btrfs: remove a BUG_ON() from merge_reloc_roots()
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
c6100a4b 113 void *private_data;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
7eccb903 214{
fc4f21b1 215 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
216 struct extent_map *em;
217 int ret;
218
890871be 219 read_lock(&em_tree->lock);
d1310b2e 220 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 221 if (em) {
890871be 222 read_unlock(&em_tree->lock);
5f39d397 223 goto out;
a061fc8d 224 }
890871be 225 read_unlock(&em_tree->lock);
7b13b7b1 226
172ddd60 227 em = alloc_extent_map();
5f39d397
CM
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
0afbaf8c 233 em->len = (u64)-1;
c8b97818 234 em->block_len = (u64)-1;
5f39d397 235 em->block_start = 0;
d1310b2e 236
890871be 237 write_lock(&em_tree->lock);
09a2a8f9 238 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
239 if (ret == -EEXIST) {
240 free_extent_map(em);
7b13b7b1 241 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 242 if (!em)
0433f20d 243 em = ERR_PTR(-EIO);
5f39d397 244 } else if (ret) {
7b13b7b1 245 free_extent_map(em);
0433f20d 246 em = ERR_PTR(ret);
5f39d397 247 }
890871be 248 write_unlock(&em_tree->lock);
7b13b7b1 249
5f39d397
CM
250out:
251 return em;
7eccb903
CM
252}
253
d352ac68 254/*
2996e1f8 255 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 256 */
c67b3892 257static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 258{
d5178578 259 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
d5178578 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 262 char *kaddr;
e9be5a30 263 int i;
d5178578
JT
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
e9be5a30
DS
267 kaddr = page_address(buf->pages[0]);
268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 PAGE_SIZE - BTRFS_CSUM_SIZE);
19c00ddc 270
e9be5a30
DS
271 for (i = 1; i < num_pages; i++) {
272 kaddr = page_address(buf->pages[i]);
273 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 274 }
71a63551 275 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 276 crypto_shash_final(shash, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
284 */
1259ab75 285static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
286 struct extent_buffer *eb, u64 parent_transid,
287 int atomic)
1259ab75 288{
2ac55d41 289 struct extent_state *cached_state = NULL;
1259ab75 290 int ret;
2755a0de 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
292
293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 return 0;
295
b9fab919
CM
296 if (atomic)
297 return -EAGAIN;
298
a26e8c9f
JB
299 if (need_lock) {
300 btrfs_tree_read_lock(eb);
300aa896 301 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
302 }
303
2ac55d41 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 305 &cached_state);
0b32f4bb 306 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
307 btrfs_header_generation(eb) == parent_transid) {
308 ret = 0;
309 goto out;
310 }
94647322
DS
311 btrfs_err_rl(eb->fs_info,
312 "parent transid verify failed on %llu wanted %llu found %llu",
313 eb->start,
29549aec 314 parent_transid, btrfs_header_generation(eb));
1259ab75 315 ret = 1;
a26e8c9f
JB
316
317 /*
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
01327610 320 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
324 */
325 if (!extent_buffer_under_io(eb))
326 clear_extent_buffer_uptodate(eb);
33958dc6 327out:
2ac55d41 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 329 &cached_state);
472b909f
JB
330 if (need_lock)
331 btrfs_tree_read_unlock_blocking(eb);
1259ab75 332 return ret;
1259ab75
CM
333}
334
e7e16f48
JT
335static bool btrfs_supported_super_csum(u16 csum_type)
336{
337 switch (csum_type) {
338 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 339 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 340 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 341 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
342 return true;
343 default:
344 return false;
345 }
346}
347
1104a885
DS
348/*
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
351 */
ab8d0fc4
JM
352static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 char *raw_disk_sb)
1104a885
DS
354{
355 struct btrfs_super_block *disk_sb =
356 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 357 char result[BTRFS_CSUM_SIZE];
d5178578
JT
358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360 shash->tfm = fs_info->csum_shash;
361 crypto_shash_init(shash);
1104a885 362
51bce6c9
JT
363 /*
364 * The super_block structure does not span the whole
365 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
366 * filled with zeros and is included in the checksum.
367 */
d5178578
JT
368 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
369 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
370 crypto_shash_final(shash, result);
1104a885 371
51bce6c9
JT
372 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
373 return 1;
1104a885 374
e7e16f48 375 return 0;
1104a885
DS
376}
377
e064d5e9 378int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 379 struct btrfs_key *first_key, u64 parent_transid)
581c1760 380{
e064d5e9 381 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
382 int found_level;
383 struct btrfs_key found_key;
384 int ret;
385
386 found_level = btrfs_header_level(eb);
387 if (found_level != level) {
63489055
QW
388 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
389 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
390 btrfs_err(fs_info,
391"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
392 eb->start, level, found_level);
581c1760
QW
393 return -EIO;
394 }
395
396 if (!first_key)
397 return 0;
398
5d41be6f
QW
399 /*
400 * For live tree block (new tree blocks in current transaction),
401 * we need proper lock context to avoid race, which is impossible here.
402 * So we only checks tree blocks which is read from disk, whose
403 * generation <= fs_info->last_trans_committed.
404 */
405 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
406 return 0;
62fdaa52
QW
407
408 /* We have @first_key, so this @eb must have at least one item */
409 if (btrfs_header_nritems(eb) == 0) {
410 btrfs_err(fs_info,
411 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
412 eb->start);
413 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
414 return -EUCLEAN;
415 }
416
581c1760
QW
417 if (found_level)
418 btrfs_node_key_to_cpu(eb, &found_key, 0);
419 else
420 btrfs_item_key_to_cpu(eb, &found_key, 0);
421 ret = btrfs_comp_cpu_keys(first_key, &found_key);
422
581c1760 423 if (ret) {
63489055
QW
424 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
425 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 426 btrfs_err(fs_info,
ff76a864
LB
427"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
428 eb->start, parent_transid, first_key->objectid,
429 first_key->type, first_key->offset,
430 found_key.objectid, found_key.type,
431 found_key.offset);
581c1760 432 }
581c1760
QW
433 return ret;
434}
435
d352ac68
CM
436/*
437 * helper to read a given tree block, doing retries as required when
438 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
439 *
440 * @parent_transid: expected transid, skip check if 0
441 * @level: expected level, mandatory check
442 * @first_key: expected key of first slot, skip check if NULL
d352ac68 443 */
5ab12d1f 444static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
445 u64 parent_transid, int level,
446 struct btrfs_key *first_key)
f188591e 447{
5ab12d1f 448 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 449 struct extent_io_tree *io_tree;
ea466794 450 int failed = 0;
f188591e
CM
451 int ret;
452 int num_copies = 0;
453 int mirror_num = 0;
ea466794 454 int failed_mirror = 0;
f188591e 455
0b246afa 456 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 457 while (1) {
f8397d69 458 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 459 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 460 if (!ret) {
581c1760 461 if (verify_parent_transid(io_tree, eb,
b9fab919 462 parent_transid, 0))
256dd1bb 463 ret = -EIO;
e064d5e9 464 else if (btrfs_verify_level_key(eb, level,
448de471 465 first_key, parent_transid))
581c1760
QW
466 ret = -EUCLEAN;
467 else
468 break;
256dd1bb 469 }
d397712b 470
0b246afa 471 num_copies = btrfs_num_copies(fs_info,
f188591e 472 eb->start, eb->len);
4235298e 473 if (num_copies == 1)
ea466794 474 break;
4235298e 475
5cf1ab56
JB
476 if (!failed_mirror) {
477 failed = 1;
478 failed_mirror = eb->read_mirror;
479 }
480
f188591e 481 mirror_num++;
ea466794
JB
482 if (mirror_num == failed_mirror)
483 mirror_num++;
484
4235298e 485 if (mirror_num > num_copies)
ea466794 486 break;
f188591e 487 }
ea466794 488
c0901581 489 if (failed && !ret && failed_mirror)
20a1fbf9 490 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
491
492 return ret;
f188591e 493}
19c00ddc 494
d352ac68 495/*
d397712b
CM
496 * checksum a dirty tree block before IO. This has extra checks to make sure
497 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 498 */
d397712b 499
01d58472 500static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 501{
4eee4fa4 502 u64 start = page_offset(page);
19c00ddc 503 u64 found_start;
2996e1f8
JT
504 u8 result[BTRFS_CSUM_SIZE];
505 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 506 struct extent_buffer *eb;
8d47a0d8 507 int ret;
f188591e 508
4f2de97a
JB
509 eb = (struct extent_buffer *)page->private;
510 if (page != eb->pages[0])
511 return 0;
0f805531 512
19c00ddc 513 found_start = btrfs_header_bytenr(eb);
0f805531
AL
514 /*
515 * Please do not consolidate these warnings into a single if.
516 * It is useful to know what went wrong.
517 */
518 if (WARN_ON(found_start != start))
519 return -EUCLEAN;
520 if (WARN_ON(!PageUptodate(page)))
521 return -EUCLEAN;
522
de37aa51 523 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
524 offsetof(struct btrfs_header, fsid),
525 BTRFS_FSID_SIZE) == 0);
0f805531 526
c67b3892 527 csum_tree_block(eb, result);
2996e1f8 528
8d47a0d8
QW
529 if (btrfs_header_level(eb))
530 ret = btrfs_check_node(eb);
531 else
532 ret = btrfs_check_leaf_full(eb);
533
534 if (ret < 0) {
c06631b0 535 btrfs_print_tree(eb, 0);
8d47a0d8
QW
536 btrfs_err(fs_info,
537 "block=%llu write time tree block corruption detected",
538 eb->start);
c06631b0 539 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
540 return ret;
541 }
2996e1f8 542 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 543
2996e1f8 544 return 0;
19c00ddc
CM
545}
546
b0c9b3b0 547static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 548{
b0c9b3b0 549 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 551 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
552 int ret = 1;
553
9a8658e3
DS
554 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
555 BTRFS_FSID_SIZE);
2b82032c 556 while (fs_devices) {
7239ff4b
NB
557 u8 *metadata_uuid;
558
559 /*
560 * Checking the incompat flag is only valid for the current
561 * fs. For seed devices it's forbidden to have their uuid
562 * changed so reading ->fsid in this case is fine
563 */
564 if (fs_devices == fs_info->fs_devices &&
565 btrfs_fs_incompat(fs_info, METADATA_UUID))
566 metadata_uuid = fs_devices->metadata_uuid;
567 else
568 metadata_uuid = fs_devices->fsid;
569
570 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
571 ret = 0;
572 break;
573 }
574 fs_devices = fs_devices->seed;
575 }
576 return ret;
577}
578
facc8a22
MX
579static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
580 u64 phy_offset, struct page *page,
581 u64 start, u64 end, int mirror)
ce9adaa5 582{
ce9adaa5
CM
583 u64 found_start;
584 int found_level;
ce9adaa5 585 struct extent_buffer *eb;
15b6e8a8
DS
586 struct btrfs_fs_info *fs_info;
587 u16 csum_size;
f188591e 588 int ret = 0;
2996e1f8 589 u8 result[BTRFS_CSUM_SIZE];
727011e0 590 int reads_done;
ce9adaa5 591
ce9adaa5
CM
592 if (!page->private)
593 goto out;
d397712b 594
4f2de97a 595 eb = (struct extent_buffer *)page->private;
15b6e8a8
DS
596 fs_info = eb->fs_info;
597 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d397712b 598
0b32f4bb
JB
599 /* the pending IO might have been the only thing that kept this buffer
600 * in memory. Make sure we have a ref for all this other checks
601 */
67439dad 602 atomic_inc(&eb->refs);
0b32f4bb
JB
603
604 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
605 if (!reads_done)
606 goto err;
f188591e 607
5cf1ab56 608 eb->read_mirror = mirror;
656f30db 609 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
610 ret = -EIO;
611 goto err;
612 }
613
ce9adaa5 614 found_start = btrfs_header_bytenr(eb);
727011e0 615 if (found_start != eb->start) {
893bf4b1
SY
616 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
617 eb->start, found_start);
f188591e 618 ret = -EIO;
ce9adaa5
CM
619 goto err;
620 }
b0c9b3b0 621 if (check_tree_block_fsid(eb)) {
02873e43
ZL
622 btrfs_err_rl(fs_info, "bad fsid on block %llu",
623 eb->start);
1259ab75
CM
624 ret = -EIO;
625 goto err;
626 }
ce9adaa5 627 found_level = btrfs_header_level(eb);
1c24c3ce 628 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
629 btrfs_err(fs_info, "bad tree block level %d on %llu",
630 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
631 ret = -EIO;
632 goto err;
633 }
ce9adaa5 634
85d4e461
CM
635 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636 eb, found_level);
4008c04a 637
c67b3892 638 csum_tree_block(eb, result);
a826d6dc 639
2996e1f8
JT
640 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
641 u32 val;
642 u32 found = 0;
643
644 memcpy(&found, result, csum_size);
645
646 read_extent_buffer(eb, &val, 0, csum_size);
647 btrfs_warn_rl(fs_info,
648 "%s checksum verify failed on %llu wanted %x found %x level %d",
649 fs_info->sb->s_id, eb->start,
650 val, found, btrfs_header_level(eb));
651 ret = -EUCLEAN;
652 goto err;
653 }
654
a826d6dc
JB
655 /*
656 * If this is a leaf block and it is corrupt, set the corrupt bit so
657 * that we don't try and read the other copies of this block, just
658 * return -EIO.
659 */
1c4360ee 660 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
661 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
662 ret = -EIO;
663 }
ce9adaa5 664
813fd1dc 665 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
666 ret = -EIO;
667
0b32f4bb
JB
668 if (!ret)
669 set_extent_buffer_uptodate(eb);
75391f0d
QW
670 else
671 btrfs_err(fs_info,
672 "block=%llu read time tree block corruption detected",
673 eb->start);
ce9adaa5 674err:
79fb65a1
JB
675 if (reads_done &&
676 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 677 btree_readahead_hook(eb, ret);
4bb31e92 678
53b381b3
DW
679 if (ret) {
680 /*
681 * our io error hook is going to dec the io pages
682 * again, we have to make sure it has something
683 * to decrement
684 */
685 atomic_inc(&eb->io_pages);
0b32f4bb 686 clear_extent_buffer_uptodate(eb);
53b381b3 687 }
0b32f4bb 688 free_extent_buffer(eb);
ce9adaa5 689out:
f188591e 690 return ret;
ce9adaa5
CM
691}
692
4246a0b6 693static void end_workqueue_bio(struct bio *bio)
ce9adaa5 694{
97eb6b69 695 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 696 struct btrfs_fs_info *fs_info;
9e0af237 697 struct btrfs_workqueue *wq;
ce9adaa5 698
ce9adaa5 699 fs_info = end_io_wq->info;
4e4cbee9 700 end_io_wq->status = bio->bi_status;
d20f7043 701
37226b21 702 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 703 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 704 wq = fs_info->endio_meta_write_workers;
a0cac0ec 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 706 wq = fs_info->endio_freespace_worker;
a0cac0ec 707 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 708 wq = fs_info->endio_raid56_workers;
a0cac0ec 709 else
9e0af237 710 wq = fs_info->endio_write_workers;
d20f7043 711 } else {
a0cac0ec 712 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
8b110e39 713 wq = fs_info->endio_repair_workers;
a0cac0ec 714 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 715 wq = fs_info->endio_raid56_workers;
a0cac0ec 716 else if (end_io_wq->metadata)
9e0af237 717 wq = fs_info->endio_meta_workers;
a0cac0ec 718 else
9e0af237 719 wq = fs_info->endio_workers;
d20f7043 720 }
9e0af237 721
a0cac0ec 722 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 723 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
724}
725
4e4cbee9 726blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 727 enum btrfs_wq_endio_type metadata)
0b86a832 728{
97eb6b69 729 struct btrfs_end_io_wq *end_io_wq;
8b110e39 730
97eb6b69 731 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 732 if (!end_io_wq)
4e4cbee9 733 return BLK_STS_RESOURCE;
ce9adaa5
CM
734
735 end_io_wq->private = bio->bi_private;
736 end_io_wq->end_io = bio->bi_end_io;
22c59948 737 end_io_wq->info = info;
4e4cbee9 738 end_io_wq->status = 0;
ce9adaa5 739 end_io_wq->bio = bio;
22c59948 740 end_io_wq->metadata = metadata;
ce9adaa5
CM
741
742 bio->bi_private = end_io_wq;
743 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
744 return 0;
745}
746
4a69a410
CM
747static void run_one_async_start(struct btrfs_work *work)
748{
4a69a410 749 struct async_submit_bio *async;
4e4cbee9 750 blk_status_t ret;
4a69a410
CM
751
752 async = container_of(work, struct async_submit_bio, work);
c6100a4b 753 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
754 async->bio_offset);
755 if (ret)
4e4cbee9 756 async->status = ret;
4a69a410
CM
757}
758
06ea01b1
DS
759/*
760 * In order to insert checksums into the metadata in large chunks, we wait
761 * until bio submission time. All the pages in the bio are checksummed and
762 * sums are attached onto the ordered extent record.
763 *
764 * At IO completion time the csums attached on the ordered extent record are
765 * inserted into the tree.
766 */
4a69a410 767static void run_one_async_done(struct btrfs_work *work)
8b712842 768{
8b712842 769 struct async_submit_bio *async;
06ea01b1
DS
770 struct inode *inode;
771 blk_status_t ret;
8b712842
CM
772
773 async = container_of(work, struct async_submit_bio, work);
06ea01b1 774 inode = async->private_data;
4854ddd0 775
bb7ab3b9 776 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
777 if (async->status) {
778 async->bio->bi_status = async->status;
4246a0b6 779 bio_endio(async->bio);
79787eaa
JM
780 return;
781 }
782
ec39f769
CM
783 /*
784 * All of the bios that pass through here are from async helpers.
