btrfs: use the correct const function attribute for btrfs_get_num_csums
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
c6100a4b 113 void *private_data;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
7eccb903 214{
fc4f21b1 215 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
216 struct extent_map *em;
217 int ret;
218
890871be 219 read_lock(&em_tree->lock);
d1310b2e 220 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 221 if (em) {
890871be 222 read_unlock(&em_tree->lock);
5f39d397 223 goto out;
a061fc8d 224 }
890871be 225 read_unlock(&em_tree->lock);
7b13b7b1 226
172ddd60 227 em = alloc_extent_map();
5f39d397
CM
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
0afbaf8c 233 em->len = (u64)-1;
c8b97818 234 em->block_len = (u64)-1;
5f39d397 235 em->block_start = 0;
d1310b2e 236
890871be 237 write_lock(&em_tree->lock);
09a2a8f9 238 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
239 if (ret == -EEXIST) {
240 free_extent_map(em);
7b13b7b1 241 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 242 if (!em)
0433f20d 243 em = ERR_PTR(-EIO);
5f39d397 244 } else if (ret) {
7b13b7b1 245 free_extent_map(em);
0433f20d 246 em = ERR_PTR(ret);
5f39d397 247 }
890871be 248 write_unlock(&em_tree->lock);
7b13b7b1 249
5f39d397
CM
250out:
251 return em;
7eccb903
CM
252}
253
d352ac68 254/*
2996e1f8 255 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 256 */
c67b3892 257static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 258{
d5178578 259 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
d5178578 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 262 char *kaddr;
e9be5a30 263 int i;
d5178578
JT
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
e9be5a30
DS
267 kaddr = page_address(buf->pages[0]);
268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 PAGE_SIZE - BTRFS_CSUM_SIZE);
19c00ddc 270
e9be5a30
DS
271 for (i = 1; i < num_pages; i++) {
272 kaddr = page_address(buf->pages[i]);
273 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 274 }
71a63551 275 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 276 crypto_shash_final(shash, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
284 */
1259ab75 285static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
286 struct extent_buffer *eb, u64 parent_transid,
287 int atomic)
1259ab75 288{
2ac55d41 289 struct extent_state *cached_state = NULL;
1259ab75 290 int ret;
2755a0de 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
292
293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 return 0;
295
b9fab919
CM
296 if (atomic)
297 return -EAGAIN;
298
a26e8c9f
JB
299 if (need_lock) {
300 btrfs_tree_read_lock(eb);
300aa896 301 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
302 }
303
2ac55d41 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 305 &cached_state);
0b32f4bb 306 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
307 btrfs_header_generation(eb) == parent_transid) {
308 ret = 0;
309 goto out;
310 }
94647322
DS
311 btrfs_err_rl(eb->fs_info,
312 "parent transid verify failed on %llu wanted %llu found %llu",
313 eb->start,
29549aec 314 parent_transid, btrfs_header_generation(eb));
1259ab75 315 ret = 1;
a26e8c9f
JB
316
317 /*
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
01327610 320 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
324 */
325 if (!extent_buffer_under_io(eb))
326 clear_extent_buffer_uptodate(eb);
33958dc6 327out:
2ac55d41 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 329 &cached_state);
472b909f
JB
330 if (need_lock)
331 btrfs_tree_read_unlock_blocking(eb);
1259ab75 332 return ret;
1259ab75
CM
333}
334
e7e16f48
JT
335static bool btrfs_supported_super_csum(u16 csum_type)
336{
337 switch (csum_type) {
338 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 339 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 340 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 341 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
342 return true;
343 default:
344 return false;
345 }
346}
347
1104a885
DS
348/*
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
351 */
ab8d0fc4
JM
352static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 char *raw_disk_sb)
1104a885
DS
354{
355 struct btrfs_super_block *disk_sb =
356 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 357 char result[BTRFS_CSUM_SIZE];
d5178578
JT
358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360 shash->tfm = fs_info->csum_shash;
1104a885 361
51bce6c9
JT
362 /*
363 * The super_block structure does not span the whole
364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 * filled with zeros and is included in the checksum.
366 */
fd08001f
EB
367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 369
51bce6c9
JT
370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371 return 1;
1104a885 372
e7e16f48 373 return 0;
1104a885
DS
374}
375
e064d5e9 376int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 377 struct btrfs_key *first_key, u64 parent_transid)
581c1760 378{
e064d5e9 379 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
380 int found_level;
381 struct btrfs_key found_key;
382 int ret;
383
384 found_level = btrfs_header_level(eb);
385 if (found_level != level) {
63489055
QW
386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
388 btrfs_err(fs_info,
389"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 eb->start, level, found_level);
581c1760
QW
391 return -EIO;
392 }
393
394 if (!first_key)
395 return 0;
396
5d41be6f
QW
397 /*
398 * For live tree block (new tree blocks in current transaction),
399 * we need proper lock context to avoid race, which is impossible here.
400 * So we only checks tree blocks which is read from disk, whose
401 * generation <= fs_info->last_trans_committed.
402 */
403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404 return 0;
62fdaa52
QW
405
406 /* We have @first_key, so this @eb must have at least one item */
407 if (btrfs_header_nritems(eb) == 0) {
408 btrfs_err(fs_info,
409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410 eb->start);
411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412 return -EUCLEAN;
413 }
414
581c1760
QW
415 if (found_level)
416 btrfs_node_key_to_cpu(eb, &found_key, 0);
417 else
418 btrfs_item_key_to_cpu(eb, &found_key, 0);
419 ret = btrfs_comp_cpu_keys(first_key, &found_key);
420
581c1760 421 if (ret) {
63489055
QW
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 424 btrfs_err(fs_info,
ff76a864
LB
425"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 eb->start, parent_transid, first_key->objectid,
427 first_key->type, first_key->offset,
428 found_key.objectid, found_key.type,
429 found_key.offset);
581c1760 430 }
581c1760
QW
431 return ret;
432}
433
d352ac68
CM
434/*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
437 *
438 * @parent_transid: expected transid, skip check if 0
439 * @level: expected level, mandatory check
440 * @first_key: expected key of first slot, skip check if NULL
d352ac68 441 */
5ab12d1f 442static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
443 u64 parent_transid, int level,
444 struct btrfs_key *first_key)
f188591e 445{
5ab12d1f 446 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 447 struct extent_io_tree *io_tree;
ea466794 448 int failed = 0;
f188591e
CM
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
ea466794 452 int failed_mirror = 0;
f188591e 453
0b246afa 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 455 while (1) {
f8397d69 456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 458 if (!ret) {
581c1760 459 if (verify_parent_transid(io_tree, eb,
b9fab919 460 parent_transid, 0))
256dd1bb 461 ret = -EIO;
e064d5e9 462 else if (btrfs_verify_level_key(eb, level,
448de471 463 first_key, parent_transid))
581c1760
QW
464 ret = -EUCLEAN;
465 else
466 break;
256dd1bb 467 }
d397712b 468
0b246afa 469 num_copies = btrfs_num_copies(fs_info,
f188591e 470 eb->start, eb->len);
4235298e 471 if (num_copies == 1)
ea466794 472 break;
4235298e 473
5cf1ab56
JB
474 if (!failed_mirror) {
475 failed = 1;
476 failed_mirror = eb->read_mirror;
477 }
478
f188591e 479 mirror_num++;
ea466794
JB
480 if (mirror_num == failed_mirror)
481 mirror_num++;
482
4235298e 483 if (mirror_num > num_copies)
ea466794 484 break;
f188591e 485 }
ea466794 486
c0901581 487 if (failed && !ret && failed_mirror)
20a1fbf9 488 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
489
490 return ret;
f188591e 491}
19c00ddc 492
d352ac68 493/*
d397712b
CM
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 496 */
d397712b 497
01d58472 498static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 499{
4eee4fa4 500 u64 start = page_offset(page);
19c00ddc 501 u64 found_start;
2996e1f8
JT
502 u8 result[BTRFS_CSUM_SIZE];
503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 504 struct extent_buffer *eb;
8d47a0d8 505 int ret;
f188591e 506
4f2de97a
JB
507 eb = (struct extent_buffer *)page->private;
508 if (page != eb->pages[0])
509 return 0;
0f805531 510
19c00ddc 511 found_start = btrfs_header_bytenr(eb);
0f805531
AL
512 /*
513 * Please do not consolidate these warnings into a single if.
514 * It is useful to know what went wrong.
515 */
516 if (WARN_ON(found_start != start))
517 return -EUCLEAN;
518 if (WARN_ON(!PageUptodate(page)))
519 return -EUCLEAN;
520
de37aa51 521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
522 offsetof(struct btrfs_header, fsid),
523 BTRFS_FSID_SIZE) == 0);
0f805531 524
c67b3892 525 csum_tree_block(eb, result);
2996e1f8 526
8d47a0d8
QW
527 if (btrfs_header_level(eb))
528 ret = btrfs_check_node(eb);
529 else
530 ret = btrfs_check_leaf_full(eb);
531
532 if (ret < 0) {
c06631b0 533 btrfs_print_tree(eb, 0);
8d47a0d8
QW
534 btrfs_err(fs_info,
535 "block=%llu write time tree block corruption detected",
536 eb->start);
c06631b0 537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
538 return ret;
539 }
2996e1f8 540 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 541
2996e1f8 542 return 0;
19c00ddc
CM
543}
544
b0c9b3b0 545static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 546{
b0c9b3b0 547 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 549 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
550 int ret = 1;
551
9a8658e3
DS
552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553 BTRFS_FSID_SIZE);
2b82032c 554 while (fs_devices) {
7239ff4b
NB
555 u8 *metadata_uuid;
556
557 /*
558 * Checking the incompat flag is only valid for the current
559 * fs. For seed devices it's forbidden to have their uuid
560 * changed so reading ->fsid in this case is fine
561 */
562 if (fs_devices == fs_info->fs_devices &&
563 btrfs_fs_incompat(fs_info, METADATA_UUID))
564 metadata_uuid = fs_devices->metadata_uuid;
565 else
566 metadata_uuid = fs_devices->fsid;
567
568 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
569 ret = 0;
570 break;
571 }
572 fs_devices = fs_devices->seed;
573 }
574 return ret;
575}
576
facc8a22
MX
577static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578 u64 phy_offset, struct page *page,
579 u64 start, u64 end, int mirror)
ce9adaa5 580{
ce9adaa5
CM
581 u64 found_start;
582 int found_level;
ce9adaa5 583 struct extent_buffer *eb;
15b6e8a8
DS
584 struct btrfs_fs_info *fs_info;
585 u16 csum_size;
f188591e 586 int ret = 0;
2996e1f8 587 u8 result[BTRFS_CSUM_SIZE];
727011e0 588 int reads_done;
ce9adaa5 589
ce9adaa5
CM
590 if (!page->private)
591 goto out;
d397712b 592
4f2de97a 593 eb = (struct extent_buffer *)page->private;
15b6e8a8
DS
594 fs_info = eb->fs_info;
595 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d397712b 596
0b32f4bb
JB
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
67439dad 600 atomic_inc(&eb->refs);
0b32f4bb
JB
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
603 if (!reads_done)
604 goto err;
f188591e 605
5cf1ab56 606 eb->read_mirror = mirror;
656f30db 607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
608 ret = -EIO;
609 goto err;
610 }
611
ce9adaa5 612 found_start = btrfs_header_bytenr(eb);
727011e0 613 if (found_start != eb->start) {
893bf4b1
SY
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
f188591e 616 ret = -EIO;
ce9adaa5
CM
617 goto err;
618 }
b0c9b3b0 619 if (check_tree_block_fsid(eb)) {
02873e43
ZL
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 eb->start);
1259ab75
CM
622 ret = -EIO;
623 goto err;
624 }
ce9adaa5 625 found_level = btrfs_header_level(eb);
1c24c3ce 626 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
629 ret = -EIO;
630 goto err;
631 }
ce9adaa5 632
85d4e461
CM
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 eb, found_level);
4008c04a 635
c67b3892 636 csum_tree_block(eb, result);
a826d6dc 637
2996e1f8
JT
638 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639 u32 val;
640 u32 found = 0;
641
642 memcpy(&found, result, csum_size);
643
644 read_extent_buffer(eb, &val, 0, csum_size);
645 btrfs_warn_rl(fs_info,
646 "%s checksum verify failed on %llu wanted %x found %x level %d",
647 fs_info->sb->s_id, eb->start,
648 val, found, btrfs_header_level(eb));
649 ret = -EUCLEAN;
650 goto err;
651 }
652
a826d6dc
JB
653 /*
654 * If this is a leaf block and it is corrupt, set the corrupt bit so
655 * that we don't try and read the other copies of this block, just
656 * return -EIO.
657 */
1c4360ee 658 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
659 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
660 ret = -EIO;
661 }
ce9adaa5 662
813fd1dc 663 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
664 ret = -EIO;
665
0b32f4bb
JB
666 if (!ret)
667 set_extent_buffer_uptodate(eb);
75391f0d
QW
668 else
669 btrfs_err(fs_info,
670 "block=%llu read time tree block corruption detected",
671 eb->start);
ce9adaa5 672err:
79fb65a1
JB
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 675 btree_readahead_hook(eb, ret);
4bb31e92 676
53b381b3
DW
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
0b32f4bb 684 clear_extent_buffer_uptodate(eb);
53b381b3 685 }
0b32f4bb 686 free_extent_buffer(eb);
ce9adaa5 687out:
f188591e 688 return ret;
ce9adaa5
CM
689}
690
4246a0b6 691static void end_workqueue_bio(struct bio *bio)
ce9adaa5 692{
97eb6b69 693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 694 struct btrfs_fs_info *fs_info;
9e0af237 695 struct btrfs_workqueue *wq;
ce9adaa5 696
ce9adaa5 697 fs_info = end_io_wq->info;
4e4cbee9 698 end_io_wq->status = bio->bi_status;
d20f7043 699
37226b21 700 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 702 wq = fs_info->endio_meta_write_workers;
a0cac0ec 703 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 704 wq = fs_info->endio_freespace_worker;
a0cac0ec 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 706 wq = fs_info->endio_raid56_workers;
a0cac0ec 707 else
9e0af237 708 wq = fs_info->endio_write_workers;
d20f7043 709 } else {
5c047a69 710 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 711 wq = fs_info->endio_raid56_workers;
a0cac0ec 712 else if (end_io_wq->metadata)
9e0af237 713 wq = fs_info->endio_meta_workers;
a0cac0ec 714 else
9e0af237 715 wq = fs_info->endio_workers;
d20f7043 716 }
9e0af237 717
a0cac0ec 718 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 719 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
720}
721
4e4cbee9 722blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 723 enum btrfs_wq_endio_type metadata)
0b86a832 724{
97eb6b69 725 struct btrfs_end_io_wq *end_io_wq;
8b110e39 726
97eb6b69 727 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 728 if (!end_io_wq)
4e4cbee9 729 return BLK_STS_RESOURCE;
ce9adaa5
CM
730
731 end_io_wq->private = bio->bi_private;
732 end_io_wq->end_io = bio->bi_end_io;
22c59948 733 end_io_wq->info = info;
4e4cbee9 734 end_io_wq->status = 0;
ce9adaa5 735 end_io_wq->bio = bio;
22c59948 736 end_io_wq->metadata = metadata;
ce9adaa5
CM
737
738 bio->bi_private = end_io_wq;
739 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
740 return 0;
741}
742
4a69a410
CM
743static void run_one_async_start(struct btrfs_work *work)
744{
4a69a410 745 struct async_submit_bio *async;
4e4cbee9 746 blk_status_t ret;
4a69a410
CM
747
748 async = container_of(work, struct async_submit_bio, work);
c6100a4b 749 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
750 async->bio_offset);
751 if (ret)
4e4cbee9 752 async->status = ret;
4a69a410
CM
753}
754
06ea01b1
DS
755/*
756 * In order to insert checksums into the metadata in large chunks, we wait
757 * until bio submission time. All the pages in the bio are checksummed and
758 * sums are attached onto the ordered extent record.
759 *
760 * At IO completion time the csums attached on the ordered extent record are
761 * inserted into the tree.
762 */
4a69a410 763static void run_one_async_done(struct btrfs_work *work)
8b712842 764{
8b712842 765 struct async_submit_bio *async;
06ea01b1
DS
766 struct inode *inode;
767 blk_status_t ret;
8b712842
CM
768
769 async = container_of(work, struct async_submit_bio, work);
06ea01b1 770 inode = async->private_data;
4854ddd0 771
bb7ab3b9 772 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
773 if (async->status) {
774 async->bio->bi_status = async->status;
4246a0b6 775 bio_endio(async->bio);
79787eaa
JM
776 return;
777 }
778
ec39f769
CM
779 /*
780 * All of the bios that pass through here are from async helpers.
781 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782 * This changes nothing when cgroups aren't in use.
