btrfs: use btrfs_put_fs_root to free roots always
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
6d97c6e3 22#include <crypto/hash.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
aac0023c 43#include "block-group.h"
b0643e59 44#include "discard.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
d352ac68
CM
101/*
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
105 */
44b8bd7e 106struct async_submit_bio {
c6100a4b 107 void *private_data;
44b8bd7e 108 struct bio *bio;
a758781d 109 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 110 int mirror_num;
eaf25d93
CM
111 /*
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
114 */
115 u64 bio_offset;
8b712842 116 struct btrfs_work work;
4e4cbee9 117 blk_status_t status;
44b8bd7e
CM
118};
119
85d4e461
CM
120/*
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
124 *
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
4008c04a 130 *
85d4e461
CM
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 134 *
85d4e461
CM
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 138 *
85d4e461
CM
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
4008c04a
CM
142 */
143#ifdef CONFIG_DEBUG_LOCK_ALLOC
144# if BTRFS_MAX_LEVEL != 8
145# error
146# endif
85d4e461
CM
147
148static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153} btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 166 { .id = 0, .name_stem = "tree" },
4008c04a 167};
85d4e461
CM
168
169void __init btrfs_init_lockdep(void)
170{
171 int i, j;
172
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
180 }
181}
182
183void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 int level)
185{
186 struct btrfs_lockdep_keyset *ks;
187
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
193 break;
194
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
197}
198
4008c04a
CM
199#endif
200
d352ac68
CM
201/*
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
204 */
6af49dbd 205struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
206 struct page *page, size_t pg_offset,
207 u64 start, u64 len)
7eccb903 208{
fc4f21b1 209 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
210 struct extent_map *em;
211 int ret;
212
890871be 213 read_lock(&em_tree->lock);
d1310b2e 214 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 215 if (em) {
890871be 216 read_unlock(&em_tree->lock);
5f39d397 217 goto out;
a061fc8d 218 }
890871be 219 read_unlock(&em_tree->lock);
7b13b7b1 220
172ddd60 221 em = alloc_extent_map();
5f39d397
CM
222 if (!em) {
223 em = ERR_PTR(-ENOMEM);
224 goto out;
225 }
226 em->start = 0;
0afbaf8c 227 em->len = (u64)-1;
c8b97818 228 em->block_len = (u64)-1;
5f39d397 229 em->block_start = 0;
d1310b2e 230
890871be 231 write_lock(&em_tree->lock);
09a2a8f9 232 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
233 if (ret == -EEXIST) {
234 free_extent_map(em);
7b13b7b1 235 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 236 if (!em)
0433f20d 237 em = ERR_PTR(-EIO);
5f39d397 238 } else if (ret) {
7b13b7b1 239 free_extent_map(em);
0433f20d 240 em = ERR_PTR(ret);
5f39d397 241 }
890871be 242 write_unlock(&em_tree->lock);
7b13b7b1 243
5f39d397
CM
244out:
245 return em;
7eccb903
CM
246}
247
d352ac68 248/*
2996e1f8
JT
249 * Compute the csum of a btree block and store the result to provided buffer.
250 *
251 * Returns error if the extent buffer cannot be mapped.
d352ac68 252 */
2996e1f8 253static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 254{
d5178578
JT
255 struct btrfs_fs_info *fs_info = buf->fs_info;
256 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
257 unsigned long len;
258 unsigned long cur_len;
259 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
260 char *kaddr;
261 unsigned long map_start;
262 unsigned long map_len;
263 int err;
d5178578
JT
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
19c00ddc
CM
267
268 len = buf->len - offset;
d5178578 269
d397712b 270 while (len > 0) {
d2e174d5
JT
271 /*
272 * Note: we don't need to check for the err == 1 case here, as
273 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
274 * and 'min_len = 32' and the currently implemented mapping
275 * algorithm we cannot cross a page boundary.
276 */
19c00ddc 277 err = map_private_extent_buffer(buf, offset, 32,
a6591715 278 &kaddr, &map_start, &map_len);
c53839fc 279 if (WARN_ON(err))
8bd98f0e 280 return err;
19c00ddc 281 cur_len = min(len, map_len - (offset - map_start));
d5178578 282 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
283 len -= cur_len;
284 offset += cur_len;
19c00ddc 285 }
71a63551 286 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 287
d5178578 288 crypto_shash_final(shash, result);
19c00ddc 289
19c00ddc
CM
290 return 0;
291}
292
d352ac68
CM
293/*
294 * we can't consider a given block up to date unless the transid of the
295 * block matches the transid in the parent node's pointer. This is how we
296 * detect blocks that either didn't get written at all or got written
297 * in the wrong place.
298 */
1259ab75 299static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
300 struct extent_buffer *eb, u64 parent_transid,
301 int atomic)
1259ab75 302{
2ac55d41 303 struct extent_state *cached_state = NULL;
1259ab75 304 int ret;
2755a0de 305 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
306
307 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
308 return 0;
309
b9fab919
CM
310 if (atomic)
311 return -EAGAIN;
312
a26e8c9f
JB
313 if (need_lock) {
314 btrfs_tree_read_lock(eb);
300aa896 315 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
316 }
317
2ac55d41 318 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 319 &cached_state);
0b32f4bb 320 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
321 btrfs_header_generation(eb) == parent_transid) {
322 ret = 0;
323 goto out;
324 }
94647322
DS
325 btrfs_err_rl(eb->fs_info,
326 "parent transid verify failed on %llu wanted %llu found %llu",
327 eb->start,
29549aec 328 parent_transid, btrfs_header_generation(eb));
1259ab75 329 ret = 1;
a26e8c9f
JB
330
331 /*
332 * Things reading via commit roots that don't have normal protection,
333 * like send, can have a really old block in cache that may point at a
01327610 334 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
335 * if we find an eb that is under IO (dirty/writeback) because we could
336 * end up reading in the stale data and then writing it back out and
337 * making everybody very sad.
338 */
339 if (!extent_buffer_under_io(eb))
340 clear_extent_buffer_uptodate(eb);
33958dc6 341out:
2ac55d41 342 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 343 &cached_state);
472b909f
JB
344 if (need_lock)
345 btrfs_tree_read_unlock_blocking(eb);
1259ab75 346 return ret;
1259ab75
CM
347}
348
e7e16f48
JT
349static bool btrfs_supported_super_csum(u16 csum_type)
350{
351 switch (csum_type) {
352 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 353 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 354 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 355 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
356 return true;
357 default:
358 return false;
359 }
360}
361
1104a885
DS
362/*
363 * Return 0 if the superblock checksum type matches the checksum value of that
364 * algorithm. Pass the raw disk superblock data.
365 */
ab8d0fc4
JM
366static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
367 char *raw_disk_sb)
1104a885
DS
368{
369 struct btrfs_super_block *disk_sb =
370 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 371 char result[BTRFS_CSUM_SIZE];
d5178578
JT
372 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
373
374 shash->tfm = fs_info->csum_shash;
375 crypto_shash_init(shash);
1104a885 376
51bce6c9
JT
377 /*
378 * The super_block structure does not span the whole
379 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
380 * filled with zeros and is included in the checksum.
381 */
d5178578
JT
382 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
383 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
384 crypto_shash_final(shash, result);
1104a885 385
51bce6c9
JT
386 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
387 return 1;
1104a885 388
e7e16f48 389 return 0;
1104a885
DS
390}
391
e064d5e9 392int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 393 struct btrfs_key *first_key, u64 parent_transid)
581c1760 394{
e064d5e9 395 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
396 int found_level;
397 struct btrfs_key found_key;
398 int ret;
399
400 found_level = btrfs_header_level(eb);
401 if (found_level != level) {
63489055
QW
402 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
403 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
404 btrfs_err(fs_info,
405"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
406 eb->start, level, found_level);
581c1760
QW
407 return -EIO;
408 }
409
410 if (!first_key)
411 return 0;
412
5d41be6f
QW
413 /*
414 * For live tree block (new tree blocks in current transaction),
415 * we need proper lock context to avoid race, which is impossible here.
416 * So we only checks tree blocks which is read from disk, whose
417 * generation <= fs_info->last_trans_committed.
418 */
419 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
420 return 0;
62fdaa52
QW
421
422 /* We have @first_key, so this @eb must have at least one item */
423 if (btrfs_header_nritems(eb) == 0) {
424 btrfs_err(fs_info,
425 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
426 eb->start);
427 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
428 return -EUCLEAN;
429 }
430
581c1760
QW
431 if (found_level)
432 btrfs_node_key_to_cpu(eb, &found_key, 0);
433 else
434 btrfs_item_key_to_cpu(eb, &found_key, 0);
435 ret = btrfs_comp_cpu_keys(first_key, &found_key);
436
581c1760 437 if (ret) {
63489055
QW
438 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
439 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 440 btrfs_err(fs_info,
ff76a864
LB
441"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442 eb->start, parent_transid, first_key->objectid,
443 first_key->type, first_key->offset,
444 found_key.objectid, found_key.type,
445 found_key.offset);
581c1760 446 }
581c1760
QW
447 return ret;
448}
449
d352ac68
CM
450/*
451 * helper to read a given tree block, doing retries as required when
452 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
453 *
454 * @parent_transid: expected transid, skip check if 0
455 * @level: expected level, mandatory check
456 * @first_key: expected key of first slot, skip check if NULL
d352ac68 457 */
5ab12d1f 458static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
459 u64 parent_transid, int level,
460 struct btrfs_key *first_key)
f188591e 461{
5ab12d1f 462 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 463 struct extent_io_tree *io_tree;
ea466794 464 int failed = 0;
f188591e
CM
465 int ret;
466 int num_copies = 0;
467 int mirror_num = 0;
ea466794 468 int failed_mirror = 0;
f188591e 469
0b246afa 470 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 471 while (1) {
f8397d69 472 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 473 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 474 if (!ret) {
581c1760 475 if (verify_parent_transid(io_tree, eb,
b9fab919 476 parent_transid, 0))
256dd1bb 477 ret = -EIO;
e064d5e9 478 else if (btrfs_verify_level_key(eb, level,
448de471 479 first_key, parent_transid))
581c1760
QW
480 ret = -EUCLEAN;
481 else
482 break;
256dd1bb 483 }
d397712b 484
0b246afa 485 num_copies = btrfs_num_copies(fs_info,
f188591e 486 eb->start, eb->len);
4235298e 487 if (num_copies == 1)
ea466794 488 break;
4235298e 489
5cf1ab56
JB
490 if (!failed_mirror) {
491 failed = 1;
492 failed_mirror = eb->read_mirror;
493 }
494
f188591e 495 mirror_num++;
ea466794
JB
496 if (mirror_num == failed_mirror)
497 mirror_num++;
498
4235298e 499 if (mirror_num > num_copies)
ea466794 500 break;
f188591e 501 }
ea466794 502
c0901581 503 if (failed && !ret && failed_mirror)
20a1fbf9 504 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
505
506 return ret;
f188591e 507}
19c00ddc 508
d352ac68 509/*
d397712b
CM
510 * checksum a dirty tree block before IO. This has extra checks to make sure
511 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 512 */
d397712b 513
01d58472 514static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 515{
4eee4fa4 516 u64 start = page_offset(page);
19c00ddc 517 u64 found_start;
2996e1f8
JT
518 u8 result[BTRFS_CSUM_SIZE];
519 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 520 struct extent_buffer *eb;
8d47a0d8 521 int ret;
f188591e 522
4f2de97a
JB
523 eb = (struct extent_buffer *)page->private;
524 if (page != eb->pages[0])
525 return 0;
0f805531 526
19c00ddc 527 found_start = btrfs_header_bytenr(eb);
0f805531
AL
528 /*
529 * Please do not consolidate these warnings into a single if.
530 * It is useful to know what went wrong.
531 */
532 if (WARN_ON(found_start != start))
533 return -EUCLEAN;
534 if (WARN_ON(!PageUptodate(page)))
535 return -EUCLEAN;
536
de37aa51 537 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
538 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
539
2996e1f8
JT
540 if (csum_tree_block(eb, result))
541 return -EINVAL;
542
8d47a0d8
QW
543 if (btrfs_header_level(eb))
544 ret = btrfs_check_node(eb);
545 else
546 ret = btrfs_check_leaf_full(eb);
547
548 if (ret < 0) {
c06631b0 549 btrfs_print_tree(eb, 0);
8d47a0d8
QW
550 btrfs_err(fs_info,
551 "block=%llu write time tree block corruption detected",
552 eb->start);
c06631b0 553 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
554 return ret;
555 }
2996e1f8 556 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 557
2996e1f8 558 return 0;
19c00ddc
CM
559}
560
b0c9b3b0 561static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 562{
b0c9b3b0 563 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 564 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 565 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
566 int ret = 1;
567
0a4e5586 568 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 569 while (fs_devices) {
7239ff4b
NB
570 u8 *metadata_uuid;
571
572 /*
573 * Checking the incompat flag is only valid for the current
574 * fs. For seed devices it's forbidden to have their uuid
575 * changed so reading ->fsid in this case is fine
576 */
577 if (fs_devices == fs_info->fs_devices &&
578 btrfs_fs_incompat(fs_info, METADATA_UUID))
579 metadata_uuid = fs_devices->metadata_uuid;
580 else
581 metadata_uuid = fs_devices->fsid;
582
583 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
584 ret = 0;
585 break;
586 }
587 fs_devices = fs_devices->seed;
588 }
589 return ret;
590}
591
facc8a22
MX
592static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
593 u64 phy_offset, struct page *page,
594 u64 start, u64 end, int mirror)
ce9adaa5 595{
ce9adaa5
CM
596 u64 found_start;
597 int found_level;
ce9adaa5
CM
598 struct extent_buffer *eb;
599 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 600 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 601 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 602 int ret = 0;
2996e1f8 603 u8 result[BTRFS_CSUM_SIZE];
727011e0 604 int reads_done;
ce9adaa5 605
ce9adaa5
CM
606 if (!page->private)
607 goto out;
d397712b 608
4f2de97a 609 eb = (struct extent_buffer *)page->private;
d397712b 610
0b32f4bb
JB
611 /* the pending IO might have been the only thing that kept this buffer
612 * in memory. Make sure we have a ref for all this other checks
613 */
67439dad 614 atomic_inc(&eb->refs);
0b32f4bb
JB
615
616 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
617 if (!reads_done)
618 goto err;
f188591e 619
5cf1ab56 620 eb->read_mirror = mirror;
656f30db 621 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
622 ret = -EIO;
623 goto err;
624 }
625
ce9adaa5 626 found_start = btrfs_header_bytenr(eb);
727011e0 627 if (found_start != eb->start) {
893bf4b1
SY
628 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
629 eb->start, found_start);
f188591e 630 ret = -EIO;
ce9adaa5
CM
631 goto err;
632 }
b0c9b3b0 633 if (check_tree_block_fsid(eb)) {
02873e43
ZL
634 btrfs_err_rl(fs_info, "bad fsid on block %llu",
635 eb->start);
1259ab75
CM
636 ret = -EIO;
637 goto err;
638 }
ce9adaa5 639 found_level = btrfs_header_level(eb);
1c24c3ce 640 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
641 btrfs_err(fs_info, "bad tree block level %d on %llu",
642 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
643 ret = -EIO;
644 goto err;
645 }
ce9adaa5 646
85d4e461
CM
647 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
648 eb, found_level);
4008c04a 649
2996e1f8 650 ret = csum_tree_block(eb, result);
8bd98f0e 651 if (ret)
a826d6dc 652 goto err;
a826d6dc 653
2996e1f8
JT
654 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
655 u32 val;
656 u32 found = 0;
657
658 memcpy(&found, result, csum_size);
659
660 read_extent_buffer(eb, &val, 0, csum_size);
661 btrfs_warn_rl(fs_info,
662 "%s checksum verify failed on %llu wanted %x found %x level %d",
663 fs_info->sb->s_id, eb->start,
664 val, found, btrfs_header_level(eb));
665 ret = -EUCLEAN;
666 goto err;
667 }
668
a826d6dc
JB
669 /*
670 * If this is a leaf block and it is corrupt, set the corrupt bit so
671 * that we don't try and read the other copies of this block, just
672 * return -EIO.
