btrfs: csum_tree_block: return proper errno value
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
70f6d82e 45#include "free-space-tree.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
fcebe456 52#include "qgroup.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
fcd1f065 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 68 int read_only);
143bede5 69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
143bede5 72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
48a3b636
ES
78static int btrfs_cleanup_transaction(struct btrfs_root *root);
79static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 80
d352ac68 81/*
97eb6b69
DS
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
97eb6b69 86struct btrfs_end_io_wq {
ce9adaa5
CM
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
bfebd8b5 92 enum btrfs_wq_endio_type metadata;
ce9adaa5 93 struct list_head list;
8b712842 94 struct btrfs_work work;
ce9adaa5 95};
0da5468f 96
97eb6b69
DS
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
5598e900 113 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
114}
115
d352ac68
CM
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
44b8bd7e
CM
121struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
4a69a410
CM
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
127 int rw;
128 int mirror_num;
c8b97818 129 unsigned long bio_flags;
eaf25d93
CM
130 /*
131 * bio_offset is optional, can be used if the pages in the bio
132 * can't tell us where in the file the bio should go
133 */
134 u64 bio_offset;
8b712842 135 struct btrfs_work work;
79787eaa 136 int error;
44b8bd7e
CM
137};
138
85d4e461
CM
139/*
140 * Lockdep class keys for extent_buffer->lock's in this root. For a given
141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
142 * the level the eb occupies in the tree.
143 *
144 * Different roots are used for different purposes and may nest inside each
145 * other and they require separate keysets. As lockdep keys should be
146 * static, assign keysets according to the purpose of the root as indicated
147 * by btrfs_root->objectid. This ensures that all special purpose roots
148 * have separate keysets.
4008c04a 149 *
85d4e461
CM
150 * Lock-nesting across peer nodes is always done with the immediate parent
151 * node locked thus preventing deadlock. As lockdep doesn't know this, use
152 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 153 *
85d4e461
CM
154 * The key is set by the readpage_end_io_hook after the buffer has passed
155 * csum validation but before the pages are unlocked. It is also set by
156 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 157 *
85d4e461
CM
158 * We also add a check to make sure the highest level of the tree is the
159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
160 * needs update as well.
4008c04a
CM
161 */
162#ifdef CONFIG_DEBUG_LOCK_ALLOC
163# if BTRFS_MAX_LEVEL != 8
164# error
165# endif
85d4e461
CM
166
167static struct btrfs_lockdep_keyset {
168 u64 id; /* root objectid */
169 const char *name_stem; /* lock name stem */
170 char names[BTRFS_MAX_LEVEL + 1][20];
171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
172} btrfs_lockdep_keysets[] = {
173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 185 { .id = 0, .name_stem = "tree" },
4008c04a 186};
85d4e461
CM
187
188void __init btrfs_init_lockdep(void)
189{
190 int i, j;
191
192 /* initialize lockdep class names */
193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 snprintf(ks->names[j], sizeof(ks->names[j]),
198 "btrfs-%s-%02d", ks->name_stem, j);
199 }
200}
201
202void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 int level)
204{
205 struct btrfs_lockdep_keyset *ks;
206
207 BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209 /* find the matching keyset, id 0 is the default entry */
210 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 if (ks->id == objectid)
212 break;
213
214 lockdep_set_class_and_name(&eb->lock,
215 &ks->keys[level], ks->names[level]);
216}
217
4008c04a
CM
218#endif
219
d352ac68
CM
220/*
221 * extents on the btree inode are pretty simple, there's one extent
222 * that covers the entire device
223 */
b2950863 224static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 225 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 226 int create)
7eccb903 227{
5f39d397
CM
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
890871be 232 read_lock(&em_tree->lock);
d1310b2e 233 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
234 if (em) {
235 em->bdev =
236 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 237 read_unlock(&em_tree->lock);
5f39d397 238 goto out;
a061fc8d 239 }
890871be 240 read_unlock(&em_tree->lock);
7b13b7b1 241
172ddd60 242 em = alloc_extent_map();
5f39d397
CM
243 if (!em) {
244 em = ERR_PTR(-ENOMEM);
245 goto out;
246 }
247 em->start = 0;
0afbaf8c 248 em->len = (u64)-1;
c8b97818 249 em->block_len = (u64)-1;
5f39d397 250 em->block_start = 0;
a061fc8d 251 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 252
890871be 253 write_lock(&em_tree->lock);
09a2a8f9 254 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
255 if (ret == -EEXIST) {
256 free_extent_map(em);
7b13b7b1 257 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 258 if (!em)
0433f20d 259 em = ERR_PTR(-EIO);
5f39d397 260 } else if (ret) {
7b13b7b1 261 free_extent_map(em);
0433f20d 262 em = ERR_PTR(ret);
5f39d397 263 }
890871be 264 write_unlock(&em_tree->lock);
7b13b7b1 265
5f39d397
CM
266out:
267 return em;
7eccb903
CM
268}
269
b0496686 270u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 271{
0b947aff 272 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
273}
274
275void btrfs_csum_final(u32 crc, char *result)
276{
7e75bf3f 277 put_unaligned_le32(~crc, result);
19c00ddc
CM
278}
279
d352ac68
CM
280/*
281 * compute the csum for a btree block, and either verify it or write it
282 * into the csum field of the block.
283 */
01d58472
DD
284static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 struct extent_buffer *buf,
19c00ddc
CM
286 int verify)
287{
01d58472 288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 289 char *result = NULL;
19c00ddc
CM
290 unsigned long len;
291 unsigned long cur_len;
292 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
293 char *kaddr;
294 unsigned long map_start;
295 unsigned long map_len;
296 int err;
297 u32 crc = ~(u32)0;
607d432d 298 unsigned long inline_result;
19c00ddc
CM
299
300 len = buf->len - offset;
d397712b 301 while (len > 0) {
19c00ddc 302 err = map_private_extent_buffer(buf, offset, 32,
a6591715 303 &kaddr, &map_start, &map_len);
d397712b 304 if (err)
8bd98f0e 305 return err;
19c00ddc 306 cur_len = min(len, map_len - (offset - map_start));
b0496686 307 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
308 crc, cur_len);
309 len -= cur_len;
310 offset += cur_len;
19c00ddc 311 }
607d432d 312 if (csum_size > sizeof(inline_result)) {
31e818fe 313 result = kzalloc(csum_size, GFP_NOFS);
607d432d 314 if (!result)
8bd98f0e 315 return -ENOMEM;
607d432d
JB
316 } else {
317 result = (char *)&inline_result;
318 }
319
19c00ddc
CM
320 btrfs_csum_final(crc, result);
321
322 if (verify) {
607d432d 323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
324 u32 val;
325 u32 found = 0;
607d432d 326 memcpy(&found, result, csum_size);
e4204ded 327
607d432d 328 read_extent_buffer(buf, &val, 0, csum_size);
94647322
DS
329 btrfs_warn_rl(fs_info,
330 "%s checksum verify failed on %llu wanted %X found %X "
331 "level %d",
01d58472 332 fs_info->sb->s_id, buf->start,
efe120a0 333 val, found, btrfs_header_level(buf));
607d432d
JB
334 if (result != (char *)&inline_result)
335 kfree(result);
8bd98f0e 336 return -EUCLEAN;
19c00ddc
CM
337 }
338 } else {
607d432d 339 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 340 }
607d432d
JB
341 if (result != (char *)&inline_result)
342 kfree(result);
19c00ddc
CM
343 return 0;
344}
345
d352ac68
CM
346/*
347 * we can't consider a given block up to date unless the transid of the
348 * block matches the transid in the parent node's pointer. This is how we
349 * detect blocks that either didn't get written at all or got written
350 * in the wrong place.
351 */
1259ab75 352static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
353 struct extent_buffer *eb, u64 parent_transid,
354 int atomic)
1259ab75 355{
2ac55d41 356 struct extent_state *cached_state = NULL;
1259ab75 357 int ret;
2755a0de 358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
359
360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361 return 0;
362
b9fab919
CM
363 if (atomic)
364 return -EAGAIN;
365
a26e8c9f
JB
366 if (need_lock) {
367 btrfs_tree_read_lock(eb);
368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 }
370
2ac55d41 371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 372 &cached_state);
0b32f4bb 373 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
374 btrfs_header_generation(eb) == parent_transid) {
375 ret = 0;
376 goto out;
377 }
94647322
DS
378 btrfs_err_rl(eb->fs_info,
379 "parent transid verify failed on %llu wanted %llu found %llu",
380 eb->start,
29549aec 381 parent_transid, btrfs_header_generation(eb));
1259ab75 382 ret = 1;
a26e8c9f
JB
383
384 /*
385 * Things reading via commit roots that don't have normal protection,
386 * like send, can have a really old block in cache that may point at a
387 * block that has been free'd and re-allocated. So don't clear uptodate
388 * if we find an eb that is under IO (dirty/writeback) because we could
389 * end up reading in the stale data and then writing it back out and
390 * making everybody very sad.
391 */
392 if (!extent_buffer_under_io(eb))
393 clear_extent_buffer_uptodate(eb);
33958dc6 394out:
2ac55d41
JB
395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 &cached_state, GFP_NOFS);
472b909f
JB
397 if (need_lock)
398 btrfs_tree_read_unlock_blocking(eb);
1259ab75 399 return ret;
1259ab75
CM
400}
401
1104a885
DS
402/*
403 * Return 0 if the superblock checksum type matches the checksum value of that
404 * algorithm. Pass the raw disk superblock data.
405 */
406static int btrfs_check_super_csum(char *raw_disk_sb)
407{
408 struct btrfs_super_block *disk_sb =
409 (struct btrfs_super_block *)raw_disk_sb;
410 u16 csum_type = btrfs_super_csum_type(disk_sb);
411 int ret = 0;
412
413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 u32 crc = ~(u32)0;
415 const int csum_size = sizeof(crc);
416 char result[csum_size];
417
418 /*
419 * The super_block structure does not span the whole
420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421 * is filled with zeros and is included in the checkum.
422 */
423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 btrfs_csum_final(crc, result);
426
427 if (memcmp(raw_disk_sb, result, csum_size))
428 ret = 1;
429 }
430
431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 432 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
433 csum_type);
434 ret = 1;
435 }
436
437 return ret;
438}
439
d352ac68
CM
440/*
441 * helper to read a given tree block, doing retries as required when
442 * the checksums don't match and we have alternate mirrors to try.
443 */
f188591e
CM
444static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445 struct extent_buffer *eb,
ca7a79ad 446 u64 start, u64 parent_transid)
f188591e
CM
447{
448 struct extent_io_tree *io_tree;
ea466794 449 int failed = 0;
f188591e
CM
450 int ret;
451 int num_copies = 0;
452 int mirror_num = 0;
ea466794 453 int failed_mirror = 0;
f188591e 454
a826d6dc 455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457 while (1) {
bb82ab88
AJ
458 ret = read_extent_buffer_pages(io_tree, eb, start,
459 WAIT_COMPLETE,
f188591e 460 btree_get_extent, mirror_num);
256dd1bb
SB
461 if (!ret) {
462 if (!verify_parent_transid(io_tree, eb,
b9fab919 463 parent_transid, 0))
256dd1bb
SB
464 break;
465 else
466 ret = -EIO;
467 }
d397712b 468
a826d6dc
JB
469 /*
470 * This buffer's crc is fine, but its contents are corrupted, so
471 * there is no reason to read the other copies, they won't be
472 * any less wrong.
473 */
474 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
475 break;
476
5d964051 477 num_copies = btrfs_num_copies(root->fs_info,
f188591e 478 eb->start, eb->len);
4235298e 479 if (num_copies == 1)
ea466794 480 break;
4235298e 481
5cf1ab56
JB
482 if (!failed_mirror) {
483 failed = 1;
484 failed_mirror = eb->read_mirror;
485 }
486
f188591e 487 mirror_num++;
ea466794
JB
488 if (mirror_num == failed_mirror)
489 mirror_num++;
490
4235298e 491 if (mirror_num > num_copies)
ea466794 492 break;
f188591e 493 }
ea466794 494
c0901581 495 if (failed && !ret && failed_mirror)
ea466794
JB
496 repair_eb_io_failure(root, eb, failed_mirror);
497
498 return ret;
f188591e 499}
19c00ddc 500
d352ac68 501/*
d397712b
CM
502 * checksum a dirty tree block before IO. This has extra checks to make sure
503 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 504 */
d397712b 505
01d58472 506static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 507{
4eee4fa4 508 u64 start = page_offset(page);
19c00ddc 509 u64 found_start;
19c00ddc 510 struct extent_buffer *eb;
f188591e 511
4f2de97a
JB
512 eb = (struct extent_buffer *)page->private;
513 if (page != eb->pages[0])
514 return 0;
19c00ddc 515 found_start = btrfs_header_bytenr(eb);
fae7f21c 516 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 517 return 0;
8bd98f0e 518 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
519}
520
01d58472 521static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
522 struct extent_buffer *eb)
523{
01d58472 524 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
525 u8 fsid[BTRFS_UUID_SIZE];
526 int ret = 1;
527
0a4e5586 528 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
529 while (fs_devices) {
530 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
531 ret = 0;
532 break;
533 }
534 fs_devices = fs_devices->seed;
535 }
536 return ret;
537}
538
a826d6dc 539#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
540 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
541 "root=%llu, slot=%d", reason, \
c1c9ff7c 542 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
543
544static noinline int check_leaf(struct btrfs_root *root,
545 struct extent_buffer *leaf)
546{
547 struct btrfs_key key;
548 struct btrfs_key leaf_key;
549 u32 nritems = btrfs_header_nritems(leaf);
550 int slot;
551
552 if (nritems == 0)
553 return 0;
554
555 /* Check the 0 item */
556 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
557 BTRFS_LEAF_DATA_SIZE(root)) {
558 CORRUPT("invalid item offset size pair", leaf, root, 0);
559 return -EIO;
560 }
561
562 /*
563 * Check to make sure each items keys are in the correct order and their
564 * offsets make sense. We only have to loop through nritems-1 because
565 * we check the current slot against the next slot, which verifies the
566 * next slot's offset+size makes sense and that the current's slot
567 * offset is correct.
568 */
569 for (slot = 0; slot < nritems - 1; slot++) {
570 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
571 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
572
573 /* Make sure the keys are in the right order */
574 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
575 CORRUPT("bad key order", leaf, root, slot);
576 return -EIO;
577 }
578
579 /*
580 * Make sure the offset and ends are right, remember that the
581 * item data starts at the end of the leaf and grows towards the
582 * front.
583 */
584 if (btrfs_item_offset_nr(leaf, slot) !=
585 btrfs_item_end_nr(leaf, slot + 1)) {
586 CORRUPT("slot offset bad", leaf, root, slot);
587 return -EIO;
588 }
589
590 /*
591 * Check to make sure that we don't point outside of the leaf,
592 * just incase all the items are consistent to eachother, but
593 * all point outside of the leaf.
594 */
595 if (btrfs_item_end_nr(leaf, slot) >
596 BTRFS_LEAF_DATA_SIZE(root)) {
597 CORRUPT("slot end outside of leaf", leaf, root, slot);
598 return -EIO;
599 }
600 }
601
602 return 0;
603}
604
facc8a22
MX
605static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
606 u64 phy_offset, struct page *page,
607 u64 start, u64 end, int mirror)
ce9adaa5 608{
ce9adaa5
CM
609 u64 found_start;
610 int found_level;
ce9adaa5
CM
611 struct extent_buffer *eb;
612 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 613 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 614 int ret = 0;
727011e0 615 int reads_done;
ce9adaa5 616
ce9adaa5
CM
617 if (!page->private)
618 goto out;
d397712b 619
4f2de97a 620 eb = (struct extent_buffer *)page->private;
d397712b 621
0b32f4bb
JB
622 /* the pending IO might have been the only thing that kept this buffer
623 * in memory. Make sure we have a ref for all this other checks
624 */
625 extent_buffer_get(eb);
626
627 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
628 if (!reads_done)
629 goto err;
f188591e 630
5cf1ab56 631 eb->read_mirror = mirror;
656f30db 632 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
633 ret = -EIO;
634 goto err;
635 }
636
ce9adaa5 637 found_start = btrfs_header_bytenr(eb);
727011e0 638 if (found_start != eb->start) {
02873e43
ZL
639 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
640 found_start, eb->start);
f188591e 641 ret = -EIO;
ce9adaa5
CM
642 goto err;
643 }
02873e43
ZL
644 if (check_tree_block_fsid(fs_info, eb)) {
645 btrfs_err_rl(fs_info, "bad fsid on block %llu",
646 eb->start);
1259ab75
CM
647 ret = -EIO;
648 goto err;
649 }
ce9adaa5 650 found_level = btrfs_header_level(eb);
1c24c3ce 651 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
652 btrfs_err(fs_info, "bad tree block level %d",
653 (int)btrfs_header_level(eb));
1c24c3ce
JB
654 ret = -EIO;
655 goto err;
656 }
ce9adaa5 657
85d4e461
CM
658 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
659 eb, found_level);
4008c04a 660
02873e43 661 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 662 if (ret)
a826d6dc 663 goto err;
a826d6dc
JB
664
665 /*
666 * If this is a leaf block and it is corrupt, set the corrupt bit so
667 * that we don't try and read the other copies of this block, just
668 * return -EIO.