783 */
784 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
786 if (ret) {
787 async->bio->bi_status = ret;
788 bio_endio(async->bio);
789 }
4a69a410
CM
790}
791
792static void run_one_async_free(struct btrfs_work *work)
793{
794 struct async_submit_bio *async;
795
796 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
797 kfree(async);
798}
799
8c27cb35
LT
800blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 int mirror_num, unsigned long bio_flags,
802 u64 bio_offset, void *private_data,
e288c080 803 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
804{
805 struct async_submit_bio *async;
806
807 async = kmalloc(sizeof(*async), GFP_NOFS);
808 if (!async)
4e4cbee9 809 return BLK_STS_RESOURCE;
44b8bd7e 810
c6100a4b 811 async->private_data = private_data;
44b8bd7e
CM
812 async->bio = bio;
813 async->mirror_num = mirror_num;
4a69a410 814 async->submit_bio_start = submit_bio_start;
4a69a410 815
a0cac0ec
OS
816 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
817 run_one_async_free);
4a69a410 818
eaf25d93 819 async->bio_offset = bio_offset;
8c8bee1d 820
4e4cbee9 821 async->status = 0;
79787eaa 822
67f055c7 823 if (op_is_sync(bio->bi_opf))
5cdc7ad3 824 btrfs_set_work_high_priority(&async->work);
d313d7a3 825
5cdc7ad3 826 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
827 return 0;
828}
829
4e4cbee9 830static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 831{
2c30c71b 832 struct bio_vec *bvec;
ce3ed71a 833 struct btrfs_root *root;
2b070cfe 834 int ret = 0;
6dc4f100 835 struct bvec_iter_all iter_all;
ce3ed71a 836
c09abff8 837 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 838 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
841 if (ret)
842 break;
ce3ed71a 843 }
2c30c71b 844
4e4cbee9 845 return errno_to_blk_status(ret);
ce3ed71a
CM
846}
847
d0ee3934 848static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 849 u64 bio_offset)
22c59948 850{
8b712842
CM
851 /*
852 * when we're called for a write, we're already in the async
5443be45 853 * submission context. Just jump into btrfs_map_bio
8b712842 854 */
79787eaa 855 return btree_csum_one_bio(bio);
4a69a410 856}
22c59948 857
9b4e675a
DS
858static int check_async_write(struct btrfs_fs_info *fs_info,
859 struct btrfs_inode *bi)
de0022b9 860{
6300463b
LB
861 if (atomic_read(&bi->sync_writers))
862 return 0;
9b4e675a 863 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 864 return 0;
de0022b9
JB
865 return 1;
866}
867
a56b1c7b 868static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
869 int mirror_num,
870 unsigned long bio_flags)
44b8bd7e 871{
0b246afa 872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 873 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 874 blk_status_t ret;
cad321ad 875
37226b21 876 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
877 /*
878 * called for a read, do the setup so that checksum validation
879 * can happen in the async kernel threads
880 */
0b246afa
JM
881 ret = btrfs_bio_wq_end_io(fs_info, bio,
882 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 883 if (ret)
61891923 884 goto out_w_error;
08635bae 885 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
886 } else if (!async) {
887 ret = btree_csum_one_bio(bio);
888 if (ret)
61891923 889 goto out_w_error;
08635bae 890 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
891 } else {
892 /*
893 * kthread helpers are used to submit writes so that
894 * checksumming can happen in parallel across all CPUs
895 */
c6100a4b 896 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 897 0, inode, btree_submit_bio_start);
44b8bd7e 898 }
d313d7a3 899
4246a0b6
CH
900 if (ret)
901 goto out_w_error;
902 return 0;
903
61891923 904out_w_error:
4e4cbee9 905 bio->bi_status = ret;
4246a0b6 906 bio_endio(bio);
61891923 907 return ret;
44b8bd7e
CM
908}
909
3dd1462e 910#ifdef CONFIG_MIGRATION
784b4e29 911static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
912 struct page *newpage, struct page *page,
913 enum migrate_mode mode)
784b4e29
CM
914{
915 /*
916 * we can't safely write a btree page from here,
917 * we haven't done the locking hook
918 */
919 if (PageDirty(page))
920 return -EAGAIN;
921 /*
922 * Buffers may be managed in a filesystem specific way.
923 * We must have no buffers or drop them.
924 */
925 if (page_has_private(page) &&
926 !try_to_release_page(page, GFP_KERNEL))
927 return -EAGAIN;
a6bc32b8 928 return migrate_page(mapping, newpage, page, mode);
784b4e29 929}
3dd1462e 930#endif
784b4e29 931
0da5468f
CM
932
933static int btree_writepages(struct address_space *mapping,
934 struct writeback_control *wbc)
935{
e2d84521
MX
936 struct btrfs_fs_info *fs_info;
937 int ret;
938
d8d5f3e1 939 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
940
941 if (wbc->for_kupdate)
942 return 0;
943
e2d84521 944 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 945 /* this is a bit racy, but that's ok */
d814a491
EL
946 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
947 BTRFS_DIRTY_METADATA_THRESH,
948 fs_info->dirty_metadata_batch);
e2d84521 949 if (ret < 0)
793955bc 950 return 0;
793955bc 951 }
0b32f4bb 952 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
953}
954
b2950863 955static int btree_readpage(struct file *file, struct page *page)
5f39d397 956{
71ad38b4 957 return extent_read_full_page(page, btree_get_extent, 0);
5f39d397 958}
22b0ebda 959
70dec807 960static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 961{
98509cfc 962 if (PageWriteback(page) || PageDirty(page))
d397712b 963 return 0;
0c4e538b 964
f7a52a40 965 return try_release_extent_buffer(page);
d98237b3
CM
966}
967
d47992f8
LC
968static void btree_invalidatepage(struct page *page, unsigned int offset,
969 unsigned int length)
d98237b3 970{
d1310b2e
CM
971 struct extent_io_tree *tree;
972 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
973 extent_invalidatepage(tree, page, offset);
974 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 975 if (PagePrivate(page)) {
efe120a0
FH
976 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977 "page private not zero on page %llu",
978 (unsigned long long)page_offset(page));
d1b89bc0 979 detach_page_private(page);
9ad6b7bc 980 }
d98237b3
CM
981}
982
0b32f4bb
JB
983static int btree_set_page_dirty(struct page *page)
984{
bb146eb2 985#ifdef DEBUG
0b32f4bb
JB
986 struct extent_buffer *eb;
987
988 BUG_ON(!PagePrivate(page));
989 eb = (struct extent_buffer *)page->private;
990 BUG_ON(!eb);
991 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
992 BUG_ON(!atomic_read(&eb->refs));
993 btrfs_assert_tree_locked(eb);
bb146eb2 994#endif
0b32f4bb
JB
995 return __set_page_dirty_nobuffers(page);
996}
997
7f09410b 998static const struct address_space_operations btree_aops = {
d98237b3 999 .readpage = btree_readpage,
0da5468f 1000 .writepages = btree_writepages,
5f39d397
CM
1001 .releasepage = btree_releasepage,
1002 .invalidatepage = btree_invalidatepage,
5a92bc88 1003#ifdef CONFIG_MIGRATION
784b4e29 1004 .migratepage = btree_migratepage,
5a92bc88 1005#endif
0b32f4bb 1006 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1007};
1008
2ff7e61e 1009void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1010{
5f39d397 1011 struct extent_buffer *buf = NULL;
537f38f0 1012 int ret;
090d1875 1013
2ff7e61e 1014 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1015 if (IS_ERR(buf))
6197d86e 1016 return;
537f38f0 1017
c2ccfbc6 1018 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1019 if (ret < 0)
1020 free_extent_buffer_stale(buf);
1021 else
1022 free_extent_buffer(buf);
090d1875
CM
1023}
1024
2ff7e61e
JM
1025struct extent_buffer *btrfs_find_create_tree_block(
1026 struct btrfs_fs_info *fs_info,
1027 u64 bytenr)
0999df54 1028{
0b246afa
JM
1029 if (btrfs_is_testing(fs_info))
1030 return alloc_test_extent_buffer(fs_info, bytenr);
1031 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1032}
1033
581c1760
QW
1034/*
1035 * Read tree block at logical address @bytenr and do variant basic but critical
1036 * verification.
1037 *
1038 * @parent_transid: expected transid of this tree block, skip check if 0
1039 * @level: expected level, mandatory check
1040 * @first_key: expected key in slot 0, skip check if NULL
1041 */
2ff7e61e 1042struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1043 u64 parent_transid, int level,
1044 struct btrfs_key *first_key)
0999df54
CM
1045{
1046 struct extent_buffer *buf = NULL;
0999df54
CM
1047 int ret;
1048
2ff7e61e 1049 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1050 if (IS_ERR(buf))
1051 return buf;
0999df54 1052
5ab12d1f 1053 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1054 level, first_key);
0f0fe8f7 1055 if (ret) {
537f38f0 1056 free_extent_buffer_stale(buf);
64c043de 1057 return ERR_PTR(ret);
0f0fe8f7 1058 }
5f39d397 1059 return buf;
ce9adaa5 1060
eb60ceac
CM
1061}
1062
6a884d7d 1063void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1064{
6a884d7d 1065 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1066 if (btrfs_header_generation(buf) ==
e2d84521 1067 fs_info->running_transaction->transid) {
b9447ef8 1068 btrfs_assert_tree_locked(buf);
b4ce94de 1069
b9473439 1070 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1071 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1072 -buf->len,
1073 fs_info->dirty_metadata_batch);
ed7b63eb 1074 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1075 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1076 clear_extent_buffer_dirty(buf);
1077 }
925baedd 1078 }
5f39d397
CM
1079}
1080
da17066c 1081static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1082 u64 objectid)
d97e63b6 1083{
7c0260ee 1084 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1085 root->fs_info = fs_info;
cfaa7295 1086 root->node = NULL;
a28ec197 1087 root->commit_root = NULL;
27cdeb70 1088 root->state = 0;
d68fc57b 1089 root->orphan_cleanup_state = 0;
0b86a832 1090
0f7d52f4 1091 root->last_trans = 0;
13a8a7c8 1092 root->highest_objectid = 0;
eb73c1b7 1093 root->nr_delalloc_inodes = 0;
199c2a9c 1094 root->nr_ordered_extents = 0;
6bef4d31 1095 root->inode_tree = RB_ROOT;
16cdcec7 1096 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1097 root->block_rsv = NULL;
0b86a832
CM
1098
1099 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1100 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1101 INIT_LIST_HEAD(&root->delalloc_inodes);
1102 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1103 INIT_LIST_HEAD(&root->ordered_extents);
1104 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1105 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1106 INIT_LIST_HEAD(&root->logged_list[0]);
1107 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1108 spin_lock_init(&root->inode_lock);
eb73c1b7 1109 spin_lock_init(&root->delalloc_lock);
199c2a9c 1110 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1111 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1112 spin_lock_init(&root->log_extents_lock[0]);
1113 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1114 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1115 mutex_init(&root->objectid_mutex);
e02119d5 1116 mutex_init(&root->log_mutex);
31f3d255 1117 mutex_init(&root->ordered_extent_mutex);
573bfb72 1118 mutex_init(&root->delalloc_mutex);
c53e9653 1119 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1120 init_waitqueue_head(&root->log_writer_wait);
1121 init_waitqueue_head(&root->log_commit_wait[0]);
1122 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1123 INIT_LIST_HEAD(&root->log_ctxs[0]);
1124 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1125 atomic_set(&root->log_commit[0], 0);
1126 atomic_set(&root->log_commit[1], 0);
1127 atomic_set(&root->log_writers, 0);
2ecb7923 1128 atomic_set(&root->log_batch, 0);
0700cea7 1129 refcount_set(&root->refs, 1);
8ecebf4d 1130 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1131 atomic_set(&root->nr_swapfiles, 0);
7237f183 1132 root->log_transid = 0;
d1433deb 1133 root->log_transid_committed = -1;
257c62e1 1134 root->last_log_commit = 0;
e289f03e 1135 if (!dummy) {
43eb5f29
QW
1136 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1137 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1138 extent_io_tree_init(fs_info, &root->log_csum_range,
1139 IO_TREE_LOG_CSUM_RANGE, NULL);
1140 }
017e5369 1141
3768f368
CM
1142 memset(&root->root_key, 0, sizeof(root->root_key));
1143 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1144 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1145 root->root_key.objectid = objectid;
0ee5dc67 1146 root->anon_dev = 0;
8ea05e3a 1147
5f3ab90a 1148 spin_lock_init(&root->root_item_lock);
370a11b8 1149 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1150#ifdef CONFIG_BTRFS_DEBUG
1151 INIT_LIST_HEAD(&root->leak_list);
1152 spin_lock(&fs_info->fs_roots_radix_lock);
1153 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1154 spin_unlock(&fs_info->fs_roots_radix_lock);
1155#endif
3768f368
CM
1156}
1157
74e4d827 1158static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1159 u64 objectid, gfp_t flags)
6f07e42e 1160{
74e4d827 1161 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1162 if (root)
96dfcb46 1163 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1164 return root;
1165}
1166
06ea65a3
JB
1167#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1168/* Should only be used by the testing infrastructure */
da17066c 1169struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1170{
1171 struct btrfs_root *root;
1172
7c0260ee
JM
1173 if (!fs_info)
1174 return ERR_PTR(-EINVAL);
1175
96dfcb46 1176 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1177 if (!root)
1178 return ERR_PTR(-ENOMEM);
da17066c 1179
b9ef22de 1180 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1181 root->alloc_bytenr = 0;
06ea65a3
JB
1182
1183 return root;
1184}
1185#endif
1186
20897f5c 1187struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1188 u64 objectid)
1189{
9b7a2440 1190 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1191 struct extent_buffer *leaf;
1192 struct btrfs_root *tree_root = fs_info->tree_root;
1193 struct btrfs_root *root;
1194 struct btrfs_key key;
b89f6d1f 1195 unsigned int nofs_flag;
20897f5c 1196 int ret = 0;
20897f5c 1197
b89f6d1f
FM
1198 /*
1199 * We're holding a transaction handle, so use a NOFS memory allocation
1200 * context to avoid deadlock if reclaim happens.
1201 */
1202 nofs_flag = memalloc_nofs_save();
96dfcb46 1203 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1204 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1205 if (!root)
1206 return ERR_PTR(-ENOMEM);
1207
20897f5c
AJ
1208 root->root_key.objectid = objectid;
1209 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1210 root->root_key.offset = 0;
1211
4d75f8a9 1212 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1213 if (IS_ERR(leaf)) {
1214 ret = PTR_ERR(leaf);
1dd05682 1215 leaf = NULL;
20897f5c
AJ
1216 goto fail;
1217 }
1218
20897f5c 1219 root->node = leaf;
20897f5c
AJ
1220 btrfs_mark_buffer_dirty(leaf);
1221
1222 root->commit_root = btrfs_root_node(root);
27cdeb70 1223 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1224
1225 root->root_item.flags = 0;
1226 root->root_item.byte_limit = 0;
1227 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1228 btrfs_set_root_generation(&root->root_item, trans->transid);
1229 btrfs_set_root_level(&root->root_item, 0);
1230 btrfs_set_root_refs(&root->root_item, 1);
1231 btrfs_set_root_used(&root->root_item, leaf->len);
1232 btrfs_set_root_last_snapshot(&root->root_item, 0);
1233 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1234 if (is_fstree(objectid))
807fc790
AS
1235 generate_random_guid(root->root_item.uuid);
1236 else
1237 export_guid(root->root_item.uuid, &guid_null);
20897f5c
AJ
1238 root->root_item.drop_level = 0;
1239
1240 key.objectid = objectid;
1241 key.type = BTRFS_ROOT_ITEM_KEY;
1242 key.offset = 0;
1243 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1244 if (ret)
1245 goto fail;
1246
1247 btrfs_tree_unlock(leaf);
1248
1dd05682
TI
1249 return root;
1250
20897f5c 1251fail:
8c38938c 1252 if (leaf)
1dd05682 1253 btrfs_tree_unlock(leaf);
00246528 1254 btrfs_put_root(root);
20897f5c 1255
1dd05682 1256 return ERR_PTR(ret);
20897f5c
AJ
1257}
1258
7237f183
YZ
1259static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1260 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1261{
1262 struct btrfs_root *root;
7237f183 1263 struct extent_buffer *leaf;
e02119d5 1264
96dfcb46 1265 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1266 if (!root)
7237f183 1267 return ERR_PTR(-ENOMEM);
e02119d5 1268
e02119d5
CM
1269 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1270 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1271 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1272
7237f183 1273 /*
92a7cc42 1274 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1275 *
92a7cc42
QW
1276 * Log trees are not exposed to user space thus can't be snapshotted,
1277 * and they go away before a real commit is actually done.
1278 *
1279 * They do store pointers to file data extents, and those reference
1280 * counts still get updated (along with back refs to the log tree).
