_super(super);
3508
3509 latest = super;
a512bbf8 3510 transid = btrfs_super_generation(super);
a512bbf8
YZ
3511 }
3512 }
92fc03fb 3513
8f32380d 3514 return super;
a512bbf8
YZ
3515}
3516
4eedeb75 3517/*
abbb3b8e 3518 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3519 * pages we use for writing are locked.
4eedeb75 3520 *
abbb3b8e
DS
3521 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3522 * the expected device size at commit time. Note that max_mirrors must be
3523 * same for write and wait phases.
4eedeb75 3524 *
314b6dd0 3525 * Return number of errors when page is not found or submission fails.
4eedeb75 3526 */
a512bbf8 3527static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3528 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3529{
d5178578 3530 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3531 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3532 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3533 int i;
a512bbf8 3534 int errors = 0;
a512bbf8 3535 u64 bytenr;
a512bbf8
YZ
3536
3537 if (max_mirrors == 0)
3538 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3539
d5178578
JT
3540 shash->tfm = fs_info->csum_shash;
3541
a512bbf8 3542 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3543 struct page *page;
3544 struct bio *bio;
3545 struct btrfs_super_block *disk_super;
3546
a512bbf8 3547 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3548 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3549 device->commit_total_bytes)
a512bbf8
YZ
3550 break;
3551
abbb3b8e 3552 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3553
d5178578
JT
3554 crypto_shash_init(shash);
3555 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3556 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3557 crypto_shash_final(shash, sb->csum);
4eedeb75 3558
314b6dd0
JT
3559 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3560 GFP_NOFS);
3561 if (!page) {
abbb3b8e 3562 btrfs_err(device->fs_info,
314b6dd0 3563 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3564 bytenr);
3565 errors++;
4eedeb75 3566 continue;
abbb3b8e 3567 }
634554dc 3568
314b6dd0
JT
3569 /* Bump the refcount for wait_dev_supers() */
3570 get_page(page);
a512bbf8 3571
314b6dd0
JT
3572 disk_super = page_address(page);
3573 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3574
314b6dd0
JT
3575 /*
3576 * Directly use bios here instead of relying on the page cache
3577 * to do I/O, so we don't lose the ability to do integrity
3578 * checking.
3579 */
3580 bio = bio_alloc(GFP_NOFS, 1);
3581 bio_set_dev(bio, device->bdev);
3582 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3583 bio->bi_private = device;
3584 bio->bi_end_io = btrfs_end_super_write;
3585 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3586 offset_in_page(bytenr));
a512bbf8 3587
387125fc 3588 /*
314b6dd0
JT
3589 * We FUA only the first super block. The others we allow to
3590 * go down lazy and there's a short window where the on-disk
3591 * copies might still contain the older version.
387125fc 3592 */
314b6dd0 3593 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3594 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3595 bio->bi_opf |= REQ_FUA;
3596
3597 btrfsic_submit_bio(bio);
a512bbf8
YZ
3598 }
3599 return errors < i ? 0 : -1;
3600}
3601
abbb3b8e
DS
3602/*
3603 * Wait for write completion of superblocks done by write_dev_supers,
3604 * @max_mirrors same for write and wait phases.
3605 *
314b6dd0 3606 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3607 * date.
3608 */
3609static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3610{
abbb3b8e
DS
3611 int i;
3612 int errors = 0;
b6a535fa 3613 bool primary_failed = false;
abbb3b8e
DS
3614 u64 bytenr;
3615
3616 if (max_mirrors == 0)
3617 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3618
3619 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3620 struct page *page;
3621
abbb3b8e
DS
3622 bytenr = btrfs_sb_offset(i);
3623 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3624 device->commit_total_bytes)
3625 break;
3626
314b6dd0
JT
3627 page = find_get_page(device->bdev->bd_inode->i_mapping,
3628 bytenr >> PAGE_SHIFT);
3629 if (!page) {
abbb3b8e 3630 errors++;
b6a535fa
HM
3631 if (i == 0)
3632 primary_failed = true;
abbb3b8e
DS
3633 continue;
3634 }
314b6dd0
JT
3635 /* Page is submitted locked and unlocked once the IO completes */
3636 wait_on_page_locked(page);
3637 if (PageError(page)) {
abbb3b8e 3638 errors++;
b6a535fa
HM
3639 if (i == 0)
3640 primary_failed = true;
3641 }
abbb3b8e 3642
314b6dd0
JT
3643 /* Drop our reference */
3644 put_page(page);
abbb3b8e 3645
314b6dd0
JT
3646 /* Drop the reference from the writing run */
3647 put_page(page);
abbb3b8e
DS
3648 }
3649
b6a535fa
HM
3650 /* log error, force error return */
3651 if (primary_failed) {
3652 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3653 device->devid);
3654 return -1;
3655 }
3656
abbb3b8e
DS
3657 return errors < i ? 0 : -1;
3658}
3659
387125fc
CM
3660/*
3661 * endio for the write_dev_flush, this will wake anyone waiting
3662 * for the barrier when it is done
3663 */
4246a0b6 3664static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3665{
e0ae9994 3666 complete(bio->bi_private);
387125fc
CM
3667}
3668
3669/*
4fc6441a
AJ
3670 * Submit a flush request to the device if it supports it. Error handling is
3671 * done in the waiting counterpart.