669 */
670 if (found_level == 0 && check_leaf(root, eb)) {
671 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
672 ret = -EIO;
673 }
ce9adaa5 674
0b32f4bb
JB
675 if (!ret)
676 set_extent_buffer_uptodate(eb);
ce9adaa5 677err:
79fb65a1
JB
678 if (reads_done &&
679 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
02873e43 680 btree_readahead_hook(fs_info, eb, eb->start, ret);
4bb31e92 681
53b381b3
DW
682 if (ret) {
683 /*
684 * our io error hook is going to dec the io pages
685 * again, we have to make sure it has something
686 * to decrement
687 */
688 atomic_inc(&eb->io_pages);
0b32f4bb 689 clear_extent_buffer_uptodate(eb);
53b381b3 690 }
0b32f4bb 691 free_extent_buffer(eb);
ce9adaa5 692out:
f188591e 693 return ret;
ce9adaa5
CM
694}
695
ea466794 696static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 697{
4bb31e92 698 struct extent_buffer *eb;
4bb31e92 699
4f2de97a 700 eb = (struct extent_buffer *)page->private;
656f30db 701 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 702 eb->read_mirror = failed_mirror;
53b381b3 703 atomic_dec(&eb->io_pages);
ea466794 704 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
02873e43 705 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
4bb31e92
AJ
706 return -EIO; /* we fixed nothing */
707}
708
4246a0b6 709static void end_workqueue_bio(struct bio *bio)
ce9adaa5 710{
97eb6b69 711 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 712 struct btrfs_fs_info *fs_info;
9e0af237
LB
713 struct btrfs_workqueue *wq;
714 btrfs_work_func_t func;
ce9adaa5 715
ce9adaa5 716 fs_info = end_io_wq->info;
4246a0b6 717 end_io_wq->error = bio->bi_error;
d20f7043 718
7b6d91da 719 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
720 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
721 wq = fs_info->endio_meta_write_workers;
722 func = btrfs_endio_meta_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
724 wq = fs_info->endio_freespace_worker;
725 func = btrfs_freespace_write_helper;
726 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
727 wq = fs_info->endio_raid56_workers;
728 func = btrfs_endio_raid56_helper;
729 } else {
730 wq = fs_info->endio_write_workers;
731 func = btrfs_endio_write_helper;
732 }
d20f7043 733 } else {
8b110e39
MX
734 if (unlikely(end_io_wq->metadata ==
735 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
736 wq = fs_info->endio_repair_workers;
737 func = btrfs_endio_repair_helper;
738 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
739 wq = fs_info->endio_raid56_workers;
740 func = btrfs_endio_raid56_helper;
741 } else if (end_io_wq->metadata) {
742 wq = fs_info->endio_meta_workers;
743 func = btrfs_endio_meta_helper;
744 } else {
745 wq = fs_info->endio_workers;
746 func = btrfs_endio_helper;
747 }
d20f7043 748 }
9e0af237
LB
749
750 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
751 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
752}
753
22c59948 754int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 755 enum btrfs_wq_endio_type metadata)
0b86a832 756{
97eb6b69 757 struct btrfs_end_io_wq *end_io_wq;
8b110e39 758
97eb6b69 759 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
760 if (!end_io_wq)
761 return -ENOMEM;
762
763 end_io_wq->private = bio->bi_private;
764 end_io_wq->end_io = bio->bi_end_io;
22c59948 765 end_io_wq->info = info;
ce9adaa5
CM
766 end_io_wq->error = 0;
767 end_io_wq->bio = bio;
22c59948 768 end_io_wq->metadata = metadata;
ce9adaa5
CM
769
770 bio->bi_private = end_io_wq;
771 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
772 return 0;
773}
774
b64a2851 775unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 776{
4854ddd0 777 unsigned long limit = min_t(unsigned long,
5cdc7ad3 778 info->thread_pool_size,
4854ddd0
CM
779 info->fs_devices->open_devices);
780 return 256 * limit;
781}
0986fe9e 782
4a69a410
CM
783static void run_one_async_start(struct btrfs_work *work)
784{
4a69a410 785 struct async_submit_bio *async;
79787eaa 786 int ret;
4a69a410
CM
787
788 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
789 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
790 async->mirror_num, async->bio_flags,
791 async->bio_offset);
792 if (ret)
793 async->error = ret;
4a69a410
CM
794}
795
796static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
797{
798 struct btrfs_fs_info *fs_info;
799 struct async_submit_bio *async;
4854ddd0 800 int limit;
8b712842
CM
801
802 async = container_of(work, struct async_submit_bio, work);
803 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 804
b64a2851 805 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
806 limit = limit * 2 / 3;
807
ee863954
DS
808 /*
809 * atomic_dec_return implies a barrier for waitqueue_active
810 */
66657b31 811 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 812 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
813 wake_up(&fs_info->async_submit_wait);
814
79787eaa
JM
815 /* If an error occured we just want to clean up the bio and move on */
816 if (async->error) {
4246a0b6
CH
817 async->bio->bi_error = async->error;
818 bio_endio(async->bio);
79787eaa
JM
819 return;
820 }
821
4a69a410 822 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
823 async->mirror_num, async->bio_flags,
824 async->bio_offset);
4a69a410
CM
825}
826
827static void run_one_async_free(struct btrfs_work *work)
828{
829 struct async_submit_bio *async;
830
831 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
832 kfree(async);
833}
834
44b8bd7e
CM
835int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
836 int rw, struct bio *bio, int mirror_num,
c8b97818 837 unsigned long bio_flags,
eaf25d93 838 u64 bio_offset,
4a69a410
CM
839 extent_submit_bio_hook_t *submit_bio_start,
840 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
841{
842 struct async_submit_bio *async;
843
844 async = kmalloc(sizeof(*async), GFP_NOFS);
845 if (!async)
846 return -ENOMEM;
847
848 async->inode = inode;
849 async->rw = rw;
850 async->bio = bio;
851 async->mirror_num = mirror_num;
4a69a410
CM
852 async->submit_bio_start = submit_bio_start;
853 async->submit_bio_done = submit_bio_done;
854
9e0af237 855 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 856 run_one_async_done, run_one_async_free);
4a69a410 857
c8b97818 858 async->bio_flags = bio_flags;
eaf25d93 859 async->bio_offset = bio_offset;
8c8bee1d 860
79787eaa
JM
861 async->error = 0;
862
cb03c743 863 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 864
7b6d91da 865 if (rw & REQ_SYNC)
5cdc7ad3 866 btrfs_set_work_high_priority(&async->work);
d313d7a3 867
5cdc7ad3 868 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 869
d397712b 870 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
871 atomic_read(&fs_info->nr_async_submits)) {
872 wait_event(fs_info->async_submit_wait,
873 (atomic_read(&fs_info->nr_async_submits) == 0));
874 }
875
44b8bd7e
CM
876 return 0;
877}
878
ce3ed71a
CM
879static int btree_csum_one_bio(struct bio *bio)
880{
2c30c71b 881 struct bio_vec *bvec;
ce3ed71a 882 struct btrfs_root *root;
2c30c71b 883 int i, ret = 0;
ce3ed71a 884
2c30c71b 885 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 886 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 887 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
888 if (ret)
889 break;
ce3ed71a 890 }
2c30c71b 891
79787eaa 892 return ret;
ce3ed71a
CM
893}
894
4a69a410
CM
895static int __btree_submit_bio_start(struct inode *inode, int rw,
896 struct bio *bio, int mirror_num,
eaf25d93
CM
897 unsigned long bio_flags,
898 u64 bio_offset)
22c59948 899{
8b712842
CM
900 /*
901 * when we're called for a write, we're already in the async
5443be45 902 * submission context. Just jump into btrfs_map_bio
8b712842 903 */
79787eaa 904 return btree_csum_one_bio(bio);
4a69a410 905}
22c59948 906
4a69a410 907static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
908 int mirror_num, unsigned long bio_flags,
909 u64 bio_offset)
4a69a410 910{
61891923
SB
911 int ret;
912
8b712842 913 /*
4a69a410
CM
914 * when we're called for a write, we're already in the async
915 * submission context. Just jump into btrfs_map_bio
8b712842 916 */
61891923 917 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
4246a0b6
CH
918 if (ret) {
919 bio->bi_error = ret;
920 bio_endio(bio);
921 }
61891923 922 return ret;
0b86a832
CM
923}
924
de0022b9
JB
925static int check_async_write(struct inode *inode, unsigned long bio_flags)
926{
927 if (bio_flags & EXTENT_BIO_TREE_LOG)
928 return 0;
929#ifdef CONFIG_X86
362f924b 930 if (static_cpu_has_safe(X86_FEATURE_XMM4_2))
de0022b9
JB
931 return 0;
932#endif
933 return 1;
934}
935
44b8bd7e 936static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
937 int mirror_num, unsigned long bio_flags,
938 u64 bio_offset)
44b8bd7e 939{
de0022b9 940 int async = check_async_write(inode, bio_flags);
cad321ad
CM
941 int ret;
942
7b6d91da 943 if (!(rw & REQ_WRITE)) {
4a69a410
CM
944 /*
945 * called for a read, do the setup so that checksum validation
946 * can happen in the async kernel threads
947 */
f3f266ab 948 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 949 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 950 if (ret)
61891923
SB
951 goto out_w_error;
952 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
953 mirror_num, 0);
de0022b9
JB
954 } else if (!async) {
955 ret = btree_csum_one_bio(bio);
956 if (ret)
61891923
SB
957 goto out_w_error;
958 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
959 mirror_num, 0);
960 } else {
961 /*
962 * kthread helpers are used to submit writes so that
963 * checksumming can happen in parallel across all CPUs
964 */
965 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
966 inode, rw, bio, mirror_num, 0,
967 bio_offset,
968 __btree_submit_bio_start,
969 __btree_submit_bio_done);
44b8bd7e 970 }
d313d7a3 971
4246a0b6
CH
972 if (ret)
973 goto out_w_error;
974 return 0;
975
61891923 976out_w_error:
4246a0b6
CH
977 bio->bi_error = ret;
978 bio_endio(bio);
61891923 979 return ret;
44b8bd7e
CM
980}
981
3dd1462e 982#ifdef CONFIG_MIGRATION
784b4e29 983static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
984 struct page *newpage, struct page *page,
985 enum migrate_mode mode)
784b4e29
CM
986{
987 /*
988 * we can't safely write a btree page from here,
989 * we haven't done the locking hook
990 */
991 if (PageDirty(page))
992 return -EAGAIN;
993 /*
994 * Buffers may be managed in a filesystem specific way.
995 * We must have no buffers or drop them.
996 */
997 if (page_has_private(page) &&
998 !try_to_release_page(page, GFP_KERNEL))
999 return -EAGAIN;
a6bc32b8 1000 return migrate_page(mapping, newpage, page, mode);
784b4e29 1001}
3dd1462e 1002#endif
784b4e29 1003
0da5468f
CM
1004
1005static int btree_writepages(struct address_space *mapping,
1006 struct writeback_control *wbc)
1007{
e2d84521
MX
1008 struct btrfs_fs_info *fs_info;
1009 int ret;
1010
d8d5f3e1 1011 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1012
1013 if (wbc->for_kupdate)
1014 return 0;
1015
e2d84521 1016 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1017 /* this is a bit racy, but that's ok */
e2d84521
MX
1018 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1019 BTRFS_DIRTY_METADATA_THRESH);
1020 if (ret < 0)
793955bc 1021 return 0;
793955bc 1022 }
0b32f4bb 1023 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1024}
1025
b2950863 1026static int btree_readpage(struct file *file, struct page *page)
5f39d397 1027{
d1310b2e
CM
1028 struct extent_io_tree *tree;
1029 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1030 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1031}
22b0ebda 1032
70dec807 1033static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1034{
98509cfc 1035 if (PageWriteback(page) || PageDirty(page))
d397712b 1036 return 0;
0c4e538b 1037
f7a52a40 1038 return try_release_extent_buffer(page);
d98237b3
CM
1039}
1040
d47992f8
LC
1041static void btree_invalidatepage(struct page *page, unsigned int offset,
1042 unsigned int length)
d98237b3 1043{
d1310b2e
CM
1044 struct extent_io_tree *tree;
1045 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1046 extent_invalidatepage(tree, page, offset);
1047 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1048 if (PagePrivate(page)) {
efe120a0
FH
1049 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1050 "page private not zero on page %llu",
1051 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1052 ClearPagePrivate(page);
1053 set_page_private(page, 0);
1054 page_cache_release(page);
1055 }
d98237b3
CM
1056}
1057
0b32f4bb
JB
1058static int btree_set_page_dirty(struct page *page)
1059{
bb146eb2 1060#ifdef DEBUG
0b32f4bb
JB
1061 struct extent_buffer *eb;
1062
1063 BUG_ON(!PagePrivate(page));
1064 eb = (struct extent_buffer *)page->private;
1065 BUG_ON(!eb);
1066 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1067 BUG_ON(!atomic_read(&eb->refs));
1068 btrfs_assert_tree_locked(eb);
bb146eb2 1069#endif
0b32f4bb
JB
1070 return __set_page_dirty_nobuffers(page);
1071}
1072
7f09410b 1073static const struct address_space_operations btree_aops = {
d98237b3 1074 .readpage = btree_readpage,
0da5468f 1075 .writepages = btree_writepages,
5f39d397
CM
1076 .releasepage = btree_releasepage,
1077 .invalidatepage = btree_invalidatepage,
5a92bc88 1078#ifdef CONFIG_MIGRATION
784b4e29 1079 .migratepage = btree_migratepage,
5a92bc88 1080#endif
0b32f4bb 1081 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1082};
1083
d3e46fea 1084void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1085{
5f39d397
CM
1086 struct extent_buffer *buf = NULL;
1087 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1088
a83fffb7 1089 buf = btrfs_find_create_tree_block(root, bytenr);
5f39d397 1090 if (!buf)
6197d86e 1091 return;
d1310b2e 1092 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1093 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1094 free_extent_buffer(buf);
090d1875
CM
1095}
1096
c0dcaa4d 1097int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1098 int mirror_num, struct extent_buffer **eb)
1099{
1100 struct extent_buffer *buf = NULL;
1101 struct inode *btree_inode = root->fs_info->btree_inode;
1102 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1103 int ret;
1104
a83fffb7 1105 buf = btrfs_find_create_tree_block(root, bytenr);
ab0fff03
AJ
1106 if (!buf)
1107 return 0;
1108
1109 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1110
1111 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1112 btree_get_extent, mirror_num);
1113 if (ret) {
1114 free_extent_buffer(buf);
1115 return ret;
1116 }
1117
1118 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1119 free_extent_buffer(buf);
1120 return -EIO;
0b32f4bb 1121 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1122 *eb = buf;
1123 } else {
1124 free_extent_buffer(buf);
1125 }
1126 return 0;
1127}
1128
01d58472 1129struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1130 u64 bytenr)
0999df54 1131{
01d58472 1132 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1133}
1134
1135struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1136 u64 bytenr)
0999df54 1137{
fccb84c9 1138 if (btrfs_test_is_dummy_root(root))
ce3e6984
DS
1139 return alloc_test_extent_buffer(root->fs_info, bytenr);
1140 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1141}
1142
1143
e02119d5
CM
1144int btrfs_write_tree_block(struct extent_buffer *buf)
1145{
727011e0 1146 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1147 buf->start + buf->len - 1);
e02119d5
CM
1148}
1149
1150int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1151{
727011e0 1152 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1153 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1154}
1155
0999df54 1156struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1157 u64 parent_transid)
0999df54
CM
1158{
1159 struct extent_buffer *buf = NULL;
0999df54
CM
1160 int ret;
1161
a83fffb7 1162 buf = btrfs_find_create_tree_block(root, bytenr);
0999df54 1163 if (!buf)
64c043de 1164 return ERR_PTR(-ENOMEM);
0999df54 1165
ca7a79ad 1166 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1167 if (ret) {
1168 free_extent_buffer(buf);
64c043de 1169 return ERR_PTR(ret);
0f0fe8f7 1170 }
5f39d397 1171 return buf;
ce9adaa5 1172
eb60ceac
CM
1173}
1174
01d58472
DD
1175void clean_tree_block(struct btrfs_trans_handle *trans,
1176 struct btrfs_fs_info *fs_info,
d5c13f92 1177 struct extent_buffer *buf)
ed2ff2cb 1178{
55c69072 1179 if (btrfs_header_generation(buf) ==
e2d84521 1180 fs_info->running_transaction->transid) {
b9447ef8 1181 btrfs_assert_tree_locked(buf);
b4ce94de 1182
b9473439 1183 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1184 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1185 -buf->len,
1186 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1187 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1188 btrfs_set_lock_blocking(buf);
1189 clear_extent_buffer_dirty(buf);
1190 }
925baedd 1191 }
5f39d397
CM
1192}
1193
8257b2dc
MX
1194static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1195{
1196 struct btrfs_subvolume_writers *writers;
1197 int ret;
1198
1199 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1200 if (!writers)
1201 return ERR_PTR(-ENOMEM);
1202
908c7f19 1203 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1204 if (ret < 0) {
1205 kfree(writers);
1206 return ERR_PTR(ret);
1207 }
1208
1209 init_waitqueue_head(&writers->wait);
1210 return writers;
1211}
1212
1213static void
1214btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1215{
1216 percpu_counter_destroy(&writers->counter);
1217 kfree(writers);
1218}
1219
707e8a07
DS
1220static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1221 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1222 u64 objectid)
d97e63b6 1223{
cfaa7295 1224 root->node = NULL;
a28ec197 1225 root->commit_root = NULL;
db94535d
CM
1226 root->sectorsize = sectorsize;
1227 root->nodesize = nodesize;
87ee04eb 1228 root->stripesize = stripesize;
27cdeb70 1229 root->state = 0;
d68fc57b 1230 root->orphan_cleanup_state = 0;
0b86a832 1231
0f7d52f4
CM
1232 root->objectid = objectid;
1233 root->last_trans = 0;
13a8a7c8 1234 root->highest_objectid = 0;
eb73c1b7 1235 root->nr_delalloc_inodes = 0;
199c2a9c 1236 root->nr_ordered_extents = 0;
58176a96 1237 root->name = NULL;
6bef4d31 1238 root->inode_tree = RB_ROOT;
16cdcec7 1239 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1240 root->block_rsv = NULL;
d68fc57b 1241 root->orphan_block_rsv = NULL;
0b86a832
CM
1242
1243 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1244 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1245 INIT_LIST_HEAD(&root->delalloc_inodes);