7237f183 1281 */
e02119d5 1282
4d75f8a9
DS
1283 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1284 NULL, 0, 0, 0);
7237f183 1285 if (IS_ERR(leaf)) {
00246528 1286 btrfs_put_root(root);
7237f183
YZ
1287 return ERR_CAST(leaf);
1288 }
e02119d5 1289
7237f183 1290 root->node = leaf;
e02119d5 1291
e02119d5
CM
1292 btrfs_mark_buffer_dirty(root->node);
1293 btrfs_tree_unlock(root->node);
7237f183
YZ
1294 return root;
1295}
1296
1297int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1298 struct btrfs_fs_info *fs_info)
1299{
1300 struct btrfs_root *log_root;
1301
1302 log_root = alloc_log_tree(trans, fs_info);
1303 if (IS_ERR(log_root))
1304 return PTR_ERR(log_root);
1305 WARN_ON(fs_info->log_root_tree);
1306 fs_info->log_root_tree = log_root;
1307 return 0;
1308}
1309
1310int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1311 struct btrfs_root *root)
1312{
0b246afa 1313 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1314 struct btrfs_root *log_root;
1315 struct btrfs_inode_item *inode_item;
1316
0b246afa 1317 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1318 if (IS_ERR(log_root))
1319 return PTR_ERR(log_root);
1320
1321 log_root->last_trans = trans->transid;
1322 log_root->root_key.offset = root->root_key.objectid;
1323
1324 inode_item = &log_root->root_item.inode;
3cae210f
QW
1325 btrfs_set_stack_inode_generation(inode_item, 1);
1326 btrfs_set_stack_inode_size(inode_item, 3);
1327 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1328 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1329 fs_info->nodesize);
3cae210f 1330 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1331
5d4f98a2 1332 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1333
1334 WARN_ON(root->log_root);
1335 root->log_root = log_root;
1336 root->log_transid = 0;
d1433deb 1337 root->log_transid_committed = -1;
257c62e1 1338 root->last_log_commit = 0;
e02119d5
CM
1339 return 0;
1340}
1341
62a2c73e
JB
1342struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1343 struct btrfs_key *key)
e02119d5
CM
1344{
1345 struct btrfs_root *root;
1346 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1347 struct btrfs_path *path;
84234f3a 1348 u64 generation;
cb517eab 1349 int ret;
581c1760 1350 int level;
0f7d52f4 1351
cb517eab
MX
1352 path = btrfs_alloc_path();
1353 if (!path)
0f7d52f4 1354 return ERR_PTR(-ENOMEM);
cb517eab 1355
96dfcb46 1356 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1357 if (!root) {
1358 ret = -ENOMEM;
1359 goto alloc_fail;
0f7d52f4
CM
1360 }
1361
cb517eab
MX
1362 ret = btrfs_find_root(tree_root, key, path,
1363 &root->root_item, &root->root_key);
0f7d52f4 1364 if (ret) {
13a8a7c8
YZ
1365 if (ret > 0)
1366 ret = -ENOENT;
cb517eab 1367 goto find_fail;
0f7d52f4 1368 }
13a8a7c8 1369
84234f3a 1370 generation = btrfs_root_generation(&root->root_item);
581c1760 1371 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1372 root->node = read_tree_block(fs_info,
1373 btrfs_root_bytenr(&root->root_item),
581c1760 1374 generation, level, NULL);
64c043de
LB
1375 if (IS_ERR(root->node)) {
1376 ret = PTR_ERR(root->node);
8c38938c 1377 root->node = NULL;
cb517eab
MX
1378 goto find_fail;
1379 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1380 ret = -EIO;
64c043de 1381 goto find_fail;
416bc658 1382 }
5d4f98a2 1383 root->commit_root = btrfs_root_node(root);
13a8a7c8 1384out:
cb517eab
MX
1385 btrfs_free_path(path);
1386 return root;
1387
cb517eab 1388find_fail:
00246528 1389 btrfs_put_root(root);
cb517eab
MX
1390alloc_fail:
1391 root = ERR_PTR(ret);
1392 goto out;
1393}
1394
2dfb1e43
QW
1395/*
1396 * Initialize subvolume root in-memory structure
1397 *
1398 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1399 */
1400static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1401{
1402 int ret;
dcc3eb96 1403 unsigned int nofs_flag;
cb517eab
MX
1404
1405 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1406 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1407 GFP_NOFS);
1408 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1409 ret = -ENOMEM;
1410 goto fail;
1411 }
1412
dcc3eb96
NB
1413 /*
1414 * We might be called under a transaction (e.g. indirect backref
1415 * resolution) which could deadlock if it triggers memory reclaim
1416 */
1417 nofs_flag = memalloc_nofs_save();
1418 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1419 memalloc_nofs_restore(nofs_flag);
1420 if (ret)
8257b2dc 1421 goto fail;
8257b2dc 1422
aeb935a4
QW
1423 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1424 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1425 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1426 btrfs_check_and_init_root_item(&root->root_item);
1427 }
1428
cb517eab 1429 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1430 spin_lock_init(&root->ino_cache_lock);
1431 init_waitqueue_head(&root->ino_cache_wait);
cb517eab 1432
851fd730
QW
1433 /*
1434 * Don't assign anonymous block device to roots that are not exposed to
1435 * userspace, the id pool is limited to 1M
1436 */
1437 if (is_fstree(root->root_key.objectid) &&
1438 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1439 if (!anon_dev) {
1440 ret = get_anon_bdev(&root->anon_dev);
1441 if (ret)
1442 goto fail;
1443 } else {
1444 root->anon_dev = anon_dev;
1445 }
851fd730 1446 }
f32e48e9
CR
1447
1448 mutex_lock(&root->objectid_mutex);
1449 ret = btrfs_find_highest_objectid(root,
1450 &root->highest_objectid);
1451 if (ret) {
1452 mutex_unlock(&root->objectid_mutex);
876d2cf1 1453 goto fail;
f32e48e9
CR
1454 }
1455
1456 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1457
1458 mutex_unlock(&root->objectid_mutex);
1459
cb517eab
MX
1460 return 0;
1461fail:
84db5ccf 1462 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1463 return ret;
1464}
1465
a98db0f3
JB
1466static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1467 u64 root_id)
cb517eab
MX
1468{
1469 struct btrfs_root *root;
1470
1471 spin_lock(&fs_info->fs_roots_radix_lock);
1472 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1473 (unsigned long)root_id);
bc44d7c4 1474 if (root)
00246528 1475 root = btrfs_grab_root(root);
cb517eab
MX
1476 spin_unlock(&fs_info->fs_roots_radix_lock);
1477 return root;
1478}
1479
1480int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1481 struct btrfs_root *root)
1482{
1483 int ret;
1484
e1860a77 1485 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1486 if (ret)
1487 return ret;
1488
1489 spin_lock(&fs_info->fs_roots_radix_lock);
1490 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1491 (unsigned long)root->root_key.objectid,
1492 root);
af01d2e5 1493 if (ret == 0) {
00246528 1494 btrfs_grab_root(root);
27cdeb70 1495 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1496 }
cb517eab
MX
1497 spin_unlock(&fs_info->fs_roots_radix_lock);
1498 radix_tree_preload_end();
1499
1500 return ret;
1501}
1502
bd647ce3
JB
1503void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1504{
1505#ifdef CONFIG_BTRFS_DEBUG
1506 struct btrfs_root *root;
1507
1508 while (!list_empty(&fs_info->allocated_roots)) {
1509 root = list_first_entry(&fs_info->allocated_roots,
1510 struct btrfs_root, leak_list);
1511 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1512 root->root_key.objectid, root->root_key.offset,
1513 refcount_read(&root->refs));
1514 while (refcount_read(&root->refs) > 1)
00246528
JB
1515 btrfs_put_root(root);
1516 btrfs_put_root(root);
bd647ce3
JB
1517 }
1518#endif
1519}
1520
0d4b0463
JB
1521void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1522{
141386e1
JB
1523 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1524 percpu_counter_destroy(&fs_info->delalloc_bytes);
1525 percpu_counter_destroy(&fs_info->dio_bytes);
1526 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1527 btrfs_free_csum_hash(fs_info);
1528 btrfs_free_stripe_hash_table(fs_info);
1529 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1530 kfree(fs_info->balance_ctl);
1531 kfree(fs_info->delayed_root);
00246528
JB
1532 btrfs_put_root(fs_info->extent_root);
1533 btrfs_put_root(fs_info->tree_root);
1534 btrfs_put_root(fs_info->chunk_root);
1535 btrfs_put_root(fs_info->dev_root);
1536 btrfs_put_root(fs_info->csum_root);
1537 btrfs_put_root(fs_info->quota_root);
1538 btrfs_put_root(fs_info->uuid_root);
1539 btrfs_put_root(fs_info->free_space_root);
1540 btrfs_put_root(fs_info->fs_root);
aeb935a4 1541 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1542 btrfs_check_leaked_roots(fs_info);
3fd63727 1543 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1544 kfree(fs_info->super_copy);
1545 kfree(fs_info->super_for_commit);
1546 kvfree(fs_info);
1547}
1548
1549
2dfb1e43
QW
1550/*
1551 * Get an in-memory reference of a root structure.
1552 *
1553 * For essential trees like root/extent tree, we grab it from fs_info directly.
1554 * For subvolume trees, we check the cached filesystem roots first. If not
1555 * found, then read it from disk and add it to cached fs roots.
1556 *
1557 * Caller should release the root by calling btrfs_put_root() after the usage.
1558 *
1559 * NOTE: Reloc and log trees can't be read by this function as they share the
1560 * same root objectid.
1561 *
1562 * @objectid: root id
1563 * @anon_dev: preallocated anonymous block device number for new roots,
1564 * pass 0 for new allocation.
1565 * @check_ref: whether to check root item references, If true, return -ENOENT
1566 * for orphan roots
1567 */
1568static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1569 u64 objectid, dev_t anon_dev,
1570 bool check_ref)
5eda7b5e
CM
1571{
1572 struct btrfs_root *root;
381cf658 1573 struct btrfs_path *path;
1d4c08e0 1574 struct btrfs_key key;
5eda7b5e
CM
1575 int ret;
1576
56e9357a 1577 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
00246528 1578 return btrfs_grab_root(fs_info->tree_root);
56e9357a 1579 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
00246528 1580 return btrfs_grab_root(fs_info->extent_root);
56e9357a 1581 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
00246528 1582 return btrfs_grab_root(fs_info->chunk_root);
56e9357a 1583 if (objectid == BTRFS_DEV_TREE_OBJECTID)
00246528 1584 return btrfs_grab_root(fs_info->dev_root);
56e9357a 1585 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
00246528 1586 return btrfs_grab_root(fs_info->csum_root);
56e9357a 1587 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
00246528 1588 return btrfs_grab_root(fs_info->quota_root) ?
bc44d7c4 1589 fs_info->quota_root : ERR_PTR(-ENOENT);
56e9357a 1590 if (objectid == BTRFS_UUID_TREE_OBJECTID)
00246528 1591 return btrfs_grab_root(fs_info->uuid_root) ?
bc44d7c4 1592 fs_info->uuid_root : ERR_PTR(-ENOENT);
56e9357a 1593 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
00246528 1594 return btrfs_grab_root(fs_info->free_space_root) ?
bc44d7c4 1595 fs_info->free_space_root : ERR_PTR(-ENOENT);
4df27c4d 1596again:
56e9357a 1597 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1598 if (root) {
2dfb1e43
QW
1599 /* Shouldn't get preallocated anon_dev for cached roots */
1600 ASSERT(!anon_dev);
bc44d7c4 1601 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1602 btrfs_put_root(root);
48475471 1603 return ERR_PTR(-ENOENT);
bc44d7c4 1604 }
5eda7b5e 1605 return root;
48475471 1606 }
5eda7b5e 1607
56e9357a
DS
1608 key.objectid = objectid;
1609 key.type = BTRFS_ROOT_ITEM_KEY;
1610 key.offset = (u64)-1;
1611 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1612 if (IS_ERR(root))
1613 return root;
3394e160 1614
c00869f1 1615 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1616 ret = -ENOENT;
581bb050 1617 goto fail;
35a30d7c 1618 }
581bb050 1619
2dfb1e43 1620 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1621 if (ret)
1622 goto fail;
3394e160 1623
381cf658
DS
1624 path = btrfs_alloc_path();
1625 if (!path) {
1626 ret = -ENOMEM;
1627 goto fail;
1628 }
1d4c08e0
DS
1629 key.objectid = BTRFS_ORPHAN_OBJECTID;
1630 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1631 key.offset = objectid;
1d4c08e0
DS
1632
1633 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1634 btrfs_free_path(path);
d68fc57b
YZ
1635 if (ret < 0)
1636 goto fail;
1637 if (ret == 0)
27cdeb70 1638 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1639
cb517eab 1640 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1641 if (ret) {
00246528 1642 btrfs_put_root(root);
4785e24f 1643 if (ret == -EEXIST)
4df27c4d 1644 goto again;
4df27c4d 1645 goto fail;
0f7d52f4 1646 }
edbd8d4e 1647 return root;
4df27c4d 1648fail:
8c38938c 1649 btrfs_put_root(root);
4df27c4d 1650 return ERR_PTR(ret);
edbd8d4e
CM
1651}
1652
2dfb1e43
QW
1653/*
1654 * Get in-memory reference of a root structure
1655 *
1656 * @objectid: tree objectid
1657 * @check_ref: if set, verify that the tree exists and the item has at least
1658 * one reference
1659 */
1660struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1661 u64 objectid, bool check_ref)
1662{
1663 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1664}
1665
1666/*
1667 * Get in-memory reference of a root structure, created as new, optionally pass
1668 * the anonymous block device id
1669 *
1670 * @objectid: tree objectid
1671 * @anon_dev: if zero, allocate a new anonymous block device or use the
1672 * parameter value
1673 */
1674struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1675 u64 objectid, dev_t anon_dev)
1676{
1677 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1678}
1679
04160088
CM
1680static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1681{
1682 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1683 int ret = 0;
04160088
CM
1684 struct btrfs_device *device;
1685 struct backing_dev_info *bdi;
b7967db7 1686
1f78160c
XG
1687 rcu_read_lock();
1688 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1689 if (!device->bdev)
1690 continue;
efa7c9f9 1691 bdi = device->bdev->bd_bdi;
ff9ea323 1692 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1693 ret = 1;
1694 break;
1695 }
1696 }
1f78160c 1697 rcu_read_unlock();
04160088
CM
1698 return ret;
1699}
1700
8b712842
CM
1701/*
1702 * called by the kthread helper functions to finally call the bio end_io
1703 * functions. This is where read checksum verification actually happens
1704 */
1705static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1706{
ce9adaa5 1707 struct bio *bio;
97eb6b69 1708 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1709
97eb6b69 1710 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1711 bio = end_io_wq->bio;
ce9adaa5 1712
4e4cbee9 1713 bio->bi_status = end_io_wq->status;
8b712842
CM
1714 bio->bi_private = end_io_wq->private;
1715 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1716 bio_endio(bio);
9be490f1 1717 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1718}
1719
a74a4b97
CM
1720static int cleaner_kthread(void *arg)
1721{
1722 struct btrfs_root *root = arg;
0b246afa 1723 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1724 int again;
a74a4b97 1725
d6fd0ae2 1726 while (1) {
d0278245 1727 again = 0;
a74a4b97 1728
fd340d0f
JB
1729 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1730
d0278245 1731 /* Make the cleaner go to sleep early. */
2ff7e61e 1732 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1733 goto sleep;
1734
90c711ab
ZB
1735 /*
1736 * Do not do anything if we might cause open_ctree() to block
1737 * before we have finished mounting the filesystem.
1738 */
0b246afa 1739 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1740 goto sleep;
1741
0b246afa 1742 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1743 goto sleep;
1744
dc7f370c
MX
1745 /*
1746 * Avoid the problem that we change the status of the fs
1747 * during the above check and trylock.
1748 */
2ff7e61e 1749 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1750 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1751 goto sleep;
76dda93c 1752 }
a74a4b97 1753
2ff7e61e 1754 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1755
d0278245 1756 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1757 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1758
1759 /*
05323cd1
MX
1760 * The defragger has dealt with the R/O remount and umount,
1761 * needn't do anything special here.
d0278245 1762 */
0b246afa 1763 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1764
1765 /*
1766 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1767 * with relocation (btrfs_relocate_chunk) and relocation
1768 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1769 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1770 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1771 * unused block groups.
1772 */
0b246afa 1773 btrfs_delete_unused_bgs(fs_info);
d0278245 1774sleep:
fd340d0f 1775 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1776 if (kthread_should_park())
1777 kthread_parkme();
1778 if (kthread_should_stop())
1779 return 0;
838fe188 1780 if (!again) {
a74a4b97 1781 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1782 schedule();
a74a4b97
CM
1783 __set_current_state(TASK_RUNNING);
1784 }
da288d28 1785 }
a74a4b97
CM
1786}
1787
1788static int transaction_kthread(void *arg)
1789{
1790 struct btrfs_root *root = arg;
0b246afa 1791 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1792 struct btrfs_trans_handle *trans;
1793 struct btrfs_transaction *cur;
8929ecfa 1794 u64 transid;
a944442c 1795 time64_t now;
a74a4b97 1796 unsigned long delay;
914b2007 1797 bool cannot_commit;
a74a4b97
CM
1798
1799 do {
914b2007 1800 cannot_commit = false;
0b246afa
JM
1801 delay = HZ * fs_info->commit_interval;
1802 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1803
0b246afa
JM
1804 spin_lock(&fs_info->trans_lock);
1805 cur = fs_info->running_transaction;
a74a4b97 1806 if (!cur) {
0b246afa 1807 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1808 goto sleep;
1809 }
31153d81 1810
afd48513 1811 now = ktime_get_seconds();
3296bf56 1812 if (cur->state < TRANS_STATE_COMMIT_START &&
8b87dc17 1813 (now < cur->start_time ||
0b246afa
JM
1814 now - cur->start_time < fs_info->commit_interval)) {
1815 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1816 delay = HZ * 5;
1817 goto sleep;
1818 }
8929ecfa 1819 transid = cur->transid;
0b246afa 1820 spin_unlock(&fs_info->trans_lock);
56bec294 1821
79787eaa 1822 /* If the file system is aborted, this will always fail. */
354aa0fb 1823 trans = btrfs_attach_transaction(root);
914b2007 1824 if (IS_ERR(trans)) {
354aa0fb
MX
1825 if (PTR_ERR(trans) != -ENOENT)
1826 cannot_commit = true;
79787eaa 1827 goto sleep;
914b2007 1828 }
8929ecfa 1829 if (transid == trans->transid) {
3a45bb20 1830 btrfs_commit_transaction(trans);
8929ecfa 1831 } else {
3a45bb20 1832 btrfs_end_transaction(trans);
8929ecfa 1833 }
a74a4b97 1834sleep:
0b246afa
JM
1835 wake_up_process(fs_info->cleaner_kthread);
1836 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1837
4e121c06 1838 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1839 &fs_info->fs_state)))
2ff7e61e 1840 btrfs_cleanup_transaction(fs_info);
ce63f891 1841 if (!kthread_should_stop() &&
0b246afa 1842 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1843 cannot_commit))
bc5511d0 1844 schedule_timeout_interruptible(delay);
a74a4b97
CM
1845 } while (!kthread_should_stop());
1846 return 0;
1847}
1848
af31f5e5 1849/*
01f0f9da
NB
1850 * This will find the highest generation in the array of root backups. The
1851 * index of the highest array is returned, or -EINVAL if we can't find
1852 * anything.
af31f5e5
CM
1853 *
1854 * We check to make sure the array is valid by comparing the
1855 * generation of the latest root in the array with the generation
1856 * in the super block. If they don't match we pitch it.
