btrfs: fix transaction leak and crash after cleaning up orphans on RO mount
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
141386e1
JB
100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104}
105
d352ac68
CM
106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
44b8bd7e 111struct async_submit_bio {
8896a08d 112 struct inode *inode;
44b8bd7e 113 struct bio *bio;
a758781d 114 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 115 int mirror_num;
1941b64b
QW
116
117 /* Optional parameter for submit_bio_start used by direct io */
118 u64 dio_file_offset;
8b712842 119 struct btrfs_work work;
4e4cbee9 120 blk_status_t status;
44b8bd7e
CM
121};
122
85d4e461
CM
123/*
124 * Lockdep class keys for extent_buffer->lock's in this root. For a given
125 * eb, the lockdep key is determined by the btrfs_root it belongs to and
126 * the level the eb occupies in the tree.
127 *
128 * Different roots are used for different purposes and may nest inside each
129 * other and they require separate keysets. As lockdep keys should be
130 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
131 * by btrfs_root->root_key.objectid. This ensures that all special purpose
132 * roots have separate keysets.
4008c04a 133 *
85d4e461
CM
134 * Lock-nesting across peer nodes is always done with the immediate parent
135 * node locked thus preventing deadlock. As lockdep doesn't know this, use
136 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 137 *
85d4e461
CM
138 * The key is set by the readpage_end_io_hook after the buffer has passed
139 * csum validation but before the pages are unlocked. It is also set by
140 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 141 *
85d4e461
CM
142 * We also add a check to make sure the highest level of the tree is the
143 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
144 * needs update as well.
4008c04a
CM
145 */
146#ifdef CONFIG_DEBUG_LOCK_ALLOC
147# if BTRFS_MAX_LEVEL != 8
148# error
149# endif
85d4e461 150
ab1405aa
DS
151#define DEFINE_LEVEL(stem, level) \
152 .names[level] = "btrfs-" stem "-0" #level,
153
154#define DEFINE_NAME(stem) \
155 DEFINE_LEVEL(stem, 0) \
156 DEFINE_LEVEL(stem, 1) \
157 DEFINE_LEVEL(stem, 2) \
158 DEFINE_LEVEL(stem, 3) \
159 DEFINE_LEVEL(stem, 4) \
160 DEFINE_LEVEL(stem, 5) \
161 DEFINE_LEVEL(stem, 6) \
162 DEFINE_LEVEL(stem, 7)
163
85d4e461
CM
164static struct btrfs_lockdep_keyset {
165 u64 id; /* root objectid */
ab1405aa 166 /* Longest entry: btrfs-free-space-00 */
387824af
DS
167 char names[BTRFS_MAX_LEVEL][20];
168 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 169} btrfs_lockdep_keysets[] = {
ab1405aa
DS
170 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
171 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
172 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
173 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
174 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
175 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
176 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
177 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
178 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
179 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
180 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
181 { .id = 0, DEFINE_NAME("tree") },
4008c04a 182};
85d4e461 183
ab1405aa
DS
184#undef DEFINE_LEVEL
185#undef DEFINE_NAME
85d4e461
CM
186
187void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
188 int level)
189{
190 struct btrfs_lockdep_keyset *ks;
191
192 BUG_ON(level >= ARRAY_SIZE(ks->keys));
193
194 /* find the matching keyset, id 0 is the default entry */
195 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
196 if (ks->id == objectid)
197 break;
198
199 lockdep_set_class_and_name(&eb->lock,
200 &ks->keys[level], ks->names[level]);
201}
202
4008c04a
CM
203#endif
204
d352ac68 205/*
2996e1f8 206 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 207 */
c67b3892 208static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 209{
d5178578 210 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 211 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
a26663e7 212 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 214 char *kaddr;
e9be5a30 215 int i;
d5178578
JT
216
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
a26663e7 219 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 221 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 222
e9be5a30
DS
223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 226 }
71a63551 227 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 228 crypto_shash_final(shash, result);
19c00ddc
CM
229}
230
d352ac68
CM
231/*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
1259ab75 237static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
238 struct extent_buffer *eb, u64 parent_transid,
239 int atomic)
1259ab75 240{
2ac55d41 241 struct extent_state *cached_state = NULL;
1259ab75 242 int ret;
2755a0de 243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
b9fab919
CM
248 if (atomic)
249 return -EAGAIN;
250
ac5887c8 251 if (need_lock)
a26e8c9f 252 btrfs_tree_read_lock(eb);
a26e8c9f 253
2ac55d41 254 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 255 &cached_state);
0b32f4bb 256 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
257 btrfs_header_generation(eb) == parent_transid) {
258 ret = 0;
259 goto out;
260 }
94647322
DS
261 btrfs_err_rl(eb->fs_info,
262 "parent transid verify failed on %llu wanted %llu found %llu",
263 eb->start,
29549aec 264 parent_transid, btrfs_header_generation(eb));
1259ab75 265 ret = 1;
a26e8c9f
JB
266
267 /*
268 * Things reading via commit roots that don't have normal protection,
269 * like send, can have a really old block in cache that may point at a
01327610 270 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
271 * if we find an eb that is under IO (dirty/writeback) because we could
272 * end up reading in the stale data and then writing it back out and
273 * making everybody very sad.
274 */
275 if (!extent_buffer_under_io(eb))
276 clear_extent_buffer_uptodate(eb);
33958dc6 277out:
2ac55d41 278 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 279 &cached_state);
472b909f 280 if (need_lock)
ac5887c8 281 btrfs_tree_read_unlock(eb);
1259ab75 282 return ret;
1259ab75
CM
283}
284
e7e16f48
JT
285static bool btrfs_supported_super_csum(u16 csum_type)
286{
287 switch (csum_type) {
288 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 289 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 290 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 291 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
292 return true;
293 default:
294 return false;
295 }
296}
297
1104a885
DS
298/*
299 * Return 0 if the superblock checksum type matches the checksum value of that
300 * algorithm. Pass the raw disk superblock data.
301 */
ab8d0fc4
JM
302static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
303 char *raw_disk_sb)
1104a885
DS
304{
305 struct btrfs_super_block *disk_sb =
306 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 307 char result[BTRFS_CSUM_SIZE];
d5178578
JT
308 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
309
310 shash->tfm = fs_info->csum_shash;
1104a885 311
51bce6c9
JT
312 /*
313 * The super_block structure does not span the whole
314 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
315 * filled with zeros and is included in the checksum.
316 */
fd08001f
EB
317 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
318 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 319
55fc29be 320 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 321 return 1;
1104a885 322
e7e16f48 323 return 0;
1104a885
DS
324}
325
e064d5e9 326int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 327 struct btrfs_key *first_key, u64 parent_transid)
581c1760 328{
e064d5e9 329 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
330 int found_level;
331 struct btrfs_key found_key;
332 int ret;
333
334 found_level = btrfs_header_level(eb);
335 if (found_level != level) {
63489055
QW
336 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
337 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
338 btrfs_err(fs_info,
339"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
340 eb->start, level, found_level);
581c1760
QW
341 return -EIO;
342 }
343
344 if (!first_key)
345 return 0;
346
5d41be6f
QW
347 /*
348 * For live tree block (new tree blocks in current transaction),
349 * we need proper lock context to avoid race, which is impossible here.
350 * So we only checks tree blocks which is read from disk, whose
351 * generation <= fs_info->last_trans_committed.
352 */
353 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
354 return 0;
62fdaa52
QW
355
356 /* We have @first_key, so this @eb must have at least one item */
357 if (btrfs_header_nritems(eb) == 0) {
358 btrfs_err(fs_info,
359 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
360 eb->start);
361 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
362 return -EUCLEAN;
363 }
364
581c1760
QW
365 if (found_level)
366 btrfs_node_key_to_cpu(eb, &found_key, 0);
367 else
368 btrfs_item_key_to_cpu(eb, &found_key, 0);
369 ret = btrfs_comp_cpu_keys(first_key, &found_key);
370
581c1760 371 if (ret) {
63489055
QW
372 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
373 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 374 btrfs_err(fs_info,
ff76a864
LB
375"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
376 eb->start, parent_transid, first_key->objectid,
377 first_key->type, first_key->offset,
378 found_key.objectid, found_key.type,
379 found_key.offset);
581c1760 380 }
581c1760
QW
381 return ret;
382}
383
d352ac68
CM
384/*
385 * helper to read a given tree block, doing retries as required when
386 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
387 *
388 * @parent_transid: expected transid, skip check if 0
389 * @level: expected level, mandatory check
390 * @first_key: expected key of first slot, skip check if NULL
d352ac68 391 */
5ab12d1f 392static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
393 u64 parent_transid, int level,
394 struct btrfs_key *first_key)
f188591e 395{
5ab12d1f 396 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 397 struct extent_io_tree *io_tree;
ea466794 398 int failed = 0;
f188591e
CM
399 int ret;
400 int num_copies = 0;
401 int mirror_num = 0;
ea466794 402 int failed_mirror = 0;
f188591e 403
0b246afa 404 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 405 while (1) {
f8397d69 406 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 407 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 408 if (!ret) {
581c1760 409 if (verify_parent_transid(io_tree, eb,
b9fab919 410 parent_transid, 0))
256dd1bb 411 ret = -EIO;
e064d5e9 412 else if (btrfs_verify_level_key(eb, level,
448de471 413 first_key, parent_transid))
581c1760
QW
414 ret = -EUCLEAN;
415 else
416 break;
256dd1bb 417 }
d397712b 418
0b246afa 419 num_copies = btrfs_num_copies(fs_info,
f188591e 420 eb->start, eb->len);
4235298e 421 if (num_copies == 1)
ea466794 422 break;
4235298e 423
5cf1ab56
JB
424 if (!failed_mirror) {
425 failed = 1;
426 failed_mirror = eb->read_mirror;
427 }
428
f188591e 429 mirror_num++;
ea466794
JB
430 if (mirror_num == failed_mirror)
431 mirror_num++;
432
4235298e 433 if (mirror_num > num_copies)
ea466794 434 break;
f188591e 435 }
ea466794 436
c0901581 437 if (failed && !ret && failed_mirror)
20a1fbf9 438 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
439
440 return ret;
f188591e 441}
19c00ddc 442
d352ac68 443/*
ac303b69
QW
444 * Checksum a dirty tree block before IO. This has extra checks to make sure
445 * we only fill in the checksum field in the first page of a multi-page block.
446 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 447 */
ac303b69 448static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 449{
ac303b69 450 struct page *page = bvec->bv_page;
4eee4fa4 451 u64 start = page_offset(page);
19c00ddc 452 u64 found_start;
2996e1f8 453 u8 result[BTRFS_CSUM_SIZE];
19c00ddc 454 struct extent_buffer *eb;
8d47a0d8 455 int ret;
f188591e 456
4f2de97a
JB
457 eb = (struct extent_buffer *)page->private;
458 if (page != eb->pages[0])
459 return 0;
0f805531 460
19c00ddc 461 found_start = btrfs_header_bytenr(eb);
0f805531
AL
462 /*
463 * Please do not consolidate these warnings into a single if.
464 * It is useful to know what went wrong.
465 */
466 if (WARN_ON(found_start != start))
467 return -EUCLEAN;
468 if (WARN_ON(!PageUptodate(page)))
469 return -EUCLEAN;
470
de37aa51 471 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
472 offsetof(struct btrfs_header, fsid),
473 BTRFS_FSID_SIZE) == 0);
0f805531 474
c67b3892 475 csum_tree_block(eb, result);
2996e1f8 476
8d47a0d8
QW
477 if (btrfs_header_level(eb))
478 ret = btrfs_check_node(eb);
479 else
480 ret = btrfs_check_leaf_full(eb);
481
482 if (ret < 0) {
c06631b0 483 btrfs_print_tree(eb, 0);
8d47a0d8
QW
484 btrfs_err(fs_info,
485 "block=%llu write time tree block corruption detected",
486 eb->start);
c06631b0 487 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
488 return ret;
489 }
713cebfb 490 write_extent_buffer(eb, result, 0, fs_info->csum_size);
8d47a0d8 491
2996e1f8 492 return 0;
19c00ddc
CM
493}
494
b0c9b3b0 495static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 496{
b0c9b3b0 497 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 498 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 499 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 500 u8 *metadata_uuid;
2b82032c 501
9a8658e3
DS
502 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
503 BTRFS_FSID_SIZE);
944d3f9f
NB
504 /*
505 * Checking the incompat flag is only valid for the current fs. For
506 * seed devices it's forbidden to have their uuid changed so reading
507 * ->fsid in this case is fine
508 */
509 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
510 metadata_uuid = fs_devices->metadata_uuid;
511 else
512 metadata_uuid = fs_devices->fsid;
513
514 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
515 return 0;
516
517 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
518 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
519 return 0;
520
521 return 1;
2b82032c
YZ
522}
523
77bf40a2
QW
524/* Do basic extent buffer checks at read time */
525static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 526{
77bf40a2 527 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 528 u64 found_start;
77bf40a2
QW
529 const u32 csum_size = fs_info->csum_size;
530 u8 found_level;
2996e1f8 531 u8 result[BTRFS_CSUM_SIZE];
77bf40a2 532 int ret = 0;
ea466794 533
ce9adaa5 534 found_start = btrfs_header_bytenr(eb);
727011e0 535 if (found_start != eb->start) {
893bf4b1
SY
536 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
537 eb->start, found_start);
f188591e 538 ret = -EIO;
77bf40a2 539 goto out;
ce9adaa5 540 }
b0c9b3b0 541 if (check_tree_block_fsid(eb)) {
02873e43
ZL
542 btrfs_err_rl(fs_info, "bad fsid on block %llu",
543 eb->start);
1259ab75 544 ret = -EIO;
77bf40a2 545 goto out;
1259ab75 546 }
ce9adaa5 547 found_level = btrfs_header_level(eb);
1c24c3ce 548 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
549 btrfs_err(fs_info, "bad tree block level %d on %llu",
550 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 551 ret = -EIO;
77bf40a2 552 goto out;
1c24c3ce 553 }
ce9adaa5 554
c67b3892 555 csum_tree_block(eb, result);
a826d6dc 556
2996e1f8 557 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 558 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
559
560 read_extent_buffer(eb, &val, 0, csum_size);
561 btrfs_warn_rl(fs_info,
35be8851 562 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 563 fs_info->sb->s_id, eb->start,
35be8851
JT
564 CSUM_FMT_VALUE(csum_size, val),
565 CSUM_FMT_VALUE(csum_size, result),
566 btrfs_header_level(eb));
2996e1f8 567 ret = -EUCLEAN;
77bf40a2 568 goto out;
2996e1f8
JT
569 }
570
a826d6dc
JB
571 /*
572 * If this is a leaf block and it is corrupt, set the corrupt bit so
573 * that we don't try and read the other copies of this block, just
574 * return -EIO.
575 */
1c4360ee 576 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
577 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
578 ret = -EIO;
579 }
ce9adaa5 580
813fd1dc 581 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
582 ret = -EIO;
583
0b32f4bb
JB
584 if (!ret)
585 set_extent_buffer_uptodate(eb);
75391f0d
QW
586 else
587 btrfs_err(fs_info,
588 "block=%llu read time tree block corruption detected",
589 eb->start);
77bf40a2
QW
590out:
591 return ret;
592}
593
8e1dc982 594int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
77bf40a2
QW
595 struct page *page, u64 start, u64 end,
596 int mirror)
597{
598 struct extent_buffer *eb;
599 int ret = 0;
600 int reads_done;
601
602 ASSERT(page->private);
603 eb = (struct extent_buffer *)page->private;
604
605 /*
606 * The pending IO might have been the only thing that kept this buffer
607 * in memory. Make sure we have a ref for all this other checks
608 */
609 atomic_inc(&eb->refs);
610
611 reads_done = atomic_dec_and_test(&eb->io_pages);
612 if (!reads_done)
613 goto err;
614
615 eb->read_mirror = mirror;
616 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
617 ret = -EIO;
618 goto err;
619 }
620 ret = validate_extent_buffer(eb);
ce9adaa5 621err:
79fb65a1
JB
622 if (reads_done &&
623 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 624 btree_readahead_hook(eb, ret);
4bb31e92 625
53b381b3
DW
626 if (ret) {
627 /*
628 * our io error hook is going to dec the io pages
629 * again, we have to make sure it has something
630 * to decrement
631 */
632 atomic_inc(&eb->io_pages);
0b32f4bb 633 clear_extent_buffer_uptodate(eb);
53b381b3 634 }
0b32f4bb 635 free_extent_buffer(eb);
77bf40a2 636
f188591e 637 return ret;
ce9adaa5
CM
638}
639
4246a0b6 640static void end_workqueue_bio(struct bio *bio)
ce9adaa5 641{
97eb6b69 642 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 643 struct btrfs_fs_info *fs_info;
9e0af237 644 struct btrfs_workqueue *wq;
ce9adaa5 645
ce9adaa5 646 fs_info = end_io_wq->info;
4e4cbee9 647 end_io_wq->status = bio->bi_status;
d20f7043 648
37226b21 649 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 650 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 651 wq = fs_info->endio_meta_write_workers;
a0cac0ec 652 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 653 wq = fs_info->endio_freespace_worker;
a0cac0ec 654 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 655 wq = fs_info->endio_raid56_workers;
a0cac0ec 656 else
9e0af237 657 wq = fs_info->endio_write_workers;
d20f7043 658 } else {
5c047a69 659 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 660 wq = fs_info->endio_raid56_workers;
a0cac0ec 661 else if (end_io_wq->metadata)
9e0af237 662 wq = fs_info->endio_meta_workers;
a0cac0ec 663 else
9e0af237 664 wq = fs_info->endio_workers;
d20f7043 665 }
9e0af237 666
a0cac0ec 667 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 668 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
669}
670
4e4cbee9 671blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 672 enum btrfs_wq_endio_type metadata)
0b86a832 673{
97eb6b69 674 struct btrfs_end_io_wq *end_io_wq;
8b110e39 675
97eb6b69 676 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 677 if (!end_io_wq)
4e4cbee9 678 return BLK_STS_RESOURCE;
ce9adaa5
CM
679
680 end_io_wq->private = bio->bi_private;
681 end_io_wq->end_io = bio->bi_end_io;
22c59948 682 end_io_wq->info = info;
4e4cbee9 683 end_io_wq->status = 0;
ce9adaa5 684 end_io_wq->bio = bio;
22c59948 685 end_io_wq->metadata = metadata;
ce9adaa5
CM
686
687 bio->bi_private = end_io_wq;
688 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
689 return 0;
690}
691
4a69a410
CM
692static void run_one_async_start(struct btrfs_work *work)
693{
4a69a410 694 struct async_submit_bio *async;
4e4cbee9 695 blk_status_t ret;
4a69a410
CM
696
697 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
698 ret = async->submit_bio_start(async->inode, async->bio,
699 async->dio_file_offset);
79787eaa 700 if (ret)
4e4cbee9 701 async->status = ret;
4a69a410
CM
702}
703
06ea01b1
DS
704/*
705 * In order to insert checksums into the metadata in large chunks, we wait
706 * until bio submission time. All the pages in the bio are checksummed and
707 * sums are attached onto the ordered extent record.