785 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
786 * This changes nothing when cgroups aren't in use.
787 */
788 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 789 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
790 if (ret) {
791 async->bio->bi_status = ret;
792 bio_endio(async->bio);
793 }
4a69a410
CM
794}
795
796static void run_one_async_free(struct btrfs_work *work)
797{
798 struct async_submit_bio *async;
799
800 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
801 kfree(async);
802}
803
8c27cb35
LT
804blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
805 int mirror_num, unsigned long bio_flags,
806 u64 bio_offset, void *private_data,
e288c080 807 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
808{
809 struct async_submit_bio *async;
810
811 async = kmalloc(sizeof(*async), GFP_NOFS);
812 if (!async)
4e4cbee9 813 return BLK_STS_RESOURCE;
44b8bd7e 814
c6100a4b 815 async->private_data = private_data;
44b8bd7e
CM
816 async->bio = bio;
817 async->mirror_num = mirror_num;
4a69a410 818 async->submit_bio_start = submit_bio_start;
4a69a410 819
a0cac0ec
OS
820 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
821 run_one_async_free);
4a69a410 822
eaf25d93 823 async->bio_offset = bio_offset;
8c8bee1d 824
4e4cbee9 825 async->status = 0;
79787eaa 826
67f055c7 827 if (op_is_sync(bio->bi_opf))
5cdc7ad3 828 btrfs_set_work_high_priority(&async->work);
d313d7a3 829
5cdc7ad3 830 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
831 return 0;
832}
833
4e4cbee9 834static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 835{
2c30c71b 836 struct bio_vec *bvec;
ce3ed71a 837 struct btrfs_root *root;
2b070cfe 838 int ret = 0;
6dc4f100 839 struct bvec_iter_all iter_all;
ce3ed71a 840
c09abff8 841 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 842 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 843 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 844 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
845 if (ret)
846 break;
ce3ed71a 847 }
2c30c71b 848
4e4cbee9 849 return errno_to_blk_status(ret);
ce3ed71a
CM
850}
851
d0ee3934 852static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 853 u64 bio_offset)
22c59948 854{
8b712842
CM
855 /*
856 * when we're called for a write, we're already in the async
5443be45 857 * submission context. Just jump into btrfs_map_bio
8b712842 858 */
79787eaa 859 return btree_csum_one_bio(bio);
4a69a410 860}
22c59948 861
9b4e675a
DS
862static int check_async_write(struct btrfs_fs_info *fs_info,
863 struct btrfs_inode *bi)
de0022b9 864{
6300463b
LB
865 if (atomic_read(&bi->sync_writers))
866 return 0;
9b4e675a 867 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 868 return 0;
de0022b9
JB
869 return 1;
870}
871
a56b1c7b 872static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
873 int mirror_num,
874 unsigned long bio_flags)
44b8bd7e 875{
0b246afa 876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 877 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 878 blk_status_t ret;
cad321ad 879
37226b21 880 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
881 /*
882 * called for a read, do the setup so that checksum validation
883 * can happen in the async kernel threads
884 */
0b246afa
JM
885 ret = btrfs_bio_wq_end_io(fs_info, bio,
886 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 887 if (ret)
61891923 888 goto out_w_error;
08635bae 889 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
890 } else if (!async) {
891 ret = btree_csum_one_bio(bio);
892 if (ret)
61891923 893 goto out_w_error;
08635bae 894 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
895 } else {
896 /*
897 * kthread helpers are used to submit writes so that
898 * checksumming can happen in parallel across all CPUs
899 */
c6100a4b 900 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 901 0, inode, btree_submit_bio_start);
44b8bd7e 902 }
d313d7a3 903
4246a0b6
CH
904 if (ret)
905 goto out_w_error;
906 return 0;
907
61891923 908out_w_error:
4e4cbee9 909 bio->bi_status = ret;
4246a0b6 910 bio_endio(bio);
61891923 911 return ret;
44b8bd7e
CM
912}
913
3dd1462e 914#ifdef CONFIG_MIGRATION
784b4e29 915static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
916 struct page *newpage, struct page *page,
917 enum migrate_mode mode)
784b4e29
CM
918{
919 /*
920 * we can't safely write a btree page from here,
921 * we haven't done the locking hook
922 */
923 if (PageDirty(page))
924 return -EAGAIN;
925 /*
926 * Buffers may be managed in a filesystem specific way.
927 * We must have no buffers or drop them.
928 */
929 if (page_has_private(page) &&
930 !try_to_release_page(page, GFP_KERNEL))
931 return -EAGAIN;
a6bc32b8 932 return migrate_page(mapping, newpage, page, mode);
784b4e29 933}
3dd1462e 934#endif
784b4e29 935
0da5468f
CM
936
937static int btree_writepages(struct address_space *mapping,
938 struct writeback_control *wbc)
939{
e2d84521
MX
940 struct btrfs_fs_info *fs_info;
941 int ret;
942
d8d5f3e1 943 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
944
945 if (wbc->for_kupdate)
946 return 0;
947
e2d84521 948 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 949 /* this is a bit racy, but that's ok */
d814a491
EL
950 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
951 BTRFS_DIRTY_METADATA_THRESH,
952 fs_info->dirty_metadata_batch);
e2d84521 953 if (ret < 0)
793955bc 954 return 0;
793955bc 955 }
0b32f4bb 956 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
957}
958
b2950863 959static int btree_readpage(struct file *file, struct page *page)
5f39d397 960{
71ad38b4 961 return extent_read_full_page(page, btree_get_extent, 0);
5f39d397 962}
22b0ebda 963
70dec807 964static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 965{
98509cfc 966 if (PageWriteback(page) || PageDirty(page))
d397712b 967 return 0;
0c4e538b 968
f7a52a40 969 return try_release_extent_buffer(page);
d98237b3
CM
970}
971
d47992f8
LC
972static void btree_invalidatepage(struct page *page, unsigned int offset,
973 unsigned int length)
d98237b3 974{
d1310b2e
CM
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
977 extent_invalidatepage(tree, page, offset);
978 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 979 if (PagePrivate(page)) {
efe120a0
FH
980 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
981 "page private not zero on page %llu",
982 (unsigned long long)page_offset(page));
9ad6b7bc
CM
983 ClearPagePrivate(page);
984 set_page_private(page, 0);
09cbfeaf 985 put_page(page);
9ad6b7bc 986 }
d98237b3
CM
987}
988
0b32f4bb
JB
989static int btree_set_page_dirty(struct page *page)
990{
bb146eb2 991#ifdef DEBUG
0b32f4bb
JB
992 struct extent_buffer *eb;
993
994 BUG_ON(!PagePrivate(page));
995 eb = (struct extent_buffer *)page->private;
996 BUG_ON(!eb);
997 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
998 BUG_ON(!atomic_read(&eb->refs));
999 btrfs_assert_tree_locked(eb);
bb146eb2 1000#endif
0b32f4bb
JB
1001 return __set_page_dirty_nobuffers(page);
1002}
1003
7f09410b 1004static const struct address_space_operations btree_aops = {
d98237b3 1005 .readpage = btree_readpage,
0da5468f 1006 .writepages = btree_writepages,
5f39d397
CM
1007 .releasepage = btree_releasepage,
1008 .invalidatepage = btree_invalidatepage,
5a92bc88 1009#ifdef CONFIG_MIGRATION
784b4e29 1010 .migratepage = btree_migratepage,
5a92bc88 1011#endif
0b32f4bb 1012 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1013};
1014
2ff7e61e 1015void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1016{
5f39d397 1017 struct extent_buffer *buf = NULL;
537f38f0 1018 int ret;
090d1875 1019
2ff7e61e 1020 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1021 if (IS_ERR(buf))
6197d86e 1022 return;
537f38f0 1023
c2ccfbc6 1024 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1025 if (ret < 0)
1026 free_extent_buffer_stale(buf);
1027 else
1028 free_extent_buffer(buf);
090d1875
CM
1029}
1030
2ff7e61e
JM
1031struct extent_buffer *btrfs_find_create_tree_block(
1032 struct btrfs_fs_info *fs_info,
1033 u64 bytenr)
0999df54 1034{
0b246afa
JM
1035 if (btrfs_is_testing(fs_info))
1036 return alloc_test_extent_buffer(fs_info, bytenr);
1037 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1038}
1039
581c1760
QW
1040/*
1041 * Read tree block at logical address @bytenr and do variant basic but critical
1042 * verification.
1043 *
1044 * @parent_transid: expected transid of this tree block, skip check if 0
1045 * @level: expected level, mandatory check
1046 * @first_key: expected key in slot 0, skip check if NULL
1047 */
2ff7e61e 1048struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1049 u64 parent_transid, int level,
1050 struct btrfs_key *first_key)
0999df54
CM
1051{
1052 struct extent_buffer *buf = NULL;
0999df54
CM
1053 int ret;
1054
2ff7e61e 1055 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1056 if (IS_ERR(buf))
1057 return buf;
0999df54 1058
5ab12d1f 1059 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1060 level, first_key);
0f0fe8f7 1061 if (ret) {
537f38f0 1062 free_extent_buffer_stale(buf);
64c043de 1063 return ERR_PTR(ret);
0f0fe8f7 1064 }
5f39d397 1065 return buf;
ce9adaa5 1066
eb60ceac
CM
1067}
1068
6a884d7d 1069void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1070{
6a884d7d 1071 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1072 if (btrfs_header_generation(buf) ==
e2d84521 1073 fs_info->running_transaction->transid) {
b9447ef8 1074 btrfs_assert_tree_locked(buf);
b4ce94de 1075
b9473439 1076 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1077 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1078 -buf->len,
1079 fs_info->dirty_metadata_batch);
ed7b63eb 1080 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1081 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1082 clear_extent_buffer_dirty(buf);
1083 }
925baedd 1084 }
5f39d397
CM
1085}
1086
da17066c 1087static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1088 u64 objectid)
d97e63b6 1089{
7c0260ee 1090 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1091 root->fs_info = fs_info;
cfaa7295 1092 root->node = NULL;
a28ec197 1093 root->commit_root = NULL;
27cdeb70 1094 root->state = 0;
d68fc57b 1095 root->orphan_cleanup_state = 0;
0b86a832 1096
0f7d52f4 1097 root->last_trans = 0;
13a8a7c8 1098 root->highest_objectid = 0;
eb73c1b7 1099 root->nr_delalloc_inodes = 0;
199c2a9c 1100 root->nr_ordered_extents = 0;
6bef4d31 1101 root->inode_tree = RB_ROOT;
16cdcec7 1102 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1103 root->block_rsv = NULL;
0b86a832
CM
1104
1105 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1106 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1107 INIT_LIST_HEAD(&root->delalloc_inodes);
1108 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1109 INIT_LIST_HEAD(&root->ordered_extents);
1110 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1111 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1112 INIT_LIST_HEAD(&root->logged_list[0]);
1113 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1114 spin_lock_init(&root->inode_lock);
eb73c1b7 1115 spin_lock_init(&root->delalloc_lock);
199c2a9c 1116 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1117 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1118 spin_lock_init(&root->log_extents_lock[0]);
1119 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1120 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1121 mutex_init(&root->objectid_mutex);
e02119d5 1122 mutex_init(&root->log_mutex);
31f3d255 1123 mutex_init(&root->ordered_extent_mutex);
573bfb72 1124 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1125 init_waitqueue_head(&root->log_writer_wait);
1126 init_waitqueue_head(&root->log_commit_wait[0]);
1127 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1128 INIT_LIST_HEAD(&root->log_ctxs[0]);
1129 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1130 atomic_set(&root->log_commit[0], 0);
1131 atomic_set(&root->log_commit[1], 0);
1132 atomic_set(&root->log_writers, 0);
2ecb7923 1133 atomic_set(&root->log_batch, 0);
0700cea7 1134 refcount_set(&root->refs, 1);
8ecebf4d 1135 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1136 atomic_set(&root->nr_swapfiles, 0);
7237f183 1137 root->log_transid = 0;
d1433deb 1138 root->log_transid_committed = -1;
257c62e1 1139 root->last_log_commit = 0;
7c0260ee 1140 if (!dummy)
43eb5f29
QW
1141 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1142 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1143
3768f368
CM
1144 memset(&root->root_key, 0, sizeof(root->root_key));
1145 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1146 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1147 if (!dummy)
06ea65a3
JB
1148 root->defrag_trans_start = fs_info->generation;
1149 else
1150 root->defrag_trans_start = 0;
4d775673 1151 root->root_key.objectid = objectid;
0ee5dc67 1152 root->anon_dev = 0;
8ea05e3a 1153
5f3ab90a 1154 spin_lock_init(&root->root_item_lock);
370a11b8 1155 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1156#ifdef CONFIG_BTRFS_DEBUG
1157 INIT_LIST_HEAD(&root->leak_list);
1158 spin_lock(&fs_info->fs_roots_radix_lock);
1159 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1160 spin_unlock(&fs_info->fs_roots_radix_lock);
1161#endif
3768f368
CM
1162}
1163
74e4d827 1164static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1165 u64 objectid, gfp_t flags)
6f07e42e 1166{
74e4d827 1167 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1168 if (root)
96dfcb46 1169 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1170 return root;
1171}
1172
06ea65a3
JB
1173#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1174/* Should only be used by the testing infrastructure */
da17066c 1175struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1176{
1177 struct btrfs_root *root;
1178
7c0260ee
JM
1179 if (!fs_info)
1180 return ERR_PTR(-EINVAL);
1181
96dfcb46 1182 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1183 if (!root)
1184 return ERR_PTR(-ENOMEM);
da17066c 1185
b9ef22de 1186 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1187 root->alloc_bytenr = 0;
06ea65a3
JB
1188
1189 return root;
1190}
1191#endif
1192
20897f5c 1193struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1194 u64 objectid)
1195{
9b7a2440 1196 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1197 struct extent_buffer *leaf;
1198 struct btrfs_root *tree_root = fs_info->tree_root;
1199 struct btrfs_root *root;
1200 struct btrfs_key key;
b89f6d1f 1201 unsigned int nofs_flag;
20897f5c 1202 int ret = 0;
20897f5c 1203
b89f6d1f
FM
1204 /*
1205 * We're holding a transaction handle, so use a NOFS memory allocation
1206 * context to avoid deadlock if reclaim happens.
1207 */
1208 nofs_flag = memalloc_nofs_save();
96dfcb46 1209 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1210 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1211 if (!root)
1212 return ERR_PTR(-ENOMEM);
1213
20897f5c
AJ
1214 root->root_key.objectid = objectid;
1215 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1216 root->root_key.offset = 0;
1217
4d75f8a9 1218 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1219 if (IS_ERR(leaf)) {
1220 ret = PTR_ERR(leaf);
1dd05682 1221 leaf = NULL;
20897f5c
AJ
1222 goto fail;
1223 }
1224
20897f5c 1225 root->node = leaf;
20897f5c
AJ
1226 btrfs_mark_buffer_dirty(leaf);
1227
1228 root->commit_root = btrfs_root_node(root);
27cdeb70 1229 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1230
1231 root->root_item.flags = 0;
1232 root->root_item.byte_limit = 0;
1233 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1234 btrfs_set_root_generation(&root->root_item, trans->transid);
1235 btrfs_set_root_level(&root->root_item, 0);
1236 btrfs_set_root_refs(&root->root_item, 1);
1237 btrfs_set_root_used(&root->root_item, leaf->len);
1238 btrfs_set_root_last_snapshot(&root->root_item, 0);
1239 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1240 if (is_fstree(objectid))
807fc790
AS
1241 generate_random_guid(root->root_item.uuid);
1242 else
1243 export_guid(root->root_item.uuid, &guid_null);
20897f5c
AJ
1244 root->root_item.drop_level = 0;
1245
1246 key.objectid = objectid;
1247 key.type = BTRFS_ROOT_ITEM_KEY;
1248 key.offset = 0;
1249 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1250 if (ret)
1251 goto fail;
1252
1253 btrfs_tree_unlock(leaf);
1254
1dd05682
TI
1255 return root;
1256
20897f5c 1257fail:
1dd05682
TI
1258 if (leaf) {
1259 btrfs_tree_unlock(leaf);
59885b39 1260 free_extent_buffer(root->commit_root);
1dd05682
TI
1261 free_extent_buffer(leaf);
1262 }
00246528 1263 btrfs_put_root(root);
20897f5c 1264
1dd05682 1265 return ERR_PTR(ret);
20897f5c
AJ
1266}
1267
7237f183
YZ
1268static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1269 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1270{
1271 struct btrfs_root *root;
7237f183 1272 struct extent_buffer *leaf;
e02119d5 1273
96dfcb46 1274 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1275 if (!root)
7237f183 1276 return ERR_PTR(-ENOMEM);
e02119d5 1277
e02119d5
CM
1278 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1279 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1280 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1281
7237f183 1282 /*
27cdeb70
MX
1283 * DON'T set REF_COWS for log trees
1284 *
7237f183
YZ
1285 * log trees do not get reference counted because they go away
1286 * before a real commit is actually done. They do store pointers
1287 * to file data extents, and those reference counts still get
1288 * updated (along with back refs to the log tree).