1857 */
01f0f9da 1858static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1859{
01f0f9da 1860 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1861 u64 cur;
af31f5e5
CM
1862 struct btrfs_root_backup *root_backup;
1863 int i;
1864
1865 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866 root_backup = info->super_copy->super_roots + i;
1867 cur = btrfs_backup_tree_root_gen(root_backup);
1868 if (cur == newest_gen)
01f0f9da 1869 return i;
af31f5e5
CM
1870 }
1871
01f0f9da 1872 return -EINVAL;
af31f5e5
CM
1873}
1874
af31f5e5
CM
1875/*
1876 * copy all the root pointers into the super backup array.
1877 * this will bump the backup pointer by one when it is
1878 * done
1879 */
1880static void backup_super_roots(struct btrfs_fs_info *info)
1881{
6ef108dd 1882 const int next_backup = info->backup_root_index;
af31f5e5 1883 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1884
1885 root_backup = info->super_for_commit->super_roots + next_backup;
1886
1887 /*
1888 * make sure all of our padding and empty slots get zero filled
1889 * regardless of which ones we use today
1890 */
1891 memset(root_backup, 0, sizeof(*root_backup));
1892
1893 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1894
1895 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1896 btrfs_set_backup_tree_root_gen(root_backup,
1897 btrfs_header_generation(info->tree_root->node));
1898
1899 btrfs_set_backup_tree_root_level(root_backup,
1900 btrfs_header_level(info->tree_root->node));
1901
1902 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1903 btrfs_set_backup_chunk_root_gen(root_backup,
1904 btrfs_header_generation(info->chunk_root->node));
1905 btrfs_set_backup_chunk_root_level(root_backup,
1906 btrfs_header_level(info->chunk_root->node));
1907
1908 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1909 btrfs_set_backup_extent_root_gen(root_backup,
1910 btrfs_header_generation(info->extent_root->node));
1911 btrfs_set_backup_extent_root_level(root_backup,
1912 btrfs_header_level(info->extent_root->node));
1913
7c7e82a7
CM
1914 /*
1915 * we might commit during log recovery, which happens before we set
1916 * the fs_root. Make sure it is valid before we fill it in.
1917 */
1918 if (info->fs_root && info->fs_root->node) {
1919 btrfs_set_backup_fs_root(root_backup,
1920 info->fs_root->node->start);
1921 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1922 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1923 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1924 btrfs_header_level(info->fs_root->node));
7c7e82a7 1925 }
af31f5e5
CM
1926
1927 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1928 btrfs_set_backup_dev_root_gen(root_backup,
1929 btrfs_header_generation(info->dev_root->node));
1930 btrfs_set_backup_dev_root_level(root_backup,
1931 btrfs_header_level(info->dev_root->node));
1932
1933 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1934 btrfs_set_backup_csum_root_gen(root_backup,
1935 btrfs_header_generation(info->csum_root->node));
1936 btrfs_set_backup_csum_root_level(root_backup,
1937 btrfs_header_level(info->csum_root->node));
1938
1939 btrfs_set_backup_total_bytes(root_backup,
1940 btrfs_super_total_bytes(info->super_copy));
1941 btrfs_set_backup_bytes_used(root_backup,
1942 btrfs_super_bytes_used(info->super_copy));
1943 btrfs_set_backup_num_devices(root_backup,
1944 btrfs_super_num_devices(info->super_copy));
1945
1946 /*
1947 * if we don't copy this out to the super_copy, it won't get remembered
1948 * for the next commit
1949 */
1950 memcpy(&info->super_copy->super_roots,
1951 &info->super_for_commit->super_roots,
1952 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1953}
1954
bd2336b2
NB
1955/*
1956 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1957 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1958 *
1959 * fs_info - filesystem whose backup roots need to be read
1960 * priority - priority of backup root required
1961 *
1962 * Returns backup root index on success and -EINVAL otherwise.
1963 */
1964static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1965{
1966 int backup_index = find_newest_super_backup(fs_info);
1967 struct btrfs_super_block *super = fs_info->super_copy;
1968 struct btrfs_root_backup *root_backup;
1969
1970 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1971 if (priority == 0)
1972 return backup_index;
1973
1974 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1975 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1976 } else {
1977 return -EINVAL;
1978 }
1979
1980 root_backup = super->super_roots + backup_index;
1981
1982 btrfs_set_super_generation(super,
1983 btrfs_backup_tree_root_gen(root_backup));
1984 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1985 btrfs_set_super_root_level(super,
1986 btrfs_backup_tree_root_level(root_backup));
1987 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1988
1989 /*
1990 * Fixme: the total bytes and num_devices need to match or we should
1991 * need a fsck
1992 */
1993 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1994 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1995
1996 return backup_index;
1997}
1998
7abadb64
LB
1999/* helper to cleanup workers */
2000static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2001{
dc6e3209 2002 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2003 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2004 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2005 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2006 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2007 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2008 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2009 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2010 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2011 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2012 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2013 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2014 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2015 if (fs_info->discard_ctl.discard_workers)
2016 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2017 /*
2018 * Now that all other work queues are destroyed, we can safely destroy
2019 * the queues used for metadata I/O, since tasks from those other work
2020 * queues can do metadata I/O operations.
2021 */
2022 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2023 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2024}
2025
2e9f5954
R
2026static void free_root_extent_buffers(struct btrfs_root *root)
2027{
2028 if (root) {
2029 free_extent_buffer(root->node);
2030 free_extent_buffer(root->commit_root);
2031 root->node = NULL;
2032 root->commit_root = NULL;
2033 }
2034}
2035
af31f5e5 2036/* helper to cleanup tree roots */
4273eaff 2037static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2038{
2e9f5954 2039 free_root_extent_buffers(info->tree_root);
655b09fe 2040
2e9f5954
R
2041 free_root_extent_buffers(info->dev_root);
2042 free_root_extent_buffers(info->extent_root);
2043 free_root_extent_buffers(info->csum_root);
2044 free_root_extent_buffers(info->quota_root);
2045 free_root_extent_buffers(info->uuid_root);
8c38938c 2046 free_root_extent_buffers(info->fs_root);
aeb935a4 2047 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2048 if (free_chunk_root)
2e9f5954 2049 free_root_extent_buffers(info->chunk_root);
70f6d82e 2050 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2051}
2052
8c38938c
JB
2053void btrfs_put_root(struct btrfs_root *root)
2054{
2055 if (!root)
2056 return;
2057
2058 if (refcount_dec_and_test(&root->refs)) {
2059 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2060 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2061 if (root->anon_dev)
2062 free_anon_bdev(root->anon_dev);
2063 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2064 free_root_extent_buffers(root);
8c38938c
JB
2065 kfree(root->free_ino_ctl);
2066 kfree(root->free_ino_pinned);
2067#ifdef CONFIG_BTRFS_DEBUG
2068 spin_lock(&root->fs_info->fs_roots_radix_lock);
2069 list_del_init(&root->leak_list);
2070 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2071#endif
2072 kfree(root);
2073 }
2074}
2075
faa2dbf0 2076void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2077{
2078 int ret;
2079 struct btrfs_root *gang[8];
2080 int i;
2081
2082 while (!list_empty(&fs_info->dead_roots)) {
2083 gang[0] = list_entry(fs_info->dead_roots.next,
2084 struct btrfs_root, root_list);
2085 list_del(&gang[0]->root_list);
2086
8c38938c 2087 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2088 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2089 btrfs_put_root(gang[0]);
171f6537
JB
2090 }
2091
2092 while (1) {
2093 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094 (void **)gang, 0,
2095 ARRAY_SIZE(gang));
2096 if (!ret)
2097 break;
2098 for (i = 0; i < ret; i++)
cb517eab 2099 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2100 }
2101}
af31f5e5 2102
638aa7ed
ES
2103static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2104{
2105 mutex_init(&fs_info->scrub_lock);
2106 atomic_set(&fs_info->scrubs_running, 0);
2107 atomic_set(&fs_info->scrub_pause_req, 0);
2108 atomic_set(&fs_info->scrubs_paused, 0);
2109 atomic_set(&fs_info->scrub_cancel_req, 0);
2110 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2111 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2112}
2113
779a65a4
ES
2114static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2115{
2116 spin_lock_init(&fs_info->balance_lock);
2117 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2118 atomic_set(&fs_info->balance_pause_req, 0);
2119 atomic_set(&fs_info->balance_cancel_req, 0);
2120 fs_info->balance_ctl = NULL;
2121 init_waitqueue_head(&fs_info->balance_wait_q);
2122}
2123
6bccf3ab 2124static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2125{
2ff7e61e
JM
2126 struct inode *inode = fs_info->btree_inode;
2127
2128 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2129 set_nlink(inode, 1);
f37938e0
ES
2130 /*
2131 * we set the i_size on the btree inode to the max possible int.
2132 * the real end of the address space is determined by all of
2133 * the devices in the system
2134 */
2ff7e61e
JM
2135 inode->i_size = OFFSET_MAX;
2136 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2137
2ff7e61e 2138 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2139 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2140 IO_TREE_INODE_IO, inode);
7b439738 2141 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2142 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2143
2ff7e61e 2144 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2145
5c8fd99f 2146 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2147 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2148 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2149 btrfs_insert_inode_hash(inode);
f37938e0
ES
2150}
2151
ad618368
ES
2152static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2153{
ad618368 2154 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2155 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2156 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2157}
2158
f9e92e40
ES
2159static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2160{
2161 spin_lock_init(&fs_info->qgroup_lock);
2162 mutex_init(&fs_info->qgroup_ioctl_lock);
2163 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2164 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2165 fs_info->qgroup_seq = 1;
f9e92e40 2166 fs_info->qgroup_ulist = NULL;
d2c609b8 2167 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2168 mutex_init(&fs_info->qgroup_rescan_lock);
2169}
2170
2a458198
ES
2171static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2172 struct btrfs_fs_devices *fs_devices)
2173{
f7b885be 2174 u32 max_active = fs_info->thread_pool_size;
6f011058 2175 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2176
2177 fs_info->workers =
cb001095
JM
2178 btrfs_alloc_workqueue(fs_info, "worker",
2179 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2180
2181 fs_info->delalloc_workers =
cb001095
JM
2182 btrfs_alloc_workqueue(fs_info, "delalloc",
2183 flags, max_active, 2);
2a458198
ES
2184
2185 fs_info->flush_workers =
cb001095
JM
2186 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2187 flags, max_active, 0);
2a458198
ES
2188
2189 fs_info->caching_workers =
cb001095 2190 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2191
2a458198 2192 fs_info->fixup_workers =
cb001095 2193 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2194
2195 /*
2196 * endios are largely parallel and should have a very
2197 * low idle thresh
2198 */
2199 fs_info->endio_workers =
cb001095 2200 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2201 fs_info->endio_meta_workers =
cb001095
JM
2202 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2203 max_active, 4);
2a458198 2204 fs_info->endio_meta_write_workers =
cb001095
JM
2205 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2206 max_active, 2);
2a458198 2207 fs_info->endio_raid56_workers =
cb001095
JM
2208 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2209 max_active, 4);
2a458198 2210 fs_info->rmw_workers =
cb001095 2211 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2212 fs_info->endio_write_workers =
cb001095
JM
2213 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2214 max_active, 2);
2a458198 2215 fs_info->endio_freespace_worker =
cb001095
JM
2216 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2217 max_active, 0);
2a458198 2218 fs_info->delayed_workers =
cb001095
JM
2219 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2220 max_active, 0);
2a458198 2221 fs_info->readahead_workers =
cb001095
JM
2222 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2223 max_active, 2);
2a458198 2224 fs_info->qgroup_rescan_workers =
cb001095 2225 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2226 fs_info->discard_ctl.discard_workers =
2227 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2228
2229 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2230 fs_info->flush_workers &&
2a458198
ES
2231 fs_info->endio_workers && fs_info->endio_meta_workers &&
2232 fs_info->endio_meta_write_workers &&
2a458198
ES
2233 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2234 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2235 fs_info->caching_workers && fs_info->readahead_workers &&
2236 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2237 fs_info->qgroup_rescan_workers &&
2238 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2239 return -ENOMEM;
2240 }
2241
2242 return 0;
2243}
2244
6d97c6e3
JT
2245static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2246{
2247 struct crypto_shash *csum_shash;
b4e967be 2248 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2249
b4e967be 2250 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2251
2252 if (IS_ERR(csum_shash)) {
2253 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2254 csum_driver);
6d97c6e3
JT
2255 return PTR_ERR(csum_shash);
2256 }
2257
2258 fs_info->csum_shash = csum_shash;
2259
2260 return 0;
2261}
2262
63443bf5
ES
2263static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2264 struct btrfs_fs_devices *fs_devices)
2265{
2266 int ret;
63443bf5
ES
2267 struct btrfs_root *log_tree_root;
2268 struct btrfs_super_block *disk_super = fs_info->super_copy;
2269 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2270 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2271
2272 if (fs_devices->rw_devices == 0) {
f14d104d 2273 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2274 return -EIO;
2275 }
2276
96dfcb46
JB
2277 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2278 GFP_KERNEL);
63443bf5
ES
2279 if (!log_tree_root)
2280 return -ENOMEM;
2281
2ff7e61e 2282 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2283 fs_info->generation + 1,
2284 level, NULL);
64c043de 2285 if (IS_ERR(log_tree_root->node)) {
f14d104d 2286 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2287 ret = PTR_ERR(log_tree_root->node);
8c38938c 2288 log_tree_root->node = NULL;
00246528 2289 btrfs_put_root(log_tree_root);
0eeff236 2290 return ret;
64c043de 2291 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2292 btrfs_err(fs_info, "failed to read log tree");
00246528 2293 btrfs_put_root(log_tree_root);
63443bf5
ES
2294 return -EIO;
2295 }
2296 /* returns with log_tree_root freed on success */
2297 ret = btrfs_recover_log_trees(log_tree_root);
2298 if (ret) {
0b246afa
JM
2299 btrfs_handle_fs_error(fs_info, ret,
2300 "Failed to recover log tree");
00246528 2301 btrfs_put_root(log_tree_root);
63443bf5
ES
2302 return ret;
2303 }
2304
bc98a42c 2305 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2306 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2307 if (ret)
2308 return ret;
2309 }
2310
2311 return 0;
2312}
2313
6bccf3ab 2314static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2315{
6bccf3ab 2316 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2317 struct btrfs_root *root;
4bbcaa64
ES
2318 struct btrfs_key location;
2319 int ret;
2320
6bccf3ab
JM
2321 BUG_ON(!fs_info->tree_root);
2322
4bbcaa64
ES
2323 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2324 location.type = BTRFS_ROOT_ITEM_KEY;
2325 location.offset = 0;
2326
a4f3d2c4 2327 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2328 if (IS_ERR(root)) {
2329 ret = PTR_ERR(root);
2330 goto out;
2331 }
a4f3d2c4
DS
2332 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2333 fs_info->extent_root = root;
4bbcaa64
ES
2334
2335 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2336 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2337 if (IS_ERR(root)) {
2338 ret = PTR_ERR(root);
2339 goto out;
2340 }
a4f3d2c4
DS
2341 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2342 fs_info->dev_root = root;
4bbcaa64
ES
2343 btrfs_init_devices_late(fs_info);
2344
2345 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2346 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2347 if (IS_ERR(root)) {
2348 ret = PTR_ERR(root);
2349 goto out;
2350 }
a4f3d2c4
DS
2351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352 fs_info->csum_root = root;
4bbcaa64 2353
aeb935a4
QW
2354 /*
2355 * This tree can share blocks with some other fs tree during relocation
2356 * and we need a proper setup by btrfs_get_fs_root
2357 */
56e9357a
DS
2358 root = btrfs_get_fs_root(tree_root->fs_info,
2359 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4
QW
2360 if (IS_ERR(root)) {
2361 ret = PTR_ERR(root);
2362 goto out;
2363 }
2364 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2365 fs_info->data_reloc_root = root;
2366
4bbcaa64 2367 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2368 root = btrfs_read_tree_root(tree_root, &location);
2369 if (!IS_ERR(root)) {
2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2371 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2372 fs_info->quota_root = root;
4bbcaa64
ES
2373 }
2374
2375 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2376 root = btrfs_read_tree_root(tree_root, &location);
2377 if (IS_ERR(root)) {
2378 ret = PTR_ERR(root);
4bbcaa64 2379 if (ret != -ENOENT)
f50f4353 2380 goto out;
4bbcaa64 2381 } else {
a4f3d2c4
DS
2382 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2383 fs_info->uuid_root = root;
4bbcaa64
ES
2384 }
2385
70f6d82e
OS
2386 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2387 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2388 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2389 if (IS_ERR(root)) {
2390 ret = PTR_ERR(root);
2391 goto out;
2392 }
70f6d82e
OS
2393 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2394 fs_info->free_space_root = root;
2395 }
2396
4bbcaa64 2397 return 0;
f50f4353
LB
2398out:
2399 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2400 location.objectid, ret);
2401 return ret;
4bbcaa64
ES
2402}
2403
069ec957
QW
2404/*
2405 * Real super block validation
2406 * NOTE: super csum type and incompat features will not be checked here.
2407 *
2408 * @sb: super block to check
2409 * @mirror_num: the super block number to check its bytenr:
2410 * 0 the primary (1st) sb
2411 * 1, 2 2nd and 3rd backup copy
2412 * -1 skip bytenr check
2413 */
2414static int validate_super(struct btrfs_fs_info *fs_info,
2415 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2416{
21a852b0
QW
2417 u64 nodesize = btrfs_super_nodesize(sb);
2418 u64 sectorsize = btrfs_super_sectorsize(sb);
2419 int ret = 0;
2420
2421 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2422 btrfs_err(fs_info, "no valid FS found");
2423 ret = -EINVAL;
2424 }
2425 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2426 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2427 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2428 ret = -EINVAL;
2429 }
2430 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2431 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2432 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2433 ret = -EINVAL;
2434 }
2435 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2436 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2437 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2438 ret = -EINVAL;
2439 }
2440 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2441 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2442 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2443 ret = -EINVAL;
2444 }
2445
2446 /*
2447 * Check sectorsize and nodesize first, other check will need it.
