btrfs: move leak debug code to functions
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
6463fe58 33#include <linux/uuid.h>
7e75bf3f 34#include <asm/unaligned.h>
4b4e25f2 35#include "compat.h"
eb60ceac
CM
36#include "ctree.h"
37#include "disk-io.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
8b712842 42#include "async-thread.h"
925baedd 43#include "locking.h"
e02119d5 44#include "tree-log.h"
fa9c0d79 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
eb60ceac 51
de0022b9
JB
52#ifdef CONFIG_X86
53#include <asm/cpufeature.h>
54#endif
55
d1310b2e 56static struct extent_io_ops btree_extent_io_ops;
8b712842 57static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 58static void free_fs_root(struct btrfs_root *root);
fcd1f065 59static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 60 int read_only);
569e0f35
JB
61static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
143bede5 63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
aec8030a 66static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
143bede5 67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
ce9adaa5 73
d352ac68
CM
74/*
75 * end_io_wq structs are used to do processing in task context when an IO is
76 * complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
ce9adaa5
CM
79struct end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
22c59948 85 int metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
d352ac68
CM
90/*
91 * async submit bios are used to offload expensive checksumming
92 * onto the worker threads. They checksum file and metadata bios
93 * just before they are sent down the IO stack.
94 */
44b8bd7e
CM
95struct async_submit_bio {
96 struct inode *inode;
97 struct bio *bio;
98 struct list_head list;
4a69a410
CM
99 extent_submit_bio_hook_t *submit_bio_start;
100 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
101 int rw;
102 int mirror_num;
c8b97818 103 unsigned long bio_flags;
eaf25d93
CM
104 /*
105 * bio_offset is optional, can be used if the pages in the bio
106 * can't tell us where in the file the bio should go
107 */
108 u64 bio_offset;
8b712842 109 struct btrfs_work work;
79787eaa 110 int error;
44b8bd7e
CM
111};
112
85d4e461
CM
113/*
114 * Lockdep class keys for extent_buffer->lock's in this root. For a given
115 * eb, the lockdep key is determined by the btrfs_root it belongs to and
116 * the level the eb occupies in the tree.
117 *
118 * Different roots are used for different purposes and may nest inside each
119 * other and they require separate keysets. As lockdep keys should be
120 * static, assign keysets according to the purpose of the root as indicated
121 * by btrfs_root->objectid. This ensures that all special purpose roots
122 * have separate keysets.
4008c04a 123 *
85d4e461
CM
124 * Lock-nesting across peer nodes is always done with the immediate parent
125 * node locked thus preventing deadlock. As lockdep doesn't know this, use
126 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 127 *
85d4e461
CM
128 * The key is set by the readpage_end_io_hook after the buffer has passed
129 * csum validation but before the pages are unlocked. It is also set by
130 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 131 *
85d4e461
CM
132 * We also add a check to make sure the highest level of the tree is the
133 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
134 * needs update as well.
4008c04a
CM
135 */
136#ifdef CONFIG_DEBUG_LOCK_ALLOC
137# if BTRFS_MAX_LEVEL != 8
138# error
139# endif
85d4e461
CM
140
141static struct btrfs_lockdep_keyset {
142 u64 id; /* root objectid */
143 const char *name_stem; /* lock name stem */
144 char names[BTRFS_MAX_LEVEL + 1][20];
145 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
146} btrfs_lockdep_keysets[] = {
147 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
148 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
149 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
150 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
151 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
152 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
153 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
154 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
155 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
156 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
157 { .id = 0, .name_stem = "tree" },
4008c04a 158};
85d4e461
CM
159
160void __init btrfs_init_lockdep(void)
161{
162 int i, j;
163
164 /* initialize lockdep class names */
165 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
166 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
167
168 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
169 snprintf(ks->names[j], sizeof(ks->names[j]),
170 "btrfs-%s-%02d", ks->name_stem, j);
171 }
172}
173
174void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
175 int level)
176{
177 struct btrfs_lockdep_keyset *ks;
178
179 BUG_ON(level >= ARRAY_SIZE(ks->keys));
180
181 /* find the matching keyset, id 0 is the default entry */
182 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
183 if (ks->id == objectid)
184 break;
185
186 lockdep_set_class_and_name(&eb->lock,
187 &ks->keys[level], ks->names[level]);
188}
189
4008c04a
CM
190#endif
191
d352ac68
CM
192/*
193 * extents on the btree inode are pretty simple, there's one extent
194 * that covers the entire device
195 */
b2950863 196static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 197 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 198 int create)
7eccb903 199{
5f39d397
CM
200 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
201 struct extent_map *em;
202 int ret;
203
890871be 204 read_lock(&em_tree->lock);
d1310b2e 205 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
206 if (em) {
207 em->bdev =
208 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 209 read_unlock(&em_tree->lock);
5f39d397 210 goto out;
a061fc8d 211 }
890871be 212 read_unlock(&em_tree->lock);
7b13b7b1 213
172ddd60 214 em = alloc_extent_map();
5f39d397
CM
215 if (!em) {
216 em = ERR_PTR(-ENOMEM);
217 goto out;
218 }
219 em->start = 0;
0afbaf8c 220 em->len = (u64)-1;
c8b97818 221 em->block_len = (u64)-1;
5f39d397 222 em->block_start = 0;
a061fc8d 223 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 224
890871be 225 write_lock(&em_tree->lock);
09a2a8f9 226 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
227 if (ret == -EEXIST) {
228 free_extent_map(em);
7b13b7b1 229 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 230 if (!em)
0433f20d 231 em = ERR_PTR(-EIO);
5f39d397 232 } else if (ret) {
7b13b7b1 233 free_extent_map(em);
0433f20d 234 em = ERR_PTR(ret);
5f39d397 235 }
890871be 236 write_unlock(&em_tree->lock);
7b13b7b1 237
5f39d397
CM
238out:
239 return em;
7eccb903
CM
240}
241
b0496686 242u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 243{
163e783e 244 return crc32c(seed, data, len);
19c00ddc
CM
245}
246
247void btrfs_csum_final(u32 crc, char *result)
248{
7e75bf3f 249 put_unaligned_le32(~crc, result);
19c00ddc
CM
250}
251
d352ac68
CM
252/*
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
255 */
19c00ddc
CM
256static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257 int verify)
258{
6c41761f 259 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 260 char *result = NULL;
19c00ddc
CM
261 unsigned long len;
262 unsigned long cur_len;
263 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
264 char *kaddr;
265 unsigned long map_start;
266 unsigned long map_len;
267 int err;
268 u32 crc = ~(u32)0;
607d432d 269 unsigned long inline_result;
19c00ddc
CM
270
271 len = buf->len - offset;
d397712b 272 while (len > 0) {
19c00ddc 273 err = map_private_extent_buffer(buf, offset, 32,
a6591715 274 &kaddr, &map_start, &map_len);
d397712b 275 if (err)
19c00ddc 276 return 1;
19c00ddc 277 cur_len = min(len, map_len - (offset - map_start));
b0496686 278 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
279 crc, cur_len);
280 len -= cur_len;
281 offset += cur_len;
19c00ddc 282 }
607d432d
JB
283 if (csum_size > sizeof(inline_result)) {
284 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
285 if (!result)
286 return 1;
287 } else {
288 result = (char *)&inline_result;
289 }
290
19c00ddc
CM
291 btrfs_csum_final(crc, result);
292
293 if (verify) {
607d432d 294 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
295 u32 val;
296 u32 found = 0;
607d432d 297 memcpy(&found, result, csum_size);
e4204ded 298
607d432d 299 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 300 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
301 "failed on %llu wanted %X found %X "
302 "level %d\n",
303 root->fs_info->sb->s_id,
304 (unsigned long long)buf->start, val, found,
305 btrfs_header_level(buf));
607d432d
JB
306 if (result != (char *)&inline_result)
307 kfree(result);
19c00ddc
CM
308 return 1;
309 }
310 } else {
607d432d 311 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 312 }
607d432d
JB
313 if (result != (char *)&inline_result)
314 kfree(result);
19c00ddc
CM
315 return 0;
316}
317
d352ac68
CM
318/*
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
323 */
1259ab75 324static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
325 struct extent_buffer *eb, u64 parent_transid,
326 int atomic)
1259ab75 327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75
CM
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
b9fab919
CM
334 if (atomic)
335 return -EAGAIN;
336
2ac55d41 337 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 338 0, &cached_state);
0b32f4bb 339 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
340 btrfs_header_generation(eb) == parent_transid) {
341 ret = 0;
342 goto out;
343 }
7a36ddec 344 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
345 "found %llu\n",
346 (unsigned long long)eb->start,
347 (unsigned long long)parent_transid,
348 (unsigned long long)btrfs_header_generation(eb));
1259ab75 349 ret = 1;
0b32f4bb 350 clear_extent_buffer_uptodate(eb);
33958dc6 351out:
2ac55d41
JB
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 &cached_state, GFP_NOFS);
1259ab75 354 return ret;
1259ab75
CM
355}
356
d352ac68
CM
357/*
358 * helper to read a given tree block, doing retries as required when
359 * the checksums don't match and we have alternate mirrors to try.
360 */
f188591e
CM
361static int btree_read_extent_buffer_pages(struct btrfs_root *root,
362 struct extent_buffer *eb,
ca7a79ad 363 u64 start, u64 parent_transid)
f188591e
CM
364{
365 struct extent_io_tree *io_tree;
ea466794 366 int failed = 0;
f188591e
CM
367 int ret;
368 int num_copies = 0;
369 int mirror_num = 0;
ea466794 370 int failed_mirror = 0;
f188591e 371
a826d6dc 372 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
373 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
374 while (1) {
bb82ab88
AJ
375 ret = read_extent_buffer_pages(io_tree, eb, start,
376 WAIT_COMPLETE,
f188591e 377 btree_get_extent, mirror_num);
256dd1bb
SB
378 if (!ret) {
379 if (!verify_parent_transid(io_tree, eb,
b9fab919 380 parent_transid, 0))
256dd1bb
SB
381 break;
382 else
383 ret = -EIO;
384 }
d397712b 385
a826d6dc
JB
386 /*
387 * This buffer's crc is fine, but its contents are corrupted, so
388 * there is no reason to read the other copies, they won't be
389 * any less wrong.
390 */
391 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
392 break;
393
5d964051 394 num_copies = btrfs_num_copies(root->fs_info,
f188591e 395 eb->start, eb->len);
4235298e 396 if (num_copies == 1)
ea466794 397 break;
4235298e 398
5cf1ab56
JB
399 if (!failed_mirror) {
400 failed = 1;
401 failed_mirror = eb->read_mirror;
402 }
403
f188591e 404 mirror_num++;
ea466794
JB
405 if (mirror_num == failed_mirror)
406 mirror_num++;
407
4235298e 408 if (mirror_num > num_copies)
ea466794 409 break;
f188591e 410 }
ea466794 411
c0901581 412 if (failed && !ret && failed_mirror)
ea466794
JB
413 repair_eb_io_failure(root, eb, failed_mirror);
414
415 return ret;
f188591e 416}
19c00ddc 417
d352ac68 418/*
d397712b
CM
419 * checksum a dirty tree block before IO. This has extra checks to make sure
420 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 421 */
d397712b 422
b2950863 423static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 424{
d1310b2e 425 struct extent_io_tree *tree;
4eee4fa4 426 u64 start = page_offset(page);
19c00ddc 427 u64 found_start;
19c00ddc 428 struct extent_buffer *eb;
f188591e 429
d1310b2e 430 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 431
4f2de97a
JB
432 eb = (struct extent_buffer *)page->private;
433 if (page != eb->pages[0])
434 return 0;
19c00ddc
CM
435 found_start = btrfs_header_bytenr(eb);
436 if (found_start != start) {
55c69072 437 WARN_ON(1);
4f2de97a 438 return 0;
55c69072 439 }
55c69072 440 if (!PageUptodate(page)) {
55c69072 441 WARN_ON(1);
4f2de97a 442 return 0;
19c00ddc 443 }
19c00ddc 444 csum_tree_block(root, eb, 0);
19c00ddc
CM
445 return 0;
446}
447
2b82032c
YZ
448static int check_tree_block_fsid(struct btrfs_root *root,
449 struct extent_buffer *eb)
450{
451 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
452 u8 fsid[BTRFS_UUID_SIZE];
453 int ret = 1;
454
455 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
456 BTRFS_FSID_SIZE);
457 while (fs_devices) {
458 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
459 ret = 0;
460 break;
461 }
462 fs_devices = fs_devices->seed;
463 }
464 return ret;
465}
466
a826d6dc
JB
467#define CORRUPT(reason, eb, root, slot) \
468 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
469 "root=%llu, slot=%d\n", reason, \
470 (unsigned long long)btrfs_header_bytenr(eb), \
471 (unsigned long long)root->objectid, slot)
472
473static noinline int check_leaf(struct btrfs_root *root,
474 struct extent_buffer *leaf)
475{
476 struct btrfs_key key;
477 struct btrfs_key leaf_key;
478 u32 nritems = btrfs_header_nritems(leaf);
479 int slot;
480
481 if (nritems == 0)
482 return 0;
483
484 /* Check the 0 item */
485 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
486 BTRFS_LEAF_DATA_SIZE(root)) {
487 CORRUPT("invalid item offset size pair", leaf, root, 0);
488 return -EIO;
489 }
490
491 /*
492 * Check to make sure each items keys are in the correct order and their
493 * offsets make sense. We only have to loop through nritems-1 because
494 * we check the current slot against the next slot, which verifies the
495 * next slot's offset+size makes sense and that the current's slot
496 * offset is correct.
497 */
498 for (slot = 0; slot < nritems - 1; slot++) {
499 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
500 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
501
502 /* Make sure the keys are in the right order */
503 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
504 CORRUPT("bad key order", leaf, root, slot);
505 return -EIO;
506 }
507
508 /*
509 * Make sure the offset and ends are right, remember that the
510 * item data starts at the end of the leaf and grows towards the
511 * front.
512 */
513 if (btrfs_item_offset_nr(leaf, slot) !=
514 btrfs_item_end_nr(leaf, slot + 1)) {
515 CORRUPT("slot offset bad", leaf, root, slot);
516 return -EIO;
517 }
518
519 /*
520 * Check to make sure that we don't point outside of the leaf,
521 * just incase all the items are consistent to eachother, but
522 * all point outside of the leaf.
523 */
524 if (btrfs_item_end_nr(leaf, slot) >
525 BTRFS_LEAF_DATA_SIZE(root)) {
526 CORRUPT("slot end outside of leaf", leaf, root, slot);
527 return -EIO;
528 }
529 }
530
531 return 0;
532}
533
727011e0
CM
534struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
535 struct page *page, int max_walk)
536{
537 struct extent_buffer *eb;
538 u64 start = page_offset(page);
539 u64 target = start;
540 u64 min_start;
541
542 if (start < max_walk)
543 min_start = 0;
544 else
545 min_start = start - max_walk;
546
547 while (start >= min_start) {
548 eb = find_extent_buffer(tree, start, 0);
549 if (eb) {
550 /*
551 * we found an extent buffer and it contains our page
552 * horray!