708 *
709 * At IO completion time the csums attached on the ordered extent record are
710 * inserted into the tree.
711 */
4a69a410 712static void run_one_async_done(struct btrfs_work *work)
8b712842 713{
8b712842 714 struct async_submit_bio *async;
06ea01b1
DS
715 struct inode *inode;
716 blk_status_t ret;
8b712842
CM
717
718 async = container_of(work, struct async_submit_bio, work);
8896a08d 719 inode = async->inode;
4854ddd0 720
bb7ab3b9 721 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
722 if (async->status) {
723 async->bio->bi_status = async->status;
4246a0b6 724 bio_endio(async->bio);
79787eaa
JM
725 return;
726 }
727
ec39f769
CM
728 /*
729 * All of the bios that pass through here are from async helpers.
730 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
731 * This changes nothing when cgroups aren't in use.
732 */
733 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 734 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
735 if (ret) {
736 async->bio->bi_status = ret;
737 bio_endio(async->bio);
738 }
4a69a410
CM
739}
740
741static void run_one_async_free(struct btrfs_work *work)
742{
743 struct async_submit_bio *async;
744
745 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
746 kfree(async);
747}
748
8896a08d 749blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 750 int mirror_num, unsigned long bio_flags,
1941b64b 751 u64 dio_file_offset,
e288c080 752 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 753{
8896a08d 754 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
755 struct async_submit_bio *async;
756
757 async = kmalloc(sizeof(*async), GFP_NOFS);
758 if (!async)
4e4cbee9 759 return BLK_STS_RESOURCE;
44b8bd7e 760
8896a08d 761 async->inode = inode;
44b8bd7e
CM
762 async->bio = bio;
763 async->mirror_num = mirror_num;
4a69a410 764 async->submit_bio_start = submit_bio_start;
4a69a410 765
a0cac0ec
OS
766 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
767 run_one_async_free);
4a69a410 768
1941b64b 769 async->dio_file_offset = dio_file_offset;
8c8bee1d 770
4e4cbee9 771 async->status = 0;
79787eaa 772
67f055c7 773 if (op_is_sync(bio->bi_opf))
5cdc7ad3 774 btrfs_set_work_high_priority(&async->work);
d313d7a3 775
5cdc7ad3 776 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
777 return 0;
778}
779
4e4cbee9 780static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 781{
2c30c71b 782 struct bio_vec *bvec;
ce3ed71a 783 struct btrfs_root *root;
2b070cfe 784 int ret = 0;
6dc4f100 785 struct bvec_iter_all iter_all;
ce3ed71a 786
c09abff8 787 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 788 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 789 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 790 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
791 if (ret)
792 break;
ce3ed71a 793 }
2c30c71b 794
4e4cbee9 795 return errno_to_blk_status(ret);
ce3ed71a
CM
796}
797
8896a08d 798static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 799 u64 dio_file_offset)
22c59948 800{
8b712842
CM
801 /*
802 * when we're called for a write, we're already in the async
5443be45 803 * submission context. Just jump into btrfs_map_bio
8b712842 804 */
79787eaa 805 return btree_csum_one_bio(bio);
4a69a410 806}
22c59948 807
9b4e675a
DS
808static int check_async_write(struct btrfs_fs_info *fs_info,
809 struct btrfs_inode *bi)
de0022b9 810{
6300463b
LB
811 if (atomic_read(&bi->sync_writers))
812 return 0;
9b4e675a 813 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 814 return 0;
de0022b9
JB
815 return 1;
816}
817
1b36294a
NB
818blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
819 int mirror_num, unsigned long bio_flags)
44b8bd7e 820{
0b246afa 821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 822 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 823 blk_status_t ret;
cad321ad 824
37226b21 825 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
826 /*
827 * called for a read, do the setup so that checksum validation
828 * can happen in the async kernel threads
829 */
0b246afa
JM
830 ret = btrfs_bio_wq_end_io(fs_info, bio,
831 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 832 if (ret)
61891923 833 goto out_w_error;
08635bae 834 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
835 } else if (!async) {
836 ret = btree_csum_one_bio(bio);
837 if (ret)
61891923 838 goto out_w_error;
08635bae 839 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
840 } else {
841 /*
842 * kthread helpers are used to submit writes so that
843 * checksumming can happen in parallel across all CPUs
844 */
8896a08d
QW
845 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
846 0, btree_submit_bio_start);
44b8bd7e 847 }
d313d7a3 848
4246a0b6
CH
849 if (ret)
850 goto out_w_error;
851 return 0;
852
61891923 853out_w_error:
4e4cbee9 854 bio->bi_status = ret;
4246a0b6 855 bio_endio(bio);
61891923 856 return ret;
44b8bd7e
CM
857}
858
3dd1462e 859#ifdef CONFIG_MIGRATION
784b4e29 860static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
861 struct page *newpage, struct page *page,
862 enum migrate_mode mode)
784b4e29
CM
863{
864 /*
865 * we can't safely write a btree page from here,
866 * we haven't done the locking hook
867 */
868 if (PageDirty(page))
869 return -EAGAIN;
870 /*
871 * Buffers may be managed in a filesystem specific way.
872 * We must have no buffers or drop them.
873 */
874 if (page_has_private(page) &&
875 !try_to_release_page(page, GFP_KERNEL))
876 return -EAGAIN;
a6bc32b8 877 return migrate_page(mapping, newpage, page, mode);
784b4e29 878}
3dd1462e 879#endif
784b4e29 880
0da5468f
CM
881
882static int btree_writepages(struct address_space *mapping,
883 struct writeback_control *wbc)
884{
e2d84521
MX
885 struct btrfs_fs_info *fs_info;
886 int ret;
887
d8d5f3e1 888 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
889
890 if (wbc->for_kupdate)
891 return 0;
892
e2d84521 893 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 894 /* this is a bit racy, but that's ok */
d814a491
EL
895 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
896 BTRFS_DIRTY_METADATA_THRESH,
897 fs_info->dirty_metadata_batch);
e2d84521 898 if (ret < 0)
793955bc 899 return 0;
793955bc 900 }
0b32f4bb 901 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
902}
903
70dec807 904static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 905{
98509cfc 906 if (PageWriteback(page) || PageDirty(page))
d397712b 907 return 0;
0c4e538b 908
f7a52a40 909 return try_release_extent_buffer(page);
d98237b3
CM
910}
911
d47992f8
LC
912static void btree_invalidatepage(struct page *page, unsigned int offset,
913 unsigned int length)
d98237b3 914{
d1310b2e
CM
915 struct extent_io_tree *tree;
916 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
917 extent_invalidatepage(tree, page, offset);
918 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 919 if (PagePrivate(page)) {
efe120a0
FH
920 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
921 "page private not zero on page %llu",
922 (unsigned long long)page_offset(page));
d1b89bc0 923 detach_page_private(page);
9ad6b7bc 924 }
d98237b3
CM
925}
926
0b32f4bb
JB
927static int btree_set_page_dirty(struct page *page)
928{
bb146eb2 929#ifdef DEBUG
0b32f4bb
JB
930 struct extent_buffer *eb;
931
932 BUG_ON(!PagePrivate(page));
933 eb = (struct extent_buffer *)page->private;
934 BUG_ON(!eb);
935 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
936 BUG_ON(!atomic_read(&eb->refs));
937 btrfs_assert_tree_locked(eb);
bb146eb2 938#endif
0b32f4bb
JB
939 return __set_page_dirty_nobuffers(page);
940}
941
7f09410b 942static const struct address_space_operations btree_aops = {
0da5468f 943 .writepages = btree_writepages,
5f39d397
CM
944 .releasepage = btree_releasepage,
945 .invalidatepage = btree_invalidatepage,
5a92bc88 946#ifdef CONFIG_MIGRATION
784b4e29 947 .migratepage = btree_migratepage,
5a92bc88 948#endif
0b32f4bb 949 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
950};
951
2ff7e61e
JM
952struct extent_buffer *btrfs_find_create_tree_block(
953 struct btrfs_fs_info *fs_info,
3fbaf258
JB
954 u64 bytenr, u64 owner_root,
955 int level)
0999df54 956{
0b246afa
JM
957 if (btrfs_is_testing(fs_info))
958 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 959 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
960}
961
581c1760
QW
962/*
963 * Read tree block at logical address @bytenr and do variant basic but critical
964 * verification.
965 *
1b7ec85e 966 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
967 * @parent_transid: expected transid of this tree block, skip check if 0
968 * @level: expected level, mandatory check
969 * @first_key: expected key in slot 0, skip check if NULL
970 */
2ff7e61e 971struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
972 u64 owner_root, u64 parent_transid,
973 int level, struct btrfs_key *first_key)
0999df54
CM
974{
975 struct extent_buffer *buf = NULL;
0999df54
CM
976 int ret;
977
3fbaf258 978 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
979 if (IS_ERR(buf))
980 return buf;
0999df54 981
5ab12d1f 982 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 983 level, first_key);
0f0fe8f7 984 if (ret) {
537f38f0 985 free_extent_buffer_stale(buf);
64c043de 986 return ERR_PTR(ret);
0f0fe8f7 987 }
5f39d397 988 return buf;
ce9adaa5 989
eb60ceac
CM
990}
991
6a884d7d 992void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 993{
6a884d7d 994 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 995 if (btrfs_header_generation(buf) ==
e2d84521 996 fs_info->running_transaction->transid) {
b9447ef8 997 btrfs_assert_tree_locked(buf);
b4ce94de 998
b9473439 999 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1000 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1001 -buf->len,
1002 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1003 clear_extent_buffer_dirty(buf);
1004 }
925baedd 1005 }
5f39d397
CM
1006}
1007
da17066c 1008static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1009 u64 objectid)
d97e63b6 1010{
7c0260ee 1011 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1012 root->fs_info = fs_info;
cfaa7295 1013 root->node = NULL;
a28ec197 1014 root->commit_root = NULL;
27cdeb70 1015 root->state = 0;
d68fc57b 1016 root->orphan_cleanup_state = 0;
0b86a832 1017
0f7d52f4 1018 root->last_trans = 0;
13a8a7c8 1019 root->highest_objectid = 0;
eb73c1b7 1020 root->nr_delalloc_inodes = 0;
199c2a9c 1021 root->nr_ordered_extents = 0;
6bef4d31 1022 root->inode_tree = RB_ROOT;
16cdcec7 1023 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1024 root->block_rsv = NULL;
0b86a832
CM
1025
1026 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1027 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1028 INIT_LIST_HEAD(&root->delalloc_inodes);
1029 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1030 INIT_LIST_HEAD(&root->ordered_extents);
1031 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1032 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1033 INIT_LIST_HEAD(&root->logged_list[0]);
1034 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1035 spin_lock_init(&root->inode_lock);
eb73c1b7 1036 spin_lock_init(&root->delalloc_lock);
199c2a9c 1037 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1038 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1039 spin_lock_init(&root->log_extents_lock[0]);
1040 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1041 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1042 mutex_init(&root->objectid_mutex);
e02119d5 1043 mutex_init(&root->log_mutex);
31f3d255 1044 mutex_init(&root->ordered_extent_mutex);
573bfb72 1045 mutex_init(&root->delalloc_mutex);
c53e9653 1046 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1047 init_waitqueue_head(&root->log_writer_wait);
1048 init_waitqueue_head(&root->log_commit_wait[0]);
1049 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1050 INIT_LIST_HEAD(&root->log_ctxs[0]);
1051 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1052 atomic_set(&root->log_commit[0], 0);
1053 atomic_set(&root->log_commit[1], 0);
1054 atomic_set(&root->log_writers, 0);
2ecb7923 1055 atomic_set(&root->log_batch, 0);
0700cea7 1056 refcount_set(&root->refs, 1);
8ecebf4d 1057 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1058 atomic_set(&root->nr_swapfiles, 0);
7237f183 1059 root->log_transid = 0;
d1433deb 1060 root->log_transid_committed = -1;
257c62e1 1061 root->last_log_commit = 0;
e289f03e 1062 if (!dummy) {
43eb5f29
QW
1063 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1064 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1065 extent_io_tree_init(fs_info, &root->log_csum_range,
1066 IO_TREE_LOG_CSUM_RANGE, NULL);
1067 }
017e5369 1068
3768f368
CM
1069 memset(&root->root_key, 0, sizeof(root->root_key));
1070 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1071 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1072 root->root_key.objectid = objectid;
0ee5dc67 1073 root->anon_dev = 0;
8ea05e3a 1074
5f3ab90a 1075 spin_lock_init(&root->root_item_lock);
370a11b8 1076 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1077#ifdef CONFIG_BTRFS_DEBUG
1078 INIT_LIST_HEAD(&root->leak_list);
1079 spin_lock(&fs_info->fs_roots_radix_lock);
1080 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1081 spin_unlock(&fs_info->fs_roots_radix_lock);
1082#endif
3768f368
CM
1083}
1084
74e4d827 1085static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1086 u64 objectid, gfp_t flags)
6f07e42e 1087{
74e4d827 1088 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1089 if (root)
96dfcb46 1090 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1091 return root;
1092}
1093
06ea65a3
JB
1094#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1095/* Should only be used by the testing infrastructure */
da17066c 1096struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1097{
1098 struct btrfs_root *root;
1099
7c0260ee
JM
1100 if (!fs_info)
1101 return ERR_PTR(-EINVAL);
1102
96dfcb46 1103 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1104 if (!root)
1105 return ERR_PTR(-ENOMEM);
da17066c 1106
b9ef22de 1107 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1108 root->alloc_bytenr = 0;
06ea65a3
JB
1109
1110 return root;
1111}
1112#endif
1113
20897f5c 1114struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1115 u64 objectid)
1116{
9b7a2440 1117 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1118 struct extent_buffer *leaf;
1119 struct btrfs_root *tree_root = fs_info->tree_root;
1120 struct btrfs_root *root;
1121 struct btrfs_key key;
b89f6d1f 1122 unsigned int nofs_flag;
20897f5c 1123 int ret = 0;
20897f5c 1124
b89f6d1f
FM
1125 /*
1126 * We're holding a transaction handle, so use a NOFS memory allocation
1127 * context to avoid deadlock if reclaim happens.
1128 */
1129 nofs_flag = memalloc_nofs_save();
96dfcb46 1130 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1131 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1132 if (!root)
1133 return ERR_PTR(-ENOMEM);
1134
20897f5c
AJ
1135 root->root_key.objectid = objectid;
1136 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1137 root->root_key.offset = 0;
1138
9631e4cc
JB
1139 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1140 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1141 if (IS_ERR(leaf)) {
1142 ret = PTR_ERR(leaf);
1dd05682 1143 leaf = NULL;
8a6a87cd 1144 goto fail_unlock;
20897f5c
AJ
1145 }
1146
20897f5c 1147 root->node = leaf;
20897f5c
AJ
1148 btrfs_mark_buffer_dirty(leaf);
1149
1150 root->commit_root = btrfs_root_node(root);
27cdeb70 1151 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1152
f944d2cb
DS
1153 btrfs_set_root_flags(&root->root_item, 0);
1154 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1155 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1156 btrfs_set_root_generation(&root->root_item, trans->transid);
1157 btrfs_set_root_level(&root->root_item, 0);
1158 btrfs_set_root_refs(&root->root_item, 1);
1159 btrfs_set_root_used(&root->root_item, leaf->len);
1160 btrfs_set_root_last_snapshot(&root->root_item, 0);
1161 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1162 if (is_fstree(objectid))
807fc790
AS
1163 generate_random_guid(root->root_item.uuid);
1164 else
1165 export_guid(root->root_item.uuid, &guid_null);
c8422684 1166 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1167
8a6a87cd
BB
1168 btrfs_tree_unlock(leaf);
1169
20897f5c
AJ
1170 key.objectid = objectid;
1171 key.type = BTRFS_ROOT_ITEM_KEY;
1172 key.offset = 0;
1173 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1174 if (ret)
1175 goto fail;
1176
1dd05682
TI
1177 return root;
1178
8a6a87cd 1179fail_unlock:
8c38938c 1180 if (leaf)
1dd05682 1181 btrfs_tree_unlock(leaf);
8a6a87cd 1182fail:
00246528 1183 btrfs_put_root(root);
20897f5c 1184
1dd05682 1185 return ERR_PTR(ret);
20897f5c
AJ
1186}
1187
7237f183
YZ
1188static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1189 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1190{
1191 struct btrfs_root *root;
7237f183 1192 struct extent_buffer *leaf;
e02119d5 1193
96dfcb46 1194 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1195 if (!root)
7237f183 1196 return ERR_PTR(-ENOMEM);
e02119d5 1197
e02119d5
CM
1198 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1199 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1200 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1201
7237f183 1202 /*
92a7cc42 1203 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1204 *
92a7cc42
QW
1205 * Log trees are not exposed to user space thus can't be snapshotted,
1206 * and they go away before a real commit is actually done.
1207 *
1208 * They do store pointers to file data extents, and those reference
1209 * counts still get updated (along with back refs to the log tree).