1289 */
e02119d5 1290
4d75f8a9
DS
1291 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1292 NULL, 0, 0, 0);
7237f183 1293 if (IS_ERR(leaf)) {
00246528 1294 btrfs_put_root(root);
7237f183
YZ
1295 return ERR_CAST(leaf);
1296 }
e02119d5 1297
7237f183 1298 root->node = leaf;
e02119d5 1299
e02119d5
CM
1300 btrfs_mark_buffer_dirty(root->node);
1301 btrfs_tree_unlock(root->node);
7237f183
YZ
1302 return root;
1303}
1304
1305int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1306 struct btrfs_fs_info *fs_info)
1307{
1308 struct btrfs_root *log_root;
1309
1310 log_root = alloc_log_tree(trans, fs_info);
1311 if (IS_ERR(log_root))
1312 return PTR_ERR(log_root);
1313 WARN_ON(fs_info->log_root_tree);
1314 fs_info->log_root_tree = log_root;
1315 return 0;
1316}
1317
1318int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1319 struct btrfs_root *root)
1320{
0b246afa 1321 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1322 struct btrfs_root *log_root;
1323 struct btrfs_inode_item *inode_item;
1324
0b246afa 1325 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1326 if (IS_ERR(log_root))
1327 return PTR_ERR(log_root);
1328
1329 log_root->last_trans = trans->transid;
1330 log_root->root_key.offset = root->root_key.objectid;
1331
1332 inode_item = &log_root->root_item.inode;
3cae210f
QW
1333 btrfs_set_stack_inode_generation(inode_item, 1);
1334 btrfs_set_stack_inode_size(inode_item, 3);
1335 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1336 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1337 fs_info->nodesize);
3cae210f 1338 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1339
5d4f98a2 1340 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1341
1342 WARN_ON(root->log_root);
1343 root->log_root = log_root;
1344 root->log_transid = 0;
d1433deb 1345 root->log_transid_committed = -1;
257c62e1 1346 root->last_log_commit = 0;
e02119d5
CM
1347 return 0;
1348}
1349
62a2c73e
JB
1350struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1351 struct btrfs_key *key)
e02119d5
CM
1352{
1353 struct btrfs_root *root;
1354 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1355 struct btrfs_path *path;
84234f3a 1356 u64 generation;
cb517eab 1357 int ret;
581c1760 1358 int level;
0f7d52f4 1359
cb517eab
MX
1360 path = btrfs_alloc_path();
1361 if (!path)
0f7d52f4 1362 return ERR_PTR(-ENOMEM);
cb517eab 1363
96dfcb46 1364 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1365 if (!root) {
1366 ret = -ENOMEM;
1367 goto alloc_fail;
0f7d52f4
CM
1368 }
1369
cb517eab
MX
1370 ret = btrfs_find_root(tree_root, key, path,
1371 &root->root_item, &root->root_key);
0f7d52f4 1372 if (ret) {
13a8a7c8
YZ
1373 if (ret > 0)
1374 ret = -ENOENT;
cb517eab 1375 goto find_fail;
0f7d52f4 1376 }
13a8a7c8 1377
84234f3a 1378 generation = btrfs_root_generation(&root->root_item);
581c1760 1379 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1380 root->node = read_tree_block(fs_info,
1381 btrfs_root_bytenr(&root->root_item),
581c1760 1382 generation, level, NULL);
64c043de
LB
1383 if (IS_ERR(root->node)) {
1384 ret = PTR_ERR(root->node);
cb517eab
MX
1385 goto find_fail;
1386 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1387 ret = -EIO;
64c043de
LB
1388 free_extent_buffer(root->node);
1389 goto find_fail;
416bc658 1390 }
5d4f98a2 1391 root->commit_root = btrfs_root_node(root);
13a8a7c8 1392out:
cb517eab
MX
1393 btrfs_free_path(path);
1394 return root;
1395
cb517eab 1396find_fail:
00246528 1397 btrfs_put_root(root);
cb517eab
MX
1398alloc_fail:
1399 root = ERR_PTR(ret);
1400 goto out;
1401}
1402
a98db0f3 1403static int btrfs_init_fs_root(struct btrfs_root *root)
cb517eab
MX
1404{
1405 int ret;
dcc3eb96 1406 unsigned int nofs_flag;
cb517eab
MX
1407
1408 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1409 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1410 GFP_NOFS);
1411 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1412 ret = -ENOMEM;
1413 goto fail;
1414 }
1415
dcc3eb96
NB
1416 /*
1417 * We might be called under a transaction (e.g. indirect backref
1418 * resolution) which could deadlock if it triggers memory reclaim
1419 */
1420 nofs_flag = memalloc_nofs_save();
1421 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1422 memalloc_nofs_restore(nofs_flag);
1423 if (ret)
8257b2dc 1424 goto fail;
8257b2dc 1425
f39e4571
JB
1426 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1427 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1428 btrfs_check_and_init_root_item(&root->root_item);
1429 }
1430
cb517eab 1431 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1432 spin_lock_init(&root->ino_cache_lock);
1433 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1434
1435 ret = get_anon_bdev(&root->anon_dev);
1436 if (ret)
876d2cf1 1437 goto fail;
f32e48e9
CR
1438
1439 mutex_lock(&root->objectid_mutex);
1440 ret = btrfs_find_highest_objectid(root,
1441 &root->highest_objectid);
1442 if (ret) {
1443 mutex_unlock(&root->objectid_mutex);
876d2cf1 1444 goto fail;
f32e48e9
CR
1445 }
1446
1447 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1448
1449 mutex_unlock(&root->objectid_mutex);
1450
cb517eab
MX
1451 return 0;
1452fail:
84db5ccf 1453 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1454 return ret;
1455}
1456
a98db0f3
JB
1457static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1458 u64 root_id)
cb517eab
MX
1459{
1460 struct btrfs_root *root;
1461
1462 spin_lock(&fs_info->fs_roots_radix_lock);
1463 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1464 (unsigned long)root_id);
bc44d7c4 1465 if (root)
00246528 1466 root = btrfs_grab_root(root);
cb517eab
MX
1467 spin_unlock(&fs_info->fs_roots_radix_lock);
1468 return root;
1469}
1470
1471int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1472 struct btrfs_root *root)
1473{
1474 int ret;
1475
e1860a77 1476 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1477 if (ret)
1478 return ret;
1479
1480 spin_lock(&fs_info->fs_roots_radix_lock);
1481 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1482 (unsigned long)root->root_key.objectid,
1483 root);
af01d2e5 1484 if (ret == 0) {
00246528 1485 btrfs_grab_root(root);
27cdeb70 1486 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1487 }
cb517eab
MX
1488 spin_unlock(&fs_info->fs_roots_radix_lock);
1489 radix_tree_preload_end();
1490
1491 return ret;
1492}
1493
bd647ce3
JB
1494void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1495{
1496#ifdef CONFIG_BTRFS_DEBUG
1497 struct btrfs_root *root;
1498
1499 while (!list_empty(&fs_info->allocated_roots)) {
1500 root = list_first_entry(&fs_info->allocated_roots,
1501 struct btrfs_root, leak_list);
1502 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1503 root->root_key.objectid, root->root_key.offset,
1504 refcount_read(&root->refs));
1505 while (refcount_read(&root->refs) > 1)
00246528
JB
1506 btrfs_put_root(root);
1507 btrfs_put_root(root);
bd647ce3
JB
1508 }
1509#endif
1510}
1511
0d4b0463
JB
1512void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1513{
141386e1
JB
1514 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1515 percpu_counter_destroy(&fs_info->delalloc_bytes);
1516 percpu_counter_destroy(&fs_info->dio_bytes);
1517 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1518 btrfs_free_csum_hash(fs_info);
1519 btrfs_free_stripe_hash_table(fs_info);
1520 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1521 kfree(fs_info->balance_ctl);
1522 kfree(fs_info->delayed_root);
00246528
JB
1523 btrfs_put_root(fs_info->extent_root);
1524 btrfs_put_root(fs_info->tree_root);
1525 btrfs_put_root(fs_info->chunk_root);
1526 btrfs_put_root(fs_info->dev_root);
1527 btrfs_put_root(fs_info->csum_root);
1528 btrfs_put_root(fs_info->quota_root);
1529 btrfs_put_root(fs_info->uuid_root);
1530 btrfs_put_root(fs_info->free_space_root);
1531 btrfs_put_root(fs_info->fs_root);
bd647ce3 1532 btrfs_check_leaked_roots(fs_info);
0d4b0463
JB
1533 kfree(fs_info->super_copy);
1534 kfree(fs_info->super_for_commit);
1535 kvfree(fs_info);
1536}
1537
1538
c00869f1
MX
1539struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1540 struct btrfs_key *location,
1541 bool check_ref)
5eda7b5e
CM
1542{
1543 struct btrfs_root *root;
381cf658 1544 struct btrfs_path *path;
1d4c08e0 1545 struct btrfs_key key;
5eda7b5e
CM
1546 int ret;
1547
edbd8d4e 1548 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
00246528 1549 return btrfs_grab_root(fs_info->tree_root);
edbd8d4e 1550 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
00246528 1551 return btrfs_grab_root(fs_info->extent_root);
8f18cf13 1552 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
00246528 1553 return btrfs_grab_root(fs_info->chunk_root);
8f18cf13 1554 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
00246528 1555 return btrfs_grab_root(fs_info->dev_root);
0403e47e 1556 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
00246528 1557 return btrfs_grab_root(fs_info->csum_root);
bcef60f2 1558 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
00246528 1559 return btrfs_grab_root(fs_info->quota_root) ?
bc44d7c4 1560 fs_info->quota_root : ERR_PTR(-ENOENT);
f7a81ea4 1561 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
00246528 1562 return btrfs_grab_root(fs_info->uuid_root) ?
bc44d7c4 1563 fs_info->uuid_root : ERR_PTR(-ENOENT);
70f6d82e 1564 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
00246528 1565 return btrfs_grab_root(fs_info->free_space_root) ?
bc44d7c4 1566 fs_info->free_space_root : ERR_PTR(-ENOENT);
4df27c4d 1567again:
cb517eab 1568 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1569 if (root) {
bc44d7c4 1570 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1571 btrfs_put_root(root);
48475471 1572 return ERR_PTR(-ENOENT);
bc44d7c4 1573 }
5eda7b5e 1574 return root;
48475471 1575 }
5eda7b5e 1576
83db2aad 1577 root = btrfs_read_tree_root(fs_info->tree_root, location);
5eda7b5e
CM
1578 if (IS_ERR(root))
1579 return root;
3394e160 1580
c00869f1 1581 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1582 ret = -ENOENT;
581bb050 1583 goto fail;
35a30d7c 1584 }
581bb050 1585
cb517eab 1586 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1587 if (ret)
1588 goto fail;
3394e160 1589
381cf658
DS
1590 path = btrfs_alloc_path();
1591 if (!path) {
1592 ret = -ENOMEM;
1593 goto fail;
1594 }
1d4c08e0
DS
1595 key.objectid = BTRFS_ORPHAN_OBJECTID;
1596 key.type = BTRFS_ORPHAN_ITEM_KEY;
1597 key.offset = location->objectid;
1598
1599 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1600 btrfs_free_path(path);
d68fc57b
YZ
1601 if (ret < 0)
1602 goto fail;
1603 if (ret == 0)
27cdeb70 1604 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1605
bc44d7c4
JB
1606 /*
1607 * All roots have two refs on them at all times, one for the mounted fs,
1608 * and one for being in the radix tree. This way we only free the root
1609 * when we are unmounting or deleting the subvolume. We get one ref
1610 * from __setup_root, one for inserting it into the radix tree, and then
1611 * we have the third for returning it, and the caller will put it when
1612 * it's done with the root.
1613 */
00246528 1614 btrfs_grab_root(root);
cb517eab 1615 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1616 if (ret) {
00246528 1617 btrfs_put_root(root);
4df27c4d 1618 if (ret == -EEXIST) {
84db5ccf 1619 btrfs_free_fs_root(root);
4df27c4d
YZ
1620 goto again;
1621 }
1622 goto fail;
0f7d52f4 1623 }
edbd8d4e 1624 return root;
4df27c4d 1625fail:
84db5ccf 1626 btrfs_free_fs_root(root);
4df27c4d 1627 return ERR_PTR(ret);
edbd8d4e
CM
1628}
1629
04160088
CM
1630static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1631{
1632 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1633 int ret = 0;
04160088
CM
1634 struct btrfs_device *device;
1635 struct backing_dev_info *bdi;
b7967db7 1636
1f78160c
XG
1637 rcu_read_lock();
1638 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1639 if (!device->bdev)
1640 continue;
efa7c9f9 1641 bdi = device->bdev->bd_bdi;
ff9ea323 1642 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1643 ret = 1;
1644 break;
1645 }
1646 }
1f78160c 1647 rcu_read_unlock();
04160088
CM
1648 return ret;
1649}
1650
8b712842
CM
1651/*
1652 * called by the kthread helper functions to finally call the bio end_io
1653 * functions. This is where read checksum verification actually happens
1654 */
1655static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1656{
ce9adaa5 1657 struct bio *bio;
97eb6b69 1658 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1659
97eb6b69 1660 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1661 bio = end_io_wq->bio;
ce9adaa5 1662
4e4cbee9 1663 bio->bi_status = end_io_wq->status;
8b712842
CM
1664 bio->bi_private = end_io_wq->private;
1665 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1666 bio_endio(bio);
9be490f1 1667 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1668}
1669
a74a4b97
CM
1670static int cleaner_kthread(void *arg)
1671{
1672 struct btrfs_root *root = arg;
0b246afa 1673 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1674 int again;
a74a4b97 1675
d6fd0ae2 1676 while (1) {
d0278245 1677 again = 0;
a74a4b97 1678
fd340d0f
JB
1679 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1680
d0278245 1681 /* Make the cleaner go to sleep early. */
2ff7e61e 1682 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1683 goto sleep;
1684
90c711ab
ZB
1685 /*
1686 * Do not do anything if we might cause open_ctree() to block
1687 * before we have finished mounting the filesystem.
1688 */
0b246afa 1689 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1690 goto sleep;
1691
0b246afa 1692 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1693 goto sleep;
1694
dc7f370c
MX
1695 /*
1696 * Avoid the problem that we change the status of the fs
1697 * during the above check and trylock.
1698 */
2ff7e61e 1699 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1700 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1701 goto sleep;
76dda93c 1702 }
a74a4b97 1703
2ff7e61e 1704 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1705
d0278245 1706 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1707 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1708
1709 /*
05323cd1
MX
1710 * The defragger has dealt with the R/O remount and umount,
1711 * needn't do anything special here.
d0278245 1712 */
0b246afa 1713 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1714
1715 /*
1716 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1717 * with relocation (btrfs_relocate_chunk) and relocation
1718 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1719 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1720 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1721 * unused block groups.
1722 */
0b246afa 1723 btrfs_delete_unused_bgs(fs_info);
d0278245 1724sleep:
fd340d0f 1725 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1726 if (kthread_should_park())
1727 kthread_parkme();
1728 if (kthread_should_stop())
1729 return 0;
838fe188 1730 if (!again) {
a74a4b97 1731 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1732 schedule();
a74a4b97
CM
1733 __set_current_state(TASK_RUNNING);
1734 }
da288d28 1735 }
a74a4b97
CM
1736}
1737
1738static int transaction_kthread(void *arg)
1739{
1740 struct btrfs_root *root = arg;
0b246afa 1741 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1742 struct btrfs_trans_handle *trans;
1743 struct btrfs_transaction *cur;
8929ecfa 1744 u64 transid;
a944442c 1745 time64_t now;
a74a4b97 1746 unsigned long delay;
914b2007 1747 bool cannot_commit;
a74a4b97
CM
1748
1749 do {
914b2007 1750 cannot_commit = false;
0b246afa
JM
1751 delay = HZ * fs_info->commit_interval;
1752 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1753
0b246afa
JM
1754 spin_lock(&fs_info->trans_lock);
1755 cur = fs_info->running_transaction;
a74a4b97 1756 if (!cur) {
0b246afa 1757 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1758 goto sleep;
1759 }
31153d81 1760
afd48513 1761 now = ktime_get_seconds();
3296bf56 1762 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1763 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1764 (now < cur->start_time ||
0b246afa
JM
1765 now - cur->start_time < fs_info->commit_interval)) {
1766 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1767 delay = HZ * 5;
1768 goto sleep;
1769 }
8929ecfa 1770 transid = cur->transid;
0b246afa 1771 spin_unlock(&fs_info->trans_lock);
56bec294 1772
79787eaa 1773 /* If the file system is aborted, this will always fail. */
354aa0fb 1774 trans = btrfs_attach_transaction(root);
914b2007 1775 if (IS_ERR(trans)) {
354aa0fb
MX
1776 if (PTR_ERR(trans) != -ENOENT)
1777 cannot_commit = true;
79787eaa 1778 goto sleep;
914b2007 1779 }
8929ecfa 1780 if (transid == trans->transid) {
3a45bb20 1781 btrfs_commit_transaction(trans);
8929ecfa 1782 } else {
3a45bb20 1783 btrfs_end_transaction(trans);
8929ecfa 1784 }
a74a4b97 1785sleep:
0b246afa
JM
1786 wake_up_process(fs_info->cleaner_kthread);
1787 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1788
4e121c06 1789 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1790 &fs_info->fs_state)))
2ff7e61e 1791 btrfs_cleanup_transaction(fs_info);
ce63f891 1792 if (!kthread_should_stop() &&
0b246afa 1793 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1794 cannot_commit))
bc5511d0 1795 schedule_timeout_interruptible(delay);
a74a4b97
CM
1796 } while (!kthread_should_stop());
1797 return 0;
1798}
1799
af31f5e5 1800/*
01f0f9da
NB
1801 * This will find the highest generation in the array of root backups. The
1802 * index of the highest array is returned, or -EINVAL if we can't find
1803 * anything.
af31f5e5
CM
1804 *
1805 * We check to make sure the array is valid by comparing the
1806 * generation of the latest root in the array with the generation
1807 * in the super block. If they don't match we pitch it.