387125fc 3672 */
4fc6441a 3673static void write_dev_flush(struct btrfs_device *device)
387125fc 3674{
c2a9c7ab 3675 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3676 struct bio *bio = device->flush_bio;
387125fc 3677
c2a9c7ab 3678 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3679 return;
387125fc 3680
e0ae9994 3681 bio_reset(bio);
387125fc 3682 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3683 bio_set_dev(bio, device->bdev);
8d910125 3684 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3685 init_completion(&device->flush_wait);
3686 bio->bi_private = &device->flush_wait;
387125fc 3687
43a01111 3688 btrfsic_submit_bio(bio);
1c3063b6 3689 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3690}
387125fc 3691
4fc6441a
AJ
3692/*
3693 * If the flush bio has been submitted by write_dev_flush, wait for it.
3694 */
8c27cb35 3695static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3696{
4fc6441a 3697 struct bio *bio = device->flush_bio;
387125fc 3698
1c3063b6 3699 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3700 return BLK_STS_OK;
387125fc 3701
1c3063b6 3702 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3703 wait_for_completion_io(&device->flush_wait);
387125fc 3704
8c27cb35 3705 return bio->bi_status;
387125fc 3706}
387125fc 3707
d10b82fe 3708static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3709{
6528b99d 3710 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3711 return -EIO;
387125fc
CM
3712 return 0;
3713}
3714
3715/*
3716 * send an empty flush down to each device in parallel,
3717 * then wait for them
3718 */
3719static int barrier_all_devices(struct btrfs_fs_info *info)
3720{
3721 struct list_head *head;
3722 struct btrfs_device *dev;
5af3e8cc 3723 int errors_wait = 0;
4e4cbee9 3724 blk_status_t ret;
387125fc 3725
1538e6c5 3726 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3727 /* send down all the barriers */
3728 head = &info->fs_devices->devices;
1538e6c5 3729 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3730 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3731 continue;
cea7c8bf 3732 if (!dev->bdev)
387125fc 3733 continue;
e12c9621 3734 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3735 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3736 continue;
3737
4fc6441a 3738 write_dev_flush(dev);
58efbc9f 3739 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3740 }
3741
3742 /* wait for all the barriers */
1538e6c5 3743 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3744 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3745 continue;
387125fc 3746 if (!dev->bdev) {
5af3e8cc 3747 errors_wait++;
387125fc
CM
3748 continue;
3749 }
e12c9621 3750 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3751 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3752 continue;
3753
4fc6441a 3754 ret = wait_dev_flush(dev);
401b41e5
AJ
3755 if (ret) {
3756 dev->last_flush_error = ret;
66b4993e
DS
3757 btrfs_dev_stat_inc_and_print(dev,
3758 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3759 errors_wait++;
401b41e5
AJ
3760 }
3761 }
3762
cea7c8bf 3763 if (errors_wait) {
401b41e5
AJ
3764 /*
3765 * At some point we need the status of all disks
3766 * to arrive at the volume status. So error checking
3767 * is being pushed to a separate loop.
3768 */
d10b82fe 3769 return check_barrier_error(info);
387125fc 3770 }
387125fc
CM
3771 return 0;
3772}
3773
943c6e99
ZL
3774int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3775{
8789f4fe
ZL
3776 int raid_type;
3777 int min_tolerated = INT_MAX;
943c6e99 3778
8789f4fe
ZL
3779 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3780 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3781 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3782 btrfs_raid_array[BTRFS_RAID_SINGLE].
3783 tolerated_failures);
943c6e99 3784
8789f4fe
ZL
3785 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3786 if (raid_type == BTRFS_RAID_SINGLE)
3787 continue;
41a6e891 3788 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3789 continue;
8c3e3582 3790 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3791 btrfs_raid_array[raid_type].
