btrfs: fix an uninitialized variable warning in btrfs_log_inode
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
103c1972 26#include "bio.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
c7f13d42 46#include "fs.h"
07e81dc9 47#include "accessors.h"
a0231804 48#include "extent-tree.h"
45c40c8f 49#include "root-tree.h"
59b818e0 50#include "defrag.h"
c7a03b52 51#include "uuid-tree.h"
67707479 52#include "relocation.h"
2fc6822c 53#include "scrub.h"
c03b2207 54#include "super.h"
eb60ceac 55
319e4d06
QW
56#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 BTRFS_HEADER_FLAG_RELOC |\
58 BTRFS_SUPER_FLAG_ERROR |\
59 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
60 BTRFS_SUPER_FLAG_METADUMP |\
61 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 62
143bede5 63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 65 struct btrfs_fs_info *fs_info);
143bede5 66static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 67static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 68 struct extent_io_tree *dirty_pages,
69 int mark);
2ff7e61e 70static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 71 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
72static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
73static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 74
141386e1
JB
75static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
76{
77 if (fs_info->csum_shash)
78 crypto_free_shash(fs_info->csum_shash);
79}
80
d352ac68 81/*
2996e1f8 82 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 83 */
c67b3892 84static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 85{
d5178578 86 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 87 const int num_pages = num_extent_pages(buf);
a26663e7 88 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 89 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 90 char *kaddr;
e9be5a30 91 int i;
d5178578
JT
92
93 shash->tfm = fs_info->csum_shash;
94 crypto_shash_init(shash);
a26663e7 95 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 97 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 98
e9be5a30
DS
99 for (i = 1; i < num_pages; i++) {
100 kaddr = page_address(buf->pages[i]);
101 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 102 }
71a63551 103 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 104 crypto_shash_final(shash, result);
19c00ddc
CM
105}
106
d352ac68
CM
107/*
108 * we can't consider a given block up to date unless the transid of the
109 * block matches the transid in the parent node's pointer. This is how we
110 * detect blocks that either didn't get written at all or got written
111 * in the wrong place.
112 */
1259ab75 113static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
114 struct extent_buffer *eb, u64 parent_transid,
115 int atomic)
1259ab75 116{
2ac55d41 117 struct extent_state *cached_state = NULL;
1259ab75
CM
118 int ret;
119
120 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
121 return 0;
122
b9fab919
CM
123 if (atomic)
124 return -EAGAIN;
125
570eb97b 126 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
0b32f4bb 127 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
128 btrfs_header_generation(eb) == parent_transid) {
129 ret = 0;
130 goto out;
131 }
94647322 132 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
133"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 eb->start, eb->read_mirror,
29549aec 135 parent_transid, btrfs_header_generation(eb));
1259ab75 136 ret = 1;
35b22c19 137 clear_extent_buffer_uptodate(eb);
33958dc6 138out:
570eb97b
JB
139 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
140 &cached_state);
1259ab75 141 return ret;
1259ab75
CM
142}
143
e7e16f48
JT
144static bool btrfs_supported_super_csum(u16 csum_type)
145{
146 switch (csum_type) {
147 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 148 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 149 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 150 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
151 return true;
152 default:
153 return false;
154 }
155}
156
1104a885
DS
157/*
158 * Return 0 if the superblock checksum type matches the checksum value of that
159 * algorithm. Pass the raw disk superblock data.
160 */
3d17adea
QW
161int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
162 const struct btrfs_super_block *disk_sb)
1104a885 163{
51bce6c9 164 char result[BTRFS_CSUM_SIZE];
d5178578
JT
165 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
166
167 shash->tfm = fs_info->csum_shash;
1104a885 168
51bce6c9
JT
169 /*
170 * The super_block structure does not span the whole
171 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
172 * filled with zeros and is included in the checksum.
173 */
3d17adea 174 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 175 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 176
55fc29be 177 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 178 return 1;
1104a885 179
e7e16f48 180 return 0;
1104a885
DS
181}
182
e064d5e9 183int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 184 struct btrfs_key *first_key, u64 parent_transid)
581c1760 185{
e064d5e9 186 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
187 int found_level;
188 struct btrfs_key found_key;
189 int ret;
190
191 found_level = btrfs_header_level(eb);
192 if (found_level != level) {
63489055
QW
193 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
194 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
195 btrfs_err(fs_info,
196"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
197 eb->start, level, found_level);
581c1760
QW
198 return -EIO;
199 }
200
201 if (!first_key)
202 return 0;
203
5d41be6f
QW
204 /*
205 * For live tree block (new tree blocks in current transaction),
206 * we need proper lock context to avoid race, which is impossible here.
207 * So we only checks tree blocks which is read from disk, whose
208 * generation <= fs_info->last_trans_committed.
209 */
210 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
211 return 0;
62fdaa52
QW
212
213 /* We have @first_key, so this @eb must have at least one item */
214 if (btrfs_header_nritems(eb) == 0) {
215 btrfs_err(fs_info,
216 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
217 eb->start);
218 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
219 return -EUCLEAN;
220 }
221
581c1760
QW
222 if (found_level)
223 btrfs_node_key_to_cpu(eb, &found_key, 0);
224 else
225 btrfs_item_key_to_cpu(eb, &found_key, 0);
226 ret = btrfs_comp_cpu_keys(first_key, &found_key);
227
581c1760 228 if (ret) {
63489055
QW
229 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
230 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 231 btrfs_err(fs_info,
ff76a864
LB
232"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
233 eb->start, parent_transid, first_key->objectid,
234 first_key->type, first_key->offset,
235 found_key.objectid, found_key.type,
236 found_key.offset);
581c1760 237 }
581c1760
QW
238 return ret;
239}
240
bacf60e5
CH
241static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
242 int mirror_num)
243{
244 struct btrfs_fs_info *fs_info = eb->fs_info;
245 u64 start = eb->start;
246 int i, num_pages = num_extent_pages(eb);
247 int ret = 0;
248
249 if (sb_rdonly(fs_info->sb))
250 return -EROFS;
251
252 for (i = 0; i < num_pages; i++) {
253 struct page *p = eb->pages[i];
254
255 ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE,
256 start, p, start - page_offset(p), mirror_num);
257 if (ret)
258 break;
259 start += PAGE_SIZE;
260 }
261
262 return ret;
263}
264
d352ac68
CM
265/*
266 * helper to read a given tree block, doing retries as required when
267 * the checksums don't match and we have alternate mirrors to try.
581c1760 268 *
789d6a3a
QW
269 * @check: expected tree parentness check, see the comments of the
270 * structure for details.
d352ac68 271 */
6a2e9dc4 272int btrfs_read_extent_buffer(struct extent_buffer *eb,
789d6a3a 273 struct btrfs_tree_parent_check *check)
f188591e 274{
5ab12d1f 275 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 276 int failed = 0;
f188591e
CM
277 int ret;
278 int num_copies = 0;
279 int mirror_num = 0;
ea466794 280 int failed_mirror = 0;
f188591e 281
789d6a3a
QW
282 ASSERT(check);
283
f188591e 284 while (1) {
f8397d69 285 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
947a6299
QW
286 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
287 if (!ret)
288 break;
d397712b 289
0b246afa 290 num_copies = btrfs_num_copies(fs_info,
f188591e 291 eb->start, eb->len);
4235298e 292 if (num_copies == 1)
ea466794 293 break;
4235298e 294
5cf1ab56
JB
295 if (!failed_mirror) {
296 failed = 1;
297 failed_mirror = eb->read_mirror;
298 }
299
f188591e 300 mirror_num++;
ea466794
JB
301 if (mirror_num == failed_mirror)
302 mirror_num++;
303
4235298e 304 if (mirror_num > num_copies)
ea466794 305 break;
f188591e 306 }
ea466794 307
c0901581 308 if (failed && !ret && failed_mirror)
20a1fbf9 309 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
310
311 return ret;
f188591e 312}
19c00ddc 313
eca0f6f6
QW
314static int csum_one_extent_buffer(struct extent_buffer *eb)
315{
316 struct btrfs_fs_info *fs_info = eb->fs_info;
317 u8 result[BTRFS_CSUM_SIZE];
318 int ret;
319
320 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
321 offsetof(struct btrfs_header, fsid),
322 BTRFS_FSID_SIZE) == 0);
323 csum_tree_block(eb, result);
324
325 if (btrfs_header_level(eb))
326 ret = btrfs_check_node(eb);
327 else
328 ret = btrfs_check_leaf_full(eb);
329
3777369f
QW
330 if (ret < 0)
331 goto error;
332
333 /*
334 * Also check the generation, the eb reached here must be newer than
335 * last committed. Or something seriously wrong happened.
336 */
337 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
338 ret = -EUCLEAN;
eca0f6f6 339 btrfs_err(fs_info,
3777369f
QW
340 "block=%llu bad generation, have %llu expect > %llu",
341 eb->start, btrfs_header_generation(eb),
342 fs_info->last_trans_committed);
343 goto error;
eca0f6f6
QW
344 }
345 write_extent_buffer(eb, result, 0, fs_info->csum_size);
346
347 return 0;
3777369f
QW
348
349error:
350 btrfs_print_tree(eb, 0);
351 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
352 eb->start);
16199ad9
FM
353 /*
354 * Be noisy if this is an extent buffer from a log tree. We don't abort
355 * a transaction in case there's a bad log tree extent buffer, we just
356 * fallback to a transaction commit. Still we want to know when there is
357 * a bad log tree extent buffer, as that may signal a bug somewhere.
358 */
359 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
360 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
3777369f 361 return ret;
eca0f6f6
QW
362}
363
364/* Checksum all dirty extent buffers in one bio_vec */
365static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
366 struct bio_vec *bvec)
367{
368 struct page *page = bvec->bv_page;
369 u64 bvec_start = page_offset(page) + bvec->bv_offset;
370 u64 cur;
371 int ret = 0;
372
373 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
374 cur += fs_info->nodesize) {
375 struct extent_buffer *eb;
376 bool uptodate;
377
378 eb = find_extent_buffer(fs_info, cur);
379 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
380 fs_info->nodesize);
381
01cd3909 382 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
383 if (WARN_ON(!eb))
384 return -EUCLEAN;
385
386 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
387 free_extent_buffer(eb);
388 return -EUCLEAN;
389 }
390 if (WARN_ON(!uptodate)) {
391 free_extent_buffer(eb);
392 return -EUCLEAN;
393 }
394
395 ret = csum_one_extent_buffer(eb);
396 free_extent_buffer(eb);
397 if (ret < 0)
398 return ret;
399 }
400 return ret;
401}
402
d352ac68 403/*
ac303b69
QW
404 * Checksum a dirty tree block before IO. This has extra checks to make sure
405 * we only fill in the checksum field in the first page of a multi-page block.
406 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 407 */
ac303b69 408static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 409{
ac303b69 410 struct page *page = bvec->bv_page;
4eee4fa4 411 u64 start = page_offset(page);
19c00ddc 412 u64 found_start;
19c00ddc 413 struct extent_buffer *eb;
eca0f6f6 414
fbca46eb 415 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 416 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 417
4f2de97a
JB
418 eb = (struct extent_buffer *)page->private;
419 if (page != eb->pages[0])
420 return 0;
0f805531 421
19c00ddc 422 found_start = btrfs_header_bytenr(eb);
d3575156
NA
423
424 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
425 WARN_ON(found_start != 0);
426 return 0;
427 }
428
0f805531
AL
429 /*
430 * Please do not consolidate these warnings into a single if.
431 * It is useful to know what went wrong.
432 */
433 if (WARN_ON(found_start != start))
434 return -EUCLEAN;
435 if (WARN_ON(!PageUptodate(page)))
436 return -EUCLEAN;
437
eca0f6f6 438 return csum_one_extent_buffer(eb);
19c00ddc
CM
439}
440
542e300e 441blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
deb6216f 442{
542e300e
CH
443 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
444 struct bvec_iter iter;
445 struct bio_vec bv;
deb6216f
CH
446 int ret = 0;
447
542e300e
CH
448 bio_for_each_segment(bv, &bbio->bio, iter) {
449 ret = csum_dirty_buffer(fs_info, &bv);
deb6216f
CH
450 if (ret)
451 break;
452 }
453
454 return errno_to_blk_status(ret);
455}
456
b0c9b3b0 457static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 458{
b0c9b3b0 459 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 460 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 461 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 462 u8 *metadata_uuid;
2b82032c 463
9a8658e3
DS
464 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
465 BTRFS_FSID_SIZE);
944d3f9f
NB
466 /*
467 * Checking the incompat flag is only valid for the current fs. For
468 * seed devices it's forbidden to have their uuid changed so reading
469 * ->fsid in this case is fine
470 */
471 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
472 metadata_uuid = fs_devices->metadata_uuid;
473 else
474 metadata_uuid = fs_devices->fsid;
475
476 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
477 return 0;
478
479 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
480 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
481 return 0;
482
483 return 1;
2b82032c
YZ
484}
485
77bf40a2 486/* Do basic extent buffer checks at read time */
947a6299
QW
487static int validate_extent_buffer(struct extent_buffer *eb,
488 struct btrfs_tree_parent_check *check)
ce9adaa5 489{
77bf40a2 490 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 491 u64 found_start;
77bf40a2
QW
492 const u32 csum_size = fs_info->csum_size;
493 u8 found_level;
2996e1f8 494 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 495 const u8 *header_csum;
77bf40a2 496 int ret = 0;
ea466794 497
947a6299
QW
498 ASSERT(check);
499
ce9adaa5 500 found_start = btrfs_header_bytenr(eb);
727011e0 501 if (found_start != eb->start) {
8f0ed7d4
QW
502 btrfs_err_rl(fs_info,
503 "bad tree block start, mirror %u want %llu have %llu",
504 eb->read_mirror, eb->start, found_start);
f188591e 505 ret = -EIO;
77bf40a2 506 goto out;
ce9adaa5 507 }
b0c9b3b0 508 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
509 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
510 eb->start, eb->read_mirror);
1259ab75 511 ret = -EIO;
77bf40a2 512 goto out;
1259ab75 513 }
ce9adaa5 514 found_level = btrfs_header_level(eb);
1c24c3ce 515 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
516 btrfs_err(fs_info,
517 "bad tree block level, mirror %u level %d on logical %llu",
518 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 519 ret = -EIO;
77bf40a2 520 goto out;
1c24c3ce 521 }
ce9adaa5 522
c67b3892 523 csum_tree_block(eb, result);
dfd29eed
DS
524 header_csum = page_address(eb->pages[0]) +
525 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 526
dfd29eed 527 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 528 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
529"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
530 eb->start, eb->read_mirror,
dfd29eed 531 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
532 CSUM_FMT_VALUE(csum_size, result),
533 btrfs_header_level(eb));
2996e1f8 534 ret = -EUCLEAN;
77bf40a2 535 goto out;
2996e1f8
JT
536 }
537
947a6299 538 if (found_level != check->level) {
77177ed1
QW
539 btrfs_err(fs_info,
540 "level verify failed on logical %llu mirror %u wanted %u found %u",
541 eb->start, eb->read_mirror, check->level, found_level);
947a6299
QW
542 ret = -EIO;
543 goto out;
544 }
545 if (unlikely(check->transid &&
546 btrfs_header_generation(eb) != check->transid)) {
547 btrfs_err_rl(eb->fs_info,
548"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
549 eb->start, eb->read_mirror, check->transid,
550 btrfs_header_generation(eb));
551 ret = -EIO;
552 goto out;
553 }
554 if (check->has_first_key) {
555 struct btrfs_key *expect_key = &check->first_key;
556 struct btrfs_key found_key;
557
558 if (found_level)
559 btrfs_node_key_to_cpu(eb, &found_key, 0);
560 else
561 btrfs_item_key_to_cpu(eb, &found_key, 0);
562 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
563 btrfs_err(fs_info,
564"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
565 eb->start, check->transid,
566 expect_key->objectid,
567 expect_key->type, expect_key->offset,
568 found_key.objectid, found_key.type,
569 found_key.offset);
570 ret = -EUCLEAN;
571 goto out;
572 }
573 }
574 if (check->owner_root) {
575 ret = btrfs_check_eb_owner(eb, check->owner_root);
576 if (ret < 0)
577 goto out;
578 }
579
a826d6dc
JB
580 /*
581 * If this is a leaf block and it is corrupt, set the corrupt bit so
582 * that we don't try and read the other copies of this block, just
583 * return -EIO.
584 */
1c4360ee 585 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
586 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
587 ret = -EIO;
588 }
ce9adaa5 589
813fd1dc 590 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
591 ret = -EIO;
592
0b32f4bb
JB
593 if (!ret)
594 set_extent_buffer_uptodate(eb);
75391f0d
QW
595 else
596 btrfs_err(fs_info,
8f0ed7d4
QW
597 "read time tree block corruption detected on logical %llu mirror %u",
598 eb->start, eb->read_mirror);
77bf40a2
QW
599out:
600 return ret;
601}
602
371cdc07 603static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
947a6299 604 int mirror, struct btrfs_tree_parent_check *check)
371cdc07
QW
605{
606 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
607 struct extent_buffer *eb;
608 bool reads_done;
609 int ret = 0;
610
947a6299
QW
611 ASSERT(check);
612
371cdc07
QW
613 /*
614 * We don't allow bio merge for subpage metadata read, so we should
615 * only get one eb for each endio hook.
616 */
617 ASSERT(end == start + fs_info->nodesize - 1);
618 ASSERT(PagePrivate(page));
619
620 eb = find_extent_buffer(fs_info, start);
621 /*
622 * When we are reading one tree block, eb must have been inserted into
623 * the radix tree. If not, something is wrong.
624 */
625 ASSERT(eb);
626
627 reads_done = atomic_dec_and_test(&eb->io_pages);
628 /* Subpage read must finish in page read */
629 ASSERT(reads_done);
630
631 eb->read_mirror = mirror;
632 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
633 ret = -EIO;
634 goto err;
635 }
947a6299 636 ret = validate_extent_buffer(eb, check);
371cdc07
QW
637 if (ret < 0)
638 goto err;
639
371cdc07
QW
640 set_extent_buffer_uptodate(eb);
641
642 free_extent_buffer(eb);
643 return ret;
644err:
645 /*
646 * end_bio_extent_readpage decrements io_pages in case of error,
647 * make sure it has something to decrement.
648 */
649 atomic_inc(&eb->io_pages);
650 clear_extent_buffer_uptodate(eb);
651 free_extent_buffer(eb);
652 return ret;
653}
654
c3a3b19b 655int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
656 struct page *page, u64 start, u64 end,
657 int mirror)
658{
659 struct extent_buffer *eb;
660 int ret = 0;
661 int reads_done;
662
663 ASSERT(page->private);
371cdc07 664
fbca46eb 665 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
947a6299
QW
666 return validate_subpage_buffer(page, start, end, mirror,
667 &bbio->parent_check);
371cdc07 668
77bf40a2
QW
669 eb = (struct extent_buffer *)page->private;
670
671 /*
672 * The pending IO might have been the only thing that kept this buffer
673 * in memory. Make sure we have a ref for all this other checks
674 */
675 atomic_inc(&eb->refs);
676
677 reads_done = atomic_dec_and_test(&eb->io_pages);
678 if (!reads_done)
679 goto err;
680
681 eb->read_mirror = mirror;
682 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
683 ret = -EIO;
684 goto err;
685 }
947a6299 686 ret = validate_extent_buffer(eb, &bbio->parent_check);
ce9adaa5 687err:
53b381b3
DW
688 if (ret) {
689 /*
690 * our io error hook is going to dec the io pages
691 * again, we have to make sure it has something
692 * to decrement
693 */
694 atomic_inc(&eb->io_pages);
0b32f4bb 695 clear_extent_buffer_uptodate(eb);
53b381b3 696 }
0b32f4bb 697 free_extent_buffer(eb);
77bf40a2 698
f188591e 699 return ret;
ce9adaa5
CM
700}
701
3dd1462e 702#ifdef CONFIG_MIGRATION
8958b551
MWO
703static int btree_migrate_folio(struct address_space *mapping,
704 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
705{
706 /*
707 * we can't safely write a btree page from here,
708 * we haven't done the locking hook
709 */
8958b551 710 if (folio_test_dirty(src))
784b4e29
CM
711 return -EAGAIN;
712 /*
713 * Buffers may be managed in a filesystem specific way.
714 * We must have no buffers or drop them.
