btrfs: raid56: switch scrub path to use a single function
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
c7f13d42 46#include "fs.h"
07e81dc9 47#include "accessors.h"
a0231804 48#include "extent-tree.h"
45c40c8f 49#include "root-tree.h"
59b818e0 50#include "defrag.h"
c7a03b52 51#include "uuid-tree.h"
67707479 52#include "relocation.h"
2fc6822c 53#include "scrub.h"
c03b2207 54#include "super.h"
eb60ceac 55
319e4d06
QW
56#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 BTRFS_HEADER_FLAG_RELOC |\
58 BTRFS_SUPER_FLAG_ERROR |\
59 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
60 BTRFS_SUPER_FLAG_METADUMP |\
61 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 62
143bede5 63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 65 struct btrfs_fs_info *fs_info);
143bede5 66static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 67static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 68 struct extent_io_tree *dirty_pages,
69 int mark);
2ff7e61e 70static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 71 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
72static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
73static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 74
141386e1
JB
75static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
76{
77 if (fs_info->csum_shash)
78 crypto_free_shash(fs_info->csum_shash);
79}
80
d352ac68
CM
81/*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
44b8bd7e 86struct async_submit_bio {
8896a08d 87 struct inode *inode;
44b8bd7e 88 struct bio *bio;
a758781d 89 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 90 int mirror_num;
1941b64b
QW
91
92 /* Optional parameter for submit_bio_start used by direct io */
93 u64 dio_file_offset;
8b712842 94 struct btrfs_work work;
4e4cbee9 95 blk_status_t status;
44b8bd7e
CM
96};
97
d352ac68 98/*
2996e1f8 99 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 100 */
c67b3892 101static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 102{
d5178578 103 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 104 const int num_pages = num_extent_pages(buf);
a26663e7 105 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 106 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 107 char *kaddr;
e9be5a30 108 int i;
d5178578
JT
109
110 shash->tfm = fs_info->csum_shash;
111 crypto_shash_init(shash);
a26663e7 112 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 113 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 114 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 115
e9be5a30
DS
116 for (i = 1; i < num_pages; i++) {
117 kaddr = page_address(buf->pages[i]);
118 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 119 }
71a63551 120 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 121 crypto_shash_final(shash, result);
19c00ddc
CM
122}
123
d352ac68
CM
124/*
125 * we can't consider a given block up to date unless the transid of the
126 * block matches the transid in the parent node's pointer. This is how we
127 * detect blocks that either didn't get written at all or got written
128 * in the wrong place.
129 */
1259ab75 130static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
131 struct extent_buffer *eb, u64 parent_transid,
132 int atomic)
1259ab75 133{
2ac55d41 134 struct extent_state *cached_state = NULL;
1259ab75
CM
135 int ret;
136
137 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
138 return 0;
139
b9fab919
CM
140 if (atomic)
141 return -EAGAIN;
142
570eb97b 143 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
0b32f4bb 144 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
145 btrfs_header_generation(eb) == parent_transid) {
146 ret = 0;
147 goto out;
148 }
94647322 149 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
150"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
151 eb->start, eb->read_mirror,
29549aec 152 parent_transid, btrfs_header_generation(eb));
1259ab75 153 ret = 1;
35b22c19 154 clear_extent_buffer_uptodate(eb);
33958dc6 155out:
570eb97b
JB
156 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
157 &cached_state);
1259ab75 158 return ret;
1259ab75
CM
159}
160
e7e16f48
JT
161static bool btrfs_supported_super_csum(u16 csum_type)
162{
163 switch (csum_type) {
164 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 165 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 166 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 167 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
168 return true;
169 default:
170 return false;
171 }
172}
173
1104a885
DS
174/*
175 * Return 0 if the superblock checksum type matches the checksum value of that
176 * algorithm. Pass the raw disk superblock data.
177 */
3d17adea
QW
178int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
179 const struct btrfs_super_block *disk_sb)
1104a885 180{
51bce6c9 181 char result[BTRFS_CSUM_SIZE];
d5178578
JT
182 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
183
184 shash->tfm = fs_info->csum_shash;
1104a885 185
51bce6c9
JT
186 /*
187 * The super_block structure does not span the whole
188 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
189 * filled with zeros and is included in the checksum.
190 */
3d17adea 191 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 192 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 193
55fc29be 194 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 195 return 1;
1104a885 196
e7e16f48 197 return 0;
1104a885
DS
198}
199
e064d5e9 200int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 201 struct btrfs_key *first_key, u64 parent_transid)
581c1760 202{
e064d5e9 203 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
204 int found_level;
205 struct btrfs_key found_key;
206 int ret;
207
208 found_level = btrfs_header_level(eb);
209 if (found_level != level) {
63489055
QW
210 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
211 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
212 btrfs_err(fs_info,
213"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
214 eb->start, level, found_level);
581c1760
QW
215 return -EIO;
216 }
217
218 if (!first_key)
219 return 0;
220
5d41be6f
QW
221 /*
222 * For live tree block (new tree blocks in current transaction),
223 * we need proper lock context to avoid race, which is impossible here.
224 * So we only checks tree blocks which is read from disk, whose
225 * generation <= fs_info->last_trans_committed.
226 */
227 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
228 return 0;
62fdaa52
QW
229
230 /* We have @first_key, so this @eb must have at least one item */
231 if (btrfs_header_nritems(eb) == 0) {
232 btrfs_err(fs_info,
233 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
234 eb->start);
235 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
236 return -EUCLEAN;
237 }
238
581c1760
QW
239 if (found_level)
240 btrfs_node_key_to_cpu(eb, &found_key, 0);
241 else
242 btrfs_item_key_to_cpu(eb, &found_key, 0);
243 ret = btrfs_comp_cpu_keys(first_key, &found_key);
244
581c1760 245 if (ret) {
63489055
QW
246 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
247 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 248 btrfs_err(fs_info,
ff76a864
LB
249"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
250 eb->start, parent_transid, first_key->objectid,
251 first_key->type, first_key->offset,
252 found_key.objectid, found_key.type,
253 found_key.offset);
581c1760 254 }
581c1760
QW
255 return ret;
256}
257
d352ac68
CM
258/*
259 * helper to read a given tree block, doing retries as required when
260 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
261 *
262 * @parent_transid: expected transid, skip check if 0
263 * @level: expected level, mandatory check
264 * @first_key: expected key of first slot, skip check if NULL
d352ac68 265 */
6a2e9dc4
FM
266int btrfs_read_extent_buffer(struct extent_buffer *eb,
267 u64 parent_transid, int level,
268 struct btrfs_key *first_key)
f188591e 269{
5ab12d1f 270 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 271 struct extent_io_tree *io_tree;
ea466794 272 int failed = 0;
f188591e
CM
273 int ret;
274 int num_copies = 0;
275 int mirror_num = 0;
ea466794 276 int failed_mirror = 0;
f188591e 277
0b246afa 278 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 279 while (1) {
f8397d69 280 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 281 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 282 if (!ret) {
581c1760 283 if (verify_parent_transid(io_tree, eb,
b9fab919 284 parent_transid, 0))
256dd1bb 285 ret = -EIO;
e064d5e9 286 else if (btrfs_verify_level_key(eb, level,
448de471 287 first_key, parent_transid))
581c1760
QW
288 ret = -EUCLEAN;
289 else
290 break;
256dd1bb 291 }
d397712b 292
0b246afa 293 num_copies = btrfs_num_copies(fs_info,
f188591e 294 eb->start, eb->len);
4235298e 295 if (num_copies == 1)
ea466794 296 break;
4235298e 297
5cf1ab56
JB
298 if (!failed_mirror) {
299 failed = 1;
300 failed_mirror = eb->read_mirror;
301 }
302
f188591e 303 mirror_num++;
ea466794
JB
304 if (mirror_num == failed_mirror)
305 mirror_num++;
306
4235298e 307 if (mirror_num > num_copies)
ea466794 308 break;
f188591e 309 }
ea466794 310
c0901581 311 if (failed && !ret && failed_mirror)
20a1fbf9 312 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
313
314 return ret;
f188591e 315}
19c00ddc 316
eca0f6f6
QW
317static int csum_one_extent_buffer(struct extent_buffer *eb)
318{
319 struct btrfs_fs_info *fs_info = eb->fs_info;
320 u8 result[BTRFS_CSUM_SIZE];
321 int ret;
322
323 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
324 offsetof(struct btrfs_header, fsid),
325 BTRFS_FSID_SIZE) == 0);
326 csum_tree_block(eb, result);
327
328 if (btrfs_header_level(eb))
329 ret = btrfs_check_node(eb);
330 else
331 ret = btrfs_check_leaf_full(eb);
332
3777369f
QW
333 if (ret < 0)
334 goto error;
335
336 /*
337 * Also check the generation, the eb reached here must be newer than
338 * last committed. Or something seriously wrong happened.
339 */
340 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
341 ret = -EUCLEAN;
eca0f6f6 342 btrfs_err(fs_info,
3777369f
QW
343 "block=%llu bad generation, have %llu expect > %llu",
344 eb->start, btrfs_header_generation(eb),
345 fs_info->last_trans_committed);
346 goto error;
eca0f6f6
QW
347 }
348 write_extent_buffer(eb, result, 0, fs_info->csum_size);
349
350 return 0;
3777369f
QW
351
352error:
353 btrfs_print_tree(eb, 0);
354 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
355 eb->start);
356 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
357 return ret;
eca0f6f6
QW
358}
359
360/* Checksum all dirty extent buffers in one bio_vec */
361static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
362 struct bio_vec *bvec)
363{
364 struct page *page = bvec->bv_page;
365 u64 bvec_start = page_offset(page) + bvec->bv_offset;
366 u64 cur;
367 int ret = 0;
368
369 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
370 cur += fs_info->nodesize) {
371 struct extent_buffer *eb;
372 bool uptodate;
373
374 eb = find_extent_buffer(fs_info, cur);
375 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
376 fs_info->nodesize);
377
01cd3909 378 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
379 if (WARN_ON(!eb))
380 return -EUCLEAN;
381
382 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
383 free_extent_buffer(eb);
384 return -EUCLEAN;
385 }
386 if (WARN_ON(!uptodate)) {
387 free_extent_buffer(eb);
388 return -EUCLEAN;
389 }
390
391 ret = csum_one_extent_buffer(eb);
392 free_extent_buffer(eb);
393 if (ret < 0)
394 return ret;
395 }
396 return ret;
397}
398
d352ac68 399/*
ac303b69
QW
400 * Checksum a dirty tree block before IO. This has extra checks to make sure
401 * we only fill in the checksum field in the first page of a multi-page block.
402 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 403 */
ac303b69 404static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 405{
ac303b69 406 struct page *page = bvec->bv_page;
4eee4fa4 407 u64 start = page_offset(page);
19c00ddc 408 u64 found_start;
19c00ddc 409 struct extent_buffer *eb;
eca0f6f6 410
fbca46eb 411 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 412 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 413
4f2de97a
JB
414 eb = (struct extent_buffer *)page->private;
415 if (page != eb->pages[0])
416 return 0;
0f805531 417
19c00ddc 418 found_start = btrfs_header_bytenr(eb);
d3575156
NA
419
420 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
421 WARN_ON(found_start != 0);
422 return 0;
423 }
424
0f805531
AL
425 /*
426 * Please do not consolidate these warnings into a single if.
427 * It is useful to know what went wrong.
428 */
429 if (WARN_ON(found_start != start))
430 return -EUCLEAN;
431 if (WARN_ON(!PageUptodate(page)))
432 return -EUCLEAN;
433
eca0f6f6 434 return csum_one_extent_buffer(eb);
19c00ddc
CM
435}
436
b0c9b3b0 437static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 438{
b0c9b3b0 439 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 440 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 441 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 442 u8 *metadata_uuid;
2b82032c 443
9a8658e3
DS
444 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
445 BTRFS_FSID_SIZE);
944d3f9f
NB
446 /*
447 * Checking the incompat flag is only valid for the current fs. For
448 * seed devices it's forbidden to have their uuid changed so reading
449 * ->fsid in this case is fine
450 */
451 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
452 metadata_uuid = fs_devices->metadata_uuid;
453 else
454 metadata_uuid = fs_devices->fsid;
455
456 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
457 return 0;
458
459 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
460 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
461 return 0;
462
463 return 1;
2b82032c
YZ
464}
465
77bf40a2
QW
466/* Do basic extent buffer checks at read time */
467static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 468{
77bf40a2 469 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 470 u64 found_start;
77bf40a2
QW
471 const u32 csum_size = fs_info->csum_size;
472 u8 found_level;
2996e1f8 473 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 474 const u8 *header_csum;
77bf40a2 475 int ret = 0;
ea466794 476
ce9adaa5 477 found_start = btrfs_header_bytenr(eb);
727011e0 478 if (found_start != eb->start) {
8f0ed7d4
QW
479 btrfs_err_rl(fs_info,
480 "bad tree block start, mirror %u want %llu have %llu",
481 eb->read_mirror, eb->start, found_start);
f188591e 482 ret = -EIO;
77bf40a2 483 goto out;
ce9adaa5 484 }
b0c9b3b0 485 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
486 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
487 eb->start, eb->read_mirror);
1259ab75 488 ret = -EIO;
77bf40a2 489 goto out;
1259ab75 490 }
ce9adaa5 491 found_level = btrfs_header_level(eb);
1c24c3ce 492 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
493 btrfs_err(fs_info,
494 "bad tree block level, mirror %u level %d on logical %llu",
495 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 496 ret = -EIO;
77bf40a2 497 goto out;
1c24c3ce 498 }
ce9adaa5 499
c67b3892 500 csum_tree_block(eb, result);
dfd29eed
DS
501 header_csum = page_address(eb->pages[0]) +
502 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 503
dfd29eed 504 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 505 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
506"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
507 eb->start, eb->read_mirror,
dfd29eed 508 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
509 CSUM_FMT_VALUE(csum_size, result),
510 btrfs_header_level(eb));
2996e1f8 511 ret = -EUCLEAN;
77bf40a2 512 goto out;
2996e1f8
JT
513 }
514
a826d6dc
JB
515 /*
516 * If this is a leaf block and it is corrupt, set the corrupt bit so
517 * that we don't try and read the other copies of this block, just
518 * return -EIO.
519 */
1c4360ee 520 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
521 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
522 ret = -EIO;
523 }
ce9adaa5 524
813fd1dc 525 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
526 ret = -EIO;
527
0b32f4bb
JB
528 if (!ret)
529 set_extent_buffer_uptodate(eb);
75391f0d
QW
530 else
531 btrfs_err(fs_info,
8f0ed7d4
QW
532 "read time tree block corruption detected on logical %llu mirror %u",
533 eb->start, eb->read_mirror);
77bf40a2
QW
534out:
535 return ret;
536}
537
371cdc07
QW
538static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
539 int mirror)
540{
541 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
542 struct extent_buffer *eb;
543 bool reads_done;
544 int ret = 0;
545
546 /*
547 * We don't allow bio merge for subpage metadata read, so we should
548 * only get one eb for each endio hook.
549 */
550 ASSERT(end == start + fs_info->nodesize - 1);
551 ASSERT(PagePrivate(page));
552
553 eb = find_extent_buffer(fs_info, start);
554 /*
555 * When we are reading one tree block, eb must have been inserted into
556 * the radix tree. If not, something is wrong.
557 */
558 ASSERT(eb);
559
560 reads_done = atomic_dec_and_test(&eb->io_pages);
561 /* Subpage read must finish in page read */
562 ASSERT(reads_done);
563
564 eb->read_mirror = mirror;
565 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
566 ret = -EIO;
567 goto err;
568 }
569 ret = validate_extent_buffer(eb);
570 if (ret < 0)
571 goto err;
572
371cdc07
QW
573 set_extent_buffer_uptodate(eb);
574
575 free_extent_buffer(eb);
576 return ret;
577err:
578 /*
579 * end_bio_extent_readpage decrements io_pages in case of error,
580 * make sure it has something to decrement.
581 */
582 atomic_inc(&eb->io_pages);
583 clear_extent_buffer_uptodate(eb);
584 free_extent_buffer(eb);
585 return ret;
586}
587
c3a3b19b 588int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
589 struct page *page, u64 start, u64 end,
590 int mirror)
591{
592 struct extent_buffer *eb;
593 int ret = 0;
594 int reads_done;
595
596 ASSERT(page->private);
371cdc07 597
fbca46eb 598 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
371cdc07
QW
599 return validate_subpage_buffer(page, start, end, mirror);
600
77bf40a2
QW
601 eb = (struct extent_buffer *)page->private;
602
603 /*
604 * The pending IO might have been the only thing that kept this buffer
605 * in memory. Make sure we have a ref for all this other checks
606 */
607 atomic_inc(&eb->refs);
608
609 reads_done = atomic_dec_and_test(&eb->io_pages);
610 if (!reads_done)
611 goto err;
612
613 eb->read_mirror = mirror;
614 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
615 ret = -EIO;
616 goto err;
617 }
618 ret = validate_extent_buffer(eb);
ce9adaa5 619err:
53b381b3
DW
620 if (ret) {
621 /*
622 * our io error hook is going to dec the io pages
623 * again, we have to make sure it has something
624 * to decrement
625 */
626 atomic_inc(&eb->io_pages);
0b32f4bb 627 clear_extent_buffer_uptodate(eb);
53b381b3 628 }
0b32f4bb 629 free_extent_buffer(eb);
77bf40a2 630
f188591e 631 return ret;
ce9adaa5
CM
632}
633
4a69a410
CM
634static void run_one_async_start(struct btrfs_work *work)
635{
4a69a410 636 struct async_submit_bio *async;
4e4cbee9 637 blk_status_t ret;
4a69a410
CM
638
639 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
640 ret = async->submit_bio_start(async->inode, async->bio,
641 async->dio_file_offset);
79787eaa 642 if (ret)
4e4cbee9 643 async->status = ret;
4a69a410
CM
644}
645
06ea01b1
DS
646/*
647 * In order to insert checksums into the metadata in large chunks, we wait
648 * until bio submission time. All the pages in the bio are checksummed and
649 * sums are attached onto the ordered extent record.
650 *
651 * At IO completion time the csums attached on the ordered extent record are
652 * inserted into the tree.
653 */
4a69a410 654static void run_one_async_done(struct btrfs_work *work)
8b712842 655{
917f32a2
CH
656 struct async_submit_bio *async =
657 container_of(work, struct async_submit_bio, work);
658 struct inode *inode = async->inode;
659 struct btrfs_bio *bbio = btrfs_bio(async->bio);
4854ddd0 660
bb7ab3b9 661 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9 662 if (async->status) {
917f32a2 663 btrfs_bio_end_io(bbio, async->status);
79787eaa
JM
664 return;
665 }
666
ec39f769
CM
667 /*
668 * All of the bios that pass through here are from async helpers.
669 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
670 * This changes nothing when cgroups aren't in use.
671 */
672 async->bio->bi_opf |= REQ_CGROUP_PUNT;
1a722d8f 673 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
4a69a410
CM
674}
675
676static void run_one_async_free(struct btrfs_work *work)
677{
678 struct async_submit_bio *async;
679
680 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
681 kfree(async);
682}
683
ea1f0ced
CH
684/*
685 * Submit bio to an async queue.
686 *
687 * Retrun:
688 * - true if the work has been succesfuly submitted
689 * - false in case of error
690 */
691bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
692 u64 dio_file_offset,
693 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 694{
8896a08d 695 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
696 struct async_submit_bio *async;
697
698 async = kmalloc(sizeof(*async), GFP_NOFS);
699 if (!async)
ea1f0ced 700 return false;
44b8bd7e 701
8896a08d 702 async->inode = inode;
44b8bd7e
CM
703 async->bio = bio;
704 async->mirror_num = mirror_num;
4a69a410 705 async->submit_bio_start = submit_bio_start;
4a69a410 706
a0cac0ec
OS
707 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
708 run_one_async_free);
4a69a410 709
1941b64b 710 async->dio_file_offset = dio_file_offset;
8c8bee1d 711
4e4cbee9 712 async->status = 0;
79787eaa 713
67f055c7 714 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
715 btrfs_queue_work(fs_info->hipri_workers, &async->work);
716 else
717 btrfs_queue_work(fs_info->workers, &async->work);
ea1f0ced 718 return true;
44b8bd7e
CM
719}
720
4e4cbee9 721static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 722{
2c30c71b 723 struct bio_vec *bvec;
ce3ed71a 724 struct btrfs_root *root;
2b070cfe 725 int ret = 0;
6dc4f100 726 struct bvec_iter_all iter_all;
ce3ed71a 727
c09abff8 728 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 729 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 730 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 731 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
732 if (ret)
733 break;
ce3ed71a 734 }
2c30c71b 735
4e4cbee9 736 return errno_to_blk_status(ret);
ce3ed71a
CM
737}
738
8896a08d 739static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 740 u64 dio_file_offset)
22c59948 741{
8b712842
CM
742 /*
743 * when we're called for a write, we're already in the async
1a722d8f 744 * submission context. Just jump into btrfs_submit_bio.
