btrfs: push __setup_root into btrfs_alloc_root
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
6d97c6e3 22#include <crypto/hash.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
aac0023c 43#include "block-group.h"
b0643e59 44#include "discard.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
d352ac68
CM
101/*
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
105 */
44b8bd7e 106struct async_submit_bio {
c6100a4b 107 void *private_data;
44b8bd7e 108 struct bio *bio;
a758781d 109 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 110 int mirror_num;
eaf25d93
CM
111 /*
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
114 */
115 u64 bio_offset;
8b712842 116 struct btrfs_work work;
4e4cbee9 117 blk_status_t status;
44b8bd7e
CM
118};
119
85d4e461
CM
120/*
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
124 *
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
4008c04a 130 *
85d4e461
CM
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 134 *
85d4e461
CM
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 138 *
85d4e461
CM
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
4008c04a
CM
142 */
143#ifdef CONFIG_DEBUG_LOCK_ALLOC
144# if BTRFS_MAX_LEVEL != 8
145# error
146# endif
85d4e461
CM
147
148static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153} btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 166 { .id = 0, .name_stem = "tree" },
4008c04a 167};
85d4e461
CM
168
169void __init btrfs_init_lockdep(void)
170{
171 int i, j;
172
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
180 }
181}
182
183void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 int level)
185{
186 struct btrfs_lockdep_keyset *ks;
187
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
193 break;
194
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
197}
198
4008c04a
CM
199#endif
200
d352ac68
CM
201/*
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
204 */
6af49dbd 205struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
206 struct page *page, size_t pg_offset,
207 u64 start, u64 len)
7eccb903 208{
fc4f21b1 209 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
210 struct extent_map *em;
211 int ret;
212
890871be 213 read_lock(&em_tree->lock);
d1310b2e 214 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 215 if (em) {
890871be 216 read_unlock(&em_tree->lock);
5f39d397 217 goto out;
a061fc8d 218 }
890871be 219 read_unlock(&em_tree->lock);
7b13b7b1 220
172ddd60 221 em = alloc_extent_map();
5f39d397
CM
222 if (!em) {
223 em = ERR_PTR(-ENOMEM);
224 goto out;
225 }
226 em->start = 0;
0afbaf8c 227 em->len = (u64)-1;
c8b97818 228 em->block_len = (u64)-1;
5f39d397 229 em->block_start = 0;
d1310b2e 230
890871be 231 write_lock(&em_tree->lock);
09a2a8f9 232 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
233 if (ret == -EEXIST) {
234 free_extent_map(em);
7b13b7b1 235 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 236 if (!em)
0433f20d 237 em = ERR_PTR(-EIO);
5f39d397 238 } else if (ret) {
7b13b7b1 239 free_extent_map(em);
0433f20d 240 em = ERR_PTR(ret);
5f39d397 241 }
890871be 242 write_unlock(&em_tree->lock);
7b13b7b1 243
5f39d397
CM
244out:
245 return em;
7eccb903
CM
246}
247
d352ac68 248/*
2996e1f8
JT
249 * Compute the csum of a btree block and store the result to provided buffer.
250 *
251 * Returns error if the extent buffer cannot be mapped.
d352ac68 252 */
2996e1f8 253static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 254{
d5178578
JT
255 struct btrfs_fs_info *fs_info = buf->fs_info;
256 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
257 unsigned long len;
258 unsigned long cur_len;
259 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
260 char *kaddr;
261 unsigned long map_start;
262 unsigned long map_len;
263 int err;
d5178578
JT
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
19c00ddc
CM
267
268 len = buf->len - offset;
d5178578 269
d397712b 270 while (len > 0) {
d2e174d5
JT
271 /*
272 * Note: we don't need to check for the err == 1 case here, as
273 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
274 * and 'min_len = 32' and the currently implemented mapping
275 * algorithm we cannot cross a page boundary.
276 */
19c00ddc 277 err = map_private_extent_buffer(buf, offset, 32,
a6591715 278 &kaddr, &map_start, &map_len);
c53839fc 279 if (WARN_ON(err))
8bd98f0e 280 return err;
19c00ddc 281 cur_len = min(len, map_len - (offset - map_start));
d5178578 282 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
283 len -= cur_len;
284 offset += cur_len;
19c00ddc 285 }
71a63551 286 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 287
d5178578 288 crypto_shash_final(shash, result);
19c00ddc 289
19c00ddc
CM
290 return 0;
291}
292
d352ac68
CM
293/*
294 * we can't consider a given block up to date unless the transid of the
295 * block matches the transid in the parent node's pointer. This is how we
296 * detect blocks that either didn't get written at all or got written
297 * in the wrong place.
298 */
1259ab75 299static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
300 struct extent_buffer *eb, u64 parent_transid,
301 int atomic)
1259ab75 302{
2ac55d41 303 struct extent_state *cached_state = NULL;
1259ab75 304 int ret;
2755a0de 305 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
306
307 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
308 return 0;
309
b9fab919
CM
310 if (atomic)
311 return -EAGAIN;
312
a26e8c9f
JB
313 if (need_lock) {
314 btrfs_tree_read_lock(eb);
300aa896 315 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
316 }
317
2ac55d41 318 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 319 &cached_state);
0b32f4bb 320 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
321 btrfs_header_generation(eb) == parent_transid) {
322 ret = 0;
323 goto out;
324 }
94647322
DS
325 btrfs_err_rl(eb->fs_info,
326 "parent transid verify failed on %llu wanted %llu found %llu",
327 eb->start,
29549aec 328 parent_transid, btrfs_header_generation(eb));
1259ab75 329 ret = 1;
a26e8c9f
JB
330
331 /*
332 * Things reading via commit roots that don't have normal protection,
333 * like send, can have a really old block in cache that may point at a
01327610 334 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
335 * if we find an eb that is under IO (dirty/writeback) because we could
336 * end up reading in the stale data and then writing it back out and
337 * making everybody very sad.
338 */
339 if (!extent_buffer_under_io(eb))
340 clear_extent_buffer_uptodate(eb);
33958dc6 341out:
2ac55d41 342 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 343 &cached_state);
472b909f
JB
344 if (need_lock)
345 btrfs_tree_read_unlock_blocking(eb);
1259ab75 346 return ret;
1259ab75
CM
347}
348
e7e16f48
JT
349static bool btrfs_supported_super_csum(u16 csum_type)
350{
351 switch (csum_type) {
352 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 353 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 354 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 355 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
356 return true;
357 default:
358 return false;
359 }
360}
361
1104a885
DS
362/*
363 * Return 0 if the superblock checksum type matches the checksum value of that
364 * algorithm. Pass the raw disk superblock data.
365 */
ab8d0fc4
JM
366static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
367 char *raw_disk_sb)
1104a885
DS
368{
369 struct btrfs_super_block *disk_sb =
370 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 371 char result[BTRFS_CSUM_SIZE];
d5178578
JT
372 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
373
374 shash->tfm = fs_info->csum_shash;
375 crypto_shash_init(shash);
1104a885 376
51bce6c9
JT
377 /*
378 * The super_block structure does not span the whole
379 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
380 * filled with zeros and is included in the checksum.
381 */
d5178578
JT
382 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
383 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
384 crypto_shash_final(shash, result);
1104a885 385
51bce6c9
JT
386 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
387 return 1;
1104a885 388
e7e16f48 389 return 0;
1104a885
DS
390}
391
e064d5e9 392int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 393 struct btrfs_key *first_key, u64 parent_transid)
581c1760 394{
e064d5e9 395 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
396 int found_level;
397 struct btrfs_key found_key;
398 int ret;
399
400 found_level = btrfs_header_level(eb);
401 if (found_level != level) {
63489055
QW
402 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
403 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
404 btrfs_err(fs_info,
405"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
406 eb->start, level, found_level);
581c1760
QW
407 return -EIO;
408 }
409
410 if (!first_key)
411 return 0;
412
5d41be6f
QW
413 /*
414 * For live tree block (new tree blocks in current transaction),
415 * we need proper lock context to avoid race, which is impossible here.
416 * So we only checks tree blocks which is read from disk, whose
417 * generation <= fs_info->last_trans_committed.
418 */
419 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
420 return 0;
62fdaa52
QW
421
422 /* We have @first_key, so this @eb must have at least one item */
423 if (btrfs_header_nritems(eb) == 0) {
424 btrfs_err(fs_info,
425 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
426 eb->start);
427 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
428 return -EUCLEAN;
429 }
430
581c1760
QW
431 if (found_level)
432 btrfs_node_key_to_cpu(eb, &found_key, 0);
433 else
434 btrfs_item_key_to_cpu(eb, &found_key, 0);
435 ret = btrfs_comp_cpu_keys(first_key, &found_key);
436
581c1760 437 if (ret) {
63489055
QW
438 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
439 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 440 btrfs_err(fs_info,
ff76a864
LB
441"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442 eb->start, parent_transid, first_key->objectid,
443 first_key->type, first_key->offset,
444 found_key.objectid, found_key.type,
445 found_key.offset);
581c1760 446 }
581c1760
QW
447 return ret;
448}
449
d352ac68
CM
450/*
451 * helper to read a given tree block, doing retries as required when
452 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
453 *
454 * @parent_transid: expected transid, skip check if 0
455 * @level: expected level, mandatory check
456 * @first_key: expected key of first slot, skip check if NULL
d352ac68 457 */
5ab12d1f 458static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
459 u64 parent_transid, int level,
460 struct btrfs_key *first_key)
f188591e 461{
5ab12d1f 462 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 463 struct extent_io_tree *io_tree;
ea466794 464 int failed = 0;
f188591e
CM
465 int ret;
466 int num_copies = 0;
467 int mirror_num = 0;
ea466794 468 int failed_mirror = 0;
f188591e 469
0b246afa 470 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 471 while (1) {
f8397d69 472 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 473 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 474 if (!ret) {
581c1760 475 if (verify_parent_transid(io_tree, eb,
b9fab919 476 parent_transid, 0))
256dd1bb 477 ret = -EIO;
e064d5e9 478 else if (btrfs_verify_level_key(eb, level,
448de471 479 first_key, parent_transid))
581c1760
QW
480 ret = -EUCLEAN;
481 else
482 break;
256dd1bb 483 }
d397712b 484
0b246afa 485 num_copies = btrfs_num_copies(fs_info,
f188591e 486 eb->start, eb->len);
4235298e 487 if (num_copies == 1)
ea466794 488 break;
4235298e 489
5cf1ab56
JB
490 if (!failed_mirror) {
491 failed = 1;
492 failed_mirror = eb->read_mirror;
493 }
494
f188591e 495 mirror_num++;
ea466794
JB
496 if (mirror_num == failed_mirror)
497 mirror_num++;
498
4235298e 499 if (mirror_num > num_copies)
ea466794 500 break;
f188591e 501 }
ea466794 502
c0901581 503 if (failed && !ret && failed_mirror)
20a1fbf9 504 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
505
506 return ret;
f188591e 507}
19c00ddc 508
d352ac68 509/*
d397712b
CM
510 * checksum a dirty tree block before IO. This has extra checks to make sure
511 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 512 */
d397712b 513
01d58472 514static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 515{
4eee4fa4 516 u64 start = page_offset(page);
19c00ddc 517 u64 found_start;
2996e1f8
JT
518 u8 result[BTRFS_CSUM_SIZE];
519 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 520 struct extent_buffer *eb;
8d47a0d8 521 int ret;
f188591e 522
4f2de97a
JB
523 eb = (struct extent_buffer *)page->private;
524 if (page != eb->pages[0])
525 return 0;
0f805531 526
19c00ddc 527 found_start = btrfs_header_bytenr(eb);
0f805531
AL
528 /*
529 * Please do not consolidate these warnings into a single if.
530 * It is useful to know what went wrong.
531 */
532 if (WARN_ON(found_start != start))
533 return -EUCLEAN;
534 if (WARN_ON(!PageUptodate(page)))
535 return -EUCLEAN;
536
de37aa51 537 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
538 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
539
2996e1f8
JT
540 if (csum_tree_block(eb, result))
541 return -EINVAL;
542
8d47a0d8
QW
543 if (btrfs_header_level(eb))
544 ret = btrfs_check_node(eb);
545 else
546 ret = btrfs_check_leaf_full(eb);
547
548 if (ret < 0) {
c06631b0 549 btrfs_print_tree(eb, 0);
8d47a0d8
QW
550 btrfs_err(fs_info,
551 "block=%llu write time tree block corruption detected",
552 eb->start);
c06631b0 553 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
554 return ret;
555 }
2996e1f8 556 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 557
2996e1f8 558 return 0;
19c00ddc
CM
559}
560
b0c9b3b0 561static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 562{
b0c9b3b0 563 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 564 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 565 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
566 int ret = 1;
567
0a4e5586 568 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 569 while (fs_devices) {
7239ff4b
NB
570 u8 *metadata_uuid;
571
572 /*
573 * Checking the incompat flag is only valid for the current
574 * fs. For seed devices it's forbidden to have their uuid
575 * changed so reading ->fsid in this case is fine
576 */
577 if (fs_devices == fs_info->fs_devices &&
578 btrfs_fs_incompat(fs_info, METADATA_UUID))
579 metadata_uuid = fs_devices->metadata_uuid;
580 else
581 metadata_uuid = fs_devices->fsid;
582
583 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
584 ret = 0;
585 break;
586 }
587 fs_devices = fs_devices->seed;
588 }
589 return ret;
590}
591
facc8a22
MX
592static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
593 u64 phy_offset, struct page *page,
594 u64 start, u64 end, int mirror)
ce9adaa5 595{
ce9adaa5
CM
596 u64 found_start;
597 int found_level;
ce9adaa5
CM
598 struct extent_buffer *eb;
599 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 600 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 601 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 602 int ret = 0;
2996e1f8 603 u8 result[BTRFS_CSUM_SIZE];
727011e0 604 int reads_done;
ce9adaa5 605
ce9adaa5
CM
606 if (!page->private)
607 goto out;
d397712b 608
4f2de97a 609 eb = (struct extent_buffer *)page->private;
d397712b 610
0b32f4bb
JB
611 /* the pending IO might have been the only thing that kept this buffer
612 * in memory. Make sure we have a ref for all this other checks
613 */
67439dad 614 atomic_inc(&eb->refs);
0b32f4bb
JB
615
616 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
617 if (!reads_done)
618 goto err;
f188591e 619
5cf1ab56 620 eb->read_mirror = mirror;
656f30db 621 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
622 ret = -EIO;
623 goto err;
624 }
625
ce9adaa5 626 found_start = btrfs_header_bytenr(eb);
727011e0 627 if (found_start != eb->start) {
893bf4b1
SY
628 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
629 eb->start, found_start);
f188591e 630 ret = -EIO;
ce9adaa5
CM
631 goto err;
632 }
b0c9b3b0 633 if (check_tree_block_fsid(eb)) {
02873e43
ZL
634 btrfs_err_rl(fs_info, "bad fsid on block %llu",
635 eb->start);
1259ab75
CM
636 ret = -EIO;
637 goto err;
638 }
ce9adaa5 639 found_level = btrfs_header_level(eb);
1c24c3ce 640 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
641 btrfs_err(fs_info, "bad tree block level %d on %llu",
642 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
643 ret = -EIO;
644 goto err;
645 }
ce9adaa5 646
85d4e461
CM
647 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
648 eb, found_level);
4008c04a 649
2996e1f8 650 ret = csum_tree_block(eb, result);
8bd98f0e 651 if (ret)
a826d6dc 652 goto err;
a826d6dc 653
2996e1f8
JT
654 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
655 u32 val;
656 u32 found = 0;
657
658 memcpy(&found, result, csum_size);
659
660 read_extent_buffer(eb, &val, 0, csum_size);
661 btrfs_warn_rl(fs_info,
662 "%s checksum verify failed on %llu wanted %x found %x level %d",
663 fs_info->sb->s_id, eb->start,
664 val, found, btrfs_header_level(eb));
665 ret = -EUCLEAN;
666 goto err;
667 }
668
a826d6dc
JB
669 /*
670 * If this is a leaf block and it is corrupt, set the corrupt bit so
671 * that we don't try and read the other copies of this block, just
672 * return -EIO.