715 */
8958b551
MWO
716 if (folio_get_private(src) &&
717 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 718 return -EAGAIN;
54184650 719 return migrate_folio(mapping, dst, src, mode);
784b4e29 720}
8958b551
MWO
721#else
722#define btree_migrate_folio NULL
3dd1462e 723#endif
784b4e29 724
0da5468f
CM
725static int btree_writepages(struct address_space *mapping,
726 struct writeback_control *wbc)
727{
e2d84521
MX
728 struct btrfs_fs_info *fs_info;
729 int ret;
730
d8d5f3e1 731 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
732
733 if (wbc->for_kupdate)
734 return 0;
735
e2d84521 736 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 737 /* this is a bit racy, but that's ok */
d814a491
EL
738 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
739 BTRFS_DIRTY_METADATA_THRESH,
740 fs_info->dirty_metadata_batch);
e2d84521 741 if (ret < 0)
793955bc 742 return 0;
793955bc 743 }
0b32f4bb 744 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
745}
746
f913cff3 747static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 748{
f913cff3
MWO
749 if (folio_test_writeback(folio) || folio_test_dirty(folio))
750 return false;
0c4e538b 751
f913cff3 752 return try_release_extent_buffer(&folio->page);
d98237b3
CM
753}
754
895586eb
MWO
755static void btree_invalidate_folio(struct folio *folio, size_t offset,
756 size_t length)
d98237b3 757{
d1310b2e 758 struct extent_io_tree *tree;
895586eb
MWO
759 tree = &BTRFS_I(folio->mapping->host)->io_tree;
760 extent_invalidate_folio(tree, folio, offset);
f913cff3 761 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
762 if (folio_get_private(folio)) {
763 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
764 "folio private not zero on folio %llu",
765 (unsigned long long)folio_pos(folio));
766 folio_detach_private(folio);
9ad6b7bc 767 }
d98237b3
CM
768}
769
bb146eb2 770#ifdef DEBUG
0079c3b1
MWO
771static bool btree_dirty_folio(struct address_space *mapping,
772 struct folio *folio)
773{
774 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 775 struct btrfs_subpage *subpage;
0b32f4bb 776 struct extent_buffer *eb;
139e8cd3 777 int cur_bit = 0;
0079c3b1 778 u64 page_start = folio_pos(folio);
139e8cd3
QW
779
780 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 781 eb = folio_get_private(folio);
139e8cd3
QW
782 BUG_ON(!eb);
783 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
784 BUG_ON(!atomic_read(&eb->refs));
49d0c642 785 btrfs_assert_tree_write_locked(eb);
0079c3b1 786 return filemap_dirty_folio(mapping, folio);
139e8cd3 787 }
0079c3b1 788 subpage = folio_get_private(folio);
139e8cd3
QW
789
790 ASSERT(subpage->dirty_bitmap);
791 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
792 unsigned long flags;
793 u64 cur;
794 u16 tmp = (1 << cur_bit);
795
796 spin_lock_irqsave(&subpage->lock, flags);
797 if (!(tmp & subpage->dirty_bitmap)) {
798 spin_unlock_irqrestore(&subpage->lock, flags);
799 cur_bit++;
800 continue;
801 }
802 spin_unlock_irqrestore(&subpage->lock, flags);
803 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 804
139e8cd3
QW
805 eb = find_extent_buffer(fs_info, cur);
806 ASSERT(eb);
807 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
808 ASSERT(atomic_read(&eb->refs));
49d0c642 809 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
810 free_extent_buffer(eb);
811
812 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
813 }
0079c3b1 814 return filemap_dirty_folio(mapping, folio);
0b32f4bb 815}
0079c3b1
MWO
816#else
817#define btree_dirty_folio filemap_dirty_folio
818#endif
0b32f4bb 819
7f09410b 820static const struct address_space_operations btree_aops = {
0da5468f 821 .writepages = btree_writepages,
f913cff3 822 .release_folio = btree_release_folio,
895586eb 823 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
824 .migrate_folio = btree_migrate_folio,
825 .dirty_folio = btree_dirty_folio,
d98237b3
CM
826};
827
2ff7e61e
JM
828struct extent_buffer *btrfs_find_create_tree_block(
829 struct btrfs_fs_info *fs_info,
3fbaf258
JB
830 u64 bytenr, u64 owner_root,
831 int level)
0999df54 832{
0b246afa
JM
833 if (btrfs_is_testing(fs_info))
834 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 835 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
836}
837
581c1760
QW
838/*
839 * Read tree block at logical address @bytenr and do variant basic but critical
840 * verification.
841 *
789d6a3a
QW
842 * @check: expected tree parentness check, see comments of the
843 * structure for details.
581c1760 844 */
2ff7e61e 845struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
789d6a3a 846 struct btrfs_tree_parent_check *check)
0999df54
CM
847{
848 struct extent_buffer *buf = NULL;
0999df54
CM
849 int ret;
850
789d6a3a
QW
851 ASSERT(check);
852
853 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
854 check->level);
c871b0f2
LB
855 if (IS_ERR(buf))
856 return buf;
0999df54 857
789d6a3a 858 ret = btrfs_read_extent_buffer(buf, check);
0f0fe8f7 859 if (ret) {
537f38f0 860 free_extent_buffer_stale(buf);
64c043de 861 return ERR_PTR(ret);
0f0fe8f7 862 }
789d6a3a 863 if (btrfs_check_eb_owner(buf, check->owner_root)) {
88c602ab
QW
864 free_extent_buffer_stale(buf);
865 return ERR_PTR(-EUCLEAN);
866 }
5f39d397 867 return buf;
ce9adaa5 868
eb60ceac
CM
869}
870
da17066c 871static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 872 u64 objectid)
d97e63b6 873{
7c0260ee 874 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
875
876 memset(&root->root_key, 0, sizeof(root->root_key));
877 memset(&root->root_item, 0, sizeof(root->root_item));
878 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 879 root->fs_info = fs_info;
2e608bd1 880 root->root_key.objectid = objectid;
cfaa7295 881 root->node = NULL;
a28ec197 882 root->commit_root = NULL;
27cdeb70 883 root->state = 0;
abed4aaa 884 RB_CLEAR_NODE(&root->rb_node);
0b86a832 885
0f7d52f4 886 root->last_trans = 0;
6b8fad57 887 root->free_objectid = 0;
eb73c1b7 888 root->nr_delalloc_inodes = 0;
199c2a9c 889 root->nr_ordered_extents = 0;
6bef4d31 890 root->inode_tree = RB_ROOT;
088aea3b 891 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
892
893 btrfs_init_root_block_rsv(root);
0b86a832
CM
894
895 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 896 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
897 INIT_LIST_HEAD(&root->delalloc_inodes);
898 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
899 INIT_LIST_HEAD(&root->ordered_extents);
900 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 901 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
902 INIT_LIST_HEAD(&root->logged_list[0]);
903 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 904 spin_lock_init(&root->inode_lock);
eb73c1b7 905 spin_lock_init(&root->delalloc_lock);
199c2a9c 906 spin_lock_init(&root->ordered_extent_lock);
f0486c68 907 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
908 spin_lock_init(&root->log_extents_lock[0]);
909 spin_lock_init(&root->log_extents_lock[1]);
8287475a 910 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 911 mutex_init(&root->objectid_mutex);
e02119d5 912 mutex_init(&root->log_mutex);
31f3d255 913 mutex_init(&root->ordered_extent_mutex);
573bfb72 914 mutex_init(&root->delalloc_mutex);
c53e9653 915 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
916 init_waitqueue_head(&root->log_writer_wait);
917 init_waitqueue_head(&root->log_commit_wait[0]);
918 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
919 INIT_LIST_HEAD(&root->log_ctxs[0]);
920 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
921 atomic_set(&root->log_commit[0], 0);
922 atomic_set(&root->log_commit[1], 0);
923 atomic_set(&root->log_writers, 0);
2ecb7923 924 atomic_set(&root->log_batch, 0);
0700cea7 925 refcount_set(&root->refs, 1);
8ecebf4d 926 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 927 atomic_set(&root->nr_swapfiles, 0);
7237f183 928 root->log_transid = 0;
d1433deb 929 root->log_transid_committed = -1;
257c62e1 930 root->last_log_commit = 0;
2e608bd1 931 root->anon_dev = 0;
e289f03e 932 if (!dummy) {
43eb5f29 933 extent_io_tree_init(fs_info, &root->dirty_log_pages,
35da5a7e 934 IO_TREE_ROOT_DIRTY_LOG_PAGES);
e289f03e 935 extent_io_tree_init(fs_info, &root->log_csum_range,
35da5a7e 936 IO_TREE_LOG_CSUM_RANGE);
e289f03e 937 }
017e5369 938
5f3ab90a 939 spin_lock_init(&root->root_item_lock);
370a11b8 940 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
941#ifdef CONFIG_BTRFS_DEBUG
942 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 943 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 944 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 945 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 946#endif
3768f368
CM
947}
948
74e4d827 949static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 950 u64 objectid, gfp_t flags)
6f07e42e 951{
74e4d827 952 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 953 if (root)
96dfcb46 954 __setup_root(root, fs_info, objectid);
6f07e42e
AV
955 return root;
956}
957
06ea65a3
JB
958#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
959/* Should only be used by the testing infrastructure */
da17066c 960struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
961{
962 struct btrfs_root *root;
963
7c0260ee
JM
964 if (!fs_info)
965 return ERR_PTR(-EINVAL);
966
96dfcb46 967 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
968 if (!root)
969 return ERR_PTR(-ENOMEM);
da17066c 970
b9ef22de 971 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 972 root->alloc_bytenr = 0;
06ea65a3
JB
973
974 return root;
975}
976#endif
977
abed4aaa
JB
978static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
979{
980 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
981 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
982
983 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
984}
985
986static int global_root_key_cmp(const void *k, const struct rb_node *node)
987{
988 const struct btrfs_key *key = k;
989 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
990
991 return btrfs_comp_cpu_keys(key, &root->root_key);
992}
993
994int btrfs_global_root_insert(struct btrfs_root *root)
995{
996 struct btrfs_fs_info *fs_info = root->fs_info;
997 struct rb_node *tmp;
998
999 write_lock(&fs_info->global_root_lock);
1000 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1001 write_unlock(&fs_info->global_root_lock);
1002 ASSERT(!tmp);
1003
1004 return tmp ? -EEXIST : 0;
1005}
1006
1007void btrfs_global_root_delete(struct btrfs_root *root)
1008{
1009 struct btrfs_fs_info *fs_info = root->fs_info;
1010
1011 write_lock(&fs_info->global_root_lock);
1012 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1013 write_unlock(&fs_info->global_root_lock);
1014}
1015
1016struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1017 struct btrfs_key *key)
1018{
1019 struct rb_node *node;
1020 struct btrfs_root *root = NULL;
1021
1022 read_lock(&fs_info->global_root_lock);
1023 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1024 if (node)
1025 root = container_of(node, struct btrfs_root, rb_node);
1026 read_unlock(&fs_info->global_root_lock);
1027
1028 return root;
1029}
1030
f7238e50
JB
1031static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1032{
1033 struct btrfs_block_group *block_group;
1034 u64 ret;
1035
1036 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1037 return 0;
1038
1039 if (bytenr)
1040 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1041 else
1042 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1043 ASSERT(block_group);
1044 if (!block_group)
1045 return 0;
1046 ret = block_group->global_root_id;
1047 btrfs_put_block_group(block_group);
1048
1049 return ret;
1050}
1051
abed4aaa
JB
1052struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1053{
1054 struct btrfs_key key = {
1055 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1056 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1057 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1058 };
1059
1060 return btrfs_global_root(fs_info, &key);
1061}
1062
1063struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1064{
1065 struct btrfs_key key = {
1066 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1067 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1068 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1069 };
1070
1071 return btrfs_global_root(fs_info, &key);
1072}
1073
51129b33
JB
1074struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1075{
1076 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1077 return fs_info->block_group_root;
1078 return btrfs_extent_root(fs_info, 0);
1079}
1080
20897f5c 1081struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1082 u64 objectid)
1083{
9b7a2440 1084 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1085 struct extent_buffer *leaf;
1086 struct btrfs_root *tree_root = fs_info->tree_root;
1087 struct btrfs_root *root;
1088 struct btrfs_key key;
b89f6d1f 1089 unsigned int nofs_flag;
20897f5c 1090 int ret = 0;
20897f5c 1091
b89f6d1f
FM
1092 /*
1093 * We're holding a transaction handle, so use a NOFS memory allocation
1094 * context to avoid deadlock if reclaim happens.
1095 */
1096 nofs_flag = memalloc_nofs_save();
96dfcb46 1097 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1098 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1099 if (!root)
1100 return ERR_PTR(-ENOMEM);
1101
20897f5c
AJ
1102 root->root_key.objectid = objectid;
1103 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1104 root->root_key.offset = 0;
1105
9631e4cc
JB
1106 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1107 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1108 if (IS_ERR(leaf)) {
1109 ret = PTR_ERR(leaf);
1dd05682 1110 leaf = NULL;
c1b07854 1111 goto fail;
20897f5c
AJ
1112 }
1113
20897f5c 1114 root->node = leaf;
20897f5c
AJ
1115 btrfs_mark_buffer_dirty(leaf);
1116
1117 root->commit_root = btrfs_root_node(root);
27cdeb70 1118 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1119
f944d2cb
DS
1120 btrfs_set_root_flags(&root->root_item, 0);
1121 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1122 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1123 btrfs_set_root_generation(&root->root_item, trans->transid);
1124 btrfs_set_root_level(&root->root_item, 0);
1125 btrfs_set_root_refs(&root->root_item, 1);
1126 btrfs_set_root_used(&root->root_item, leaf->len);
1127 btrfs_set_root_last_snapshot(&root->root_item, 0);
1128 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1129 if (is_fstree(objectid))
807fc790
AS
1130 generate_random_guid(root->root_item.uuid);
1131 else
1132 export_guid(root->root_item.uuid, &guid_null);
c8422684 1133 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1134
8a6a87cd
BB
1135 btrfs_tree_unlock(leaf);
1136
20897f5c
AJ
1137 key.objectid = objectid;
1138 key.type = BTRFS_ROOT_ITEM_KEY;
1139 key.offset = 0;
1140 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1141 if (ret)
1142 goto fail;
1143
1dd05682
TI
1144 return root;
1145
8a6a87cd 1146fail:
00246528 1147 btrfs_put_root(root);
20897f5c 1148
1dd05682 1149 return ERR_PTR(ret);
20897f5c
AJ
1150}
1151
7237f183
YZ
1152static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1153 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1154{
1155 struct btrfs_root *root;
e02119d5 1156
96dfcb46 1157 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1158 if (!root)
7237f183 1159 return ERR_PTR(-ENOMEM);
e02119d5 1160
e02119d5
CM
1161 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1162 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1163 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1164
6ab6ebb7
NA
1165 return root;
1166}
1167
1168int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1169 struct btrfs_root *root)
1170{
1171 struct extent_buffer *leaf;
1172
7237f183 1173 /*
92a7cc42 1174 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1175 *
92a7cc42
QW
1176 * Log trees are not exposed to user space thus can't be snapshotted,
1177 * and they go away before a real commit is actually done.
1178 *
1179 * They do store pointers to file data extents, and those reference
1180 * counts still get updated (along with back refs to the log tree).
7237f183 1181 */
e02119d5 1182
4d75f8a9 1183 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1184 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1185 if (IS_ERR(leaf))
1186 return PTR_ERR(leaf);
e02119d5 1187
7237f183 1188 root->node = leaf;
e02119d5 1189
e02119d5
CM
1190 btrfs_mark_buffer_dirty(root->node);
1191 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1192
1193 return 0;
7237f183
YZ
1194}
1195
1196int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1197 struct btrfs_fs_info *fs_info)
1198{
1199 struct btrfs_root *log_root;
1200
1201 log_root = alloc_log_tree(trans, fs_info);
1202 if (IS_ERR(log_root))
1203 return PTR_ERR(log_root);
6ab6ebb7 1204
3ddebf27
NA
1205 if (!btrfs_is_zoned(fs_info)) {
1206 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1207
1208 if (ret) {
1209 btrfs_put_root(log_root);
1210 return ret;
1211 }
6ab6ebb7
NA
1212 }
1213
7237f183
YZ
1214 WARN_ON(fs_info->log_root_tree);
1215 fs_info->log_root_tree = log_root;
1216 return 0;
1217}
1218
1219int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1220 struct btrfs_root *root)
1221{
0b246afa 1222 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1223 struct btrfs_root *log_root;
1224 struct btrfs_inode_item *inode_item;
6ab6ebb7 1225 int ret;
7237f183 1226
0b246afa 1227 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1228 if (IS_ERR(log_root))
1229 return PTR_ERR(log_root);
1230
6ab6ebb7
NA
1231 ret = btrfs_alloc_log_tree_node(trans, log_root);
1232 if (ret) {
1233 btrfs_put_root(log_root);
1234 return ret;
1235 }
1236
7237f183
YZ
1237 log_root->last_trans = trans->transid;
1238 log_root->root_key.offset = root->root_key.objectid;
1239
1240 inode_item = &log_root->root_item.inode;
3cae210f
QW
1241 btrfs_set_stack_inode_generation(inode_item, 1);
1242 btrfs_set_stack_inode_size(inode_item, 3);
1243 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1244 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1245 fs_info->nodesize);
3cae210f 1246 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1247
5d4f98a2 1248 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1249
1250 WARN_ON(root->log_root);
1251 root->log_root = log_root;
1252 root->log_transid = 0;
d1433deb 1253 root->log_transid_committed = -1;
257c62e1 1254 root->last_log_commit = 0;
e02119d5
CM
1255 return 0;
1256}
1257
49d11bea
JB
1258static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1259 struct btrfs_path *path,
1260 struct btrfs_key *key)
e02119d5
CM
1261{
1262 struct btrfs_root *root;
789d6a3a 1263 struct btrfs_tree_parent_check check = { 0 };
e02119d5 1264 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1265 u64 generation;
cb517eab 1266 int ret;
581c1760 1267 int level;
0f7d52f4 1268
96dfcb46 1269 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1270 if (!root)
1271 return ERR_PTR(-ENOMEM);
0f7d52f4 1272
cb517eab
MX
1273 ret = btrfs_find_root(tree_root, key, path,
1274 &root->root_item, &root->root_key);
0f7d52f4 1275 if (ret) {
13a8a7c8
YZ
1276 if (ret > 0)
1277 ret = -ENOENT;
49d11bea 1278 goto fail;
0f7d52f4 1279 }
13a8a7c8 1280
84234f3a 1281 generation = btrfs_root_generation(&root->root_item);
581c1760 1282 level = btrfs_root_level(&root->root_item);
789d6a3a
QW
1283 check.level = level;
1284 check.transid = generation;
1285 check.owner_root = key->objectid;
1286 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1287 &check);
64c043de
LB
1288 if (IS_ERR(root->node)) {
1289 ret = PTR_ERR(root->node);
8c38938c 1290 root->node = NULL;
49d11bea 1291 goto fail;
4eb150d6
QW
1292 }
1293 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1294 ret = -EIO;
49d11bea 1295 goto fail;
416bc658 1296 }
88c602ab
QW
1297
1298 /*
1299 * For real fs, and not log/reloc trees, root owner must
1300 * match its root node owner
1301 */
1302 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1303 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1304 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1305 root->root_key.objectid != btrfs_header_owner(root->node)) {
1306 btrfs_crit(fs_info,
1307"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1308 root->root_key.objectid, root->node->start,
1309 btrfs_header_owner(root->node),
1310 root->root_key.objectid);
1311 ret = -EUCLEAN;
1312 goto fail;
1313 }
5d4f98a2 1314 root->commit_root = btrfs_root_node(root);
cb517eab 1315 return root;
49d11bea 1316fail:
00246528 1317 btrfs_put_root(root);
49d11bea
JB
1318 return ERR_PTR(ret);
1319}
1320
1321struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1322 struct btrfs_key *key)
1323{
1324 struct btrfs_root *root;
1325 struct btrfs_path *path;
1326
1327 path = btrfs_alloc_path();
1328 if (!path)
1329 return ERR_PTR(-ENOMEM);
1330 root = read_tree_root_path(tree_root, path, key);
1331 btrfs_free_path(path);
1332
1333 return root;
cb517eab
MX
1334}
1335
2dfb1e43
QW
1336/*
1337 * Initialize subvolume root in-memory structure
1338 *
1339 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1340 */
1341static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1342{
1343 int ret;
1344
0b548539 1345 btrfs_drew_lock_init(&root->snapshot_lock);
8257b2dc 1346
aeb935a4 1347 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1348 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1349 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1350 btrfs_check_and_init_root_item(&root->root_item);
1351 }
1352
851fd730
QW
1353 /*
1354 * Don't assign anonymous block device to roots that are not exposed to
1355 * userspace, the id pool is limited to 1M
1356 */
1357 if (is_fstree(root->root_key.objectid) &&
1358 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1359 if (!anon_dev) {
1360 ret = get_anon_bdev(&root->anon_dev);
1361 if (ret)
1362 goto fail;
1363 } else {
1364 root->anon_dev = anon_dev;
1365 }
851fd730 1366 }
f32e48e9
CR
1367
1368 mutex_lock(&root->objectid_mutex);
453e4873 1369 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1370 if (ret) {
1371 mutex_unlock(&root->objectid_mutex);
876d2cf1 1372 goto fail;
f32e48e9
CR
1373 }
1374
6b8fad57 1375 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1376
1377 mutex_unlock(&root->objectid_mutex);
1378
cb517eab
MX
1379 return 0;
1380fail:
84db5ccf 1381 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1382 return ret;
1383}
1384
a98db0f3
JB
1385static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1386 u64 root_id)
cb517eab
MX
1387{
1388 struct btrfs_root *root;
1389
fc7cbcd4
DS
1390 spin_lock(&fs_info->fs_roots_radix_lock);
1391 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1392 (unsigned long)root_id);
bc44d7c4 1393 if (root)
00246528 1394 root = btrfs_grab_root(root);
fc7cbcd4 1395 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1396 return root;
1397}
1398
49d11bea
JB
1399static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1400 u64 objectid)
1401{
abed4aaa
JB
1402 struct btrfs_key key = {
1403 .objectid = objectid,
1404 .type = BTRFS_ROOT_ITEM_KEY,
1405 .offset = 0,
1406 };
1407
49d11bea
JB
1408 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1409 return btrfs_grab_root(fs_info->tree_root);
1410 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1411 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1412 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1413 return btrfs_grab_root(fs_info->chunk_root);
1414 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1415 return btrfs_grab_root(fs_info->dev_root);
1416 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1417 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1418 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1419 return btrfs_grab_root(fs_info->quota_root) ?