8b712842 745 */
79787eaa 746 return btree_csum_one_bio(bio);
4a69a410 747}
22c59948 748
f4dcfb30 749static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 750 struct btrfs_inode *bi)
de0022b9 751{
4eef29ef 752 if (btrfs_is_zoned(fs_info))
f4dcfb30 753 return false;
6300463b 754 if (atomic_read(&bi->sync_writers))
f4dcfb30 755 return false;
9b4e675a 756 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
757 return false;
758 return true;
de0022b9
JB
759}
760
94d9e11b 761void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 762{
0b246afa 763 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
917f32a2 764 struct btrfs_bio *bbio = btrfs_bio(bio);
4e4cbee9 765 blk_status_t ret;
cad321ad 766
08a6f464
CH
767 bio->bi_opf |= REQ_META;
768
cfe94440 769 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
1a722d8f
CH
770 btrfs_submit_bio(fs_info, bio, mirror_num);
771 return;
44b8bd7e 772 }
d313d7a3 773
ea1f0ced
CH
774 /*
775 * Kthread helpers are used to submit writes so that checksumming can
776 * happen in parallel across all CPUs.
777 */
778 if (should_async_write(fs_info, BTRFS_I(inode)) &&
779 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
780 return;
781
782 ret = btree_csum_one_bio(bio);
94d9e11b 783 if (ret) {
917f32a2 784 btrfs_bio_end_io(bbio, ret);
ea1f0ced 785 return;
94d9e11b 786 }
ea1f0ced
CH
787
788 btrfs_submit_bio(fs_info, bio, mirror_num);
44b8bd7e
CM
789}
790
3dd1462e 791#ifdef CONFIG_MIGRATION
8958b551
MWO
792static int btree_migrate_folio(struct address_space *mapping,
793 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
794{
795 /*
796 * we can't safely write a btree page from here,
797 * we haven't done the locking hook
798 */
8958b551 799 if (folio_test_dirty(src))
784b4e29
CM
800 return -EAGAIN;
801 /*
802 * Buffers may be managed in a filesystem specific way.
803 * We must have no buffers or drop them.
804 */
8958b551
MWO
805 if (folio_get_private(src) &&
806 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 807 return -EAGAIN;
54184650 808 return migrate_folio(mapping, dst, src, mode);
784b4e29 809}
8958b551
MWO
810#else
811#define btree_migrate_folio NULL
3dd1462e 812#endif
784b4e29 813
0da5468f
CM
814static int btree_writepages(struct address_space *mapping,
815 struct writeback_control *wbc)
816{
e2d84521
MX
817 struct btrfs_fs_info *fs_info;
818 int ret;
819
d8d5f3e1 820 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
821
822 if (wbc->for_kupdate)
823 return 0;
824
e2d84521 825 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 826 /* this is a bit racy, but that's ok */
d814a491
EL
827 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
828 BTRFS_DIRTY_METADATA_THRESH,
829 fs_info->dirty_metadata_batch);
e2d84521 830 if (ret < 0)
793955bc 831 return 0;
793955bc 832 }
0b32f4bb 833 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
834}
835
f913cff3 836static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 837{
f913cff3
MWO
838 if (folio_test_writeback(folio) || folio_test_dirty(folio))
839 return false;
0c4e538b 840
f913cff3 841 return try_release_extent_buffer(&folio->page);
d98237b3
CM
842}
843
895586eb
MWO
844static void btree_invalidate_folio(struct folio *folio, size_t offset,
845 size_t length)
d98237b3 846{
d1310b2e 847 struct extent_io_tree *tree;
895586eb
MWO
848 tree = &BTRFS_I(folio->mapping->host)->io_tree;
849 extent_invalidate_folio(tree, folio, offset);
f913cff3 850 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
851 if (folio_get_private(folio)) {
852 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
853 "folio private not zero on folio %llu",
854 (unsigned long long)folio_pos(folio));
855 folio_detach_private(folio);
9ad6b7bc 856 }
d98237b3
CM
857}
858
bb146eb2 859#ifdef DEBUG
0079c3b1
MWO
860static bool btree_dirty_folio(struct address_space *mapping,
861 struct folio *folio)
862{
863 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 864 struct btrfs_subpage *subpage;
0b32f4bb 865 struct extent_buffer *eb;
139e8cd3 866 int cur_bit = 0;
0079c3b1 867 u64 page_start = folio_pos(folio);
139e8cd3
QW
868
869 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 870 eb = folio_get_private(folio);
139e8cd3
QW
871 BUG_ON(!eb);
872 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
873 BUG_ON(!atomic_read(&eb->refs));
49d0c642 874 btrfs_assert_tree_write_locked(eb);
0079c3b1 875 return filemap_dirty_folio(mapping, folio);
139e8cd3 876 }
0079c3b1 877 subpage = folio_get_private(folio);
139e8cd3
QW
878
879 ASSERT(subpage->dirty_bitmap);
880 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
881 unsigned long flags;
882 u64 cur;
883 u16 tmp = (1 << cur_bit);
884
885 spin_lock_irqsave(&subpage->lock, flags);
886 if (!(tmp & subpage->dirty_bitmap)) {
887 spin_unlock_irqrestore(&subpage->lock, flags);
888 cur_bit++;
889 continue;
890 }
891 spin_unlock_irqrestore(&subpage->lock, flags);
892 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 893
139e8cd3
QW
894 eb = find_extent_buffer(fs_info, cur);
895 ASSERT(eb);
896 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
897 ASSERT(atomic_read(&eb->refs));
49d0c642 898 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
899 free_extent_buffer(eb);
900
901 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
902 }
0079c3b1 903 return filemap_dirty_folio(mapping, folio);
0b32f4bb 904}
0079c3b1
MWO
905#else
906#define btree_dirty_folio filemap_dirty_folio
907#endif
0b32f4bb 908
7f09410b 909static const struct address_space_operations btree_aops = {
0da5468f 910 .writepages = btree_writepages,
f913cff3 911 .release_folio = btree_release_folio,
895586eb 912 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
913 .migrate_folio = btree_migrate_folio,
914 .dirty_folio = btree_dirty_folio,
d98237b3
CM
915};
916
2ff7e61e
JM
917struct extent_buffer *btrfs_find_create_tree_block(
918 struct btrfs_fs_info *fs_info,
3fbaf258
JB
919 u64 bytenr, u64 owner_root,
920 int level)
0999df54 921{
0b246afa
JM
922 if (btrfs_is_testing(fs_info))
923 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 924 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
925}
926
581c1760
QW
927/*
928 * Read tree block at logical address @bytenr and do variant basic but critical
929 * verification.
930 *
1b7ec85e 931 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
932 * @parent_transid: expected transid of this tree block, skip check if 0
933 * @level: expected level, mandatory check
934 * @first_key: expected key in slot 0, skip check if NULL
935 */
2ff7e61e 936struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
937 u64 owner_root, u64 parent_transid,
938 int level, struct btrfs_key *first_key)
0999df54
CM
939{
940 struct extent_buffer *buf = NULL;
0999df54
CM
941 int ret;
942
3fbaf258 943 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
944 if (IS_ERR(buf))
945 return buf;
0999df54 946
6a2e9dc4 947 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
0f0fe8f7 948 if (ret) {
537f38f0 949 free_extent_buffer_stale(buf);
64c043de 950 return ERR_PTR(ret);
0f0fe8f7 951 }
88c602ab
QW
952 if (btrfs_check_eb_owner(buf, owner_root)) {
953 free_extent_buffer_stale(buf);
954 return ERR_PTR(-EUCLEAN);
955 }
5f39d397 956 return buf;
ce9adaa5 957
eb60ceac
CM
958}
959
6a884d7d 960void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 961{
6a884d7d 962 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 963 if (btrfs_header_generation(buf) ==
e2d84521 964 fs_info->running_transaction->transid) {
49d0c642 965 btrfs_assert_tree_write_locked(buf);
b4ce94de 966
b9473439 967 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
968 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
969 -buf->len,
970 fs_info->dirty_metadata_batch);
ed7b63eb
JB
971 clear_extent_buffer_dirty(buf);
972 }
925baedd 973 }
5f39d397
CM
974}
975
da17066c 976static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 977 u64 objectid)
d97e63b6 978{
7c0260ee 979 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
980
981 memset(&root->root_key, 0, sizeof(root->root_key));
982 memset(&root->root_item, 0, sizeof(root->root_item));
983 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 984 root->fs_info = fs_info;
2e608bd1 985 root->root_key.objectid = objectid;
cfaa7295 986 root->node = NULL;
a28ec197 987 root->commit_root = NULL;
27cdeb70 988 root->state = 0;
abed4aaa 989 RB_CLEAR_NODE(&root->rb_node);
0b86a832 990
0f7d52f4 991 root->last_trans = 0;
6b8fad57 992 root->free_objectid = 0;
eb73c1b7 993 root->nr_delalloc_inodes = 0;
199c2a9c 994 root->nr_ordered_extents = 0;
6bef4d31 995 root->inode_tree = RB_ROOT;
088aea3b 996 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
997
998 btrfs_init_root_block_rsv(root);
0b86a832
CM
999
1000 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1001 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1002 INIT_LIST_HEAD(&root->delalloc_inodes);
1003 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1004 INIT_LIST_HEAD(&root->ordered_extents);
1005 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1006 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1007 INIT_LIST_HEAD(&root->logged_list[0]);
1008 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1009 spin_lock_init(&root->inode_lock);
eb73c1b7 1010 spin_lock_init(&root->delalloc_lock);
199c2a9c 1011 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1012 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1013 spin_lock_init(&root->log_extents_lock[0]);
1014 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1015 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1016 mutex_init(&root->objectid_mutex);
e02119d5 1017 mutex_init(&root->log_mutex);
31f3d255 1018 mutex_init(&root->ordered_extent_mutex);
573bfb72 1019 mutex_init(&root->delalloc_mutex);
c53e9653 1020 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1021 init_waitqueue_head(&root->log_writer_wait);
1022 init_waitqueue_head(&root->log_commit_wait[0]);
1023 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1024 INIT_LIST_HEAD(&root->log_ctxs[0]);
1025 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1026 atomic_set(&root->log_commit[0], 0);
1027 atomic_set(&root->log_commit[1], 0);
1028 atomic_set(&root->log_writers, 0);
2ecb7923 1029 atomic_set(&root->log_batch, 0);
0700cea7 1030 refcount_set(&root->refs, 1);
8ecebf4d 1031 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1032 atomic_set(&root->nr_swapfiles, 0);
7237f183 1033 root->log_transid = 0;
d1433deb 1034 root->log_transid_committed = -1;
257c62e1 1035 root->last_log_commit = 0;
2e608bd1 1036 root->anon_dev = 0;
e289f03e 1037 if (!dummy) {
43eb5f29
QW
1038 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1039 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1040 extent_io_tree_init(fs_info, &root->log_csum_range,
1041 IO_TREE_LOG_CSUM_RANGE, NULL);
1042 }
017e5369 1043
5f3ab90a 1044 spin_lock_init(&root->root_item_lock);
370a11b8 1045 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1046#ifdef CONFIG_BTRFS_DEBUG
1047 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 1048 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 1049 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 1050 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 1051#endif
3768f368
CM
1052}
1053
74e4d827 1054static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1055 u64 objectid, gfp_t flags)
6f07e42e 1056{
74e4d827 1057 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1058 if (root)
96dfcb46 1059 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1060 return root;
1061}
1062
06ea65a3
JB
1063#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1064/* Should only be used by the testing infrastructure */
da17066c 1065struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1066{
1067 struct btrfs_root *root;
1068
7c0260ee
JM
1069 if (!fs_info)
1070 return ERR_PTR(-EINVAL);
1071
96dfcb46 1072 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1073 if (!root)
1074 return ERR_PTR(-ENOMEM);
da17066c 1075
b9ef22de 1076 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1077 root->alloc_bytenr = 0;
06ea65a3
JB
1078
1079 return root;
1080}
1081#endif
1082
abed4aaa
JB
1083static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1084{
1085 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1086 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1087
1088 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1089}
1090
1091static int global_root_key_cmp(const void *k, const struct rb_node *node)
1092{
1093 const struct btrfs_key *key = k;
1094 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1095
1096 return btrfs_comp_cpu_keys(key, &root->root_key);
1097}
1098
1099int btrfs_global_root_insert(struct btrfs_root *root)
1100{
1101 struct btrfs_fs_info *fs_info = root->fs_info;
1102 struct rb_node *tmp;
1103
1104 write_lock(&fs_info->global_root_lock);
1105 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1106 write_unlock(&fs_info->global_root_lock);
1107 ASSERT(!tmp);
1108
1109 return tmp ? -EEXIST : 0;
1110}
1111
1112void btrfs_global_root_delete(struct btrfs_root *root)
1113{
1114 struct btrfs_fs_info *fs_info = root->fs_info;
1115
1116 write_lock(&fs_info->global_root_lock);
1117 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1118 write_unlock(&fs_info->global_root_lock);
1119}
1120
1121struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1122 struct btrfs_key *key)
1123{
1124 struct rb_node *node;
1125 struct btrfs_root *root = NULL;
1126
1127 read_lock(&fs_info->global_root_lock);
1128 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1129 if (node)
1130 root = container_of(node, struct btrfs_root, rb_node);
1131 read_unlock(&fs_info->global_root_lock);
1132
1133 return root;
1134}
1135
f7238e50
JB
1136static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1137{
1138 struct btrfs_block_group *block_group;
1139 u64 ret;
1140
1141 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1142 return 0;
1143
1144 if (bytenr)
1145 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1146 else
1147 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1148 ASSERT(block_group);
1149 if (!block_group)
1150 return 0;
1151 ret = block_group->global_root_id;
1152 btrfs_put_block_group(block_group);
1153
1154 return ret;
1155}
1156
abed4aaa
JB
1157struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1158{
1159 struct btrfs_key key = {
1160 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1161 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1162 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1163 };
1164
1165 return btrfs_global_root(fs_info, &key);
1166}
1167
1168struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1169{
1170 struct btrfs_key key = {
1171 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1172 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1173 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1174 };
1175
1176 return btrfs_global_root(fs_info, &key);
1177}
1178
51129b33
JB
1179struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1180{
1181 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1182 return fs_info->block_group_root;
1183 return btrfs_extent_root(fs_info, 0);
1184}
1185
20897f5c 1186struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1187 u64 objectid)
1188{
9b7a2440 1189 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1190 struct extent_buffer *leaf;
1191 struct btrfs_root *tree_root = fs_info->tree_root;
1192 struct btrfs_root *root;
1193 struct btrfs_key key;
b89f6d1f 1194 unsigned int nofs_flag;
20897f5c 1195 int ret = 0;
20897f5c 1196
b89f6d1f
FM
1197 /*
1198 * We're holding a transaction handle, so use a NOFS memory allocation
1199 * context to avoid deadlock if reclaim happens.
1200 */
1201 nofs_flag = memalloc_nofs_save();
96dfcb46 1202 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1203 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1204 if (!root)
1205 return ERR_PTR(-ENOMEM);
1206
20897f5c
AJ
1207 root->root_key.objectid = objectid;
1208 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1209 root->root_key.offset = 0;
1210
9631e4cc
JB
1211 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1212 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1213 if (IS_ERR(leaf)) {
1214 ret = PTR_ERR(leaf);
1dd05682 1215 leaf = NULL;
c1b07854 1216 goto fail;
20897f5c
AJ
1217 }
1218
20897f5c 1219 root->node = leaf;
20897f5c
AJ
1220 btrfs_mark_buffer_dirty(leaf);
1221
1222 root->commit_root = btrfs_root_node(root);
27cdeb70 1223 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1224
f944d2cb
DS
1225 btrfs_set_root_flags(&root->root_item, 0);
1226 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1227 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1228 btrfs_set_root_generation(&root->root_item, trans->transid);
1229 btrfs_set_root_level(&root->root_item, 0);
1230 btrfs_set_root_refs(&root->root_item, 1);
1231 btrfs_set_root_used(&root->root_item, leaf->len);
1232 btrfs_set_root_last_snapshot(&root->root_item, 0);
1233 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1234 if (is_fstree(objectid))
807fc790
AS
1235 generate_random_guid(root->root_item.uuid);
1236 else
1237 export_guid(root->root_item.uuid, &guid_null);
c8422684 1238 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1239
8a6a87cd
BB
1240 btrfs_tree_unlock(leaf);
1241
20897f5c
AJ
1242 key.objectid = objectid;
1243 key.type = BTRFS_ROOT_ITEM_KEY;
1244 key.offset = 0;
1245 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1246 if (ret)
1247 goto fail;
1248
1dd05682
TI
1249 return root;
1250
8a6a87cd 1251fail:
00246528 1252 btrfs_put_root(root);
20897f5c 1253
1dd05682 1254 return ERR_PTR(ret);
20897f5c
AJ
1255}
1256
7237f183
YZ
1257static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1258 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1259{
1260 struct btrfs_root *root;
e02119d5 1261
96dfcb46 1262 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1263 if (!root)
7237f183 1264 return ERR_PTR(-ENOMEM);
e02119d5 1265
e02119d5
CM
1266 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1267 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1268 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1269
6ab6ebb7
NA
1270 return root;
1271}
1272
1273int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1274 struct btrfs_root *root)
1275{
1276 struct extent_buffer *leaf;
1277
7237f183 1278 /*
92a7cc42 1279 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1280 *
92a7cc42
QW
1281 * Log trees are not exposed to user space thus can't be snapshotted,
1282 * and they go away before a real commit is actually done.
1283 *
1284 * They do store pointers to file data extents, and those reference
1285 * counts still get updated (along with back refs to the log tree).
