btrfs: Add sysfs support for metadata_uuid feature
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
7e75bf3f 20#include <asm/unaligned.h>
eb60ceac
CM
21#include "ctree.h"
22#include "disk-io.h"
e089f05c 23#include "transaction.h"
0f7d52f4 24#include "btrfs_inode.h"
0b86a832 25#include "volumes.h"
db94535d 26#include "print-tree.h"
925baedd 27#include "locking.h"
e02119d5 28#include "tree-log.h"
fa9c0d79 29#include "free-space-cache.h"
70f6d82e 30#include "free-space-tree.h"
581bb050 31#include "inode-map.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
eb60ceac 41
de0022b9
JB
42#ifdef CONFIG_X86
43#include <asm/cpufeature.h>
44#endif
45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
d352ac68
CM
101/*
102 * async submit bios are used to offload expensive checksumming
103 * onto the worker threads. They checksum file and metadata bios
104 * just before they are sent down the IO stack.
105 */
44b8bd7e 106struct async_submit_bio {
c6100a4b 107 void *private_data;
44b8bd7e 108 struct bio *bio;
a758781d 109 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 110 int mirror_num;
eaf25d93
CM
111 /*
112 * bio_offset is optional, can be used if the pages in the bio
113 * can't tell us where in the file the bio should go
114 */
115 u64 bio_offset;
8b712842 116 struct btrfs_work work;
4e4cbee9 117 blk_status_t status;
44b8bd7e
CM
118};
119
85d4e461
CM
120/*
121 * Lockdep class keys for extent_buffer->lock's in this root. For a given
122 * eb, the lockdep key is determined by the btrfs_root it belongs to and
123 * the level the eb occupies in the tree.
124 *
125 * Different roots are used for different purposes and may nest inside each
126 * other and they require separate keysets. As lockdep keys should be
127 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
128 * by btrfs_root->root_key.objectid. This ensures that all special purpose
129 * roots have separate keysets.
4008c04a 130 *
85d4e461
CM
131 * Lock-nesting across peer nodes is always done with the immediate parent
132 * node locked thus preventing deadlock. As lockdep doesn't know this, use
133 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 134 *
85d4e461
CM
135 * The key is set by the readpage_end_io_hook after the buffer has passed
136 * csum validation but before the pages are unlocked. It is also set by
137 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 138 *
85d4e461
CM
139 * We also add a check to make sure the highest level of the tree is the
140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
141 * needs update as well.
4008c04a
CM
142 */
143#ifdef CONFIG_DEBUG_LOCK_ALLOC
144# if BTRFS_MAX_LEVEL != 8
145# error
146# endif
85d4e461
CM
147
148static struct btrfs_lockdep_keyset {
149 u64 id; /* root objectid */
150 const char *name_stem; /* lock name stem */
151 char names[BTRFS_MAX_LEVEL + 1][20];
152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
153} btrfs_lockdep_keysets[] = {
154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 166 { .id = 0, .name_stem = "tree" },
4008c04a 167};
85d4e461
CM
168
169void __init btrfs_init_lockdep(void)
170{
171 int i, j;
172
173 /* initialize lockdep class names */
174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178 snprintf(ks->names[j], sizeof(ks->names[j]),
179 "btrfs-%s-%02d", ks->name_stem, j);
180 }
181}
182
183void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184 int level)
185{
186 struct btrfs_lockdep_keyset *ks;
187
188 BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190 /* find the matching keyset, id 0 is the default entry */
191 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192 if (ks->id == objectid)
193 break;
194
195 lockdep_set_class_and_name(&eb->lock,
196 &ks->keys[level], ks->names[level]);
197}
198
4008c04a
CM
199#endif
200
d352ac68
CM
201/*
202 * extents on the btree inode are pretty simple, there's one extent
203 * that covers the entire device
204 */
6af49dbd 205struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 206 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 207 int create)
7eccb903 208{
3ffbd68c 209 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 210 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
211 struct extent_map *em;
212 int ret;
213
890871be 214 read_lock(&em_tree->lock);
d1310b2e 215 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 216 if (em) {
0b246afa 217 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 218 read_unlock(&em_tree->lock);
5f39d397 219 goto out;
a061fc8d 220 }
890871be 221 read_unlock(&em_tree->lock);
7b13b7b1 222
172ddd60 223 em = alloc_extent_map();
5f39d397
CM
224 if (!em) {
225 em = ERR_PTR(-ENOMEM);
226 goto out;
227 }
228 em->start = 0;
0afbaf8c 229 em->len = (u64)-1;
c8b97818 230 em->block_len = (u64)-1;
5f39d397 231 em->block_start = 0;
0b246afa 232 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 233
890871be 234 write_lock(&em_tree->lock);
09a2a8f9 235 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
236 if (ret == -EEXIST) {
237 free_extent_map(em);
7b13b7b1 238 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 239 if (!em)
0433f20d 240 em = ERR_PTR(-EIO);
5f39d397 241 } else if (ret) {
7b13b7b1 242 free_extent_map(em);
0433f20d 243 em = ERR_PTR(ret);
5f39d397 244 }
890871be 245 write_unlock(&em_tree->lock);
7b13b7b1 246
5f39d397
CM
247out:
248 return em;
7eccb903
CM
249}
250
9ed57367 251u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 252{
9678c543 253 return crc32c(seed, data, len);
19c00ddc
CM
254}
255
0b5e3daf 256void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 257{
7e75bf3f 258 put_unaligned_le32(~crc, result);
19c00ddc
CM
259}
260
d352ac68
CM
261/*
262 * compute the csum for a btree block, and either verify it or write it
263 * into the csum field of the block.