553 */
554 if (eb->start <= target &&
555 eb->start + eb->len > target)
556 return eb;
557
558 /* we found an extent buffer that wasn't for us */
559 free_extent_buffer(eb);
560 return NULL;
561 }
562 if (start == 0)
563 break;
564 start -= PAGE_CACHE_SIZE;
565 }
566 return NULL;
567}
568
b2950863 569static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 570 struct extent_state *state, int mirror)
ce9adaa5
CM
571{
572 struct extent_io_tree *tree;
573 u64 found_start;
574 int found_level;
ce9adaa5
CM
575 struct extent_buffer *eb;
576 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 577 int ret = 0;
727011e0 578 int reads_done;
ce9adaa5 579
ce9adaa5
CM
580 if (!page->private)
581 goto out;
d397712b 582
727011e0 583 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 584 eb = (struct extent_buffer *)page->private;
d397712b 585
0b32f4bb
JB
586 /* the pending IO might have been the only thing that kept this buffer
587 * in memory. Make sure we have a ref for all this other checks
588 */
589 extent_buffer_get(eb);
590
591 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
592 if (!reads_done)
593 goto err;
f188591e 594
5cf1ab56 595 eb->read_mirror = mirror;
ea466794
JB
596 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
597 ret = -EIO;
598 goto err;
599 }
600
ce9adaa5 601 found_start = btrfs_header_bytenr(eb);
727011e0 602 if (found_start != eb->start) {
7a36ddec 603 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
604 "%llu %llu\n",
605 (unsigned long long)found_start,
606 (unsigned long long)eb->start);
f188591e 607 ret = -EIO;
ce9adaa5
CM
608 goto err;
609 }
2b82032c 610 if (check_tree_block_fsid(root, eb)) {
7a36ddec 611 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 612 (unsigned long long)eb->start);
1259ab75
CM
613 ret = -EIO;
614 goto err;
615 }
ce9adaa5 616 found_level = btrfs_header_level(eb);
1c24c3ce
JB
617 if (found_level >= BTRFS_MAX_LEVEL) {
618 btrfs_info(root->fs_info, "bad tree block level %d\n",
619 (int)btrfs_header_level(eb));
620 ret = -EIO;
621 goto err;
622 }
ce9adaa5 623
85d4e461
CM
624 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
625 eb, found_level);
4008c04a 626
ce9adaa5 627 ret = csum_tree_block(root, eb, 1);
a826d6dc 628 if (ret) {
f188591e 629 ret = -EIO;
a826d6dc
JB
630 goto err;
631 }
632
633 /*
634 * If this is a leaf block and it is corrupt, set the corrupt bit so
635 * that we don't try and read the other copies of this block, just
636 * return -EIO.
637 */
638 if (found_level == 0 && check_leaf(root, eb)) {
639 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
640 ret = -EIO;
641 }
ce9adaa5 642
0b32f4bb
JB
643 if (!ret)
644 set_extent_buffer_uptodate(eb);
ce9adaa5 645err:
79fb65a1
JB
646 if (reads_done &&
647 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 648 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 649
53b381b3
DW
650 if (ret) {
651 /*
652 * our io error hook is going to dec the io pages
653 * again, we have to make sure it has something
654 * to decrement
655 */
656 atomic_inc(&eb->io_pages);
0b32f4bb 657 clear_extent_buffer_uptodate(eb);
53b381b3 658 }
0b32f4bb 659 free_extent_buffer(eb);
ce9adaa5 660out:
f188591e 661 return ret;
ce9adaa5
CM
662}
663
ea466794 664static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 665{
4bb31e92
AJ
666 struct extent_buffer *eb;
667 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
668
4f2de97a 669 eb = (struct extent_buffer *)page->private;
ea466794 670 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 671 eb->read_mirror = failed_mirror;
53b381b3 672 atomic_dec(&eb->io_pages);
ea466794 673 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 674 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
675 return -EIO; /* we fixed nothing */
676}
677
ce9adaa5 678static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
679{
680 struct end_io_wq *end_io_wq = bio->bi_private;
681 struct btrfs_fs_info *fs_info;
ce9adaa5 682
ce9adaa5 683 fs_info = end_io_wq->info;
ce9adaa5 684 end_io_wq->error = err;
8b712842
CM
685 end_io_wq->work.func = end_workqueue_fn;
686 end_io_wq->work.flags = 0;
d20f7043 687
7b6d91da 688 if (bio->bi_rw & REQ_WRITE) {
53b381b3 689 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
cad321ad
CM
690 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
691 &end_io_wq->work);
53b381b3 692 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
0cb59c99
JB
693 btrfs_queue_worker(&fs_info->endio_freespace_worker,
694 &end_io_wq->work);
53b381b3
DW
695 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
696 btrfs_queue_worker(&fs_info->endio_raid56_workers,
697 &end_io_wq->work);
cad321ad
CM
698 else
699 btrfs_queue_worker(&fs_info->endio_write_workers,
700 &end_io_wq->work);
d20f7043 701 } else {
53b381b3
DW
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
703 btrfs_queue_worker(&fs_info->endio_raid56_workers,
704 &end_io_wq->work);
705 else if (end_io_wq->metadata)
d20f7043
CM
706 btrfs_queue_worker(&fs_info->endio_meta_workers,
707 &end_io_wq->work);
708 else
709 btrfs_queue_worker(&fs_info->endio_workers,
710 &end_io_wq->work);
711 }
ce9adaa5
CM
712}
713
0cb59c99
JB
714/*
715 * For the metadata arg you want
716 *
717 * 0 - if data
718 * 1 - if normal metadta
719 * 2 - if writing to the free space cache area
53b381b3 720 * 3 - raid parity work
0cb59c99 721 */
22c59948
CM
722int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
723 int metadata)
0b86a832 724{
ce9adaa5 725 struct end_io_wq *end_io_wq;
ce9adaa5
CM
726 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
727 if (!end_io_wq)
728 return -ENOMEM;
729
730 end_io_wq->private = bio->bi_private;
731 end_io_wq->end_io = bio->bi_end_io;
22c59948 732 end_io_wq->info = info;
ce9adaa5
CM
733 end_io_wq->error = 0;
734 end_io_wq->bio = bio;
22c59948 735 end_io_wq->metadata = metadata;
ce9adaa5
CM
736
737 bio->bi_private = end_io_wq;
738 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
739 return 0;
740}
741
b64a2851 742unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 743{
4854ddd0
CM
744 unsigned long limit = min_t(unsigned long,
745 info->workers.max_workers,
746 info->fs_devices->open_devices);
747 return 256 * limit;
748}
0986fe9e 749
4a69a410
CM
750static void run_one_async_start(struct btrfs_work *work)
751{
4a69a410 752 struct async_submit_bio *async;
79787eaa 753 int ret;
4a69a410
CM
754
755 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
756 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
757 async->mirror_num, async->bio_flags,
758 async->bio_offset);
759 if (ret)
760 async->error = ret;
4a69a410
CM
761}
762
763static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
764{
765 struct btrfs_fs_info *fs_info;
766 struct async_submit_bio *async;
4854ddd0 767 int limit;
8b712842
CM
768
769 async = container_of(work, struct async_submit_bio, work);
770 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 771
b64a2851 772 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
773 limit = limit * 2 / 3;
774
66657b31 775 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 776 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
777 wake_up(&fs_info->async_submit_wait);
778
79787eaa
JM
779 /* If an error occured we just want to clean up the bio and move on */
780 if (async->error) {
781 bio_endio(async->bio, async->error);
782 return;
783 }
784
4a69a410 785 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
786 async->mirror_num, async->bio_flags,
787 async->bio_offset);
4a69a410
CM
788}
789
790static void run_one_async_free(struct btrfs_work *work)
791{
792 struct async_submit_bio *async;
793
794 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
795 kfree(async);
796}
797
44b8bd7e
CM
798int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
799 int rw, struct bio *bio, int mirror_num,
c8b97818 800 unsigned long bio_flags,
eaf25d93 801 u64 bio_offset,
4a69a410
CM
802 extent_submit_bio_hook_t *submit_bio_start,
803 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
804{
805 struct async_submit_bio *async;
806
807 async = kmalloc(sizeof(*async), GFP_NOFS);
808 if (!async)
809 return -ENOMEM;
810
811 async->inode = inode;
812 async->rw = rw;
813 async->bio = bio;
814 async->mirror_num = mirror_num;
4a69a410
CM
815 async->submit_bio_start = submit_bio_start;
816 async->submit_bio_done = submit_bio_done;
817
818 async->work.func = run_one_async_start;
819 async->work.ordered_func = run_one_async_done;
820 async->work.ordered_free = run_one_async_free;
821
8b712842 822 async->work.flags = 0;
c8b97818 823 async->bio_flags = bio_flags;
eaf25d93 824 async->bio_offset = bio_offset;
8c8bee1d 825
79787eaa
JM
826 async->error = 0;
827
cb03c743 828 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 829
7b6d91da 830 if (rw & REQ_SYNC)
d313d7a3
CM
831 btrfs_set_work_high_prio(&async->work);
832
8b712842 833 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 834
d397712b 835 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
836 atomic_read(&fs_info->nr_async_submits)) {
837 wait_event(fs_info->async_submit_wait,
838 (atomic_read(&fs_info->nr_async_submits) == 0));
839 }
840
44b8bd7e
CM
841 return 0;
842}
843
ce3ed71a
CM
844static int btree_csum_one_bio(struct bio *bio)
845{
846 struct bio_vec *bvec = bio->bi_io_vec;
847 int bio_index = 0;
848 struct btrfs_root *root;
79787eaa 849 int ret = 0;
ce3ed71a
CM
850
851 WARN_ON(bio->bi_vcnt <= 0);
d397712b 852 while (bio_index < bio->bi_vcnt) {
ce3ed71a 853 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
854 ret = csum_dirty_buffer(root, bvec->bv_page);
855 if (ret)
856 break;
ce3ed71a
CM
857 bio_index++;
858 bvec++;
859 }
79787eaa 860 return ret;
ce3ed71a
CM
861}
862
4a69a410
CM
863static int __btree_submit_bio_start(struct inode *inode, int rw,
864 struct bio *bio, int mirror_num,
eaf25d93
CM
865 unsigned long bio_flags,
866 u64 bio_offset)
22c59948 867{
8b712842
CM
868 /*
869 * when we're called for a write, we're already in the async
5443be45 870 * submission context. Just jump into btrfs_map_bio
8b712842 871 */
79787eaa 872 return btree_csum_one_bio(bio);
4a69a410 873}
22c59948 874
4a69a410 875static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
876 int mirror_num, unsigned long bio_flags,
877 u64 bio_offset)
4a69a410 878{
61891923
SB
879 int ret;
880
8b712842 881 /*
4a69a410
CM
882 * when we're called for a write, we're already in the async
883 * submission context. Just jump into btrfs_map_bio
8b712842 884 */
61891923
SB
885 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
886 if (ret)
887 bio_endio(bio, ret);
888 return ret;
0b86a832
CM
889}
890
de0022b9
JB
891static int check_async_write(struct inode *inode, unsigned long bio_flags)
892{
893 if (bio_flags & EXTENT_BIO_TREE_LOG)
894 return 0;
895#ifdef CONFIG_X86
896 if (cpu_has_xmm4_2)
897 return 0;
898#endif
899 return 1;
900}
901
44b8bd7e 902static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
903 int mirror_num, unsigned long bio_flags,
904 u64 bio_offset)
44b8bd7e 905{
de0022b9 906 int async = check_async_write(inode, bio_flags);
cad321ad
CM
907 int ret;
908
7b6d91da 909 if (!(rw & REQ_WRITE)) {
4a69a410
CM
910 /*
911 * called for a read, do the setup so that checksum validation
912 * can happen in the async kernel threads
913 */
f3f266ab
CM
914 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
915 bio, 1);
1d4284bd 916 if (ret)
61891923
SB
917 goto out_w_error;
918 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919 mirror_num, 0);
de0022b9
JB
920 } else if (!async) {
921 ret = btree_csum_one_bio(bio);
922 if (ret)
61891923
SB
923 goto out_w_error;
924 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
925 mirror_num, 0);
926 } else {
927 /*
928 * kthread helpers are used to submit writes so that
929 * checksumming can happen in parallel across all CPUs
930 */
931 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
932 inode, rw, bio, mirror_num, 0,
933 bio_offset,
934 __btree_submit_bio_start,
935 __btree_submit_bio_done);
44b8bd7e 936 }
d313d7a3 937
61891923
SB
938 if (ret) {
939out_w_error:
940 bio_endio(bio, ret);
941 }
942 return ret;
44b8bd7e
CM
943}
944
3dd1462e 945#ifdef CONFIG_MIGRATION
784b4e29 946static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
947 struct page *newpage, struct page *page,
948 enum migrate_mode mode)
784b4e29
CM
949{
950 /*
951 * we can't safely write a btree page from here,
952 * we haven't done the locking hook
953 */
954 if (PageDirty(page))
955 return -EAGAIN;
956 /*
957 * Buffers may be managed in a filesystem specific way.
958 * We must have no buffers or drop them.
959 */
960 if (page_has_private(page) &&
961 !try_to_release_page(page, GFP_KERNEL))
962 return -EAGAIN;
a6bc32b8 963 return migrate_page(mapping, newpage, page, mode);
784b4e29 964}
3dd1462e 965#endif
784b4e29 966
0da5468f
CM
967
968static int btree_writepages(struct address_space *mapping,
969 struct writeback_control *wbc)
970{
d1310b2e 971 struct extent_io_tree *tree;
e2d84521
MX
972 struct btrfs_fs_info *fs_info;
973 int ret;
974
d1310b2e 975 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 976 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
977
978 if (wbc->for_kupdate)
979 return 0;
980
e2d84521 981 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 982 /* this is a bit racy, but that's ok */
e2d84521
MX
983 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
984 BTRFS_DIRTY_METADATA_THRESH);
985 if (ret < 0)
793955bc 986 return 0;
793955bc 987 }
0b32f4bb 988 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
989}
990
b2950863 991static int btree_readpage(struct file *file, struct page *page)
5f39d397 992{
d1310b2e
CM
993 struct extent_io_tree *tree;
994 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 995 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 996}
22b0ebda 997
70dec807 998static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 999{
98509cfc 1000 if (PageWriteback(page) || PageDirty(page))
d397712b 1001 return 0;
0c4e538b
DS
1002 /*
1003 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
1004 * slab allocation from alloc_extent_state down the callchain where
1005 * it'd hit a BUG_ON as those flags are not allowed.