7237f183 1286 */
e02119d5 1287
4d75f8a9 1288 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1289 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1290 if (IS_ERR(leaf))
1291 return PTR_ERR(leaf);
e02119d5 1292
7237f183 1293 root->node = leaf;
e02119d5 1294
e02119d5
CM
1295 btrfs_mark_buffer_dirty(root->node);
1296 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1297
1298 return 0;
7237f183
YZ
1299}
1300
1301int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1302 struct btrfs_fs_info *fs_info)
1303{
1304 struct btrfs_root *log_root;
1305
1306 log_root = alloc_log_tree(trans, fs_info);
1307 if (IS_ERR(log_root))
1308 return PTR_ERR(log_root);
6ab6ebb7 1309
3ddebf27
NA
1310 if (!btrfs_is_zoned(fs_info)) {
1311 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1312
1313 if (ret) {
1314 btrfs_put_root(log_root);
1315 return ret;
1316 }
6ab6ebb7
NA
1317 }
1318
7237f183
YZ
1319 WARN_ON(fs_info->log_root_tree);
1320 fs_info->log_root_tree = log_root;
1321 return 0;
1322}
1323
1324int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1325 struct btrfs_root *root)
1326{
0b246afa 1327 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1328 struct btrfs_root *log_root;
1329 struct btrfs_inode_item *inode_item;
6ab6ebb7 1330 int ret;
7237f183 1331
0b246afa 1332 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1333 if (IS_ERR(log_root))
1334 return PTR_ERR(log_root);
1335
6ab6ebb7
NA
1336 ret = btrfs_alloc_log_tree_node(trans, log_root);
1337 if (ret) {
1338 btrfs_put_root(log_root);
1339 return ret;
1340 }
1341
7237f183
YZ
1342 log_root->last_trans = trans->transid;
1343 log_root->root_key.offset = root->root_key.objectid;
1344
1345 inode_item = &log_root->root_item.inode;
3cae210f
QW
1346 btrfs_set_stack_inode_generation(inode_item, 1);
1347 btrfs_set_stack_inode_size(inode_item, 3);
1348 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1349 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1350 fs_info->nodesize);
3cae210f 1351 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1352
5d4f98a2 1353 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1354
1355 WARN_ON(root->log_root);
1356 root->log_root = log_root;
1357 root->log_transid = 0;
d1433deb 1358 root->log_transid_committed = -1;
257c62e1 1359 root->last_log_commit = 0;
e02119d5
CM
1360 return 0;
1361}
1362
49d11bea
JB
1363static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1364 struct btrfs_path *path,
1365 struct btrfs_key *key)
e02119d5
CM
1366{
1367 struct btrfs_root *root;
1368 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1369 u64 generation;
cb517eab 1370 int ret;
581c1760 1371 int level;
0f7d52f4 1372
96dfcb46 1373 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1374 if (!root)
1375 return ERR_PTR(-ENOMEM);
0f7d52f4 1376
cb517eab
MX
1377 ret = btrfs_find_root(tree_root, key, path,
1378 &root->root_item, &root->root_key);
0f7d52f4 1379 if (ret) {
13a8a7c8
YZ
1380 if (ret > 0)
1381 ret = -ENOENT;
49d11bea 1382 goto fail;
0f7d52f4 1383 }
13a8a7c8 1384
84234f3a 1385 generation = btrfs_root_generation(&root->root_item);
581c1760 1386 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1387 root->node = read_tree_block(fs_info,
1388 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1389 key->objectid, generation, level, NULL);
64c043de
LB
1390 if (IS_ERR(root->node)) {
1391 ret = PTR_ERR(root->node);
8c38938c 1392 root->node = NULL;
49d11bea 1393 goto fail;
4eb150d6
QW
1394 }
1395 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1396 ret = -EIO;
49d11bea 1397 goto fail;
416bc658 1398 }
88c602ab
QW
1399
1400 /*
1401 * For real fs, and not log/reloc trees, root owner must
1402 * match its root node owner
1403 */
1404 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1405 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1406 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1407 root->root_key.objectid != btrfs_header_owner(root->node)) {
1408 btrfs_crit(fs_info,
1409"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1410 root->root_key.objectid, root->node->start,
1411 btrfs_header_owner(root->node),
1412 root->root_key.objectid);
1413 ret = -EUCLEAN;
1414 goto fail;
1415 }
5d4f98a2 1416 root->commit_root = btrfs_root_node(root);
cb517eab 1417 return root;
49d11bea 1418fail:
00246528 1419 btrfs_put_root(root);
49d11bea
JB
1420 return ERR_PTR(ret);
1421}
1422
1423struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1424 struct btrfs_key *key)
1425{
1426 struct btrfs_root *root;
1427 struct btrfs_path *path;
1428
1429 path = btrfs_alloc_path();
1430 if (!path)
1431 return ERR_PTR(-ENOMEM);
1432 root = read_tree_root_path(tree_root, path, key);
1433 btrfs_free_path(path);
1434
1435 return root;
cb517eab
MX
1436}
1437
2dfb1e43
QW
1438/*
1439 * Initialize subvolume root in-memory structure
1440 *
1441 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1442 */
1443static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1444{
1445 int ret;
dcc3eb96 1446 unsigned int nofs_flag;
cb517eab 1447
dcc3eb96
NB
1448 /*
1449 * We might be called under a transaction (e.g. indirect backref
1450 * resolution) which could deadlock if it triggers memory reclaim
1451 */
1452 nofs_flag = memalloc_nofs_save();
1453 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1454 memalloc_nofs_restore(nofs_flag);
1455 if (ret)
8257b2dc 1456 goto fail;
8257b2dc 1457
aeb935a4 1458 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1459 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1460 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1461 btrfs_check_and_init_root_item(&root->root_item);
1462 }
1463
851fd730
QW
1464 /*
1465 * Don't assign anonymous block device to roots that are not exposed to
1466 * userspace, the id pool is limited to 1M
1467 */
1468 if (is_fstree(root->root_key.objectid) &&
1469 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1470 if (!anon_dev) {
1471 ret = get_anon_bdev(&root->anon_dev);
1472 if (ret)
1473 goto fail;
1474 } else {
1475 root->anon_dev = anon_dev;
1476 }
851fd730 1477 }
f32e48e9
CR
1478
1479 mutex_lock(&root->objectid_mutex);
453e4873 1480 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1481 if (ret) {
1482 mutex_unlock(&root->objectid_mutex);
876d2cf1 1483 goto fail;
f32e48e9
CR
1484 }
1485
6b8fad57 1486 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1487
1488 mutex_unlock(&root->objectid_mutex);
1489
cb517eab
MX
1490 return 0;
1491fail:
84db5ccf 1492 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1493 return ret;
1494}
1495
a98db0f3
JB
1496static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1497 u64 root_id)
cb517eab
MX
1498{
1499 struct btrfs_root *root;
1500
fc7cbcd4
DS
1501 spin_lock(&fs_info->fs_roots_radix_lock);
1502 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1503 (unsigned long)root_id);
bc44d7c4 1504 if (root)
00246528 1505 root = btrfs_grab_root(root);
fc7cbcd4 1506 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1507 return root;
1508}
1509
49d11bea
JB
1510static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1511 u64 objectid)
1512{
abed4aaa
JB
1513 struct btrfs_key key = {
1514 .objectid = objectid,
1515 .type = BTRFS_ROOT_ITEM_KEY,
1516 .offset = 0,
1517 };
1518
49d11bea
JB
1519 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1520 return btrfs_grab_root(fs_info->tree_root);
1521 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1522 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1523 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1524 return btrfs_grab_root(fs_info->chunk_root);
1525 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1526 return btrfs_grab_root(fs_info->dev_root);
1527 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1528 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1529 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1530 return btrfs_grab_root(fs_info->quota_root) ?
1531 fs_info->quota_root : ERR_PTR(-ENOENT);
1532 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1533 return btrfs_grab_root(fs_info->uuid_root) ?
1534 fs_info->uuid_root : ERR_PTR(-ENOENT);
14033b08
QW
1535 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1536 return btrfs_grab_root(fs_info->block_group_root) ?
1537 fs_info->block_group_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1538 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1539 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1540
1541 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1542 }
49d11bea
JB
1543 return NULL;
1544}
1545
cb517eab
MX
1546int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1547 struct btrfs_root *root)
1548{
1549 int ret;
1550
fc7cbcd4
DS
1551 ret = radix_tree_preload(GFP_NOFS);
1552 if (ret)
1553 return ret;
1554
1555 spin_lock(&fs_info->fs_roots_radix_lock);
1556 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1557 (unsigned long)root->root_key.objectid,
1558 root);
af01d2e5 1559 if (ret == 0) {
00246528 1560 btrfs_grab_root(root);
fc7cbcd4 1561 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1562 }
fc7cbcd4
DS
1563 spin_unlock(&fs_info->fs_roots_radix_lock);
1564 radix_tree_preload_end();
cb517eab
MX
1565
1566 return ret;
1567}
1568
bd647ce3
JB
1569void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1570{
1571#ifdef CONFIG_BTRFS_DEBUG
1572 struct btrfs_root *root;
1573
1574 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1575 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1576
bd647ce3
JB
1577 root = list_first_entry(&fs_info->allocated_roots,
1578 struct btrfs_root, leak_list);
457f1864 1579 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1580 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1581 refcount_read(&root->refs));
1582 while (refcount_read(&root->refs) > 1)
00246528
JB
1583 btrfs_put_root(root);
1584 btrfs_put_root(root);
bd647ce3
JB
1585 }
1586#endif
1587}
1588
abed4aaa
JB
1589static void free_global_roots(struct btrfs_fs_info *fs_info)
1590{
1591 struct btrfs_root *root;
1592 struct rb_node *node;
1593
1594 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1595 root = rb_entry(node, struct btrfs_root, rb_node);
1596 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1597 btrfs_put_root(root);
1598 }
1599}
1600
0d4b0463
JB
1601void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1602{
141386e1
JB
1603 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1604 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1605 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1606 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1607 btrfs_free_csum_hash(fs_info);
1608 btrfs_free_stripe_hash_table(fs_info);
1609 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1610 kfree(fs_info->balance_ctl);
1611 kfree(fs_info->delayed_root);
abed4aaa 1612 free_global_roots(fs_info);
00246528
JB
1613 btrfs_put_root(fs_info->tree_root);
1614 btrfs_put_root(fs_info->chunk_root);
1615 btrfs_put_root(fs_info->dev_root);
00246528
JB
1616 btrfs_put_root(fs_info->quota_root);
1617 btrfs_put_root(fs_info->uuid_root);
00246528 1618 btrfs_put_root(fs_info->fs_root);
aeb935a4 1619 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1620 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1621 btrfs_check_leaked_roots(fs_info);
3fd63727 1622 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1623 kfree(fs_info->super_copy);
1624 kfree(fs_info->super_for_commit);
8481dd80 1625 kfree(fs_info->subpage_info);
0d4b0463
JB
1626 kvfree(fs_info);
1627}
1628
1629
2dfb1e43
QW
1630/*
1631 * Get an in-memory reference of a root structure.
1632 *
1633 * For essential trees like root/extent tree, we grab it from fs_info directly.
1634 * For subvolume trees, we check the cached filesystem roots first. If not
1635 * found, then read it from disk and add it to cached fs roots.
1636 *
1637 * Caller should release the root by calling btrfs_put_root() after the usage.
1638 *
1639 * NOTE: Reloc and log trees can't be read by this function as they share the
1640 * same root objectid.
1641 *
1642 * @objectid: root id
1643 * @anon_dev: preallocated anonymous block device number for new roots,
1644 * pass 0 for new allocation.
1645 * @check_ref: whether to check root item references, If true, return -ENOENT
1646 * for orphan roots
1647 */
1648static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1649 u64 objectid, dev_t anon_dev,
1650 bool check_ref)
5eda7b5e
CM
1651{
1652 struct btrfs_root *root;
381cf658 1653 struct btrfs_path *path;
1d4c08e0 1654 struct btrfs_key key;
5eda7b5e
CM
1655 int ret;
1656
49d11bea
JB
1657 root = btrfs_get_global_root(fs_info, objectid);
1658 if (root)
1659 return root;
4df27c4d 1660again:
56e9357a 1661 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1662 if (root) {
2dfb1e43
QW
1663 /* Shouldn't get preallocated anon_dev for cached roots */
1664 ASSERT(!anon_dev);
bc44d7c4 1665 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1666 btrfs_put_root(root);
48475471 1667 return ERR_PTR(-ENOENT);
bc44d7c4 1668 }
5eda7b5e 1669 return root;
48475471 1670 }
5eda7b5e 1671
56e9357a
DS
1672 key.objectid = objectid;
1673 key.type = BTRFS_ROOT_ITEM_KEY;
1674 key.offset = (u64)-1;
1675 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1676 if (IS_ERR(root))
1677 return root;
3394e160 1678
c00869f1 1679 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1680 ret = -ENOENT;
581bb050 1681 goto fail;
35a30d7c 1682 }
581bb050 1683
2dfb1e43 1684 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1685 if (ret)
1686 goto fail;
3394e160 1687
381cf658
DS
1688 path = btrfs_alloc_path();
1689 if (!path) {
1690 ret = -ENOMEM;
1691 goto fail;
1692 }
1d4c08e0
DS
1693 key.objectid = BTRFS_ORPHAN_OBJECTID;
1694 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1695 key.offset = objectid;
1d4c08e0
DS
1696
1697 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1698 btrfs_free_path(path);
d68fc57b
YZ
1699 if (ret < 0)
1700 goto fail;
1701 if (ret == 0)
27cdeb70 1702 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1703
cb517eab 1704 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1705 if (ret) {
168a2f77
JJB
1706 if (ret == -EEXIST) {
1707 btrfs_put_root(root);
4df27c4d 1708 goto again;
168a2f77 1709 }
4df27c4d 1710 goto fail;
0f7d52f4 1711 }
edbd8d4e 1712 return root;
4df27c4d 1713fail:
33fab972
FM
1714 /*
1715 * If our caller provided us an anonymous device, then it's his
143823cf 1716 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1717 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1718 * and once again by our caller.
1719 */
1720 if (anon_dev)
1721 root->anon_dev = 0;
8c38938c 1722 btrfs_put_root(root);
4df27c4d 1723 return ERR_PTR(ret);
edbd8d4e
CM
1724}
1725
2dfb1e43
QW
1726/*
1727 * Get in-memory reference of a root structure
1728 *
1729 * @objectid: tree objectid
1730 * @check_ref: if set, verify that the tree exists and the item has at least
1731 * one reference
1732 */
1733struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1734 u64 objectid, bool check_ref)
1735{
1736 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1737}
1738
1739/*
1740 * Get in-memory reference of a root structure, created as new, optionally pass
1741 * the anonymous block device id
1742 *
1743 * @objectid: tree objectid
1744 * @anon_dev: if zero, allocate a new anonymous block device or use the
1745 * parameter value
1746 */
1747struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1748 u64 objectid, dev_t anon_dev)
1749{
1750 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1751}
1752
49d11bea
JB
1753/*
1754 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1755 * @fs_info: the fs_info
1756 * @objectid: the objectid we need to lookup
1757 *
1758 * This is exclusively used for backref walking, and exists specifically because
1759 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1760 * creation time, which means we may have to read the tree_root in order to look
1761 * up a fs root that is not in memory. If the root is not in memory we will
1762 * read the tree root commit root and look up the fs root from there. This is a
1763 * temporary root, it will not be inserted into the radix tree as it doesn't
1764 * have the most uptodate information, it'll simply be discarded once the
1765 * backref code is finished using the root.
1766 */
1767struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1768 struct btrfs_path *path,
1769 u64 objectid)
1770{
1771 struct btrfs_root *root;
1772 struct btrfs_key key;
1773
1774 ASSERT(path->search_commit_root && path->skip_locking);
1775
1776 /*
1777 * This can return -ENOENT if we ask for a root that doesn't exist, but
1778 * since this is called via the backref walking code we won't be looking
1779 * up a root that doesn't exist, unless there's corruption. So if root
1780 * != NULL just return it.
1781 */
1782 root = btrfs_get_global_root(fs_info, objectid);
1783 if (root)
1784 return root;
1785
1786 root = btrfs_lookup_fs_root(fs_info, objectid);
1787 if (root)
1788 return root;
1789
1790 key.objectid = objectid;
1791 key.type = BTRFS_ROOT_ITEM_KEY;
1792 key.offset = (u64)-1;
1793 root = read_tree_root_path(fs_info->tree_root, path, &key);
1794 btrfs_release_path(path);
1795
1796 return root;
1797}
1798
a74a4b97
CM
1799static int cleaner_kthread(void *arg)
1800{
0d031dc4 1801 struct btrfs_fs_info *fs_info = arg;
d0278245 1802 int again;
a74a4b97 1803
d6fd0ae2 1804 while (1) {
d0278245 1805 again = 0;
a74a4b97 1806
fd340d0f
JB
1807 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1808
d0278245 1809 /* Make the cleaner go to sleep early. */
2ff7e61e 1810 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1811 goto sleep;
1812
90c711ab
ZB
1813 /*
1814 * Do not do anything if we might cause open_ctree() to block
1815 * before we have finished mounting the filesystem.
1816 */
0b246afa 1817 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1818 goto sleep;
1819
0b246afa 1820 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1821 goto sleep;
1822
dc7f370c
MX
1823 /*
1824 * Avoid the problem that we change the status of the fs
1825 * during the above check and trylock.
1826 */
2ff7e61e 1827 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1828 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1829 goto sleep;
76dda93c 1830 }
a74a4b97 1831
2ff7e61e 1832 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1833
33c44184 1834 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1835 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1836
1837 /*
05323cd1
MX
1838 * The defragger has dealt with the R/O remount and umount,
1839 * needn't do anything special here.
d0278245 1840 */
0b246afa 1841 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1842
1843 /*
f3372065 1844 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1845 * with relocation (btrfs_relocate_chunk) and relocation
1846 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1847 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1848 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1849 * unused block groups.
1850 */
0b246afa 1851 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1852
1853 /*
1854 * Reclaim block groups in the reclaim_bgs list after we deleted
1855 * all unused block_groups. This possibly gives us some more free
1856 * space.
1857 */
1858 btrfs_reclaim_bgs(fs_info);
d0278245 1859sleep:
a0a1db70 1860 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1861 if (kthread_should_park())
1862 kthread_parkme();
1863 if (kthread_should_stop())
1864 return 0;
838fe188 1865 if (!again) {
a74a4b97 1866 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1867 schedule();
a74a4b97
CM
1868 __set_current_state(TASK_RUNNING);
1869 }
da288d28 1870 }
a74a4b97
CM
1871}
1872
1873static int transaction_kthread(void *arg)
1874{
1875 struct btrfs_root *root = arg;
0b246afa 1876 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1877 struct btrfs_trans_handle *trans;
1878 struct btrfs_transaction *cur;
8929ecfa 1879 u64 transid;
643900be 1880 time64_t delta;
a74a4b97 1881 unsigned long delay;
914b2007 1882 bool cannot_commit;
a74a4b97
CM
1883
1884 do {
914b2007 1885 cannot_commit = false;
ba1bc00f 1886 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1887 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1888
0b246afa
JM
1889 spin_lock(&fs_info->trans_lock);
1890 cur = fs_info->running_transaction;
a74a4b97 1891 if (!cur) {
0b246afa 1892 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1893 goto sleep;
1894 }
31153d81 1895
643900be 1896 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1897 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1898 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1899 delta < fs_info->commit_interval) {
0b246afa 1900 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1901 delay -= msecs_to_jiffies((delta - 1) * 1000);
1902 delay = min(delay,
1903 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1904 goto sleep;
1905 }
8929ecfa 1906 transid = cur->transid;
0b246afa 1907 spin_unlock(&fs_info->trans_lock);
56bec294 1908
79787eaa 1909 /* If the file system is aborted, this will always fail. */
354aa0fb 1910 trans = btrfs_attach_transaction(root);
914b2007 1911 if (IS_ERR(trans)) {
354aa0fb
MX
1912 if (PTR_ERR(trans) != -ENOENT)
1913 cannot_commit = true;
79787eaa 1914 goto sleep;
914b2007 1915 }
8929ecfa 1916 if (transid == trans->transid) {
3a45bb20 1917 btrfs_commit_transaction(trans);
8929ecfa 1918 } else {
3a45bb20 1919 btrfs_end_transaction(trans);
8929ecfa 1920 }
a74a4b97 1921sleep:
0b246afa
JM
1922 wake_up_process(fs_info->cleaner_kthread);
1923 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1924
84961539 1925 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1926 btrfs_cleanup_transaction(fs_info);
ce63f891 1927 if (!kthread_should_stop() &&
0b246afa 1928 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1929 cannot_commit))
bc5511d0 1930 schedule_timeout_interruptible(delay);
a74a4b97
CM
1931 } while (!kthread_should_stop());
1932 return 0;
1933}
1934
af31f5e5 1935/*
01f0f9da
NB
1936 * This will find the highest generation in the array of root backups. The
1937 * index of the highest array is returned, or -EINVAL if we can't find
1938 * anything.
af31f5e5
CM
1939 *
1940 * We check to make sure the array is valid by comparing the
1941 * generation of the latest root in the array with the generation
1942 * in the super block. If they don't match we pitch it.
1943 */
01f0f9da 1944static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1945{
01f0f9da 1946 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1947 u64 cur;
af31f5e5
CM
1948 struct btrfs_root_backup *root_backup;
1949 int i;
1950
1951 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1952 root_backup = info->super_copy->super_roots + i;
1953 cur = btrfs_backup_tree_root_gen(root_backup);
1954 if (cur == newest_gen)
01f0f9da 1955 return i;
af31f5e5
CM
1956 }
1957
01f0f9da 1958 return -EINVAL;
af31f5e5
CM
1959}
1960
af31f5e5
CM
1961/*
1962 * copy all the root pointers into the super backup array.
1963 * this will bump the backup pointer by one when it is
1964 * done
1965 */
1966static void backup_super_roots(struct btrfs_fs_info *info)
1967{
6ef108dd 1968 const int next_backup = info->backup_root_index;
af31f5e5 1969 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1970
1971 root_backup = info->super_for_commit->super_roots + next_backup;
1972
1973 /*
1974 * make sure all of our padding and empty slots get zero filled
1975 * regardless of which ones we use today
1976 */
1977 memset(root_backup, 0, sizeof(*root_backup));
1978
1979 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1980
1981 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1982 btrfs_set_backup_tree_root_gen(root_backup,
1983 btrfs_header_generation(info->tree_root->node));
1984
1985 btrfs_set_backup_tree_root_level(root_backup,
1986 btrfs_header_level(info->tree_root->node));
1987
1988 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1989 btrfs_set_backup_chunk_root_gen(root_backup,
1990 btrfs_header_generation(info->chunk_root->node));
1991 btrfs_set_backup_chunk_root_level(root_backup,
1992 btrfs_header_level(info->chunk_root->node));
1993
1c56ab99 1994 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1995 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1996 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1997
1998 btrfs_set_backup_extent_root(root_backup,
1999 extent_root->node->start);
2000 btrfs_set_backup_extent_root_gen(root_backup,
2001 btrfs_header_generation(extent_root->node));
2002 btrfs_set_backup_extent_root_level(root_backup,
2003 btrfs_header_level(extent_root->node));
f7238e50
JB
2004
2005 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2006 btrfs_set_backup_csum_root_gen(root_backup,
2007 btrfs_header_generation(csum_root->node));
2008 btrfs_set_backup_csum_root_level(root_backup,
2009 btrfs_header_level(csum_root->node));
9c54e80d 2010 }
af31f5e5 2011
7c7e82a7
CM
2012 /*
2013 * we might commit during log recovery, which happens before we set
2014 * the fs_root. Make sure it is valid before we fill it in.