7237f183 1210 */
e02119d5 1211
4d75f8a9 1212 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1213 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
7237f183 1214 if (IS_ERR(leaf)) {
00246528 1215 btrfs_put_root(root);
7237f183
YZ
1216 return ERR_CAST(leaf);
1217 }
e02119d5 1218
7237f183 1219 root->node = leaf;
e02119d5 1220
e02119d5
CM
1221 btrfs_mark_buffer_dirty(root->node);
1222 btrfs_tree_unlock(root->node);
7237f183
YZ
1223 return root;
1224}
1225
1226int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1227 struct btrfs_fs_info *fs_info)
1228{
1229 struct btrfs_root *log_root;
1230
1231 log_root = alloc_log_tree(trans, fs_info);
1232 if (IS_ERR(log_root))
1233 return PTR_ERR(log_root);
1234 WARN_ON(fs_info->log_root_tree);
1235 fs_info->log_root_tree = log_root;
1236 return 0;
1237}
1238
1239int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_root *root)
1241{
0b246afa 1242 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1243 struct btrfs_root *log_root;
1244 struct btrfs_inode_item *inode_item;
1245
0b246afa 1246 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1247 if (IS_ERR(log_root))
1248 return PTR_ERR(log_root);
1249
1250 log_root->last_trans = trans->transid;
1251 log_root->root_key.offset = root->root_key.objectid;
1252
1253 inode_item = &log_root->root_item.inode;
3cae210f
QW
1254 btrfs_set_stack_inode_generation(inode_item, 1);
1255 btrfs_set_stack_inode_size(inode_item, 3);
1256 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1257 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1258 fs_info->nodesize);
3cae210f 1259 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1260
5d4f98a2 1261 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1262
1263 WARN_ON(root->log_root);
1264 root->log_root = log_root;
1265 root->log_transid = 0;
d1433deb 1266 root->log_transid_committed = -1;
257c62e1 1267 root->last_log_commit = 0;
e02119d5
CM
1268 return 0;
1269}
1270
49d11bea
JB
1271static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1272 struct btrfs_path *path,
1273 struct btrfs_key *key)
e02119d5
CM
1274{
1275 struct btrfs_root *root;
1276 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1277 u64 generation;
cb517eab 1278 int ret;
581c1760 1279 int level;
0f7d52f4 1280
96dfcb46 1281 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1282 if (!root)
1283 return ERR_PTR(-ENOMEM);
0f7d52f4 1284
cb517eab
MX
1285 ret = btrfs_find_root(tree_root, key, path,
1286 &root->root_item, &root->root_key);
0f7d52f4 1287 if (ret) {
13a8a7c8
YZ
1288 if (ret > 0)
1289 ret = -ENOENT;
49d11bea 1290 goto fail;
0f7d52f4 1291 }
13a8a7c8 1292
84234f3a 1293 generation = btrfs_root_generation(&root->root_item);
581c1760 1294 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1295 root->node = read_tree_block(fs_info,
1296 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1297 key->objectid, generation, level, NULL);
64c043de
LB
1298 if (IS_ERR(root->node)) {
1299 ret = PTR_ERR(root->node);
8c38938c 1300 root->node = NULL;
49d11bea 1301 goto fail;
cb517eab
MX
1302 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1303 ret = -EIO;
49d11bea 1304 goto fail;
416bc658 1305 }
5d4f98a2 1306 root->commit_root = btrfs_root_node(root);
cb517eab 1307 return root;
49d11bea 1308fail:
00246528 1309 btrfs_put_root(root);
49d11bea
JB
1310 return ERR_PTR(ret);
1311}
1312
1313struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1314 struct btrfs_key *key)
1315{
1316 struct btrfs_root *root;
1317 struct btrfs_path *path;
1318
1319 path = btrfs_alloc_path();
1320 if (!path)
1321 return ERR_PTR(-ENOMEM);
1322 root = read_tree_root_path(tree_root, path, key);
1323 btrfs_free_path(path);
1324
1325 return root;
cb517eab
MX
1326}
1327
2dfb1e43
QW
1328/*
1329 * Initialize subvolume root in-memory structure
1330 *
1331 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1332 */
1333static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1334{
1335 int ret;
dcc3eb96 1336 unsigned int nofs_flag;
cb517eab 1337
dcc3eb96
NB
1338 /*
1339 * We might be called under a transaction (e.g. indirect backref
1340 * resolution) which could deadlock if it triggers memory reclaim
1341 */
1342 nofs_flag = memalloc_nofs_save();
1343 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1344 memalloc_nofs_restore(nofs_flag);
1345 if (ret)
8257b2dc 1346 goto fail;
8257b2dc 1347
aeb935a4
QW
1348 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1349 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1350 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1351 btrfs_check_and_init_root_item(&root->root_item);
1352 }
1353
851fd730
QW
1354 /*
1355 * Don't assign anonymous block device to roots that are not exposed to
1356 * userspace, the id pool is limited to 1M
1357 */
1358 if (is_fstree(root->root_key.objectid) &&
1359 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1360 if (!anon_dev) {
1361 ret = get_anon_bdev(&root->anon_dev);
1362 if (ret)
1363 goto fail;
1364 } else {
1365 root->anon_dev = anon_dev;
1366 }
851fd730 1367 }
f32e48e9
CR
1368
1369 mutex_lock(&root->objectid_mutex);
1370 ret = btrfs_find_highest_objectid(root,
1371 &root->highest_objectid);
1372 if (ret) {
1373 mutex_unlock(&root->objectid_mutex);
876d2cf1 1374 goto fail;
f32e48e9
CR
1375 }
1376
1377 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1378
1379 mutex_unlock(&root->objectid_mutex);
1380
cb517eab
MX
1381 return 0;
1382fail:
84db5ccf 1383 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1384 return ret;
1385}
1386
a98db0f3
JB
1387static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1388 u64 root_id)
cb517eab
MX
1389{
1390 struct btrfs_root *root;
1391
1392 spin_lock(&fs_info->fs_roots_radix_lock);
1393 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1394 (unsigned long)root_id);
bc44d7c4 1395 if (root)
00246528 1396 root = btrfs_grab_root(root);
cb517eab
MX
1397 spin_unlock(&fs_info->fs_roots_radix_lock);
1398 return root;
1399}
1400
49d11bea
JB
1401static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1402 u64 objectid)
1403{
1404 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1405 return btrfs_grab_root(fs_info->tree_root);
1406 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1407 return btrfs_grab_root(fs_info->extent_root);
1408 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1409 return btrfs_grab_root(fs_info->chunk_root);
1410 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1411 return btrfs_grab_root(fs_info->dev_root);
1412 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1413 return btrfs_grab_root(fs_info->csum_root);
1414 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1415 return btrfs_grab_root(fs_info->quota_root) ?
1416 fs_info->quota_root : ERR_PTR(-ENOENT);
1417 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1418 return btrfs_grab_root(fs_info->uuid_root) ?
1419 fs_info->uuid_root : ERR_PTR(-ENOENT);
1420 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1421 return btrfs_grab_root(fs_info->free_space_root) ?
1422 fs_info->free_space_root : ERR_PTR(-ENOENT);
1423 return NULL;
1424}
1425
cb517eab
MX
1426int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1427 struct btrfs_root *root)
1428{
1429 int ret;
1430
e1860a77 1431 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1432 if (ret)
1433 return ret;
1434
1435 spin_lock(&fs_info->fs_roots_radix_lock);
1436 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1437 (unsigned long)root->root_key.objectid,
1438 root);
af01d2e5 1439 if (ret == 0) {
00246528 1440 btrfs_grab_root(root);
27cdeb70 1441 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1442 }
cb517eab
MX
1443 spin_unlock(&fs_info->fs_roots_radix_lock);
1444 radix_tree_preload_end();
1445
1446 return ret;
1447}
1448
bd647ce3
JB
1449void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1450{
1451#ifdef CONFIG_BTRFS_DEBUG
1452 struct btrfs_root *root;
1453
1454 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1455 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1456
bd647ce3
JB
1457 root = list_first_entry(&fs_info->allocated_roots,
1458 struct btrfs_root, leak_list);
457f1864
JB
1459 btrfs_err(fs_info, "leaked root %s refcount %d",
1460 btrfs_root_name(root->root_key.objectid, buf),
bd647ce3
JB
1461 refcount_read(&root->refs));
1462 while (refcount_read(&root->refs) > 1)
00246528
JB
1463 btrfs_put_root(root);
1464 btrfs_put_root(root);
bd647ce3
JB
1465 }
1466#endif
1467}
1468
0d4b0463
JB
1469void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1470{
141386e1
JB
1471 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1472 percpu_counter_destroy(&fs_info->delalloc_bytes);
1473 percpu_counter_destroy(&fs_info->dio_bytes);
1474 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1475 btrfs_free_csum_hash(fs_info);
1476 btrfs_free_stripe_hash_table(fs_info);
1477 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1478 kfree(fs_info->balance_ctl);
1479 kfree(fs_info->delayed_root);
00246528
JB
1480 btrfs_put_root(fs_info->extent_root);
1481 btrfs_put_root(fs_info->tree_root);
1482 btrfs_put_root(fs_info->chunk_root);
1483 btrfs_put_root(fs_info->dev_root);
1484 btrfs_put_root(fs_info->csum_root);
1485 btrfs_put_root(fs_info->quota_root);
1486 btrfs_put_root(fs_info->uuid_root);
1487 btrfs_put_root(fs_info->free_space_root);
1488 btrfs_put_root(fs_info->fs_root);
aeb935a4 1489 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1490 btrfs_check_leaked_roots(fs_info);
3fd63727 1491 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1492 kfree(fs_info->super_copy);
1493 kfree(fs_info->super_for_commit);
1494 kvfree(fs_info);
1495}
1496
1497
2dfb1e43
QW
1498/*
1499 * Get an in-memory reference of a root structure.
1500 *
1501 * For essential trees like root/extent tree, we grab it from fs_info directly.
1502 * For subvolume trees, we check the cached filesystem roots first. If not
1503 * found, then read it from disk and add it to cached fs roots.
1504 *
1505 * Caller should release the root by calling btrfs_put_root() after the usage.
1506 *
1507 * NOTE: Reloc and log trees can't be read by this function as they share the
1508 * same root objectid.
1509 *
1510 * @objectid: root id
1511 * @anon_dev: preallocated anonymous block device number for new roots,
1512 * pass 0 for new allocation.
1513 * @check_ref: whether to check root item references, If true, return -ENOENT
1514 * for orphan roots
1515 */
1516static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1517 u64 objectid, dev_t anon_dev,
1518 bool check_ref)
5eda7b5e
CM
1519{
1520 struct btrfs_root *root;
381cf658 1521 struct btrfs_path *path;
1d4c08e0 1522 struct btrfs_key key;
5eda7b5e
CM
1523 int ret;
1524
49d11bea
JB
1525 root = btrfs_get_global_root(fs_info, objectid);
1526 if (root)
1527 return root;
4df27c4d 1528again:
56e9357a 1529 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1530 if (root) {
2dfb1e43
QW
1531 /* Shouldn't get preallocated anon_dev for cached roots */
1532 ASSERT(!anon_dev);
bc44d7c4 1533 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1534 btrfs_put_root(root);
48475471 1535 return ERR_PTR(-ENOENT);
bc44d7c4 1536 }
5eda7b5e 1537 return root;
48475471 1538 }
5eda7b5e 1539
56e9357a
DS
1540 key.objectid = objectid;
1541 key.type = BTRFS_ROOT_ITEM_KEY;
1542 key.offset = (u64)-1;
1543 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1544 if (IS_ERR(root))
1545 return root;
3394e160 1546
c00869f1 1547 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1548 ret = -ENOENT;
581bb050 1549 goto fail;
35a30d7c 1550 }
581bb050 1551
2dfb1e43 1552 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1553 if (ret)
1554 goto fail;
3394e160 1555
381cf658
DS
1556 path = btrfs_alloc_path();
1557 if (!path) {
1558 ret = -ENOMEM;
1559 goto fail;
1560 }
1d4c08e0
DS
1561 key.objectid = BTRFS_ORPHAN_OBJECTID;
1562 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1563 key.offset = objectid;
1d4c08e0
DS
1564
1565 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1566 btrfs_free_path(path);
d68fc57b
YZ
1567 if (ret < 0)
1568 goto fail;
1569 if (ret == 0)
27cdeb70 1570 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1571
cb517eab 1572 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1573 if (ret) {
00246528 1574 btrfs_put_root(root);
4785e24f 1575 if (ret == -EEXIST)
4df27c4d 1576 goto again;
4df27c4d 1577 goto fail;
0f7d52f4 1578 }
edbd8d4e 1579 return root;
4df27c4d 1580fail:
8c38938c 1581 btrfs_put_root(root);
4df27c4d 1582 return ERR_PTR(ret);
edbd8d4e
CM
1583}
1584
2dfb1e43
QW
1585/*
1586 * Get in-memory reference of a root structure
1587 *
1588 * @objectid: tree objectid
1589 * @check_ref: if set, verify that the tree exists and the item has at least
1590 * one reference
1591 */
1592struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1593 u64 objectid, bool check_ref)
1594{
1595 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1596}
1597
1598/*
1599 * Get in-memory reference of a root structure, created as new, optionally pass
1600 * the anonymous block device id
1601 *
1602 * @objectid: tree objectid
1603 * @anon_dev: if zero, allocate a new anonymous block device or use the
1604 * parameter value
1605 */
1606struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1607 u64 objectid, dev_t anon_dev)
1608{
1609 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1610}
1611
49d11bea
JB
1612/*
1613 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1614 * @fs_info: the fs_info
1615 * @objectid: the objectid we need to lookup
1616 *
1617 * This is exclusively used for backref walking, and exists specifically because
1618 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1619 * creation time, which means we may have to read the tree_root in order to look
1620 * up a fs root that is not in memory. If the root is not in memory we will
1621 * read the tree root commit root and look up the fs root from there. This is a
1622 * temporary root, it will not be inserted into the radix tree as it doesn't
1623 * have the most uptodate information, it'll simply be discarded once the
1624 * backref code is finished using the root.
1625 */
1626struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1627 struct btrfs_path *path,
1628 u64 objectid)
1629{
1630 struct btrfs_root *root;
1631 struct btrfs_key key;
1632
1633 ASSERT(path->search_commit_root && path->skip_locking);
1634
1635 /*
1636 * This can return -ENOENT if we ask for a root that doesn't exist, but
1637 * since this is called via the backref walking code we won't be looking
1638 * up a root that doesn't exist, unless there's corruption. So if root
1639 * != NULL just return it.
1640 */
1641 root = btrfs_get_global_root(fs_info, objectid);
1642 if (root)
1643 return root;
1644
1645 root = btrfs_lookup_fs_root(fs_info, objectid);
1646 if (root)
1647 return root;
1648
1649 key.objectid = objectid;
1650 key.type = BTRFS_ROOT_ITEM_KEY;
1651 key.offset = (u64)-1;
1652 root = read_tree_root_path(fs_info->tree_root, path, &key);
1653 btrfs_release_path(path);
1654
1655 return root;
1656}
1657
8b712842
CM
1658/*
1659 * called by the kthread helper functions to finally call the bio end_io
1660 * functions. This is where read checksum verification actually happens
1661 */
1662static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1663{
ce9adaa5 1664 struct bio *bio;
97eb6b69 1665 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1666
97eb6b69 1667 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1668 bio = end_io_wq->bio;
ce9adaa5 1669
4e4cbee9 1670 bio->bi_status = end_io_wq->status;
8b712842
CM
1671 bio->bi_private = end_io_wq->private;
1672 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1673 bio_endio(bio);
9be490f1 1674 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1675}
1676
a74a4b97
CM
1677static int cleaner_kthread(void *arg)
1678{
1679 struct btrfs_root *root = arg;
0b246afa 1680 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1681 int again;
a74a4b97 1682
d6fd0ae2 1683 while (1) {
d0278245 1684 again = 0;
a74a4b97 1685
fd340d0f
JB
1686 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1687
d0278245 1688 /* Make the cleaner go to sleep early. */
2ff7e61e 1689 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1690 goto sleep;
1691
90c711ab
ZB
1692 /*
1693 * Do not do anything if we might cause open_ctree() to block
1694 * before we have finished mounting the filesystem.
1695 */
0b246afa 1696 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1697 goto sleep;
1698
0b246afa 1699 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1700 goto sleep;
1701
dc7f370c
MX
1702 /*
1703 * Avoid the problem that we change the status of the fs
1704 * during the above check and trylock.
1705 */
2ff7e61e 1706 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1707 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1708 goto sleep;
76dda93c 1709 }
a74a4b97 1710
2ff7e61e 1711 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1712
d0278245 1713 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1714 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1715
1716 /*
05323cd1
MX
1717 * The defragger has dealt with the R/O remount and umount,
1718 * needn't do anything special here.
d0278245 1719 */
0b246afa 1720 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1721
1722 /*
1723 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1724 * with relocation (btrfs_relocate_chunk) and relocation
1725 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1726 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1727 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1728 * unused block groups.
1729 */
0b246afa 1730 btrfs_delete_unused_bgs(fs_info);
d0278245 1731sleep:
fd340d0f 1732 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1733 if (kthread_should_park())
1734 kthread_parkme();
1735 if (kthread_should_stop())
1736 return 0;
838fe188 1737 if (!again) {
a74a4b97 1738 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1739 schedule();
a74a4b97
CM
1740 __set_current_state(TASK_RUNNING);
1741 }
da288d28 1742 }
a74a4b97
CM
1743}
1744
1745static int transaction_kthread(void *arg)
1746{
1747 struct btrfs_root *root = arg;
0b246afa 1748 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1749 struct btrfs_trans_handle *trans;
1750 struct btrfs_transaction *cur;
8929ecfa 1751 u64 transid;
643900be 1752 time64_t delta;
a74a4b97 1753 unsigned long delay;
914b2007 1754 bool cannot_commit;
a74a4b97
CM
1755
1756 do {
914b2007 1757 cannot_commit = false;
ba1bc00f 1758 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1759 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1760
0b246afa
JM
1761 spin_lock(&fs_info->trans_lock);
1762 cur = fs_info->running_transaction;
a74a4b97 1763 if (!cur) {
0b246afa 1764 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1765 goto sleep;
1766 }
31153d81 1767
643900be 1768 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1769 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1770 delta < fs_info->commit_interval) {
0b246afa 1771 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1772 delay -= msecs_to_jiffies((delta - 1) * 1000);
1773 delay = min(delay,
1774 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1775 goto sleep;
1776 }
8929ecfa 1777 transid = cur->transid;
0b246afa 1778 spin_unlock(&fs_info->trans_lock);
56bec294 1779
79787eaa 1780 /* If the file system is aborted, this will always fail. */
354aa0fb 1781 trans = btrfs_attach_transaction(root);
914b2007 1782 if (IS_ERR(trans)) {
354aa0fb
MX
1783 if (PTR_ERR(trans) != -ENOENT)
1784 cannot_commit = true;
79787eaa 1785 goto sleep;
914b2007 1786 }
8929ecfa 1787 if (transid == trans->transid) {
3a45bb20 1788 btrfs_commit_transaction(trans);
8929ecfa 1789 } else {
3a45bb20 1790 btrfs_end_transaction(trans);
8929ecfa 1791 }
a74a4b97 1792sleep:
0b246afa
JM
1793 wake_up_process(fs_info->cleaner_kthread);
1794 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1795
4e121c06 1796 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1797 &fs_info->fs_state)))
2ff7e61e 1798 btrfs_cleanup_transaction(fs_info);
ce63f891 1799 if (!kthread_should_stop() &&
0b246afa 1800 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1801 cannot_commit))
bc5511d0 1802 schedule_timeout_interruptible(delay);
a74a4b97
CM
1803 } while (!kthread_should_stop());
1804 return 0;
1805}
1806
af31f5e5 1807/*
01f0f9da
NB
1808 * This will find the highest generation in the array of root backups. The
1809 * index of the highest array is returned, or -EINVAL if we can't find
1810 * anything.
af31f5e5
CM
1811 *
1812 * We check to make sure the array is valid by comparing the
1813 * generation of the latest root in the array with the generation
1814 * in the super block. If they don't match we pitch it.