1808 */
01f0f9da 1809static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1810{
01f0f9da 1811 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1812 u64 cur;
af31f5e5
CM
1813 struct btrfs_root_backup *root_backup;
1814 int i;
1815
1816 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1817 root_backup = info->super_copy->super_roots + i;
1818 cur = btrfs_backup_tree_root_gen(root_backup);
1819 if (cur == newest_gen)
01f0f9da 1820 return i;
af31f5e5
CM
1821 }
1822
01f0f9da 1823 return -EINVAL;
af31f5e5
CM
1824}
1825
af31f5e5
CM
1826/*
1827 * copy all the root pointers into the super backup array.
1828 * this will bump the backup pointer by one when it is
1829 * done
1830 */
1831static void backup_super_roots(struct btrfs_fs_info *info)
1832{
6ef108dd 1833 const int next_backup = info->backup_root_index;
af31f5e5 1834 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1835
1836 root_backup = info->super_for_commit->super_roots + next_backup;
1837
1838 /*
1839 * make sure all of our padding and empty slots get zero filled
1840 * regardless of which ones we use today
1841 */
1842 memset(root_backup, 0, sizeof(*root_backup));
1843
1844 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1845
1846 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1847 btrfs_set_backup_tree_root_gen(root_backup,
1848 btrfs_header_generation(info->tree_root->node));
1849
1850 btrfs_set_backup_tree_root_level(root_backup,
1851 btrfs_header_level(info->tree_root->node));
1852
1853 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1854 btrfs_set_backup_chunk_root_gen(root_backup,
1855 btrfs_header_generation(info->chunk_root->node));
1856 btrfs_set_backup_chunk_root_level(root_backup,
1857 btrfs_header_level(info->chunk_root->node));
1858
1859 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1860 btrfs_set_backup_extent_root_gen(root_backup,
1861 btrfs_header_generation(info->extent_root->node));
1862 btrfs_set_backup_extent_root_level(root_backup,
1863 btrfs_header_level(info->extent_root->node));
1864
7c7e82a7
CM
1865 /*
1866 * we might commit during log recovery, which happens before we set
1867 * the fs_root. Make sure it is valid before we fill it in.
1868 */
1869 if (info->fs_root && info->fs_root->node) {
1870 btrfs_set_backup_fs_root(root_backup,
1871 info->fs_root->node->start);
1872 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1873 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1874 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1875 btrfs_header_level(info->fs_root->node));
7c7e82a7 1876 }
af31f5e5
CM
1877
1878 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1879 btrfs_set_backup_dev_root_gen(root_backup,
1880 btrfs_header_generation(info->dev_root->node));
1881 btrfs_set_backup_dev_root_level(root_backup,
1882 btrfs_header_level(info->dev_root->node));
1883
1884 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1885 btrfs_set_backup_csum_root_gen(root_backup,
1886 btrfs_header_generation(info->csum_root->node));
1887 btrfs_set_backup_csum_root_level(root_backup,
1888 btrfs_header_level(info->csum_root->node));
1889
1890 btrfs_set_backup_total_bytes(root_backup,
1891 btrfs_super_total_bytes(info->super_copy));
1892 btrfs_set_backup_bytes_used(root_backup,
1893 btrfs_super_bytes_used(info->super_copy));
1894 btrfs_set_backup_num_devices(root_backup,
1895 btrfs_super_num_devices(info->super_copy));
1896
1897 /*
1898 * if we don't copy this out to the super_copy, it won't get remembered
1899 * for the next commit
1900 */
1901 memcpy(&info->super_copy->super_roots,
1902 &info->super_for_commit->super_roots,
1903 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1904}
1905
bd2336b2
NB
1906/*
1907 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1908 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1909 *
1910 * fs_info - filesystem whose backup roots need to be read
1911 * priority - priority of backup root required
1912 *
1913 * Returns backup root index on success and -EINVAL otherwise.
1914 */
1915static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1916{
1917 int backup_index = find_newest_super_backup(fs_info);
1918 struct btrfs_super_block *super = fs_info->super_copy;
1919 struct btrfs_root_backup *root_backup;
1920
1921 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1922 if (priority == 0)
1923 return backup_index;
1924
1925 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1926 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1927 } else {
1928 return -EINVAL;
1929 }
1930
1931 root_backup = super->super_roots + backup_index;
1932
1933 btrfs_set_super_generation(super,
1934 btrfs_backup_tree_root_gen(root_backup));
1935 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1936 btrfs_set_super_root_level(super,
1937 btrfs_backup_tree_root_level(root_backup));
1938 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1939
1940 /*
1941 * Fixme: the total bytes and num_devices need to match or we should
1942 * need a fsck
1943 */
1944 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1945 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1946
1947 return backup_index;
1948}
1949
7abadb64
LB
1950/* helper to cleanup workers */
1951static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1952{
dc6e3209 1953 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1954 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1955 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1956 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1957 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 1958 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 1959 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1960 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1961 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1962 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1963 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1964 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1965 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1966 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1967 if (fs_info->discard_ctl.discard_workers)
1968 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1969 /*
1970 * Now that all other work queues are destroyed, we can safely destroy
1971 * the queues used for metadata I/O, since tasks from those other work
1972 * queues can do metadata I/O operations.
1973 */
1974 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1975 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1976}
1977
2e9f5954
R
1978static void free_root_extent_buffers(struct btrfs_root *root)
1979{
1980 if (root) {
1981 free_extent_buffer(root->node);
1982 free_extent_buffer(root->commit_root);
1983 root->node = NULL;
1984 root->commit_root = NULL;
1985 }
1986}
1987
af31f5e5 1988/* helper to cleanup tree roots */
4273eaff 1989static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1990{
2e9f5954 1991 free_root_extent_buffers(info->tree_root);
655b09fe 1992
2e9f5954
R
1993 free_root_extent_buffers(info->dev_root);
1994 free_root_extent_buffers(info->extent_root);
1995 free_root_extent_buffers(info->csum_root);
1996 free_root_extent_buffers(info->quota_root);
1997 free_root_extent_buffers(info->uuid_root);
4273eaff 1998 if (free_chunk_root)
2e9f5954 1999 free_root_extent_buffers(info->chunk_root);
70f6d82e 2000 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2001}
2002
faa2dbf0 2003void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2004{
2005 int ret;
2006 struct btrfs_root *gang[8];
2007 int i;
2008
2009 while (!list_empty(&fs_info->dead_roots)) {
2010 gang[0] = list_entry(fs_info->dead_roots.next,
2011 struct btrfs_root, root_list);
2012 list_del(&gang[0]->root_list);
2013
27cdeb70 2014 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2015 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2016 } else {
2017 free_extent_buffer(gang[0]->node);
2018 free_extent_buffer(gang[0]->commit_root);
00246528 2019 btrfs_put_root(gang[0]);
171f6537
JB
2020 }
2021 }
2022
2023 while (1) {
2024 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2025 (void **)gang, 0,
2026 ARRAY_SIZE(gang));
2027 if (!ret)
2028 break;
2029 for (i = 0; i < ret; i++)
cb517eab 2030 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2031 }
1a4319cc 2032
fe119a6e 2033 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
1a4319cc 2034 btrfs_free_log_root_tree(NULL, fs_info);
171f6537 2035}
af31f5e5 2036
638aa7ed
ES
2037static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2038{
2039 mutex_init(&fs_info->scrub_lock);
2040 atomic_set(&fs_info->scrubs_running, 0);
2041 atomic_set(&fs_info->scrub_pause_req, 0);
2042 atomic_set(&fs_info->scrubs_paused, 0);
2043 atomic_set(&fs_info->scrub_cancel_req, 0);
2044 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2045 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2046}
2047
779a65a4
ES
2048static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2049{
2050 spin_lock_init(&fs_info->balance_lock);
2051 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2052 atomic_set(&fs_info->balance_pause_req, 0);
2053 atomic_set(&fs_info->balance_cancel_req, 0);
2054 fs_info->balance_ctl = NULL;
2055 init_waitqueue_head(&fs_info->balance_wait_q);
2056}
2057
6bccf3ab 2058static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2059{
2ff7e61e
JM
2060 struct inode *inode = fs_info->btree_inode;
2061
2062 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2063 set_nlink(inode, 1);
f37938e0
ES
2064 /*
2065 * we set the i_size on the btree inode to the max possible int.
2066 * the real end of the address space is determined by all of
2067 * the devices in the system
2068 */
2ff7e61e
JM
2069 inode->i_size = OFFSET_MAX;
2070 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2071
2ff7e61e 2072 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2073 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2074 IO_TREE_INODE_IO, inode);
7b439738 2075 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2076 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2077
2ff7e61e 2078 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2079
2ff7e61e
JM
2080 BTRFS_I(inode)->root = fs_info->tree_root;
2081 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2082 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2083 btrfs_insert_inode_hash(inode);
f37938e0
ES
2084}
2085
ad618368
ES
2086static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2087{
ad618368 2088 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2089 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2090 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2091}
2092
f9e92e40
ES
2093static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2094{
2095 spin_lock_init(&fs_info->qgroup_lock);
2096 mutex_init(&fs_info->qgroup_ioctl_lock);
2097 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2098 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2099 fs_info->qgroup_seq = 1;
f9e92e40 2100 fs_info->qgroup_ulist = NULL;
d2c609b8 2101 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2102 mutex_init(&fs_info->qgroup_rescan_lock);
2103}
2104
2a458198
ES
2105static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2106 struct btrfs_fs_devices *fs_devices)
2107{
f7b885be 2108 u32 max_active = fs_info->thread_pool_size;
6f011058 2109 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2110
2111 fs_info->workers =
cb001095
JM
2112 btrfs_alloc_workqueue(fs_info, "worker",
2113 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2114
2115 fs_info->delalloc_workers =
cb001095
JM
2116 btrfs_alloc_workqueue(fs_info, "delalloc",
2117 flags, max_active, 2);
2a458198
ES
2118
2119 fs_info->flush_workers =
cb001095
JM
2120 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2121 flags, max_active, 0);
2a458198
ES
2122
2123 fs_info->caching_workers =
cb001095 2124 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2125
2a458198 2126 fs_info->fixup_workers =
cb001095 2127 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2128
2129 /*
2130 * endios are largely parallel and should have a very
2131 * low idle thresh
2132 */
2133 fs_info->endio_workers =
cb001095 2134 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2135 fs_info->endio_meta_workers =
cb001095
JM
2136 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2137 max_active, 4);
2a458198 2138 fs_info->endio_meta_write_workers =
cb001095
JM
2139 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2140 max_active, 2);
2a458198 2141 fs_info->endio_raid56_workers =
cb001095
JM
2142 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2143 max_active, 4);
2a458198 2144 fs_info->endio_repair_workers =
cb001095 2145 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2146 fs_info->rmw_workers =
cb001095 2147 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2148 fs_info->endio_write_workers =
cb001095
JM
2149 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2150 max_active, 2);
2a458198 2151 fs_info->endio_freespace_worker =
cb001095
JM
2152 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2153 max_active, 0);
2a458198 2154 fs_info->delayed_workers =
cb001095
JM
2155 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2156 max_active, 0);
2a458198 2157 fs_info->readahead_workers =
cb001095
JM
2158 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2159 max_active, 2);
2a458198 2160 fs_info->qgroup_rescan_workers =
cb001095 2161 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2162 fs_info->discard_ctl.discard_workers =
2163 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2164
2165 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2166 fs_info->flush_workers &&
2a458198
ES
2167 fs_info->endio_workers && fs_info->endio_meta_workers &&
2168 fs_info->endio_meta_write_workers &&
2169 fs_info->endio_repair_workers &&
2170 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2171 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2172 fs_info->caching_workers && fs_info->readahead_workers &&
2173 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2174 fs_info->qgroup_rescan_workers &&
2175 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2176 return -ENOMEM;
2177 }
2178
2179 return 0;
2180}
2181
6d97c6e3
JT
2182static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2183{
2184 struct crypto_shash *csum_shash;
b4e967be 2185 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2186
b4e967be 2187 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2188
2189 if (IS_ERR(csum_shash)) {
2190 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2191 csum_driver);
6d97c6e3
JT
2192 return PTR_ERR(csum_shash);
2193 }
2194
2195 fs_info->csum_shash = csum_shash;
2196
2197 return 0;
2198}
2199
63443bf5
ES
2200static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2201 struct btrfs_fs_devices *fs_devices)
2202{
2203 int ret;
63443bf5
ES
2204 struct btrfs_root *log_tree_root;
2205 struct btrfs_super_block *disk_super = fs_info->super_copy;
2206 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2207 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2208
2209 if (fs_devices->rw_devices == 0) {
f14d104d 2210 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2211 return -EIO;
2212 }
2213
96dfcb46
JB
2214 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2215 GFP_KERNEL);
63443bf5
ES
2216 if (!log_tree_root)
2217 return -ENOMEM;
2218
2ff7e61e 2219 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2220 fs_info->generation + 1,
2221 level, NULL);
64c043de 2222 if (IS_ERR(log_tree_root->node)) {
f14d104d 2223 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2224 ret = PTR_ERR(log_tree_root->node);
00246528 2225 btrfs_put_root(log_tree_root);
0eeff236 2226 return ret;
64c043de 2227 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2228 btrfs_err(fs_info, "failed to read log tree");
63443bf5 2229 free_extent_buffer(log_tree_root->node);
00246528 2230 btrfs_put_root(log_tree_root);
63443bf5
ES
2231 return -EIO;
2232 }
2233 /* returns with log_tree_root freed on success */
2234 ret = btrfs_recover_log_trees(log_tree_root);
2235 if (ret) {
0b246afa
JM
2236 btrfs_handle_fs_error(fs_info, ret,
2237 "Failed to recover log tree");
63443bf5 2238 free_extent_buffer(log_tree_root->node);
00246528 2239 btrfs_put_root(log_tree_root);
63443bf5
ES
2240 return ret;
2241 }
2242
bc98a42c 2243 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2244 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2245 if (ret)
2246 return ret;
2247 }
2248
2249 return 0;
2250}
2251
6bccf3ab 2252static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2253{
6bccf3ab 2254 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2255 struct btrfs_root *root;
4bbcaa64
ES
2256 struct btrfs_key location;
2257 int ret;
2258
6bccf3ab
JM
2259 BUG_ON(!fs_info->tree_root);
2260
4bbcaa64
ES
2261 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2262 location.type = BTRFS_ROOT_ITEM_KEY;
2263 location.offset = 0;
2264
a4f3d2c4 2265 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2266 if (IS_ERR(root)) {
2267 ret = PTR_ERR(root);
2268 goto out;
2269 }
a4f3d2c4
DS
2270 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2271 fs_info->extent_root = root;
4bbcaa64
ES
2272
2273 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2274 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2275 if (IS_ERR(root)) {
2276 ret = PTR_ERR(root);
2277 goto out;
2278 }
a4f3d2c4
DS
2279 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2280 fs_info->dev_root = root;
4bbcaa64
ES
2281 btrfs_init_devices_late(fs_info);
2282
2283 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2284 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2285 if (IS_ERR(root)) {
2286 ret = PTR_ERR(root);
2287 goto out;
2288 }
a4f3d2c4
DS
2289 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2290 fs_info->csum_root = root;
4bbcaa64
ES
2291
2292 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2293 root = btrfs_read_tree_root(tree_root, &location);
2294 if (!IS_ERR(root)) {
2295 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2296 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2297 fs_info->quota_root = root;
4bbcaa64
ES
2298 }
2299
2300 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2301 root = btrfs_read_tree_root(tree_root, &location);
2302 if (IS_ERR(root)) {
2303 ret = PTR_ERR(root);
4bbcaa64 2304 if (ret != -ENOENT)
f50f4353 2305 goto out;
4bbcaa64 2306 } else {
a4f3d2c4
DS
2307 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2308 fs_info->uuid_root = root;
4bbcaa64
ES
2309 }
2310
70f6d82e
OS
2311 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2312 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2313 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2314 if (IS_ERR(root)) {
2315 ret = PTR_ERR(root);
2316 goto out;
2317 }
70f6d82e
OS
2318 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319 fs_info->free_space_root = root;
2320 }
2321
4bbcaa64 2322 return 0;
f50f4353
LB
2323out:
2324 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2325 location.objectid, ret);
2326 return ret;
4bbcaa64
ES
2327}
2328
069ec957
QW
2329/*
2330 * Real super block validation
2331 * NOTE: super csum type and incompat features will not be checked here.
2332 *
2333 * @sb: super block to check
2334 * @mirror_num: the super block number to check its bytenr:
2335 * 0 the primary (1st) sb
2336 * 1, 2 2nd and 3rd backup copy
2337 * -1 skip bytenr check
2338 */
2339static int validate_super(struct btrfs_fs_info *fs_info,
2340 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2341{
21a852b0
QW
2342 u64 nodesize = btrfs_super_nodesize(sb);
2343 u64 sectorsize = btrfs_super_sectorsize(sb);
2344 int ret = 0;
2345
2346 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2347 btrfs_err(fs_info, "no valid FS found");
2348 ret = -EINVAL;
2349 }
2350 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2351 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2352 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2353 ret = -EINVAL;
2354 }
2355 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2356 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2357 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2358 ret = -EINVAL;
2359 }
2360 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2361 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2362 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2363 ret = -EINVAL;
2364 }
2365 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2366 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2367 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2368 ret = -EINVAL;
2369 }
2370
2371 /*
2372 * Check sectorsize and nodesize first, other check will need it.