673 */
1c4360ee 674 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
675 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
676 ret = -EIO;
677 }
ce9adaa5 678
813fd1dc 679 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
680 ret = -EIO;
681
0b32f4bb
JB
682 if (!ret)
683 set_extent_buffer_uptodate(eb);
75391f0d
QW
684 else
685 btrfs_err(fs_info,
686 "block=%llu read time tree block corruption detected",
687 eb->start);
ce9adaa5 688err:
79fb65a1
JB
689 if (reads_done &&
690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 691 btree_readahead_hook(eb, ret);
4bb31e92 692
53b381b3
DW
693 if (ret) {
694 /*
695 * our io error hook is going to dec the io pages
696 * again, we have to make sure it has something
697 * to decrement
698 */
699 atomic_inc(&eb->io_pages);
0b32f4bb 700 clear_extent_buffer_uptodate(eb);
53b381b3 701 }
0b32f4bb 702 free_extent_buffer(eb);
ce9adaa5 703out:
f188591e 704 return ret;
ce9adaa5
CM
705}
706
4246a0b6 707static void end_workqueue_bio(struct bio *bio)
ce9adaa5 708{
97eb6b69 709 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 710 struct btrfs_fs_info *fs_info;
9e0af237 711 struct btrfs_workqueue *wq;
ce9adaa5 712
ce9adaa5 713 fs_info = end_io_wq->info;
4e4cbee9 714 end_io_wq->status = bio->bi_status;
d20f7043 715
37226b21 716 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 718 wq = fs_info->endio_meta_write_workers;
a0cac0ec 719 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 720 wq = fs_info->endio_freespace_worker;
a0cac0ec 721 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 722 wq = fs_info->endio_raid56_workers;
a0cac0ec 723 else
9e0af237 724 wq = fs_info->endio_write_workers;
d20f7043 725 } else {
a0cac0ec 726 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 727 wq = fs_info->endio_repair_workers;
a0cac0ec 728 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 729 wq = fs_info->endio_raid56_workers;
a0cac0ec 730 else if (end_io_wq->metadata)
9e0af237 731 wq = fs_info->endio_meta_workers;
a0cac0ec 732 else
9e0af237 733 wq = fs_info->endio_workers;
d20f7043 734 }
9e0af237 735
a0cac0ec 736 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 737 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
738}
739
4e4cbee9 740blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 741 enum btrfs_wq_endio_type metadata)
0b86a832 742{
97eb6b69 743 struct btrfs_end_io_wq *end_io_wq;
8b110e39 744
97eb6b69 745 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 746 if (!end_io_wq)
4e4cbee9 747 return BLK_STS_RESOURCE;
ce9adaa5
CM
748
749 end_io_wq->private = bio->bi_private;
750 end_io_wq->end_io = bio->bi_end_io;
22c59948 751 end_io_wq->info = info;
4e4cbee9 752 end_io_wq->status = 0;
ce9adaa5 753 end_io_wq->bio = bio;
22c59948 754 end_io_wq->metadata = metadata;
ce9adaa5
CM
755
756 bio->bi_private = end_io_wq;
757 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
758 return 0;
759}
760
4a69a410
CM
761static void run_one_async_start(struct btrfs_work *work)
762{
4a69a410 763 struct async_submit_bio *async;
4e4cbee9 764 blk_status_t ret;
4a69a410
CM
765
766 async = container_of(work, struct async_submit_bio, work);
c6100a4b 767 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
768 async->bio_offset);
769 if (ret)
4e4cbee9 770 async->status = ret;
4a69a410
CM
771}
772
06ea01b1
DS
773/*
774 * In order to insert checksums into the metadata in large chunks, we wait
775 * until bio submission time. All the pages in the bio are checksummed and
776 * sums are attached onto the ordered extent record.
777 *
778 * At IO completion time the csums attached on the ordered extent record are
779 * inserted into the tree.
780 */
4a69a410 781static void run_one_async_done(struct btrfs_work *work)
8b712842 782{
8b712842 783 struct async_submit_bio *async;
06ea01b1
DS
784 struct inode *inode;
785 blk_status_t ret;
8b712842
CM
786
787 async = container_of(work, struct async_submit_bio, work);
06ea01b1 788 inode = async->private_data;
4854ddd0 789
bb7ab3b9 790 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
791 if (async->status) {
792 async->bio->bi_status = async->status;
4246a0b6 793 bio_endio(async->bio);
79787eaa
JM
794 return;
795 }
796
ec39f769
CM
797 /*
798 * All of the bios that pass through here are from async helpers.
799 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
800 * This changes nothing when cgroups aren't in use.
801 */
802 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 803 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
804 if (ret) {
805 async->bio->bi_status = ret;
806 bio_endio(async->bio);
807 }
4a69a410
CM
808}
809
810static void run_one_async_free(struct btrfs_work *work)
811{
812 struct async_submit_bio *async;
813
814 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
815 kfree(async);
816}
817
8c27cb35
LT
818blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
819 int mirror_num, unsigned long bio_flags,
820 u64 bio_offset, void *private_data,
e288c080 821 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
822{
823 struct async_submit_bio *async;
824
825 async = kmalloc(sizeof(*async), GFP_NOFS);
826 if (!async)
4e4cbee9 827 return BLK_STS_RESOURCE;
44b8bd7e 828
c6100a4b 829 async->private_data = private_data;
44b8bd7e
CM
830 async->bio = bio;
831 async->mirror_num = mirror_num;
4a69a410 832 async->submit_bio_start = submit_bio_start;
4a69a410 833
a0cac0ec
OS
834 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
835 run_one_async_free);
4a69a410 836
eaf25d93 837 async->bio_offset = bio_offset;
8c8bee1d 838
4e4cbee9 839 async->status = 0;
79787eaa 840
67f055c7 841 if (op_is_sync(bio->bi_opf))
5cdc7ad3 842 btrfs_set_work_high_priority(&async->work);
d313d7a3 843
5cdc7ad3 844 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
845 return 0;
846}
847
4e4cbee9 848static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 849{
2c30c71b 850 struct bio_vec *bvec;
ce3ed71a 851 struct btrfs_root *root;
2b070cfe 852 int ret = 0;
6dc4f100 853 struct bvec_iter_all iter_all;
ce3ed71a 854
c09abff8 855 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 856 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 857 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 858 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
859 if (ret)
860 break;
ce3ed71a 861 }
2c30c71b 862
4e4cbee9 863 return errno_to_blk_status(ret);
ce3ed71a
CM
864}
865
d0ee3934 866static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 867 u64 bio_offset)
22c59948 868{
8b712842
CM
869 /*
870 * when we're called for a write, we're already in the async
5443be45 871 * submission context. Just jump into btrfs_map_bio
8b712842 872 */
79787eaa 873 return btree_csum_one_bio(bio);
4a69a410 874}
22c59948 875
9b4e675a
DS
876static int check_async_write(struct btrfs_fs_info *fs_info,
877 struct btrfs_inode *bi)
de0022b9 878{
6300463b
LB
879 if (atomic_read(&bi->sync_writers))
880 return 0;
9b4e675a 881 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 882 return 0;
de0022b9
JB
883 return 1;
884}
885
a56b1c7b 886static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
887 int mirror_num,
888 unsigned long bio_flags)
44b8bd7e 889{
0b246afa 890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 891 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 892 blk_status_t ret;
cad321ad 893
37226b21 894 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
895 /*
896 * called for a read, do the setup so that checksum validation
897 * can happen in the async kernel threads
898 */
0b246afa
JM
899 ret = btrfs_bio_wq_end_io(fs_info, bio,
900 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 901 if (ret)
61891923 902 goto out_w_error;
08635bae 903 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
904 } else if (!async) {
905 ret = btree_csum_one_bio(bio);
906 if (ret)
61891923 907 goto out_w_error;
08635bae 908 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
909 } else {
910 /*
911 * kthread helpers are used to submit writes so that
912 * checksumming can happen in parallel across all CPUs
913 */
c6100a4b 914 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 915 0, inode, btree_submit_bio_start);
44b8bd7e 916 }
d313d7a3 917
4246a0b6
CH
918 if (ret)
919 goto out_w_error;
920 return 0;
921
61891923 922out_w_error:
4e4cbee9 923 bio->bi_status = ret;
4246a0b6 924 bio_endio(bio);
61891923 925 return ret;
44b8bd7e
CM
926}
927
3dd1462e 928#ifdef CONFIG_MIGRATION
784b4e29 929static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
930 struct page *newpage, struct page *page,
931 enum migrate_mode mode)
784b4e29
CM
932{
933 /*
934 * we can't safely write a btree page from here,
935 * we haven't done the locking hook
936 */
937 if (PageDirty(page))
938 return -EAGAIN;
939 /*
940 * Buffers may be managed in a filesystem specific way.
941 * We must have no buffers or drop them.
942 */
943 if (page_has_private(page) &&
944 !try_to_release_page(page, GFP_KERNEL))
945 return -EAGAIN;
a6bc32b8 946 return migrate_page(mapping, newpage, page, mode);
784b4e29 947}
3dd1462e 948#endif
784b4e29 949
0da5468f
CM
950
951static int btree_writepages(struct address_space *mapping,
952 struct writeback_control *wbc)
953{
e2d84521
MX
954 struct btrfs_fs_info *fs_info;
955 int ret;
956
d8d5f3e1 957 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
958
959 if (wbc->for_kupdate)
960 return 0;
961
e2d84521 962 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 963 /* this is a bit racy, but that's ok */
d814a491
EL
964 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965 BTRFS_DIRTY_METADATA_THRESH,
966 fs_info->dirty_metadata_batch);
e2d84521 967 if (ret < 0)
793955bc 968 return 0;
793955bc 969 }
0b32f4bb 970 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
971}
972
b2950863 973static int btree_readpage(struct file *file, struct page *page)
5f39d397 974{
d1310b2e
CM
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 977 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 978}
22b0ebda 979
70dec807 980static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 981{
98509cfc 982 if (PageWriteback(page) || PageDirty(page))
d397712b 983 return 0;
0c4e538b 984
f7a52a40 985 return try_release_extent_buffer(page);
d98237b3
CM
986}
987
d47992f8
LC
988static void btree_invalidatepage(struct page *page, unsigned int offset,
989 unsigned int length)
d98237b3 990{
d1310b2e
CM
991 struct extent_io_tree *tree;
992 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
993 extent_invalidatepage(tree, page, offset);
994 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 995 if (PagePrivate(page)) {
efe120a0
FH
996 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
997 "page private not zero on page %llu",
998 (unsigned long long)page_offset(page));
9ad6b7bc
CM
999 ClearPagePrivate(page);
1000 set_page_private(page, 0);
09cbfeaf 1001 put_page(page);
9ad6b7bc 1002 }
d98237b3
CM
1003}
1004
0b32f4bb
JB
1005static int btree_set_page_dirty(struct page *page)
1006{
bb146eb2 1007#ifdef DEBUG
0b32f4bb
JB
1008 struct extent_buffer *eb;
1009
1010 BUG_ON(!PagePrivate(page));
1011 eb = (struct extent_buffer *)page->private;
1012 BUG_ON(!eb);
1013 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1014 BUG_ON(!atomic_read(&eb->refs));
1015 btrfs_assert_tree_locked(eb);
bb146eb2 1016#endif
0b32f4bb
JB
1017 return __set_page_dirty_nobuffers(page);
1018}
1019
7f09410b 1020static const struct address_space_operations btree_aops = {
d98237b3 1021 .readpage = btree_readpage,
0da5468f 1022 .writepages = btree_writepages,
5f39d397
CM
1023 .releasepage = btree_releasepage,
1024 .invalidatepage = btree_invalidatepage,
5a92bc88 1025#ifdef CONFIG_MIGRATION
784b4e29 1026 .migratepage = btree_migratepage,
5a92bc88 1027#endif
0b32f4bb 1028 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1029};
1030
2ff7e61e 1031void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1032{
5f39d397 1033 struct extent_buffer *buf = NULL;
537f38f0 1034 int ret;
090d1875 1035
2ff7e61e 1036 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1037 if (IS_ERR(buf))
6197d86e 1038 return;
537f38f0 1039
c2ccfbc6 1040 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1041 if (ret < 0)
1042 free_extent_buffer_stale(buf);
1043 else
1044 free_extent_buffer(buf);
090d1875
CM
1045}
1046
2ff7e61e
JM
1047struct extent_buffer *btrfs_find_create_tree_block(
1048 struct btrfs_fs_info *fs_info,
1049 u64 bytenr)
0999df54 1050{
0b246afa
JM
1051 if (btrfs_is_testing(fs_info))
1052 return alloc_test_extent_buffer(fs_info, bytenr);
1053 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1054}
1055
581c1760
QW
1056/*
1057 * Read tree block at logical address @bytenr and do variant basic but critical
1058 * verification.
1059 *
1060 * @parent_transid: expected transid of this tree block, skip check if 0
1061 * @level: expected level, mandatory check
1062 * @first_key: expected key in slot 0, skip check if NULL
1063 */
2ff7e61e 1064struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1065 u64 parent_transid, int level,
1066 struct btrfs_key *first_key)
0999df54
CM
1067{
1068 struct extent_buffer *buf = NULL;
0999df54
CM
1069 int ret;
1070
2ff7e61e 1071 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1072 if (IS_ERR(buf))
1073 return buf;
0999df54 1074
5ab12d1f 1075 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1076 level, first_key);
0f0fe8f7 1077 if (ret) {
537f38f0 1078 free_extent_buffer_stale(buf);
64c043de 1079 return ERR_PTR(ret);
0f0fe8f7 1080 }
5f39d397 1081 return buf;
ce9adaa5 1082
eb60ceac
CM
1083}
1084
6a884d7d 1085void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1086{
6a884d7d 1087 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1088 if (btrfs_header_generation(buf) ==
e2d84521 1089 fs_info->running_transaction->transid) {
b9447ef8 1090 btrfs_assert_tree_locked(buf);
b4ce94de 1091
b9473439 1092 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1093 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1094 -buf->len,
1095 fs_info->dirty_metadata_batch);
ed7b63eb 1096 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1097 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1098 clear_extent_buffer_dirty(buf);
1099 }
925baedd 1100 }
5f39d397
CM
1101}
1102
8257b2dc
MX
1103static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1104{
1105 struct btrfs_subvolume_writers *writers;
1106 int ret;
1107
1108 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1109 if (!writers)
1110 return ERR_PTR(-ENOMEM);
1111
8a5a916d 1112 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1113 if (ret < 0) {
1114 kfree(writers);
1115 return ERR_PTR(ret);
1116 }
1117
1118 init_waitqueue_head(&writers->wait);
1119 return writers;
1120}
1121
1122static void
1123btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1124{
1125 percpu_counter_destroy(&writers->counter);
1126 kfree(writers);
1127}
1128
da17066c 1129static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1130 u64 objectid)
d97e63b6 1131{
7c0260ee 1132 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1133 root->fs_info = fs_info;
cfaa7295 1134 root->node = NULL;
a28ec197 1135 root->commit_root = NULL;
27cdeb70 1136 root->state = 0;
d68fc57b 1137 root->orphan_cleanup_state = 0;
0b86a832 1138
0f7d52f4 1139 root->last_trans = 0;
13a8a7c8 1140 root->highest_objectid = 0;
eb73c1b7 1141 root->nr_delalloc_inodes = 0;
199c2a9c 1142 root->nr_ordered_extents = 0;
6bef4d31 1143 root->inode_tree = RB_ROOT;
16cdcec7 1144 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1145 root->block_rsv = NULL;
0b86a832
CM
1146
1147 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1148 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1149 INIT_LIST_HEAD(&root->delalloc_inodes);
1150 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1151 INIT_LIST_HEAD(&root->ordered_extents);
1152 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1153 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1154 INIT_LIST_HEAD(&root->logged_list[0]);
1155 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1156 spin_lock_init(&root->inode_lock);
eb73c1b7 1157 spin_lock_init(&root->delalloc_lock);
199c2a9c 1158 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1159 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1160 spin_lock_init(&root->log_extents_lock[0]);
1161 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1162 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1163 mutex_init(&root->objectid_mutex);
e02119d5 1164 mutex_init(&root->log_mutex);
31f3d255 1165 mutex_init(&root->ordered_extent_mutex);
573bfb72 1166 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1167 init_waitqueue_head(&root->log_writer_wait);
1168 init_waitqueue_head(&root->log_commit_wait[0]);
1169 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1170 INIT_LIST_HEAD(&root->log_ctxs[0]);
1171 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1172 atomic_set(&root->log_commit[0], 0);
1173 atomic_set(&root->log_commit[1], 0);
1174 atomic_set(&root->log_writers, 0);
2ecb7923 1175 atomic_set(&root->log_batch, 0);
0700cea7 1176 refcount_set(&root->refs, 1);
ea14b57f 1177 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1178 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1179 atomic_set(&root->nr_swapfiles, 0);
7237f183 1180 root->log_transid = 0;
d1433deb 1181 root->log_transid_committed = -1;
257c62e1 1182 root->last_log_commit = 0;
7c0260ee 1183 if (!dummy)
43eb5f29
QW
1184 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1185 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1186
3768f368
CM
1187 memset(&root->root_key, 0, sizeof(root->root_key));
1188 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1189 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1190 if (!dummy)
06ea65a3
JB
1191 root->defrag_trans_start = fs_info->generation;
1192 else
1193 root->defrag_trans_start = 0;
4d775673 1194 root->root_key.objectid = objectid;
0ee5dc67 1195 root->anon_dev = 0;
8ea05e3a 1196
5f3ab90a 1197 spin_lock_init(&root->root_item_lock);
370a11b8 1198 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1199}
1200
74e4d827 1201static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1202 u64 objectid, gfp_t flags)
6f07e42e 1203{
74e4d827 1204 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1205 if (root)
96dfcb46 1206 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1207 return root;
1208}
1209
06ea65a3
JB
1210#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1211/* Should only be used by the testing infrastructure */
da17066c 1212struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1213{
1214 struct btrfs_root *root;
1215
7c0260ee
JM
1216 if (!fs_info)
1217 return ERR_PTR(-EINVAL);
1218
96dfcb46 1219 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1220 if (!root)
1221 return ERR_PTR(-ENOMEM);
da17066c 1222
b9ef22de 1223 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1224 root->alloc_bytenr = 0;
06ea65a3
JB
1225
1226 return root;
1227}
1228#endif
1229
20897f5c 1230struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1231 u64 objectid)
1232{
9b7a2440 1233 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1234 struct extent_buffer *leaf;
1235 struct btrfs_root *tree_root = fs_info->tree_root;
1236 struct btrfs_root *root;
1237 struct btrfs_key key;
b89f6d1f 1238 unsigned int nofs_flag;
20897f5c 1239 int ret = 0;
33d85fda 1240 uuid_le uuid = NULL_UUID_LE;
20897f5c 1241
b89f6d1f
FM
1242 /*
1243 * We're holding a transaction handle, so use a NOFS memory allocation
1244 * context to avoid deadlock if reclaim happens.