1006 */
1007 gfp_flags &= ~GFP_SLAB_BUG_MASK;
1008
3083ee2e 1009 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
1010}
1011
5f39d397 1012static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 1013{
d1310b2e
CM
1014 struct extent_io_tree *tree;
1015 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1016 extent_invalidatepage(tree, page, offset);
1017 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1018 if (PagePrivate(page)) {
d397712b
CM
1019 printk(KERN_WARNING "btrfs warning page private not zero "
1020 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
1021 ClearPagePrivate(page);
1022 set_page_private(page, 0);
1023 page_cache_release(page);
1024 }
d98237b3
CM
1025}
1026
0b32f4bb
JB
1027static int btree_set_page_dirty(struct page *page)
1028{
bb146eb2 1029#ifdef DEBUG
0b32f4bb
JB
1030 struct extent_buffer *eb;
1031
1032 BUG_ON(!PagePrivate(page));
1033 eb = (struct extent_buffer *)page->private;
1034 BUG_ON(!eb);
1035 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1036 BUG_ON(!atomic_read(&eb->refs));
1037 btrfs_assert_tree_locked(eb);
bb146eb2 1038#endif
0b32f4bb
JB
1039 return __set_page_dirty_nobuffers(page);
1040}
1041
7f09410b 1042static const struct address_space_operations btree_aops = {
d98237b3 1043 .readpage = btree_readpage,
0da5468f 1044 .writepages = btree_writepages,
5f39d397
CM
1045 .releasepage = btree_releasepage,
1046 .invalidatepage = btree_invalidatepage,
5a92bc88 1047#ifdef CONFIG_MIGRATION
784b4e29 1048 .migratepage = btree_migratepage,
5a92bc88 1049#endif
0b32f4bb 1050 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1051};
1052
ca7a79ad
CM
1053int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1054 u64 parent_transid)
090d1875 1055{
5f39d397
CM
1056 struct extent_buffer *buf = NULL;
1057 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1058 int ret = 0;
090d1875 1059
db94535d 1060 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1061 if (!buf)
090d1875 1062 return 0;
d1310b2e 1063 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1064 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1065 free_extent_buffer(buf);
de428b63 1066 return ret;
090d1875
CM
1067}
1068
ab0fff03
AJ
1069int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1070 int mirror_num, struct extent_buffer **eb)
1071{
1072 struct extent_buffer *buf = NULL;
1073 struct inode *btree_inode = root->fs_info->btree_inode;
1074 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1075 int ret;
1076
1077 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1078 if (!buf)
1079 return 0;
1080
1081 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1082
1083 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1084 btree_get_extent, mirror_num);
1085 if (ret) {
1086 free_extent_buffer(buf);
1087 return ret;
1088 }
1089
1090 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1091 free_extent_buffer(buf);
1092 return -EIO;
0b32f4bb 1093 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1094 *eb = buf;
1095 } else {
1096 free_extent_buffer(buf);
1097 }
1098 return 0;
1099}
1100
0999df54
CM
1101struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1102 u64 bytenr, u32 blocksize)
1103{
1104 struct inode *btree_inode = root->fs_info->btree_inode;
1105 struct extent_buffer *eb;
1106 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1107 bytenr, blocksize);
0999df54
CM
1108 return eb;
1109}
1110
1111struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1112 u64 bytenr, u32 blocksize)
1113{
1114 struct inode *btree_inode = root->fs_info->btree_inode;
1115 struct extent_buffer *eb;
1116
1117 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1118 bytenr, blocksize);
0999df54
CM
1119 return eb;
1120}
1121
1122
e02119d5
CM
1123int btrfs_write_tree_block(struct extent_buffer *buf)
1124{
727011e0 1125 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1126 buf->start + buf->len - 1);
e02119d5
CM
1127}
1128
1129int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1130{
727011e0 1131 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1132 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1133}
1134
0999df54 1135struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1136 u32 blocksize, u64 parent_transid)
0999df54
CM
1137{
1138 struct extent_buffer *buf = NULL;
0999df54
CM
1139 int ret;
1140
0999df54
CM
1141 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1142 if (!buf)
1143 return NULL;
0999df54 1144
ca7a79ad 1145 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1146 return buf;
ce9adaa5 1147
eb60ceac
CM
1148}
1149
d5c13f92
JM
1150void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1151 struct extent_buffer *buf)
ed2ff2cb 1152{
e2d84521
MX
1153 struct btrfs_fs_info *fs_info = root->fs_info;
1154
55c69072 1155 if (btrfs_header_generation(buf) ==
e2d84521 1156 fs_info->running_transaction->transid) {
b9447ef8 1157 btrfs_assert_tree_locked(buf);
b4ce94de 1158
b9473439 1159 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1160 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1161 -buf->len,
1162 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1163 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1164 btrfs_set_lock_blocking(buf);
1165 clear_extent_buffer_dirty(buf);
1166 }
925baedd 1167 }
5f39d397
CM
1168}
1169
143bede5
JM
1170static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1171 u32 stripesize, struct btrfs_root *root,
1172 struct btrfs_fs_info *fs_info,
1173 u64 objectid)
d97e63b6 1174{
cfaa7295 1175 root->node = NULL;
a28ec197 1176 root->commit_root = NULL;
db94535d
CM
1177 root->sectorsize = sectorsize;
1178 root->nodesize = nodesize;
1179 root->leafsize = leafsize;
87ee04eb 1180 root->stripesize = stripesize;
123abc88 1181 root->ref_cows = 0;
0b86a832 1182 root->track_dirty = 0;
c71bf099 1183 root->in_radix = 0;
d68fc57b
YZ
1184 root->orphan_item_inserted = 0;
1185 root->orphan_cleanup_state = 0;
0b86a832 1186
0f7d52f4
CM
1187 root->objectid = objectid;
1188 root->last_trans = 0;
13a8a7c8 1189 root->highest_objectid = 0;
58176a96 1190 root->name = NULL;
6bef4d31 1191 root->inode_tree = RB_ROOT;
16cdcec7 1192 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1193 root->block_rsv = NULL;
d68fc57b 1194 root->orphan_block_rsv = NULL;
0b86a832
CM
1195
1196 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1197 INIT_LIST_HEAD(&root->root_list);
2ab28f32
JB
1198 INIT_LIST_HEAD(&root->logged_list[0]);
1199 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1200 spin_lock_init(&root->orphan_lock);
5d4f98a2 1201 spin_lock_init(&root->inode_lock);
f0486c68 1202 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1203 spin_lock_init(&root->log_extents_lock[0]);
1204 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1205 mutex_init(&root->objectid_mutex);
e02119d5 1206 mutex_init(&root->log_mutex);
7237f183
YZ
1207 init_waitqueue_head(&root->log_writer_wait);
1208 init_waitqueue_head(&root->log_commit_wait[0]);
1209 init_waitqueue_head(&root->log_commit_wait[1]);
1210 atomic_set(&root->log_commit[0], 0);
1211 atomic_set(&root->log_commit[1], 0);
1212 atomic_set(&root->log_writers, 0);
2ecb7923 1213 atomic_set(&root->log_batch, 0);
8a35d95f 1214 atomic_set(&root->orphan_inodes, 0);
7237f183 1215 root->log_transid = 0;
257c62e1 1216 root->last_log_commit = 0;
d0c803c4 1217 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1218 fs_info->btree_inode->i_mapping);
017e5369 1219
3768f368
CM
1220 memset(&root->root_key, 0, sizeof(root->root_key));
1221 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1222 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1223 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1224 root->defrag_trans_start = fs_info->generation;
58176a96 1225 init_completion(&root->kobj_unregister);
6702ed49 1226 root->defrag_running = 0;
4d775673 1227 root->root_key.objectid = objectid;
0ee5dc67 1228 root->anon_dev = 0;
8ea05e3a 1229
5f3ab90a 1230 spin_lock_init(&root->root_item_lock);
3768f368
CM
1231}
1232
200a5c17
JM
1233static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1234 struct btrfs_fs_info *fs_info,
1235 u64 objectid,
1236 struct btrfs_root *root)
3768f368
CM
1237{
1238 int ret;
db94535d 1239 u32 blocksize;
84234f3a 1240 u64 generation;
3768f368 1241
db94535d 1242 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1243 tree_root->sectorsize, tree_root->stripesize,
1244 root, fs_info, objectid);
3768f368
CM
1245 ret = btrfs_find_last_root(tree_root, objectid,
1246 &root->root_item, &root->root_key);
4df27c4d
YZ
1247 if (ret > 0)
1248 return -ENOENT;
200a5c17
JM
1249 else if (ret < 0)
1250 return ret;
3768f368 1251
84234f3a 1252 generation = btrfs_root_generation(&root->root_item);
db94535d 1253 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1254 root->commit_root = NULL;
db94535d 1255 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1256 blocksize, generation);
b9fab919 1257 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1258 free_extent_buffer(root->node);
af31f5e5 1259 root->node = NULL;
68433b73
CM
1260 return -EIO;
1261 }
4df27c4d 1262 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1263 return 0;
1264}
1265
f84a8bd6 1266static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1267{
1268 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1269 if (root)
1270 root->fs_info = fs_info;
1271 return root;
1272}
1273
20897f5c
AJ
1274struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1275 struct btrfs_fs_info *fs_info,
1276 u64 objectid)
1277{
1278 struct extent_buffer *leaf;
1279 struct btrfs_root *tree_root = fs_info->tree_root;
1280 struct btrfs_root *root;
1281 struct btrfs_key key;
1282 int ret = 0;
1283 u64 bytenr;
6463fe58 1284 uuid_le uuid;
20897f5c
AJ
1285
1286 root = btrfs_alloc_root(fs_info);
1287 if (!root)
1288 return ERR_PTR(-ENOMEM);
1289
1290 __setup_root(tree_root->nodesize, tree_root->leafsize,
1291 tree_root->sectorsize, tree_root->stripesize,
1292 root, fs_info, objectid);
1293 root->root_key.objectid = objectid;
1294 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1295 root->root_key.offset = 0;
1296
1297 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1298 0, objectid, NULL, 0, 0, 0);
1299 if (IS_ERR(leaf)) {
1300 ret = PTR_ERR(leaf);
1dd05682 1301 leaf = NULL;
20897f5c
AJ
1302 goto fail;
1303 }
1304
1305 bytenr = leaf->start;
1306 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1307 btrfs_set_header_bytenr(leaf, leaf->start);
1308 btrfs_set_header_generation(leaf, trans->transid);
1309 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1310 btrfs_set_header_owner(leaf, objectid);
1311 root->node = leaf;
1312
1313 write_extent_buffer(leaf, fs_info->fsid,
1314 (unsigned long)btrfs_header_fsid(leaf),
1315 BTRFS_FSID_SIZE);
1316 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1317 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1318 BTRFS_UUID_SIZE);
1319 btrfs_mark_buffer_dirty(leaf);
1320
1321 root->commit_root = btrfs_root_node(root);
1322 root->track_dirty = 1;
1323
1324
1325 root->root_item.flags = 0;
1326 root->root_item.byte_limit = 0;
1327 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1328 btrfs_set_root_generation(&root->root_item, trans->transid);
1329 btrfs_set_root_level(&root->root_item, 0);
1330 btrfs_set_root_refs(&root->root_item, 1);
1331 btrfs_set_root_used(&root->root_item, leaf->len);
1332 btrfs_set_root_last_snapshot(&root->root_item, 0);
1333 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1334 uuid_le_gen(&uuid);
1335 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1336 root->root_item.drop_level = 0;
1337
1338 key.objectid = objectid;
1339 key.type = BTRFS_ROOT_ITEM_KEY;
1340 key.offset = 0;
1341 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1342 if (ret)
1343 goto fail;
1344
1345 btrfs_tree_unlock(leaf);
1346
1dd05682
TI
1347 return root;
1348
20897f5c 1349fail:
1dd05682
TI
1350 if (leaf) {
1351 btrfs_tree_unlock(leaf);
1352 free_extent_buffer(leaf);
1353 }
1354 kfree(root);
20897f5c 1355
1dd05682 1356 return ERR_PTR(ret);
20897f5c
AJ
1357}
1358
7237f183
YZ
1359static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1360 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1361{
1362 struct btrfs_root *root;
1363 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1364 struct extent_buffer *leaf;
e02119d5 1365
6f07e42e 1366 root = btrfs_alloc_root(fs_info);
e02119d5 1367 if (!root)
7237f183 1368 return ERR_PTR(-ENOMEM);
e02119d5
CM
1369
1370 __setup_root(tree_root->nodesize, tree_root->leafsize,
1371 tree_root->sectorsize, tree_root->stripesize,
1372 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1373
1374 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1375 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1376 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1377 /*
1378 * log trees do not get reference counted because they go away
1379 * before a real commit is actually done. They do store pointers
1380 * to file data extents, and those reference counts still get
1381 * updated (along with back refs to the log tree).
1382 */
e02119d5
CM
1383 root->ref_cows = 0;
1384
5d4f98a2 1385 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1386 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1387 0, 0, 0);
7237f183
YZ
1388 if (IS_ERR(leaf)) {
1389 kfree(root);
1390 return ERR_CAST(leaf);
1391 }
e02119d5 1392
5d4f98a2
YZ
1393 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1394 btrfs_set_header_bytenr(leaf, leaf->start);
1395 btrfs_set_header_generation(leaf, trans->transid);
1396 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1397 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1398 root->node = leaf;
e02119d5
CM
1399
1400 write_extent_buffer(root->node, root->fs_info->fsid,
1401 (unsigned long)btrfs_header_fsid(root->node),
1402 BTRFS_FSID_SIZE);
1403 btrfs_mark_buffer_dirty(root->node);
1404 btrfs_tree_unlock(root->node);
7237f183
YZ
1405 return root;
1406}
1407
1408int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1409 struct btrfs_fs_info *fs_info)
1410{
1411 struct btrfs_root *log_root;
1412
1413 log_root = alloc_log_tree(trans, fs_info);
1414 if (IS_ERR(log_root))
1415 return PTR_ERR(log_root);
1416 WARN_ON(fs_info->log_root_tree);
1417 fs_info->log_root_tree = log_root;
1418 return 0;
1419}
1420
1421int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1422 struct btrfs_root *root)
1423{
1424 struct btrfs_root *log_root;
1425 struct btrfs_inode_item *inode_item;
1426
1427 log_root = alloc_log_tree(trans, root->fs_info);
1428 if (IS_ERR(log_root))
1429 return PTR_ERR(log_root);
1430
1431 log_root->last_trans = trans->transid;
1432 log_root->root_key.offset = root->root_key.objectid;
1433
1434 inode_item = &log_root->root_item.inode;
1435 inode_item->generation = cpu_to_le64(1);
1436 inode_item->size = cpu_to_le64(3);
1437 inode_item->nlink = cpu_to_le32(1);
1438 inode_item->nbytes = cpu_to_le64(root->leafsize);
1439 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1440
5d4f98a2 1441 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1442
1443 WARN_ON(root->log_root);
1444 root->log_root = log_root;
1445 root->log_transid = 0;
257c62e1 1446 root->last_log_commit = 0;
e02119d5
CM
1447 return 0;
1448}
1449
1450struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1451 struct btrfs_key *location)
1452{
1453 struct btrfs_root *root;
1454 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1455 struct btrfs_path *path;
5f39d397 1456 struct extent_buffer *l;
84234f3a 1457 u64 generation;
db94535d 1458 u32 blocksize;
0f7d52f4 1459 int ret = 0;
8ea05e3a 1460 int slot;
0f7d52f4 1461
6f07e42e 1462 root = btrfs_alloc_root(fs_info);
0cf6c620 1463 if (!root)
0f7d52f4 1464 return ERR_PTR(-ENOMEM);
0f7d52f4 1465 if (location->offset == (u64)-1) {
db94535d 1466 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1467 location->objectid, root);
1468 if (ret) {
0f7d52f4
CM
1469 kfree(root);
1470 return ERR_PTR(ret);
1471 }
13a8a7c8 1472 goto out;
0f7d52f4
CM
1473 }
1474
db94535d 1475 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1476 tree_root->sectorsize, tree_root->stripesize,
1477 root, fs_info, location->objectid);
0f7d52f4
CM
1478
1479 path = btrfs_alloc_path();
db5b493a
TI
1480 if (!path) {
1481 kfree(root);
1482 return ERR_PTR(-ENOMEM);
1483 }
0f7d52f4 1484 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1485 if (ret == 0) {
1486 l = path->nodes[0];
8ea05e3a 1487 slot = path->slots[0];
5fbf83c1 1488 btrfs_read_root_item(l, slot, &root->root_item);
13a8a7c8 1489 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1490 }
0f7d52f4
CM
1491 btrfs_free_path(path);
1492 if (ret) {
5e540f77 1493 kfree(root);
13a8a7c8
YZ
1494 if (ret > 0)
1495 ret = -ENOENT;
0f7d52f4
CM
1496 return ERR_PTR(ret);
1497 }
13a8a7c8 1498
84234f3a 1499 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1500 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1501 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1502 blocksize, generation);
416bc658
JB
1503 if (!root->node || !extent_buffer_uptodate(root->node)) {
1504 ret = (!root->node) ? -ENOMEM : -EIO;
1505
1506 free_extent_buffer(root->node);
1507 kfree(root);
1508 return ERR_PTR(ret);
1509 }
1510
5d4f98a2 1511 root->commit_root = btrfs_root_node(root);
79787eaa 1512 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1513out:
08fe4db1 1514 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1515 root->ref_cows = 1;
08fe4db1
LZ
1516 btrfs_check_and_init_root_item(&root->root_item);
1517 }
13a8a7c8 1518
5eda7b5e
CM
1519 return root;
1520}
1521
edbd8d4e
CM
1522struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1523 struct btrfs_key *location)
5eda7b5e
CM
1524{
1525 struct btrfs_root *root;
1526 int ret;
1527
edbd8d4e
CM
1528 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1529 return fs_info->tree_root;
1530 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1531 return fs_info->extent_root;
8f18cf13
CM
1532 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1533 return fs_info->chunk_root;
1534 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1535 return fs_info->dev_root;
0403e47e
YZ
1536 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1537 return fs_info->csum_root;
bcef60f2
AJ
1538 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1539 return fs_info->quota_root ? fs_info->quota_root :
1540 ERR_PTR(-ENOENT);
4df27c4d
YZ
1541again:
1542 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1543 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1544 (unsigned long)location->objectid);
4df27c4d 1545 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1546 if (root)
1547 return root;
1548
e02119d5 1549 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1550 if (IS_ERR(root))
1551 return root;
3394e160 1552
581bb050 1553 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1554 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1555 GFP_NOFS);
35a30d7c
DS
1556 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1557 ret = -ENOMEM;
581bb050 1558 goto fail;
35a30d7c 1559 }
581bb050
LZ
1560
1561 btrfs_init_free_ino_ctl(root);
1562 mutex_init(&root->fs_commit_mutex);
1563 spin_lock_init(&root->cache_lock);
1564 init_waitqueue_head(&root->cache_wait);
1565
0ee5dc67 1566 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1567 if (ret)
1568 goto fail;
3394e160 1569
d68fc57b
YZ
1570 if (btrfs_root_refs(&root->root_item) == 0) {
1571 ret = -ENOENT;
1572 goto fail;
1573 }
1574
1575 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1576 if (ret < 0)
1577 goto fail;
1578 if (ret == 0)
1579 root->orphan_item_inserted = 1;
1580
4df27c4d
YZ
1581 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1582 if (ret)
1583 goto fail;
1584
1585 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1586 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1587 (unsigned long)root->root_key.objectid,
0f7d52f4 1588 root);
d68fc57b 1589 if (ret == 0)
4df27c4d 1590 root->in_radix = 1;
d68fc57b 1591
4df27c4d
YZ
1592 spin_unlock(&fs_info->fs_roots_radix_lock);
1593 radix_tree_preload_end();
0f7d52f4 1594 if (ret) {
4df27c4d
YZ
1595 if (ret == -EEXIST) {
1596 free_fs_root(root);
1597 goto again;
1598 }
1599 goto fail;
0f7d52f4 1600 }
4df27c4d
YZ
1601
1602 ret = btrfs_find_dead_roots(fs_info->tree_root,
1603 root->root_key.objectid);
1604 WARN_ON(ret);
edbd8d4e 1605 return root;
4df27c4d
YZ
1606fail:
1607 free_fs_root(root);
1608 return ERR_PTR(ret);
edbd8d4e
CM
1609}
1610
04160088
CM
1611static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1612{
1613 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1614 int ret = 0;
04160088
CM
1615 struct btrfs_device *device;
1616 struct backing_dev_info *bdi;
b7967db7 1617
1f78160c
XG
1618 rcu_read_lock();
1619 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1620 if (!device->bdev)
1621 continue;
04160088
CM
1622 bdi = blk_get_backing_dev_info(device->bdev);
1623 if (bdi && bdi_congested(bdi, bdi_bits)) {
1624 ret = 1;
1625 break;
1626 }
1627 }
1f78160c 1628 rcu_read_unlock();
04160088
CM
1629 return ret;
1630}
1631
ad081f14
JA
1632/*
1633 * If this fails, caller must call bdi_destroy() to get rid of the
1634 * bdi again.