1420 fs_info->quota_root : ERR_PTR(-ENOENT);
1421 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1422 return btrfs_grab_root(fs_info->uuid_root) ?
1423 fs_info->uuid_root : ERR_PTR(-ENOENT);
14033b08
QW
1424 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1425 return btrfs_grab_root(fs_info->block_group_root) ?
1426 fs_info->block_group_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1427 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1428 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1429
1430 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1431 }
49d11bea
JB
1432 return NULL;
1433}
1434
cb517eab
MX
1435int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1436 struct btrfs_root *root)
1437{
1438 int ret;
1439
fc7cbcd4
DS
1440 ret = radix_tree_preload(GFP_NOFS);
1441 if (ret)
1442 return ret;
1443
1444 spin_lock(&fs_info->fs_roots_radix_lock);
1445 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1446 (unsigned long)root->root_key.objectid,
1447 root);
af01d2e5 1448 if (ret == 0) {
00246528 1449 btrfs_grab_root(root);
fc7cbcd4 1450 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1451 }
fc7cbcd4
DS
1452 spin_unlock(&fs_info->fs_roots_radix_lock);
1453 radix_tree_preload_end();
cb517eab
MX
1454
1455 return ret;
1456}
1457
bd647ce3
JB
1458void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1459{
1460#ifdef CONFIG_BTRFS_DEBUG
1461 struct btrfs_root *root;
1462
1463 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1464 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1465
bd647ce3
JB
1466 root = list_first_entry(&fs_info->allocated_roots,
1467 struct btrfs_root, leak_list);
457f1864 1468 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1469 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1470 refcount_read(&root->refs));
1471 while (refcount_read(&root->refs) > 1)
00246528
JB
1472 btrfs_put_root(root);
1473 btrfs_put_root(root);
bd647ce3
JB
1474 }
1475#endif
1476}
1477
abed4aaa
JB
1478static void free_global_roots(struct btrfs_fs_info *fs_info)
1479{
1480 struct btrfs_root *root;
1481 struct rb_node *node;
1482
1483 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1484 root = rb_entry(node, struct btrfs_root, rb_node);
1485 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1486 btrfs_put_root(root);
1487 }
1488}
1489
0d4b0463
JB
1490void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1491{
141386e1
JB
1492 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1493 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1494 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1495 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1496 btrfs_free_csum_hash(fs_info);
1497 btrfs_free_stripe_hash_table(fs_info);
1498 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1499 kfree(fs_info->balance_ctl);
1500 kfree(fs_info->delayed_root);
abed4aaa 1501 free_global_roots(fs_info);
00246528
JB
1502 btrfs_put_root(fs_info->tree_root);
1503 btrfs_put_root(fs_info->chunk_root);
1504 btrfs_put_root(fs_info->dev_root);
00246528
JB
1505 btrfs_put_root(fs_info->quota_root);
1506 btrfs_put_root(fs_info->uuid_root);
00246528 1507 btrfs_put_root(fs_info->fs_root);
aeb935a4 1508 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1509 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1510 btrfs_check_leaked_roots(fs_info);
3fd63727 1511 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1512 kfree(fs_info->super_copy);
1513 kfree(fs_info->super_for_commit);
8481dd80 1514 kfree(fs_info->subpage_info);
0d4b0463
JB
1515 kvfree(fs_info);
1516}
1517
1518
2dfb1e43
QW
1519/*
1520 * Get an in-memory reference of a root structure.
1521 *
1522 * For essential trees like root/extent tree, we grab it from fs_info directly.
1523 * For subvolume trees, we check the cached filesystem roots first. If not
1524 * found, then read it from disk and add it to cached fs roots.
1525 *
1526 * Caller should release the root by calling btrfs_put_root() after the usage.
1527 *
1528 * NOTE: Reloc and log trees can't be read by this function as they share the
1529 * same root objectid.
1530 *
1531 * @objectid: root id
1532 * @anon_dev: preallocated anonymous block device number for new roots,
1533 * pass 0 for new allocation.
1534 * @check_ref: whether to check root item references, If true, return -ENOENT
1535 * for orphan roots
1536 */
1537static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1538 u64 objectid, dev_t anon_dev,
1539 bool check_ref)
5eda7b5e
CM
1540{
1541 struct btrfs_root *root;
381cf658 1542 struct btrfs_path *path;
1d4c08e0 1543 struct btrfs_key key;
5eda7b5e
CM
1544 int ret;
1545
49d11bea
JB
1546 root = btrfs_get_global_root(fs_info, objectid);
1547 if (root)
1548 return root;
4df27c4d 1549again:
56e9357a 1550 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1551 if (root) {
2dfb1e43
QW
1552 /* Shouldn't get preallocated anon_dev for cached roots */
1553 ASSERT(!anon_dev);
bc44d7c4 1554 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1555 btrfs_put_root(root);
48475471 1556 return ERR_PTR(-ENOENT);
bc44d7c4 1557 }
5eda7b5e 1558 return root;
48475471 1559 }
5eda7b5e 1560
56e9357a
DS
1561 key.objectid = objectid;
1562 key.type = BTRFS_ROOT_ITEM_KEY;
1563 key.offset = (u64)-1;
1564 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1565 if (IS_ERR(root))
1566 return root;
3394e160 1567
c00869f1 1568 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1569 ret = -ENOENT;
581bb050 1570 goto fail;
35a30d7c 1571 }
581bb050 1572
2dfb1e43 1573 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1574 if (ret)
1575 goto fail;
3394e160 1576
381cf658
DS
1577 path = btrfs_alloc_path();
1578 if (!path) {
1579 ret = -ENOMEM;
1580 goto fail;
1581 }
1d4c08e0
DS
1582 key.objectid = BTRFS_ORPHAN_OBJECTID;
1583 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1584 key.offset = objectid;
1d4c08e0
DS
1585
1586 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1587 btrfs_free_path(path);
d68fc57b
YZ
1588 if (ret < 0)
1589 goto fail;
1590 if (ret == 0)
27cdeb70 1591 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1592
cb517eab 1593 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1594 if (ret) {
168a2f77
JJB
1595 if (ret == -EEXIST) {
1596 btrfs_put_root(root);
4df27c4d 1597 goto again;
168a2f77 1598 }
4df27c4d 1599 goto fail;
0f7d52f4 1600 }
edbd8d4e 1601 return root;
4df27c4d 1602fail:
33fab972
FM
1603 /*
1604 * If our caller provided us an anonymous device, then it's his
143823cf 1605 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1606 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1607 * and once again by our caller.
1608 */
1609 if (anon_dev)
1610 root->anon_dev = 0;
8c38938c 1611 btrfs_put_root(root);
4df27c4d 1612 return ERR_PTR(ret);
edbd8d4e
CM
1613}
1614
2dfb1e43
QW
1615/*
1616 * Get in-memory reference of a root structure
1617 *
1618 * @objectid: tree objectid
1619 * @check_ref: if set, verify that the tree exists and the item has at least
1620 * one reference
1621 */
1622struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1623 u64 objectid, bool check_ref)
1624{
1625 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1626}
1627
1628/*
1629 * Get in-memory reference of a root structure, created as new, optionally pass
1630 * the anonymous block device id
1631 *
1632 * @objectid: tree objectid
1633 * @anon_dev: if zero, allocate a new anonymous block device or use the
1634 * parameter value
1635 */
1636struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1637 u64 objectid, dev_t anon_dev)
1638{
1639 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1640}
1641
49d11bea
JB
1642/*
1643 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1644 * @fs_info: the fs_info
1645 * @objectid: the objectid we need to lookup
1646 *
1647 * This is exclusively used for backref walking, and exists specifically because
1648 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1649 * creation time, which means we may have to read the tree_root in order to look
1650 * up a fs root that is not in memory. If the root is not in memory we will
1651 * read the tree root commit root and look up the fs root from there. This is a
1652 * temporary root, it will not be inserted into the radix tree as it doesn't
1653 * have the most uptodate information, it'll simply be discarded once the
1654 * backref code is finished using the root.
1655 */
1656struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1657 struct btrfs_path *path,
1658 u64 objectid)
1659{
1660 struct btrfs_root *root;
1661 struct btrfs_key key;
1662
1663 ASSERT(path->search_commit_root && path->skip_locking);
1664
1665 /*
1666 * This can return -ENOENT if we ask for a root that doesn't exist, but
1667 * since this is called via the backref walking code we won't be looking
1668 * up a root that doesn't exist, unless there's corruption. So if root
1669 * != NULL just return it.
1670 */
1671 root = btrfs_get_global_root(fs_info, objectid);
1672 if (root)
1673 return root;
1674
1675 root = btrfs_lookup_fs_root(fs_info, objectid);
1676 if (root)
1677 return root;
1678
1679 key.objectid = objectid;
1680 key.type = BTRFS_ROOT_ITEM_KEY;
1681 key.offset = (u64)-1;
1682 root = read_tree_root_path(fs_info->tree_root, path, &key);
1683 btrfs_release_path(path);
1684
1685 return root;
1686}
1687
a74a4b97
CM
1688static int cleaner_kthread(void *arg)
1689{
0d031dc4 1690 struct btrfs_fs_info *fs_info = arg;
d0278245 1691 int again;
a74a4b97 1692
d6fd0ae2 1693 while (1) {
d0278245 1694 again = 0;
a74a4b97 1695
fd340d0f
JB
1696 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1697
d0278245 1698 /* Make the cleaner go to sleep early. */
2ff7e61e 1699 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1700 goto sleep;
1701
90c711ab
ZB
1702 /*
1703 * Do not do anything if we might cause open_ctree() to block
1704 * before we have finished mounting the filesystem.
1705 */
0b246afa 1706 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1707 goto sleep;
1708
0b246afa 1709 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1710 goto sleep;
1711
dc7f370c
MX
1712 /*
1713 * Avoid the problem that we change the status of the fs
1714 * during the above check and trylock.
1715 */
2ff7e61e 1716 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1717 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1718 goto sleep;
76dda93c 1719 }
a74a4b97 1720
b7625f46
QW
1721 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1722 btrfs_sysfs_feature_update(fs_info);
1723
2ff7e61e 1724 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1725
33c44184 1726 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1727 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1728
1729 /*
05323cd1
MX
1730 * The defragger has dealt with the R/O remount and umount,
1731 * needn't do anything special here.
d0278245 1732 */
0b246afa 1733 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1734
1735 /*
f3372065 1736 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1737 * with relocation (btrfs_relocate_chunk) and relocation
1738 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1739 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1740 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1741 * unused block groups.
1742 */
0b246afa 1743 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1744
1745 /*
1746 * Reclaim block groups in the reclaim_bgs list after we deleted
1747 * all unused block_groups. This possibly gives us some more free
1748 * space.
1749 */
1750 btrfs_reclaim_bgs(fs_info);
d0278245 1751sleep:
a0a1db70 1752 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1753 if (kthread_should_park())
1754 kthread_parkme();
1755 if (kthread_should_stop())
1756 return 0;
838fe188 1757 if (!again) {
a74a4b97 1758 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1759 schedule();
a74a4b97
CM
1760 __set_current_state(TASK_RUNNING);
1761 }
da288d28 1762 }
a74a4b97
CM
1763}
1764
1765static int transaction_kthread(void *arg)
1766{
1767 struct btrfs_root *root = arg;
0b246afa 1768 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1769 struct btrfs_trans_handle *trans;
1770 struct btrfs_transaction *cur;
8929ecfa 1771 u64 transid;
643900be 1772 time64_t delta;
a74a4b97 1773 unsigned long delay;
914b2007 1774 bool cannot_commit;
a74a4b97
CM
1775
1776 do {
914b2007 1777 cannot_commit = false;
ba1bc00f 1778 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1779 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1780
0b246afa
JM
1781 spin_lock(&fs_info->trans_lock);
1782 cur = fs_info->running_transaction;
a74a4b97 1783 if (!cur) {
0b246afa 1784 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1785 goto sleep;
1786 }
31153d81 1787
643900be 1788 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1789 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1790 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1791 delta < fs_info->commit_interval) {
0b246afa 1792 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1793 delay -= msecs_to_jiffies((delta - 1) * 1000);
1794 delay = min(delay,
1795 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1796 goto sleep;
1797 }
8929ecfa 1798 transid = cur->transid;
0b246afa 1799 spin_unlock(&fs_info->trans_lock);
56bec294 1800
79787eaa 1801 /* If the file system is aborted, this will always fail. */
354aa0fb 1802 trans = btrfs_attach_transaction(root);
914b2007 1803 if (IS_ERR(trans)) {
354aa0fb
MX
1804 if (PTR_ERR(trans) != -ENOENT)
1805 cannot_commit = true;
79787eaa 1806 goto sleep;
914b2007 1807 }
8929ecfa 1808 if (transid == trans->transid) {
3a45bb20 1809 btrfs_commit_transaction(trans);
8929ecfa 1810 } else {
3a45bb20 1811 btrfs_end_transaction(trans);
8929ecfa 1812 }
a74a4b97 1813sleep:
0b246afa
JM
1814 wake_up_process(fs_info->cleaner_kthread);
1815 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1816
84961539 1817 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1818 btrfs_cleanup_transaction(fs_info);
ce63f891 1819 if (!kthread_should_stop() &&
0b246afa 1820 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1821 cannot_commit))
bc5511d0 1822 schedule_timeout_interruptible(delay);
a74a4b97
CM
1823 } while (!kthread_should_stop());
1824 return 0;
1825}
1826
af31f5e5 1827/*
01f0f9da
NB
1828 * This will find the highest generation in the array of root backups. The
1829 * index of the highest array is returned, or -EINVAL if we can't find
1830 * anything.
af31f5e5
CM
1831 *
1832 * We check to make sure the array is valid by comparing the
1833 * generation of the latest root in the array with the generation
1834 * in the super block. If they don't match we pitch it.
1835 */
01f0f9da 1836static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1837{
01f0f9da 1838 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1839 u64 cur;
af31f5e5
CM
1840 struct btrfs_root_backup *root_backup;
1841 int i;
1842
1843 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1844 root_backup = info->super_copy->super_roots + i;
1845 cur = btrfs_backup_tree_root_gen(root_backup);
1846 if (cur == newest_gen)
01f0f9da 1847 return i;
af31f5e5
CM
1848 }
1849
01f0f9da 1850 return -EINVAL;
af31f5e5
CM
1851}
1852
af31f5e5
CM
1853/*
1854 * copy all the root pointers into the super backup array.
1855 * this will bump the backup pointer by one when it is
1856 * done
1857 */
1858static void backup_super_roots(struct btrfs_fs_info *info)
1859{
6ef108dd 1860 const int next_backup = info->backup_root_index;
af31f5e5 1861 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1862
1863 root_backup = info->super_for_commit->super_roots + next_backup;
1864
1865 /*
1866 * make sure all of our padding and empty slots get zero filled
1867 * regardless of which ones we use today
1868 */
1869 memset(root_backup, 0, sizeof(*root_backup));
1870
1871 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1872
1873 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1874 btrfs_set_backup_tree_root_gen(root_backup,
1875 btrfs_header_generation(info->tree_root->node));
1876
1877 btrfs_set_backup_tree_root_level(root_backup,
1878 btrfs_header_level(info->tree_root->node));
1879
1880 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1881 btrfs_set_backup_chunk_root_gen(root_backup,
1882 btrfs_header_generation(info->chunk_root->node));
1883 btrfs_set_backup_chunk_root_level(root_backup,
1884 btrfs_header_level(info->chunk_root->node));
1885
1c56ab99 1886 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1887 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1888 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1889
1890 btrfs_set_backup_extent_root(root_backup,
1891 extent_root->node->start);
1892 btrfs_set_backup_extent_root_gen(root_backup,
1893 btrfs_header_generation(extent_root->node));
1894 btrfs_set_backup_extent_root_level(root_backup,
1895 btrfs_header_level(extent_root->node));
f7238e50
JB
1896
1897 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1898 btrfs_set_backup_csum_root_gen(root_backup,
1899 btrfs_header_generation(csum_root->node));
1900 btrfs_set_backup_csum_root_level(root_backup,
1901 btrfs_header_level(csum_root->node));
9c54e80d 1902 }
af31f5e5 1903
7c7e82a7
CM
1904 /*
1905 * we might commit during log recovery, which happens before we set
1906 * the fs_root. Make sure it is valid before we fill it in.
1907 */
1908 if (info->fs_root && info->fs_root->node) {
1909 btrfs_set_backup_fs_root(root_backup,
1910 info->fs_root->node->start);
1911 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1912 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1913 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1914 btrfs_header_level(info->fs_root->node));
7c7e82a7 1915 }
af31f5e5
CM
1916
1917 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1918 btrfs_set_backup_dev_root_gen(root_backup,
1919 btrfs_header_generation(info->dev_root->node));
1920 btrfs_set_backup_dev_root_level(root_backup,
1921 btrfs_header_level(info->dev_root->node));
1922
af31f5e5
CM
1923 btrfs_set_backup_total_bytes(root_backup,
1924 btrfs_super_total_bytes(info->super_copy));
1925 btrfs_set_backup_bytes_used(root_backup,
1926 btrfs_super_bytes_used(info->super_copy));
1927 btrfs_set_backup_num_devices(root_backup,
1928 btrfs_super_num_devices(info->super_copy));
1929
1930 /*
1931 * if we don't copy this out to the super_copy, it won't get remembered
1932 * for the next commit
1933 */
1934 memcpy(&info->super_copy->super_roots,
1935 &info->super_for_commit->super_roots,
1936 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1937}
1938
bd2336b2
NB
1939/*
1940 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1941 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1942 *
1943 * fs_info - filesystem whose backup roots need to be read
1944 * priority - priority of backup root required
1945 *
1946 * Returns backup root index on success and -EINVAL otherwise.