3792 tolerated_failures);
3793 }
943c6e99 3794
8789f4fe 3795 if (min_tolerated == INT_MAX) {
ab8d0fc4 3796 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3797 min_tolerated = 0;
3798 }
3799
3800 return min_tolerated;
943c6e99
ZL
3801}
3802
eece6a9c 3803int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3804{
e5e9a520 3805 struct list_head *head;
f2984462 3806 struct btrfs_device *dev;
a061fc8d 3807 struct btrfs_super_block *sb;
f2984462 3808 struct btrfs_dev_item *dev_item;
f2984462
CM
3809 int ret;
3810 int do_barriers;
a236aed1
CM
3811 int max_errors;
3812 int total_errors = 0;
a061fc8d 3813 u64 flags;
f2984462 3814
0b246afa 3815 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3816
3817 /*
3818 * max_mirrors == 0 indicates we're from commit_transaction,
3819 * not from fsync where the tree roots in fs_info have not
3820 * been consistent on disk.
3821 */
3822 if (max_mirrors == 0)
3823 backup_super_roots(fs_info);
f2984462 3824
0b246afa 3825 sb = fs_info->super_for_commit;
a061fc8d 3826 dev_item = &sb->dev_item;
e5e9a520 3827
0b246afa
JM
3828 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3829 head = &fs_info->fs_devices->devices;
3830 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3831
5af3e8cc 3832 if (do_barriers) {
0b246afa 3833 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3834 if (ret) {
3835 mutex_unlock(
0b246afa
JM
3836 &fs_info->fs_devices->device_list_mutex);
3837 btrfs_handle_fs_error(fs_info, ret,
3838 "errors while submitting device barriers.");
5af3e8cc
SB
3839 return ret;
3840 }
3841 }
387125fc 3842
1538e6c5 3843 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3844 if (!dev->bdev) {
3845 total_errors++;
3846 continue;
3847 }
e12c9621 3848 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3849 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3850 continue;
3851
2b82032c 3852 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3853 btrfs_set_stack_device_type(dev_item, dev->type);
3854 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3855 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3856 dev->commit_total_bytes);
ce7213c7
MX
3857 btrfs_set_stack_device_bytes_used(dev_item,
3858 dev->commit_bytes_used);
a061fc8d
CM
3859 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3860 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3861 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3862 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3863 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3864 BTRFS_FSID_SIZE);
a512bbf8 3865
a061fc8d
CM
3866 flags = btrfs_super_flags(sb);
3867 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3868
75cb857d
QW
3869 ret = btrfs_validate_write_super(fs_info, sb);
3870 if (ret < 0) {
3871 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3872 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3873 "unexpected superblock corruption detected");
3874 return -EUCLEAN;
3875 }
3876
abbb3b8e 3877 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3878 if (ret)
3879 total_errors++;
f2984462 3880 }
a236aed1 3881 if (total_errors > max_errors) {
0b246afa
JM
3882 btrfs_err(fs_info, "%d errors while writing supers",
3883 total_errors);
3884 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3885
9d565ba4 3886 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3887 btrfs_handle_fs_error(fs_info, -EIO,
3888 "%d errors while writing supers",
3889 total_errors);
9d565ba4 3890 return -EIO;
a236aed1 3891 }
f2984462 3892
a512bbf8 3893 total_errors = 0;
1538e6c5 3894 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3895 if (!dev->bdev)
3896 continue;
e12c9621 3897 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3898 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3899 continue;
3900
abbb3b8e 3901 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3902 if (ret)
3903 total_errors++;
f2984462 3904 }
0b246afa 3905 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3906 if (total_errors > max_errors) {
0b246afa
JM
3907 btrfs_handle_fs_error(fs_info, -EIO,
3908 "%d errors while writing supers",
3909 total_errors);
79787eaa 3910 return -EIO;
a236aed1 3911 }
f2984462
CM
3912 return 0;
3913}
3914
cb517eab
MX
3915/* Drop a fs root from the radix tree and free it. */
3916void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3917 struct btrfs_root *root)
2619ba1f 3918{
4df27c4d 3919 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3920 radix_tree_delete(&fs_info->fs_roots_radix,
3921 (unsigned long)root->root_key.objectid);
af01d2e5 3922 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
00246528 3923 btrfs_put_root(root);
4df27c4d 3924 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3925
3926 if (btrfs_root_refs(&root->root_item) == 0)
3927 synchronize_srcu(&fs_info->subvol_srcu);
3928
1c1ea4f7 3929 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3930 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3931 if (root->reloc_root) {
3932 free_extent_buffer(root->reloc_root->node);
3933 free_extent_buffer(root->reloc_root->commit_root);