1635 */
04160088
CM
1636static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1637{
ad081f14
JA
1638 int err;
1639
1640 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1641 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1642 if (err)
1643 return err;
1644
4575c9cc 1645 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1646 bdi->congested_fn = btrfs_congested_fn;
1647 bdi->congested_data = info;
1648 return 0;
1649}
1650
8b712842
CM
1651/*
1652 * called by the kthread helper functions to finally call the bio end_io
1653 * functions. This is where read checksum verification actually happens
1654 */
1655static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1656{
ce9adaa5 1657 struct bio *bio;
8b712842
CM
1658 struct end_io_wq *end_io_wq;
1659 struct btrfs_fs_info *fs_info;
ce9adaa5 1660 int error;
ce9adaa5 1661
8b712842
CM
1662 end_io_wq = container_of(work, struct end_io_wq, work);
1663 bio = end_io_wq->bio;
1664 fs_info = end_io_wq->info;
ce9adaa5 1665
8b712842
CM
1666 error = end_io_wq->error;
1667 bio->bi_private = end_io_wq->private;
1668 bio->bi_end_io = end_io_wq->end_io;
1669 kfree(end_io_wq);
8b712842 1670 bio_endio(bio, error);
44b8bd7e
CM
1671}
1672
a74a4b97
CM
1673static int cleaner_kthread(void *arg)
1674{
1675 struct btrfs_root *root = arg;
1676
1677 do {
9d1a2a3a
DS
1678 int again = 0;
1679
76dda93c 1680 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
9d1a2a3a
DS
1681 down_read_trylock(&root->fs_info->sb->s_umount)) {
1682 if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1683 btrfs_run_delayed_iputs(root);
1684 again = btrfs_clean_one_deleted_snapshot(root);
1685 mutex_unlock(&root->fs_info->cleaner_mutex);
1686 }
4cb5300b 1687 btrfs_run_defrag_inodes(root->fs_info);
9d1a2a3a 1688 up_read(&root->fs_info->sb->s_umount);
76dda93c 1689 }
a74a4b97 1690
9d1a2a3a 1691 if (!try_to_freeze() && !again) {
a74a4b97 1692 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1693 if (!kthread_should_stop())
1694 schedule();
a74a4b97
CM
1695 __set_current_state(TASK_RUNNING);
1696 }
1697 } while (!kthread_should_stop());
1698 return 0;
1699}
1700
1701static int transaction_kthread(void *arg)
1702{
1703 struct btrfs_root *root = arg;
1704 struct btrfs_trans_handle *trans;
1705 struct btrfs_transaction *cur;
8929ecfa 1706 u64 transid;
a74a4b97
CM
1707 unsigned long now;
1708 unsigned long delay;
914b2007 1709 bool cannot_commit;
a74a4b97
CM
1710
1711 do {
914b2007 1712 cannot_commit = false;
a74a4b97 1713 delay = HZ * 30;
a74a4b97
CM
1714 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1715
a4abeea4 1716 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1717 cur = root->fs_info->running_transaction;
1718 if (!cur) {
a4abeea4 1719 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1720 goto sleep;
1721 }
31153d81 1722
a74a4b97 1723 now = get_seconds();
8929ecfa
YZ
1724 if (!cur->blocked &&
1725 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1726 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1727 delay = HZ * 5;
1728 goto sleep;
1729 }
8929ecfa 1730 transid = cur->transid;
a4abeea4 1731 spin_unlock(&root->fs_info->trans_lock);
56bec294 1732
79787eaa 1733 /* If the file system is aborted, this will always fail. */
354aa0fb 1734 trans = btrfs_attach_transaction(root);
914b2007 1735 if (IS_ERR(trans)) {
354aa0fb
MX
1736 if (PTR_ERR(trans) != -ENOENT)
1737 cannot_commit = true;
79787eaa 1738 goto sleep;
914b2007 1739 }
8929ecfa 1740 if (transid == trans->transid) {
79787eaa 1741 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1742 } else {
1743 btrfs_end_transaction(trans, root);
1744 }
a74a4b97
CM
1745sleep:
1746 wake_up_process(root->fs_info->cleaner_kthread);
1747 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1748
a0acae0e 1749 if (!try_to_freeze()) {
a74a4b97 1750 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1751 if (!kthread_should_stop() &&
914b2007
JK
1752 (!btrfs_transaction_blocked(root->fs_info) ||
1753 cannot_commit))
8929ecfa 1754 schedule_timeout(delay);
a74a4b97
CM
1755 __set_current_state(TASK_RUNNING);
1756 }
1757 } while (!kthread_should_stop());
1758 return 0;
1759}
1760
af31f5e5
CM
1761/*
1762 * this will find the highest generation in the array of
1763 * root backups. The index of the highest array is returned,
1764 * or -1 if we can't find anything.
1765 *
1766 * We check to make sure the array is valid by comparing the
1767 * generation of the latest root in the array with the generation
1768 * in the super block. If they don't match we pitch it.
1769 */
1770static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1771{
1772 u64 cur;
1773 int newest_index = -1;
1774 struct btrfs_root_backup *root_backup;
1775 int i;
1776
1777 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1778 root_backup = info->super_copy->super_roots + i;
1779 cur = btrfs_backup_tree_root_gen(root_backup);
1780 if (cur == newest_gen)
1781 newest_index = i;
1782 }
1783
1784 /* check to see if we actually wrapped around */
1785 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1786 root_backup = info->super_copy->super_roots;
1787 cur = btrfs_backup_tree_root_gen(root_backup);
1788 if (cur == newest_gen)
1789 newest_index = 0;
1790 }
1791 return newest_index;
1792}
1793
1794
1795/*
1796 * find the oldest backup so we know where to store new entries
1797 * in the backup array. This will set the backup_root_index
1798 * field in the fs_info struct
1799 */
1800static void find_oldest_super_backup(struct btrfs_fs_info *info,
1801 u64 newest_gen)
1802{
1803 int newest_index = -1;
1804
1805 newest_index = find_newest_super_backup(info, newest_gen);
1806 /* if there was garbage in there, just move along */
1807 if (newest_index == -1) {
1808 info->backup_root_index = 0;
1809 } else {
1810 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1811 }
1812}
1813
1814/*
1815 * copy all the root pointers into the super backup array.
1816 * this will bump the backup pointer by one when it is
1817 * done
1818 */
1819static void backup_super_roots(struct btrfs_fs_info *info)
1820{
1821 int next_backup;
1822 struct btrfs_root_backup *root_backup;
1823 int last_backup;
1824
1825 next_backup = info->backup_root_index;
1826 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1827 BTRFS_NUM_BACKUP_ROOTS;
1828
1829 /*
1830 * just overwrite the last backup if we're at the same generation
1831 * this happens only at umount
1832 */
1833 root_backup = info->super_for_commit->super_roots + last_backup;
1834 if (btrfs_backup_tree_root_gen(root_backup) ==
1835 btrfs_header_generation(info->tree_root->node))
1836 next_backup = last_backup;
1837
1838 root_backup = info->super_for_commit->super_roots + next_backup;
1839
1840 /*
1841 * make sure all of our padding and empty slots get zero filled
1842 * regardless of which ones we use today
1843 */
1844 memset(root_backup, 0, sizeof(*root_backup));
1845
1846 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1847
1848 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1849 btrfs_set_backup_tree_root_gen(root_backup,
1850 btrfs_header_generation(info->tree_root->node));
1851
1852 btrfs_set_backup_tree_root_level(root_backup,
1853 btrfs_header_level(info->tree_root->node));
1854
1855 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1856 btrfs_set_backup_chunk_root_gen(root_backup,
1857 btrfs_header_generation(info->chunk_root->node));
1858 btrfs_set_backup_chunk_root_level(root_backup,
1859 btrfs_header_level(info->chunk_root->node));
1860
1861 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1862 btrfs_set_backup_extent_root_gen(root_backup,
1863 btrfs_header_generation(info->extent_root->node));
1864 btrfs_set_backup_extent_root_level(root_backup,
1865 btrfs_header_level(info->extent_root->node));
1866
7c7e82a7
CM
1867 /*
1868 * we might commit during log recovery, which happens before we set
1869 * the fs_root. Make sure it is valid before we fill it in.
1870 */
1871 if (info->fs_root && info->fs_root->node) {
1872 btrfs_set_backup_fs_root(root_backup,
1873 info->fs_root->node->start);
1874 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1875 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1876 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1877 btrfs_header_level(info->fs_root->node));
7c7e82a7 1878 }
af31f5e5
CM
1879
1880 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1881 btrfs_set_backup_dev_root_gen(root_backup,
1882 btrfs_header_generation(info->dev_root->node));
1883 btrfs_set_backup_dev_root_level(root_backup,
1884 btrfs_header_level(info->dev_root->node));
1885
1886 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1887 btrfs_set_backup_csum_root_gen(root_backup,
1888 btrfs_header_generation(info->csum_root->node));
1889 btrfs_set_backup_csum_root_level(root_backup,
1890 btrfs_header_level(info->csum_root->node));
1891
1892 btrfs_set_backup_total_bytes(root_backup,
1893 btrfs_super_total_bytes(info->super_copy));
1894 btrfs_set_backup_bytes_used(root_backup,
1895 btrfs_super_bytes_used(info->super_copy));
1896 btrfs_set_backup_num_devices(root_backup,
1897 btrfs_super_num_devices(info->super_copy));
1898
1899 /*
1900 * if we don't copy this out to the super_copy, it won't get remembered
1901 * for the next commit
1902 */
1903 memcpy(&info->super_copy->super_roots,
1904 &info->super_for_commit->super_roots,
1905 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1906}
1907
1908/*
1909 * this copies info out of the root backup array and back into
1910 * the in-memory super block. It is meant to help iterate through
1911 * the array, so you send it the number of backups you've already
1912 * tried and the last backup index you used.