673 */
1c4360ee 674 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
675 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
676 ret = -EIO;
677 }
ce9adaa5 678
813fd1dc 679 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
680 ret = -EIO;
681
0b32f4bb
JB
682 if (!ret)
683 set_extent_buffer_uptodate(eb);
75391f0d
QW
684 else
685 btrfs_err(fs_info,
686 "block=%llu read time tree block corruption detected",
687 eb->start);
ce9adaa5 688err:
79fb65a1
JB
689 if (reads_done &&
690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 691 btree_readahead_hook(eb, ret);
4bb31e92 692
53b381b3
DW
693 if (ret) {
694 /*
695 * our io error hook is going to dec the io pages
696 * again, we have to make sure it has something
697 * to decrement
698 */
699 atomic_inc(&eb->io_pages);
0b32f4bb 700 clear_extent_buffer_uptodate(eb);
53b381b3 701 }
0b32f4bb 702 free_extent_buffer(eb);
ce9adaa5 703out:
f188591e 704 return ret;
ce9adaa5
CM
705}
706
4246a0b6 707static void end_workqueue_bio(struct bio *bio)
ce9adaa5 708{
97eb6b69 709 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 710 struct btrfs_fs_info *fs_info;
9e0af237 711 struct btrfs_workqueue *wq;
ce9adaa5 712
ce9adaa5 713 fs_info = end_io_wq->info;
4e4cbee9 714 end_io_wq->status = bio->bi_status;
d20f7043 715
37226b21 716 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 718 wq = fs_info->endio_meta_write_workers;
a0cac0ec 719 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 720 wq = fs_info->endio_freespace_worker;
a0cac0ec 721 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 722 wq = fs_info->endio_raid56_workers;
a0cac0ec 723 else
9e0af237 724 wq = fs_info->endio_write_workers;
d20f7043 725 } else {
a0cac0ec 726 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 727 wq = fs_info->endio_repair_workers;
a0cac0ec 728 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 729 wq = fs_info->endio_raid56_workers;
a0cac0ec 730 else if (end_io_wq->metadata)
9e0af237 731 wq = fs_info->endio_meta_workers;
a0cac0ec 732 else
9e0af237 733 wq = fs_info->endio_workers;
d20f7043 734 }
9e0af237 735
a0cac0ec 736 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 737 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
738}
739
4e4cbee9 740blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 741 enum btrfs_wq_endio_type metadata)
0b86a832 742{
97eb6b69 743 struct btrfs_end_io_wq *end_io_wq;
8b110e39 744
97eb6b69 745 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 746 if (!end_io_wq)
4e4cbee9 747 return BLK_STS_RESOURCE;
ce9adaa5
CM
748
749 end_io_wq->private = bio->bi_private;
750 end_io_wq->end_io = bio->bi_end_io;
22c59948 751 end_io_wq->info = info;
4e4cbee9 752 end_io_wq->status = 0;
ce9adaa5 753 end_io_wq->bio = bio;
22c59948 754 end_io_wq->metadata = metadata;
ce9adaa5
CM
755
756 bio->bi_private = end_io_wq;
757 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
758 return 0;
759}
760
4a69a410
CM
761static void run_one_async_start(struct btrfs_work *work)
762{
4a69a410 763 struct async_submit_bio *async;
4e4cbee9 764 blk_status_t ret;
4a69a410
CM
765
766 async = container_of(work, struct async_submit_bio, work);
c6100a4b 767 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
768 async->bio_offset);
769 if (ret)
4e4cbee9 770 async->status = ret;
4a69a410
CM
771}
772
06ea01b1
DS
773/*
774 * In order to insert checksums into the metadata in large chunks, we wait
775 * until bio submission time. All the pages in the bio are checksummed and
776 * sums are attached onto the ordered extent record.
777 *
778 * At IO completion time the csums attached on the ordered extent record are
779 * inserted into the tree.
780 */
4a69a410 781static void run_one_async_done(struct btrfs_work *work)
8b712842 782{
8b712842 783 struct async_submit_bio *async;
06ea01b1
DS
784 struct inode *inode;
785 blk_status_t ret;
8b712842
CM
786
787 async = container_of(work, struct async_submit_bio, work);
06ea01b1 788 inode = async->private_data;
4854ddd0 789
bb7ab3b9 790 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
791 if (async->status) {
792 async->bio->bi_status = async->status;
4246a0b6 793 bio_endio(async->bio);
79787eaa
JM
794 return;
795 }
796
ec39f769
CM
797 /*
798 * All of the bios that pass through here are from async helpers.
799 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
800 * This changes nothing when cgroups aren't in use.
801 */
802 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 803 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
804 if (ret) {
805 async->bio->bi_status = ret;
806 bio_endio(async->bio);
807 }
4a69a410
CM
808}
809
810static void run_one_async_free(struct btrfs_work *work)
811{
812 struct async_submit_bio *async;
813
814 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
815 kfree(async);
816}
817
8c27cb35
LT
818blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
819 int mirror_num, unsigned long bio_flags,
820 u64 bio_offset, void *private_data,
e288c080 821 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
822{
823 struct async_submit_bio *async;
824
825 async = kmalloc(sizeof(*async), GFP_NOFS);
826 if (!async)
4e4cbee9 827 return BLK_STS_RESOURCE;
44b8bd7e 828
c6100a4b 829 async->private_data = private_data;
44b8bd7e
CM
830 async->bio = bio;
831 async->mirror_num = mirror_num;
4a69a410 832 async->submit_bio_start = submit_bio_start;
4a69a410 833
a0cac0ec
OS
834 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
835 run_one_async_free);
4a69a410 836
eaf25d93 837 async->bio_offset = bio_offset;
8c8bee1d 838
4e4cbee9 839 async->status = 0;
79787eaa 840
67f055c7 841 if (op_is_sync(bio->bi_opf))
5cdc7ad3 842 btrfs_set_work_high_priority(&async->work);
d313d7a3 843
5cdc7ad3 844 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
845 return 0;
846}
847
4e4cbee9 848static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 849{
2c30c71b 850 struct bio_vec *bvec;
ce3ed71a 851 struct btrfs_root *root;
2b070cfe 852 int ret = 0;
6dc4f100 853 struct bvec_iter_all iter_all;
ce3ed71a 854
c09abff8 855 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 856 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 857 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 858 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
859 if (ret)
860 break;
ce3ed71a 861 }
2c30c71b 862
4e4cbee9 863 return errno_to_blk_status(ret);
ce3ed71a
CM
864}
865
d0ee3934 866static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 867 u64 bio_offset)
22c59948 868{
8b712842
CM
869 /*
870 * when we're called for a write, we're already in the async
5443be45 871 * submission context. Just jump into btrfs_map_bio
8b712842 872 */
79787eaa 873 return btree_csum_one_bio(bio);
4a69a410 874}
22c59948 875
9b4e675a
DS
876static int check_async_write(struct btrfs_fs_info *fs_info,
877 struct btrfs_inode *bi)
de0022b9 878{
6300463b
LB
879 if (atomic_read(&bi->sync_writers))
880 return 0;
9b4e675a 881 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 882 return 0;
de0022b9
JB
883 return 1;
884}
885
a56b1c7b 886static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
887 int mirror_num,
888 unsigned long bio_flags)
44b8bd7e 889{
0b246afa 890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 891 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 892 blk_status_t ret;
cad321ad 893
37226b21 894 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
895 /*
896 * called for a read, do the setup so that checksum validation
897 * can happen in the async kernel threads
898 */
0b246afa
JM
899 ret = btrfs_bio_wq_end_io(fs_info, bio,
900 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 901 if (ret)
61891923 902 goto out_w_error;
08635bae 903 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
904 } else if (!async) {
905 ret = btree_csum_one_bio(bio);
906 if (ret)
61891923 907 goto out_w_error;
08635bae 908 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
909 } else {
910 /*
911 * kthread helpers are used to submit writes so that
912 * checksumming can happen in parallel across all CPUs
913 */
c6100a4b 914 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 915 0, inode, btree_submit_bio_start);
44b8bd7e 916 }
d313d7a3 917
4246a0b6
CH
918 if (ret)
919 goto out_w_error;
920 return 0;
921
61891923 922out_w_error:
4e4cbee9 923 bio->bi_status = ret;
4246a0b6 924 bio_endio(bio);
61891923 925 return ret;
44b8bd7e
CM
926}
927
3dd1462e 928#ifdef CONFIG_MIGRATION
784b4e29 929static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
930 struct page *newpage, struct page *page,
931 enum migrate_mode mode)
784b4e29
CM
932{
933 /*
934 * we can't safely write a btree page from here,
935 * we haven't done the locking hook
936 */
937 if (PageDirty(page))
938 return -EAGAIN;
939 /*
940 * Buffers may be managed in a filesystem specific way.
941 * We must have no buffers or drop them.
942 */
943 if (page_has_private(page) &&
944 !try_to_release_page(page, GFP_KERNEL))
945 return -EAGAIN;
a6bc32b8 946 return migrate_page(mapping, newpage, page, mode);
784b4e29 947}
3dd1462e 948#endif
784b4e29 949
0da5468f
CM
950
951static int btree_writepages(struct address_space *mapping,
952 struct writeback_control *wbc)
953{
e2d84521
MX
954 struct btrfs_fs_info *fs_info;
955 int ret;
956
d8d5f3e1 957 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
958
959 if (wbc->for_kupdate)
960 return 0;
961
e2d84521 962 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 963 /* this is a bit racy, but that's ok */
d814a491
EL
964 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965 BTRFS_DIRTY_METADATA_THRESH,
966 fs_info->dirty_metadata_batch);
e2d84521 967 if (ret < 0)
793955bc 968 return 0;
793955bc 969 }
0b32f4bb 970 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
971}
972
b2950863 973static int btree_readpage(struct file *file, struct page *page)
5f39d397 974{
d1310b2e
CM
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 977 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 978}
22b0ebda 979
70dec807 980static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 981{
98509cfc 982 if (PageWriteback(page) || PageDirty(page))
d397712b 983 return 0;
0c4e538b 984
f7a52a40 985 return try_release_extent_buffer(page);
d98237b3
CM
986}
987
d47992f8
LC
988static void btree_invalidatepage(struct page *page, unsigned int offset,
989 unsigned int length)
d98237b3 990{
d1310b2e
CM
991 struct extent_io_tree *tree;
992 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
993 extent_invalidatepage(tree, page, offset);
994 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 995 if (PagePrivate(page)) {
efe120a0
FH
996 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
997 "page private not zero on page %llu",
998 (unsigned long long)page_offset(page));
9ad6b7bc
CM
999 ClearPagePrivate(page);
1000 set_page_private(page, 0);
09cbfeaf 1001 put_page(page);
9ad6b7bc 1002 }
d98237b3
CM
1003}
1004
0b32f4bb
JB
1005static int btree_set_page_dirty(struct page *page)
1006{
bb146eb2 1007#ifdef DEBUG
0b32f4bb
JB
1008 struct extent_buffer *eb;
1009
1010 BUG_ON(!PagePrivate(page));
1011 eb = (struct extent_buffer *)page->private;
1012 BUG_ON(!eb);
1013 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1014 BUG_ON(!atomic_read(&eb->refs));
1015 btrfs_assert_tree_locked(eb);
bb146eb2 1016#endif
0b32f4bb
JB
1017 return __set_page_dirty_nobuffers(page);
1018}
1019
7f09410b 1020static const struct address_space_operations btree_aops = {
d98237b3 1021 .readpage = btree_readpage,
0da5468f 1022 .writepages = btree_writepages,
5f39d397
CM
1023 .releasepage = btree_releasepage,
1024 .invalidatepage = btree_invalidatepage,
5a92bc88 1025#ifdef CONFIG_MIGRATION
784b4e29 1026 .migratepage = btree_migratepage,
5a92bc88 1027#endif
0b32f4bb 1028 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1029};
1030
2ff7e61e 1031void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1032{
5f39d397 1033 struct extent_buffer *buf = NULL;
537f38f0 1034 int ret;
090d1875 1035
2ff7e61e 1036 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1037 if (IS_ERR(buf))
6197d86e 1038 return;
537f38f0 1039
c2ccfbc6 1040 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1041 if (ret < 0)
1042 free_extent_buffer_stale(buf);
1043 else
1044 free_extent_buffer(buf);
090d1875
CM
1045}
1046
2ff7e61e
JM
1047struct extent_buffer *btrfs_find_create_tree_block(
1048 struct btrfs_fs_info *fs_info,
1049 u64 bytenr)
0999df54 1050{
0b246afa
JM
1051 if (btrfs_is_testing(fs_info))
1052 return alloc_test_extent_buffer(fs_info, bytenr);
1053 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1054}
1055
581c1760
QW
1056/*
1057 * Read tree block at logical address @bytenr and do variant basic but critical
1058 * verification.
1059 *
1060 * @parent_transid: expected transid of this tree block, skip check if 0
1061 * @level: expected level, mandatory check
1062 * @first_key: expected key in slot 0, skip check if NULL
1063 */
2ff7e61e 1064struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1065 u64 parent_transid, int level,
1066 struct btrfs_key *first_key)
0999df54
CM
1067{
1068 struct extent_buffer *buf = NULL;
0999df54
CM
1069 int ret;
1070
2ff7e61e 1071 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1072 if (IS_ERR(buf))
1073 return buf;
0999df54 1074
5ab12d1f 1075 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1076 level, first_key);
0f0fe8f7 1077 if (ret) {
537f38f0 1078 free_extent_buffer_stale(buf);
64c043de 1079 return ERR_PTR(ret);
0f0fe8f7 1080 }
5f39d397 1081 return buf;
ce9adaa5 1082
eb60ceac
CM
1083}
1084
6a884d7d 1085void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1086{
6a884d7d 1087 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1088 if (btrfs_header_generation(buf) ==
e2d84521 1089 fs_info->running_transaction->transid) {
b9447ef8 1090 btrfs_assert_tree_locked(buf);
b4ce94de 1091
b9473439 1092 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1093 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1094 -buf->len,
1095 fs_info->dirty_metadata_batch);
ed7b63eb 1096 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1097 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1098 clear_extent_buffer_dirty(buf);
1099 }
925baedd 1100 }
5f39d397
CM
1101}
1102
8257b2dc
MX
1103static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1104{
1105 struct btrfs_subvolume_writers *writers;
1106 int ret;
1107
1108 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1109 if (!writers)
1110 return ERR_PTR(-ENOMEM);
1111
8a5a916d 1112 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1113 if (ret < 0) {
1114 kfree(writers);
1115 return ERR_PTR(ret);
1116 }
1117
1118 init_waitqueue_head(&writers->wait);
1119 return writers;
1120}
1121
1122static void
1123btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1124{
1125 percpu_counter_destroy(&writers->counter);
1126 kfree(writers);
1127}
1128
da17066c 1129static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1130 u64 objectid)
d97e63b6 1131{
7c0260ee 1132 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1133 root->fs_info = fs_info;
cfaa7295 1134 root->node = NULL;
a28ec197 1135 root->commit_root = NULL;
27cdeb70 1136 root->state = 0;
d68fc57b 1137 root->orphan_cleanup_state = 0;
0b86a832 1138
0f7d52f4 1139 root->last_trans = 0;
13a8a7c8 1140 root->highest_objectid = 0;
eb73c1b7 1141 root->nr_delalloc_inodes = 0;
199c2a9c 1142 root->nr_ordered_extents = 0;
6bef4d31 1143 root->inode_tree = RB_ROOT;
16cdcec7 1144 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1145 root->block_rsv = NULL;
0b86a832
CM
1146
1147 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1148 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1149 INIT_LIST_HEAD(&root->delalloc_inodes);
1150 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1151 INIT_LIST_HEAD(&root->ordered_extents);
1152 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1153 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1154 INIT_LIST_HEAD(&root->logged_list[0]);
1155 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1156 spin_lock_init(&root->inode_lock);
eb73c1b7 1157 spin_lock_init(&root->delalloc_lock);
199c2a9c 1158 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1159 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1160 spin_lock_init(&root->log_extents_lock[0]);
1161 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1162 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1163 mutex_init(&root->objectid_mutex);
e02119d5 1164 mutex_init(&root->log_mutex);
31f3d255 1165 mutex_init(&root->ordered_extent_mutex);
573bfb72 1166 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1167 init_waitqueue_head(&root->log_writer_wait);
1168 init_waitqueue_head(&root->log_commit_wait[0]);
1169 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1170 INIT_LIST_HEAD(&root->log_ctxs[0]);
1171 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1172 atomic_set(&root->log_commit[0], 0);
1173 atomic_set(&root->log_commit[1], 0);
1174 atomic_set(&root->log_writers, 0);
2ecb7923 1175 atomic_set(&root->log_batch, 0);
0700cea7 1176 refcount_set(&root->refs, 1);
ea14b57f 1177 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1178 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1179 atomic_set(&root->nr_swapfiles, 0);
7237f183 1180 root->log_transid = 0;
d1433deb 1181 root->log_transid_committed = -1;
257c62e1 1182 root->last_log_commit = 0;
7c0260ee 1183 if (!dummy)
43eb5f29
QW
1184 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1185 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1186
3768f368
CM
1187 memset(&root->root_key, 0, sizeof(root->root_key));
1188 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1189 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1190 if (!dummy)
06ea65a3
JB
1191 root->defrag_trans_start = fs_info->generation;
1192 else
1193 root->defrag_trans_start = 0;
4d775673 1194 root->root_key.objectid = objectid;
0ee5dc67 1195 root->anon_dev = 0;
8ea05e3a 1196
5f3ab90a 1197 spin_lock_init(&root->root_item_lock);
370a11b8 1198 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1199}
1200
74e4d827 1201static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1202 u64 objectid, gfp_t flags)
6f07e42e 1203{
74e4d827 1204 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1205 if (root)
96dfcb46 1206 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1207 return root;
1208}
1209
06ea65a3
JB
1210#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1211/* Should only be used by the testing infrastructure */
da17066c 1212struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1213{
1214 struct btrfs_root *root;
1215
7c0260ee
JM
1216 if (!fs_info)
1217 return ERR_PTR(-EINVAL);
1218
96dfcb46 1219 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1220 if (!root)
1221 return ERR_PTR(-ENOMEM);
da17066c 1222
b9ef22de 1223 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1224 root->alloc_bytenr = 0;
06ea65a3
JB
1225
1226 return root;
1227}
1228#endif
1229
20897f5c 1230struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1231 u64 objectid)
1232{
9b7a2440 1233 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1234 struct extent_buffer *leaf;
1235 struct btrfs_root *tree_root = fs_info->tree_root;
1236 struct btrfs_root *root;
1237 struct btrfs_key key;
b89f6d1f 1238 unsigned int nofs_flag;
20897f5c 1239 int ret = 0;
33d85fda 1240 uuid_le uuid = NULL_UUID_LE;
20897f5c 1241
b89f6d1f
FM
1242 /*
1243 * We're holding a transaction handle, so use a NOFS memory allocation
1244 * context to avoid deadlock if reclaim happens.