2015 */
2016 if (info->fs_root && info->fs_root->node) {
2017 btrfs_set_backup_fs_root(root_backup,
2018 info->fs_root->node->start);
2019 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2020 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2021 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2022 btrfs_header_level(info->fs_root->node));
7c7e82a7 2023 }
af31f5e5
CM
2024
2025 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2026 btrfs_set_backup_dev_root_gen(root_backup,
2027 btrfs_header_generation(info->dev_root->node));
2028 btrfs_set_backup_dev_root_level(root_backup,
2029 btrfs_header_level(info->dev_root->node));
2030
af31f5e5
CM
2031 btrfs_set_backup_total_bytes(root_backup,
2032 btrfs_super_total_bytes(info->super_copy));
2033 btrfs_set_backup_bytes_used(root_backup,
2034 btrfs_super_bytes_used(info->super_copy));
2035 btrfs_set_backup_num_devices(root_backup,
2036 btrfs_super_num_devices(info->super_copy));
2037
2038 /*
2039 * if we don't copy this out to the super_copy, it won't get remembered
2040 * for the next commit
2041 */
2042 memcpy(&info->super_copy->super_roots,
2043 &info->super_for_commit->super_roots,
2044 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2045}
2046
bd2336b2
NB
2047/*
2048 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2049 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2050 *
2051 * fs_info - filesystem whose backup roots need to be read
2052 * priority - priority of backup root required
2053 *
2054 * Returns backup root index on success and -EINVAL otherwise.
2055 */
2056static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2057{
2058 int backup_index = find_newest_super_backup(fs_info);
2059 struct btrfs_super_block *super = fs_info->super_copy;
2060 struct btrfs_root_backup *root_backup;
2061
2062 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2063 if (priority == 0)
2064 return backup_index;
2065
2066 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2067 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2068 } else {
2069 return -EINVAL;
2070 }
2071
2072 root_backup = super->super_roots + backup_index;
2073
2074 btrfs_set_super_generation(super,
2075 btrfs_backup_tree_root_gen(root_backup));
2076 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2077 btrfs_set_super_root_level(super,
2078 btrfs_backup_tree_root_level(root_backup));
2079 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2080
2081 /*
2082 * Fixme: the total bytes and num_devices need to match or we should
2083 * need a fsck
2084 */
2085 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2086 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2087
2088 return backup_index;
2089}
2090
7abadb64
LB
2091/* helper to cleanup workers */
2092static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2093{
dc6e3209 2094 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2095 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2096 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2097 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
2098 if (fs_info->endio_workers)
2099 destroy_workqueue(fs_info->endio_workers);
d34e123d
CH
2100 if (fs_info->endio_raid56_workers)
2101 destroy_workqueue(fs_info->endio_raid56_workers);
385de0ef
CH
2102 if (fs_info->rmw_workers)
2103 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
2104 if (fs_info->compressed_write_workers)
2105 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
2106 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2107 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2108 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2109 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2110 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2111 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2112 if (fs_info->discard_ctl.discard_workers)
2113 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2114 /*
2115 * Now that all other work queues are destroyed, we can safely destroy
2116 * the queues used for metadata I/O, since tasks from those other work
2117 * queues can do metadata I/O operations.
2118 */
d7b9416f
CH
2119 if (fs_info->endio_meta_workers)
2120 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2121}
2122
2e9f5954
R
2123static void free_root_extent_buffers(struct btrfs_root *root)
2124{
2125 if (root) {
2126 free_extent_buffer(root->node);
2127 free_extent_buffer(root->commit_root);
2128 root->node = NULL;
2129 root->commit_root = NULL;
2130 }
2131}
2132
abed4aaa
JB
2133static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2134{
2135 struct btrfs_root *root, *tmp;
2136
2137 rbtree_postorder_for_each_entry_safe(root, tmp,
2138 &fs_info->global_root_tree,
2139 rb_node)
2140 free_root_extent_buffers(root);
2141}
2142
af31f5e5 2143/* helper to cleanup tree roots */
4273eaff 2144static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2145{
2e9f5954 2146 free_root_extent_buffers(info->tree_root);
655b09fe 2147
abed4aaa 2148 free_global_root_pointers(info);
2e9f5954 2149 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2150 free_root_extent_buffers(info->quota_root);
2151 free_root_extent_buffers(info->uuid_root);
8c38938c 2152 free_root_extent_buffers(info->fs_root);
aeb935a4 2153 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2154 free_root_extent_buffers(info->block_group_root);
4273eaff 2155 if (free_chunk_root)
2e9f5954 2156 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2157}
2158
8c38938c
JB
2159void btrfs_put_root(struct btrfs_root *root)
2160{
2161 if (!root)
2162 return;
2163
2164 if (refcount_dec_and_test(&root->refs)) {
2165 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2166 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2167 if (root->anon_dev)
2168 free_anon_bdev(root->anon_dev);
2169 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2170 free_root_extent_buffers(root);
8c38938c 2171#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2172 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2173 list_del_init(&root->leak_list);
fc7cbcd4 2174 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2175#endif
2176 kfree(root);
2177 }
2178}
2179
faa2dbf0 2180void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2181{
fc7cbcd4
DS
2182 int ret;
2183 struct btrfs_root *gang[8];
2184 int i;
171f6537
JB
2185
2186 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2187 gang[0] = list_entry(fs_info->dead_roots.next,
2188 struct btrfs_root, root_list);
2189 list_del(&gang[0]->root_list);
171f6537 2190
fc7cbcd4
DS
2191 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2192 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2193 btrfs_put_root(gang[0]);
171f6537
JB
2194 }
2195
fc7cbcd4
DS
2196 while (1) {
2197 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2198 (void **)gang, 0,
2199 ARRAY_SIZE(gang));
2200 if (!ret)
2201 break;
2202 for (i = 0; i < ret; i++)
2203 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2204 }
2205}
af31f5e5 2206
638aa7ed
ES
2207static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2208{
2209 mutex_init(&fs_info->scrub_lock);
2210 atomic_set(&fs_info->scrubs_running, 0);
2211 atomic_set(&fs_info->scrub_pause_req, 0);
2212 atomic_set(&fs_info->scrubs_paused, 0);
2213 atomic_set(&fs_info->scrub_cancel_req, 0);
2214 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2215 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2216}
2217
779a65a4
ES
2218static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2219{
2220 spin_lock_init(&fs_info->balance_lock);
2221 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2222 atomic_set(&fs_info->balance_pause_req, 0);
2223 atomic_set(&fs_info->balance_cancel_req, 0);
2224 fs_info->balance_ctl = NULL;
2225 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2226 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2227}
2228
6bccf3ab 2229static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2230{
2ff7e61e 2231 struct inode *inode = fs_info->btree_inode;
e256927b
JB
2232 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2233 fs_info->tree_root);
2ff7e61e
JM
2234
2235 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2236 set_nlink(inode, 1);
f37938e0
ES
2237 /*
2238 * we set the i_size on the btree inode to the max possible int.
2239 * the real end of the address space is determined by all of
2240 * the devices in the system
2241 */
2ff7e61e
JM
2242 inode->i_size = OFFSET_MAX;
2243 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2244
2ff7e61e 2245 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2246 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
efb0645b 2247 IO_TREE_BTREE_INODE_IO, NULL);
2ff7e61e 2248 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2249
5c8fd99f 2250 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
2251 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2252 BTRFS_I(inode)->location.type = 0;
2253 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 2254 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 2255 __insert_inode_hash(inode, hash);
f37938e0
ES
2256}
2257
ad618368
ES
2258static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2259{
ad618368 2260 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2261 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2262 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2263}
2264
f9e92e40
ES
2265static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2266{
2267 spin_lock_init(&fs_info->qgroup_lock);
2268 mutex_init(&fs_info->qgroup_ioctl_lock);
2269 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2270 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2271 fs_info->qgroup_seq = 1;
f9e92e40 2272 fs_info->qgroup_ulist = NULL;
d2c609b8 2273 fs_info->qgroup_rescan_running = false;
011b46c3 2274 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
2275 mutex_init(&fs_info->qgroup_rescan_lock);
2276}
2277
d21deec5 2278static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2279{
f7b885be 2280 u32 max_active = fs_info->thread_pool_size;
6f011058 2281 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2282
2283 fs_info->workers =
a31b4a43
CH
2284 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2285 fs_info->hipri_workers =
2286 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2287 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2288
2289 fs_info->delalloc_workers =
cb001095
JM
2290 btrfs_alloc_workqueue(fs_info, "delalloc",
2291 flags, max_active, 2);
2a458198
ES
2292
2293 fs_info->flush_workers =
cb001095
JM
2294 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2295 flags, max_active, 0);
2a458198
ES
2296
2297 fs_info->caching_workers =
cb001095 2298 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2299
2a458198 2300 fs_info->fixup_workers =
cb001095 2301 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198 2302
2a458198 2303 fs_info->endio_workers =
d7b9416f 2304 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2305 fs_info->endio_meta_workers =
d7b9416f 2306 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2a458198 2307 fs_info->endio_raid56_workers =
d34e123d 2308 alloc_workqueue("btrfs-endio-raid56", flags, max_active);
385de0ef 2309 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2310 fs_info->endio_write_workers =
cb001095
JM
2311 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2312 max_active, 2);
fed8a72d
CH
2313 fs_info->compressed_write_workers =
2314 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2315 fs_info->endio_freespace_worker =
cb001095
JM
2316 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2317 max_active, 0);
2a458198 2318 fs_info->delayed_workers =
cb001095
JM
2319 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2320 max_active, 0);
2a458198 2321 fs_info->qgroup_rescan_workers =
cb001095 2322 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2323 fs_info->discard_ctl.discard_workers =
2324 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2325
a31b4a43
CH
2326 if (!(fs_info->workers && fs_info->hipri_workers &&
2327 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2328 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2329 fs_info->compressed_write_workers &&
2a458198
ES
2330 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2331 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2332 fs_info->caching_workers && fs_info->fixup_workers &&
2333 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2334 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2335 return -ENOMEM;
2336 }
2337
2338 return 0;
2339}
2340
6d97c6e3
JT
2341static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2342{
2343 struct crypto_shash *csum_shash;
b4e967be 2344 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2345
b4e967be 2346 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2347
2348 if (IS_ERR(csum_shash)) {
2349 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2350 csum_driver);
6d97c6e3
JT
2351 return PTR_ERR(csum_shash);
2352 }
2353
2354 fs_info->csum_shash = csum_shash;
2355
c8a5f8ca
DS
2356 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2357 btrfs_super_csum_name(csum_type),
2358 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2359 return 0;
2360}
2361
63443bf5
ES
2362static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2363 struct btrfs_fs_devices *fs_devices)
2364{
2365 int ret;
63443bf5
ES
2366 struct btrfs_root *log_tree_root;
2367 struct btrfs_super_block *disk_super = fs_info->super_copy;
2368 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2369 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2370
2371 if (fs_devices->rw_devices == 0) {
f14d104d 2372 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2373 return -EIO;
2374 }
2375
96dfcb46
JB
2376 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2377 GFP_KERNEL);
63443bf5
ES
2378 if (!log_tree_root)
2379 return -ENOMEM;
2380
2ff7e61e 2381 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2382 BTRFS_TREE_LOG_OBJECTID,
2383 fs_info->generation + 1, level,
2384 NULL);
64c043de 2385 if (IS_ERR(log_tree_root->node)) {
f14d104d 2386 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2387 ret = PTR_ERR(log_tree_root->node);
8c38938c 2388 log_tree_root->node = NULL;
00246528 2389 btrfs_put_root(log_tree_root);
0eeff236 2390 return ret;
4eb150d6
QW
2391 }
2392 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2393 btrfs_err(fs_info, "failed to read log tree");
00246528 2394 btrfs_put_root(log_tree_root);
63443bf5
ES
2395 return -EIO;
2396 }
4eb150d6 2397
63443bf5
ES
2398 /* returns with log_tree_root freed on success */
2399 ret = btrfs_recover_log_trees(log_tree_root);
2400 if (ret) {
0b246afa
JM
2401 btrfs_handle_fs_error(fs_info, ret,
2402 "Failed to recover log tree");
00246528 2403 btrfs_put_root(log_tree_root);
63443bf5
ES
2404 return ret;
2405 }
2406
bc98a42c 2407 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2408 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2409 if (ret)
2410 return ret;
2411 }
2412
2413 return 0;
2414}
2415
abed4aaa
JB
2416static int load_global_roots_objectid(struct btrfs_root *tree_root,
2417 struct btrfs_path *path, u64 objectid,
2418 const char *name)
2419{
2420 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2421 struct btrfs_root *root;
f7238e50 2422 u64 max_global_id = 0;
abed4aaa
JB
2423 int ret;
2424 struct btrfs_key key = {
2425 .objectid = objectid,
2426 .type = BTRFS_ROOT_ITEM_KEY,
2427 .offset = 0,
2428 };
2429 bool found = false;
2430
2431 /* If we have IGNOREDATACSUMS skip loading these roots. */
2432 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2433 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2434 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2435 return 0;
2436 }
2437
2438 while (1) {
2439 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2440 if (ret < 0)
2441 break;
2442
2443 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2444 ret = btrfs_next_leaf(tree_root, path);
2445 if (ret) {
2446 if (ret > 0)
2447 ret = 0;
2448 break;
2449 }
2450 }
2451 ret = 0;
2452
2453 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2454 if (key.objectid != objectid)
2455 break;
2456 btrfs_release_path(path);
2457
f7238e50
JB
2458 /*
2459 * Just worry about this for extent tree, it'll be the same for
2460 * everybody.
2461 */
2462 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2463 max_global_id = max(max_global_id, key.offset);
2464
abed4aaa
JB
2465 found = true;
2466 root = read_tree_root_path(tree_root, path, &key);
2467 if (IS_ERR(root)) {
2468 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2469 ret = PTR_ERR(root);
2470 break;
2471 }
2472 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2473 ret = btrfs_global_root_insert(root);
2474 if (ret) {
2475 btrfs_put_root(root);
2476 break;
2477 }
2478 key.offset++;
2479 }
2480 btrfs_release_path(path);
2481
f7238e50
JB
2482 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2483 fs_info->nr_global_roots = max_global_id + 1;
2484
abed4aaa
JB
2485 if (!found || ret) {
2486 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2487 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2488
2489 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2490 ret = ret ? ret : -ENOENT;
2491 else
2492 ret = 0;
2493 btrfs_err(fs_info, "failed to load root %s", name);
2494 }
2495 return ret;
2496}
2497
2498static int load_global_roots(struct btrfs_root *tree_root)
2499{
2500 struct btrfs_path *path;
2501 int ret = 0;
2502
2503 path = btrfs_alloc_path();
2504 if (!path)
2505 return -ENOMEM;
2506
2507 ret = load_global_roots_objectid(tree_root, path,
2508 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2509 if (ret)
2510 goto out;
2511 ret = load_global_roots_objectid(tree_root, path,
2512 BTRFS_CSUM_TREE_OBJECTID, "csum");
2513 if (ret)
2514 goto out;
2515 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2516 goto out;
2517 ret = load_global_roots_objectid(tree_root, path,
2518 BTRFS_FREE_SPACE_TREE_OBJECTID,
2519 "free space");
2520out:
2521 btrfs_free_path(path);
2522 return ret;
2523}
2524
6bccf3ab 2525static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2526{
6bccf3ab 2527 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2528 struct btrfs_root *root;
4bbcaa64
ES
2529 struct btrfs_key location;
2530 int ret;
2531
6bccf3ab
JM
2532 BUG_ON(!fs_info->tree_root);
2533
abed4aaa
JB
2534 ret = load_global_roots(tree_root);
2535 if (ret)
2536 return ret;
2537
4bbcaa64
ES
2538 location.type = BTRFS_ROOT_ITEM_KEY;
2539 location.offset = 0;
2540
1c56ab99 2541 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2542 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2543 root = btrfs_read_tree_root(tree_root, &location);
2544 if (IS_ERR(root)) {
2545 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2546 ret = PTR_ERR(root);
2547 goto out;
2548 }
2549 } else {
2550 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551 fs_info->block_group_root = root;
2552 }
2553 }
2554
2555 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2556 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2557 if (IS_ERR(root)) {
42437a63
JB
2558 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2559 ret = PTR_ERR(root);
2560 goto out;
2561 }
2562 } else {
2563 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2564 fs_info->dev_root = root;
f50f4353 2565 }
820a49da 2566 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2567 ret = btrfs_init_devices_late(fs_info);
2568 if (ret)
2569 goto out;
4bbcaa64 2570
aeb935a4
QW
2571 /*
2572 * This tree can share blocks with some other fs tree during relocation
2573 * and we need a proper setup by btrfs_get_fs_root
2574 */
56e9357a
DS
2575 root = btrfs_get_fs_root(tree_root->fs_info,
2576 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2577 if (IS_ERR(root)) {
42437a63
JB
2578 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2579 ret = PTR_ERR(root);
2580 goto out;
2581 }
2582 } else {
2583 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2584 fs_info->data_reloc_root = root;
aeb935a4 2585 }
aeb935a4 2586
4bbcaa64 2587 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2588 root = btrfs_read_tree_root(tree_root, &location);
2589 if (!IS_ERR(root)) {
2590 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2591 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2592 fs_info->quota_root = root;
4bbcaa64
ES
2593 }
2594
2595 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2596 root = btrfs_read_tree_root(tree_root, &location);
2597 if (IS_ERR(root)) {
42437a63
JB
2598 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2599 ret = PTR_ERR(root);
2600 if (ret != -ENOENT)
2601 goto out;
2602 }
4bbcaa64 2603 } else {
a4f3d2c4
DS
2604 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2605 fs_info->uuid_root = root;
4bbcaa64
ES
2606 }
2607
2608 return 0;
f50f4353
LB
2609out:
2610 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2611 location.objectid, ret);
2612 return ret;
4bbcaa64
ES
2613}
2614
069ec957
QW
2615/*
2616 * Real super block validation
2617 * NOTE: super csum type and incompat features will not be checked here.
2618 *
2619 * @sb: super block to check
2620 * @mirror_num: the super block number to check its bytenr:
2621 * 0 the primary (1st) sb
2622 * 1, 2 2nd and 3rd backup copy
2623 * -1 skip bytenr check
2624 */
a05d3c91
QW
2625int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2626 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2627{
21a852b0
QW
2628 u64 nodesize = btrfs_super_nodesize(sb);
2629 u64 sectorsize = btrfs_super_sectorsize(sb);
2630 int ret = 0;
2631
2632 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2633 btrfs_err(fs_info, "no valid FS found");
2634 ret = -EINVAL;
2635 }
2636 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2637 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2638 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2639 ret = -EINVAL;
2640 }
2641 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2642 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2643 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2644 ret = -EINVAL;
2645 }
2646 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2647 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2648 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2649 ret = -EINVAL;
2650 }
2651 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2652 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2653 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2654 ret = -EINVAL;
2655 }
2656
2657 /*
2658 * Check sectorsize and nodesize first, other check will need it.
2659 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2660 */
2661 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2662 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2663 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2664 ret = -EINVAL;
2665 }
0bb3eb3e
QW
2666
2667 /*
1a42daab
QW
2668 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2669 *
2670 * We can support 16K sectorsize with 64K page size without problem,
2671 * but such sectorsize/pagesize combination doesn't make much sense.
2672 * 4K will be our future standard, PAGE_SIZE is supported from the very
2673 * beginning.