1246 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1247 INIT_LIST_HEAD(&root->ordered_extents);
1248 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1249 INIT_LIST_HEAD(&root->logged_list[0]);
1250 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1251 spin_lock_init(&root->orphan_lock);
5d4f98a2 1252 spin_lock_init(&root->inode_lock);
eb73c1b7 1253 spin_lock_init(&root->delalloc_lock);
199c2a9c 1254 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1255 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1256 spin_lock_init(&root->log_extents_lock[0]);
1257 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1258 mutex_init(&root->objectid_mutex);
e02119d5 1259 mutex_init(&root->log_mutex);
31f3d255 1260 mutex_init(&root->ordered_extent_mutex);
573bfb72 1261 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1262 init_waitqueue_head(&root->log_writer_wait);
1263 init_waitqueue_head(&root->log_commit_wait[0]);
1264 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1265 INIT_LIST_HEAD(&root->log_ctxs[0]);
1266 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1267 atomic_set(&root->log_commit[0], 0);
1268 atomic_set(&root->log_commit[1], 0);
1269 atomic_set(&root->log_writers, 0);
2ecb7923 1270 atomic_set(&root->log_batch, 0);
8a35d95f 1271 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1272 atomic_set(&root->refs, 1);
8257b2dc 1273 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1274 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1275 root->log_transid = 0;
d1433deb 1276 root->log_transid_committed = -1;
257c62e1 1277 root->last_log_commit = 0;
06ea65a3
JB
1278 if (fs_info)
1279 extent_io_tree_init(&root->dirty_log_pages,
1280 fs_info->btree_inode->i_mapping);
017e5369 1281
3768f368
CM
1282 memset(&root->root_key, 0, sizeof(root->root_key));
1283 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1284 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
06ea65a3
JB
1285 if (fs_info)
1286 root->defrag_trans_start = fs_info->generation;
1287 else
1288 root->defrag_trans_start = 0;
4d775673 1289 root->root_key.objectid = objectid;
0ee5dc67 1290 root->anon_dev = 0;
8ea05e3a 1291
5f3ab90a 1292 spin_lock_init(&root->root_item_lock);
3768f368
CM
1293}
1294
74e4d827
DS
1295static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1296 gfp_t flags)
6f07e42e 1297{
74e4d827 1298 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1299 if (root)
1300 root->fs_info = fs_info;
1301 return root;
1302}
1303
06ea65a3
JB
1304#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1305/* Should only be used by the testing infrastructure */
1306struct btrfs_root *btrfs_alloc_dummy_root(void)
1307{
1308 struct btrfs_root *root;
1309
74e4d827 1310 root = btrfs_alloc_root(NULL, GFP_KERNEL);
06ea65a3
JB
1311 if (!root)
1312 return ERR_PTR(-ENOMEM);
707e8a07 1313 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1314 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1315 root->alloc_bytenr = 0;
06ea65a3
JB
1316
1317 return root;
1318}
1319#endif
1320
20897f5c
AJ
1321struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1322 struct btrfs_fs_info *fs_info,
1323 u64 objectid)
1324{
1325 struct extent_buffer *leaf;
1326 struct btrfs_root *tree_root = fs_info->tree_root;
1327 struct btrfs_root *root;
1328 struct btrfs_key key;
1329 int ret = 0;
6463fe58 1330 uuid_le uuid;
20897f5c 1331
74e4d827 1332 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1333 if (!root)
1334 return ERR_PTR(-ENOMEM);
1335
707e8a07
DS
1336 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1337 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1338 root->root_key.objectid = objectid;
1339 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1340 root->root_key.offset = 0;
1341
4d75f8a9 1342 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1343 if (IS_ERR(leaf)) {
1344 ret = PTR_ERR(leaf);
1dd05682 1345 leaf = NULL;
20897f5c
AJ
1346 goto fail;
1347 }
1348
20897f5c
AJ
1349 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1350 btrfs_set_header_bytenr(leaf, leaf->start);
1351 btrfs_set_header_generation(leaf, trans->transid);
1352 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1353 btrfs_set_header_owner(leaf, objectid);
1354 root->node = leaf;
1355
0a4e5586 1356 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1357 BTRFS_FSID_SIZE);
1358 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1359 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1360 BTRFS_UUID_SIZE);
1361 btrfs_mark_buffer_dirty(leaf);
1362
1363 root->commit_root = btrfs_root_node(root);
27cdeb70 1364 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1365
1366 root->root_item.flags = 0;
1367 root->root_item.byte_limit = 0;
1368 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1369 btrfs_set_root_generation(&root->root_item, trans->transid);
1370 btrfs_set_root_level(&root->root_item, 0);
1371 btrfs_set_root_refs(&root->root_item, 1);
1372 btrfs_set_root_used(&root->root_item, leaf->len);
1373 btrfs_set_root_last_snapshot(&root->root_item, 0);
1374 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1375 uuid_le_gen(&uuid);
1376 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1377 root->root_item.drop_level = 0;
1378
1379 key.objectid = objectid;
1380 key.type = BTRFS_ROOT_ITEM_KEY;
1381 key.offset = 0;
1382 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1383 if (ret)
1384 goto fail;
1385
1386 btrfs_tree_unlock(leaf);
1387
1dd05682
TI
1388 return root;
1389
20897f5c 1390fail:
1dd05682
TI
1391 if (leaf) {
1392 btrfs_tree_unlock(leaf);
59885b39 1393 free_extent_buffer(root->commit_root);
1dd05682
TI
1394 free_extent_buffer(leaf);
1395 }
1396 kfree(root);
20897f5c 1397
1dd05682 1398 return ERR_PTR(ret);
20897f5c
AJ
1399}
1400
7237f183
YZ
1401static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1402 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1403{
1404 struct btrfs_root *root;
1405 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1406 struct extent_buffer *leaf;
e02119d5 1407
74e4d827 1408 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1409 if (!root)
7237f183 1410 return ERR_PTR(-ENOMEM);
e02119d5 1411
707e8a07
DS
1412 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1413 tree_root->stripesize, root, fs_info,
1414 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1415
1416 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1417 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1418 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1419
7237f183 1420 /*
27cdeb70
MX
1421 * DON'T set REF_COWS for log trees
1422 *
7237f183
YZ
1423 * log trees do not get reference counted because they go away
1424 * before a real commit is actually done. They do store pointers
1425 * to file data extents, and those reference counts still get
1426 * updated (along with back refs to the log tree).
1427 */
e02119d5 1428
4d75f8a9
DS
1429 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1430 NULL, 0, 0, 0);
7237f183
YZ
1431 if (IS_ERR(leaf)) {
1432 kfree(root);
1433 return ERR_CAST(leaf);
1434 }
e02119d5 1435
5d4f98a2
YZ
1436 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1437 btrfs_set_header_bytenr(leaf, leaf->start);
1438 btrfs_set_header_generation(leaf, trans->transid);
1439 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1440 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1441 root->node = leaf;
e02119d5
CM
1442
1443 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1444 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1445 btrfs_mark_buffer_dirty(root->node);
1446 btrfs_tree_unlock(root->node);
7237f183
YZ
1447 return root;
1448}
1449
1450int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1451 struct btrfs_fs_info *fs_info)
1452{
1453 struct btrfs_root *log_root;
1454
1455 log_root = alloc_log_tree(trans, fs_info);
1456 if (IS_ERR(log_root))
1457 return PTR_ERR(log_root);
1458 WARN_ON(fs_info->log_root_tree);
1459 fs_info->log_root_tree = log_root;
1460 return 0;
1461}
1462
1463int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1464 struct btrfs_root *root)
1465{
1466 struct btrfs_root *log_root;
1467 struct btrfs_inode_item *inode_item;
1468
1469 log_root = alloc_log_tree(trans, root->fs_info);
1470 if (IS_ERR(log_root))
1471 return PTR_ERR(log_root);
1472
1473 log_root->last_trans = trans->transid;
1474 log_root->root_key.offset = root->root_key.objectid;
1475
1476 inode_item = &log_root->root_item.inode;
3cae210f
QW
1477 btrfs_set_stack_inode_generation(inode_item, 1);
1478 btrfs_set_stack_inode_size(inode_item, 3);
1479 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1480 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1481 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1482
5d4f98a2 1483 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1484
1485 WARN_ON(root->log_root);
1486 root->log_root = log_root;
1487 root->log_transid = 0;
d1433deb 1488 root->log_transid_committed = -1;
257c62e1 1489 root->last_log_commit = 0;
e02119d5
CM
1490 return 0;
1491}
1492
35a3621b
SB
1493static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1494 struct btrfs_key *key)
e02119d5
CM
1495{
1496 struct btrfs_root *root;
1497 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1498 struct btrfs_path *path;
84234f3a 1499 u64 generation;
cb517eab 1500 int ret;
0f7d52f4 1501
cb517eab
MX
1502 path = btrfs_alloc_path();
1503 if (!path)
0f7d52f4 1504 return ERR_PTR(-ENOMEM);
cb517eab 1505
74e4d827 1506 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1507 if (!root) {
1508 ret = -ENOMEM;
1509 goto alloc_fail;
0f7d52f4
CM
1510 }
1511
707e8a07
DS
1512 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1513 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1514
cb517eab
MX
1515 ret = btrfs_find_root(tree_root, key, path,
1516 &root->root_item, &root->root_key);
0f7d52f4 1517 if (ret) {
13a8a7c8
YZ
1518 if (ret > 0)
1519 ret = -ENOENT;
cb517eab 1520 goto find_fail;
0f7d52f4 1521 }
13a8a7c8 1522
84234f3a 1523 generation = btrfs_root_generation(&root->root_item);
db94535d 1524 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1525 generation);
64c043de
LB
1526 if (IS_ERR(root->node)) {
1527 ret = PTR_ERR(root->node);
cb517eab
MX
1528 goto find_fail;
1529 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1530 ret = -EIO;
64c043de
LB
1531 free_extent_buffer(root->node);
1532 goto find_fail;
416bc658 1533 }
5d4f98a2 1534 root->commit_root = btrfs_root_node(root);
13a8a7c8 1535out:
cb517eab
MX
1536 btrfs_free_path(path);
1537 return root;
1538
cb517eab
MX
1539find_fail:
1540 kfree(root);
1541alloc_fail:
1542 root = ERR_PTR(ret);
1543 goto out;
1544}
1545
1546struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1547 struct btrfs_key *location)
1548{
1549 struct btrfs_root *root;
1550
1551 root = btrfs_read_tree_root(tree_root, location);
1552 if (IS_ERR(root))
1553 return root;
1554
1555 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1556 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1557 btrfs_check_and_init_root_item(&root->root_item);
1558 }
13a8a7c8 1559
5eda7b5e
CM
1560 return root;
1561}
1562
cb517eab
MX
1563int btrfs_init_fs_root(struct btrfs_root *root)
1564{
1565 int ret;
8257b2dc 1566 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1567
1568 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1569 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1570 GFP_NOFS);
1571 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1572 ret = -ENOMEM;
1573 goto fail;
1574 }
1575
8257b2dc
MX
1576 writers = btrfs_alloc_subvolume_writers();
1577 if (IS_ERR(writers)) {
1578 ret = PTR_ERR(writers);
1579 goto fail;
1580 }
1581 root->subv_writers = writers;
1582
cb517eab 1583 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1584 spin_lock_init(&root->ino_cache_lock);
1585 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1586
1587 ret = get_anon_bdev(&root->anon_dev);
1588 if (ret)
8257b2dc 1589 goto free_writers;
f32e48e9
CR
1590
1591 mutex_lock(&root->objectid_mutex);
1592 ret = btrfs_find_highest_objectid(root,
1593 &root->highest_objectid);
1594 if (ret) {
1595 mutex_unlock(&root->objectid_mutex);
1596 goto free_root_dev;
1597 }
1598
1599 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1600
1601 mutex_unlock(&root->objectid_mutex);
1602
cb517eab 1603 return 0;
8257b2dc 1604
f32e48e9
CR
1605free_root_dev:
1606 free_anon_bdev(root->anon_dev);
8257b2dc
MX
1607free_writers:
1608 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1609fail:
1610 kfree(root->free_ino_ctl);
1611 kfree(root->free_ino_pinned);
1612 return ret;
1613}
1614
171170c1
ST
1615static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1616 u64 root_id)
cb517eab
MX
1617{
1618 struct btrfs_root *root;
1619
1620 spin_lock(&fs_info->fs_roots_radix_lock);
1621 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1622 (unsigned long)root_id);
1623 spin_unlock(&fs_info->fs_roots_radix_lock);
1624 return root;
1625}
1626
1627int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1628 struct btrfs_root *root)
1629{
1630 int ret;
1631
1632 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1633 if (ret)
1634 return ret;
1635
1636 spin_lock(&fs_info->fs_roots_radix_lock);
1637 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1638 (unsigned long)root->root_key.objectid,
1639 root);
1640 if (ret == 0)
27cdeb70 1641 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1642 spin_unlock(&fs_info->fs_roots_radix_lock);
1643 radix_tree_preload_end();
1644
1645 return ret;
1646}
1647
c00869f1
MX
1648struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1649 struct btrfs_key *location,
1650 bool check_ref)
5eda7b5e
CM
1651{
1652 struct btrfs_root *root;
381cf658 1653 struct btrfs_path *path;
1d4c08e0 1654 struct btrfs_key key;
5eda7b5e
CM
1655 int ret;
1656
edbd8d4e
CM
1657 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1658 return fs_info->tree_root;
1659 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1660 return fs_info->extent_root;
8f18cf13
CM
1661 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1662 return fs_info->chunk_root;
1663 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1664 return fs_info->dev_root;
0403e47e
YZ
1665 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1666 return fs_info->csum_root;
bcef60f2
AJ
1667 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1668 return fs_info->quota_root ? fs_info->quota_root :
1669 ERR_PTR(-ENOENT);
f7a81ea4
SB
1670 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1671 return fs_info->uuid_root ? fs_info->uuid_root :
1672 ERR_PTR(-ENOENT);
70f6d82e
OS
1673 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1674 return fs_info->free_space_root ? fs_info->free_space_root :
1675 ERR_PTR(-ENOENT);
4df27c4d 1676again:
cb517eab 1677 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1678 if (root) {
c00869f1 1679 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1680 return ERR_PTR(-ENOENT);
5eda7b5e 1681 return root;
48475471 1682 }
5eda7b5e 1683
cb517eab 1684 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1685 if (IS_ERR(root))
1686 return root;
3394e160 1687
c00869f1 1688 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1689 ret = -ENOENT;
581bb050 1690 goto fail;
35a30d7c 1691 }
581bb050 1692
cb517eab 1693 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1694 if (ret)
1695 goto fail;
3394e160 1696
381cf658
DS
1697 path = btrfs_alloc_path();
1698 if (!path) {
1699 ret = -ENOMEM;
1700 goto fail;
1701 }
1d4c08e0
DS
1702 key.objectid = BTRFS_ORPHAN_OBJECTID;
1703 key.type = BTRFS_ORPHAN_ITEM_KEY;
1704 key.offset = location->objectid;
1705
1706 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1707 btrfs_free_path(path);
d68fc57b
YZ
1708 if (ret < 0)
1709 goto fail;
1710 if (ret == 0)
27cdeb70 1711 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1712
cb517eab 1713 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1714 if (ret) {
4df27c4d
YZ
1715 if (ret == -EEXIST) {
1716 free_fs_root(root);
1717 goto again;
1718 }
1719 goto fail;
0f7d52f4 1720 }
edbd8d4e 1721 return root;
4df27c4d
YZ
1722fail:
1723 free_fs_root(root);
1724 return ERR_PTR(ret);
edbd8d4e
CM
1725}
1726
04160088
CM
1727static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1728{
1729 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1730 int ret = 0;
04160088
CM
1731 struct btrfs_device *device;
1732 struct backing_dev_info *bdi;
b7967db7 1733
1f78160c
XG
1734 rcu_read_lock();
1735 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1736 if (!device->bdev)
1737 continue;
04160088 1738 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1739 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1740 ret = 1;
1741 break;
1742 }
1743 }
1f78160c 1744 rcu_read_unlock();
04160088
CM
1745 return ret;
1746}
1747
04160088
CM
1748static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1749{
ad081f14
JA
1750 int err;
1751
b4caecd4 1752 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1753 if (err)
1754 return err;
1755
df0ce26c 1756 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
04160088
CM
1757 bdi->congested_fn = btrfs_congested_fn;
1758 bdi->congested_data = info;
da2f0f74 1759 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1760 return 0;
1761}
1762
8b712842
CM
1763/*
1764 * called by the kthread helper functions to finally call the bio end_io
1765 * functions. This is where read checksum verification actually happens
1766 */
1767static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1768{
ce9adaa5 1769 struct bio *bio;
97eb6b69 1770 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1771
97eb6b69 1772 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1773 bio = end_io_wq->bio;
ce9adaa5 1774
4246a0b6 1775 bio->bi_error = end_io_wq->error;
8b712842
CM
1776 bio->bi_private = end_io_wq->private;
1777 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1778 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1779 bio_endio(bio);
44b8bd7e
CM
1780}
1781
a74a4b97
CM
1782static int cleaner_kthread(void *arg)
1783{
1784 struct btrfs_root *root = arg;
d0278245 1785 int again;
da288d28 1786 struct btrfs_trans_handle *trans;
a74a4b97
CM
1787
1788 do {
d0278245 1789 again = 0;
a74a4b97 1790
d0278245 1791 /* Make the cleaner go to sleep early. */
babbf170 1792 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1793 goto sleep;
1794
1795 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1796 goto sleep;
1797
dc7f370c
MX
1798 /*
1799 * Avoid the problem that we change the status of the fs
1800 * during the above check and trylock.