1245 */
1246 nofs_flag = memalloc_nofs_save();
96dfcb46 1247 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1248 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1249 if (!root)
1250 return ERR_PTR(-ENOMEM);
1251
20897f5c
AJ
1252 root->root_key.objectid = objectid;
1253 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1254 root->root_key.offset = 0;
1255
4d75f8a9 1256 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1257 if (IS_ERR(leaf)) {
1258 ret = PTR_ERR(leaf);
1dd05682 1259 leaf = NULL;
20897f5c
AJ
1260 goto fail;
1261 }
1262
20897f5c 1263 root->node = leaf;
20897f5c
AJ
1264 btrfs_mark_buffer_dirty(leaf);
1265
1266 root->commit_root = btrfs_root_node(root);
27cdeb70 1267 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1268
1269 root->root_item.flags = 0;
1270 root->root_item.byte_limit = 0;
1271 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1272 btrfs_set_root_generation(&root->root_item, trans->transid);
1273 btrfs_set_root_level(&root->root_item, 0);
1274 btrfs_set_root_refs(&root->root_item, 1);
1275 btrfs_set_root_used(&root->root_item, leaf->len);
1276 btrfs_set_root_last_snapshot(&root->root_item, 0);
1277 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1278 if (is_fstree(objectid))
1279 uuid_le_gen(&uuid);
6463fe58 1280 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1281 root->root_item.drop_level = 0;
1282
1283 key.objectid = objectid;
1284 key.type = BTRFS_ROOT_ITEM_KEY;
1285 key.offset = 0;
1286 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1287 if (ret)
1288 goto fail;
1289
1290 btrfs_tree_unlock(leaf);
1291
1dd05682
TI
1292 return root;
1293
20897f5c 1294fail:
1dd05682
TI
1295 if (leaf) {
1296 btrfs_tree_unlock(leaf);
59885b39 1297 free_extent_buffer(root->commit_root);
1dd05682
TI
1298 free_extent_buffer(leaf);
1299 }
81f096ed 1300 btrfs_put_fs_root(root);
20897f5c 1301
1dd05682 1302 return ERR_PTR(ret);
20897f5c
AJ
1303}
1304
7237f183
YZ
1305static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1306 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1307{
1308 struct btrfs_root *root;
7237f183 1309 struct extent_buffer *leaf;
e02119d5 1310
96dfcb46 1311 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1312 if (!root)
7237f183 1313 return ERR_PTR(-ENOMEM);
e02119d5 1314
e02119d5
CM
1315 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1316 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1317 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1318
7237f183 1319 /*
27cdeb70
MX
1320 * DON'T set REF_COWS for log trees
1321 *
7237f183
YZ
1322 * log trees do not get reference counted because they go away
1323 * before a real commit is actually done. They do store pointers
1324 * to file data extents, and those reference counts still get
1325 * updated (along with back refs to the log tree).
1326 */
e02119d5 1327
4d75f8a9
DS
1328 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1329 NULL, 0, 0, 0);
7237f183 1330 if (IS_ERR(leaf)) {
81f096ed 1331 btrfs_put_fs_root(root);
7237f183
YZ
1332 return ERR_CAST(leaf);
1333 }
e02119d5 1334
7237f183 1335 root->node = leaf;
e02119d5 1336
e02119d5
CM
1337 btrfs_mark_buffer_dirty(root->node);
1338 btrfs_tree_unlock(root->node);
7237f183
YZ
1339 return root;
1340}
1341
1342int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1343 struct btrfs_fs_info *fs_info)
1344{
1345 struct btrfs_root *log_root;
1346
1347 log_root = alloc_log_tree(trans, fs_info);
1348 if (IS_ERR(log_root))
1349 return PTR_ERR(log_root);
1350 WARN_ON(fs_info->log_root_tree);
1351 fs_info->log_root_tree = log_root;
1352 return 0;
1353}
1354
1355int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1356 struct btrfs_root *root)
1357{
0b246afa 1358 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1359 struct btrfs_root *log_root;
1360 struct btrfs_inode_item *inode_item;
1361
0b246afa 1362 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1363 if (IS_ERR(log_root))
1364 return PTR_ERR(log_root);
1365
1366 log_root->last_trans = trans->transid;
1367 log_root->root_key.offset = root->root_key.objectid;
1368
1369 inode_item = &log_root->root_item.inode;
3cae210f
QW
1370 btrfs_set_stack_inode_generation(inode_item, 1);
1371 btrfs_set_stack_inode_size(inode_item, 3);
1372 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1373 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1374 fs_info->nodesize);
3cae210f 1375 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1376
5d4f98a2 1377 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1378
1379 WARN_ON(root->log_root);
1380 root->log_root = log_root;
1381 root->log_transid = 0;
d1433deb 1382 root->log_transid_committed = -1;
257c62e1 1383 root->last_log_commit = 0;
e02119d5
CM
1384 return 0;
1385}
1386
62a2c73e
JB
1387struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1388 struct btrfs_key *key)
e02119d5
CM
1389{
1390 struct btrfs_root *root;
1391 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1392 struct btrfs_path *path;
84234f3a 1393 u64 generation;
cb517eab 1394 int ret;
581c1760 1395 int level;
0f7d52f4 1396
cb517eab
MX
1397 path = btrfs_alloc_path();
1398 if (!path)
0f7d52f4 1399 return ERR_PTR(-ENOMEM);
cb517eab 1400
96dfcb46 1401 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1402 if (!root) {
1403 ret = -ENOMEM;
1404 goto alloc_fail;
0f7d52f4
CM
1405 }
1406
cb517eab
MX
1407 ret = btrfs_find_root(tree_root, key, path,
1408 &root->root_item, &root->root_key);
0f7d52f4 1409 if (ret) {
13a8a7c8
YZ
1410 if (ret > 0)
1411 ret = -ENOENT;
cb517eab 1412 goto find_fail;
0f7d52f4 1413 }
13a8a7c8 1414
84234f3a 1415 generation = btrfs_root_generation(&root->root_item);
581c1760 1416 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1417 root->node = read_tree_block(fs_info,
1418 btrfs_root_bytenr(&root->root_item),
581c1760 1419 generation, level, NULL);
64c043de
LB
1420 if (IS_ERR(root->node)) {
1421 ret = PTR_ERR(root->node);
cb517eab
MX
1422 goto find_fail;
1423 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1424 ret = -EIO;
64c043de
LB
1425 free_extent_buffer(root->node);
1426 goto find_fail;
416bc658 1427 }
5d4f98a2 1428 root->commit_root = btrfs_root_node(root);
13a8a7c8 1429out:
cb517eab
MX
1430 btrfs_free_path(path);
1431 return root;
1432
cb517eab 1433find_fail:
81f096ed 1434 btrfs_put_fs_root(root);
cb517eab
MX
1435alloc_fail:
1436 root = ERR_PTR(ret);
1437 goto out;
1438}
1439
a98db0f3 1440static int btrfs_init_fs_root(struct btrfs_root *root)
cb517eab
MX
1441{
1442 int ret;
8257b2dc 1443 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1444
1445 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1446 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1447 GFP_NOFS);
1448 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1449 ret = -ENOMEM;
1450 goto fail;
1451 }
1452
8257b2dc
MX
1453 writers = btrfs_alloc_subvolume_writers();
1454 if (IS_ERR(writers)) {
1455 ret = PTR_ERR(writers);
1456 goto fail;
1457 }
1458 root->subv_writers = writers;
1459
f39e4571
JB
1460 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1461 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1462 btrfs_check_and_init_root_item(&root->root_item);
1463 }
1464
cb517eab 1465 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1466 spin_lock_init(&root->ino_cache_lock);
1467 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1468
1469 ret = get_anon_bdev(&root->anon_dev);
1470 if (ret)
876d2cf1 1471 goto fail;
f32e48e9
CR
1472
1473 mutex_lock(&root->objectid_mutex);
1474 ret = btrfs_find_highest_objectid(root,
1475 &root->highest_objectid);
1476 if (ret) {
1477 mutex_unlock(&root->objectid_mutex);
876d2cf1 1478 goto fail;
f32e48e9
CR
1479 }
1480
1481 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1482
1483 mutex_unlock(&root->objectid_mutex);
1484
cb517eab
MX
1485 return 0;
1486fail:
84db5ccf 1487 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1488 return ret;
1489}
1490
a98db0f3
JB
1491static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1492 u64 root_id)
cb517eab
MX
1493{
1494 struct btrfs_root *root;
1495
1496 spin_lock(&fs_info->fs_roots_radix_lock);
1497 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1498 (unsigned long)root_id);
1499 spin_unlock(&fs_info->fs_roots_radix_lock);
1500 return root;
1501}
1502
1503int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1504 struct btrfs_root *root)
1505{
1506 int ret;
1507
e1860a77 1508 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1509 if (ret)
1510 return ret;
1511
1512 spin_lock(&fs_info->fs_roots_radix_lock);
1513 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1514 (unsigned long)root->root_key.objectid,
1515 root);
af01d2e5
JB
1516 if (ret == 0) {
1517 btrfs_grab_fs_root(root);
27cdeb70 1518 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1519 }
cb517eab
MX
1520 spin_unlock(&fs_info->fs_roots_radix_lock);
1521 radix_tree_preload_end();
1522
1523 return ret;
1524}
1525
0d4b0463
JB
1526void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1527{
1528 kfree(fs_info->balance_ctl);
1529 kfree(fs_info->delayed_root);
81f096ed
JB
1530 btrfs_put_fs_root(fs_info->extent_root);
1531 btrfs_put_fs_root(fs_info->tree_root);
1532 btrfs_put_fs_root(fs_info->chunk_root);
1533 btrfs_put_fs_root(fs_info->dev_root);
1534 btrfs_put_fs_root(fs_info->csum_root);
1535 btrfs_put_fs_root(fs_info->quota_root);
1536 btrfs_put_fs_root(fs_info->uuid_root);
1537 btrfs_put_fs_root(fs_info->free_space_root);
1538 btrfs_put_fs_root(fs_info->fs_root);
0d4b0463
JB
1539 kfree(fs_info->super_copy);
1540 kfree(fs_info->super_for_commit);
1541 kvfree(fs_info);
1542}
1543
1544
c00869f1
MX
1545struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1546 struct btrfs_key *location,
1547 bool check_ref)
5eda7b5e
CM
1548{
1549 struct btrfs_root *root;
381cf658 1550 struct btrfs_path *path;
1d4c08e0 1551 struct btrfs_key key;
5eda7b5e
CM
1552 int ret;
1553
edbd8d4e
CM
1554 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1555 return fs_info->tree_root;
1556 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1557 return fs_info->extent_root;
8f18cf13
CM
1558 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1559 return fs_info->chunk_root;
1560 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1561 return fs_info->dev_root;
0403e47e
YZ
1562 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1563 return fs_info->csum_root;
bcef60f2
AJ
1564 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1565 return fs_info->quota_root ? fs_info->quota_root :
1566 ERR_PTR(-ENOENT);
f7a81ea4
SB
1567 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1568 return fs_info->uuid_root ? fs_info->uuid_root :
1569 ERR_PTR(-ENOENT);
70f6d82e
OS
1570 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1571 return fs_info->free_space_root ? fs_info->free_space_root :
1572 ERR_PTR(-ENOENT);
4df27c4d 1573again:
cb517eab 1574 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1575 if (root) {
c00869f1 1576 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1577 return ERR_PTR(-ENOENT);
5eda7b5e 1578 return root;
48475471 1579 }
5eda7b5e 1580
83db2aad 1581 root = btrfs_read_tree_root(fs_info->tree_root, location);
5eda7b5e
CM
1582 if (IS_ERR(root))
1583 return root;
3394e160 1584
c00869f1 1585 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1586 ret = -ENOENT;
581bb050 1587 goto fail;
35a30d7c 1588 }
581bb050 1589
cb517eab 1590 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1591 if (ret)
1592 goto fail;
3394e160 1593
381cf658
DS
1594 path = btrfs_alloc_path();
1595 if (!path) {
1596 ret = -ENOMEM;
1597 goto fail;
1598 }
1d4c08e0
DS
1599 key.objectid = BTRFS_ORPHAN_OBJECTID;
1600 key.type = BTRFS_ORPHAN_ITEM_KEY;
1601 key.offset = location->objectid;
1602
1603 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1604 btrfs_free_path(path);
d68fc57b
YZ
1605 if (ret < 0)
1606 goto fail;
1607 if (ret == 0)
27cdeb70 1608 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1609
cb517eab 1610 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1611 if (ret) {
4df27c4d 1612 if (ret == -EEXIST) {
84db5ccf 1613 btrfs_free_fs_root(root);
4df27c4d
YZ
1614 goto again;
1615 }
1616 goto fail;
0f7d52f4 1617 }
edbd8d4e 1618 return root;
4df27c4d 1619fail:
84db5ccf 1620 btrfs_free_fs_root(root);
4df27c4d 1621 return ERR_PTR(ret);
edbd8d4e
CM
1622}
1623
04160088
CM
1624static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1625{
1626 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627 int ret = 0;
04160088
CM
1628 struct btrfs_device *device;
1629 struct backing_dev_info *bdi;
b7967db7 1630
1f78160c
XG
1631 rcu_read_lock();
1632 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1633 if (!device->bdev)
1634 continue;
efa7c9f9 1635 bdi = device->bdev->bd_bdi;
ff9ea323 1636 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1637 ret = 1;
1638 break;
1639 }
1640 }
1f78160c 1641 rcu_read_unlock();
04160088
CM
1642 return ret;
1643}
1644
8b712842
CM
1645/*
1646 * called by the kthread helper functions to finally call the bio end_io
1647 * functions. This is where read checksum verification actually happens
1648 */
1649static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1650{
ce9adaa5 1651 struct bio *bio;
97eb6b69 1652 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1653
97eb6b69 1654 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1655 bio = end_io_wq->bio;
ce9adaa5 1656
4e4cbee9 1657 bio->bi_status = end_io_wq->status;
8b712842
CM
1658 bio->bi_private = end_io_wq->private;
1659 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1660 bio_endio(bio);
9be490f1 1661 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1662}
1663
a74a4b97
CM
1664static int cleaner_kthread(void *arg)
1665{
1666 struct btrfs_root *root = arg;
0b246afa 1667 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1668 int again;
a74a4b97 1669
d6fd0ae2 1670 while (1) {
d0278245 1671 again = 0;
a74a4b97 1672
fd340d0f
JB
1673 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1674
d0278245 1675 /* Make the cleaner go to sleep early. */
2ff7e61e 1676 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1677 goto sleep;
1678
90c711ab
ZB
1679 /*
1680 * Do not do anything if we might cause open_ctree() to block
1681 * before we have finished mounting the filesystem.
1682 */
0b246afa 1683 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1684 goto sleep;
1685
0b246afa 1686 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1687 goto sleep;
1688
dc7f370c
MX
1689 /*
1690 * Avoid the problem that we change the status of the fs
1691 * during the above check and trylock.
1692 */
2ff7e61e 1693 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1694 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1695 goto sleep;
76dda93c 1696 }
a74a4b97 1697
2ff7e61e 1698 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1699
d0278245 1700 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1701 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1702
1703 /*
05323cd1
MX
1704 * The defragger has dealt with the R/O remount and umount,
1705 * needn't do anything special here.
d0278245 1706 */
0b246afa 1707 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1708
1709 /*
1710 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711 * with relocation (btrfs_relocate_chunk) and relocation
1712 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715 * unused block groups.
1716 */
0b246afa 1717 btrfs_delete_unused_bgs(fs_info);
d0278245 1718sleep:
fd340d0f 1719 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1720 if (kthread_should_park())
1721 kthread_parkme();
1722 if (kthread_should_stop())
1723 return 0;
838fe188 1724 if (!again) {
a74a4b97 1725 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1726 schedule();
a74a4b97
CM
1727 __set_current_state(TASK_RUNNING);
1728 }
da288d28 1729 }
a74a4b97
CM
1730}
1731
1732static int transaction_kthread(void *arg)
1733{
1734 struct btrfs_root *root = arg;
0b246afa 1735 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1736 struct btrfs_trans_handle *trans;
1737 struct btrfs_transaction *cur;
8929ecfa 1738 u64 transid;
a944442c 1739 time64_t now;
a74a4b97 1740 unsigned long delay;
914b2007 1741 bool cannot_commit;
a74a4b97
CM
1742
1743 do {
914b2007 1744 cannot_commit = false;
0b246afa
JM
1745 delay = HZ * fs_info->commit_interval;
1746 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1747
0b246afa
JM
1748 spin_lock(&fs_info->trans_lock);
1749 cur = fs_info->running_transaction;
a74a4b97 1750 if (!cur) {
0b246afa 1751 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1752 goto sleep;
1753 }
31153d81 1754
afd48513 1755 now = ktime_get_seconds();
3296bf56 1756 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1757 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1758 (now < cur->start_time ||
0b246afa
JM
1759 now - cur->start_time < fs_info->commit_interval)) {
1760 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1761 delay = HZ * 5;
1762 goto sleep;
1763 }
8929ecfa 1764 transid = cur->transid;
0b246afa 1765 spin_unlock(&fs_info->trans_lock);
56bec294 1766
79787eaa 1767 /* If the file system is aborted, this will always fail. */
354aa0fb 1768 trans = btrfs_attach_transaction(root);
914b2007 1769 if (IS_ERR(trans)) {
354aa0fb
MX
1770 if (PTR_ERR(trans) != -ENOENT)
1771 cannot_commit = true;
79787eaa 1772 goto sleep;
914b2007 1773 }
8929ecfa 1774 if (transid == trans->transid) {
3a45bb20 1775 btrfs_commit_transaction(trans);
8929ecfa 1776 } else {
3a45bb20 1777 btrfs_end_transaction(trans);
8929ecfa 1778 }
a74a4b97 1779sleep:
0b246afa
JM
1780 wake_up_process(fs_info->cleaner_kthread);
1781 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1782
4e121c06 1783 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1784 &fs_info->fs_state)))
2ff7e61e 1785 btrfs_cleanup_transaction(fs_info);
ce63f891 1786 if (!kthread_should_stop() &&
0b246afa 1787 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1788 cannot_commit))
bc5511d0 1789 schedule_timeout_interruptible(delay);
a74a4b97
CM
1790 } while (!kthread_should_stop());
1791 return 0;
1792}
1793
af31f5e5 1794/*
01f0f9da
NB
1795 * This will find the highest generation in the array of root backups. The
1796 * index of the highest array is returned, or -EINVAL if we can't find
1797 * anything.
af31f5e5
CM
1798 *
1799 * We check to make sure the array is valid by comparing the
1800 * generation of the latest root in the array with the generation
1801 * in the super block. If they don't match we pitch it.