1245 */
1246 nofs_flag = memalloc_nofs_save();
96dfcb46 1247 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1248 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1249 if (!root)
1250 return ERR_PTR(-ENOMEM);
1251
20897f5c
AJ
1252 root->root_key.objectid = objectid;
1253 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1254 root->root_key.offset = 0;
1255
4d75f8a9 1256 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1257 if (IS_ERR(leaf)) {
1258 ret = PTR_ERR(leaf);
1dd05682 1259 leaf = NULL;
20897f5c
AJ
1260 goto fail;
1261 }
1262
20897f5c 1263 root->node = leaf;
20897f5c
AJ
1264 btrfs_mark_buffer_dirty(leaf);
1265
1266 root->commit_root = btrfs_root_node(root);
27cdeb70 1267 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1268
1269 root->root_item.flags = 0;
1270 root->root_item.byte_limit = 0;
1271 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1272 btrfs_set_root_generation(&root->root_item, trans->transid);
1273 btrfs_set_root_level(&root->root_item, 0);
1274 btrfs_set_root_refs(&root->root_item, 1);
1275 btrfs_set_root_used(&root->root_item, leaf->len);
1276 btrfs_set_root_last_snapshot(&root->root_item, 0);
1277 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1278 if (is_fstree(objectid))
1279 uuid_le_gen(&uuid);
6463fe58 1280 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1281 root->root_item.drop_level = 0;
1282
1283 key.objectid = objectid;
1284 key.type = BTRFS_ROOT_ITEM_KEY;
1285 key.offset = 0;
1286 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1287 if (ret)
1288 goto fail;
1289
1290 btrfs_tree_unlock(leaf);
1291
1dd05682
TI
1292 return root;
1293
20897f5c 1294fail:
1dd05682
TI
1295 if (leaf) {
1296 btrfs_tree_unlock(leaf);
59885b39 1297 free_extent_buffer(root->commit_root);
1dd05682
TI
1298 free_extent_buffer(leaf);
1299 }
1300 kfree(root);
20897f5c 1301
1dd05682 1302 return ERR_PTR(ret);
20897f5c
AJ
1303}
1304
7237f183
YZ
1305static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1306 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1307{
1308 struct btrfs_root *root;
7237f183 1309 struct extent_buffer *leaf;
e02119d5 1310
96dfcb46 1311 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1312 if (!root)
7237f183 1313 return ERR_PTR(-ENOMEM);
e02119d5 1314
e02119d5
CM
1315 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1316 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1317 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1318
7237f183 1319 /*
27cdeb70
MX
1320 * DON'T set REF_COWS for log trees
1321 *
7237f183
YZ
1322 * log trees do not get reference counted because they go away
1323 * before a real commit is actually done. They do store pointers
1324 * to file data extents, and those reference counts still get
1325 * updated (along with back refs to the log tree).
1326 */
e02119d5 1327
4d75f8a9
DS
1328 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1329 NULL, 0, 0, 0);
7237f183
YZ
1330 if (IS_ERR(leaf)) {
1331 kfree(root);
1332 return ERR_CAST(leaf);
1333 }
e02119d5 1334
7237f183 1335 root->node = leaf;
e02119d5 1336
e02119d5
CM
1337 btrfs_mark_buffer_dirty(root->node);
1338 btrfs_tree_unlock(root->node);
7237f183
YZ
1339 return root;
1340}
1341
1342int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1343 struct btrfs_fs_info *fs_info)
1344{
1345 struct btrfs_root *log_root;
1346
1347 log_root = alloc_log_tree(trans, fs_info);
1348 if (IS_ERR(log_root))
1349 return PTR_ERR(log_root);
1350 WARN_ON(fs_info->log_root_tree);
1351 fs_info->log_root_tree = log_root;
1352 return 0;
1353}
1354
1355int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1356 struct btrfs_root *root)
1357{
0b246afa 1358 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1359 struct btrfs_root *log_root;
1360 struct btrfs_inode_item *inode_item;
1361
0b246afa 1362 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1363 if (IS_ERR(log_root))
1364 return PTR_ERR(log_root);
1365
1366 log_root->last_trans = trans->transid;
1367 log_root->root_key.offset = root->root_key.objectid;
1368
1369 inode_item = &log_root->root_item.inode;
3cae210f
QW
1370 btrfs_set_stack_inode_generation(inode_item, 1);
1371 btrfs_set_stack_inode_size(inode_item, 3);
1372 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1373 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1374 fs_info->nodesize);
3cae210f 1375 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1376
5d4f98a2 1377 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1378
1379 WARN_ON(root->log_root);
1380 root->log_root = log_root;
1381 root->log_transid = 0;
d1433deb 1382 root->log_transid_committed = -1;
257c62e1 1383 root->last_log_commit = 0;
e02119d5
CM
1384 return 0;
1385}
1386
35a3621b
SB
1387static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1388 struct btrfs_key *key)
e02119d5
CM
1389{
1390 struct btrfs_root *root;
1391 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1392 struct btrfs_path *path;
84234f3a 1393 u64 generation;
cb517eab 1394 int ret;
581c1760 1395 int level;
0f7d52f4 1396
cb517eab
MX
1397 path = btrfs_alloc_path();
1398 if (!path)
0f7d52f4 1399 return ERR_PTR(-ENOMEM);
cb517eab 1400
96dfcb46 1401 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1402 if (!root) {
1403 ret = -ENOMEM;
1404 goto alloc_fail;
0f7d52f4
CM
1405 }
1406
cb517eab
MX
1407 ret = btrfs_find_root(tree_root, key, path,
1408 &root->root_item, &root->root_key);
0f7d52f4 1409 if (ret) {
13a8a7c8
YZ
1410 if (ret > 0)
1411 ret = -ENOENT;
cb517eab 1412 goto find_fail;
0f7d52f4 1413 }
13a8a7c8 1414
84234f3a 1415 generation = btrfs_root_generation(&root->root_item);
581c1760 1416 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1417 root->node = read_tree_block(fs_info,
1418 btrfs_root_bytenr(&root->root_item),
581c1760 1419 generation, level, NULL);
64c043de
LB
1420 if (IS_ERR(root->node)) {
1421 ret = PTR_ERR(root->node);
cb517eab
MX
1422 goto find_fail;
1423 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1424 ret = -EIO;
64c043de
LB
1425 free_extent_buffer(root->node);
1426 goto find_fail;
416bc658 1427 }
5d4f98a2 1428 root->commit_root = btrfs_root_node(root);
13a8a7c8 1429out:
cb517eab
MX
1430 btrfs_free_path(path);
1431 return root;
1432
cb517eab
MX
1433find_fail:
1434 kfree(root);
1435alloc_fail:
1436 root = ERR_PTR(ret);
1437 goto out;
1438}
1439
1440struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1441 struct btrfs_key *location)
1442{
1443 struct btrfs_root *root;
1444
1445 root = btrfs_read_tree_root(tree_root, location);
1446 if (IS_ERR(root))
1447 return root;
1448
1449 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1450 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1451 btrfs_check_and_init_root_item(&root->root_item);
1452 }
13a8a7c8 1453
5eda7b5e
CM
1454 return root;
1455}
1456
cb517eab
MX
1457int btrfs_init_fs_root(struct btrfs_root *root)
1458{
1459 int ret;
8257b2dc 1460 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1461
1462 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1463 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1464 GFP_NOFS);
1465 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1466 ret = -ENOMEM;
1467 goto fail;
1468 }
1469
8257b2dc
MX
1470 writers = btrfs_alloc_subvolume_writers();
1471 if (IS_ERR(writers)) {
1472 ret = PTR_ERR(writers);
1473 goto fail;
1474 }
1475 root->subv_writers = writers;
1476
cb517eab 1477 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1478 spin_lock_init(&root->ino_cache_lock);
1479 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1480
1481 ret = get_anon_bdev(&root->anon_dev);
1482 if (ret)
876d2cf1 1483 goto fail;
f32e48e9
CR
1484
1485 mutex_lock(&root->objectid_mutex);
1486 ret = btrfs_find_highest_objectid(root,
1487 &root->highest_objectid);
1488 if (ret) {
1489 mutex_unlock(&root->objectid_mutex);
876d2cf1 1490 goto fail;
f32e48e9
CR
1491 }
1492
1493 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1494
1495 mutex_unlock(&root->objectid_mutex);
1496
cb517eab
MX
1497 return 0;
1498fail:
84db5ccf 1499 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1500 return ret;
1501}
1502
35bbb97f
JM
1503struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1504 u64 root_id)
cb517eab
MX
1505{
1506 struct btrfs_root *root;
1507
1508 spin_lock(&fs_info->fs_roots_radix_lock);
1509 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1510 (unsigned long)root_id);
1511 spin_unlock(&fs_info->fs_roots_radix_lock);
1512 return root;
1513}
1514
1515int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1516 struct btrfs_root *root)
1517{
1518 int ret;
1519
e1860a77 1520 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1521 if (ret)
1522 return ret;
1523
1524 spin_lock(&fs_info->fs_roots_radix_lock);
1525 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1526 (unsigned long)root->root_key.objectid,
1527 root);
1528 if (ret == 0)
27cdeb70 1529 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1530 spin_unlock(&fs_info->fs_roots_radix_lock);
1531 radix_tree_preload_end();
1532
1533 return ret;
1534}
1535
c00869f1
MX
1536struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1537 struct btrfs_key *location,
1538 bool check_ref)
5eda7b5e
CM
1539{
1540 struct btrfs_root *root;
381cf658 1541 struct btrfs_path *path;
1d4c08e0 1542 struct btrfs_key key;
5eda7b5e
CM
1543 int ret;
1544
edbd8d4e
CM
1545 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1546 return fs_info->tree_root;
1547 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1548 return fs_info->extent_root;
8f18cf13
CM
1549 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1550 return fs_info->chunk_root;
1551 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1552 return fs_info->dev_root;
0403e47e
YZ
1553 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1554 return fs_info->csum_root;
bcef60f2
AJ
1555 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1556 return fs_info->quota_root ? fs_info->quota_root :
1557 ERR_PTR(-ENOENT);
f7a81ea4
SB
1558 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1559 return fs_info->uuid_root ? fs_info->uuid_root :
1560 ERR_PTR(-ENOENT);
70f6d82e
OS
1561 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1562 return fs_info->free_space_root ? fs_info->free_space_root :
1563 ERR_PTR(-ENOENT);
4df27c4d 1564again:
cb517eab 1565 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1566 if (root) {
c00869f1 1567 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1568 return ERR_PTR(-ENOENT);
5eda7b5e 1569 return root;
48475471 1570 }
5eda7b5e 1571
cb517eab 1572 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1573 if (IS_ERR(root))
1574 return root;
3394e160 1575
c00869f1 1576 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1577 ret = -ENOENT;
581bb050 1578 goto fail;
35a30d7c 1579 }
581bb050 1580
cb517eab 1581 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1582 if (ret)
1583 goto fail;
3394e160 1584
381cf658
DS
1585 path = btrfs_alloc_path();
1586 if (!path) {
1587 ret = -ENOMEM;
1588 goto fail;
1589 }
1d4c08e0
DS
1590 key.objectid = BTRFS_ORPHAN_OBJECTID;
1591 key.type = BTRFS_ORPHAN_ITEM_KEY;
1592 key.offset = location->objectid;
1593
1594 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1595 btrfs_free_path(path);
d68fc57b
YZ
1596 if (ret < 0)
1597 goto fail;
1598 if (ret == 0)
27cdeb70 1599 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1600
cb517eab 1601 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1602 if (ret) {
4df27c4d 1603 if (ret == -EEXIST) {
84db5ccf 1604 btrfs_free_fs_root(root);
4df27c4d
YZ
1605 goto again;
1606 }
1607 goto fail;
0f7d52f4 1608 }
edbd8d4e 1609 return root;
4df27c4d 1610fail:
84db5ccf 1611 btrfs_free_fs_root(root);
4df27c4d 1612 return ERR_PTR(ret);
edbd8d4e
CM
1613}
1614
04160088
CM
1615static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1616{
1617 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1618 int ret = 0;
04160088
CM
1619 struct btrfs_device *device;
1620 struct backing_dev_info *bdi;
b7967db7 1621
1f78160c
XG
1622 rcu_read_lock();
1623 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1624 if (!device->bdev)
1625 continue;
efa7c9f9 1626 bdi = device->bdev->bd_bdi;
ff9ea323 1627 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1628 ret = 1;
1629 break;
1630 }
1631 }
1f78160c 1632 rcu_read_unlock();
04160088
CM
1633 return ret;
1634}
1635
8b712842
CM
1636/*
1637 * called by the kthread helper functions to finally call the bio end_io
1638 * functions. This is where read checksum verification actually happens
1639 */
1640static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1641{
ce9adaa5 1642 struct bio *bio;
97eb6b69 1643 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1644
97eb6b69 1645 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1646 bio = end_io_wq->bio;
ce9adaa5 1647
4e4cbee9 1648 bio->bi_status = end_io_wq->status;
8b712842
CM
1649 bio->bi_private = end_io_wq->private;
1650 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1651 bio_endio(bio);
9be490f1 1652 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1653}
1654
a74a4b97
CM
1655static int cleaner_kthread(void *arg)
1656{
1657 struct btrfs_root *root = arg;
0b246afa 1658 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1659 int again;
a74a4b97 1660
d6fd0ae2 1661 while (1) {
d0278245 1662 again = 0;
a74a4b97 1663
fd340d0f
JB
1664 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1665
d0278245 1666 /* Make the cleaner go to sleep early. */
2ff7e61e 1667 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1668 goto sleep;
1669
90c711ab
ZB
1670 /*
1671 * Do not do anything if we might cause open_ctree() to block
1672 * before we have finished mounting the filesystem.
1673 */
0b246afa 1674 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1675 goto sleep;
1676
0b246afa 1677 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1678 goto sleep;
1679
dc7f370c
MX
1680 /*
1681 * Avoid the problem that we change the status of the fs
1682 * during the above check and trylock.
1683 */
2ff7e61e 1684 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1685 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1686 goto sleep;
76dda93c 1687 }
a74a4b97 1688
2ff7e61e 1689 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1690
d0278245 1691 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1692 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1693
1694 /*
05323cd1
MX
1695 * The defragger has dealt with the R/O remount and umount,
1696 * needn't do anything special here.
d0278245 1697 */
0b246afa 1698 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1699
1700 /*
1701 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1702 * with relocation (btrfs_relocate_chunk) and relocation
1703 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1704 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1705 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1706 * unused block groups.
1707 */
0b246afa 1708 btrfs_delete_unused_bgs(fs_info);
d0278245 1709sleep:
fd340d0f 1710 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1711 if (kthread_should_park())
1712 kthread_parkme();
1713 if (kthread_should_stop())
1714 return 0;
838fe188 1715 if (!again) {
a74a4b97 1716 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1717 schedule();
a74a4b97
CM
1718 __set_current_state(TASK_RUNNING);
1719 }
da288d28 1720 }
a74a4b97
CM
1721}
1722
1723static int transaction_kthread(void *arg)
1724{
1725 struct btrfs_root *root = arg;
0b246afa 1726 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1727 struct btrfs_trans_handle *trans;
1728 struct btrfs_transaction *cur;
8929ecfa 1729 u64 transid;
a944442c 1730 time64_t now;
a74a4b97 1731 unsigned long delay;
914b2007 1732 bool cannot_commit;
a74a4b97
CM
1733
1734 do {
914b2007 1735 cannot_commit = false;
0b246afa
JM
1736 delay = HZ * fs_info->commit_interval;
1737 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1738
0b246afa
JM
1739 spin_lock(&fs_info->trans_lock);
1740 cur = fs_info->running_transaction;
a74a4b97 1741 if (!cur) {
0b246afa 1742 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1743 goto sleep;
1744 }
31153d81 1745
afd48513 1746 now = ktime_get_seconds();
3296bf56 1747 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1748 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1749 (now < cur->start_time ||
0b246afa
JM
1750 now - cur->start_time < fs_info->commit_interval)) {
1751 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1752 delay = HZ * 5;
1753 goto sleep;
1754 }
8929ecfa 1755 transid = cur->transid;
0b246afa 1756 spin_unlock(&fs_info->trans_lock);
56bec294 1757
79787eaa 1758 /* If the file system is aborted, this will always fail. */
354aa0fb 1759 trans = btrfs_attach_transaction(root);
914b2007 1760 if (IS_ERR(trans)) {
354aa0fb
MX
1761 if (PTR_ERR(trans) != -ENOENT)
1762 cannot_commit = true;
79787eaa 1763 goto sleep;
914b2007 1764 }
8929ecfa 1765 if (transid == trans->transid) {
3a45bb20 1766 btrfs_commit_transaction(trans);
8929ecfa 1767 } else {
3a45bb20 1768 btrfs_end_transaction(trans);
8929ecfa 1769 }
a74a4b97 1770sleep:
0b246afa
JM
1771 wake_up_process(fs_info->cleaner_kthread);
1772 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1773
4e121c06 1774 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1775 &fs_info->fs_state)))
2ff7e61e 1776 btrfs_cleanup_transaction(fs_info);
ce63f891 1777 if (!kthread_should_stop() &&
0b246afa 1778 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1779 cannot_commit))
bc5511d0 1780 schedule_timeout_interruptible(delay);
a74a4b97
CM
1781 } while (!kthread_should_stop());
1782 return 0;
1783}
1784
af31f5e5 1785/*
01f0f9da
NB
1786 * This will find the highest generation in the array of root backups. The
1787 * index of the highest array is returned, or -EINVAL if we can't find
1788 * anything.
af31f5e5
CM
1789 *
1790 * We check to make sure the array is valid by comparing the
1791 * generation of the latest root in the array with the generation
1792 * in the super block. If they don't match we pitch it.