1947 */
1948static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1949{
1950 int backup_index = find_newest_super_backup(fs_info);
1951 struct btrfs_super_block *super = fs_info->super_copy;
1952 struct btrfs_root_backup *root_backup;
1953
1954 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1955 if (priority == 0)
1956 return backup_index;
1957
1958 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1959 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1960 } else {
1961 return -EINVAL;
1962 }
1963
1964 root_backup = super->super_roots + backup_index;
1965
1966 btrfs_set_super_generation(super,
1967 btrfs_backup_tree_root_gen(root_backup));
1968 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1969 btrfs_set_super_root_level(super,
1970 btrfs_backup_tree_root_level(root_backup));
1971 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1972
1973 /*
1974 * Fixme: the total bytes and num_devices need to match or we should
1975 * need a fsck
1976 */
1977 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1978 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1979
1980 return backup_index;
1981}
1982
7abadb64
LB
1983/* helper to cleanup workers */
1984static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1985{
dc6e3209 1986 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1987 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 1988 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 1989 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
1990 if (fs_info->endio_workers)
1991 destroy_workqueue(fs_info->endio_workers);
385de0ef
CH
1992 if (fs_info->rmw_workers)
1993 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
1994 if (fs_info->compressed_write_workers)
1995 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
1996 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1997 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1998 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1999 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2000 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2001 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2002 if (fs_info->discard_ctl.discard_workers)
2003 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2004 /*
2005 * Now that all other work queues are destroyed, we can safely destroy
2006 * the queues used for metadata I/O, since tasks from those other work
2007 * queues can do metadata I/O operations.
2008 */
d7b9416f
CH
2009 if (fs_info->endio_meta_workers)
2010 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2011}
2012
2e9f5954
R
2013static void free_root_extent_buffers(struct btrfs_root *root)
2014{
2015 if (root) {
2016 free_extent_buffer(root->node);
2017 free_extent_buffer(root->commit_root);
2018 root->node = NULL;
2019 root->commit_root = NULL;
2020 }
2021}
2022
abed4aaa
JB
2023static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2024{
2025 struct btrfs_root *root, *tmp;
2026
2027 rbtree_postorder_for_each_entry_safe(root, tmp,
2028 &fs_info->global_root_tree,
2029 rb_node)
2030 free_root_extent_buffers(root);
2031}
2032
af31f5e5 2033/* helper to cleanup tree roots */
4273eaff 2034static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2035{
2e9f5954 2036 free_root_extent_buffers(info->tree_root);
655b09fe 2037
abed4aaa 2038 free_global_root_pointers(info);
2e9f5954 2039 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2040 free_root_extent_buffers(info->quota_root);
2041 free_root_extent_buffers(info->uuid_root);
8c38938c 2042 free_root_extent_buffers(info->fs_root);
aeb935a4 2043 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2044 free_root_extent_buffers(info->block_group_root);
4273eaff 2045 if (free_chunk_root)
2e9f5954 2046 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2047}
2048
8c38938c
JB
2049void btrfs_put_root(struct btrfs_root *root)
2050{
2051 if (!root)
2052 return;
2053
2054 if (refcount_dec_and_test(&root->refs)) {
2055 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2056 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2057 if (root->anon_dev)
2058 free_anon_bdev(root->anon_dev);
923eb523 2059 free_root_extent_buffers(root);
8c38938c 2060#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2061 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2062 list_del_init(&root->leak_list);
fc7cbcd4 2063 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2064#endif
2065 kfree(root);
2066 }
2067}
2068
faa2dbf0 2069void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2070{
fc7cbcd4
DS
2071 int ret;
2072 struct btrfs_root *gang[8];
2073 int i;
171f6537
JB
2074
2075 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2076 gang[0] = list_entry(fs_info->dead_roots.next,
2077 struct btrfs_root, root_list);
2078 list_del(&gang[0]->root_list);
171f6537 2079
fc7cbcd4
DS
2080 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2081 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2082 btrfs_put_root(gang[0]);
171f6537
JB
2083 }
2084
fc7cbcd4
DS
2085 while (1) {
2086 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2087 (void **)gang, 0,
2088 ARRAY_SIZE(gang));
2089 if (!ret)
2090 break;
2091 for (i = 0; i < ret; i++)
2092 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2093 }
2094}
af31f5e5 2095
638aa7ed
ES
2096static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2097{
2098 mutex_init(&fs_info->scrub_lock);
2099 atomic_set(&fs_info->scrubs_running, 0);
2100 atomic_set(&fs_info->scrub_pause_req, 0);
2101 atomic_set(&fs_info->scrubs_paused, 0);
2102 atomic_set(&fs_info->scrub_cancel_req, 0);
2103 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2104 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2105}
2106
779a65a4
ES
2107static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2108{
2109 spin_lock_init(&fs_info->balance_lock);
2110 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2111 atomic_set(&fs_info->balance_pause_req, 0);
2112 atomic_set(&fs_info->balance_cancel_req, 0);
2113 fs_info->balance_ctl = NULL;
2114 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2115 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2116}
2117
dcb2137c 2118static int btrfs_init_btree_inode(struct super_block *sb)
f37938e0 2119{
dcb2137c 2120 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
e256927b
JB
2121 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2122 fs_info->tree_root);
dcb2137c
CH
2123 struct inode *inode;
2124
2125 inode = new_inode(sb);
2126 if (!inode)
2127 return -ENOMEM;
2ff7e61e
JM
2128
2129 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2130 set_nlink(inode, 1);
f37938e0
ES
2131 /*
2132 * we set the i_size on the btree inode to the max possible int.
2133 * the real end of the address space is determined by all of
2134 * the devices in the system
2135 */
2ff7e61e
JM
2136 inode->i_size = OFFSET_MAX;
2137 inode->i_mapping->a_ops = &btree_aops;
dcb2137c 2138 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
f37938e0 2139
2ff7e61e 2140 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2141 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
35da5a7e 2142 IO_TREE_BTREE_INODE_IO);
2ff7e61e 2143 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2144
5c8fd99f 2145 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
2146 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2147 BTRFS_I(inode)->location.type = 0;
2148 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 2149 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 2150 __insert_inode_hash(inode, hash);
dcb2137c
CH
2151 fs_info->btree_inode = inode;
2152
2153 return 0;
f37938e0
ES
2154}
2155
ad618368
ES
2156static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2157{
ad618368 2158 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2159 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2160 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2161}
2162
f9e92e40
ES
2163static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2164{
2165 spin_lock_init(&fs_info->qgroup_lock);
2166 mutex_init(&fs_info->qgroup_ioctl_lock);
2167 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2168 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2169 fs_info->qgroup_seq = 1;
f9e92e40 2170 fs_info->qgroup_ulist = NULL;
d2c609b8 2171 fs_info->qgroup_rescan_running = false;
011b46c3 2172 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
2173 mutex_init(&fs_info->qgroup_rescan_lock);
2174}
2175
d21deec5 2176static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2177{
f7b885be 2178 u32 max_active = fs_info->thread_pool_size;
6f011058 2179 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2180
2181 fs_info->workers =
a31b4a43
CH
2182 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2183 fs_info->hipri_workers =
2184 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2185 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2186
2187 fs_info->delalloc_workers =
cb001095
JM
2188 btrfs_alloc_workqueue(fs_info, "delalloc",
2189 flags, max_active, 2);
2a458198
ES
2190
2191 fs_info->flush_workers =
cb001095
JM
2192 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2193 flags, max_active, 0);
2a458198
ES
2194
2195 fs_info->caching_workers =
cb001095 2196 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2197
2a458198 2198 fs_info->fixup_workers =
cb001095 2199 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198 2200
2a458198 2201 fs_info->endio_workers =
d7b9416f 2202 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2203 fs_info->endio_meta_workers =
d7b9416f 2204 alloc_workqueue("btrfs-endio-meta", flags, max_active);
385de0ef 2205 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2206 fs_info->endio_write_workers =
cb001095
JM
2207 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2208 max_active, 2);
fed8a72d
CH
2209 fs_info->compressed_write_workers =
2210 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2211 fs_info->endio_freespace_worker =
cb001095
JM
2212 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2213 max_active, 0);
2a458198 2214 fs_info->delayed_workers =
cb001095
JM
2215 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2216 max_active, 0);
2a458198 2217 fs_info->qgroup_rescan_workers =
cb001095 2218 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2219 fs_info->discard_ctl.discard_workers =
2220 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2221
a31b4a43
CH
2222 if (!(fs_info->workers && fs_info->hipri_workers &&
2223 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2224 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2225 fs_info->compressed_write_workers &&
1a1a2851 2226 fs_info->endio_write_workers &&
2a458198 2227 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2228 fs_info->caching_workers && fs_info->fixup_workers &&
2229 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2230 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2231 return -ENOMEM;
2232 }
2233
2234 return 0;
2235}
2236
6d97c6e3
JT
2237static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2238{
2239 struct crypto_shash *csum_shash;
b4e967be 2240 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2241
b4e967be 2242 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2243
2244 if (IS_ERR(csum_shash)) {
2245 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2246 csum_driver);
6d97c6e3
JT
2247 return PTR_ERR(csum_shash);
2248 }
2249
2250 fs_info->csum_shash = csum_shash;
2251
68d99ab0
CH
2252 /*
2253 * Check if the checksum implementation is a fast accelerated one.
2254 * As-is this is a bit of a hack and should be replaced once the csum
2255 * implementations provide that information themselves.
2256 */
2257 switch (csum_type) {
2258 case BTRFS_CSUM_TYPE_CRC32:
2259 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2260 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2261 break;
2262 default:
2263 break;
2264 }
2265
c8a5f8ca
DS
2266 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2267 btrfs_super_csum_name(csum_type),
2268 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2269 return 0;
2270}
2271
63443bf5
ES
2272static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2273 struct btrfs_fs_devices *fs_devices)
2274{
2275 int ret;
789d6a3a 2276 struct btrfs_tree_parent_check check = { 0 };
63443bf5
ES
2277 struct btrfs_root *log_tree_root;
2278 struct btrfs_super_block *disk_super = fs_info->super_copy;
2279 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2280 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2281
2282 if (fs_devices->rw_devices == 0) {
f14d104d 2283 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2284 return -EIO;
2285 }
2286
96dfcb46
JB
2287 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2288 GFP_KERNEL);
63443bf5
ES
2289 if (!log_tree_root)
2290 return -ENOMEM;
2291
789d6a3a
QW
2292 check.level = level;
2293 check.transid = fs_info->generation + 1;
2294 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2295 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
64c043de 2296 if (IS_ERR(log_tree_root->node)) {
f14d104d 2297 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2298 ret = PTR_ERR(log_tree_root->node);
8c38938c 2299 log_tree_root->node = NULL;
00246528 2300 btrfs_put_root(log_tree_root);
0eeff236 2301 return ret;
4eb150d6
QW
2302 }
2303 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2304 btrfs_err(fs_info, "failed to read log tree");
00246528 2305 btrfs_put_root(log_tree_root);
63443bf5
ES
2306 return -EIO;
2307 }
4eb150d6 2308
63443bf5
ES
2309 /* returns with log_tree_root freed on success */
2310 ret = btrfs_recover_log_trees(log_tree_root);
2311 if (ret) {
0b246afa
JM
2312 btrfs_handle_fs_error(fs_info, ret,
2313 "Failed to recover log tree");
00246528 2314 btrfs_put_root(log_tree_root);
63443bf5
ES
2315 return ret;
2316 }
2317
bc98a42c 2318 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2319 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2320 if (ret)
2321 return ret;
2322 }
2323
2324 return 0;
2325}
2326
abed4aaa
JB
2327static int load_global_roots_objectid(struct btrfs_root *tree_root,
2328 struct btrfs_path *path, u64 objectid,
2329 const char *name)
2330{
2331 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2332 struct btrfs_root *root;
f7238e50 2333 u64 max_global_id = 0;
abed4aaa
JB
2334 int ret;
2335 struct btrfs_key key = {
2336 .objectid = objectid,
2337 .type = BTRFS_ROOT_ITEM_KEY,
2338 .offset = 0,
2339 };
2340 bool found = false;
2341
2342 /* If we have IGNOREDATACSUMS skip loading these roots. */
2343 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2344 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2345 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2346 return 0;
2347 }
2348
2349 while (1) {
2350 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2351 if (ret < 0)
2352 break;
2353
2354 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2355 ret = btrfs_next_leaf(tree_root, path);
2356 if (ret) {
2357 if (ret > 0)
2358 ret = 0;
2359 break;
2360 }
2361 }
2362 ret = 0;
2363
2364 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2365 if (key.objectid != objectid)
2366 break;
2367 btrfs_release_path(path);
2368
f7238e50
JB
2369 /*
2370 * Just worry about this for extent tree, it'll be the same for
2371 * everybody.
2372 */
2373 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2374 max_global_id = max(max_global_id, key.offset);
2375
abed4aaa
JB
2376 found = true;
2377 root = read_tree_root_path(tree_root, path, &key);
2378 if (IS_ERR(root)) {
2379 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2380 ret = PTR_ERR(root);
2381 break;
2382 }
2383 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2384 ret = btrfs_global_root_insert(root);
2385 if (ret) {
2386 btrfs_put_root(root);
2387 break;
2388 }
2389 key.offset++;
2390 }
2391 btrfs_release_path(path);
2392
f7238e50
JB
2393 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2394 fs_info->nr_global_roots = max_global_id + 1;
2395
abed4aaa
JB
2396 if (!found || ret) {
2397 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2398 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2399
2400 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2401 ret = ret ? ret : -ENOENT;
2402 else
2403 ret = 0;
2404 btrfs_err(fs_info, "failed to load root %s", name);
2405 }
2406 return ret;
2407}
2408
2409static int load_global_roots(struct btrfs_root *tree_root)
2410{
2411 struct btrfs_path *path;
2412 int ret = 0;
2413
2414 path = btrfs_alloc_path();
2415 if (!path)
2416 return -ENOMEM;
2417
2418 ret = load_global_roots_objectid(tree_root, path,
2419 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2420 if (ret)
2421 goto out;
2422 ret = load_global_roots_objectid(tree_root, path,
2423 BTRFS_CSUM_TREE_OBJECTID, "csum");
2424 if (ret)
2425 goto out;
2426 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2427 goto out;
2428 ret = load_global_roots_objectid(tree_root, path,
2429 BTRFS_FREE_SPACE_TREE_OBJECTID,
2430 "free space");
2431out:
2432 btrfs_free_path(path);
2433 return ret;
2434}
2435
6bccf3ab 2436static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2437{
6bccf3ab 2438 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2439 struct btrfs_root *root;
4bbcaa64
ES
2440 struct btrfs_key location;
2441 int ret;
2442
6bccf3ab
JM
2443 BUG_ON(!fs_info->tree_root);
2444
abed4aaa
JB
2445 ret = load_global_roots(tree_root);
2446 if (ret)
2447 return ret;
2448
4bbcaa64
ES
2449 location.type = BTRFS_ROOT_ITEM_KEY;
2450 location.offset = 0;
2451
1c56ab99 2452 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2453 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2454 root = btrfs_read_tree_root(tree_root, &location);
2455 if (IS_ERR(root)) {
2456 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2457 ret = PTR_ERR(root);
2458 goto out;
2459 }
2460 } else {
2461 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462 fs_info->block_group_root = root;
2463 }
2464 }
2465
2466 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2467 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2468 if (IS_ERR(root)) {
42437a63
JB
2469 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2470 ret = PTR_ERR(root);
2471 goto out;
2472 }
2473 } else {
2474 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2475 fs_info->dev_root = root;
f50f4353 2476 }
820a49da 2477 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2478 ret = btrfs_init_devices_late(fs_info);
2479 if (ret)
2480 goto out;
4bbcaa64 2481
aeb935a4
QW
2482 /*
2483 * This tree can share blocks with some other fs tree during relocation
2484 * and we need a proper setup by btrfs_get_fs_root
2485 */
56e9357a
DS
2486 root = btrfs_get_fs_root(tree_root->fs_info,
2487 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2488 if (IS_ERR(root)) {
42437a63
JB
2489 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2490 ret = PTR_ERR(root);
2491 goto out;
2492 }
2493 } else {
2494 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2495 fs_info->data_reloc_root = root;
aeb935a4 2496 }
aeb935a4 2497
4bbcaa64 2498 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2499 root = btrfs_read_tree_root(tree_root, &location);
2500 if (!IS_ERR(root)) {
2501 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2502 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2503 fs_info->quota_root = root;
4bbcaa64
ES
2504 }
2505
2506 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2507 root = btrfs_read_tree_root(tree_root, &location);
2508 if (IS_ERR(root)) {
42437a63
JB
2509 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2510 ret = PTR_ERR(root);
2511 if (ret != -ENOENT)
2512 goto out;
2513 }
4bbcaa64 2514 } else {
a4f3d2c4
DS
2515 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2516 fs_info->uuid_root = root;
4bbcaa64
ES
2517 }
2518
2519 return 0;
f50f4353
LB
2520out:
2521 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2522 location.objectid, ret);
2523 return ret;
4bbcaa64
ES
2524}
2525
069ec957
QW
2526/*
2527 * Real super block validation
2528 * NOTE: super csum type and incompat features will not be checked here.
2529 *
2530 * @sb: super block to check
2531 * @mirror_num: the super block number to check its bytenr:
2532 * 0 the primary (1st) sb
2533 * 1, 2 2nd and 3rd backup copy
2534 * -1 skip bytenr check
2535 */
a05d3c91
QW
2536int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2537 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2538{
21a852b0
QW
2539 u64 nodesize = btrfs_super_nodesize(sb);
2540 u64 sectorsize = btrfs_super_sectorsize(sb);
2541 int ret = 0;
2542
2543 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2544 btrfs_err(fs_info, "no valid FS found");
2545 ret = -EINVAL;
2546 }
2547 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2548 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2549 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2550 ret = -EINVAL;
2551 }
2552 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2553 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2554 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2555 ret = -EINVAL;
2556 }
2557 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2558 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2559 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2560 ret = -EINVAL;
2561 }
2562 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2563 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2564 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2565 ret = -EINVAL;
2566 }
2567
2568 /*
2569 * Check sectorsize and nodesize first, other check will need it.
2570 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2571 */
2572 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2573 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2574 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2575 ret = -EINVAL;
2576 }
0bb3eb3e
QW
2577
2578 /*
1a42daab
QW
2579 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2580 *
2581 * We can support 16K sectorsize with 64K page size without problem,
2582 * but such sectorsize/pagesize combination doesn't make much sense.
2583 * 4K will be our future standard, PAGE_SIZE is supported from the very
2584 * beginning.
0bb3eb3e 2585 */
1a42daab 2586 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2587 btrfs_err(fs_info,
0bb3eb3e 2588 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2589 sectorsize, PAGE_SIZE);
2590 ret = -EINVAL;
2591 }
0bb3eb3e 2592
21a852b0
QW
2593 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2594 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2595 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2596 ret = -EINVAL;
2597 }
2598 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2599 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2600 le32_to_cpu(sb->__unused_leafsize), nodesize);
2601 ret = -EINVAL;
2602 }
2603
2604 /* Root alignment check */
2605 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2606 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2607 btrfs_super_root(sb));
2608 ret = -EINVAL;
2609 }
2610 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2611 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2612 btrfs_super_chunk_root(sb));
2613 ret = -EINVAL;
2614 }
2615 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2616 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2617 btrfs_super_log_root(sb));
2618 ret = -EINVAL;
2619 }
2620
aefd7f70
NB
2621 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2622 BTRFS_FSID_SIZE)) {
2623 btrfs_err(fs_info,
2624 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2625 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2626 ret = -EINVAL;
2627 }
2628
2629 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2630 memcmp(fs_info->fs_devices->metadata_uuid,
2631 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2632 btrfs_err(fs_info,
2633"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2634 fs_info->super_copy->metadata_uuid,
2635 fs_info->fs_devices->metadata_uuid);
2636 ret = -EINVAL;
2637 }
2638
1c56ab99
QW
2639 /*
2640 * Artificial requirement for block-group-tree to force newer features
2641 * (free-space-tree, no-holes) so the test matrix is smaller.
2642 */
2643 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2644 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2645 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2646 btrfs_err(fs_info,
2647 "block-group-tree feature requires fres-space-tree and no-holes");
2648 ret = -EINVAL;
2649 }
2650
de37aa51 2651 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2652 BTRFS_FSID_SIZE) != 0) {
21a852b0 2653 btrfs_err(fs_info,
7239ff4b 2654 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2655 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2656 ret = -EINVAL;
2657 }
2658
2659 /*
2660 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2661 * done later
2662 */
2663 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2664 btrfs_err(fs_info, "bytes_used is too small %llu",
2665 btrfs_super_bytes_used(sb));
2666 ret = -EINVAL;
2667 }
2668 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2669 btrfs_err(fs_info, "invalid stripesize %u",
2670 btrfs_super_stripesize(sb));
2671 ret = -EINVAL;
2672 }
2673 if (btrfs_super_num_devices(sb) > (1UL << 31))
2674 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2675 btrfs_super_num_devices(sb));
2676 if (btrfs_super_num_devices(sb) == 0) {
2677 btrfs_err(fs_info, "number of devices is 0");
2678 ret = -EINVAL;
2679 }
2680
069ec957
QW
2681 if (mirror_num >= 0 &&
2682 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2683 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2684 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2685 ret = -EINVAL;
2686 }
2687
2688 /*
2689 * Obvious sys_chunk_array corruptions, it must hold at least one key
2690 * and one chunk
2691 */
2692 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2693 btrfs_err(fs_info, "system chunk array too big %u > %u",
2694 btrfs_super_sys_array_size(sb),
2695 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2696 ret = -EINVAL;
2697 }
2698 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2699 + sizeof(struct btrfs_chunk)) {
2700 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2701 btrfs_super_sys_array_size(sb),
2702 sizeof(struct btrfs_disk_key)
2703 + sizeof(struct btrfs_chunk));
2704 ret = -EINVAL;
2705 }
2706
2707 /*
2708 * The generation is a global counter, we'll trust it more than the others
2709 * but it's still possible that it's the one that's wrong.