00246528 3934 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3935 root->reloc_root = NULL;
3936 }
3937 }
3321719e 3938
faa2dbf0
JB
3939 if (root->free_ino_pinned)
3940 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3941 if (root->free_ino_ctl)
3942 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3943 btrfs_free_fs_root(root);
4df27c4d
YZ
3944}
3945
84db5ccf 3946void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3947{
57cdc8db 3948 iput(root->ino_cache_inode);
4df27c4d 3949 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3950 if (root->anon_dev)
3951 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3952 if (root->subv_writers)
3953 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3954 free_extent_buffer(root->node);
3955 free_extent_buffer(root->commit_root);
581bb050
LZ
3956 kfree(root->free_ino_ctl);
3957 kfree(root->free_ino_pinned);
00246528 3958 btrfs_put_root(root);
2619ba1f
CM
3959}
3960
c146afad 3961int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3962{
c146afad
YZ
3963 u64 root_objectid = 0;
3964 struct btrfs_root *gang[8];
65d33fd7
QW
3965 int i = 0;
3966 int err = 0;
3967 unsigned int ret = 0;
3968 int index;
e089f05c 3969
c146afad 3970 while (1) {
65d33fd7 3971 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3972 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3973 (void **)gang, root_objectid,
3974 ARRAY_SIZE(gang));
65d33fd7
QW
3975 if (!ret) {
3976 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3977 break;
65d33fd7 3978 }
5d4f98a2 3979 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3980
c146afad 3981 for (i = 0; i < ret; i++) {
65d33fd7
QW
3982 /* Avoid to grab roots in dead_roots */
3983 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3984 gang[i] = NULL;
3985 continue;
3986 }
3987 /* grab all the search result for later use */
00246528 3988 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7
QW
3989 }
3990 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3991
65d33fd7
QW
3992 for (i = 0; i < ret; i++) {
3993 if (!gang[i])
3994 continue;
c146afad 3995 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3996 err = btrfs_orphan_cleanup(gang[i]);
3997 if (err)
65d33fd7 3998 break;
00246528 3999 btrfs_put_root(gang[i]);
c146afad
YZ
4000 }
4001 root_objectid++;
4002 }
65d33fd7
QW
4003
4004 /* release the uncleaned roots due to error */
4005 for (; i < ret; i++) {
4006 if (gang[i])
00246528 4007 btrfs_put_root(gang[i]);
65d33fd7
QW
4008 }
4009 return err;
c146afad 4010}
a2135011 4011
6bccf3ab 4012int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4013{
6bccf3ab 4014 struct btrfs_root *root = fs_info->tree_root;
c146afad 4015 struct btrfs_trans_handle *trans;
a74a4b97 4016
0b246afa 4017 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4018 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4019 mutex_unlock(&fs_info->cleaner_mutex);
4020 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4021
4022 /* wait until ongoing cleanup work done */
0b246afa
JM
4023 down_write(&fs_info->cleanup_work_sem);
4024 up_write(&fs_info->cleanup_work_sem);
c71bf099 4025
7a7eaa40 4026 trans = btrfs_join_transaction(root);
3612b495
TI
4027 if (IS_ERR(trans))
4028 return PTR_ERR(trans);
3a45bb20 4029 return btrfs_commit_transaction(trans);
c146afad
YZ
4030}
4031
b105e927 4032void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4033{
c146afad
YZ
4034 int ret;
4035
afcdd129 4036 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4037 /*
4038 * We don't want the cleaner to start new transactions, add more delayed
4039 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4040 * because that frees the task_struct, and the transaction kthread might
4041 * still try to wake up the cleaner.
4042 */
4043 kthread_park(fs_info->cleaner_kthread);
c146afad 4044
7343dd61 4045 /* wait for the qgroup rescan worker to stop */
d06f23d6 4046 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4047
803b2f54
SB
4048 /* wait for the uuid_scan task to finish */
4049 down(&fs_info->uuid_tree_rescan_sem);
4050 /* avoid complains from lockdep et al., set sem back to initial state */
4051 up(&fs_info->uuid_tree_rescan_sem);
4052
837d5b6e 4053 /* pause restriper - we want to resume on mount */
aa1b8cd4 4054 btrfs_pause_balance(fs_info);
837d5b6e 4055
8dabb742
SB
4056 btrfs_dev_replace_suspend_for_unmount(fs_info);
4057
aa1b8cd4 4058 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4059
4060 /* wait for any defraggers to finish */
4061 wait_event(fs_info->transaction_wait,
4062 (atomic_read(&fs_info->defrag_running) == 0));
4063
4064 /* clear out the rbtree of defraggable inodes */
26176e7c 4065 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4066
21c7e756
MX
4067 cancel_work_sync(&fs_info->async_reclaim_work);
4068
b0643e59
DZ
4069 /* Cancel or finish ongoing discard work */
4070 btrfs_discard_cleanup(fs_info);
4071
bc98a42c 4072 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4073 /*
d6fd0ae2
OS
4074 * The cleaner kthread is stopped, so do one final pass over
4075 * unused block groups.