1801 */
babbf170 1802 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1803 mutex_unlock(&root->fs_info->cleaner_mutex);
1804 goto sleep;
76dda93c 1805 }
a74a4b97 1806
c2d6cb16 1807 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
d0278245 1808 btrfs_run_delayed_iputs(root);
c2d6cb16
FM
1809 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1810
d0278245
MX
1811 again = btrfs_clean_one_deleted_snapshot(root);
1812 mutex_unlock(&root->fs_info->cleaner_mutex);
1813
1814 /*
05323cd1
MX
1815 * The defragger has dealt with the R/O remount and umount,
1816 * needn't do anything special here.
d0278245
MX
1817 */
1818 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1819
1820 /*
1821 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1822 * with relocation (btrfs_relocate_chunk) and relocation
1823 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1824 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1825 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1826 * unused block groups.
1827 */
1828 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1829sleep:
9d1a2a3a 1830 if (!try_to_freeze() && !again) {
a74a4b97 1831 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1832 if (!kthread_should_stop())
1833 schedule();
a74a4b97
CM
1834 __set_current_state(TASK_RUNNING);
1835 }
1836 } while (!kthread_should_stop());
da288d28
FM
1837
1838 /*
1839 * Transaction kthread is stopped before us and wakes us up.
1840 * However we might have started a new transaction and COWed some
1841 * tree blocks when deleting unused block groups for example. So
1842 * make sure we commit the transaction we started to have a clean
1843 * shutdown when evicting the btree inode - if it has dirty pages
1844 * when we do the final iput() on it, eviction will trigger a
1845 * writeback for it which will fail with null pointer dereferences
1846 * since work queues and other resources were already released and
1847 * destroyed by the time the iput/eviction/writeback is made.
1848 */
1849 trans = btrfs_attach_transaction(root);
1850 if (IS_ERR(trans)) {
1851 if (PTR_ERR(trans) != -ENOENT)
1852 btrfs_err(root->fs_info,
1853 "cleaner transaction attach returned %ld",
1854 PTR_ERR(trans));
1855 } else {
1856 int ret;
1857
1858 ret = btrfs_commit_transaction(trans, root);
1859 if (ret)
1860 btrfs_err(root->fs_info,
1861 "cleaner open transaction commit returned %d",
1862 ret);
1863 }
1864
a74a4b97
CM
1865 return 0;
1866}
1867
1868static int transaction_kthread(void *arg)
1869{
1870 struct btrfs_root *root = arg;
1871 struct btrfs_trans_handle *trans;
1872 struct btrfs_transaction *cur;
8929ecfa 1873 u64 transid;
a74a4b97
CM
1874 unsigned long now;
1875 unsigned long delay;
914b2007 1876 bool cannot_commit;
a74a4b97
CM
1877
1878 do {
914b2007 1879 cannot_commit = false;
8b87dc17 1880 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1881 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1882
a4abeea4 1883 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1884 cur = root->fs_info->running_transaction;
1885 if (!cur) {
a4abeea4 1886 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1887 goto sleep;
1888 }
31153d81 1889
a74a4b97 1890 now = get_seconds();
4a9d8bde 1891 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1892 (now < cur->start_time ||
1893 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1894 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1895 delay = HZ * 5;
1896 goto sleep;
1897 }
8929ecfa 1898 transid = cur->transid;
a4abeea4 1899 spin_unlock(&root->fs_info->trans_lock);
56bec294 1900
79787eaa 1901 /* If the file system is aborted, this will always fail. */
354aa0fb 1902 trans = btrfs_attach_transaction(root);
914b2007 1903 if (IS_ERR(trans)) {
354aa0fb
MX
1904 if (PTR_ERR(trans) != -ENOENT)
1905 cannot_commit = true;
79787eaa 1906 goto sleep;
914b2007 1907 }
8929ecfa 1908 if (transid == trans->transid) {
79787eaa 1909 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1910 } else {
1911 btrfs_end_transaction(trans, root);
1912 }
a74a4b97
CM
1913sleep:
1914 wake_up_process(root->fs_info->cleaner_kthread);
1915 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1916
4e121c06
JB
1917 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1918 &root->fs_info->fs_state)))
1919 btrfs_cleanup_transaction(root);
a0acae0e 1920 if (!try_to_freeze()) {
a74a4b97 1921 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1922 if (!kthread_should_stop() &&
914b2007
JK
1923 (!btrfs_transaction_blocked(root->fs_info) ||
1924 cannot_commit))
8929ecfa 1925 schedule_timeout(delay);
a74a4b97
CM
1926 __set_current_state(TASK_RUNNING);
1927 }
1928 } while (!kthread_should_stop());
1929 return 0;
1930}
1931
af31f5e5
CM
1932/*
1933 * this will find the highest generation in the array of
1934 * root backups. The index of the highest array is returned,
1935 * or -1 if we can't find anything.
1936 *
1937 * We check to make sure the array is valid by comparing the
1938 * generation of the latest root in the array with the generation
1939 * in the super block. If they don't match we pitch it.
1940 */
1941static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1942{
1943 u64 cur;
1944 int newest_index = -1;
1945 struct btrfs_root_backup *root_backup;
1946 int i;
1947
1948 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1949 root_backup = info->super_copy->super_roots + i;
1950 cur = btrfs_backup_tree_root_gen(root_backup);
1951 if (cur == newest_gen)
1952 newest_index = i;
1953 }
1954
1955 /* check to see if we actually wrapped around */
1956 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1957 root_backup = info->super_copy->super_roots;
1958 cur = btrfs_backup_tree_root_gen(root_backup);
1959 if (cur == newest_gen)
1960 newest_index = 0;
1961 }
1962 return newest_index;
1963}
1964
1965
1966/*
1967 * find the oldest backup so we know where to store new entries
1968 * in the backup array. This will set the backup_root_index
1969 * field in the fs_info struct
1970 */
1971static void find_oldest_super_backup(struct btrfs_fs_info *info,
1972 u64 newest_gen)
1973{
1974 int newest_index = -1;
1975
1976 newest_index = find_newest_super_backup(info, newest_gen);
1977 /* if there was garbage in there, just move along */
1978 if (newest_index == -1) {
1979 info->backup_root_index = 0;
1980 } else {
1981 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1982 }
1983}
1984
1985/*
1986 * copy all the root pointers into the super backup array.
1987 * this will bump the backup pointer by one when it is
1988 * done
1989 */
1990static void backup_super_roots(struct btrfs_fs_info *info)
1991{
1992 int next_backup;
1993 struct btrfs_root_backup *root_backup;
1994 int last_backup;
1995
1996 next_backup = info->backup_root_index;
1997 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1998 BTRFS_NUM_BACKUP_ROOTS;
1999
2000 /*
2001 * just overwrite the last backup if we're at the same generation
2002 * this happens only at umount
2003 */
2004 root_backup = info->super_for_commit->super_roots + last_backup;
2005 if (btrfs_backup_tree_root_gen(root_backup) ==
2006 btrfs_header_generation(info->tree_root->node))
2007 next_backup = last_backup;
2008
2009 root_backup = info->super_for_commit->super_roots + next_backup;
2010
2011 /*
2012 * make sure all of our padding and empty slots get zero filled
2013 * regardless of which ones we use today
2014 */
2015 memset(root_backup, 0, sizeof(*root_backup));
2016
2017 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2018
2019 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2020 btrfs_set_backup_tree_root_gen(root_backup,
2021 btrfs_header_generation(info->tree_root->node));
2022
2023 btrfs_set_backup_tree_root_level(root_backup,
2024 btrfs_header_level(info->tree_root->node));
2025
2026 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2027 btrfs_set_backup_chunk_root_gen(root_backup,
2028 btrfs_header_generation(info->chunk_root->node));
2029 btrfs_set_backup_chunk_root_level(root_backup,
2030 btrfs_header_level(info->chunk_root->node));
2031
2032 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2033 btrfs_set_backup_extent_root_gen(root_backup,
2034 btrfs_header_generation(info->extent_root->node));
2035 btrfs_set_backup_extent_root_level(root_backup,
2036 btrfs_header_level(info->extent_root->node));
2037
7c7e82a7
CM
2038 /*
2039 * we might commit during log recovery, which happens before we set
2040 * the fs_root. Make sure it is valid before we fill it in.
2041 */
2042 if (info->fs_root && info->fs_root->node) {
2043 btrfs_set_backup_fs_root(root_backup,
2044 info->fs_root->node->start);
2045 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2046 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2047 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2048 btrfs_header_level(info->fs_root->node));
7c7e82a7 2049 }
af31f5e5
CM
2050
2051 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2052 btrfs_set_backup_dev_root_gen(root_backup,
2053 btrfs_header_generation(info->dev_root->node));
2054 btrfs_set_backup_dev_root_level(root_backup,
2055 btrfs_header_level(info->dev_root->node));
2056
2057 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2058 btrfs_set_backup_csum_root_gen(root_backup,
2059 btrfs_header_generation(info->csum_root->node));
2060 btrfs_set_backup_csum_root_level(root_backup,
2061 btrfs_header_level(info->csum_root->node));
2062
2063 btrfs_set_backup_total_bytes(root_backup,
2064 btrfs_super_total_bytes(info->super_copy));
2065 btrfs_set_backup_bytes_used(root_backup,
2066 btrfs_super_bytes_used(info->super_copy));
2067 btrfs_set_backup_num_devices(root_backup,
2068 btrfs_super_num_devices(info->super_copy));
2069
2070 /*
2071 * if we don't copy this out to the super_copy, it won't get remembered
2072 * for the next commit
2073 */
2074 memcpy(&info->super_copy->super_roots,
2075 &info->super_for_commit->super_roots,
2076 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2077}
2078
2079/*
2080 * this copies info out of the root backup array and back into
2081 * the in-memory super block. It is meant to help iterate through
2082 * the array, so you send it the number of backups you've already
2083 * tried and the last backup index you used.
2084 *
2085 * this returns -1 when it has tried all the backups
2086 */
2087static noinline int next_root_backup(struct btrfs_fs_info *info,
2088 struct btrfs_super_block *super,
2089 int *num_backups_tried, int *backup_index)
2090{
2091 struct btrfs_root_backup *root_backup;
2092 int newest = *backup_index;
2093
2094 if (*num_backups_tried == 0) {
2095 u64 gen = btrfs_super_generation(super);
2096
2097 newest = find_newest_super_backup(info, gen);
2098 if (newest == -1)
2099 return -1;
2100
2101 *backup_index = newest;
2102 *num_backups_tried = 1;
2103 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2104 /* we've tried all the backups, all done */
2105 return -1;
2106 } else {
2107 /* jump to the next oldest backup */
2108 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2109 BTRFS_NUM_BACKUP_ROOTS;
2110 *backup_index = newest;
2111 *num_backups_tried += 1;
2112 }
2113 root_backup = super->super_roots + newest;
2114
2115 btrfs_set_super_generation(super,
2116 btrfs_backup_tree_root_gen(root_backup));
2117 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2118 btrfs_set_super_root_level(super,
2119 btrfs_backup_tree_root_level(root_backup));
2120 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2121
2122 /*
2123 * fixme: the total bytes and num_devices need to match or we should
2124 * need a fsck
2125 */
2126 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2127 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2128 return 0;
2129}
2130
7abadb64
LB
2131/* helper to cleanup workers */
2132static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2133{
dc6e3209 2134 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2135 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2136 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2137 btrfs_destroy_workqueue(fs_info->endio_workers);
2138 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2139 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2140 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2141 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2142 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2143 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2144 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2145 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2146 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2147 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2148 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2149 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2150 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2151 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2152}
2153
2e9f5954
R
2154static void free_root_extent_buffers(struct btrfs_root *root)
2155{
2156 if (root) {
2157 free_extent_buffer(root->node);
2158 free_extent_buffer(root->commit_root);
2159 root->node = NULL;
2160 root->commit_root = NULL;
2161 }
2162}
2163
af31f5e5
CM
2164/* helper to cleanup tree roots */
2165static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2166{
2e9f5954 2167 free_root_extent_buffers(info->tree_root);
655b09fe 2168
2e9f5954
R
2169 free_root_extent_buffers(info->dev_root);
2170 free_root_extent_buffers(info->extent_root);
2171 free_root_extent_buffers(info->csum_root);
2172 free_root_extent_buffers(info->quota_root);
2173 free_root_extent_buffers(info->uuid_root);
2174 if (chunk_root)
2175 free_root_extent_buffers(info->chunk_root);
70f6d82e 2176 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2177}
2178
faa2dbf0 2179void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2180{
2181 int ret;
2182 struct btrfs_root *gang[8];
2183 int i;
2184
2185 while (!list_empty(&fs_info->dead_roots)) {
2186 gang[0] = list_entry(fs_info->dead_roots.next,
2187 struct btrfs_root, root_list);
2188 list_del(&gang[0]->root_list);
2189
27cdeb70 2190 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2191 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2192 } else {
2193 free_extent_buffer(gang[0]->node);
2194 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2195 btrfs_put_fs_root(gang[0]);
171f6537
JB
2196 }
2197 }
2198
2199 while (1) {
2200 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2201 (void **)gang, 0,
2202 ARRAY_SIZE(gang));
2203 if (!ret)
2204 break;
2205 for (i = 0; i < ret; i++)
cb517eab 2206 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2207 }
1a4319cc
LB
2208
2209 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2210 btrfs_free_log_root_tree(NULL, fs_info);
2211 btrfs_destroy_pinned_extent(fs_info->tree_root,
2212 fs_info->pinned_extents);
2213 }
171f6537 2214}
af31f5e5 2215
638aa7ed
ES
2216static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2217{
2218 mutex_init(&fs_info->scrub_lock);
2219 atomic_set(&fs_info->scrubs_running, 0);
2220 atomic_set(&fs_info->scrub_pause_req, 0);
2221 atomic_set(&fs_info->scrubs_paused, 0);
2222 atomic_set(&fs_info->scrub_cancel_req, 0);
2223 init_waitqueue_head(&fs_info->scrub_pause_wait);
2224 fs_info->scrub_workers_refcnt = 0;
2225}
2226
779a65a4
ES
2227static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2228{
2229 spin_lock_init(&fs_info->balance_lock);
2230 mutex_init(&fs_info->balance_mutex);
2231 atomic_set(&fs_info->balance_running, 0);
2232 atomic_set(&fs_info->balance_pause_req, 0);
2233 atomic_set(&fs_info->balance_cancel_req, 0);
2234 fs_info->balance_ctl = NULL;
2235 init_waitqueue_head(&fs_info->balance_wait_q);
2236}
2237
f37938e0
ES
2238static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2239 struct btrfs_root *tree_root)
2240{
2241 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2242 set_nlink(fs_info->btree_inode, 1);
2243 /*
2244 * we set the i_size on the btree inode to the max possible int.
