Btrfs: fix tree mod logging
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
6463fe58 33#include <linux/uuid.h>
803b2f54 34#include <linux/semaphore.h>
7e75bf3f 35#include <asm/unaligned.h>
eb60ceac
CM
36#include "ctree.h"
37#include "disk-io.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
8b712842 42#include "async-thread.h"
925baedd 43#include "locking.h"
e02119d5 44#include "tree-log.h"
fa9c0d79 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
569e0f35
JB
62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
143bede5 64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
143bede5 67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
48a3b636
ES
73static int btrfs_cleanup_transaction(struct btrfs_root *root);
74static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 75
d352ac68
CM
76/*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
ce9adaa5
CM
81struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
22c59948 87 int metadata;
ce9adaa5 88 struct list_head list;
8b712842 89 struct btrfs_work work;
ce9adaa5 90};
0da5468f 91
d352ac68
CM
92/*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
44b8bd7e
CM
97struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
4a69a410
CM
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
103 int rw;
104 int mirror_num;
c8b97818 105 unsigned long bio_flags;
eaf25d93
CM
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
8b712842 111 struct btrfs_work work;
79787eaa 112 int error;
44b8bd7e
CM
113};
114
85d4e461
CM
115/*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
4008c04a 125 *
85d4e461
CM
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 129 *
85d4e461
CM
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 133 *
85d4e461
CM
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
4008c04a
CM
137 */
138#ifdef CONFIG_DEBUG_LOCK_ALLOC
139# if BTRFS_MAX_LEVEL != 8
140# error
141# endif
85d4e461
CM
142
143static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148} btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 160 { .id = 0, .name_stem = "tree" },
4008c04a 161};
85d4e461
CM
162
163void __init btrfs_init_lockdep(void)
164{
165 int i, j;
166
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
174 }
175}
176
177void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
179{
180 struct btrfs_lockdep_keyset *ks;
181
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
188
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
191}
192
4008c04a
CM
193#endif
194
d352ac68
CM
195/*
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
198 */
b2950863 199static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 200 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 201 int create)
7eccb903 202{
5f39d397
CM
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
206
890871be 207 read_lock(&em_tree->lock);
d1310b2e 208 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 212 read_unlock(&em_tree->lock);
5f39d397 213 goto out;
a061fc8d 214 }
890871be 215 read_unlock(&em_tree->lock);
7b13b7b1 216
172ddd60 217 em = alloc_extent_map();
5f39d397
CM
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
221 }
222 em->start = 0;
0afbaf8c 223 em->len = (u64)-1;
c8b97818 224 em->block_len = (u64)-1;
5f39d397 225 em->block_start = 0;
a061fc8d 226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 227
890871be 228 write_lock(&em_tree->lock);
09a2a8f9 229 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
230 if (ret == -EEXIST) {
231 free_extent_map(em);
7b13b7b1 232 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 233 if (!em)
0433f20d 234 em = ERR_PTR(-EIO);
5f39d397 235 } else if (ret) {
7b13b7b1 236 free_extent_map(em);
0433f20d 237 em = ERR_PTR(ret);
5f39d397 238 }
890871be 239 write_unlock(&em_tree->lock);
7b13b7b1 240
5f39d397
CM
241out:
242 return em;
7eccb903
CM
243}
244
b0496686 245u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 246{
163e783e 247 return crc32c(seed, data, len);
19c00ddc
CM
248}
249
250void btrfs_csum_final(u32 crc, char *result)
251{
7e75bf3f 252 put_unaligned_le32(~crc, result);
19c00ddc
CM
253}
254
d352ac68
CM
255/*
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
258 */
19c00ddc
CM
259static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
261{
6c41761f 262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 263 char *result = NULL;
19c00ddc
CM
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
607d432d 272 unsigned long inline_result;
19c00ddc
CM
273
274 len = buf->len - offset;
d397712b 275 while (len > 0) {
19c00ddc 276 err = map_private_extent_buffer(buf, offset, 32,
a6591715 277 &kaddr, &map_start, &map_len);
d397712b 278 if (err)
19c00ddc 279 return 1;
19c00ddc 280 cur_len = min(len, map_len - (offset - map_start));
b0496686 281 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
19c00ddc 285 }
607d432d
JB
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
292 }
293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 303 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
304 "failed on %llu wanted %X found %X "
305 "level %d\n",
c1c9ff7c
GU
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75
CM
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
2ac55d41 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 340 0, &cached_state);
0b32f4bb 341 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
7a36ddec 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 347 "found %llu\n",
c1c9ff7c 348 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 349 ret = 1;
0b32f4bb 350 clear_extent_buffer_uptodate(eb);
33958dc6 351out:
2ac55d41
JB
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 &cached_state, GFP_NOFS);
1259ab75 354 return ret;
1259ab75
CM
355}
356
1104a885
DS
357/*
358 * Return 0 if the superblock checksum type matches the checksum value of that
359 * algorithm. Pass the raw disk superblock data.
360 */
361static int btrfs_check_super_csum(char *raw_disk_sb)
362{
363 struct btrfs_super_block *disk_sb =
364 (struct btrfs_super_block *)raw_disk_sb;
365 u16 csum_type = btrfs_super_csum_type(disk_sb);
366 int ret = 0;
367
368 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369 u32 crc = ~(u32)0;
370 const int csum_size = sizeof(crc);
371 char result[csum_size];
372
373 /*
374 * The super_block structure does not span the whole
375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 * is filled with zeros and is included in the checkum.
377 */
378 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380 btrfs_csum_final(crc, result);
381
382 if (memcmp(raw_disk_sb, result, csum_size))
383 ret = 1;
667e7d94
CM
384
385 if (ret && btrfs_super_generation(disk_sb) < 10) {
386 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
387 ret = 0;
388 }
1104a885
DS
389 }
390
391 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
392 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
393 csum_type);
394 ret = 1;
395 }
396
397 return ret;
398}
399
d352ac68
CM
400/*
401 * helper to read a given tree block, doing retries as required when
402 * the checksums don't match and we have alternate mirrors to try.
403 */
f188591e
CM
404static int btree_read_extent_buffer_pages(struct btrfs_root *root,
405 struct extent_buffer *eb,
ca7a79ad 406 u64 start, u64 parent_transid)
f188591e
CM
407{
408 struct extent_io_tree *io_tree;
ea466794 409 int failed = 0;
f188591e
CM
410 int ret;
411 int num_copies = 0;
412 int mirror_num = 0;
ea466794 413 int failed_mirror = 0;
f188591e 414
a826d6dc 415 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
416 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
417 while (1) {
bb82ab88
AJ
418 ret = read_extent_buffer_pages(io_tree, eb, start,
419 WAIT_COMPLETE,
f188591e 420 btree_get_extent, mirror_num);
256dd1bb
SB
421 if (!ret) {
422 if (!verify_parent_transid(io_tree, eb,
b9fab919 423 parent_transid, 0))
256dd1bb
SB
424 break;
425 else
426 ret = -EIO;
427 }
d397712b 428
a826d6dc
JB
429 /*
430 * This buffer's crc is fine, but its contents are corrupted, so
431 * there is no reason to read the other copies, they won't be
432 * any less wrong.
433 */
434 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
435 break;
436
5d964051 437 num_copies = btrfs_num_copies(root->fs_info,
f188591e 438 eb->start, eb->len);
4235298e 439 if (num_copies == 1)
ea466794 440 break;
4235298e 441
5cf1ab56
JB
442 if (!failed_mirror) {
443 failed = 1;
444 failed_mirror = eb->read_mirror;
445 }
446
f188591e 447 mirror_num++;
ea466794
JB
448 if (mirror_num == failed_mirror)
449 mirror_num++;
450
4235298e 451 if (mirror_num > num_copies)
ea466794 452 break;
f188591e 453 }
ea466794 454
c0901581 455 if (failed && !ret && failed_mirror)
ea466794
JB
456 repair_eb_io_failure(root, eb, failed_mirror);
457
458 return ret;
f188591e 459}
19c00ddc 460
d352ac68 461/*
d397712b
CM
462 * checksum a dirty tree block before IO. This has extra checks to make sure
463 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 464 */
d397712b 465
b2950863 466static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 467{
4eee4fa4 468 u64 start = page_offset(page);
19c00ddc 469 u64 found_start;
19c00ddc 470 struct extent_buffer *eb;
f188591e 471
4f2de97a
JB
472 eb = (struct extent_buffer *)page->private;
473 if (page != eb->pages[0])
474 return 0;
19c00ddc 475 found_start = btrfs_header_bytenr(eb);
fae7f21c 476 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 477 return 0;
19c00ddc 478 csum_tree_block(root, eb, 0);
19c00ddc
CM
479 return 0;
480}
481
2b82032c
YZ
482static int check_tree_block_fsid(struct btrfs_root *root,
483 struct extent_buffer *eb)
484{
485 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
486 u8 fsid[BTRFS_UUID_SIZE];
487 int ret = 1;
488
0a4e5586 489 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
490 while (fs_devices) {
491 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
492 ret = 0;
493 break;
494 }
495 fs_devices = fs_devices->seed;
496 }
497 return ret;
498}
499
a826d6dc
JB
500#define CORRUPT(reason, eb, root, slot) \
501 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
502 "root=%llu, slot=%d\n", reason, \
c1c9ff7c 503 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
504
505static noinline int check_leaf(struct btrfs_root *root,
506 struct extent_buffer *leaf)
507{
508 struct btrfs_key key;
509 struct btrfs_key leaf_key;
510 u32 nritems = btrfs_header_nritems(leaf);
511 int slot;
512
513 if (nritems == 0)
514 return 0;
515
516 /* Check the 0 item */
517 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
518 BTRFS_LEAF_DATA_SIZE(root)) {
519 CORRUPT("invalid item offset size pair", leaf, root, 0);
520 return -EIO;
521 }
522
523 /*
524 * Check to make sure each items keys are in the correct order and their
525 * offsets make sense. We only have to loop through nritems-1 because
526 * we check the current slot against the next slot, which verifies the
527 * next slot's offset+size makes sense and that the current's slot
528 * offset is correct.
529 */
530 for (slot = 0; slot < nritems - 1; slot++) {
531 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
532 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
533
534 /* Make sure the keys are in the right order */
535 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
536 CORRUPT("bad key order", leaf, root, slot);
537 return -EIO;
538 }
539
540 /*
541 * Make sure the offset and ends are right, remember that the
542 * item data starts at the end of the leaf and grows towards the
543 * front.
544 */
545 if (btrfs_item_offset_nr(leaf, slot) !=
546 btrfs_item_end_nr(leaf, slot + 1)) {
547 CORRUPT("slot offset bad", leaf, root, slot);
548 return -EIO;
549 }
550
551 /*
552 * Check to make sure that we don't point outside of the leaf,
553 * just incase all the items are consistent to eachother, but
554 * all point outside of the leaf.
555 */
556 if (btrfs_item_end_nr(leaf, slot) >
557 BTRFS_LEAF_DATA_SIZE(root)) {
558 CORRUPT("slot end outside of leaf", leaf, root, slot);
559 return -EIO;
560 }
561 }
562
563 return 0;
564}
565
facc8a22
MX
566static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
567 u64 phy_offset, struct page *page,
568 u64 start, u64 end, int mirror)
ce9adaa5 569{
ce9adaa5
CM
570 u64 found_start;
571 int found_level;
ce9adaa5
CM
572 struct extent_buffer *eb;
573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 574 int ret = 0;
727011e0 575 int reads_done;
ce9adaa5 576
ce9adaa5
CM
577 if (!page->private)
578 goto out;
d397712b 579
4f2de97a 580 eb = (struct extent_buffer *)page->private;
d397712b 581
0b32f4bb
JB
582 /* the pending IO might have been the only thing that kept this buffer
583 * in memory. Make sure we have a ref for all this other checks
584 */
585 extent_buffer_get(eb);
586
587 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
588 if (!reads_done)
589 goto err;
f188591e 590
5cf1ab56 591 eb->read_mirror = mirror;
ea466794
JB
592 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593 ret = -EIO;
594 goto err;
595 }
596
ce9adaa5 597 found_start = btrfs_header_bytenr(eb);
727011e0 598 if (found_start != eb->start) {
7a36ddec 599 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d 600 "%llu %llu\n",
c1c9ff7c 601 found_start, eb->start);
f188591e 602 ret = -EIO;
ce9adaa5
CM
603 goto err;
604 }
2b82032c 605 if (check_tree_block_fsid(root, eb)) {
7a36ddec 606 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
c1c9ff7c 607 eb->start);
1259ab75
CM
608 ret = -EIO;
609 goto err;
610 }
ce9adaa5 611 found_level = btrfs_header_level(eb);
1c24c3ce
JB
612 if (found_level >= BTRFS_MAX_LEVEL) {
613 btrfs_info(root->fs_info, "bad tree block level %d\n",
614 (int)btrfs_header_level(eb));
615 ret = -EIO;
616 goto err;
617 }
ce9adaa5 618
85d4e461
CM
619 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
620 eb, found_level);
4008c04a 621
ce9adaa5 622 ret = csum_tree_block(root, eb, 1);
a826d6dc 623 if (ret) {
f188591e 624 ret = -EIO;
a826d6dc
JB
625 goto err;
626 }
627
628 /*
629 * If this is a leaf block and it is corrupt, set the corrupt bit so
630 * that we don't try and read the other copies of this block, just
631 * return -EIO.