2448 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2449 */
2450 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2451 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2452 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2453 ret = -EINVAL;
2454 }
2455 /* Only PAGE SIZE is supported yet */
2456 if (sectorsize != PAGE_SIZE) {
2457 btrfs_err(fs_info,
2458 "sectorsize %llu not supported yet, only support %lu",
2459 sectorsize, PAGE_SIZE);
2460 ret = -EINVAL;
2461 }
2462 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2463 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2464 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2465 ret = -EINVAL;
2466 }
2467 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2468 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2469 le32_to_cpu(sb->__unused_leafsize), nodesize);
2470 ret = -EINVAL;
2471 }
2472
2473 /* Root alignment check */
2474 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2475 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2476 btrfs_super_root(sb));
2477 ret = -EINVAL;
2478 }
2479 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2480 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2481 btrfs_super_chunk_root(sb));
2482 ret = -EINVAL;
2483 }
2484 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2485 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2486 btrfs_super_log_root(sb));
2487 ret = -EINVAL;
2488 }
2489
de37aa51 2490 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2491 BTRFS_FSID_SIZE) != 0) {
21a852b0 2492 btrfs_err(fs_info,
7239ff4b 2493 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2494 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2495 ret = -EINVAL;
2496 }
2497
2498 /*
2499 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2500 * done later
2501 */
2502 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2503 btrfs_err(fs_info, "bytes_used is too small %llu",
2504 btrfs_super_bytes_used(sb));
2505 ret = -EINVAL;
2506 }
2507 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2508 btrfs_err(fs_info, "invalid stripesize %u",
2509 btrfs_super_stripesize(sb));
2510 ret = -EINVAL;
2511 }
2512 if (btrfs_super_num_devices(sb) > (1UL << 31))
2513 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2514 btrfs_super_num_devices(sb));
2515 if (btrfs_super_num_devices(sb) == 0) {
2516 btrfs_err(fs_info, "number of devices is 0");
2517 ret = -EINVAL;
2518 }
2519
069ec957
QW
2520 if (mirror_num >= 0 &&
2521 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2522 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2523 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2524 ret = -EINVAL;
2525 }
2526
2527 /*
2528 * Obvious sys_chunk_array corruptions, it must hold at least one key
2529 * and one chunk
2530 */
2531 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2532 btrfs_err(fs_info, "system chunk array too big %u > %u",
2533 btrfs_super_sys_array_size(sb),
2534 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2535 ret = -EINVAL;
2536 }
2537 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2538 + sizeof(struct btrfs_chunk)) {
2539 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2540 btrfs_super_sys_array_size(sb),
2541 sizeof(struct btrfs_disk_key)
2542 + sizeof(struct btrfs_chunk));
2543 ret = -EINVAL;
2544 }
2545
2546 /*
2547 * The generation is a global counter, we'll trust it more than the others
2548 * but it's still possible that it's the one that's wrong.
2549 */
2550 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2551 btrfs_warn(fs_info,
2552 "suspicious: generation < chunk_root_generation: %llu < %llu",
2553 btrfs_super_generation(sb),
2554 btrfs_super_chunk_root_generation(sb));
2555 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2556 && btrfs_super_cache_generation(sb) != (u64)-1)
2557 btrfs_warn(fs_info,
2558 "suspicious: generation < cache_generation: %llu < %llu",
2559 btrfs_super_generation(sb),
2560 btrfs_super_cache_generation(sb));
2561
2562 return ret;
2563}
2564
069ec957
QW
2565/*
2566 * Validation of super block at mount time.
2567 * Some checks already done early at mount time, like csum type and incompat
2568 * flags will be skipped.
2569 */
2570static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2571{
2572 return validate_super(fs_info, fs_info->super_copy, 0);
2573}
2574
75cb857d
QW
2575/*
2576 * Validation of super block at write time.
2577 * Some checks like bytenr check will be skipped as their values will be
2578 * overwritten soon.
2579 * Extra checks like csum type and incompat flags will be done here.
2580 */
2581static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2582 struct btrfs_super_block *sb)
2583{
2584 int ret;
2585
2586 ret = validate_super(fs_info, sb, -1);
2587 if (ret < 0)
2588 goto out;
e7e16f48 2589 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2590 ret = -EUCLEAN;
2591 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2592 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2593 goto out;
2594 }
2595 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2596 ret = -EUCLEAN;
2597 btrfs_err(fs_info,
2598 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2599 btrfs_super_incompat_flags(sb),
2600 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2601 goto out;
2602 }
2603out:
2604 if (ret < 0)
2605 btrfs_err(fs_info,
2606 "super block corruption detected before writing it to disk");
2607 return ret;
2608}
2609
6ef108dd 2610static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2611{
6ef108dd 2612 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2613 struct btrfs_super_block *sb = fs_info->super_copy;
2614 struct btrfs_root *tree_root = fs_info->tree_root;
2615 bool handle_error = false;
2616 int ret = 0;
2617 int i;
2618
2619 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2620 u64 generation;
2621 int level;
2622
2623 if (handle_error) {
2624 if (!IS_ERR(tree_root->node))
2625 free_extent_buffer(tree_root->node);
2626 tree_root->node = NULL;
2627
2628 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2629 break;
2630
2631 free_root_pointers(fs_info, 0);
2632
2633 /*
2634 * Don't use the log in recovery mode, it won't be
2635 * valid
2636 */
2637 btrfs_set_super_log_root(sb, 0);
2638
2639 /* We can't trust the free space cache either */
2640 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2641
2642 ret = read_backup_root(fs_info, i);
6ef108dd 2643 backup_index = ret;
b8522a1e
NB
2644 if (ret < 0)
2645 return ret;
2646 }
2647 generation = btrfs_super_generation(sb);
2648 level = btrfs_super_root_level(sb);
2649 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2650 generation, level, NULL);
2651 if (IS_ERR(tree_root->node) ||
2652 !extent_buffer_uptodate(tree_root->node)) {
2653 handle_error = true;
2654
0465337c 2655 if (IS_ERR(tree_root->node)) {
b8522a1e 2656 ret = PTR_ERR(tree_root->node);
0465337c
JB
2657 tree_root->node = NULL;
2658 } else if (!extent_buffer_uptodate(tree_root->node)) {
b8522a1e 2659 ret = -EUCLEAN;
0465337c 2660 }
b8522a1e
NB
2661
2662 btrfs_warn(fs_info, "failed to read tree root");
2663 continue;
2664 }
2665
2666 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2667 tree_root->commit_root = btrfs_root_node(tree_root);
2668 btrfs_set_root_refs(&tree_root->root_item, 1);
2669
336a0d8d
NB
2670 /*
2671 * No need to hold btrfs_root::objectid_mutex since the fs
2672 * hasn't been fully initialised and we are the only user
2673 */
b8522a1e
NB
2674 ret = btrfs_find_highest_objectid(tree_root,
2675 &tree_root->highest_objectid);
2676 if (ret < 0) {
b8522a1e
NB
2677 handle_error = true;
2678 continue;
2679 }
2680
2681 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2682
2683 ret = btrfs_read_roots(fs_info);
2684 if (ret < 0) {
2685 handle_error = true;
2686 continue;
2687 }
2688
2689 /* All successful */
2690 fs_info->generation = generation;
2691 fs_info->last_trans_committed = generation;
6ef108dd
NB
2692
2693 /* Always begin writing backup roots after the one being used */
2694 if (backup_index < 0) {
2695 fs_info->backup_root_index = 0;
2696 } else {
2697 fs_info->backup_root_index = backup_index + 1;
2698 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2699 }
b8522a1e
NB
2700 break;
2701 }
2702
2703 return ret;
2704}
2705
8260edba 2706void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2707{
76dda93c 2708 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2709 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2710 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2711 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2712 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2713 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2714 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2715 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2716 spin_lock_init(&fs_info->trans_lock);
76dda93c 2717 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2718 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2719 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2720 spin_lock_init(&fs_info->super_lock);
f28491e0 2721 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2722 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2723 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2724 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2725 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2726 mutex_init(&fs_info->reloc_mutex);
573bfb72 2727 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2728 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2729
0b86a832 2730 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2731 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2732 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2733 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2734#ifdef CONFIG_BTRFS_DEBUG
2735 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2736 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2737 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2738#endif
c8bf1b67 2739 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2740 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2741 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2742 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2743 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2744 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2745 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2746 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2747 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2748 BTRFS_BLOCK_RSV_DELREFS);
2749
771ed689 2750 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2751 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2752 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2753 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2754 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2755 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2756 fs_info->metadata_ratio = 0;
4cb5300b 2757 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2758 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2759 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2760 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2761 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2762 /* readahead state */
d0164adc 2763 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2764 spin_lock_init(&fs_info->reada_lock);
fd708b81 2765 btrfs_init_ref_verify(fs_info);
c8b97818 2766
b34b086c
CM
2767 fs_info->thread_pool_size = min_t(unsigned long,
2768 num_online_cpus() + 2, 8);
0afbaf8c 2769
199c2a9c
MX
2770 INIT_LIST_HEAD(&fs_info->ordered_roots);
2771 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2772
638aa7ed 2773 btrfs_init_scrub(fs_info);
21adbd5c
SB
2774#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2775 fs_info->check_integrity_print_mask = 0;
2776#endif
779a65a4 2777 btrfs_init_balance(fs_info);
21c7e756 2778 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2779
0f9dd46c 2780 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2781 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2782 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2783
fe119a6e
NB
2784 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2785 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2786 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2787
5a3f23d5 2788 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2789 mutex_init(&fs_info->tree_log_mutex);
925baedd 2790 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2791 mutex_init(&fs_info->transaction_kthread_mutex);
2792 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2793 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2794 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2795 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2796 init_rwsem(&fs_info->subvol_sem);
803b2f54 2797 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2798
ad618368 2799 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2800 btrfs_init_qgroup(fs_info);
b0643e59 2801 btrfs_discard_init(fs_info);
416ac51d 2802
fa9c0d79
CM
2803 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2804 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2805
e6dcd2dc 2806 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2807 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2808 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2809 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2810 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2811
da17066c
JM
2812 /* Usable values until the real ones are cached from the superblock */
2813 fs_info->nodesize = 4096;
2814 fs_info->sectorsize = 4096;
2815 fs_info->stripesize = 4096;
2816
eede2bf3
OS
2817 spin_lock_init(&fs_info->swapfile_pins_lock);
2818 fs_info->swapfile_pins = RB_ROOT;
2819
9e967495 2820 fs_info->send_in_progress = 0;
8260edba
JB
2821}
2822
2823static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2824{
2825 int ret;
2826
2827 fs_info->sb = sb;
2828 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2829 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2830
ae18c37a
JB
2831 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2832 if (ret)
c75e8394 2833 return ret;
ae18c37a
JB
2834
2835 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2836 if (ret)
c75e8394 2837 return ret;
ae18c37a
JB
2838
2839 fs_info->dirty_metadata_batch = PAGE_SIZE *
2840 (1 + ilog2(nr_cpu_ids));
2841
2842 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2843 if (ret)
c75e8394 2844 return ret;
ae18c37a
JB
2845
2846 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2847 GFP_KERNEL);
2848 if (ret)
c75e8394 2849 return ret;
ae18c37a
JB
2850
2851 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2852 GFP_KERNEL);
c75e8394
JB
2853 if (!fs_info->delayed_root)
2854 return -ENOMEM;
ae18c37a
JB
2855 btrfs_init_delayed_root(fs_info->delayed_root);
2856
c75e8394 2857 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2858}
2859
97f4dd09
NB
2860static int btrfs_uuid_rescan_kthread(void *data)
2861{
2862 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2863 int ret;
2864
2865 /*
2866 * 1st step is to iterate through the existing UUID tree and
2867 * to delete all entries that contain outdated data.
2868 * 2nd step is to add all missing entries to the UUID tree.
2869 */
2870 ret = btrfs_uuid_tree_iterate(fs_info);
2871 if (ret < 0) {
c94bec2c
JB
2872 if (ret != -EINTR)
2873 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2874 ret);
97f4dd09
NB
2875 up(&fs_info->uuid_tree_rescan_sem);
2876 return ret;
2877 }
2878 return btrfs_uuid_scan_kthread(data);
2879}
2880
2881static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2882{
2883 struct task_struct *task;
2884
2885 down(&fs_info->uuid_tree_rescan_sem);
2886 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2887 if (IS_ERR(task)) {
2888 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2889 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2890 up(&fs_info->uuid_tree_rescan_sem);
2891 return PTR_ERR(task);
2892 }
2893
2894 return 0;
2895}
2896
ae18c37a
JB
2897int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2898 char *options)
2899{
2900 u32 sectorsize;
2901 u32 nodesize;
2902 u32 stripesize;
2903 u64 generation;
2904 u64 features;
2905 u16 csum_type;
ae18c37a
JB
2906 struct btrfs_super_block *disk_super;
2907 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2908 struct btrfs_root *tree_root;
2909 struct btrfs_root *chunk_root;
2910 int ret;
2911 int err = -EINVAL;
2912 int clear_free_space_tree = 0;
2913 int level;
2914
8260edba 2915 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2916 if (ret) {
83c8266a 2917 err = ret;
ae18c37a 2918 goto fail;
53b381b3
DW
2919 }
2920
ae18c37a
JB
2921 /* These need to be init'ed before we start creating inodes and such. */
2922 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2923 GFP_KERNEL);
2924 fs_info->tree_root = tree_root;
2925 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2926 GFP_KERNEL);
2927 fs_info->chunk_root = chunk_root;
2928 if (!tree_root || !chunk_root) {
2929 err = -ENOMEM;
c75e8394 2930 goto fail;
ae18c37a
JB
2931 }
2932
2933 fs_info->btree_inode = new_inode(sb);
2934 if (!fs_info->btree_inode) {
2935 err = -ENOMEM;
c75e8394 2936 goto fail;
ae18c37a
JB
2937 }
2938 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2939 btrfs_init_btree_inode(fs_info);
2940
3c4bb26b 2941 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2942
2943 /*
2944 * Read super block and check the signature bytes only
2945 */
8f32380d
JT
2946 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2947 if (IS_ERR(disk_super)) {
2948 err = PTR_ERR(disk_super);
16cdcec7 2949 goto fail_alloc;
20b45077 2950 }
39279cc3 2951
8dc3f22c
JT
2952 /*
2953 * Verify the type first, if that or the the checksum value are
2954 * corrupted, we'll find out
2955 */
8f32380d 2956 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2957 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2958 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2959 csum_type);
8dc3f22c 2960 err = -EINVAL;
8f32380d 2961 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2962 goto fail_alloc;
2963 }
2964
6d97c6e3
JT
2965 ret = btrfs_init_csum_hash(fs_info, csum_type);
2966 if (ret) {
2967 err = ret;
8f32380d 2968 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2969 goto fail_alloc;
2970 }
2971
1104a885
DS
2972 /*
2973 * We want to check superblock checksum, the type is stored inside.
2974 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2975 */
8f32380d 2976 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2977 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2978 err = -EINVAL;
8f32380d 2979 btrfs_release_disk_super(disk_super);
141386e1 2980 goto fail_alloc;
1104a885
DS
2981 }
2982
2983 /*
2984 * super_copy is zeroed at allocation time and we never touch the
2985 * following bytes up to INFO_SIZE, the checksum is calculated from
2986 * the whole block of INFO_SIZE
2987 */
8f32380d
JT
2988 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2989 btrfs_release_disk_super(disk_super);
5f39d397 2990
fbc6feae
NB
2991 disk_super = fs_info->super_copy;
2992
de37aa51
NB
2993 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2994 BTRFS_FSID_SIZE));
2995
7239ff4b 2996 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2997 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2998 fs_info->super_copy->metadata_uuid,
2999 BTRFS_FSID_SIZE));
7239ff4b 3000 }
0b86a832 3001
fbc6feae
NB
3002 features = btrfs_super_flags(disk_super);
3003 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3004 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3005 btrfs_set_super_flags(disk_super, features);
3006 btrfs_info(fs_info,
3007 "found metadata UUID change in progress flag, clearing");
3008 }
3009
3010 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3011 sizeof(*fs_info->super_for_commit));
de37aa51 3012
069ec957 3013 ret = btrfs_validate_mount_super(fs_info);
1104a885 3014 if (ret) {
05135f59 3015 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3016 err = -EINVAL;
141386e1 3017 goto fail_alloc;
1104a885
DS
3018 }
3019
0f7d52f4 3020 if (!btrfs_super_root(disk_super))
141386e1 3021 goto fail_alloc;
0f7d52f4 3022
acce952b 3023 /* check FS state, whether FS is broken. */
87533c47
MX
3024 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3025 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3026
75e7cb7f
LB
3027 /*
3028 * In the long term, we'll store the compression type in the super
3029 * block, and it'll be used for per file compression control.