e44163e1 4076 */
0b246afa 4077 btrfs_delete_unused_bgs(fs_info);
e44163e1 4078
6bccf3ab 4079 ret = btrfs_commit_super(fs_info);
acce952b 4080 if (ret)
04892340 4081 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4082 }
4083
af722733
LB
4084 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4085 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4086 btrfs_error_commit_super(fs_info);
0f7d52f4 4087
e3029d9f
AV
4088 kthread_stop(fs_info->transaction_kthread);
4089 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4090
e187831e 4091 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4092 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4093
04892340 4094 btrfs_free_qgroup_config(fs_info);
fe816d0f 4095 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4096
963d678b 4097 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4098 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4099 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4100 }
bcc63abb 4101
4297ff84
JB
4102 if (percpu_counter_sum(&fs_info->dio_bytes))
4103 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4104 percpu_counter_sum(&fs_info->dio_bytes));
4105
6618a59b 4106 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4107 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4108
faa2dbf0 4109 btrfs_free_fs_roots(fs_info);
d10c5f31 4110
1a4319cc
LB
4111 btrfs_put_block_group_cache(fs_info);
4112
de348ee0
WS
4113 /*
4114 * we must make sure there is not any read request to
4115 * submit after we stopping all workers.
4116 */
4117 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4118 btrfs_stop_all_workers(fs_info);
4119
afcdd129 4120 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4121 free_root_pointers(fs_info, true);
9ad6b7bc 4122
4e19443d
JB
4123 /*
4124 * We must free the block groups after dropping the fs_roots as we could
4125 * have had an IO error and have left over tree log blocks that aren't
4126 * cleaned up until the fs roots are freed. This makes the block group
4127 * accounting appear to be wrong because there's pending reserved bytes,
4128 * so make sure we do the block group cleanup afterwards.
4129 */
4130 btrfs_free_block_groups(fs_info);
4131
13e6c37b 4132 iput(fs_info->btree_inode);
d6bfde87 4133
21adbd5c 4134#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4135 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4136 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4137#endif
4138
0b86a832 4139 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4140 btrfs_close_devices(fs_info->fs_devices);
76dda93c 4141 cleanup_srcu_struct(&fs_info->subvol_srcu);
eb60ceac
CM
4142}
4143
b9fab919
CM
4144int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4145 int atomic)
5f39d397 4146{
1259ab75 4147 int ret;
727011e0 4148 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4149
0b32f4bb 4150 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4151 if (!ret)
4152 return ret;
4153
4154 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4155 parent_transid, atomic);
4156 if (ret == -EAGAIN)
4157 return ret;
1259ab75 4158 return !ret;
5f39d397
CM
4159}
4160
5f39d397
CM
4161void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4162{
0b246afa 4163 struct btrfs_fs_info *fs_info;
06ea65a3 4164 struct btrfs_root *root;
5f39d397 4165 u64 transid = btrfs_header_generation(buf);
b9473439 4166 int was_dirty;
b4ce94de 4167
06ea65a3
JB
4168#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4169 /*
4170 * This is a fast path so only do this check if we have sanity tests
52042d8e 4171 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4172 * outside of the sanity tests.
4173 */
b0132a3b 4174 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4175 return;
4176#endif
4177 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4178 fs_info = root->fs_info;
b9447ef8 4179 btrfs_assert_tree_locked(buf);
0b246afa 4180 if (transid != fs_info->generation)
5d163e0e 4181 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4182 buf->start, transid, fs_info->generation);
0b32f4bb 4183 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4184 if (!was_dirty)
104b4e51
NB
4185 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4186 buf->len,
4187 fs_info->dirty_metadata_batch);
1f21ef0a 4188#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4189 /*
4190 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4191 * but item data not updated.
4192 * So here we should only check item pointers, not item data.
4193 */
4194 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4195 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4196 btrfs_print_leaf(buf);
1f21ef0a
FM
4197 ASSERT(0);
4198 }
4199#endif
eb60ceac
CM
4200}
4201
2ff7e61e 4202static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4203 int flush_delayed)
16cdcec7
MX
4204{
4205 /*
4206 * looks as though older kernels can get into trouble with
4207 * this code, they end up stuck in balance_dirty_pages forever
4208 */
e2d84521 4209 int ret;
16cdcec7
MX
4210
4211 if (current->flags & PF_MEMALLOC)
4212 return;
4213
b53d3f5d 4214 if (flush_delayed)
2ff7e61e 4215 btrfs_balance_delayed_items(fs_info);
16cdcec7 4216
d814a491
EL
4217 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4218 BTRFS_DIRTY_METADATA_THRESH,
4219 fs_info->dirty_metadata_batch);
e2d84521 4220 if (ret > 0) {
0b246afa 4221 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4222 }
16cdcec7
MX
4223}
4224
2ff7e61e 4225void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4226{
2ff7e61e 4227 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4228}
585ad2c3 4229
2ff7e61e 4230void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4231{
2ff7e61e 4232 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4233}
6b80053d 4234
581c1760
QW
4235int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4236 struct btrfs_key *first_key)
6b80053d 4237{
5ab12d1f 4238 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4239 level, first_key);
6b80053d 4240}
0da5468f 4241
2ff7e61e 4242static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4243{
fe816d0f
NB
4244 /* cleanup FS via transaction */
4245 btrfs_cleanup_transaction(fs_info);
4246
0b246afa 4247 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4248 btrfs_run_delayed_iputs(fs_info);
0b246afa 4249 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4250
0b246afa
JM
4251 down_write(&fs_info->cleanup_work_sem);
4252 up_write(&fs_info->cleanup_work_sem);
acce952b 4253}
4254
143bede5 4255static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4256{
acce952b 4257 struct btrfs_ordered_extent *ordered;
acce952b 4258
199c2a9c 4259 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4260 /*
4261 * This will just short circuit the ordered completion stuff which will
4262 * make sure the ordered extent gets properly cleaned up.