1913 *
1914 * this returns -1 when it has tried all the backups
1915 */
1916static noinline int next_root_backup(struct btrfs_fs_info *info,
1917 struct btrfs_super_block *super,
1918 int *num_backups_tried, int *backup_index)
1919{
1920 struct btrfs_root_backup *root_backup;
1921 int newest = *backup_index;
1922
1923 if (*num_backups_tried == 0) {
1924 u64 gen = btrfs_super_generation(super);
1925
1926 newest = find_newest_super_backup(info, gen);
1927 if (newest == -1)
1928 return -1;
1929
1930 *backup_index = newest;
1931 *num_backups_tried = 1;
1932 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1933 /* we've tried all the backups, all done */
1934 return -1;
1935 } else {
1936 /* jump to the next oldest backup */
1937 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1938 BTRFS_NUM_BACKUP_ROOTS;
1939 *backup_index = newest;
1940 *num_backups_tried += 1;
1941 }
1942 root_backup = super->super_roots + newest;
1943
1944 btrfs_set_super_generation(super,
1945 btrfs_backup_tree_root_gen(root_backup));
1946 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1947 btrfs_set_super_root_level(super,
1948 btrfs_backup_tree_root_level(root_backup));
1949 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1950
1951 /*
1952 * fixme: the total bytes and num_devices need to match or we should
1953 * need a fsck
1954 */
1955 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1956 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1957 return 0;
1958}
1959
7abadb64
LB
1960/* helper to cleanup workers */
1961static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1962{
1963 btrfs_stop_workers(&fs_info->generic_worker);
1964 btrfs_stop_workers(&fs_info->fixup_workers);
1965 btrfs_stop_workers(&fs_info->delalloc_workers);
1966 btrfs_stop_workers(&fs_info->workers);
1967 btrfs_stop_workers(&fs_info->endio_workers);
1968 btrfs_stop_workers(&fs_info->endio_meta_workers);
1969 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1970 btrfs_stop_workers(&fs_info->rmw_workers);
1971 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1972 btrfs_stop_workers(&fs_info->endio_write_workers);
1973 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1974 btrfs_stop_workers(&fs_info->submit_workers);
1975 btrfs_stop_workers(&fs_info->delayed_workers);
1976 btrfs_stop_workers(&fs_info->caching_workers);
1977 btrfs_stop_workers(&fs_info->readahead_workers);
1978 btrfs_stop_workers(&fs_info->flush_workers);
1979}
1980
af31f5e5
CM
1981/* helper to cleanup tree roots */
1982static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1983{
1984 free_extent_buffer(info->tree_root->node);
1985 free_extent_buffer(info->tree_root->commit_root);
1986 free_extent_buffer(info->dev_root->node);
1987 free_extent_buffer(info->dev_root->commit_root);
1988 free_extent_buffer(info->extent_root->node);
1989 free_extent_buffer(info->extent_root->commit_root);
1990 free_extent_buffer(info->csum_root->node);
1991 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1992 if (info->quota_root) {
1993 free_extent_buffer(info->quota_root->node);
1994 free_extent_buffer(info->quota_root->commit_root);
1995 }
af31f5e5
CM
1996
1997 info->tree_root->node = NULL;
1998 info->tree_root->commit_root = NULL;
1999 info->dev_root->node = NULL;
2000 info->dev_root->commit_root = NULL;
2001 info->extent_root->node = NULL;
2002 info->extent_root->commit_root = NULL;
2003 info->csum_root->node = NULL;
2004 info->csum_root->commit_root = NULL;
bcef60f2
AJ
2005 if (info->quota_root) {
2006 info->quota_root->node = NULL;
2007 info->quota_root->commit_root = NULL;
2008 }
af31f5e5
CM
2009
2010 if (chunk_root) {
2011 free_extent_buffer(info->chunk_root->node);
2012 free_extent_buffer(info->chunk_root->commit_root);
2013 info->chunk_root->node = NULL;
2014 info->chunk_root->commit_root = NULL;
2015 }
2016}
2017
171f6537
JB
2018static void del_fs_roots(struct btrfs_fs_info *fs_info)
2019{
2020 int ret;
2021 struct btrfs_root *gang[8];
2022 int i;
2023
2024 while (!list_empty(&fs_info->dead_roots)) {
2025 gang[0] = list_entry(fs_info->dead_roots.next,
2026 struct btrfs_root, root_list);
2027 list_del(&gang[0]->root_list);
2028
2029 if (gang[0]->in_radix) {
2030 btrfs_free_fs_root(fs_info, gang[0]);
2031 } else {
2032 free_extent_buffer(gang[0]->node);
2033 free_extent_buffer(gang[0]->commit_root);
2034 kfree(gang[0]);
2035 }
2036 }
2037
2038 while (1) {
2039 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2040 (void **)gang, 0,
2041 ARRAY_SIZE(gang));
2042 if (!ret)
2043 break;
2044 for (i = 0; i < ret; i++)
2045 btrfs_free_fs_root(fs_info, gang[i]);
2046 }
2047}
af31f5e5 2048
ad2b2c80
AV
2049int open_ctree(struct super_block *sb,
2050 struct btrfs_fs_devices *fs_devices,
2051 char *options)
2e635a27 2052{
db94535d
CM
2053 u32 sectorsize;
2054 u32 nodesize;
2055 u32 leafsize;
2056 u32 blocksize;
87ee04eb 2057 u32 stripesize;
84234f3a 2058 u64 generation;
f2b636e8 2059 u64 features;
3de4586c 2060 struct btrfs_key location;
a061fc8d 2061 struct buffer_head *bh;
4d34b278 2062 struct btrfs_super_block *disk_super;
815745cf 2063 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2064 struct btrfs_root *tree_root;
4d34b278
ID
2065 struct btrfs_root *extent_root;
2066 struct btrfs_root *csum_root;
2067 struct btrfs_root *chunk_root;
2068 struct btrfs_root *dev_root;
bcef60f2 2069 struct btrfs_root *quota_root;
e02119d5 2070 struct btrfs_root *log_tree_root;
eb60ceac 2071 int ret;
e58ca020 2072 int err = -EINVAL;
af31f5e5
CM
2073 int num_backups_tried = 0;
2074 int backup_index = 0;
4543df7e 2075
f84a8bd6 2076 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
2077 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2078 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2079 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2080 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 2081 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 2082
f84a8bd6 2083 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 2084 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
2085 err = -ENOMEM;
2086 goto fail;
2087 }
76dda93c
YZ
2088
2089 ret = init_srcu_struct(&fs_info->subvol_srcu);
2090 if (ret) {
2091 err = ret;
2092 goto fail;
2093 }
2094
2095 ret = setup_bdi(fs_info, &fs_info->bdi);
2096 if (ret) {
2097 err = ret;
2098 goto fail_srcu;
2099 }
2100
e2d84521
MX
2101 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2102 if (ret) {
2103 err = ret;
2104 goto fail_bdi;
2105 }
2106 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2107 (1 + ilog2(nr_cpu_ids));
2108
963d678b
MX
2109 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2110 if (ret) {
2111 err = ret;
2112 goto fail_dirty_metadata_bytes;
2113 }
2114
76dda93c
YZ
2115 fs_info->btree_inode = new_inode(sb);
2116 if (!fs_info->btree_inode) {
2117 err = -ENOMEM;
963d678b 2118 goto fail_delalloc_bytes;
76dda93c
YZ
2119 }
2120
a6591715 2121 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2122
76dda93c 2123 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 2124 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2125 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2126 INIT_LIST_HEAD(&fs_info->delayed_iputs);
ea8c2819 2127 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
11833d66 2128 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 2129 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 2130 spin_lock_init(&fs_info->trans_lock);
76dda93c 2131 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2132 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2133 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2134 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2135 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2136 spin_lock_init(&fs_info->super_lock);
f29021b2 2137 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2138 mutex_init(&fs_info->reloc_mutex);
de98ced9 2139 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2140
58176a96 2141 init_completion(&fs_info->kobj_unregister);
0b86a832 2142 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2143 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2144 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2145 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2146 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2147 BTRFS_BLOCK_RSV_GLOBAL);
2148 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2149 BTRFS_BLOCK_RSV_DELALLOC);
2150 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2151 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2152 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2153 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2154 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2155 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2156 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2157 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2158 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2159 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2160 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2161 fs_info->sb = sb;
6f568d35 2162 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2163 fs_info->metadata_ratio = 0;
4cb5300b 2164 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2165 fs_info->trans_no_join = 0;
2bf64758 2166 fs_info->free_chunk_space = 0;
f29021b2 2167 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2168
90519d66
AJ
2169 /* readahead state */
2170 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2171 spin_lock_init(&fs_info->reada_lock);
c8b97818 2172
b34b086c
CM
2173 fs_info->thread_pool_size = min_t(unsigned long,
2174 num_online_cpus() + 2, 8);
0afbaf8c 2175
3eaa2885
CM
2176 INIT_LIST_HEAD(&fs_info->ordered_extents);
2177 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2178 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2179 GFP_NOFS);
2180 if (!fs_info->delayed_root) {
2181 err = -ENOMEM;
2182 goto fail_iput;
2183 }
2184 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2185
a2de733c
AJ
2186 mutex_init(&fs_info->scrub_lock);
2187 atomic_set(&fs_info->scrubs_running, 0);
2188 atomic_set(&fs_info->scrub_pause_req, 0);
2189 atomic_set(&fs_info->scrubs_paused, 0);
2190 atomic_set(&fs_info->scrub_cancel_req, 0);
2191 init_waitqueue_head(&fs_info->scrub_pause_wait);
2192 init_rwsem(&fs_info->scrub_super_lock);
2193 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2194#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2195 fs_info->check_integrity_print_mask = 0;
2196#endif
a2de733c 2197
c9e9f97b
ID
2198 spin_lock_init(&fs_info->balance_lock);
2199 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2200 atomic_set(&fs_info->balance_running, 0);
2201 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2202 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2203 fs_info->balance_ctl = NULL;
837d5b6e 2204 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2205
a061fc8d
CM
2206 sb->s_blocksize = 4096;
2207 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2208 sb->s_bdi = &fs_info->bdi;
a061fc8d 2209
76dda93c 2210 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2211 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2212 /*
2213 * we set the i_size on the btree inode to the max possible int.
2214 * the real end of the address space is determined by all of
2215 * the devices in the system
2216 */
2217 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2218 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2219 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2220
5d4f98a2 2221 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2222 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2223 fs_info->btree_inode->i_mapping);
0b32f4bb 2224 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2225 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2226
2227 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2228
76dda93c
YZ
2229 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2230 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2231 sizeof(struct btrfs_key));
72ac3c0d
JB
2232 set_bit(BTRFS_INODE_DUMMY,
2233 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2234 insert_inode_hash(fs_info->btree_inode);
76dda93c 2235
0f9dd46c 2236 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2237 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2238 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2239
11833d66 2240 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2241 fs_info->btree_inode->i_mapping);
11833d66 2242 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2243 fs_info->btree_inode->i_mapping);
11833d66 2244 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2245 fs_info->do_barriers = 1;
e18e4809 2246
39279cc3 2247
5a3f23d5 2248 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2249 mutex_init(&fs_info->tree_log_mutex);
925baedd 2250 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2251 mutex_init(&fs_info->transaction_kthread_mutex);
2252 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2253 mutex_init(&fs_info->volume_mutex);
276e680d 2254 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2255 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2256 init_rwsem(&fs_info->subvol_sem);
e922e087
SB
2257 fs_info->dev_replace.lock_owner = 0;
2258 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2259 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2260 mutex_init(&fs_info->dev_replace.lock_management_lock);
2261 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2262
416ac51d 2263 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2264 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2265 fs_info->qgroup_tree = RB_ROOT;
2266 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2267 fs_info->qgroup_seq = 1;
2268 fs_info->quota_enabled = 0;
2269 fs_info->pending_quota_state = 0;
2270
fa9c0d79
CM
2271 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2272 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2273
e6dcd2dc 2274 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2275 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2276 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2277 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2278
53b381b3
DW
2279 ret = btrfs_alloc_stripe_hash_table(fs_info);
2280 if (ret) {
83c8266a 2281 err = ret;
53b381b3
DW
2282 goto fail_alloc;
2283 }
2284
0b86a832 2285 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2286 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2287
3c4bb26b 2288 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2289 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2290 if (!bh) {
2291 err = -EINVAL;
16cdcec7 2292 goto fail_alloc;
20b45077 2293 }
39279cc3 2294
6c41761f
DS
2295 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2296 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2297 sizeof(*fs_info->super_for_commit));
a061fc8d 2298 brelse(bh);
5f39d397 2299
6c41761f 2300 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2301
6c41761f 2302 disk_super = fs_info->super_copy;
0f7d52f4 2303 if (!btrfs_super_root(disk_super))
16cdcec7 2304 goto fail_alloc;
0f7d52f4 2305
acce952b 2306 /* check FS state, whether FS is broken. */
87533c47
MX
2307 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2308 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2309
fcd1f065
DS
2310 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2311 if (ret) {
2312 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2313 err = ret;
2314 goto fail_alloc;
2315 }
acce952b 2316
af31f5e5
CM
2317 /*
2318 * run through our array of backup supers and setup
2319 * our ring pointer to the oldest one
2320 */
2321 generation = btrfs_super_generation(disk_super);
2322 find_oldest_super_backup(fs_info, generation);
2323
75e7cb7f
LB
2324 /*
2325 * In the long term, we'll store the compression type in the super
2326 * block, and it'll be used for per file compression control.
2327 */
2328 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2329
2b82032c
YZ
2330 ret = btrfs_parse_options(tree_root, options);
2331 if (ret) {
2332 err = ret;
16cdcec7 2333 goto fail_alloc;
2b82032c 2334 }
dfe25020 2335
f2b636e8
JB
2336 features = btrfs_super_incompat_flags(disk_super) &
2337 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2338 if (features) {
2339 printk(KERN_ERR "BTRFS: couldn't mount because of "
2340 "unsupported optional features (%Lx).\n",
21380931 2341 (unsigned long long)features);
f2b636e8 2342 err = -EINVAL;
16cdcec7 2343 goto fail_alloc;
f2b636e8
JB
2344 }
2345
727011e0
CM
2346 if (btrfs_super_leafsize(disk_super) !=
2347 btrfs_super_nodesize(disk_super)) {
2348 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2349 "blocksizes don't match. node %d leaf %d\n",
2350 btrfs_super_nodesize(disk_super),
2351 btrfs_super_leafsize(disk_super));
2352 err = -EINVAL;
2353 goto fail_alloc;
2354 }
2355 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2356 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2357 "blocksize (%d) was too large\n",
2358 btrfs_super_leafsize(disk_super));
2359 err = -EINVAL;
2360 goto fail_alloc;
2361 }
2362
5d4f98a2 2363 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2364 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2365 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2366 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2367
3173a18f
JB
2368 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2369 printk(KERN_ERR "btrfs: has skinny extents\n");
2370
727011e0
CM
2371 /*
2372 * flag our filesystem as having big metadata blocks if
2373 * they are bigger than the page size
2374 */
2375 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2376 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2377 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2378 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2379 }
2380
bc3f116f
CM
2381 nodesize = btrfs_super_nodesize(disk_super);
2382 leafsize = btrfs_super_leafsize(disk_super);
2383 sectorsize = btrfs_super_sectorsize(disk_super);
2384 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2385 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2386 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2387
2388 /*
2389 * mixed block groups end up with duplicate but slightly offset
2390 * extent buffers for the same range. It leads to corruptions
2391 */
2392 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2393 (sectorsize != leafsize)) {
2394 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2395 "are not allowed for mixed block groups on %s\n",
2396 sb->s_id);
2397 goto fail_alloc;
2398 }
2399
ceda0864
MX
2400 /*
2401 * Needn't use the lock because there is no other task which will
2402 * update the flag.
2403 */
a6fa6fae 2404 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2405
f2b636e8
JB
2406 features = btrfs_super_compat_ro_flags(disk_super) &
2407 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2408 if (!(sb->s_flags & MS_RDONLY) && features) {
2409 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2410 "unsupported option features (%Lx).\n",
21380931 2411 (unsigned long long)features);
f2b636e8 2412 err = -EINVAL;
16cdcec7 2413 goto fail_alloc;
f2b636e8 2414 }
61d92c32
CM
2415
2416 btrfs_init_workers(&fs_info->generic_worker,
2417 "genwork", 1, NULL);
2418
5443be45 2419 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2420 fs_info->thread_pool_size,
2421 &fs_info->generic_worker);
c8b97818 2422
771ed689 2423 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2424 fs_info->thread_pool_size,
2425 &fs_info->generic_worker);
771ed689 2426
8ccf6f19
MX
2427 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2428 fs_info->thread_pool_size,
2429 &fs_info->generic_worker);
2430
5443be45 2431 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2432 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2433 fs_info->thread_pool_size),
2434 &fs_info->generic_worker);
61b49440 2435
bab39bf9
JB
2436 btrfs_init_workers(&fs_info->caching_workers, "cache",
2437 2, &fs_info->generic_worker);
2438
61b49440
CM
2439 /* a higher idle thresh on the submit workers makes it much more
2440 * likely that bios will be send down in a sane order to the
2441 * devices
2442 */
2443 fs_info->submit_workers.idle_thresh = 64;
53863232 2444
771ed689 2445 fs_info->workers.idle_thresh = 16;
4a69a410 2446 fs_info->workers.ordered = 1;
61b49440 2447
771ed689
CM
2448 fs_info->delalloc_workers.idle_thresh = 2;
2449 fs_info->delalloc_workers.ordered = 1;
2450
61d92c32
CM
2451 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2452 &fs_info->generic_worker);
5443be45 2453 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2454 fs_info->thread_pool_size,
2455 &fs_info->generic_worker);
d20f7043 2456 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2457 fs_info->thread_pool_size,
2458 &fs_info->generic_worker);
cad321ad 2459 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2460 "endio-meta-write", fs_info->thread_pool_size,
2461 &fs_info->generic_worker);
53b381b3
DW
2462 btrfs_init_workers(&fs_info->endio_raid56_workers,
2463 "endio-raid56", fs_info->thread_pool_size,
2464 &fs_info->generic_worker);
2465 btrfs_init_workers(&fs_info->rmw_workers,
2466 "rmw", fs_info->thread_pool_size,
2467 &fs_info->generic_worker);
5443be45 2468 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2469 fs_info->thread_pool_size,
2470 &fs_info->generic_worker);
0cb59c99
JB
2471 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2472 1, &fs_info->generic_worker);
16cdcec7
MX
2473 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2474 fs_info->thread_pool_size,
2475 &fs_info->generic_worker);
90519d66
AJ
2476 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2477 fs_info->thread_pool_size,
2478 &fs_info->generic_worker);
61b49440
CM
2479
2480 /*
2481 * endios are largely parallel and should have a very
2482 * low idle thresh
2483 */
2484 fs_info->endio_workers.idle_thresh = 4;
b51912c9 2485 fs_info->endio_meta_workers.idle_thresh = 4;
53b381b3
DW
2486 fs_info->endio_raid56_workers.idle_thresh = 4;
2487 fs_info->rmw_workers.idle_thresh = 2;
b51912c9 2488
9042846b
CM
2489 fs_info->endio_write_workers.idle_thresh = 2;
2490 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2491 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2492
0dc3b84a
JB
2493 /*
2494 * btrfs_start_workers can really only fail because of ENOMEM so just
2495 * return -ENOMEM if any of these fail.