0bb3eb3e 2674 */
1a42daab 2675 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2676 btrfs_err(fs_info,
0bb3eb3e 2677 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2678 sectorsize, PAGE_SIZE);
2679 ret = -EINVAL;
2680 }
0bb3eb3e 2681
21a852b0
QW
2682 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2683 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2684 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2685 ret = -EINVAL;
2686 }
2687 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2688 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2689 le32_to_cpu(sb->__unused_leafsize), nodesize);
2690 ret = -EINVAL;
2691 }
2692
2693 /* Root alignment check */
2694 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2695 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2696 btrfs_super_root(sb));
2697 ret = -EINVAL;
2698 }
2699 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2700 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2701 btrfs_super_chunk_root(sb));
2702 ret = -EINVAL;
2703 }
2704 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2705 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2706 btrfs_super_log_root(sb));
2707 ret = -EINVAL;
2708 }
2709
aefd7f70
NB
2710 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2711 BTRFS_FSID_SIZE)) {
2712 btrfs_err(fs_info,
2713 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2714 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2715 ret = -EINVAL;
2716 }
2717
2718 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2719 memcmp(fs_info->fs_devices->metadata_uuid,
2720 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2721 btrfs_err(fs_info,
2722"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2723 fs_info->super_copy->metadata_uuid,
2724 fs_info->fs_devices->metadata_uuid);
2725 ret = -EINVAL;
2726 }
2727
1c56ab99
QW
2728 /*
2729 * Artificial requirement for block-group-tree to force newer features
2730 * (free-space-tree, no-holes) so the test matrix is smaller.
2731 */
2732 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2733 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2734 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2735 btrfs_err(fs_info,
2736 "block-group-tree feature requires fres-space-tree and no-holes");
2737 ret = -EINVAL;
2738 }
2739
de37aa51 2740 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2741 BTRFS_FSID_SIZE) != 0) {
21a852b0 2742 btrfs_err(fs_info,
7239ff4b 2743 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2744 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2745 ret = -EINVAL;
2746 }
2747
2748 /*
2749 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2750 * done later
2751 */
2752 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2753 btrfs_err(fs_info, "bytes_used is too small %llu",
2754 btrfs_super_bytes_used(sb));
2755 ret = -EINVAL;
2756 }
2757 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2758 btrfs_err(fs_info, "invalid stripesize %u",
2759 btrfs_super_stripesize(sb));
2760 ret = -EINVAL;
2761 }
2762 if (btrfs_super_num_devices(sb) > (1UL << 31))
2763 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2764 btrfs_super_num_devices(sb));
2765 if (btrfs_super_num_devices(sb) == 0) {
2766 btrfs_err(fs_info, "number of devices is 0");
2767 ret = -EINVAL;
2768 }
2769
069ec957
QW
2770 if (mirror_num >= 0 &&
2771 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2772 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2773 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2774 ret = -EINVAL;
2775 }
2776
2777 /*
2778 * Obvious sys_chunk_array corruptions, it must hold at least one key
2779 * and one chunk
2780 */
2781 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2782 btrfs_err(fs_info, "system chunk array too big %u > %u",
2783 btrfs_super_sys_array_size(sb),
2784 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2785 ret = -EINVAL;
2786 }
2787 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2788 + sizeof(struct btrfs_chunk)) {
2789 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2790 btrfs_super_sys_array_size(sb),
2791 sizeof(struct btrfs_disk_key)
2792 + sizeof(struct btrfs_chunk));
2793 ret = -EINVAL;
2794 }
2795
2796 /*
2797 * The generation is a global counter, we'll trust it more than the others
2798 * but it's still possible that it's the one that's wrong.
2799 */
2800 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2801 btrfs_warn(fs_info,
2802 "suspicious: generation < chunk_root_generation: %llu < %llu",
2803 btrfs_super_generation(sb),
2804 btrfs_super_chunk_root_generation(sb));
2805 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2806 && btrfs_super_cache_generation(sb) != (u64)-1)
2807 btrfs_warn(fs_info,
2808 "suspicious: generation < cache_generation: %llu < %llu",
2809 btrfs_super_generation(sb),
2810 btrfs_super_cache_generation(sb));
2811
2812 return ret;
2813}
2814
069ec957
QW
2815/*
2816 * Validation of super block at mount time.
2817 * Some checks already done early at mount time, like csum type and incompat
2818 * flags will be skipped.
2819 */
2820static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2821{
a05d3c91 2822 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2823}
2824
75cb857d
QW
2825/*
2826 * Validation of super block at write time.
2827 * Some checks like bytenr check will be skipped as their values will be
2828 * overwritten soon.
2829 * Extra checks like csum type and incompat flags will be done here.
2830 */
2831static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2832 struct btrfs_super_block *sb)
2833{
2834 int ret;
2835
a05d3c91 2836 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2837 if (ret < 0)
2838 goto out;
e7e16f48 2839 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2840 ret = -EUCLEAN;
2841 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2842 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2843 goto out;
2844 }
2845 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2846 ret = -EUCLEAN;
2847 btrfs_err(fs_info,
2848 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2849 btrfs_super_incompat_flags(sb),
2850 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2851 goto out;
2852 }
2853out:
2854 if (ret < 0)
2855 btrfs_err(fs_info,
2856 "super block corruption detected before writing it to disk");
2857 return ret;
2858}
2859
bd676446
JB
2860static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2861{
2862 int ret = 0;
2863
2864 root->node = read_tree_block(root->fs_info, bytenr,
2865 root->root_key.objectid, gen, level, NULL);
2866 if (IS_ERR(root->node)) {
2867 ret = PTR_ERR(root->node);
2868 root->node = NULL;
4eb150d6
QW
2869 return ret;
2870 }
2871 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2872 free_extent_buffer(root->node);
2873 root->node = NULL;
4eb150d6 2874 return -EIO;
bd676446
JB
2875 }
2876
bd676446
JB
2877 btrfs_set_root_node(&root->root_item, root->node);
2878 root->commit_root = btrfs_root_node(root);
2879 btrfs_set_root_refs(&root->root_item, 1);
2880 return ret;
2881}
2882
2883static int load_important_roots(struct btrfs_fs_info *fs_info)
2884{
2885 struct btrfs_super_block *sb = fs_info->super_copy;
2886 u64 gen, bytenr;
2887 int level, ret;
2888
2889 bytenr = btrfs_super_root(sb);
2890 gen = btrfs_super_generation(sb);
2891 level = btrfs_super_root_level(sb);
2892 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2893 if (ret) {
bd676446 2894 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2895 return ret;
2896 }
14033b08 2897 return 0;
bd676446
JB
2898}
2899
6ef108dd 2900static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2901{
6ef108dd 2902 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2903 struct btrfs_super_block *sb = fs_info->super_copy;
2904 struct btrfs_root *tree_root = fs_info->tree_root;
2905 bool handle_error = false;
2906 int ret = 0;
2907 int i;
2908
2909 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2910 if (handle_error) {
2911 if (!IS_ERR(tree_root->node))
2912 free_extent_buffer(tree_root->node);
2913 tree_root->node = NULL;
2914
2915 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2916 break;
2917
2918 free_root_pointers(fs_info, 0);
2919
2920 /*
2921 * Don't use the log in recovery mode, it won't be
2922 * valid
2923 */
2924 btrfs_set_super_log_root(sb, 0);
2925
2926 /* We can't trust the free space cache either */
2927 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2928
2929 ret = read_backup_root(fs_info, i);
6ef108dd 2930 backup_index = ret;
b8522a1e
NB
2931 if (ret < 0)
2932 return ret;
2933 }
b8522a1e 2934
bd676446
JB
2935 ret = load_important_roots(fs_info);
2936 if (ret) {
217f5004 2937 handle_error = true;
b8522a1e
NB
2938 continue;
2939 }
2940
336a0d8d
NB
2941 /*
2942 * No need to hold btrfs_root::objectid_mutex since the fs
2943 * hasn't been fully initialised and we are the only user
2944 */
453e4873 2945 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2946 if (ret < 0) {
b8522a1e
NB
2947 handle_error = true;
2948 continue;
2949 }
2950
6b8fad57 2951 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2952
2953 ret = btrfs_read_roots(fs_info);
2954 if (ret < 0) {
2955 handle_error = true;
2956 continue;
2957 }
2958
2959 /* All successful */
bd676446
JB
2960 fs_info->generation = btrfs_header_generation(tree_root->node);
2961 fs_info->last_trans_committed = fs_info->generation;
d96b3424 2962 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2963
2964 /* Always begin writing backup roots after the one being used */
2965 if (backup_index < 0) {
2966 fs_info->backup_root_index = 0;
2967 } else {
2968 fs_info->backup_root_index = backup_index + 1;
2969 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2970 }
b8522a1e
NB
2971 break;
2972 }
2973
2974 return ret;
2975}
2976
8260edba 2977void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2978{
fc7cbcd4 2979 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2980 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2981 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2982 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2983 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2984 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2985 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2986 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2987 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2988 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2989 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2990 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2991 spin_lock_init(&fs_info->super_lock);
f28491e0 2992 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2993 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2994 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2995 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2996 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2997 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2998 rwlock_init(&fs_info->global_root_lock);
d7c15171 2999 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 3000 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 3001 mutex_init(&fs_info->reloc_mutex);
573bfb72 3002 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 3003 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 3004 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 3005 seqlock_init(&fs_info->profiles_lock);
19c00ddc 3006
e1489b4f 3007 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 3008 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 3009 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 3010 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3e738c53
IA
3011 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
3012 BTRFS_LOCKDEP_TRANS_COMMIT_START);
3013 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3014 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3015 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3016 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3017 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3018 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 3019
0b86a832 3020 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3021 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3022 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3023 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3024 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3025 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3026#ifdef CONFIG_BTRFS_DEBUG
3027 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3028 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3029 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3030#endif
c8bf1b67 3031 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3032 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3033 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3034 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3035 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3036 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3037 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3038 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3039 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3040 BTRFS_BLOCK_RSV_DELREFS);
3041
771ed689 3042 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3043 atomic_set(&fs_info->defrag_running, 0);
034f784d 3044 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3045 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3046 fs_info->global_root_tree = RB_ROOT;
95ac567a 3047 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3048 fs_info->metadata_ratio = 0;
4cb5300b 3049 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3050 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3051 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3052 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3053 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3054 btrfs_init_ref_verify(fs_info);
c8b97818 3055
b34b086c
CM
3056 fs_info->thread_pool_size = min_t(unsigned long,
3057 num_online_cpus() + 2, 8);
0afbaf8c 3058
199c2a9c
MX
3059 INIT_LIST_HEAD(&fs_info->ordered_roots);
3060 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3061
638aa7ed 3062 btrfs_init_scrub(fs_info);
21adbd5c
SB
3063#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3064 fs_info->check_integrity_print_mask = 0;
3065#endif
779a65a4 3066 btrfs_init_balance(fs_info);
57056740 3067 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3068
16b0c258 3069 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3070 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3071
fe119a6e
NB
3072 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3073 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3074
5a3f23d5 3075 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3076 mutex_init(&fs_info->tree_log_mutex);
925baedd 3077 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3078 mutex_init(&fs_info->transaction_kthread_mutex);
3079 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3080 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3081 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3082 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3083 init_rwsem(&fs_info->subvol_sem);
803b2f54 3084 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3085
ad618368 3086 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3087 btrfs_init_qgroup(fs_info);
b0643e59 3088 btrfs_discard_init(fs_info);
416ac51d 3089
fa9c0d79
CM
3090 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3091 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3092
e6dcd2dc 3093 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3094 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3095 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3096 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3097 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3098
da17066c
JM
3099 /* Usable values until the real ones are cached from the superblock */
3100 fs_info->nodesize = 4096;
3101 fs_info->sectorsize = 4096;
ab108d99 3102 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3103 fs_info->stripesize = 4096;
3104
f7b12a62
NA
3105 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3106
eede2bf3
OS
3107 spin_lock_init(&fs_info->swapfile_pins_lock);
3108 fs_info->swapfile_pins = RB_ROOT;
3109
18bb8bbf
JT
3110 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3111 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3112}
3113
3114static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3115{
3116 int ret;
3117
3118 fs_info->sb = sb;
3119 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3120 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3121
5deb17e1 3122 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3123 if (ret)
c75e8394 3124 return ret;
ae18c37a
JB
3125
3126 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3127 if (ret)
c75e8394 3128 return ret;
ae18c37a
JB
3129
3130 fs_info->dirty_metadata_batch = PAGE_SIZE *
3131 (1 + ilog2(nr_cpu_ids));
3132
3133 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3134 if (ret)
c75e8394 3135 return ret;
ae18c37a
JB
3136
3137 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3138 GFP_KERNEL);
3139 if (ret)
c75e8394 3140 return ret;
ae18c37a
JB
3141
3142 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3143 GFP_KERNEL);
c75e8394
JB
3144 if (!fs_info->delayed_root)
3145 return -ENOMEM;
ae18c37a
JB
3146 btrfs_init_delayed_root(fs_info->delayed_root);
3147
a0a1db70
FM
3148 if (sb_rdonly(sb))
3149 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3150
c75e8394 3151 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3152}
3153
97f4dd09
NB
3154static int btrfs_uuid_rescan_kthread(void *data)
3155{
0d031dc4 3156 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3157 int ret;
3158
3159 /*
3160 * 1st step is to iterate through the existing UUID tree and
3161 * to delete all entries that contain outdated data.
3162 * 2nd step is to add all missing entries to the UUID tree.
3163 */
3164 ret = btrfs_uuid_tree_iterate(fs_info);
3165 if (ret < 0) {
c94bec2c
JB
3166 if (ret != -EINTR)
3167 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3168 ret);
97f4dd09
NB
3169 up(&fs_info->uuid_tree_rescan_sem);
3170 return ret;
3171 }
3172 return btrfs_uuid_scan_kthread(data);
3173}
3174
3175static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3176{
3177 struct task_struct *task;
3178
3179 down(&fs_info->uuid_tree_rescan_sem);
3180 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3181 if (IS_ERR(task)) {
3182 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3183 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3184 up(&fs_info->uuid_tree_rescan_sem);
3185 return PTR_ERR(task);
3186 }
3187
3188 return 0;
3189}
3190
8cd29088
BB
3191/*
3192 * Some options only have meaning at mount time and shouldn't persist across
3193 * remounts, or be displayed. Clear these at the end of mount and remount
3194 * code paths.
3195 */
3196void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3197{
3198 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3199 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3200}
3201
44c0ca21
BB
3202/*
3203 * Mounting logic specific to read-write file systems. Shared by open_ctree
3204 * and btrfs_remount when remounting from read-only to read-write.
3205 */
3206int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3207{
3208 int ret;
94846229 3209 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3210 bool clear_free_space_tree = false;
3211
3212 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3213 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3214 clear_free_space_tree = true;
3215 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3216 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3217 btrfs_warn(fs_info, "free space tree is invalid");
3218 clear_free_space_tree = true;
3219 }
3220
3221 if (clear_free_space_tree) {
3222 btrfs_info(fs_info, "clearing free space tree");
3223 ret = btrfs_clear_free_space_tree(fs_info);
3224 if (ret) {
3225 btrfs_warn(fs_info,
3226 "failed to clear free space tree: %d", ret);
3227 goto out;
3228 }
3229 }
44c0ca21 3230
8d488a8c
FM
3231 /*
3232 * btrfs_find_orphan_roots() is responsible for finding all the dead
3233 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3234 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3235 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3236 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3237 * item before the root's tree is deleted - this means that if we unmount
3238 * or crash before the deletion completes, on the next mount we will not
3239 * delete what remains of the tree because the orphan item does not
3240 * exists anymore, which is what tells us we have a pending deletion.
3241 */
3242 ret = btrfs_find_orphan_roots(fs_info);
3243 if (ret)
3244 goto out;
3245
44c0ca21
BB
3246 ret = btrfs_cleanup_fs_roots(fs_info);
3247 if (ret)
3248 goto out;
3249
8f1c21d7
BB
3250 down_read(&fs_info->cleanup_work_sem);
3251 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3252 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3253 up_read(&fs_info->cleanup_work_sem);
3254 goto out;
3255 }
3256 up_read(&fs_info->cleanup_work_sem);
3257
44c0ca21 3258 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3259 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3260 mutex_unlock(&fs_info->cleaner_mutex);
3261 if (ret < 0) {
3262 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3263 goto out;
3264 }
3265
5011139a
BB
3266 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3267 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3268 btrfs_info(fs_info, "creating free space tree");
3269 ret = btrfs_create_free_space_tree(fs_info);
3270 if (ret) {
3271 btrfs_warn(fs_info,
3272 "failed to create free space tree: %d", ret);
3273 goto out;
3274 }
3275 }
3276
94846229
BB
3277 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3278 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3279 if (ret)
3280 goto out;
3281 }
3282
44c0ca21
BB
3283 ret = btrfs_resume_balance_async(fs_info);
3284 if (ret)
3285 goto out;
3286
3287 ret = btrfs_resume_dev_replace_async(fs_info);
3288 if (ret) {
3289 btrfs_warn(fs_info, "failed to resume dev_replace");
3290 goto out;
3291 }
3292
3293 btrfs_qgroup_rescan_resume(fs_info);
3294
3295 if (!fs_info->uuid_root) {
3296 btrfs_info(fs_info, "creating UUID tree");
3297 ret = btrfs_create_uuid_tree(fs_info);
3298 if (ret) {
3299 btrfs_warn(fs_info,
3300 "failed to create the UUID tree %d", ret);
3301 goto out;
3302 }
3303 }
3304
3305out:
3306 return ret;
3307}
3308
d7f67ac9
QW
3309/*
3310 * Do various sanity and dependency checks of different features.
3311 *
3312 * This is the place for less strict checks (like for subpage or artificial
3313 * feature dependencies).
3314 *
3315 * For strict checks or possible corruption detection, see
3316 * btrfs_validate_super().
3317 *
3318 * This should be called after btrfs_parse_options(), as some mount options
3319 * (space cache related) can modify on-disk format like free space tree and
3320 * screw up certain feature dependencies.
3321 */
3322int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb)
3323{
3324 struct btrfs_super_block *disk_super = fs_info->super_copy;
3325 u64 incompat = btrfs_super_incompat_flags(disk_super);
3326 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3327 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3328
3329 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3330 btrfs_err(fs_info,
3331 "cannot mount because of unknown incompat features (0x%llx)",
3332 incompat);
3333 return -EINVAL;
3334 }
3335
3336 /* Runtime limitation for mixed block groups. */
3337 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3338 (fs_info->sectorsize != fs_info->nodesize)) {
3339 btrfs_err(fs_info,
3340"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3341 fs_info->nodesize, fs_info->sectorsize);
3342 return -EINVAL;
3343 }
3344
3345 /* Mixed backref is an always-enabled feature. */
3346 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3347
3348 /* Set compression related flags just in case. */
3349 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3350 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3351 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3352 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3353
3354 /*
3355 * An ancient flag, which should really be marked deprecated.
3356 * Such runtime limitation doesn't really need a incompat flag.
3357 */
3358 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3359 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3360
3361 if (compat_ro_unsupp && !sb_rdonly(sb)) {
3362 btrfs_err(fs_info,
3363 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3364 compat_ro);
3365 return -EINVAL;
3366 }
3367
3368 /*
3369 * We have unsupported RO compat features, although RO mounted, we
3370 * should not cause any metadata writes, including log replay.
3371 * Or we could screw up whatever the new feature requires.
3372 */
3373 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3374 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3375 btrfs_err(fs_info,
3376"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3377 compat_ro);
3378 return -EINVAL;
3379 }
3380
3381 /*
3382 * Artificial limitations for block group tree, to force
3383 * block-group-tree to rely on no-holes and free-space-tree.
3384 */
3385 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3386 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3387 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3388 btrfs_err(fs_info,
3389"block-group-tree feature requires no-holes and free-space-tree features");
3390 return -EINVAL;
3391 }
3392
3393 /*
3394 * Subpage runtime limitation on v1 cache.
3395 *
3396 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3397 * we're already defaulting to v2 cache, no need to bother v1 as it's
3398 * going to be deprecated anyway.