632 */
633 if (found_level == 0 && check_leaf(root, eb)) {
634 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
635 ret = -EIO;
636 }
ce9adaa5 637
0b32f4bb
JB
638 if (!ret)
639 set_extent_buffer_uptodate(eb);
ce9adaa5 640err:
79fb65a1
JB
641 if (reads_done &&
642 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 643 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 644
53b381b3
DW
645 if (ret) {
646 /*
647 * our io error hook is going to dec the io pages
648 * again, we have to make sure it has something
649 * to decrement
650 */
651 atomic_inc(&eb->io_pages);
0b32f4bb 652 clear_extent_buffer_uptodate(eb);
53b381b3 653 }
0b32f4bb 654 free_extent_buffer(eb);
ce9adaa5 655out:
f188591e 656 return ret;
ce9adaa5
CM
657}
658
ea466794 659static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 660{
4bb31e92
AJ
661 struct extent_buffer *eb;
662 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
663
4f2de97a 664 eb = (struct extent_buffer *)page->private;
ea466794 665 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 666 eb->read_mirror = failed_mirror;
53b381b3 667 atomic_dec(&eb->io_pages);
ea466794 668 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 669 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
670 return -EIO; /* we fixed nothing */
671}
672
ce9adaa5 673static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
674{
675 struct end_io_wq *end_io_wq = bio->bi_private;
676 struct btrfs_fs_info *fs_info;
ce9adaa5 677
ce9adaa5 678 fs_info = end_io_wq->info;
ce9adaa5 679 end_io_wq->error = err;
8b712842
CM
680 end_io_wq->work.func = end_workqueue_fn;
681 end_io_wq->work.flags = 0;
d20f7043 682
7b6d91da 683 if (bio->bi_rw & REQ_WRITE) {
53b381b3 684 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
cad321ad
CM
685 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
686 &end_io_wq->work);
53b381b3 687 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
0cb59c99
JB
688 btrfs_queue_worker(&fs_info->endio_freespace_worker,
689 &end_io_wq->work);
53b381b3
DW
690 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
691 btrfs_queue_worker(&fs_info->endio_raid56_workers,
692 &end_io_wq->work);
cad321ad
CM
693 else
694 btrfs_queue_worker(&fs_info->endio_write_workers,
695 &end_io_wq->work);
d20f7043 696 } else {
53b381b3
DW
697 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
698 btrfs_queue_worker(&fs_info->endio_raid56_workers,
699 &end_io_wq->work);
700 else if (end_io_wq->metadata)
d20f7043
CM
701 btrfs_queue_worker(&fs_info->endio_meta_workers,
702 &end_io_wq->work);
703 else
704 btrfs_queue_worker(&fs_info->endio_workers,
705 &end_io_wq->work);
706 }
ce9adaa5
CM
707}
708
0cb59c99
JB
709/*
710 * For the metadata arg you want
711 *
712 * 0 - if data
713 * 1 - if normal metadta
714 * 2 - if writing to the free space cache area
53b381b3 715 * 3 - raid parity work
0cb59c99 716 */
22c59948
CM
717int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
718 int metadata)
0b86a832 719{
ce9adaa5 720 struct end_io_wq *end_io_wq;
ce9adaa5
CM
721 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
722 if (!end_io_wq)
723 return -ENOMEM;
724
725 end_io_wq->private = bio->bi_private;
726 end_io_wq->end_io = bio->bi_end_io;
22c59948 727 end_io_wq->info = info;
ce9adaa5
CM
728 end_io_wq->error = 0;
729 end_io_wq->bio = bio;
22c59948 730 end_io_wq->metadata = metadata;
ce9adaa5
CM
731
732 bio->bi_private = end_io_wq;
733 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
734 return 0;
735}
736
b64a2851 737unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 738{
4854ddd0
CM
739 unsigned long limit = min_t(unsigned long,
740 info->workers.max_workers,
741 info->fs_devices->open_devices);
742 return 256 * limit;
743}
0986fe9e 744
4a69a410
CM
745static void run_one_async_start(struct btrfs_work *work)
746{
4a69a410 747 struct async_submit_bio *async;
79787eaa 748 int ret;
4a69a410
CM
749
750 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
751 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
752 async->mirror_num, async->bio_flags,
753 async->bio_offset);
754 if (ret)
755 async->error = ret;
4a69a410
CM
756}
757
758static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
759{
760 struct btrfs_fs_info *fs_info;
761 struct async_submit_bio *async;
4854ddd0 762 int limit;
8b712842
CM
763
764 async = container_of(work, struct async_submit_bio, work);
765 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 766
b64a2851 767 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
768 limit = limit * 2 / 3;
769
66657b31 770 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 771 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
772 wake_up(&fs_info->async_submit_wait);
773
79787eaa
JM
774 /* If an error occured we just want to clean up the bio and move on */
775 if (async->error) {
776 bio_endio(async->bio, async->error);
777 return;
778 }
779
4a69a410 780 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
781 async->mirror_num, async->bio_flags,
782 async->bio_offset);
4a69a410
CM
783}
784
785static void run_one_async_free(struct btrfs_work *work)
786{
787 struct async_submit_bio *async;
788
789 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
790 kfree(async);
791}
792
44b8bd7e
CM
793int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
794 int rw, struct bio *bio, int mirror_num,
c8b97818 795 unsigned long bio_flags,
eaf25d93 796 u64 bio_offset,
4a69a410
CM
797 extent_submit_bio_hook_t *submit_bio_start,
798 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
799{
800 struct async_submit_bio *async;
801
802 async = kmalloc(sizeof(*async), GFP_NOFS);
803 if (!async)
804 return -ENOMEM;
805
806 async->inode = inode;
807 async->rw = rw;
808 async->bio = bio;
809 async->mirror_num = mirror_num;
4a69a410
CM
810 async->submit_bio_start = submit_bio_start;
811 async->submit_bio_done = submit_bio_done;
812
813 async->work.func = run_one_async_start;
814 async->work.ordered_func = run_one_async_done;
815 async->work.ordered_free = run_one_async_free;
816
8b712842 817 async->work.flags = 0;
c8b97818 818 async->bio_flags = bio_flags;
eaf25d93 819 async->bio_offset = bio_offset;
8c8bee1d 820
79787eaa
JM
821 async->error = 0;
822
cb03c743 823 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 824
7b6d91da 825 if (rw & REQ_SYNC)
d313d7a3
CM
826 btrfs_set_work_high_prio(&async->work);
827
8b712842 828 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 829
d397712b 830 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
831 atomic_read(&fs_info->nr_async_submits)) {
832 wait_event(fs_info->async_submit_wait,
833 (atomic_read(&fs_info->nr_async_submits) == 0));
834 }
835
44b8bd7e
CM
836 return 0;
837}
838
ce3ed71a
CM
839static int btree_csum_one_bio(struct bio *bio)
840{
841 struct bio_vec *bvec = bio->bi_io_vec;
842 int bio_index = 0;
843 struct btrfs_root *root;
79787eaa 844 int ret = 0;
ce3ed71a
CM
845
846 WARN_ON(bio->bi_vcnt <= 0);
d397712b 847 while (bio_index < bio->bi_vcnt) {
ce3ed71a 848 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
849 ret = csum_dirty_buffer(root, bvec->bv_page);
850 if (ret)
851 break;
ce3ed71a
CM
852 bio_index++;
853 bvec++;
854 }
79787eaa 855 return ret;
ce3ed71a
CM
856}
857
4a69a410
CM
858static int __btree_submit_bio_start(struct inode *inode, int rw,
859 struct bio *bio, int mirror_num,
eaf25d93
CM
860 unsigned long bio_flags,
861 u64 bio_offset)
22c59948 862{
8b712842
CM
863 /*
864 * when we're called for a write, we're already in the async
5443be45 865 * submission context. Just jump into btrfs_map_bio
8b712842 866 */
79787eaa 867 return btree_csum_one_bio(bio);
4a69a410 868}
22c59948 869
4a69a410 870static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
871 int mirror_num, unsigned long bio_flags,
872 u64 bio_offset)
4a69a410 873{
61891923
SB
874 int ret;
875
8b712842 876 /*
4a69a410
CM
877 * when we're called for a write, we're already in the async
878 * submission context. Just jump into btrfs_map_bio
8b712842 879 */
61891923
SB
880 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
881 if (ret)
882 bio_endio(bio, ret);
883 return ret;
0b86a832
CM
884}
885
de0022b9
JB
886static int check_async_write(struct inode *inode, unsigned long bio_flags)
887{
888 if (bio_flags & EXTENT_BIO_TREE_LOG)
889 return 0;
890#ifdef CONFIG_X86
891 if (cpu_has_xmm4_2)
892 return 0;
893#endif
894 return 1;
895}
896
44b8bd7e 897static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
898 int mirror_num, unsigned long bio_flags,
899 u64 bio_offset)
44b8bd7e 900{
de0022b9 901 int async = check_async_write(inode, bio_flags);
cad321ad
CM
902 int ret;
903
7b6d91da 904 if (!(rw & REQ_WRITE)) {
4a69a410
CM
905 /*
906 * called for a read, do the setup so that checksum validation
907 * can happen in the async kernel threads
908 */
f3f266ab
CM
909 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
910 bio, 1);
1d4284bd 911 if (ret)
61891923
SB
912 goto out_w_error;
913 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
914 mirror_num, 0);
de0022b9
JB
915 } else if (!async) {
916 ret = btree_csum_one_bio(bio);
917 if (ret)
61891923
SB
918 goto out_w_error;
919 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
920 mirror_num, 0);
921 } else {
922 /*
923 * kthread helpers are used to submit writes so that
924 * checksumming can happen in parallel across all CPUs
925 */
926 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
927 inode, rw, bio, mirror_num, 0,
928 bio_offset,
929 __btree_submit_bio_start,
930 __btree_submit_bio_done);
44b8bd7e 931 }
d313d7a3 932
61891923
SB
933 if (ret) {
934out_w_error:
935 bio_endio(bio, ret);
936 }
937 return ret;
44b8bd7e
CM
938}
939
3dd1462e 940#ifdef CONFIG_MIGRATION
784b4e29 941static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
942 struct page *newpage, struct page *page,
943 enum migrate_mode mode)
784b4e29
CM
944{
945 /*
946 * we can't safely write a btree page from here,
947 * we haven't done the locking hook
948 */
949 if (PageDirty(page))
950 return -EAGAIN;
951 /*
952 * Buffers may be managed in a filesystem specific way.
953 * We must have no buffers or drop them.
954 */
955 if (page_has_private(page) &&
956 !try_to_release_page(page, GFP_KERNEL))
957 return -EAGAIN;
a6bc32b8 958 return migrate_page(mapping, newpage, page, mode);
784b4e29 959}
3dd1462e 960#endif
784b4e29 961
0da5468f
CM
962
963static int btree_writepages(struct address_space *mapping,
964 struct writeback_control *wbc)
965{
e2d84521
MX
966 struct btrfs_fs_info *fs_info;
967 int ret;
968
d8d5f3e1 969 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
970
971 if (wbc->for_kupdate)
972 return 0;
973
e2d84521 974 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 975 /* this is a bit racy, but that's ok */
e2d84521
MX
976 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
977 BTRFS_DIRTY_METADATA_THRESH);
978 if (ret < 0)
793955bc 979 return 0;
793955bc 980 }
0b32f4bb 981 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
982}
983
b2950863 984static int btree_readpage(struct file *file, struct page *page)
5f39d397 985{
d1310b2e
CM
986 struct extent_io_tree *tree;
987 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 988 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 989}
22b0ebda 990
70dec807 991static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 992{
98509cfc 993 if (PageWriteback(page) || PageDirty(page))
d397712b 994 return 0;
0c4e538b 995
f7a52a40 996 return try_release_extent_buffer(page);
d98237b3
CM
997}
998
d47992f8
LC
999static void btree_invalidatepage(struct page *page, unsigned int offset,
1000 unsigned int length)
d98237b3 1001{
d1310b2e
CM
1002 struct extent_io_tree *tree;
1003 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1004 extent_invalidatepage(tree, page, offset);
1005 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1006 if (PagePrivate(page)) {
d397712b
CM
1007 printk(KERN_WARNING "btrfs warning page private not zero "
1008 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
1009 ClearPagePrivate(page);
1010 set_page_private(page, 0);
1011 page_cache_release(page);
1012 }
d98237b3
CM
1013}
1014
0b32f4bb
JB
1015static int btree_set_page_dirty(struct page *page)
1016{
bb146eb2 1017#ifdef DEBUG
0b32f4bb
JB
1018 struct extent_buffer *eb;
1019
1020 BUG_ON(!PagePrivate(page));
1021 eb = (struct extent_buffer *)page->private;
1022 BUG_ON(!eb);
1023 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1024 BUG_ON(!atomic_read(&eb->refs));
1025 btrfs_assert_tree_locked(eb);
bb146eb2 1026#endif
0b32f4bb
JB
1027 return __set_page_dirty_nobuffers(page);
1028}
1029
7f09410b 1030static const struct address_space_operations btree_aops = {
d98237b3 1031 .readpage = btree_readpage,
0da5468f 1032 .writepages = btree_writepages,
5f39d397
CM
1033 .releasepage = btree_releasepage,
1034 .invalidatepage = btree_invalidatepage,
5a92bc88 1035#ifdef CONFIG_MIGRATION
784b4e29 1036 .migratepage = btree_migratepage,
5a92bc88 1037#endif
0b32f4bb 1038 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1039};
1040
ca7a79ad
CM
1041int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1042 u64 parent_transid)
090d1875 1043{
5f39d397
CM
1044 struct extent_buffer *buf = NULL;
1045 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1046 int ret = 0;
090d1875 1047
db94535d 1048 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1049 if (!buf)
090d1875 1050 return 0;
d1310b2e 1051 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1052 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1053 free_extent_buffer(buf);
de428b63 1054 return ret;
090d1875
CM
1055}
1056
ab0fff03
AJ
1057int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058 int mirror_num, struct extent_buffer **eb)
1059{
1060 struct extent_buffer *buf = NULL;
1061 struct inode *btree_inode = root->fs_info->btree_inode;
1062 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1063 int ret;
1064
1065 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1066 if (!buf)
1067 return 0;
1068
1069 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1070
1071 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1072 btree_get_extent, mirror_num);
1073 if (ret) {
1074 free_extent_buffer(buf);
1075 return ret;
1076 }
1077
1078 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1079 free_extent_buffer(buf);
1080 return -EIO;
0b32f4bb 1081 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1082 *eb = buf;
1083 } else {
1084 free_extent_buffer(buf);
1085 }
1086 return 0;
1087}
1088
0999df54
CM
1089struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1090 u64 bytenr, u32 blocksize)
1091{
f28491e0 1092 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1093}
1094
1095struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1096 u64 bytenr, u32 blocksize)
1097{
f28491e0 1098 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1099}
1100
1101
e02119d5
CM
1102int btrfs_write_tree_block(struct extent_buffer *buf)
1103{
727011e0 1104 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1105 buf->start + buf->len - 1);
e02119d5
CM
1106}
1107
1108int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1109{
727011e0 1110 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1111 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1112}
1113
0999df54 1114struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1115 u32 blocksize, u64 parent_transid)
0999df54
CM
1116{
1117 struct extent_buffer *buf = NULL;
0999df54
CM
1118 int ret;
1119
0999df54
CM
1120 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1121 if (!buf)
1122 return NULL;
0999df54 1123
ca7a79ad 1124 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1125 if (ret) {
1126 free_extent_buffer(buf);
1127 return NULL;
1128 }
5f39d397 1129 return buf;
ce9adaa5 1130
eb60ceac
CM
1131}
1132
d5c13f92
JM
1133void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1134 struct extent_buffer *buf)
ed2ff2cb 1135{
e2d84521
MX
1136 struct btrfs_fs_info *fs_info = root->fs_info;
1137
55c69072 1138 if (btrfs_header_generation(buf) ==
e2d84521 1139 fs_info->running_transaction->transid) {
b9447ef8 1140 btrfs_assert_tree_locked(buf);
b4ce94de 1141
b9473439 1142 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1143 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1144 -buf->len,
1145 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1146 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1147 btrfs_set_lock_blocking(buf);
1148 clear_extent_buffer_dirty(buf);
1149 }
925baedd 1150 }
5f39d397
CM
1151}
1152
143bede5
JM
1153static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1154 u32 stripesize, struct btrfs_root *root,
1155 struct btrfs_fs_info *fs_info,
1156 u64 objectid)
d97e63b6 1157{
cfaa7295 1158 root->node = NULL;
a28ec197 1159 root->commit_root = NULL;
db94535d
CM
1160 root->sectorsize = sectorsize;
1161 root->nodesize = nodesize;
1162 root->leafsize = leafsize;
87ee04eb 1163 root->stripesize = stripesize;
123abc88 1164 root->ref_cows = 0;
0b86a832 1165 root->track_dirty = 0;
c71bf099 1166 root->in_radix = 0;
d68fc57b
YZ
1167 root->orphan_item_inserted = 0;
1168 root->orphan_cleanup_state = 0;
0b86a832 1169
0f7d52f4
CM
1170 root->objectid = objectid;
1171 root->last_trans = 0;
13a8a7c8 1172 root->highest_objectid = 0;