264 */
01d58472
DD
265static int csum_tree_block(struct btrfs_fs_info *fs_info,
266 struct extent_buffer *buf,
19c00ddc
CM
267 int verify)
268{
01d58472 269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
71a63551 270 char result[BTRFS_CSUM_SIZE];
19c00ddc
CM
271 unsigned long len;
272 unsigned long cur_len;
273 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
274 char *kaddr;
275 unsigned long map_start;
276 unsigned long map_len;
277 int err;
278 u32 crc = ~(u32)0;
279
280 len = buf->len - offset;
d397712b 281 while (len > 0) {
19c00ddc 282 err = map_private_extent_buffer(buf, offset, 32,
a6591715 283 &kaddr, &map_start, &map_len);
d397712b 284 if (err)
8bd98f0e 285 return err;
19c00ddc 286 cur_len = min(len, map_len - (offset - map_start));
b0496686 287 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
288 crc, cur_len);
289 len -= cur_len;
290 offset += cur_len;
19c00ddc 291 }
71a63551 292 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
94647322 303 btrfs_warn_rl(fs_info,
5d163e0e 304 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 305 fs_info->sb->s_id, buf->start,
efe120a0 306 val, found, btrfs_header_level(buf));
8bd98f0e 307 return -EUCLEAN;
19c00ddc
CM
308 }
309 } else {
607d432d 310 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 311 }
71a63551 312
19c00ddc
CM
313 return 0;
314}
315
d352ac68
CM
316/*
317 * we can't consider a given block up to date unless the transid of the
318 * block matches the transid in the parent node's pointer. This is how we
319 * detect blocks that either didn't get written at all or got written
320 * in the wrong place.
321 */
1259ab75 322static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
323 struct extent_buffer *eb, u64 parent_transid,
324 int atomic)
1259ab75 325{
2ac55d41 326 struct extent_state *cached_state = NULL;
1259ab75 327 int ret;
2755a0de 328 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
b9fab919
CM
333 if (atomic)
334 return -EAGAIN;
335
a26e8c9f
JB
336 if (need_lock) {
337 btrfs_tree_read_lock(eb);
338 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
339 }
340
2ac55d41 341 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 342 &cached_state);
0b32f4bb 343 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
344 btrfs_header_generation(eb) == parent_transid) {
345 ret = 0;
346 goto out;
347 }
94647322
DS
348 btrfs_err_rl(eb->fs_info,
349 "parent transid verify failed on %llu wanted %llu found %llu",
350 eb->start,
29549aec 351 parent_transid, btrfs_header_generation(eb));
1259ab75 352 ret = 1;
a26e8c9f
JB
353
354 /*
355 * Things reading via commit roots that don't have normal protection,
356 * like send, can have a really old block in cache that may point at a
01327610 357 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
358 * if we find an eb that is under IO (dirty/writeback) because we could
359 * end up reading in the stale data and then writing it back out and
360 * making everybody very sad.
361 */
362 if (!extent_buffer_under_io(eb))
363 clear_extent_buffer_uptodate(eb);
33958dc6 364out:
2ac55d41 365 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 366 &cached_state);
472b909f
JB
367 if (need_lock)
368 btrfs_tree_read_unlock_blocking(eb);
1259ab75 369 return ret;
1259ab75
CM
370}
371
1104a885
DS
372/*
373 * Return 0 if the superblock checksum type matches the checksum value of that
374 * algorithm. Pass the raw disk superblock data.
375 */
ab8d0fc4
JM
376static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
377 char *raw_disk_sb)
1104a885
DS
378{
379 struct btrfs_super_block *disk_sb =
380 (struct btrfs_super_block *)raw_disk_sb;
381 u16 csum_type = btrfs_super_csum_type(disk_sb);
382 int ret = 0;
383
384 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
385 u32 crc = ~(u32)0;
776c4a7c 386 char result[sizeof(crc)];
1104a885
DS
387
388 /*
389 * The super_block structure does not span the whole
390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 391 * is filled with zeros and is included in the checksum.
1104a885
DS
392 */
393 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
394 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
395 btrfs_csum_final(crc, result);
396
776c4a7c 397 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
398 ret = 1;
399 }
400
401 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 402 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
403 csum_type);
404 ret = 1;
405 }
406
407 return ret;
408}
409
581c1760
QW
410static int verify_level_key(struct btrfs_fs_info *fs_info,
411 struct extent_buffer *eb, int level,
ff76a864 412 struct btrfs_key *first_key, u64 parent_transid)
581c1760
QW
413{
414 int found_level;
415 struct btrfs_key found_key;
416 int ret;
417
418 found_level = btrfs_header_level(eb);
419 if (found_level != level) {
420#ifdef CONFIG_BTRFS_DEBUG
421 WARN_ON(1);
422 btrfs_err(fs_info,
423"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
424 eb->start, level, found_level);
425#endif
426 return -EIO;
427 }
428
429 if (!first_key)
430 return 0;
431
5d41be6f
QW
432 /*
433 * For live tree block (new tree blocks in current transaction),
434 * we need proper lock context to avoid race, which is impossible here.
435 * So we only checks tree blocks which is read from disk, whose
436 * generation <= fs_info->last_trans_committed.