2373 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2374 */
2375 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2376 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2377 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2378 ret = -EINVAL;
2379 }
2380 /* Only PAGE SIZE is supported yet */
2381 if (sectorsize != PAGE_SIZE) {
2382 btrfs_err(fs_info,
2383 "sectorsize %llu not supported yet, only support %lu",
2384 sectorsize, PAGE_SIZE);
2385 ret = -EINVAL;
2386 }
2387 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2388 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2389 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2390 ret = -EINVAL;
2391 }
2392 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2393 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2394 le32_to_cpu(sb->__unused_leafsize), nodesize);
2395 ret = -EINVAL;
2396 }
2397
2398 /* Root alignment check */
2399 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2400 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2401 btrfs_super_root(sb));
2402 ret = -EINVAL;
2403 }
2404 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2405 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2406 btrfs_super_chunk_root(sb));
2407 ret = -EINVAL;
2408 }
2409 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2410 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2411 btrfs_super_log_root(sb));
2412 ret = -EINVAL;
2413 }
2414
de37aa51 2415 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2416 BTRFS_FSID_SIZE) != 0) {
21a852b0 2417 btrfs_err(fs_info,
7239ff4b 2418 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2419 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2420 ret = -EINVAL;
2421 }
2422
2423 /*
2424 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2425 * done later
2426 */
2427 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2428 btrfs_err(fs_info, "bytes_used is too small %llu",
2429 btrfs_super_bytes_used(sb));
2430 ret = -EINVAL;
2431 }
2432 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2433 btrfs_err(fs_info, "invalid stripesize %u",
2434 btrfs_super_stripesize(sb));
2435 ret = -EINVAL;
2436 }
2437 if (btrfs_super_num_devices(sb) > (1UL << 31))
2438 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2439 btrfs_super_num_devices(sb));
2440 if (btrfs_super_num_devices(sb) == 0) {
2441 btrfs_err(fs_info, "number of devices is 0");
2442 ret = -EINVAL;
2443 }
2444
069ec957
QW
2445 if (mirror_num >= 0 &&
2446 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2447 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2448 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2449 ret = -EINVAL;
2450 }
2451
2452 /*
2453 * Obvious sys_chunk_array corruptions, it must hold at least one key
2454 * and one chunk
2455 */
2456 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2457 btrfs_err(fs_info, "system chunk array too big %u > %u",
2458 btrfs_super_sys_array_size(sb),
2459 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2460 ret = -EINVAL;
2461 }
2462 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2463 + sizeof(struct btrfs_chunk)) {
2464 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2465 btrfs_super_sys_array_size(sb),
2466 sizeof(struct btrfs_disk_key)
2467 + sizeof(struct btrfs_chunk));
2468 ret = -EINVAL;
2469 }
2470
2471 /*
2472 * The generation is a global counter, we'll trust it more than the others
2473 * but it's still possible that it's the one that's wrong.
2474 */
2475 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2476 btrfs_warn(fs_info,
2477 "suspicious: generation < chunk_root_generation: %llu < %llu",
2478 btrfs_super_generation(sb),
2479 btrfs_super_chunk_root_generation(sb));
2480 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2481 && btrfs_super_cache_generation(sb) != (u64)-1)
2482 btrfs_warn(fs_info,
2483 "suspicious: generation < cache_generation: %llu < %llu",
2484 btrfs_super_generation(sb),
2485 btrfs_super_cache_generation(sb));
2486
2487 return ret;
2488}
2489
069ec957
QW
2490/*
2491 * Validation of super block at mount time.
2492 * Some checks already done early at mount time, like csum type and incompat
2493 * flags will be skipped.
2494 */
2495static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2496{
2497 return validate_super(fs_info, fs_info->super_copy, 0);
2498}
2499
75cb857d
QW
2500/*
2501 * Validation of super block at write time.
2502 * Some checks like bytenr check will be skipped as their values will be
2503 * overwritten soon.
2504 * Extra checks like csum type and incompat flags will be done here.
2505 */
2506static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2507 struct btrfs_super_block *sb)
2508{
2509 int ret;
2510
2511 ret = validate_super(fs_info, sb, -1);
2512 if (ret < 0)
2513 goto out;
e7e16f48 2514 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2515 ret = -EUCLEAN;
2516 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2517 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2518 goto out;
2519 }
2520 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2521 ret = -EUCLEAN;
2522 btrfs_err(fs_info,
2523 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2524 btrfs_super_incompat_flags(sb),
2525 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2526 goto out;
2527 }
2528out:
2529 if (ret < 0)
2530 btrfs_err(fs_info,
2531 "super block corruption detected before writing it to disk");
2532 return ret;
2533}
2534
6ef108dd 2535static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2536{
6ef108dd 2537 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2538 struct btrfs_super_block *sb = fs_info->super_copy;
2539 struct btrfs_root *tree_root = fs_info->tree_root;
2540 bool handle_error = false;
2541 int ret = 0;
2542 int i;
2543
2544 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2545 u64 generation;
2546 int level;
2547
2548 if (handle_error) {
2549 if (!IS_ERR(tree_root->node))
2550 free_extent_buffer(tree_root->node);
2551 tree_root->node = NULL;
2552
2553 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2554 break;
2555
2556 free_root_pointers(fs_info, 0);
2557
2558 /*
2559 * Don't use the log in recovery mode, it won't be
2560 * valid
2561 */
2562 btrfs_set_super_log_root(sb, 0);
2563
2564 /* We can't trust the free space cache either */
2565 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2566
2567 ret = read_backup_root(fs_info, i);
6ef108dd 2568 backup_index = ret;
b8522a1e
NB
2569 if (ret < 0)
2570 return ret;
2571 }
2572 generation = btrfs_super_generation(sb);
2573 level = btrfs_super_root_level(sb);
2574 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2575 generation, level, NULL);
2576 if (IS_ERR(tree_root->node) ||
2577 !extent_buffer_uptodate(tree_root->node)) {
2578 handle_error = true;
2579
2580 if (IS_ERR(tree_root->node))
2581 ret = PTR_ERR(tree_root->node);
2582 else if (!extent_buffer_uptodate(tree_root->node))
2583 ret = -EUCLEAN;
2584
2585 btrfs_warn(fs_info, "failed to read tree root");
2586 continue;
2587 }
2588
2589 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2590 tree_root->commit_root = btrfs_root_node(tree_root);
2591 btrfs_set_root_refs(&tree_root->root_item, 1);
2592
336a0d8d
NB
2593 /*
2594 * No need to hold btrfs_root::objectid_mutex since the fs
2595 * hasn't been fully initialised and we are the only user
2596 */
b8522a1e
NB
2597 ret = btrfs_find_highest_objectid(tree_root,
2598 &tree_root->highest_objectid);
2599 if (ret < 0) {
b8522a1e
NB
2600 handle_error = true;
2601 continue;
2602 }
2603
2604 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2605
2606 ret = btrfs_read_roots(fs_info);
2607 if (ret < 0) {
2608 handle_error = true;
2609 continue;
2610 }
2611
2612 /* All successful */
2613 fs_info->generation = generation;
2614 fs_info->last_trans_committed = generation;
6ef108dd
NB
2615
2616 /* Always begin writing backup roots after the one being used */
2617 if (backup_index < 0) {
2618 fs_info->backup_root_index = 0;
2619 } else {
2620 fs_info->backup_root_index = backup_index + 1;
2621 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2622 }
b8522a1e
NB
2623 break;
2624 }
2625
2626 return ret;
2627}
2628
8260edba 2629void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2630{
76dda93c 2631 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2632 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2633 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2634 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2635 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2636 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2637 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2638 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2639 spin_lock_init(&fs_info->trans_lock);
76dda93c 2640 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2641 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2642 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2643 spin_lock_init(&fs_info->super_lock);
f28491e0 2644 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2645 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2646 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2647 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2648 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2649 mutex_init(&fs_info->reloc_mutex);
573bfb72 2650 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2651 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2652
0b86a832 2653 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2654 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2655 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2656 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2657#ifdef CONFIG_BTRFS_DEBUG
2658 INIT_LIST_HEAD(&fs_info->allocated_roots);
2659#endif
c8bf1b67 2660 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2661 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2662 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2663 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2664 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2665 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2666 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2667 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2668 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2669 BTRFS_BLOCK_RSV_DELREFS);
2670
771ed689 2671 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2672 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2673 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2674 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2675 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2676 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2677 fs_info->metadata_ratio = 0;
4cb5300b 2678 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2679 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2680 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2681 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2682 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2683 /* readahead state */
d0164adc 2684 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2685 spin_lock_init(&fs_info->reada_lock);
fd708b81 2686 btrfs_init_ref_verify(fs_info);
c8b97818 2687
b34b086c
CM
2688 fs_info->thread_pool_size = min_t(unsigned long,
2689 num_online_cpus() + 2, 8);
0afbaf8c 2690
199c2a9c
MX
2691 INIT_LIST_HEAD(&fs_info->ordered_roots);
2692 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2693
638aa7ed 2694 btrfs_init_scrub(fs_info);
21adbd5c
SB
2695#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2696 fs_info->check_integrity_print_mask = 0;
2697#endif
779a65a4 2698 btrfs_init_balance(fs_info);
21c7e756 2699 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2700
0f9dd46c 2701 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2702 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2703 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2704
fe119a6e
NB
2705 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2706 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2707 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2708
5a3f23d5 2709 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2710 mutex_init(&fs_info->tree_log_mutex);
925baedd 2711 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2712 mutex_init(&fs_info->transaction_kthread_mutex);
2713 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2714 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2715 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2716 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2717 init_rwsem(&fs_info->subvol_sem);
803b2f54 2718 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2719
ad618368 2720 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2721 btrfs_init_qgroup(fs_info);
b0643e59 2722 btrfs_discard_init(fs_info);
416ac51d 2723
fa9c0d79
CM
2724 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2725 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2726
e6dcd2dc 2727 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2728 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2729 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2730 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2731 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2732
da17066c
JM
2733 /* Usable values until the real ones are cached from the superblock */
2734 fs_info->nodesize = 4096;
2735 fs_info->sectorsize = 4096;
2736 fs_info->stripesize = 4096;
2737
eede2bf3
OS
2738 spin_lock_init(&fs_info->swapfile_pins_lock);
2739 fs_info->swapfile_pins = RB_ROOT;
2740
9e967495 2741 fs_info->send_in_progress = 0;
8260edba
JB
2742}
2743
2744static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2745{
2746 int ret;
2747
2748 fs_info->sb = sb;
2749 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2750 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2751
ae18c37a
JB
2752 ret = init_srcu_struct(&fs_info->subvol_srcu);
2753 if (ret)
2754 return ret;
2755
2756 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2757 if (ret)
2758 goto fail;
2759
2760 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2761 if (ret)
2762 goto fail;
2763
2764 fs_info->dirty_metadata_batch = PAGE_SIZE *
2765 (1 + ilog2(nr_cpu_ids));
2766
2767 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2768 if (ret)
2769 goto fail;
2770
2771 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2772 GFP_KERNEL);
2773 if (ret)
2774 goto fail;
2775
2776 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2777 GFP_KERNEL);
2778 if (!fs_info->delayed_root) {
2779 ret = -ENOMEM;
2780 goto fail;
2781 }
2782 btrfs_init_delayed_root(fs_info->delayed_root);
2783
53b381b3 2784 ret = btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2785 if (ret)
2786 goto fail;
2787
2788 return 0;
2789fail:
2790 cleanup_srcu_struct(&fs_info->subvol_srcu);
2791 return ret;
2792}
2793
97f4dd09
NB
2794static int btrfs_uuid_rescan_kthread(void *data)
2795{
2796 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2797 int ret;
2798
2799 /*
2800 * 1st step is to iterate through the existing UUID tree and
2801 * to delete all entries that contain outdated data.
2802 * 2nd step is to add all missing entries to the UUID tree.
2803 */
2804 ret = btrfs_uuid_tree_iterate(fs_info);
2805 if (ret < 0) {
c94bec2c
JB
2806 if (ret != -EINTR)
2807 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2808 ret);
97f4dd09
NB
2809 up(&fs_info->uuid_tree_rescan_sem);
2810 return ret;
2811 }
2812 return btrfs_uuid_scan_kthread(data);
2813}
2814
2815static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2816{
2817 struct task_struct *task;
2818
2819 down(&fs_info->uuid_tree_rescan_sem);
2820 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2821 if (IS_ERR(task)) {
2822 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2823 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2824 up(&fs_info->uuid_tree_rescan_sem);
2825 return PTR_ERR(task);
2826 }
2827
2828 return 0;
2829}
2830
ae18c37a
JB
2831int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2832 char *options)
2833{
2834 u32 sectorsize;
2835 u32 nodesize;
2836 u32 stripesize;
2837 u64 generation;
2838 u64 features;
2839 u16 csum_type;
2840 struct btrfs_key location;
ae18c37a
JB
2841 struct btrfs_super_block *disk_super;
2842 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2843 struct btrfs_root *tree_root;
2844 struct btrfs_root *chunk_root;
2845 int ret;
2846 int err = -EINVAL;
2847 int clear_free_space_tree = 0;
2848 int level;
2849
8260edba 2850 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2851 if (ret) {
83c8266a 2852 err = ret;
ae18c37a 2853 goto fail;
53b381b3
DW
2854 }
2855
ae18c37a
JB
2856 /* These need to be init'ed before we start creating inodes and such. */
2857 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2858 GFP_KERNEL);
2859 fs_info->tree_root = tree_root;
2860 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2861 GFP_KERNEL);
2862 fs_info->chunk_root = chunk_root;
2863 if (!tree_root || !chunk_root) {
2864 err = -ENOMEM;
2865 goto fail_srcu;
2866 }
2867
2868 fs_info->btree_inode = new_inode(sb);
2869 if (!fs_info->btree_inode) {
2870 err = -ENOMEM;
2871 goto fail_srcu;
2872 }
2873 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2874 btrfs_init_btree_inode(fs_info);
2875
3c4bb26b 2876 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2877
2878 /*
2879 * Read super block and check the signature bytes only
2880 */
8f32380d
JT
2881 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2882 if (IS_ERR(disk_super)) {
2883 err = PTR_ERR(disk_super);
16cdcec7 2884 goto fail_alloc;
20b45077 2885 }
39279cc3 2886
8dc3f22c
JT
2887 /*
2888 * Verify the type first, if that or the the checksum value are
2889 * corrupted, we'll find out
2890 */
8f32380d 2891 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2892 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2893 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2894 csum_type);
8dc3f22c 2895 err = -EINVAL;
8f32380d 2896 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2897 goto fail_alloc;
2898 }
2899
6d97c6e3
JT
2900 ret = btrfs_init_csum_hash(fs_info, csum_type);
2901 if (ret) {
2902 err = ret;
8f32380d 2903 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2904 goto fail_alloc;
2905 }
2906
1104a885
DS
2907 /*
2908 * We want to check superblock checksum, the type is stored inside.
2909 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2910 */
8f32380d 2911 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2912 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2913 err = -EINVAL;
8f32380d 2914 btrfs_release_disk_super(disk_super);
141386e1 2915 goto fail_alloc;
1104a885
DS
2916 }
2917
2918 /*
2919 * super_copy is zeroed at allocation time and we never touch the
2920 * following bytes up to INFO_SIZE, the checksum is calculated from
2921 * the whole block of INFO_SIZE
2922 */
8f32380d
JT
2923 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2924 btrfs_release_disk_super(disk_super);
5f39d397 2925
fbc6feae
NB
2926 disk_super = fs_info->super_copy;
2927
de37aa51
NB
2928 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2929 BTRFS_FSID_SIZE));
2930
7239ff4b 2931 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2932 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2933 fs_info->super_copy->metadata_uuid,
2934 BTRFS_FSID_SIZE));
7239ff4b 2935 }
0b86a832 2936
fbc6feae
NB
2937 features = btrfs_super_flags(disk_super);
2938 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2939 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2940 btrfs_set_super_flags(disk_super, features);
2941 btrfs_info(fs_info,
2942 "found metadata UUID change in progress flag, clearing");
2943 }
2944
2945 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2946 sizeof(*fs_info->super_for_commit));
de37aa51 2947
069ec957 2948 ret = btrfs_validate_mount_super(fs_info);
1104a885 2949 if (ret) {
05135f59 2950 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2951 err = -EINVAL;
141386e1 2952 goto fail_alloc;
1104a885
DS
2953 }
2954
0f7d52f4 2955 if (!btrfs_super_root(disk_super))
141386e1 2956 goto fail_alloc;
0f7d52f4 2957
acce952b 2958 /* check FS state, whether FS is broken. */
87533c47
MX
2959 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2960 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2961
75e7cb7f
LB
2962 /*
2963 * In the long term, we'll store the compression type in the super
2964 * block, and it'll be used for per file compression control.
2965 */
2966 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2967
2ff7e61e 2968 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2969 if (ret) {
2970 err = ret;
141386e1 2971 goto fail_alloc;
2b82032c 2972 }
dfe25020 2973
f2b636e8
JB
2974 features = btrfs_super_incompat_flags(disk_super) &
2975 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2976 if (features) {
05135f59
DS
2977 btrfs_err(fs_info,
2978 "cannot mount because of unsupported optional features (%llx)",
2979 features);
f2b636e8 2980 err = -EINVAL;
141386e1 2981 goto fail_alloc;
f2b636e8
JB
2982 }
2983
5d4f98a2 2984 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2985 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2986 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2987 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2988 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2989 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2990
3173a18f 2991 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2992 btrfs_info(fs_info, "has skinny extents");
3173a18f 2993
727011e0
CM
2994 /*
2995 * flag our filesystem as having big metadata blocks if
2996 * they are bigger than the page size
2997 */
09cbfeaf 2998 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2999 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3000 btrfs_info(fs_info,
3001 "flagging fs with big metadata feature");
727011e0
CM
3002 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3003 }
3004
bc3f116f 3005 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3006 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3007 stripesize = sectorsize;
707e8a07 3008 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3009 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3010
da17066c
JM
3011 /* Cache block sizes */
3012 fs_info->nodesize = nodesize;
3013 fs_info->sectorsize = sectorsize;
3014 fs_info->stripesize = stripesize;
3015
bc3f116f
CM
3016 /*
3017 * mixed block groups end up with duplicate but slightly offset
3018 * extent buffers for the same range. It leads to corruptions
3019 */
3020 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3021 (sectorsize != nodesize)) {
05135f59
DS
3022 btrfs_err(fs_info,
3023"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3024 nodesize, sectorsize);
141386e1 3025 goto fail_alloc;
bc3f116f
CM
3026 }
3027
ceda0864
MX
3028 /*
3029 * Needn't use the lock because there is no other task which will
3030 * update the flag.