3399 */
3400 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3401 btrfs_warn(fs_info,
3402 "v1 space cache is not supported for page size %lu with sectorsize %u",
3403 PAGE_SIZE, fs_info->sectorsize);
3404 return -EINVAL;
3405 }
3406
3407 /* This can be called by remount, we need to protect the super block. */
3408 spin_lock(&fs_info->super_lock);
3409 btrfs_set_super_incompat_flags(disk_super, incompat);
3410 spin_unlock(&fs_info->super_lock);
3411
3412 return 0;
3413}
3414
ae18c37a
JB
3415int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3416 char *options)
3417{
3418 u32 sectorsize;
3419 u32 nodesize;
3420 u32 stripesize;
3421 u64 generation;
3422 u64 features;
3423 u16 csum_type;
ae18c37a
JB
3424 struct btrfs_super_block *disk_super;
3425 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3426 struct btrfs_root *tree_root;
3427 struct btrfs_root *chunk_root;
3428 int ret;
3429 int err = -EINVAL;
ae18c37a
JB
3430 int level;
3431
8260edba 3432 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3433 if (ret) {
83c8266a 3434 err = ret;
ae18c37a 3435 goto fail;
53b381b3
DW
3436 }
3437
ae18c37a
JB
3438 /* These need to be init'ed before we start creating inodes and such. */
3439 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3440 GFP_KERNEL);
3441 fs_info->tree_root = tree_root;
3442 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3443 GFP_KERNEL);
3444 fs_info->chunk_root = chunk_root;
3445 if (!tree_root || !chunk_root) {
3446 err = -ENOMEM;
c75e8394 3447 goto fail;
ae18c37a
JB
3448 }
3449
3450 fs_info->btree_inode = new_inode(sb);
3451 if (!fs_info->btree_inode) {
3452 err = -ENOMEM;
c75e8394 3453 goto fail;
ae18c37a
JB
3454 }
3455 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3456 btrfs_init_btree_inode(fs_info);
3457
d24fa5c1 3458 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3459
3460 /*
3461 * Read super block and check the signature bytes only
3462 */
d24fa5c1 3463 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3464 if (IS_ERR(disk_super)) {
3465 err = PTR_ERR(disk_super);
16cdcec7 3466 goto fail_alloc;
20b45077 3467 }
39279cc3 3468
8dc3f22c 3469 /*
260db43c 3470 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3471 * corrupted, we'll find out
3472 */
8f32380d 3473 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3474 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3475 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3476 csum_type);
8dc3f22c 3477 err = -EINVAL;
8f32380d 3478 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3479 goto fail_alloc;
3480 }
3481
83c68bbc
SY
3482 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3483
6d97c6e3
JT
3484 ret = btrfs_init_csum_hash(fs_info, csum_type);
3485 if (ret) {
3486 err = ret;
8f32380d 3487 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3488 goto fail_alloc;
3489 }
3490
1104a885
DS
3491 /*
3492 * We want to check superblock checksum, the type is stored inside.
3493 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3494 */
3d17adea 3495 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3496 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3497 err = -EINVAL;
8f32380d 3498 btrfs_release_disk_super(disk_super);
141386e1 3499 goto fail_alloc;
1104a885
DS
3500 }
3501
3502 /*
3503 * super_copy is zeroed at allocation time and we never touch the
3504 * following bytes up to INFO_SIZE, the checksum is calculated from
3505 * the whole block of INFO_SIZE
3506 */
8f32380d
JT
3507 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3508 btrfs_release_disk_super(disk_super);
5f39d397 3509
fbc6feae
NB
3510 disk_super = fs_info->super_copy;
3511
0b86a832 3512
fbc6feae
NB
3513 features = btrfs_super_flags(disk_super);
3514 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3515 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3516 btrfs_set_super_flags(disk_super, features);
3517 btrfs_info(fs_info,
3518 "found metadata UUID change in progress flag, clearing");
3519 }
3520
3521 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3522 sizeof(*fs_info->super_for_commit));
de37aa51 3523
069ec957 3524 ret = btrfs_validate_mount_super(fs_info);
1104a885 3525 if (ret) {
05135f59 3526 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3527 err = -EINVAL;
141386e1 3528 goto fail_alloc;
1104a885
DS
3529 }
3530
0f7d52f4 3531 if (!btrfs_super_root(disk_super))
141386e1 3532 goto fail_alloc;
0f7d52f4 3533
acce952b 3534 /* check FS state, whether FS is broken. */
87533c47
MX
3535 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3536 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3537
75e7cb7f
LB
3538 /*
3539 * In the long term, we'll store the compression type in the super
3540 * block, and it'll be used for per file compression control.
3541 */
3542 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3543
6f93e834
AJ
3544
3545 /* Set up fs_info before parsing mount options */
3546 nodesize = btrfs_super_nodesize(disk_super);
3547 sectorsize = btrfs_super_sectorsize(disk_super);
3548 stripesize = sectorsize;
3549 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3550 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3551
3552 fs_info->nodesize = nodesize;
3553 fs_info->sectorsize = sectorsize;
3554 fs_info->sectorsize_bits = ilog2(sectorsize);
3555 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3556 fs_info->stripesize = stripesize;
3557
2ff7e61e 3558 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3559 if (ret) {
3560 err = ret;
141386e1 3561 goto fail_alloc;
2b82032c 3562 }
dfe25020 3563
d7f67ac9
QW
3564 ret = btrfs_check_features(fs_info, sb);
3565 if (ret < 0) {
3566 err = ret;
dc4d3168
QW
3567 goto fail_alloc;
3568 }
3569
8481dd80
QW
3570 if (sectorsize < PAGE_SIZE) {
3571 struct btrfs_subpage_info *subpage_info;
3572
9f73f1ae
QW
3573 /*
3574 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3575 * going to be deprecated.
3576 *
3577 * Force to use v2 cache for subpage case.
3578 */
3579 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3580 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3581 "forcing free space tree for sector size %u with page size %lu",
3582 sectorsize, PAGE_SIZE);
3583
95ea0486
QW
3584 btrfs_warn(fs_info,
3585 "read-write for sector size %u with page size %lu is experimental",
3586 sectorsize, PAGE_SIZE);
8481dd80
QW
3587 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3588 if (!subpage_info)
3589 goto fail_alloc;
3590 btrfs_init_subpage_info(subpage_info, sectorsize);
3591 fs_info->subpage_info = subpage_info;
c8050b3b 3592 }
0bb3eb3e 3593
d21deec5 3594 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3595 if (ret) {
3596 err = ret;
0dc3b84a
JB
3597 goto fail_sb_buffer;
3598 }
4543df7e 3599
9e11ceee
JK
3600 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3601 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3602
a061fc8d
CM
3603 sb->s_blocksize = sectorsize;
3604 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3605 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3606
925baedd 3607 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3608 ret = btrfs_read_sys_array(fs_info);
925baedd 3609 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3610 if (ret) {
05135f59 3611 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3612 goto fail_sb_buffer;
84eed90f 3613 }
0b86a832 3614
84234f3a 3615 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3616 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3617 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3618 generation, level);
3619 if (ret) {
05135f59 3620 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3621 goto fail_tree_roots;
83121942 3622 }
0b86a832 3623
e17cade2 3624 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3625 offsetof(struct btrfs_header, chunk_tree_uuid),
3626 BTRFS_UUID_SIZE);
e17cade2 3627
5b4aacef 3628 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3629 if (ret) {
05135f59 3630 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3631 goto fail_tree_roots;
2b82032c 3632 }
0b86a832 3633
8dabb742 3634 /*
bacce86a
AJ
3635 * At this point we know all the devices that make this filesystem,
3636 * including the seed devices but we don't know yet if the replace
3637 * target is required. So free devices that are not part of this
1a9fd417 3638 * filesystem but skip the replace target device which is checked
bacce86a 3639 * below in btrfs_init_dev_replace().
8dabb742 3640 */
bacce86a 3641 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3642 if (!fs_devices->latest_dev->bdev) {
05135f59 3643 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3644 goto fail_tree_roots;
3645 }
3646
b8522a1e 3647 ret = init_tree_roots(fs_info);
4bbcaa64 3648 if (ret)
b8522a1e 3649 goto fail_tree_roots;
8929ecfa 3650
73651042
NA
3651 /*
3652 * Get zone type information of zoned block devices. This will also
3653 * handle emulation of a zoned filesystem if a regular device has the
3654 * zoned incompat feature flag set.
3655 */
3656 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3657 if (ret) {
3658 btrfs_err(fs_info,
3659 "zoned: failed to read device zone info: %d",
3660 ret);
3661 goto fail_block_groups;
3662 }
3663
75ec1db8
JB
3664 /*
3665 * If we have a uuid root and we're not being told to rescan we need to
3666 * check the generation here so we can set the
3667 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3668 * transaction during a balance or the log replay without updating the
3669 * uuid generation, and then if we crash we would rescan the uuid tree,
3670 * even though it was perfectly fine.
3671 */
3672 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3673 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3674 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3675
cf90d884
QW
3676 ret = btrfs_verify_dev_extents(fs_info);
3677 if (ret) {
3678 btrfs_err(fs_info,
3679 "failed to verify dev extents against chunks: %d",
3680 ret);
3681 goto fail_block_groups;
3682 }
68310a5e
ID
3683 ret = btrfs_recover_balance(fs_info);
3684 if (ret) {
05135f59 3685 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3686 goto fail_block_groups;
3687 }
3688
733f4fbb
SB
3689 ret = btrfs_init_dev_stats(fs_info);
3690 if (ret) {
05135f59 3691 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3692 goto fail_block_groups;
3693 }
3694
8dabb742
SB
3695 ret = btrfs_init_dev_replace(fs_info);
3696 if (ret) {
05135f59 3697 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3698 goto fail_block_groups;
3699 }
3700
b70f5097
NA
3701 ret = btrfs_check_zoned_mode(fs_info);
3702 if (ret) {
3703 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3704 ret);
3705 goto fail_block_groups;
3706 }
3707
c6761a9e 3708 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3709 if (ret) {
05135f59
DS
3710 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3711 ret);
b7c35e81
AJ
3712 goto fail_block_groups;
3713 }
3714
96f3136e 3715 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3716 if (ret) {
05135f59 3717 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3718 goto fail_fsdev_sysfs;
c59021f8 3719 }
3720
c59021f8 3721 ret = btrfs_init_space_info(fs_info);
3722 if (ret) {
05135f59 3723 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3724 goto fail_sysfs;
c59021f8 3725 }
3726
5b4aacef 3727 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3728 if (ret) {
05135f59 3729 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3730 goto fail_sysfs;
1b1d1f66 3731 }
4330e183 3732
16beac87
NA
3733 btrfs_free_zone_cache(fs_info);
3734
5c78a5e7
AJ
3735 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3736 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3737 btrfs_warn(fs_info,
52042d8e 3738 "writable mount is not allowed due to too many missing devices");
2365dd3c 3739 goto fail_sysfs;
292fd7fc 3740 }
9078a3e1 3741
33c44184 3742 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3743 "btrfs-cleaner");
57506d50 3744 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3745 goto fail_sysfs;
a74a4b97
CM
3746
3747 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3748 tree_root,
3749 "btrfs-transaction");
57506d50 3750 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3751 goto fail_cleaner;
a74a4b97 3752
583b7231 3753 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3754 !fs_info->fs_devices->rotating) {
583b7231 3755 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3756 }
3757
63a7cb13
DS
3758 /*
3759 * For devices supporting discard turn on discard=async automatically,
3760 * unless it's already set or disabled. This could be turned off by
3761 * nodiscard for the same mount.
3762 */
3763 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3764 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3765 btrfs_test_opt(fs_info, NODISCARD)) &&
3766 fs_info->fs_devices->discardable) {
3767 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3768 "auto enabling async discard");
3769 btrfs_clear_opt(fs_info->mount_opt, NODISCARD);
3770 }
3771
21adbd5c 3772#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3773 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3774 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3775 btrfs_test_opt(fs_info,
cbeaae4f 3776 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3777 fs_info->check_integrity_print_mask);
3778 if (ret)
05135f59
DS
3779 btrfs_warn(fs_info,
3780 "failed to initialize integrity check module: %d",
3781 ret);
21adbd5c
SB
3782 }
3783#endif
bcef60f2
AJ
3784 ret = btrfs_read_qgroup_config(fs_info);
3785 if (ret)
3786 goto fail_trans_kthread;
21adbd5c 3787
fd708b81
JB
3788 if (btrfs_build_ref_tree(fs_info))
3789 btrfs_err(fs_info, "couldn't build ref tree");
3790
96da0919
QW
3791 /* do not make disk changes in broken FS or nologreplay is given */
3792 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3793 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3794 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3795 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3796 if (ret) {
63443bf5 3797 err = ret;
28c16cbb 3798 goto fail_qgroup;
79787eaa 3799 }
e02119d5 3800 }
1a40e23b 3801
56e9357a 3802 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3803 if (IS_ERR(fs_info->fs_root)) {
3804 err = PTR_ERR(fs_info->fs_root);
f50f4353 3805 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3806 fs_info->fs_root = NULL;
bcef60f2 3807 goto fail_qgroup;
3140c9a3 3808 }
c289811c 3809
bc98a42c 3810 if (sb_rdonly(sb))
8cd29088 3811 goto clear_oneshot;
59641015 3812
44c0ca21 3813 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3814 if (ret) {
6bccf3ab 3815 close_ctree(fs_info);
2b6ba629 3816 return ret;
e3acc2a6 3817 }
b0643e59 3818 btrfs_discard_resume(fs_info);
b382a324 3819
44c0ca21
BB
3820 if (fs_info->uuid_root &&
3821 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3822 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3823 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3824 ret = btrfs_check_uuid_tree(fs_info);
3825 if (ret) {
05135f59
DS
3826 btrfs_warn(fs_info,
3827 "failed to check the UUID tree: %d", ret);
6bccf3ab 3828 close_ctree(fs_info);
70f80175
SB
3829 return ret;
3830 }
f7a81ea4 3831 }
94846229 3832
afcdd129 3833 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3834
b4be6aef
JB
3835 /* Kick the cleaner thread so it'll start deleting snapshots. */
3836 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3837 wake_up_process(fs_info->cleaner_kthread);
3838
8cd29088
BB
3839clear_oneshot:
3840 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3841 return 0;
39279cc3 3842
bcef60f2
AJ
3843fail_qgroup:
3844 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3845fail_trans_kthread:
3846 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3847 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3848 btrfs_free_fs_roots(fs_info);
3f157a2f 3849fail_cleaner:
a74a4b97 3850 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3851
3852 /*
3853 * make sure we're done with the btree inode before we stop our
3854 * kthreads
3855 */
3856 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3857
2365dd3c 3858fail_sysfs:
6618a59b 3859 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3860
b7c35e81
AJ
3861fail_fsdev_sysfs:
3862 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3863
1b1d1f66 3864fail_block_groups:
54067ae9 3865 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3866
3867fail_tree_roots:
9e3aa805
JB
3868 if (fs_info->data_reloc_root)
3869 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3870 free_root_pointers(fs_info, true);
2b8195bb 3871 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3872
39279cc3 3873fail_sb_buffer:
7abadb64 3874 btrfs_stop_all_workers(fs_info);
5cdd7db6 3875 btrfs_free_block_groups(fs_info);
16cdcec7 3876fail_alloc:
586e46e2
ID
3877 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3878
4543df7e 3879 iput(fs_info->btree_inode);
7e662854 3880fail:
586e46e2 3881 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3882 return err;
eb60ceac 3883}
663faf9f 3884ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3885
314b6dd0 3886static void btrfs_end_super_write(struct bio *bio)
f2984462 3887{
314b6dd0
JT
3888 struct btrfs_device *device = bio->bi_private;
3889 struct bio_vec *bvec;
3890 struct bvec_iter_all iter_all;
3891 struct page *page;
3892
3893 bio_for_each_segment_all(bvec, bio, iter_all) {
3894 page = bvec->bv_page;
3895
3896 if (bio->bi_status) {
3897 btrfs_warn_rl_in_rcu(device->fs_info,
3898 "lost page write due to IO error on %s (%d)",
3899 rcu_str_deref(device->name),
3900 blk_status_to_errno(bio->bi_status));
3901 ClearPageUptodate(page);
3902 SetPageError(page);
3903 btrfs_dev_stat_inc_and_print(device,
3904 BTRFS_DEV_STAT_WRITE_ERRS);
3905 } else {
3906 SetPageUptodate(page);
3907 }
3908
3909 put_page(page);
3910 unlock_page(page);
f2984462 3911 }
314b6dd0
JT
3912
3913 bio_put(bio);
f2984462
CM
3914}
3915
8f32380d 3916struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3917 int copy_num, bool drop_cache)
29c36d72 3918{
29c36d72 3919 struct btrfs_super_block *super;
8f32380d 3920 struct page *page;
12659251 3921 u64 bytenr, bytenr_orig;
8f32380d 3922 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3923 int ret;
3924
3925 bytenr_orig = btrfs_sb_offset(copy_num);
3926 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3927 if (ret == -ENOENT)
3928 return ERR_PTR(-EINVAL);
3929 else if (ret)
3930 return ERR_PTR(ret);
29c36d72 3931
cda00eba 3932 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3933 return ERR_PTR(-EINVAL);
29c36d72 3934
a05d3c91
QW
3935 if (drop_cache) {
3936 /* This should only be called with the primary sb. */
3937 ASSERT(copy_num == 0);
3938
3939 /*
3940 * Drop the page of the primary superblock, so later read will
3941 * always read from the device.
3942 */
3943 invalidate_inode_pages2_range(mapping,
3944 bytenr >> PAGE_SHIFT,
3945 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3946 }
3947
8f32380d
JT
3948 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3949 if (IS_ERR(page))
3950 return ERR_CAST(page);
29c36d72 3951
8f32380d 3952 super = page_address(page);
96c2e067
AJ
3953 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3954 btrfs_release_disk_super(super);
3955 return ERR_PTR(-ENODATA);
3956 }
3957
12659251 3958 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3959 btrfs_release_disk_super(super);
3960 return ERR_PTR(-EINVAL);
29c36d72
AJ
3961 }
3962
8f32380d 3963 return super;
29c36d72
AJ
3964}
3965
3966
8f32380d 3967struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3968{
8f32380d 3969 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3970 int i;
3971 u64 transid = 0;
a512bbf8
YZ
3972
3973 /* we would like to check all the supers, but that would make
3974 * a btrfs mount succeed after a mkfs from a different FS.
3975 * So, we need to add a special mount option to scan for
3976 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3977 */
3978 for (i = 0; i < 1; i++) {
a05d3c91 3979 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3980 if (IS_ERR(super))
a512bbf8
YZ
3981 continue;
3982
a512bbf8 3983 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3984 if (latest)
3985 btrfs_release_disk_super(super);
3986
3987 latest = super;
a512bbf8 3988 transid = btrfs_super_generation(super);
a512bbf8
YZ
3989 }
3990 }
92fc03fb 3991
8f32380d 3992 return super;
a512bbf8
YZ
3993}
3994
4eedeb75 3995/*
abbb3b8e 3996 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3997 * pages we use for writing are locked.
4eedeb75 3998 *
abbb3b8e
DS
3999 * Write @max_mirrors copies of the superblock, where 0 means default that fit
4000 * the expected device size at commit time. Note that max_mirrors must be
4001 * same for write and wait phases.
4eedeb75 4002 *
314b6dd0 4003 * Return number of errors when page is not found or submission fails.
4eedeb75 4004 */
a512bbf8 4005static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 4006 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 4007{
d5178578 4008 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 4009 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 4010 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 4011 int i;
a512bbf8 4012 int errors = 0;
12659251
NA
4013 int ret;
4014 u64 bytenr, bytenr_orig;
a512bbf8
YZ
4015
4016 if (max_mirrors == 0)
4017 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4018
d5178578
JT
4019 shash->tfm = fs_info->csum_shash;
4020
a512bbf8 4021 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4022 struct page *page;
4023 struct bio *bio;
4024 struct btrfs_super_block *disk_super;
4025
12659251
NA
4026 bytenr_orig = btrfs_sb_offset(i);
4027 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4028 if (ret == -ENOENT) {
4029 continue;
4030 } else if (ret < 0) {
4031 btrfs_err(device->fs_info,
4032 "couldn't get super block location for mirror %d",
4033 i);
4034 errors++;
4035 continue;
4036 }
935e5cc9
MX
4037 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4038 device->commit_total_bytes)
a512bbf8
YZ
4039 break;
4040
12659251 4041 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 4042
fd08001f
EB
4043 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4044 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4045 sb->csum);
4eedeb75 4046
314b6dd0
JT
4047 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4048 GFP_NOFS);
4049 if (!page) {
abbb3b8e 4050 btrfs_err(device->fs_info,
314b6dd0 4051 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
4052 bytenr);
4053 errors++;
4eedeb75 4054 continue;
abbb3b8e 4055 }
634554dc 4056
314b6dd0
JT
4057 /* Bump the refcount for wait_dev_supers() */
4058 get_page(page);
a512bbf8 4059
314b6dd0
JT
4060 disk_super = page_address(page);
4061 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 4062
314b6dd0
JT
4063 /*
4064 * Directly use bios here instead of relying on the page cache
4065 * to do I/O, so we don't lose the ability to do integrity
4066 * checking.