1793 */
01f0f9da 1794static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1795{
01f0f9da 1796 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1797 u64 cur;
af31f5e5
CM
1798 struct btrfs_root_backup *root_backup;
1799 int i;
1800
1801 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1802 root_backup = info->super_copy->super_roots + i;
1803 cur = btrfs_backup_tree_root_gen(root_backup);
1804 if (cur == newest_gen)
01f0f9da 1805 return i;
af31f5e5
CM
1806 }
1807
01f0f9da 1808 return -EINVAL;
af31f5e5
CM
1809}
1810
af31f5e5
CM
1811/*
1812 * copy all the root pointers into the super backup array.
1813 * this will bump the backup pointer by one when it is
1814 * done
1815 */
1816static void backup_super_roots(struct btrfs_fs_info *info)
1817{
6ef108dd 1818 const int next_backup = info->backup_root_index;
af31f5e5 1819 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1820
1821 root_backup = info->super_for_commit->super_roots + next_backup;
1822
1823 /*
1824 * make sure all of our padding and empty slots get zero filled
1825 * regardless of which ones we use today
1826 */
1827 memset(root_backup, 0, sizeof(*root_backup));
1828
1829 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1830
1831 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1832 btrfs_set_backup_tree_root_gen(root_backup,
1833 btrfs_header_generation(info->tree_root->node));
1834
1835 btrfs_set_backup_tree_root_level(root_backup,
1836 btrfs_header_level(info->tree_root->node));
1837
1838 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1839 btrfs_set_backup_chunk_root_gen(root_backup,
1840 btrfs_header_generation(info->chunk_root->node));
1841 btrfs_set_backup_chunk_root_level(root_backup,
1842 btrfs_header_level(info->chunk_root->node));
1843
1844 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1845 btrfs_set_backup_extent_root_gen(root_backup,
1846 btrfs_header_generation(info->extent_root->node));
1847 btrfs_set_backup_extent_root_level(root_backup,
1848 btrfs_header_level(info->extent_root->node));
1849
7c7e82a7
CM
1850 /*
1851 * we might commit during log recovery, which happens before we set
1852 * the fs_root. Make sure it is valid before we fill it in.
1853 */
1854 if (info->fs_root && info->fs_root->node) {
1855 btrfs_set_backup_fs_root(root_backup,
1856 info->fs_root->node->start);
1857 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1858 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1859 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1860 btrfs_header_level(info->fs_root->node));
7c7e82a7 1861 }
af31f5e5
CM
1862
1863 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1864 btrfs_set_backup_dev_root_gen(root_backup,
1865 btrfs_header_generation(info->dev_root->node));
1866 btrfs_set_backup_dev_root_level(root_backup,
1867 btrfs_header_level(info->dev_root->node));
1868
1869 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1870 btrfs_set_backup_csum_root_gen(root_backup,
1871 btrfs_header_generation(info->csum_root->node));
1872 btrfs_set_backup_csum_root_level(root_backup,
1873 btrfs_header_level(info->csum_root->node));
1874
1875 btrfs_set_backup_total_bytes(root_backup,
1876 btrfs_super_total_bytes(info->super_copy));
1877 btrfs_set_backup_bytes_used(root_backup,
1878 btrfs_super_bytes_used(info->super_copy));
1879 btrfs_set_backup_num_devices(root_backup,
1880 btrfs_super_num_devices(info->super_copy));
1881
1882 /*
1883 * if we don't copy this out to the super_copy, it won't get remembered
1884 * for the next commit
1885 */
1886 memcpy(&info->super_copy->super_roots,
1887 &info->super_for_commit->super_roots,
1888 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1889}
1890
bd2336b2
NB
1891/*
1892 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1893 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1894 *
1895 * fs_info - filesystem whose backup roots need to be read
1896 * priority - priority of backup root required
1897 *
1898 * Returns backup root index on success and -EINVAL otherwise.
1899 */
1900static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1901{
1902 int backup_index = find_newest_super_backup(fs_info);
1903 struct btrfs_super_block *super = fs_info->super_copy;
1904 struct btrfs_root_backup *root_backup;
1905
1906 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1907 if (priority == 0)
1908 return backup_index;
1909
1910 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1911 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1912 } else {
1913 return -EINVAL;
1914 }
1915
1916 root_backup = super->super_roots + backup_index;
1917
1918 btrfs_set_super_generation(super,
1919 btrfs_backup_tree_root_gen(root_backup));
1920 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1921 btrfs_set_super_root_level(super,
1922 btrfs_backup_tree_root_level(root_backup));
1923 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1924
1925 /*
1926 * Fixme: the total bytes and num_devices need to match or we should
1927 * need a fsck
1928 */
1929 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1930 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1931
1932 return backup_index;
1933}
1934
7abadb64
LB
1935/* helper to cleanup workers */
1936static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1937{
dc6e3209 1938 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1939 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1940 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1941 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1942 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1943 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1944 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1945 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1946 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1947 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1948 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1949 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1950 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1951 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1952 if (fs_info->discard_ctl.discard_workers)
1953 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1954 /*
1955 * Now that all other work queues are destroyed, we can safely destroy
1956 * the queues used for metadata I/O, since tasks from those other work
1957 * queues can do metadata I/O operations.
1958 */
1959 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1960 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1961}
1962
2e9f5954
R
1963static void free_root_extent_buffers(struct btrfs_root *root)
1964{
1965 if (root) {
1966 free_extent_buffer(root->node);
1967 free_extent_buffer(root->commit_root);
1968 root->node = NULL;
1969 root->commit_root = NULL;
1970 }
1971}
1972
af31f5e5 1973/* helper to cleanup tree roots */
4273eaff 1974static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1975{
2e9f5954 1976 free_root_extent_buffers(info->tree_root);
655b09fe 1977
2e9f5954
R
1978 free_root_extent_buffers(info->dev_root);
1979 free_root_extent_buffers(info->extent_root);
1980 free_root_extent_buffers(info->csum_root);
1981 free_root_extent_buffers(info->quota_root);
1982 free_root_extent_buffers(info->uuid_root);
4273eaff 1983 if (free_chunk_root)
2e9f5954 1984 free_root_extent_buffers(info->chunk_root);
70f6d82e 1985 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
1986}
1987
faa2dbf0 1988void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
1989{
1990 int ret;
1991 struct btrfs_root *gang[8];
1992 int i;
1993
1994 while (!list_empty(&fs_info->dead_roots)) {
1995 gang[0] = list_entry(fs_info->dead_roots.next,
1996 struct btrfs_root, root_list);
1997 list_del(&gang[0]->root_list);
1998
27cdeb70 1999 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2000 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2001 } else {
2002 free_extent_buffer(gang[0]->node);
2003 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2004 btrfs_put_fs_root(gang[0]);
171f6537
JB
2005 }
2006 }
2007
2008 while (1) {
2009 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2010 (void **)gang, 0,
2011 ARRAY_SIZE(gang));
2012 if (!ret)
2013 break;
2014 for (i = 0; i < ret; i++)
cb517eab 2015 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2016 }
1a4319cc
LB
2017
2018 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2019 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2020 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2021 }
171f6537 2022}
af31f5e5 2023
638aa7ed
ES
2024static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2025{
2026 mutex_init(&fs_info->scrub_lock);
2027 atomic_set(&fs_info->scrubs_running, 0);
2028 atomic_set(&fs_info->scrub_pause_req, 0);
2029 atomic_set(&fs_info->scrubs_paused, 0);
2030 atomic_set(&fs_info->scrub_cancel_req, 0);
2031 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2032 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2033}
2034
779a65a4
ES
2035static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2036{
2037 spin_lock_init(&fs_info->balance_lock);
2038 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2039 atomic_set(&fs_info->balance_pause_req, 0);
2040 atomic_set(&fs_info->balance_cancel_req, 0);
2041 fs_info->balance_ctl = NULL;
2042 init_waitqueue_head(&fs_info->balance_wait_q);
2043}
2044
6bccf3ab 2045static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2046{
2ff7e61e
JM
2047 struct inode *inode = fs_info->btree_inode;
2048
2049 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2050 set_nlink(inode, 1);
f37938e0
ES
2051 /*
2052 * we set the i_size on the btree inode to the max possible int.
2053 * the real end of the address space is determined by all of
2054 * the devices in the system
2055 */
2ff7e61e
JM
2056 inode->i_size = OFFSET_MAX;
2057 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2058
2ff7e61e 2059 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2060 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2061 IO_TREE_INODE_IO, inode);
7b439738 2062 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2063 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2064
2ff7e61e 2065 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2066
2ff7e61e
JM
2067 BTRFS_I(inode)->root = fs_info->tree_root;
2068 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2069 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2070 btrfs_insert_inode_hash(inode);
f37938e0
ES
2071}
2072
ad618368
ES
2073static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2074{
ad618368 2075 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2076 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2077 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2078}
2079
f9e92e40
ES
2080static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2081{
2082 spin_lock_init(&fs_info->qgroup_lock);
2083 mutex_init(&fs_info->qgroup_ioctl_lock);
2084 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2085 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2086 fs_info->qgroup_seq = 1;
f9e92e40 2087 fs_info->qgroup_ulist = NULL;
d2c609b8 2088 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2089 mutex_init(&fs_info->qgroup_rescan_lock);
2090}
2091
2a458198
ES
2092static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2093 struct btrfs_fs_devices *fs_devices)
2094{
f7b885be 2095 u32 max_active = fs_info->thread_pool_size;
6f011058 2096 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2097
2098 fs_info->workers =
cb001095
JM
2099 btrfs_alloc_workqueue(fs_info, "worker",
2100 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2101
2102 fs_info->delalloc_workers =
cb001095
JM
2103 btrfs_alloc_workqueue(fs_info, "delalloc",
2104 flags, max_active, 2);
2a458198
ES
2105
2106 fs_info->flush_workers =
cb001095
JM
2107 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2108 flags, max_active, 0);
2a458198
ES
2109
2110 fs_info->caching_workers =
cb001095 2111 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2112
2a458198 2113 fs_info->fixup_workers =
cb001095 2114 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2115
2116 /*
2117 * endios are largely parallel and should have a very
2118 * low idle thresh
2119 */
2120 fs_info->endio_workers =
cb001095 2121 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2122 fs_info->endio_meta_workers =
cb001095
JM
2123 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2124 max_active, 4);
2a458198 2125 fs_info->endio_meta_write_workers =
cb001095
JM
2126 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2127 max_active, 2);
2a458198 2128 fs_info->endio_raid56_workers =
cb001095
JM
2129 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2130 max_active, 4);
2a458198 2131 fs_info->endio_repair_workers =
cb001095 2132 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2133 fs_info->rmw_workers =
cb001095 2134 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2135 fs_info->endio_write_workers =
cb001095
JM
2136 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2137 max_active, 2);
2a458198 2138 fs_info->endio_freespace_worker =
cb001095
JM
2139 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2140 max_active, 0);
2a458198 2141 fs_info->delayed_workers =
cb001095
JM
2142 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2143 max_active, 0);
2a458198 2144 fs_info->readahead_workers =
cb001095
JM
2145 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2146 max_active, 2);
2a458198 2147 fs_info->qgroup_rescan_workers =
cb001095 2148 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2149 fs_info->discard_ctl.discard_workers =
2150 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2151
2152 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2153 fs_info->flush_workers &&
2a458198
ES
2154 fs_info->endio_workers && fs_info->endio_meta_workers &&
2155 fs_info->endio_meta_write_workers &&
2156 fs_info->endio_repair_workers &&
2157 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2158 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2159 fs_info->caching_workers && fs_info->readahead_workers &&
2160 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2161 fs_info->qgroup_rescan_workers &&
2162 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2163 return -ENOMEM;
2164 }
2165
2166 return 0;
2167}
2168
6d97c6e3
JT
2169static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2170{
2171 struct crypto_shash *csum_shash;
b4e967be 2172 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2173
b4e967be 2174 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2175
2176 if (IS_ERR(csum_shash)) {
2177 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2178 csum_driver);
6d97c6e3
JT
2179 return PTR_ERR(csum_shash);
2180 }
2181
2182 fs_info->csum_shash = csum_shash;
2183
2184 return 0;
2185}
2186
2187static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2188{
2189 crypto_free_shash(fs_info->csum_shash);
2190}
2191
63443bf5
ES
2192static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2193 struct btrfs_fs_devices *fs_devices)
2194{
2195 int ret;
63443bf5
ES
2196 struct btrfs_root *log_tree_root;
2197 struct btrfs_super_block *disk_super = fs_info->super_copy;
2198 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2199 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2200
2201 if (fs_devices->rw_devices == 0) {
f14d104d 2202 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2203 return -EIO;
2204 }
2205
96dfcb46
JB
2206 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2207 GFP_KERNEL);
63443bf5
ES
2208 if (!log_tree_root)
2209 return -ENOMEM;
2210
2ff7e61e 2211 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2212 fs_info->generation + 1,
2213 level, NULL);
64c043de 2214 if (IS_ERR(log_tree_root->node)) {
f14d104d 2215 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2216 ret = PTR_ERR(log_tree_root->node);
64c043de 2217 kfree(log_tree_root);
0eeff236 2218 return ret;
64c043de 2219 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2220 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2221 free_extent_buffer(log_tree_root->node);
2222 kfree(log_tree_root);
2223 return -EIO;
2224 }
2225 /* returns with log_tree_root freed on success */
2226 ret = btrfs_recover_log_trees(log_tree_root);
2227 if (ret) {
0b246afa
JM
2228 btrfs_handle_fs_error(fs_info, ret,
2229 "Failed to recover log tree");
63443bf5
ES
2230 free_extent_buffer(log_tree_root->node);
2231 kfree(log_tree_root);
2232 return ret;
2233 }
2234
bc98a42c 2235 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2236 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2237 if (ret)
2238 return ret;
2239 }
2240
2241 return 0;
2242}
2243
6bccf3ab 2244static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2245{
6bccf3ab 2246 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2247 struct btrfs_root *root;
4bbcaa64
ES
2248 struct btrfs_key location;
2249 int ret;
2250
6bccf3ab
JM
2251 BUG_ON(!fs_info->tree_root);
2252
4bbcaa64
ES
2253 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2254 location.type = BTRFS_ROOT_ITEM_KEY;
2255 location.offset = 0;
2256
a4f3d2c4 2257 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2258 if (IS_ERR(root)) {
2259 ret = PTR_ERR(root);
2260 goto out;
2261 }
a4f3d2c4
DS
2262 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2263 fs_info->extent_root = root;
4bbcaa64
ES
2264
2265 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2266 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2267 if (IS_ERR(root)) {
2268 ret = PTR_ERR(root);
2269 goto out;
2270 }
a4f3d2c4
DS
2271 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2272 fs_info->dev_root = root;
4bbcaa64
ES
2273 btrfs_init_devices_late(fs_info);
2274
2275 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2276 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2277 if (IS_ERR(root)) {
2278 ret = PTR_ERR(root);
2279 goto out;
2280 }
a4f3d2c4
DS
2281 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2282 fs_info->csum_root = root;
4bbcaa64
ES
2283
2284 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2285 root = btrfs_read_tree_root(tree_root, &location);
2286 if (!IS_ERR(root)) {
2287 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2288 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2289 fs_info->quota_root = root;
4bbcaa64
ES
2290 }
2291
2292 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2293 root = btrfs_read_tree_root(tree_root, &location);
2294 if (IS_ERR(root)) {
2295 ret = PTR_ERR(root);
4bbcaa64 2296 if (ret != -ENOENT)
f50f4353 2297 goto out;
4bbcaa64 2298 } else {
a4f3d2c4
DS
2299 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2300 fs_info->uuid_root = root;
4bbcaa64
ES
2301 }
2302
70f6d82e
OS
2303 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2304 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2305 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2306 if (IS_ERR(root)) {
2307 ret = PTR_ERR(root);
2308 goto out;
2309 }
70f6d82e
OS
2310 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311 fs_info->free_space_root = root;
2312 }
2313
4bbcaa64 2314 return 0;
f50f4353
LB
2315out:
2316 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2317 location.objectid, ret);
2318 return ret;
4bbcaa64
ES
2319}
2320
069ec957
QW
2321/*
2322 * Real super block validation
2323 * NOTE: super csum type and incompat features will not be checked here.