2245 * the real end of the address space is determined by all of
2246 * the devices in the system
2247 */
2248 fs_info->btree_inode->i_size = OFFSET_MAX;
2249 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2250
2251 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2252 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2253 fs_info->btree_inode->i_mapping);
2254 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2255 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2256
2257 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2258
2259 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2260 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2261 sizeof(struct btrfs_key));
2262 set_bit(BTRFS_INODE_DUMMY,
2263 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2264 btrfs_insert_inode_hash(fs_info->btree_inode);
2265}
2266
ad618368
ES
2267static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2268{
2269 fs_info->dev_replace.lock_owner = 0;
2270 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2271 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2272 rwlock_init(&fs_info->dev_replace.lock);
2273 atomic_set(&fs_info->dev_replace.read_locks, 0);
2274 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2275 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2276 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2277}
2278
f9e92e40
ES
2279static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2280{
2281 spin_lock_init(&fs_info->qgroup_lock);
2282 mutex_init(&fs_info->qgroup_ioctl_lock);
2283 fs_info->qgroup_tree = RB_ROOT;
2284 fs_info->qgroup_op_tree = RB_ROOT;
2285 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2286 fs_info->qgroup_seq = 1;
2287 fs_info->quota_enabled = 0;
2288 fs_info->pending_quota_state = 0;
2289 fs_info->qgroup_ulist = NULL;
2290 mutex_init(&fs_info->qgroup_rescan_lock);
2291}
2292
2a458198
ES
2293static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2294 struct btrfs_fs_devices *fs_devices)
2295{
2296 int max_active = fs_info->thread_pool_size;
6f011058 2297 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2298
2299 fs_info->workers =
2300 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2301 max_active, 16);
2302
2303 fs_info->delalloc_workers =
2304 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2305
2306 fs_info->flush_workers =
2307 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2308
2309 fs_info->caching_workers =
2310 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2311
2312 /*
2313 * a higher idle thresh on the submit workers makes it much more
2314 * likely that bios will be send down in a sane order to the
2315 * devices
2316 */
2317 fs_info->submit_workers =
2318 btrfs_alloc_workqueue("submit", flags,
2319 min_t(u64, fs_devices->num_devices,
2320 max_active), 64);
2321
2322 fs_info->fixup_workers =
2323 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2324
2325 /*
2326 * endios are largely parallel and should have a very
2327 * low idle thresh
2328 */
2329 fs_info->endio_workers =
2330 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2331 fs_info->endio_meta_workers =
2332 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2333 fs_info->endio_meta_write_workers =
2334 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2335 fs_info->endio_raid56_workers =
2336 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2337 fs_info->endio_repair_workers =
2338 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2339 fs_info->rmw_workers =
2340 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2341 fs_info->endio_write_workers =
2342 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2343 fs_info->endio_freespace_worker =
2344 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2345 fs_info->delayed_workers =
2346 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2347 fs_info->readahead_workers =
2348 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2349 fs_info->qgroup_rescan_workers =
2350 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2351 fs_info->extent_workers =
2352 btrfs_alloc_workqueue("extent-refs", flags,
2353 min_t(u64, fs_devices->num_devices,
2354 max_active), 8);
2355
2356 if (!(fs_info->workers && fs_info->delalloc_workers &&
2357 fs_info->submit_workers && fs_info->flush_workers &&
2358 fs_info->endio_workers && fs_info->endio_meta_workers &&
2359 fs_info->endio_meta_write_workers &&
2360 fs_info->endio_repair_workers &&
2361 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2362 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2363 fs_info->caching_workers && fs_info->readahead_workers &&
2364 fs_info->fixup_workers && fs_info->delayed_workers &&
2365 fs_info->extent_workers &&
2366 fs_info->qgroup_rescan_workers)) {
2367 return -ENOMEM;
2368 }
2369
2370 return 0;
2371}
2372
63443bf5
ES
2373static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2374 struct btrfs_fs_devices *fs_devices)
2375{
2376 int ret;
2377 struct btrfs_root *tree_root = fs_info->tree_root;
2378 struct btrfs_root *log_tree_root;
2379 struct btrfs_super_block *disk_super = fs_info->super_copy;
2380 u64 bytenr = btrfs_super_log_root(disk_super);
2381
2382 if (fs_devices->rw_devices == 0) {
f14d104d 2383 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2384 return -EIO;
2385 }
2386
74e4d827 2387 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2388 if (!log_tree_root)
2389 return -ENOMEM;
2390
2391 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2392 tree_root->stripesize, log_tree_root, fs_info,
2393 BTRFS_TREE_LOG_OBJECTID);
2394
2395 log_tree_root->node = read_tree_block(tree_root, bytenr,
2396 fs_info->generation + 1);
64c043de 2397 if (IS_ERR(log_tree_root->node)) {
f14d104d 2398 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2399 ret = PTR_ERR(log_tree_root->node);
64c043de 2400 kfree(log_tree_root);
0eeff236 2401 return ret;
64c043de 2402 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2403 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2404 free_extent_buffer(log_tree_root->node);
2405 kfree(log_tree_root);
2406 return -EIO;
2407 }
2408 /* returns with log_tree_root freed on success */
2409 ret = btrfs_recover_log_trees(log_tree_root);
2410 if (ret) {
a4553fef 2411 btrfs_std_error(tree_root->fs_info, ret,
63443bf5
ES
2412 "Failed to recover log tree");
2413 free_extent_buffer(log_tree_root->node);
2414 kfree(log_tree_root);
2415 return ret;
2416 }
2417
2418 if (fs_info->sb->s_flags & MS_RDONLY) {
2419 ret = btrfs_commit_super(tree_root);
2420 if (ret)
2421 return ret;
2422 }
2423
2424 return 0;
2425}
2426
4bbcaa64
ES
2427static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2428 struct btrfs_root *tree_root)
2429{
a4f3d2c4 2430 struct btrfs_root *root;
4bbcaa64
ES
2431 struct btrfs_key location;
2432 int ret;
2433
2434 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2435 location.type = BTRFS_ROOT_ITEM_KEY;
2436 location.offset = 0;
2437
a4f3d2c4
DS
2438 root = btrfs_read_tree_root(tree_root, &location);
2439 if (IS_ERR(root))
2440 return PTR_ERR(root);
2441 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2442 fs_info->extent_root = root;
4bbcaa64
ES
2443
2444 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2445 root = btrfs_read_tree_root(tree_root, &location);
2446 if (IS_ERR(root))
2447 return PTR_ERR(root);
2448 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2449 fs_info->dev_root = root;
4bbcaa64
ES
2450 btrfs_init_devices_late(fs_info);
2451
2452 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2453 root = btrfs_read_tree_root(tree_root, &location);
2454 if (IS_ERR(root))
2455 return PTR_ERR(root);
2456 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2457 fs_info->csum_root = root;
4bbcaa64
ES
2458
2459 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2460 root = btrfs_read_tree_root(tree_root, &location);
2461 if (!IS_ERR(root)) {
2462 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2463 fs_info->quota_enabled = 1;
2464 fs_info->pending_quota_state = 1;
a4f3d2c4 2465 fs_info->quota_root = root;
4bbcaa64
ES
2466 }
2467
2468 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2469 root = btrfs_read_tree_root(tree_root, &location);
2470 if (IS_ERR(root)) {
2471 ret = PTR_ERR(root);
4bbcaa64
ES
2472 if (ret != -ENOENT)
2473 return ret;
2474 } else {
a4f3d2c4
DS
2475 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2476 fs_info->uuid_root = root;
4bbcaa64
ES
2477 }
2478
70f6d82e
OS
2479 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2480 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2481 root = btrfs_read_tree_root(tree_root, &location);
2482 if (IS_ERR(root))
2483 return PTR_ERR(root);
2484 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2485 fs_info->free_space_root = root;
2486 }
2487
4bbcaa64
ES
2488 return 0;
2489}
2490
ad2b2c80
AV
2491int open_ctree(struct super_block *sb,
2492 struct btrfs_fs_devices *fs_devices,
2493 char *options)
2e635a27 2494{
db94535d
CM
2495 u32 sectorsize;
2496 u32 nodesize;
87ee04eb 2497 u32 stripesize;
84234f3a 2498 u64 generation;
f2b636e8 2499 u64 features;
3de4586c 2500 struct btrfs_key location;
a061fc8d 2501 struct buffer_head *bh;
4d34b278 2502 struct btrfs_super_block *disk_super;
815745cf 2503 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2504 struct btrfs_root *tree_root;
4d34b278 2505 struct btrfs_root *chunk_root;
eb60ceac 2506 int ret;
e58ca020 2507 int err = -EINVAL;
af31f5e5
CM
2508 int num_backups_tried = 0;
2509 int backup_index = 0;
5cdc7ad3 2510 int max_active;
4543df7e 2511
74e4d827
DS
2512 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2513 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2514 if (!tree_root || !chunk_root) {
39279cc3
CM
2515 err = -ENOMEM;
2516 goto fail;
2517 }
76dda93c
YZ
2518
2519 ret = init_srcu_struct(&fs_info->subvol_srcu);
2520 if (ret) {
2521 err = ret;
2522 goto fail;
2523 }
2524
2525 ret = setup_bdi(fs_info, &fs_info->bdi);
2526 if (ret) {
2527 err = ret;
2528 goto fail_srcu;
2529 }
2530
908c7f19 2531 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2532 if (ret) {
2533 err = ret;
2534 goto fail_bdi;
2535 }
2536 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2537 (1 + ilog2(nr_cpu_ids));
2538
908c7f19 2539 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2540 if (ret) {
2541 err = ret;
2542 goto fail_dirty_metadata_bytes;
2543 }
2544
908c7f19 2545 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2546 if (ret) {
2547 err = ret;
2548 goto fail_delalloc_bytes;
2549 }
2550
76dda93c
YZ
2551 fs_info->btree_inode = new_inode(sb);
2552 if (!fs_info->btree_inode) {
2553 err = -ENOMEM;
c404e0dc 2554 goto fail_bio_counter;
76dda93c
YZ
2555 }
2556
a6591715 2557 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2558
76dda93c 2559 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2560 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2561 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2562 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2563 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2564 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2565 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2566 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2567 spin_lock_init(&fs_info->trans_lock);
76dda93c 2568 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2569 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2570 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2571 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2572 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2573 spin_lock_init(&fs_info->super_lock);
fcebe456 2574 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2575 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2576 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2577 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2578 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2579 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2580 mutex_init(&fs_info->reloc_mutex);
573bfb72 2581 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2582 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2583 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2584
0b86a832 2585 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2586 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2587 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2588 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2589 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2590 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2591 BTRFS_BLOCK_RSV_GLOBAL);
2592 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2593 BTRFS_BLOCK_RSV_DELALLOC);
2594 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2595 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2596 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2597 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2598 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2599 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2600 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2601 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2602 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2603 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2604 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2605 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2606 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2607 fs_info->sb = sb;
95ac567a 2608 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2609 fs_info->metadata_ratio = 0;
4cb5300b 2610 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2611 fs_info->free_chunk_space = 0;
f29021b2 2612 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2613 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2614 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2615 /* readahead state */
d0164adc 2616 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2617 spin_lock_init(&fs_info->reada_lock);
c8b97818 2618
b34b086c
CM
2619 fs_info->thread_pool_size = min_t(unsigned long,
2620 num_online_cpus() + 2, 8);
0afbaf8c 2621
199c2a9c
MX
2622 INIT_LIST_HEAD(&fs_info->ordered_roots);
2623 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2624 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2625 GFP_KERNEL);
16cdcec7
MX
2626 if (!fs_info->delayed_root) {
2627 err = -ENOMEM;
2628 goto fail_iput;
2629 }
2630 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2631
638aa7ed 2632 btrfs_init_scrub(fs_info);
21adbd5c
SB
2633#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2634 fs_info->check_integrity_print_mask = 0;
2635#endif
779a65a4 2636 btrfs_init_balance(fs_info);
21c7e756 2637 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2638
a061fc8d
CM
2639 sb->s_blocksize = 4096;
2640 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2641 sb->s_bdi = &fs_info->bdi;
a061fc8d 2642
f37938e0 2643 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2644
0f9dd46c 2645 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2646 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2647 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2648
11833d66 2649 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2650 fs_info->btree_inode->i_mapping);
11833d66 2651 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2652 fs_info->btree_inode->i_mapping);
11833d66 2653 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2654 fs_info->do_barriers = 1;
e18e4809 2655
39279cc3 2656
5a3f23d5 2657 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2658 mutex_init(&fs_info->tree_log_mutex);
925baedd 2659 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2660 mutex_init(&fs_info->transaction_kthread_mutex);
2661 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2662 mutex_init(&fs_info->volume_mutex);
1bbc621e 2663 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2664 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2665 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2666 init_rwsem(&fs_info->subvol_sem);
803b2f54 2667 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2668
ad618368 2669 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2670 btrfs_init_qgroup(fs_info);
416ac51d 2671
fa9c0d79
CM
2672 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2673 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2674
e6dcd2dc 2675 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2676 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2677 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2678 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2679
04216820
FM
2680 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2681
53b381b3
DW
2682 ret = btrfs_alloc_stripe_hash_table(fs_info);
2683 if (ret) {
83c8266a 2684 err = ret;
53b381b3
DW
2685 goto fail_alloc;
2686 }
2687
707e8a07 2688 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2689 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2690
3c4bb26b 2691 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2692
2693 /*
2694 * Read super block and check the signature bytes only
2695 */
a512bbf8 2696 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2697 if (IS_ERR(bh)) {
2698 err = PTR_ERR(bh);
16cdcec7 2699 goto fail_alloc;
20b45077 2700 }
39279cc3 2701
1104a885
DS
2702 /*
2703 * We want to check superblock checksum, the type is stored inside.
2704 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2705 */
2706 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2707 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885 2708 err = -EINVAL;
b2acdddf 2709 brelse(bh);
1104a885
DS
2710 goto fail_alloc;
2711 }
2712
2713 /*
2714 * super_copy is zeroed at allocation time and we never touch the
2715 * following bytes up to INFO_SIZE, the checksum is calculated from
2716 * the whole block of INFO_SIZE
2717 */
6c41761f
DS
2718 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2719 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2720 sizeof(*fs_info->super_for_commit));
a061fc8d 2721 brelse(bh);
5f39d397 2722
6c41761f 2723 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2724
1104a885
DS
2725 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2726 if (ret) {
efe120a0 2727 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2728 err = -EINVAL;
2729 goto fail_alloc;
2730 }
2731
6c41761f 2732 disk_super = fs_info->super_copy;
0f7d52f4 2733 if (!btrfs_super_root(disk_super))
16cdcec7 2734 goto fail_alloc;
0f7d52f4 2735
acce952b 2736 /* check FS state, whether FS is broken. */
87533c47
MX
2737 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2738 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2739
af31f5e5
CM
2740 /*
2741 * run through our array of backup supers and setup
2742 * our ring pointer to the oldest one
2743 */
2744 generation = btrfs_super_generation(disk_super);
2745 find_oldest_super_backup(fs_info, generation);
2746
75e7cb7f
LB
2747 /*
2748 * In the long term, we'll store the compression type in the super
2749 * block, and it'll be used for per file compression control.
2750 */
2751 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2752
96da0919 2753 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2b82032c
YZ
2754 if (ret) {
2755 err = ret;
16cdcec7 2756 goto fail_alloc;
2b82032c 2757 }
dfe25020 2758
f2b636e8
JB
2759 features = btrfs_super_incompat_flags(disk_super) &
2760 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2761 if (features) {
2762 printk(KERN_ERR "BTRFS: couldn't mount because of "
2763 "unsupported optional features (%Lx).\n",
c1c9ff7c 2764 features);
f2b636e8 2765 err = -EINVAL;
16cdcec7 2766 goto fail_alloc;
f2b636e8
JB
2767 }
2768
5d4f98a2 2769 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2770 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2771 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2772 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2773
3173a18f 2774 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
5efa0490 2775 printk(KERN_INFO "BTRFS: has skinny extents\n");
3173a18f 2776
727011e0
CM
2777 /*
2778 * flag our filesystem as having big metadata blocks if
2779 * they are bigger than the page size
2780 */
707e8a07 2781 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2782 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2783 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2784 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2785 }
2786
bc3f116f 2787 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2788 sectorsize = btrfs_super_sectorsize(disk_super);
2789 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2790 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2791 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2792
2793 /*
2794 * mixed block groups end up with duplicate but slightly offset
2795 * extent buffers for the same range. It leads to corruptions
2796 */
2797 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2798 (sectorsize != nodesize)) {
aa8ee312 2799 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2800 "are not allowed for mixed block groups on %s\n",
2801 sb->s_id);
2802 goto fail_alloc;
2803 }
2804
ceda0864
MX
2805 /*
2806 * Needn't use the lock because there is no other task which will
2807 * update the flag.