4263 */
199c2a9c 4264 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4265 root_extent_list)
4266 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4267 spin_unlock(&root->ordered_extent_lock);
4268}
4269
4270static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4271{
4272 struct btrfs_root *root;
4273 struct list_head splice;
4274
4275 INIT_LIST_HEAD(&splice);
4276
4277 spin_lock(&fs_info->ordered_root_lock);
4278 list_splice_init(&fs_info->ordered_roots, &splice);
4279 while (!list_empty(&splice)) {
4280 root = list_first_entry(&splice, struct btrfs_root,
4281 ordered_root);
1de2cfde
JB
4282 list_move_tail(&root->ordered_root,
4283 &fs_info->ordered_roots);
199c2a9c 4284
2a85d9ca 4285 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4286 btrfs_destroy_ordered_extents(root);
4287
2a85d9ca
LB
4288 cond_resched();
4289 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4290 }
4291 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4292
4293 /*
4294 * We need this here because if we've been flipped read-only we won't
4295 * get sync() from the umount, so we need to make sure any ordered
4296 * extents that haven't had their dirty pages IO start writeout yet
4297 * actually get run and error out properly.
4298 */
4299 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4300}
4301
35a3621b 4302static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4303 struct btrfs_fs_info *fs_info)
acce952b 4304{
4305 struct rb_node *node;
4306 struct btrfs_delayed_ref_root *delayed_refs;
4307 struct btrfs_delayed_ref_node *ref;
4308 int ret = 0;
4309
4310 delayed_refs = &trans->delayed_refs;
4311
4312 spin_lock(&delayed_refs->lock);
d7df2c79 4313 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4314 spin_unlock(&delayed_refs->lock);
0b246afa 4315 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4316 return ret;
4317 }
4318
5c9d028b 4319 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4320 struct btrfs_delayed_ref_head *head;
0e0adbcf 4321 struct rb_node *n;
e78417d1 4322 bool pin_bytes = false;
acce952b 4323
d7df2c79
JB
4324 head = rb_entry(node, struct btrfs_delayed_ref_head,
4325 href_node);
3069bd26 4326 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4327 continue;
3069bd26 4328
d7df2c79 4329 spin_lock(&head->lock);
e3d03965 4330 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4331 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4332 ref_node);
d7df2c79 4333 ref->in_tree = 0;
e3d03965 4334 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4335 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4336 if (!list_empty(&ref->add_list))
4337 list_del(&ref->add_list);
d7df2c79
JB
4338 atomic_dec(&delayed_refs->num_entries);
4339 btrfs_put_delayed_ref(ref);
e78417d1 4340 }
d7df2c79
JB
4341 if (head->must_insert_reserved)
4342 pin_bytes = true;
4343 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4344 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4345 spin_unlock(&head->lock);
4346 spin_unlock(&delayed_refs->lock);
4347 mutex_unlock(&head->mutex);
acce952b 4348
f603bb94
NB
4349 if (pin_bytes) {
4350 struct btrfs_block_group *cache;
4351
4352 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4353 BUG_ON(!cache);
4354
4355 spin_lock(&cache->space_info->lock);
4356 spin_lock(&cache->lock);
4357 cache->pinned += head->num_bytes;
4358 btrfs_space_info_update_bytes_pinned(fs_info,
4359 cache->space_info, head->num_bytes);
4360 cache->reserved -= head->num_bytes;
4361 cache->space_info->bytes_reserved -= head->num_bytes;
4362 spin_unlock(&cache->lock);
4363 spin_unlock(&cache->space_info->lock);
4364 percpu_counter_add_batch(
4365 &cache->space_info->total_bytes_pinned,
4366 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4367
4368 btrfs_put_block_group(cache);
4369
4370 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4371 head->bytenr + head->num_bytes - 1);
4372 }
31890da0 4373 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4374 btrfs_put_delayed_ref_head(head);
acce952b 4375 cond_resched();
4376 spin_lock(&delayed_refs->lock);
4377 }
81f7eb00 4378 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4379
4380 spin_unlock(&delayed_refs->lock);
4381
4382 return ret;
4383}
4384
143bede5 4385static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4386{
4387 struct btrfs_inode *btrfs_inode;
4388 struct list_head splice;
4389
4390 INIT_LIST_HEAD(&splice);
4391
eb73c1b7
MX
4392 spin_lock(&root->delalloc_lock);
4393 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4394
4395 while (!list_empty(&splice)) {
fe816d0f 4396 struct inode *inode = NULL;
eb73c1b7
MX
4397 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4398 delalloc_inodes);
fe816d0f 4399 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4400 spin_unlock(&root->delalloc_lock);
acce952b 4401
fe816d0f
NB
4402 /*
4403 * Make sure we get a live inode and that it'll not disappear
4404 * meanwhile.