2324 *
2325 * @sb: super block to check
2326 * @mirror_num: the super block number to check its bytenr:
2327 * 0 the primary (1st) sb
2328 * 1, 2 2nd and 3rd backup copy
2329 * -1 skip bytenr check
2330 */
2331static int validate_super(struct btrfs_fs_info *fs_info,
2332 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2333{
21a852b0
QW
2334 u64 nodesize = btrfs_super_nodesize(sb);
2335 u64 sectorsize = btrfs_super_sectorsize(sb);
2336 int ret = 0;
2337
2338 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2339 btrfs_err(fs_info, "no valid FS found");
2340 ret = -EINVAL;
2341 }
2342 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2343 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2344 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2345 ret = -EINVAL;
2346 }
2347 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2348 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2349 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2350 ret = -EINVAL;
2351 }
2352 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2353 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2354 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2355 ret = -EINVAL;
2356 }
2357 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2358 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2359 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2360 ret = -EINVAL;
2361 }
2362
2363 /*
2364 * Check sectorsize and nodesize first, other check will need it.
2365 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2366 */
2367 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2368 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2369 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2370 ret = -EINVAL;
2371 }
2372 /* Only PAGE SIZE is supported yet */
2373 if (sectorsize != PAGE_SIZE) {
2374 btrfs_err(fs_info,
2375 "sectorsize %llu not supported yet, only support %lu",
2376 sectorsize, PAGE_SIZE);
2377 ret = -EINVAL;
2378 }
2379 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2380 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2381 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2382 ret = -EINVAL;
2383 }
2384 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2385 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2386 le32_to_cpu(sb->__unused_leafsize), nodesize);
2387 ret = -EINVAL;
2388 }
2389
2390 /* Root alignment check */
2391 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2392 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2393 btrfs_super_root(sb));
2394 ret = -EINVAL;
2395 }
2396 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2397 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2398 btrfs_super_chunk_root(sb));
2399 ret = -EINVAL;
2400 }
2401 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2402 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2403 btrfs_super_log_root(sb));
2404 ret = -EINVAL;
2405 }
2406
de37aa51 2407 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2408 BTRFS_FSID_SIZE) != 0) {
21a852b0 2409 btrfs_err(fs_info,
7239ff4b 2410 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2411 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2412 ret = -EINVAL;
2413 }
2414
2415 /*
2416 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2417 * done later
2418 */
2419 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2420 btrfs_err(fs_info, "bytes_used is too small %llu",
2421 btrfs_super_bytes_used(sb));
2422 ret = -EINVAL;
2423 }
2424 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2425 btrfs_err(fs_info, "invalid stripesize %u",
2426 btrfs_super_stripesize(sb));
2427 ret = -EINVAL;
2428 }
2429 if (btrfs_super_num_devices(sb) > (1UL << 31))
2430 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2431 btrfs_super_num_devices(sb));
2432 if (btrfs_super_num_devices(sb) == 0) {
2433 btrfs_err(fs_info, "number of devices is 0");
2434 ret = -EINVAL;
2435 }
2436
069ec957
QW
2437 if (mirror_num >= 0 &&
2438 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2439 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2440 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2441 ret = -EINVAL;
2442 }
2443
2444 /*
2445 * Obvious sys_chunk_array corruptions, it must hold at least one key
2446 * and one chunk
2447 */
2448 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2449 btrfs_err(fs_info, "system chunk array too big %u > %u",
2450 btrfs_super_sys_array_size(sb),
2451 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2452 ret = -EINVAL;
2453 }
2454 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2455 + sizeof(struct btrfs_chunk)) {
2456 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2457 btrfs_super_sys_array_size(sb),
2458 sizeof(struct btrfs_disk_key)
2459 + sizeof(struct btrfs_chunk));
2460 ret = -EINVAL;
2461 }
2462
2463 /*
2464 * The generation is a global counter, we'll trust it more than the others
2465 * but it's still possible that it's the one that's wrong.
2466 */
2467 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2468 btrfs_warn(fs_info,
2469 "suspicious: generation < chunk_root_generation: %llu < %llu",
2470 btrfs_super_generation(sb),
2471 btrfs_super_chunk_root_generation(sb));
2472 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2473 && btrfs_super_cache_generation(sb) != (u64)-1)
2474 btrfs_warn(fs_info,
2475 "suspicious: generation < cache_generation: %llu < %llu",
2476 btrfs_super_generation(sb),
2477 btrfs_super_cache_generation(sb));
2478
2479 return ret;
2480}
2481
069ec957
QW
2482/*
2483 * Validation of super block at mount time.
2484 * Some checks already done early at mount time, like csum type and incompat
2485 * flags will be skipped.
2486 */
2487static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2488{
2489 return validate_super(fs_info, fs_info->super_copy, 0);
2490}
2491
75cb857d
QW
2492/*
2493 * Validation of super block at write time.
2494 * Some checks like bytenr check will be skipped as their values will be
2495 * overwritten soon.
2496 * Extra checks like csum type and incompat flags will be done here.
2497 */
2498static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2499 struct btrfs_super_block *sb)
2500{
2501 int ret;
2502
2503 ret = validate_super(fs_info, sb, -1);
2504 if (ret < 0)
2505 goto out;
e7e16f48 2506 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2507 ret = -EUCLEAN;
2508 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2509 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2510 goto out;
2511 }
2512 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2513 ret = -EUCLEAN;
2514 btrfs_err(fs_info,
2515 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2516 btrfs_super_incompat_flags(sb),
2517 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2518 goto out;
2519 }
2520out:
2521 if (ret < 0)
2522 btrfs_err(fs_info,
2523 "super block corruption detected before writing it to disk");
2524 return ret;
2525}
2526
6ef108dd 2527static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2528{
6ef108dd 2529 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2530 struct btrfs_super_block *sb = fs_info->super_copy;
2531 struct btrfs_root *tree_root = fs_info->tree_root;
2532 bool handle_error = false;
2533 int ret = 0;
2534 int i;
2535
2536 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2537 u64 generation;
2538 int level;
2539
2540 if (handle_error) {
2541 if (!IS_ERR(tree_root->node))
2542 free_extent_buffer(tree_root->node);
2543 tree_root->node = NULL;
2544
2545 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2546 break;
2547
2548 free_root_pointers(fs_info, 0);
2549
2550 /*
2551 * Don't use the log in recovery mode, it won't be
2552 * valid
2553 */
2554 btrfs_set_super_log_root(sb, 0);
2555
2556 /* We can't trust the free space cache either */
2557 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2558
2559 ret = read_backup_root(fs_info, i);
6ef108dd 2560 backup_index = ret;
b8522a1e
NB
2561 if (ret < 0)
2562 return ret;
2563 }
2564 generation = btrfs_super_generation(sb);
2565 level = btrfs_super_root_level(sb);
2566 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2567 generation, level, NULL);
2568 if (IS_ERR(tree_root->node) ||
2569 !extent_buffer_uptodate(tree_root->node)) {
2570 handle_error = true;
2571
2572 if (IS_ERR(tree_root->node))
2573 ret = PTR_ERR(tree_root->node);
2574 else if (!extent_buffer_uptodate(tree_root->node))
2575 ret = -EUCLEAN;
2576
2577 btrfs_warn(fs_info, "failed to read tree root");
2578 continue;
2579 }
2580
2581 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2582 tree_root->commit_root = btrfs_root_node(tree_root);
2583 btrfs_set_root_refs(&tree_root->root_item, 1);
2584
336a0d8d
NB
2585 /*
2586 * No need to hold btrfs_root::objectid_mutex since the fs
2587 * hasn't been fully initialised and we are the only user
2588 */
b8522a1e
NB
2589 ret = btrfs_find_highest_objectid(tree_root,
2590 &tree_root->highest_objectid);
2591 if (ret < 0) {
b8522a1e
NB
2592 handle_error = true;
2593 continue;
2594 }
2595
2596 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2597
2598 ret = btrfs_read_roots(fs_info);
2599 if (ret < 0) {
2600 handle_error = true;
2601 continue;
2602 }
2603
2604 /* All successful */
2605 fs_info->generation = generation;
2606 fs_info->last_trans_committed = generation;
6ef108dd
NB
2607
2608 /* Always begin writing backup roots after the one being used */
2609 if (backup_index < 0) {
2610 fs_info->backup_root_index = 0;
2611 } else {
2612 fs_info->backup_root_index = backup_index + 1;
2613 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2614 }
b8522a1e
NB
2615 break;
2616 }
2617
2618 return ret;
2619}
2620
b105e927 2621int __cold open_ctree(struct super_block *sb,
ad2b2c80
AV
2622 struct btrfs_fs_devices *fs_devices,
2623 char *options)
2e635a27 2624{
db94535d
CM
2625 u32 sectorsize;
2626 u32 nodesize;
87ee04eb 2627 u32 stripesize;
84234f3a 2628 u64 generation;
f2b636e8 2629 u64 features;
51bce6c9 2630 u16 csum_type;
3de4586c 2631 struct btrfs_key location;
a061fc8d 2632 struct buffer_head *bh;
4d34b278 2633 struct btrfs_super_block *disk_super;
815745cf 2634 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2635 struct btrfs_root *tree_root;
4d34b278 2636 struct btrfs_root *chunk_root;
eb60ceac 2637 int ret;
e58ca020 2638 int err = -EINVAL;
6675df31 2639 int clear_free_space_tree = 0;
581c1760 2640 int level;
4543df7e 2641
96dfcb46
JB
2642 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2643 GFP_KERNEL);
2644 fs_info->tree_root = tree_root;
2645 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2646 GFP_KERNEL);
2647 fs_info->chunk_root = chunk_root;
cb517eab 2648 if (!tree_root || !chunk_root) {
39279cc3
CM
2649 err = -ENOMEM;
2650 goto fail;
2651 }
76dda93c
YZ
2652
2653 ret = init_srcu_struct(&fs_info->subvol_srcu);
2654 if (ret) {
2655 err = ret;
2656 goto fail;
2657 }
2658
4297ff84 2659 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2660 if (ret) {
2661 err = ret;
9e11ceee 2662 goto fail_srcu;
e2d84521 2663 }
4297ff84
JB
2664
2665 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2666 if (ret) {
2667 err = ret;
2668 goto fail_dio_bytes;
2669 }
09cbfeaf 2670 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2671 (1 + ilog2(nr_cpu_ids));
2672
908c7f19 2673 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2674 if (ret) {
2675 err = ret;
2676 goto fail_dirty_metadata_bytes;
2677 }
2678
7f8d236a
DS
2679 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2680 GFP_KERNEL);
c404e0dc
MX
2681 if (ret) {
2682 err = ret;
2683 goto fail_delalloc_bytes;
2684 }
2685
76dda93c 2686 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2687 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2688 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2689 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2690 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2691 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2692 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2693 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2694 spin_lock_init(&fs_info->trans_lock);
76dda93c 2695 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2696 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2697 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2698 spin_lock_init(&fs_info->super_lock);
f28491e0 2699 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2700 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2701 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2702 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2703 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2704 mutex_init(&fs_info->reloc_mutex);
573bfb72 2705 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2706 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2707
0b86a832 2708 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2709 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2710 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2711 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2712 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2713 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2714 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2715 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2716 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2717 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2718 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2719 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2720 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2721 BTRFS_BLOCK_RSV_DELREFS);
2722
771ed689 2723 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2724 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2725 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2726 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2727 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2728 fs_info->sb = sb;
95ac567a 2729 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2730 fs_info->metadata_ratio = 0;
4cb5300b 2731 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2732 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2733 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2734 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2735 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2736 /* readahead state */
d0164adc 2737 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2738 spin_lock_init(&fs_info->reada_lock);
fd708b81 2739 btrfs_init_ref_verify(fs_info);
c8b97818 2740
b34b086c
CM
2741 fs_info->thread_pool_size = min_t(unsigned long,
2742 num_online_cpus() + 2, 8);
0afbaf8c 2743
199c2a9c
MX
2744 INIT_LIST_HEAD(&fs_info->ordered_roots);
2745 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2746
2747 fs_info->btree_inode = new_inode(sb);
2748 if (!fs_info->btree_inode) {
2749 err = -ENOMEM;
2750 goto fail_bio_counter;
2751 }
2752 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2753
16cdcec7 2754 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2755 GFP_KERNEL);
16cdcec7
MX
2756 if (!fs_info->delayed_root) {
2757 err = -ENOMEM;
2758 goto fail_iput;
2759 }
2760 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2761
638aa7ed 2762 btrfs_init_scrub(fs_info);
21adbd5c
SB
2763#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2764 fs_info->check_integrity_print_mask = 0;
2765#endif
779a65a4 2766 btrfs_init_balance(fs_info);
21c7e756 2767 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2768
9f6d2510
DS
2769 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2770 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2771
6bccf3ab 2772 btrfs_init_btree_inode(fs_info);
76dda93c 2773
0f9dd46c 2774 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2775 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2776 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2777
43eb5f29
QW
2778 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2779 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2780 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2781 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2782 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2783 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2784
5a3f23d5 2785 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2786 mutex_init(&fs_info->tree_log_mutex);
925baedd 2787 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2788 mutex_init(&fs_info->transaction_kthread_mutex);
2789 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2790 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2791 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2792 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2793 init_rwsem(&fs_info->subvol_sem);
803b2f54 2794 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2795
ad618368 2796 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2797 btrfs_init_qgroup(fs_info);
b0643e59 2798 btrfs_discard_init(fs_info);
416ac51d 2799
fa9c0d79
CM
2800 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2801 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2802
e6dcd2dc 2803 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2804 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2805 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2806 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2807 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2808
da17066c
JM
2809 /* Usable values until the real ones are cached from the superblock */
2810 fs_info->nodesize = 4096;
2811 fs_info->sectorsize = 4096;
2812 fs_info->stripesize = 4096;
2813
eede2bf3
OS
2814 spin_lock_init(&fs_info->swapfile_pins_lock);
2815 fs_info->swapfile_pins = RB_ROOT;
2816
9e967495
FM
2817 fs_info->send_in_progress = 0;
2818
53b381b3
DW
2819 ret = btrfs_alloc_stripe_hash_table(fs_info);
2820 if (ret) {
83c8266a 2821 err = ret;
53b381b3
DW
2822 goto fail_alloc;
2823 }
2824
3c4bb26b 2825 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2826
2827 /*
2828 * Read super block and check the signature bytes only
2829 */
a512bbf8 2830 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2831 if (IS_ERR(bh)) {
2832 err = PTR_ERR(bh);
16cdcec7 2833 goto fail_alloc;
20b45077 2834 }
39279cc3 2835
8dc3f22c
JT
2836 /*
2837 * Verify the type first, if that or the the checksum value are
2838 * corrupted, we'll find out
2839 */
51bce6c9
JT
2840 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2841 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2842 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2843 csum_type);
8dc3f22c
JT
2844 err = -EINVAL;
2845 brelse(bh);
2846 goto fail_alloc;
2847 }
2848
6d97c6e3
JT
2849 ret = btrfs_init_csum_hash(fs_info, csum_type);
2850 if (ret) {
2851 err = ret;
2852 goto fail_alloc;
2853 }
2854
1104a885
DS
2855 /*
2856 * We want to check superblock checksum, the type is stored inside.
2857 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2858 */
ab8d0fc4 2859 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2860 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2861 err = -EINVAL;
b2acdddf 2862 brelse(bh);
6d97c6e3 2863 goto fail_csum;
1104a885
DS
2864 }
2865
2866 /*
2867 * super_copy is zeroed at allocation time and we never touch the
2868 * following bytes up to INFO_SIZE, the checksum is calculated from
2869 * the whole block of INFO_SIZE
2870 */
6c41761f 2871 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2872 brelse(bh);
5f39d397 2873
fbc6feae
NB
2874 disk_super = fs_info->super_copy;
2875
de37aa51
NB
2876 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2877 BTRFS_FSID_SIZE));
2878
7239ff4b 2879 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2880 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2881 fs_info->super_copy->metadata_uuid,
2882 BTRFS_FSID_SIZE));
7239ff4b 2883 }
0b86a832 2884
fbc6feae
NB
2885 features = btrfs_super_flags(disk_super);
2886 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2887 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2888 btrfs_set_super_flags(disk_super, features);
2889 btrfs_info(fs_info,
2890 "found metadata UUID change in progress flag, clearing");
2891 }
2892
2893 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2894 sizeof(*fs_info->super_for_commit));
de37aa51 2895
069ec957 2896 ret = btrfs_validate_mount_super(fs_info);
1104a885 2897 if (ret) {
05135f59 2898 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2899 err = -EINVAL;
6d97c6e3 2900 goto fail_csum;
1104a885
DS
2901 }
2902
0f7d52f4 2903 if (!btrfs_super_root(disk_super))
6d97c6e3 2904 goto fail_csum;
0f7d52f4 2905
acce952b 2906 /* check FS state, whether FS is broken. */
87533c47
MX
2907 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2908 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2909
75e7cb7f
LB
2910 /*
2911 * In the long term, we'll store the compression type in the super
2912 * block, and it'll be used for per file compression control.