eb73c1b7 1173 root->nr_delalloc_inodes = 0;
199c2a9c 1174 root->nr_ordered_extents = 0;
58176a96 1175 root->name = NULL;
6bef4d31 1176 root->inode_tree = RB_ROOT;
16cdcec7 1177 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1178 root->block_rsv = NULL;
d68fc57b 1179 root->orphan_block_rsv = NULL;
0b86a832
CM
1180
1181 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1182 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1183 INIT_LIST_HEAD(&root->delalloc_inodes);
1184 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1185 INIT_LIST_HEAD(&root->ordered_extents);
1186 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1187 INIT_LIST_HEAD(&root->logged_list[0]);
1188 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1189 spin_lock_init(&root->orphan_lock);
5d4f98a2 1190 spin_lock_init(&root->inode_lock);
eb73c1b7 1191 spin_lock_init(&root->delalloc_lock);
199c2a9c 1192 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1193 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1194 spin_lock_init(&root->log_extents_lock[0]);
1195 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1196 mutex_init(&root->objectid_mutex);
e02119d5 1197 mutex_init(&root->log_mutex);
7237f183
YZ
1198 init_waitqueue_head(&root->log_writer_wait);
1199 init_waitqueue_head(&root->log_commit_wait[0]);
1200 init_waitqueue_head(&root->log_commit_wait[1]);
1201 atomic_set(&root->log_commit[0], 0);
1202 atomic_set(&root->log_commit[1], 0);
1203 atomic_set(&root->log_writers, 0);
2ecb7923 1204 atomic_set(&root->log_batch, 0);
8a35d95f 1205 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1206 atomic_set(&root->refs, 1);
7237f183 1207 root->log_transid = 0;
257c62e1 1208 root->last_log_commit = 0;
06ea65a3
JB
1209 if (fs_info)
1210 extent_io_tree_init(&root->dirty_log_pages,
1211 fs_info->btree_inode->i_mapping);
017e5369 1212
3768f368
CM
1213 memset(&root->root_key, 0, sizeof(root->root_key));
1214 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1215 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1216 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1217 if (fs_info)
1218 root->defrag_trans_start = fs_info->generation;
1219 else
1220 root->defrag_trans_start = 0;
58176a96 1221 init_completion(&root->kobj_unregister);
6702ed49 1222 root->defrag_running = 0;
4d775673 1223 root->root_key.objectid = objectid;
0ee5dc67 1224 root->anon_dev = 0;
8ea05e3a 1225
5f3ab90a 1226 spin_lock_init(&root->root_item_lock);
3768f368
CM
1227}
1228
f84a8bd6 1229static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1230{
1231 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1232 if (root)
1233 root->fs_info = fs_info;
1234 return root;
1235}
1236
06ea65a3
JB
1237#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1238/* Should only be used by the testing infrastructure */
1239struct btrfs_root *btrfs_alloc_dummy_root(void)
1240{
1241 struct btrfs_root *root;
1242
1243 root = btrfs_alloc_root(NULL);
1244 if (!root)
1245 return ERR_PTR(-ENOMEM);
1246 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1247 root->dummy_root = 1;
1248
1249 return root;
1250}
1251#endif
1252
20897f5c
AJ
1253struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1254 struct btrfs_fs_info *fs_info,
1255 u64 objectid)
1256{
1257 struct extent_buffer *leaf;
1258 struct btrfs_root *tree_root = fs_info->tree_root;
1259 struct btrfs_root *root;
1260 struct btrfs_key key;
1261 int ret = 0;
6463fe58 1262 uuid_le uuid;
20897f5c
AJ
1263
1264 root = btrfs_alloc_root(fs_info);
1265 if (!root)
1266 return ERR_PTR(-ENOMEM);
1267
1268 __setup_root(tree_root->nodesize, tree_root->leafsize,
1269 tree_root->sectorsize, tree_root->stripesize,
1270 root, fs_info, objectid);
1271 root->root_key.objectid = objectid;
1272 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1273 root->root_key.offset = 0;
1274
1275 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1276 0, objectid, NULL, 0, 0, 0);
1277 if (IS_ERR(leaf)) {
1278 ret = PTR_ERR(leaf);
1dd05682 1279 leaf = NULL;
20897f5c
AJ
1280 goto fail;
1281 }
1282
20897f5c
AJ
1283 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1284 btrfs_set_header_bytenr(leaf, leaf->start);
1285 btrfs_set_header_generation(leaf, trans->transid);
1286 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1287 btrfs_set_header_owner(leaf, objectid);
1288 root->node = leaf;
1289
0a4e5586 1290 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1291 BTRFS_FSID_SIZE);
1292 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1293 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1294 BTRFS_UUID_SIZE);
1295 btrfs_mark_buffer_dirty(leaf);
1296
1297 root->commit_root = btrfs_root_node(root);
1298 root->track_dirty = 1;
1299
1300
1301 root->root_item.flags = 0;
1302 root->root_item.byte_limit = 0;
1303 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1304 btrfs_set_root_generation(&root->root_item, trans->transid);
1305 btrfs_set_root_level(&root->root_item, 0);
1306 btrfs_set_root_refs(&root->root_item, 1);
1307 btrfs_set_root_used(&root->root_item, leaf->len);
1308 btrfs_set_root_last_snapshot(&root->root_item, 0);
1309 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1310 uuid_le_gen(&uuid);
1311 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1312 root->root_item.drop_level = 0;
1313
1314 key.objectid = objectid;
1315 key.type = BTRFS_ROOT_ITEM_KEY;
1316 key.offset = 0;
1317 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1318 if (ret)
1319 goto fail;
1320
1321 btrfs_tree_unlock(leaf);
1322
1dd05682
TI
1323 return root;
1324
20897f5c 1325fail:
1dd05682
TI
1326 if (leaf) {
1327 btrfs_tree_unlock(leaf);
1328 free_extent_buffer(leaf);
1329 }
1330 kfree(root);
20897f5c 1331
1dd05682 1332 return ERR_PTR(ret);
20897f5c
AJ
1333}
1334
7237f183
YZ
1335static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1336 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1337{
1338 struct btrfs_root *root;
1339 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1340 struct extent_buffer *leaf;
e02119d5 1341
6f07e42e 1342 root = btrfs_alloc_root(fs_info);
e02119d5 1343 if (!root)
7237f183 1344 return ERR_PTR(-ENOMEM);
e02119d5
CM
1345
1346 __setup_root(tree_root->nodesize, tree_root->leafsize,
1347 tree_root->sectorsize, tree_root->stripesize,
1348 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1349
1350 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1351 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1352 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1353 /*
1354 * log trees do not get reference counted because they go away
1355 * before a real commit is actually done. They do store pointers
1356 * to file data extents, and those reference counts still get
1357 * updated (along with back refs to the log tree).
1358 */
e02119d5
CM
1359 root->ref_cows = 0;
1360
5d4f98a2 1361 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1362 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1363 0, 0, 0);
7237f183
YZ
1364 if (IS_ERR(leaf)) {
1365 kfree(root);
1366 return ERR_CAST(leaf);
1367 }
e02119d5 1368
5d4f98a2
YZ
1369 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1370 btrfs_set_header_bytenr(leaf, leaf->start);
1371 btrfs_set_header_generation(leaf, trans->transid);
1372 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1373 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1374 root->node = leaf;
e02119d5
CM
1375
1376 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1377 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1378 btrfs_mark_buffer_dirty(root->node);
1379 btrfs_tree_unlock(root->node);
7237f183
YZ
1380 return root;
1381}
1382
1383int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1384 struct btrfs_fs_info *fs_info)
1385{
1386 struct btrfs_root *log_root;
1387
1388 log_root = alloc_log_tree(trans, fs_info);
1389 if (IS_ERR(log_root))
1390 return PTR_ERR(log_root);
1391 WARN_ON(fs_info->log_root_tree);
1392 fs_info->log_root_tree = log_root;
1393 return 0;
1394}
1395
1396int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1397 struct btrfs_root *root)
1398{
1399 struct btrfs_root *log_root;
1400 struct btrfs_inode_item *inode_item;
1401
1402 log_root = alloc_log_tree(trans, root->fs_info);
1403 if (IS_ERR(log_root))
1404 return PTR_ERR(log_root);
1405
1406 log_root->last_trans = trans->transid;
1407 log_root->root_key.offset = root->root_key.objectid;
1408
1409 inode_item = &log_root->root_item.inode;
3cae210f
QW
1410 btrfs_set_stack_inode_generation(inode_item, 1);
1411 btrfs_set_stack_inode_size(inode_item, 3);
1412 btrfs_set_stack_inode_nlink(inode_item, 1);
1413 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1414 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1415
5d4f98a2 1416 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1417
1418 WARN_ON(root->log_root);
1419 root->log_root = log_root;
1420 root->log_transid = 0;
257c62e1 1421 root->last_log_commit = 0;
e02119d5
CM
1422 return 0;
1423}
1424
35a3621b
SB
1425static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1426 struct btrfs_key *key)
e02119d5
CM
1427{
1428 struct btrfs_root *root;
1429 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1430 struct btrfs_path *path;
84234f3a 1431 u64 generation;
db94535d 1432 u32 blocksize;
cb517eab 1433 int ret;
0f7d52f4 1434
cb517eab
MX
1435 path = btrfs_alloc_path();
1436 if (!path)
0f7d52f4 1437 return ERR_PTR(-ENOMEM);
cb517eab
MX
1438
1439 root = btrfs_alloc_root(fs_info);
1440 if (!root) {
1441 ret = -ENOMEM;
1442 goto alloc_fail;
0f7d52f4
CM
1443 }
1444
db94535d 1445 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1446 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1447 root, fs_info, key->objectid);
0f7d52f4 1448
cb517eab
MX
1449 ret = btrfs_find_root(tree_root, key, path,
1450 &root->root_item, &root->root_key);
0f7d52f4 1451 if (ret) {
13a8a7c8
YZ
1452 if (ret > 0)
1453 ret = -ENOENT;
cb517eab 1454 goto find_fail;
0f7d52f4 1455 }
13a8a7c8 1456
84234f3a 1457 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1458 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1459 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1460 blocksize, generation);
cb517eab
MX
1461 if (!root->node) {
1462 ret = -ENOMEM;
1463 goto find_fail;
1464 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1465 ret = -EIO;
1466 goto read_fail;
416bc658 1467 }
5d4f98a2 1468 root->commit_root = btrfs_root_node(root);
13a8a7c8 1469out:
cb517eab
MX
1470 btrfs_free_path(path);
1471 return root;
1472
1473read_fail:
1474 free_extent_buffer(root->node);
1475find_fail:
1476 kfree(root);
1477alloc_fail:
1478 root = ERR_PTR(ret);
1479 goto out;
1480}
1481
1482struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1483 struct btrfs_key *location)
1484{
1485 struct btrfs_root *root;
1486
1487 root = btrfs_read_tree_root(tree_root, location);
1488 if (IS_ERR(root))
1489 return root;
1490
1491 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1492 root->ref_cows = 1;
08fe4db1
LZ
1493 btrfs_check_and_init_root_item(&root->root_item);
1494 }
13a8a7c8 1495
5eda7b5e
CM
1496 return root;
1497}
1498
cb517eab
MX
1499int btrfs_init_fs_root(struct btrfs_root *root)
1500{
1501 int ret;
1502
1503 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1504 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1505 GFP_NOFS);
1506 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1507 ret = -ENOMEM;
1508 goto fail;
1509 }
1510
1511 btrfs_init_free_ino_ctl(root);
1512 mutex_init(&root->fs_commit_mutex);
1513 spin_lock_init(&root->cache_lock);
1514 init_waitqueue_head(&root->cache_wait);
1515
1516 ret = get_anon_bdev(&root->anon_dev);
1517 if (ret)
1518 goto fail;
1519 return 0;
1520fail:
1521 kfree(root->free_ino_ctl);
1522 kfree(root->free_ino_pinned);
1523 return ret;
1524}
1525
171170c1
ST
1526static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1527 u64 root_id)
cb517eab
MX
1528{
1529 struct btrfs_root *root;
1530
1531 spin_lock(&fs_info->fs_roots_radix_lock);
1532 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1533 (unsigned long)root_id);
1534 spin_unlock(&fs_info->fs_roots_radix_lock);
1535 return root;
1536}
1537
1538int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1539 struct btrfs_root *root)
1540{
1541 int ret;
1542
1543 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1544 if (ret)
1545 return ret;
1546
1547 spin_lock(&fs_info->fs_roots_radix_lock);
1548 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1549 (unsigned long)root->root_key.objectid,
1550 root);
1551 if (ret == 0)
1552 root->in_radix = 1;
1553 spin_unlock(&fs_info->fs_roots_radix_lock);
1554 radix_tree_preload_end();
1555
1556 return ret;
1557}
1558
c00869f1
MX
1559struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1560 struct btrfs_key *location,
1561 bool check_ref)
5eda7b5e
CM
1562{
1563 struct btrfs_root *root;
1564 int ret;
1565
edbd8d4e
CM
1566 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1567 return fs_info->tree_root;
1568 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1569 return fs_info->extent_root;
8f18cf13
CM
1570 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1571 return fs_info->chunk_root;
1572 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1573 return fs_info->dev_root;
0403e47e
YZ
1574 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1575 return fs_info->csum_root;
bcef60f2
AJ
1576 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1577 return fs_info->quota_root ? fs_info->quota_root :
1578 ERR_PTR(-ENOENT);
f7a81ea4
SB
1579 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1580 return fs_info->uuid_root ? fs_info->uuid_root :
1581 ERR_PTR(-ENOENT);
4df27c4d 1582again:
cb517eab 1583 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1584 if (root) {
c00869f1 1585 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1586 return ERR_PTR(-ENOENT);
5eda7b5e 1587 return root;
48475471 1588 }
5eda7b5e 1589
cb517eab 1590 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1591 if (IS_ERR(root))
1592 return root;
3394e160 1593
c00869f1 1594 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1595 ret = -ENOENT;
581bb050 1596 goto fail;
35a30d7c 1597 }
581bb050 1598
cb517eab 1599 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1600 if (ret)
1601 goto fail;
3394e160 1602
3f870c28
KN
1603 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1604 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1605 if (ret < 0)
1606 goto fail;
1607 if (ret == 0)
1608 root->orphan_item_inserted = 1;
1609
cb517eab 1610 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1611 if (ret) {
4df27c4d
YZ
1612 if (ret == -EEXIST) {
1613 free_fs_root(root);
1614 goto again;
1615 }
1616 goto fail;
0f7d52f4 1617 }
edbd8d4e 1618 return root;
4df27c4d
YZ
1619fail:
1620 free_fs_root(root);
1621 return ERR_PTR(ret);
edbd8d4e
CM
1622}
1623
04160088
CM
1624static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1625{
1626 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627 int ret = 0;
04160088
CM
1628 struct btrfs_device *device;
1629 struct backing_dev_info *bdi;
b7967db7 1630
1f78160c
XG
1631 rcu_read_lock();
1632 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1633 if (!device->bdev)
1634 continue;
04160088
CM
1635 bdi = blk_get_backing_dev_info(device->bdev);
1636 if (bdi && bdi_congested(bdi, bdi_bits)) {
1637 ret = 1;
1638 break;
1639 }
1640 }
1f78160c 1641 rcu_read_unlock();
04160088
CM
1642 return ret;
1643}
1644
ad081f14
JA
1645/*
1646 * If this fails, caller must call bdi_destroy() to get rid of the
1647 * bdi again.
1648 */
04160088
CM
1649static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1650{
ad081f14
JA
1651 int err;
1652
1653 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1654 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1655 if (err)
1656 return err;
1657
4575c9cc 1658 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1659 bdi->congested_fn = btrfs_congested_fn;
1660 bdi->congested_data = info;
1661 return 0;
1662}
1663
8b712842
CM
1664/*
1665 * called by the kthread helper functions to finally call the bio end_io
1666 * functions. This is where read checksum verification actually happens
1667 */
1668static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1669{
ce9adaa5 1670 struct bio *bio;
8b712842 1671 struct end_io_wq *end_io_wq;
ce9adaa5 1672 int error;
ce9adaa5 1673
8b712842
CM
1674 end_io_wq = container_of(work, struct end_io_wq, work);
1675 bio = end_io_wq->bio;
ce9adaa5 1676
8b712842
CM
1677 error = end_io_wq->error;
1678 bio->bi_private = end_io_wq->private;
1679 bio->bi_end_io = end_io_wq->end_io;
1680 kfree(end_io_wq);
8b712842 1681 bio_endio(bio, error);
44b8bd7e
CM
1682}
1683
a74a4b97
CM
1684static int cleaner_kthread(void *arg)
1685{
1686 struct btrfs_root *root = arg;
d0278245 1687 int again;
a74a4b97
CM
1688
1689 do {
d0278245 1690 again = 0;
a74a4b97 1691
d0278245 1692 /* Make the cleaner go to sleep early. */
babbf170 1693 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1694 goto sleep;
1695
1696 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1697 goto sleep;
1698
dc7f370c
MX
1699 /*
1700 * Avoid the problem that we change the status of the fs
1701 * during the above check and trylock.