2710 */
2711 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2712 btrfs_warn(fs_info,
2713 "suspicious: generation < chunk_root_generation: %llu < %llu",
2714 btrfs_super_generation(sb),
2715 btrfs_super_chunk_root_generation(sb));
2716 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2717 && btrfs_super_cache_generation(sb) != (u64)-1)
2718 btrfs_warn(fs_info,
2719 "suspicious: generation < cache_generation: %llu < %llu",
2720 btrfs_super_generation(sb),
2721 btrfs_super_cache_generation(sb));
2722
2723 return ret;
2724}
2725
069ec957
QW
2726/*
2727 * Validation of super block at mount time.
2728 * Some checks already done early at mount time, like csum type and incompat
2729 * flags will be skipped.
2730 */
2731static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2732{
a05d3c91 2733 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2734}
2735
75cb857d
QW
2736/*
2737 * Validation of super block at write time.
2738 * Some checks like bytenr check will be skipped as their values will be
2739 * overwritten soon.
2740 * Extra checks like csum type and incompat flags will be done here.
2741 */
2742static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2743 struct btrfs_super_block *sb)
2744{
2745 int ret;
2746
a05d3c91 2747 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2748 if (ret < 0)
2749 goto out;
e7e16f48 2750 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2751 ret = -EUCLEAN;
2752 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2753 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2754 goto out;
2755 }
2756 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2757 ret = -EUCLEAN;
2758 btrfs_err(fs_info,
2759 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2760 btrfs_super_incompat_flags(sb),
2761 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2762 goto out;
2763 }
2764out:
2765 if (ret < 0)
2766 btrfs_err(fs_info,
2767 "super block corruption detected before writing it to disk");
2768 return ret;
2769}
2770
bd676446
JB
2771static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2772{
789d6a3a
QW
2773 struct btrfs_tree_parent_check check = {
2774 .level = level,
2775 .transid = gen,
2776 .owner_root = root->root_key.objectid
2777 };
bd676446
JB
2778 int ret = 0;
2779
789d6a3a 2780 root->node = read_tree_block(root->fs_info, bytenr, &check);
bd676446
JB
2781 if (IS_ERR(root->node)) {
2782 ret = PTR_ERR(root->node);
2783 root->node = NULL;
4eb150d6
QW
2784 return ret;
2785 }
2786 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2787 free_extent_buffer(root->node);
2788 root->node = NULL;
4eb150d6 2789 return -EIO;
bd676446
JB
2790 }
2791
bd676446
JB
2792 btrfs_set_root_node(&root->root_item, root->node);
2793 root->commit_root = btrfs_root_node(root);
2794 btrfs_set_root_refs(&root->root_item, 1);
2795 return ret;
2796}
2797
2798static int load_important_roots(struct btrfs_fs_info *fs_info)
2799{
2800 struct btrfs_super_block *sb = fs_info->super_copy;
2801 u64 gen, bytenr;
2802 int level, ret;
2803
2804 bytenr = btrfs_super_root(sb);
2805 gen = btrfs_super_generation(sb);
2806 level = btrfs_super_root_level(sb);
2807 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2808 if (ret) {
bd676446 2809 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2810 return ret;
2811 }
14033b08 2812 return 0;
bd676446
JB
2813}
2814
6ef108dd 2815static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2816{
6ef108dd 2817 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2818 struct btrfs_super_block *sb = fs_info->super_copy;
2819 struct btrfs_root *tree_root = fs_info->tree_root;
2820 bool handle_error = false;
2821 int ret = 0;
2822 int i;
2823
2824 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2825 if (handle_error) {
2826 if (!IS_ERR(tree_root->node))
2827 free_extent_buffer(tree_root->node);
2828 tree_root->node = NULL;
2829
2830 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2831 break;
2832
2833 free_root_pointers(fs_info, 0);
2834
2835 /*
2836 * Don't use the log in recovery mode, it won't be
2837 * valid
2838 */
2839 btrfs_set_super_log_root(sb, 0);
2840
2841 /* We can't trust the free space cache either */
2842 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2843
2844 ret = read_backup_root(fs_info, i);
6ef108dd 2845 backup_index = ret;
b8522a1e
NB
2846 if (ret < 0)
2847 return ret;
2848 }
b8522a1e 2849
bd676446
JB
2850 ret = load_important_roots(fs_info);
2851 if (ret) {
217f5004 2852 handle_error = true;
b8522a1e
NB
2853 continue;
2854 }
2855
336a0d8d
NB
2856 /*
2857 * No need to hold btrfs_root::objectid_mutex since the fs
2858 * hasn't been fully initialised and we are the only user
2859 */
453e4873 2860 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2861 if (ret < 0) {
b8522a1e
NB
2862 handle_error = true;
2863 continue;
2864 }
2865
6b8fad57 2866 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2867
2868 ret = btrfs_read_roots(fs_info);
2869 if (ret < 0) {
2870 handle_error = true;
2871 continue;
2872 }
2873
2874 /* All successful */
bd676446
JB
2875 fs_info->generation = btrfs_header_generation(tree_root->node);
2876 fs_info->last_trans_committed = fs_info->generation;
d96b3424 2877 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2878
2879 /* Always begin writing backup roots after the one being used */
2880 if (backup_index < 0) {
2881 fs_info->backup_root_index = 0;
2882 } else {
2883 fs_info->backup_root_index = backup_index + 1;
2884 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2885 }
b8522a1e
NB
2886 break;
2887 }
2888
2889 return ret;
2890}
2891
8260edba 2892void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2893{
fc7cbcd4 2894 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2895 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2896 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2897 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2898 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2899 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2900 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2901 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2902 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2903 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2904 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2905 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2906 spin_lock_init(&fs_info->super_lock);
f28491e0 2907 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2908 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2909 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2910 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2911 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2912 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2913 rwlock_init(&fs_info->global_root_lock);
d7c15171 2914 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2915 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2916 mutex_init(&fs_info->reloc_mutex);
573bfb72 2917 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2918 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2919 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2920 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2921
e1489b4f 2922 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2923 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2924 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2925 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3e738c53
IA
2926 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2927 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2928 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2929 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2930 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2931 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2932 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2933 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 2934
0b86a832 2935 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2936 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2937 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2938 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2939 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 2940 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
2941#ifdef CONFIG_BTRFS_DEBUG
2942 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2943 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2944 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2945#endif
c8bf1b67 2946 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2947 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2948 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2949 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2950 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2951 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2952 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2953 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2954 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2955 BTRFS_BLOCK_RSV_DELREFS);
2956
771ed689 2957 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2958 atomic_set(&fs_info->defrag_running, 0);
034f784d 2959 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2960 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 2961 fs_info->global_root_tree = RB_ROOT;
95ac567a 2962 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2963 fs_info->metadata_ratio = 0;
4cb5300b 2964 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2965 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2966 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2967 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
fd708b81 2968 btrfs_init_ref_verify(fs_info);
c8b97818 2969
b34b086c
CM
2970 fs_info->thread_pool_size = min_t(unsigned long,
2971 num_online_cpus() + 2, 8);
0afbaf8c 2972
199c2a9c
MX
2973 INIT_LIST_HEAD(&fs_info->ordered_roots);
2974 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2975
638aa7ed 2976 btrfs_init_scrub(fs_info);
21adbd5c
SB
2977#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2978 fs_info->check_integrity_print_mask = 0;
2979#endif
779a65a4 2980 btrfs_init_balance(fs_info);
57056740 2981 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2982
16b0c258 2983 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 2984 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 2985
fe119a6e 2986 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
35da5a7e 2987 IO_TREE_FS_EXCLUDED_EXTENTS);
39279cc3 2988
5a3f23d5 2989 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2990 mutex_init(&fs_info->tree_log_mutex);
925baedd 2991 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2992 mutex_init(&fs_info->transaction_kthread_mutex);
2993 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2994 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2995 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2996 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2997 init_rwsem(&fs_info->subvol_sem);
803b2f54 2998 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2999
ad618368 3000 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3001 btrfs_init_qgroup(fs_info);
b0643e59 3002 btrfs_discard_init(fs_info);
416ac51d 3003
fa9c0d79
CM
3004 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3005 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3006
e6dcd2dc 3007 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3008 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3009 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3010 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3011 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3012
da17066c
JM
3013 /* Usable values until the real ones are cached from the superblock */
3014 fs_info->nodesize = 4096;
3015 fs_info->sectorsize = 4096;
ab108d99 3016 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3017 fs_info->stripesize = 4096;
3018
f7b12a62
NA
3019 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3020
eede2bf3
OS
3021 spin_lock_init(&fs_info->swapfile_pins_lock);
3022 fs_info->swapfile_pins = RB_ROOT;
3023
18bb8bbf
JT
3024 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3025 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3026}
3027
3028static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3029{
3030 int ret;
3031
3032 fs_info->sb = sb;
3033 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3034 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3035
5deb17e1 3036 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3037 if (ret)
c75e8394 3038 return ret;
ae18c37a
JB
3039
3040 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3041 if (ret)
c75e8394 3042 return ret;
ae18c37a
JB
3043
3044 fs_info->dirty_metadata_batch = PAGE_SIZE *
3045 (1 + ilog2(nr_cpu_ids));
3046
3047 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3048 if (ret)
c75e8394 3049 return ret;
ae18c37a
JB
3050
3051 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3052 GFP_KERNEL);
3053 if (ret)
c75e8394 3054 return ret;
ae18c37a
JB
3055
3056 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3057 GFP_KERNEL);
c75e8394
JB
3058 if (!fs_info->delayed_root)
3059 return -ENOMEM;
ae18c37a
JB
3060 btrfs_init_delayed_root(fs_info->delayed_root);
3061
a0a1db70
FM
3062 if (sb_rdonly(sb))
3063 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3064
c75e8394 3065 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3066}
3067
97f4dd09
NB
3068static int btrfs_uuid_rescan_kthread(void *data)
3069{
0d031dc4 3070 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3071 int ret;
3072
3073 /*
3074 * 1st step is to iterate through the existing UUID tree and
3075 * to delete all entries that contain outdated data.
3076 * 2nd step is to add all missing entries to the UUID tree.
3077 */
3078 ret = btrfs_uuid_tree_iterate(fs_info);
3079 if (ret < 0) {
c94bec2c
JB
3080 if (ret != -EINTR)
3081 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3082 ret);
97f4dd09
NB
3083 up(&fs_info->uuid_tree_rescan_sem);
3084 return ret;
3085 }
3086 return btrfs_uuid_scan_kthread(data);
3087}
3088
3089static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3090{
3091 struct task_struct *task;
3092
3093 down(&fs_info->uuid_tree_rescan_sem);
3094 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3095 if (IS_ERR(task)) {
3096 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3097 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3098 up(&fs_info->uuid_tree_rescan_sem);
3099 return PTR_ERR(task);
3100 }
3101
3102 return 0;
3103}
3104
8cd29088
BB
3105/*
3106 * Some options only have meaning at mount time and shouldn't persist across
3107 * remounts, or be displayed. Clear these at the end of mount and remount
3108 * code paths.
3109 */
3110void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3111{
3112 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3113 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3114}
3115
44c0ca21
BB
3116/*
3117 * Mounting logic specific to read-write file systems. Shared by open_ctree
3118 * and btrfs_remount when remounting from read-only to read-write.
3119 */
3120int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3121{
3122 int ret;
94846229 3123 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1d6a4fc8 3124 bool rebuild_free_space_tree = false;
8b228324
BB
3125
3126 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3127 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1d6a4fc8 3128 rebuild_free_space_tree = true;
8b228324
BB
3129 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3130 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3131 btrfs_warn(fs_info, "free space tree is invalid");
1d6a4fc8 3132 rebuild_free_space_tree = true;
8b228324
BB
3133 }
3134
1d6a4fc8
QW
3135 if (rebuild_free_space_tree) {
3136 btrfs_info(fs_info, "rebuilding free space tree");
3137 ret = btrfs_rebuild_free_space_tree(fs_info);
8b228324
BB
3138 if (ret) {
3139 btrfs_warn(fs_info,
1d6a4fc8
QW
3140 "failed to rebuild free space tree: %d", ret);
3141 goto out;
3142 }
3143 }
3144
3145 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3146 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3147 btrfs_info(fs_info, "disabling free space tree");
3148 ret = btrfs_delete_free_space_tree(fs_info);
3149 if (ret) {
3150 btrfs_warn(fs_info,
3151 "failed to disable free space tree: %d", ret);
8b228324
BB
3152 goto out;
3153 }
3154 }
44c0ca21 3155
8d488a8c
FM
3156 /*
3157 * btrfs_find_orphan_roots() is responsible for finding all the dead
3158 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3159 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3160 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3161 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3162 * item before the root's tree is deleted - this means that if we unmount
3163 * or crash before the deletion completes, on the next mount we will not
3164 * delete what remains of the tree because the orphan item does not
3165 * exists anymore, which is what tells us we have a pending deletion.
3166 */
3167 ret = btrfs_find_orphan_roots(fs_info);
3168 if (ret)
3169 goto out;
3170
44c0ca21
BB
3171 ret = btrfs_cleanup_fs_roots(fs_info);
3172 if (ret)
3173 goto out;
3174
8f1c21d7
BB
3175 down_read(&fs_info->cleanup_work_sem);
3176 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3177 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3178 up_read(&fs_info->cleanup_work_sem);
3179 goto out;
3180 }
3181 up_read(&fs_info->cleanup_work_sem);
3182
44c0ca21 3183 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3184 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3185 mutex_unlock(&fs_info->cleaner_mutex);
3186 if (ret < 0) {
3187 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3188 goto out;
3189 }
3190
5011139a
BB
3191 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3192 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3193 btrfs_info(fs_info, "creating free space tree");
3194 ret = btrfs_create_free_space_tree(fs_info);
3195 if (ret) {
3196 btrfs_warn(fs_info,
3197 "failed to create free space tree: %d", ret);
3198 goto out;
3199 }
3200 }
3201
94846229
BB
3202 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3203 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3204 if (ret)
3205 goto out;
3206 }
3207
44c0ca21
BB
3208 ret = btrfs_resume_balance_async(fs_info);
3209 if (ret)
3210 goto out;
3211
3212 ret = btrfs_resume_dev_replace_async(fs_info);
3213 if (ret) {
3214 btrfs_warn(fs_info, "failed to resume dev_replace");
3215 goto out;
3216 }
3217
3218 btrfs_qgroup_rescan_resume(fs_info);
3219
3220 if (!fs_info->uuid_root) {
3221 btrfs_info(fs_info, "creating UUID tree");
3222 ret = btrfs_create_uuid_tree(fs_info);
3223 if (ret) {
3224 btrfs_warn(fs_info,
3225 "failed to create the UUID tree %d", ret);
3226 goto out;
3227 }
3228 }
3229
3230out:
3231 return ret;
3232}
3233
d7f67ac9
QW
3234/*
3235 * Do various sanity and dependency checks of different features.
3236 *
2ba48b20
QW
3237 * @is_rw_mount: If the mount is read-write.
3238 *
d7f67ac9
QW
3239 * This is the place for less strict checks (like for subpage or artificial
3240 * feature dependencies).
3241 *
3242 * For strict checks or possible corruption detection, see
3243 * btrfs_validate_super().
3244 *
3245 * This should be called after btrfs_parse_options(), as some mount options
3246 * (space cache related) can modify on-disk format like free space tree and
3247 * screw up certain feature dependencies.
3248 */
2ba48b20 3249int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
d7f67ac9
QW
3250{
3251 struct btrfs_super_block *disk_super = fs_info->super_copy;
3252 u64 incompat = btrfs_super_incompat_flags(disk_super);
3253 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3254 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3255
3256 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3257 btrfs_err(fs_info,
3258 "cannot mount because of unknown incompat features (0x%llx)",
3259 incompat);
3260 return -EINVAL;
3261 }
3262
3263 /* Runtime limitation for mixed block groups. */
3264 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3265 (fs_info->sectorsize != fs_info->nodesize)) {
3266 btrfs_err(fs_info,
3267"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3268 fs_info->nodesize, fs_info->sectorsize);
3269 return -EINVAL;
3270 }
3271
3272 /* Mixed backref is an always-enabled feature. */
3273 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3274
3275 /* Set compression related flags just in case. */
3276 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3277 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3278 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3279 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3280
3281 /*
3282 * An ancient flag, which should really be marked deprecated.
3283 * Such runtime limitation doesn't really need a incompat flag.
3284 */
3285 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3286 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3287
2ba48b20 3288 if (compat_ro_unsupp && is_rw_mount) {
d7f67ac9
QW
3289 btrfs_err(fs_info,
3290 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3291 compat_ro);
3292 return -EINVAL;
3293 }
3294
3295 /*
3296 * We have unsupported RO compat features, although RO mounted, we
3297 * should not cause any metadata writes, including log replay.
3298 * Or we could screw up whatever the new feature requires.
3299 */
3300 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3301 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3302 btrfs_err(fs_info,
3303"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3304 compat_ro);
3305 return -EINVAL;
3306 }
3307
3308 /*
3309 * Artificial limitations for block group tree, to force
3310 * block-group-tree to rely on no-holes and free-space-tree.
3311 */
3312 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3313 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3314 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3315 btrfs_err(fs_info,
3316"block-group-tree feature requires no-holes and free-space-tree features");
3317 return -EINVAL;
3318 }
3319
3320 /*
3321 * Subpage runtime limitation on v1 cache.
3322 *
3323 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3324 * we're already defaulting to v2 cache, no need to bother v1 as it's
3325 * going to be deprecated anyway.
3326 */
3327 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3328 btrfs_warn(fs_info,
3329 "v1 space cache is not supported for page size %lu with sectorsize %u",
3330 PAGE_SIZE, fs_info->sectorsize);
3331 return -EINVAL;
3332 }
3333
3334 /* This can be called by remount, we need to protect the super block. */
3335 spin_lock(&fs_info->super_lock);
3336 btrfs_set_super_incompat_flags(disk_super, incompat);
3337 spin_unlock(&fs_info->super_lock);
3338
3339 return 0;
3340}
3341
ae18c37a
JB
3342int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3343 char *options)
3344{
3345 u32 sectorsize;
3346 u32 nodesize;
3347 u32 stripesize;
3348 u64 generation;
3349 u64 features;
3350 u16 csum_type;
ae18c37a
JB
3351 struct btrfs_super_block *disk_super;
3352 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3353 struct btrfs_root *tree_root;
3354 struct btrfs_root *chunk_root;
3355 int ret;
ae18c37a
JB
3356 int level;
3357
8260edba 3358 ret = init_mount_fs_info(fs_info, sb);
4871c33b 3359 if (ret)
ae18c37a 3360 goto fail;
53b381b3 3361
ae18c37a
JB
3362 /* These need to be init'ed before we start creating inodes and such. */
3363 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3364 GFP_KERNEL);
3365 fs_info->tree_root = tree_root;
3366 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3367 GFP_KERNEL);
3368 fs_info->chunk_root = chunk_root;
3369 if (!tree_root || !chunk_root) {
4871c33b 3370 ret = -ENOMEM;
c75e8394 3371 goto fail;
ae18c37a
JB
3372 }
3373
dcb2137c 3374 ret = btrfs_init_btree_inode(sb);
4871c33b 3375 if (ret)
c75e8394 3376 goto fail;
ae18c37a 3377
d24fa5c1 3378 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3379
3380 /*
3381 * Read super block and check the signature bytes only
3382 */
d24fa5c1 3383 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d 3384 if (IS_ERR(disk_super)) {
4871c33b 3385 ret = PTR_ERR(disk_super);
16cdcec7 3386 goto fail_alloc;
20b45077 3387 }
39279cc3 3388
8dc3f22c 3389 /*
260db43c 3390 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3391 * corrupted, we'll find out
3392 */
8f32380d 3393 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3394 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3395 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3396 csum_type);
4871c33b 3397 ret = -EINVAL;
8f32380d 3398 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3399 goto fail_alloc;
3400 }
3401
83c68bbc
SY
3402 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3403
6d97c6e3
JT
3404 ret = btrfs_init_csum_hash(fs_info, csum_type);
3405 if (ret) {
8f32380d 3406 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3407 goto fail_alloc;
3408 }
3409
1104a885
DS
3410 /*
3411 * We want to check superblock checksum, the type is stored inside.