2808 */
a6fa6fae 2809 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2810
f2b636e8
JB
2811 features = btrfs_super_compat_ro_flags(disk_super) &
2812 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2813 if (!(sb->s_flags & MS_RDONLY) && features) {
2814 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2815 "unsupported option features (%Lx).\n",
c1c9ff7c 2816 features);
f2b636e8 2817 err = -EINVAL;
16cdcec7 2818 goto fail_alloc;
f2b636e8 2819 }
61d92c32 2820
5cdc7ad3 2821 max_active = fs_info->thread_pool_size;
61d92c32 2822
2a458198
ES
2823 ret = btrfs_init_workqueues(fs_info, fs_devices);
2824 if (ret) {
2825 err = ret;
0dc3b84a
JB
2826 goto fail_sb_buffer;
2827 }
4543df7e 2828
4575c9cc 2829 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818 2830 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
ee22184b 2831 SZ_4M / PAGE_CACHE_SIZE);
4575c9cc 2832
db94535d 2833 tree_root->nodesize = nodesize;
db94535d 2834 tree_root->sectorsize = sectorsize;
87ee04eb 2835 tree_root->stripesize = stripesize;
a061fc8d
CM
2836
2837 sb->s_blocksize = sectorsize;
2838 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2839
925baedd 2840 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2841 ret = btrfs_read_sys_array(tree_root);
925baedd 2842 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2843 if (ret) {
aa8ee312 2844 printk(KERN_ERR "BTRFS: failed to read the system "
d397712b 2845 "array on %s\n", sb->s_id);
5d4f98a2 2846 goto fail_sb_buffer;
84eed90f 2847 }
0b86a832 2848
84234f3a 2849 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2850
707e8a07
DS
2851 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2852 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2853
2854 chunk_root->node = read_tree_block(chunk_root,
2855 btrfs_super_chunk_root(disk_super),
ce86cd59 2856 generation);
64c043de
LB
2857 if (IS_ERR(chunk_root->node) ||
2858 !extent_buffer_uptodate(chunk_root->node)) {
aa8ee312 2859 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
83121942 2860 sb->s_id);
e5fffbac 2861 if (!IS_ERR(chunk_root->node))
2862 free_extent_buffer(chunk_root->node);
95ab1f64 2863 chunk_root->node = NULL;
af31f5e5 2864 goto fail_tree_roots;
83121942 2865 }
5d4f98a2
YZ
2866 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2867 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2868
e17cade2 2869 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2870 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2871
0b86a832 2872 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2873 if (ret) {
aa8ee312 2874 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
d397712b 2875 sb->s_id);
af31f5e5 2876 goto fail_tree_roots;
2b82032c 2877 }
0b86a832 2878
8dabb742
SB
2879 /*
2880 * keep the device that is marked to be the target device for the
2881 * dev_replace procedure
2882 */
9eaed21e 2883 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2884
a6b0d5c8 2885 if (!fs_devices->latest_bdev) {
aa8ee312 2886 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2887 sb->s_id);
2888 goto fail_tree_roots;
2889 }
2890
af31f5e5 2891retry_root_backup:
84234f3a 2892 generation = btrfs_super_generation(disk_super);
0b86a832 2893
e20d96d6 2894 tree_root->node = read_tree_block(tree_root,
db94535d 2895 btrfs_super_root(disk_super),
ce86cd59 2896 generation);
64c043de
LB
2897 if (IS_ERR(tree_root->node) ||
2898 !extent_buffer_uptodate(tree_root->node)) {
efe120a0 2899 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2900 sb->s_id);
e5fffbac 2901 if (!IS_ERR(tree_root->node))
2902 free_extent_buffer(tree_root->node);
95ab1f64 2903 tree_root->node = NULL;
af31f5e5 2904 goto recovery_tree_root;
83121942 2905 }
af31f5e5 2906
5d4f98a2
YZ
2907 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2908 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2909 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2910
f32e48e9
CR
2911 mutex_lock(&tree_root->objectid_mutex);
2912 ret = btrfs_find_highest_objectid(tree_root,
2913 &tree_root->highest_objectid);
2914 if (ret) {
2915 mutex_unlock(&tree_root->objectid_mutex);
2916 goto recovery_tree_root;
2917 }
2918
2919 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2920
2921 mutex_unlock(&tree_root->objectid_mutex);
2922
4bbcaa64
ES
2923 ret = btrfs_read_roots(fs_info, tree_root);
2924 if (ret)
af31f5e5 2925 goto recovery_tree_root;
f7a81ea4 2926
8929ecfa
YZ
2927 fs_info->generation = generation;
2928 fs_info->last_trans_committed = generation;
8929ecfa 2929
68310a5e
ID
2930 ret = btrfs_recover_balance(fs_info);
2931 if (ret) {
aa8ee312 2932 printk(KERN_ERR "BTRFS: failed to recover balance\n");
68310a5e
ID
2933 goto fail_block_groups;
2934 }
2935
733f4fbb
SB
2936 ret = btrfs_init_dev_stats(fs_info);
2937 if (ret) {
efe120a0 2938 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2939 ret);
2940 goto fail_block_groups;
2941 }
2942
8dabb742
SB
2943 ret = btrfs_init_dev_replace(fs_info);
2944 if (ret) {
efe120a0 2945 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2946 goto fail_block_groups;
2947 }
2948
9eaed21e 2949 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2950
b7c35e81
AJ
2951 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2952 if (ret) {
2953 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2954 goto fail_block_groups;
2955 }
2956
2957 ret = btrfs_sysfs_add_device(fs_devices);
2958 if (ret) {
2959 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2960 goto fail_fsdev_sysfs;
2961 }
2962
96f3136e 2963 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 2964 if (ret) {
efe120a0 2965 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
b7c35e81 2966 goto fail_fsdev_sysfs;
c59021f8 2967 }
2968
c59021f8 2969 ret = btrfs_init_space_info(fs_info);
2970 if (ret) {
efe120a0 2971 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2972 goto fail_sysfs;
c59021f8 2973 }
2974
4bbcaa64 2975 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 2976 if (ret) {
efe120a0 2977 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2978 goto fail_sysfs;
1b1d1f66 2979 }
5af3e8cc
SB
2980 fs_info->num_tolerated_disk_barrier_failures =
2981 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2982 if (fs_info->fs_devices->missing_devices >
2983 fs_info->num_tolerated_disk_barrier_failures &&
2984 !(sb->s_flags & MS_RDONLY)) {
78fa1770
ZL
2985 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2986 fs_info->fs_devices->missing_devices,
2987 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 2988 goto fail_sysfs;
292fd7fc 2989 }
9078a3e1 2990
a74a4b97
CM
2991 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2992 "btrfs-cleaner");
57506d50 2993 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2994 goto fail_sysfs;
a74a4b97
CM
2995
2996 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2997 tree_root,
2998 "btrfs-transaction");
57506d50 2999 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3000 goto fail_cleaner;
a74a4b97 3001
c289811c
CM
3002 if (!btrfs_test_opt(tree_root, SSD) &&
3003 !btrfs_test_opt(tree_root, NOSSD) &&
3004 !fs_info->fs_devices->rotating) {
efe120a0 3005 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
3006 "mode\n");
3007 btrfs_set_opt(fs_info->mount_opt, SSD);
3008 }
3009
572d9ab7
DS
3010 /*
3011 * Mount does not set all options immediatelly, we can do it now and do
3012 * not have to wait for transaction commit
3013 */
3014 btrfs_apply_pending_changes(fs_info);
3818aea2 3015
21adbd5c
SB
3016#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3017 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3018 ret = btrfsic_mount(tree_root, fs_devices,
3019 btrfs_test_opt(tree_root,
3020 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3021 1 : 0,
3022 fs_info->check_integrity_print_mask);
3023 if (ret)
efe120a0 3024 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
3025 " integrity check module %s\n", sb->s_id);
3026 }
3027#endif
bcef60f2
AJ
3028 ret = btrfs_read_qgroup_config(fs_info);
3029 if (ret)
3030 goto fail_trans_kthread;
21adbd5c 3031
96da0919
QW
3032 /* do not make disk changes in broken FS or nologreplay is given */
3033 if (btrfs_super_log_root(disk_super) != 0 &&
3034 !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
63443bf5 3035 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3036 if (ret) {
63443bf5 3037 err = ret;
28c16cbb 3038 goto fail_qgroup;
79787eaa 3039 }
e02119d5 3040 }
1a40e23b 3041
76dda93c 3042 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3043 if (ret)
28c16cbb 3044 goto fail_qgroup;
76dda93c 3045
7c2ca468 3046 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3047 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3048 if (ret)
28c16cbb 3049 goto fail_qgroup;
d68fc57b 3050
5f316481 3051 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3052 ret = btrfs_recover_relocation(tree_root);
5f316481 3053 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
3054 if (ret < 0) {
3055 printk(KERN_WARNING
efe120a0 3056 "BTRFS: failed to recover relocation\n");
d7ce5843 3057 err = -EINVAL;
bcef60f2 3058 goto fail_qgroup;
d7ce5843 3059 }
7c2ca468 3060 }
1a40e23b 3061
3de4586c
CM
3062 location.objectid = BTRFS_FS_TREE_OBJECTID;
3063 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3064 location.offset = 0;
3de4586c 3065
3de4586c 3066 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3067 if (IS_ERR(fs_info->fs_root)) {
3068 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3069 goto fail_qgroup;
3140c9a3 3070 }
c289811c 3071
2b6ba629
ID
3072 if (sb->s_flags & MS_RDONLY)
3073 return 0;
59641015 3074
511711af
CM
3075 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3076 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3077 pr_info("BTRFS: creating free space tree\n");
3078 ret = btrfs_create_free_space_tree(fs_info);
3079 if (ret) {
3080 pr_warn("BTRFS: failed to create free space tree %d\n",
3081 ret);
3082 close_ctree(tree_root);
3083 return ret;
3084 }
3085 }
3086
2b6ba629
ID
3087 down_read(&fs_info->cleanup_work_sem);
3088 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3089 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3090 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3091 close_ctree(tree_root);
3092 return ret;
3093 }
3094 up_read(&fs_info->cleanup_work_sem);
59641015 3095
2b6ba629
ID
3096 ret = btrfs_resume_balance_async(fs_info);
3097 if (ret) {
efe120a0 3098 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
3099 close_ctree(tree_root);
3100 return ret;
e3acc2a6
JB
3101 }
3102
8dabb742
SB
3103 ret = btrfs_resume_dev_replace_async(fs_info);
3104 if (ret) {
efe120a0 3105 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
3106 close_ctree(tree_root);
3107 return ret;
3108 }
3109
b382a324
JS
3110 btrfs_qgroup_rescan_resume(fs_info);
3111
70f6d82e
OS
3112 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3113 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3114 pr_info("BTRFS: clearing free space tree\n");
3115 ret = btrfs_clear_free_space_tree(fs_info);
3116 if (ret) {
3117 pr_warn("BTRFS: failed to clear free space tree %d\n",
3118 ret);
3119 close_ctree(tree_root);
3120 return ret;
3121 }
3122 }
3123
4bbcaa64 3124 if (!fs_info->uuid_root) {
efe120a0 3125 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
3126 ret = btrfs_create_uuid_tree(fs_info);
3127 if (ret) {
efe120a0 3128 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
3129 ret);
3130 close_ctree(tree_root);
3131 return ret;
3132 }
4bbcaa64
ES
3133 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3134 fs_info->generation !=
3135 btrfs_super_uuid_tree_generation(disk_super)) {
efe120a0 3136 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
3137 ret = btrfs_check_uuid_tree(fs_info);
3138 if (ret) {
efe120a0 3139 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
3140 ret);
3141 close_ctree(tree_root);
3142 return ret;
3143 }
3144 } else {
3145 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3146 }
3147
47ab2a6c
JB
3148 fs_info->open = 1;
3149
8dcddfa0
QW
3150 /*
3151 * backuproot only affect mount behavior, and if open_ctree succeeded,
3152 * no need to keep the flag
3153 */
3154 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3155
ad2b2c80 3156 return 0;
39279cc3 3157
bcef60f2
AJ
3158fail_qgroup:
3159 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3160fail_trans_kthread:
3161 kthread_stop(fs_info->transaction_kthread);
54067ae9 3162 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3163 btrfs_free_fs_roots(fs_info);
3f157a2f 3164fail_cleaner:
a74a4b97 3165 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3166
3167 /*
3168 * make sure we're done with the btree inode before we stop our
3169 * kthreads
3170 */
3171 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3172
2365dd3c 3173fail_sysfs:
6618a59b 3174 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3175
b7c35e81
AJ
3176fail_fsdev_sysfs:
3177 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3178
1b1d1f66 3179fail_block_groups:
54067ae9 3180 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3181 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3182
3183fail_tree_roots:
3184 free_root_pointers(fs_info, 1);
2b8195bb 3185 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3186
39279cc3 3187fail_sb_buffer:
7abadb64 3188 btrfs_stop_all_workers(fs_info);
16cdcec7 3189fail_alloc:
4543df7e 3190fail_iput:
586e46e2
ID
3191 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3192
4543df7e 3193 iput(fs_info->btree_inode);
c404e0dc
MX
3194fail_bio_counter:
3195 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3196fail_delalloc_bytes:
3197 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3198fail_dirty_metadata_bytes:
3199 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3200fail_bdi:
7e662854 3201 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3202fail_srcu:
3203 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3204fail:
53b381b3 3205 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3206 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3207 return err;
af31f5e5
CM
3208
3209recovery_tree_root:
8dcddfa0 3210 if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
af31f5e5
CM
3211 goto fail_tree_roots;
3212
3213 free_root_pointers(fs_info, 0);
3214
3215 /* don't use the log in recovery mode, it won't be valid */
3216 btrfs_set_super_log_root(disk_super, 0);
3217
3218 /* we can't trust the free space cache either */
3219 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3220
3221 ret = next_root_backup(fs_info, fs_info->super_copy,
3222 &num_backups_tried, &backup_index);
3223 if (ret == -1)
3224 goto fail_block_groups;
3225 goto retry_root_backup;
eb60ceac
CM
3226}
3227
f2984462
CM
3228static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3229{
f2984462
CM
3230 if (uptodate) {
3231 set_buffer_uptodate(bh);
3232 } else {
442a4f63
SB
3233 struct btrfs_device *device = (struct btrfs_device *)
3234 bh->b_private;
3235
b14af3b4
DS
3236 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3237 "lost page write due to IO error on %s",
606686ee 3238 rcu_str_deref(device->name));
1259ab75
CM
3239 /* note, we dont' set_buffer_write_io_error because we have
3240 * our own ways of dealing with the IO errors
3241 */
f2984462 3242 clear_buffer_uptodate(bh);
442a4f63 3243 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3244 }
3245 unlock_buffer(bh);
3246 put_bh(bh);
3247}
3248
29c36d72
AJ
3249int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3250 struct buffer_head **bh_ret)
3251{
3252 struct buffer_head *bh;
3253 struct btrfs_super_block *super;
3254 u64 bytenr;
3255
3256 bytenr = btrfs_sb_offset(copy_num);
3257 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3258 return -EINVAL;
3259
3260 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3261 /*
3262 * If we fail to read from the underlying devices, as of now
3263 * the best option we have is to mark it EIO.
3264 */
3265 if (!bh)
3266 return -EIO;
3267
3268 super = (struct btrfs_super_block *)bh->b_data;
3269 if (btrfs_super_bytenr(super) != bytenr ||
3270 btrfs_super_magic(super) != BTRFS_MAGIC) {
3271 brelse(bh);
3272 return -EINVAL;
3273 }
3274
3275 *bh_ret = bh;
3276 return 0;
3277}
3278
3279
a512bbf8
YZ
3280struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3281{
3282 struct buffer_head *bh;
3283 struct buffer_head *latest = NULL;
3284 struct btrfs_super_block *super;
3285 int i;
3286 u64 transid = 0;
92fc03fb 3287 int ret = -EINVAL;
a512bbf8
YZ
3288
3289 /* we would like to check all the supers, but that would make
3290 * a btrfs mount succeed after a mkfs from a different FS.
3291 * So, we need to add a special mount option to scan for
3292 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3293 */
3294 for (i = 0; i < 1; i++) {
29c36d72
AJ
3295 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3296 if (ret)
a512bbf8
YZ
3297 continue;
3298
3299 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3300
3301 if (!latest || btrfs_super_generation(super) > transid) {
3302 brelse(latest);
3303 latest = bh;
3304 transid = btrfs_super_generation(super);
3305 } else {
3306 brelse(bh);
3307 }
3308 }
92fc03fb
AJ
3309
3310 if (!latest)
3311 return ERR_PTR(ret);
3312
a512bbf8
YZ
3313 return latest;
3314}
3315
4eedeb75
HH
3316/*
3317 * this should be called twice, once with wait == 0 and
3318 * once with wait == 1. When wait == 0 is done, all the buffer heads
3319 * we write are pinned.
3320 *
3321 * They are released when wait == 1 is done.
3322 * max_mirrors must be the same for both runs, and it indicates how
3323 * many supers on this one device should be written.
3324 *
3325 * max_mirrors == 0 means to write them all.
3326 */
a512bbf8
YZ
3327static int write_dev_supers(struct btrfs_device *device,
3328 struct btrfs_super_block *sb,
3329 int do_barriers, int wait, int max_mirrors)
3330{
3331 struct buffer_head *bh;
3332 int i;
3333 int ret;
3334 int errors = 0;
3335 u32 crc;
3336 u64 bytenr;
a512bbf8
YZ
3337
3338 if (max_mirrors == 0)
3339 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3340
a512bbf8
YZ
3341 for (i = 0; i < max_mirrors; i++) {
3342 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3343 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3344 device->commit_total_bytes)
a512bbf8
YZ
3345 break;
3346
3347 if (wait) {
3348 bh = __find_get_block(device->bdev, bytenr / 4096,
3349 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3350 if (!bh) {
3351 errors++;
3352 continue;
3353 }
a512bbf8 3354 wait_on_buffer(bh);
4eedeb75
HH
3355 if (!buffer_uptodate(bh))
3356 errors++;
3357
3358 /* drop our reference */
3359 brelse(bh);
3360
3361 /* drop the reference from the wait == 0 run */
3362 brelse(bh);
3363 continue;
a512bbf8
YZ
3364 } else {
3365 btrfs_set_super_bytenr(sb, bytenr);
3366
3367 crc = ~(u32)0;
b0496686 3368 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3369 BTRFS_CSUM_SIZE, crc,
3370 BTRFS_SUPER_INFO_SIZE -
3371 BTRFS_CSUM_SIZE);
3372 btrfs_csum_final(crc, sb->csum);
3373
4eedeb75
HH
3374 /*
3375 * one reference for us, and we leave it for the
3376 * caller
3377 */
a512bbf8
YZ
3378 bh = __getblk(device->bdev, bytenr / 4096,
3379 BTRFS_SUPER_INFO_SIZE);
634554dc 3380 if (!bh) {
f14d104d
DS
3381 btrfs_err(device->dev_root->fs_info,
3382 "couldn't get super buffer head for bytenr %llu",
3383 bytenr);
634554dc
JB
3384 errors++;
3385 continue;
3386 }
3387
a512bbf8
YZ
3388 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3389
4eedeb75 3390 /* one reference for submit_bh */
a512bbf8 3391 get_bh(bh);
4eedeb75
HH
3392
3393 set_buffer_uptodate(bh);
a512bbf8
YZ
3394 lock_buffer(bh);
3395 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3396 bh->b_private = device;
a512bbf8
YZ
3397 }
3398
387125fc
CM
3399 /*
3400 * we fua the first super. The others we allow
3401 * to go down lazy.