4405 */
4406 inode = igrab(&btrfs_inode->vfs_inode);
4407 if (inode) {
4408 invalidate_inode_pages2(inode->i_mapping);
4409 iput(inode);
4410 }
eb73c1b7 4411 spin_lock(&root->delalloc_lock);
acce952b 4412 }
eb73c1b7
MX
4413 spin_unlock(&root->delalloc_lock);
4414}
4415
4416static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4417{
4418 struct btrfs_root *root;
4419 struct list_head splice;
4420
4421 INIT_LIST_HEAD(&splice);
4422
4423 spin_lock(&fs_info->delalloc_root_lock);
4424 list_splice_init(&fs_info->delalloc_roots, &splice);
4425 while (!list_empty(&splice)) {
4426 root = list_first_entry(&splice, struct btrfs_root,
4427 delalloc_root);
00246528 4428 root = btrfs_grab_root(root);
eb73c1b7
MX
4429 BUG_ON(!root);
4430 spin_unlock(&fs_info->delalloc_root_lock);
4431
4432 btrfs_destroy_delalloc_inodes(root);
00246528 4433 btrfs_put_root(root);
eb73c1b7
MX
4434
4435 spin_lock(&fs_info->delalloc_root_lock);
4436 }
4437 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4438}
4439
2ff7e61e 4440static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4441 struct extent_io_tree *dirty_pages,
4442 int mark)
4443{
4444 int ret;
acce952b 4445 struct extent_buffer *eb;
4446 u64 start = 0;
4447 u64 end;
acce952b 4448
4449 while (1) {
4450 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4451 mark, NULL);
acce952b 4452 if (ret)
4453 break;
4454
91166212 4455 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4456 while (start <= end) {
0b246afa
JM
4457 eb = find_extent_buffer(fs_info, start);
4458 start += fs_info->nodesize;
fd8b2b61 4459 if (!eb)
acce952b 4460 continue;
fd8b2b61 4461 wait_on_extent_buffer_writeback(eb);
acce952b 4462
fd8b2b61
JB
4463 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4464 &eb->bflags))
4465 clear_extent_buffer_dirty(eb);
4466 free_extent_buffer_stale(eb);
acce952b 4467 }
4468 }
4469
4470 return ret;
4471}
4472
2ff7e61e 4473static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4474 struct extent_io_tree *unpin)
acce952b 4475{
acce952b 4476 u64 start;
4477 u64 end;
4478 int ret;
4479
acce952b 4480 while (1) {
0e6ec385
FM
4481 struct extent_state *cached_state = NULL;
4482
fcd5e742
LF
4483 /*
4484 * The btrfs_finish_extent_commit() may get the same range as
4485 * ours between find_first_extent_bit and clear_extent_dirty.
4486 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4487 * the same extent range.