3030 */
3031 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3032
2ff7e61e 3033 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3034 if (ret) {
3035 err = ret;
141386e1 3036 goto fail_alloc;
2b82032c 3037 }
dfe25020 3038
f2b636e8
JB
3039 features = btrfs_super_incompat_flags(disk_super) &
3040 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3041 if (features) {
05135f59
DS
3042 btrfs_err(fs_info,
3043 "cannot mount because of unsupported optional features (%llx)",
3044 features);
f2b636e8 3045 err = -EINVAL;
141386e1 3046 goto fail_alloc;
f2b636e8
JB
3047 }
3048
5d4f98a2 3049 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3050 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3051 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3052 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3053 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3054 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3055
3173a18f 3056 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3057 btrfs_info(fs_info, "has skinny extents");
3173a18f 3058
727011e0
CM
3059 /*
3060 * flag our filesystem as having big metadata blocks if
3061 * they are bigger than the page size
3062 */
09cbfeaf 3063 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3064 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3065 btrfs_info(fs_info,
3066 "flagging fs with big metadata feature");
727011e0
CM
3067 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3068 }
3069
bc3f116f 3070 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3071 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3072 stripesize = sectorsize;
707e8a07 3073 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3074 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3075
da17066c
JM
3076 /* Cache block sizes */
3077 fs_info->nodesize = nodesize;
3078 fs_info->sectorsize = sectorsize;
3079 fs_info->stripesize = stripesize;
3080
bc3f116f
CM
3081 /*
3082 * mixed block groups end up with duplicate but slightly offset
3083 * extent buffers for the same range. It leads to corruptions
3084 */
3085 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3086 (sectorsize != nodesize)) {
05135f59
DS
3087 btrfs_err(fs_info,
3088"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3089 nodesize, sectorsize);
141386e1 3090 goto fail_alloc;
bc3f116f
CM
3091 }
3092
ceda0864
MX
3093 /*
3094 * Needn't use the lock because there is no other task which will
3095 * update the flag.
3096 */
a6fa6fae 3097 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3098
f2b636e8
JB
3099 features = btrfs_super_compat_ro_flags(disk_super) &
3100 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3101 if (!sb_rdonly(sb) && features) {
05135f59
DS
3102 btrfs_err(fs_info,
3103 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3104 features);
f2b636e8 3105 err = -EINVAL;
141386e1 3106 goto fail_alloc;
f2b636e8 3107 }
61d92c32 3108
2a458198
ES
3109 ret = btrfs_init_workqueues(fs_info, fs_devices);
3110 if (ret) {
3111 err = ret;
0dc3b84a
JB
3112 goto fail_sb_buffer;
3113 }
4543df7e 3114
9e11ceee
JK
3115 sb->s_bdi->congested_fn = btrfs_congested_fn;
3116 sb->s_bdi->congested_data = fs_info;
3117 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3118 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3119 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3120 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3121
a061fc8d
CM
3122 sb->s_blocksize = sectorsize;
3123 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3124 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3125
925baedd 3126 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3127 ret = btrfs_read_sys_array(fs_info);
925baedd 3128 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3129 if (ret) {
05135f59 3130 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3131 goto fail_sb_buffer;
84eed90f 3132 }
0b86a832 3133
84234f3a 3134 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3135 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3136
2ff7e61e 3137 chunk_root->node = read_tree_block(fs_info,
0b86a832 3138 btrfs_super_chunk_root(disk_super),
581c1760 3139 generation, level, NULL);
64c043de
LB
3140 if (IS_ERR(chunk_root->node) ||
3141 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3142 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3143 if (!IS_ERR(chunk_root->node))
3144 free_extent_buffer(chunk_root->node);
95ab1f64 3145 chunk_root->node = NULL;
af31f5e5 3146 goto fail_tree_roots;
83121942 3147 }
5d4f98a2
YZ
3148 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3149 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3150
e17cade2 3151 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3152 offsetof(struct btrfs_header, chunk_tree_uuid),
3153 BTRFS_UUID_SIZE);
e17cade2 3154
5b4aacef 3155 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3156 if (ret) {
05135f59 3157 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3158 goto fail_tree_roots;
2b82032c 3159 }
0b86a832 3160
8dabb742 3161 /*
9b99b115
AJ
3162 * Keep the devid that is marked to be the target device for the
3163 * device replace procedure
8dabb742 3164 */
9b99b115 3165 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3166
a6b0d5c8 3167 if (!fs_devices->latest_bdev) {
05135f59 3168 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3169 goto fail_tree_roots;
3170 }
3171
b8522a1e 3172 ret = init_tree_roots(fs_info);
4bbcaa64 3173 if (ret)
b8522a1e 3174 goto fail_tree_roots;
8929ecfa 3175
75ec1db8
JB
3176 /*
3177 * If we have a uuid root and we're not being told to rescan we need to
3178 * check the generation here so we can set the
3179 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3180 * transaction during a balance or the log replay without updating the
3181 * uuid generation, and then if we crash we would rescan the uuid tree,
3182 * even though it was perfectly fine.
3183 */
3184 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3185 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3186 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3187
cf90d884
QW
3188 ret = btrfs_verify_dev_extents(fs_info);
3189 if (ret) {
3190 btrfs_err(fs_info,
3191 "failed to verify dev extents against chunks: %d",
3192 ret);
3193 goto fail_block_groups;
3194 }
68310a5e
ID
3195 ret = btrfs_recover_balance(fs_info);
3196 if (ret) {
05135f59 3197 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3198 goto fail_block_groups;
3199 }
3200
733f4fbb
SB
3201 ret = btrfs_init_dev_stats(fs_info);
3202 if (ret) {
05135f59 3203 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3204 goto fail_block_groups;
3205 }
3206
8dabb742
SB
3207 ret = btrfs_init_dev_replace(fs_info);
3208 if (ret) {
05135f59 3209 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3210 goto fail_block_groups;
3211 }
3212
9b99b115 3213 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3214
c6761a9e 3215 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3216 if (ret) {
05135f59
DS
3217 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3218 ret);
b7c35e81
AJ
3219 goto fail_block_groups;
3220 }
3221
96f3136e 3222 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3223 if (ret) {
05135f59 3224 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3225 goto fail_fsdev_sysfs;
c59021f8 3226 }
3227
c59021f8 3228 ret = btrfs_init_space_info(fs_info);
3229 if (ret) {
05135f59 3230 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3231 goto fail_sysfs;
c59021f8 3232 }
3233
5b4aacef 3234 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3235 if (ret) {
05135f59 3236 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3237 goto fail_sysfs;
1b1d1f66 3238 }
4330e183 3239
6528b99d 3240 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3241 btrfs_warn(fs_info,
52042d8e 3242 "writable mount is not allowed due to too many missing devices");
2365dd3c 3243 goto fail_sysfs;
292fd7fc 3244 }
9078a3e1 3245
a74a4b97
CM
3246 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3247 "btrfs-cleaner");
57506d50 3248 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3249 goto fail_sysfs;
a74a4b97
CM
3250
3251 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3252 tree_root,
3253 "btrfs-transaction");
57506d50 3254 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3255 goto fail_cleaner;
a74a4b97 3256
583b7231 3257 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3258 !fs_info->fs_devices->rotating) {
583b7231 3259 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3260 }
3261
572d9ab7 3262 /*
01327610 3263 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3264 * not have to wait for transaction commit
3265 */
3266 btrfs_apply_pending_changes(fs_info);
3818aea2 3267
21adbd5c 3268#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3269 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3270 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3271 btrfs_test_opt(fs_info,
21adbd5c
SB
3272 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3273 1 : 0,
3274 fs_info->check_integrity_print_mask);
3275 if (ret)
05135f59
DS
3276 btrfs_warn(fs_info,
3277 "failed to initialize integrity check module: %d",
3278 ret);
21adbd5c
SB
3279 }
3280#endif
bcef60f2
AJ
3281 ret = btrfs_read_qgroup_config(fs_info);
3282 if (ret)
3283 goto fail_trans_kthread;
21adbd5c 3284
fd708b81
JB
3285 if (btrfs_build_ref_tree(fs_info))
3286 btrfs_err(fs_info, "couldn't build ref tree");
3287
96da0919
QW
3288 /* do not make disk changes in broken FS or nologreplay is given */
3289 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3290 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3291 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3292 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3293 if (ret) {
63443bf5 3294 err = ret;
28c16cbb 3295 goto fail_qgroup;
79787eaa 3296 }
e02119d5 3297 }
1a40e23b 3298
6bccf3ab 3299 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3300 if (ret)
28c16cbb 3301 goto fail_qgroup;
76dda93c 3302
bc98a42c 3303 if (!sb_rdonly(sb)) {
d68fc57b 3304 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3305 if (ret)
28c16cbb 3306 goto fail_qgroup;
90c711ab
ZB
3307
3308 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3309 ret = btrfs_recover_relocation(tree_root);
90c711ab 3310 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3311 if (ret < 0) {
05135f59
DS
3312 btrfs_warn(fs_info, "failed to recover relocation: %d",
3313 ret);
d7ce5843 3314 err = -EINVAL;
bcef60f2 3315 goto fail_qgroup;
d7ce5843 3316 }
7c2ca468 3317 }
1a40e23b 3318
56e9357a 3319 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3320 if (IS_ERR(fs_info->fs_root)) {
3321 err = PTR_ERR(fs_info->fs_root);
f50f4353 3322 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3323 fs_info->fs_root = NULL;
bcef60f2 3324 goto fail_qgroup;
3140c9a3 3325 }
c289811c 3326
bc98a42c 3327 if (sb_rdonly(sb))
2b6ba629 3328 return 0;
59641015 3329
f8d468a1
OS
3330 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3331 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3332 clear_free_space_tree = 1;
3333 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3334 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3335 btrfs_warn(fs_info, "free space tree is invalid");
3336 clear_free_space_tree = 1;
3337 }
3338
3339 if (clear_free_space_tree) {
f8d468a1
OS
3340 btrfs_info(fs_info, "clearing free space tree");
3341 ret = btrfs_clear_free_space_tree(fs_info);
3342 if (ret) {
3343 btrfs_warn(fs_info,
3344 "failed to clear free space tree: %d", ret);
6bccf3ab 3345 close_ctree(fs_info);
f8d468a1
OS
3346 return ret;
3347 }
3348 }
3349
0b246afa 3350 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3351 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3352 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3353 ret = btrfs_create_free_space_tree(fs_info);
3354 if (ret) {
05135f59
DS
3355 btrfs_warn(fs_info,
3356 "failed to create free space tree: %d", ret);
6bccf3ab 3357 close_ctree(fs_info);
511711af
CM
3358 return ret;
3359 }
3360 }
3361
2b6ba629
ID
3362 down_read(&fs_info->cleanup_work_sem);
3363 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3364 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3365 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3366 close_ctree(fs_info);
2b6ba629
ID
3367 return ret;
3368 }
3369 up_read(&fs_info->cleanup_work_sem);
59641015 3370
2b6ba629
ID
3371 ret = btrfs_resume_balance_async(fs_info);
3372 if (ret) {
05135f59 3373 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3374 close_ctree(fs_info);
2b6ba629 3375 return ret;
e3acc2a6
JB
3376 }
3377
8dabb742
SB
3378 ret = btrfs_resume_dev_replace_async(fs_info);
3379 if (ret) {
05135f59 3380 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3381 close_ctree(fs_info);
8dabb742
SB
3382 return ret;
3383 }
3384
b382a324 3385 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3386 btrfs_discard_resume(fs_info);
b382a324 3387
4bbcaa64 3388 if (!fs_info->uuid_root) {
05135f59 3389 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3390 ret = btrfs_create_uuid_tree(fs_info);
3391 if (ret) {
05135f59
DS
3392 btrfs_warn(fs_info,
3393 "failed to create the UUID tree: %d", ret);
6bccf3ab 3394 close_ctree(fs_info);
f7a81ea4
SB
3395 return ret;
3396 }
0b246afa 3397 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3398 fs_info->generation !=
3399 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3400 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3401 ret = btrfs_check_uuid_tree(fs_info);
3402 if (ret) {
05135f59
DS
3403 btrfs_warn(fs_info,
3404 "failed to check the UUID tree: %d", ret);
6bccf3ab 3405 close_ctree(fs_info);
70f80175
SB
3406 return ret;
3407 }
f7a81ea4 3408 }
afcdd129 3409 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3410
8dcddfa0
QW
3411 /*
3412 * backuproot only affect mount behavior, and if open_ctree succeeded,
3413 * no need to keep the flag
3414 */
3415 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3416
ad2b2c80 3417 return 0;
39279cc3 3418
bcef60f2
AJ
3419fail_qgroup:
3420 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3421fail_trans_kthread:
3422 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3423 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3424 btrfs_free_fs_roots(fs_info);
3f157a2f 3425fail_cleaner:
a74a4b97 3426 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3427
3428 /*
3429 * make sure we're done with the btree inode before we stop our
3430 * kthreads
3431 */
3432 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3433
2365dd3c 3434fail_sysfs:
6618a59b 3435 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3436
b7c35e81
AJ
3437fail_fsdev_sysfs:
3438 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3439
1b1d1f66 3440fail_block_groups:
54067ae9 3441 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3442
3443fail_tree_roots:
4273eaff 3444 free_root_pointers(fs_info, true);
2b8195bb 3445 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3446
39279cc3 3447fail_sb_buffer:
7abadb64 3448 btrfs_stop_all_workers(fs_info);
5cdd7db6 3449 btrfs_free_block_groups(fs_info);
16cdcec7 3450fail_alloc:
586e46e2
ID
3451 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3452
4543df7e 3453 iput(fs_info->btree_inode);
7e662854 3454fail:
586e46e2 3455 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3456 return err;
eb60ceac 3457}
663faf9f 3458ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3459
314b6dd0 3460static void btrfs_end_super_write(struct bio *bio)
f2984462 3461{
314b6dd0
JT
3462 struct btrfs_device *device = bio->bi_private;
3463 struct bio_vec *bvec;
3464 struct bvec_iter_all iter_all;
3465 struct page *page;
3466
3467 bio_for_each_segment_all(bvec, bio, iter_all) {
3468 page = bvec->bv_page;
3469
3470 if (bio->bi_status) {
3471 btrfs_warn_rl_in_rcu(device->fs_info,
3472 "lost page write due to IO error on %s (%d)",
3473 rcu_str_deref(device->name),
3474 blk_status_to_errno(bio->bi_status));
3475 ClearPageUptodate(page);
3476 SetPageError(page);
3477 btrfs_dev_stat_inc_and_print(device,
3478 BTRFS_DEV_STAT_WRITE_ERRS);
3479 } else {
3480 SetPageUptodate(page);
3481 }
3482
3483 put_page(page);
3484 unlock_page(page);
f2984462 3485 }
314b6dd0
JT
3486
3487 bio_put(bio);
f2984462
CM
3488}
3489
8f32380d
JT
3490struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3491 int copy_num)
29c36d72 3492{
29c36d72 3493 struct btrfs_super_block *super;
8f32380d 3494 struct page *page;
29c36d72 3495 u64 bytenr;
8f32380d 3496 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3497
3498 bytenr = btrfs_sb_offset(copy_num);
3499 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3500 return ERR_PTR(-EINVAL);
29c36d72 3501
8f32380d
JT
3502 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3503 if (IS_ERR(page))
3504 return ERR_CAST(page);
29c36d72 3505
8f32380d 3506 super = page_address(page);
29c36d72
AJ
3507 if (btrfs_super_bytenr(super) != bytenr ||
3508 btrfs_super_magic(super) != BTRFS_MAGIC) {
8f32380d
JT
3509 btrfs_release_disk_super(super);
3510 return ERR_PTR(-EINVAL);
29c36d72
AJ
3511 }
3512
8f32380d 3513 return super;
29c36d72
AJ
3514}
3515
3516
8f32380d 3517struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3518{
8f32380d 3519 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3520 int i;
3521 u64 transid = 0;
a512bbf8
YZ
3522
3523 /* we would like to check all the supers, but that would make
3524 * a btrfs mount succeed after a mkfs from a different FS.
3525 * So, we need to add a special mount option to scan for
3526 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3527 */
3528 for (i = 0; i < 1; i++) {
8f32380d
JT
3529 super = btrfs_read_dev_one_super(bdev, i);
3530 if (IS_ERR(super))
a512bbf8
YZ
3531 continue;
3532
a512bbf8 3533 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3534 if (latest)
3535 btrfs_release_disk_super(super);
3536
3537 latest = super;
a512bbf8 3538 transid = btrfs_super_generation(super);
a512bbf8
YZ
3539 }
3540 }
92fc03fb 3541
8f32380d 3542 return super;
a512bbf8
YZ
3543}
3544
4eedeb75 3545/*
abbb3b8e 3546 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3547 * pages we use for writing are locked.
4eedeb75 3548 *
abbb3b8e
DS
3549 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3550 * the expected device size at commit time. Note that max_mirrors must be
3551 * same for write and wait phases.
4eedeb75 3552 *
314b6dd0 3553 * Return number of errors when page is not found or submission fails.
4eedeb75 3554 */
a512bbf8 3555static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3556 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3557{
d5178578 3558 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3559 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3560 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3561 int i;
a512bbf8 3562 int errors = 0;
a512bbf8 3563 u64 bytenr;
a512bbf8
YZ
3564
3565 if (max_mirrors == 0)
3566 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3567
d5178578
JT
3568 shash->tfm = fs_info->csum_shash;
3569
a512bbf8 3570 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3571 struct page *page;
3572 struct bio *bio;
3573 struct btrfs_super_block *disk_super;
3574
a512bbf8 3575 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3576 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3577 device->commit_total_bytes)
a512bbf8
YZ
3578 break;
3579
abbb3b8e 3580 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3581
fd08001f
EB
3582 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3583 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3584 sb->csum);
4eedeb75 3585
314b6dd0
JT
3586 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3587 GFP_NOFS);
3588 if (!page) {
abbb3b8e 3589 btrfs_err(device->fs_info,
314b6dd0 3590 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3591 bytenr);
3592 errors++;
4eedeb75 3593 continue;
abbb3b8e 3594 }
634554dc 3595
314b6dd0
JT
3596 /* Bump the refcount for wait_dev_supers() */
3597 get_page(page);
a512bbf8 3598
314b6dd0
JT
3599 disk_super = page_address(page);
3600 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3601
314b6dd0
JT
3602 /*
3603 * Directly use bios here instead of relying on the page cache
3604 * to do I/O, so we don't lose the ability to do integrity
3605 * checking.
3606 */
3607 bio = bio_alloc(GFP_NOFS, 1);
3608 bio_set_dev(bio, device->bdev);
3609 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3610 bio->bi_private = device;
3611 bio->bi_end_io = btrfs_end_super_write;
3612 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3613 offset_in_page(bytenr));
a512bbf8 3614
387125fc 3615 /*
314b6dd0
JT
3616 * We FUA only the first super block. The others we allow to
3617 * go down lazy and there's a short window where the on-disk
3618 * copies might still contain the older version.