437 */
438 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
439 return 0;
581c1760
QW
440 if (found_level)
441 btrfs_node_key_to_cpu(eb, &found_key, 0);
442 else
443 btrfs_item_key_to_cpu(eb, &found_key, 0);
444 ret = btrfs_comp_cpu_keys(first_key, &found_key);
445
446#ifdef CONFIG_BTRFS_DEBUG
447 if (ret) {
448 WARN_ON(1);
449 btrfs_err(fs_info,
ff76a864
LB
450"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
451 eb->start, parent_transid, first_key->objectid,
452 first_key->type, first_key->offset,
453 found_key.objectid, found_key.type,
454 found_key.offset);
581c1760
QW
455 }
456#endif
457 return ret;
458}
459
d352ac68
CM
460/*
461 * helper to read a given tree block, doing retries as required when
462 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
463 *
464 * @parent_transid: expected transid, skip check if 0
465 * @level: expected level, mandatory check
466 * @first_key: expected key of first slot, skip check if NULL
d352ac68 467 */
2ff7e61e 468static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 469 struct extent_buffer *eb,
581c1760
QW
470 u64 parent_transid, int level,
471 struct btrfs_key *first_key)
f188591e
CM
472{
473 struct extent_io_tree *io_tree;
ea466794 474 int failed = 0;
f188591e
CM
475 int ret;
476 int num_copies = 0;
477 int mirror_num = 0;
ea466794 478 int failed_mirror = 0;
f188591e 479
0b246afa 480 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 481 while (1) {
f8397d69 482 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
8436ea91 483 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 484 mirror_num);
256dd1bb 485 if (!ret) {
581c1760 486 if (verify_parent_transid(io_tree, eb,
b9fab919 487 parent_transid, 0))
256dd1bb 488 ret = -EIO;
581c1760 489 else if (verify_level_key(fs_info, eb, level,
ff76a864 490 first_key, parent_transid))
581c1760
QW
491 ret = -EUCLEAN;
492 else
493 break;
256dd1bb 494 }
d397712b 495
0b246afa 496 num_copies = btrfs_num_copies(fs_info,
f188591e 497 eb->start, eb->len);
4235298e 498 if (num_copies == 1)
ea466794 499 break;
4235298e 500
5cf1ab56
JB
501 if (!failed_mirror) {
502 failed = 1;
503 failed_mirror = eb->read_mirror;
504 }
505
f188591e 506 mirror_num++;
ea466794
JB
507 if (mirror_num == failed_mirror)
508 mirror_num++;
509
4235298e 510 if (mirror_num > num_copies)
ea466794 511 break;
f188591e 512 }
ea466794 513
c0901581 514 if (failed && !ret && failed_mirror)
2ff7e61e 515 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
516
517 return ret;
f188591e 518}
19c00ddc 519
d352ac68 520/*
d397712b
CM
521 * checksum a dirty tree block before IO. This has extra checks to make sure
522 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 523 */
d397712b 524
01d58472 525static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 526{
4eee4fa4 527 u64 start = page_offset(page);
19c00ddc 528 u64 found_start;
19c00ddc 529 struct extent_buffer *eb;
f188591e 530
4f2de97a
JB
531 eb = (struct extent_buffer *)page->private;
532 if (page != eb->pages[0])
533 return 0;
0f805531 534
19c00ddc 535 found_start = btrfs_header_bytenr(eb);
0f805531
AL
536 /*
537 * Please do not consolidate these warnings into a single if.
538 * It is useful to know what went wrong.
539 */
540 if (WARN_ON(found_start != start))
541 return -EUCLEAN;
542 if (WARN_ON(!PageUptodate(page)))
543 return -EUCLEAN;
544
7239ff4b 545 ASSERT(memcmp_extent_buffer(eb, fs_info->metadata_fsid,
0f805531
AL
546 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
547
8bd98f0e 548 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
549}
550
01d58472 551static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
552 struct extent_buffer *eb)
553{
01d58472 554 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 555 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
556 int ret = 1;
557
0a4e5586 558 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 559 while (fs_devices) {
7239ff4b
NB
560 u8 *metadata_uuid;
561
562 /*
563 * Checking the incompat flag is only valid for the current
564 * fs. For seed devices it's forbidden to have their uuid
565 * changed so reading ->fsid in this case is fine
566 */
567 if (fs_devices == fs_info->fs_devices &&
568 btrfs_fs_incompat(fs_info, METADATA_UUID))
569 metadata_uuid = fs_devices->metadata_uuid;
570 else
571 metadata_uuid = fs_devices->fsid;
572
573 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
574 ret = 0;
575 break;
576 }
577 fs_devices = fs_devices->seed;
578 }
579 return ret;
580}
581
facc8a22
MX
582static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
583 u64 phy_offset, struct page *page,
584 u64 start, u64 end, int mirror)
ce9adaa5 585{
ce9adaa5
CM
586 u64 found_start;
587 int found_level;
ce9adaa5
CM
588 struct extent_buffer *eb;
589 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 590 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 591 int ret = 0;
727011e0 592 int reads_done;
ce9adaa5 593
ce9adaa5
CM
594 if (!page->private)
595 goto out;
d397712b 596
4f2de97a 597 eb = (struct extent_buffer *)page->private;
d397712b 598
0b32f4bb
JB
599 /* the pending IO might have been the only thing that kept this buffer
600 * in memory. Make sure we have a ref for all this other checks
601 */
602 extent_buffer_get(eb);
603
604 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
605 if (!reads_done)
606 goto err;
f188591e 607
5cf1ab56 608 eb->read_mirror = mirror;
656f30db 609 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
610 ret = -EIO;
611 goto err;
612 }
613
ce9adaa5 614 found_start = btrfs_header_bytenr(eb);
727011e0 615 if (found_start != eb->start) {
893bf4b1
SY
616 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
617 eb->start, found_start);
f188591e 618 ret = -EIO;
ce9adaa5
CM
619 goto err;
620 }
02873e43
ZL
621 if (check_tree_block_fsid(fs_info, eb)) {
622 btrfs_err_rl(fs_info, "bad fsid on block %llu",
623 eb->start);
1259ab75
CM
624 ret = -EIO;
625 goto err;
626 }
ce9adaa5 627 found_level = btrfs_header_level(eb);
1c24c3ce 628 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
629 btrfs_err(fs_info, "bad tree block level %d on %llu",
630 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
631 ret = -EIO;
632 goto err;
633 }
ce9adaa5 634
85d4e461
CM
635 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636 eb, found_level);
4008c04a 637
02873e43 638 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 639 if (ret)
a826d6dc 640 goto err;
a826d6dc
JB
641
642 /*
643 * If this is a leaf block and it is corrupt, set the corrupt bit so
644 * that we don't try and read the other copies of this block, just
645 * return -EIO.