1802 */
01f0f9da 1803static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1804{
01f0f9da 1805 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1806 u64 cur;
af31f5e5
CM
1807 struct btrfs_root_backup *root_backup;
1808 int i;
1809
1810 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811 root_backup = info->super_copy->super_roots + i;
1812 cur = btrfs_backup_tree_root_gen(root_backup);
1813 if (cur == newest_gen)
01f0f9da 1814 return i;
af31f5e5
CM
1815 }
1816
01f0f9da 1817 return -EINVAL;
af31f5e5
CM
1818}
1819
af31f5e5
CM
1820/*
1821 * copy all the root pointers into the super backup array.
1822 * this will bump the backup pointer by one when it is
1823 * done
1824 */
1825static void backup_super_roots(struct btrfs_fs_info *info)
1826{
6ef108dd 1827 const int next_backup = info->backup_root_index;
af31f5e5 1828 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1829
1830 root_backup = info->super_for_commit->super_roots + next_backup;
1831
1832 /*
1833 * make sure all of our padding and empty slots get zero filled
1834 * regardless of which ones we use today
1835 */
1836 memset(root_backup, 0, sizeof(*root_backup));
1837
1838 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1839
1840 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1841 btrfs_set_backup_tree_root_gen(root_backup,
1842 btrfs_header_generation(info->tree_root->node));
1843
1844 btrfs_set_backup_tree_root_level(root_backup,
1845 btrfs_header_level(info->tree_root->node));
1846
1847 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1848 btrfs_set_backup_chunk_root_gen(root_backup,
1849 btrfs_header_generation(info->chunk_root->node));
1850 btrfs_set_backup_chunk_root_level(root_backup,
1851 btrfs_header_level(info->chunk_root->node));
1852
1853 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1854 btrfs_set_backup_extent_root_gen(root_backup,
1855 btrfs_header_generation(info->extent_root->node));
1856 btrfs_set_backup_extent_root_level(root_backup,
1857 btrfs_header_level(info->extent_root->node));
1858
7c7e82a7
CM
1859 /*
1860 * we might commit during log recovery, which happens before we set
1861 * the fs_root. Make sure it is valid before we fill it in.
1862 */
1863 if (info->fs_root && info->fs_root->node) {
1864 btrfs_set_backup_fs_root(root_backup,
1865 info->fs_root->node->start);
1866 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1867 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1868 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1869 btrfs_header_level(info->fs_root->node));
7c7e82a7 1870 }
af31f5e5
CM
1871
1872 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1873 btrfs_set_backup_dev_root_gen(root_backup,
1874 btrfs_header_generation(info->dev_root->node));
1875 btrfs_set_backup_dev_root_level(root_backup,
1876 btrfs_header_level(info->dev_root->node));
1877
1878 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1879 btrfs_set_backup_csum_root_gen(root_backup,
1880 btrfs_header_generation(info->csum_root->node));
1881 btrfs_set_backup_csum_root_level(root_backup,
1882 btrfs_header_level(info->csum_root->node));
1883
1884 btrfs_set_backup_total_bytes(root_backup,
1885 btrfs_super_total_bytes(info->super_copy));
1886 btrfs_set_backup_bytes_used(root_backup,
1887 btrfs_super_bytes_used(info->super_copy));
1888 btrfs_set_backup_num_devices(root_backup,
1889 btrfs_super_num_devices(info->super_copy));
1890
1891 /*
1892 * if we don't copy this out to the super_copy, it won't get remembered
1893 * for the next commit
1894 */
1895 memcpy(&info->super_copy->super_roots,
1896 &info->super_for_commit->super_roots,
1897 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1898}
1899
bd2336b2
NB
1900/*
1901 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1902 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1903 *
1904 * fs_info - filesystem whose backup roots need to be read
1905 * priority - priority of backup root required
1906 *
1907 * Returns backup root index on success and -EINVAL otherwise.
1908 */
1909static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1910{
1911 int backup_index = find_newest_super_backup(fs_info);
1912 struct btrfs_super_block *super = fs_info->super_copy;
1913 struct btrfs_root_backup *root_backup;
1914
1915 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1916 if (priority == 0)
1917 return backup_index;
1918
1919 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1920 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1921 } else {
1922 return -EINVAL;
1923 }
1924
1925 root_backup = super->super_roots + backup_index;
1926
1927 btrfs_set_super_generation(super,
1928 btrfs_backup_tree_root_gen(root_backup));
1929 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1930 btrfs_set_super_root_level(super,
1931 btrfs_backup_tree_root_level(root_backup));
1932 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1933
1934 /*
1935 * Fixme: the total bytes and num_devices need to match or we should
1936 * need a fsck
1937 */
1938 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1939 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1940
1941 return backup_index;
1942}
1943
7abadb64
LB
1944/* helper to cleanup workers */
1945static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1946{
dc6e3209 1947 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1948 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1949 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1950 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1951 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1952 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1953 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1954 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1955 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1956 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1957 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1958 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1959 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1960 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1961 if (fs_info->discard_ctl.discard_workers)
1962 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1963 /*
1964 * Now that all other work queues are destroyed, we can safely destroy
1965 * the queues used for metadata I/O, since tasks from those other work
1966 * queues can do metadata I/O operations.
1967 */
1968 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1969 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1970}
1971
2e9f5954
R
1972static void free_root_extent_buffers(struct btrfs_root *root)
1973{
1974 if (root) {
1975 free_extent_buffer(root->node);
1976 free_extent_buffer(root->commit_root);
1977 root->node = NULL;
1978 root->commit_root = NULL;
1979 }
1980}
1981
af31f5e5 1982/* helper to cleanup tree roots */
4273eaff 1983static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1984{
2e9f5954 1985 free_root_extent_buffers(info->tree_root);
655b09fe 1986
2e9f5954
R
1987 free_root_extent_buffers(info->dev_root);
1988 free_root_extent_buffers(info->extent_root);
1989 free_root_extent_buffers(info->csum_root);
1990 free_root_extent_buffers(info->quota_root);
1991 free_root_extent_buffers(info->uuid_root);
4273eaff 1992 if (free_chunk_root)
2e9f5954 1993 free_root_extent_buffers(info->chunk_root);
70f6d82e 1994 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
1995}
1996
faa2dbf0 1997void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
1998{
1999 int ret;
2000 struct btrfs_root *gang[8];
2001 int i;
2002
2003 while (!list_empty(&fs_info->dead_roots)) {
2004 gang[0] = list_entry(fs_info->dead_roots.next,
2005 struct btrfs_root, root_list);
2006 list_del(&gang[0]->root_list);
2007
27cdeb70 2008 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2009 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2010 } else {
2011 free_extent_buffer(gang[0]->node);
2012 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2013 btrfs_put_fs_root(gang[0]);
171f6537
JB
2014 }
2015 }
2016
2017 while (1) {
2018 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2019 (void **)gang, 0,
2020 ARRAY_SIZE(gang));
2021 if (!ret)
2022 break;
2023 for (i = 0; i < ret; i++)
cb517eab 2024 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2025 }
1a4319cc
LB
2026
2027 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2028 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2029 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2030 }
171f6537 2031}
af31f5e5 2032
638aa7ed
ES
2033static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2034{
2035 mutex_init(&fs_info->scrub_lock);
2036 atomic_set(&fs_info->scrubs_running, 0);
2037 atomic_set(&fs_info->scrub_pause_req, 0);
2038 atomic_set(&fs_info->scrubs_paused, 0);
2039 atomic_set(&fs_info->scrub_cancel_req, 0);
2040 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2041 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2042}
2043
779a65a4
ES
2044static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2045{
2046 spin_lock_init(&fs_info->balance_lock);
2047 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2048 atomic_set(&fs_info->balance_pause_req, 0);
2049 atomic_set(&fs_info->balance_cancel_req, 0);
2050 fs_info->balance_ctl = NULL;
2051 init_waitqueue_head(&fs_info->balance_wait_q);
2052}
2053
6bccf3ab 2054static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2055{
2ff7e61e
JM
2056 struct inode *inode = fs_info->btree_inode;
2057
2058 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2059 set_nlink(inode, 1);
f37938e0
ES
2060 /*
2061 * we set the i_size on the btree inode to the max possible int.
2062 * the real end of the address space is determined by all of
2063 * the devices in the system
2064 */
2ff7e61e
JM
2065 inode->i_size = OFFSET_MAX;
2066 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2067
2ff7e61e 2068 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2069 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2070 IO_TREE_INODE_IO, inode);
7b439738 2071 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2072 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2073
2ff7e61e 2074 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2075
2ff7e61e
JM
2076 BTRFS_I(inode)->root = fs_info->tree_root;
2077 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2078 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2079 btrfs_insert_inode_hash(inode);
f37938e0
ES
2080}
2081
ad618368
ES
2082static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2083{
ad618368 2084 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2085 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2086 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2087}
2088
f9e92e40
ES
2089static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2090{
2091 spin_lock_init(&fs_info->qgroup_lock);
2092 mutex_init(&fs_info->qgroup_ioctl_lock);
2093 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2094 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2095 fs_info->qgroup_seq = 1;
f9e92e40 2096 fs_info->qgroup_ulist = NULL;
d2c609b8 2097 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2098 mutex_init(&fs_info->qgroup_rescan_lock);
2099}
2100
2a458198
ES
2101static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2102 struct btrfs_fs_devices *fs_devices)
2103{
f7b885be 2104 u32 max_active = fs_info->thread_pool_size;
6f011058 2105 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2106
2107 fs_info->workers =
cb001095
JM
2108 btrfs_alloc_workqueue(fs_info, "worker",
2109 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2110
2111 fs_info->delalloc_workers =
cb001095
JM
2112 btrfs_alloc_workqueue(fs_info, "delalloc",
2113 flags, max_active, 2);
2a458198
ES
2114
2115 fs_info->flush_workers =
cb001095
JM
2116 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2117 flags, max_active, 0);
2a458198
ES
2118
2119 fs_info->caching_workers =
cb001095 2120 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2121
2a458198 2122 fs_info->fixup_workers =
cb001095 2123 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2124
2125 /*
2126 * endios are largely parallel and should have a very
2127 * low idle thresh
2128 */
2129 fs_info->endio_workers =
cb001095 2130 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2131 fs_info->endio_meta_workers =
cb001095
JM
2132 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2133 max_active, 4);
2a458198 2134 fs_info->endio_meta_write_workers =
cb001095
JM
2135 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2136 max_active, 2);
2a458198 2137 fs_info->endio_raid56_workers =
cb001095
JM
2138 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2139 max_active, 4);
2a458198 2140 fs_info->endio_repair_workers =
cb001095 2141 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2142 fs_info->rmw_workers =
cb001095 2143 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2144 fs_info->endio_write_workers =
cb001095
JM
2145 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2146 max_active, 2);
2a458198 2147 fs_info->endio_freespace_worker =
cb001095
JM
2148 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2149 max_active, 0);
2a458198 2150 fs_info->delayed_workers =
cb001095
JM
2151 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2152 max_active, 0);
2a458198 2153 fs_info->readahead_workers =
cb001095
JM
2154 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2155 max_active, 2);
2a458198 2156 fs_info->qgroup_rescan_workers =
cb001095 2157 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2158 fs_info->discard_ctl.discard_workers =
2159 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2160
2161 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2162 fs_info->flush_workers &&
2a458198
ES
2163 fs_info->endio_workers && fs_info->endio_meta_workers &&
2164 fs_info->endio_meta_write_workers &&
2165 fs_info->endio_repair_workers &&
2166 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2167 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2168 fs_info->caching_workers && fs_info->readahead_workers &&
2169 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2170 fs_info->qgroup_rescan_workers &&
2171 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2172 return -ENOMEM;
2173 }
2174
2175 return 0;
2176}
2177
6d97c6e3
JT
2178static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2179{
2180 struct crypto_shash *csum_shash;
b4e967be 2181 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2182
b4e967be 2183 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2184
2185 if (IS_ERR(csum_shash)) {
2186 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2187 csum_driver);
6d97c6e3
JT
2188 return PTR_ERR(csum_shash);
2189 }
2190
2191 fs_info->csum_shash = csum_shash;
2192
2193 return 0;
2194}
2195
2196static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2197{
2198 crypto_free_shash(fs_info->csum_shash);
2199}
2200
63443bf5
ES
2201static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2202 struct btrfs_fs_devices *fs_devices)
2203{
2204 int ret;
63443bf5
ES
2205 struct btrfs_root *log_tree_root;
2206 struct btrfs_super_block *disk_super = fs_info->super_copy;
2207 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2208 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2209
2210 if (fs_devices->rw_devices == 0) {
f14d104d 2211 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2212 return -EIO;
2213 }
2214
96dfcb46
JB
2215 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2216 GFP_KERNEL);
63443bf5
ES
2217 if (!log_tree_root)
2218 return -ENOMEM;
2219
2ff7e61e 2220 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2221 fs_info->generation + 1,
2222 level, NULL);
64c043de 2223 if (IS_ERR(log_tree_root->node)) {
f14d104d 2224 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2225 ret = PTR_ERR(log_tree_root->node);
81f096ed 2226 btrfs_put_fs_root(log_tree_root);
0eeff236 2227 return ret;
64c043de 2228 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2229 btrfs_err(fs_info, "failed to read log tree");
63443bf5 2230 free_extent_buffer(log_tree_root->node);
81f096ed 2231 btrfs_put_fs_root(log_tree_root);
63443bf5
ES
2232 return -EIO;
2233 }
2234 /* returns with log_tree_root freed on success */
2235 ret = btrfs_recover_log_trees(log_tree_root);
2236 if (ret) {
0b246afa
JM
2237 btrfs_handle_fs_error(fs_info, ret,
2238 "Failed to recover log tree");
63443bf5 2239 free_extent_buffer(log_tree_root->node);
81f096ed 2240 btrfs_put_fs_root(log_tree_root);
63443bf5
ES
2241 return ret;
2242 }
2243
bc98a42c 2244 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2245 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2246 if (ret)
2247 return ret;
2248 }
2249
2250 return 0;
2251}
2252
6bccf3ab 2253static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2254{
6bccf3ab 2255 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2256 struct btrfs_root *root;
4bbcaa64
ES
2257 struct btrfs_key location;
2258 int ret;
2259
6bccf3ab
JM
2260 BUG_ON(!fs_info->tree_root);
2261
4bbcaa64
ES
2262 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2263 location.type = BTRFS_ROOT_ITEM_KEY;
2264 location.offset = 0;
2265
a4f3d2c4 2266 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2267 if (IS_ERR(root)) {
2268 ret = PTR_ERR(root);
2269 goto out;
2270 }
a4f3d2c4
DS
2271 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2272 fs_info->extent_root = root;
4bbcaa64
ES
2273
2274 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2275 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2276 if (IS_ERR(root)) {
2277 ret = PTR_ERR(root);
2278 goto out;
2279 }
a4f3d2c4
DS
2280 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2281 fs_info->dev_root = root;
4bbcaa64
ES
2282 btrfs_init_devices_late(fs_info);
2283
2284 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2285 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2286 if (IS_ERR(root)) {
2287 ret = PTR_ERR(root);
2288 goto out;
2289 }
a4f3d2c4
DS
2290 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2291 fs_info->csum_root = root;
4bbcaa64
ES
2292
2293 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2294 root = btrfs_read_tree_root(tree_root, &location);
2295 if (!IS_ERR(root)) {
2296 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2297 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2298 fs_info->quota_root = root;
4bbcaa64
ES
2299 }
2300
2301 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2302 root = btrfs_read_tree_root(tree_root, &location);
2303 if (IS_ERR(root)) {
2304 ret = PTR_ERR(root);
4bbcaa64 2305 if (ret != -ENOENT)
f50f4353 2306 goto out;
4bbcaa64 2307 } else {
a4f3d2c4
DS
2308 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2309 fs_info->uuid_root = root;
4bbcaa64
ES
2310 }
2311
70f6d82e
OS
2312 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2313 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2314 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2315 if (IS_ERR(root)) {
2316 ret = PTR_ERR(root);
2317 goto out;
2318 }
70f6d82e
OS
2319 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320 fs_info->free_space_root = root;
2321 }
2322
4bbcaa64 2323 return 0;
f50f4353
LB
2324out:
2325 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2326 location.objectid, ret);
2327 return ret;
4bbcaa64
ES
2328}
2329
069ec957
QW
2330/*
2331 * Real super block validation
2332 * NOTE: super csum type and incompat features will not be checked here.