1702 */
babbf170 1703 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1704 mutex_unlock(&root->fs_info->cleaner_mutex);
1705 goto sleep;
76dda93c 1706 }
a74a4b97 1707
d0278245
MX
1708 btrfs_run_delayed_iputs(root);
1709 again = btrfs_clean_one_deleted_snapshot(root);
1710 mutex_unlock(&root->fs_info->cleaner_mutex);
1711
1712 /*
05323cd1
MX
1713 * The defragger has dealt with the R/O remount and umount,
1714 * needn't do anything special here.
d0278245
MX
1715 */
1716 btrfs_run_defrag_inodes(root->fs_info);
1717sleep:
9d1a2a3a 1718 if (!try_to_freeze() && !again) {
a74a4b97 1719 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1720 if (!kthread_should_stop())
1721 schedule();
a74a4b97
CM
1722 __set_current_state(TASK_RUNNING);
1723 }
1724 } while (!kthread_should_stop());
1725 return 0;
1726}
1727
1728static int transaction_kthread(void *arg)
1729{
1730 struct btrfs_root *root = arg;
1731 struct btrfs_trans_handle *trans;
1732 struct btrfs_transaction *cur;
8929ecfa 1733 u64 transid;
a74a4b97
CM
1734 unsigned long now;
1735 unsigned long delay;
914b2007 1736 bool cannot_commit;
a74a4b97
CM
1737
1738 do {
914b2007 1739 cannot_commit = false;
8b87dc17 1740 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1741 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1742
a4abeea4 1743 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1744 cur = root->fs_info->running_transaction;
1745 if (!cur) {
a4abeea4 1746 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1747 goto sleep;
1748 }
31153d81 1749
a74a4b97 1750 now = get_seconds();
4a9d8bde 1751 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1752 (now < cur->start_time ||
1753 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1754 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1755 delay = HZ * 5;
1756 goto sleep;
1757 }
8929ecfa 1758 transid = cur->transid;
a4abeea4 1759 spin_unlock(&root->fs_info->trans_lock);
56bec294 1760
79787eaa 1761 /* If the file system is aborted, this will always fail. */
354aa0fb 1762 trans = btrfs_attach_transaction(root);
914b2007 1763 if (IS_ERR(trans)) {
354aa0fb
MX
1764 if (PTR_ERR(trans) != -ENOENT)
1765 cannot_commit = true;
79787eaa 1766 goto sleep;
914b2007 1767 }
8929ecfa 1768 if (transid == trans->transid) {
79787eaa 1769 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1770 } else {
1771 btrfs_end_transaction(trans, root);
1772 }
a74a4b97
CM
1773sleep:
1774 wake_up_process(root->fs_info->cleaner_kthread);
1775 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1776
4e121c06
JB
1777 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1778 &root->fs_info->fs_state)))
1779 btrfs_cleanup_transaction(root);
a0acae0e 1780 if (!try_to_freeze()) {
a74a4b97 1781 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1782 if (!kthread_should_stop() &&
914b2007
JK
1783 (!btrfs_transaction_blocked(root->fs_info) ||
1784 cannot_commit))
8929ecfa 1785 schedule_timeout(delay);
a74a4b97
CM
1786 __set_current_state(TASK_RUNNING);
1787 }
1788 } while (!kthread_should_stop());
1789 return 0;
1790}
1791
af31f5e5
CM
1792/*
1793 * this will find the highest generation in the array of
1794 * root backups. The index of the highest array is returned,
1795 * or -1 if we can't find anything.
1796 *
1797 * We check to make sure the array is valid by comparing the
1798 * generation of the latest root in the array with the generation
1799 * in the super block. If they don't match we pitch it.
1800 */
1801static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1802{
1803 u64 cur;
1804 int newest_index = -1;
1805 struct btrfs_root_backup *root_backup;
1806 int i;
1807
1808 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1809 root_backup = info->super_copy->super_roots + i;
1810 cur = btrfs_backup_tree_root_gen(root_backup);
1811 if (cur == newest_gen)
1812 newest_index = i;
1813 }
1814
1815 /* check to see if we actually wrapped around */
1816 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1817 root_backup = info->super_copy->super_roots;
1818 cur = btrfs_backup_tree_root_gen(root_backup);
1819 if (cur == newest_gen)
1820 newest_index = 0;
1821 }
1822 return newest_index;
1823}
1824
1825
1826/*
1827 * find the oldest backup so we know where to store new entries
1828 * in the backup array. This will set the backup_root_index
1829 * field in the fs_info struct
1830 */
1831static void find_oldest_super_backup(struct btrfs_fs_info *info,
1832 u64 newest_gen)
1833{
1834 int newest_index = -1;
1835
1836 newest_index = find_newest_super_backup(info, newest_gen);
1837 /* if there was garbage in there, just move along */
1838 if (newest_index == -1) {
1839 info->backup_root_index = 0;
1840 } else {
1841 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1842 }
1843}
1844
1845/*
1846 * copy all the root pointers into the super backup array.
1847 * this will bump the backup pointer by one when it is
1848 * done
1849 */
1850static void backup_super_roots(struct btrfs_fs_info *info)
1851{
1852 int next_backup;
1853 struct btrfs_root_backup *root_backup;
1854 int last_backup;
1855
1856 next_backup = info->backup_root_index;
1857 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1858 BTRFS_NUM_BACKUP_ROOTS;
1859
1860 /*
1861 * just overwrite the last backup if we're at the same generation
1862 * this happens only at umount
1863 */
1864 root_backup = info->super_for_commit->super_roots + last_backup;
1865 if (btrfs_backup_tree_root_gen(root_backup) ==
1866 btrfs_header_generation(info->tree_root->node))
1867 next_backup = last_backup;
1868
1869 root_backup = info->super_for_commit->super_roots + next_backup;
1870
1871 /*
1872 * make sure all of our padding and empty slots get zero filled
1873 * regardless of which ones we use today
1874 */
1875 memset(root_backup, 0, sizeof(*root_backup));
1876
1877 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1878
1879 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1880 btrfs_set_backup_tree_root_gen(root_backup,
1881 btrfs_header_generation(info->tree_root->node));
1882
1883 btrfs_set_backup_tree_root_level(root_backup,
1884 btrfs_header_level(info->tree_root->node));
1885
1886 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1887 btrfs_set_backup_chunk_root_gen(root_backup,
1888 btrfs_header_generation(info->chunk_root->node));
1889 btrfs_set_backup_chunk_root_level(root_backup,
1890 btrfs_header_level(info->chunk_root->node));
1891
1892 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1893 btrfs_set_backup_extent_root_gen(root_backup,
1894 btrfs_header_generation(info->extent_root->node));
1895 btrfs_set_backup_extent_root_level(root_backup,
1896 btrfs_header_level(info->extent_root->node));
1897
7c7e82a7
CM
1898 /*
1899 * we might commit during log recovery, which happens before we set
1900 * the fs_root. Make sure it is valid before we fill it in.
1901 */
1902 if (info->fs_root && info->fs_root->node) {
1903 btrfs_set_backup_fs_root(root_backup,
1904 info->fs_root->node->start);
1905 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1906 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1907 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1908 btrfs_header_level(info->fs_root->node));
7c7e82a7 1909 }
af31f5e5
CM
1910
1911 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1912 btrfs_set_backup_dev_root_gen(root_backup,
1913 btrfs_header_generation(info->dev_root->node));
1914 btrfs_set_backup_dev_root_level(root_backup,
1915 btrfs_header_level(info->dev_root->node));
1916
1917 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1918 btrfs_set_backup_csum_root_gen(root_backup,
1919 btrfs_header_generation(info->csum_root->node));
1920 btrfs_set_backup_csum_root_level(root_backup,
1921 btrfs_header_level(info->csum_root->node));
1922
1923 btrfs_set_backup_total_bytes(root_backup,
1924 btrfs_super_total_bytes(info->super_copy));
1925 btrfs_set_backup_bytes_used(root_backup,
1926 btrfs_super_bytes_used(info->super_copy));
1927 btrfs_set_backup_num_devices(root_backup,
1928 btrfs_super_num_devices(info->super_copy));
1929
1930 /*
1931 * if we don't copy this out to the super_copy, it won't get remembered
1932 * for the next commit
1933 */
1934 memcpy(&info->super_copy->super_roots,
1935 &info->super_for_commit->super_roots,
1936 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1937}
1938
1939/*
1940 * this copies info out of the root backup array and back into
1941 * the in-memory super block. It is meant to help iterate through
1942 * the array, so you send it the number of backups you've already
1943 * tried and the last backup index you used.
1944 *
1945 * this returns -1 when it has tried all the backups
1946 */
1947static noinline int next_root_backup(struct btrfs_fs_info *info,
1948 struct btrfs_super_block *super,
1949 int *num_backups_tried, int *backup_index)
1950{
1951 struct btrfs_root_backup *root_backup;
1952 int newest = *backup_index;
1953
1954 if (*num_backups_tried == 0) {
1955 u64 gen = btrfs_super_generation(super);
1956
1957 newest = find_newest_super_backup(info, gen);
1958 if (newest == -1)
1959 return -1;
1960
1961 *backup_index = newest;
1962 *num_backups_tried = 1;
1963 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1964 /* we've tried all the backups, all done */
1965 return -1;
1966 } else {
1967 /* jump to the next oldest backup */
1968 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1969 BTRFS_NUM_BACKUP_ROOTS;
1970 *backup_index = newest;
1971 *num_backups_tried += 1;
1972 }
1973 root_backup = super->super_roots + newest;
1974
1975 btrfs_set_super_generation(super,
1976 btrfs_backup_tree_root_gen(root_backup));
1977 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1978 btrfs_set_super_root_level(super,
1979 btrfs_backup_tree_root_level(root_backup));
1980 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1981
1982 /*
1983 * fixme: the total bytes and num_devices need to match or we should
1984 * need a fsck
1985 */
1986 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1987 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1988 return 0;
1989}
1990
7abadb64
LB
1991/* helper to cleanup workers */
1992static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1993{
1994 btrfs_stop_workers(&fs_info->generic_worker);
1995 btrfs_stop_workers(&fs_info->fixup_workers);
1996 btrfs_stop_workers(&fs_info->delalloc_workers);
1997 btrfs_stop_workers(&fs_info->workers);
1998 btrfs_stop_workers(&fs_info->endio_workers);
1999 btrfs_stop_workers(&fs_info->endio_meta_workers);
2000 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2001 btrfs_stop_workers(&fs_info->rmw_workers);
2002 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2003 btrfs_stop_workers(&fs_info->endio_write_workers);
2004 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2005 btrfs_stop_workers(&fs_info->submit_workers);
2006 btrfs_stop_workers(&fs_info->delayed_workers);
2007 btrfs_stop_workers(&fs_info->caching_workers);
2008 btrfs_stop_workers(&fs_info->readahead_workers);
2009 btrfs_stop_workers(&fs_info->flush_workers);
2f232036 2010 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
7abadb64
LB
2011}
2012
2e9f5954
R
2013static void free_root_extent_buffers(struct btrfs_root *root)
2014{
2015 if (root) {
2016 free_extent_buffer(root->node);
2017 free_extent_buffer(root->commit_root);
2018 root->node = NULL;
2019 root->commit_root = NULL;
2020 }
2021}
2022
af31f5e5
CM
2023/* helper to cleanup tree roots */
2024static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2025{
2e9f5954 2026 free_root_extent_buffers(info->tree_root);
655b09fe 2027
2e9f5954
R
2028 free_root_extent_buffers(info->dev_root);
2029 free_root_extent_buffers(info->extent_root);
2030 free_root_extent_buffers(info->csum_root);
2031 free_root_extent_buffers(info->quota_root);
2032 free_root_extent_buffers(info->uuid_root);
2033 if (chunk_root)
2034 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2035}
2036
171f6537
JB
2037static void del_fs_roots(struct btrfs_fs_info *fs_info)
2038{
2039 int ret;
2040 struct btrfs_root *gang[8];
2041 int i;
2042
2043 while (!list_empty(&fs_info->dead_roots)) {
2044 gang[0] = list_entry(fs_info->dead_roots.next,
2045 struct btrfs_root, root_list);
2046 list_del(&gang[0]->root_list);
2047
2048 if (gang[0]->in_radix) {
cb517eab 2049 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2050 } else {
2051 free_extent_buffer(gang[0]->node);
2052 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2053 btrfs_put_fs_root(gang[0]);
171f6537
JB
2054 }
2055 }
2056
2057 while (1) {
2058 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2059 (void **)gang, 0,
2060 ARRAY_SIZE(gang));
2061 if (!ret)
2062 break;
2063 for (i = 0; i < ret; i++)
cb517eab 2064 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2065 }
2066}
af31f5e5 2067
ad2b2c80
AV
2068int open_ctree(struct super_block *sb,
2069 struct btrfs_fs_devices *fs_devices,
2070 char *options)
2e635a27 2071{
db94535d
CM
2072 u32 sectorsize;
2073 u32 nodesize;
2074 u32 leafsize;
2075 u32 blocksize;
87ee04eb 2076 u32 stripesize;
84234f3a 2077 u64 generation;
f2b636e8 2078 u64 features;
3de4586c 2079 struct btrfs_key location;
a061fc8d 2080 struct buffer_head *bh;
4d34b278 2081 struct btrfs_super_block *disk_super;
815745cf 2082 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2083 struct btrfs_root *tree_root;
4d34b278
ID
2084 struct btrfs_root *extent_root;
2085 struct btrfs_root *csum_root;
2086 struct btrfs_root *chunk_root;
2087 struct btrfs_root *dev_root;
bcef60f2 2088 struct btrfs_root *quota_root;
f7a81ea4 2089 struct btrfs_root *uuid_root;
e02119d5 2090 struct btrfs_root *log_tree_root;
eb60ceac 2091 int ret;
e58ca020 2092 int err = -EINVAL;
af31f5e5
CM
2093 int num_backups_tried = 0;
2094 int backup_index = 0;
70f80175
SB
2095 bool create_uuid_tree;
2096 bool check_uuid_tree;
4543df7e 2097
f84a8bd6 2098 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2099 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2100 if (!tree_root || !chunk_root) {
39279cc3
CM
2101 err = -ENOMEM;
2102 goto fail;
2103 }
76dda93c
YZ
2104
2105 ret = init_srcu_struct(&fs_info->subvol_srcu);
2106 if (ret) {
2107 err = ret;
2108 goto fail;
2109 }
2110
2111 ret = setup_bdi(fs_info, &fs_info->bdi);
2112 if (ret) {
2113 err = ret;
2114 goto fail_srcu;
2115 }
2116
e2d84521
MX
2117 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2118 if (ret) {
2119 err = ret;
2120 goto fail_bdi;
2121 }
2122 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2123 (1 + ilog2(nr_cpu_ids));
2124
963d678b
MX
2125 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2126 if (ret) {
2127 err = ret;
2128 goto fail_dirty_metadata_bytes;
2129 }
2130
76dda93c
YZ
2131 fs_info->btree_inode = new_inode(sb);
2132 if (!fs_info->btree_inode) {
2133 err = -ENOMEM;
963d678b 2134 goto fail_delalloc_bytes;
76dda93c
YZ
2135 }
2136
a6591715 2137 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2138
76dda93c 2139 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2140 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2141 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2142 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2143 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2144 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2145 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2146 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2147 spin_lock_init(&fs_info->trans_lock);
76dda93c 2148 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2149 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2150 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2151 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2152 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2153 spin_lock_init(&fs_info->super_lock);
f28491e0 2154 spin_lock_init(&fs_info->buffer_lock);
f29021b2 2155 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2156 mutex_init(&fs_info->reloc_mutex);
de98ced9 2157 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2158
58176a96 2159 init_completion(&fs_info->kobj_unregister);
0b86a832 2160 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2161 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2162 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2163 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2164 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2165 BTRFS_BLOCK_RSV_GLOBAL);
2166 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2167 BTRFS_BLOCK_RSV_DELALLOC);
2168 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2169 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2170 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2171 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2172 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2173 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2174 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2175 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2176 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2177 atomic_set(&fs_info->defrag_running, 0);
fc36ed7e 2178 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2179 fs_info->sb = sb;
6f568d35 2180 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2181 fs_info->metadata_ratio = 0;
4cb5300b 2182 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2183 fs_info->free_chunk_space = 0;
f29021b2 2184 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2185 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
c8b97818 2186
90519d66
AJ
2187 /* readahead state */
2188 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2189 spin_lock_init(&fs_info->reada_lock);
c8b97818 2190
b34b086c
CM
2191 fs_info->thread_pool_size = min_t(unsigned long,
2192 num_online_cpus() + 2, 8);
0afbaf8c 2193
199c2a9c
MX
2194 INIT_LIST_HEAD(&fs_info->ordered_roots);
2195 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2196 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2197 GFP_NOFS);
2198 if (!fs_info->delayed_root) {
2199 err = -ENOMEM;
2200 goto fail_iput;
2201 }
2202 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2203
a2de733c
AJ
2204 mutex_init(&fs_info->scrub_lock);
2205 atomic_set(&fs_info->scrubs_running, 0);
2206 atomic_set(&fs_info->scrub_pause_req, 0);
2207 atomic_set(&fs_info->scrubs_paused, 0);
2208 atomic_set(&fs_info->scrub_cancel_req, 0);
2209 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2210 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2211#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2212 fs_info->check_integrity_print_mask = 0;
2213#endif
a2de733c 2214
c9e9f97b
ID
2215 spin_lock_init(&fs_info->balance_lock);
2216 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2217 atomic_set(&fs_info->balance_running, 0);
2218 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2219 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2220 fs_info->balance_ctl = NULL;
837d5b6e 2221 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2222
a061fc8d
CM
2223 sb->s_blocksize = 4096;
2224 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2225 sb->s_bdi = &fs_info->bdi;
a061fc8d 2226
76dda93c 2227 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2228 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2229 /*
2230 * we set the i_size on the btree inode to the max possible int.