646 */
2f659546 647 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
a826d6dc
JB
648 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
649 ret = -EIO;
650 }
ce9adaa5 651
2f659546 652 if (found_level > 0 && btrfs_check_node(fs_info, eb))
053ab70f
LB
653 ret = -EIO;
654
0b32f4bb
JB
655 if (!ret)
656 set_extent_buffer_uptodate(eb);
ce9adaa5 657err:
79fb65a1
JB
658 if (reads_done &&
659 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 660 btree_readahead_hook(eb, ret);
4bb31e92 661
53b381b3
DW
662 if (ret) {
663 /*
664 * our io error hook is going to dec the io pages
665 * again, we have to make sure it has something
666 * to decrement
667 */
668 atomic_inc(&eb->io_pages);
0b32f4bb 669 clear_extent_buffer_uptodate(eb);
53b381b3 670 }
0b32f4bb 671 free_extent_buffer(eb);
ce9adaa5 672out:
f188591e 673 return ret;
ce9adaa5
CM
674}
675
ea466794 676static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 677{
4bb31e92 678 struct extent_buffer *eb;
4bb31e92 679
4f2de97a 680 eb = (struct extent_buffer *)page->private;
656f30db 681 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 682 eb->read_mirror = failed_mirror;
53b381b3 683 atomic_dec(&eb->io_pages);
ea466794 684 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 685 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
686 return -EIO; /* we fixed nothing */
687}
688
4246a0b6 689static void end_workqueue_bio(struct bio *bio)
ce9adaa5 690{
97eb6b69 691 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 692 struct btrfs_fs_info *fs_info;
9e0af237
LB
693 struct btrfs_workqueue *wq;
694 btrfs_work_func_t func;
ce9adaa5 695
ce9adaa5 696 fs_info = end_io_wq->info;
4e4cbee9 697 end_io_wq->status = bio->bi_status;
d20f7043 698
37226b21 699 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
700 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
701 wq = fs_info->endio_meta_write_workers;
702 func = btrfs_endio_meta_write_helper;
703 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
704 wq = fs_info->endio_freespace_worker;
705 func = btrfs_freespace_write_helper;
706 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
707 wq = fs_info->endio_raid56_workers;
708 func = btrfs_endio_raid56_helper;
709 } else {
710 wq = fs_info->endio_write_workers;
711 func = btrfs_endio_write_helper;
712 }
d20f7043 713 } else {
8b110e39
MX
714 if (unlikely(end_io_wq->metadata ==
715 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
716 wq = fs_info->endio_repair_workers;
717 func = btrfs_endio_repair_helper;
718 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
719 wq = fs_info->endio_raid56_workers;
720 func = btrfs_endio_raid56_helper;
721 } else if (end_io_wq->metadata) {
722 wq = fs_info->endio_meta_workers;
723 func = btrfs_endio_meta_helper;
724 } else {
725 wq = fs_info->endio_workers;
726 func = btrfs_endio_helper;
727 }
d20f7043 728 }
9e0af237
LB
729
730 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
731 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
732}
733
4e4cbee9 734blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 735 enum btrfs_wq_endio_type metadata)
0b86a832 736{
97eb6b69 737 struct btrfs_end_io_wq *end_io_wq;
8b110e39 738
97eb6b69 739 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 740 if (!end_io_wq)
4e4cbee9 741 return BLK_STS_RESOURCE;
ce9adaa5
CM
742
743 end_io_wq->private = bio->bi_private;
744 end_io_wq->end_io = bio->bi_end_io;
22c59948 745 end_io_wq->info = info;
4e4cbee9 746 end_io_wq->status = 0;
ce9adaa5 747 end_io_wq->bio = bio;
22c59948 748 end_io_wq->metadata = metadata;
ce9adaa5
CM
749
750 bio->bi_private = end_io_wq;
751 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
752 return 0;
753}
754
4a69a410
CM
755static void run_one_async_start(struct btrfs_work *work)
756{
4a69a410 757 struct async_submit_bio *async;
4e4cbee9 758 blk_status_t ret;
4a69a410
CM
759
760 async = container_of(work, struct async_submit_bio, work);
c6100a4b 761 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
762 async->bio_offset);
763 if (ret)
4e4cbee9 764 async->status = ret;
4a69a410
CM
765}
766
767static void run_one_async_done(struct btrfs_work *work)
8b712842 768{
8b712842
CM
769 struct async_submit_bio *async;
770
771 async = container_of(work, struct async_submit_bio, work);
4854ddd0 772
bb7ab3b9 773 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
774 if (async->status) {
775 async->bio->bi_status = async->status;