2913 */
2914 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2915
2ff7e61e 2916 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2917 if (ret) {
2918 err = ret;
6d97c6e3 2919 goto fail_csum;
2b82032c 2920 }
dfe25020 2921
f2b636e8
JB
2922 features = btrfs_super_incompat_flags(disk_super) &
2923 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2924 if (features) {
05135f59
DS
2925 btrfs_err(fs_info,
2926 "cannot mount because of unsupported optional features (%llx)",
2927 features);
f2b636e8 2928 err = -EINVAL;
6d97c6e3 2929 goto fail_csum;
f2b636e8
JB
2930 }
2931
5d4f98a2 2932 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2933 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2934 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2935 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2936 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2937 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2938
3173a18f 2939 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2940 btrfs_info(fs_info, "has skinny extents");
3173a18f 2941
727011e0
CM
2942 /*
2943 * flag our filesystem as having big metadata blocks if
2944 * they are bigger than the page size
2945 */
09cbfeaf 2946 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2947 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2948 btrfs_info(fs_info,
2949 "flagging fs with big metadata feature");
727011e0
CM
2950 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2951 }
2952
bc3f116f 2953 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2954 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2955 stripesize = sectorsize;
707e8a07 2956 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2957 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2958
da17066c
JM
2959 /* Cache block sizes */
2960 fs_info->nodesize = nodesize;
2961 fs_info->sectorsize = sectorsize;
2962 fs_info->stripesize = stripesize;
2963
bc3f116f
CM
2964 /*
2965 * mixed block groups end up with duplicate but slightly offset
2966 * extent buffers for the same range. It leads to corruptions
2967 */
2968 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2969 (sectorsize != nodesize)) {
05135f59
DS
2970 btrfs_err(fs_info,
2971"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2972 nodesize, sectorsize);
6d97c6e3 2973 goto fail_csum;
bc3f116f
CM
2974 }
2975
ceda0864
MX
2976 /*
2977 * Needn't use the lock because there is no other task which will
2978 * update the flag.
2979 */
a6fa6fae 2980 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2981
f2b636e8
JB
2982 features = btrfs_super_compat_ro_flags(disk_super) &
2983 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2984 if (!sb_rdonly(sb) && features) {
05135f59
DS
2985 btrfs_err(fs_info,
2986 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2987 features);
f2b636e8 2988 err = -EINVAL;
6d97c6e3 2989 goto fail_csum;
f2b636e8 2990 }
61d92c32 2991
2a458198
ES
2992 ret = btrfs_init_workqueues(fs_info, fs_devices);
2993 if (ret) {
2994 err = ret;
0dc3b84a
JB
2995 goto fail_sb_buffer;
2996 }
4543df7e 2997
9e11ceee
JK
2998 sb->s_bdi->congested_fn = btrfs_congested_fn;
2999 sb->s_bdi->congested_data = fs_info;
3000 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3001 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3002 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3003 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3004
a061fc8d
CM
3005 sb->s_blocksize = sectorsize;
3006 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3007 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3008
925baedd 3009 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3010 ret = btrfs_read_sys_array(fs_info);
925baedd 3011 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3012 if (ret) {
05135f59 3013 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3014 goto fail_sb_buffer;
84eed90f 3015 }
0b86a832 3016
84234f3a 3017 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3018 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3019
2ff7e61e 3020 chunk_root->node = read_tree_block(fs_info,
0b86a832 3021 btrfs_super_chunk_root(disk_super),
581c1760 3022 generation, level, NULL);
64c043de
LB
3023 if (IS_ERR(chunk_root->node) ||
3024 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3025 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3026 if (!IS_ERR(chunk_root->node))
3027 free_extent_buffer(chunk_root->node);
95ab1f64 3028 chunk_root->node = NULL;
af31f5e5 3029 goto fail_tree_roots;
83121942 3030 }
5d4f98a2
YZ
3031 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3032 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3033
e17cade2 3034 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3035 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3036
5b4aacef 3037 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3038 if (ret) {
05135f59 3039 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3040 goto fail_tree_roots;
2b82032c 3041 }
0b86a832 3042
8dabb742 3043 /*
9b99b115
AJ
3044 * Keep the devid that is marked to be the target device for the
3045 * device replace procedure
8dabb742 3046 */
9b99b115 3047 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3048
a6b0d5c8 3049 if (!fs_devices->latest_bdev) {
05135f59 3050 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3051 goto fail_tree_roots;
3052 }
3053
b8522a1e 3054 ret = init_tree_roots(fs_info);
4bbcaa64 3055 if (ret)
b8522a1e 3056 goto fail_tree_roots;
8929ecfa 3057
cf90d884
QW
3058 ret = btrfs_verify_dev_extents(fs_info);
3059 if (ret) {
3060 btrfs_err(fs_info,
3061 "failed to verify dev extents against chunks: %d",
3062 ret);
3063 goto fail_block_groups;
3064 }
68310a5e
ID
3065 ret = btrfs_recover_balance(fs_info);
3066 if (ret) {
05135f59 3067 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3068 goto fail_block_groups;
3069 }
3070
733f4fbb
SB
3071 ret = btrfs_init_dev_stats(fs_info);
3072 if (ret) {
05135f59 3073 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3074 goto fail_block_groups;
3075 }
3076
8dabb742
SB
3077 ret = btrfs_init_dev_replace(fs_info);
3078 if (ret) {
05135f59 3079 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3080 goto fail_block_groups;
3081 }
3082
9b99b115 3083 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3084
c6761a9e 3085 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3086 if (ret) {
05135f59
DS
3087 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3088 ret);
b7c35e81
AJ
3089 goto fail_block_groups;
3090 }
3091
96f3136e 3092 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3093 if (ret) {
05135f59 3094 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3095 goto fail_fsdev_sysfs;
c59021f8 3096 }
3097
c59021f8 3098 ret = btrfs_init_space_info(fs_info);
3099 if (ret) {
05135f59 3100 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3101 goto fail_sysfs;
c59021f8 3102 }
3103
5b4aacef 3104 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3105 if (ret) {
05135f59 3106 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3107 goto fail_sysfs;
1b1d1f66 3108 }
4330e183 3109
6528b99d 3110 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3111 btrfs_warn(fs_info,
52042d8e 3112 "writable mount is not allowed due to too many missing devices");
2365dd3c 3113 goto fail_sysfs;
292fd7fc 3114 }
9078a3e1 3115
a74a4b97
CM
3116 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3117 "btrfs-cleaner");
57506d50 3118 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3119 goto fail_sysfs;
a74a4b97
CM
3120
3121 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3122 tree_root,
3123 "btrfs-transaction");
57506d50 3124 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3125 goto fail_cleaner;
a74a4b97 3126
583b7231 3127 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3128 !fs_info->fs_devices->rotating) {
583b7231 3129 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3130 }
3131
572d9ab7 3132 /*
01327610 3133 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3134 * not have to wait for transaction commit
3135 */
3136 btrfs_apply_pending_changes(fs_info);
3818aea2 3137
21adbd5c 3138#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3139 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3140 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3141 btrfs_test_opt(fs_info,
21adbd5c
SB
3142 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3143 1 : 0,
3144 fs_info->check_integrity_print_mask);
3145 if (ret)
05135f59
DS
3146 btrfs_warn(fs_info,
3147 "failed to initialize integrity check module: %d",
3148 ret);
21adbd5c
SB
3149 }
3150#endif
bcef60f2
AJ
3151 ret = btrfs_read_qgroup_config(fs_info);
3152 if (ret)
3153 goto fail_trans_kthread;
21adbd5c 3154
fd708b81
JB
3155 if (btrfs_build_ref_tree(fs_info))
3156 btrfs_err(fs_info, "couldn't build ref tree");
3157
96da0919
QW
3158 /* do not make disk changes in broken FS or nologreplay is given */
3159 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3160 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3161 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3162 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3163 if (ret) {
63443bf5 3164 err = ret;
28c16cbb 3165 goto fail_qgroup;
79787eaa 3166 }
e02119d5 3167 }
1a40e23b 3168
6bccf3ab 3169 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3170 if (ret)
28c16cbb 3171 goto fail_qgroup;
76dda93c 3172
bc98a42c 3173 if (!sb_rdonly(sb)) {
d68fc57b 3174 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3175 if (ret)
28c16cbb 3176 goto fail_qgroup;
90c711ab
ZB
3177
3178 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3179 ret = btrfs_recover_relocation(tree_root);
90c711ab 3180 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3181 if (ret < 0) {
05135f59
DS
3182 btrfs_warn(fs_info, "failed to recover relocation: %d",
3183 ret);
d7ce5843 3184 err = -EINVAL;
bcef60f2 3185 goto fail_qgroup;
d7ce5843 3186 }
7c2ca468 3187 }
1a40e23b 3188
3de4586c
CM
3189 location.objectid = BTRFS_FS_TREE_OBJECTID;
3190 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3191 location.offset = 0;
3de4586c 3192
3de4586c 3193 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3194 if (IS_ERR(fs_info->fs_root)) {
3195 err = PTR_ERR(fs_info->fs_root);
f50f4353 3196 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3197 fs_info->fs_root = NULL;
bcef60f2 3198 goto fail_qgroup;
3140c9a3 3199 }
c289811c 3200
bc98a42c 3201 if (sb_rdonly(sb))
2b6ba629 3202 return 0;
59641015 3203
f8d468a1
OS
3204 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3205 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3206 clear_free_space_tree = 1;
3207 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3208 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3209 btrfs_warn(fs_info, "free space tree is invalid");
3210 clear_free_space_tree = 1;
3211 }
3212
3213 if (clear_free_space_tree) {
f8d468a1
OS
3214 btrfs_info(fs_info, "clearing free space tree");
3215 ret = btrfs_clear_free_space_tree(fs_info);
3216 if (ret) {
3217 btrfs_warn(fs_info,
3218 "failed to clear free space tree: %d", ret);
6bccf3ab 3219 close_ctree(fs_info);
f8d468a1
OS
3220 return ret;
3221 }
3222 }
3223
0b246afa 3224 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3225 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3226 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3227 ret = btrfs_create_free_space_tree(fs_info);
3228 if (ret) {
05135f59
DS
3229 btrfs_warn(fs_info,
3230 "failed to create free space tree: %d", ret);
6bccf3ab 3231 close_ctree(fs_info);
511711af
CM
3232 return ret;
3233 }
3234 }
3235
2b6ba629
ID
3236 down_read(&fs_info->cleanup_work_sem);
3237 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3238 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3239 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3240 close_ctree(fs_info);
2b6ba629
ID
3241 return ret;
3242 }
3243 up_read(&fs_info->cleanup_work_sem);
59641015 3244
2b6ba629
ID
3245 ret = btrfs_resume_balance_async(fs_info);
3246 if (ret) {
05135f59 3247 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3248 close_ctree(fs_info);
2b6ba629 3249 return ret;
e3acc2a6
JB
3250 }
3251
8dabb742
SB
3252 ret = btrfs_resume_dev_replace_async(fs_info);
3253 if (ret) {
05135f59 3254 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3255 close_ctree(fs_info);
8dabb742
SB
3256 return ret;
3257 }
3258
b382a324 3259 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3260 btrfs_discard_resume(fs_info);
b382a324 3261
4bbcaa64 3262 if (!fs_info->uuid_root) {
05135f59 3263 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3264 ret = btrfs_create_uuid_tree(fs_info);
3265 if (ret) {
05135f59
DS
3266 btrfs_warn(fs_info,
3267 "failed to create the UUID tree: %d", ret);
6bccf3ab 3268 close_ctree(fs_info);
f7a81ea4
SB
3269 return ret;
3270 }
0b246afa 3271 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3272 fs_info->generation !=
3273 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3274 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3275 ret = btrfs_check_uuid_tree(fs_info);
3276 if (ret) {
05135f59
DS
3277 btrfs_warn(fs_info,
3278 "failed to check the UUID tree: %d", ret);
6bccf3ab 3279 close_ctree(fs_info);
70f80175
SB
3280 return ret;
3281 }
3282 } else {
afcdd129 3283 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3284 }
afcdd129 3285 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3286
8dcddfa0
QW
3287 /*
3288 * backuproot only affect mount behavior, and if open_ctree succeeded,
3289 * no need to keep the flag
3290 */
3291 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3292
ad2b2c80 3293 return 0;
39279cc3 3294
bcef60f2
AJ
3295fail_qgroup:
3296 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3297fail_trans_kthread:
3298 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3299 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3300 btrfs_free_fs_roots(fs_info);
3f157a2f 3301fail_cleaner:
a74a4b97 3302 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3303
3304 /*
3305 * make sure we're done with the btree inode before we stop our
3306 * kthreads
3307 */
3308 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3309
2365dd3c 3310fail_sysfs:
6618a59b 3311 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3312
b7c35e81
AJ
3313fail_fsdev_sysfs:
3314 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3315
1b1d1f66 3316fail_block_groups:
54067ae9 3317 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3318
3319fail_tree_roots:
4273eaff 3320 free_root_pointers(fs_info, true);
2b8195bb 3321 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3322
39279cc3 3323fail_sb_buffer:
7abadb64 3324 btrfs_stop_all_workers(fs_info);
5cdd7db6 3325 btrfs_free_block_groups(fs_info);
6d97c6e3
JT
3326fail_csum:
3327 btrfs_free_csum_hash(fs_info);
16cdcec7 3328fail_alloc:
4543df7e 3329fail_iput:
586e46e2
ID
3330 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3331
4543df7e 3332 iput(fs_info->btree_inode);
c404e0dc 3333fail_bio_counter:
7f8d236a 3334 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3335fail_delalloc_bytes:
3336 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3337fail_dirty_metadata_bytes:
3338 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3339fail_dio_bytes:
3340 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3341fail_srcu:
3342 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3343fail:
53b381b3 3344 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3345 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3346 return err;
eb60ceac 3347}
663faf9f 3348ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3349
f2984462
CM
3350static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3351{
f2984462
CM
3352 if (uptodate) {
3353 set_buffer_uptodate(bh);
3354 } else {
442a4f63
SB
3355 struct btrfs_device *device = (struct btrfs_device *)
3356 bh->b_private;
3357
fb456252 3358 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3359 "lost page write due to IO error on %s",
606686ee 3360 rcu_str_deref(device->name));
01327610 3361 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3362 * our own ways of dealing with the IO errors
3363 */
f2984462 3364 clear_buffer_uptodate(bh);
442a4f63 3365 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3366 }
3367 unlock_buffer(bh);
3368 put_bh(bh);
3369}
3370
29c36d72
AJ
3371int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3372 struct buffer_head **bh_ret)
3373{
3374 struct buffer_head *bh;
3375 struct btrfs_super_block *super;
3376 u64 bytenr;
3377
3378 bytenr = btrfs_sb_offset(copy_num);
3379 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3380 return -EINVAL;
3381
9f6d2510 3382 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3383 /*
3384 * If we fail to read from the underlying devices, as of now
3385 * the best option we have is to mark it EIO.
3386 */
3387 if (!bh)
3388 return -EIO;
3389
3390 super = (struct btrfs_super_block *)bh->b_data;
3391 if (btrfs_super_bytenr(super) != bytenr ||
3392 btrfs_super_magic(super) != BTRFS_MAGIC) {
3393 brelse(bh);
3394 return -EINVAL;
3395 }
3396
3397 *bh_ret = bh;
3398 return 0;
3399}
3400
3401
a512bbf8
YZ
3402struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3403{
3404 struct buffer_head *bh;
3405 struct buffer_head *latest = NULL;
3406 struct btrfs_super_block *super;
3407 int i;
3408 u64 transid = 0;
92fc03fb 3409 int ret = -EINVAL;
a512bbf8
YZ
3410
3411 /* we would like to check all the supers, but that would make
3412 * a btrfs mount succeed after a mkfs from a different FS.
3413 * So, we need to add a special mount option to scan for
3414 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3415 */
3416 for (i = 0; i < 1; i++) {
29c36d72
AJ
3417 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3418 if (ret)
a512bbf8
YZ
3419 continue;
3420
3421 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3422
3423 if (!latest || btrfs_super_generation(super) > transid) {
3424 brelse(latest);
3425 latest = bh;
3426 transid = btrfs_super_generation(super);
3427 } else {
3428 brelse(bh);
3429 }
3430 }
92fc03fb
AJ
3431
3432 if (!latest)
3433 return ERR_PTR(ret);
3434
a512bbf8
YZ
3435 return latest;
3436}
3437
4eedeb75 3438/*
abbb3b8e
DS
3439 * Write superblock @sb to the @device. Do not wait for completion, all the
3440 * buffer heads we write are pinned.
4eedeb75 3441 *
abbb3b8e
DS
3442 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3443 * the expected device size at commit time. Note that max_mirrors must be
3444 * same for write and wait phases.
4eedeb75 3445 *
abbb3b8e 3446 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3447 */
a512bbf8 3448static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3449 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3450{
d5178578
JT
3451 struct btrfs_fs_info *fs_info = device->fs_info;
3452 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8
YZ
3453 struct buffer_head *bh;
3454 int i;
3455 int ret;
3456 int errors = 0;
a512bbf8 3457 u64 bytenr;
1b9e619c 3458 int op_flags;
a512bbf8
YZ
3459
3460 if (max_mirrors == 0)
3461 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3462
d5178578
JT
3463 shash->tfm = fs_info->csum_shash;
3464
a512bbf8
YZ
3465 for (i = 0; i < max_mirrors; i++) {
3466 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3467 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3468 device->commit_total_bytes)
a512bbf8
YZ
3469 break;
3470
abbb3b8e 3471 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3472
d5178578
JT
3473 crypto_shash_init(shash);
3474 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3475 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3476 crypto_shash_final(shash, sb->csum);
4eedeb75 3477
abbb3b8e 3478 /* One reference for us, and we leave it for the caller */
9f6d2510 3479 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3480 BTRFS_SUPER_INFO_SIZE);
3481 if (!bh) {
3482 btrfs_err(device->fs_info,
3483 "couldn't get super buffer head for bytenr %llu",
3484 bytenr);
3485 errors++;
4eedeb75 3486 continue;
abbb3b8e 3487 }
634554dc 3488
abbb3b8e 3489 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3490
abbb3b8e
DS
3491 /* one reference for submit_bh */
3492 get_bh(bh);
4eedeb75 3493
abbb3b8e
DS
3494 set_buffer_uptodate(bh);
3495 lock_buffer(bh);
3496 bh->b_end_io = btrfs_end_buffer_write_sync;
3497 bh->b_private = device;
a512bbf8 3498
387125fc
CM
3499 /*
3500 * we fua the first super. The others we allow
3501 * to go down lazy.