2231 * the real end of the address space is determined by all of
2232 * the devices in the system
2233 */
2234 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2235 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2236 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2237
5d4f98a2 2238 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2239 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2240 fs_info->btree_inode->i_mapping);
0b32f4bb 2241 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2242 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2243
2244 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2245
76dda93c
YZ
2246 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2247 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2248 sizeof(struct btrfs_key));
72ac3c0d
JB
2249 set_bit(BTRFS_INODE_DUMMY,
2250 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2251 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2252
0f9dd46c 2253 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2254 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2255 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2256
11833d66 2257 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2258 fs_info->btree_inode->i_mapping);
11833d66 2259 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2260 fs_info->btree_inode->i_mapping);
11833d66 2261 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2262 fs_info->do_barriers = 1;
e18e4809 2263
39279cc3 2264
5a3f23d5 2265 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2266 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2267 mutex_init(&fs_info->tree_log_mutex);
925baedd 2268 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2269 mutex_init(&fs_info->transaction_kthread_mutex);
2270 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2271 mutex_init(&fs_info->volume_mutex);
276e680d 2272 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2273 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2274 init_rwsem(&fs_info->subvol_sem);
803b2f54 2275 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2276 fs_info->dev_replace.lock_owner = 0;
2277 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2278 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2279 mutex_init(&fs_info->dev_replace.lock_management_lock);
2280 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2281
416ac51d 2282 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2283 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2284 fs_info->qgroup_tree = RB_ROOT;
2285 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2286 fs_info->qgroup_seq = 1;
2287 fs_info->quota_enabled = 0;
2288 fs_info->pending_quota_state = 0;
1e8f9158 2289 fs_info->qgroup_ulist = NULL;
2f232036 2290 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2291
fa9c0d79
CM
2292 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2293 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2294
e6dcd2dc 2295 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2296 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2297 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2298 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2299
53b381b3
DW
2300 ret = btrfs_alloc_stripe_hash_table(fs_info);
2301 if (ret) {
83c8266a 2302 err = ret;
53b381b3
DW
2303 goto fail_alloc;
2304 }
2305
0b86a832 2306 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2307 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2308
3c4bb26b 2309 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2310
2311 /*
2312 * Read super block and check the signature bytes only
2313 */
a512bbf8 2314 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2315 if (!bh) {
2316 err = -EINVAL;
16cdcec7 2317 goto fail_alloc;
20b45077 2318 }
39279cc3 2319
1104a885
DS
2320 /*
2321 * We want to check superblock checksum, the type is stored inside.
2322 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2323 */
2324 if (btrfs_check_super_csum(bh->b_data)) {
2325 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2326 err = -EINVAL;
2327 goto fail_alloc;
2328 }
2329
2330 /*
2331 * super_copy is zeroed at allocation time and we never touch the
2332 * following bytes up to INFO_SIZE, the checksum is calculated from
2333 * the whole block of INFO_SIZE
2334 */
6c41761f
DS
2335 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2336 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2337 sizeof(*fs_info->super_for_commit));
a061fc8d 2338 brelse(bh);
5f39d397 2339
6c41761f 2340 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2341
1104a885
DS
2342 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2343 if (ret) {
2344 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2345 err = -EINVAL;
2346 goto fail_alloc;
2347 }
2348
6c41761f 2349 disk_super = fs_info->super_copy;
0f7d52f4 2350 if (!btrfs_super_root(disk_super))
16cdcec7 2351 goto fail_alloc;
0f7d52f4 2352
acce952b 2353 /* check FS state, whether FS is broken. */
87533c47
MX
2354 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2355 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2356
af31f5e5
CM
2357 /*
2358 * run through our array of backup supers and setup
2359 * our ring pointer to the oldest one
2360 */
2361 generation = btrfs_super_generation(disk_super);
2362 find_oldest_super_backup(fs_info, generation);
2363
75e7cb7f
LB
2364 /*
2365 * In the long term, we'll store the compression type in the super
2366 * block, and it'll be used for per file compression control.
2367 */
2368 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2369
2b82032c
YZ
2370 ret = btrfs_parse_options(tree_root, options);
2371 if (ret) {
2372 err = ret;
16cdcec7 2373 goto fail_alloc;
2b82032c 2374 }
dfe25020 2375
f2b636e8
JB
2376 features = btrfs_super_incompat_flags(disk_super) &
2377 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2378 if (features) {
2379 printk(KERN_ERR "BTRFS: couldn't mount because of "
2380 "unsupported optional features (%Lx).\n",
c1c9ff7c 2381 features);
f2b636e8 2382 err = -EINVAL;
16cdcec7 2383 goto fail_alloc;
f2b636e8
JB
2384 }
2385
727011e0
CM
2386 if (btrfs_super_leafsize(disk_super) !=
2387 btrfs_super_nodesize(disk_super)) {
2388 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2389 "blocksizes don't match. node %d leaf %d\n",
2390 btrfs_super_nodesize(disk_super),
2391 btrfs_super_leafsize(disk_super));
2392 err = -EINVAL;
2393 goto fail_alloc;
2394 }
2395 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2396 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2397 "blocksize (%d) was too large\n",
2398 btrfs_super_leafsize(disk_super));
2399 err = -EINVAL;
2400 goto fail_alloc;
2401 }
2402
5d4f98a2 2403 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2404 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2405 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2406 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2407
3173a18f
JB
2408 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2409 printk(KERN_ERR "btrfs: has skinny extents\n");
2410
727011e0
CM
2411 /*
2412 * flag our filesystem as having big metadata blocks if
2413 * they are bigger than the page size
2414 */
2415 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2416 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2417 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2418 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2419 }
2420
bc3f116f
CM
2421 nodesize = btrfs_super_nodesize(disk_super);
2422 leafsize = btrfs_super_leafsize(disk_super);
2423 sectorsize = btrfs_super_sectorsize(disk_super);
2424 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2425 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2426 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2427
2428 /*
2429 * mixed block groups end up with duplicate but slightly offset
2430 * extent buffers for the same range. It leads to corruptions
2431 */
2432 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2433 (sectorsize != leafsize)) {
2434 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2435 "are not allowed for mixed block groups on %s\n",
2436 sb->s_id);
2437 goto fail_alloc;
2438 }
2439
ceda0864
MX
2440 /*
2441 * Needn't use the lock because there is no other task which will
2442 * update the flag.
2443 */
a6fa6fae 2444 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2445
f2b636e8
JB
2446 features = btrfs_super_compat_ro_flags(disk_super) &
2447 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2448 if (!(sb->s_flags & MS_RDONLY) && features) {
2449 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2450 "unsupported option features (%Lx).\n",
c1c9ff7c 2451 features);
f2b636e8 2452 err = -EINVAL;
16cdcec7 2453 goto fail_alloc;
f2b636e8 2454 }
61d92c32
CM
2455
2456 btrfs_init_workers(&fs_info->generic_worker,
2457 "genwork", 1, NULL);
2458
5443be45 2459 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2460 fs_info->thread_pool_size,
2461 &fs_info->generic_worker);
c8b97818 2462
771ed689 2463 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
45d5fd14 2464 fs_info->thread_pool_size, NULL);
771ed689 2465
8ccf6f19 2466 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
45d5fd14 2467 fs_info->thread_pool_size, NULL);
8ccf6f19 2468
5443be45 2469 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2470 min_t(u64, fs_devices->num_devices,
45d5fd14 2471 fs_info->thread_pool_size), NULL);
61b49440 2472
bab39bf9 2473 btrfs_init_workers(&fs_info->caching_workers, "cache",
45d5fd14 2474 fs_info->thread_pool_size, NULL);
bab39bf9 2475
61b49440
CM
2476 /* a higher idle thresh on the submit workers makes it much more
2477 * likely that bios will be send down in a sane order to the
2478 * devices
2479 */
2480 fs_info->submit_workers.idle_thresh = 64;
53863232 2481
771ed689 2482 fs_info->workers.idle_thresh = 16;
4a69a410 2483 fs_info->workers.ordered = 1;
61b49440 2484
771ed689
CM
2485 fs_info->delalloc_workers.idle_thresh = 2;
2486 fs_info->delalloc_workers.ordered = 1;
2487
61d92c32
CM
2488 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2489 &fs_info->generic_worker);
5443be45 2490 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2491 fs_info->thread_pool_size,
2492 &fs_info->generic_worker);
d20f7043 2493 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2494 fs_info->thread_pool_size,
2495 &fs_info->generic_worker);
cad321ad 2496 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2497 "endio-meta-write", fs_info->thread_pool_size,
2498 &fs_info->generic_worker);
53b381b3
DW
2499 btrfs_init_workers(&fs_info->endio_raid56_workers,
2500 "endio-raid56", fs_info->thread_pool_size,
2501 &fs_info->generic_worker);
2502 btrfs_init_workers(&fs_info->rmw_workers,
2503 "rmw", fs_info->thread_pool_size,
2504 &fs_info->generic_worker);
5443be45 2505 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2506 fs_info->thread_pool_size,
2507 &fs_info->generic_worker);
0cb59c99
JB
2508 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2509 1, &fs_info->generic_worker);
16cdcec7
MX
2510 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2511 fs_info->thread_pool_size,
2512 &fs_info->generic_worker);
90519d66
AJ
2513 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2514 fs_info->thread_pool_size,
2515 &fs_info->generic_worker);
2f232036
JS
2516 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2517 &fs_info->generic_worker);
61b49440
CM
2518
2519 /*
2520 * endios are largely parallel and should have a very
2521 * low idle thresh
2522 */
2523 fs_info->endio_workers.idle_thresh = 4;
b51912c9 2524 fs_info->endio_meta_workers.idle_thresh = 4;
53b381b3
DW
2525 fs_info->endio_raid56_workers.idle_thresh = 4;
2526 fs_info->rmw_workers.idle_thresh = 2;
b51912c9 2527
9042846b
CM
2528 fs_info->endio_write_workers.idle_thresh = 2;
2529 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2530 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2531
0dc3b84a
JB
2532 /*
2533 * btrfs_start_workers can really only fail because of ENOMEM so just
2534 * return -ENOMEM if any of these fail.