2333 *
2334 * @sb: super block to check
2335 * @mirror_num: the super block number to check its bytenr:
2336 * 0 the primary (1st) sb
2337 * 1, 2 2nd and 3rd backup copy
2338 * -1 skip bytenr check
2339 */
2340static int validate_super(struct btrfs_fs_info *fs_info,
2341 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2342{
21a852b0
QW
2343 u64 nodesize = btrfs_super_nodesize(sb);
2344 u64 sectorsize = btrfs_super_sectorsize(sb);
2345 int ret = 0;
2346
2347 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2348 btrfs_err(fs_info, "no valid FS found");
2349 ret = -EINVAL;
2350 }
2351 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2352 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2353 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2354 ret = -EINVAL;
2355 }
2356 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2357 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2358 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2359 ret = -EINVAL;
2360 }
2361 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2362 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2363 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2364 ret = -EINVAL;
2365 }
2366 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2367 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2368 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2369 ret = -EINVAL;
2370 }
2371
2372 /*
2373 * Check sectorsize and nodesize first, other check will need it.
2374 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2375 */
2376 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2377 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2378 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2379 ret = -EINVAL;
2380 }
2381 /* Only PAGE SIZE is supported yet */
2382 if (sectorsize != PAGE_SIZE) {
2383 btrfs_err(fs_info,
2384 "sectorsize %llu not supported yet, only support %lu",
2385 sectorsize, PAGE_SIZE);
2386 ret = -EINVAL;
2387 }
2388 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2389 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2390 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2391 ret = -EINVAL;
2392 }
2393 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2394 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2395 le32_to_cpu(sb->__unused_leafsize), nodesize);
2396 ret = -EINVAL;
2397 }
2398
2399 /* Root alignment check */
2400 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2401 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2402 btrfs_super_root(sb));
2403 ret = -EINVAL;
2404 }
2405 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2406 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2407 btrfs_super_chunk_root(sb));
2408 ret = -EINVAL;
2409 }
2410 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2411 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2412 btrfs_super_log_root(sb));
2413 ret = -EINVAL;
2414 }
2415
de37aa51 2416 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2417 BTRFS_FSID_SIZE) != 0) {
21a852b0 2418 btrfs_err(fs_info,
7239ff4b 2419 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2420 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2421 ret = -EINVAL;
2422 }
2423
2424 /*
2425 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2426 * done later
2427 */
2428 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2429 btrfs_err(fs_info, "bytes_used is too small %llu",
2430 btrfs_super_bytes_used(sb));
2431 ret = -EINVAL;
2432 }
2433 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2434 btrfs_err(fs_info, "invalid stripesize %u",
2435 btrfs_super_stripesize(sb));
2436 ret = -EINVAL;
2437 }
2438 if (btrfs_super_num_devices(sb) > (1UL << 31))
2439 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2440 btrfs_super_num_devices(sb));
2441 if (btrfs_super_num_devices(sb) == 0) {
2442 btrfs_err(fs_info, "number of devices is 0");
2443 ret = -EINVAL;
2444 }
2445
069ec957
QW
2446 if (mirror_num >= 0 &&
2447 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2448 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2449 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2450 ret = -EINVAL;
2451 }
2452
2453 /*
2454 * Obvious sys_chunk_array corruptions, it must hold at least one key
2455 * and one chunk
2456 */
2457 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2458 btrfs_err(fs_info, "system chunk array too big %u > %u",
2459 btrfs_super_sys_array_size(sb),
2460 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2461 ret = -EINVAL;
2462 }
2463 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2464 + sizeof(struct btrfs_chunk)) {
2465 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2466 btrfs_super_sys_array_size(sb),
2467 sizeof(struct btrfs_disk_key)
2468 + sizeof(struct btrfs_chunk));
2469 ret = -EINVAL;
2470 }
2471
2472 /*
2473 * The generation is a global counter, we'll trust it more than the others
2474 * but it's still possible that it's the one that's wrong.
2475 */
2476 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2477 btrfs_warn(fs_info,
2478 "suspicious: generation < chunk_root_generation: %llu < %llu",
2479 btrfs_super_generation(sb),
2480 btrfs_super_chunk_root_generation(sb));
2481 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2482 && btrfs_super_cache_generation(sb) != (u64)-1)
2483 btrfs_warn(fs_info,
2484 "suspicious: generation < cache_generation: %llu < %llu",
2485 btrfs_super_generation(sb),
2486 btrfs_super_cache_generation(sb));
2487
2488 return ret;
2489}
2490
069ec957
QW
2491/*
2492 * Validation of super block at mount time.
2493 * Some checks already done early at mount time, like csum type and incompat
2494 * flags will be skipped.
2495 */
2496static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2497{
2498 return validate_super(fs_info, fs_info->super_copy, 0);
2499}
2500
75cb857d
QW
2501/*
2502 * Validation of super block at write time.
2503 * Some checks like bytenr check will be skipped as their values will be
2504 * overwritten soon.
2505 * Extra checks like csum type and incompat flags will be done here.
2506 */
2507static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2508 struct btrfs_super_block *sb)
2509{
2510 int ret;
2511
2512 ret = validate_super(fs_info, sb, -1);
2513 if (ret < 0)
2514 goto out;
e7e16f48 2515 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2516 ret = -EUCLEAN;
2517 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2518 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2519 goto out;
2520 }
2521 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2522 ret = -EUCLEAN;
2523 btrfs_err(fs_info,
2524 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2525 btrfs_super_incompat_flags(sb),
2526 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2527 goto out;
2528 }
2529out:
2530 if (ret < 0)
2531 btrfs_err(fs_info,
2532 "super block corruption detected before writing it to disk");
2533 return ret;
2534}
2535
6ef108dd 2536static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2537{
6ef108dd 2538 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2539 struct btrfs_super_block *sb = fs_info->super_copy;
2540 struct btrfs_root *tree_root = fs_info->tree_root;
2541 bool handle_error = false;
2542 int ret = 0;
2543 int i;
2544
2545 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2546 u64 generation;
2547 int level;
2548
2549 if (handle_error) {
2550 if (!IS_ERR(tree_root->node))
2551 free_extent_buffer(tree_root->node);
2552 tree_root->node = NULL;
2553
2554 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2555 break;
2556
2557 free_root_pointers(fs_info, 0);
2558
2559 /*
2560 * Don't use the log in recovery mode, it won't be
2561 * valid
2562 */
2563 btrfs_set_super_log_root(sb, 0);
2564
2565 /* We can't trust the free space cache either */
2566 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2567
2568 ret = read_backup_root(fs_info, i);
6ef108dd 2569 backup_index = ret;
b8522a1e
NB
2570 if (ret < 0)
2571 return ret;
2572 }
2573 generation = btrfs_super_generation(sb);
2574 level = btrfs_super_root_level(sb);
2575 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2576 generation, level, NULL);
2577 if (IS_ERR(tree_root->node) ||
2578 !extent_buffer_uptodate(tree_root->node)) {
2579 handle_error = true;
2580
2581 if (IS_ERR(tree_root->node))
2582 ret = PTR_ERR(tree_root->node);
2583 else if (!extent_buffer_uptodate(tree_root->node))
2584 ret = -EUCLEAN;
2585
2586 btrfs_warn(fs_info, "failed to read tree root");
2587 continue;
2588 }
2589
2590 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2591 tree_root->commit_root = btrfs_root_node(tree_root);
2592 btrfs_set_root_refs(&tree_root->root_item, 1);
2593
336a0d8d
NB
2594 /*
2595 * No need to hold btrfs_root::objectid_mutex since the fs
2596 * hasn't been fully initialised and we are the only user
2597 */
b8522a1e
NB
2598 ret = btrfs_find_highest_objectid(tree_root,
2599 &tree_root->highest_objectid);
2600 if (ret < 0) {
b8522a1e
NB
2601 handle_error = true;
2602 continue;
2603 }
2604
2605 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2606
2607 ret = btrfs_read_roots(fs_info);
2608 if (ret < 0) {
2609 handle_error = true;
2610 continue;
2611 }
2612
2613 /* All successful */
2614 fs_info->generation = generation;
2615 fs_info->last_trans_committed = generation;
6ef108dd
NB
2616
2617 /* Always begin writing backup roots after the one being used */
2618 if (backup_index < 0) {
2619 fs_info->backup_root_index = 0;
2620 } else {
2621 fs_info->backup_root_index = backup_index + 1;
2622 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2623 }
b8522a1e
NB
2624 break;
2625 }
2626
2627 return ret;
2628}
2629
b105e927 2630int __cold open_ctree(struct super_block *sb,
ad2b2c80
AV
2631 struct btrfs_fs_devices *fs_devices,
2632 char *options)
2e635a27 2633{
db94535d
CM
2634 u32 sectorsize;
2635 u32 nodesize;
87ee04eb 2636 u32 stripesize;
84234f3a 2637 u64 generation;
f2b636e8 2638 u64 features;
51bce6c9 2639 u16 csum_type;
3de4586c 2640 struct btrfs_key location;
a061fc8d 2641 struct buffer_head *bh;
4d34b278 2642 struct btrfs_super_block *disk_super;
815745cf 2643 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2644 struct btrfs_root *tree_root;
4d34b278 2645 struct btrfs_root *chunk_root;
eb60ceac 2646 int ret;
e58ca020 2647 int err = -EINVAL;
6675df31 2648 int clear_free_space_tree = 0;
581c1760 2649 int level;
4543df7e 2650
96dfcb46
JB
2651 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2652 GFP_KERNEL);
2653 fs_info->tree_root = tree_root;
2654 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2655 GFP_KERNEL);
2656 fs_info->chunk_root = chunk_root;
cb517eab 2657 if (!tree_root || !chunk_root) {
39279cc3
CM
2658 err = -ENOMEM;
2659 goto fail;
2660 }
76dda93c
YZ
2661
2662 ret = init_srcu_struct(&fs_info->subvol_srcu);
2663 if (ret) {
2664 err = ret;
2665 goto fail;
2666 }
2667
4297ff84 2668 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2669 if (ret) {
2670 err = ret;
9e11ceee 2671 goto fail_srcu;
e2d84521 2672 }
4297ff84
JB
2673
2674 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2675 if (ret) {
2676 err = ret;
2677 goto fail_dio_bytes;
2678 }
09cbfeaf 2679 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2680 (1 + ilog2(nr_cpu_ids));
2681
908c7f19 2682 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2683 if (ret) {
2684 err = ret;
2685 goto fail_dirty_metadata_bytes;
2686 }
2687
7f8d236a
DS
2688 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2689 GFP_KERNEL);
c404e0dc
MX
2690 if (ret) {
2691 err = ret;
2692 goto fail_delalloc_bytes;
2693 }
2694
76dda93c 2695 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2696 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2697 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2698 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2699 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2700 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2701 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2702 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2703 spin_lock_init(&fs_info->trans_lock);
76dda93c 2704 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2705 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2706 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2707 spin_lock_init(&fs_info->super_lock);
f28491e0 2708 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2709 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2710 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2711 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2712 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2713 mutex_init(&fs_info->reloc_mutex);
573bfb72 2714 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2715 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2716
0b86a832 2717 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2718 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2719 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2720 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2721 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2722 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2723 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2724 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2725 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2726 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2727 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2728 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2729 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2730 BTRFS_BLOCK_RSV_DELREFS);
2731
771ed689 2732 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2733 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2734 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2735 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2736 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2737 fs_info->sb = sb;
95ac567a 2738 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2739 fs_info->metadata_ratio = 0;
4cb5300b 2740 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2741 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2742 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2743 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2744 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2745 /* readahead state */
d0164adc 2746 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2747 spin_lock_init(&fs_info->reada_lock);
fd708b81 2748 btrfs_init_ref_verify(fs_info);
c8b97818 2749
b34b086c
CM
2750 fs_info->thread_pool_size = min_t(unsigned long,
2751 num_online_cpus() + 2, 8);
0afbaf8c 2752
199c2a9c
MX
2753 INIT_LIST_HEAD(&fs_info->ordered_roots);
2754 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2755
2756 fs_info->btree_inode = new_inode(sb);
2757 if (!fs_info->btree_inode) {
2758 err = -ENOMEM;
2759 goto fail_bio_counter;
2760 }
2761 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2762
16cdcec7 2763 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2764 GFP_KERNEL);
16cdcec7
MX
2765 if (!fs_info->delayed_root) {
2766 err = -ENOMEM;
2767 goto fail_iput;
2768 }
2769 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2770
638aa7ed 2771 btrfs_init_scrub(fs_info);
21adbd5c
SB
2772#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2773 fs_info->check_integrity_print_mask = 0;
2774#endif
779a65a4 2775 btrfs_init_balance(fs_info);
21c7e756 2776 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2777
9f6d2510
DS
2778 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2779 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2780
6bccf3ab 2781 btrfs_init_btree_inode(fs_info);
76dda93c 2782
0f9dd46c 2783 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2784 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2785 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2786
43eb5f29
QW
2787 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2788 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2789 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2790 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2791 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2792 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2793
5a3f23d5 2794 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2795 mutex_init(&fs_info->tree_log_mutex);
925baedd 2796 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2797 mutex_init(&fs_info->transaction_kthread_mutex);
2798 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2799 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2800 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2801 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2802 init_rwsem(&fs_info->subvol_sem);
803b2f54 2803 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2804
ad618368 2805 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2806 btrfs_init_qgroup(fs_info);
b0643e59 2807 btrfs_discard_init(fs_info);
416ac51d 2808
fa9c0d79
CM
2809 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2810 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2811
e6dcd2dc 2812 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2813 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2814 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2815 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2816 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2817
da17066c
JM
2818 /* Usable values until the real ones are cached from the superblock */
2819 fs_info->nodesize = 4096;
2820 fs_info->sectorsize = 4096;
2821 fs_info->stripesize = 4096;
2822
eede2bf3
OS
2823 spin_lock_init(&fs_info->swapfile_pins_lock);
2824 fs_info->swapfile_pins = RB_ROOT;
2825
9e967495
FM
2826 fs_info->send_in_progress = 0;
2827
53b381b3
DW
2828 ret = btrfs_alloc_stripe_hash_table(fs_info);
2829 if (ret) {
83c8266a 2830 err = ret;
53b381b3
DW
2831 goto fail_alloc;
2832 }
2833
3c4bb26b 2834 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2835
2836 /*
2837 * Read super block and check the signature bytes only
2838 */
a512bbf8 2839 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2840 if (IS_ERR(bh)) {
2841 err = PTR_ERR(bh);
16cdcec7 2842 goto fail_alloc;
20b45077 2843 }
39279cc3 2844
8dc3f22c
JT
2845 /*
2846 * Verify the type first, if that or the the checksum value are
2847 * corrupted, we'll find out
2848 */
51bce6c9
JT
2849 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2850 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2851 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2852 csum_type);
8dc3f22c
JT
2853 err = -EINVAL;
2854 brelse(bh);
2855 goto fail_alloc;
2856 }
2857
6d97c6e3
JT
2858 ret = btrfs_init_csum_hash(fs_info, csum_type);
2859 if (ret) {
2860 err = ret;
2861 goto fail_alloc;
2862 }
2863
1104a885
DS
2864 /*
2865 * We want to check superblock checksum, the type is stored inside.
2866 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2867 */
ab8d0fc4 2868 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2869 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2870 err = -EINVAL;
b2acdddf 2871 brelse(bh);
6d97c6e3 2872 goto fail_csum;
1104a885
DS
2873 }
2874
2875 /*
2876 * super_copy is zeroed at allocation time and we never touch the
2877 * following bytes up to INFO_SIZE, the checksum is calculated from
2878 * the whole block of INFO_SIZE
2879 */
6c41761f 2880 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2881 brelse(bh);
5f39d397 2882
fbc6feae
NB
2883 disk_super = fs_info->super_copy;
2884
de37aa51
NB
2885 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2886 BTRFS_FSID_SIZE));
2887
7239ff4b 2888 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2889 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2890 fs_info->super_copy->metadata_uuid,
2891 BTRFS_FSID_SIZE));
7239ff4b 2892 }
0b86a832 2893
fbc6feae
NB
2894 features = btrfs_super_flags(disk_super);
2895 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2896 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2897 btrfs_set_super_flags(disk_super, features);
2898 btrfs_info(fs_info,
2899 "found metadata UUID change in progress flag, clearing");
2900 }
2901
2902 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2903 sizeof(*fs_info->super_for_commit));
de37aa51 2904
069ec957 2905 ret = btrfs_validate_mount_super(fs_info);
1104a885 2906 if (ret) {
05135f59 2907 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2908 err = -EINVAL;
6d97c6e3 2909 goto fail_csum;
1104a885
DS
2910 }
2911
0f7d52f4 2912 if (!btrfs_super_root(disk_super))
6d97c6e3 2913 goto fail_csum;
0f7d52f4 2914
acce952b 2915 /* check FS state, whether FS is broken. */
87533c47
MX
2916 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2917 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2918
75e7cb7f
LB
2919 /*
2920 * In the long term, we'll store the compression type in the super
2921 * block, and it'll be used for per file compression control.