3031 */
a6fa6fae 3032 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3033
f2b636e8
JB
3034 features = btrfs_super_compat_ro_flags(disk_super) &
3035 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3036 if (!sb_rdonly(sb) && features) {
05135f59
DS
3037 btrfs_err(fs_info,
3038 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3039 features);
f2b636e8 3040 err = -EINVAL;
141386e1 3041 goto fail_alloc;
f2b636e8 3042 }
61d92c32 3043
2a458198
ES
3044 ret = btrfs_init_workqueues(fs_info, fs_devices);
3045 if (ret) {
3046 err = ret;
0dc3b84a
JB
3047 goto fail_sb_buffer;
3048 }
4543df7e 3049
9e11ceee
JK
3050 sb->s_bdi->congested_fn = btrfs_congested_fn;
3051 sb->s_bdi->congested_data = fs_info;
3052 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3053 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3054 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3055 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3056
a061fc8d
CM
3057 sb->s_blocksize = sectorsize;
3058 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3059 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3060
925baedd 3061 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3062 ret = btrfs_read_sys_array(fs_info);
925baedd 3063 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3064 if (ret) {
05135f59 3065 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3066 goto fail_sb_buffer;
84eed90f 3067 }
0b86a832 3068
84234f3a 3069 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3070 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3071
2ff7e61e 3072 chunk_root->node = read_tree_block(fs_info,
0b86a832 3073 btrfs_super_chunk_root(disk_super),
581c1760 3074 generation, level, NULL);
64c043de
LB
3075 if (IS_ERR(chunk_root->node) ||
3076 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3077 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3078 if (!IS_ERR(chunk_root->node))
3079 free_extent_buffer(chunk_root->node);
95ab1f64 3080 chunk_root->node = NULL;
af31f5e5 3081 goto fail_tree_roots;
83121942 3082 }
5d4f98a2
YZ
3083 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3084 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3085
e17cade2 3086 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3087 offsetof(struct btrfs_header, chunk_tree_uuid),
3088 BTRFS_UUID_SIZE);
e17cade2 3089
5b4aacef 3090 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3091 if (ret) {
05135f59 3092 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3093 goto fail_tree_roots;
2b82032c 3094 }
0b86a832 3095
8dabb742 3096 /*
9b99b115
AJ
3097 * Keep the devid that is marked to be the target device for the
3098 * device replace procedure
8dabb742 3099 */
9b99b115 3100 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3101
a6b0d5c8 3102 if (!fs_devices->latest_bdev) {
05135f59 3103 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3104 goto fail_tree_roots;
3105 }
3106
b8522a1e 3107 ret = init_tree_roots(fs_info);
4bbcaa64 3108 if (ret)
b8522a1e 3109 goto fail_tree_roots;
8929ecfa 3110
75ec1db8
JB
3111 /*
3112 * If we have a uuid root and we're not being told to rescan we need to
3113 * check the generation here so we can set the
3114 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3115 * transaction during a balance or the log replay without updating the
3116 * uuid generation, and then if we crash we would rescan the uuid tree,
3117 * even though it was perfectly fine.
3118 */
3119 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3120 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3121 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3122
cf90d884
QW
3123 ret = btrfs_verify_dev_extents(fs_info);
3124 if (ret) {
3125 btrfs_err(fs_info,
3126 "failed to verify dev extents against chunks: %d",
3127 ret);
3128 goto fail_block_groups;
3129 }
68310a5e
ID
3130 ret = btrfs_recover_balance(fs_info);
3131 if (ret) {
05135f59 3132 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3133 goto fail_block_groups;
3134 }
3135
733f4fbb
SB
3136 ret = btrfs_init_dev_stats(fs_info);
3137 if (ret) {
05135f59 3138 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3139 goto fail_block_groups;
3140 }
3141
8dabb742
SB
3142 ret = btrfs_init_dev_replace(fs_info);
3143 if (ret) {
05135f59 3144 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3145 goto fail_block_groups;
3146 }
3147
9b99b115 3148 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3149
c6761a9e 3150 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3151 if (ret) {
05135f59
DS
3152 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3153 ret);
b7c35e81
AJ
3154 goto fail_block_groups;
3155 }
3156
96f3136e 3157 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3158 if (ret) {
05135f59 3159 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3160 goto fail_fsdev_sysfs;
c59021f8 3161 }
3162
c59021f8 3163 ret = btrfs_init_space_info(fs_info);
3164 if (ret) {
05135f59 3165 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3166 goto fail_sysfs;
c59021f8 3167 }
3168
5b4aacef 3169 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3170 if (ret) {
05135f59 3171 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3172 goto fail_sysfs;
1b1d1f66 3173 }
4330e183 3174
6528b99d 3175 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3176 btrfs_warn(fs_info,
52042d8e 3177 "writable mount is not allowed due to too many missing devices");
2365dd3c 3178 goto fail_sysfs;
292fd7fc 3179 }
9078a3e1 3180
a74a4b97
CM
3181 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3182 "btrfs-cleaner");
57506d50 3183 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3184 goto fail_sysfs;
a74a4b97
CM
3185
3186 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3187 tree_root,
3188 "btrfs-transaction");
57506d50 3189 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3190 goto fail_cleaner;
a74a4b97 3191
583b7231 3192 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3193 !fs_info->fs_devices->rotating) {
583b7231 3194 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3195 }
3196
572d9ab7 3197 /*
01327610 3198 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3199 * not have to wait for transaction commit
3200 */
3201 btrfs_apply_pending_changes(fs_info);
3818aea2 3202
21adbd5c 3203#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3204 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3205 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3206 btrfs_test_opt(fs_info,
21adbd5c
SB
3207 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3208 1 : 0,
3209 fs_info->check_integrity_print_mask);
3210 if (ret)
05135f59
DS
3211 btrfs_warn(fs_info,
3212 "failed to initialize integrity check module: %d",
3213 ret);
21adbd5c
SB
3214 }
3215#endif
bcef60f2
AJ
3216 ret = btrfs_read_qgroup_config(fs_info);
3217 if (ret)
3218 goto fail_trans_kthread;
21adbd5c 3219
fd708b81
JB
3220 if (btrfs_build_ref_tree(fs_info))
3221 btrfs_err(fs_info, "couldn't build ref tree");
3222
96da0919
QW
3223 /* do not make disk changes in broken FS or nologreplay is given */
3224 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3225 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3226 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3227 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3228 if (ret) {
63443bf5 3229 err = ret;
28c16cbb 3230 goto fail_qgroup;
79787eaa 3231 }
e02119d5 3232 }
1a40e23b 3233
6bccf3ab 3234 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3235 if (ret)
28c16cbb 3236 goto fail_qgroup;
76dda93c 3237
bc98a42c 3238 if (!sb_rdonly(sb)) {
d68fc57b 3239 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3240 if (ret)
28c16cbb 3241 goto fail_qgroup;
90c711ab
ZB
3242
3243 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3244 ret = btrfs_recover_relocation(tree_root);
90c711ab 3245 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3246 if (ret < 0) {
05135f59
DS
3247 btrfs_warn(fs_info, "failed to recover relocation: %d",
3248 ret);
d7ce5843 3249 err = -EINVAL;
bcef60f2 3250 goto fail_qgroup;
d7ce5843 3251 }
7c2ca468 3252 }
1a40e23b 3253
3de4586c
CM
3254 location.objectid = BTRFS_FS_TREE_OBJECTID;
3255 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3256 location.offset = 0;
3de4586c 3257
3619c94f 3258 fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3140c9a3
DC
3259 if (IS_ERR(fs_info->fs_root)) {
3260 err = PTR_ERR(fs_info->fs_root);
f50f4353 3261 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3262 fs_info->fs_root = NULL;
bcef60f2 3263 goto fail_qgroup;
3140c9a3 3264 }
c289811c 3265
bc98a42c 3266 if (sb_rdonly(sb))
2b6ba629 3267 return 0;
59641015 3268
f8d468a1
OS
3269 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3270 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3271 clear_free_space_tree = 1;
3272 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3273 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3274 btrfs_warn(fs_info, "free space tree is invalid");
3275 clear_free_space_tree = 1;
3276 }
3277
3278 if (clear_free_space_tree) {
f8d468a1
OS
3279 btrfs_info(fs_info, "clearing free space tree");
3280 ret = btrfs_clear_free_space_tree(fs_info);
3281 if (ret) {
3282 btrfs_warn(fs_info,
3283 "failed to clear free space tree: %d", ret);
6bccf3ab 3284 close_ctree(fs_info);
f8d468a1
OS
3285 return ret;
3286 }
3287 }
3288
0b246afa 3289 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3290 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3291 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3292 ret = btrfs_create_free_space_tree(fs_info);
3293 if (ret) {
05135f59
DS
3294 btrfs_warn(fs_info,
3295 "failed to create free space tree: %d", ret);
6bccf3ab 3296 close_ctree(fs_info);
511711af
CM
3297 return ret;
3298 }
3299 }
3300
2b6ba629
ID
3301 down_read(&fs_info->cleanup_work_sem);
3302 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3303 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3304 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3305 close_ctree(fs_info);
2b6ba629
ID
3306 return ret;
3307 }
3308 up_read(&fs_info->cleanup_work_sem);
59641015 3309
2b6ba629
ID
3310 ret = btrfs_resume_balance_async(fs_info);
3311 if (ret) {
05135f59 3312 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3313 close_ctree(fs_info);
2b6ba629 3314 return ret;
e3acc2a6
JB
3315 }
3316
8dabb742
SB
3317 ret = btrfs_resume_dev_replace_async(fs_info);
3318 if (ret) {
05135f59 3319 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3320 close_ctree(fs_info);
8dabb742
SB
3321 return ret;
3322 }
3323
b382a324 3324 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3325 btrfs_discard_resume(fs_info);
b382a324 3326
4bbcaa64 3327 if (!fs_info->uuid_root) {
05135f59 3328 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3329 ret = btrfs_create_uuid_tree(fs_info);
3330 if (ret) {
05135f59
DS
3331 btrfs_warn(fs_info,
3332 "failed to create the UUID tree: %d", ret);
6bccf3ab 3333 close_ctree(fs_info);
f7a81ea4
SB
3334 return ret;
3335 }
0b246afa 3336 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3337 fs_info->generation !=
3338 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3339 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3340 ret = btrfs_check_uuid_tree(fs_info);
3341 if (ret) {
05135f59
DS
3342 btrfs_warn(fs_info,
3343 "failed to check the UUID tree: %d", ret);
6bccf3ab 3344 close_ctree(fs_info);
70f80175
SB
3345 return ret;
3346 }
f7a81ea4 3347 }
afcdd129 3348 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3349
8dcddfa0
QW
3350 /*
3351 * backuproot only affect mount behavior, and if open_ctree succeeded,
3352 * no need to keep the flag
3353 */
3354 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3355
ad2b2c80 3356 return 0;
39279cc3 3357
bcef60f2
AJ
3358fail_qgroup:
3359 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3360fail_trans_kthread:
3361 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3362 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3363 btrfs_free_fs_roots(fs_info);
3f157a2f 3364fail_cleaner:
a74a4b97 3365 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3366
3367 /*
3368 * make sure we're done with the btree inode before we stop our
3369 * kthreads
3370 */
3371 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3372
2365dd3c 3373fail_sysfs:
6618a59b 3374 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3375
b7c35e81
AJ
3376fail_fsdev_sysfs:
3377 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3378
1b1d1f66 3379fail_block_groups:
54067ae9 3380 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3381
3382fail_tree_roots:
4273eaff 3383 free_root_pointers(fs_info, true);
2b8195bb 3384 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3385
39279cc3 3386fail_sb_buffer:
7abadb64 3387 btrfs_stop_all_workers(fs_info);
5cdd7db6 3388 btrfs_free_block_groups(fs_info);
16cdcec7 3389fail_alloc:
586e46e2
ID
3390 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3391
4543df7e 3392 iput(fs_info->btree_inode);
76dda93c
YZ
3393fail_srcu:
3394 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3395fail:
586e46e2 3396 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3397 return err;
eb60ceac 3398}
663faf9f 3399ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3400
314b6dd0 3401static void btrfs_end_super_write(struct bio *bio)
f2984462 3402{
314b6dd0
JT
3403 struct btrfs_device *device = bio->bi_private;
3404 struct bio_vec *bvec;
3405 struct bvec_iter_all iter_all;
3406 struct page *page;
3407
3408 bio_for_each_segment_all(bvec, bio, iter_all) {
3409 page = bvec->bv_page;
3410
3411 if (bio->bi_status) {
3412 btrfs_warn_rl_in_rcu(device->fs_info,
3413 "lost page write due to IO error on %s (%d)",
3414 rcu_str_deref(device->name),
3415 blk_status_to_errno(bio->bi_status));
3416 ClearPageUptodate(page);
3417 SetPageError(page);
3418 btrfs_dev_stat_inc_and_print(device,
3419 BTRFS_DEV_STAT_WRITE_ERRS);
3420 } else {
3421 SetPageUptodate(page);
3422 }
3423
3424 put_page(page);
3425 unlock_page(page);
f2984462 3426 }
314b6dd0
JT
3427
3428 bio_put(bio);
f2984462
CM
3429}
3430
8f32380d
JT
3431struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3432 int copy_num)
29c36d72 3433{
29c36d72 3434 struct btrfs_super_block *super;
8f32380d 3435 struct page *page;
29c36d72 3436 u64 bytenr;
8f32380d 3437 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3438
3439 bytenr = btrfs_sb_offset(copy_num);
3440 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3441 return ERR_PTR(-EINVAL);
29c36d72 3442
8f32380d
JT
3443 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3444 if (IS_ERR(page))
3445 return ERR_CAST(page);
29c36d72 3446
8f32380d 3447 super = page_address(page);
29c36d72
AJ
3448 if (btrfs_super_bytenr(super) != bytenr ||
3449 btrfs_super_magic(super) != BTRFS_MAGIC) {
8f32380d
JT
3450 btrfs_release_disk_super(super);
3451 return ERR_PTR(-EINVAL);
29c36d72
AJ
3452 }
3453
8f32380d 3454 return super;
29c36d72
AJ
3455}
3456
3457
8f32380d 3458struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3459{
8f32380d 3460 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3461 int i;
3462 u64 transid = 0;
a512bbf8
YZ
3463
3464 /* we would like to check all the supers, but that would make
3465 * a btrfs mount succeed after a mkfs from a different FS.
3466 * So, we need to add a special mount option to scan for
3467 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3468 */
3469 for (i = 0; i < 1; i++) {
8f32380d
JT
3470 super = btrfs_read_dev_one_super(bdev, i);
3471 if (IS_ERR(super))
a512bbf8
YZ
3472 continue;
3473
a512bbf8 3474 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3475 if (latest)
3476 btrfs_release_disk_super(super);
3477
3478 latest = super;
a512bbf8 3479 transid = btrfs_super_generation(super);
a512bbf8
YZ
3480 }
3481 }
92fc03fb 3482
8f32380d 3483 return super;
a512bbf8
YZ
3484}
3485
4eedeb75 3486/*
abbb3b8e 3487 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3488 * pages we use for writing are locked.
4eedeb75 3489 *
abbb3b8e
DS
3490 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3491 * the expected device size at commit time. Note that max_mirrors must be
3492 * same for write and wait phases.
4eedeb75 3493 *
314b6dd0 3494 * Return number of errors when page is not found or submission fails.
4eedeb75 3495 */
a512bbf8 3496static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3497 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3498{
d5178578 3499 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3500 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3501 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3502 int i;
a512bbf8 3503 int errors = 0;
a512bbf8 3504 u64 bytenr;
a512bbf8
YZ
3505
3506 if (max_mirrors == 0)
3507 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3508
d5178578
JT
3509 shash->tfm = fs_info->csum_shash;
3510
a512bbf8 3511 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3512 struct page *page;
3513 struct bio *bio;
3514 struct btrfs_super_block *disk_super;
3515
a512bbf8 3516 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3517 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3518 device->commit_total_bytes)
a512bbf8
YZ
3519 break;
3520
abbb3b8e 3521 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3522
d5178578
JT
3523 crypto_shash_init(shash);
3524 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3525 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3526 crypto_shash_final(shash, sb->csum);
4eedeb75 3527
314b6dd0
JT
3528 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3529 GFP_NOFS);
3530 if (!page) {
abbb3b8e 3531 btrfs_err(device->fs_info,
314b6dd0 3532 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3533 bytenr);
3534 errors++;
4eedeb75 3535 continue;
abbb3b8e 3536 }
634554dc 3537
314b6dd0
JT
3538 /* Bump the refcount for wait_dev_supers() */
3539 get_page(page);
a512bbf8 3540
314b6dd0
JT
3541 disk_super = page_address(page);
3542 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3543
314b6dd0
JT
3544 /*
3545 * Directly use bios here instead of relying on the page cache
3546 * to do I/O, so we don't lose the ability to do integrity
3547 * checking.