1815 */
01f0f9da 1816static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1817{
01f0f9da 1818 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1819 u64 cur;
af31f5e5
CM
1820 struct btrfs_root_backup *root_backup;
1821 int i;
1822
1823 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1824 root_backup = info->super_copy->super_roots + i;
1825 cur = btrfs_backup_tree_root_gen(root_backup);
1826 if (cur == newest_gen)
01f0f9da 1827 return i;
af31f5e5
CM
1828 }
1829
01f0f9da 1830 return -EINVAL;
af31f5e5
CM
1831}
1832
af31f5e5
CM
1833/*
1834 * copy all the root pointers into the super backup array.
1835 * this will bump the backup pointer by one when it is
1836 * done
1837 */
1838static void backup_super_roots(struct btrfs_fs_info *info)
1839{
6ef108dd 1840 const int next_backup = info->backup_root_index;
af31f5e5 1841 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1842
1843 root_backup = info->super_for_commit->super_roots + next_backup;
1844
1845 /*
1846 * make sure all of our padding and empty slots get zero filled
1847 * regardless of which ones we use today
1848 */
1849 memset(root_backup, 0, sizeof(*root_backup));
1850
1851 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1852
1853 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1854 btrfs_set_backup_tree_root_gen(root_backup,
1855 btrfs_header_generation(info->tree_root->node));
1856
1857 btrfs_set_backup_tree_root_level(root_backup,
1858 btrfs_header_level(info->tree_root->node));
1859
1860 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1861 btrfs_set_backup_chunk_root_gen(root_backup,
1862 btrfs_header_generation(info->chunk_root->node));
1863 btrfs_set_backup_chunk_root_level(root_backup,
1864 btrfs_header_level(info->chunk_root->node));
1865
1866 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1867 btrfs_set_backup_extent_root_gen(root_backup,
1868 btrfs_header_generation(info->extent_root->node));
1869 btrfs_set_backup_extent_root_level(root_backup,
1870 btrfs_header_level(info->extent_root->node));
1871
7c7e82a7
CM
1872 /*
1873 * we might commit during log recovery, which happens before we set
1874 * the fs_root. Make sure it is valid before we fill it in.
1875 */
1876 if (info->fs_root && info->fs_root->node) {
1877 btrfs_set_backup_fs_root(root_backup,
1878 info->fs_root->node->start);
1879 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1880 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1881 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1882 btrfs_header_level(info->fs_root->node));
7c7e82a7 1883 }
af31f5e5
CM
1884
1885 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1886 btrfs_set_backup_dev_root_gen(root_backup,
1887 btrfs_header_generation(info->dev_root->node));
1888 btrfs_set_backup_dev_root_level(root_backup,
1889 btrfs_header_level(info->dev_root->node));
1890
1891 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1892 btrfs_set_backup_csum_root_gen(root_backup,
1893 btrfs_header_generation(info->csum_root->node));
1894 btrfs_set_backup_csum_root_level(root_backup,
1895 btrfs_header_level(info->csum_root->node));
1896
1897 btrfs_set_backup_total_bytes(root_backup,
1898 btrfs_super_total_bytes(info->super_copy));
1899 btrfs_set_backup_bytes_used(root_backup,
1900 btrfs_super_bytes_used(info->super_copy));
1901 btrfs_set_backup_num_devices(root_backup,
1902 btrfs_super_num_devices(info->super_copy));
1903
1904 /*
1905 * if we don't copy this out to the super_copy, it won't get remembered
1906 * for the next commit
1907 */
1908 memcpy(&info->super_copy->super_roots,
1909 &info->super_for_commit->super_roots,
1910 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1911}
1912
bd2336b2
NB
1913/*
1914 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1915 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1916 *
1917 * fs_info - filesystem whose backup roots need to be read
1918 * priority - priority of backup root required
1919 *
1920 * Returns backup root index on success and -EINVAL otherwise.
1921 */
1922static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1923{
1924 int backup_index = find_newest_super_backup(fs_info);
1925 struct btrfs_super_block *super = fs_info->super_copy;
1926 struct btrfs_root_backup *root_backup;
1927
1928 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1929 if (priority == 0)
1930 return backup_index;
1931
1932 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1933 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1934 } else {
1935 return -EINVAL;
1936 }
1937
1938 root_backup = super->super_roots + backup_index;
1939
1940 btrfs_set_super_generation(super,
1941 btrfs_backup_tree_root_gen(root_backup));
1942 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1943 btrfs_set_super_root_level(super,
1944 btrfs_backup_tree_root_level(root_backup));
1945 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1946
1947 /*
1948 * Fixme: the total bytes and num_devices need to match or we should
1949 * need a fsck
1950 */
1951 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1952 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1953
1954 return backup_index;
1955}
1956
7abadb64
LB
1957/* helper to cleanup workers */
1958static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1959{
dc6e3209 1960 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1961 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1962 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1963 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1964 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 1965 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1966 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1967 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1968 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1969 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1970 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1971 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1972 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1973 if (fs_info->discard_ctl.discard_workers)
1974 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1975 /*
1976 * Now that all other work queues are destroyed, we can safely destroy
1977 * the queues used for metadata I/O, since tasks from those other work
1978 * queues can do metadata I/O operations.
1979 */
1980 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1981 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1982}
1983
2e9f5954
R
1984static void free_root_extent_buffers(struct btrfs_root *root)
1985{
1986 if (root) {
1987 free_extent_buffer(root->node);
1988 free_extent_buffer(root->commit_root);
1989 root->node = NULL;
1990 root->commit_root = NULL;
1991 }
1992}
1993
af31f5e5 1994/* helper to cleanup tree roots */
4273eaff 1995static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1996{
2e9f5954 1997 free_root_extent_buffers(info->tree_root);
655b09fe 1998
2e9f5954
R
1999 free_root_extent_buffers(info->dev_root);
2000 free_root_extent_buffers(info->extent_root);
2001 free_root_extent_buffers(info->csum_root);
2002 free_root_extent_buffers(info->quota_root);
2003 free_root_extent_buffers(info->uuid_root);
8c38938c 2004 free_root_extent_buffers(info->fs_root);
aeb935a4 2005 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2006 if (free_chunk_root)
2e9f5954 2007 free_root_extent_buffers(info->chunk_root);
70f6d82e 2008 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2009}
2010
8c38938c
JB
2011void btrfs_put_root(struct btrfs_root *root)
2012{
2013 if (!root)
2014 return;
2015
2016 if (refcount_dec_and_test(&root->refs)) {
2017 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2018 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2019 if (root->anon_dev)
2020 free_anon_bdev(root->anon_dev);
2021 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2022 free_root_extent_buffers(root);
8c38938c
JB
2023#ifdef CONFIG_BTRFS_DEBUG
2024 spin_lock(&root->fs_info->fs_roots_radix_lock);
2025 list_del_init(&root->leak_list);
2026 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2027#endif
2028 kfree(root);
2029 }
2030}
2031
faa2dbf0 2032void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2033{
2034 int ret;
2035 struct btrfs_root *gang[8];
2036 int i;
2037
2038 while (!list_empty(&fs_info->dead_roots)) {
2039 gang[0] = list_entry(fs_info->dead_roots.next,
2040 struct btrfs_root, root_list);
2041 list_del(&gang[0]->root_list);
2042
8c38938c 2043 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2044 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2045 btrfs_put_root(gang[0]);
171f6537
JB
2046 }
2047
2048 while (1) {
2049 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2050 (void **)gang, 0,
2051 ARRAY_SIZE(gang));
2052 if (!ret)
2053 break;
2054 for (i = 0; i < ret; i++)
cb517eab 2055 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2056 }
2057}
af31f5e5 2058
638aa7ed
ES
2059static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2060{
2061 mutex_init(&fs_info->scrub_lock);
2062 atomic_set(&fs_info->scrubs_running, 0);
2063 atomic_set(&fs_info->scrub_pause_req, 0);
2064 atomic_set(&fs_info->scrubs_paused, 0);
2065 atomic_set(&fs_info->scrub_cancel_req, 0);
2066 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2067 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2068}
2069
779a65a4
ES
2070static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2071{
2072 spin_lock_init(&fs_info->balance_lock);
2073 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2074 atomic_set(&fs_info->balance_pause_req, 0);
2075 atomic_set(&fs_info->balance_cancel_req, 0);
2076 fs_info->balance_ctl = NULL;
2077 init_waitqueue_head(&fs_info->balance_wait_q);
2078}
2079
6bccf3ab 2080static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2081{
2ff7e61e
JM
2082 struct inode *inode = fs_info->btree_inode;
2083
2084 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2085 set_nlink(inode, 1);
f37938e0
ES
2086 /*
2087 * we set the i_size on the btree inode to the max possible int.
2088 * the real end of the address space is determined by all of
2089 * the devices in the system
2090 */
2ff7e61e
JM
2091 inode->i_size = OFFSET_MAX;
2092 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2093
2ff7e61e 2094 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2095 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2096 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2097 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2098 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2099
5c8fd99f 2100 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2101 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2102 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2103 btrfs_insert_inode_hash(inode);
f37938e0
ES
2104}
2105
ad618368
ES
2106static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2107{
ad618368 2108 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2109 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2110 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2111}
2112
f9e92e40
ES
2113static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2114{
2115 spin_lock_init(&fs_info->qgroup_lock);
2116 mutex_init(&fs_info->qgroup_ioctl_lock);
2117 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2118 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2119 fs_info->qgroup_seq = 1;
f9e92e40 2120 fs_info->qgroup_ulist = NULL;
d2c609b8 2121 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2122 mutex_init(&fs_info->qgroup_rescan_lock);
2123}
2124
2a458198
ES
2125static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2126 struct btrfs_fs_devices *fs_devices)
2127{
f7b885be 2128 u32 max_active = fs_info->thread_pool_size;
6f011058 2129 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2130
2131 fs_info->workers =
cb001095
JM
2132 btrfs_alloc_workqueue(fs_info, "worker",
2133 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2134
2135 fs_info->delalloc_workers =
cb001095
JM
2136 btrfs_alloc_workqueue(fs_info, "delalloc",
2137 flags, max_active, 2);
2a458198
ES
2138
2139 fs_info->flush_workers =
cb001095
JM
2140 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2141 flags, max_active, 0);
2a458198
ES
2142
2143 fs_info->caching_workers =
cb001095 2144 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2145
2a458198 2146 fs_info->fixup_workers =
cb001095 2147 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2148
2149 /*
2150 * endios are largely parallel and should have a very
2151 * low idle thresh
2152 */
2153 fs_info->endio_workers =
cb001095 2154 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2155 fs_info->endio_meta_workers =
cb001095
JM
2156 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2157 max_active, 4);
2a458198 2158 fs_info->endio_meta_write_workers =
cb001095
JM
2159 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2160 max_active, 2);
2a458198 2161 fs_info->endio_raid56_workers =
cb001095
JM
2162 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2163 max_active, 4);
2a458198 2164 fs_info->rmw_workers =
cb001095 2165 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2166 fs_info->endio_write_workers =
cb001095
JM
2167 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2168 max_active, 2);
2a458198 2169 fs_info->endio_freespace_worker =
cb001095
JM
2170 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2171 max_active, 0);
2a458198 2172 fs_info->delayed_workers =
cb001095
JM
2173 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2174 max_active, 0);
2a458198 2175 fs_info->readahead_workers =
cb001095
JM
2176 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2177 max_active, 2);
2a458198 2178 fs_info->qgroup_rescan_workers =
cb001095 2179 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2180 fs_info->discard_ctl.discard_workers =
2181 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2182
2183 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2184 fs_info->flush_workers &&
2a458198
ES
2185 fs_info->endio_workers && fs_info->endio_meta_workers &&
2186 fs_info->endio_meta_write_workers &&
2a458198
ES
2187 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2188 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2189 fs_info->caching_workers && fs_info->readahead_workers &&
2190 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2191 fs_info->qgroup_rescan_workers &&
2192 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2193 return -ENOMEM;
2194 }
2195
2196 return 0;
2197}
2198
6d97c6e3
JT
2199static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2200{
2201 struct crypto_shash *csum_shash;
b4e967be 2202 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2203
b4e967be 2204 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2205
2206 if (IS_ERR(csum_shash)) {
2207 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2208 csum_driver);
6d97c6e3
JT
2209 return PTR_ERR(csum_shash);
2210 }
2211
2212 fs_info->csum_shash = csum_shash;
2213
2214 return 0;
2215}
2216
63443bf5
ES
2217static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2218 struct btrfs_fs_devices *fs_devices)
2219{
2220 int ret;
63443bf5
ES
2221 struct btrfs_root *log_tree_root;
2222 struct btrfs_super_block *disk_super = fs_info->super_copy;
2223 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2224 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2225
2226 if (fs_devices->rw_devices == 0) {
f14d104d 2227 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2228 return -EIO;
2229 }
2230
96dfcb46
JB
2231 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2232 GFP_KERNEL);
63443bf5
ES
2233 if (!log_tree_root)
2234 return -ENOMEM;
2235
2ff7e61e 2236 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2237 BTRFS_TREE_LOG_OBJECTID,
2238 fs_info->generation + 1, level,
2239 NULL);
64c043de 2240 if (IS_ERR(log_tree_root->node)) {
f14d104d 2241 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2242 ret = PTR_ERR(log_tree_root->node);
8c38938c 2243 log_tree_root->node = NULL;
00246528 2244 btrfs_put_root(log_tree_root);
0eeff236 2245 return ret;
64c043de 2246 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2247 btrfs_err(fs_info, "failed to read log tree");
00246528 2248 btrfs_put_root(log_tree_root);
63443bf5
ES
2249 return -EIO;
2250 }
2251 /* returns with log_tree_root freed on success */
2252 ret = btrfs_recover_log_trees(log_tree_root);
2253 if (ret) {
0b246afa
JM
2254 btrfs_handle_fs_error(fs_info, ret,
2255 "Failed to recover log tree");
00246528 2256 btrfs_put_root(log_tree_root);
63443bf5
ES
2257 return ret;
2258 }
2259
bc98a42c 2260 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2261 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2262 if (ret)
2263 return ret;
2264 }
2265
2266 return 0;
2267}
2268
6bccf3ab 2269static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2270{
6bccf3ab 2271 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2272 struct btrfs_root *root;
4bbcaa64
ES
2273 struct btrfs_key location;
2274 int ret;
2275
6bccf3ab
JM
2276 BUG_ON(!fs_info->tree_root);
2277
4bbcaa64
ES
2278 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2279 location.type = BTRFS_ROOT_ITEM_KEY;
2280 location.offset = 0;
2281
a4f3d2c4 2282 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2283 if (IS_ERR(root)) {
42437a63
JB
2284 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2285 ret = PTR_ERR(root);
2286 goto out;
2287 }
2288 } else {
2289 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2290 fs_info->extent_root = root;
f50f4353 2291 }
4bbcaa64
ES
2292
2293 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2294 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2295 if (IS_ERR(root)) {
42437a63
JB
2296 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2297 ret = PTR_ERR(root);
2298 goto out;
2299 }
2300 } else {
2301 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302 fs_info->dev_root = root;
2303 btrfs_init_devices_late(fs_info);
f50f4353 2304 }
4bbcaa64 2305
882dbe0c
JB
2306 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2307 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2308 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2309 root = btrfs_read_tree_root(tree_root, &location);
2310 if (IS_ERR(root)) {
2311 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2312 ret = PTR_ERR(root);
2313 goto out;
2314 }
2315 } else {
2316 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2317 fs_info->csum_root = root;
42437a63 2318 }
f50f4353 2319 }
4bbcaa64 2320
aeb935a4
QW
2321 /*
2322 * This tree can share blocks with some other fs tree during relocation
2323 * and we need a proper setup by btrfs_get_fs_root
2324 */
56e9357a
DS
2325 root = btrfs_get_fs_root(tree_root->fs_info,
2326 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2327 if (IS_ERR(root)) {
42437a63
JB
2328 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2329 ret = PTR_ERR(root);
2330 goto out;
2331 }
2332 } else {
2333 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2334 fs_info->data_reloc_root = root;
aeb935a4 2335 }
aeb935a4 2336
4bbcaa64 2337 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2338 root = btrfs_read_tree_root(tree_root, &location);
2339 if (!IS_ERR(root)) {
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2341 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2342 fs_info->quota_root = root;
4bbcaa64
ES
2343 }
2344
2345 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2346 root = btrfs_read_tree_root(tree_root, &location);
2347 if (IS_ERR(root)) {
42437a63
JB
2348 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2349 ret = PTR_ERR(root);
2350 if (ret != -ENOENT)
2351 goto out;
2352 }
4bbcaa64 2353 } else {
a4f3d2c4
DS
2354 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2355 fs_info->uuid_root = root;
4bbcaa64
ES
2356 }
2357
70f6d82e
OS
2358 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2359 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2360 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2361 if (IS_ERR(root)) {
42437a63
JB
2362 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2363 ret = PTR_ERR(root);
2364 goto out;
2365 }
2366 } else {
2367 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2368 fs_info->free_space_root = root;
f50f4353 2369 }
70f6d82e
OS
2370 }
2371
4bbcaa64 2372 return 0;
f50f4353
LB
2373out:
2374 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2375 location.objectid, ret);
2376 return ret;
4bbcaa64
ES
2377}
2378
069ec957
QW
2379/*
2380 * Real super block validation
2381 * NOTE: super csum type and incompat features will not be checked here.
2382 *
2383 * @sb: super block to check
2384 * @mirror_num: the super block number to check its bytenr:
2385 * 0 the primary (1st) sb
2386 * 1, 2 2nd and 3rd backup copy
2387 * -1 skip bytenr check
2388 */
2389static int validate_super(struct btrfs_fs_info *fs_info,
2390 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2391{
21a852b0
QW
2392 u64 nodesize = btrfs_super_nodesize(sb);
2393 u64 sectorsize = btrfs_super_sectorsize(sb);
2394 int ret = 0;
2395
2396 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2397 btrfs_err(fs_info, "no valid FS found");
2398 ret = -EINVAL;
2399 }
2400 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2401 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2402 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2403 ret = -EINVAL;
2404 }
2405 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2406 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2407 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2408 ret = -EINVAL;
2409 }
2410 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2412 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2413 ret = -EINVAL;
2414 }
2415 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2417 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2418 ret = -EINVAL;
2419 }
2420
2421 /*
2422 * Check sectorsize and nodesize first, other check will need it.