2922 */
2923 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2924
2ff7e61e 2925 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2926 if (ret) {
2927 err = ret;
6d97c6e3 2928 goto fail_csum;
2b82032c 2929 }
dfe25020 2930
f2b636e8
JB
2931 features = btrfs_super_incompat_flags(disk_super) &
2932 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2933 if (features) {
05135f59
DS
2934 btrfs_err(fs_info,
2935 "cannot mount because of unsupported optional features (%llx)",
2936 features);
f2b636e8 2937 err = -EINVAL;
6d97c6e3 2938 goto fail_csum;
f2b636e8
JB
2939 }
2940
5d4f98a2 2941 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2942 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2943 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2944 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2945 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2946 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2947
3173a18f 2948 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2949 btrfs_info(fs_info, "has skinny extents");
3173a18f 2950
727011e0
CM
2951 /*
2952 * flag our filesystem as having big metadata blocks if
2953 * they are bigger than the page size
2954 */
09cbfeaf 2955 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2956 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2957 btrfs_info(fs_info,
2958 "flagging fs with big metadata feature");
727011e0
CM
2959 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2960 }
2961
bc3f116f 2962 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2963 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2964 stripesize = sectorsize;
707e8a07 2965 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2966 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2967
da17066c
JM
2968 /* Cache block sizes */
2969 fs_info->nodesize = nodesize;
2970 fs_info->sectorsize = sectorsize;
2971 fs_info->stripesize = stripesize;
2972
bc3f116f
CM
2973 /*
2974 * mixed block groups end up with duplicate but slightly offset
2975 * extent buffers for the same range. It leads to corruptions
2976 */
2977 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2978 (sectorsize != nodesize)) {
05135f59
DS
2979 btrfs_err(fs_info,
2980"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2981 nodesize, sectorsize);
6d97c6e3 2982 goto fail_csum;
bc3f116f
CM
2983 }
2984
ceda0864
MX
2985 /*
2986 * Needn't use the lock because there is no other task which will
2987 * update the flag.
2988 */
a6fa6fae 2989 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2990
f2b636e8
JB
2991 features = btrfs_super_compat_ro_flags(disk_super) &
2992 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2993 if (!sb_rdonly(sb) && features) {
05135f59
DS
2994 btrfs_err(fs_info,
2995 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2996 features);
f2b636e8 2997 err = -EINVAL;
6d97c6e3 2998 goto fail_csum;
f2b636e8 2999 }
61d92c32 3000
2a458198
ES
3001 ret = btrfs_init_workqueues(fs_info, fs_devices);
3002 if (ret) {
3003 err = ret;
0dc3b84a
JB
3004 goto fail_sb_buffer;
3005 }
4543df7e 3006
9e11ceee
JK
3007 sb->s_bdi->congested_fn = btrfs_congested_fn;
3008 sb->s_bdi->congested_data = fs_info;
3009 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3010 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3011 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3012 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3013
a061fc8d
CM
3014 sb->s_blocksize = sectorsize;
3015 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3016 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3017
925baedd 3018 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3019 ret = btrfs_read_sys_array(fs_info);
925baedd 3020 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3021 if (ret) {
05135f59 3022 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3023 goto fail_sb_buffer;
84eed90f 3024 }
0b86a832 3025
84234f3a 3026 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3027 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3028
2ff7e61e 3029 chunk_root->node = read_tree_block(fs_info,
0b86a832 3030 btrfs_super_chunk_root(disk_super),
581c1760 3031 generation, level, NULL);
64c043de
LB
3032 if (IS_ERR(chunk_root->node) ||
3033 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3034 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3035 if (!IS_ERR(chunk_root->node))
3036 free_extent_buffer(chunk_root->node);
95ab1f64 3037 chunk_root->node = NULL;
af31f5e5 3038 goto fail_tree_roots;
83121942 3039 }
5d4f98a2
YZ
3040 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3041 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3042
e17cade2 3043 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3044 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3045
5b4aacef 3046 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3047 if (ret) {
05135f59 3048 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3049 goto fail_tree_roots;
2b82032c 3050 }
0b86a832 3051
8dabb742 3052 /*
9b99b115
AJ
3053 * Keep the devid that is marked to be the target device for the
3054 * device replace procedure
8dabb742 3055 */
9b99b115 3056 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3057
a6b0d5c8 3058 if (!fs_devices->latest_bdev) {
05135f59 3059 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3060 goto fail_tree_roots;
3061 }
3062
b8522a1e 3063 ret = init_tree_roots(fs_info);
4bbcaa64 3064 if (ret)
b8522a1e 3065 goto fail_tree_roots;
8929ecfa 3066
cf90d884
QW
3067 ret = btrfs_verify_dev_extents(fs_info);
3068 if (ret) {
3069 btrfs_err(fs_info,
3070 "failed to verify dev extents against chunks: %d",
3071 ret);
3072 goto fail_block_groups;
3073 }
68310a5e
ID
3074 ret = btrfs_recover_balance(fs_info);
3075 if (ret) {
05135f59 3076 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3077 goto fail_block_groups;
3078 }
3079
733f4fbb
SB
3080 ret = btrfs_init_dev_stats(fs_info);
3081 if (ret) {
05135f59 3082 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3083 goto fail_block_groups;
3084 }
3085
8dabb742
SB
3086 ret = btrfs_init_dev_replace(fs_info);
3087 if (ret) {
05135f59 3088 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3089 goto fail_block_groups;
3090 }
3091
9b99b115 3092 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3093
c6761a9e 3094 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3095 if (ret) {
05135f59
DS
3096 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3097 ret);
b7c35e81
AJ
3098 goto fail_block_groups;
3099 }
3100
96f3136e 3101 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3102 if (ret) {
05135f59 3103 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3104 goto fail_fsdev_sysfs;
c59021f8 3105 }
3106
c59021f8 3107 ret = btrfs_init_space_info(fs_info);
3108 if (ret) {
05135f59 3109 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3110 goto fail_sysfs;
c59021f8 3111 }
3112
5b4aacef 3113 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3114 if (ret) {
05135f59 3115 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3116 goto fail_sysfs;
1b1d1f66 3117 }
4330e183 3118
6528b99d 3119 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3120 btrfs_warn(fs_info,
52042d8e 3121 "writable mount is not allowed due to too many missing devices");
2365dd3c 3122 goto fail_sysfs;
292fd7fc 3123 }
9078a3e1 3124
a74a4b97
CM
3125 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3126 "btrfs-cleaner");
57506d50 3127 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3128 goto fail_sysfs;
a74a4b97
CM
3129
3130 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3131 tree_root,
3132 "btrfs-transaction");
57506d50 3133 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3134 goto fail_cleaner;
a74a4b97 3135
583b7231 3136 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3137 !fs_info->fs_devices->rotating) {
583b7231 3138 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3139 }
3140
572d9ab7 3141 /*
01327610 3142 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3143 * not have to wait for transaction commit
3144 */
3145 btrfs_apply_pending_changes(fs_info);
3818aea2 3146
21adbd5c 3147#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3148 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3149 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3150 btrfs_test_opt(fs_info,
21adbd5c
SB
3151 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3152 1 : 0,
3153 fs_info->check_integrity_print_mask);
3154 if (ret)
05135f59
DS
3155 btrfs_warn(fs_info,
3156 "failed to initialize integrity check module: %d",
3157 ret);
21adbd5c
SB
3158 }
3159#endif
bcef60f2
AJ
3160 ret = btrfs_read_qgroup_config(fs_info);
3161 if (ret)
3162 goto fail_trans_kthread;
21adbd5c 3163
fd708b81
JB
3164 if (btrfs_build_ref_tree(fs_info))
3165 btrfs_err(fs_info, "couldn't build ref tree");
3166
96da0919
QW
3167 /* do not make disk changes in broken FS or nologreplay is given */
3168 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3169 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3170 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3171 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3172 if (ret) {
63443bf5 3173 err = ret;
28c16cbb 3174 goto fail_qgroup;
79787eaa 3175 }
e02119d5 3176 }
1a40e23b 3177
6bccf3ab 3178 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3179 if (ret)
28c16cbb 3180 goto fail_qgroup;
76dda93c 3181
bc98a42c 3182 if (!sb_rdonly(sb)) {
d68fc57b 3183 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3184 if (ret)
28c16cbb 3185 goto fail_qgroup;
90c711ab
ZB
3186
3187 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3188 ret = btrfs_recover_relocation(tree_root);
90c711ab 3189 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3190 if (ret < 0) {
05135f59
DS
3191 btrfs_warn(fs_info, "failed to recover relocation: %d",
3192 ret);
d7ce5843 3193 err = -EINVAL;
bcef60f2 3194 goto fail_qgroup;
d7ce5843 3195 }
7c2ca468 3196 }
1a40e23b 3197
3de4586c
CM
3198 location.objectid = BTRFS_FS_TREE_OBJECTID;
3199 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3200 location.offset = 0;
3de4586c 3201
3619c94f 3202 fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3140c9a3
DC
3203 if (IS_ERR(fs_info->fs_root)) {
3204 err = PTR_ERR(fs_info->fs_root);
f50f4353 3205 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3206 fs_info->fs_root = NULL;
bcef60f2 3207 goto fail_qgroup;
3140c9a3 3208 }
c289811c 3209
4c78e9f5
JB
3210 if (!btrfs_grab_fs_root(fs_info->fs_root)) {
3211 fs_info->fs_root = NULL;
3212 err = -ENOENT;
3213 btrfs_warn(fs_info, "failed to grab a ref on the fs tree");
3214 goto fail_qgroup;
3215 }
3216
bc98a42c 3217 if (sb_rdonly(sb))
2b6ba629 3218 return 0;
59641015 3219
f8d468a1
OS
3220 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3221 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3222 clear_free_space_tree = 1;
3223 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3224 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3225 btrfs_warn(fs_info, "free space tree is invalid");
3226 clear_free_space_tree = 1;
3227 }
3228
3229 if (clear_free_space_tree) {
f8d468a1
OS
3230 btrfs_info(fs_info, "clearing free space tree");
3231 ret = btrfs_clear_free_space_tree(fs_info);
3232 if (ret) {
3233 btrfs_warn(fs_info,
3234 "failed to clear free space tree: %d", ret);
6bccf3ab 3235 close_ctree(fs_info);
f8d468a1
OS
3236 return ret;
3237 }
3238 }
3239
0b246afa 3240 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3241 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3242 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3243 ret = btrfs_create_free_space_tree(fs_info);
3244 if (ret) {
05135f59
DS
3245 btrfs_warn(fs_info,
3246 "failed to create free space tree: %d", ret);
6bccf3ab 3247 close_ctree(fs_info);
511711af
CM
3248 return ret;
3249 }
3250 }
3251
2b6ba629
ID
3252 down_read(&fs_info->cleanup_work_sem);
3253 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3254 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3255 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3256 close_ctree(fs_info);
2b6ba629
ID
3257 return ret;
3258 }
3259 up_read(&fs_info->cleanup_work_sem);
59641015 3260
2b6ba629
ID
3261 ret = btrfs_resume_balance_async(fs_info);
3262 if (ret) {
05135f59 3263 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3264 close_ctree(fs_info);
2b6ba629 3265 return ret;
e3acc2a6
JB
3266 }
3267
8dabb742
SB
3268 ret = btrfs_resume_dev_replace_async(fs_info);
3269 if (ret) {
05135f59 3270 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3271 close_ctree(fs_info);
8dabb742
SB
3272 return ret;
3273 }
3274
b382a324 3275 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3276 btrfs_discard_resume(fs_info);
b382a324 3277
4bbcaa64 3278 if (!fs_info->uuid_root) {
05135f59 3279 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3280 ret = btrfs_create_uuid_tree(fs_info);
3281 if (ret) {
05135f59
DS
3282 btrfs_warn(fs_info,
3283 "failed to create the UUID tree: %d", ret);
6bccf3ab 3284 close_ctree(fs_info);
f7a81ea4
SB
3285 return ret;
3286 }
0b246afa 3287 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3288 fs_info->generation !=
3289 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3290 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3291 ret = btrfs_check_uuid_tree(fs_info);
3292 if (ret) {
05135f59
DS
3293 btrfs_warn(fs_info,
3294 "failed to check the UUID tree: %d", ret);
6bccf3ab 3295 close_ctree(fs_info);
70f80175
SB
3296 return ret;
3297 }
3298 } else {
afcdd129 3299 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3300 }
afcdd129 3301 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3302
8dcddfa0
QW
3303 /*
3304 * backuproot only affect mount behavior, and if open_ctree succeeded,
3305 * no need to keep the flag
3306 */
3307 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3308
ad2b2c80 3309 return 0;
39279cc3 3310
bcef60f2
AJ
3311fail_qgroup:
3312 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3313fail_trans_kthread:
3314 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3315 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3316 btrfs_free_fs_roots(fs_info);
3f157a2f 3317fail_cleaner:
a74a4b97 3318 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3319
3320 /*
3321 * make sure we're done with the btree inode before we stop our
3322 * kthreads
3323 */
3324 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3325
2365dd3c 3326fail_sysfs:
6618a59b 3327 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3328
b7c35e81
AJ
3329fail_fsdev_sysfs:
3330 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3331
1b1d1f66 3332fail_block_groups:
54067ae9 3333 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3334
3335fail_tree_roots:
4273eaff 3336 free_root_pointers(fs_info, true);
2b8195bb 3337 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3338
39279cc3 3339fail_sb_buffer:
7abadb64 3340 btrfs_stop_all_workers(fs_info);
5cdd7db6 3341 btrfs_free_block_groups(fs_info);
6d97c6e3
JT
3342fail_csum:
3343 btrfs_free_csum_hash(fs_info);
16cdcec7 3344fail_alloc:
4543df7e 3345fail_iput:
586e46e2
ID
3346 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3347
4543df7e 3348 iput(fs_info->btree_inode);
c404e0dc 3349fail_bio_counter:
7f8d236a 3350 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3351fail_delalloc_bytes:
3352 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3353fail_dirty_metadata_bytes:
3354 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3355fail_dio_bytes:
3356 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3357fail_srcu:
3358 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3359fail:
53b381b3 3360 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3361 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3362 return err;
eb60ceac 3363}
663faf9f 3364ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3365
f2984462
CM
3366static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3367{
f2984462
CM
3368 if (uptodate) {
3369 set_buffer_uptodate(bh);
3370 } else {
442a4f63
SB
3371 struct btrfs_device *device = (struct btrfs_device *)
3372 bh->b_private;
3373
fb456252 3374 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3375 "lost page write due to IO error on %s",
606686ee 3376 rcu_str_deref(device->name));
01327610 3377 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3378 * our own ways of dealing with the IO errors
3379 */
f2984462 3380 clear_buffer_uptodate(bh);
442a4f63 3381 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3382 }
3383 unlock_buffer(bh);
3384 put_bh(bh);
3385}
3386
29c36d72
AJ
3387int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3388 struct buffer_head **bh_ret)
3389{
3390 struct buffer_head *bh;
3391 struct btrfs_super_block *super;
3392 u64 bytenr;
3393
3394 bytenr = btrfs_sb_offset(copy_num);
3395 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3396 return -EINVAL;
3397
9f6d2510 3398 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3399 /*
3400 * If we fail to read from the underlying devices, as of now
3401 * the best option we have is to mark it EIO.
3402 */
3403 if (!bh)
3404 return -EIO;
3405
3406 super = (struct btrfs_super_block *)bh->b_data;
3407 if (btrfs_super_bytenr(super) != bytenr ||
3408 btrfs_super_magic(super) != BTRFS_MAGIC) {
3409 brelse(bh);
3410 return -EINVAL;
3411 }
3412
3413 *bh_ret = bh;
3414 return 0;
3415}
3416
3417
a512bbf8
YZ
3418struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3419{
3420 struct buffer_head *bh;
3421 struct buffer_head *latest = NULL;
3422 struct btrfs_super_block *super;
3423 int i;
3424 u64 transid = 0;
92fc03fb 3425 int ret = -EINVAL;
a512bbf8
YZ
3426
3427 /* we would like to check all the supers, but that would make
3428 * a btrfs mount succeed after a mkfs from a different FS.
3429 * So, we need to add a special mount option to scan for
3430 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3431 */
3432 for (i = 0; i < 1; i++) {
29c36d72
AJ
3433 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3434 if (ret)
a512bbf8
YZ
3435 continue;
3436
3437 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3438
3439 if (!latest || btrfs_super_generation(super) > transid) {
3440 brelse(latest);
3441 latest = bh;
3442 transid = btrfs_super_generation(super);
3443 } else {
3444 brelse(bh);
3445 }
3446 }
92fc03fb
AJ
3447
3448 if (!latest)
3449 return ERR_PTR(ret);
3450
a512bbf8
YZ
3451 return latest;
3452}
3453
4eedeb75 3454/*
abbb3b8e
DS
3455 * Write superblock @sb to the @device. Do not wait for completion, all the
3456 * buffer heads we write are pinned.
4eedeb75 3457 *
abbb3b8e
DS
3458 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3459 * the expected device size at commit time. Note that max_mirrors must be
3460 * same for write and wait phases.