4246a0b6 776 bio_endio(async->bio);
79787eaa
JM
777 return;
778 }
779
e288c080 780 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
4a69a410
CM
781}
782
783static void run_one_async_free(struct btrfs_work *work)
784{
785 struct async_submit_bio *async;
786
787 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
788 kfree(async);
789}
790
8c27cb35
LT
791blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
792 int mirror_num, unsigned long bio_flags,
793 u64 bio_offset, void *private_data,
e288c080 794 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
795{
796 struct async_submit_bio *async;
797
798 async = kmalloc(sizeof(*async), GFP_NOFS);
799 if (!async)
4e4cbee9 800 return BLK_STS_RESOURCE;
44b8bd7e 801
c6100a4b 802 async->private_data = private_data;
44b8bd7e
CM
803 async->bio = bio;
804 async->mirror_num = mirror_num;
4a69a410 805 async->submit_bio_start = submit_bio_start;
4a69a410 806
9e0af237 807 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 808 run_one_async_done, run_one_async_free);
4a69a410 809
eaf25d93 810 async->bio_offset = bio_offset;
8c8bee1d 811
4e4cbee9 812 async->status = 0;
79787eaa 813
67f055c7 814 if (op_is_sync(bio->bi_opf))
5cdc7ad3 815 btrfs_set_work_high_priority(&async->work);
d313d7a3 816
5cdc7ad3 817 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
818 return 0;
819}
820
4e4cbee9 821static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 822{
2c30c71b 823 struct bio_vec *bvec;
ce3ed71a 824 struct btrfs_root *root;
2c30c71b 825 int i, ret = 0;
ce3ed71a 826
c09abff8 827 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 828 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 829 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 830 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
831 if (ret)
832 break;
ce3ed71a 833 }
2c30c71b 834
4e4cbee9 835 return errno_to_blk_status(ret);
ce3ed71a
CM
836}
837
d0ee3934 838static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 839 u64 bio_offset)
22c59948 840{
8b712842
CM
841 /*
842 * when we're called for a write, we're already in the async
5443be45 843 * submission context. Just jump into btrfs_map_bio
8b712842 844 */
79787eaa 845 return btree_csum_one_bio(bio);
4a69a410 846}
22c59948 847
18fdc679 848static int check_async_write(struct btrfs_inode *bi)
de0022b9 849{
6300463b
LB
850 if (atomic_read(&bi->sync_writers))
851 return 0;
de0022b9 852#ifdef CONFIG_X86
bc696ca0 853 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
854 return 0;
855#endif
856 return 1;
857}
858
8c27cb35
LT
859static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
860 int mirror_num, unsigned long bio_flags,
861 u64 bio_offset)
44b8bd7e 862{
c6100a4b 863 struct inode *inode = private_data;
0b246afa 864 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 865 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 866 blk_status_t ret;
cad321ad 867
37226b21 868 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
869 /*
870 * called for a read, do the setup so that checksum validation
871 * can happen in the async kernel threads
872 */
0b246afa
JM
873 ret = btrfs_bio_wq_end_io(fs_info, bio,
874 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 875 if (ret)
61891923 876 goto out_w_error;
2ff7e61e 877 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
878 } else if (!async) {
879 ret = btree_csum_one_bio(bio);
880 if (ret)
61891923 881 goto out_w_error;
2ff7e61e 882 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
883 } else {
884 /*
885 * kthread helpers are used to submit writes so that
886 * checksumming can happen in parallel across all CPUs
887 */
c6100a4b
JB
888 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
889 bio_offset, private_data,
e288c080 890 btree_submit_bio_start);
44b8bd7e 891 }
d313d7a3 892
4246a0b6
CH
893 if (ret)
894 goto out_w_error;
895 return 0;
896
61891923 897out_w_error:
4e4cbee9 898 bio->bi_status = ret;
4246a0b6 899 bio_endio(bio);
61891923 900 return ret;
44b8bd7e
CM
901}
902
3dd1462e 903#ifdef CONFIG_MIGRATION
784b4e29 904static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
905 struct page *newpage, struct page *page,
906 enum migrate_mode mode)
784b4e29
CM
907{
908 /*
909 * we can't safely write a btree page from here,
910 * we haven't done the locking hook
911 */
912 if (PageDirty(page))
913 return -EAGAIN;
914 /*
915 * Buffers may be managed in a filesystem specific way.
916 * We must have no buffers or drop them.