2423 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2424 */
2425 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2426 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2427 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2428 ret = -EINVAL;
2429 }
2430 /* Only PAGE SIZE is supported yet */
2431 if (sectorsize != PAGE_SIZE) {
2432 btrfs_err(fs_info,
2433 "sectorsize %llu not supported yet, only support %lu",
2434 sectorsize, PAGE_SIZE);
2435 ret = -EINVAL;
2436 }
2437 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2438 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2439 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2440 ret = -EINVAL;
2441 }
2442 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2443 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2444 le32_to_cpu(sb->__unused_leafsize), nodesize);
2445 ret = -EINVAL;
2446 }
2447
2448 /* Root alignment check */
2449 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2450 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2451 btrfs_super_root(sb));
2452 ret = -EINVAL;
2453 }
2454 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2455 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2456 btrfs_super_chunk_root(sb));
2457 ret = -EINVAL;
2458 }
2459 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2460 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2461 btrfs_super_log_root(sb));
2462 ret = -EINVAL;
2463 }
2464
de37aa51 2465 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2466 BTRFS_FSID_SIZE) != 0) {
21a852b0 2467 btrfs_err(fs_info,
7239ff4b 2468 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2469 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2470 ret = -EINVAL;
2471 }
2472
2473 /*
2474 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2475 * done later
2476 */
2477 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2478 btrfs_err(fs_info, "bytes_used is too small %llu",
2479 btrfs_super_bytes_used(sb));
2480 ret = -EINVAL;
2481 }
2482 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2483 btrfs_err(fs_info, "invalid stripesize %u",
2484 btrfs_super_stripesize(sb));
2485 ret = -EINVAL;
2486 }
2487 if (btrfs_super_num_devices(sb) > (1UL << 31))
2488 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2489 btrfs_super_num_devices(sb));
2490 if (btrfs_super_num_devices(sb) == 0) {
2491 btrfs_err(fs_info, "number of devices is 0");
2492 ret = -EINVAL;
2493 }
2494
069ec957
QW
2495 if (mirror_num >= 0 &&
2496 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2497 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2498 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2499 ret = -EINVAL;
2500 }
2501
2502 /*
2503 * Obvious sys_chunk_array corruptions, it must hold at least one key
2504 * and one chunk
2505 */
2506 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2507 btrfs_err(fs_info, "system chunk array too big %u > %u",
2508 btrfs_super_sys_array_size(sb),
2509 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2510 ret = -EINVAL;
2511 }
2512 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2513 + sizeof(struct btrfs_chunk)) {
2514 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2515 btrfs_super_sys_array_size(sb),
2516 sizeof(struct btrfs_disk_key)
2517 + sizeof(struct btrfs_chunk));
2518 ret = -EINVAL;
2519 }
2520
2521 /*
2522 * The generation is a global counter, we'll trust it more than the others
2523 * but it's still possible that it's the one that's wrong.
2524 */
2525 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2526 btrfs_warn(fs_info,
2527 "suspicious: generation < chunk_root_generation: %llu < %llu",
2528 btrfs_super_generation(sb),
2529 btrfs_super_chunk_root_generation(sb));
2530 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2531 && btrfs_super_cache_generation(sb) != (u64)-1)
2532 btrfs_warn(fs_info,
2533 "suspicious: generation < cache_generation: %llu < %llu",
2534 btrfs_super_generation(sb),
2535 btrfs_super_cache_generation(sb));
2536
2537 return ret;
2538}
2539
069ec957
QW
2540/*
2541 * Validation of super block at mount time.
2542 * Some checks already done early at mount time, like csum type and incompat
2543 * flags will be skipped.
2544 */
2545static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2546{
2547 return validate_super(fs_info, fs_info->super_copy, 0);
2548}
2549
75cb857d
QW
2550/*
2551 * Validation of super block at write time.
2552 * Some checks like bytenr check will be skipped as their values will be
2553 * overwritten soon.
2554 * Extra checks like csum type and incompat flags will be done here.
2555 */
2556static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2557 struct btrfs_super_block *sb)
2558{
2559 int ret;
2560
2561 ret = validate_super(fs_info, sb, -1);
2562 if (ret < 0)
2563 goto out;
e7e16f48 2564 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2565 ret = -EUCLEAN;
2566 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2567 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2568 goto out;
2569 }
2570 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2571 ret = -EUCLEAN;
2572 btrfs_err(fs_info,
2573 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2574 btrfs_super_incompat_flags(sb),
2575 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2576 goto out;
2577 }
2578out:
2579 if (ret < 0)
2580 btrfs_err(fs_info,
2581 "super block corruption detected before writing it to disk");
2582 return ret;
2583}
2584
6ef108dd 2585static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2586{
6ef108dd 2587 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2588 struct btrfs_super_block *sb = fs_info->super_copy;
2589 struct btrfs_root *tree_root = fs_info->tree_root;
2590 bool handle_error = false;
2591 int ret = 0;
2592 int i;
2593
2594 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2595 u64 generation;
2596 int level;
2597
2598 if (handle_error) {
2599 if (!IS_ERR(tree_root->node))
2600 free_extent_buffer(tree_root->node);
2601 tree_root->node = NULL;
2602
2603 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2604 break;
2605
2606 free_root_pointers(fs_info, 0);
2607
2608 /*
2609 * Don't use the log in recovery mode, it won't be
2610 * valid
2611 */
2612 btrfs_set_super_log_root(sb, 0);
2613
2614 /* We can't trust the free space cache either */
2615 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2616
2617 ret = read_backup_root(fs_info, i);
6ef108dd 2618 backup_index = ret;
b8522a1e
NB
2619 if (ret < 0)
2620 return ret;
2621 }
2622 generation = btrfs_super_generation(sb);
2623 level = btrfs_super_root_level(sb);
2624 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
1b7ec85e 2625 BTRFS_ROOT_TREE_OBJECTID,
b8522a1e 2626 generation, level, NULL);
217f5004 2627 if (IS_ERR(tree_root->node)) {
b8522a1e 2628 handle_error = true;
217f5004
NB
2629 ret = PTR_ERR(tree_root->node);
2630 tree_root->node = NULL;
2631 btrfs_warn(fs_info, "couldn't read tree root");
2632 continue;
b8522a1e 2633
217f5004
NB
2634 } else if (!extent_buffer_uptodate(tree_root->node)) {
2635 handle_error = true;
2636 ret = -EIO;
2637 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2638 continue;
2639 }
2640
2641 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2642 tree_root->commit_root = btrfs_root_node(tree_root);
2643 btrfs_set_root_refs(&tree_root->root_item, 1);
2644
336a0d8d
NB
2645 /*
2646 * No need to hold btrfs_root::objectid_mutex since the fs
2647 * hasn't been fully initialised and we are the only user
2648 */
b8522a1e
NB
2649 ret = btrfs_find_highest_objectid(tree_root,
2650 &tree_root->highest_objectid);
2651 if (ret < 0) {
b8522a1e
NB
2652 handle_error = true;
2653 continue;
2654 }
2655
2656 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2657
2658 ret = btrfs_read_roots(fs_info);
2659 if (ret < 0) {
2660 handle_error = true;
2661 continue;
2662 }
2663
2664 /* All successful */
2665 fs_info->generation = generation;
2666 fs_info->last_trans_committed = generation;
6ef108dd
NB
2667
2668 /* Always begin writing backup roots after the one being used */
2669 if (backup_index < 0) {
2670 fs_info->backup_root_index = 0;
2671 } else {
2672 fs_info->backup_root_index = backup_index + 1;
2673 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2674 }
b8522a1e
NB
2675 break;
2676 }
2677
2678 return ret;
2679}
2680
8260edba 2681void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2682{
76dda93c 2683 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2684 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2685 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2686 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2687 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2688 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2689 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2690 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2691 spin_lock_init(&fs_info->trans_lock);
76dda93c 2692 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2693 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2694 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2695 spin_lock_init(&fs_info->super_lock);
f28491e0 2696 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2697 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2698 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2699 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2700 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2701 mutex_init(&fs_info->reloc_mutex);
573bfb72 2702 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2703 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2704
0b86a832 2705 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2706 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2707 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2708 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2709#ifdef CONFIG_BTRFS_DEBUG
2710 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2711 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2712 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2713#endif
c8bf1b67 2714 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2715 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2716 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2717 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2718 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2719 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2720 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2721 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2722 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2723 BTRFS_BLOCK_RSV_DELREFS);
2724
771ed689 2725 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2726 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2727 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2728 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2729 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2730 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2731 fs_info->metadata_ratio = 0;
4cb5300b 2732 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2733 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2734 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2735 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2736 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2737 /* readahead state */
d0164adc 2738 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2739 spin_lock_init(&fs_info->reada_lock);
fd708b81 2740 btrfs_init_ref_verify(fs_info);
c8b97818 2741
b34b086c
CM
2742 fs_info->thread_pool_size = min_t(unsigned long,
2743 num_online_cpus() + 2, 8);
0afbaf8c 2744
199c2a9c
MX
2745 INIT_LIST_HEAD(&fs_info->ordered_roots);
2746 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2747
638aa7ed 2748 btrfs_init_scrub(fs_info);
21adbd5c
SB
2749#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2750 fs_info->check_integrity_print_mask = 0;
2751#endif
779a65a4 2752 btrfs_init_balance(fs_info);
57056740 2753 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2754
0f9dd46c 2755 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2756 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2757 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2758
fe119a6e
NB
2759 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2760 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2761 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2762
5a3f23d5 2763 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2764 mutex_init(&fs_info->tree_log_mutex);
925baedd 2765 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2766 mutex_init(&fs_info->transaction_kthread_mutex);
2767 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2768 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2769 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2770 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2771 init_rwsem(&fs_info->subvol_sem);
803b2f54 2772 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2773
ad618368 2774 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2775 btrfs_init_qgroup(fs_info);
b0643e59 2776 btrfs_discard_init(fs_info);
416ac51d 2777
fa9c0d79
CM
2778 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2779 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2780
e6dcd2dc 2781 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2782 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2783 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2784 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2785 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2786
da17066c
JM
2787 /* Usable values until the real ones are cached from the superblock */
2788 fs_info->nodesize = 4096;
2789 fs_info->sectorsize = 4096;
ab108d99 2790 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2791 fs_info->stripesize = 4096;
2792
eede2bf3
OS
2793 spin_lock_init(&fs_info->swapfile_pins_lock);
2794 fs_info->swapfile_pins = RB_ROOT;
2795
9e967495 2796 fs_info->send_in_progress = 0;
8260edba
JB
2797}
2798
2799static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2800{
2801 int ret;
2802
2803 fs_info->sb = sb;
2804 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2805 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2806
ae18c37a
JB
2807 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2808 if (ret)
c75e8394 2809 return ret;
ae18c37a
JB
2810
2811 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2812 if (ret)
c75e8394 2813 return ret;
ae18c37a
JB
2814
2815 fs_info->dirty_metadata_batch = PAGE_SIZE *
2816 (1 + ilog2(nr_cpu_ids));
2817
2818 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2819 if (ret)
c75e8394 2820 return ret;
ae18c37a
JB
2821
2822 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2823 GFP_KERNEL);
2824 if (ret)
c75e8394 2825 return ret;
ae18c37a
JB
2826
2827 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2828 GFP_KERNEL);
c75e8394
JB
2829 if (!fs_info->delayed_root)
2830 return -ENOMEM;
ae18c37a
JB
2831 btrfs_init_delayed_root(fs_info->delayed_root);
2832
c75e8394 2833 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2834}
2835
97f4dd09
NB
2836static int btrfs_uuid_rescan_kthread(void *data)
2837{
2838 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2839 int ret;
2840
2841 /*
2842 * 1st step is to iterate through the existing UUID tree and
2843 * to delete all entries that contain outdated data.
2844 * 2nd step is to add all missing entries to the UUID tree.
2845 */
2846 ret = btrfs_uuid_tree_iterate(fs_info);
2847 if (ret < 0) {
c94bec2c
JB
2848 if (ret != -EINTR)
2849 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2850 ret);
97f4dd09
NB
2851 up(&fs_info->uuid_tree_rescan_sem);
2852 return ret;
2853 }
2854 return btrfs_uuid_scan_kthread(data);
2855}
2856
2857static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2858{
2859 struct task_struct *task;
2860
2861 down(&fs_info->uuid_tree_rescan_sem);
2862 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2863 if (IS_ERR(task)) {
2864 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2865 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2866 up(&fs_info->uuid_tree_rescan_sem);
2867 return PTR_ERR(task);
2868 }
2869
2870 return 0;
2871}
2872
8cd29088
BB
2873/*
2874 * Some options only have meaning at mount time and shouldn't persist across
2875 * remounts, or be displayed. Clear these at the end of mount and remount
2876 * code paths.
2877 */
2878void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2879{
2880 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 2881 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
2882}
2883
44c0ca21
BB
2884/*
2885 * Mounting logic specific to read-write file systems. Shared by open_ctree
2886 * and btrfs_remount when remounting from read-only to read-write.
2887 */
2888int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2889{
2890 int ret;
94846229 2891 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
2892 bool clear_free_space_tree = false;
2893
2894 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2895 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2896 clear_free_space_tree = true;
2897 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2898 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2899 btrfs_warn(fs_info, "free space tree is invalid");
2900 clear_free_space_tree = true;
2901 }
2902
2903 if (clear_free_space_tree) {
2904 btrfs_info(fs_info, "clearing free space tree");
2905 ret = btrfs_clear_free_space_tree(fs_info);
2906 if (ret) {
2907 btrfs_warn(fs_info,
2908 "failed to clear free space tree: %d", ret);
2909 goto out;
2910 }
2911 }
44c0ca21
BB
2912
2913 ret = btrfs_cleanup_fs_roots(fs_info);
2914 if (ret)
2915 goto out;
2916
8f1c21d7
BB
2917 down_read(&fs_info->cleanup_work_sem);
2918 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2919 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2920 up_read(&fs_info->cleanup_work_sem);
2921 goto out;
2922 }
2923 up_read(&fs_info->cleanup_work_sem);
2924
44c0ca21
BB
2925 mutex_lock(&fs_info->cleaner_mutex);
2926 ret = btrfs_recover_relocation(fs_info->tree_root);
2927 mutex_unlock(&fs_info->cleaner_mutex);
2928 if (ret < 0) {
2929 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
2930 goto out;
2931 }
2932
5011139a
BB
2933 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2934 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2935 btrfs_info(fs_info, "creating free space tree");
2936 ret = btrfs_create_free_space_tree(fs_info);
2937 if (ret) {
2938 btrfs_warn(fs_info,
2939 "failed to create free space tree: %d", ret);
2940 goto out;
2941 }
2942 }
2943
94846229
BB
2944 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
2945 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
2946 if (ret)
2947 goto out;
2948 }
2949
44c0ca21
BB
2950 ret = btrfs_resume_balance_async(fs_info);
2951 if (ret)
2952 goto out;
2953
2954 ret = btrfs_resume_dev_replace_async(fs_info);
2955 if (ret) {
2956 btrfs_warn(fs_info, "failed to resume dev_replace");
2957 goto out;
2958 }
2959
2960 btrfs_qgroup_rescan_resume(fs_info);
2961
2962 if (!fs_info->uuid_root) {
2963 btrfs_info(fs_info, "creating UUID tree");
2964 ret = btrfs_create_uuid_tree(fs_info);
2965 if (ret) {
2966 btrfs_warn(fs_info,
2967 "failed to create the UUID tree %d", ret);
2968 goto out;
2969 }
2970 }
2971
638331fa 2972 ret = btrfs_find_orphan_roots(fs_info);
44c0ca21
BB
2973out:
2974 return ret;
2975}
2976
ae18c37a
JB
2977int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2978 char *options)
2979{
2980 u32 sectorsize;
2981 u32 nodesize;
2982 u32 stripesize;
2983 u64 generation;
2984 u64 features;
2985 u16 csum_type;
ae18c37a
JB
2986 struct btrfs_super_block *disk_super;
2987 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2988 struct btrfs_root *tree_root;
2989 struct btrfs_root *chunk_root;
2990 int ret;
2991 int err = -EINVAL;
ae18c37a
JB
2992 int level;
2993
8260edba 2994 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2995 if (ret) {
83c8266a 2996 err = ret;
ae18c37a 2997 goto fail;
53b381b3
DW
2998 }
2999
ae18c37a
JB
3000 /* These need to be init'ed before we start creating inodes and such. */
3001 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3002 GFP_KERNEL);
3003 fs_info->tree_root = tree_root;
3004 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3005 GFP_KERNEL);
3006 fs_info->chunk_root = chunk_root;
3007 if (!tree_root || !chunk_root) {
3008 err = -ENOMEM;
c75e8394 3009 goto fail;
ae18c37a
JB
3010 }
3011
3012 fs_info->btree_inode = new_inode(sb);
3013 if (!fs_info->btree_inode) {
3014 err = -ENOMEM;
c75e8394 3015 goto fail;
ae18c37a
JB
3016 }
3017 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3018 btrfs_init_btree_inode(fs_info);
3019
3c4bb26b 3020 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
3021
3022 /*
3023 * Read super block and check the signature bytes only
3024 */
8f32380d
JT
3025 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3026 if (IS_ERR(disk_super)) {
3027 err = PTR_ERR(disk_super);
16cdcec7 3028 goto fail_alloc;
20b45077 3029 }
39279cc3 3030
8dc3f22c 3031 /*
260db43c 3032 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3033 * corrupted, we'll find out
3034 */
8f32380d 3035 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3036 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3037 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3038 csum_type);
8dc3f22c 3039 err = -EINVAL;
8f32380d 3040 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3041 goto fail_alloc;
3042 }
3043
6d97c6e3
JT
3044 ret = btrfs_init_csum_hash(fs_info, csum_type);
3045 if (ret) {
3046 err = ret;
8f32380d 3047 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3048 goto fail_alloc;
3049 }
3050
1104a885
DS
3051 /*
3052 * We want to check superblock checksum, the type is stored inside.