2496 */
2497 ret = btrfs_start_workers(&fs_info->workers);
2498 ret |= btrfs_start_workers(&fs_info->generic_worker);
2499 ret |= btrfs_start_workers(&fs_info->submit_workers);
2500 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2501 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2502 ret |= btrfs_start_workers(&fs_info->endio_workers);
2503 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
53b381b3
DW
2504 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2505 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
0dc3b84a
JB
2506 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2507 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2508 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2509 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2510 ret |= btrfs_start_workers(&fs_info->caching_workers);
2511 ret |= btrfs_start_workers(&fs_info->readahead_workers);
8ccf6f19 2512 ret |= btrfs_start_workers(&fs_info->flush_workers);
0dc3b84a 2513 if (ret) {
fed425c7 2514 err = -ENOMEM;
0dc3b84a
JB
2515 goto fail_sb_buffer;
2516 }
4543df7e 2517
4575c9cc 2518 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2519 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2520 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2521
db94535d
CM
2522 tree_root->nodesize = nodesize;
2523 tree_root->leafsize = leafsize;
2524 tree_root->sectorsize = sectorsize;
87ee04eb 2525 tree_root->stripesize = stripesize;
a061fc8d
CM
2526
2527 sb->s_blocksize = sectorsize;
2528 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2529
cdb4c574 2530 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
d397712b 2531 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2532 goto fail_sb_buffer;
2533 }
19c00ddc 2534
8d082fb7
LB
2535 if (sectorsize != PAGE_SIZE) {
2536 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2537 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2538 goto fail_sb_buffer;
2539 }
2540
925baedd 2541 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2542 ret = btrfs_read_sys_array(tree_root);
925baedd 2543 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2544 if (ret) {
d397712b
CM
2545 printk(KERN_WARNING "btrfs: failed to read the system "
2546 "array on %s\n", sb->s_id);
5d4f98a2 2547 goto fail_sb_buffer;
84eed90f 2548 }
0b86a832
CM
2549
2550 blocksize = btrfs_level_size(tree_root,
2551 btrfs_super_chunk_root_level(disk_super));
84234f3a 2552 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2553
2554 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2555 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2556
2557 chunk_root->node = read_tree_block(chunk_root,
2558 btrfs_super_chunk_root(disk_super),
84234f3a 2559 blocksize, generation);
416bc658
JB
2560 if (!chunk_root->node ||
2561 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
83121942
DW
2562 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2563 sb->s_id);
af31f5e5 2564 goto fail_tree_roots;
83121942 2565 }
5d4f98a2
YZ
2566 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2567 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2568
e17cade2 2569 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2570 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2571 BTRFS_UUID_SIZE);
e17cade2 2572
0b86a832 2573 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2574 if (ret) {
d397712b
CM
2575 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2576 sb->s_id);
af31f5e5 2577 goto fail_tree_roots;
2b82032c 2578 }
0b86a832 2579
8dabb742
SB
2580 /*
2581 * keep the device that is marked to be the target device for the
2582 * dev_replace procedure
2583 */
2584 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2585
a6b0d5c8
CM
2586 if (!fs_devices->latest_bdev) {
2587 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2588 sb->s_id);
2589 goto fail_tree_roots;
2590 }
2591
af31f5e5 2592retry_root_backup:
db94535d
CM
2593 blocksize = btrfs_level_size(tree_root,
2594 btrfs_super_root_level(disk_super));
84234f3a 2595 generation = btrfs_super_generation(disk_super);
0b86a832 2596
e20d96d6 2597 tree_root->node = read_tree_block(tree_root,
db94535d 2598 btrfs_super_root(disk_super),
84234f3a 2599 blocksize, generation);
af31f5e5
CM
2600 if (!tree_root->node ||
2601 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2602 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2603 sb->s_id);
af31f5e5
CM
2604
2605 goto recovery_tree_root;
83121942 2606 }
af31f5e5 2607
5d4f98a2
YZ
2608 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2609 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2610
2611 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2612 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2613 if (ret)
af31f5e5 2614 goto recovery_tree_root;
0b86a832
CM
2615 extent_root->track_dirty = 1;
2616
2617 ret = find_and_setup_root(tree_root, fs_info,
2618 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2619 if (ret)
af31f5e5 2620 goto recovery_tree_root;
5d4f98a2 2621 dev_root->track_dirty = 1;
3768f368 2622
d20f7043
CM
2623 ret = find_and_setup_root(tree_root, fs_info,
2624 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2625 if (ret)
af31f5e5 2626 goto recovery_tree_root;
d20f7043
CM
2627 csum_root->track_dirty = 1;
2628
bcef60f2
AJ
2629 ret = find_and_setup_root(tree_root, fs_info,
2630 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2631 if (ret) {
2632 kfree(quota_root);
2633 quota_root = fs_info->quota_root = NULL;
2634 } else {
2635 quota_root->track_dirty = 1;
2636 fs_info->quota_enabled = 1;
2637 fs_info->pending_quota_state = 1;
2638 }
2639
8929ecfa
YZ
2640 fs_info->generation = generation;
2641 fs_info->last_trans_committed = generation;
8929ecfa 2642
68310a5e
ID
2643 ret = btrfs_recover_balance(fs_info);
2644 if (ret) {
2645 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2646 goto fail_block_groups;
2647 }
2648
733f4fbb
SB
2649 ret = btrfs_init_dev_stats(fs_info);
2650 if (ret) {
2651 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2652 ret);
2653 goto fail_block_groups;
2654 }
2655
8dabb742
SB
2656 ret = btrfs_init_dev_replace(fs_info);
2657 if (ret) {
2658 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2659 goto fail_block_groups;
2660 }
2661
2662 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2663
c59021f8 2664 ret = btrfs_init_space_info(fs_info);
2665 if (ret) {
2666 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2667 goto fail_block_groups;
2668 }
2669
1b1d1f66
JB
2670 ret = btrfs_read_block_groups(extent_root);
2671 if (ret) {
2672 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2673 goto fail_block_groups;
2674 }
5af3e8cc
SB
2675 fs_info->num_tolerated_disk_barrier_failures =
2676 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2677 if (fs_info->fs_devices->missing_devices >
2678 fs_info->num_tolerated_disk_barrier_failures &&
2679 !(sb->s_flags & MS_RDONLY)) {
2680 printk(KERN_WARNING
2681 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2682 goto fail_block_groups;
2683 }
9078a3e1 2684
a74a4b97
CM
2685 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2686 "btrfs-cleaner");
57506d50 2687 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2688 goto fail_block_groups;
a74a4b97
CM
2689
2690 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2691 tree_root,
2692 "btrfs-transaction");
57506d50 2693 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2694 goto fail_cleaner;
a74a4b97 2695
c289811c
CM
2696 if (!btrfs_test_opt(tree_root, SSD) &&
2697 !btrfs_test_opt(tree_root, NOSSD) &&
2698 !fs_info->fs_devices->rotating) {
2699 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2700 "mode\n");
2701 btrfs_set_opt(fs_info->mount_opt, SSD);
2702 }
2703
21adbd5c
SB
2704#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2705 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2706 ret = btrfsic_mount(tree_root, fs_devices,
2707 btrfs_test_opt(tree_root,
2708 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2709 1 : 0,
2710 fs_info->check_integrity_print_mask);
2711 if (ret)
2712 printk(KERN_WARNING "btrfs: failed to initialize"
2713 " integrity check module %s\n", sb->s_id);
2714 }
2715#endif
bcef60f2
AJ
2716 ret = btrfs_read_qgroup_config(fs_info);
2717 if (ret)
2718 goto fail_trans_kthread;
21adbd5c 2719
acce952b 2720 /* do not make disk changes in broken FS */
68ce9682 2721 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2722 u64 bytenr = btrfs_super_log_root(disk_super);
2723
7c2ca468 2724 if (fs_devices->rw_devices == 0) {
d397712b
CM
2725 printk(KERN_WARNING "Btrfs log replay required "
2726 "on RO media\n");
7c2ca468 2727 err = -EIO;
bcef60f2 2728 goto fail_qgroup;
7c2ca468 2729 }
e02119d5
CM
2730 blocksize =
2731 btrfs_level_size(tree_root,
2732 btrfs_super_log_root_level(disk_super));
d18a2c44 2733
6f07e42e 2734 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2735 if (!log_tree_root) {
2736 err = -ENOMEM;
bcef60f2 2737 goto fail_qgroup;
676e4c86 2738 }
e02119d5
CM
2739
2740 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2741 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2742
2743 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2744 blocksize,
2745 generation + 1);
416bc658
JB
2746 if (!log_tree_root->node ||
2747 !extent_buffer_uptodate(log_tree_root->node)) {
2748 printk(KERN_ERR "btrfs: failed to read log tree\n");
2749 free_extent_buffer(log_tree_root->node);
2750 kfree(log_tree_root);
2751 goto fail_trans_kthread;
2752 }
79787eaa 2753 /* returns with log_tree_root freed on success */
e02119d5 2754 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2755 if (ret) {
2756 btrfs_error(tree_root->fs_info, ret,
2757 "Failed to recover log tree");
2758 free_extent_buffer(log_tree_root->node);
2759 kfree(log_tree_root);
2760 goto fail_trans_kthread;
2761 }
e556ce2c
YZ
2762
2763 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2764 ret = btrfs_commit_super(tree_root);
2765 if (ret)
2766 goto fail_trans_kthread;
e556ce2c 2767 }
e02119d5 2768 }
1a40e23b 2769
76dda93c 2770 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2771 if (ret)
2772 goto fail_trans_kthread;
76dda93c 2773
7c2ca468 2774 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2775 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2776 if (ret)
2777 goto fail_trans_kthread;
d68fc57b 2778
5d4f98a2 2779 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2780 if (ret < 0) {
2781 printk(KERN_WARNING
2782 "btrfs: failed to recover relocation\n");
2783 err = -EINVAL;
bcef60f2 2784 goto fail_qgroup;
d7ce5843 2785 }
7c2ca468 2786 }
1a40e23b 2787
3de4586c
CM
2788 location.objectid = BTRFS_FS_TREE_OBJECTID;
2789 location.type = BTRFS_ROOT_ITEM_KEY;
2790 location.offset = (u64)-1;
2791
3de4586c
CM
2792 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2793 if (!fs_info->fs_root)
bcef60f2 2794 goto fail_qgroup;
3140c9a3
DC
2795 if (IS_ERR(fs_info->fs_root)) {
2796 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2797 goto fail_qgroup;
3140c9a3 2798 }
c289811c 2799
2b6ba629
ID
2800 if (sb->s_flags & MS_RDONLY)
2801 return 0;
59641015 2802
2b6ba629
ID
2803 down_read(&fs_info->cleanup_work_sem);
2804 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2805 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2806 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2807 close_ctree(tree_root);
2808 return ret;
2809 }
2810 up_read(&fs_info->cleanup_work_sem);
59641015 2811
2b6ba629
ID
2812 ret = btrfs_resume_balance_async(fs_info);
2813 if (ret) {
2814 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2815 close_ctree(tree_root);
2816 return ret;
e3acc2a6
JB
2817 }
2818
8dabb742
SB
2819 ret = btrfs_resume_dev_replace_async(fs_info);
2820 if (ret) {
2821 pr_warn("btrfs: failed to resume dev_replace\n");
2822 close_ctree(tree_root);
2823 return ret;
2824 }
2825
ad2b2c80 2826 return 0;
39279cc3 2827
bcef60f2
AJ
2828fail_qgroup:
2829 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2830fail_trans_kthread:
2831 kthread_stop(fs_info->transaction_kthread);
171f6537 2832 del_fs_roots(fs_info);
54067ae9 2833 btrfs_cleanup_transaction(fs_info->tree_root);
3f157a2f 2834fail_cleaner:
a74a4b97 2835 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2836
2837 /*
2838 * make sure we're done with the btree inode before we stop our
2839 * kthreads
2840 */
2841 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2842
1b1d1f66 2843fail_block_groups:
54067ae9 2844 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2845 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2846
2847fail_tree_roots:
2848 free_root_pointers(fs_info, 1);
2b8195bb 2849 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2850
39279cc3 2851fail_sb_buffer:
7abadb64 2852 btrfs_stop_all_workers(fs_info);
16cdcec7 2853fail_alloc:
4543df7e 2854fail_iput:
586e46e2
ID
2855 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2856
4543df7e 2857 iput(fs_info->btree_inode);
963d678b
MX
2858fail_delalloc_bytes:
2859 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
2860fail_dirty_metadata_bytes:
2861 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2862fail_bdi:
7e662854 2863 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2864fail_srcu:
2865 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2866fail:
53b381b3 2867 btrfs_free_stripe_hash_table(fs_info);
586e46e2 2868 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2869 return err;
af31f5e5
CM
2870
2871recovery_tree_root:
af31f5e5
CM
2872 if (!btrfs_test_opt(tree_root, RECOVERY))
2873 goto fail_tree_roots;
2874
2875 free_root_pointers(fs_info, 0);
2876
2877 /* don't use the log in recovery mode, it won't be valid */
2878 btrfs_set_super_log_root(disk_super, 0);
2879
2880 /* we can't trust the free space cache either */
2881 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2882
2883 ret = next_root_backup(fs_info, fs_info->super_copy,
2884 &num_backups_tried, &backup_index);
2885 if (ret == -1)
2886 goto fail_block_groups;
2887 goto retry_root_backup;
eb60ceac
CM
2888}
2889
f2984462
CM
2890static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2891{
f2984462
CM
2892 if (uptodate) {
2893 set_buffer_uptodate(bh);
2894 } else {
442a4f63
SB
2895 struct btrfs_device *device = (struct btrfs_device *)
2896 bh->b_private;
2897
606686ee
JB
2898 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2899 "I/O error on %s\n",
2900 rcu_str_deref(device->name));
1259ab75
CM
2901 /* note, we dont' set_buffer_write_io_error because we have
2902 * our own ways of dealing with the IO errors
2903 */
f2984462 2904 clear_buffer_uptodate(bh);
442a4f63 2905 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2906 }
2907 unlock_buffer(bh);
2908 put_bh(bh);
2909}
2910
a512bbf8
YZ
2911struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2912{
2913 struct buffer_head *bh;
2914 struct buffer_head *latest = NULL;
2915 struct btrfs_super_block *super;
2916 int i;
2917 u64 transid = 0;
2918 u64 bytenr;
2919
2920 /* we would like to check all the supers, but that would make
2921 * a btrfs mount succeed after a mkfs from a different FS.
2922 * So, we need to add a special mount option to scan for
2923 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2924 */
2925 for (i = 0; i < 1; i++) {
2926 bytenr = btrfs_sb_offset(i);
2927 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2928 break;
2929 bh = __bread(bdev, bytenr / 4096, 4096);
2930 if (!bh)
2931 continue;
2932
2933 super = (struct btrfs_super_block *)bh->b_data;
2934 if (btrfs_super_bytenr(super) != bytenr ||
cdb4c574 2935 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
a512bbf8
YZ
2936 brelse(bh);
2937 continue;
2938 }
2939
2940 if (!latest || btrfs_super_generation(super) > transid) {
2941 brelse(latest);
2942 latest = bh;
2943 transid = btrfs_super_generation(super);
2944 } else {
2945 brelse(bh);
2946 }
2947 }
2948 return latest;
2949}
2950
4eedeb75
HH
2951/*
2952 * this should be called twice, once with wait == 0 and
2953 * once with wait == 1. When wait == 0 is done, all the buffer heads
2954 * we write are pinned.