4488 */
4489 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4490 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4491 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4492 if (ret) {
4493 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4494 break;
fcd5e742 4495 }
acce952b 4496
0e6ec385
FM
4497 clear_extent_dirty(unpin, start, end, &cached_state);
4498 free_extent_state(cached_state);
2ff7e61e 4499 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4500 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4501 cond_resched();
4502 }
4503
4504 return 0;
4505}
4506
32da5386 4507static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4508{
4509 struct inode *inode;
4510
4511 inode = cache->io_ctl.inode;
4512 if (inode) {
4513 invalidate_inode_pages2(inode->i_mapping);
4514 BTRFS_I(inode)->generation = 0;
4515 cache->io_ctl.inode = NULL;
4516 iput(inode);
4517 }
4518 btrfs_put_block_group(cache);
4519}
4520
4521void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4522 struct btrfs_fs_info *fs_info)
c79a1751 4523{
32da5386 4524 struct btrfs_block_group *cache;
c79a1751
LB
4525
4526 spin_lock(&cur_trans->dirty_bgs_lock);
4527 while (!list_empty(&cur_trans->dirty_bgs)) {
4528 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4529 struct btrfs_block_group,
c79a1751 4530 dirty_list);
c79a1751
LB
4531
4532 if (!list_empty(&cache->io_list)) {
4533 spin_unlock(&cur_trans->dirty_bgs_lock);
4534 list_del_init(&cache->io_list);
4535 btrfs_cleanup_bg_io(cache);
4536 spin_lock(&cur_trans->dirty_bgs_lock);
4537 }
4538
4539 list_del_init(&cache->dirty_list);
4540 spin_lock(&cache->lock);
4541 cache->disk_cache_state = BTRFS_DC_ERROR;
4542 spin_unlock(&cache->lock);
4543
4544 spin_unlock(&cur_trans->dirty_bgs_lock);
4545 btrfs_put_block_group(cache);
ba2c4d4e 4546 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4547 spin_lock(&cur_trans->dirty_bgs_lock);
4548 }
4549 spin_unlock(&cur_trans->dirty_bgs_lock);
4550
45ae2c18
NB
4551 /*
4552 * Refer to the definition of io_bgs member for details why it's safe
4553 * to use it without any locking
4554 */
c79a1751
LB
4555 while (!list_empty(&cur_trans->io_bgs)) {
4556 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4557 struct btrfs_block_group,
c79a1751 4558 io_list);
c79a1751
LB
4559
4560 list_del_init(&cache->io_list);
4561 spin_lock(&cache->lock);
4562 cache->disk_cache_state = BTRFS_DC_ERROR;
4563 spin_unlock(&cache->lock);
4564 btrfs_cleanup_bg_io(cache);
4565 }
4566}
4567
49b25e05 4568void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4569 struct btrfs_fs_info *fs_info)
49b25e05 4570{
bbbf7243
NB
4571 struct btrfs_device *dev, *tmp;
4572
2ff7e61e 4573 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4574 ASSERT(list_empty(&cur_trans->dirty_bgs));
4575 ASSERT(list_empty(&cur_trans->io_bgs));
4576
bbbf7243
NB
4577 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4578 post_commit_list) {
4579 list_del_init(&dev->post_commit_list);
4580 }
4581
2ff7e61e 4582 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4583
4a9d8bde 4584 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4585 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4586
4a9d8bde 4587 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4588 wake_up(&fs_info->transaction_wait);
49b25e05 4589
ccdf9b30 4590 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4591
2ff7e61e 4592 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4593 EXTENT_DIRTY);
fe119a6e 4594 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4595
4a9d8bde
MX
4596 cur_trans->state =TRANS_STATE_COMPLETED;
4597 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4598}
4599
2ff7e61e 4600static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4601{
4602 struct btrfs_transaction *t;
acce952b 4603
0b246afa 4604 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4605
0b246afa
JM
4606 spin_lock(&fs_info->trans_lock);
4607 while (!list_empty(&fs_info->trans_list)) {
4608 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4609 struct btrfs_transaction, list);
4610 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4611 refcount_inc(&t->use_count);
0b246afa 4612 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4613 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4614 btrfs_put_transaction(t);
0b246afa 4615 spin_lock(&fs_info->trans_lock);
724e2315
JB
4616 continue;
4617 }
0b246afa 4618 if (t == fs_info->running_transaction) {
724e2315 4619 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4620 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4621 /*
4622 * We wait for 0 num_writers since we don't hold a trans
4623 * handle open currently for this transaction.
4624 */
4625 wait_event(t->writer_wait,
4626 atomic_read(&t->num_writers) == 0);
4627 } else {
0b246afa 4628 spin_unlock(&fs_info->trans_lock);
724e2315 4629 }
2ff7e61e 4630 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4631
0b246afa
JM
4632 spin_lock(&fs_info->trans_lock);
4633 if (t == fs_info->running_transaction)
4634 fs_info->running_transaction = NULL;
acce952b 4635 list_del_init(&t->list);
0b246afa 4636 spin_unlock(&fs_info->trans_lock);
acce952b 4637
724e2315 4638 btrfs_put_transaction(t);
2ff7e61e 4639 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4640 spin_lock(&fs_info->trans_lock);
724e2315 4641 }
0b246afa
JM
4642 spin_unlock(&fs_info->trans_lock);
4643 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4644 btrfs_destroy_delayed_inodes(fs_info);
4645 btrfs_assert_delayed_root_empty(fs_info);
0b246afa
JM
4646 btrfs_destroy_all_delalloc_inodes(fs_info);
4647 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4648
4649 return 0;
4650}
4651
e8c9f186 4652static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4653 /* mandatory callbacks */
0b86a832 4654 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4655 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4656};