3053 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3054 */
8f32380d 3055 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3056 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3057 err = -EINVAL;
8f32380d 3058 btrfs_release_disk_super(disk_super);
141386e1 3059 goto fail_alloc;
1104a885
DS
3060 }
3061
3062 /*
3063 * super_copy is zeroed at allocation time and we never touch the
3064 * following bytes up to INFO_SIZE, the checksum is calculated from
3065 * the whole block of INFO_SIZE
3066 */
8f32380d
JT
3067 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3068 btrfs_release_disk_super(disk_super);
5f39d397 3069
fbc6feae
NB
3070 disk_super = fs_info->super_copy;
3071
de37aa51
NB
3072 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3073 BTRFS_FSID_SIZE));
3074
7239ff4b 3075 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
3076 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3077 fs_info->super_copy->metadata_uuid,
3078 BTRFS_FSID_SIZE));
7239ff4b 3079 }
0b86a832 3080
fbc6feae
NB
3081 features = btrfs_super_flags(disk_super);
3082 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3083 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3084 btrfs_set_super_flags(disk_super, features);
3085 btrfs_info(fs_info,
3086 "found metadata UUID change in progress flag, clearing");
3087 }
3088
3089 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3090 sizeof(*fs_info->super_for_commit));
de37aa51 3091
069ec957 3092 ret = btrfs_validate_mount_super(fs_info);
1104a885 3093 if (ret) {
05135f59 3094 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3095 err = -EINVAL;
141386e1 3096 goto fail_alloc;
1104a885
DS
3097 }
3098
0f7d52f4 3099 if (!btrfs_super_root(disk_super))
141386e1 3100 goto fail_alloc;
0f7d52f4 3101
acce952b 3102 /* check FS state, whether FS is broken. */
87533c47
MX
3103 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3104 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3105
75e7cb7f
LB
3106 /*
3107 * In the long term, we'll store the compression type in the super
3108 * block, and it'll be used for per file compression control.
3109 */
3110 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3111
2ff7e61e 3112 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3113 if (ret) {
3114 err = ret;
141386e1 3115 goto fail_alloc;
2b82032c 3116 }
dfe25020 3117
f2b636e8
JB
3118 features = btrfs_super_incompat_flags(disk_super) &
3119 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3120 if (features) {
05135f59
DS
3121 btrfs_err(fs_info,
3122 "cannot mount because of unsupported optional features (%llx)",
3123 features);
f2b636e8 3124 err = -EINVAL;
141386e1 3125 goto fail_alloc;
f2b636e8
JB
3126 }
3127
5d4f98a2 3128 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3129 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3130 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3131 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3132 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3133 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3134
3173a18f 3135 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3136 btrfs_info(fs_info, "has skinny extents");
3173a18f 3137
b70f5097
NA
3138 fs_info->zoned = (features & BTRFS_FEATURE_INCOMPAT_ZONED);
3139
727011e0
CM
3140 /*
3141 * flag our filesystem as having big metadata blocks if
3142 * they are bigger than the page size
3143 */
09cbfeaf 3144 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3145 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3146 btrfs_info(fs_info,
3147 "flagging fs with big metadata feature");
727011e0
CM
3148 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3149 }
3150
bc3f116f 3151 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3152 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3153 stripesize = sectorsize;
707e8a07 3154 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3155 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3156
da17066c
JM
3157 /* Cache block sizes */
3158 fs_info->nodesize = nodesize;
3159 fs_info->sectorsize = sectorsize;
ab108d99 3160 fs_info->sectorsize_bits = ilog2(sectorsize);
22b6331d 3161 fs_info->csum_size = btrfs_super_csum_size(disk_super);
fe5ecbe8 3162 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
da17066c
JM
3163 fs_info->stripesize = stripesize;
3164
bc3f116f
CM
3165 /*
3166 * mixed block groups end up with duplicate but slightly offset
3167 * extent buffers for the same range. It leads to corruptions
3168 */
3169 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3170 (sectorsize != nodesize)) {
05135f59
DS
3171 btrfs_err(fs_info,
3172"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3173 nodesize, sectorsize);
141386e1 3174 goto fail_alloc;
bc3f116f
CM
3175 }
3176
ceda0864
MX
3177 /*
3178 * Needn't use the lock because there is no other task which will
3179 * update the flag.
3180 */
a6fa6fae 3181 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3182
f2b636e8
JB
3183 features = btrfs_super_compat_ro_flags(disk_super) &
3184 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3185 if (!sb_rdonly(sb) && features) {
05135f59
DS
3186 btrfs_err(fs_info,
3187 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3188 features);
f2b636e8 3189 err = -EINVAL;
141386e1 3190 goto fail_alloc;
f2b636e8 3191 }
61d92c32 3192
2a458198
ES
3193 ret = btrfs_init_workqueues(fs_info, fs_devices);
3194 if (ret) {
3195 err = ret;
0dc3b84a
JB
3196 goto fail_sb_buffer;
3197 }
4543df7e 3198
9e11ceee
JK
3199 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3200 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3201
a061fc8d
CM
3202 sb->s_blocksize = sectorsize;
3203 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3204 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3205
925baedd 3206 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3207 ret = btrfs_read_sys_array(fs_info);
925baedd 3208 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3209 if (ret) {
05135f59 3210 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3211 goto fail_sb_buffer;
84eed90f 3212 }
0b86a832 3213
84234f3a 3214 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3215 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3216
2ff7e61e 3217 chunk_root->node = read_tree_block(fs_info,
0b86a832 3218 btrfs_super_chunk_root(disk_super),
1b7ec85e 3219 BTRFS_CHUNK_TREE_OBJECTID,
581c1760 3220 generation, level, NULL);
64c043de
LB
3221 if (IS_ERR(chunk_root->node) ||
3222 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3223 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3224 if (!IS_ERR(chunk_root->node))
3225 free_extent_buffer(chunk_root->node);
95ab1f64 3226 chunk_root->node = NULL;
af31f5e5 3227 goto fail_tree_roots;
83121942 3228 }
5d4f98a2
YZ
3229 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3230 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3231
e17cade2 3232 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3233 offsetof(struct btrfs_header, chunk_tree_uuid),
3234 BTRFS_UUID_SIZE);
e17cade2 3235
5b4aacef 3236 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3237 if (ret) {
05135f59 3238 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3239 goto fail_tree_roots;
2b82032c 3240 }
0b86a832 3241
8dabb742 3242 /*
bacce86a
AJ
3243 * At this point we know all the devices that make this filesystem,
3244 * including the seed devices but we don't know yet if the replace
3245 * target is required. So free devices that are not part of this
3246 * filesystem but skip the replace traget device which is checked
3247 * below in btrfs_init_dev_replace().
8dabb742 3248 */
bacce86a 3249 btrfs_free_extra_devids(fs_devices);
a6b0d5c8 3250 if (!fs_devices->latest_bdev) {
05135f59 3251 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3252 goto fail_tree_roots;
3253 }
3254
b8522a1e 3255 ret = init_tree_roots(fs_info);
4bbcaa64 3256 if (ret)
b8522a1e 3257 goto fail_tree_roots;
8929ecfa 3258
75ec1db8
JB
3259 /*
3260 * If we have a uuid root and we're not being told to rescan we need to
3261 * check the generation here so we can set the
3262 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3263 * transaction during a balance or the log replay without updating the
3264 * uuid generation, and then if we crash we would rescan the uuid tree,
3265 * even though it was perfectly fine.
3266 */
3267 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3268 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3269 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3270
cf90d884
QW
3271 ret = btrfs_verify_dev_extents(fs_info);
3272 if (ret) {
3273 btrfs_err(fs_info,
3274 "failed to verify dev extents against chunks: %d",
3275 ret);
3276 goto fail_block_groups;
3277 }
68310a5e
ID
3278 ret = btrfs_recover_balance(fs_info);
3279 if (ret) {
05135f59 3280 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3281 goto fail_block_groups;
3282 }
3283
733f4fbb
SB
3284 ret = btrfs_init_dev_stats(fs_info);
3285 if (ret) {
05135f59 3286 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3287 goto fail_block_groups;
3288 }
3289
8dabb742
SB
3290 ret = btrfs_init_dev_replace(fs_info);
3291 if (ret) {
05135f59 3292 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3293 goto fail_block_groups;
3294 }
3295
b70f5097
NA
3296 ret = btrfs_check_zoned_mode(fs_info);
3297 if (ret) {
3298 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3299 ret);
3300 goto fail_block_groups;
3301 }
3302
c6761a9e 3303 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3304 if (ret) {
05135f59
DS
3305 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3306 ret);
b7c35e81
AJ
3307 goto fail_block_groups;
3308 }
3309
96f3136e 3310 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3311 if (ret) {
05135f59 3312 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3313 goto fail_fsdev_sysfs;
c59021f8 3314 }
3315
c59021f8 3316 ret = btrfs_init_space_info(fs_info);
3317 if (ret) {
05135f59 3318 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3319 goto fail_sysfs;
c59021f8 3320 }
3321
5b4aacef 3322 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3323 if (ret) {
05135f59 3324 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3325 goto fail_sysfs;
1b1d1f66 3326 }
4330e183 3327
6528b99d 3328 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3329 btrfs_warn(fs_info,
52042d8e 3330 "writable mount is not allowed due to too many missing devices");
2365dd3c 3331 goto fail_sysfs;
292fd7fc 3332 }
9078a3e1 3333
a74a4b97
CM
3334 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3335 "btrfs-cleaner");
57506d50 3336 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3337 goto fail_sysfs;
a74a4b97
CM
3338
3339 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3340 tree_root,
3341 "btrfs-transaction");
57506d50 3342 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3343 goto fail_cleaner;
a74a4b97 3344
583b7231 3345 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3346 !fs_info->fs_devices->rotating) {
583b7231 3347 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3348 }
3349
572d9ab7 3350 /*
01327610 3351 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3352 * not have to wait for transaction commit
3353 */
3354 btrfs_apply_pending_changes(fs_info);
3818aea2 3355
21adbd5c 3356#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3357 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3358 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3359 btrfs_test_opt(fs_info,
21adbd5c
SB
3360 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3361 1 : 0,
3362 fs_info->check_integrity_print_mask);
3363 if (ret)
05135f59
DS
3364 btrfs_warn(fs_info,
3365 "failed to initialize integrity check module: %d",
3366 ret);
21adbd5c
SB
3367 }
3368#endif
bcef60f2
AJ
3369 ret = btrfs_read_qgroup_config(fs_info);
3370 if (ret)
3371 goto fail_trans_kthread;
21adbd5c 3372
fd708b81
JB
3373 if (btrfs_build_ref_tree(fs_info))
3374 btrfs_err(fs_info, "couldn't build ref tree");
3375
96da0919
QW
3376 /* do not make disk changes in broken FS or nologreplay is given */
3377 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3378 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3379 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3380 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3381 if (ret) {
63443bf5 3382 err = ret;
28c16cbb 3383 goto fail_qgroup;
79787eaa 3384 }
e02119d5 3385 }
1a40e23b 3386
56e9357a 3387 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3388 if (IS_ERR(fs_info->fs_root)) {
3389 err = PTR_ERR(fs_info->fs_root);
f50f4353 3390 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3391 fs_info->fs_root = NULL;
bcef60f2 3392 goto fail_qgroup;
3140c9a3 3393 }
c289811c 3394
bc98a42c 3395 if (sb_rdonly(sb))
8cd29088 3396 goto clear_oneshot;
59641015 3397
44c0ca21 3398 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3399 if (ret) {
6bccf3ab 3400 close_ctree(fs_info);
2b6ba629 3401 return ret;
e3acc2a6 3402 }
b0643e59 3403 btrfs_discard_resume(fs_info);
b382a324 3404
44c0ca21
BB
3405 if (fs_info->uuid_root &&
3406 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3407 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3408 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3409 ret = btrfs_check_uuid_tree(fs_info);
3410 if (ret) {
05135f59
DS
3411 btrfs_warn(fs_info,
3412 "failed to check the UUID tree: %d", ret);
6bccf3ab 3413 close_ctree(fs_info);
70f80175
SB
3414 return ret;
3415 }
f7a81ea4 3416 }
94846229 3417
afcdd129 3418 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3419
8cd29088
BB
3420clear_oneshot:
3421 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3422 return 0;
39279cc3 3423
bcef60f2
AJ
3424fail_qgroup:
3425 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3426fail_trans_kthread:
3427 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3428 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3429 btrfs_free_fs_roots(fs_info);
3f157a2f 3430fail_cleaner:
a74a4b97 3431 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3432
3433 /*
3434 * make sure we're done with the btree inode before we stop our
3435 * kthreads
3436 */
3437 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3438
2365dd3c 3439fail_sysfs:
6618a59b 3440 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3441
b7c35e81
AJ
3442fail_fsdev_sysfs:
3443 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3444
1b1d1f66 3445fail_block_groups:
54067ae9 3446 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3447
3448fail_tree_roots:
9e3aa805
JB
3449 if (fs_info->data_reloc_root)
3450 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3451 free_root_pointers(fs_info, true);
2b8195bb 3452 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3453
39279cc3 3454fail_sb_buffer:
7abadb64 3455 btrfs_stop_all_workers(fs_info);
5cdd7db6 3456 btrfs_free_block_groups(fs_info);
16cdcec7 3457fail_alloc:
586e46e2
ID
3458 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3459
4543df7e 3460 iput(fs_info->btree_inode);
7e662854 3461fail:
586e46e2 3462 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3463 return err;
eb60ceac 3464}
663faf9f 3465ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3466
314b6dd0 3467static void btrfs_end_super_write(struct bio *bio)
f2984462 3468{
314b6dd0
JT
3469 struct btrfs_device *device = bio->bi_private;
3470 struct bio_vec *bvec;
3471 struct bvec_iter_all iter_all;
3472 struct page *page;
3473
3474 bio_for_each_segment_all(bvec, bio, iter_all) {
3475 page = bvec->bv_page;
3476
3477 if (bio->bi_status) {
3478 btrfs_warn_rl_in_rcu(device->fs_info,
3479 "lost page write due to IO error on %s (%d)",
3480 rcu_str_deref(device->name),
3481 blk_status_to_errno(bio->bi_status));
3482 ClearPageUptodate(page);
3483 SetPageError(page);
3484 btrfs_dev_stat_inc_and_print(device,
3485 BTRFS_DEV_STAT_WRITE_ERRS);
3486 } else {
3487 SetPageUptodate(page);
3488 }
3489
3490 put_page(page);
3491 unlock_page(page);
f2984462 3492 }
314b6dd0
JT
3493
3494 bio_put(bio);
f2984462
CM
3495}
3496
8f32380d
JT
3497struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3498 int copy_num)
29c36d72 3499{
29c36d72 3500 struct btrfs_super_block *super;
8f32380d 3501 struct page *page;
12659251 3502 u64 bytenr, bytenr_orig;
8f32380d 3503 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3504 int ret;
3505
3506 bytenr_orig = btrfs_sb_offset(copy_num);
3507 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3508 if (ret == -ENOENT)
3509 return ERR_PTR(-EINVAL);
3510 else if (ret)
3511 return ERR_PTR(ret);
29c36d72 3512
29c36d72 3513 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3514 return ERR_PTR(-EINVAL);
29c36d72 3515
8f32380d
JT
3516 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3517 if (IS_ERR(page))
3518 return ERR_CAST(page);
29c36d72 3519
8f32380d 3520 super = page_address(page);
96c2e067
AJ
3521 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3522 btrfs_release_disk_super(super);
3523 return ERR_PTR(-ENODATA);
3524 }
3525
12659251 3526 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3527 btrfs_release_disk_super(super);
3528 return ERR_PTR(-EINVAL);
29c36d72
AJ
3529 }
3530
8f32380d 3531 return super;
29c36d72
AJ
3532}
3533
3534
8f32380d 3535struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3536{
8f32380d 3537 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3538 int i;
3539 u64 transid = 0;
a512bbf8
YZ
3540
3541 /* we would like to check all the supers, but that would make
3542 * a btrfs mount succeed after a mkfs from a different FS.
3543 * So, we need to add a special mount option to scan for
3544 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3545 */
3546 for (i = 0; i < 1; i++) {
8f32380d
JT
3547 super = btrfs_read_dev_one_super(bdev, i);
3548 if (IS_ERR(super))
a512bbf8
YZ
3549 continue;
3550
a512bbf8 3551 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3552 if (latest)
3553 btrfs_release_disk_super(super);
3554
3555 latest = super;
a512bbf8 3556 transid = btrfs_super_generation(super);
a512bbf8
YZ
3557 }
3558 }
92fc03fb 3559
8f32380d 3560 return super;
a512bbf8
YZ
3561}
3562
4eedeb75 3563/*
abbb3b8e 3564 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3565 * pages we use for writing are locked.
4eedeb75 3566 *
abbb3b8e
DS
3567 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3568 * the expected device size at commit time. Note that max_mirrors must be
3569 * same for write and wait phases.
4eedeb75 3570 *
314b6dd0 3571 * Return number of errors when page is not found or submission fails.
4eedeb75 3572 */
a512bbf8 3573static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3574 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3575{
d5178578 3576 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3577 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3578 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3579 int i;
a512bbf8 3580 int errors = 0;
12659251
NA
3581 int ret;
3582 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3583
3584 if (max_mirrors == 0)
3585 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3586
d5178578
JT
3587 shash->tfm = fs_info->csum_shash;
3588
a512bbf8 3589 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3590 struct page *page;
3591 struct bio *bio;
3592 struct btrfs_super_block *disk_super;
3593
12659251
NA
3594 bytenr_orig = btrfs_sb_offset(i);
3595 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3596 if (ret == -ENOENT) {
3597 continue;
3598 } else if (ret < 0) {
3599 btrfs_err(device->fs_info,
3600 "couldn't get super block location for mirror %d",
3601 i);
3602 errors++;
3603 continue;
3604 }
935e5cc9
MX
3605 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3606 device->commit_total_bytes)
a512bbf8
YZ
3607 break;
3608
12659251 3609 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3610
fd08001f
EB
3611 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3612 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3613 sb->csum);
4eedeb75 3614
314b6dd0
JT
3615 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3616 GFP_NOFS);
3617 if (!page) {
abbb3b8e 3618 btrfs_err(device->fs_info,
314b6dd0 3619 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3620 bytenr);
3621 errors++;
4eedeb75 3622 continue;
abbb3b8e 3623 }
634554dc 3624
314b6dd0
JT
3625 /* Bump the refcount for wait_dev_supers() */
3626 get_page(page);
a512bbf8 3627
314b6dd0
JT
3628 disk_super = page_address(page);
3629 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3630
314b6dd0
JT
3631 /*
3632 * Directly use bios here instead of relying on the page cache
3633 * to do I/O, so we don't lose the ability to do integrity
3634 * checking.