4eedeb75 3461 *
abbb3b8e 3462 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3463 */
a512bbf8 3464static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3465 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3466{
d5178578
JT
3467 struct btrfs_fs_info *fs_info = device->fs_info;
3468 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8
YZ
3469 struct buffer_head *bh;
3470 int i;
3471 int ret;
3472 int errors = 0;
a512bbf8 3473 u64 bytenr;
1b9e619c 3474 int op_flags;
a512bbf8
YZ
3475
3476 if (max_mirrors == 0)
3477 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3478
d5178578
JT
3479 shash->tfm = fs_info->csum_shash;
3480
a512bbf8
YZ
3481 for (i = 0; i < max_mirrors; i++) {
3482 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3483 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3484 device->commit_total_bytes)
a512bbf8
YZ
3485 break;
3486
abbb3b8e 3487 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3488
d5178578
JT
3489 crypto_shash_init(shash);
3490 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3491 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3492 crypto_shash_final(shash, sb->csum);
4eedeb75 3493
abbb3b8e 3494 /* One reference for us, and we leave it for the caller */
9f6d2510 3495 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3496 BTRFS_SUPER_INFO_SIZE);
3497 if (!bh) {
3498 btrfs_err(device->fs_info,
3499 "couldn't get super buffer head for bytenr %llu",
3500 bytenr);
3501 errors++;
4eedeb75 3502 continue;
abbb3b8e 3503 }
634554dc 3504
abbb3b8e 3505 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3506
abbb3b8e
DS
3507 /* one reference for submit_bh */
3508 get_bh(bh);
4eedeb75 3509
abbb3b8e
DS
3510 set_buffer_uptodate(bh);
3511 lock_buffer(bh);
3512 bh->b_end_io = btrfs_end_buffer_write_sync;
3513 bh->b_private = device;
a512bbf8 3514
387125fc
CM
3515 /*
3516 * we fua the first super. The others we allow
3517 * to go down lazy.
3518 */
1b9e619c
OS
3519 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3520 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3521 op_flags |= REQ_FUA;
3522 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3523 if (ret)
a512bbf8 3524 errors++;
a512bbf8
YZ
3525 }
3526 return errors < i ? 0 : -1;
3527}
3528
abbb3b8e
DS
3529/*
3530 * Wait for write completion of superblocks done by write_dev_supers,
3531 * @max_mirrors same for write and wait phases.
3532 *
3533 * Return number of errors when buffer head is not found or not marked up to
3534 * date.
3535 */
3536static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3537{
3538 struct buffer_head *bh;
3539 int i;
3540 int errors = 0;
b6a535fa 3541 bool primary_failed = false;
abbb3b8e
DS
3542 u64 bytenr;
3543
3544 if (max_mirrors == 0)
3545 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3546
3547 for (i = 0; i < max_mirrors; i++) {
3548 bytenr = btrfs_sb_offset(i);
3549 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3550 device->commit_total_bytes)
3551 break;
3552
9f6d2510
DS
3553 bh = __find_get_block(device->bdev,
3554 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3555 BTRFS_SUPER_INFO_SIZE);
3556 if (!bh) {
3557 errors++;
b6a535fa
HM
3558 if (i == 0)
3559 primary_failed = true;
abbb3b8e
DS
3560 continue;
3561 }
3562 wait_on_buffer(bh);
b6a535fa 3563 if (!buffer_uptodate(bh)) {
abbb3b8e 3564 errors++;
b6a535fa
HM
3565 if (i == 0)
3566 primary_failed = true;
3567 }
abbb3b8e
DS
3568
3569 /* drop our reference */
3570 brelse(bh);
3571
3572 /* drop the reference from the writing run */
3573 brelse(bh);
3574 }
3575
b6a535fa
HM
3576 /* log error, force error return */
3577 if (primary_failed) {
3578 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3579 device->devid);
3580 return -1;
3581 }
3582
abbb3b8e
DS
3583 return errors < i ? 0 : -1;
3584}
3585
387125fc
CM
3586/*
3587 * endio for the write_dev_flush, this will wake anyone waiting
3588 * for the barrier when it is done
3589 */
4246a0b6 3590static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3591{
e0ae9994 3592 complete(bio->bi_private);
387125fc
CM
3593}
3594
3595/*
4fc6441a
AJ
3596 * Submit a flush request to the device if it supports it. Error handling is
3597 * done in the waiting counterpart.
387125fc 3598 */
4fc6441a 3599static void write_dev_flush(struct btrfs_device *device)
387125fc 3600{
c2a9c7ab 3601 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3602 struct bio *bio = device->flush_bio;
387125fc 3603
c2a9c7ab 3604 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3605 return;
387125fc 3606
e0ae9994 3607 bio_reset(bio);
387125fc 3608 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3609 bio_set_dev(bio, device->bdev);
8d910125 3610 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3611 init_completion(&device->flush_wait);
3612 bio->bi_private = &device->flush_wait;
387125fc 3613
43a01111 3614 btrfsic_submit_bio(bio);
1c3063b6 3615 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3616}
387125fc 3617
4fc6441a
AJ
3618/*
3619 * If the flush bio has been submitted by write_dev_flush, wait for it.
3620 */
8c27cb35 3621static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3622{
4fc6441a 3623 struct bio *bio = device->flush_bio;
387125fc 3624
1c3063b6 3625 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3626 return BLK_STS_OK;
387125fc 3627
1c3063b6 3628 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3629 wait_for_completion_io(&device->flush_wait);
387125fc 3630
8c27cb35 3631 return bio->bi_status;
387125fc 3632}
387125fc 3633
d10b82fe 3634static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3635{
6528b99d 3636 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3637 return -EIO;
387125fc
CM
3638 return 0;
3639}
3640
3641/*
3642 * send an empty flush down to each device in parallel,
3643 * then wait for them
3644 */
3645static int barrier_all_devices(struct btrfs_fs_info *info)
3646{
3647 struct list_head *head;
3648 struct btrfs_device *dev;
5af3e8cc 3649 int errors_wait = 0;
4e4cbee9 3650 blk_status_t ret;
387125fc 3651
1538e6c5 3652 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3653 /* send down all the barriers */
3654 head = &info->fs_devices->devices;
1538e6c5 3655 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3656 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3657 continue;
cea7c8bf 3658 if (!dev->bdev)
387125fc 3659 continue;
e12c9621 3660 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3661 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3662 continue;
3663
4fc6441a 3664 write_dev_flush(dev);
58efbc9f 3665 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3666 }
3667
3668 /* wait for all the barriers */
1538e6c5 3669 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3670 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3671 continue;
387125fc 3672 if (!dev->bdev) {
5af3e8cc 3673 errors_wait++;
387125fc
CM
3674 continue;
3675 }
e12c9621 3676 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3677 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3678 continue;
3679
4fc6441a 3680 ret = wait_dev_flush(dev);
401b41e5
AJ
3681 if (ret) {
3682 dev->last_flush_error = ret;
66b4993e
DS
3683 btrfs_dev_stat_inc_and_print(dev,
3684 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3685 errors_wait++;
401b41e5
AJ
3686 }
3687 }
3688
cea7c8bf 3689 if (errors_wait) {
401b41e5
AJ
3690 /*
3691 * At some point we need the status of all disks
3692 * to arrive at the volume status. So error checking
3693 * is being pushed to a separate loop.
3694 */
d10b82fe 3695 return check_barrier_error(info);
387125fc 3696 }
387125fc
CM
3697 return 0;
3698}
3699
943c6e99
ZL
3700int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3701{
8789f4fe
ZL
3702 int raid_type;
3703 int min_tolerated = INT_MAX;
943c6e99 3704
8789f4fe
ZL
3705 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3706 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3707 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3708 btrfs_raid_array[BTRFS_RAID_SINGLE].
3709 tolerated_failures);
943c6e99 3710
8789f4fe
ZL
3711 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3712 if (raid_type == BTRFS_RAID_SINGLE)
3713 continue;
41a6e891 3714 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3715 continue;
8c3e3582 3716 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3717 btrfs_raid_array[raid_type].
3718 tolerated_failures);
3719 }
943c6e99 3720
8789f4fe 3721 if (min_tolerated == INT_MAX) {
ab8d0fc4 3722 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3723 min_tolerated = 0;
3724 }
3725
3726 return min_tolerated;
943c6e99
ZL
3727}
3728
eece6a9c 3729int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3730{
e5e9a520 3731 struct list_head *head;
f2984462 3732 struct btrfs_device *dev;
a061fc8d 3733 struct btrfs_super_block *sb;
f2984462 3734 struct btrfs_dev_item *dev_item;
f2984462
CM
3735 int ret;
3736 int do_barriers;
a236aed1
CM
3737 int max_errors;
3738 int total_errors = 0;
a061fc8d 3739 u64 flags;
f2984462 3740
0b246afa 3741 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3742
3743 /*
3744 * max_mirrors == 0 indicates we're from commit_transaction,
3745 * not from fsync where the tree roots in fs_info have not
3746 * been consistent on disk.
3747 */
3748 if (max_mirrors == 0)
3749 backup_super_roots(fs_info);
f2984462 3750
0b246afa 3751 sb = fs_info->super_for_commit;
a061fc8d 3752 dev_item = &sb->dev_item;
e5e9a520 3753
0b246afa
JM
3754 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3755 head = &fs_info->fs_devices->devices;
3756 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3757
5af3e8cc 3758 if (do_barriers) {
0b246afa 3759 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3760 if (ret) {
3761 mutex_unlock(
0b246afa
JM
3762 &fs_info->fs_devices->device_list_mutex);
3763 btrfs_handle_fs_error(fs_info, ret,
3764 "errors while submitting device barriers.");
5af3e8cc
SB
3765 return ret;
3766 }
3767 }
387125fc 3768
1538e6c5 3769 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3770 if (!dev->bdev) {
3771 total_errors++;
3772 continue;
3773 }
e12c9621 3774 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3775 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3776 continue;
3777
2b82032c 3778 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3779 btrfs_set_stack_device_type(dev_item, dev->type);
3780 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3781 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3782 dev->commit_total_bytes);
ce7213c7
MX
3783 btrfs_set_stack_device_bytes_used(dev_item,
3784 dev->commit_bytes_used);
a061fc8d
CM
3785 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3786 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3787 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3788 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3789 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3790 BTRFS_FSID_SIZE);
a512bbf8 3791
a061fc8d
CM
3792 flags = btrfs_super_flags(sb);
3793 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3794
75cb857d
QW
3795 ret = btrfs_validate_write_super(fs_info, sb);
3796 if (ret < 0) {
3797 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3798 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3799 "unexpected superblock corruption detected");
3800 return -EUCLEAN;
3801 }
3802
abbb3b8e 3803 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3804 if (ret)
3805 total_errors++;
f2984462 3806 }
a236aed1 3807 if (total_errors > max_errors) {
0b246afa
JM
3808 btrfs_err(fs_info, "%d errors while writing supers",
3809 total_errors);
3810 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3811
9d565ba4 3812 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3813 btrfs_handle_fs_error(fs_info, -EIO,
3814 "%d errors while writing supers",
3815 total_errors);
9d565ba4 3816 return -EIO;
a236aed1 3817 }
f2984462 3818
a512bbf8 3819 total_errors = 0;
1538e6c5 3820 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3821 if (!dev->bdev)
3822 continue;
e12c9621 3823 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3824 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3825 continue;
3826
abbb3b8e 3827 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3828 if (ret)
3829 total_errors++;
f2984462 3830 }
0b246afa 3831 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3832 if (total_errors > max_errors) {
0b246afa
JM
3833 btrfs_handle_fs_error(fs_info, -EIO,
3834 "%d errors while writing supers",
3835 total_errors);
79787eaa 3836 return -EIO;
a236aed1 3837 }
f2984462
CM
3838 return 0;
3839}
3840
cb517eab
MX
3841/* Drop a fs root from the radix tree and free it. */
3842void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3843 struct btrfs_root *root)
2619ba1f 3844{
4df27c4d 3845 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3846 radix_tree_delete(&fs_info->fs_roots_radix,
3847 (unsigned long)root->root_key.objectid);
af01d2e5
JB
3848 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3849 btrfs_put_fs_root(root);
4df27c4d 3850 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3851
3852 if (btrfs_root_refs(&root->root_item) == 0)
3853 synchronize_srcu(&fs_info->subvol_srcu);
3854
1c1ea4f7 3855 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3856 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3857 if (root->reloc_root) {
3858 free_extent_buffer(root->reloc_root->node);
3859 free_extent_buffer(root->reloc_root->commit_root);
3860 btrfs_put_fs_root(root->reloc_root);
3861 root->reloc_root = NULL;
3862 }
3863 }
3321719e 3864
faa2dbf0
JB
3865 if (root->free_ino_pinned)
3866 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3867 if (root->free_ino_ctl)
3868 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3869 btrfs_free_fs_root(root);
4df27c4d
YZ
3870}
3871
84db5ccf 3872void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3873{
57cdc8db 3874 iput(root->ino_cache_inode);
4df27c4d 3875 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3876 if (root->anon_dev)
3877 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3878 if (root->subv_writers)
3879 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3880 free_extent_buffer(root->node);
3881 free_extent_buffer(root->commit_root);
581bb050
LZ
3882 kfree(root->free_ino_ctl);
3883 kfree(root->free_ino_pinned);
b0feb9d9 3884 btrfs_put_fs_root(root);
2619ba1f
CM
3885}
3886
c146afad 3887int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3888{
c146afad
YZ
3889 u64 root_objectid = 0;
3890 struct btrfs_root *gang[8];
65d33fd7
QW
3891 int i = 0;
3892 int err = 0;
3893 unsigned int ret = 0;
3894 int index;
e089f05c 3895
c146afad 3896 while (1) {
65d33fd7 3897 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3898 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3899 (void **)gang, root_objectid,
3900 ARRAY_SIZE(gang));
65d33fd7
QW
3901 if (!ret) {
3902 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3903 break;
65d33fd7 3904 }
5d4f98a2 3905 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3906
c146afad 3907 for (i = 0; i < ret; i++) {
65d33fd7
QW
3908 /* Avoid to grab roots in dead_roots */
3909 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3910 gang[i] = NULL;
3911 continue;
3912 }
3913 /* grab all the search result for later use */
3914 gang[i] = btrfs_grab_fs_root(gang[i]);
3915 }
3916 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3917
65d33fd7
QW
3918 for (i = 0; i < ret; i++) {
3919 if (!gang[i])
3920 continue;
c146afad 3921 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3922 err = btrfs_orphan_cleanup(gang[i]);
3923 if (err)
65d33fd7
QW
3924 break;
3925 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3926 }
3927 root_objectid++;
3928 }
65d33fd7
QW
3929
3930 /* release the uncleaned roots due to error */
3931 for (; i < ret; i++) {
3932 if (gang[i])
3933 btrfs_put_fs_root(gang[i]);
3934 }
3935 return err;
c146afad 3936}
a2135011 3937
6bccf3ab 3938int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3939{
6bccf3ab 3940 struct btrfs_root *root = fs_info->tree_root;
c146afad 3941 struct btrfs_trans_handle *trans;
a74a4b97 3942
0b246afa 3943 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3944 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3945 mutex_unlock(&fs_info->cleaner_mutex);
3946 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3947
3948 /* wait until ongoing cleanup work done */
0b246afa
JM
3949 down_write(&fs_info->cleanup_work_sem);
3950 up_write(&fs_info->cleanup_work_sem);
c71bf099 3951
7a7eaa40 3952 trans = btrfs_join_transaction(root);
3612b495
TI
3953 if (IS_ERR(trans))
3954 return PTR_ERR(trans);
3a45bb20 3955 return btrfs_commit_transaction(trans);
c146afad
YZ
3956}
3957
b105e927 3958void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3959{
c146afad
YZ
3960 int ret;
3961
afcdd129 3962 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3963 /*
3964 * We don't want the cleaner to start new transactions, add more delayed
3965 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3966 * because that frees the task_struct, and the transaction kthread might
3967 * still try to wake up the cleaner.
3968 */
3969 kthread_park(fs_info->cleaner_kthread);
c146afad 3970
7343dd61 3971 /* wait for the qgroup rescan worker to stop */
d06f23d6 3972 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3973
803b2f54
SB
3974 /* wait for the uuid_scan task to finish */
3975 down(&fs_info->uuid_tree_rescan_sem);
3976 /* avoid complains from lockdep et al., set sem back to initial state */
3977 up(&fs_info->uuid_tree_rescan_sem);
3978
837d5b6e 3979 /* pause restriper - we want to resume on mount */
aa1b8cd4 3980 btrfs_pause_balance(fs_info);
837d5b6e 3981
8dabb742
SB
3982 btrfs_dev_replace_suspend_for_unmount(fs_info);
3983
aa1b8cd4 3984 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3985
3986 /* wait for any defraggers to finish */
3987 wait_event(fs_info->transaction_wait,
3988 (atomic_read(&fs_info->defrag_running) == 0));
3989
3990 /* clear out the rbtree of defraggable inodes */
26176e7c 3991 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3992
21c7e756
MX
3993 cancel_work_sync(&fs_info->async_reclaim_work);
3994
b0643e59
DZ
3995 /* Cancel or finish ongoing discard work */
3996 btrfs_discard_cleanup(fs_info);
3997
bc98a42c 3998 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3999 /*
d6fd0ae2
OS
4000 * The cleaner kthread is stopped, so do one final pass over
4001 * unused block groups.
e44163e1 4002 */
0b246afa 4003 btrfs_delete_unused_bgs(fs_info);
e44163e1 4004
6bccf3ab 4005 ret = btrfs_commit_super(fs_info);
acce952b 4006 if (ret)
04892340 4007 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4008 }
4009
af722733
LB
4010 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4011 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4012 btrfs_error_commit_super(fs_info);
0f7d52f4 4013
e3029d9f
AV
4014 kthread_stop(fs_info->transaction_kthread);
4015 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4016
e187831e 4017 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4018 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4019
04892340 4020 btrfs_free_qgroup_config(fs_info);
fe816d0f 4021 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4022
963d678b 4023 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4024 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4025 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4026 }
bcc63abb 4027
4297ff84
JB
4028 if (percpu_counter_sum(&fs_info->dio_bytes))
4029 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4030 percpu_counter_sum(&fs_info->dio_bytes));
4031
6618a59b 4032 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4033 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4034
faa2dbf0 4035 btrfs_free_fs_roots(fs_info);
d10c5f31 4036
1a4319cc
LB
4037 btrfs_put_block_group_cache(fs_info);
4038
de348ee0
WS
4039 /*
4040 * we must make sure there is not any read request to
4041 * submit after we stopping all workers.