917 */
918 if (page_has_private(page) &&
919 !try_to_release_page(page, GFP_KERNEL))
920 return -EAGAIN;
a6bc32b8 921 return migrate_page(mapping, newpage, page, mode);
784b4e29 922}
3dd1462e 923#endif
784b4e29 924
0da5468f
CM
925
926static int btree_writepages(struct address_space *mapping,
927 struct writeback_control *wbc)
928{
e2d84521
MX
929 struct btrfs_fs_info *fs_info;
930 int ret;
931
d8d5f3e1 932 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
933
934 if (wbc->for_kupdate)
935 return 0;
936
e2d84521 937 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 938 /* this is a bit racy, but that's ok */
d814a491
EL
939 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
940 BTRFS_DIRTY_METADATA_THRESH,
941 fs_info->dirty_metadata_batch);
e2d84521 942 if (ret < 0)
793955bc 943 return 0;
793955bc 944 }
0b32f4bb 945 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
946}
947
b2950863 948static int btree_readpage(struct file *file, struct page *page)
5f39d397 949{
d1310b2e
CM
950 struct extent_io_tree *tree;
951 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 952 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 953}
22b0ebda 954
70dec807 955static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 956{
98509cfc 957 if (PageWriteback(page) || PageDirty(page))
d397712b 958 return 0;
0c4e538b 959
f7a52a40 960 return try_release_extent_buffer(page);
d98237b3
CM
961}
962
d47992f8
LC
963static void btree_invalidatepage(struct page *page, unsigned int offset,
964 unsigned int length)
d98237b3 965{
d1310b2e
CM
966 struct extent_io_tree *tree;
967 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
968 extent_invalidatepage(tree, page, offset);
969 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 970 if (PagePrivate(page)) {
efe120a0
FH
971 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
972 "page private not zero on page %llu",
973 (unsigned long long)page_offset(page));
9ad6b7bc
CM
974 ClearPagePrivate(page);
975 set_page_private(page, 0);
09cbfeaf 976 put_page(page);
9ad6b7bc 977 }
d98237b3
CM
978}
979
0b32f4bb
JB
980static int btree_set_page_dirty(struct page *page)
981{
bb146eb2 982#ifdef DEBUG
0b32f4bb
JB
983 struct extent_buffer *eb;
984
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!eb);
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
bb146eb2 991#endif
0b32f4bb
JB
992 return __set_page_dirty_nobuffers(page);
993}
994
7f09410b 995static const struct address_space_operations btree_aops = {
d98237b3 996 .readpage = btree_readpage,
0da5468f 997 .writepages = btree_writepages,
5f39d397
CM
998 .releasepage = btree_releasepage,
999 .invalidatepage = btree_invalidatepage,
5a92bc88 1000#ifdef CONFIG_MIGRATION
784b4e29 1001 .migratepage = btree_migratepage,
5a92bc88 1002#endif
0b32f4bb 1003 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1004};
1005
2ff7e61e 1006void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1007{
5f39d397 1008 struct extent_buffer *buf = NULL;
2ff7e61e 1009 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1010
2ff7e61e 1011 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1012 if (IS_ERR(buf))
6197d86e 1013 return;
d1310b2e 1014 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
6af49dbd 1015 buf, WAIT_NONE, 0);
5f39d397 1016 free_extent_buffer(buf);
090d1875
CM
1017}
1018
2ff7e61e 1019int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1020 int mirror_num, struct extent_buffer **eb)
1021{
1022 struct extent_buffer *buf = NULL;
2ff7e61e 1023 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1024 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1025 int ret;
1026
2ff7e61e 1027 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1028 if (IS_ERR(buf))
ab0fff03
AJ
1029 return 0;
1030
1031 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1032
8436ea91 1033 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1034 mirror_num);
ab0fff03
AJ
1035 if (ret) {
1036 free_extent_buffer(buf);
1037 return ret;
1038 }
1039
1040 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1041 free_extent_buffer(buf);
1042 return -EIO;
0b32f4bb 1043 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1044 *eb = buf;
1045 } else {
1046 free_extent_buffer(buf);
1047 }
1048 return 0;
1049}
1050
2ff7e61e
JM
1051struct extent_buffer *btrfs_find_create_tree_block(
1052 struct btrfs_fs_info *fs_info,
1053 u64 bytenr)
0999df54 1054{
0b246afa
JM
1055 if (btrfs_is_testing(fs_info))
1056 return alloc_test_extent_buffer(fs_info, bytenr);
1057 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1058}
1059
1060
e02119d5
CM
1061int btrfs_write_tree_block(struct extent_buffer *buf)
1062{
727011e0 1063 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1064 buf->start + buf->len - 1);
e02119d5
CM
1065}
1066
3189ff77 1067void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1068{
3189ff77
JL
1069 filemap_fdatawait_range(buf->pages[0]->mapping,
1070 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1071}
1072
581c1760
QW
1073/*
1074 * Read tree block at logical address @bytenr and do variant basic but critical
1075 * verification.