387125fc 3619 */
314b6dd0 3620 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3621 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3622 bio->bi_opf |= REQ_FUA;
3623
3624 btrfsic_submit_bio(bio);
a512bbf8
YZ
3625 }
3626 return errors < i ? 0 : -1;
3627}
3628
abbb3b8e
DS
3629/*
3630 * Wait for write completion of superblocks done by write_dev_supers,
3631 * @max_mirrors same for write and wait phases.
3632 *
314b6dd0 3633 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3634 * date.
3635 */
3636static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3637{
abbb3b8e
DS
3638 int i;
3639 int errors = 0;
b6a535fa 3640 bool primary_failed = false;
abbb3b8e
DS
3641 u64 bytenr;
3642
3643 if (max_mirrors == 0)
3644 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3645
3646 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3647 struct page *page;
3648
abbb3b8e
DS
3649 bytenr = btrfs_sb_offset(i);
3650 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3651 device->commit_total_bytes)
3652 break;
3653
314b6dd0
JT
3654 page = find_get_page(device->bdev->bd_inode->i_mapping,
3655 bytenr >> PAGE_SHIFT);
3656 if (!page) {
abbb3b8e 3657 errors++;
b6a535fa
HM
3658 if (i == 0)
3659 primary_failed = true;
abbb3b8e
DS
3660 continue;
3661 }
314b6dd0
JT
3662 /* Page is submitted locked and unlocked once the IO completes */
3663 wait_on_page_locked(page);
3664 if (PageError(page)) {
abbb3b8e 3665 errors++;
b6a535fa
HM
3666 if (i == 0)
3667 primary_failed = true;
3668 }
abbb3b8e 3669
314b6dd0
JT
3670 /* Drop our reference */
3671 put_page(page);
abbb3b8e 3672
314b6dd0
JT
3673 /* Drop the reference from the writing run */
3674 put_page(page);
abbb3b8e
DS
3675 }
3676
b6a535fa
HM
3677 /* log error, force error return */
3678 if (primary_failed) {
3679 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3680 device->devid);
3681 return -1;
3682 }
3683
abbb3b8e
DS
3684 return errors < i ? 0 : -1;
3685}
3686
387125fc
CM
3687/*
3688 * endio for the write_dev_flush, this will wake anyone waiting
3689 * for the barrier when it is done
3690 */
4246a0b6 3691static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3692{
e0ae9994 3693 complete(bio->bi_private);
387125fc
CM
3694}
3695
3696/*
4fc6441a
AJ
3697 * Submit a flush request to the device if it supports it. Error handling is
3698 * done in the waiting counterpart.
387125fc 3699 */
4fc6441a 3700static void write_dev_flush(struct btrfs_device *device)
387125fc 3701{
c2a9c7ab 3702 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3703 struct bio *bio = device->flush_bio;
387125fc 3704
c2a9c7ab 3705 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3706 return;
387125fc 3707
e0ae9994 3708 bio_reset(bio);
387125fc 3709 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3710 bio_set_dev(bio, device->bdev);
8d910125 3711 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3712 init_completion(&device->flush_wait);
3713 bio->bi_private = &device->flush_wait;
387125fc 3714
43a01111 3715 btrfsic_submit_bio(bio);
1c3063b6 3716 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3717}
387125fc 3718
4fc6441a
AJ
3719/*
3720 * If the flush bio has been submitted by write_dev_flush, wait for it.
3721 */
8c27cb35 3722static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3723{
4fc6441a 3724 struct bio *bio = device->flush_bio;
387125fc 3725
1c3063b6 3726 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3727 return BLK_STS_OK;
387125fc 3728
1c3063b6 3729 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3730 wait_for_completion_io(&device->flush_wait);
387125fc 3731
8c27cb35 3732 return bio->bi_status;
387125fc 3733}
387125fc 3734
d10b82fe 3735static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3736{
6528b99d 3737 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3738 return -EIO;
387125fc
CM
3739 return 0;
3740}
3741
3742/*
3743 * send an empty flush down to each device in parallel,
3744 * then wait for them
3745 */
3746static int barrier_all_devices(struct btrfs_fs_info *info)
3747{
3748 struct list_head *head;
3749 struct btrfs_device *dev;
5af3e8cc 3750 int errors_wait = 0;
4e4cbee9 3751 blk_status_t ret;
387125fc 3752
1538e6c5 3753 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3754 /* send down all the barriers */
3755 head = &info->fs_devices->devices;
1538e6c5 3756 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3757 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3758 continue;
cea7c8bf 3759 if (!dev->bdev)
387125fc 3760 continue;
e12c9621 3761 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3762 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3763 continue;
3764
4fc6441a 3765 write_dev_flush(dev);
58efbc9f 3766 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3767 }
3768
3769 /* wait for all the barriers */
1538e6c5 3770 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3771 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3772 continue;
387125fc 3773 if (!dev->bdev) {
5af3e8cc 3774 errors_wait++;
387125fc
CM
3775 continue;
3776 }
e12c9621 3777 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3778 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3779 continue;
3780
4fc6441a 3781 ret = wait_dev_flush(dev);
401b41e5
AJ
3782 if (ret) {
3783 dev->last_flush_error = ret;
66b4993e
DS
3784 btrfs_dev_stat_inc_and_print(dev,
3785 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3786 errors_wait++;
401b41e5
AJ
3787 }
3788 }
3789
cea7c8bf 3790 if (errors_wait) {
401b41e5
AJ
3791 /*
3792 * At some point we need the status of all disks
3793 * to arrive at the volume status. So error checking
3794 * is being pushed to a separate loop.
3795 */
d10b82fe 3796 return check_barrier_error(info);
387125fc 3797 }
387125fc
CM
3798 return 0;
3799}
3800
943c6e99
ZL
3801int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3802{
8789f4fe
ZL
3803 int raid_type;
3804 int min_tolerated = INT_MAX;
943c6e99 3805
8789f4fe
ZL
3806 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3807 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3808 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3809 btrfs_raid_array[BTRFS_RAID_SINGLE].
3810 tolerated_failures);
943c6e99 3811
8789f4fe
ZL
3812 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3813 if (raid_type == BTRFS_RAID_SINGLE)
3814 continue;
41a6e891 3815 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3816 continue;
8c3e3582 3817 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3818 btrfs_raid_array[raid_type].
3819 tolerated_failures);
3820 }
943c6e99 3821
8789f4fe 3822 if (min_tolerated == INT_MAX) {
ab8d0fc4 3823 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3824 min_tolerated = 0;
3825 }
3826
3827 return min_tolerated;
943c6e99
ZL
3828}
3829
eece6a9c 3830int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3831{
e5e9a520 3832 struct list_head *head;
f2984462 3833 struct btrfs_device *dev;
a061fc8d 3834 struct btrfs_super_block *sb;
f2984462 3835 struct btrfs_dev_item *dev_item;
f2984462
CM
3836 int ret;
3837 int do_barriers;
a236aed1
CM
3838 int max_errors;
3839 int total_errors = 0;
a061fc8d 3840 u64 flags;
f2984462 3841
0b246afa 3842 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3843
3844 /*
3845 * max_mirrors == 0 indicates we're from commit_transaction,
3846 * not from fsync where the tree roots in fs_info have not
3847 * been consistent on disk.
3848 */
3849 if (max_mirrors == 0)
3850 backup_super_roots(fs_info);
f2984462 3851
0b246afa 3852 sb = fs_info->super_for_commit;
a061fc8d 3853 dev_item = &sb->dev_item;
e5e9a520 3854
0b246afa
JM
3855 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3856 head = &fs_info->fs_devices->devices;
3857 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3858
5af3e8cc 3859 if (do_barriers) {
0b246afa 3860 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3861 if (ret) {
3862 mutex_unlock(
0b246afa
JM
3863 &fs_info->fs_devices->device_list_mutex);
3864 btrfs_handle_fs_error(fs_info, ret,
3865 "errors while submitting device barriers.");
5af3e8cc
SB
3866 return ret;
3867 }
3868 }
387125fc 3869
1538e6c5 3870 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3871 if (!dev->bdev) {
3872 total_errors++;
3873 continue;
3874 }
e12c9621 3875 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3876 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3877 continue;
3878
2b82032c 3879 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3880 btrfs_set_stack_device_type(dev_item, dev->type);
3881 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3882 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3883 dev->commit_total_bytes);
ce7213c7
MX
3884 btrfs_set_stack_device_bytes_used(dev_item,
3885 dev->commit_bytes_used);
a061fc8d
CM
3886 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3887 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3888 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3889 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3890 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3891 BTRFS_FSID_SIZE);
a512bbf8 3892
a061fc8d
CM
3893 flags = btrfs_super_flags(sb);
3894 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3895
75cb857d
QW
3896 ret = btrfs_validate_write_super(fs_info, sb);
3897 if (ret < 0) {
3898 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3899 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3900 "unexpected superblock corruption detected");
3901 return -EUCLEAN;
3902 }
3903
abbb3b8e 3904 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3905 if (ret)
3906 total_errors++;
f2984462 3907 }
a236aed1 3908 if (total_errors > max_errors) {
0b246afa
JM
3909 btrfs_err(fs_info, "%d errors while writing supers",
3910 total_errors);
3911 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3912
9d565ba4 3913 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3914 btrfs_handle_fs_error(fs_info, -EIO,
3915 "%d errors while writing supers",
3916 total_errors);
9d565ba4 3917 return -EIO;
a236aed1 3918 }
f2984462 3919
a512bbf8 3920 total_errors = 0;
1538e6c5 3921 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3922 if (!dev->bdev)
3923 continue;
e12c9621 3924 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3925 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3926 continue;
3927
abbb3b8e 3928 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3929 if (ret)
3930 total_errors++;
f2984462 3931 }
0b246afa 3932 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3933 if (total_errors > max_errors) {
0b246afa
JM
3934 btrfs_handle_fs_error(fs_info, -EIO,
3935 "%d errors while writing supers",
3936 total_errors);
79787eaa 3937 return -EIO;
a236aed1 3938 }
f2984462
CM
3939 return 0;
3940}
3941
cb517eab
MX
3942/* Drop a fs root from the radix tree and free it. */
3943void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3944 struct btrfs_root *root)
2619ba1f 3945{
4785e24f
JB
3946 bool drop_ref = false;
3947
4df27c4d 3948 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3949 radix_tree_delete(&fs_info->fs_roots_radix,
3950 (unsigned long)root->root_key.objectid);
af01d2e5 3951 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3952 drop_ref = true;
4df27c4d 3953 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3954
1c1ea4f7 3955 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3956 ASSERT(root->log_root == NULL);
1c1ea4f7 3957 if (root->reloc_root) {
00246528 3958 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3959 root->reloc_root = NULL;
3960 }
3961 }
3321719e 3962
faa2dbf0
JB
3963 if (root->free_ino_pinned)
3964 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3965 if (root->free_ino_ctl)
3966 __btrfs_remove_free_space_cache(root->free_ino_ctl);
0e996e7f
JB
3967 if (root->ino_cache_inode) {
3968 iput(root->ino_cache_inode);
3969 root->ino_cache_inode = NULL;
3970 }
4785e24f
JB
3971 if (drop_ref)
3972 btrfs_put_root(root);
2619ba1f
CM
3973}
3974
c146afad 3975int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3976{
c146afad
YZ
3977 u64 root_objectid = 0;
3978 struct btrfs_root *gang[8];
65d33fd7
QW
3979 int i = 0;
3980 int err = 0;
3981 unsigned int ret = 0;
e089f05c 3982
c146afad 3983 while (1) {
efc34534 3984 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
3985 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3986 (void **)gang, root_objectid,
3987 ARRAY_SIZE(gang));
65d33fd7 3988 if (!ret) {
efc34534 3989 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 3990 break;
65d33fd7 3991 }
5d4f98a2 3992 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3993
c146afad 3994 for (i = 0; i < ret; i++) {
65d33fd7
QW
3995 /* Avoid to grab roots in dead_roots */
3996 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3997 gang[i] = NULL;
3998 continue;
3999 }
4000 /* grab all the search result for later use */
00246528 4001 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4002 }
efc34534 4003 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4004
65d33fd7
QW
4005 for (i = 0; i < ret; i++) {
4006 if (!gang[i])
4007 continue;
c146afad 4008 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4009 err = btrfs_orphan_cleanup(gang[i]);
4010 if (err)
65d33fd7 4011 break;
00246528 4012 btrfs_put_root(gang[i]);
c146afad
YZ
4013 }
4014 root_objectid++;
4015 }
65d33fd7
QW
4016
4017 /* release the uncleaned roots due to error */
4018 for (; i < ret; i++) {
4019 if (gang[i])
00246528 4020 btrfs_put_root(gang[i]);
65d33fd7
QW
4021 }
4022 return err;
c146afad 4023}
a2135011 4024
6bccf3ab 4025int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4026{
6bccf3ab 4027 struct btrfs_root *root = fs_info->tree_root;
c146afad 4028 struct btrfs_trans_handle *trans;
a74a4b97 4029
0b246afa 4030 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4031 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4032 mutex_unlock(&fs_info->cleaner_mutex);
4033 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4034
4035 /* wait until ongoing cleanup work done */
0b246afa
JM
4036 down_write(&fs_info->cleanup_work_sem);
4037 up_write(&fs_info->cleanup_work_sem);
c71bf099 4038
7a7eaa40 4039 trans = btrfs_join_transaction(root);
3612b495
TI
4040 if (IS_ERR(trans))
4041 return PTR_ERR(trans);
3a45bb20 4042 return btrfs_commit_transaction(trans);
c146afad
YZ
4043}
4044
b105e927 4045void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4046{
c146afad
YZ
4047 int ret;
4048
afcdd129 4049 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4050 /*
4051 * We don't want the cleaner to start new transactions, add more delayed
4052 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4053 * because that frees the task_struct, and the transaction kthread might
4054 * still try to wake up the cleaner.
4055 */
4056 kthread_park(fs_info->cleaner_kthread);
c146afad 4057
7343dd61 4058 /* wait for the qgroup rescan worker to stop */
d06f23d6 4059 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4060
803b2f54
SB
4061 /* wait for the uuid_scan task to finish */
4062 down(&fs_info->uuid_tree_rescan_sem);
4063 /* avoid complains from lockdep et al., set sem back to initial state */
4064 up(&fs_info->uuid_tree_rescan_sem);
4065
837d5b6e 4066 /* pause restriper - we want to resume on mount */
aa1b8cd4 4067 btrfs_pause_balance(fs_info);
837d5b6e 4068
8dabb742
SB
4069 btrfs_dev_replace_suspend_for_unmount(fs_info);
4070
aa1b8cd4 4071 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4072
4073 /* wait for any defraggers to finish */
4074 wait_event(fs_info->transaction_wait,
4075 (atomic_read(&fs_info->defrag_running) == 0));
4076
4077 /* clear out the rbtree of defraggable inodes */
26176e7c 4078 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4079
21c7e756
MX
4080 cancel_work_sync(&fs_info->async_reclaim_work);
4081
b0643e59
DZ
4082 /* Cancel or finish ongoing discard work */
4083 btrfs_discard_cleanup(fs_info);
4084
bc98a42c 4085 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4086 /*
d6fd0ae2
OS
4087 * The cleaner kthread is stopped, so do one final pass over
4088 * unused block groups.
e44163e1 4089 */
0b246afa 4090 btrfs_delete_unused_bgs(fs_info);
e44163e1 4091
f0cc2cd7
FM
4092 /*
4093 * There might be existing delayed inode workers still running
4094 * and holding an empty delayed inode item. We must wait for
4095 * them to complete first because they can create a transaction.
4096 * This happens when someone calls btrfs_balance_delayed_items()
4097 * and then a transaction commit runs the same delayed nodes
4098 * before any delayed worker has done something with the nodes.
4099 * We must wait for any worker here and not at transaction
4100 * commit time since that could cause a deadlock.
4101 * This is a very rare case.
4102 */
4103 btrfs_flush_workqueue(fs_info->delayed_workers);
4104
6bccf3ab 4105 ret = btrfs_commit_super(fs_info);
acce952b 4106 if (ret)
04892340 4107 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4108 }
4109
af722733
LB
4110 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4111 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4112 btrfs_error_commit_super(fs_info);
0f7d52f4 4113
e3029d9f
AV
4114 kthread_stop(fs_info->transaction_kthread);
4115 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4116
e187831e 4117 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4118 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4119
5958253c
QW
4120 if (btrfs_check_quota_leak(fs_info)) {
4121 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4122 btrfs_err(fs_info, "qgroup reserved space leaked");
4123 }
4124
04892340 4125 btrfs_free_qgroup_config(fs_info);
fe816d0f 4126 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4127
963d678b 4128 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4129 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4130 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4131 }
bcc63abb 4132
4297ff84
JB
4133 if (percpu_counter_sum(&fs_info->dio_bytes))
4134 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4135 percpu_counter_sum(&fs_info->dio_bytes));
4136
6618a59b 4137 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4138 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4139
1a4319cc
LB
4140 btrfs_put_block_group_cache(fs_info);
4141
de348ee0
WS
4142 /*
4143 * we must make sure there is not any read request to
4144 * submit after we stopping all workers.
4145 */
4146 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4147 btrfs_stop_all_workers(fs_info);
4148
afcdd129 4149 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4150 free_root_pointers(fs_info, true);
8c38938c 4151 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4152
4e19443d
JB
4153 /*
4154 * We must free the block groups after dropping the fs_roots as we could
4155 * have had an IO error and have left over tree log blocks that aren't
4156 * cleaned up until the fs roots are freed. This makes the block group
4157 * accounting appear to be wrong because there's pending reserved bytes,
4158 * so make sure we do the block group cleanup afterwards.