3635 */
3636 bio = bio_alloc(GFP_NOFS, 1);
3637 bio_set_dev(bio, device->bdev);
3638 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3639 bio->bi_private = device;
3640 bio->bi_end_io = btrfs_end_super_write;
3641 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3642 offset_in_page(bytenr));
a512bbf8 3643
387125fc 3644 /*
314b6dd0
JT
3645 * We FUA only the first super block. The others we allow to
3646 * go down lazy and there's a short window where the on-disk
3647 * copies might still contain the older version.
387125fc 3648 */
314b6dd0 3649 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3650 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3651 bio->bi_opf |= REQ_FUA;
3652
3653 btrfsic_submit_bio(bio);
12659251 3654 btrfs_advance_sb_log(device, i);
a512bbf8
YZ
3655 }
3656 return errors < i ? 0 : -1;
3657}
3658
abbb3b8e
DS
3659/*
3660 * Wait for write completion of superblocks done by write_dev_supers,
3661 * @max_mirrors same for write and wait phases.
3662 *
314b6dd0 3663 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3664 * date.
3665 */
3666static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3667{
abbb3b8e
DS
3668 int i;
3669 int errors = 0;
b6a535fa 3670 bool primary_failed = false;
12659251 3671 int ret;
abbb3b8e
DS
3672 u64 bytenr;
3673
3674 if (max_mirrors == 0)
3675 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3676
3677 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3678 struct page *page;
3679
12659251
NA
3680 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3681 if (ret == -ENOENT) {
3682 break;
3683 } else if (ret < 0) {
3684 errors++;
3685 if (i == 0)
3686 primary_failed = true;
3687 continue;
3688 }
abbb3b8e
DS
3689 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3690 device->commit_total_bytes)
3691 break;
3692
314b6dd0
JT
3693 page = find_get_page(device->bdev->bd_inode->i_mapping,
3694 bytenr >> PAGE_SHIFT);
3695 if (!page) {
abbb3b8e 3696 errors++;
b6a535fa
HM
3697 if (i == 0)
3698 primary_failed = true;
abbb3b8e
DS
3699 continue;
3700 }
314b6dd0
JT
3701 /* Page is submitted locked and unlocked once the IO completes */
3702 wait_on_page_locked(page);
3703 if (PageError(page)) {
abbb3b8e 3704 errors++;
b6a535fa
HM
3705 if (i == 0)
3706 primary_failed = true;
3707 }
abbb3b8e 3708
314b6dd0
JT
3709 /* Drop our reference */
3710 put_page(page);
abbb3b8e 3711
314b6dd0
JT
3712 /* Drop the reference from the writing run */
3713 put_page(page);
abbb3b8e
DS
3714 }
3715
b6a535fa
HM
3716 /* log error, force error return */
3717 if (primary_failed) {
3718 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3719 device->devid);
3720 return -1;
3721 }
3722
abbb3b8e
DS
3723 return errors < i ? 0 : -1;
3724}
3725
387125fc
CM
3726/*
3727 * endio for the write_dev_flush, this will wake anyone waiting
3728 * for the barrier when it is done
3729 */
4246a0b6 3730static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3731{
e0ae9994 3732 complete(bio->bi_private);
387125fc
CM
3733}
3734
3735/*
4fc6441a
AJ
3736 * Submit a flush request to the device if it supports it. Error handling is
3737 * done in the waiting counterpart.
387125fc 3738 */
4fc6441a 3739static void write_dev_flush(struct btrfs_device *device)
387125fc 3740{
c2a9c7ab 3741 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3742 struct bio *bio = device->flush_bio;
387125fc 3743
c2a9c7ab 3744 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3745 return;
387125fc 3746
e0ae9994 3747 bio_reset(bio);
387125fc 3748 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3749 bio_set_dev(bio, device->bdev);
8d910125 3750 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3751 init_completion(&device->flush_wait);
3752 bio->bi_private = &device->flush_wait;
387125fc 3753
43a01111 3754 btrfsic_submit_bio(bio);
1c3063b6 3755 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3756}
387125fc 3757
4fc6441a
AJ
3758/*
3759 * If the flush bio has been submitted by write_dev_flush, wait for it.
3760 */
8c27cb35 3761static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3762{
4fc6441a 3763 struct bio *bio = device->flush_bio;
387125fc 3764
1c3063b6 3765 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3766 return BLK_STS_OK;
387125fc 3767
1c3063b6 3768 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3769 wait_for_completion_io(&device->flush_wait);
387125fc 3770
8c27cb35 3771 return bio->bi_status;
387125fc 3772}
387125fc 3773
d10b82fe 3774static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3775{
6528b99d 3776 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3777 return -EIO;
387125fc
CM
3778 return 0;
3779}
3780
3781/*
3782 * send an empty flush down to each device in parallel,
3783 * then wait for them
3784 */
3785static int barrier_all_devices(struct btrfs_fs_info *info)
3786{
3787 struct list_head *head;
3788 struct btrfs_device *dev;
5af3e8cc 3789 int errors_wait = 0;
4e4cbee9 3790 blk_status_t ret;
387125fc 3791
1538e6c5 3792 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3793 /* send down all the barriers */
3794 head = &info->fs_devices->devices;
1538e6c5 3795 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3796 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3797 continue;
cea7c8bf 3798 if (!dev->bdev)
387125fc 3799 continue;
e12c9621 3800 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3801 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3802 continue;
3803
4fc6441a 3804 write_dev_flush(dev);
58efbc9f 3805 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3806 }
3807
3808 /* wait for all the barriers */
1538e6c5 3809 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3810 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3811 continue;
387125fc 3812 if (!dev->bdev) {
5af3e8cc 3813 errors_wait++;
387125fc
CM
3814 continue;
3815 }
e12c9621 3816 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3817 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3818 continue;
3819
4fc6441a 3820 ret = wait_dev_flush(dev);
401b41e5
AJ
3821 if (ret) {
3822 dev->last_flush_error = ret;
66b4993e
DS
3823 btrfs_dev_stat_inc_and_print(dev,
3824 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3825 errors_wait++;
401b41e5
AJ
3826 }
3827 }
3828
cea7c8bf 3829 if (errors_wait) {
401b41e5
AJ
3830 /*
3831 * At some point we need the status of all disks
3832 * to arrive at the volume status. So error checking
3833 * is being pushed to a separate loop.
3834 */
d10b82fe 3835 return check_barrier_error(info);
387125fc 3836 }
387125fc
CM
3837 return 0;
3838}
3839
943c6e99
ZL
3840int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3841{
8789f4fe
ZL
3842 int raid_type;
3843 int min_tolerated = INT_MAX;
943c6e99 3844
8789f4fe
ZL
3845 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3846 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3847 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3848 btrfs_raid_array[BTRFS_RAID_SINGLE].
3849 tolerated_failures);
943c6e99 3850
8789f4fe
ZL
3851 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3852 if (raid_type == BTRFS_RAID_SINGLE)
3853 continue;
41a6e891 3854 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3855 continue;
8c3e3582 3856 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3857 btrfs_raid_array[raid_type].
3858 tolerated_failures);
3859 }
943c6e99 3860
8789f4fe 3861 if (min_tolerated == INT_MAX) {
ab8d0fc4 3862 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3863 min_tolerated = 0;
3864 }
3865
3866 return min_tolerated;
943c6e99
ZL
3867}
3868
eece6a9c 3869int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3870{
e5e9a520 3871 struct list_head *head;
f2984462 3872 struct btrfs_device *dev;
a061fc8d 3873 struct btrfs_super_block *sb;
f2984462 3874 struct btrfs_dev_item *dev_item;
f2984462
CM
3875 int ret;
3876 int do_barriers;
a236aed1
CM
3877 int max_errors;
3878 int total_errors = 0;
a061fc8d 3879 u64 flags;
f2984462 3880
0b246afa 3881 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3882
3883 /*
3884 * max_mirrors == 0 indicates we're from commit_transaction,
3885 * not from fsync where the tree roots in fs_info have not
3886 * been consistent on disk.
3887 */
3888 if (max_mirrors == 0)
3889 backup_super_roots(fs_info);
f2984462 3890
0b246afa 3891 sb = fs_info->super_for_commit;
a061fc8d 3892 dev_item = &sb->dev_item;
e5e9a520 3893
0b246afa
JM
3894 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3895 head = &fs_info->fs_devices->devices;
3896 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3897
5af3e8cc 3898 if (do_barriers) {
0b246afa 3899 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3900 if (ret) {
3901 mutex_unlock(
0b246afa
JM
3902 &fs_info->fs_devices->device_list_mutex);
3903 btrfs_handle_fs_error(fs_info, ret,
3904 "errors while submitting device barriers.");
5af3e8cc
SB
3905 return ret;
3906 }
3907 }
387125fc 3908
1538e6c5 3909 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3910 if (!dev->bdev) {
3911 total_errors++;
3912 continue;
3913 }
e12c9621 3914 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3915 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3916 continue;
3917
2b82032c 3918 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3919 btrfs_set_stack_device_type(dev_item, dev->type);
3920 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3921 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3922 dev->commit_total_bytes);
ce7213c7
MX
3923 btrfs_set_stack_device_bytes_used(dev_item,
3924 dev->commit_bytes_used);
a061fc8d
CM
3925 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3926 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3927 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3928 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3929 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3930 BTRFS_FSID_SIZE);
a512bbf8 3931
a061fc8d
CM
3932 flags = btrfs_super_flags(sb);
3933 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3934
75cb857d
QW
3935 ret = btrfs_validate_write_super(fs_info, sb);
3936 if (ret < 0) {
3937 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3938 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3939 "unexpected superblock corruption detected");
3940 return -EUCLEAN;
3941 }
3942
abbb3b8e 3943 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3944 if (ret)
3945 total_errors++;
f2984462 3946 }
a236aed1 3947 if (total_errors > max_errors) {
0b246afa
JM
3948 btrfs_err(fs_info, "%d errors while writing supers",
3949 total_errors);
3950 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3951
9d565ba4 3952 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3953 btrfs_handle_fs_error(fs_info, -EIO,
3954 "%d errors while writing supers",
3955 total_errors);
9d565ba4 3956 return -EIO;
a236aed1 3957 }
f2984462 3958
a512bbf8 3959 total_errors = 0;
1538e6c5 3960 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3961 if (!dev->bdev)
3962 continue;
e12c9621 3963 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3964 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3965 continue;
3966
abbb3b8e 3967 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3968 if (ret)
3969 total_errors++;
f2984462 3970 }
0b246afa 3971 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3972 if (total_errors > max_errors) {
0b246afa
JM
3973 btrfs_handle_fs_error(fs_info, -EIO,
3974 "%d errors while writing supers",
3975 total_errors);
79787eaa 3976 return -EIO;
a236aed1 3977 }
f2984462
CM
3978 return 0;
3979}
3980
cb517eab
MX
3981/* Drop a fs root from the radix tree and free it. */
3982void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3983 struct btrfs_root *root)
2619ba1f 3984{
4785e24f
JB
3985 bool drop_ref = false;
3986
4df27c4d 3987 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3988 radix_tree_delete(&fs_info->fs_roots_radix,
3989 (unsigned long)root->root_key.objectid);
af01d2e5 3990 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3991 drop_ref = true;
4df27c4d 3992 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3993
1c1ea4f7 3994 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3995 ASSERT(root->log_root == NULL);
1c1ea4f7 3996 if (root->reloc_root) {
00246528 3997 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3998 root->reloc_root = NULL;
3999 }
4000 }
3321719e 4001
4785e24f
JB
4002 if (drop_ref)
4003 btrfs_put_root(root);
2619ba1f
CM
4004}
4005
c146afad 4006int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4007{
c146afad
YZ
4008 u64 root_objectid = 0;
4009 struct btrfs_root *gang[8];
65d33fd7
QW
4010 int i = 0;
4011 int err = 0;
4012 unsigned int ret = 0;
e089f05c 4013
c146afad 4014 while (1) {
efc34534 4015 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
4016 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4017 (void **)gang, root_objectid,
4018 ARRAY_SIZE(gang));
65d33fd7 4019 if (!ret) {
efc34534 4020 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 4021 break;
65d33fd7 4022 }
5d4f98a2 4023 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4024
c146afad 4025 for (i = 0; i < ret; i++) {
65d33fd7
QW
4026 /* Avoid to grab roots in dead_roots */
4027 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4028 gang[i] = NULL;
4029 continue;
4030 }
4031 /* grab all the search result for later use */
00246528 4032 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4033 }
efc34534 4034 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4035
65d33fd7
QW
4036 for (i = 0; i < ret; i++) {
4037 if (!gang[i])
4038 continue;
c146afad 4039 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4040 err = btrfs_orphan_cleanup(gang[i]);
4041 if (err)
65d33fd7 4042 break;
00246528 4043 btrfs_put_root(gang[i]);
c146afad
YZ
4044 }
4045 root_objectid++;
4046 }
65d33fd7
QW
4047
4048 /* release the uncleaned roots due to error */
4049 for (; i < ret; i++) {
4050 if (gang[i])
00246528 4051 btrfs_put_root(gang[i]);
65d33fd7
QW
4052 }
4053 return err;
c146afad 4054}
a2135011 4055
6bccf3ab 4056int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4057{
6bccf3ab 4058 struct btrfs_root *root = fs_info->tree_root;
c146afad 4059 struct btrfs_trans_handle *trans;
a74a4b97 4060
0b246afa 4061 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4062 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4063 mutex_unlock(&fs_info->cleaner_mutex);
4064 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4065
4066 /* wait until ongoing cleanup work done */
0b246afa
JM
4067 down_write(&fs_info->cleanup_work_sem);
4068 up_write(&fs_info->cleanup_work_sem);
c71bf099 4069
7a7eaa40 4070 trans = btrfs_join_transaction(root);
3612b495
TI
4071 if (IS_ERR(trans))
4072 return PTR_ERR(trans);
3a45bb20 4073 return btrfs_commit_transaction(trans);
c146afad
YZ
4074}
4075
b105e927 4076void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4077{
c146afad
YZ
4078 int ret;
4079
afcdd129 4080 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4081 /*
4082 * We don't want the cleaner to start new transactions, add more delayed
4083 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4084 * because that frees the task_struct, and the transaction kthread might
4085 * still try to wake up the cleaner.
4086 */
4087 kthread_park(fs_info->cleaner_kthread);
c146afad 4088
7343dd61 4089 /* wait for the qgroup rescan worker to stop */
d06f23d6 4090 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4091
803b2f54
SB
4092 /* wait for the uuid_scan task to finish */
4093 down(&fs_info->uuid_tree_rescan_sem);
4094 /* avoid complains from lockdep et al., set sem back to initial state */
4095 up(&fs_info->uuid_tree_rescan_sem);
4096
837d5b6e 4097 /* pause restriper - we want to resume on mount */
aa1b8cd4 4098 btrfs_pause_balance(fs_info);
837d5b6e 4099
8dabb742
SB
4100 btrfs_dev_replace_suspend_for_unmount(fs_info);
4101
aa1b8cd4 4102 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4103
4104 /* wait for any defraggers to finish */
4105 wait_event(fs_info->transaction_wait,
4106 (atomic_read(&fs_info->defrag_running) == 0));
4107
4108 /* clear out the rbtree of defraggable inodes */
26176e7c 4109 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4110
21c7e756 4111 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4112 cancel_work_sync(&fs_info->async_data_reclaim_work);
21c7e756 4113
b0643e59
DZ
4114 /* Cancel or finish ongoing discard work */
4115 btrfs_discard_cleanup(fs_info);
4116
bc98a42c 4117 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4118 /*
d6fd0ae2
OS
4119 * The cleaner kthread is stopped, so do one final pass over
4120 * unused block groups.
e44163e1 4121 */
0b246afa 4122 btrfs_delete_unused_bgs(fs_info);
e44163e1 4123
f0cc2cd7
FM
4124 /*
4125 * There might be existing delayed inode workers still running
4126 * and holding an empty delayed inode item. We must wait for
4127 * them to complete first because they can create a transaction.
4128 * This happens when someone calls btrfs_balance_delayed_items()
4129 * and then a transaction commit runs the same delayed nodes
4130 * before any delayed worker has done something with the nodes.
4131 * We must wait for any worker here and not at transaction
4132 * commit time since that could cause a deadlock.
4133 * This is a very rare case.
4134 */
4135 btrfs_flush_workqueue(fs_info->delayed_workers);
4136
6bccf3ab 4137 ret = btrfs_commit_super(fs_info);
acce952b 4138 if (ret)
04892340 4139 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4140 }
4141
af722733
LB
4142 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4143 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4144 btrfs_error_commit_super(fs_info);
0f7d52f4 4145
e3029d9f
AV
4146 kthread_stop(fs_info->transaction_kthread);
4147 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4148
e187831e 4149 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4150 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4151
5958253c
QW
4152 if (btrfs_check_quota_leak(fs_info)) {
4153 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4154 btrfs_err(fs_info, "qgroup reserved space leaked");
4155 }
4156
04892340 4157 btrfs_free_qgroup_config(fs_info);
fe816d0f 4158 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4159
963d678b 4160 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4161 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4162 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4163 }
bcc63abb 4164
4297ff84
JB
4165 if (percpu_counter_sum(&fs_info->dio_bytes))
4166 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4167 percpu_counter_sum(&fs_info->dio_bytes));
4168
6618a59b 4169 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4170 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4171
1a4319cc
LB
4172 btrfs_put_block_group_cache(fs_info);
4173
de348ee0
WS
4174 /*
4175 * we must make sure there is not any read request to
4176 * submit after we stopping all workers.
4177 */
4178 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4179 btrfs_stop_all_workers(fs_info);
4180
afcdd129 4181 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4182 free_root_pointers(fs_info, true);
8c38938c 4183 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4184
4e19443d
JB
4185 /*
4186 * We must free the block groups after dropping the fs_roots as we could
4187 * have had an IO error and have left over tree log blocks that aren't
4188 * cleaned up until the fs roots are freed. This makes the block group
4189 * accounting appear to be wrong because there's pending reserved bytes,
4190 * so make sure we do the block group cleanup afterwards.