2535 */
2536 ret = btrfs_start_workers(&fs_info->workers);
2537 ret |= btrfs_start_workers(&fs_info->generic_worker);
2538 ret |= btrfs_start_workers(&fs_info->submit_workers);
2539 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2540 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2541 ret |= btrfs_start_workers(&fs_info->endio_workers);
2542 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
53b381b3
DW
2543 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2544 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
0dc3b84a
JB
2545 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2546 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2547 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2548 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2549 ret |= btrfs_start_workers(&fs_info->caching_workers);
2550 ret |= btrfs_start_workers(&fs_info->readahead_workers);
8ccf6f19 2551 ret |= btrfs_start_workers(&fs_info->flush_workers);
2f232036 2552 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
0dc3b84a 2553 if (ret) {
fed425c7 2554 err = -ENOMEM;
0dc3b84a
JB
2555 goto fail_sb_buffer;
2556 }
4543df7e 2557
4575c9cc 2558 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2559 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2560 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2561
db94535d
CM
2562 tree_root->nodesize = nodesize;
2563 tree_root->leafsize = leafsize;
2564 tree_root->sectorsize = sectorsize;
87ee04eb 2565 tree_root->stripesize = stripesize;
a061fc8d
CM
2566
2567 sb->s_blocksize = sectorsize;
2568 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2569
3cae210f 2570 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
d397712b 2571 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2572 goto fail_sb_buffer;
2573 }
19c00ddc 2574
8d082fb7
LB
2575 if (sectorsize != PAGE_SIZE) {
2576 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2577 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2578 goto fail_sb_buffer;
2579 }
2580
925baedd 2581 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2582 ret = btrfs_read_sys_array(tree_root);
925baedd 2583 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2584 if (ret) {
d397712b
CM
2585 printk(KERN_WARNING "btrfs: failed to read the system "
2586 "array on %s\n", sb->s_id);
5d4f98a2 2587 goto fail_sb_buffer;
84eed90f 2588 }
0b86a832
CM
2589
2590 blocksize = btrfs_level_size(tree_root,
2591 btrfs_super_chunk_root_level(disk_super));
84234f3a 2592 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2593
2594 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2595 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2596
2597 chunk_root->node = read_tree_block(chunk_root,
2598 btrfs_super_chunk_root(disk_super),
84234f3a 2599 blocksize, generation);
416bc658
JB
2600 if (!chunk_root->node ||
2601 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
83121942
DW
2602 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2603 sb->s_id);
af31f5e5 2604 goto fail_tree_roots;
83121942 2605 }
5d4f98a2
YZ
2606 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2607 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2608
e17cade2 2609 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2610 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2611
0b86a832 2612 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2613 if (ret) {
d397712b
CM
2614 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2615 sb->s_id);
af31f5e5 2616 goto fail_tree_roots;
2b82032c 2617 }
0b86a832 2618
8dabb742
SB
2619 /*
2620 * keep the device that is marked to be the target device for the
2621 * dev_replace procedure
2622 */
2623 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2624
a6b0d5c8
CM
2625 if (!fs_devices->latest_bdev) {
2626 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2627 sb->s_id);
2628 goto fail_tree_roots;
2629 }
2630
af31f5e5 2631retry_root_backup:
db94535d
CM
2632 blocksize = btrfs_level_size(tree_root,
2633 btrfs_super_root_level(disk_super));
84234f3a 2634 generation = btrfs_super_generation(disk_super);
0b86a832 2635
e20d96d6 2636 tree_root->node = read_tree_block(tree_root,
db94535d 2637 btrfs_super_root(disk_super),
84234f3a 2638 blocksize, generation);
af31f5e5
CM
2639 if (!tree_root->node ||
2640 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2641 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2642 sb->s_id);
af31f5e5
CM
2643
2644 goto recovery_tree_root;
83121942 2645 }
af31f5e5 2646
5d4f98a2
YZ
2647 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2648 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2649 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2650
cb517eab
MX
2651 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2652 location.type = BTRFS_ROOT_ITEM_KEY;
2653 location.offset = 0;
2654
2655 extent_root = btrfs_read_tree_root(tree_root, &location);
2656 if (IS_ERR(extent_root)) {
2657 ret = PTR_ERR(extent_root);
af31f5e5 2658 goto recovery_tree_root;
cb517eab 2659 }
0b86a832 2660 extent_root->track_dirty = 1;
cb517eab 2661 fs_info->extent_root = extent_root;
0b86a832 2662
cb517eab
MX
2663 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2664 dev_root = btrfs_read_tree_root(tree_root, &location);
2665 if (IS_ERR(dev_root)) {
2666 ret = PTR_ERR(dev_root);
af31f5e5 2667 goto recovery_tree_root;
cb517eab 2668 }
5d4f98a2 2669 dev_root->track_dirty = 1;
cb517eab
MX
2670 fs_info->dev_root = dev_root;
2671 btrfs_init_devices_late(fs_info);
3768f368 2672
cb517eab
MX
2673 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2674 csum_root = btrfs_read_tree_root(tree_root, &location);
2675 if (IS_ERR(csum_root)) {
2676 ret = PTR_ERR(csum_root);
af31f5e5 2677 goto recovery_tree_root;
cb517eab 2678 }
d20f7043 2679 csum_root->track_dirty = 1;
cb517eab 2680 fs_info->csum_root = csum_root;
d20f7043 2681
cb517eab
MX
2682 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2683 quota_root = btrfs_read_tree_root(tree_root, &location);
2684 if (!IS_ERR(quota_root)) {
bcef60f2
AJ
2685 quota_root->track_dirty = 1;
2686 fs_info->quota_enabled = 1;
2687 fs_info->pending_quota_state = 1;
cb517eab 2688 fs_info->quota_root = quota_root;
bcef60f2
AJ
2689 }
2690
f7a81ea4
SB
2691 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2692 uuid_root = btrfs_read_tree_root(tree_root, &location);
2693 if (IS_ERR(uuid_root)) {
2694 ret = PTR_ERR(uuid_root);
2695 if (ret != -ENOENT)
2696 goto recovery_tree_root;
2697 create_uuid_tree = true;
70f80175 2698 check_uuid_tree = false;
f7a81ea4
SB
2699 } else {
2700 uuid_root->track_dirty = 1;
2701 fs_info->uuid_root = uuid_root;
70f80175
SB
2702 create_uuid_tree = false;
2703 check_uuid_tree =
2704 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2705 }
2706
8929ecfa
YZ
2707 fs_info->generation = generation;
2708 fs_info->last_trans_committed = generation;
8929ecfa 2709
68310a5e
ID
2710 ret = btrfs_recover_balance(fs_info);
2711 if (ret) {
2712 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2713 goto fail_block_groups;
2714 }
2715
733f4fbb
SB
2716 ret = btrfs_init_dev_stats(fs_info);
2717 if (ret) {
2718 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2719 ret);
2720 goto fail_block_groups;
2721 }
2722
8dabb742
SB
2723 ret = btrfs_init_dev_replace(fs_info);
2724 if (ret) {
2725 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2726 goto fail_block_groups;
2727 }
2728
2729 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2730
5ac1d209
JM
2731 ret = btrfs_sysfs_add_one(fs_info);
2732 if (ret) {
2733 pr_err("btrfs: failed to init sysfs interface: %d\n", ret);
2734 goto fail_block_groups;
2735 }
2736
c59021f8 2737 ret = btrfs_init_space_info(fs_info);
2738 if (ret) {
2739 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2740 goto fail_block_groups;
2741 }
2742
1b1d1f66
JB
2743 ret = btrfs_read_block_groups(extent_root);
2744 if (ret) {
2745 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2746 goto fail_block_groups;
2747 }
5af3e8cc
SB
2748 fs_info->num_tolerated_disk_barrier_failures =
2749 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2750 if (fs_info->fs_devices->missing_devices >
2751 fs_info->num_tolerated_disk_barrier_failures &&
2752 !(sb->s_flags & MS_RDONLY)) {
2753 printk(KERN_WARNING
2754 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2755 goto fail_block_groups;
2756 }
9078a3e1 2757
a74a4b97
CM
2758 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2759 "btrfs-cleaner");
57506d50 2760 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2761 goto fail_block_groups;
a74a4b97
CM
2762
2763 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2764 tree_root,
2765 "btrfs-transaction");
57506d50 2766 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2767 goto fail_cleaner;
a74a4b97 2768
c289811c
CM
2769 if (!btrfs_test_opt(tree_root, SSD) &&
2770 !btrfs_test_opt(tree_root, NOSSD) &&
2771 !fs_info->fs_devices->rotating) {
2772 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2773 "mode\n");
2774 btrfs_set_opt(fs_info->mount_opt, SSD);
2775 }
2776
21adbd5c
SB
2777#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2778 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2779 ret = btrfsic_mount(tree_root, fs_devices,
2780 btrfs_test_opt(tree_root,
2781 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2782 1 : 0,
2783 fs_info->check_integrity_print_mask);
2784 if (ret)
2785 printk(KERN_WARNING "btrfs: failed to initialize"
2786 " integrity check module %s\n", sb->s_id);
2787 }
2788#endif
bcef60f2
AJ
2789 ret = btrfs_read_qgroup_config(fs_info);
2790 if (ret)
2791 goto fail_trans_kthread;
21adbd5c 2792
acce952b 2793 /* do not make disk changes in broken FS */
68ce9682 2794 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2795 u64 bytenr = btrfs_super_log_root(disk_super);
2796
7c2ca468 2797 if (fs_devices->rw_devices == 0) {
d397712b
CM
2798 printk(KERN_WARNING "Btrfs log replay required "
2799 "on RO media\n");
7c2ca468 2800 err = -EIO;
bcef60f2 2801 goto fail_qgroup;
7c2ca468 2802 }
e02119d5
CM
2803 blocksize =
2804 btrfs_level_size(tree_root,
2805 btrfs_super_log_root_level(disk_super));
d18a2c44 2806
6f07e42e 2807 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2808 if (!log_tree_root) {
2809 err = -ENOMEM;
bcef60f2 2810 goto fail_qgroup;
676e4c86 2811 }
e02119d5
CM
2812
2813 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2814 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2815
2816 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2817 blocksize,
2818 generation + 1);
416bc658
JB
2819 if (!log_tree_root->node ||
2820 !extent_buffer_uptodate(log_tree_root->node)) {
2821 printk(KERN_ERR "btrfs: failed to read log tree\n");
2822 free_extent_buffer(log_tree_root->node);
2823 kfree(log_tree_root);
2824 goto fail_trans_kthread;
2825 }
79787eaa 2826 /* returns with log_tree_root freed on success */
e02119d5 2827 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2828 if (ret) {
2829 btrfs_error(tree_root->fs_info, ret,
2830 "Failed to recover log tree");
2831 free_extent_buffer(log_tree_root->node);
2832 kfree(log_tree_root);
2833 goto fail_trans_kthread;
2834 }
e556ce2c
YZ
2835
2836 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2837 ret = btrfs_commit_super(tree_root);
2838 if (ret)
2839 goto fail_trans_kthread;
e556ce2c 2840 }
e02119d5 2841 }
1a40e23b 2842
76dda93c 2843 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2844 if (ret)
2845 goto fail_trans_kthread;
76dda93c 2846
7c2ca468 2847 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2848 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2849 if (ret)
2850 goto fail_trans_kthread;
d68fc57b 2851
5d4f98a2 2852 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2853 if (ret < 0) {
2854 printk(KERN_WARNING
2855 "btrfs: failed to recover relocation\n");
2856 err = -EINVAL;
bcef60f2 2857 goto fail_qgroup;
d7ce5843 2858 }
7c2ca468 2859 }
1a40e23b 2860
3de4586c
CM
2861 location.objectid = BTRFS_FS_TREE_OBJECTID;
2862 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2863 location.offset = 0;
3de4586c 2864
3de4586c 2865 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2866 if (IS_ERR(fs_info->fs_root)) {
2867 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2868 goto fail_qgroup;
3140c9a3 2869 }
c289811c 2870
2b6ba629
ID
2871 if (sb->s_flags & MS_RDONLY)
2872 return 0;
59641015 2873
2b6ba629
ID
2874 down_read(&fs_info->cleanup_work_sem);
2875 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2876 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2877 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2878 close_ctree(tree_root);
2879 return ret;
2880 }
2881 up_read(&fs_info->cleanup_work_sem);
59641015 2882
2b6ba629
ID
2883 ret = btrfs_resume_balance_async(fs_info);
2884 if (ret) {
2885 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2886 close_ctree(tree_root);
2887 return ret;
e3acc2a6
JB
2888 }
2889
8dabb742
SB
2890 ret = btrfs_resume_dev_replace_async(fs_info);
2891 if (ret) {
2892 pr_warn("btrfs: failed to resume dev_replace\n");
2893 close_ctree(tree_root);
2894 return ret;
2895 }
2896
b382a324
JS
2897 btrfs_qgroup_rescan_resume(fs_info);
2898
f7a81ea4
SB
2899 if (create_uuid_tree) {
2900 pr_info("btrfs: creating UUID tree\n");
2901 ret = btrfs_create_uuid_tree(fs_info);
2902 if (ret) {
2903 pr_warn("btrfs: failed to create the UUID tree %d\n",
2904 ret);
2905 close_ctree(tree_root);
2906 return ret;
2907 }
f420ee1e
SB
2908 } else if (check_uuid_tree ||
2909 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
70f80175
SB
2910 pr_info("btrfs: checking UUID tree\n");
2911 ret = btrfs_check_uuid_tree(fs_info);
2912 if (ret) {
2913 pr_warn("btrfs: failed to check the UUID tree %d\n",
2914 ret);
2915 close_ctree(tree_root);
2916 return ret;
2917 }
2918 } else {
2919 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2920 }
2921
ad2b2c80 2922 return 0;
39279cc3 2923
bcef60f2
AJ
2924fail_qgroup:
2925 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2926fail_trans_kthread:
2927 kthread_stop(fs_info->transaction_kthread);
54067ae9 2928 btrfs_cleanup_transaction(fs_info->tree_root);
7b5ff90e 2929 del_fs_roots(fs_info);
3f157a2f 2930fail_cleaner:
a74a4b97 2931 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2932
2933 /*
2934 * make sure we're done with the btree inode before we stop our
2935 * kthreads
2936 */
2937 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2938
1b1d1f66 2939fail_block_groups:
54067ae9 2940 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2941 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2942
2943fail_tree_roots:
2944 free_root_pointers(fs_info, 1);
2b8195bb 2945 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2946
39279cc3 2947fail_sb_buffer:
7abadb64 2948 btrfs_stop_all_workers(fs_info);
16cdcec7 2949fail_alloc:
4543df7e 2950fail_iput:
586e46e2
ID
2951 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2952
4543df7e 2953 iput(fs_info->btree_inode);
963d678b
MX
2954fail_delalloc_bytes:
2955 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
2956fail_dirty_metadata_bytes:
2957 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2958fail_bdi:
7e662854 2959 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2960fail_srcu:
2961 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2962fail:
53b381b3 2963 btrfs_free_stripe_hash_table(fs_info);
586e46e2 2964 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2965 return err;
af31f5e5
CM
2966
2967recovery_tree_root:
af31f5e5
CM
2968 if (!btrfs_test_opt(tree_root, RECOVERY))
2969 goto fail_tree_roots;
2970
2971 free_root_pointers(fs_info, 0);
2972
2973 /* don't use the log in recovery mode, it won't be valid */
2974 btrfs_set_super_log_root(disk_super, 0);
2975
2976 /* we can't trust the free space cache either */
2977 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2978
2979 ret = next_root_backup(fs_info, fs_info->super_copy,
2980 &num_backups_tried, &backup_index);
2981 if (ret == -1)
2982 goto fail_block_groups;
2983 goto retry_root_backup;
eb60ceac
CM
2984}
2985
f2984462
CM
2986static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2987{
f2984462
CM
2988 if (uptodate) {
2989 set_buffer_uptodate(bh);
2990 } else {
442a4f63
SB
2991 struct btrfs_device *device = (struct btrfs_device *)
2992 bh->b_private;
2993
606686ee
JB
2994 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2995 "I/O error on %s\n",
2996 rcu_str_deref(device->name));
1259ab75
CM
2997 /* note, we dont' set_buffer_write_io_error because we have
2998 * our own ways of dealing with the IO errors
2999 */
f2984462 3000 clear_buffer_uptodate(bh);
442a4f63 3001 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3002 }
3003 unlock_buffer(bh);
3004 put_bh(bh);
3005}
3006
a512bbf8
YZ
3007struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3008{
3009 struct buffer_head *bh;
3010 struct buffer_head *latest = NULL;
3011 struct btrfs_super_block *super;
3012 int i;
3013 u64 transid = 0;
3014 u64 bytenr;
3015
3016 /* we would like to check all the supers, but that would make
3017 * a btrfs mount succeed after a mkfs from a different FS.
3018 * So, we need to add a special mount option to scan for
3019 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3020 */
3021 for (i = 0; i < 1; i++) {
3022 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3023 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3024 i_size_read(bdev->bd_inode))
a512bbf8 3025 break;
8068a47e
AJ
3026 bh = __bread(bdev, bytenr / 4096,
3027 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3028 if (!bh)
3029 continue;
3030
3031 super = (struct btrfs_super_block *)bh->b_data;
3032 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3033 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3034 brelse(bh);
3035 continue;
3036 }
3037
3038 if (!latest || btrfs_super_generation(super) > transid) {
3039 brelse(latest);
3040 latest = bh;
3041 transid = btrfs_super_generation(super);
3042 } else {
3043 brelse(bh);
3044 }
3045 }
3046 return latest;
3047}
3048
4eedeb75
HH
3049/*
3050 * this should be called twice, once with wait == 0 and
3051 * once with wait == 1. When wait == 0 is done, all the buffer heads
3052 * we write are pinned.
3053 *
3054 * They are released when wait == 1 is done.
3055 * max_mirrors must be the same for both runs, and it indicates how
3056 * many supers on this one device should be written.
3057 *
3058 * max_mirrors == 0 means to write them all.