3402 */
e8117c26
WS
3403 if (i == 0)
3404 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3405 else
3406 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3407 if (ret)
a512bbf8 3408 errors++;
a512bbf8
YZ
3409 }
3410 return errors < i ? 0 : -1;
3411}
3412
387125fc
CM
3413/*
3414 * endio for the write_dev_flush, this will wake anyone waiting
3415 * for the barrier when it is done
3416 */
4246a0b6 3417static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3418{
387125fc
CM
3419 if (bio->bi_private)
3420 complete(bio->bi_private);
3421 bio_put(bio);
3422}
3423
3424/*
3425 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3426 * sent down. With wait == 1, it waits for the previous flush.
3427 *
3428 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3429 * capable
3430 */
3431static int write_dev_flush(struct btrfs_device *device, int wait)
3432{
3433 struct bio *bio;
3434 int ret = 0;
3435
3436 if (device->nobarriers)
3437 return 0;
3438
3439 if (wait) {
3440 bio = device->flush_bio;
3441 if (!bio)
3442 return 0;
3443
3444 wait_for_completion(&device->flush_wait);
3445
4246a0b6
CH
3446 if (bio->bi_error) {
3447 ret = bio->bi_error;
5af3e8cc
SB
3448 btrfs_dev_stat_inc_and_print(device,
3449 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3450 }
3451
3452 /* drop the reference from the wait == 0 run */
3453 bio_put(bio);
3454 device->flush_bio = NULL;
3455
3456 return ret;
3457 }
3458
3459 /*
3460 * one reference for us, and we leave it for the
3461 * caller
3462 */
9c017abc 3463 device->flush_bio = NULL;
9be3395b 3464 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3465 if (!bio)
3466 return -ENOMEM;
3467
3468 bio->bi_end_io = btrfs_end_empty_barrier;
3469 bio->bi_bdev = device->bdev;
3470 init_completion(&device->flush_wait);
3471 bio->bi_private = &device->flush_wait;
3472 device->flush_bio = bio;
3473
3474 bio_get(bio);
21adbd5c 3475 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3476
3477 return 0;
3478}
3479
3480/*
3481 * send an empty flush down to each device in parallel,
3482 * then wait for them
3483 */
3484static int barrier_all_devices(struct btrfs_fs_info *info)
3485{
3486 struct list_head *head;
3487 struct btrfs_device *dev;
5af3e8cc
SB
3488 int errors_send = 0;
3489 int errors_wait = 0;
387125fc
CM
3490 int ret;
3491
3492 /* send down all the barriers */
3493 head = &info->fs_devices->devices;
3494 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3495 if (dev->missing)
3496 continue;
387125fc 3497 if (!dev->bdev) {
5af3e8cc 3498 errors_send++;
387125fc
CM
3499 continue;
3500 }
3501 if (!dev->in_fs_metadata || !dev->writeable)
3502 continue;
3503
3504 ret = write_dev_flush(dev, 0);
3505 if (ret)
5af3e8cc 3506 errors_send++;
387125fc
CM
3507 }
3508
3509 /* wait for all the barriers */
3510 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3511 if (dev->missing)
3512 continue;
387125fc 3513 if (!dev->bdev) {
5af3e8cc 3514 errors_wait++;
387125fc
CM
3515 continue;
3516 }
3517 if (!dev->in_fs_metadata || !dev->writeable)
3518 continue;
3519
3520 ret = write_dev_flush(dev, 1);
3521 if (ret)
5af3e8cc 3522 errors_wait++;
387125fc 3523 }
5af3e8cc
SB
3524 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3525 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3526 return -EIO;
3527 return 0;
3528}
3529
943c6e99
ZL
3530int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3531{
8789f4fe
ZL
3532 int raid_type;
3533 int min_tolerated = INT_MAX;
943c6e99 3534
8789f4fe
ZL
3535 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3536 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3537 min_tolerated = min(min_tolerated,
3538 btrfs_raid_array[BTRFS_RAID_SINGLE].
3539 tolerated_failures);
943c6e99 3540
8789f4fe
ZL
3541 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3542 if (raid_type == BTRFS_RAID_SINGLE)
3543 continue;
3544 if (!(flags & btrfs_raid_group[raid_type]))
3545 continue;
3546 min_tolerated = min(min_tolerated,
3547 btrfs_raid_array[raid_type].
3548 tolerated_failures);
3549 }
943c6e99 3550
8789f4fe
ZL
3551 if (min_tolerated == INT_MAX) {
3552 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3553 min_tolerated = 0;
3554 }
3555
3556 return min_tolerated;
943c6e99
ZL
3557}
3558
5af3e8cc
SB
3559int btrfs_calc_num_tolerated_disk_barrier_failures(
3560 struct btrfs_fs_info *fs_info)
3561{
3562 struct btrfs_ioctl_space_info space;
3563 struct btrfs_space_info *sinfo;
3564 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3565 BTRFS_BLOCK_GROUP_SYSTEM,
3566 BTRFS_BLOCK_GROUP_METADATA,
3567 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3568 int i;
3569 int c;
3570 int num_tolerated_disk_barrier_failures =
3571 (int)fs_info->fs_devices->num_devices;
3572
2c458045 3573 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3574 struct btrfs_space_info *tmp;
3575
3576 sinfo = NULL;
3577 rcu_read_lock();
3578 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3579 if (tmp->flags == types[i]) {
3580 sinfo = tmp;
3581 break;
3582 }
3583 }
3584 rcu_read_unlock();
3585
3586 if (!sinfo)
3587 continue;
3588
3589 down_read(&sinfo->groups_sem);
3590 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3591 u64 flags;
3592
3593 if (list_empty(&sinfo->block_groups[c]))
3594 continue;
3595
3596 btrfs_get_block_group_info(&sinfo->block_groups[c],
3597 &space);
3598 if (space.total_bytes == 0 || space.used_bytes == 0)
3599 continue;
3600 flags = space.flags;
943c6e99
ZL
3601
3602 num_tolerated_disk_barrier_failures = min(
3603 num_tolerated_disk_barrier_failures,
3604 btrfs_get_num_tolerated_disk_barrier_failures(
3605 flags));
5af3e8cc
SB
3606 }
3607 up_read(&sinfo->groups_sem);
3608 }
3609
3610 return num_tolerated_disk_barrier_failures;
3611}
3612
48a3b636 3613static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3614{
e5e9a520 3615 struct list_head *head;
f2984462 3616 struct btrfs_device *dev;
a061fc8d 3617 struct btrfs_super_block *sb;
f2984462 3618 struct btrfs_dev_item *dev_item;
f2984462
CM
3619 int ret;
3620 int do_barriers;
a236aed1
CM
3621 int max_errors;
3622 int total_errors = 0;
a061fc8d 3623 u64 flags;
f2984462
CM
3624
3625 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3626 backup_super_roots(root->fs_info);
f2984462 3627
6c41761f 3628 sb = root->fs_info->super_for_commit;
a061fc8d 3629 dev_item = &sb->dev_item;
e5e9a520 3630
174ba509 3631 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3632 head = &root->fs_info->fs_devices->devices;
d7306801 3633 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3634
5af3e8cc
SB
3635 if (do_barriers) {
3636 ret = barrier_all_devices(root->fs_info);
3637 if (ret) {
3638 mutex_unlock(
3639 &root->fs_info->fs_devices->device_list_mutex);
a4553fef 3640 btrfs_std_error(root->fs_info, ret,
5af3e8cc
SB
3641 "errors while submitting device barriers.");
3642 return ret;
3643 }
3644 }
387125fc 3645
1f78160c 3646 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3647 if (!dev->bdev) {
3648 total_errors++;
3649 continue;
3650 }
2b82032c 3651 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3652 continue;
3653
2b82032c 3654 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3655 btrfs_set_stack_device_type(dev_item, dev->type);
3656 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3657 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3658 dev->commit_total_bytes);
ce7213c7
MX
3659 btrfs_set_stack_device_bytes_used(dev_item,
3660 dev->commit_bytes_used);
a061fc8d
CM
3661 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3662 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3663 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3664 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3665 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3666
a061fc8d
CM
3667 flags = btrfs_super_flags(sb);
3668 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3669
a512bbf8 3670 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3671 if (ret)
3672 total_errors++;
f2984462 3673 }
a236aed1 3674 if (total_errors > max_errors) {
efe120a0 3675 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3676 total_errors);
a724b436 3677 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3678
9d565ba4 3679 /* FUA is masked off if unsupported and can't be the reason */
a4553fef 3680 btrfs_std_error(root->fs_info, -EIO,
9d565ba4
SB
3681 "%d errors while writing supers", total_errors);
3682 return -EIO;
a236aed1 3683 }
f2984462 3684
a512bbf8 3685 total_errors = 0;
1f78160c 3686 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3687 if (!dev->bdev)
3688 continue;
2b82032c 3689 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3690 continue;
3691
a512bbf8
YZ
3692 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3693 if (ret)
3694 total_errors++;
f2984462 3695 }
174ba509 3696 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3697 if (total_errors > max_errors) {
a4553fef 3698 btrfs_std_error(root->fs_info, -EIO,
79787eaa
JM
3699 "%d errors while writing supers", total_errors);
3700 return -EIO;
a236aed1 3701 }
f2984462
CM
3702 return 0;
3703}
3704
a512bbf8
YZ
3705int write_ctree_super(struct btrfs_trans_handle *trans,
3706 struct btrfs_root *root, int max_mirrors)
eb60ceac 3707{
f570e757 3708 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3709}
3710
cb517eab
MX
3711/* Drop a fs root from the radix tree and free it. */
3712void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3713 struct btrfs_root *root)
2619ba1f 3714{
4df27c4d 3715 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3716 radix_tree_delete(&fs_info->fs_roots_radix,
3717 (unsigned long)root->root_key.objectid);
4df27c4d 3718 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3719
3720 if (btrfs_root_refs(&root->root_item) == 0)
3721 synchronize_srcu(&fs_info->subvol_srcu);
3722
1a4319cc 3723 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3724 btrfs_free_log(NULL, root);
3321719e 3725
faa2dbf0
JB
3726 if (root->free_ino_pinned)
3727 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3728 if (root->free_ino_ctl)
3729 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3730 free_fs_root(root);
4df27c4d
YZ
3731}
3732
3733static void free_fs_root(struct btrfs_root *root)
3734{
57cdc8db 3735 iput(root->ino_cache_inode);
4df27c4d 3736 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3737 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3738 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3739 if (root->anon_dev)
3740 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3741 if (root->subv_writers)
3742 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3743 free_extent_buffer(root->node);
3744 free_extent_buffer(root->commit_root);
581bb050
LZ
3745 kfree(root->free_ino_ctl);
3746 kfree(root->free_ino_pinned);
d397712b 3747 kfree(root->name);
b0feb9d9 3748 btrfs_put_fs_root(root);
2619ba1f
CM
3749}
3750
cb517eab
MX
3751void btrfs_free_fs_root(struct btrfs_root *root)
3752{
3753 free_fs_root(root);
2619ba1f
CM
3754}
3755
c146afad 3756int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3757{
c146afad
YZ
3758 u64 root_objectid = 0;
3759 struct btrfs_root *gang[8];
65d33fd7
QW
3760 int i = 0;
3761 int err = 0;
3762 unsigned int ret = 0;
3763 int index;
e089f05c 3764
c146afad 3765 while (1) {
65d33fd7 3766 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3767 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3768 (void **)gang, root_objectid,
3769 ARRAY_SIZE(gang));
65d33fd7
QW
3770 if (!ret) {
3771 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3772 break;
65d33fd7 3773 }
5d4f98a2 3774 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3775
c146afad 3776 for (i = 0; i < ret; i++) {
65d33fd7
QW
3777 /* Avoid to grab roots in dead_roots */
3778 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3779 gang[i] = NULL;
3780 continue;
3781 }
3782 /* grab all the search result for later use */
3783 gang[i] = btrfs_grab_fs_root(gang[i]);
3784 }
3785 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3786
65d33fd7
QW
3787 for (i = 0; i < ret; i++) {
3788 if (!gang[i])
3789 continue;
c146afad 3790 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3791 err = btrfs_orphan_cleanup(gang[i]);
3792 if (err)
65d33fd7
QW
3793 break;
3794 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3795 }
3796 root_objectid++;
3797 }
65d33fd7
QW
3798
3799 /* release the uncleaned roots due to error */
3800 for (; i < ret; i++) {
3801 if (gang[i])
3802 btrfs_put_fs_root(gang[i]);
3803 }
3804 return err;
c146afad 3805}
a2135011 3806
c146afad
YZ
3807int btrfs_commit_super(struct btrfs_root *root)
3808{
3809 struct btrfs_trans_handle *trans;
a74a4b97 3810
c146afad 3811 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3812 btrfs_run_delayed_iputs(root);
c146afad 3813 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3814 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3815
3816 /* wait until ongoing cleanup work done */
3817 down_write(&root->fs_info->cleanup_work_sem);
3818 up_write(&root->fs_info->cleanup_work_sem);
3819
7a7eaa40 3820 trans = btrfs_join_transaction(root);
3612b495
TI
3821 if (IS_ERR(trans))
3822 return PTR_ERR(trans);
d52c1bcc 3823 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3824}
3825
3abdbd78 3826void close_ctree(struct btrfs_root *root)
c146afad
YZ
3827{
3828 struct btrfs_fs_info *fs_info = root->fs_info;
3829 int ret;
3830
3831 fs_info->closing = 1;
3832 smp_mb();
3833
7343dd61
JM
3834 /* wait for the qgroup rescan worker to stop */
3835 btrfs_qgroup_wait_for_completion(fs_info);
3836
803b2f54
SB
3837 /* wait for the uuid_scan task to finish */
3838 down(&fs_info->uuid_tree_rescan_sem);
3839 /* avoid complains from lockdep et al., set sem back to initial state */
3840 up(&fs_info->uuid_tree_rescan_sem);
3841
837d5b6e 3842 /* pause restriper - we want to resume on mount */
aa1b8cd4 3843 btrfs_pause_balance(fs_info);
837d5b6e 3844
8dabb742
SB
3845 btrfs_dev_replace_suspend_for_unmount(fs_info);
3846
aa1b8cd4 3847 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3848
3849 /* wait for any defraggers to finish */
3850 wait_event(fs_info->transaction_wait,
3851 (atomic_read(&fs_info->defrag_running) == 0));
3852
3853 /* clear out the rbtree of defraggable inodes */
26176e7c 3854 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3855
21c7e756
MX
3856 cancel_work_sync(&fs_info->async_reclaim_work);
3857
c146afad 3858 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3859 /*
3860 * If the cleaner thread is stopped and there are
3861 * block groups queued for removal, the deletion will be
3862 * skipped when we quit the cleaner thread.
3863 */
e44163e1 3864 btrfs_delete_unused_bgs(root->fs_info);
e44163e1 3865
acce952b 3866 ret = btrfs_commit_super(root);
3867 if (ret)
04892340 3868 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3869 }
3870
87533c47 3871 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3872 btrfs_error_commit_super(root);
0f7d52f4 3873
e3029d9f
AV
3874 kthread_stop(fs_info->transaction_kthread);
3875 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3876
f25784b3
YZ
3877 fs_info->closing = 2;
3878 smp_mb();
3879
04892340 3880 btrfs_free_qgroup_config(fs_info);
bcef60f2 3881
963d678b 3882 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3883 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3884 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3885 }
bcc63abb 3886
6618a59b 3887 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3888 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3889
faa2dbf0 3890 btrfs_free_fs_roots(fs_info);
d10c5f31 3891
1a4319cc
LB
3892 btrfs_put_block_group_cache(fs_info);
3893
2b1360da
JB
3894 btrfs_free_block_groups(fs_info);
3895
de348ee0
WS
3896 /*
3897 * we must make sure there is not any read request to
3898 * submit after we stopping all workers.