3502 */
1b9e619c
OS
3503 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3504 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3505 op_flags |= REQ_FUA;
3506 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3507 if (ret)
a512bbf8 3508 errors++;
a512bbf8
YZ
3509 }
3510 return errors < i ? 0 : -1;
3511}
3512
abbb3b8e
DS
3513/*
3514 * Wait for write completion of superblocks done by write_dev_supers,
3515 * @max_mirrors same for write and wait phases.
3516 *
3517 * Return number of errors when buffer head is not found or not marked up to
3518 * date.
3519 */
3520static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3521{
3522 struct buffer_head *bh;
3523 int i;
3524 int errors = 0;
b6a535fa 3525 bool primary_failed = false;
abbb3b8e
DS
3526 u64 bytenr;
3527
3528 if (max_mirrors == 0)
3529 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3530
3531 for (i = 0; i < max_mirrors; i++) {
3532 bytenr = btrfs_sb_offset(i);
3533 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3534 device->commit_total_bytes)
3535 break;
3536
9f6d2510
DS
3537 bh = __find_get_block(device->bdev,
3538 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3539 BTRFS_SUPER_INFO_SIZE);
3540 if (!bh) {
3541 errors++;
b6a535fa
HM
3542 if (i == 0)
3543 primary_failed = true;
abbb3b8e
DS
3544 continue;
3545 }
3546 wait_on_buffer(bh);
b6a535fa 3547 if (!buffer_uptodate(bh)) {
abbb3b8e 3548 errors++;
b6a535fa
HM
3549 if (i == 0)
3550 primary_failed = true;
3551 }
abbb3b8e
DS
3552
3553 /* drop our reference */
3554 brelse(bh);
3555
3556 /* drop the reference from the writing run */
3557 brelse(bh);
3558 }
3559
b6a535fa
HM
3560 /* log error, force error return */
3561 if (primary_failed) {
3562 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3563 device->devid);
3564 return -1;
3565 }
3566
abbb3b8e
DS
3567 return errors < i ? 0 : -1;
3568}
3569
387125fc
CM
3570/*
3571 * endio for the write_dev_flush, this will wake anyone waiting
3572 * for the barrier when it is done
3573 */
4246a0b6 3574static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3575{
e0ae9994 3576 complete(bio->bi_private);
387125fc
CM
3577}
3578
3579/*
4fc6441a
AJ
3580 * Submit a flush request to the device if it supports it. Error handling is
3581 * done in the waiting counterpart.
387125fc 3582 */
4fc6441a 3583static void write_dev_flush(struct btrfs_device *device)
387125fc 3584{
c2a9c7ab 3585 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3586 struct bio *bio = device->flush_bio;
387125fc 3587
c2a9c7ab 3588 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3589 return;
387125fc 3590
e0ae9994 3591 bio_reset(bio);
387125fc 3592 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3593 bio_set_dev(bio, device->bdev);
8d910125 3594 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3595 init_completion(&device->flush_wait);
3596 bio->bi_private = &device->flush_wait;
387125fc 3597
43a01111 3598 btrfsic_submit_bio(bio);
1c3063b6 3599 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3600}
387125fc 3601
4fc6441a
AJ
3602/*
3603 * If the flush bio has been submitted by write_dev_flush, wait for it.
3604 */
8c27cb35 3605static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3606{
4fc6441a 3607 struct bio *bio = device->flush_bio;
387125fc 3608
1c3063b6 3609 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3610 return BLK_STS_OK;
387125fc 3611
1c3063b6 3612 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3613 wait_for_completion_io(&device->flush_wait);
387125fc 3614
8c27cb35 3615 return bio->bi_status;
387125fc 3616}
387125fc 3617
d10b82fe 3618static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3619{
6528b99d 3620 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3621 return -EIO;
387125fc
CM
3622 return 0;
3623}
3624
3625/*
3626 * send an empty flush down to each device in parallel,
3627 * then wait for them
3628 */
3629static int barrier_all_devices(struct btrfs_fs_info *info)
3630{
3631 struct list_head *head;
3632 struct btrfs_device *dev;
5af3e8cc 3633 int errors_wait = 0;
4e4cbee9 3634 blk_status_t ret;
387125fc 3635
1538e6c5 3636 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3637 /* send down all the barriers */
3638 head = &info->fs_devices->devices;
1538e6c5 3639 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3640 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3641 continue;
cea7c8bf 3642 if (!dev->bdev)
387125fc 3643 continue;
e12c9621 3644 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3645 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3646 continue;
3647
4fc6441a 3648 write_dev_flush(dev);
58efbc9f 3649 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3650 }
3651
3652 /* wait for all the barriers */
1538e6c5 3653 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3654 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3655 continue;
387125fc 3656 if (!dev->bdev) {
5af3e8cc 3657 errors_wait++;
387125fc
CM
3658 continue;
3659 }
e12c9621 3660 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3661 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3662 continue;
3663
4fc6441a 3664 ret = wait_dev_flush(dev);
401b41e5
AJ
3665 if (ret) {
3666 dev->last_flush_error = ret;
66b4993e
DS
3667 btrfs_dev_stat_inc_and_print(dev,
3668 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3669 errors_wait++;
401b41e5
AJ
3670 }
3671 }
3672
cea7c8bf 3673 if (errors_wait) {
401b41e5
AJ
3674 /*
3675 * At some point we need the status of all disks
3676 * to arrive at the volume status. So error checking
3677 * is being pushed to a separate loop.
3678 */
d10b82fe 3679 return check_barrier_error(info);
387125fc 3680 }
387125fc
CM
3681 return 0;
3682}
3683
943c6e99
ZL
3684int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3685{
8789f4fe
ZL
3686 int raid_type;
3687 int min_tolerated = INT_MAX;
943c6e99 3688
8789f4fe
ZL
3689 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3690 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3691 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3692 btrfs_raid_array[BTRFS_RAID_SINGLE].
3693 tolerated_failures);
943c6e99 3694
8789f4fe
ZL
3695 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3696 if (raid_type == BTRFS_RAID_SINGLE)
3697 continue;
41a6e891 3698 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3699 continue;
8c3e3582 3700 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3701 btrfs_raid_array[raid_type].
3702 tolerated_failures);
3703 }
943c6e99 3704
8789f4fe 3705 if (min_tolerated == INT_MAX) {
ab8d0fc4 3706 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3707 min_tolerated = 0;
3708 }
3709
3710 return min_tolerated;
943c6e99
ZL
3711}
3712
eece6a9c 3713int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3714{
e5e9a520 3715 struct list_head *head;
f2984462 3716 struct btrfs_device *dev;
a061fc8d 3717 struct btrfs_super_block *sb;
f2984462 3718 struct btrfs_dev_item *dev_item;
f2984462
CM
3719 int ret;
3720 int do_barriers;
a236aed1
CM
3721 int max_errors;
3722 int total_errors = 0;
a061fc8d 3723 u64 flags;
f2984462 3724
0b246afa 3725 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3726
3727 /*
3728 * max_mirrors == 0 indicates we're from commit_transaction,
3729 * not from fsync where the tree roots in fs_info have not
3730 * been consistent on disk.
3731 */
3732 if (max_mirrors == 0)
3733 backup_super_roots(fs_info);
f2984462 3734
0b246afa 3735 sb = fs_info->super_for_commit;
a061fc8d 3736 dev_item = &sb->dev_item;
e5e9a520 3737
0b246afa
JM
3738 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3739 head = &fs_info->fs_devices->devices;
3740 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3741
5af3e8cc 3742 if (do_barriers) {
0b246afa 3743 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3744 if (ret) {
3745 mutex_unlock(
0b246afa
JM
3746 &fs_info->fs_devices->device_list_mutex);
3747 btrfs_handle_fs_error(fs_info, ret,
3748 "errors while submitting device barriers.");
5af3e8cc
SB
3749 return ret;
3750 }
3751 }
387125fc 3752
1538e6c5 3753 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3754 if (!dev->bdev) {
3755 total_errors++;
3756 continue;
3757 }
e12c9621 3758 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3759 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3760 continue;
3761
2b82032c 3762 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3763 btrfs_set_stack_device_type(dev_item, dev->type);
3764 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3765 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3766 dev->commit_total_bytes);
ce7213c7
MX
3767 btrfs_set_stack_device_bytes_used(dev_item,
3768 dev->commit_bytes_used);
a061fc8d
CM
3769 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3770 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3771 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3772 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3773 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3774 BTRFS_FSID_SIZE);
a512bbf8 3775
a061fc8d
CM
3776 flags = btrfs_super_flags(sb);
3777 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3778
75cb857d
QW
3779 ret = btrfs_validate_write_super(fs_info, sb);
3780 if (ret < 0) {
3781 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3782 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3783 "unexpected superblock corruption detected");
3784 return -EUCLEAN;
3785 }
3786
abbb3b8e 3787 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3788 if (ret)
3789 total_errors++;
f2984462 3790 }
a236aed1 3791 if (total_errors > max_errors) {
0b246afa
JM
3792 btrfs_err(fs_info, "%d errors while writing supers",
3793 total_errors);
3794 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3795
9d565ba4 3796 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3797 btrfs_handle_fs_error(fs_info, -EIO,
3798 "%d errors while writing supers",
3799 total_errors);
9d565ba4 3800 return -EIO;
a236aed1 3801 }
f2984462 3802
a512bbf8 3803 total_errors = 0;
1538e6c5 3804 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3805 if (!dev->bdev)
3806 continue;
e12c9621 3807 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3808 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3809 continue;
3810
abbb3b8e 3811 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3812 if (ret)
3813 total_errors++;
f2984462 3814 }
0b246afa 3815 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3816 if (total_errors > max_errors) {
0b246afa
JM
3817 btrfs_handle_fs_error(fs_info, -EIO,
3818 "%d errors while writing supers",
3819 total_errors);
79787eaa 3820 return -EIO;
a236aed1 3821 }
f2984462
CM
3822 return 0;
3823}
3824
cb517eab
MX
3825/* Drop a fs root from the radix tree and free it. */
3826void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3827 struct btrfs_root *root)
2619ba1f 3828{
4df27c4d 3829 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3830 radix_tree_delete(&fs_info->fs_roots_radix,
3831 (unsigned long)root->root_key.objectid);
4df27c4d 3832 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3833
3834 if (btrfs_root_refs(&root->root_item) == 0)
3835 synchronize_srcu(&fs_info->subvol_srcu);
3836
1c1ea4f7 3837 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3838 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3839 if (root->reloc_root) {
3840 free_extent_buffer(root->reloc_root->node);
3841 free_extent_buffer(root->reloc_root->commit_root);
3842 btrfs_put_fs_root(root->reloc_root);
3843 root->reloc_root = NULL;
3844 }
3845 }
3321719e 3846
faa2dbf0
JB
3847 if (root->free_ino_pinned)
3848 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3849 if (root->free_ino_ctl)
3850 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3851 btrfs_free_fs_root(root);
4df27c4d
YZ
3852}
3853
84db5ccf 3854void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3855{
57cdc8db 3856 iput(root->ino_cache_inode);
4df27c4d 3857 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3858 if (root->anon_dev)
3859 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3860 if (root->subv_writers)
3861 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3862 free_extent_buffer(root->node);
3863 free_extent_buffer(root->commit_root);
581bb050
LZ
3864 kfree(root->free_ino_ctl);
3865 kfree(root->free_ino_pinned);
b0feb9d9 3866 btrfs_put_fs_root(root);
2619ba1f
CM
3867}
3868
c146afad 3869int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3870{
c146afad
YZ
3871 u64 root_objectid = 0;
3872 struct btrfs_root *gang[8];
65d33fd7
QW
3873 int i = 0;
3874 int err = 0;
3875 unsigned int ret = 0;
3876 int index;
e089f05c 3877
c146afad 3878 while (1) {
65d33fd7 3879 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3880 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3881 (void **)gang, root_objectid,
3882 ARRAY_SIZE(gang));
65d33fd7
QW
3883 if (!ret) {
3884 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3885 break;
65d33fd7 3886 }
5d4f98a2 3887 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3888
c146afad 3889 for (i = 0; i < ret; i++) {
65d33fd7
QW
3890 /* Avoid to grab roots in dead_roots */
3891 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3892 gang[i] = NULL;
3893 continue;
3894 }
3895 /* grab all the search result for later use */
3896 gang[i] = btrfs_grab_fs_root(gang[i]);
3897 }
3898 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3899
65d33fd7
QW
3900 for (i = 0; i < ret; i++) {
3901 if (!gang[i])
3902 continue;
c146afad 3903 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3904 err = btrfs_orphan_cleanup(gang[i]);
3905 if (err)
65d33fd7
QW
3906 break;
3907 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3908 }
3909 root_objectid++;
3910 }
65d33fd7
QW
3911
3912 /* release the uncleaned roots due to error */
3913 for (; i < ret; i++) {
3914 if (gang[i])
3915 btrfs_put_fs_root(gang[i]);
3916 }
3917 return err;
c146afad 3918}
a2135011 3919
6bccf3ab 3920int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3921{
6bccf3ab 3922 struct btrfs_root *root = fs_info->tree_root;
c146afad 3923 struct btrfs_trans_handle *trans;
a74a4b97 3924
0b246afa 3925 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3926 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3927 mutex_unlock(&fs_info->cleaner_mutex);
3928 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3929
3930 /* wait until ongoing cleanup work done */
0b246afa
JM
3931 down_write(&fs_info->cleanup_work_sem);
3932 up_write(&fs_info->cleanup_work_sem);
c71bf099 3933
7a7eaa40 3934 trans = btrfs_join_transaction(root);
3612b495
TI
3935 if (IS_ERR(trans))
3936 return PTR_ERR(trans);
3a45bb20 3937 return btrfs_commit_transaction(trans);
c146afad
YZ
3938}
3939
b105e927 3940void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3941{
c146afad
YZ
3942 int ret;
3943
afcdd129 3944 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3945 /*
3946 * We don't want the cleaner to start new transactions, add more delayed
3947 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3948 * because that frees the task_struct, and the transaction kthread might
3949 * still try to wake up the cleaner.
3950 */
3951 kthread_park(fs_info->cleaner_kthread);
c146afad 3952
7343dd61 3953 /* wait for the qgroup rescan worker to stop */
d06f23d6 3954 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3955
803b2f54
SB
3956 /* wait for the uuid_scan task to finish */
3957 down(&fs_info->uuid_tree_rescan_sem);
3958 /* avoid complains from lockdep et al., set sem back to initial state */
3959 up(&fs_info->uuid_tree_rescan_sem);
3960
837d5b6e 3961 /* pause restriper - we want to resume on mount */
aa1b8cd4 3962 btrfs_pause_balance(fs_info);
837d5b6e 3963
8dabb742
SB
3964 btrfs_dev_replace_suspend_for_unmount(fs_info);
3965
aa1b8cd4 3966 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3967
3968 /* wait for any defraggers to finish */
3969 wait_event(fs_info->transaction_wait,
3970 (atomic_read(&fs_info->defrag_running) == 0));
3971
3972 /* clear out the rbtree of defraggable inodes */
26176e7c 3973 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3974
21c7e756
MX
3975 cancel_work_sync(&fs_info->async_reclaim_work);
3976
b0643e59
DZ
3977 /* Cancel or finish ongoing discard work */
3978 btrfs_discard_cleanup(fs_info);
3979
bc98a42c 3980 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3981 /*
d6fd0ae2
OS
3982 * The cleaner kthread is stopped, so do one final pass over
3983 * unused block groups.
e44163e1 3984 */
0b246afa 3985 btrfs_delete_unused_bgs(fs_info);
e44163e1 3986
6bccf3ab 3987 ret = btrfs_commit_super(fs_info);
acce952b 3988 if (ret)
04892340 3989 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3990 }
3991
af722733
LB
3992 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3993 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 3994 btrfs_error_commit_super(fs_info);
0f7d52f4 3995
e3029d9f
AV
3996 kthread_stop(fs_info->transaction_kthread);
3997 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3998
e187831e 3999 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4000 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4001
04892340 4002 btrfs_free_qgroup_config(fs_info);
fe816d0f 4003 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4004
963d678b 4005 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4006 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4007 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4008 }
bcc63abb 4009
4297ff84
JB
4010 if (percpu_counter_sum(&fs_info->dio_bytes))
4011 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4012 percpu_counter_sum(&fs_info->dio_bytes));
4013
6618a59b 4014 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4015 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4016
faa2dbf0 4017 btrfs_free_fs_roots(fs_info);
d10c5f31 4018
1a4319cc
LB
4019 btrfs_put_block_group_cache(fs_info);
4020
de348ee0
WS
4021 /*
4022 * we must make sure there is not any read request to
4023 * submit after we stopping all workers.