3059 */
a512bbf8
YZ
3060static int write_dev_supers(struct btrfs_device *device,
3061 struct btrfs_super_block *sb,
3062 int do_barriers, int wait, int max_mirrors)
3063{
3064 struct buffer_head *bh;
3065 int i;
3066 int ret;
3067 int errors = 0;
3068 u32 crc;
3069 u64 bytenr;
a512bbf8
YZ
3070
3071 if (max_mirrors == 0)
3072 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3073
a512bbf8
YZ
3074 for (i = 0; i < max_mirrors; i++) {
3075 bytenr = btrfs_sb_offset(i);
3076 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3077 break;
3078
3079 if (wait) {
3080 bh = __find_get_block(device->bdev, bytenr / 4096,
3081 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3082 if (!bh) {
3083 errors++;
3084 continue;
3085 }
a512bbf8 3086 wait_on_buffer(bh);
4eedeb75
HH
3087 if (!buffer_uptodate(bh))
3088 errors++;
3089
3090 /* drop our reference */
3091 brelse(bh);
3092
3093 /* drop the reference from the wait == 0 run */
3094 brelse(bh);
3095 continue;
a512bbf8
YZ
3096 } else {
3097 btrfs_set_super_bytenr(sb, bytenr);
3098
3099 crc = ~(u32)0;
b0496686 3100 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3101 BTRFS_CSUM_SIZE, crc,
3102 BTRFS_SUPER_INFO_SIZE -
3103 BTRFS_CSUM_SIZE);
3104 btrfs_csum_final(crc, sb->csum);
3105
4eedeb75
HH
3106 /*
3107 * one reference for us, and we leave it for the
3108 * caller
3109 */
a512bbf8
YZ
3110 bh = __getblk(device->bdev, bytenr / 4096,
3111 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3112 if (!bh) {
3113 printk(KERN_ERR "btrfs: couldn't get super "
3114 "buffer head for bytenr %Lu\n", bytenr);
3115 errors++;
3116 continue;
3117 }
3118
a512bbf8
YZ
3119 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3120
4eedeb75 3121 /* one reference for submit_bh */
a512bbf8 3122 get_bh(bh);
4eedeb75
HH
3123
3124 set_buffer_uptodate(bh);
a512bbf8
YZ
3125 lock_buffer(bh);
3126 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3127 bh->b_private = device;
a512bbf8
YZ
3128 }
3129
387125fc
CM
3130 /*
3131 * we fua the first super. The others we allow
3132 * to go down lazy.
3133 */
21adbd5c 3134 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 3135 if (ret)
a512bbf8 3136 errors++;
a512bbf8
YZ
3137 }
3138 return errors < i ? 0 : -1;
3139}
3140
387125fc
CM
3141/*
3142 * endio for the write_dev_flush, this will wake anyone waiting
3143 * for the barrier when it is done
3144 */
3145static void btrfs_end_empty_barrier(struct bio *bio, int err)
3146{
3147 if (err) {
3148 if (err == -EOPNOTSUPP)
3149 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3150 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3151 }
3152 if (bio->bi_private)
3153 complete(bio->bi_private);
3154 bio_put(bio);
3155}
3156
3157/*
3158 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3159 * sent down. With wait == 1, it waits for the previous flush.
3160 *
3161 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3162 * capable
3163 */
3164static int write_dev_flush(struct btrfs_device *device, int wait)
3165{
3166 struct bio *bio;
3167 int ret = 0;
3168
3169 if (device->nobarriers)
3170 return 0;
3171
3172 if (wait) {
3173 bio = device->flush_bio;
3174 if (!bio)
3175 return 0;
3176
3177 wait_for_completion(&device->flush_wait);
3178
3179 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
3180 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3181 rcu_str_deref(device->name));
387125fc 3182 device->nobarriers = 1;
5af3e8cc 3183 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3184 ret = -EIO;
5af3e8cc
SB
3185 btrfs_dev_stat_inc_and_print(device,
3186 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3187 }
3188
3189 /* drop the reference from the wait == 0 run */
3190 bio_put(bio);
3191 device->flush_bio = NULL;
3192
3193 return ret;
3194 }
3195
3196 /*
3197 * one reference for us, and we leave it for the
3198 * caller
3199 */
9c017abc 3200 device->flush_bio = NULL;
9be3395b 3201 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3202 if (!bio)
3203 return -ENOMEM;
3204
3205 bio->bi_end_io = btrfs_end_empty_barrier;
3206 bio->bi_bdev = device->bdev;
3207 init_completion(&device->flush_wait);
3208 bio->bi_private = &device->flush_wait;
3209 device->flush_bio = bio;
3210
3211 bio_get(bio);
21adbd5c 3212 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3213
3214 return 0;
3215}
3216
3217/*
3218 * send an empty flush down to each device in parallel,
3219 * then wait for them
3220 */
3221static int barrier_all_devices(struct btrfs_fs_info *info)
3222{
3223 struct list_head *head;
3224 struct btrfs_device *dev;
5af3e8cc
SB
3225 int errors_send = 0;
3226 int errors_wait = 0;
387125fc
CM
3227 int ret;
3228
3229 /* send down all the barriers */
3230 head = &info->fs_devices->devices;
3231 list_for_each_entry_rcu(dev, head, dev_list) {
3232 if (!dev->bdev) {
5af3e8cc 3233 errors_send++;
387125fc
CM
3234 continue;
3235 }
3236 if (!dev->in_fs_metadata || !dev->writeable)
3237 continue;
3238
3239 ret = write_dev_flush(dev, 0);
3240 if (ret)
5af3e8cc 3241 errors_send++;
387125fc
CM
3242 }
3243
3244 /* wait for all the barriers */
3245 list_for_each_entry_rcu(dev, head, dev_list) {
3246 if (!dev->bdev) {
5af3e8cc 3247 errors_wait++;
387125fc
CM
3248 continue;
3249 }
3250 if (!dev->in_fs_metadata || !dev->writeable)
3251 continue;
3252
3253 ret = write_dev_flush(dev, 1);
3254 if (ret)
5af3e8cc 3255 errors_wait++;
387125fc 3256 }
5af3e8cc
SB
3257 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3258 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3259 return -EIO;
3260 return 0;
3261}
3262
5af3e8cc
SB
3263int btrfs_calc_num_tolerated_disk_barrier_failures(
3264 struct btrfs_fs_info *fs_info)
3265{
3266 struct btrfs_ioctl_space_info space;
3267 struct btrfs_space_info *sinfo;
3268 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3269 BTRFS_BLOCK_GROUP_SYSTEM,
3270 BTRFS_BLOCK_GROUP_METADATA,
3271 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3272 int num_types = 4;
3273 int i;
3274 int c;
3275 int num_tolerated_disk_barrier_failures =
3276 (int)fs_info->fs_devices->num_devices;
3277
3278 for (i = 0; i < num_types; i++) {
3279 struct btrfs_space_info *tmp;
3280
3281 sinfo = NULL;
3282 rcu_read_lock();
3283 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3284 if (tmp->flags == types[i]) {
3285 sinfo = tmp;
3286 break;
3287 }
3288 }
3289 rcu_read_unlock();
3290
3291 if (!sinfo)
3292 continue;
3293
3294 down_read(&sinfo->groups_sem);
3295 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3296 if (!list_empty(&sinfo->block_groups[c])) {
3297 u64 flags;
3298
3299 btrfs_get_block_group_info(
3300 &sinfo->block_groups[c], &space);
3301 if (space.total_bytes == 0 ||
3302 space.used_bytes == 0)
3303 continue;
3304 flags = space.flags;
3305 /*
3306 * return
3307 * 0: if dup, single or RAID0 is configured for
3308 * any of metadata, system or data, else
3309 * 1: if RAID5 is configured, or if RAID1 or
3310 * RAID10 is configured and only two mirrors
3311 * are used, else
3312 * 2: if RAID6 is configured, else
3313 * num_mirrors - 1: if RAID1 or RAID10 is
3314 * configured and more than
3315 * 2 mirrors are used.
3316 */
3317 if (num_tolerated_disk_barrier_failures > 0 &&
3318 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3319 BTRFS_BLOCK_GROUP_RAID0)) ||
3320 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3321 == 0)))
3322 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3323 else if (num_tolerated_disk_barrier_failures > 1) {
3324 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3325 BTRFS_BLOCK_GROUP_RAID5 |
3326 BTRFS_BLOCK_GROUP_RAID10)) {
3327 num_tolerated_disk_barrier_failures = 1;
3328 } else if (flags &
15b0a89d 3329 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3330 num_tolerated_disk_barrier_failures = 2;
3331 }
3332 }
5af3e8cc
SB
3333 }
3334 }
3335 up_read(&sinfo->groups_sem);
3336 }
3337
3338 return num_tolerated_disk_barrier_failures;
3339}
3340
48a3b636 3341static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3342{
e5e9a520 3343 struct list_head *head;
f2984462 3344 struct btrfs_device *dev;
a061fc8d 3345 struct btrfs_super_block *sb;
f2984462 3346 struct btrfs_dev_item *dev_item;
f2984462
CM
3347 int ret;
3348 int do_barriers;
a236aed1
CM
3349 int max_errors;
3350 int total_errors = 0;
a061fc8d 3351 u64 flags;
f2984462
CM
3352
3353 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3354 backup_super_roots(root->fs_info);
f2984462 3355
6c41761f 3356 sb = root->fs_info->super_for_commit;
a061fc8d 3357 dev_item = &sb->dev_item;
e5e9a520 3358
174ba509 3359 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3360 head = &root->fs_info->fs_devices->devices;
d7306801 3361 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3362
5af3e8cc
SB
3363 if (do_barriers) {
3364 ret = barrier_all_devices(root->fs_info);
3365 if (ret) {
3366 mutex_unlock(
3367 &root->fs_info->fs_devices->device_list_mutex);
3368 btrfs_error(root->fs_info, ret,
3369 "errors while submitting device barriers.");
3370 return ret;
3371 }
3372 }
387125fc 3373
1f78160c 3374 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3375 if (!dev->bdev) {
3376 total_errors++;
3377 continue;
3378 }
2b82032c 3379 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3380 continue;
3381
2b82032c 3382 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3383 btrfs_set_stack_device_type(dev_item, dev->type);
3384 btrfs_set_stack_device_id(dev_item, dev->devid);
3385 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3386 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3387 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3388 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3389 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3390 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3391 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3392
a061fc8d
CM
3393 flags = btrfs_super_flags(sb);
3394 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3395
a512bbf8 3396 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3397 if (ret)
3398 total_errors++;
f2984462 3399 }
a236aed1 3400 if (total_errors > max_errors) {
d397712b
CM
3401 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3402 total_errors);
a724b436 3403 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3404
9d565ba4
SB
3405 /* FUA is masked off if unsupported and can't be the reason */
3406 btrfs_error(root->fs_info, -EIO,
3407 "%d errors while writing supers", total_errors);
3408 return -EIO;
a236aed1 3409 }
f2984462 3410
a512bbf8 3411 total_errors = 0;
1f78160c 3412 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3413 if (!dev->bdev)
3414 continue;
2b82032c 3415 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3416 continue;
3417
a512bbf8
YZ
3418 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3419 if (ret)
3420 total_errors++;
f2984462 3421 }
174ba509 3422 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3423 if (total_errors > max_errors) {
79787eaa
JM
3424 btrfs_error(root->fs_info, -EIO,
3425 "%d errors while writing supers", total_errors);
3426 return -EIO;
a236aed1 3427 }
f2984462
CM
3428 return 0;
3429}
3430
a512bbf8
YZ
3431int write_ctree_super(struct btrfs_trans_handle *trans,
3432 struct btrfs_root *root, int max_mirrors)
eb60ceac 3433{
f570e757 3434 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3435}
3436
cb517eab
MX
3437/* Drop a fs root from the radix tree and free it. */
3438void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3439 struct btrfs_root *root)
2619ba1f 3440{
4df27c4d 3441 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3442 radix_tree_delete(&fs_info->fs_roots_radix,
3443 (unsigned long)root->root_key.objectid);
4df27c4d 3444 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3445
3446 if (btrfs_root_refs(&root->root_item) == 0)
3447 synchronize_srcu(&fs_info->subvol_srcu);
3448
d7634482 3449 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e
LB
3450 btrfs_free_log(NULL, root);
3451 btrfs_free_log_root_tree(NULL, fs_info);
3452 }
3453
581bb050
LZ
3454 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3455 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3456 free_fs_root(root);
4df27c4d
YZ
3457}
3458
3459static void free_fs_root(struct btrfs_root *root)
3460{
82d5902d 3461 iput(root->cache_inode);
4df27c4d 3462 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3463 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3464 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3465 if (root->anon_dev)
3466 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3467 free_extent_buffer(root->node);
3468 free_extent_buffer(root->commit_root);
581bb050
LZ
3469 kfree(root->free_ino_ctl);
3470 kfree(root->free_ino_pinned);
d397712b 3471 kfree(root->name);
b0feb9d9 3472 btrfs_put_fs_root(root);
2619ba1f
CM
3473}
3474
cb517eab
MX
3475void btrfs_free_fs_root(struct btrfs_root *root)
3476{
3477 free_fs_root(root);
2619ba1f
CM
3478}
3479
c146afad 3480int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3481{
c146afad
YZ
3482 u64 root_objectid = 0;
3483 struct btrfs_root *gang[8];
3484 int i;
3768f368 3485 int ret;
e089f05c 3486
c146afad
YZ
3487 while (1) {
3488 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3489 (void **)gang, root_objectid,
3490 ARRAY_SIZE(gang));
3491 if (!ret)
3492 break;
5d4f98a2
YZ
3493
3494 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3495 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3496 int err;
3497
c146afad 3498 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3499 err = btrfs_orphan_cleanup(gang[i]);
3500 if (err)
3501 return err;
c146afad
YZ
3502 }
3503 root_objectid++;
3504 }
3505 return 0;
3506}
a2135011 3507
c146afad
YZ
3508int btrfs_commit_super(struct btrfs_root *root)
3509{
3510 struct btrfs_trans_handle *trans;
a74a4b97 3511
c146afad 3512 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3513 btrfs_run_delayed_iputs(root);
c146afad 3514 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3515 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3516
3517 /* wait until ongoing cleanup work done */
3518 down_write(&root->fs_info->cleanup_work_sem);
3519 up_write(&root->fs_info->cleanup_work_sem);
3520
7a7eaa40 3521 trans = btrfs_join_transaction(root);
3612b495
TI
3522 if (IS_ERR(trans))
3523 return PTR_ERR(trans);
d52c1bcc 3524 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3525}
3526
3527int close_ctree(struct btrfs_root *root)
3528{
3529 struct btrfs_fs_info *fs_info = root->fs_info;
3530 int ret;
3531
3532 fs_info->closing = 1;
3533 smp_mb();
3534
803b2f54
SB
3535 /* wait for the uuid_scan task to finish */
3536 down(&fs_info->uuid_tree_rescan_sem);
3537 /* avoid complains from lockdep et al., set sem back to initial state */
3538 up(&fs_info->uuid_tree_rescan_sem);
3539
837d5b6e 3540 /* pause restriper - we want to resume on mount */
aa1b8cd4 3541 btrfs_pause_balance(fs_info);
837d5b6e 3542
8dabb742
SB
3543 btrfs_dev_replace_suspend_for_unmount(fs_info);
3544
aa1b8cd4 3545 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3546
3547 /* wait for any defraggers to finish */
3548 wait_event(fs_info->transaction_wait,
3549 (atomic_read(&fs_info->defrag_running) == 0));
3550
3551 /* clear out the rbtree of defraggable inodes */
26176e7c 3552 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3553
c146afad 3554 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3555 ret = btrfs_commit_super(root);
3556 if (ret)
3557 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3558 }
3559
87533c47 3560 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3561 btrfs_error_commit_super(root);
0f7d52f4 3562
300e4f8a
JB
3563 btrfs_put_block_group_cache(fs_info);
3564
e3029d9f
AV
3565 kthread_stop(fs_info->transaction_kthread);
3566 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3567
f25784b3
YZ
3568 fs_info->closing = 2;
3569 smp_mb();
3570
bcef60f2
AJ
3571 btrfs_free_qgroup_config(root->fs_info);
3572
963d678b
MX
3573 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3574 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3575 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3576 }
bcc63abb 3577
5ac1d209
JM
3578 btrfs_sysfs_remove_one(fs_info);
3579
c146afad 3580 del_fs_roots(fs_info);
d10c5f31 3581
2b1360da
JB
3582 btrfs_free_block_groups(fs_info);
3583
96192499
JB
3584 btrfs_stop_all_workers(fs_info);
3585
13e6c37b 3586 free_root_pointers(fs_info, 1);
9ad6b7bc 3587
13e6c37b 3588 iput(fs_info->btree_inode);
d6bfde87 3589
21adbd5c
SB
3590#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3591 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3592 btrfsic_unmount(root, fs_info->fs_devices);
3593#endif
3594
dfe25020 3595 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3596 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3597
e2d84521 3598 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3599 percpu_counter_destroy(&fs_info->delalloc_bytes);
04160088 3600 bdi_destroy(&fs_info->bdi);
76dda93c 3601 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3602
53b381b3
DW
3603 btrfs_free_stripe_hash_table(fs_info);
3604
1cb048f5
FDBM
3605 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3606 root->orphan_block_rsv = NULL;
3607
eb60ceac
CM
3608 return 0;
3609}
3610
b9fab919
CM
3611int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3612 int atomic)
5f39d397 3613{
1259ab75 3614 int ret;
727011e0 3615 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3616
0b32f4bb 3617 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3618 if (!ret)
3619 return ret;
3620
3621 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3622 parent_transid, atomic);
3623 if (ret == -EAGAIN)
3624 return ret;
1259ab75 3625 return !ret;
5f39d397
CM
3626}
3627
3628int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3629{
0b32f4bb 3630 return set_extent_buffer_uptodate(buf);
5f39d397 3631}
6702ed49 3632
5f39d397
CM
3633void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3634{
06ea65a3 3635 struct btrfs_root *root;
5f39d397 3636 u64 transid = btrfs_header_generation(buf);
b9473439 3637 int was_dirty;
b4ce94de 3638
06ea65a3
JB
3639#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3640 /*
3641 * This is a fast path so only do this check if we have sanity tests
3642 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3643 * outside of the sanity tests.