4191 */
4192 btrfs_free_block_groups(fs_info);
4193
13e6c37b 4194 iput(fs_info->btree_inode);
d6bfde87 4195
21adbd5c 4196#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4197 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4198 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4199#endif
4200
0b86a832 4201 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4202 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4203}
4204
b9fab919
CM
4205int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4206 int atomic)
5f39d397 4207{
1259ab75 4208 int ret;
727011e0 4209 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4210
0b32f4bb 4211 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4212 if (!ret)
4213 return ret;
4214
4215 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4216 parent_transid, atomic);
4217 if (ret == -EAGAIN)
4218 return ret;
1259ab75 4219 return !ret;
5f39d397
CM
4220}
4221
5f39d397
CM
4222void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4223{
2f4d60df 4224 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4225 u64 transid = btrfs_header_generation(buf);
b9473439 4226 int was_dirty;
b4ce94de 4227
06ea65a3
JB
4228#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4229 /*
4230 * This is a fast path so only do this check if we have sanity tests
52042d8e 4231 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4232 * outside of the sanity tests.
4233 */
b0132a3b 4234 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4235 return;
4236#endif
b9447ef8 4237 btrfs_assert_tree_locked(buf);
0b246afa 4238 if (transid != fs_info->generation)
5d163e0e 4239 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4240 buf->start, transid, fs_info->generation);
0b32f4bb 4241 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4242 if (!was_dirty)
104b4e51
NB
4243 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4244 buf->len,
4245 fs_info->dirty_metadata_batch);
1f21ef0a 4246#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4247 /*
4248 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4249 * but item data not updated.
4250 * So here we should only check item pointers, not item data.
4251 */
4252 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4253 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4254 btrfs_print_leaf(buf);
1f21ef0a
FM
4255 ASSERT(0);
4256 }
4257#endif
eb60ceac
CM
4258}
4259
2ff7e61e 4260static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4261 int flush_delayed)
16cdcec7
MX
4262{
4263 /*
4264 * looks as though older kernels can get into trouble with
4265 * this code, they end up stuck in balance_dirty_pages forever
4266 */
e2d84521 4267 int ret;
16cdcec7
MX
4268
4269 if (current->flags & PF_MEMALLOC)
4270 return;
4271
b53d3f5d 4272 if (flush_delayed)
2ff7e61e 4273 btrfs_balance_delayed_items(fs_info);
16cdcec7 4274
d814a491
EL
4275 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4276 BTRFS_DIRTY_METADATA_THRESH,
4277 fs_info->dirty_metadata_batch);
e2d84521 4278 if (ret > 0) {
0b246afa 4279 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4280 }
16cdcec7
MX
4281}
4282
2ff7e61e 4283void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4284{
2ff7e61e 4285 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4286}
585ad2c3 4287
2ff7e61e 4288void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4289{
2ff7e61e 4290 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4291}
6b80053d 4292
581c1760
QW
4293int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4294 struct btrfs_key *first_key)
6b80053d 4295{
5ab12d1f 4296 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4297 level, first_key);
6b80053d 4298}
0da5468f 4299
2ff7e61e 4300static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4301{
fe816d0f
NB
4302 /* cleanup FS via transaction */
4303 btrfs_cleanup_transaction(fs_info);
4304
0b246afa 4305 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4306 btrfs_run_delayed_iputs(fs_info);
0b246afa 4307 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4308
0b246afa
JM
4309 down_write(&fs_info->cleanup_work_sem);
4310 up_write(&fs_info->cleanup_work_sem);
acce952b 4311}
4312
ef67963d
JB
4313static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4314{
4315 struct btrfs_root *gang[8];
4316 u64 root_objectid = 0;
4317 int ret;
4318
4319 spin_lock(&fs_info->fs_roots_radix_lock);
4320 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4321 (void **)gang, root_objectid,
4322 ARRAY_SIZE(gang))) != 0) {
4323 int i;
4324
4325 for (i = 0; i < ret; i++)
4326 gang[i] = btrfs_grab_root(gang[i]);
4327 spin_unlock(&fs_info->fs_roots_radix_lock);
4328
4329 for (i = 0; i < ret; i++) {
4330 if (!gang[i])
4331 continue;
4332 root_objectid = gang[i]->root_key.objectid;
4333 btrfs_free_log(NULL, gang[i]);
4334 btrfs_put_root(gang[i]);
4335 }
4336 root_objectid++;
4337 spin_lock(&fs_info->fs_roots_radix_lock);
4338 }
4339 spin_unlock(&fs_info->fs_roots_radix_lock);
4340 btrfs_free_log_root_tree(NULL, fs_info);
4341}
4342
143bede5 4343static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4344{
acce952b 4345 struct btrfs_ordered_extent *ordered;
acce952b 4346
199c2a9c 4347 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4348 /*
4349 * This will just short circuit the ordered completion stuff which will
4350 * make sure the ordered extent gets properly cleaned up.
4351 */
199c2a9c 4352 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4353 root_extent_list)
4354 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4355 spin_unlock(&root->ordered_extent_lock);
4356}
4357
4358static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4359{
4360 struct btrfs_root *root;
4361 struct list_head splice;
4362
4363 INIT_LIST_HEAD(&splice);
4364
4365 spin_lock(&fs_info->ordered_root_lock);
4366 list_splice_init(&fs_info->ordered_roots, &splice);
4367 while (!list_empty(&splice)) {
4368 root = list_first_entry(&splice, struct btrfs_root,
4369 ordered_root);
1de2cfde
JB
4370 list_move_tail(&root->ordered_root,
4371 &fs_info->ordered_roots);
199c2a9c 4372
2a85d9ca 4373 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4374 btrfs_destroy_ordered_extents(root);
4375
2a85d9ca
LB
4376 cond_resched();
4377 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4378 }
4379 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4380
4381 /*
4382 * We need this here because if we've been flipped read-only we won't
4383 * get sync() from the umount, so we need to make sure any ordered
4384 * extents that haven't had their dirty pages IO start writeout yet
4385 * actually get run and error out properly.
4386 */
4387 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4388}
4389
35a3621b 4390static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4391 struct btrfs_fs_info *fs_info)
acce952b 4392{
4393 struct rb_node *node;
4394 struct btrfs_delayed_ref_root *delayed_refs;
4395 struct btrfs_delayed_ref_node *ref;
4396 int ret = 0;
4397
4398 delayed_refs = &trans->delayed_refs;
4399
4400 spin_lock(&delayed_refs->lock);
d7df2c79 4401 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4402 spin_unlock(&delayed_refs->lock);
b79ce3dd 4403 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4404 return ret;
4405 }
4406
5c9d028b 4407 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4408 struct btrfs_delayed_ref_head *head;
0e0adbcf 4409 struct rb_node *n;
e78417d1 4410 bool pin_bytes = false;
acce952b 4411
d7df2c79
JB
4412 head = rb_entry(node, struct btrfs_delayed_ref_head,
4413 href_node);
3069bd26 4414 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4415 continue;
3069bd26 4416
d7df2c79 4417 spin_lock(&head->lock);
e3d03965 4418 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4419 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4420 ref_node);
d7df2c79 4421 ref->in_tree = 0;
e3d03965 4422 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4423 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4424 if (!list_empty(&ref->add_list))
4425 list_del(&ref->add_list);
d7df2c79
JB
4426 atomic_dec(&delayed_refs->num_entries);
4427 btrfs_put_delayed_ref(ref);
e78417d1 4428 }
d7df2c79
JB
4429 if (head->must_insert_reserved)
4430 pin_bytes = true;
4431 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4432 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4433 spin_unlock(&head->lock);
4434 spin_unlock(&delayed_refs->lock);
4435 mutex_unlock(&head->mutex);
acce952b 4436
f603bb94
NB
4437 if (pin_bytes) {
4438 struct btrfs_block_group *cache;
4439
4440 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4441 BUG_ON(!cache);
4442
4443 spin_lock(&cache->space_info->lock);
4444 spin_lock(&cache->lock);
4445 cache->pinned += head->num_bytes;
4446 btrfs_space_info_update_bytes_pinned(fs_info,
4447 cache->space_info, head->num_bytes);
4448 cache->reserved -= head->num_bytes;
4449 cache->space_info->bytes_reserved -= head->num_bytes;
4450 spin_unlock(&cache->lock);
4451 spin_unlock(&cache->space_info->lock);
4452 percpu_counter_add_batch(
4453 &cache->space_info->total_bytes_pinned,
4454 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4455
4456 btrfs_put_block_group(cache);
4457
4458 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4459 head->bytenr + head->num_bytes - 1);
4460 }
31890da0 4461 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4462 btrfs_put_delayed_ref_head(head);
acce952b 4463 cond_resched();
4464 spin_lock(&delayed_refs->lock);
4465 }
81f7eb00 4466 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4467
4468 spin_unlock(&delayed_refs->lock);
4469
4470 return ret;
4471}
4472
143bede5 4473static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4474{
4475 struct btrfs_inode *btrfs_inode;
4476 struct list_head splice;
4477
4478 INIT_LIST_HEAD(&splice);
4479
eb73c1b7
MX
4480 spin_lock(&root->delalloc_lock);
4481 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4482
4483 while (!list_empty(&splice)) {
fe816d0f 4484 struct inode *inode = NULL;
eb73c1b7
MX
4485 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4486 delalloc_inodes);
fe816d0f 4487 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4488 spin_unlock(&root->delalloc_lock);
acce952b 4489
fe816d0f
NB
4490 /*
4491 * Make sure we get a live inode and that it'll not disappear
4492 * meanwhile.
4493 */
4494 inode = igrab(&btrfs_inode->vfs_inode);
4495 if (inode) {
4496 invalidate_inode_pages2(inode->i_mapping);
4497 iput(inode);
4498 }
eb73c1b7 4499 spin_lock(&root->delalloc_lock);
acce952b 4500 }
eb73c1b7
MX
4501 spin_unlock(&root->delalloc_lock);
4502}
4503
4504static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4505{
4506 struct btrfs_root *root;
4507 struct list_head splice;
4508
4509 INIT_LIST_HEAD(&splice);
4510
4511 spin_lock(&fs_info->delalloc_root_lock);
4512 list_splice_init(&fs_info->delalloc_roots, &splice);
4513 while (!list_empty(&splice)) {
4514 root = list_first_entry(&splice, struct btrfs_root,
4515 delalloc_root);
00246528 4516 root = btrfs_grab_root(root);
eb73c1b7
MX
4517 BUG_ON(!root);
4518 spin_unlock(&fs_info->delalloc_root_lock);
4519
4520 btrfs_destroy_delalloc_inodes(root);
00246528 4521 btrfs_put_root(root);
eb73c1b7
MX
4522
4523 spin_lock(&fs_info->delalloc_root_lock);
4524 }
4525 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4526}
4527
2ff7e61e 4528static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4529 struct extent_io_tree *dirty_pages,
4530 int mark)
4531{
4532 int ret;
acce952b 4533 struct extent_buffer *eb;
4534 u64 start = 0;
4535 u64 end;
acce952b 4536
4537 while (1) {
4538 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4539 mark, NULL);
acce952b 4540 if (ret)
4541 break;
4542
91166212 4543 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4544 while (start <= end) {
0b246afa
JM
4545 eb = find_extent_buffer(fs_info, start);
4546 start += fs_info->nodesize;
fd8b2b61 4547 if (!eb)
acce952b 4548 continue;
fd8b2b61 4549 wait_on_extent_buffer_writeback(eb);
acce952b 4550
fd8b2b61
JB
4551 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4552 &eb->bflags))
4553 clear_extent_buffer_dirty(eb);
4554 free_extent_buffer_stale(eb);
acce952b 4555 }
4556 }
4557
4558 return ret;
4559}
4560
2ff7e61e 4561static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4562 struct extent_io_tree *unpin)
acce952b 4563{
acce952b 4564 u64 start;
4565 u64 end;
4566 int ret;
4567
acce952b 4568 while (1) {
0e6ec385
FM
4569 struct extent_state *cached_state = NULL;
4570
fcd5e742
LF
4571 /*
4572 * The btrfs_finish_extent_commit() may get the same range as
4573 * ours between find_first_extent_bit and clear_extent_dirty.
4574 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4575 * the same extent range.
4576 */
4577 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4578 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4579 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4580 if (ret) {
4581 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4582 break;
fcd5e742 4583 }
acce952b 4584
0e6ec385
FM
4585 clear_extent_dirty(unpin, start, end, &cached_state);
4586 free_extent_state(cached_state);
2ff7e61e 4587 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4588 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4589 cond_resched();
4590 }
4591
4592 return 0;
4593}
4594
32da5386 4595static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4596{
4597 struct inode *inode;
4598
4599 inode = cache->io_ctl.inode;
4600 if (inode) {
4601 invalidate_inode_pages2(inode->i_mapping);
4602 BTRFS_I(inode)->generation = 0;
4603 cache->io_ctl.inode = NULL;
4604 iput(inode);
4605 }
bbc37d6e 4606 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4607 btrfs_put_block_group(cache);
4608}
4609
4610void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4611 struct btrfs_fs_info *fs_info)
c79a1751 4612{
32da5386 4613 struct btrfs_block_group *cache;
c79a1751
LB
4614
4615 spin_lock(&cur_trans->dirty_bgs_lock);
4616 while (!list_empty(&cur_trans->dirty_bgs)) {
4617 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4618 struct btrfs_block_group,
c79a1751 4619 dirty_list);
c79a1751
LB
4620
4621 if (!list_empty(&cache->io_list)) {
4622 spin_unlock(&cur_trans->dirty_bgs_lock);
4623 list_del_init(&cache->io_list);
4624 btrfs_cleanup_bg_io(cache);
4625 spin_lock(&cur_trans->dirty_bgs_lock);
4626 }
4627
4628 list_del_init(&cache->dirty_list);
4629 spin_lock(&cache->lock);
4630 cache->disk_cache_state = BTRFS_DC_ERROR;
4631 spin_unlock(&cache->lock);
4632
4633 spin_unlock(&cur_trans->dirty_bgs_lock);
4634 btrfs_put_block_group(cache);
ba2c4d4e 4635 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4636 spin_lock(&cur_trans->dirty_bgs_lock);
4637 }
4638 spin_unlock(&cur_trans->dirty_bgs_lock);
4639
45ae2c18
NB
4640 /*
4641 * Refer to the definition of io_bgs member for details why it's safe
4642 * to use it without any locking
4643 */
c79a1751
LB
4644 while (!list_empty(&cur_trans->io_bgs)) {
4645 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4646 struct btrfs_block_group,
c79a1751 4647 io_list);
c79a1751
LB
4648
4649 list_del_init(&cache->io_list);
4650 spin_lock(&cache->lock);
4651 cache->disk_cache_state = BTRFS_DC_ERROR;
4652 spin_unlock(&cache->lock);
4653 btrfs_cleanup_bg_io(cache);
4654 }
4655}
4656
49b25e05 4657void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4658 struct btrfs_fs_info *fs_info)
49b25e05 4659{
bbbf7243
NB
4660 struct btrfs_device *dev, *tmp;
4661
2ff7e61e 4662 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4663 ASSERT(list_empty(&cur_trans->dirty_bgs));
4664 ASSERT(list_empty(&cur_trans->io_bgs));
4665
bbbf7243
NB
4666 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4667 post_commit_list) {
4668 list_del_init(&dev->post_commit_list);
4669 }
4670
2ff7e61e 4671 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4672
4a9d8bde 4673 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4674 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4675
4a9d8bde 4676 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4677 wake_up(&fs_info->transaction_wait);
49b25e05 4678
ccdf9b30 4679 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4680
2ff7e61e 4681 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4682 EXTENT_DIRTY);
fe119a6e 4683 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4684
4a9d8bde
MX
4685 cur_trans->state =TRANS_STATE_COMPLETED;
4686 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4687}
4688
2ff7e61e 4689static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4690{
4691 struct btrfs_transaction *t;
acce952b 4692
0b246afa 4693 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4694
0b246afa
JM
4695 spin_lock(&fs_info->trans_lock);
4696 while (!list_empty(&fs_info->trans_list)) {
4697 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4698 struct btrfs_transaction, list);
4699 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4700 refcount_inc(&t->use_count);
0b246afa 4701 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4702 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4703 btrfs_put_transaction(t);
0b246afa 4704 spin_lock(&fs_info->trans_lock);
724e2315
JB
4705 continue;
4706 }
0b246afa 4707 if (t == fs_info->running_transaction) {
724e2315 4708 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4709 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4710 /*
4711 * We wait for 0 num_writers since we don't hold a trans
4712 * handle open currently for this transaction.
4713 */
4714 wait_event(t->writer_wait,
4715 atomic_read(&t->num_writers) == 0);
4716 } else {
0b246afa 4717 spin_unlock(&fs_info->trans_lock);
724e2315 4718 }
2ff7e61e 4719 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4720
0b246afa
JM
4721 spin_lock(&fs_info->trans_lock);
4722 if (t == fs_info->running_transaction)
4723 fs_info->running_transaction = NULL;
acce952b 4724 list_del_init(&t->list);
0b246afa 4725 spin_unlock(&fs_info->trans_lock);
acce952b 4726
724e2315 4727 btrfs_put_transaction(t);
2ff7e61e 4728 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4729 spin_lock(&fs_info->trans_lock);
724e2315 4730 }
0b246afa
JM
4731 spin_unlock(&fs_info->trans_lock);
4732 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4733 btrfs_destroy_delayed_inodes(fs_info);
4734 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4735 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4736 btrfs_drop_all_logs(fs_info);
0b246afa 4737 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4738
4739 return 0;
4740}
ec7d6dfd
NB
4741
4742int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
4743{
4744 struct btrfs_path *path;
4745 int ret;
4746 struct extent_buffer *l;
4747 struct btrfs_key search_key;
4748 struct btrfs_key found_key;
4749 int slot;
4750
4751 path = btrfs_alloc_path();
4752 if (!path)
4753 return -ENOMEM;
4754
4755 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4756 search_key.type = -1;
4757 search_key.offset = (u64)-1;
4758 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4759 if (ret < 0)
4760 goto error;
4761 BUG_ON(ret == 0); /* Corruption */
4762 if (path->slots[0] > 0) {
4763 slot = path->slots[0] - 1;
4764 l = path->nodes[0];
4765 btrfs_item_key_to_cpu(l, &found_key, slot);
4766 *objectid = max_t(u64, found_key.objectid,
4767 BTRFS_FIRST_FREE_OBJECTID - 1);
4768 } else {
4769 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
4770 }
4771 ret = 0;
4772error:
4773 btrfs_free_path(path);
4774 return ret;
4775}
4776
4777int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
4778{
4779 int ret;
4780 mutex_lock(&root->objectid_mutex);
4781
4782 if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4783 btrfs_warn(root->fs_info,
4784 "the objectid of root %llu reaches its highest value",
4785 root->root_key.objectid);
4786 ret = -ENOSPC;
4787 goto out;
4788 }
4789
4790 *objectid = ++root->highest_objectid;
4791 ret = 0;
4792out:
4793 mutex_unlock(&root->objectid_mutex);
4794 return ret;
4795}