4024 */
4025 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4026 btrfs_stop_all_workers(fs_info);
4027
afcdd129 4028 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4029 free_root_pointers(fs_info, true);
9ad6b7bc 4030
4e19443d
JB
4031 /*
4032 * We must free the block groups after dropping the fs_roots as we could
4033 * have had an IO error and have left over tree log blocks that aren't
4034 * cleaned up until the fs roots are freed. This makes the block group
4035 * accounting appear to be wrong because there's pending reserved bytes,
4036 * so make sure we do the block group cleanup afterwards.
4037 */
4038 btrfs_free_block_groups(fs_info);
4039
13e6c37b 4040 iput(fs_info->btree_inode);
d6bfde87 4041
21adbd5c 4042#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4043 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4044 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4045#endif
4046
0b86a832 4047 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4048 btrfs_close_devices(fs_info->fs_devices);
b248a415 4049
e2d84521 4050 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4051 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4052 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4053 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4054 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4055
bfcea1c6 4056 btrfs_free_csum_hash(fs_info);
53b381b3 4057 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4058 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4059}
4060
b9fab919
CM
4061int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4062 int atomic)
5f39d397 4063{
1259ab75 4064 int ret;
727011e0 4065 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4066
0b32f4bb 4067 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4068 if (!ret)
4069 return ret;
4070
4071 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4072 parent_transid, atomic);
4073 if (ret == -EAGAIN)
4074 return ret;
1259ab75 4075 return !ret;
5f39d397
CM
4076}
4077
5f39d397
CM
4078void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4079{
0b246afa 4080 struct btrfs_fs_info *fs_info;
06ea65a3 4081 struct btrfs_root *root;
5f39d397 4082 u64 transid = btrfs_header_generation(buf);
b9473439 4083 int was_dirty;
b4ce94de 4084
06ea65a3
JB
4085#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4086 /*
4087 * This is a fast path so only do this check if we have sanity tests
52042d8e 4088 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4089 * outside of the sanity tests.
4090 */
b0132a3b 4091 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4092 return;
4093#endif
4094 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4095 fs_info = root->fs_info;
b9447ef8 4096 btrfs_assert_tree_locked(buf);
0b246afa 4097 if (transid != fs_info->generation)
5d163e0e 4098 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4099 buf->start, transid, fs_info->generation);
0b32f4bb 4100 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4101 if (!was_dirty)
104b4e51
NB
4102 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4103 buf->len,
4104 fs_info->dirty_metadata_batch);
1f21ef0a 4105#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4106 /*
4107 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4108 * but item data not updated.
4109 * So here we should only check item pointers, not item data.
4110 */
4111 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4112 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4113 btrfs_print_leaf(buf);
1f21ef0a
FM
4114 ASSERT(0);
4115 }
4116#endif
eb60ceac
CM
4117}
4118
2ff7e61e 4119static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4120 int flush_delayed)
16cdcec7
MX
4121{
4122 /*
4123 * looks as though older kernels can get into trouble with
4124 * this code, they end up stuck in balance_dirty_pages forever
4125 */
e2d84521 4126 int ret;
16cdcec7
MX
4127
4128 if (current->flags & PF_MEMALLOC)
4129 return;
4130
b53d3f5d 4131 if (flush_delayed)
2ff7e61e 4132 btrfs_balance_delayed_items(fs_info);
16cdcec7 4133
d814a491
EL
4134 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4135 BTRFS_DIRTY_METADATA_THRESH,
4136 fs_info->dirty_metadata_batch);
e2d84521 4137 if (ret > 0) {
0b246afa 4138 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4139 }
16cdcec7
MX
4140}
4141
2ff7e61e 4142void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4143{
2ff7e61e 4144 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4145}
585ad2c3 4146
2ff7e61e 4147void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4148{
2ff7e61e 4149 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4150}
6b80053d 4151
581c1760
QW
4152int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4153 struct btrfs_key *first_key)
6b80053d 4154{
5ab12d1f 4155 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4156 level, first_key);
6b80053d 4157}
0da5468f 4158
2ff7e61e 4159static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4160{
fe816d0f
NB
4161 /* cleanup FS via transaction */
4162 btrfs_cleanup_transaction(fs_info);
4163
0b246afa 4164 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4165 btrfs_run_delayed_iputs(fs_info);
0b246afa 4166 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4167
0b246afa
JM
4168 down_write(&fs_info->cleanup_work_sem);
4169 up_write(&fs_info->cleanup_work_sem);
acce952b 4170}
4171
143bede5 4172static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4173{
acce952b 4174 struct btrfs_ordered_extent *ordered;
acce952b 4175
199c2a9c 4176 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4177 /*
4178 * This will just short circuit the ordered completion stuff which will
4179 * make sure the ordered extent gets properly cleaned up.
4180 */
199c2a9c 4181 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4182 root_extent_list)
4183 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4184 spin_unlock(&root->ordered_extent_lock);
4185}
4186
4187static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4188{
4189 struct btrfs_root *root;
4190 struct list_head splice;
4191
4192 INIT_LIST_HEAD(&splice);
4193
4194 spin_lock(&fs_info->ordered_root_lock);
4195 list_splice_init(&fs_info->ordered_roots, &splice);
4196 while (!list_empty(&splice)) {
4197 root = list_first_entry(&splice, struct btrfs_root,
4198 ordered_root);
1de2cfde
JB
4199 list_move_tail(&root->ordered_root,
4200 &fs_info->ordered_roots);
199c2a9c 4201
2a85d9ca 4202 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4203 btrfs_destroy_ordered_extents(root);
4204
2a85d9ca
LB
4205 cond_resched();
4206 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4207 }
4208 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4209
4210 /*
4211 * We need this here because if we've been flipped read-only we won't
4212 * get sync() from the umount, so we need to make sure any ordered
4213 * extents that haven't had their dirty pages IO start writeout yet
4214 * actually get run and error out properly.
4215 */
4216 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4217}
4218
35a3621b 4219static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4220 struct btrfs_fs_info *fs_info)
acce952b 4221{
4222 struct rb_node *node;
4223 struct btrfs_delayed_ref_root *delayed_refs;
4224 struct btrfs_delayed_ref_node *ref;
4225 int ret = 0;
4226
4227 delayed_refs = &trans->delayed_refs;
4228
4229 spin_lock(&delayed_refs->lock);
d7df2c79 4230 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4231 spin_unlock(&delayed_refs->lock);
0b246afa 4232 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4233 return ret;
4234 }
4235
5c9d028b 4236 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4237 struct btrfs_delayed_ref_head *head;
0e0adbcf 4238 struct rb_node *n;
e78417d1 4239 bool pin_bytes = false;
acce952b 4240
d7df2c79
JB
4241 head = rb_entry(node, struct btrfs_delayed_ref_head,
4242 href_node);
3069bd26 4243 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4244 continue;
3069bd26 4245
d7df2c79 4246 spin_lock(&head->lock);
e3d03965 4247 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4248 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4249 ref_node);
d7df2c79 4250 ref->in_tree = 0;
e3d03965 4251 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4252 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4253 if (!list_empty(&ref->add_list))
4254 list_del(&ref->add_list);
d7df2c79
JB
4255 atomic_dec(&delayed_refs->num_entries);
4256 btrfs_put_delayed_ref(ref);
e78417d1 4257 }
d7df2c79
JB
4258 if (head->must_insert_reserved)
4259 pin_bytes = true;
4260 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4261 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4262 spin_unlock(&head->lock);
4263 spin_unlock(&delayed_refs->lock);
4264 mutex_unlock(&head->mutex);
acce952b 4265
d7df2c79 4266 if (pin_bytes)
d278850e
JB
4267 btrfs_pin_extent(fs_info, head->bytenr,
4268 head->num_bytes, 1);
31890da0 4269 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4270 btrfs_put_delayed_ref_head(head);
acce952b 4271 cond_resched();
4272 spin_lock(&delayed_refs->lock);
4273 }
81f7eb00 4274 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4275
4276 spin_unlock(&delayed_refs->lock);
4277
4278 return ret;
4279}
4280
143bede5 4281static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4282{
4283 struct btrfs_inode *btrfs_inode;
4284 struct list_head splice;
4285
4286 INIT_LIST_HEAD(&splice);
4287
eb73c1b7
MX
4288 spin_lock(&root->delalloc_lock);
4289 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4290
4291 while (!list_empty(&splice)) {
fe816d0f 4292 struct inode *inode = NULL;
eb73c1b7
MX
4293 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4294 delalloc_inodes);
fe816d0f 4295 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4296 spin_unlock(&root->delalloc_lock);
acce952b 4297
fe816d0f
NB
4298 /*
4299 * Make sure we get a live inode and that it'll not disappear
4300 * meanwhile.
4301 */
4302 inode = igrab(&btrfs_inode->vfs_inode);
4303 if (inode) {
4304 invalidate_inode_pages2(inode->i_mapping);
4305 iput(inode);
4306 }
eb73c1b7 4307 spin_lock(&root->delalloc_lock);
acce952b 4308 }
eb73c1b7
MX
4309 spin_unlock(&root->delalloc_lock);
4310}
4311
4312static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4313{
4314 struct btrfs_root *root;
4315 struct list_head splice;
4316
4317 INIT_LIST_HEAD(&splice);
4318
4319 spin_lock(&fs_info->delalloc_root_lock);
4320 list_splice_init(&fs_info->delalloc_roots, &splice);
4321 while (!list_empty(&splice)) {
4322 root = list_first_entry(&splice, struct btrfs_root,
4323 delalloc_root);
eb73c1b7
MX
4324 root = btrfs_grab_fs_root(root);
4325 BUG_ON(!root);
4326 spin_unlock(&fs_info->delalloc_root_lock);
4327
4328 btrfs_destroy_delalloc_inodes(root);
4329 btrfs_put_fs_root(root);
4330
4331 spin_lock(&fs_info->delalloc_root_lock);
4332 }
4333 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4334}
4335
2ff7e61e 4336static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4337 struct extent_io_tree *dirty_pages,
4338 int mark)
4339{
4340 int ret;
acce952b 4341 struct extent_buffer *eb;
4342 u64 start = 0;
4343 u64 end;
acce952b 4344
4345 while (1) {
4346 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4347 mark, NULL);
acce952b 4348 if (ret)
4349 break;
4350
91166212 4351 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4352 while (start <= end) {
0b246afa
JM
4353 eb = find_extent_buffer(fs_info, start);
4354 start += fs_info->nodesize;
fd8b2b61 4355 if (!eb)
acce952b 4356 continue;
fd8b2b61 4357 wait_on_extent_buffer_writeback(eb);
acce952b 4358
fd8b2b61
JB
4359 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4360 &eb->bflags))
4361 clear_extent_buffer_dirty(eb);
4362 free_extent_buffer_stale(eb);
acce952b 4363 }
4364 }
4365
4366 return ret;
4367}
4368
2ff7e61e 4369static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4370 struct extent_io_tree *pinned_extents)
4371{
4372 struct extent_io_tree *unpin;
4373 u64 start;
4374 u64 end;
4375 int ret;
ed0eaa14 4376 bool loop = true;
acce952b 4377
4378 unpin = pinned_extents;
ed0eaa14 4379again:
acce952b 4380 while (1) {
0e6ec385
FM
4381 struct extent_state *cached_state = NULL;
4382
fcd5e742
LF
4383 /*
4384 * The btrfs_finish_extent_commit() may get the same range as
4385 * ours between find_first_extent_bit and clear_extent_dirty.
4386 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4387 * the same extent range.
4388 */
4389 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4390 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4391 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4392 if (ret) {
4393 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4394 break;
fcd5e742 4395 }
acce952b 4396
0e6ec385
FM
4397 clear_extent_dirty(unpin, start, end, &cached_state);
4398 free_extent_state(cached_state);
2ff7e61e 4399 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4400 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4401 cond_resched();
4402 }
4403
ed0eaa14 4404 if (loop) {
0b246afa
JM
4405 if (unpin == &fs_info->freed_extents[0])
4406 unpin = &fs_info->freed_extents[1];
ed0eaa14 4407 else
0b246afa 4408 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4409 loop = false;
4410 goto again;
4411 }
4412
acce952b 4413 return 0;
4414}
4415
32da5386 4416static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4417{
4418 struct inode *inode;
4419
4420 inode = cache->io_ctl.inode;
4421 if (inode) {
4422 invalidate_inode_pages2(inode->i_mapping);
4423 BTRFS_I(inode)->generation = 0;
4424 cache->io_ctl.inode = NULL;
4425 iput(inode);
4426 }
4427 btrfs_put_block_group(cache);
4428}
4429
4430void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4431 struct btrfs_fs_info *fs_info)
c79a1751 4432{
32da5386 4433 struct btrfs_block_group *cache;
c79a1751
LB
4434
4435 spin_lock(&cur_trans->dirty_bgs_lock);
4436 while (!list_empty(&cur_trans->dirty_bgs)) {
4437 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4438 struct btrfs_block_group,
c79a1751 4439 dirty_list);
c79a1751
LB
4440
4441 if (!list_empty(&cache->io_list)) {
4442 spin_unlock(&cur_trans->dirty_bgs_lock);
4443 list_del_init(&cache->io_list);
4444 btrfs_cleanup_bg_io(cache);
4445 spin_lock(&cur_trans->dirty_bgs_lock);
4446 }
4447
4448 list_del_init(&cache->dirty_list);
4449 spin_lock(&cache->lock);
4450 cache->disk_cache_state = BTRFS_DC_ERROR;
4451 spin_unlock(&cache->lock);
4452
4453 spin_unlock(&cur_trans->dirty_bgs_lock);
4454 btrfs_put_block_group(cache);
ba2c4d4e 4455 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4456 spin_lock(&cur_trans->dirty_bgs_lock);
4457 }
4458 spin_unlock(&cur_trans->dirty_bgs_lock);
4459
45ae2c18
NB
4460 /*
4461 * Refer to the definition of io_bgs member for details why it's safe
4462 * to use it without any locking
4463 */
c79a1751
LB
4464 while (!list_empty(&cur_trans->io_bgs)) {
4465 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4466 struct btrfs_block_group,
c79a1751 4467 io_list);
c79a1751
LB
4468
4469 list_del_init(&cache->io_list);
4470 spin_lock(&cache->lock);
4471 cache->disk_cache_state = BTRFS_DC_ERROR;
4472 spin_unlock(&cache->lock);
4473 btrfs_cleanup_bg_io(cache);
4474 }
4475}
4476
49b25e05 4477void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4478 struct btrfs_fs_info *fs_info)
49b25e05 4479{
bbbf7243
NB
4480 struct btrfs_device *dev, *tmp;
4481
2ff7e61e 4482 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4483 ASSERT(list_empty(&cur_trans->dirty_bgs));
4484 ASSERT(list_empty(&cur_trans->io_bgs));
4485
bbbf7243
NB
4486 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4487 post_commit_list) {
4488 list_del_init(&dev->post_commit_list);
4489 }
4490
2ff7e61e 4491 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4492
4a9d8bde 4493 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4494 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4495
4a9d8bde 4496 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4497 wake_up(&fs_info->transaction_wait);
49b25e05 4498
ccdf9b30 4499 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4500
2ff7e61e 4501 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4502 EXTENT_DIRTY);
2ff7e61e 4503 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4504 fs_info->pinned_extents);
49b25e05 4505
4a9d8bde
MX
4506 cur_trans->state =TRANS_STATE_COMPLETED;
4507 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4508}
4509
2ff7e61e 4510static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4511{
4512 struct btrfs_transaction *t;
acce952b 4513
0b246afa 4514 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4515
0b246afa
JM
4516 spin_lock(&fs_info->trans_lock);
4517 while (!list_empty(&fs_info->trans_list)) {
4518 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4519 struct btrfs_transaction, list);
4520 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4521 refcount_inc(&t->use_count);
0b246afa 4522 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4523 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4524 btrfs_put_transaction(t);
0b246afa 4525 spin_lock(&fs_info->trans_lock);
724e2315
JB
4526 continue;
4527 }
0b246afa 4528 if (t == fs_info->running_transaction) {
724e2315 4529 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4530 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4531 /*
4532 * We wait for 0 num_writers since we don't hold a trans
4533 * handle open currently for this transaction.
4534 */
4535 wait_event(t->writer_wait,
4536 atomic_read(&t->num_writers) == 0);
4537 } else {
0b246afa 4538 spin_unlock(&fs_info->trans_lock);
724e2315 4539 }
2ff7e61e 4540 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4541
0b246afa
JM
4542 spin_lock(&fs_info->trans_lock);
4543 if (t == fs_info->running_transaction)
4544 fs_info->running_transaction = NULL;
acce952b 4545 list_del_init(&t->list);
0b246afa 4546 spin_unlock(&fs_info->trans_lock);
acce952b 4547
724e2315 4548 btrfs_put_transaction(t);
2ff7e61e 4549 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4550 spin_lock(&fs_info->trans_lock);
724e2315 4551 }
0b246afa
JM
4552 spin_unlock(&fs_info->trans_lock);
4553 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4554 btrfs_destroy_delayed_inodes(fs_info);
4555 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4556 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4557 btrfs_destroy_all_delalloc_inodes(fs_info);
4558 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4559
4560 return 0;
4561}
4562
e8c9f186 4563static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4564 /* mandatory callbacks */
0b86a832 4565 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4566 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4567};