3644 */
3645 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3646 return;
3647#endif
3648 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3649 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3650 if (transid != root->fs_info->generation)
3651 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3652 "found %llu running %llu\n",
c1c9ff7c 3653 buf->start, transid, root->fs_info->generation);
0b32f4bb 3654 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3655 if (!was_dirty)
3656 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3657 buf->len,
3658 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3659}
3660
b53d3f5d
LB
3661static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3662 int flush_delayed)
16cdcec7
MX
3663{
3664 /*
3665 * looks as though older kernels can get into trouble with
3666 * this code, they end up stuck in balance_dirty_pages forever
3667 */
e2d84521 3668 int ret;
16cdcec7
MX
3669
3670 if (current->flags & PF_MEMALLOC)
3671 return;
3672
b53d3f5d
LB
3673 if (flush_delayed)
3674 btrfs_balance_delayed_items(root);
16cdcec7 3675
e2d84521
MX
3676 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3677 BTRFS_DIRTY_METADATA_THRESH);
3678 if (ret > 0) {
d0e1d66b
NJ
3679 balance_dirty_pages_ratelimited(
3680 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3681 }
3682 return;
3683}
3684
b53d3f5d 3685void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3686{
b53d3f5d
LB
3687 __btrfs_btree_balance_dirty(root, 1);
3688}
585ad2c3 3689
b53d3f5d
LB
3690void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3691{
3692 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3693}
6b80053d 3694
ca7a79ad 3695int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3696{
727011e0 3697 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3698 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3699}
0da5468f 3700
fcd1f065 3701static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3702 int read_only)
3703{
1104a885
DS
3704 /*
3705 * Placeholder for checks
3706 */
fcd1f065 3707 return 0;
acce952b 3708}
3709
48a3b636 3710static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3711{
acce952b 3712 mutex_lock(&root->fs_info->cleaner_mutex);
3713 btrfs_run_delayed_iputs(root);
3714 mutex_unlock(&root->fs_info->cleaner_mutex);
3715
3716 down_write(&root->fs_info->cleanup_work_sem);
3717 up_write(&root->fs_info->cleanup_work_sem);
3718
3719 /* cleanup FS via transaction */
3720 btrfs_cleanup_transaction(root);
acce952b 3721}
3722
569e0f35
JB
3723static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3724 struct btrfs_root *root)
acce952b 3725{
3726 struct btrfs_inode *btrfs_inode;
3727 struct list_head splice;
3728
3729 INIT_LIST_HEAD(&splice);
3730
3731 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 3732 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3733
569e0f35 3734 list_splice_init(&t->ordered_operations, &splice);
acce952b 3735 while (!list_empty(&splice)) {
3736 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3737 ordered_operations);
3738
3739 list_del_init(&btrfs_inode->ordered_operations);
199c2a9c 3740 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3741
3742 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3743
199c2a9c 3744 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3745 }
3746
199c2a9c 3747 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3748 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3749}
3750
143bede5 3751static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3752{
acce952b 3753 struct btrfs_ordered_extent *ordered;
acce952b 3754
199c2a9c 3755 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3756 /*
3757 * This will just short circuit the ordered completion stuff which will
3758 * make sure the ordered extent gets properly cleaned up.
3759 */
199c2a9c 3760 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3761 root_extent_list)
3762 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3763 spin_unlock(&root->ordered_extent_lock);
3764}
3765
3766static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3767{
3768 struct btrfs_root *root;
3769 struct list_head splice;
3770
3771 INIT_LIST_HEAD(&splice);
3772
3773 spin_lock(&fs_info->ordered_root_lock);
3774 list_splice_init(&fs_info->ordered_roots, &splice);
3775 while (!list_empty(&splice)) {
3776 root = list_first_entry(&splice, struct btrfs_root,
3777 ordered_root);
1de2cfde
JB
3778 list_move_tail(&root->ordered_root,
3779 &fs_info->ordered_roots);
199c2a9c
MX
3780
3781 btrfs_destroy_ordered_extents(root);
3782
3783 cond_resched_lock(&fs_info->ordered_root_lock);
3784 }
3785 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3786}
3787
35a3621b
SB
3788static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3789 struct btrfs_root *root)
acce952b 3790{
3791 struct rb_node *node;
3792 struct btrfs_delayed_ref_root *delayed_refs;
3793 struct btrfs_delayed_ref_node *ref;
3794 int ret = 0;
3795
3796 delayed_refs = &trans->delayed_refs;
3797
3798 spin_lock(&delayed_refs->lock);
3799 if (delayed_refs->num_entries == 0) {
cfece4db 3800 spin_unlock(&delayed_refs->lock);
acce952b 3801 printk(KERN_INFO "delayed_refs has NO entry\n");
3802 return ret;
3803 }
3804
b939d1ab 3805 while ((node = rb_first(&delayed_refs->root)) != NULL) {
eb12db69 3806 struct btrfs_delayed_ref_head *head = NULL;
e78417d1 3807 bool pin_bytes = false;
acce952b 3808
eb12db69 3809 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3810 atomic_set(&ref->refs, 1);
3811 if (btrfs_delayed_ref_is_head(ref)) {
acce952b 3812
3813 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3814 if (!mutex_trylock(&head->mutex)) {
3815 atomic_inc(&ref->refs);
3816 spin_unlock(&delayed_refs->lock);
3817
3818 /* Need to wait for the delayed ref to run */
3819 mutex_lock(&head->mutex);
3820 mutex_unlock(&head->mutex);
3821 btrfs_put_delayed_ref(ref);
3822
e18fca73 3823 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3824 continue;
3825 }
3826
54067ae9 3827 if (head->must_insert_reserved)
e78417d1 3828 pin_bytes = true;
78a6184a 3829 btrfs_free_delayed_extent_op(head->extent_op);
acce952b 3830 delayed_refs->num_heads--;
3831 if (list_empty(&head->cluster))
3832 delayed_refs->num_heads_ready--;
3833 list_del_init(&head->cluster);
acce952b 3834 }
eb12db69 3835
b939d1ab
JB
3836 ref->in_tree = 0;
3837 rb_erase(&ref->rb_node, &delayed_refs->root);
c46effa6
LB
3838 if (head)
3839 rb_erase(&head->href_node, &delayed_refs->href_root);
3840
b939d1ab 3841 delayed_refs->num_entries--;
acce952b 3842 spin_unlock(&delayed_refs->lock);
e78417d1
JB
3843 if (head) {
3844 if (pin_bytes)
3845 btrfs_pin_extent(root, ref->bytenr,
3846 ref->num_bytes, 1);
3847 mutex_unlock(&head->mutex);
3848 }
acce952b 3849 btrfs_put_delayed_ref(ref);
3850
3851 cond_resched();
3852 spin_lock(&delayed_refs->lock);
3853 }
3854
3855 spin_unlock(&delayed_refs->lock);
3856
3857 return ret;
3858}
3859
143bede5 3860static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3861{
3862 struct btrfs_inode *btrfs_inode;
3863 struct list_head splice;
3864
3865 INIT_LIST_HEAD(&splice);
3866
eb73c1b7
MX
3867 spin_lock(&root->delalloc_lock);
3868 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3869
3870 while (!list_empty(&splice)) {
eb73c1b7
MX
3871 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3872 delalloc_inodes);
acce952b 3873
3874 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3875 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3876 &btrfs_inode->runtime_flags);
eb73c1b7 3877 spin_unlock(&root->delalloc_lock);
acce952b 3878
3879 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3880
eb73c1b7 3881 spin_lock(&root->delalloc_lock);
acce952b 3882 }
3883
eb73c1b7
MX
3884 spin_unlock(&root->delalloc_lock);
3885}
3886
3887static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3888{
3889 struct btrfs_root *root;
3890 struct list_head splice;
3891
3892 INIT_LIST_HEAD(&splice);
3893
3894 spin_lock(&fs_info->delalloc_root_lock);
3895 list_splice_init(&fs_info->delalloc_roots, &splice);
3896 while (!list_empty(&splice)) {
3897 root = list_first_entry(&splice, struct btrfs_root,
3898 delalloc_root);
3899 list_del_init(&root->delalloc_root);
3900 root = btrfs_grab_fs_root(root);
3901 BUG_ON(!root);
3902 spin_unlock(&fs_info->delalloc_root_lock);
3903
3904 btrfs_destroy_delalloc_inodes(root);
3905 btrfs_put_fs_root(root);
3906
3907 spin_lock(&fs_info->delalloc_root_lock);
3908 }
3909 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3910}
3911
3912static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3913 struct extent_io_tree *dirty_pages,
3914 int mark)
3915{
3916 int ret;
acce952b 3917 struct extent_buffer *eb;
3918 u64 start = 0;
3919 u64 end;
acce952b 3920
3921 while (1) {
3922 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3923 mark, NULL);
acce952b 3924 if (ret)
3925 break;
3926
3927 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3928 while (start <= end) {
fd8b2b61
JB
3929 eb = btrfs_find_tree_block(root, start,
3930 root->leafsize);
69a85bd8 3931 start += root->leafsize;
fd8b2b61 3932 if (!eb)
acce952b 3933 continue;
fd8b2b61 3934 wait_on_extent_buffer_writeback(eb);
acce952b 3935
fd8b2b61
JB
3936 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3937 &eb->bflags))
3938 clear_extent_buffer_dirty(eb);
3939 free_extent_buffer_stale(eb);
acce952b 3940 }
3941 }
3942
3943 return ret;
3944}
3945
3946static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3947 struct extent_io_tree *pinned_extents)
3948{
3949 struct extent_io_tree *unpin;
3950 u64 start;
3951 u64 end;
3952 int ret;
ed0eaa14 3953 bool loop = true;
acce952b 3954
3955 unpin = pinned_extents;
ed0eaa14 3956again:
acce952b 3957 while (1) {
3958 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3959 EXTENT_DIRTY, NULL);
acce952b 3960 if (ret)
3961 break;
3962
3963 /* opt_discard */
5378e607
LD
3964 if (btrfs_test_opt(root, DISCARD))
3965 ret = btrfs_error_discard_extent(root, start,
3966 end + 1 - start,
3967 NULL);
acce952b 3968
3969 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3970 btrfs_error_unpin_extent_range(root, start, end);
3971 cond_resched();
3972 }
3973
ed0eaa14
LB
3974 if (loop) {
3975 if (unpin == &root->fs_info->freed_extents[0])
3976 unpin = &root->fs_info->freed_extents[1];
3977 else
3978 unpin = &root->fs_info->freed_extents[0];
3979 loop = false;
3980 goto again;
3981 }
3982
acce952b 3983 return 0;
3984}
3985
49b25e05
JM
3986void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3987 struct btrfs_root *root)
3988{
724e2315
JB
3989 btrfs_destroy_ordered_operations(cur_trans, root);
3990
49b25e05 3991 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 3992
4a9d8bde 3993 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 3994 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 3995
4a9d8bde 3996 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 3997 wake_up(&root->fs_info->transaction_wait);
49b25e05 3998
67cde344
MX
3999 btrfs_destroy_delayed_inodes(root);
4000 btrfs_assert_delayed_root_empty(root);
49b25e05 4001
49b25e05
JM
4002 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4003 EXTENT_DIRTY);
6e841e32
LB
4004 btrfs_destroy_pinned_extent(root,
4005 root->fs_info->pinned_extents);
49b25e05 4006
4a9d8bde
MX
4007 cur_trans->state =TRANS_STATE_COMPLETED;
4008 wake_up(&cur_trans->commit_wait);
4009
49b25e05
JM
4010 /*
4011 memset(cur_trans, 0, sizeof(*cur_trans));
4012 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4013 */
4014}
4015
48a3b636 4016static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4017{
4018 struct btrfs_transaction *t;
acce952b 4019
acce952b 4020 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4021
a4abeea4 4022 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4023 while (!list_empty(&root->fs_info->trans_list)) {
4024 t = list_first_entry(&root->fs_info->trans_list,
4025 struct btrfs_transaction, list);
4026 if (t->state >= TRANS_STATE_COMMIT_START) {
4027 atomic_inc(&t->use_count);
4028 spin_unlock(&root->fs_info->trans_lock);
4029 btrfs_wait_for_commit(root, t->transid);
4030 btrfs_put_transaction(t);
4031 spin_lock(&root->fs_info->trans_lock);
4032 continue;
4033 }
4034 if (t == root->fs_info->running_transaction) {
4035 t->state = TRANS_STATE_COMMIT_DOING;
4036 spin_unlock(&root->fs_info->trans_lock);
4037 /*
4038 * We wait for 0 num_writers since we don't hold a trans
4039 * handle open currently for this transaction.
4040 */
4041 wait_event(t->writer_wait,
4042 atomic_read(&t->num_writers) == 0);
4043 } else {
4044 spin_unlock(&root->fs_info->trans_lock);
4045 }
4046 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4047
724e2315
JB
4048 spin_lock(&root->fs_info->trans_lock);
4049 if (t == root->fs_info->running_transaction)
4050 root->fs_info->running_transaction = NULL;
acce952b 4051 list_del_init(&t->list);
724e2315 4052 spin_unlock(&root->fs_info->trans_lock);
acce952b 4053
724e2315
JB
4054 btrfs_put_transaction(t);
4055 trace_btrfs_transaction_commit(root);
4056 spin_lock(&root->fs_info->trans_lock);
4057 }
4058 spin_unlock(&root->fs_info->trans_lock);
4059 btrfs_destroy_all_ordered_extents(root->fs_info);
4060 btrfs_destroy_delayed_inodes(root);
4061 btrfs_assert_delayed_root_empty(root);
4062 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4063 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4064 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4065
4066 return 0;
4067}
4068
d1310b2e 4069static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4070 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4071 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4072 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4073 /* note we're sharing with inode.c for the merge bio hook */
4074 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4075};