2955 *
2956 * They are released when wait == 1 is done.
2957 * max_mirrors must be the same for both runs, and it indicates how
2958 * many supers on this one device should be written.
2959 *
2960 * max_mirrors == 0 means to write them all.
2961 */
a512bbf8
YZ
2962static int write_dev_supers(struct btrfs_device *device,
2963 struct btrfs_super_block *sb,
2964 int do_barriers, int wait, int max_mirrors)
2965{
2966 struct buffer_head *bh;
2967 int i;
2968 int ret;
2969 int errors = 0;
2970 u32 crc;
2971 u64 bytenr;
a512bbf8
YZ
2972
2973 if (max_mirrors == 0)
2974 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2975
a512bbf8
YZ
2976 for (i = 0; i < max_mirrors; i++) {
2977 bytenr = btrfs_sb_offset(i);
2978 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2979 break;
2980
2981 if (wait) {
2982 bh = __find_get_block(device->bdev, bytenr / 4096,
2983 BTRFS_SUPER_INFO_SIZE);
2984 BUG_ON(!bh);
a512bbf8 2985 wait_on_buffer(bh);
4eedeb75
HH
2986 if (!buffer_uptodate(bh))
2987 errors++;
2988
2989 /* drop our reference */
2990 brelse(bh);
2991
2992 /* drop the reference from the wait == 0 run */
2993 brelse(bh);
2994 continue;
a512bbf8
YZ
2995 } else {
2996 btrfs_set_super_bytenr(sb, bytenr);
2997
2998 crc = ~(u32)0;
b0496686 2999 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3000 BTRFS_CSUM_SIZE, crc,
3001 BTRFS_SUPER_INFO_SIZE -
3002 BTRFS_CSUM_SIZE);
3003 btrfs_csum_final(crc, sb->csum);
3004
4eedeb75
HH
3005 /*
3006 * one reference for us, and we leave it for the
3007 * caller
3008 */
a512bbf8
YZ
3009 bh = __getblk(device->bdev, bytenr / 4096,
3010 BTRFS_SUPER_INFO_SIZE);
3011 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3012
4eedeb75 3013 /* one reference for submit_bh */
a512bbf8 3014 get_bh(bh);
4eedeb75
HH
3015
3016 set_buffer_uptodate(bh);
a512bbf8
YZ
3017 lock_buffer(bh);
3018 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3019 bh->b_private = device;
a512bbf8
YZ
3020 }
3021
387125fc
CM
3022 /*
3023 * we fua the first super. The others we allow
3024 * to go down lazy.
3025 */
21adbd5c 3026 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 3027 if (ret)
a512bbf8 3028 errors++;
a512bbf8
YZ
3029 }
3030 return errors < i ? 0 : -1;
3031}
3032
387125fc
CM
3033/*
3034 * endio for the write_dev_flush, this will wake anyone waiting
3035 * for the barrier when it is done
3036 */
3037static void btrfs_end_empty_barrier(struct bio *bio, int err)
3038{
3039 if (err) {
3040 if (err == -EOPNOTSUPP)
3041 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3042 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3043 }
3044 if (bio->bi_private)
3045 complete(bio->bi_private);
3046 bio_put(bio);
3047}
3048
3049/*
3050 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3051 * sent down. With wait == 1, it waits for the previous flush.
3052 *
3053 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3054 * capable
3055 */
3056static int write_dev_flush(struct btrfs_device *device, int wait)
3057{
3058 struct bio *bio;
3059 int ret = 0;
3060
3061 if (device->nobarriers)
3062 return 0;
3063
3064 if (wait) {
3065 bio = device->flush_bio;
3066 if (!bio)
3067 return 0;
3068
3069 wait_for_completion(&device->flush_wait);
3070
3071 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
3072 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3073 rcu_str_deref(device->name));
387125fc 3074 device->nobarriers = 1;
5af3e8cc 3075 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3076 ret = -EIO;
5af3e8cc
SB
3077 btrfs_dev_stat_inc_and_print(device,
3078 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3079 }
3080
3081 /* drop the reference from the wait == 0 run */
3082 bio_put(bio);
3083 device->flush_bio = NULL;
3084
3085 return ret;
3086 }
3087
3088 /*
3089 * one reference for us, and we leave it for the
3090 * caller
3091 */
9c017abc 3092 device->flush_bio = NULL;
387125fc
CM
3093 bio = bio_alloc(GFP_NOFS, 0);
3094 if (!bio)
3095 return -ENOMEM;
3096
3097 bio->bi_end_io = btrfs_end_empty_barrier;
3098 bio->bi_bdev = device->bdev;
3099 init_completion(&device->flush_wait);
3100 bio->bi_private = &device->flush_wait;
3101 device->flush_bio = bio;
3102
3103 bio_get(bio);
21adbd5c 3104 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3105
3106 return 0;
3107}
3108
3109/*
3110 * send an empty flush down to each device in parallel,
3111 * then wait for them
3112 */
3113static int barrier_all_devices(struct btrfs_fs_info *info)
3114{
3115 struct list_head *head;
3116 struct btrfs_device *dev;
5af3e8cc
SB
3117 int errors_send = 0;
3118 int errors_wait = 0;
387125fc
CM
3119 int ret;
3120
3121 /* send down all the barriers */
3122 head = &info->fs_devices->devices;
3123 list_for_each_entry_rcu(dev, head, dev_list) {
3124 if (!dev->bdev) {
5af3e8cc 3125 errors_send++;
387125fc
CM
3126 continue;
3127 }
3128 if (!dev->in_fs_metadata || !dev->writeable)
3129 continue;
3130
3131 ret = write_dev_flush(dev, 0);
3132 if (ret)
5af3e8cc 3133 errors_send++;
387125fc
CM
3134 }
3135
3136 /* wait for all the barriers */
3137 list_for_each_entry_rcu(dev, head, dev_list) {
3138 if (!dev->bdev) {
5af3e8cc 3139 errors_wait++;
387125fc
CM
3140 continue;
3141 }
3142 if (!dev->in_fs_metadata || !dev->writeable)
3143 continue;
3144
3145 ret = write_dev_flush(dev, 1);
3146 if (ret)
5af3e8cc 3147 errors_wait++;
387125fc 3148 }
5af3e8cc
SB
3149 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3150 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3151 return -EIO;
3152 return 0;
3153}
3154
5af3e8cc
SB
3155int btrfs_calc_num_tolerated_disk_barrier_failures(
3156 struct btrfs_fs_info *fs_info)
3157{
3158 struct btrfs_ioctl_space_info space;
3159 struct btrfs_space_info *sinfo;
3160 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3161 BTRFS_BLOCK_GROUP_SYSTEM,
3162 BTRFS_BLOCK_GROUP_METADATA,
3163 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3164 int num_types = 4;
3165 int i;
3166 int c;
3167 int num_tolerated_disk_barrier_failures =
3168 (int)fs_info->fs_devices->num_devices;
3169
3170 for (i = 0; i < num_types; i++) {
3171 struct btrfs_space_info *tmp;
3172
3173 sinfo = NULL;
3174 rcu_read_lock();
3175 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3176 if (tmp->flags == types[i]) {
3177 sinfo = tmp;
3178 break;
3179 }
3180 }
3181 rcu_read_unlock();
3182
3183 if (!sinfo)
3184 continue;
3185
3186 down_read(&sinfo->groups_sem);
3187 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3188 if (!list_empty(&sinfo->block_groups[c])) {
3189 u64 flags;
3190
3191 btrfs_get_block_group_info(
3192 &sinfo->block_groups[c], &space);
3193 if (space.total_bytes == 0 ||
3194 space.used_bytes == 0)
3195 continue;
3196 flags = space.flags;
3197 /*
3198 * return
3199 * 0: if dup, single or RAID0 is configured for
3200 * any of metadata, system or data, else
3201 * 1: if RAID5 is configured, or if RAID1 or
3202 * RAID10 is configured and only two mirrors
3203 * are used, else
3204 * 2: if RAID6 is configured, else
3205 * num_mirrors - 1: if RAID1 or RAID10 is
3206 * configured and more than
3207 * 2 mirrors are used.
3208 */
3209 if (num_tolerated_disk_barrier_failures > 0 &&
3210 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3211 BTRFS_BLOCK_GROUP_RAID0)) ||
3212 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3213 == 0)))
3214 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3215 else if (num_tolerated_disk_barrier_failures > 1) {
3216 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3217 BTRFS_BLOCK_GROUP_RAID5 |
3218 BTRFS_BLOCK_GROUP_RAID10)) {
3219 num_tolerated_disk_barrier_failures = 1;
3220 } else if (flags &
3221 BTRFS_BLOCK_GROUP_RAID5) {
3222 num_tolerated_disk_barrier_failures = 2;
3223 }
3224 }
5af3e8cc
SB
3225 }
3226 }
3227 up_read(&sinfo->groups_sem);
3228 }
3229
3230 return num_tolerated_disk_barrier_failures;
3231}
3232
a512bbf8 3233int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3234{
e5e9a520 3235 struct list_head *head;
f2984462 3236 struct btrfs_device *dev;
a061fc8d 3237 struct btrfs_super_block *sb;
f2984462 3238 struct btrfs_dev_item *dev_item;
f2984462
CM
3239 int ret;
3240 int do_barriers;
a236aed1
CM
3241 int max_errors;
3242 int total_errors = 0;
a061fc8d 3243 u64 flags;
f2984462 3244
6c41761f 3245 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 3246 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3247 backup_super_roots(root->fs_info);
f2984462 3248
6c41761f 3249 sb = root->fs_info->super_for_commit;
a061fc8d 3250 dev_item = &sb->dev_item;
e5e9a520 3251
174ba509 3252 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3253 head = &root->fs_info->fs_devices->devices;
387125fc 3254
5af3e8cc
SB
3255 if (do_barriers) {
3256 ret = barrier_all_devices(root->fs_info);
3257 if (ret) {
3258 mutex_unlock(
3259 &root->fs_info->fs_devices->device_list_mutex);
3260 btrfs_error(root->fs_info, ret,
3261 "errors while submitting device barriers.");
3262 return ret;
3263 }
3264 }
387125fc 3265
1f78160c 3266 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3267 if (!dev->bdev) {
3268 total_errors++;
3269 continue;
3270 }
2b82032c 3271 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3272 continue;
3273
2b82032c 3274 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3275 btrfs_set_stack_device_type(dev_item, dev->type);
3276 btrfs_set_stack_device_id(dev_item, dev->devid);
3277 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3278 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3279 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3280 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3281 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3282 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3283 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3284
a061fc8d
CM
3285 flags = btrfs_super_flags(sb);
3286 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3287
a512bbf8 3288 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3289 if (ret)
3290 total_errors++;
f2984462 3291 }
a236aed1 3292 if (total_errors > max_errors) {
d397712b
CM
3293 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3294 total_errors);
79787eaa
JM
3295
3296 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3297 BUG();
3298 }
f2984462 3299
a512bbf8 3300 total_errors = 0;
1f78160c 3301 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3302 if (!dev->bdev)
3303 continue;
2b82032c 3304 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3305 continue;
3306
a512bbf8
YZ
3307 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3308 if (ret)
3309 total_errors++;
f2984462 3310 }
174ba509 3311 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3312 if (total_errors > max_errors) {
79787eaa
JM
3313 btrfs_error(root->fs_info, -EIO,
3314 "%d errors while writing supers", total_errors);
3315 return -EIO;
a236aed1 3316 }
f2984462
CM
3317 return 0;
3318}
3319
a512bbf8
YZ
3320int write_ctree_super(struct btrfs_trans_handle *trans,
3321 struct btrfs_root *root, int max_mirrors)
eb60ceac 3322{
e66f709b 3323 int ret;
5f39d397 3324
a512bbf8 3325 ret = write_all_supers(root, max_mirrors);
5f39d397 3326 return ret;
cfaa7295
CM
3327}
3328
143bede5 3329void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3330{
4df27c4d 3331 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3332 radix_tree_delete(&fs_info->fs_roots_radix,
3333 (unsigned long)root->root_key.objectid);
4df27c4d 3334 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3335
3336 if (btrfs_root_refs(&root->root_item) == 0)
3337 synchronize_srcu(&fs_info->subvol_srcu);
3338
d7634482 3339 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e
LB
3340 btrfs_free_log(NULL, root);
3341 btrfs_free_log_root_tree(NULL, fs_info);
3342 }
3343
581bb050
LZ
3344 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3345 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3346 free_fs_root(root);
4df27c4d
YZ
3347}
3348
3349static void free_fs_root(struct btrfs_root *root)
3350{
82d5902d 3351 iput(root->cache_inode);
4df27c4d 3352 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3353 if (root->anon_dev)
3354 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3355 free_extent_buffer(root->node);
3356 free_extent_buffer(root->commit_root);
581bb050
LZ
3357 kfree(root->free_ino_ctl);
3358 kfree(root->free_ino_pinned);
d397712b 3359 kfree(root->name);
2619ba1f 3360 kfree(root);
2619ba1f
CM
3361}
3362
c146afad 3363int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3364{
c146afad
YZ
3365 u64 root_objectid = 0;
3366 struct btrfs_root *gang[8];
3367 int i;
3768f368 3368 int ret;
e089f05c 3369
c146afad
YZ
3370 while (1) {
3371 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3372 (void **)gang, root_objectid,
3373 ARRAY_SIZE(gang));
3374 if (!ret)
3375 break;
5d4f98a2
YZ
3376
3377 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3378 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3379 int err;
3380
c146afad 3381 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3382 err = btrfs_orphan_cleanup(gang[i]);
3383 if (err)
3384 return err;
c146afad
YZ
3385 }
3386 root_objectid++;
3387 }
3388 return 0;
3389}
a2135011 3390
c146afad
YZ
3391int btrfs_commit_super(struct btrfs_root *root)
3392{
3393 struct btrfs_trans_handle *trans;
3394 int ret;
a74a4b97 3395
c146afad 3396 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3397 btrfs_run_delayed_iputs(root);
c146afad 3398 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3399 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3400
3401 /* wait until ongoing cleanup work done */
3402 down_write(&root->fs_info->cleanup_work_sem);
3403 up_write(&root->fs_info->cleanup_work_sem);
3404
7a7eaa40 3405 trans = btrfs_join_transaction(root);
3612b495
TI
3406 if (IS_ERR(trans))
3407 return PTR_ERR(trans);
54aa1f4d 3408 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3409 if (ret)
3410 return ret;
c146afad 3411 /* run commit again to drop the original snapshot */
7a7eaa40 3412 trans = btrfs_join_transaction(root);
3612b495
TI
3413 if (IS_ERR(trans))
3414 return PTR_ERR(trans);
79787eaa
JM
3415 ret = btrfs_commit_transaction(trans, root);
3416 if (ret)
3417 return ret;
79154b1b 3418 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3419 if (ret) {
3420 btrfs_error(root->fs_info, ret,
3421 "Failed to sync btree inode to disk.");
3422 return ret;
3423 }
d6bfde87 3424
a512bbf8 3425 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3426 return ret;
3427}
3428
3429int close_ctree(struct btrfs_root *root)
3430{
3431 struct btrfs_fs_info *fs_info = root->fs_info;
3432 int ret;
3433
3434 fs_info->closing = 1;
3435 smp_mb();
3436
837d5b6e 3437 /* pause restriper - we want to resume on mount */
aa1b8cd4 3438 btrfs_pause_balance(fs_info);
837d5b6e 3439
8dabb742
SB
3440 btrfs_dev_replace_suspend_for_unmount(fs_info);
3441
aa1b8cd4 3442 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3443
3444 /* wait for any defraggers to finish */
3445 wait_event(fs_info->transaction_wait,
3446 (atomic_read(&fs_info->defrag_running) == 0));
3447
3448 /* clear out the rbtree of defraggable inodes */
26176e7c 3449 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3450
c146afad 3451 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3452 ret = btrfs_commit_super(root);
3453 if (ret)
3454 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3455 }
3456