3412 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3413 */
3d17adea 3414 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3415 btrfs_err(fs_info, "superblock checksum mismatch");
4871c33b 3416 ret = -EINVAL;
8f32380d 3417 btrfs_release_disk_super(disk_super);
141386e1 3418 goto fail_alloc;
1104a885
DS
3419 }
3420
3421 /*
3422 * super_copy is zeroed at allocation time and we never touch the
3423 * following bytes up to INFO_SIZE, the checksum is calculated from
3424 * the whole block of INFO_SIZE
3425 */
8f32380d
JT
3426 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3427 btrfs_release_disk_super(disk_super);
5f39d397 3428
fbc6feae
NB
3429 disk_super = fs_info->super_copy;
3430
0b86a832 3431
fbc6feae
NB
3432 features = btrfs_super_flags(disk_super);
3433 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3434 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3435 btrfs_set_super_flags(disk_super, features);
3436 btrfs_info(fs_info,
3437 "found metadata UUID change in progress flag, clearing");
3438 }
3439
3440 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3441 sizeof(*fs_info->super_for_commit));
de37aa51 3442
069ec957 3443 ret = btrfs_validate_mount_super(fs_info);
1104a885 3444 if (ret) {
05135f59 3445 btrfs_err(fs_info, "superblock contains fatal errors");
4871c33b 3446 ret = -EINVAL;
141386e1 3447 goto fail_alloc;
1104a885
DS
3448 }
3449
4871c33b
QW
3450 if (!btrfs_super_root(disk_super)) {
3451 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3452 ret = -EINVAL;
141386e1 3453 goto fail_alloc;
4871c33b 3454 }
0f7d52f4 3455
acce952b 3456 /* check FS state, whether FS is broken. */
87533c47
MX
3457 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3458 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3459
75e7cb7f
LB
3460 /*
3461 * In the long term, we'll store the compression type in the super
3462 * block, and it'll be used for per file compression control.
3463 */
3464 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3465
6f93e834
AJ
3466
3467 /* Set up fs_info before parsing mount options */
3468 nodesize = btrfs_super_nodesize(disk_super);
3469 sectorsize = btrfs_super_sectorsize(disk_super);
3470 stripesize = sectorsize;
3471 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3472 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3473
3474 fs_info->nodesize = nodesize;
3475 fs_info->sectorsize = sectorsize;
3476 fs_info->sectorsize_bits = ilog2(sectorsize);
3477 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3478 fs_info->stripesize = stripesize;
3479
2ff7e61e 3480 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
4871c33b 3481 if (ret)
141386e1 3482 goto fail_alloc;
dfe25020 3483
2ba48b20 3484 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
4871c33b 3485 if (ret < 0)
dc4d3168 3486 goto fail_alloc;
dc4d3168 3487
8481dd80
QW
3488 if (sectorsize < PAGE_SIZE) {
3489 struct btrfs_subpage_info *subpage_info;
3490
9f73f1ae
QW
3491 /*
3492 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3493 * going to be deprecated.
3494 *
3495 * Force to use v2 cache for subpage case.
3496 */
3497 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3498 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3499 "forcing free space tree for sector size %u with page size %lu",
3500 sectorsize, PAGE_SIZE);
3501
95ea0486
QW
3502 btrfs_warn(fs_info,
3503 "read-write for sector size %u with page size %lu is experimental",
3504 sectorsize, PAGE_SIZE);
8481dd80 3505 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
4871c33b
QW
3506 if (!subpage_info) {
3507 ret = -ENOMEM;
8481dd80 3508 goto fail_alloc;
4871c33b 3509 }
8481dd80
QW
3510 btrfs_init_subpage_info(subpage_info, sectorsize);
3511 fs_info->subpage_info = subpage_info;
c8050b3b 3512 }
0bb3eb3e 3513
d21deec5 3514 ret = btrfs_init_workqueues(fs_info);
4871c33b 3515 if (ret)
0dc3b84a 3516 goto fail_sb_buffer;
4543df7e 3517
9e11ceee
JK
3518 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3519 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3520
a061fc8d
CM
3521 sb->s_blocksize = sectorsize;
3522 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3523 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3524
925baedd 3525 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3526 ret = btrfs_read_sys_array(fs_info);
925baedd 3527 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3528 if (ret) {
05135f59 3529 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3530 goto fail_sb_buffer;
84eed90f 3531 }
0b86a832 3532
84234f3a 3533 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3534 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3535 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3536 generation, level);
3537 if (ret) {
05135f59 3538 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3539 goto fail_tree_roots;
83121942 3540 }
0b86a832 3541
e17cade2 3542 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3543 offsetof(struct btrfs_header, chunk_tree_uuid),
3544 BTRFS_UUID_SIZE);
e17cade2 3545
5b4aacef 3546 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3547 if (ret) {
05135f59 3548 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3549 goto fail_tree_roots;
2b82032c 3550 }
0b86a832 3551
8dabb742 3552 /*
bacce86a
AJ
3553 * At this point we know all the devices that make this filesystem,
3554 * including the seed devices but we don't know yet if the replace
3555 * target is required. So free devices that are not part of this
1a9fd417 3556 * filesystem but skip the replace target device which is checked
bacce86a 3557 * below in btrfs_init_dev_replace().
8dabb742 3558 */
bacce86a 3559 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3560 if (!fs_devices->latest_dev->bdev) {
05135f59 3561 btrfs_err(fs_info, "failed to read devices");
4871c33b 3562 ret = -EIO;
a6b0d5c8
CM
3563 goto fail_tree_roots;
3564 }
3565
b8522a1e 3566 ret = init_tree_roots(fs_info);
4bbcaa64 3567 if (ret)
b8522a1e 3568 goto fail_tree_roots;
8929ecfa 3569
73651042
NA
3570 /*
3571 * Get zone type information of zoned block devices. This will also
3572 * handle emulation of a zoned filesystem if a regular device has the
3573 * zoned incompat feature flag set.
3574 */
3575 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3576 if (ret) {
3577 btrfs_err(fs_info,
4871c33b 3578 "zoned: failed to read device zone info: %d", ret);
73651042
NA
3579 goto fail_block_groups;
3580 }
3581
75ec1db8
JB
3582 /*
3583 * If we have a uuid root and we're not being told to rescan we need to
3584 * check the generation here so we can set the
3585 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3586 * transaction during a balance or the log replay without updating the
3587 * uuid generation, and then if we crash we would rescan the uuid tree,
3588 * even though it was perfectly fine.
3589 */
3590 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3591 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3592 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3593
cf90d884
QW
3594 ret = btrfs_verify_dev_extents(fs_info);
3595 if (ret) {
3596 btrfs_err(fs_info,
3597 "failed to verify dev extents against chunks: %d",
3598 ret);
3599 goto fail_block_groups;
3600 }
68310a5e
ID
3601 ret = btrfs_recover_balance(fs_info);
3602 if (ret) {
05135f59 3603 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3604 goto fail_block_groups;
3605 }
3606
733f4fbb
SB
3607 ret = btrfs_init_dev_stats(fs_info);
3608 if (ret) {
05135f59 3609 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3610 goto fail_block_groups;
3611 }
3612
8dabb742
SB
3613 ret = btrfs_init_dev_replace(fs_info);
3614 if (ret) {
05135f59 3615 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3616 goto fail_block_groups;
3617 }
3618
b70f5097
NA
3619 ret = btrfs_check_zoned_mode(fs_info);
3620 if (ret) {
3621 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3622 ret);
3623 goto fail_block_groups;
3624 }
3625
c6761a9e 3626 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3627 if (ret) {
05135f59
DS
3628 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3629 ret);
b7c35e81
AJ
3630 goto fail_block_groups;
3631 }
3632
96f3136e 3633 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3634 if (ret) {
05135f59 3635 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3636 goto fail_fsdev_sysfs;
c59021f8 3637 }
3638
c59021f8 3639 ret = btrfs_init_space_info(fs_info);
3640 if (ret) {
05135f59 3641 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3642 goto fail_sysfs;
c59021f8 3643 }
3644
5b4aacef 3645 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3646 if (ret) {
05135f59 3647 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3648 goto fail_sysfs;
1b1d1f66 3649 }
4330e183 3650
16beac87
NA
3651 btrfs_free_zone_cache(fs_info);
3652
5c78a5e7
AJ
3653 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3654 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3655 btrfs_warn(fs_info,
52042d8e 3656 "writable mount is not allowed due to too many missing devices");
4871c33b 3657 ret = -EINVAL;
2365dd3c 3658 goto fail_sysfs;
292fd7fc 3659 }
9078a3e1 3660
33c44184 3661 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3662 "btrfs-cleaner");
4871c33b
QW
3663 if (IS_ERR(fs_info->cleaner_kthread)) {
3664 ret = PTR_ERR(fs_info->cleaner_kthread);
2365dd3c 3665 goto fail_sysfs;
4871c33b 3666 }
a74a4b97
CM
3667
3668 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3669 tree_root,
3670 "btrfs-transaction");
4871c33b
QW
3671 if (IS_ERR(fs_info->transaction_kthread)) {
3672 ret = PTR_ERR(fs_info->transaction_kthread);
3f157a2f 3673 goto fail_cleaner;
4871c33b 3674 }
a74a4b97 3675
583b7231 3676 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3677 !fs_info->fs_devices->rotating) {
583b7231 3678 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3679 }
3680
63a7cb13
DS
3681 /*
3682 * For devices supporting discard turn on discard=async automatically,
3683 * unless it's already set or disabled. This could be turned off by
3684 * nodiscard for the same mount.
3685 */
3686 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3687 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3688 btrfs_test_opt(fs_info, NODISCARD)) &&
3689 fs_info->fs_devices->discardable) {
3690 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3691 "auto enabling async discard");
63a7cb13
DS
3692 }
3693
21adbd5c 3694#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3695 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3696 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3697 btrfs_test_opt(fs_info,
cbeaae4f 3698 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3699 fs_info->check_integrity_print_mask);
3700 if (ret)
05135f59
DS
3701 btrfs_warn(fs_info,
3702 "failed to initialize integrity check module: %d",
3703 ret);
21adbd5c
SB
3704 }
3705#endif
bcef60f2
AJ
3706 ret = btrfs_read_qgroup_config(fs_info);
3707 if (ret)
3708 goto fail_trans_kthread;
21adbd5c 3709
fd708b81
JB
3710 if (btrfs_build_ref_tree(fs_info))
3711 btrfs_err(fs_info, "couldn't build ref tree");
3712
96da0919
QW
3713 /* do not make disk changes in broken FS or nologreplay is given */
3714 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3715 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3716 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3717 ret = btrfs_replay_log(fs_info, fs_devices);
4871c33b 3718 if (ret)
28c16cbb 3719 goto fail_qgroup;
e02119d5 3720 }
1a40e23b 3721
56e9357a 3722 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3 3723 if (IS_ERR(fs_info->fs_root)) {
4871c33b
QW
3724 ret = PTR_ERR(fs_info->fs_root);
3725 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
315bf8ef 3726 fs_info->fs_root = NULL;
bcef60f2 3727 goto fail_qgroup;
3140c9a3 3728 }
c289811c 3729
bc98a42c 3730 if (sb_rdonly(sb))
8cd29088 3731 goto clear_oneshot;
59641015 3732
44c0ca21 3733 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3734 if (ret) {
6bccf3ab 3735 close_ctree(fs_info);
2b6ba629 3736 return ret;
e3acc2a6 3737 }
b0643e59 3738 btrfs_discard_resume(fs_info);
b382a324 3739
44c0ca21
BB
3740 if (fs_info->uuid_root &&
3741 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3742 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3743 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3744 ret = btrfs_check_uuid_tree(fs_info);
3745 if (ret) {
05135f59
DS
3746 btrfs_warn(fs_info,
3747 "failed to check the UUID tree: %d", ret);
6bccf3ab 3748 close_ctree(fs_info);
70f80175
SB
3749 return ret;
3750 }
f7a81ea4 3751 }
94846229 3752
afcdd129 3753 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3754
b4be6aef
JB
3755 /* Kick the cleaner thread so it'll start deleting snapshots. */
3756 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3757 wake_up_process(fs_info->cleaner_kthread);
3758
8cd29088
BB
3759clear_oneshot:
3760 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3761 return 0;
39279cc3 3762
bcef60f2
AJ
3763fail_qgroup:
3764 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3765fail_trans_kthread:
3766 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3767 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3768 btrfs_free_fs_roots(fs_info);
3f157a2f 3769fail_cleaner:
a74a4b97 3770 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3771
3772 /*
3773 * make sure we're done with the btree inode before we stop our
3774 * kthreads
3775 */
3776 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3777
2365dd3c 3778fail_sysfs:
6618a59b 3779 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3780
b7c35e81
AJ
3781fail_fsdev_sysfs:
3782 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3783
1b1d1f66 3784fail_block_groups:
54067ae9 3785 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3786
3787fail_tree_roots:
9e3aa805
JB
3788 if (fs_info->data_reloc_root)
3789 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3790 free_root_pointers(fs_info, true);
2b8195bb 3791 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3792
39279cc3 3793fail_sb_buffer:
7abadb64 3794 btrfs_stop_all_workers(fs_info);
5cdd7db6 3795 btrfs_free_block_groups(fs_info);
16cdcec7 3796fail_alloc:
586e46e2
ID
3797 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3798
4543df7e 3799 iput(fs_info->btree_inode);
7e662854 3800fail:
586e46e2 3801 btrfs_close_devices(fs_info->fs_devices);
4871c33b
QW
3802 ASSERT(ret < 0);
3803 return ret;
eb60ceac 3804}
663faf9f 3805ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3806
314b6dd0 3807static void btrfs_end_super_write(struct bio *bio)
f2984462 3808{
314b6dd0
JT
3809 struct btrfs_device *device = bio->bi_private;
3810 struct bio_vec *bvec;
3811 struct bvec_iter_all iter_all;
3812 struct page *page;
3813
3814 bio_for_each_segment_all(bvec, bio, iter_all) {
3815 page = bvec->bv_page;
3816
3817 if (bio->bi_status) {
3818 btrfs_warn_rl_in_rcu(device->fs_info,
3819 "lost page write due to IO error on %s (%d)",
cb3e217b 3820 btrfs_dev_name(device),
314b6dd0
JT
3821 blk_status_to_errno(bio->bi_status));
3822 ClearPageUptodate(page);
3823 SetPageError(page);
3824 btrfs_dev_stat_inc_and_print(device,
3825 BTRFS_DEV_STAT_WRITE_ERRS);
3826 } else {
3827 SetPageUptodate(page);
3828 }
3829
3830 put_page(page);
3831 unlock_page(page);
f2984462 3832 }
314b6dd0
JT
3833
3834 bio_put(bio);
f2984462
CM
3835}
3836
8f32380d 3837struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3838 int copy_num, bool drop_cache)
29c36d72 3839{
29c36d72 3840 struct btrfs_super_block *super;
8f32380d 3841 struct page *page;
12659251 3842 u64 bytenr, bytenr_orig;
8f32380d 3843 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3844 int ret;
3845
3846 bytenr_orig = btrfs_sb_offset(copy_num);
3847 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3848 if (ret == -ENOENT)
3849 return ERR_PTR(-EINVAL);
3850 else if (ret)
3851 return ERR_PTR(ret);
29c36d72 3852
cda00eba 3853 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3854 return ERR_PTR(-EINVAL);
29c36d72 3855
a05d3c91
QW
3856 if (drop_cache) {
3857 /* This should only be called with the primary sb. */
3858 ASSERT(copy_num == 0);
3859
3860 /*
3861 * Drop the page of the primary superblock, so later read will
3862 * always read from the device.
3863 */
3864 invalidate_inode_pages2_range(mapping,
3865 bytenr >> PAGE_SHIFT,
3866 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3867 }
3868
8f32380d
JT
3869 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3870 if (IS_ERR(page))
3871 return ERR_CAST(page);
29c36d72 3872
8f32380d 3873 super = page_address(page);
96c2e067
AJ
3874 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3875 btrfs_release_disk_super(super);
3876 return ERR_PTR(-ENODATA);
3877 }
3878
12659251 3879 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3880 btrfs_release_disk_super(super);
3881 return ERR_PTR(-EINVAL);
29c36d72
AJ
3882 }
3883
8f32380d 3884 return super;
29c36d72
AJ
3885}
3886
3887
8f32380d 3888struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3889{
8f32380d 3890 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3891 int i;
3892 u64 transid = 0;
a512bbf8
YZ
3893
3894 /* we would like to check all the supers, but that would make
3895 * a btrfs mount succeed after a mkfs from a different FS.
3896 * So, we need to add a special mount option to scan for
3897 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3898 */
3899 for (i = 0; i < 1; i++) {
a05d3c91 3900 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3901 if (IS_ERR(super))
a512bbf8
YZ
3902 continue;
3903
a512bbf8 3904 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3905 if (latest)
3906 btrfs_release_disk_super(super);
3907
3908 latest = super;
a512bbf8 3909 transid = btrfs_super_generation(super);
a512bbf8
YZ
3910 }
3911 }
92fc03fb 3912
8f32380d 3913 return super;
a512bbf8
YZ
3914}
3915
4eedeb75 3916/*
abbb3b8e 3917 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3918 * pages we use for writing are locked.
4eedeb75 3919 *
abbb3b8e
DS
3920 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3921 * the expected device size at commit time. Note that max_mirrors must be
3922 * same for write and wait phases.
4eedeb75 3923 *
314b6dd0 3924 * Return number of errors when page is not found or submission fails.
4eedeb75 3925 */
a512bbf8 3926static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3927 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3928{
d5178578 3929 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3930 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3931 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3932 int i;
a512bbf8 3933 int errors = 0;
12659251
NA
3934 int ret;
3935 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3936
3937 if (max_mirrors == 0)
3938 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3939
d5178578
JT
3940 shash->tfm = fs_info->csum_shash;
3941
a512bbf8 3942 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3943 struct page *page;
3944 struct bio *bio;
3945 struct btrfs_super_block *disk_super;
3946
12659251
NA
3947 bytenr_orig = btrfs_sb_offset(i);
3948 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3949 if (ret == -ENOENT) {
3950 continue;
3951 } else if (ret < 0) {
3952 btrfs_err(device->fs_info,
3953 "couldn't get super block location for mirror %d",
3954 i);
3955 errors++;
3956 continue;
3957 }
935e5cc9
MX
3958 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3959 device->commit_total_bytes)
a512bbf8
YZ
3960 break;
3961
12659251 3962 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3963
fd08001f
EB
3964 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3965 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3966 sb->csum);
4eedeb75 3967
314b6dd0
JT
3968 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3969 GFP_NOFS);
3970 if (!page) {
abbb3b8e 3971 btrfs_err(device->fs_info,
314b6dd0 3972 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3973 bytenr);
3974 errors++;
4eedeb75 3975 continue;
abbb3b8e 3976 }
634554dc 3977
314b6dd0
JT
3978 /* Bump the refcount for wait_dev_supers() */
3979 get_page(page);
a512bbf8 3980
314b6dd0
JT
3981 disk_super = page_address(page);
3982 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3983
314b6dd0
JT
3984 /*
3985 * Directly use bios here instead of relying on the page cache
3986 * to do I/O, so we don't lose the ability to do integrity
3987 * checking.
3988 */
07888c66
CH
3989 bio = bio_alloc(device->bdev, 1,
3990 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3991 GFP_NOFS);
314b6dd0
JT
3992 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3993 bio->bi_private = device;
3994 bio->bi_end_io = btrfs_end_super_write;
3995 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3996 offset_in_page(bytenr));
a512bbf8 3997
387125fc 3998 /*
314b6dd0
JT
3999 * We FUA only the first super block. The others we allow to
4000 * go down lazy and there's a short window where the on-disk
4001 * copies might still contain the older version.