3548 */
3549 bio = bio_alloc(GFP_NOFS, 1);
3550 bio_set_dev(bio, device->bdev);
3551 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3552 bio->bi_private = device;
3553 bio->bi_end_io = btrfs_end_super_write;
3554 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3555 offset_in_page(bytenr));
a512bbf8 3556
387125fc 3557 /*
314b6dd0
JT
3558 * We FUA only the first super block. The others we allow to
3559 * go down lazy and there's a short window where the on-disk
3560 * copies might still contain the older version.
387125fc 3561 */
314b6dd0 3562 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3563 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3564 bio->bi_opf |= REQ_FUA;
3565
3566 btrfsic_submit_bio(bio);
a512bbf8
YZ
3567 }
3568 return errors < i ? 0 : -1;
3569}
3570
abbb3b8e
DS
3571/*
3572 * Wait for write completion of superblocks done by write_dev_supers,
3573 * @max_mirrors same for write and wait phases.
3574 *
314b6dd0 3575 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3576 * date.
3577 */
3578static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3579{
abbb3b8e
DS
3580 int i;
3581 int errors = 0;
b6a535fa 3582 bool primary_failed = false;
abbb3b8e
DS
3583 u64 bytenr;
3584
3585 if (max_mirrors == 0)
3586 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3587
3588 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3589 struct page *page;
3590
abbb3b8e
DS
3591 bytenr = btrfs_sb_offset(i);
3592 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3593 device->commit_total_bytes)
3594 break;
3595
314b6dd0
JT
3596 page = find_get_page(device->bdev->bd_inode->i_mapping,
3597 bytenr >> PAGE_SHIFT);
3598 if (!page) {
abbb3b8e 3599 errors++;
b6a535fa
HM
3600 if (i == 0)
3601 primary_failed = true;
abbb3b8e
DS
3602 continue;
3603 }
314b6dd0
JT
3604 /* Page is submitted locked and unlocked once the IO completes */
3605 wait_on_page_locked(page);
3606 if (PageError(page)) {
abbb3b8e 3607 errors++;
b6a535fa
HM
3608 if (i == 0)
3609 primary_failed = true;
3610 }
abbb3b8e 3611
314b6dd0
JT
3612 /* Drop our reference */
3613 put_page(page);
abbb3b8e 3614
314b6dd0
JT
3615 /* Drop the reference from the writing run */
3616 put_page(page);
abbb3b8e
DS
3617 }
3618
b6a535fa
HM
3619 /* log error, force error return */
3620 if (primary_failed) {
3621 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3622 device->devid);
3623 return -1;
3624 }
3625
abbb3b8e
DS
3626 return errors < i ? 0 : -1;
3627}
3628
387125fc
CM
3629/*
3630 * endio for the write_dev_flush, this will wake anyone waiting
3631 * for the barrier when it is done
3632 */
4246a0b6 3633static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3634{
e0ae9994 3635 complete(bio->bi_private);
387125fc
CM
3636}
3637
3638/*
4fc6441a
AJ
3639 * Submit a flush request to the device if it supports it. Error handling is
3640 * done in the waiting counterpart.
387125fc 3641 */
4fc6441a 3642static void write_dev_flush(struct btrfs_device *device)
387125fc 3643{
c2a9c7ab 3644 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3645 struct bio *bio = device->flush_bio;
387125fc 3646
c2a9c7ab 3647 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3648 return;
387125fc 3649
e0ae9994 3650 bio_reset(bio);
387125fc 3651 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3652 bio_set_dev(bio, device->bdev);
8d910125 3653 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3654 init_completion(&device->flush_wait);
3655 bio->bi_private = &device->flush_wait;
387125fc 3656
43a01111 3657 btrfsic_submit_bio(bio);
1c3063b6 3658 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3659}
387125fc 3660
4fc6441a
AJ
3661/*
3662 * If the flush bio has been submitted by write_dev_flush, wait for it.
3663 */
8c27cb35 3664static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3665{
4fc6441a 3666 struct bio *bio = device->flush_bio;
387125fc 3667
1c3063b6 3668 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3669 return BLK_STS_OK;
387125fc 3670
1c3063b6 3671 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3672 wait_for_completion_io(&device->flush_wait);
387125fc 3673
8c27cb35 3674 return bio->bi_status;
387125fc 3675}
387125fc 3676
d10b82fe 3677static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3678{
6528b99d 3679 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3680 return -EIO;
387125fc
CM
3681 return 0;
3682}
3683
3684/*
3685 * send an empty flush down to each device in parallel,
3686 * then wait for them
3687 */
3688static int barrier_all_devices(struct btrfs_fs_info *info)
3689{
3690 struct list_head *head;
3691 struct btrfs_device *dev;
5af3e8cc 3692 int errors_wait = 0;
4e4cbee9 3693 blk_status_t ret;
387125fc 3694
1538e6c5 3695 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3696 /* send down all the barriers */
3697 head = &info->fs_devices->devices;
1538e6c5 3698 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3699 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3700 continue;
cea7c8bf 3701 if (!dev->bdev)
387125fc 3702 continue;
e12c9621 3703 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3704 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3705 continue;
3706
4fc6441a 3707 write_dev_flush(dev);
58efbc9f 3708 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3709 }
3710
3711 /* wait for all the barriers */
1538e6c5 3712 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3713 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3714 continue;
387125fc 3715 if (!dev->bdev) {
5af3e8cc 3716 errors_wait++;
387125fc
CM
3717 continue;
3718 }
e12c9621 3719 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3720 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3721 continue;
3722
4fc6441a 3723 ret = wait_dev_flush(dev);
401b41e5
AJ
3724 if (ret) {
3725 dev->last_flush_error = ret;
66b4993e
DS
3726 btrfs_dev_stat_inc_and_print(dev,
3727 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3728 errors_wait++;
401b41e5
AJ
3729 }
3730 }
3731
cea7c8bf 3732 if (errors_wait) {
401b41e5
AJ
3733 /*
3734 * At some point we need the status of all disks
3735 * to arrive at the volume status. So error checking
3736 * is being pushed to a separate loop.
3737 */
d10b82fe 3738 return check_barrier_error(info);
387125fc 3739 }
387125fc
CM
3740 return 0;
3741}
3742
943c6e99
ZL
3743int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3744{
8789f4fe
ZL
3745 int raid_type;
3746 int min_tolerated = INT_MAX;
943c6e99 3747
8789f4fe
ZL
3748 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3749 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3750 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3751 btrfs_raid_array[BTRFS_RAID_SINGLE].
3752 tolerated_failures);
943c6e99 3753
8789f4fe
ZL
3754 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3755 if (raid_type == BTRFS_RAID_SINGLE)
3756 continue;
41a6e891 3757 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3758 continue;
8c3e3582 3759 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3760 btrfs_raid_array[raid_type].
3761 tolerated_failures);
3762 }
943c6e99 3763
8789f4fe 3764 if (min_tolerated == INT_MAX) {
ab8d0fc4 3765 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3766 min_tolerated = 0;
3767 }
3768
3769 return min_tolerated;
943c6e99
ZL
3770}
3771
eece6a9c 3772int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3773{
e5e9a520 3774 struct list_head *head;
f2984462 3775 struct btrfs_device *dev;
a061fc8d 3776 struct btrfs_super_block *sb;
f2984462 3777 struct btrfs_dev_item *dev_item;
f2984462
CM
3778 int ret;
3779 int do_barriers;
a236aed1
CM
3780 int max_errors;
3781 int total_errors = 0;
a061fc8d 3782 u64 flags;
f2984462 3783
0b246afa 3784 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3785
3786 /*
3787 * max_mirrors == 0 indicates we're from commit_transaction,
3788 * not from fsync where the tree roots in fs_info have not
3789 * been consistent on disk.
3790 */
3791 if (max_mirrors == 0)
3792 backup_super_roots(fs_info);
f2984462 3793
0b246afa 3794 sb = fs_info->super_for_commit;
a061fc8d 3795 dev_item = &sb->dev_item;
e5e9a520 3796
0b246afa
JM
3797 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3798 head = &fs_info->fs_devices->devices;
3799 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3800
5af3e8cc 3801 if (do_barriers) {
0b246afa 3802 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3803 if (ret) {
3804 mutex_unlock(
0b246afa
JM
3805 &fs_info->fs_devices->device_list_mutex);
3806 btrfs_handle_fs_error(fs_info, ret,
3807 "errors while submitting device barriers.");
5af3e8cc
SB
3808 return ret;
3809 }
3810 }
387125fc 3811
1538e6c5 3812 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3813 if (!dev->bdev) {
3814 total_errors++;
3815 continue;
3816 }
e12c9621 3817 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3818 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3819 continue;
3820
2b82032c 3821 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3822 btrfs_set_stack_device_type(dev_item, dev->type);
3823 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3824 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3825 dev->commit_total_bytes);
ce7213c7
MX
3826 btrfs_set_stack_device_bytes_used(dev_item,
3827 dev->commit_bytes_used);
a061fc8d
CM
3828 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3829 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3830 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3831 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3832 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3833 BTRFS_FSID_SIZE);
a512bbf8 3834
a061fc8d
CM
3835 flags = btrfs_super_flags(sb);
3836 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3837
75cb857d
QW
3838 ret = btrfs_validate_write_super(fs_info, sb);
3839 if (ret < 0) {
3840 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3841 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3842 "unexpected superblock corruption detected");
3843 return -EUCLEAN;
3844 }
3845
abbb3b8e 3846 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3847 if (ret)
3848 total_errors++;
f2984462 3849 }
a236aed1 3850 if (total_errors > max_errors) {
0b246afa
JM
3851 btrfs_err(fs_info, "%d errors while writing supers",
3852 total_errors);
3853 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3854
9d565ba4 3855 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3856 btrfs_handle_fs_error(fs_info, -EIO,
3857 "%d errors while writing supers",
3858 total_errors);
9d565ba4 3859 return -EIO;
a236aed1 3860 }
f2984462 3861
a512bbf8 3862 total_errors = 0;
1538e6c5 3863 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3864 if (!dev->bdev)
3865 continue;
e12c9621 3866 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3867 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3868 continue;
3869
abbb3b8e 3870 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3871 if (ret)
3872 total_errors++;
f2984462 3873 }
0b246afa 3874 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3875 if (total_errors > max_errors) {
0b246afa
JM
3876 btrfs_handle_fs_error(fs_info, -EIO,
3877 "%d errors while writing supers",
3878 total_errors);
79787eaa 3879 return -EIO;
a236aed1 3880 }
f2984462
CM
3881 return 0;
3882}
3883
cb517eab
MX
3884/* Drop a fs root from the radix tree and free it. */
3885void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3886 struct btrfs_root *root)
2619ba1f 3887{
4df27c4d 3888 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3889 radix_tree_delete(&fs_info->fs_roots_radix,
3890 (unsigned long)root->root_key.objectid);
af01d2e5 3891 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
00246528 3892 btrfs_put_root(root);
4df27c4d 3893 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3894
3895 if (btrfs_root_refs(&root->root_item) == 0)
3896 synchronize_srcu(&fs_info->subvol_srcu);
3897
1c1ea4f7 3898 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3899 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3900 if (root->reloc_root) {
3901 free_extent_buffer(root->reloc_root->node);
3902 free_extent_buffer(root->reloc_root->commit_root);
00246528 3903 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3904 root->reloc_root = NULL;
3905 }
3906 }
3321719e 3907
faa2dbf0
JB
3908 if (root->free_ino_pinned)
3909 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3910 if (root->free_ino_ctl)
3911 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3912 btrfs_free_fs_root(root);
4df27c4d
YZ
3913}
3914
84db5ccf 3915void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3916{
57cdc8db 3917 iput(root->ino_cache_inode);
4df27c4d 3918 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3919 if (root->anon_dev)
3920 free_anon_bdev(root->anon_dev);
dcc3eb96 3921 btrfs_drew_lock_destroy(&root->snapshot_lock);
4df27c4d
YZ
3922 free_extent_buffer(root->node);
3923 free_extent_buffer(root->commit_root);
581bb050
LZ
3924 kfree(root->free_ino_ctl);
3925 kfree(root->free_ino_pinned);
00246528 3926 btrfs_put_root(root);
2619ba1f
CM
3927}
3928
c146afad 3929int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3930{
c146afad
YZ
3931 u64 root_objectid = 0;
3932 struct btrfs_root *gang[8];
65d33fd7
QW
3933 int i = 0;
3934 int err = 0;
3935 unsigned int ret = 0;
3936 int index;
e089f05c 3937
c146afad 3938 while (1) {
65d33fd7 3939 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3940 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3941 (void **)gang, root_objectid,
3942 ARRAY_SIZE(gang));
65d33fd7
QW
3943 if (!ret) {
3944 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3945 break;
65d33fd7 3946 }
5d4f98a2 3947 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3948
c146afad 3949 for (i = 0; i < ret; i++) {
65d33fd7
QW
3950 /* Avoid to grab roots in dead_roots */
3951 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3952 gang[i] = NULL;
3953 continue;
3954 }
3955 /* grab all the search result for later use */
00246528 3956 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7
QW
3957 }
3958 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3959
65d33fd7
QW
3960 for (i = 0; i < ret; i++) {
3961 if (!gang[i])
3962 continue;
c146afad 3963 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3964 err = btrfs_orphan_cleanup(gang[i]);
3965 if (err)
65d33fd7 3966 break;
00246528 3967 btrfs_put_root(gang[i]);
c146afad
YZ
3968 }
3969 root_objectid++;
3970 }
65d33fd7
QW
3971
3972 /* release the uncleaned roots due to error */
3973 for (; i < ret; i++) {
3974 if (gang[i])
00246528 3975 btrfs_put_root(gang[i]);
65d33fd7
QW
3976 }
3977 return err;
c146afad 3978}
a2135011 3979
6bccf3ab 3980int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3981{
6bccf3ab 3982 struct btrfs_root *root = fs_info->tree_root;
c146afad 3983 struct btrfs_trans_handle *trans;
a74a4b97 3984
0b246afa 3985 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3986 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3987 mutex_unlock(&fs_info->cleaner_mutex);
3988 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3989
3990 /* wait until ongoing cleanup work done */
0b246afa
JM
3991 down_write(&fs_info->cleanup_work_sem);
3992 up_write(&fs_info->cleanup_work_sem);
c71bf099 3993
7a7eaa40 3994 trans = btrfs_join_transaction(root);
3612b495
TI
3995 if (IS_ERR(trans))
3996 return PTR_ERR(trans);
3a45bb20 3997 return btrfs_commit_transaction(trans);
c146afad
YZ
3998}
3999
b105e927 4000void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4001{
c146afad
YZ
4002 int ret;
4003
afcdd129 4004 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4005 /*
4006 * We don't want the cleaner to start new transactions, add more delayed
4007 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4008 * because that frees the task_struct, and the transaction kthread might
4009 * still try to wake up the cleaner.
4010 */
4011 kthread_park(fs_info->cleaner_kthread);
c146afad 4012
7343dd61 4013 /* wait for the qgroup rescan worker to stop */
d06f23d6 4014 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4015
803b2f54
SB
4016 /* wait for the uuid_scan task to finish */
4017 down(&fs_info->uuid_tree_rescan_sem);
4018 /* avoid complains from lockdep et al., set sem back to initial state */
4019 up(&fs_info->uuid_tree_rescan_sem);
4020
837d5b6e 4021 /* pause restriper - we want to resume on mount */
aa1b8cd4 4022 btrfs_pause_balance(fs_info);
837d5b6e 4023
8dabb742
SB
4024 btrfs_dev_replace_suspend_for_unmount(fs_info);
4025
aa1b8cd4 4026 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4027
4028 /* wait for any defraggers to finish */
4029 wait_event(fs_info->transaction_wait,
4030 (atomic_read(&fs_info->defrag_running) == 0));
4031
4032 /* clear out the rbtree of defraggable inodes */
26176e7c 4033 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4034
21c7e756
MX
4035 cancel_work_sync(&fs_info->async_reclaim_work);
4036
b0643e59
DZ
4037 /* Cancel or finish ongoing discard work */
4038 btrfs_discard_cleanup(fs_info);
4039
bc98a42c 4040 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4041 /*
d6fd0ae2
OS
4042 * The cleaner kthread is stopped, so do one final pass over
4043 * unused block groups.
e44163e1 4044 */
0b246afa 4045 btrfs_delete_unused_bgs(fs_info);
e44163e1 4046
f0cc2cd7
FM
4047 /*
4048 * There might be existing delayed inode workers still running
4049 * and holding an empty delayed inode item. We must wait for
4050 * them to complete first because they can create a transaction.
4051 * This happens when someone calls btrfs_balance_delayed_items()
4052 * and then a transaction commit runs the same delayed nodes
4053 * before any delayed worker has done something with the nodes.
4054 * We must wait for any worker here and not at transaction
4055 * commit time since that could cause a deadlock.
4056 * This is a very rare case.
4057 */
4058 btrfs_flush_workqueue(fs_info->delayed_workers);
4059
6bccf3ab 4060 ret = btrfs_commit_super(fs_info);
acce952b 4061 if (ret)
04892340 4062 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4063 }
4064
af722733
LB
4065 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4066 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4067 btrfs_error_commit_super(fs_info);
0f7d52f4 4068
e3029d9f
AV
4069 kthread_stop(fs_info->transaction_kthread);
4070 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4071
e187831e 4072 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4073 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4074
04892340 4075 btrfs_free_qgroup_config(fs_info);
fe816d0f 4076 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4077
963d678b 4078 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4079 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4080 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4081 }
bcc63abb 4082
4297ff84
JB
4083 if (percpu_counter_sum(&fs_info->dio_bytes))
4084 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4085 percpu_counter_sum(&fs_info->dio_bytes));
4086
6618a59b 4087 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4088 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4089
faa2dbf0 4090 btrfs_free_fs_roots(fs_info);
d10c5f31 4091
1a4319cc
LB
4092 btrfs_put_block_group_cache(fs_info);
4093
de348ee0
WS
4094 /*
4095 * we must make sure there is not any read request to
4096 * submit after we stopping all workers.