1076 *
1077 * @parent_transid: expected transid of this tree block, skip check if 0
1078 * @level: expected level, mandatory check
1079 * @first_key: expected key in slot 0, skip check if NULL
1080 */
2ff7e61e 1081struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1082 u64 parent_transid, int level,
1083 struct btrfs_key *first_key)
0999df54
CM
1084{
1085 struct extent_buffer *buf = NULL;
0999df54
CM
1086 int ret;
1087
2ff7e61e 1088 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1089 if (IS_ERR(buf))
1090 return buf;
0999df54 1091
581c1760
QW
1092 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1093 level, first_key);
0f0fe8f7
FDBM
1094 if (ret) {
1095 free_extent_buffer(buf);
64c043de 1096 return ERR_PTR(ret);
0f0fe8f7 1097 }
5f39d397 1098 return buf;
ce9adaa5 1099
eb60ceac
CM
1100}
1101
7c302b49 1102void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1103 struct extent_buffer *buf)
ed2ff2cb 1104{
55c69072 1105 if (btrfs_header_generation(buf) ==
e2d84521 1106 fs_info->running_transaction->transid) {
b9447ef8 1107 btrfs_assert_tree_locked(buf);
b4ce94de 1108
b9473439 1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1110 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1111 -buf->len,
1112 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1113 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1114 btrfs_set_lock_blocking(buf);
1115 clear_extent_buffer_dirty(buf);
1116 }
925baedd 1117 }
5f39d397
CM
1118}
1119
8257b2dc
MX
1120static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1121{
1122 struct btrfs_subvolume_writers *writers;
1123 int ret;
1124
1125 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1126 if (!writers)
1127 return ERR_PTR(-ENOMEM);
1128
8a5a916d 1129 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1130 if (ret < 0) {
1131 kfree(writers);
1132 return ERR_PTR(ret);
1133 }
1134
1135 init_waitqueue_head(&writers->wait);
1136 return writers;
1137}
1138
1139static void
1140btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1141{
1142 percpu_counter_destroy(&writers->counter);
1143 kfree(writers);
1144}
1145
da17066c 1146static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1147 u64 objectid)
d97e63b6 1148{
7c0260ee 1149 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1150 root->node = NULL;
a28ec197 1151 root->commit_root = NULL;
27cdeb70 1152 root->state = 0;
d68fc57b 1153 root->orphan_cleanup_state = 0;
0b86a832 1154
0f7d52f4 1155 root->last_trans = 0;
13a8a7c8 1156 root->highest_objectid = 0;
eb73c1b7 1157 root->nr_delalloc_inodes = 0;
199c2a9c 1158 root->nr_ordered_extents = 0;
6bef4d31 1159 root->inode_tree = RB_ROOT;
16cdcec7 1160 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1161 root->block_rsv = NULL;
0b86a832
CM
1162
1163 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1164 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1165 INIT_LIST_HEAD(&root->delalloc_inodes);
1166 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1167 INIT_LIST_HEAD(&root->ordered_extents);
1168 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1169 INIT_LIST_HEAD(&root->logged_list[0]);
1170 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1171 spin_lock_init(&root->inode_lock);
eb73c1b7 1172 spin_lock_init(&root->delalloc_lock);
199c2a9c 1173 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1174 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1175 spin_lock_init(&root->log_extents_lock[0]);
1176 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1177 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1178 mutex_init(&root->objectid_mutex);
e02119d5 1179 mutex_init(&root->log_mutex);
31f3d255 1180 mutex_init(&root->ordered_extent_mutex);
573bfb72 1181 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1182 init_waitqueue_head(&root->log_writer_wait);
1183 init_waitqueue_head(&root->log_commit_wait[0]);
1184 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1185 INIT_LIST_HEAD(&root->log_ctxs[0]);
1186 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1187 atomic_set(&root->log_commit[0], 0);
1188 atomic_set(&root->log_commit[1], 0);
1189 atomic_set(&root->log_writers, 0);
2ecb7923 1190 atomic_set(&root->log_batch, 0);
0700cea7 1191 refcount_set(&root->refs, 1);
ea14b57f 1192 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1193 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1194 atomic_set(&root->nr_swapfiles, 0);
7237f183 1195 root->log_transid = 0;
d1433deb 1196 root->log_transid_committed = -1;
257c62e1 1197 root->last_log_commit = 0;
7c0260ee 1198 if (!dummy)
c6100a4b 1199 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1200
3768f368
CM
1201 memset(&root->root_key, 0, sizeof(root->root_key));
1202 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1203 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1204 if (!dummy)
06ea65a3
JB
1205 root->defrag_trans_start = fs_info->generation;
1206 else
1207 root->defrag_trans_start = 0;
4d775673 1208 root->root_key.objectid = objectid;
0ee5dc67 1209 root->anon_dev = 0;
8ea05e3a 1210
5f3ab90a 1211 spin_lock_init(&root->root_item_lock);
3768f368
CM
1212}
1213
74e4d827
DS
1214static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1215 gfp_t flags)
6f07e42e 1216{
74e4d827 1217 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1218 if (root)
1219 root->fs_info = fs_info;
1220 return root;
1221}
1222
06ea65a3
JB
1223#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1224/* Should only be used by the testing infrastructure */
da17066c 1225struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1226{
1227 struct btrfs_root *root;
1228
7c0260ee
JM
1229 if (!fs_info)
1230 return ERR_PTR(-EINVAL);
1231
1232 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1233 if (!root)
1234 return ERR_PTR(-ENOMEM);
da17066c 1235
b9ef22de 1236 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1237 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1238 root->alloc_bytenr = 0;
06ea65a3
JB
1239
1240 return root;
1241}
1242#endif
1243
20897f5c
AJ
1244struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1245 struct btrfs_fs_info *fs_info,
1246 u64 objectid)
1247{