387125fc 4002 */
1b9e619c 4003 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4004 bio->bi_opf |= REQ_FUA;
4005
58ff51f1
CH
4006 btrfsic_check_bio(bio);
4007 submit_bio(bio);
8376d9e1
NA
4008
4009 if (btrfs_advance_sb_log(device, i))
4010 errors++;
a512bbf8
YZ
4011 }
4012 return errors < i ? 0 : -1;
4013}
4014
abbb3b8e
DS
4015/*
4016 * Wait for write completion of superblocks done by write_dev_supers,
4017 * @max_mirrors same for write and wait phases.
4018 *
314b6dd0 4019 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4020 * date.
4021 */
4022static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4023{
abbb3b8e
DS
4024 int i;
4025 int errors = 0;
b6a535fa 4026 bool primary_failed = false;
12659251 4027 int ret;
abbb3b8e
DS
4028 u64 bytenr;
4029
4030 if (max_mirrors == 0)
4031 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4032
4033 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4034 struct page *page;
4035
12659251
NA
4036 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4037 if (ret == -ENOENT) {
4038 break;
4039 } else if (ret < 0) {
4040 errors++;
4041 if (i == 0)
4042 primary_failed = true;
4043 continue;
4044 }
abbb3b8e
DS
4045 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4046 device->commit_total_bytes)
4047 break;
4048
314b6dd0
JT
4049 page = find_get_page(device->bdev->bd_inode->i_mapping,
4050 bytenr >> PAGE_SHIFT);
4051 if (!page) {
abbb3b8e 4052 errors++;
b6a535fa
HM
4053 if (i == 0)
4054 primary_failed = true;
abbb3b8e
DS
4055 continue;
4056 }
314b6dd0
JT
4057 /* Page is submitted locked and unlocked once the IO completes */
4058 wait_on_page_locked(page);
4059 if (PageError(page)) {
abbb3b8e 4060 errors++;
b6a535fa
HM
4061 if (i == 0)
4062 primary_failed = true;
4063 }
abbb3b8e 4064
314b6dd0
JT
4065 /* Drop our reference */
4066 put_page(page);
abbb3b8e 4067
314b6dd0
JT
4068 /* Drop the reference from the writing run */
4069 put_page(page);
abbb3b8e
DS
4070 }
4071
b6a535fa
HM
4072 /* log error, force error return */
4073 if (primary_failed) {
4074 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4075 device->devid);
4076 return -1;
4077 }
4078
abbb3b8e
DS
4079 return errors < i ? 0 : -1;
4080}
4081
387125fc
CM
4082/*
4083 * endio for the write_dev_flush, this will wake anyone waiting
4084 * for the barrier when it is done
4085 */
4246a0b6 4086static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4087{
f9e69aa9 4088 bio_uninit(bio);
e0ae9994 4089 complete(bio->bi_private);
387125fc
CM
4090}
4091
4092/*
4fc6441a
AJ
4093 * Submit a flush request to the device if it supports it. Error handling is
4094 * done in the waiting counterpart.
387125fc 4095 */
4fc6441a 4096static void write_dev_flush(struct btrfs_device *device)
387125fc 4097{
f9e69aa9 4098 struct bio *bio = &device->flush_bio;
387125fc 4099
bfd3ea94
AJ
4100 device->last_flush_error = BLK_STS_OK;
4101
a91cf0ff
WY
4102#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4103 /*
4104 * When a disk has write caching disabled, we skip submission of a bio
4105 * with flush and sync requests before writing the superblock, since
4106 * it's not needed. However when the integrity checker is enabled, this
4107 * results in reports that there are metadata blocks referred by a
4108 * superblock that were not properly flushed. So don't skip the bio
4109 * submission only when the integrity checker is enabled for the sake
4110 * of simplicity, since this is a debug tool and not meant for use in
4111 * non-debug builds.
4112 */
08e688fd 4113 if (!bdev_write_cache(device->bdev))
4fc6441a 4114 return;
a91cf0ff 4115#endif
387125fc 4116
f9e69aa9
CH
4117 bio_init(bio, device->bdev, NULL, 0,
4118 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4119 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4120 init_completion(&device->flush_wait);
4121 bio->bi_private = &device->flush_wait;
387125fc 4122
58ff51f1
CH
4123 btrfsic_check_bio(bio);
4124 submit_bio(bio);
1c3063b6 4125 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4126}
387125fc 4127
4fc6441a
AJ
4128/*
4129 * If the flush bio has been submitted by write_dev_flush, wait for it.
1b465784 4130 * Return true for any error, and false otherwise.
4fc6441a 4131 */
1b465784 4132static bool wait_dev_flush(struct btrfs_device *device)
4fc6441a 4133{
f9e69aa9 4134 struct bio *bio = &device->flush_bio;
387125fc 4135
7e812f20 4136 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
1b465784 4137 return false;
387125fc 4138
2980d574 4139 wait_for_completion_io(&device->flush_wait);
387125fc 4140
bfd3ea94
AJ
4141 if (bio->bi_status) {
4142 device->last_flush_error = bio->bi_status;
4143 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
1b465784 4144 return true;
bfd3ea94
AJ
4145 }
4146
1b465784 4147 return false;
387125fc 4148}
387125fc 4149
387125fc
CM
4150/*
4151 * send an empty flush down to each device in parallel,
4152 * then wait for them
4153 */
4154static int barrier_all_devices(struct btrfs_fs_info *info)
4155{
4156 struct list_head *head;
4157 struct btrfs_device *dev;
5af3e8cc 4158 int errors_wait = 0;
387125fc 4159
1538e6c5 4160 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4161 /* send down all the barriers */
4162 head = &info->fs_devices->devices;
1538e6c5 4163 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4164 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4165 continue;
cea7c8bf 4166 if (!dev->bdev)
387125fc 4167 continue;
e12c9621 4168 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4169 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4170 continue;
4171
4fc6441a 4172 write_dev_flush(dev);
387125fc
CM
4173 }
4174
4175 /* wait for all the barriers */
1538e6c5 4176 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4177 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4178 continue;
387125fc 4179 if (!dev->bdev) {
5af3e8cc 4180 errors_wait++;
387125fc
CM
4181 continue;
4182 }
e12c9621 4183 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4184 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4185 continue;
4186
1b465784 4187 if (wait_dev_flush(dev))
5af3e8cc 4188 errors_wait++;
401b41e5
AJ
4189 }
4190
de38a206
AJ
4191 /*
4192 * Checks last_flush_error of disks in order to determine the device
4193 * state.
4194 */
4195 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4196 return -EIO;
4197
387125fc
CM
4198 return 0;
4199}
4200
943c6e99
ZL
4201int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4202{
8789f4fe
ZL
4203 int raid_type;
4204 int min_tolerated = INT_MAX;
943c6e99 4205
8789f4fe
ZL
4206 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4207 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4208 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4209 btrfs_raid_array[BTRFS_RAID_SINGLE].
4210 tolerated_failures);
943c6e99 4211
8789f4fe
ZL
4212 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4213 if (raid_type == BTRFS_RAID_SINGLE)
4214 continue;
41a6e891 4215 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4216 continue;
8c3e3582 4217 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4218 btrfs_raid_array[raid_type].
4219 tolerated_failures);
4220 }
943c6e99 4221
8789f4fe 4222 if (min_tolerated == INT_MAX) {
ab8d0fc4 4223 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4224 min_tolerated = 0;
4225 }
4226
4227 return min_tolerated;
943c6e99
ZL
4228}
4229
eece6a9c 4230int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4231{
e5e9a520 4232 struct list_head *head;
f2984462 4233 struct btrfs_device *dev;
a061fc8d 4234 struct btrfs_super_block *sb;
f2984462 4235 struct btrfs_dev_item *dev_item;
f2984462
CM
4236 int ret;
4237 int do_barriers;
a236aed1
CM
4238 int max_errors;
4239 int total_errors = 0;
a061fc8d 4240 u64 flags;
f2984462 4241
0b246afa 4242 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4243
4244 /*
4245 * max_mirrors == 0 indicates we're from commit_transaction,
4246 * not from fsync where the tree roots in fs_info have not
4247 * been consistent on disk.
4248 */
4249 if (max_mirrors == 0)
4250 backup_super_roots(fs_info);
f2984462 4251
0b246afa 4252 sb = fs_info->super_for_commit;
a061fc8d 4253 dev_item = &sb->dev_item;
e5e9a520 4254
0b246afa
JM
4255 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4256 head = &fs_info->fs_devices->devices;
4257 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4258
5af3e8cc 4259 if (do_barriers) {
0b246afa 4260 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4261 if (ret) {
4262 mutex_unlock(
0b246afa
JM
4263 &fs_info->fs_devices->device_list_mutex);
4264 btrfs_handle_fs_error(fs_info, ret,
4265 "errors while submitting device barriers.");
5af3e8cc
SB
4266 return ret;
4267 }
4268 }
387125fc 4269
1538e6c5 4270 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4271 if (!dev->bdev) {
4272 total_errors++;
4273 continue;
4274 }
e12c9621 4275 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4276 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4277 continue;
4278
2b82032c 4279 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4280 btrfs_set_stack_device_type(dev_item, dev->type);
4281 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4282 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4283 dev->commit_total_bytes);
ce7213c7
MX
4284 btrfs_set_stack_device_bytes_used(dev_item,
4285 dev->commit_bytes_used);
a061fc8d
CM
4286 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4287 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4288 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4289 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4290 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4291 BTRFS_FSID_SIZE);
a512bbf8 4292
a061fc8d
CM
4293 flags = btrfs_super_flags(sb);
4294 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4295
75cb857d
QW
4296 ret = btrfs_validate_write_super(fs_info, sb);
4297 if (ret < 0) {
4298 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4299 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4300 "unexpected superblock corruption detected");
4301 return -EUCLEAN;
4302 }
4303
abbb3b8e 4304 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4305 if (ret)
4306 total_errors++;
f2984462 4307 }
a236aed1 4308 if (total_errors > max_errors) {
0b246afa
JM
4309 btrfs_err(fs_info, "%d errors while writing supers",
4310 total_errors);
4311 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4312
9d565ba4 4313 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4314 btrfs_handle_fs_error(fs_info, -EIO,
4315 "%d errors while writing supers",
4316 total_errors);
9d565ba4 4317 return -EIO;
a236aed1 4318 }
f2984462 4319
a512bbf8 4320 total_errors = 0;
1538e6c5 4321 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4322 if (!dev->bdev)
4323 continue;
e12c9621 4324 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4325 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4326 continue;
4327
abbb3b8e 4328 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4329 if (ret)
4330 total_errors++;
f2984462 4331 }
0b246afa 4332 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4333 if (total_errors > max_errors) {
0b246afa
JM
4334 btrfs_handle_fs_error(fs_info, -EIO,
4335 "%d errors while writing supers",
4336 total_errors);
79787eaa 4337 return -EIO;
a236aed1 4338 }
f2984462
CM
4339 return 0;
4340}
4341
cb517eab
MX
4342/* Drop a fs root from the radix tree and free it. */
4343void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4344 struct btrfs_root *root)
2619ba1f 4345{
4785e24f
JB
4346 bool drop_ref = false;
4347
fc7cbcd4
DS
4348 spin_lock(&fs_info->fs_roots_radix_lock);
4349 radix_tree_delete(&fs_info->fs_roots_radix,
4350 (unsigned long)root->root_key.objectid);
4351 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4352 drop_ref = true;
fc7cbcd4 4353 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4354
84961539 4355 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4356 ASSERT(root->log_root == NULL);
1c1ea4f7 4357 if (root->reloc_root) {
00246528 4358 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4359 root->reloc_root = NULL;
4360 }
4361 }
3321719e 4362
4785e24f
JB
4363 if (drop_ref)
4364 btrfs_put_root(root);
2619ba1f
CM
4365}
4366
c146afad 4367int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4368{
fc7cbcd4
DS
4369 u64 root_objectid = 0;
4370 struct btrfs_root *gang[8];
4371 int i = 0;
65d33fd7 4372 int err = 0;
fc7cbcd4 4373 unsigned int ret = 0;
e089f05c 4374
c146afad 4375 while (1) {
fc7cbcd4
DS
4376 spin_lock(&fs_info->fs_roots_radix_lock);
4377 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4378 (void **)gang, root_objectid,
4379 ARRAY_SIZE(gang));
4380 if (!ret) {
4381 spin_unlock(&fs_info->fs_roots_radix_lock);
4382 break;
65d33fd7 4383 }
fc7cbcd4 4384 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4385
fc7cbcd4
DS
4386 for (i = 0; i < ret; i++) {
4387 /* Avoid to grab roots in dead_roots */
4388 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4389 gang[i] = NULL;
4390 continue;
4391 }
4392 /* grab all the search result for later use */
4393 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4394 }
fc7cbcd4 4395 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4396
fc7cbcd4
DS
4397 for (i = 0; i < ret; i++) {
4398 if (!gang[i])
65d33fd7 4399 continue;
fc7cbcd4
DS
4400 root_objectid = gang[i]->root_key.objectid;
4401 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4402 if (err)
6989627d 4403 goto out;
fc7cbcd4 4404 btrfs_put_root(gang[i]);
c146afad 4405 }
fc7cbcd4 4406 root_objectid++;
c146afad 4407 }
6989627d 4408out:
fc7cbcd4
DS
4409 /* release the uncleaned roots due to error */
4410 for (; i < ret; i++) {
4411 if (gang[i])
4412 btrfs_put_root(gang[i]);
65d33fd7
QW
4413 }
4414 return err;
c146afad 4415}
a2135011 4416
6bccf3ab 4417int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4418{
6bccf3ab 4419 struct btrfs_root *root = fs_info->tree_root;
c146afad 4420 struct btrfs_trans_handle *trans;
a74a4b97 4421
0b246afa 4422 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4423 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4424 mutex_unlock(&fs_info->cleaner_mutex);
4425 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4426
4427 /* wait until ongoing cleanup work done */
0b246afa
JM
4428 down_write(&fs_info->cleanup_work_sem);
4429 up_write(&fs_info->cleanup_work_sem);
c71bf099 4430
7a7eaa40 4431 trans = btrfs_join_transaction(root);
3612b495
TI
4432 if (IS_ERR(trans))
4433 return PTR_ERR(trans);
3a45bb20 4434 return btrfs_commit_transaction(trans);
c146afad
YZ
4435}
4436
36c86a9e
QW
4437static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4438{
4439 struct btrfs_transaction *trans;
4440 struct btrfs_transaction *tmp;
4441 bool found = false;
4442
4443 if (list_empty(&fs_info->trans_list))
4444 return;
4445
4446 /*
4447 * This function is only called at the very end of close_ctree(),
4448 * thus no other running transaction, no need to take trans_lock.
4449 */
4450 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4451 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4452 struct extent_state *cached = NULL;
4453 u64 dirty_bytes = 0;
4454 u64 cur = 0;
4455 u64 found_start;
4456 u64 found_end;
4457
4458 found = true;
4459 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4460 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4461 dirty_bytes += found_end + 1 - found_start;
4462 cur = found_end + 1;
4463 }
4464 btrfs_warn(fs_info,
4465 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4466 trans->transid, dirty_bytes);
4467 btrfs_cleanup_one_transaction(trans, fs_info);
4468
4469 if (trans == fs_info->running_transaction)
4470 fs_info->running_transaction = NULL;
4471 list_del_init(&trans->list);
4472
4473 btrfs_put_transaction(trans);
4474 trace_btrfs_transaction_commit(fs_info);
4475 }
4476 ASSERT(!found);
4477}
4478
b105e927 4479void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4480{
c146afad
YZ
4481 int ret;
4482
afcdd129 4483 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4484
8a1f1e3d
FM
4485 /*
4486 * If we had UNFINISHED_DROPS we could still be processing them, so
4487 * clear that bit and wake up relocation so it can stop.
4488 * We must do this before stopping the block group reclaim task, because
4489 * at btrfs_relocate_block_group() we wait for this bit, and after the
4490 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4491 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4492 * return 1.
4493 */
4494 btrfs_wake_unfinished_drop(fs_info);
4495
31e70e52
FM
4496 /*
4497 * We may have the reclaim task running and relocating a data block group,
4498 * in which case it may create delayed iputs. So stop it before we park
4499 * the cleaner kthread otherwise we can get new delayed iputs after
4500 * parking the cleaner, and that can make the async reclaim task to hang
4501 * if it's waiting for delayed iputs to complete, since the cleaner is
4502 * parked and can not run delayed iputs - this will make us hang when
4503 * trying to stop the async reclaim task.
4504 */
4505 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4506 /*
4507 * We don't want the cleaner to start new transactions, add more delayed
4508 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4509 * because that frees the task_struct, and the transaction kthread might
4510 * still try to wake up the cleaner.
4511 */
4512 kthread_park(fs_info->cleaner_kthread);
c146afad 4513
7343dd61 4514 /* wait for the qgroup rescan worker to stop */
d06f23d6 4515 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4516
803b2f54
SB
4517 /* wait for the uuid_scan task to finish */
4518 down(&fs_info->uuid_tree_rescan_sem);
4519 /* avoid complains from lockdep et al., set sem back to initial state */
4520 up(&fs_info->uuid_tree_rescan_sem);
4521
837d5b6e 4522 /* pause restriper - we want to resume on mount */
aa1b8cd4 4523 btrfs_pause_balance(fs_info);
837d5b6e 4524
8dabb742
SB
4525 btrfs_dev_replace_suspend_for_unmount(fs_info);
4526
aa1b8cd4 4527 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4528
4529 /* wait for any defraggers to finish */
4530 wait_event(fs_info->transaction_wait,
4531 (atomic_read(&fs_info->defrag_running) == 0));
4532
4533 /* clear out the rbtree of defraggable inodes */
26176e7c 4534 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4535
a362bb86
FM
4536 /*
4537 * After we parked the cleaner kthread, ordered extents may have
4538 * completed and created new delayed iputs. If one of the async reclaim
4539 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4540 * can hang forever trying to stop it, because if a delayed iput is
4541 * added after it ran btrfs_run_delayed_iputs() and before it called
4542 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4543 * no one else to run iputs.
4544 *
4545 * So wait for all ongoing ordered extents to complete and then run
4546 * delayed iputs. This works because once we reach this point no one
4547 * can either create new ordered extents nor create delayed iputs
4548 * through some other means.
4549 *
4550 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4551 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4552 * but the delayed iput for the respective inode is made only when doing
4553 * the final btrfs_put_ordered_extent() (which must happen at
4554 * btrfs_finish_ordered_io() when we are unmounting).
4555 */
4556 btrfs_flush_workqueue(fs_info->endio_write_workers);
4557 /* Ordered extents for free space inodes. */
4558 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4559 btrfs_run_delayed_iputs(fs_info);
4560
21c7e756 4561 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4562 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4563 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4564
b0643e59
DZ
4565 /* Cancel or finish ongoing discard work */
4566 btrfs_discard_cleanup(fs_info);
4567
bc98a42c 4568 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4569 /*
d6fd0ae2
OS
4570 * The cleaner kthread is stopped, so do one final pass over
4571 * unused block groups.
e44163e1 4572 */
0b246afa 4573 btrfs_delete_unused_bgs(fs_info);
e44163e1 4574
f0cc2cd7
FM
4575 /*
4576 * There might be existing delayed inode workers still running
4577 * and holding an empty delayed inode item. We must wait for
4578 * them to complete first because they can create a transaction.
4579 * This happens when someone calls btrfs_balance_delayed_items()
4580 * and then a transaction commit runs the same delayed nodes
4581 * before any delayed worker has done something with the nodes.
4582 * We must wait for any worker here and not at transaction
4583 * commit time since that could cause a deadlock.
4584 * This is a very rare case.
4585 */
4586 btrfs_flush_workqueue(fs_info->delayed_workers);
4587
6bccf3ab 4588 ret = btrfs_commit_super(fs_info);
acce952b 4589 if (ret)
04892340 4590 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4591 }
4592
84961539 4593 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4594 btrfs_error_commit_super(fs_info);
0f7d52f4 4595
e3029d9f
AV
4596 kthread_stop(fs_info->transaction_kthread);
4597 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4598
e187831e 4599 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4600 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4601
5958253c
QW
4602 if (btrfs_check_quota_leak(fs_info)) {
4603 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4604 btrfs_err(fs_info, "qgroup reserved space leaked");
4605 }
4606
04892340 4607 btrfs_free_qgroup_config(fs_info);
fe816d0f 4608 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4609
963d678b 4610 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4611 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4612 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4613 }
bcc63abb 4614
5deb17e1 4615 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4616 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4617 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4618
6618a59b 4619 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4620 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4621
1a4319cc
LB
4622 btrfs_put_block_group_cache(fs_info);
4623
de348ee0
WS
4624 /*
4625 * we must make sure there is not any read request to
4626 * submit after we stopping all workers.