4159 */
4160 btrfs_free_block_groups(fs_info);
4161
13e6c37b 4162 iput(fs_info->btree_inode);
d6bfde87 4163
21adbd5c 4164#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4165 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4166 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4167#endif
4168
0b86a832 4169 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4170 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4171}
4172
b9fab919
CM
4173int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4174 int atomic)
5f39d397 4175{
1259ab75 4176 int ret;
727011e0 4177 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4178
0b32f4bb 4179 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4180 if (!ret)
4181 return ret;
4182
4183 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4184 parent_transid, atomic);
4185 if (ret == -EAGAIN)
4186 return ret;
1259ab75 4187 return !ret;
5f39d397
CM
4188}
4189
5f39d397
CM
4190void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4191{
0b246afa 4192 struct btrfs_fs_info *fs_info;
06ea65a3 4193 struct btrfs_root *root;
5f39d397 4194 u64 transid = btrfs_header_generation(buf);
b9473439 4195 int was_dirty;
b4ce94de 4196
06ea65a3
JB
4197#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4198 /*
4199 * This is a fast path so only do this check if we have sanity tests
52042d8e 4200 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4201 * outside of the sanity tests.
4202 */
b0132a3b 4203 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4204 return;
4205#endif
4206 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4207 fs_info = root->fs_info;
b9447ef8 4208 btrfs_assert_tree_locked(buf);
0b246afa 4209 if (transid != fs_info->generation)
5d163e0e 4210 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4211 buf->start, transid, fs_info->generation);
0b32f4bb 4212 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4213 if (!was_dirty)
104b4e51
NB
4214 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4215 buf->len,
4216 fs_info->dirty_metadata_batch);
1f21ef0a 4217#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4218 /*
4219 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4220 * but item data not updated.
4221 * So here we should only check item pointers, not item data.
4222 */
4223 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4224 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4225 btrfs_print_leaf(buf);
1f21ef0a
FM
4226 ASSERT(0);
4227 }
4228#endif
eb60ceac
CM
4229}
4230
2ff7e61e 4231static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4232 int flush_delayed)
16cdcec7
MX
4233{
4234 /*
4235 * looks as though older kernels can get into trouble with
4236 * this code, they end up stuck in balance_dirty_pages forever
4237 */
e2d84521 4238 int ret;
16cdcec7
MX
4239
4240 if (current->flags & PF_MEMALLOC)
4241 return;
4242
b53d3f5d 4243 if (flush_delayed)
2ff7e61e 4244 btrfs_balance_delayed_items(fs_info);
16cdcec7 4245
d814a491
EL
4246 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4247 BTRFS_DIRTY_METADATA_THRESH,
4248 fs_info->dirty_metadata_batch);
e2d84521 4249 if (ret > 0) {
0b246afa 4250 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4251 }
16cdcec7
MX
4252}
4253
2ff7e61e 4254void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4255{
2ff7e61e 4256 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4257}
585ad2c3 4258
2ff7e61e 4259void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4260{
2ff7e61e 4261 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4262}
6b80053d 4263
581c1760
QW
4264int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4265 struct btrfs_key *first_key)
6b80053d 4266{
5ab12d1f 4267 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4268 level, first_key);
6b80053d 4269}
0da5468f 4270
2ff7e61e 4271static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4272{
fe816d0f
NB
4273 /* cleanup FS via transaction */
4274 btrfs_cleanup_transaction(fs_info);
4275
0b246afa 4276 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4277 btrfs_run_delayed_iputs(fs_info);
0b246afa 4278 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4279
0b246afa
JM
4280 down_write(&fs_info->cleanup_work_sem);
4281 up_write(&fs_info->cleanup_work_sem);
acce952b 4282}
4283
ef67963d
JB
4284static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4285{
4286 struct btrfs_root *gang[8];
4287 u64 root_objectid = 0;
4288 int ret;
4289
4290 spin_lock(&fs_info->fs_roots_radix_lock);
4291 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4292 (void **)gang, root_objectid,
4293 ARRAY_SIZE(gang))) != 0) {
4294 int i;
4295
4296 for (i = 0; i < ret; i++)
4297 gang[i] = btrfs_grab_root(gang[i]);
4298 spin_unlock(&fs_info->fs_roots_radix_lock);
4299
4300 for (i = 0; i < ret; i++) {
4301 if (!gang[i])
4302 continue;
4303 root_objectid = gang[i]->root_key.objectid;
4304 btrfs_free_log(NULL, gang[i]);
4305 btrfs_put_root(gang[i]);
4306 }
4307 root_objectid++;
4308 spin_lock(&fs_info->fs_roots_radix_lock);
4309 }
4310 spin_unlock(&fs_info->fs_roots_radix_lock);
4311 btrfs_free_log_root_tree(NULL, fs_info);
4312}
4313
143bede5 4314static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4315{
acce952b 4316 struct btrfs_ordered_extent *ordered;
acce952b 4317
199c2a9c 4318 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4319 /*
4320 * This will just short circuit the ordered completion stuff which will
4321 * make sure the ordered extent gets properly cleaned up.
4322 */
199c2a9c 4323 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4324 root_extent_list)
4325 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4326 spin_unlock(&root->ordered_extent_lock);
4327}
4328
4329static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4330{
4331 struct btrfs_root *root;
4332 struct list_head splice;
4333
4334 INIT_LIST_HEAD(&splice);
4335
4336 spin_lock(&fs_info->ordered_root_lock);
4337 list_splice_init(&fs_info->ordered_roots, &splice);
4338 while (!list_empty(&splice)) {
4339 root = list_first_entry(&splice, struct btrfs_root,
4340 ordered_root);
1de2cfde
JB
4341 list_move_tail(&root->ordered_root,
4342 &fs_info->ordered_roots);
199c2a9c 4343
2a85d9ca 4344 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4345 btrfs_destroy_ordered_extents(root);
4346
2a85d9ca
LB
4347 cond_resched();
4348 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4349 }
4350 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4351
4352 /*
4353 * We need this here because if we've been flipped read-only we won't
4354 * get sync() from the umount, so we need to make sure any ordered
4355 * extents that haven't had their dirty pages IO start writeout yet
4356 * actually get run and error out properly.
4357 */
4358 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4359}
4360
35a3621b 4361static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4362 struct btrfs_fs_info *fs_info)
acce952b 4363{
4364 struct rb_node *node;
4365 struct btrfs_delayed_ref_root *delayed_refs;
4366 struct btrfs_delayed_ref_node *ref;
4367 int ret = 0;
4368
4369 delayed_refs = &trans->delayed_refs;
4370
4371 spin_lock(&delayed_refs->lock);
d7df2c79 4372 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4373 spin_unlock(&delayed_refs->lock);
b79ce3dd 4374 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4375 return ret;
4376 }
4377
5c9d028b 4378 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4379 struct btrfs_delayed_ref_head *head;
0e0adbcf 4380 struct rb_node *n;
e78417d1 4381 bool pin_bytes = false;
acce952b 4382
d7df2c79
JB
4383 head = rb_entry(node, struct btrfs_delayed_ref_head,
4384 href_node);
3069bd26 4385 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4386 continue;
3069bd26 4387
d7df2c79 4388 spin_lock(&head->lock);
e3d03965 4389 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4390 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4391 ref_node);
d7df2c79 4392 ref->in_tree = 0;
e3d03965 4393 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4394 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4395 if (!list_empty(&ref->add_list))
4396 list_del(&ref->add_list);
d7df2c79
JB
4397 atomic_dec(&delayed_refs->num_entries);
4398 btrfs_put_delayed_ref(ref);
e78417d1 4399 }
d7df2c79
JB
4400 if (head->must_insert_reserved)
4401 pin_bytes = true;
4402 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4403 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4404 spin_unlock(&head->lock);
4405 spin_unlock(&delayed_refs->lock);
4406 mutex_unlock(&head->mutex);
acce952b 4407
f603bb94
NB
4408 if (pin_bytes) {
4409 struct btrfs_block_group *cache;
4410
4411 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4412 BUG_ON(!cache);
4413
4414 spin_lock(&cache->space_info->lock);
4415 spin_lock(&cache->lock);
4416 cache->pinned += head->num_bytes;
4417 btrfs_space_info_update_bytes_pinned(fs_info,
4418 cache->space_info, head->num_bytes);
4419 cache->reserved -= head->num_bytes;
4420 cache->space_info->bytes_reserved -= head->num_bytes;
4421 spin_unlock(&cache->lock);
4422 spin_unlock(&cache->space_info->lock);
4423 percpu_counter_add_batch(
4424 &cache->space_info->total_bytes_pinned,
4425 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4426
4427 btrfs_put_block_group(cache);
4428
4429 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4430 head->bytenr + head->num_bytes - 1);
4431 }
31890da0 4432 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4433 btrfs_put_delayed_ref_head(head);
acce952b 4434 cond_resched();
4435 spin_lock(&delayed_refs->lock);
4436 }
81f7eb00 4437 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4438
4439 spin_unlock(&delayed_refs->lock);
4440
4441 return ret;
4442}
4443
143bede5 4444static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4445{
4446 struct btrfs_inode *btrfs_inode;
4447 struct list_head splice;
4448
4449 INIT_LIST_HEAD(&splice);
4450
eb73c1b7
MX
4451 spin_lock(&root->delalloc_lock);
4452 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4453
4454 while (!list_empty(&splice)) {
fe816d0f 4455 struct inode *inode = NULL;
eb73c1b7
MX
4456 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4457 delalloc_inodes);
fe816d0f 4458 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4459 spin_unlock(&root->delalloc_lock);
acce952b 4460
fe816d0f
NB
4461 /*
4462 * Make sure we get a live inode and that it'll not disappear
4463 * meanwhile.
4464 */
4465 inode = igrab(&btrfs_inode->vfs_inode);
4466 if (inode) {
4467 invalidate_inode_pages2(inode->i_mapping);
4468 iput(inode);
4469 }
eb73c1b7 4470 spin_lock(&root->delalloc_lock);
acce952b 4471 }
eb73c1b7
MX
4472 spin_unlock(&root->delalloc_lock);
4473}
4474
4475static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4476{
4477 struct btrfs_root *root;
4478 struct list_head splice;
4479
4480 INIT_LIST_HEAD(&splice);
4481
4482 spin_lock(&fs_info->delalloc_root_lock);
4483 list_splice_init(&fs_info->delalloc_roots, &splice);
4484 while (!list_empty(&splice)) {
4485 root = list_first_entry(&splice, struct btrfs_root,
4486 delalloc_root);
00246528 4487 root = btrfs_grab_root(root);
eb73c1b7
MX
4488 BUG_ON(!root);
4489 spin_unlock(&fs_info->delalloc_root_lock);
4490
4491 btrfs_destroy_delalloc_inodes(root);
00246528 4492 btrfs_put_root(root);
eb73c1b7
MX
4493
4494 spin_lock(&fs_info->delalloc_root_lock);
4495 }
4496 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4497}
4498
2ff7e61e 4499static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4500 struct extent_io_tree *dirty_pages,
4501 int mark)
4502{
4503 int ret;
acce952b 4504 struct extent_buffer *eb;
4505 u64 start = 0;
4506 u64 end;
acce952b 4507
4508 while (1) {
4509 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4510 mark, NULL);
acce952b 4511 if (ret)
4512 break;
4513
91166212 4514 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4515 while (start <= end) {
0b246afa
JM
4516 eb = find_extent_buffer(fs_info, start);
4517 start += fs_info->nodesize;
fd8b2b61 4518 if (!eb)
acce952b 4519 continue;
fd8b2b61 4520 wait_on_extent_buffer_writeback(eb);
acce952b 4521
fd8b2b61
JB
4522 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4523 &eb->bflags))
4524 clear_extent_buffer_dirty(eb);
4525 free_extent_buffer_stale(eb);
acce952b 4526 }
4527 }
4528
4529 return ret;
4530}
4531
2ff7e61e 4532static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4533 struct extent_io_tree *unpin)
acce952b 4534{
acce952b 4535 u64 start;
4536 u64 end;
4537 int ret;
4538
acce952b 4539 while (1) {
0e6ec385
FM
4540 struct extent_state *cached_state = NULL;
4541
fcd5e742
LF
4542 /*
4543 * The btrfs_finish_extent_commit() may get the same range as
4544 * ours between find_first_extent_bit and clear_extent_dirty.
4545 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4546 * the same extent range.
4547 */
4548 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4549 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4550 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4551 if (ret) {
4552 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4553 break;
fcd5e742 4554 }
acce952b 4555
0e6ec385
FM
4556 clear_extent_dirty(unpin, start, end, &cached_state);
4557 free_extent_state(cached_state);
2ff7e61e 4558 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4559 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4560 cond_resched();
4561 }
4562
4563 return 0;
4564}
4565
32da5386 4566static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4567{
4568 struct inode *inode;
4569
4570 inode = cache->io_ctl.inode;
4571 if (inode) {
4572 invalidate_inode_pages2(inode->i_mapping);
4573 BTRFS_I(inode)->generation = 0;
4574 cache->io_ctl.inode = NULL;
4575 iput(inode);
4576 }
4577 btrfs_put_block_group(cache);
4578}
4579
4580void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4581 struct btrfs_fs_info *fs_info)
c79a1751 4582{
32da5386 4583 struct btrfs_block_group *cache;
c79a1751
LB
4584
4585 spin_lock(&cur_trans->dirty_bgs_lock);
4586 while (!list_empty(&cur_trans->dirty_bgs)) {
4587 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4588 struct btrfs_block_group,
c79a1751 4589 dirty_list);
c79a1751
LB
4590
4591 if (!list_empty(&cache->io_list)) {
4592 spin_unlock(&cur_trans->dirty_bgs_lock);
4593 list_del_init(&cache->io_list);
4594 btrfs_cleanup_bg_io(cache);
4595 spin_lock(&cur_trans->dirty_bgs_lock);
4596 }
4597
4598 list_del_init(&cache->dirty_list);
4599 spin_lock(&cache->lock);
4600 cache->disk_cache_state = BTRFS_DC_ERROR;
4601 spin_unlock(&cache->lock);
4602
4603 spin_unlock(&cur_trans->dirty_bgs_lock);
4604 btrfs_put_block_group(cache);
ba2c4d4e 4605 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4606 spin_lock(&cur_trans->dirty_bgs_lock);
4607 }
4608 spin_unlock(&cur_trans->dirty_bgs_lock);
4609
45ae2c18
NB
4610 /*
4611 * Refer to the definition of io_bgs member for details why it's safe
4612 * to use it without any locking
4613 */
c79a1751
LB
4614 while (!list_empty(&cur_trans->io_bgs)) {
4615 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4616 struct btrfs_block_group,
c79a1751 4617 io_list);
c79a1751
LB
4618
4619 list_del_init(&cache->io_list);
4620 spin_lock(&cache->lock);
4621 cache->disk_cache_state = BTRFS_DC_ERROR;
4622 spin_unlock(&cache->lock);
4623 btrfs_cleanup_bg_io(cache);
4624 }
4625}
4626
49b25e05 4627void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4628 struct btrfs_fs_info *fs_info)
49b25e05 4629{
bbbf7243
NB
4630 struct btrfs_device *dev, *tmp;
4631
2ff7e61e 4632 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4633 ASSERT(list_empty(&cur_trans->dirty_bgs));
4634 ASSERT(list_empty(&cur_trans->io_bgs));
4635
bbbf7243
NB
4636 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4637 post_commit_list) {
4638 list_del_init(&dev->post_commit_list);
4639 }
4640
2ff7e61e 4641 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4642
4a9d8bde 4643 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4644 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4645
4a9d8bde 4646 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4647 wake_up(&fs_info->transaction_wait);
49b25e05 4648
ccdf9b30 4649 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4650
2ff7e61e 4651 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4652 EXTENT_DIRTY);
fe119a6e 4653 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4654
4a9d8bde
MX
4655 cur_trans->state =TRANS_STATE_COMPLETED;
4656 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4657}
4658
2ff7e61e 4659static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4660{
4661 struct btrfs_transaction *t;
acce952b 4662
0b246afa 4663 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4664
0b246afa
JM
4665 spin_lock(&fs_info->trans_lock);
4666 while (!list_empty(&fs_info->trans_list)) {
4667 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4668 struct btrfs_transaction, list);
4669 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4670 refcount_inc(&t->use_count);
0b246afa 4671 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4672 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4673 btrfs_put_transaction(t);
0b246afa 4674 spin_lock(&fs_info->trans_lock);
724e2315
JB
4675 continue;
4676 }
0b246afa 4677 if (t == fs_info->running_transaction) {
724e2315 4678 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4679 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4680 /*
4681 * We wait for 0 num_writers since we don't hold a trans
4682 * handle open currently for this transaction.
4683 */
4684 wait_event(t->writer_wait,
4685 atomic_read(&t->num_writers) == 0);
4686 } else {
0b246afa 4687 spin_unlock(&fs_info->trans_lock);
724e2315 4688 }
2ff7e61e 4689 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4690
0b246afa
JM
4691 spin_lock(&fs_info->trans_lock);
4692 if (t == fs_info->running_transaction)
4693 fs_info->running_transaction = NULL;
acce952b 4694 list_del_init(&t->list);
0b246afa 4695 spin_unlock(&fs_info->trans_lock);
acce952b 4696
724e2315 4697 btrfs_put_transaction(t);
2ff7e61e 4698 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4699 spin_lock(&fs_info->trans_lock);
724e2315 4700 }
0b246afa
JM
4701 spin_unlock(&fs_info->trans_lock);
4702 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4703 btrfs_destroy_delayed_inodes(fs_info);
4704 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4705 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4706 btrfs_drop_all_logs(fs_info);
0b246afa 4707 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4708
4709 return 0;
4710}
4711
e8c9f186 4712static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4713 /* mandatory callbacks */
0b86a832 4714 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4715 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4716};