3899 */
3900 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3901 btrfs_stop_all_workers(fs_info);
3902
47ab2a6c 3903 fs_info->open = 0;
13e6c37b 3904 free_root_pointers(fs_info, 1);
9ad6b7bc 3905
13e6c37b 3906 iput(fs_info->btree_inode);
d6bfde87 3907
21adbd5c
SB
3908#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3909 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3910 btrfsic_unmount(root, fs_info->fs_devices);
3911#endif
3912
dfe25020 3913 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3914 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3915
e2d84521 3916 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3917 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3918 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3919 bdi_destroy(&fs_info->bdi);
76dda93c 3920 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3921
53b381b3
DW
3922 btrfs_free_stripe_hash_table(fs_info);
3923
cdfb080e 3924 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3925 root->orphan_block_rsv = NULL;
04216820
FM
3926
3927 lock_chunks(root);
3928 while (!list_empty(&fs_info->pinned_chunks)) {
3929 struct extent_map *em;
3930
3931 em = list_first_entry(&fs_info->pinned_chunks,
3932 struct extent_map, list);
3933 list_del_init(&em->list);
3934 free_extent_map(em);
3935 }
3936 unlock_chunks(root);
eb60ceac
CM
3937}
3938
b9fab919
CM
3939int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3940 int atomic)
5f39d397 3941{
1259ab75 3942 int ret;
727011e0 3943 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3944
0b32f4bb 3945 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3946 if (!ret)
3947 return ret;
3948
3949 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3950 parent_transid, atomic);
3951 if (ret == -EAGAIN)
3952 return ret;
1259ab75 3953 return !ret;
5f39d397
CM
3954}
3955
5f39d397
CM
3956void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3957{
06ea65a3 3958 struct btrfs_root *root;
5f39d397 3959 u64 transid = btrfs_header_generation(buf);
b9473439 3960 int was_dirty;
b4ce94de 3961
06ea65a3
JB
3962#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3963 /*
3964 * This is a fast path so only do this check if we have sanity tests
3965 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3966 * outside of the sanity tests.
3967 */
3968 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3969 return;
3970#endif
3971 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3972 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3973 if (transid != root->fs_info->generation)
3974 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3975 "found %llu running %llu\n",
c1c9ff7c 3976 buf->start, transid, root->fs_info->generation);
0b32f4bb 3977 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3978 if (!was_dirty)
3979 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3980 buf->len,
3981 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3982#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3983 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3984 btrfs_print_leaf(root, buf);
3985 ASSERT(0);
3986 }
3987#endif
eb60ceac
CM
3988}
3989
b53d3f5d
LB
3990static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3991 int flush_delayed)
16cdcec7
MX
3992{
3993 /*
3994 * looks as though older kernels can get into trouble with
3995 * this code, they end up stuck in balance_dirty_pages forever
3996 */
e2d84521 3997 int ret;
16cdcec7
MX
3998
3999 if (current->flags & PF_MEMALLOC)
4000 return;
4001
b53d3f5d
LB
4002 if (flush_delayed)
4003 btrfs_balance_delayed_items(root);
16cdcec7 4004
e2d84521
MX
4005 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4006 BTRFS_DIRTY_METADATA_THRESH);
4007 if (ret > 0) {
d0e1d66b
NJ
4008 balance_dirty_pages_ratelimited(
4009 root->fs_info->btree_inode->i_mapping);
16cdcec7 4010 }
16cdcec7
MX
4011}
4012
b53d3f5d 4013void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 4014{
b53d3f5d
LB
4015 __btrfs_btree_balance_dirty(root, 1);
4016}
585ad2c3 4017
b53d3f5d
LB
4018void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4019{
4020 __btrfs_btree_balance_dirty(root, 0);
35b7e476 4021}
6b80053d 4022
ca7a79ad 4023int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4024{
727011e0 4025 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 4026 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 4027}
0da5468f 4028
fcd1f065 4029static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 4030 int read_only)
4031{
c926093e 4032 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4033 u64 nodesize = btrfs_super_nodesize(sb);
4034 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4035 int ret = 0;
4036
319e4d06
QW
4037 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4038 printk(KERN_ERR "BTRFS: no valid FS found\n");
4039 ret = -EINVAL;
4040 }
4041 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4042 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4043 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b
DS
4044 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4045 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4046 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4047 ret = -EINVAL;
4048 }
21e7626b
DS
4049 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4050 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4051 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4052 ret = -EINVAL;
4053 }
21e7626b
DS
4054 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4055 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4056 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4057 ret = -EINVAL;
4058 }
4059
1104a885 4060 /*
319e4d06
QW
4061 * Check sectorsize and nodesize first, other check will need it.
4062 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4063 */
319e4d06
QW
4064 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4065 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4066 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4067 ret = -EINVAL;
4068 }
4069 /* Only PAGE SIZE is supported yet */
4070 if (sectorsize != PAGE_CACHE_SIZE) {
4071 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4072 sectorsize, PAGE_CACHE_SIZE);
4073 ret = -EINVAL;
4074 }
4075 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4076 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4077 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4078 ret = -EINVAL;
4079 }
4080 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4081 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4082 le32_to_cpu(sb->__unused_leafsize),
4083 nodesize);
4084 ret = -EINVAL;
4085 }
4086
4087 /* Root alignment check */
4088 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
c926093e 4089 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 4090 btrfs_super_root(sb));
319e4d06
QW
4091 ret = -EINVAL;
4092 }
4093 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
cd743fac
DS
4094 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4095 btrfs_super_chunk_root(sb));
75d6ad38
DS
4096 ret = -EINVAL;
4097 }
319e4d06
QW
4098 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4099 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4100 btrfs_super_log_root(sb));
75d6ad38
DS
4101 ret = -EINVAL;
4102 }
4103
c926093e
DS
4104 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4105 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4106 fs_info->fsid, sb->dev_item.fsid);
4107 ret = -EINVAL;
4108 }
4109
4110 /*
4111 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4112 * done later
4113 */
21e7626b 4114 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 4115 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 4116 btrfs_super_num_devices(sb));
75d6ad38
DS
4117 if (btrfs_super_num_devices(sb) == 0) {
4118 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4119 ret = -EINVAL;
4120 }
c926093e 4121
21e7626b 4122 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 4123 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 4124 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4125 ret = -EINVAL;
4126 }
4127
ce7fca5f
DS
4128 /*
4129 * Obvious sys_chunk_array corruptions, it must hold at least one key
4130 * and one chunk
4131 */
4132 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4133 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4134 btrfs_super_sys_array_size(sb),
4135 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4136 ret = -EINVAL;
4137 }
4138 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4139 + sizeof(struct btrfs_chunk)) {
d2207129 4140 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
4141 btrfs_super_sys_array_size(sb),
4142 sizeof(struct btrfs_disk_key)
4143 + sizeof(struct btrfs_chunk));
4144 ret = -EINVAL;
4145 }
4146
c926093e
DS
4147 /*
4148 * The generation is a global counter, we'll trust it more than the others
4149 * but it's still possible that it's the one that's wrong.
4150 */
21e7626b 4151 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
4152 printk(KERN_WARNING
4153 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4154 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4155 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4156 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4157 printk(KERN_WARNING
4158 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4159 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4160
4161 return ret;
acce952b 4162}
4163
48a3b636 4164static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4165{
acce952b 4166 mutex_lock(&root->fs_info->cleaner_mutex);
4167 btrfs_run_delayed_iputs(root);
4168 mutex_unlock(&root->fs_info->cleaner_mutex);
4169
4170 down_write(&root->fs_info->cleanup_work_sem);
4171 up_write(&root->fs_info->cleanup_work_sem);
4172
4173 /* cleanup FS via transaction */
4174 btrfs_cleanup_transaction(root);
acce952b 4175}
4176
143bede5 4177static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4178{
acce952b 4179 struct btrfs_ordered_extent *ordered;
acce952b 4180
199c2a9c 4181 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4182 /*
4183 * This will just short circuit the ordered completion stuff which will
4184 * make sure the ordered extent gets properly cleaned up.
4185 */
199c2a9c 4186 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4187 root_extent_list)
4188 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4189 spin_unlock(&root->ordered_extent_lock);
4190}
4191
4192static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4193{
4194 struct btrfs_root *root;
4195 struct list_head splice;
4196
4197 INIT_LIST_HEAD(&splice);
4198
4199 spin_lock(&fs_info->ordered_root_lock);
4200 list_splice_init(&fs_info->ordered_roots, &splice);
4201 while (!list_empty(&splice)) {
4202 root = list_first_entry(&splice, struct btrfs_root,
4203 ordered_root);
1de2cfde
JB
4204 list_move_tail(&root->ordered_root,
4205 &fs_info->ordered_roots);
199c2a9c 4206
2a85d9ca 4207 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4208 btrfs_destroy_ordered_extents(root);
4209
2a85d9ca
LB
4210 cond_resched();
4211 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4212 }
4213 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4214}
4215
35a3621b
SB
4216static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4217 struct btrfs_root *root)
acce952b 4218{
4219 struct rb_node *node;
4220 struct btrfs_delayed_ref_root *delayed_refs;
4221 struct btrfs_delayed_ref_node *ref;
4222 int ret = 0;
4223
4224 delayed_refs = &trans->delayed_refs;
4225
4226 spin_lock(&delayed_refs->lock);
d7df2c79 4227 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4228 spin_unlock(&delayed_refs->lock);
efe120a0 4229 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4230 return ret;
4231 }
4232
d7df2c79
JB
4233 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4234 struct btrfs_delayed_ref_head *head;
c6fc2454 4235 struct btrfs_delayed_ref_node *tmp;
e78417d1 4236 bool pin_bytes = false;
acce952b 4237
d7df2c79
JB
4238 head = rb_entry(node, struct btrfs_delayed_ref_head,
4239 href_node);
4240 if (!mutex_trylock(&head->mutex)) {
4241 atomic_inc(&head->node.refs);
4242 spin_unlock(&delayed_refs->lock);
eb12db69 4243
d7df2c79 4244 mutex_lock(&head->mutex);
e78417d1 4245 mutex_unlock(&head->mutex);
d7df2c79
JB
4246 btrfs_put_delayed_ref(&head->node);
4247 spin_lock(&delayed_refs->lock);
4248 continue;
4249 }
4250 spin_lock(&head->lock);
c6fc2454
QW
4251 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4252 list) {
d7df2c79 4253 ref->in_tree = 0;
c6fc2454 4254 list_del(&ref->list);
d7df2c79
JB
4255 atomic_dec(&delayed_refs->num_entries);
4256 btrfs_put_delayed_ref(ref);
e78417d1 4257 }
d7df2c79
JB
4258 if (head->must_insert_reserved)
4259 pin_bytes = true;
4260 btrfs_free_delayed_extent_op(head->extent_op);
4261 delayed_refs->num_heads--;
4262 if (head->processing == 0)
4263 delayed_refs->num_heads_ready--;
4264 atomic_dec(&delayed_refs->num_entries);
4265 head->node.in_tree = 0;
4266 rb_erase(&head->href_node, &delayed_refs->href_root);
4267 spin_unlock(&head->lock);
4268 spin_unlock(&delayed_refs->lock);
4269 mutex_unlock(&head->mutex);
acce952b 4270
d7df2c79
JB
4271 if (pin_bytes)
4272 btrfs_pin_extent(root, head->node.bytenr,
4273 head->node.num_bytes, 1);
4274 btrfs_put_delayed_ref(&head->node);
acce952b 4275 cond_resched();
4276 spin_lock(&delayed_refs->lock);
4277 }
4278
4279 spin_unlock(&delayed_refs->lock);
4280
4281 return ret;
4282}
4283
143bede5 4284static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4285{
4286 struct btrfs_inode *btrfs_inode;
4287 struct list_head splice;
4288
4289 INIT_LIST_HEAD(&splice);
4290
eb73c1b7
MX
4291 spin_lock(&root->delalloc_lock);
4292 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4293
4294 while (!list_empty(&splice)) {
eb73c1b7
MX
4295 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4296 delalloc_inodes);
acce952b 4297
4298 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4299 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4300 &btrfs_inode->runtime_flags);
eb73c1b7 4301 spin_unlock(&root->delalloc_lock);
acce952b 4302
4303 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4304
eb73c1b7 4305 spin_lock(&root->delalloc_lock);
acce952b 4306 }
4307
eb73c1b7
MX
4308 spin_unlock(&root->delalloc_lock);
4309}
4310
4311static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4312{
4313 struct btrfs_root *root;
4314 struct list_head splice;
4315
4316 INIT_LIST_HEAD(&splice);
4317
4318 spin_lock(&fs_info->delalloc_root_lock);
4319 list_splice_init(&fs_info->delalloc_roots, &splice);
4320 while (!list_empty(&splice)) {
4321 root = list_first_entry(&splice, struct btrfs_root,
4322 delalloc_root);
4323 list_del_init(&root->delalloc_root);
4324 root = btrfs_grab_fs_root(root);
4325 BUG_ON(!root);
4326 spin_unlock(&fs_info->delalloc_root_lock);
4327
4328 btrfs_destroy_delalloc_inodes(root);
4329 btrfs_put_fs_root(root);
4330
4331 spin_lock(&fs_info->delalloc_root_lock);
4332 }
4333 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4334}
4335
4336static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4337 struct extent_io_tree *dirty_pages,
4338 int mark)
4339{
4340 int ret;
acce952b 4341 struct extent_buffer *eb;
4342 u64 start = 0;
4343 u64 end;
acce952b 4344
4345 while (1) {
4346 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4347 mark, NULL);
acce952b 4348 if (ret)
4349 break;
4350
4351 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4352 while (start <= end) {
01d58472 4353 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4354 start += root->nodesize;
fd8b2b61 4355 if (!eb)
acce952b 4356 continue;
fd8b2b61 4357 wait_on_extent_buffer_writeback(eb);
acce952b 4358
fd8b2b61
JB
4359 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4360 &eb->bflags))
4361 clear_extent_buffer_dirty(eb);
4362 free_extent_buffer_stale(eb);
acce952b 4363 }
4364 }
4365
4366 return ret;
4367}
4368
4369static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4370 struct extent_io_tree *pinned_extents)
4371{
4372 struct extent_io_tree *unpin;
4373 u64 start;
4374 u64 end;
4375 int ret;
ed0eaa14 4376 bool loop = true;
acce952b 4377
4378 unpin = pinned_extents;
ed0eaa14 4379again:
acce952b 4380 while (1) {
4381 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4382 EXTENT_DIRTY, NULL);
acce952b 4383 if (ret)
4384 break;
4385
acce952b 4386 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4387 btrfs_error_unpin_extent_range(root, start, end);
4388 cond_resched();
4389 }
4390
ed0eaa14
LB
4391 if (loop) {
4392 if (unpin == &root->fs_info->freed_extents[0])
4393 unpin = &root->fs_info->freed_extents[1];
4394 else
4395 unpin = &root->fs_info->freed_extents[0];
4396 loop = false;
4397 goto again;
4398 }
4399
acce952b 4400 return 0;
4401}
4402
49b25e05
JM
4403void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4404 struct btrfs_root *root)
4405{
4406 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4407
4a9d8bde 4408 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4409 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4410
4a9d8bde 4411 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4412 wake_up(&root->fs_info->transaction_wait);
49b25e05 4413
67cde344
MX
4414 btrfs_destroy_delayed_inodes(root);
4415 btrfs_assert_delayed_root_empty(root);
49b25e05 4416
49b25e05
JM
4417 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4418 EXTENT_DIRTY);
6e841e32
LB
4419 btrfs_destroy_pinned_extent(root,
4420 root->fs_info->pinned_extents);
49b25e05 4421
4a9d8bde
MX
4422 cur_trans->state =TRANS_STATE_COMPLETED;
4423 wake_up(&cur_trans->commit_wait);
4424
49b25e05
JM
4425 /*
4426 memset(cur_trans, 0, sizeof(*cur_trans));
4427 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4428 */
4429}
4430
48a3b636 4431static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4432{
4433 struct btrfs_transaction *t;
acce952b 4434
acce952b 4435 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4436
a4abeea4 4437 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4438 while (!list_empty(&root->fs_info->trans_list)) {
4439 t = list_first_entry(&root->fs_info->trans_list,
4440 struct btrfs_transaction, list);
4441 if (t->state >= TRANS_STATE_COMMIT_START) {
4442 atomic_inc(&t->use_count);
4443 spin_unlock(&root->fs_info->trans_lock);
4444 btrfs_wait_for_commit(root, t->transid);
4445 btrfs_put_transaction(t);
4446 spin_lock(&root->fs_info->trans_lock);
4447 continue;
4448 }
4449 if (t == root->fs_info->running_transaction) {
4450 t->state = TRANS_STATE_COMMIT_DOING;
4451 spin_unlock(&root->fs_info->trans_lock);
4452 /*
4453 * We wait for 0 num_writers since we don't hold a trans
4454 * handle open currently for this transaction.
4455 */
4456 wait_event(t->writer_wait,
4457 atomic_read(&t->num_writers) == 0);
4458 } else {
4459 spin_unlock(&root->fs_info->trans_lock);
4460 }
4461 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4462
724e2315
JB
4463 spin_lock(&root->fs_info->trans_lock);
4464 if (t == root->fs_info->running_transaction)
4465 root->fs_info->running_transaction = NULL;
acce952b 4466 list_del_init(&t->list);
724e2315 4467 spin_unlock(&root->fs_info->trans_lock);
acce952b 4468
724e2315
JB
4469 btrfs_put_transaction(t);
4470 trace_btrfs_transaction_commit(root);
4471 spin_lock(&root->fs_info->trans_lock);
4472 }
4473 spin_unlock(&root->fs_info->trans_lock);
4474 btrfs_destroy_all_ordered_extents(root->fs_info);
4475 btrfs_destroy_delayed_inodes(root);
4476 btrfs_assert_delayed_root_empty(root);
4477 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4478 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4479 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4480
4481 return 0;
4482}
4483
e8c9f186 4484static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4485 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4486 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4487 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4488 /* note we're sharing with inode.c for the merge bio hook */
4489 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4490};