4627 */
4628 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4629 btrfs_stop_all_workers(fs_info);
4630
0a31daa4 4631 /* We shouldn't have any transaction open at this point */
36c86a9e 4632 warn_about_uncommitted_trans(fs_info);
0a31daa4 4633
afcdd129 4634 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4635 free_root_pointers(fs_info, true);
8c38938c 4636 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4637
4e19443d
JB
4638 /*
4639 * We must free the block groups after dropping the fs_roots as we could
4640 * have had an IO error and have left over tree log blocks that aren't
4641 * cleaned up until the fs roots are freed. This makes the block group
4642 * accounting appear to be wrong because there's pending reserved bytes,
4643 * so make sure we do the block group cleanup afterwards.
4644 */
4645 btrfs_free_block_groups(fs_info);
4646
13e6c37b 4647 iput(fs_info->btree_inode);
d6bfde87 4648
21adbd5c 4649#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4650 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4651 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4652#endif
4653
0b86a832 4654 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4655 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4656}
4657
b9fab919
CM
4658int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4659 int atomic)
5f39d397 4660{
1259ab75 4661 int ret;
727011e0 4662 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4663
0b32f4bb 4664 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4665 if (!ret)
4666 return ret;
4667
4668 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4669 parent_transid, atomic);
4670 if (ret == -EAGAIN)
4671 return ret;
1259ab75 4672 return !ret;
5f39d397
CM
4673}
4674
5f39d397
CM
4675void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4676{
2f4d60df 4677 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4678 u64 transid = btrfs_header_generation(buf);
b9473439 4679 int was_dirty;
b4ce94de 4680
06ea65a3
JB
4681#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4682 /*
4683 * This is a fast path so only do this check if we have sanity tests
52042d8e 4684 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4685 * outside of the sanity tests.
4686 */
b0132a3b 4687 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4688 return;
4689#endif
49d0c642 4690 btrfs_assert_tree_write_locked(buf);
0b246afa 4691 if (transid != fs_info->generation)
5d163e0e 4692 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4693 buf->start, transid, fs_info->generation);
0b32f4bb 4694 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4695 if (!was_dirty)
104b4e51
NB
4696 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4697 buf->len,
4698 fs_info->dirty_metadata_batch);
1f21ef0a 4699#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4700 /*
4701 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4702 * but item data not updated.
4703 * So here we should only check item pointers, not item data.
4704 */
4705 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4706 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4707 btrfs_print_leaf(buf);
1f21ef0a
FM
4708 ASSERT(0);
4709 }
4710#endif
eb60ceac
CM
4711}
4712
2ff7e61e 4713static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4714 int flush_delayed)
16cdcec7
MX
4715{
4716 /*
4717 * looks as though older kernels can get into trouble with
4718 * this code, they end up stuck in balance_dirty_pages forever
4719 */
e2d84521 4720 int ret;
16cdcec7
MX
4721
4722 if (current->flags & PF_MEMALLOC)
4723 return;
4724
b53d3f5d 4725 if (flush_delayed)
2ff7e61e 4726 btrfs_balance_delayed_items(fs_info);
16cdcec7 4727
d814a491
EL
4728 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4729 BTRFS_DIRTY_METADATA_THRESH,
4730 fs_info->dirty_metadata_batch);
e2d84521 4731 if (ret > 0) {
0b246afa 4732 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4733 }
16cdcec7
MX
4734}
4735
2ff7e61e 4736void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4737{
2ff7e61e 4738 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4739}
585ad2c3 4740
2ff7e61e 4741void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4742{
2ff7e61e 4743 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4744}
6b80053d 4745
2ff7e61e 4746static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4747{
fe816d0f
NB
4748 /* cleanup FS via transaction */
4749 btrfs_cleanup_transaction(fs_info);
4750
0b246afa 4751 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4752 btrfs_run_delayed_iputs(fs_info);
0b246afa 4753 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4754
0b246afa
JM
4755 down_write(&fs_info->cleanup_work_sem);
4756 up_write(&fs_info->cleanup_work_sem);
acce952b 4757}
4758
ef67963d
JB
4759static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4760{
fc7cbcd4
DS
4761 struct btrfs_root *gang[8];
4762 u64 root_objectid = 0;
4763 int ret;
4764
4765 spin_lock(&fs_info->fs_roots_radix_lock);
4766 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4767 (void **)gang, root_objectid,
4768 ARRAY_SIZE(gang))) != 0) {
4769 int i;
4770
4771 for (i = 0; i < ret; i++)
4772 gang[i] = btrfs_grab_root(gang[i]);
4773 spin_unlock(&fs_info->fs_roots_radix_lock);
4774
4775 for (i = 0; i < ret; i++) {
4776 if (!gang[i])
ef67963d 4777 continue;
fc7cbcd4
DS
4778 root_objectid = gang[i]->root_key.objectid;
4779 btrfs_free_log(NULL, gang[i]);
4780 btrfs_put_root(gang[i]);
ef67963d 4781 }
fc7cbcd4
DS
4782 root_objectid++;
4783 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4784 }
fc7cbcd4 4785 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4786 btrfs_free_log_root_tree(NULL, fs_info);
4787}
4788
143bede5 4789static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4790{
acce952b 4791 struct btrfs_ordered_extent *ordered;
acce952b 4792
199c2a9c 4793 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4794 /*
4795 * This will just short circuit the ordered completion stuff which will
4796 * make sure the ordered extent gets properly cleaned up.
4797 */
199c2a9c 4798 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4799 root_extent_list)
4800 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4801 spin_unlock(&root->ordered_extent_lock);
4802}
4803
4804static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4805{
4806 struct btrfs_root *root;
4807 struct list_head splice;
4808
4809 INIT_LIST_HEAD(&splice);
4810
4811 spin_lock(&fs_info->ordered_root_lock);
4812 list_splice_init(&fs_info->ordered_roots, &splice);
4813 while (!list_empty(&splice)) {
4814 root = list_first_entry(&splice, struct btrfs_root,
4815 ordered_root);
1de2cfde
JB
4816 list_move_tail(&root->ordered_root,
4817 &fs_info->ordered_roots);
199c2a9c 4818
2a85d9ca 4819 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4820 btrfs_destroy_ordered_extents(root);
4821
2a85d9ca
LB
4822 cond_resched();
4823 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4824 }
4825 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4826
4827 /*
4828 * We need this here because if we've been flipped read-only we won't
4829 * get sync() from the umount, so we need to make sure any ordered
4830 * extents that haven't had their dirty pages IO start writeout yet
4831 * actually get run and error out properly.
4832 */
4833 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4834}
4835
35a3621b 4836static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4837 struct btrfs_fs_info *fs_info)
acce952b 4838{
4839 struct rb_node *node;
4840 struct btrfs_delayed_ref_root *delayed_refs;
4841 struct btrfs_delayed_ref_node *ref;
4842 int ret = 0;
4843
4844 delayed_refs = &trans->delayed_refs;
4845
4846 spin_lock(&delayed_refs->lock);
d7df2c79 4847 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4848 spin_unlock(&delayed_refs->lock);
b79ce3dd 4849 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4850 return ret;
4851 }
4852
5c9d028b 4853 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4854 struct btrfs_delayed_ref_head *head;
0e0adbcf 4855 struct rb_node *n;
e78417d1 4856 bool pin_bytes = false;
acce952b 4857
d7df2c79
JB
4858 head = rb_entry(node, struct btrfs_delayed_ref_head,
4859 href_node);
3069bd26 4860 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4861 continue;
3069bd26 4862
d7df2c79 4863 spin_lock(&head->lock);
e3d03965 4864 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4865 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4866 ref_node);
d7df2c79 4867 ref->in_tree = 0;
e3d03965 4868 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4869 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4870 if (!list_empty(&ref->add_list))
4871 list_del(&ref->add_list);
d7df2c79
JB
4872 atomic_dec(&delayed_refs->num_entries);
4873 btrfs_put_delayed_ref(ref);
e78417d1 4874 }
d7df2c79
JB
4875 if (head->must_insert_reserved)
4876 pin_bytes = true;
4877 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4878 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4879 spin_unlock(&head->lock);
4880 spin_unlock(&delayed_refs->lock);
4881 mutex_unlock(&head->mutex);
acce952b 4882
f603bb94
NB
4883 if (pin_bytes) {
4884 struct btrfs_block_group *cache;
4885
4886 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4887 BUG_ON(!cache);
4888
4889 spin_lock(&cache->space_info->lock);
4890 spin_lock(&cache->lock);
4891 cache->pinned += head->num_bytes;
4892 btrfs_space_info_update_bytes_pinned(fs_info,
4893 cache->space_info, head->num_bytes);
4894 cache->reserved -= head->num_bytes;
4895 cache->space_info->bytes_reserved -= head->num_bytes;
4896 spin_unlock(&cache->lock);
4897 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4898
4899 btrfs_put_block_group(cache);
4900
4901 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4902 head->bytenr + head->num_bytes - 1);
4903 }
31890da0 4904 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4905 btrfs_put_delayed_ref_head(head);
acce952b 4906 cond_resched();
4907 spin_lock(&delayed_refs->lock);
4908 }
81f7eb00 4909 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4910
4911 spin_unlock(&delayed_refs->lock);
4912
4913 return ret;
4914}
4915
143bede5 4916static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4917{
4918 struct btrfs_inode *btrfs_inode;
4919 struct list_head splice;
4920
4921 INIT_LIST_HEAD(&splice);
4922
eb73c1b7
MX
4923 spin_lock(&root->delalloc_lock);
4924 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4925
4926 while (!list_empty(&splice)) {
fe816d0f 4927 struct inode *inode = NULL;
eb73c1b7
MX
4928 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4929 delalloc_inodes);
fe816d0f 4930 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4931 spin_unlock(&root->delalloc_lock);
acce952b 4932
fe816d0f
NB
4933 /*
4934 * Make sure we get a live inode and that it'll not disappear
4935 * meanwhile.
4936 */
4937 inode = igrab(&btrfs_inode->vfs_inode);
4938 if (inode) {
597441b3
JB
4939 unsigned int nofs_flag;
4940
4941 nofs_flag = memalloc_nofs_save();
fe816d0f 4942 invalidate_inode_pages2(inode->i_mapping);
597441b3 4943 memalloc_nofs_restore(nofs_flag);
fe816d0f
NB
4944 iput(inode);
4945 }
eb73c1b7 4946 spin_lock(&root->delalloc_lock);
acce952b 4947 }
eb73c1b7
MX
4948 spin_unlock(&root->delalloc_lock);
4949}
4950
4951static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4952{
4953 struct btrfs_root *root;
4954 struct list_head splice;
4955
4956 INIT_LIST_HEAD(&splice);
4957
4958 spin_lock(&fs_info->delalloc_root_lock);
4959 list_splice_init(&fs_info->delalloc_roots, &splice);
4960 while (!list_empty(&splice)) {
4961 root = list_first_entry(&splice, struct btrfs_root,
4962 delalloc_root);
00246528 4963 root = btrfs_grab_root(root);
eb73c1b7
MX
4964 BUG_ON(!root);
4965 spin_unlock(&fs_info->delalloc_root_lock);
4966
4967 btrfs_destroy_delalloc_inodes(root);
00246528 4968 btrfs_put_root(root);
eb73c1b7
MX
4969
4970 spin_lock(&fs_info->delalloc_root_lock);
4971 }
4972 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4973}
4974
2ff7e61e 4975static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4976 struct extent_io_tree *dirty_pages,
4977 int mark)
4978{
4979 int ret;
acce952b 4980 struct extent_buffer *eb;
4981 u64 start = 0;
4982 u64 end;
acce952b 4983
4984 while (1) {
4985 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4986 mark, NULL);
acce952b 4987 if (ret)
4988 break;
4989
91166212 4990 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4991 while (start <= end) {
0b246afa
JM
4992 eb = find_extent_buffer(fs_info, start);
4993 start += fs_info->nodesize;
fd8b2b61 4994 if (!eb)
acce952b 4995 continue;
c4e54a65
JB
4996
4997 btrfs_tree_lock(eb);
fd8b2b61 4998 wait_on_extent_buffer_writeback(eb);
190a8339 4999 btrfs_clear_buffer_dirty(NULL, eb);
c4e54a65 5000 btrfs_tree_unlock(eb);
acce952b 5001
fd8b2b61 5002 free_extent_buffer_stale(eb);
acce952b 5003 }
5004 }
5005
5006 return ret;
5007}
5008
2ff7e61e 5009static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5010 struct extent_io_tree *unpin)
acce952b 5011{
acce952b 5012 u64 start;
5013 u64 end;
5014 int ret;
5015
acce952b 5016 while (1) {
0e6ec385
FM
5017 struct extent_state *cached_state = NULL;
5018
fcd5e742
LF
5019 /*
5020 * The btrfs_finish_extent_commit() may get the same range as
5021 * ours between find_first_extent_bit and clear_extent_dirty.
5022 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5023 * the same extent range.
5024 */
5025 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5026 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5027 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5028 if (ret) {
5029 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5030 break;
fcd5e742 5031 }
acce952b 5032
0e6ec385
FM
5033 clear_extent_dirty(unpin, start, end, &cached_state);
5034 free_extent_state(cached_state);
2ff7e61e 5035 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5036 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5037 cond_resched();
5038 }
5039
5040 return 0;
5041}
5042
32da5386 5043static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5044{
5045 struct inode *inode;
5046
5047 inode = cache->io_ctl.inode;
5048 if (inode) {
597441b3
JB
5049 unsigned int nofs_flag;
5050
5051 nofs_flag = memalloc_nofs_save();
c79a1751 5052 invalidate_inode_pages2(inode->i_mapping);
597441b3
JB
5053 memalloc_nofs_restore(nofs_flag);
5054
c79a1751
LB
5055 BTRFS_I(inode)->generation = 0;
5056 cache->io_ctl.inode = NULL;
5057 iput(inode);
5058 }
bbc37d6e 5059 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5060 btrfs_put_block_group(cache);
5061}
5062
5063void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5064 struct btrfs_fs_info *fs_info)
c79a1751 5065{
32da5386 5066 struct btrfs_block_group *cache;
c79a1751
LB
5067
5068 spin_lock(&cur_trans->dirty_bgs_lock);
5069 while (!list_empty(&cur_trans->dirty_bgs)) {
5070 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5071 struct btrfs_block_group,
c79a1751 5072 dirty_list);
c79a1751
LB
5073
5074 if (!list_empty(&cache->io_list)) {
5075 spin_unlock(&cur_trans->dirty_bgs_lock);
5076 list_del_init(&cache->io_list);
5077 btrfs_cleanup_bg_io(cache);
5078 spin_lock(&cur_trans->dirty_bgs_lock);
5079 }
5080
5081 list_del_init(&cache->dirty_list);
5082 spin_lock(&cache->lock);
5083 cache->disk_cache_state = BTRFS_DC_ERROR;
5084 spin_unlock(&cache->lock);
5085
5086 spin_unlock(&cur_trans->dirty_bgs_lock);
5087 btrfs_put_block_group(cache);
ba2c4d4e 5088 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5089 spin_lock(&cur_trans->dirty_bgs_lock);
5090 }
5091 spin_unlock(&cur_trans->dirty_bgs_lock);
5092
45ae2c18
NB
5093 /*
5094 * Refer to the definition of io_bgs member for details why it's safe
5095 * to use it without any locking
5096 */
c79a1751
LB
5097 while (!list_empty(&cur_trans->io_bgs)) {
5098 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5099 struct btrfs_block_group,
c79a1751 5100 io_list);
c79a1751
LB
5101
5102 list_del_init(&cache->io_list);
5103 spin_lock(&cache->lock);
5104 cache->disk_cache_state = BTRFS_DC_ERROR;
5105 spin_unlock(&cache->lock);
5106 btrfs_cleanup_bg_io(cache);
5107 }
5108}
5109
49b25e05 5110void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5111 struct btrfs_fs_info *fs_info)
49b25e05 5112{
bbbf7243
NB
5113 struct btrfs_device *dev, *tmp;
5114
2ff7e61e 5115 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5116 ASSERT(list_empty(&cur_trans->dirty_bgs));
5117 ASSERT(list_empty(&cur_trans->io_bgs));
5118
bbbf7243
NB
5119 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5120 post_commit_list) {
5121 list_del_init(&dev->post_commit_list);
5122 }
5123
2ff7e61e 5124 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5125
4a9d8bde 5126 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5127 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5128
4a9d8bde 5129 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5130 wake_up(&fs_info->transaction_wait);
49b25e05 5131
ccdf9b30 5132 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5133
2ff7e61e 5134 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5135 EXTENT_DIRTY);
fe119a6e 5136 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5137
d3575156
NA
5138 btrfs_free_redirty_list(cur_trans);
5139
4a9d8bde
MX
5140 cur_trans->state =TRANS_STATE_COMPLETED;
5141 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5142}
5143
2ff7e61e 5144static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5145{
5146 struct btrfs_transaction *t;
acce952b 5147
0b246afa 5148 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5149
0b246afa
JM
5150 spin_lock(&fs_info->trans_lock);
5151 while (!list_empty(&fs_info->trans_list)) {
5152 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5153 struct btrfs_transaction, list);
5154 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5155 refcount_inc(&t->use_count);
0b246afa 5156 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5157 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5158 btrfs_put_transaction(t);
0b246afa 5159 spin_lock(&fs_info->trans_lock);
724e2315
JB
5160 continue;
5161 }
0b246afa 5162 if (t == fs_info->running_transaction) {
724e2315 5163 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5164 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5165 /*
5166 * We wait for 0 num_writers since we don't hold a trans
5167 * handle open currently for this transaction.
5168 */
5169 wait_event(t->writer_wait,
5170 atomic_read(&t->num_writers) == 0);
5171 } else {
0b246afa 5172 spin_unlock(&fs_info->trans_lock);
724e2315 5173 }
2ff7e61e 5174 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5175
0b246afa
JM
5176 spin_lock(&fs_info->trans_lock);
5177 if (t == fs_info->running_transaction)
5178 fs_info->running_transaction = NULL;
acce952b 5179 list_del_init(&t->list);
0b246afa 5180 spin_unlock(&fs_info->trans_lock);
acce952b 5181
724e2315 5182 btrfs_put_transaction(t);
2e4e97ab 5183 trace_btrfs_transaction_commit(fs_info);
0b246afa 5184 spin_lock(&fs_info->trans_lock);
724e2315 5185 }
0b246afa
JM
5186 spin_unlock(&fs_info->trans_lock);
5187 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5188 btrfs_destroy_delayed_inodes(fs_info);
5189 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5190 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5191 btrfs_drop_all_logs(fs_info);
0b246afa 5192 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5193
5194 return 0;
5195}
ec7d6dfd 5196
453e4873 5197int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5198{
5199 struct btrfs_path *path;
5200 int ret;
5201 struct extent_buffer *l;
5202 struct btrfs_key search_key;
5203 struct btrfs_key found_key;
5204 int slot;
5205
5206 path = btrfs_alloc_path();
5207 if (!path)
5208 return -ENOMEM;
5209
5210 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5211 search_key.type = -1;
5212 search_key.offset = (u64)-1;
5213 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5214 if (ret < 0)
5215 goto error;
5216 BUG_ON(ret == 0); /* Corruption */
5217 if (path->slots[0] > 0) {
5218 slot = path->slots[0] - 1;
5219 l = path->nodes[0];
5220 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5221 root->free_objectid = max_t(u64, found_key.objectid + 1,
5222 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5223 } else {
23125104 5224 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5225 }
5226 ret = 0;
5227error:
5228 btrfs_free_path(path);
5229 return ret;
5230}
5231
543068a2 5232int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5233{
5234 int ret;
5235 mutex_lock(&root->objectid_mutex);
5236
6b8fad57 5237 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5238 btrfs_warn(root->fs_info,
5239 "the objectid of root %llu reaches its highest value",
5240 root->root_key.objectid);
5241 ret = -ENOSPC;
5242 goto out;
5243 }
5244
23125104 5245 *objectid = root->free_objectid++;
ec7d6dfd
NB
5246 ret = 0;
5247out:
5248 mutex_unlock(&root->objectid_mutex);
5249 return ret;
5250}