87533c47 3457 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3458 btrfs_error_commit_super(root);
0f7d52f4 3459
300e4f8a
JB
3460 btrfs_put_block_group_cache(fs_info);
3461
e3029d9f
AV
3462 kthread_stop(fs_info->transaction_kthread);
3463 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3464
f25784b3
YZ
3465 fs_info->closing = 2;
3466 smp_mb();
3467
bcef60f2
AJ
3468 btrfs_free_qgroup_config(root->fs_info);
3469
963d678b
MX
3470 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3471 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3472 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3473 }
bcc63abb 3474
be283b2e 3475 free_root_pointers(fs_info, 1);
d20f7043 3476
e3029d9f 3477 btrfs_free_block_groups(fs_info);
d10c5f31 3478
c146afad 3479 del_fs_roots(fs_info);
d10c5f31 3480
c146afad 3481 iput(fs_info->btree_inode);
9ad6b7bc 3482
7abadb64 3483 btrfs_stop_all_workers(fs_info);
d6bfde87 3484
21adbd5c
SB
3485#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3486 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3487 btrfsic_unmount(root, fs_info->fs_devices);
3488#endif
3489
dfe25020 3490 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3491 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3492
e2d84521 3493 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3494 percpu_counter_destroy(&fs_info->delalloc_bytes);
04160088 3495 bdi_destroy(&fs_info->bdi);
76dda93c 3496 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3497
53b381b3
DW
3498 btrfs_free_stripe_hash_table(fs_info);
3499
eb60ceac
CM
3500 return 0;
3501}
3502
b9fab919
CM
3503int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3504 int atomic)
5f39d397 3505{
1259ab75 3506 int ret;
727011e0 3507 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3508
0b32f4bb 3509 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3510 if (!ret)
3511 return ret;
3512
3513 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3514 parent_transid, atomic);
3515 if (ret == -EAGAIN)
3516 return ret;
1259ab75 3517 return !ret;
5f39d397
CM
3518}
3519
3520int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3521{
0b32f4bb 3522 return set_extent_buffer_uptodate(buf);
5f39d397 3523}
6702ed49 3524
5f39d397
CM
3525void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3526{
727011e0 3527 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3528 u64 transid = btrfs_header_generation(buf);
b9473439 3529 int was_dirty;
b4ce94de 3530
b9447ef8 3531 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3532 if (transid != root->fs_info->generation)
3533 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3534 "found %llu running %llu\n",
db94535d 3535 (unsigned long long)buf->start,
d397712b
CM
3536 (unsigned long long)transid,
3537 (unsigned long long)root->fs_info->generation);
0b32f4bb 3538 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3539 if (!was_dirty)
3540 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3541 buf->len,
3542 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3543}
3544
b53d3f5d
LB
3545static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3546 int flush_delayed)
16cdcec7
MX
3547{
3548 /*
3549 * looks as though older kernels can get into trouble with
3550 * this code, they end up stuck in balance_dirty_pages forever
3551 */
e2d84521 3552 int ret;
16cdcec7
MX
3553
3554 if (current->flags & PF_MEMALLOC)
3555 return;
3556
b53d3f5d
LB
3557 if (flush_delayed)
3558 btrfs_balance_delayed_items(root);
16cdcec7 3559
e2d84521
MX
3560 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3561 BTRFS_DIRTY_METADATA_THRESH);
3562 if (ret > 0) {
d0e1d66b
NJ
3563 balance_dirty_pages_ratelimited(
3564 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3565 }
3566 return;
3567}
3568
b53d3f5d 3569void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3570{
b53d3f5d
LB
3571 __btrfs_btree_balance_dirty(root, 1);
3572}
585ad2c3 3573
b53d3f5d
LB
3574void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3575{
3576 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3577}
6b80053d 3578
ca7a79ad 3579int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3580{
727011e0 3581 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3582 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3583}
0da5468f 3584
fcd1f065 3585static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3586 int read_only)
3587{
fcd1f065
DS
3588 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3589 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3590 return -EINVAL;
3591 }
3592
acce952b 3593 if (read_only)
fcd1f065 3594 return 0;
acce952b 3595
fcd1f065 3596 return 0;
acce952b 3597}
3598
68ce9682 3599void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3600{
acce952b 3601 mutex_lock(&root->fs_info->cleaner_mutex);
3602 btrfs_run_delayed_iputs(root);
3603 mutex_unlock(&root->fs_info->cleaner_mutex);
3604
3605 down_write(&root->fs_info->cleanup_work_sem);
3606 up_write(&root->fs_info->cleanup_work_sem);
3607
3608 /* cleanup FS via transaction */
3609 btrfs_cleanup_transaction(root);
acce952b 3610}
3611
569e0f35
JB
3612static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3613 struct btrfs_root *root)
acce952b 3614{
3615 struct btrfs_inode *btrfs_inode;
3616 struct list_head splice;
3617
3618 INIT_LIST_HEAD(&splice);
3619
3620 mutex_lock(&root->fs_info->ordered_operations_mutex);
3621 spin_lock(&root->fs_info->ordered_extent_lock);
3622
569e0f35 3623 list_splice_init(&t->ordered_operations, &splice);
acce952b 3624 while (!list_empty(&splice)) {
3625 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3626 ordered_operations);
3627
3628 list_del_init(&btrfs_inode->ordered_operations);
3629
3630 btrfs_invalidate_inodes(btrfs_inode->root);
3631 }
3632
3633 spin_unlock(&root->fs_info->ordered_extent_lock);
3634 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3635}
3636
143bede5 3637static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3638{
acce952b 3639 struct btrfs_ordered_extent *ordered;
acce952b 3640
3641 spin_lock(&root->fs_info->ordered_extent_lock);
779880ef
JB
3642 /*
3643 * This will just short circuit the ordered completion stuff which will
3644 * make sure the ordered extent gets properly cleaned up.
3645 */
3646 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3647 root_extent_list)
3648 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
acce952b 3649 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3650}
3651
79787eaa
JM
3652int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3653 struct btrfs_root *root)
acce952b 3654{
3655 struct rb_node *node;
3656 struct btrfs_delayed_ref_root *delayed_refs;
3657 struct btrfs_delayed_ref_node *ref;
3658 int ret = 0;
3659
3660 delayed_refs = &trans->delayed_refs;
3661
3662 spin_lock(&delayed_refs->lock);
3663 if (delayed_refs->num_entries == 0) {
cfece4db 3664 spin_unlock(&delayed_refs->lock);
acce952b 3665 printk(KERN_INFO "delayed_refs has NO entry\n");
3666 return ret;
3667 }
3668
b939d1ab 3669 while ((node = rb_first(&delayed_refs->root)) != NULL) {
eb12db69 3670 struct btrfs_delayed_ref_head *head = NULL;
acce952b 3671
eb12db69 3672 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3673 atomic_set(&ref->refs, 1);
3674 if (btrfs_delayed_ref_is_head(ref)) {
acce952b 3675
3676 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3677 if (!mutex_trylock(&head->mutex)) {
3678 atomic_inc(&ref->refs);
3679 spin_unlock(&delayed_refs->lock);
3680
3681 /* Need to wait for the delayed ref to run */
3682 mutex_lock(&head->mutex);
3683 mutex_unlock(&head->mutex);
3684 btrfs_put_delayed_ref(ref);
3685
e18fca73 3686 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3687 continue;
3688 }
3689
54067ae9
JB
3690 if (head->must_insert_reserved)
3691 btrfs_pin_extent(root, ref->bytenr,
3692 ref->num_bytes, 1);
78a6184a 3693 btrfs_free_delayed_extent_op(head->extent_op);
acce952b 3694 delayed_refs->num_heads--;
3695 if (list_empty(&head->cluster))
3696 delayed_refs->num_heads_ready--;
3697 list_del_init(&head->cluster);
acce952b 3698 }
eb12db69 3699
b939d1ab
JB
3700 ref->in_tree = 0;
3701 rb_erase(&ref->rb_node, &delayed_refs->root);
3702 delayed_refs->num_entries--;
eb12db69
JB
3703 if (head)
3704 mutex_unlock(&head->mutex);
acce952b 3705 spin_unlock(&delayed_refs->lock);
3706 btrfs_put_delayed_ref(ref);
3707
3708 cond_resched();
3709 spin_lock(&delayed_refs->lock);
3710 }
3711
3712 spin_unlock(&delayed_refs->lock);
3713
3714 return ret;
3715}
3716
aec8030a 3717static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
acce952b 3718{
3719 struct btrfs_pending_snapshot *snapshot;
3720 struct list_head splice;
3721
3722 INIT_LIST_HEAD(&splice);
3723
3724 list_splice_init(&t->pending_snapshots, &splice);
3725
3726 while (!list_empty(&splice)) {
3727 snapshot = list_entry(splice.next,
3728 struct btrfs_pending_snapshot,
3729 list);
aec8030a 3730 snapshot->error = -ECANCELED;
acce952b 3731 list_del_init(&snapshot->list);
acce952b 3732 }
acce952b 3733}
3734
143bede5 3735static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3736{
3737 struct btrfs_inode *btrfs_inode;
3738 struct list_head splice;
3739
3740 INIT_LIST_HEAD(&splice);
3741
acce952b 3742 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3743 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3744
3745 while (!list_empty(&splice)) {
3746 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3747 delalloc_inodes);
3748
3749 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3750 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3751 &btrfs_inode->runtime_flags);
acce952b 3752
3753 btrfs_invalidate_inodes(btrfs_inode->root);
3754 }
3755
3756 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3757}
3758
3759static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3760 struct extent_io_tree *dirty_pages,
3761 int mark)
3762{
3763 int ret;
acce952b 3764 struct extent_buffer *eb;
3765 u64 start = 0;
3766 u64 end;
acce952b 3767
3768 while (1) {
3769 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3770 mark, NULL);
acce952b 3771 if (ret)
3772 break;
3773
3774 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3775 while (start <= end) {
fd8b2b61
JB
3776 eb = btrfs_find_tree_block(root, start,
3777 root->leafsize);
3778 start += eb->len;
3779 if (!eb)
acce952b 3780 continue;
fd8b2b61 3781 wait_on_extent_buffer_writeback(eb);
acce952b 3782
fd8b2b61
JB
3783 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3784 &eb->bflags))
3785 clear_extent_buffer_dirty(eb);
3786 free_extent_buffer_stale(eb);
acce952b 3787 }
3788 }
3789
3790 return ret;
3791}
3792
3793static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3794 struct extent_io_tree *pinned_extents)
3795{
3796 struct extent_io_tree *unpin;
3797 u64 start;
3798 u64 end;
3799 int ret;
ed0eaa14 3800 bool loop = true;
acce952b 3801
3802 unpin = pinned_extents;
ed0eaa14 3803again:
acce952b 3804 while (1) {
3805 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3806 EXTENT_DIRTY, NULL);
acce952b 3807 if (ret)
3808 break;
3809
3810 /* opt_discard */
5378e607
LD
3811 if (btrfs_test_opt(root, DISCARD))
3812 ret = btrfs_error_discard_extent(root, start,
3813 end + 1 - start,
3814 NULL);
acce952b 3815
3816 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3817 btrfs_error_unpin_extent_range(root, start, end);
3818 cond_resched();
3819 }
3820
ed0eaa14
LB
3821 if (loop) {
3822 if (unpin == &root->fs_info->freed_extents[0])
3823 unpin = &root->fs_info->freed_extents[1];
3824 else
3825 unpin = &root->fs_info->freed_extents[0];
3826 loop = false;
3827 goto again;
3828 }
3829
acce952b 3830 return 0;
3831}
3832
49b25e05
JM
3833void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3834 struct btrfs_root *root)
3835{
3836 btrfs_destroy_delayed_refs(cur_trans, root);
3837 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3838 cur_trans->dirty_pages.dirty_bytes);
3839
3840 /* FIXME: cleanup wait for commit */
3841 cur_trans->in_commit = 1;
3842 cur_trans->blocked = 1;
d7096fc3 3843 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 3844
aec8030a
MX
3845 btrfs_evict_pending_snapshots(cur_trans);
3846
49b25e05 3847 cur_trans->blocked = 0;
d7096fc3 3848 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3849
3850 cur_trans->commit_done = 1;
d7096fc3 3851 wake_up(&cur_trans->commit_wait);
49b25e05 3852
67cde344
MX
3853 btrfs_destroy_delayed_inodes(root);
3854 btrfs_assert_delayed_root_empty(root);
49b25e05 3855
49b25e05
JM
3856 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3857 EXTENT_DIRTY);
6e841e32
LB
3858 btrfs_destroy_pinned_extent(root,
3859 root->fs_info->pinned_extents);
49b25e05
JM
3860
3861 /*
3862 memset(cur_trans, 0, sizeof(*cur_trans));
3863 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3864 */
3865}
3866
3867int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3868{
3869 struct btrfs_transaction *t;
3870 LIST_HEAD(list);
3871
acce952b 3872 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3873
a4abeea4 3874 spin_lock(&root->fs_info->trans_lock);
acce952b 3875 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3876 root->fs_info->trans_no_join = 1;
3877 spin_unlock(&root->fs_info->trans_lock);
3878
acce952b 3879 while (!list_empty(&list)) {
3880 t = list_entry(list.next, struct btrfs_transaction, list);
acce952b 3881
569e0f35 3882 btrfs_destroy_ordered_operations(t, root);
acce952b 3883
3884 btrfs_destroy_ordered_extents(root);
3885
3886 btrfs_destroy_delayed_refs(t, root);
3887
acce952b 3888 /* FIXME: cleanup wait for commit */
3889 t->in_commit = 1;
3890 t->blocked = 1;
66657b31 3891 smp_mb();
acce952b 3892 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3893 wake_up(&root->fs_info->transaction_blocked_wait);
3894
aec8030a
MX
3895 btrfs_evict_pending_snapshots(t);
3896
acce952b 3897 t->blocked = 0;
66657b31 3898 smp_mb();
acce952b 3899 if (waitqueue_active(&root->fs_info->transaction_wait))
3900 wake_up(&root->fs_info->transaction_wait);
acce952b 3901
acce952b 3902 t->commit_done = 1;
66657b31 3903 smp_mb();
acce952b 3904 if (waitqueue_active(&t->commit_wait))
3905 wake_up(&t->commit_wait);
acce952b 3906
67cde344
MX
3907 btrfs_destroy_delayed_inodes(root);
3908 btrfs_assert_delayed_root_empty(root);
3909
acce952b 3910 btrfs_destroy_delalloc_inodes(root);
3911
a4abeea4 3912 spin_lock(&root->fs_info->trans_lock);
acce952b 3913 root->fs_info->running_transaction = NULL;
a4abeea4 3914 spin_unlock(&root->fs_info->trans_lock);
acce952b 3915
3916 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3917 EXTENT_DIRTY);
3918
3919 btrfs_destroy_pinned_extent(root,
3920 root->fs_info->pinned_extents);
3921
13c5a93e 3922 atomic_set(&t->use_count, 0);
acce952b 3923 list_del_init(&t->list);
3924 memset(t, 0, sizeof(*t));
3925 kmem_cache_free(btrfs_transaction_cachep, t);
3926 }
3927
a4abeea4
JB
3928 spin_lock(&root->fs_info->trans_lock);
3929 root->fs_info->trans_no_join = 0;
3930 spin_unlock(&root->fs_info->trans_lock);
acce952b 3931 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3932
3933 return 0;
3934}
3935
d1310b2e 3936static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 3937 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3938 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3939 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3940 /* note we're sharing with inode.c for the merge bio hook */
3941 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3942};