4042 */
4043 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4044 btrfs_stop_all_workers(fs_info);
4045
afcdd129 4046 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4047 free_root_pointers(fs_info, true);
9ad6b7bc 4048
4e19443d
JB
4049 /*
4050 * We must free the block groups after dropping the fs_roots as we could
4051 * have had an IO error and have left over tree log blocks that aren't
4052 * cleaned up until the fs roots are freed. This makes the block group
4053 * accounting appear to be wrong because there's pending reserved bytes,
4054 * so make sure we do the block group cleanup afterwards.
4055 */
4056 btrfs_free_block_groups(fs_info);
4057
13e6c37b 4058 iput(fs_info->btree_inode);
d6bfde87 4059
21adbd5c 4060#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4061 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4062 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4063#endif
4064
0b86a832 4065 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4066 btrfs_close_devices(fs_info->fs_devices);
b248a415 4067
e2d84521 4068 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4069 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4070 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4071 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4072 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4073
bfcea1c6 4074 btrfs_free_csum_hash(fs_info);
53b381b3 4075 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4076 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4077}
4078
b9fab919
CM
4079int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4080 int atomic)
5f39d397 4081{
1259ab75 4082 int ret;
727011e0 4083 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4084
0b32f4bb 4085 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4086 if (!ret)
4087 return ret;
4088
4089 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4090 parent_transid, atomic);
4091 if (ret == -EAGAIN)
4092 return ret;
1259ab75 4093 return !ret;
5f39d397
CM
4094}
4095
5f39d397
CM
4096void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4097{
0b246afa 4098 struct btrfs_fs_info *fs_info;
06ea65a3 4099 struct btrfs_root *root;
5f39d397 4100 u64 transid = btrfs_header_generation(buf);
b9473439 4101 int was_dirty;
b4ce94de 4102
06ea65a3
JB
4103#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4104 /*
4105 * This is a fast path so only do this check if we have sanity tests
52042d8e 4106 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4107 * outside of the sanity tests.
4108 */
b0132a3b 4109 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4110 return;
4111#endif
4112 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4113 fs_info = root->fs_info;
b9447ef8 4114 btrfs_assert_tree_locked(buf);
0b246afa 4115 if (transid != fs_info->generation)
5d163e0e 4116 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4117 buf->start, transid, fs_info->generation);
0b32f4bb 4118 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4119 if (!was_dirty)
104b4e51
NB
4120 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4121 buf->len,
4122 fs_info->dirty_metadata_batch);
1f21ef0a 4123#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4124 /*
4125 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4126 * but item data not updated.
4127 * So here we should only check item pointers, not item data.
4128 */
4129 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4130 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4131 btrfs_print_leaf(buf);
1f21ef0a
FM
4132 ASSERT(0);
4133 }
4134#endif
eb60ceac
CM
4135}
4136
2ff7e61e 4137static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4138 int flush_delayed)
16cdcec7
MX
4139{
4140 /*
4141 * looks as though older kernels can get into trouble with
4142 * this code, they end up stuck in balance_dirty_pages forever
4143 */
e2d84521 4144 int ret;
16cdcec7
MX
4145
4146 if (current->flags & PF_MEMALLOC)
4147 return;
4148
b53d3f5d 4149 if (flush_delayed)
2ff7e61e 4150 btrfs_balance_delayed_items(fs_info);
16cdcec7 4151
d814a491
EL
4152 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4153 BTRFS_DIRTY_METADATA_THRESH,
4154 fs_info->dirty_metadata_batch);
e2d84521 4155 if (ret > 0) {
0b246afa 4156 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4157 }
16cdcec7
MX
4158}
4159
2ff7e61e 4160void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4161{
2ff7e61e 4162 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4163}
585ad2c3 4164
2ff7e61e 4165void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4166{
2ff7e61e 4167 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4168}
6b80053d 4169
581c1760
QW
4170int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4171 struct btrfs_key *first_key)
6b80053d 4172{
5ab12d1f 4173 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4174 level, first_key);
6b80053d 4175}
0da5468f 4176
2ff7e61e 4177static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4178{
fe816d0f
NB
4179 /* cleanup FS via transaction */
4180 btrfs_cleanup_transaction(fs_info);
4181
0b246afa 4182 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4183 btrfs_run_delayed_iputs(fs_info);
0b246afa 4184 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4185
0b246afa
JM
4186 down_write(&fs_info->cleanup_work_sem);
4187 up_write(&fs_info->cleanup_work_sem);
acce952b 4188}
4189
143bede5 4190static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4191{
acce952b 4192 struct btrfs_ordered_extent *ordered;
acce952b 4193
199c2a9c 4194 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4195 /*
4196 * This will just short circuit the ordered completion stuff which will
4197 * make sure the ordered extent gets properly cleaned up.
4198 */
199c2a9c 4199 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4200 root_extent_list)
4201 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4202 spin_unlock(&root->ordered_extent_lock);
4203}
4204
4205static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4206{
4207 struct btrfs_root *root;
4208 struct list_head splice;
4209
4210 INIT_LIST_HEAD(&splice);
4211
4212 spin_lock(&fs_info->ordered_root_lock);
4213 list_splice_init(&fs_info->ordered_roots, &splice);
4214 while (!list_empty(&splice)) {
4215 root = list_first_entry(&splice, struct btrfs_root,
4216 ordered_root);
1de2cfde
JB
4217 list_move_tail(&root->ordered_root,
4218 &fs_info->ordered_roots);
199c2a9c 4219
2a85d9ca 4220 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4221 btrfs_destroy_ordered_extents(root);
4222
2a85d9ca
LB
4223 cond_resched();
4224 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4225 }
4226 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4227
4228 /*
4229 * We need this here because if we've been flipped read-only we won't
4230 * get sync() from the umount, so we need to make sure any ordered
4231 * extents that haven't had their dirty pages IO start writeout yet
4232 * actually get run and error out properly.
4233 */
4234 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4235}
4236
35a3621b 4237static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4238 struct btrfs_fs_info *fs_info)
acce952b 4239{
4240 struct rb_node *node;
4241 struct btrfs_delayed_ref_root *delayed_refs;
4242 struct btrfs_delayed_ref_node *ref;
4243 int ret = 0;
4244
4245 delayed_refs = &trans->delayed_refs;
4246
4247 spin_lock(&delayed_refs->lock);
d7df2c79 4248 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4249 spin_unlock(&delayed_refs->lock);
0b246afa 4250 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4251 return ret;
4252 }
4253
5c9d028b 4254 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4255 struct btrfs_delayed_ref_head *head;
0e0adbcf 4256 struct rb_node *n;
e78417d1 4257 bool pin_bytes = false;
acce952b 4258
d7df2c79
JB
4259 head = rb_entry(node, struct btrfs_delayed_ref_head,
4260 href_node);
3069bd26 4261 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4262 continue;
3069bd26 4263
d7df2c79 4264 spin_lock(&head->lock);
e3d03965 4265 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4266 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4267 ref_node);
d7df2c79 4268 ref->in_tree = 0;
e3d03965 4269 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4270 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4271 if (!list_empty(&ref->add_list))
4272 list_del(&ref->add_list);
d7df2c79
JB
4273 atomic_dec(&delayed_refs->num_entries);
4274 btrfs_put_delayed_ref(ref);
e78417d1 4275 }
d7df2c79
JB
4276 if (head->must_insert_reserved)
4277 pin_bytes = true;
4278 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4279 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4280 spin_unlock(&head->lock);
4281 spin_unlock(&delayed_refs->lock);
4282 mutex_unlock(&head->mutex);
acce952b 4283
d7df2c79 4284 if (pin_bytes)
d278850e
JB
4285 btrfs_pin_extent(fs_info, head->bytenr,
4286 head->num_bytes, 1);
31890da0 4287 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4288 btrfs_put_delayed_ref_head(head);
acce952b 4289 cond_resched();
4290 spin_lock(&delayed_refs->lock);
4291 }
81f7eb00 4292 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4293
4294 spin_unlock(&delayed_refs->lock);
4295
4296 return ret;
4297}
4298
143bede5 4299static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4300{
4301 struct btrfs_inode *btrfs_inode;
4302 struct list_head splice;
4303
4304 INIT_LIST_HEAD(&splice);
4305
eb73c1b7
MX
4306 spin_lock(&root->delalloc_lock);
4307 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4308
4309 while (!list_empty(&splice)) {
fe816d0f 4310 struct inode *inode = NULL;
eb73c1b7
MX
4311 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4312 delalloc_inodes);
fe816d0f 4313 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4314 spin_unlock(&root->delalloc_lock);
acce952b 4315
fe816d0f
NB
4316 /*
4317 * Make sure we get a live inode and that it'll not disappear
4318 * meanwhile.
4319 */
4320 inode = igrab(&btrfs_inode->vfs_inode);
4321 if (inode) {
4322 invalidate_inode_pages2(inode->i_mapping);
4323 iput(inode);
4324 }
eb73c1b7 4325 spin_lock(&root->delalloc_lock);
acce952b 4326 }
eb73c1b7
MX
4327 spin_unlock(&root->delalloc_lock);
4328}
4329
4330static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4331{
4332 struct btrfs_root *root;
4333 struct list_head splice;
4334
4335 INIT_LIST_HEAD(&splice);
4336
4337 spin_lock(&fs_info->delalloc_root_lock);
4338 list_splice_init(&fs_info->delalloc_roots, &splice);
4339 while (!list_empty(&splice)) {
4340 root = list_first_entry(&splice, struct btrfs_root,
4341 delalloc_root);
eb73c1b7
MX
4342 root = btrfs_grab_fs_root(root);
4343 BUG_ON(!root);
4344 spin_unlock(&fs_info->delalloc_root_lock);
4345
4346 btrfs_destroy_delalloc_inodes(root);
4347 btrfs_put_fs_root(root);
4348
4349 spin_lock(&fs_info->delalloc_root_lock);
4350 }
4351 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4352}
4353
2ff7e61e 4354static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4355 struct extent_io_tree *dirty_pages,
4356 int mark)
4357{
4358 int ret;
acce952b 4359 struct extent_buffer *eb;
4360 u64 start = 0;
4361 u64 end;
acce952b 4362
4363 while (1) {
4364 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4365 mark, NULL);
acce952b 4366 if (ret)
4367 break;
4368
91166212 4369 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4370 while (start <= end) {
0b246afa
JM
4371 eb = find_extent_buffer(fs_info, start);
4372 start += fs_info->nodesize;
fd8b2b61 4373 if (!eb)
acce952b 4374 continue;
fd8b2b61 4375 wait_on_extent_buffer_writeback(eb);
acce952b 4376
fd8b2b61
JB
4377 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4378 &eb->bflags))
4379 clear_extent_buffer_dirty(eb);
4380 free_extent_buffer_stale(eb);
acce952b 4381 }
4382 }
4383
4384 return ret;
4385}
4386
2ff7e61e 4387static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4388 struct extent_io_tree *pinned_extents)
4389{
4390 struct extent_io_tree *unpin;
4391 u64 start;
4392 u64 end;
4393 int ret;
ed0eaa14 4394 bool loop = true;
acce952b 4395
4396 unpin = pinned_extents;
ed0eaa14 4397again:
acce952b 4398 while (1) {
0e6ec385
FM
4399 struct extent_state *cached_state = NULL;
4400
fcd5e742
LF
4401 /*
4402 * The btrfs_finish_extent_commit() may get the same range as
4403 * ours between find_first_extent_bit and clear_extent_dirty.
4404 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4405 * the same extent range.
4406 */
4407 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4408 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4409 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4410 if (ret) {
4411 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4412 break;
fcd5e742 4413 }
acce952b 4414
0e6ec385
FM
4415 clear_extent_dirty(unpin, start, end, &cached_state);
4416 free_extent_state(cached_state);
2ff7e61e 4417 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4418 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4419 cond_resched();
4420 }
4421
ed0eaa14 4422 if (loop) {
0b246afa
JM
4423 if (unpin == &fs_info->freed_extents[0])
4424 unpin = &fs_info->freed_extents[1];
ed0eaa14 4425 else
0b246afa 4426 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4427 loop = false;
4428 goto again;
4429 }
4430
acce952b 4431 return 0;
4432}
4433
32da5386 4434static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4435{
4436 struct inode *inode;
4437
4438 inode = cache->io_ctl.inode;
4439 if (inode) {
4440 invalidate_inode_pages2(inode->i_mapping);
4441 BTRFS_I(inode)->generation = 0;
4442 cache->io_ctl.inode = NULL;
4443 iput(inode);
4444 }
4445 btrfs_put_block_group(cache);
4446}
4447
4448void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4449 struct btrfs_fs_info *fs_info)
c79a1751 4450{
32da5386 4451 struct btrfs_block_group *cache;
c79a1751
LB
4452
4453 spin_lock(&cur_trans->dirty_bgs_lock);
4454 while (!list_empty(&cur_trans->dirty_bgs)) {
4455 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4456 struct btrfs_block_group,
c79a1751 4457 dirty_list);
c79a1751
LB
4458
4459 if (!list_empty(&cache->io_list)) {
4460 spin_unlock(&cur_trans->dirty_bgs_lock);
4461 list_del_init(&cache->io_list);
4462 btrfs_cleanup_bg_io(cache);
4463 spin_lock(&cur_trans->dirty_bgs_lock);
4464 }
4465
4466 list_del_init(&cache->dirty_list);
4467 spin_lock(&cache->lock);
4468 cache->disk_cache_state = BTRFS_DC_ERROR;
4469 spin_unlock(&cache->lock);
4470
4471 spin_unlock(&cur_trans->dirty_bgs_lock);
4472 btrfs_put_block_group(cache);
ba2c4d4e 4473 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4474 spin_lock(&cur_trans->dirty_bgs_lock);
4475 }
4476 spin_unlock(&cur_trans->dirty_bgs_lock);
4477
45ae2c18
NB
4478 /*
4479 * Refer to the definition of io_bgs member for details why it's safe
4480 * to use it without any locking
4481 */
c79a1751
LB
4482 while (!list_empty(&cur_trans->io_bgs)) {
4483 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4484 struct btrfs_block_group,
c79a1751 4485 io_list);
c79a1751
LB
4486
4487 list_del_init(&cache->io_list);
4488 spin_lock(&cache->lock);
4489 cache->disk_cache_state = BTRFS_DC_ERROR;
4490 spin_unlock(&cache->lock);
4491 btrfs_cleanup_bg_io(cache);
4492 }
4493}
4494
49b25e05 4495void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4496 struct btrfs_fs_info *fs_info)
49b25e05 4497{
bbbf7243
NB
4498 struct btrfs_device *dev, *tmp;
4499
2ff7e61e 4500 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4501 ASSERT(list_empty(&cur_trans->dirty_bgs));
4502 ASSERT(list_empty(&cur_trans->io_bgs));
4503
bbbf7243
NB
4504 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4505 post_commit_list) {
4506 list_del_init(&dev->post_commit_list);
4507 }
4508
2ff7e61e 4509 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4510
4a9d8bde 4511 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4512 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4513
4a9d8bde 4514 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4515 wake_up(&fs_info->transaction_wait);
49b25e05 4516
ccdf9b30 4517 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4518
2ff7e61e 4519 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4520 EXTENT_DIRTY);
2ff7e61e 4521 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4522 fs_info->pinned_extents);
49b25e05 4523
4a9d8bde
MX
4524 cur_trans->state =TRANS_STATE_COMPLETED;
4525 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4526}
4527
2ff7e61e 4528static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4529{
4530 struct btrfs_transaction *t;
acce952b 4531
0b246afa 4532 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4533
0b246afa
JM
4534 spin_lock(&fs_info->trans_lock);
4535 while (!list_empty(&fs_info->trans_list)) {
4536 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4537 struct btrfs_transaction, list);
4538 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4539 refcount_inc(&t->use_count);
0b246afa 4540 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4541 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4542 btrfs_put_transaction(t);
0b246afa 4543 spin_lock(&fs_info->trans_lock);
724e2315
JB
4544 continue;
4545 }
0b246afa 4546 if (t == fs_info->running_transaction) {
724e2315 4547 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4548 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4549 /*
4550 * We wait for 0 num_writers since we don't hold a trans
4551 * handle open currently for this transaction.
4552 */
4553 wait_event(t->writer_wait,
4554 atomic_read(&t->num_writers) == 0);
4555 } else {
0b246afa 4556 spin_unlock(&fs_info->trans_lock);
724e2315 4557 }
2ff7e61e 4558 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4559
0b246afa
JM
4560 spin_lock(&fs_info->trans_lock);
4561 if (t == fs_info->running_transaction)
4562 fs_info->running_transaction = NULL;
acce952b 4563 list_del_init(&t->list);
0b246afa 4564 spin_unlock(&fs_info->trans_lock);
acce952b 4565
724e2315 4566 btrfs_put_transaction(t);
2ff7e61e 4567 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4568 spin_lock(&fs_info->trans_lock);
724e2315 4569 }
0b246afa
JM
4570 spin_unlock(&fs_info->trans_lock);
4571 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4572 btrfs_destroy_delayed_inodes(fs_info);
4573 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4574 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4575 btrfs_destroy_all_delalloc_inodes(fs_info);
4576 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4577
4578 return 0;
4579}
4580
e8c9f186 4581static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4582 /* mandatory callbacks */
0b86a832 4583 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4584 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4585};