4067 */
07888c66
CH
4068 bio = bio_alloc(device->bdev, 1,
4069 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4070 GFP_NOFS);
314b6dd0
JT
4071 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4072 bio->bi_private = device;
4073 bio->bi_end_io = btrfs_end_super_write;
4074 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4075 offset_in_page(bytenr));
a512bbf8 4076
387125fc 4077 /*
314b6dd0
JT
4078 * We FUA only the first super block. The others we allow to
4079 * go down lazy and there's a short window where the on-disk
4080 * copies might still contain the older version.
387125fc 4081 */
1b9e619c 4082 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4083 bio->bi_opf |= REQ_FUA;
4084
58ff51f1
CH
4085 btrfsic_check_bio(bio);
4086 submit_bio(bio);
8376d9e1
NA
4087
4088 if (btrfs_advance_sb_log(device, i))
4089 errors++;
a512bbf8
YZ
4090 }
4091 return errors < i ? 0 : -1;
4092}
4093
abbb3b8e
DS
4094/*
4095 * Wait for write completion of superblocks done by write_dev_supers,
4096 * @max_mirrors same for write and wait phases.
4097 *
314b6dd0 4098 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4099 * date.
4100 */
4101static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4102{
abbb3b8e
DS
4103 int i;
4104 int errors = 0;
b6a535fa 4105 bool primary_failed = false;
12659251 4106 int ret;
abbb3b8e
DS
4107 u64 bytenr;
4108
4109 if (max_mirrors == 0)
4110 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4111
4112 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4113 struct page *page;
4114
12659251
NA
4115 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4116 if (ret == -ENOENT) {
4117 break;
4118 } else if (ret < 0) {
4119 errors++;
4120 if (i == 0)
4121 primary_failed = true;
4122 continue;
4123 }
abbb3b8e
DS
4124 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4125 device->commit_total_bytes)
4126 break;
4127
314b6dd0
JT
4128 page = find_get_page(device->bdev->bd_inode->i_mapping,
4129 bytenr >> PAGE_SHIFT);
4130 if (!page) {
abbb3b8e 4131 errors++;
b6a535fa
HM
4132 if (i == 0)
4133 primary_failed = true;
abbb3b8e
DS
4134 continue;
4135 }
314b6dd0
JT
4136 /* Page is submitted locked and unlocked once the IO completes */
4137 wait_on_page_locked(page);
4138 if (PageError(page)) {
abbb3b8e 4139 errors++;
b6a535fa
HM
4140 if (i == 0)
4141 primary_failed = true;
4142 }
abbb3b8e 4143
314b6dd0
JT
4144 /* Drop our reference */
4145 put_page(page);
abbb3b8e 4146
314b6dd0
JT
4147 /* Drop the reference from the writing run */
4148 put_page(page);
abbb3b8e
DS
4149 }
4150
b6a535fa
HM
4151 /* log error, force error return */
4152 if (primary_failed) {
4153 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4154 device->devid);
4155 return -1;
4156 }
4157
abbb3b8e
DS
4158 return errors < i ? 0 : -1;
4159}
4160
387125fc
CM
4161/*
4162 * endio for the write_dev_flush, this will wake anyone waiting
4163 * for the barrier when it is done
4164 */
4246a0b6 4165static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4166{
f9e69aa9 4167 bio_uninit(bio);
e0ae9994 4168 complete(bio->bi_private);
387125fc
CM
4169}
4170
4171/*
4fc6441a
AJ
4172 * Submit a flush request to the device if it supports it. Error handling is
4173 * done in the waiting counterpart.
387125fc 4174 */
4fc6441a 4175static void write_dev_flush(struct btrfs_device *device)
387125fc 4176{
f9e69aa9 4177 struct bio *bio = &device->flush_bio;
387125fc 4178
a91cf0ff
WY
4179#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4180 /*
4181 * When a disk has write caching disabled, we skip submission of a bio
4182 * with flush and sync requests before writing the superblock, since
4183 * it's not needed. However when the integrity checker is enabled, this
4184 * results in reports that there are metadata blocks referred by a
4185 * superblock that were not properly flushed. So don't skip the bio
4186 * submission only when the integrity checker is enabled for the sake
4187 * of simplicity, since this is a debug tool and not meant for use in
4188 * non-debug builds.
4189 */
08e688fd 4190 if (!bdev_write_cache(device->bdev))
4fc6441a 4191 return;
a91cf0ff 4192#endif
387125fc 4193
f9e69aa9
CH
4194 bio_init(bio, device->bdev, NULL, 0,
4195 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4196 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4197 init_completion(&device->flush_wait);
4198 bio->bi_private = &device->flush_wait;
387125fc 4199
58ff51f1
CH
4200 btrfsic_check_bio(bio);
4201 submit_bio(bio);
1c3063b6 4202 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4203}
387125fc 4204
4fc6441a
AJ
4205/*
4206 * If the flush bio has been submitted by write_dev_flush, wait for it.
4207 */
8c27cb35 4208static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4209{
f9e69aa9 4210 struct bio *bio = &device->flush_bio;
387125fc 4211
1c3063b6 4212 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4213 return BLK_STS_OK;
387125fc 4214
1c3063b6 4215 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4216 wait_for_completion_io(&device->flush_wait);
387125fc 4217
8c27cb35 4218 return bio->bi_status;
387125fc 4219}
387125fc 4220
d10b82fe 4221static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4222{
6528b99d 4223 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4224 return -EIO;
387125fc
CM
4225 return 0;
4226}
4227
4228/*
4229 * send an empty flush down to each device in parallel,
4230 * then wait for them
4231 */
4232static int barrier_all_devices(struct btrfs_fs_info *info)
4233{
4234 struct list_head *head;
4235 struct btrfs_device *dev;
5af3e8cc 4236 int errors_wait = 0;
4e4cbee9 4237 blk_status_t ret;
387125fc 4238
1538e6c5 4239 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4240 /* send down all the barriers */
4241 head = &info->fs_devices->devices;
1538e6c5 4242 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4243 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4244 continue;
cea7c8bf 4245 if (!dev->bdev)
387125fc 4246 continue;
e12c9621 4247 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4248 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4249 continue;
4250
4fc6441a 4251 write_dev_flush(dev);
58efbc9f 4252 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4253 }
4254
4255 /* wait for all the barriers */
1538e6c5 4256 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4257 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4258 continue;
387125fc 4259 if (!dev->bdev) {
5af3e8cc 4260 errors_wait++;
387125fc
CM
4261 continue;
4262 }
e12c9621 4263 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4264 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4265 continue;
4266
4fc6441a 4267 ret = wait_dev_flush(dev);
401b41e5
AJ
4268 if (ret) {
4269 dev->last_flush_error = ret;
66b4993e
DS
4270 btrfs_dev_stat_inc_and_print(dev,
4271 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4272 errors_wait++;
401b41e5
AJ
4273 }
4274 }
4275
cea7c8bf 4276 if (errors_wait) {
401b41e5
AJ
4277 /*
4278 * At some point we need the status of all disks
4279 * to arrive at the volume status. So error checking
4280 * is being pushed to a separate loop.
4281 */
d10b82fe 4282 return check_barrier_error(info);
387125fc 4283 }
387125fc
CM
4284 return 0;
4285}
4286
943c6e99
ZL
4287int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4288{
8789f4fe
ZL
4289 int raid_type;
4290 int min_tolerated = INT_MAX;
943c6e99 4291
8789f4fe
ZL
4292 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4293 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4294 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4295 btrfs_raid_array[BTRFS_RAID_SINGLE].
4296 tolerated_failures);
943c6e99 4297
8789f4fe
ZL
4298 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4299 if (raid_type == BTRFS_RAID_SINGLE)
4300 continue;
41a6e891 4301 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4302 continue;
8c3e3582 4303 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4304 btrfs_raid_array[raid_type].
4305 tolerated_failures);
4306 }
943c6e99 4307
8789f4fe 4308 if (min_tolerated == INT_MAX) {
ab8d0fc4 4309 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4310 min_tolerated = 0;
4311 }
4312
4313 return min_tolerated;
943c6e99
ZL
4314}
4315
eece6a9c 4316int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4317{
e5e9a520 4318 struct list_head *head;
f2984462 4319 struct btrfs_device *dev;
a061fc8d 4320 struct btrfs_super_block *sb;
f2984462 4321 struct btrfs_dev_item *dev_item;
f2984462
CM
4322 int ret;
4323 int do_barriers;
a236aed1
CM
4324 int max_errors;
4325 int total_errors = 0;
a061fc8d 4326 u64 flags;
f2984462 4327
0b246afa 4328 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4329
4330 /*
4331 * max_mirrors == 0 indicates we're from commit_transaction,
4332 * not from fsync where the tree roots in fs_info have not
4333 * been consistent on disk.
4334 */
4335 if (max_mirrors == 0)
4336 backup_super_roots(fs_info);
f2984462 4337
0b246afa 4338 sb = fs_info->super_for_commit;
a061fc8d 4339 dev_item = &sb->dev_item;
e5e9a520 4340
0b246afa
JM
4341 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4342 head = &fs_info->fs_devices->devices;
4343 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4344
5af3e8cc 4345 if (do_barriers) {
0b246afa 4346 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4347 if (ret) {
4348 mutex_unlock(
0b246afa
JM
4349 &fs_info->fs_devices->device_list_mutex);
4350 btrfs_handle_fs_error(fs_info, ret,
4351 "errors while submitting device barriers.");
5af3e8cc
SB
4352 return ret;
4353 }
4354 }
387125fc 4355
1538e6c5 4356 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4357 if (!dev->bdev) {
4358 total_errors++;
4359 continue;
4360 }
e12c9621 4361 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4362 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4363 continue;
4364
2b82032c 4365 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4366 btrfs_set_stack_device_type(dev_item, dev->type);
4367 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4368 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4369 dev->commit_total_bytes);
ce7213c7
MX
4370 btrfs_set_stack_device_bytes_used(dev_item,
4371 dev->commit_bytes_used);
a061fc8d
CM
4372 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4373 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4374 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4375 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4376 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4377 BTRFS_FSID_SIZE);
a512bbf8 4378
a061fc8d
CM
4379 flags = btrfs_super_flags(sb);
4380 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4381
75cb857d
QW
4382 ret = btrfs_validate_write_super(fs_info, sb);
4383 if (ret < 0) {
4384 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4385 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4386 "unexpected superblock corruption detected");
4387 return -EUCLEAN;
4388 }
4389
abbb3b8e 4390 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4391 if (ret)
4392 total_errors++;
f2984462 4393 }
a236aed1 4394 if (total_errors > max_errors) {
0b246afa
JM
4395 btrfs_err(fs_info, "%d errors while writing supers",
4396 total_errors);
4397 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4398
9d565ba4 4399 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4400 btrfs_handle_fs_error(fs_info, -EIO,
4401 "%d errors while writing supers",
4402 total_errors);
9d565ba4 4403 return -EIO;
a236aed1 4404 }
f2984462 4405
a512bbf8 4406 total_errors = 0;
1538e6c5 4407 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4408 if (!dev->bdev)
4409 continue;
e12c9621 4410 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4411 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4412 continue;
4413
abbb3b8e 4414 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4415 if (ret)
4416 total_errors++;
f2984462 4417 }
0b246afa 4418 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4419 if (total_errors > max_errors) {
0b246afa
JM
4420 btrfs_handle_fs_error(fs_info, -EIO,
4421 "%d errors while writing supers",
4422 total_errors);
79787eaa 4423 return -EIO;
a236aed1 4424 }
f2984462
CM
4425 return 0;
4426}
4427
cb517eab
MX
4428/* Drop a fs root from the radix tree and free it. */
4429void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4430 struct btrfs_root *root)
2619ba1f 4431{
4785e24f
JB
4432 bool drop_ref = false;
4433
fc7cbcd4
DS
4434 spin_lock(&fs_info->fs_roots_radix_lock);
4435 radix_tree_delete(&fs_info->fs_roots_radix,
4436 (unsigned long)root->root_key.objectid);
4437 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4438 drop_ref = true;
fc7cbcd4 4439 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4440
84961539 4441 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4442 ASSERT(root->log_root == NULL);
1c1ea4f7 4443 if (root->reloc_root) {
00246528 4444 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4445 root->reloc_root = NULL;
4446 }
4447 }
3321719e 4448
4785e24f
JB
4449 if (drop_ref)
4450 btrfs_put_root(root);
2619ba1f
CM
4451}
4452
c146afad 4453int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4454{
fc7cbcd4
DS
4455 u64 root_objectid = 0;
4456 struct btrfs_root *gang[8];
4457 int i = 0;
65d33fd7 4458 int err = 0;
fc7cbcd4 4459 unsigned int ret = 0;
e089f05c 4460
c146afad 4461 while (1) {
fc7cbcd4
DS
4462 spin_lock(&fs_info->fs_roots_radix_lock);
4463 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4464 (void **)gang, root_objectid,
4465 ARRAY_SIZE(gang));
4466 if (!ret) {
4467 spin_unlock(&fs_info->fs_roots_radix_lock);
4468 break;
65d33fd7 4469 }
fc7cbcd4 4470 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4471
fc7cbcd4
DS
4472 for (i = 0; i < ret; i++) {
4473 /* Avoid to grab roots in dead_roots */
4474 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4475 gang[i] = NULL;
4476 continue;
4477 }
4478 /* grab all the search result for later use */
4479 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4480 }
fc7cbcd4 4481 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4482
fc7cbcd4
DS
4483 for (i = 0; i < ret; i++) {
4484 if (!gang[i])
65d33fd7 4485 continue;
fc7cbcd4
DS
4486 root_objectid = gang[i]->root_key.objectid;
4487 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4488 if (err)
fc7cbcd4
DS
4489 break;
4490 btrfs_put_root(gang[i]);
c146afad 4491 }
fc7cbcd4 4492 root_objectid++;
c146afad 4493 }
65d33fd7 4494
fc7cbcd4
DS
4495 /* release the uncleaned roots due to error */
4496 for (; i < ret; i++) {
4497 if (gang[i])
4498 btrfs_put_root(gang[i]);
65d33fd7
QW
4499 }
4500 return err;
c146afad 4501}
a2135011 4502
6bccf3ab 4503int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4504{
6bccf3ab 4505 struct btrfs_root *root = fs_info->tree_root;
c146afad 4506 struct btrfs_trans_handle *trans;
a74a4b97 4507
0b246afa 4508 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4509 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4510 mutex_unlock(&fs_info->cleaner_mutex);
4511 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4512
4513 /* wait until ongoing cleanup work done */
0b246afa
JM
4514 down_write(&fs_info->cleanup_work_sem);
4515 up_write(&fs_info->cleanup_work_sem);
c71bf099 4516
7a7eaa40 4517 trans = btrfs_join_transaction(root);
3612b495
TI
4518 if (IS_ERR(trans))
4519 return PTR_ERR(trans);
3a45bb20 4520 return btrfs_commit_transaction(trans);
c146afad
YZ
4521}
4522
36c86a9e
QW
4523static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4524{
4525 struct btrfs_transaction *trans;
4526 struct btrfs_transaction *tmp;
4527 bool found = false;
4528
4529 if (list_empty(&fs_info->trans_list))
4530 return;
4531
4532 /*
4533 * This function is only called at the very end of close_ctree(),
4534 * thus no other running transaction, no need to take trans_lock.
4535 */
4536 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4537 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4538 struct extent_state *cached = NULL;
4539 u64 dirty_bytes = 0;
4540 u64 cur = 0;
4541 u64 found_start;
4542 u64 found_end;
4543
4544 found = true;
4545 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4546 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4547 dirty_bytes += found_end + 1 - found_start;
4548 cur = found_end + 1;
4549 }
4550 btrfs_warn(fs_info,
4551 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4552 trans->transid, dirty_bytes);
4553 btrfs_cleanup_one_transaction(trans, fs_info);
4554
4555 if (trans == fs_info->running_transaction)
4556 fs_info->running_transaction = NULL;
4557 list_del_init(&trans->list);
4558
4559 btrfs_put_transaction(trans);
4560 trace_btrfs_transaction_commit(fs_info);
4561 }
4562 ASSERT(!found);
4563}
4564
b105e927 4565void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4566{
c146afad
YZ
4567 int ret;
4568
afcdd129 4569 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4570
8a1f1e3d
FM
4571 /*
4572 * If we had UNFINISHED_DROPS we could still be processing them, so
4573 * clear that bit and wake up relocation so it can stop.
4574 * We must do this before stopping the block group reclaim task, because
4575 * at btrfs_relocate_block_group() we wait for this bit, and after the
4576 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4577 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4578 * return 1.
4579 */
4580 btrfs_wake_unfinished_drop(fs_info);
4581
31e70e52
FM
4582 /*
4583 * We may have the reclaim task running and relocating a data block group,
4584 * in which case it may create delayed iputs. So stop it before we park
4585 * the cleaner kthread otherwise we can get new delayed iputs after
4586 * parking the cleaner, and that can make the async reclaim task to hang
4587 * if it's waiting for delayed iputs to complete, since the cleaner is
4588 * parked and can not run delayed iputs - this will make us hang when
4589 * trying to stop the async reclaim task.
4590 */
4591 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4592 /*
4593 * We don't want the cleaner to start new transactions, add more delayed
4594 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4595 * because that frees the task_struct, and the transaction kthread might
4596 * still try to wake up the cleaner.
4597 */
4598 kthread_park(fs_info->cleaner_kthread);
c146afad 4599
7343dd61 4600 /* wait for the qgroup rescan worker to stop */
d06f23d6 4601 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4602
803b2f54
SB
4603 /* wait for the uuid_scan task to finish */
4604 down(&fs_info->uuid_tree_rescan_sem);
4605 /* avoid complains from lockdep et al., set sem back to initial state */
4606 up(&fs_info->uuid_tree_rescan_sem);
4607
837d5b6e 4608 /* pause restriper - we want to resume on mount */
aa1b8cd4 4609 btrfs_pause_balance(fs_info);
837d5b6e 4610
8dabb742
SB
4611 btrfs_dev_replace_suspend_for_unmount(fs_info);
4612
aa1b8cd4 4613 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4614
4615 /* wait for any defraggers to finish */
4616 wait_event(fs_info->transaction_wait,
4617 (atomic_read(&fs_info->defrag_running) == 0));
4618
4619 /* clear out the rbtree of defraggable inodes */
26176e7c 4620 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4621
a362bb86
FM
4622 /*
4623 * After we parked the cleaner kthread, ordered extents may have
4624 * completed and created new delayed iputs. If one of the async reclaim
4625 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4626 * can hang forever trying to stop it, because if a delayed iput is
4627 * added after it ran btrfs_run_delayed_iputs() and before it called
4628 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4629 * no one else to run iputs.
4630 *
4631 * So wait for all ongoing ordered extents to complete and then run
4632 * delayed iputs. This works because once we reach this point no one
4633 * can either create new ordered extents nor create delayed iputs
4634 * through some other means.
4635 *
4636 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4637 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4638 * but the delayed iput for the respective inode is made only when doing
4639 * the final btrfs_put_ordered_extent() (which must happen at
4640 * btrfs_finish_ordered_io() when we are unmounting).
4641 */
4642 btrfs_flush_workqueue(fs_info->endio_write_workers);
4643 /* Ordered extents for free space inodes. */
4644 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4645 btrfs_run_delayed_iputs(fs_info);
4646
21c7e756 4647 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4648 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4649 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4650
b0643e59
DZ
4651 /* Cancel or finish ongoing discard work */
4652 btrfs_discard_cleanup(fs_info);
4653
bc98a42c 4654 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4655 /*
d6fd0ae2
OS
4656 * The cleaner kthread is stopped, so do one final pass over
4657 * unused block groups.
e44163e1 4658 */
0b246afa 4659 btrfs_delete_unused_bgs(fs_info);
e44163e1 4660
f0cc2cd7
FM
4661 /*
4662 * There might be existing delayed inode workers still running
4663 * and holding an empty delayed inode item. We must wait for
4664 * them to complete first because they can create a transaction.
4665 * This happens when someone calls btrfs_balance_delayed_items()
4666 * and then a transaction commit runs the same delayed nodes
4667 * before any delayed worker has done something with the nodes.
4668 * We must wait for any worker here and not at transaction
4669 * commit time since that could cause a deadlock.
4670 * This is a very rare case.