4097 */
4098 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4099 btrfs_stop_all_workers(fs_info);
4100
afcdd129 4101 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4102 free_root_pointers(fs_info, true);
9ad6b7bc 4103
4e19443d
JB
4104 /*
4105 * We must free the block groups after dropping the fs_roots as we could
4106 * have had an IO error and have left over tree log blocks that aren't
4107 * cleaned up until the fs roots are freed. This makes the block group
4108 * accounting appear to be wrong because there's pending reserved bytes,
4109 * so make sure we do the block group cleanup afterwards.
4110 */
4111 btrfs_free_block_groups(fs_info);
4112
13e6c37b 4113 iput(fs_info->btree_inode);
d6bfde87 4114
21adbd5c 4115#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4116 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4117 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4118#endif
4119
0b86a832 4120 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4121 btrfs_close_devices(fs_info->fs_devices);
76dda93c 4122 cleanup_srcu_struct(&fs_info->subvol_srcu);
eb60ceac
CM
4123}
4124
b9fab919
CM
4125int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4126 int atomic)
5f39d397 4127{
1259ab75 4128 int ret;
727011e0 4129 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4130
0b32f4bb 4131 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4132 if (!ret)
4133 return ret;
4134
4135 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4136 parent_transid, atomic);
4137 if (ret == -EAGAIN)
4138 return ret;
1259ab75 4139 return !ret;
5f39d397
CM
4140}
4141
5f39d397
CM
4142void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4143{
0b246afa 4144 struct btrfs_fs_info *fs_info;
06ea65a3 4145 struct btrfs_root *root;
5f39d397 4146 u64 transid = btrfs_header_generation(buf);
b9473439 4147 int was_dirty;
b4ce94de 4148
06ea65a3
JB
4149#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4150 /*
4151 * This is a fast path so only do this check if we have sanity tests
52042d8e 4152 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4153 * outside of the sanity tests.
4154 */
b0132a3b 4155 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4156 return;
4157#endif
4158 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4159 fs_info = root->fs_info;
b9447ef8 4160 btrfs_assert_tree_locked(buf);
0b246afa 4161 if (transid != fs_info->generation)
5d163e0e 4162 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4163 buf->start, transid, fs_info->generation);
0b32f4bb 4164 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4165 if (!was_dirty)
104b4e51
NB
4166 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4167 buf->len,
4168 fs_info->dirty_metadata_batch);
1f21ef0a 4169#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4170 /*
4171 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4172 * but item data not updated.
4173 * So here we should only check item pointers, not item data.
4174 */
4175 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4176 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4177 btrfs_print_leaf(buf);
1f21ef0a
FM
4178 ASSERT(0);
4179 }
4180#endif
eb60ceac
CM
4181}
4182
2ff7e61e 4183static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4184 int flush_delayed)
16cdcec7
MX
4185{
4186 /*
4187 * looks as though older kernels can get into trouble with
4188 * this code, they end up stuck in balance_dirty_pages forever
4189 */
e2d84521 4190 int ret;
16cdcec7
MX
4191
4192 if (current->flags & PF_MEMALLOC)
4193 return;
4194
b53d3f5d 4195 if (flush_delayed)
2ff7e61e 4196 btrfs_balance_delayed_items(fs_info);
16cdcec7 4197
d814a491
EL
4198 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4199 BTRFS_DIRTY_METADATA_THRESH,
4200 fs_info->dirty_metadata_batch);
e2d84521 4201 if (ret > 0) {
0b246afa 4202 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4203 }
16cdcec7
MX
4204}
4205
2ff7e61e 4206void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4207{
2ff7e61e 4208 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4209}
585ad2c3 4210
2ff7e61e 4211void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4212{
2ff7e61e 4213 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4214}
6b80053d 4215
581c1760
QW
4216int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4217 struct btrfs_key *first_key)
6b80053d 4218{
5ab12d1f 4219 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4220 level, first_key);
6b80053d 4221}
0da5468f 4222
2ff7e61e 4223static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4224{
fe816d0f
NB
4225 /* cleanup FS via transaction */
4226 btrfs_cleanup_transaction(fs_info);
4227
0b246afa 4228 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4229 btrfs_run_delayed_iputs(fs_info);
0b246afa 4230 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4231
0b246afa
JM
4232 down_write(&fs_info->cleanup_work_sem);
4233 up_write(&fs_info->cleanup_work_sem);
acce952b 4234}
4235
143bede5 4236static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4237{
acce952b 4238 struct btrfs_ordered_extent *ordered;
acce952b 4239
199c2a9c 4240 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4241 /*
4242 * This will just short circuit the ordered completion stuff which will
4243 * make sure the ordered extent gets properly cleaned up.
4244 */
199c2a9c 4245 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4246 root_extent_list)
4247 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4248 spin_unlock(&root->ordered_extent_lock);
4249}
4250
4251static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4252{
4253 struct btrfs_root *root;
4254 struct list_head splice;
4255
4256 INIT_LIST_HEAD(&splice);
4257
4258 spin_lock(&fs_info->ordered_root_lock);
4259 list_splice_init(&fs_info->ordered_roots, &splice);
4260 while (!list_empty(&splice)) {
4261 root = list_first_entry(&splice, struct btrfs_root,
4262 ordered_root);
1de2cfde
JB
4263 list_move_tail(&root->ordered_root,
4264 &fs_info->ordered_roots);
199c2a9c 4265
2a85d9ca 4266 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4267 btrfs_destroy_ordered_extents(root);
4268
2a85d9ca
LB
4269 cond_resched();
4270 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4271 }
4272 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4273
4274 /*
4275 * We need this here because if we've been flipped read-only we won't
4276 * get sync() from the umount, so we need to make sure any ordered
4277 * extents that haven't had their dirty pages IO start writeout yet
4278 * actually get run and error out properly.
4279 */
4280 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4281}
4282
35a3621b 4283static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4284 struct btrfs_fs_info *fs_info)
acce952b 4285{
4286 struct rb_node *node;
4287 struct btrfs_delayed_ref_root *delayed_refs;
4288 struct btrfs_delayed_ref_node *ref;
4289 int ret = 0;
4290
4291 delayed_refs = &trans->delayed_refs;
4292
4293 spin_lock(&delayed_refs->lock);
d7df2c79 4294 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4295 spin_unlock(&delayed_refs->lock);
b79ce3dd 4296 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4297 return ret;
4298 }
4299
5c9d028b 4300 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4301 struct btrfs_delayed_ref_head *head;
0e0adbcf 4302 struct rb_node *n;
e78417d1 4303 bool pin_bytes = false;
acce952b 4304
d7df2c79
JB
4305 head = rb_entry(node, struct btrfs_delayed_ref_head,
4306 href_node);
3069bd26 4307 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4308 continue;
3069bd26 4309
d7df2c79 4310 spin_lock(&head->lock);
e3d03965 4311 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4312 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4313 ref_node);
d7df2c79 4314 ref->in_tree = 0;
e3d03965 4315 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4316 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4317 if (!list_empty(&ref->add_list))
4318 list_del(&ref->add_list);
d7df2c79
JB
4319 atomic_dec(&delayed_refs->num_entries);
4320 btrfs_put_delayed_ref(ref);
e78417d1 4321 }
d7df2c79
JB
4322 if (head->must_insert_reserved)
4323 pin_bytes = true;
4324 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4325 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4326 spin_unlock(&head->lock);
4327 spin_unlock(&delayed_refs->lock);
4328 mutex_unlock(&head->mutex);
acce952b 4329
f603bb94
NB
4330 if (pin_bytes) {
4331 struct btrfs_block_group *cache;
4332
4333 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4334 BUG_ON(!cache);
4335
4336 spin_lock(&cache->space_info->lock);
4337 spin_lock(&cache->lock);
4338 cache->pinned += head->num_bytes;
4339 btrfs_space_info_update_bytes_pinned(fs_info,
4340 cache->space_info, head->num_bytes);
4341 cache->reserved -= head->num_bytes;
4342 cache->space_info->bytes_reserved -= head->num_bytes;
4343 spin_unlock(&cache->lock);
4344 spin_unlock(&cache->space_info->lock);
4345 percpu_counter_add_batch(
4346 &cache->space_info->total_bytes_pinned,
4347 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4348
4349 btrfs_put_block_group(cache);
4350
4351 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4352 head->bytenr + head->num_bytes - 1);
4353 }
31890da0 4354 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4355 btrfs_put_delayed_ref_head(head);
acce952b 4356 cond_resched();
4357 spin_lock(&delayed_refs->lock);
4358 }
81f7eb00 4359 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4360
4361 spin_unlock(&delayed_refs->lock);
4362
4363 return ret;
4364}
4365
143bede5 4366static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4367{
4368 struct btrfs_inode *btrfs_inode;
4369 struct list_head splice;
4370
4371 INIT_LIST_HEAD(&splice);
4372
eb73c1b7
MX
4373 spin_lock(&root->delalloc_lock);
4374 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4375
4376 while (!list_empty(&splice)) {
fe816d0f 4377 struct inode *inode = NULL;
eb73c1b7
MX
4378 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4379 delalloc_inodes);
fe816d0f 4380 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4381 spin_unlock(&root->delalloc_lock);
acce952b 4382
fe816d0f
NB
4383 /*
4384 * Make sure we get a live inode and that it'll not disappear
4385 * meanwhile.
4386 */
4387 inode = igrab(&btrfs_inode->vfs_inode);
4388 if (inode) {
4389 invalidate_inode_pages2(inode->i_mapping);
4390 iput(inode);
4391 }
eb73c1b7 4392 spin_lock(&root->delalloc_lock);
acce952b 4393 }
eb73c1b7
MX
4394 spin_unlock(&root->delalloc_lock);
4395}
4396
4397static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4398{
4399 struct btrfs_root *root;
4400 struct list_head splice;
4401
4402 INIT_LIST_HEAD(&splice);
4403
4404 spin_lock(&fs_info->delalloc_root_lock);
4405 list_splice_init(&fs_info->delalloc_roots, &splice);
4406 while (!list_empty(&splice)) {
4407 root = list_first_entry(&splice, struct btrfs_root,
4408 delalloc_root);
00246528 4409 root = btrfs_grab_root(root);
eb73c1b7
MX
4410 BUG_ON(!root);
4411 spin_unlock(&fs_info->delalloc_root_lock);
4412
4413 btrfs_destroy_delalloc_inodes(root);
00246528 4414 btrfs_put_root(root);
eb73c1b7
MX
4415
4416 spin_lock(&fs_info->delalloc_root_lock);
4417 }
4418 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4419}
4420
2ff7e61e 4421static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4422 struct extent_io_tree *dirty_pages,
4423 int mark)
4424{
4425 int ret;
acce952b 4426 struct extent_buffer *eb;
4427 u64 start = 0;
4428 u64 end;
acce952b 4429
4430 while (1) {
4431 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4432 mark, NULL);
acce952b 4433 if (ret)
4434 break;
4435
91166212 4436 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4437 while (start <= end) {
0b246afa
JM
4438 eb = find_extent_buffer(fs_info, start);
4439 start += fs_info->nodesize;
fd8b2b61 4440 if (!eb)
acce952b 4441 continue;
fd8b2b61 4442 wait_on_extent_buffer_writeback(eb);
acce952b 4443
fd8b2b61
JB
4444 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4445 &eb->bflags))
4446 clear_extent_buffer_dirty(eb);
4447 free_extent_buffer_stale(eb);
acce952b 4448 }
4449 }
4450
4451 return ret;
4452}
4453
2ff7e61e 4454static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4455 struct extent_io_tree *unpin)
acce952b 4456{
acce952b 4457 u64 start;
4458 u64 end;
4459 int ret;
4460
acce952b 4461 while (1) {
0e6ec385
FM
4462 struct extent_state *cached_state = NULL;
4463
fcd5e742
LF
4464 /*
4465 * The btrfs_finish_extent_commit() may get the same range as
4466 * ours between find_first_extent_bit and clear_extent_dirty.
4467 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4468 * the same extent range.
4469 */
4470 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4471 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4472 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4473 if (ret) {
4474 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4475 break;
fcd5e742 4476 }
acce952b 4477
0e6ec385
FM
4478 clear_extent_dirty(unpin, start, end, &cached_state);
4479 free_extent_state(cached_state);
2ff7e61e 4480 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4481 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4482 cond_resched();
4483 }
4484
4485 return 0;
4486}
4487
32da5386 4488static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4489{
4490 struct inode *inode;
4491
4492 inode = cache->io_ctl.inode;
4493 if (inode) {
4494 invalidate_inode_pages2(inode->i_mapping);
4495 BTRFS_I(inode)->generation = 0;
4496 cache->io_ctl.inode = NULL;
4497 iput(inode);
4498 }
4499 btrfs_put_block_group(cache);
4500}
4501
4502void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4503 struct btrfs_fs_info *fs_info)
c79a1751 4504{
32da5386 4505 struct btrfs_block_group *cache;
c79a1751
LB
4506
4507 spin_lock(&cur_trans->dirty_bgs_lock);
4508 while (!list_empty(&cur_trans->dirty_bgs)) {
4509 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4510 struct btrfs_block_group,
c79a1751 4511 dirty_list);
c79a1751
LB
4512
4513 if (!list_empty(&cache->io_list)) {
4514 spin_unlock(&cur_trans->dirty_bgs_lock);
4515 list_del_init(&cache->io_list);
4516 btrfs_cleanup_bg_io(cache);
4517 spin_lock(&cur_trans->dirty_bgs_lock);
4518 }
4519
4520 list_del_init(&cache->dirty_list);
4521 spin_lock(&cache->lock);
4522 cache->disk_cache_state = BTRFS_DC_ERROR;
4523 spin_unlock(&cache->lock);
4524
4525 spin_unlock(&cur_trans->dirty_bgs_lock);
4526 btrfs_put_block_group(cache);
ba2c4d4e 4527 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4528 spin_lock(&cur_trans->dirty_bgs_lock);
4529 }
4530 spin_unlock(&cur_trans->dirty_bgs_lock);
4531
45ae2c18
NB
4532 /*
4533 * Refer to the definition of io_bgs member for details why it's safe
4534 * to use it without any locking
4535 */
c79a1751
LB
4536 while (!list_empty(&cur_trans->io_bgs)) {
4537 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4538 struct btrfs_block_group,
c79a1751 4539 io_list);
c79a1751
LB
4540
4541 list_del_init(&cache->io_list);
4542 spin_lock(&cache->lock);
4543 cache->disk_cache_state = BTRFS_DC_ERROR;
4544 spin_unlock(&cache->lock);
4545 btrfs_cleanup_bg_io(cache);
4546 }
4547}
4548
49b25e05 4549void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4550 struct btrfs_fs_info *fs_info)
49b25e05 4551{
bbbf7243
NB
4552 struct btrfs_device *dev, *tmp;
4553
2ff7e61e 4554 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4555 ASSERT(list_empty(&cur_trans->dirty_bgs));
4556 ASSERT(list_empty(&cur_trans->io_bgs));
4557
bbbf7243
NB
4558 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4559 post_commit_list) {
4560 list_del_init(&dev->post_commit_list);
4561 }
4562
2ff7e61e 4563 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4564
4a9d8bde 4565 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4566 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4567
4a9d8bde 4568 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4569 wake_up(&fs_info->transaction_wait);
49b25e05 4570
ccdf9b30 4571 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4572
2ff7e61e 4573 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4574 EXTENT_DIRTY);
fe119a6e 4575 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4576
4a9d8bde
MX
4577 cur_trans->state =TRANS_STATE_COMPLETED;
4578 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4579}
4580
2ff7e61e 4581static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4582{
4583 struct btrfs_transaction *t;
acce952b 4584
0b246afa 4585 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4586
0b246afa
JM
4587 spin_lock(&fs_info->trans_lock);
4588 while (!list_empty(&fs_info->trans_list)) {
4589 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4590 struct btrfs_transaction, list);
4591 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4592 refcount_inc(&t->use_count);
0b246afa 4593 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4594 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4595 btrfs_put_transaction(t);
0b246afa 4596 spin_lock(&fs_info->trans_lock);
724e2315
JB
4597 continue;
4598 }
0b246afa 4599 if (t == fs_info->running_transaction) {
724e2315 4600 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4601 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4602 /*
4603 * We wait for 0 num_writers since we don't hold a trans
4604 * handle open currently for this transaction.
4605 */
4606 wait_event(t->writer_wait,
4607 atomic_read(&t->num_writers) == 0);
4608 } else {
0b246afa 4609 spin_unlock(&fs_info->trans_lock);
724e2315 4610 }
2ff7e61e 4611 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4612
0b246afa
JM
4613 spin_lock(&fs_info->trans_lock);
4614 if (t == fs_info->running_transaction)
4615 fs_info->running_transaction = NULL;
acce952b 4616 list_del_init(&t->list);
0b246afa 4617 spin_unlock(&fs_info->trans_lock);
acce952b 4618
724e2315 4619 btrfs_put_transaction(t);
2ff7e61e 4620 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4621 spin_lock(&fs_info->trans_lock);
724e2315 4622 }
0b246afa
JM
4623 spin_unlock(&fs_info->trans_lock);
4624 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4625 btrfs_destroy_delayed_inodes(fs_info);
4626 btrfs_assert_delayed_root_empty(fs_info);
0b246afa
JM
4627 btrfs_destroy_all_delalloc_inodes(fs_info);
4628 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4629
4630 return 0;
4631}
4632
e8c9f186 4633static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4634 /* mandatory callbacks */
0b86a832 4635 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4636 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4637};