4671 */
4672 btrfs_flush_workqueue(fs_info->delayed_workers);
4673
6bccf3ab 4674 ret = btrfs_commit_super(fs_info);
acce952b 4675 if (ret)
04892340 4676 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4677 }
4678
84961539 4679 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4680 btrfs_error_commit_super(fs_info);
0f7d52f4 4681
e3029d9f
AV
4682 kthread_stop(fs_info->transaction_kthread);
4683 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4684
e187831e 4685 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4686 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4687
5958253c
QW
4688 if (btrfs_check_quota_leak(fs_info)) {
4689 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4690 btrfs_err(fs_info, "qgroup reserved space leaked");
4691 }
4692
04892340 4693 btrfs_free_qgroup_config(fs_info);
fe816d0f 4694 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4695
963d678b 4696 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4697 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4698 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4699 }
bcc63abb 4700
5deb17e1 4701 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4702 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4703 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4704
6618a59b 4705 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4706 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4707
1a4319cc
LB
4708 btrfs_put_block_group_cache(fs_info);
4709
de348ee0
WS
4710 /*
4711 * we must make sure there is not any read request to
4712 * submit after we stopping all workers.
4713 */
4714 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4715 btrfs_stop_all_workers(fs_info);
4716
0a31daa4 4717 /* We shouldn't have any transaction open at this point */
36c86a9e 4718 warn_about_uncommitted_trans(fs_info);
0a31daa4 4719
afcdd129 4720 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4721 free_root_pointers(fs_info, true);
8c38938c 4722 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4723
4e19443d
JB
4724 /*
4725 * We must free the block groups after dropping the fs_roots as we could
4726 * have had an IO error and have left over tree log blocks that aren't
4727 * cleaned up until the fs roots are freed. This makes the block group
4728 * accounting appear to be wrong because there's pending reserved bytes,
4729 * so make sure we do the block group cleanup afterwards.
4730 */
4731 btrfs_free_block_groups(fs_info);
4732
13e6c37b 4733 iput(fs_info->btree_inode);
d6bfde87 4734
21adbd5c 4735#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4736 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4737 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4738#endif
4739
0b86a832 4740 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4741 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4742}
4743
b9fab919
CM
4744int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4745 int atomic)
5f39d397 4746{
1259ab75 4747 int ret;
727011e0 4748 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4749
0b32f4bb 4750 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4751 if (!ret)
4752 return ret;
4753
4754 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4755 parent_transid, atomic);
4756 if (ret == -EAGAIN)
4757 return ret;
1259ab75 4758 return !ret;
5f39d397
CM
4759}
4760
5f39d397
CM
4761void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4762{
2f4d60df 4763 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4764 u64 transid = btrfs_header_generation(buf);
b9473439 4765 int was_dirty;
b4ce94de 4766
06ea65a3
JB
4767#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4768 /*
4769 * This is a fast path so only do this check if we have sanity tests
52042d8e 4770 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4771 * outside of the sanity tests.
4772 */
b0132a3b 4773 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4774 return;
4775#endif
49d0c642 4776 btrfs_assert_tree_write_locked(buf);
0b246afa 4777 if (transid != fs_info->generation)
5d163e0e 4778 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4779 buf->start, transid, fs_info->generation);
0b32f4bb 4780 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4781 if (!was_dirty)
104b4e51
NB
4782 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4783 buf->len,
4784 fs_info->dirty_metadata_batch);
1f21ef0a 4785#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4786 /*
4787 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4788 * but item data not updated.
4789 * So here we should only check item pointers, not item data.
4790 */
4791 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4792 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4793 btrfs_print_leaf(buf);
1f21ef0a
FM
4794 ASSERT(0);
4795 }
4796#endif
eb60ceac
CM
4797}
4798
2ff7e61e 4799static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4800 int flush_delayed)
16cdcec7
MX
4801{
4802 /*
4803 * looks as though older kernels can get into trouble with
4804 * this code, they end up stuck in balance_dirty_pages forever
4805 */
e2d84521 4806 int ret;
16cdcec7
MX
4807
4808 if (current->flags & PF_MEMALLOC)
4809 return;
4810
b53d3f5d 4811 if (flush_delayed)
2ff7e61e 4812 btrfs_balance_delayed_items(fs_info);
16cdcec7 4813
d814a491
EL
4814 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4815 BTRFS_DIRTY_METADATA_THRESH,
4816 fs_info->dirty_metadata_batch);
e2d84521 4817 if (ret > 0) {
0b246afa 4818 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4819 }
16cdcec7
MX
4820}
4821
2ff7e61e 4822void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4823{
2ff7e61e 4824 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4825}
585ad2c3 4826
2ff7e61e 4827void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4828{
2ff7e61e 4829 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4830}
6b80053d 4831
2ff7e61e 4832static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4833{
fe816d0f
NB
4834 /* cleanup FS via transaction */
4835 btrfs_cleanup_transaction(fs_info);
4836
0b246afa 4837 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4838 btrfs_run_delayed_iputs(fs_info);
0b246afa 4839 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4840
0b246afa
JM
4841 down_write(&fs_info->cleanup_work_sem);
4842 up_write(&fs_info->cleanup_work_sem);
acce952b 4843}
4844
ef67963d
JB
4845static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4846{
fc7cbcd4
DS
4847 struct btrfs_root *gang[8];
4848 u64 root_objectid = 0;
4849 int ret;
4850
4851 spin_lock(&fs_info->fs_roots_radix_lock);
4852 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4853 (void **)gang, root_objectid,
4854 ARRAY_SIZE(gang))) != 0) {
4855 int i;
4856
4857 for (i = 0; i < ret; i++)
4858 gang[i] = btrfs_grab_root(gang[i]);
4859 spin_unlock(&fs_info->fs_roots_radix_lock);
4860
4861 for (i = 0; i < ret; i++) {
4862 if (!gang[i])
ef67963d 4863 continue;
fc7cbcd4
DS
4864 root_objectid = gang[i]->root_key.objectid;
4865 btrfs_free_log(NULL, gang[i]);
4866 btrfs_put_root(gang[i]);
ef67963d 4867 }
fc7cbcd4
DS
4868 root_objectid++;
4869 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4870 }
fc7cbcd4 4871 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4872 btrfs_free_log_root_tree(NULL, fs_info);
4873}
4874
143bede5 4875static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4876{
acce952b 4877 struct btrfs_ordered_extent *ordered;
acce952b 4878
199c2a9c 4879 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4880 /*
4881 * This will just short circuit the ordered completion stuff which will
4882 * make sure the ordered extent gets properly cleaned up.
4883 */
199c2a9c 4884 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4885 root_extent_list)
4886 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4887 spin_unlock(&root->ordered_extent_lock);
4888}
4889
4890static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4891{
4892 struct btrfs_root *root;
4893 struct list_head splice;
4894
4895 INIT_LIST_HEAD(&splice);
4896
4897 spin_lock(&fs_info->ordered_root_lock);
4898 list_splice_init(&fs_info->ordered_roots, &splice);
4899 while (!list_empty(&splice)) {
4900 root = list_first_entry(&splice, struct btrfs_root,
4901 ordered_root);
1de2cfde
JB
4902 list_move_tail(&root->ordered_root,
4903 &fs_info->ordered_roots);
199c2a9c 4904
2a85d9ca 4905 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4906 btrfs_destroy_ordered_extents(root);
4907
2a85d9ca
LB
4908 cond_resched();
4909 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4910 }
4911 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4912
4913 /*
4914 * We need this here because if we've been flipped read-only we won't
4915 * get sync() from the umount, so we need to make sure any ordered
4916 * extents that haven't had their dirty pages IO start writeout yet
4917 * actually get run and error out properly.
4918 */
4919 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4920}
4921
35a3621b 4922static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4923 struct btrfs_fs_info *fs_info)
acce952b 4924{
4925 struct rb_node *node;
4926 struct btrfs_delayed_ref_root *delayed_refs;
4927 struct btrfs_delayed_ref_node *ref;
4928 int ret = 0;
4929
4930 delayed_refs = &trans->delayed_refs;
4931
4932 spin_lock(&delayed_refs->lock);
d7df2c79 4933 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4934 spin_unlock(&delayed_refs->lock);
b79ce3dd 4935 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4936 return ret;
4937 }
4938
5c9d028b 4939 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4940 struct btrfs_delayed_ref_head *head;
0e0adbcf 4941 struct rb_node *n;
e78417d1 4942 bool pin_bytes = false;
acce952b 4943
d7df2c79
JB
4944 head = rb_entry(node, struct btrfs_delayed_ref_head,
4945 href_node);
3069bd26 4946 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4947 continue;
3069bd26 4948
d7df2c79 4949 spin_lock(&head->lock);
e3d03965 4950 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4951 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4952 ref_node);
d7df2c79 4953 ref->in_tree = 0;
e3d03965 4954 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4955 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4956 if (!list_empty(&ref->add_list))
4957 list_del(&ref->add_list);
d7df2c79
JB
4958 atomic_dec(&delayed_refs->num_entries);
4959 btrfs_put_delayed_ref(ref);
e78417d1 4960 }
d7df2c79
JB
4961 if (head->must_insert_reserved)
4962 pin_bytes = true;
4963 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4964 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4965 spin_unlock(&head->lock);
4966 spin_unlock(&delayed_refs->lock);
4967 mutex_unlock(&head->mutex);
acce952b 4968
f603bb94
NB
4969 if (pin_bytes) {
4970 struct btrfs_block_group *cache;
4971
4972 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4973 BUG_ON(!cache);
4974
4975 spin_lock(&cache->space_info->lock);
4976 spin_lock(&cache->lock);
4977 cache->pinned += head->num_bytes;
4978 btrfs_space_info_update_bytes_pinned(fs_info,
4979 cache->space_info, head->num_bytes);
4980 cache->reserved -= head->num_bytes;
4981 cache->space_info->bytes_reserved -= head->num_bytes;
4982 spin_unlock(&cache->lock);
4983 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4984
4985 btrfs_put_block_group(cache);
4986
4987 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4988 head->bytenr + head->num_bytes - 1);
4989 }
31890da0 4990 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4991 btrfs_put_delayed_ref_head(head);
acce952b 4992 cond_resched();
4993 spin_lock(&delayed_refs->lock);
4994 }
81f7eb00 4995 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4996
4997 spin_unlock(&delayed_refs->lock);
4998
4999 return ret;
5000}
5001
143bede5 5002static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 5003{
5004 struct btrfs_inode *btrfs_inode;
5005 struct list_head splice;
5006
5007 INIT_LIST_HEAD(&splice);
5008
eb73c1b7
MX
5009 spin_lock(&root->delalloc_lock);
5010 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 5011
5012 while (!list_empty(&splice)) {
fe816d0f 5013 struct inode *inode = NULL;
eb73c1b7
MX
5014 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5015 delalloc_inodes);
fe816d0f 5016 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 5017 spin_unlock(&root->delalloc_lock);
acce952b 5018
fe816d0f
NB
5019 /*
5020 * Make sure we get a live inode and that it'll not disappear
5021 * meanwhile.
5022 */
5023 inode = igrab(&btrfs_inode->vfs_inode);
5024 if (inode) {
5025 invalidate_inode_pages2(inode->i_mapping);
5026 iput(inode);
5027 }
eb73c1b7 5028 spin_lock(&root->delalloc_lock);
acce952b 5029 }
eb73c1b7
MX
5030 spin_unlock(&root->delalloc_lock);
5031}
5032
5033static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5034{
5035 struct btrfs_root *root;
5036 struct list_head splice;
5037
5038 INIT_LIST_HEAD(&splice);
5039
5040 spin_lock(&fs_info->delalloc_root_lock);
5041 list_splice_init(&fs_info->delalloc_roots, &splice);
5042 while (!list_empty(&splice)) {
5043 root = list_first_entry(&splice, struct btrfs_root,
5044 delalloc_root);
00246528 5045 root = btrfs_grab_root(root);
eb73c1b7
MX
5046 BUG_ON(!root);
5047 spin_unlock(&fs_info->delalloc_root_lock);
5048
5049 btrfs_destroy_delalloc_inodes(root);
00246528 5050 btrfs_put_root(root);
eb73c1b7
MX
5051
5052 spin_lock(&fs_info->delalloc_root_lock);
5053 }
5054 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 5055}
5056
2ff7e61e 5057static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 5058 struct extent_io_tree *dirty_pages,
5059 int mark)
5060{
5061 int ret;
acce952b 5062 struct extent_buffer *eb;
5063 u64 start = 0;
5064 u64 end;
acce952b 5065
5066 while (1) {
5067 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 5068 mark, NULL);
acce952b 5069 if (ret)
5070 break;
5071
91166212 5072 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 5073 while (start <= end) {
0b246afa
JM
5074 eb = find_extent_buffer(fs_info, start);
5075 start += fs_info->nodesize;
fd8b2b61 5076 if (!eb)
acce952b 5077 continue;
fd8b2b61 5078 wait_on_extent_buffer_writeback(eb);
acce952b 5079
fd8b2b61
JB
5080 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5081 &eb->bflags))
5082 clear_extent_buffer_dirty(eb);
5083 free_extent_buffer_stale(eb);
acce952b 5084 }
5085 }
5086
5087 return ret;
5088}
5089
2ff7e61e 5090static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5091 struct extent_io_tree *unpin)
acce952b 5092{
acce952b 5093 u64 start;
5094 u64 end;
5095 int ret;
5096
acce952b 5097 while (1) {
0e6ec385
FM
5098 struct extent_state *cached_state = NULL;
5099
fcd5e742
LF
5100 /*
5101 * The btrfs_finish_extent_commit() may get the same range as
5102 * ours between find_first_extent_bit and clear_extent_dirty.
5103 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5104 * the same extent range.
5105 */
5106 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5107 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5108 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5109 if (ret) {
5110 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5111 break;
fcd5e742 5112 }
acce952b 5113
0e6ec385
FM
5114 clear_extent_dirty(unpin, start, end, &cached_state);
5115 free_extent_state(cached_state);
2ff7e61e 5116 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5117 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5118 cond_resched();
5119 }
5120
5121 return 0;
5122}
5123
32da5386 5124static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5125{
5126 struct inode *inode;
5127
5128 inode = cache->io_ctl.inode;
5129 if (inode) {
5130 invalidate_inode_pages2(inode->i_mapping);
5131 BTRFS_I(inode)->generation = 0;
5132 cache->io_ctl.inode = NULL;
5133 iput(inode);
5134 }
bbc37d6e 5135 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5136 btrfs_put_block_group(cache);
5137}
5138
5139void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5140 struct btrfs_fs_info *fs_info)
c79a1751 5141{
32da5386 5142 struct btrfs_block_group *cache;
c79a1751
LB
5143
5144 spin_lock(&cur_trans->dirty_bgs_lock);
5145 while (!list_empty(&cur_trans->dirty_bgs)) {
5146 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5147 struct btrfs_block_group,
c79a1751 5148 dirty_list);
c79a1751
LB
5149
5150 if (!list_empty(&cache->io_list)) {
5151 spin_unlock(&cur_trans->dirty_bgs_lock);
5152 list_del_init(&cache->io_list);
5153 btrfs_cleanup_bg_io(cache);
5154 spin_lock(&cur_trans->dirty_bgs_lock);
5155 }
5156
5157 list_del_init(&cache->dirty_list);
5158 spin_lock(&cache->lock);
5159 cache->disk_cache_state = BTRFS_DC_ERROR;
5160 spin_unlock(&cache->lock);
5161
5162 spin_unlock(&cur_trans->dirty_bgs_lock);
5163 btrfs_put_block_group(cache);
ba2c4d4e 5164 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5165 spin_lock(&cur_trans->dirty_bgs_lock);
5166 }
5167 spin_unlock(&cur_trans->dirty_bgs_lock);
5168
45ae2c18
NB
5169 /*
5170 * Refer to the definition of io_bgs member for details why it's safe
5171 * to use it without any locking
5172 */
c79a1751
LB
5173 while (!list_empty(&cur_trans->io_bgs)) {
5174 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5175 struct btrfs_block_group,
c79a1751 5176 io_list);
c79a1751
LB
5177
5178 list_del_init(&cache->io_list);
5179 spin_lock(&cache->lock);
5180 cache->disk_cache_state = BTRFS_DC_ERROR;
5181 spin_unlock(&cache->lock);
5182 btrfs_cleanup_bg_io(cache);
5183 }
5184}
5185
49b25e05 5186void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5187 struct btrfs_fs_info *fs_info)
49b25e05 5188{
bbbf7243
NB
5189 struct btrfs_device *dev, *tmp;
5190
2ff7e61e 5191 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5192 ASSERT(list_empty(&cur_trans->dirty_bgs));
5193 ASSERT(list_empty(&cur_trans->io_bgs));
5194
bbbf7243
NB
5195 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5196 post_commit_list) {
5197 list_del_init(&dev->post_commit_list);
5198 }
5199
2ff7e61e 5200 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5201
4a9d8bde 5202 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5203 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5204
4a9d8bde 5205 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5206 wake_up(&fs_info->transaction_wait);
49b25e05 5207
ccdf9b30 5208 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5209
2ff7e61e 5210 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5211 EXTENT_DIRTY);
fe119a6e 5212 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5213
d3575156
NA
5214 btrfs_free_redirty_list(cur_trans);
5215
4a9d8bde
MX
5216 cur_trans->state =TRANS_STATE_COMPLETED;
5217 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5218}
5219
2ff7e61e 5220static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5221{
5222 struct btrfs_transaction *t;
acce952b 5223
0b246afa 5224 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5225
0b246afa
JM
5226 spin_lock(&fs_info->trans_lock);
5227 while (!list_empty(&fs_info->trans_list)) {
5228 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5229 struct btrfs_transaction, list);
5230 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5231 refcount_inc(&t->use_count);
0b246afa 5232 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5233 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5234 btrfs_put_transaction(t);
0b246afa 5235 spin_lock(&fs_info->trans_lock);
724e2315
JB
5236 continue;
5237 }
0b246afa 5238 if (t == fs_info->running_transaction) {
724e2315 5239 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5240 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5241 /*
5242 * We wait for 0 num_writers since we don't hold a trans
5243 * handle open currently for this transaction.
5244 */
5245 wait_event(t->writer_wait,
5246 atomic_read(&t->num_writers) == 0);
5247 } else {
0b246afa 5248 spin_unlock(&fs_info->trans_lock);
724e2315 5249 }
2ff7e61e 5250 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5251
0b246afa
JM
5252 spin_lock(&fs_info->trans_lock);
5253 if (t == fs_info->running_transaction)
5254 fs_info->running_transaction = NULL;
acce952b 5255 list_del_init(&t->list);
0b246afa 5256 spin_unlock(&fs_info->trans_lock);
acce952b 5257
724e2315 5258 btrfs_put_transaction(t);
2e4e97ab 5259 trace_btrfs_transaction_commit(fs_info);
0b246afa 5260 spin_lock(&fs_info->trans_lock);
724e2315 5261 }
0b246afa
JM
5262 spin_unlock(&fs_info->trans_lock);
5263 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5264 btrfs_destroy_delayed_inodes(fs_info);
5265 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5266 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5267 btrfs_drop_all_logs(fs_info);
0b246afa 5268 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5269
5270 return 0;
5271}
ec7d6dfd 5272
453e4873 5273int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5274{
5275 struct btrfs_path *path;
5276 int ret;
5277 struct extent_buffer *l;
5278 struct btrfs_key search_key;
5279 struct btrfs_key found_key;
5280 int slot;
5281
5282 path = btrfs_alloc_path();
5283 if (!path)
5284 return -ENOMEM;
5285
5286 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5287 search_key.type = -1;
5288 search_key.offset = (u64)-1;
5289 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5290 if (ret < 0)
5291 goto error;
5292 BUG_ON(ret == 0); /* Corruption */
5293 if (path->slots[0] > 0) {
5294 slot = path->slots[0] - 1;
5295 l = path->nodes[0];
5296 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5297 root->free_objectid = max_t(u64, found_key.objectid + 1,
5298 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5299 } else {
23125104 5300 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5301 }
5302 ret = 0;
5303error:
5304 btrfs_free_path(path);
5305 return ret;
5306}
5307
543068a2 5308int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5309{
5310 int ret;
5311 mutex_lock(&root->objectid_mutex);
5312
6b8fad57 5313 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5314 btrfs_warn(root->fs_info,
5315 "the objectid of root %llu reaches its highest value",
5316 root->root_key.objectid);
5317 ret = -ENOSPC;
5318 goto out;
5319 }
5320
23125104 5321 *objectid = root->free_objectid++;
ec7d6dfd
NB
5322 ret = 0;
5323out:
5324 mutex_unlock(&root->objectid_mutex);
5325 return ret;
5326}