1248 struct extent_buffer *leaf;
1249 struct btrfs_root *tree_root = fs_info->tree_root;
1250 struct btrfs_root *root;
1251 struct btrfs_key key;
1252 int ret = 0;
33d85fda 1253 uuid_le uuid = NULL_UUID_LE;
20897f5c 1254
74e4d827 1255 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1256 if (!root)
1257 return ERR_PTR(-ENOMEM);
1258
da17066c 1259 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1260 root->root_key.objectid = objectid;
1261 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1262 root->root_key.offset = 0;
1263
4d75f8a9 1264 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1265 if (IS_ERR(leaf)) {
1266 ret = PTR_ERR(leaf);
1dd05682 1267 leaf = NULL;
20897f5c
AJ
1268 goto fail;
1269 }
1270
20897f5c 1271 root->node = leaf;
20897f5c
AJ
1272 btrfs_mark_buffer_dirty(leaf);
1273
1274 root->commit_root = btrfs_root_node(root);
27cdeb70 1275 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1276
1277 root->root_item.flags = 0;
1278 root->root_item.byte_limit = 0;
1279 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1280 btrfs_set_root_generation(&root->root_item, trans->transid);
1281 btrfs_set_root_level(&root->root_item, 0);
1282 btrfs_set_root_refs(&root->root_item, 1);
1283 btrfs_set_root_used(&root->root_item, leaf->len);
1284 btrfs_set_root_last_snapshot(&root->root_item, 0);
1285 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1286 if (is_fstree(objectid))
1287 uuid_le_gen(&uuid);
6463fe58 1288 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1289 root->root_item.drop_level = 0;
1290
1291 key.objectid = objectid;
1292 key.type = BTRFS_ROOT_ITEM_KEY;
1293 key.offset = 0;
1294 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1295 if (ret)
1296 goto fail;
1297
1298 btrfs_tree_unlock(leaf);
1299
1dd05682
TI
1300 return root;
1301
20897f5c 1302fail:
1dd05682
TI
1303 if (leaf) {
1304 btrfs_tree_unlock(leaf);
59885b39 1305 free_extent_buffer(root->commit_root);
1dd05682
TI
1306 free_extent_buffer(leaf);
1307 }
1308 kfree(root);
20897f5c 1309
1dd05682 1310 return ERR_PTR(ret);
20897f5c
AJ
1311}
1312
7237f183
YZ
1313static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1314 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1315{
1316 struct btrfs_root *root;
7237f183 1317 struct extent_buffer *leaf;
e02119d5 1318
74e4d827 1319 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1320 if (!root)
7237f183 1321 return ERR_PTR(-ENOMEM);
e02119d5 1322
da17066c 1323 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1324
1325 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1326 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1327 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1328
7237f183 1329 /*
27cdeb70
MX
1330 * DON'T set REF_COWS for log trees
1331 *
7237f183
YZ
1332 * log trees do not get reference counted because they go away
1333 * before a real commit is actually done. They do store pointers
1334 * to file data extents, and those reference counts still get
1335 * updated (along with back refs to the log tree).
1336 */
e02119d5 1337
4d75f8a9
DS
1338 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1339 NULL, 0, 0, 0);
7237f183
YZ
1340 if (IS_ERR(leaf)) {
1341 kfree(root);
1342 return ERR_CAST(leaf);
1343 }
e02119d5 1344
7237f183 1345 root->node = leaf;
e02119d5 1346
e02119d5
CM
1347 btrfs_mark_buffer_dirty(root->node);
1348 btrfs_tree_unlock(root->node);
7237f183
YZ
1349 return root;
1350}
1351
1352int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1353 struct btrfs_fs_info *fs_info)
1354{
1355 struct btrfs_root *log_root;
1356
1357 log_root = alloc_log_tree(trans, fs_info);
1358 if (IS_ERR(log_root))
1359 return PTR_ERR(log_root);
1360 WARN_ON(fs_info->log_root_tree);
1361 fs_info->log_root_tree = log_root;
1362 return 0;
1363}
1364
1365int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1366 struct btrfs_root *root)
1367{
0b246afa 1368 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1369 struct btrfs_root *log_root;
1370 struct btrfs_inode_item *inode_item;
1371
0b246afa 1372 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1373 if (IS_ERR(log_root))
1374 return PTR_ERR(log_root);
1375
1376 log_root->last_trans = trans->transid;
1377 log_root->root_key.offset = root->root_key.objectid;
1378
1379 inode_item = &log_root->root_item.inode;
3cae210f
QW
1380 btrfs_set_stack_inode_generation(inode_item, 1);
1381 btrfs_set_stack_inode_size(inode_item, 3);
1382 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1383 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1384 fs_info->nodesize);
3cae210f 1385 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1386
5d4f98a2 1387 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1388
1389 WARN_ON(root->log_root);
1390 root->log_root = log_root;
1391 root->log_transid = 0;
d1433deb 1392 root->log_transid_committed = -1;
257c62e1 1393 root->last_log_commit = 0;
e02119d5
CM
1394 return 0;
1395}
1396
35a3621b
SB
1397static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1398 struct btrfs_key *key)
e02119d5
CM
1399{
1400 struct btrfs_root *root;
1401 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1402 struct btrfs_path *path;
84234f3a 1403 u64 generation;
cb517eab 1404 int ret;
581c1760 1405 int level;
0f7d52f4 1406
cb517eab
MX
1407 path = btrfs_alloc_path();
1408 if (!path)
0f7d52f4 1409 return ERR_PTR(-ENOMEM);
cb517eab 1410
74e4d827 1411 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1412 if (!root) {
1413 ret = -ENOMEM;
1414 goto alloc_fail;
0f7d52f4
CM
1415 }
1416
da17066c 1417 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1418
cb517eab
MX
1419 ret = btrfs_find_root(tree_root, key, path,
1420 &root->root_item, &root->root_key);
0f7d52f4 1421 if (ret) {
13a8a7c8
YZ
1422 if (ret > 0)
1423 ret = -ENOENT;
cb517eab 1424 goto find_fail;
0f7d52f4 1425 }
13a8a7c8 1426
84234f3a 1427 generation = btrfs_root_generation(&root->root_item);
581c1760 1428 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1429 root->node = read_tree_block(fs_info,
1430 btrfs_root_bytenr(&root->root_item),
581c1760 1431 generation, level, NULL);
64c043de
LB
1432 if (IS_ERR(root->node)) {
1433 ret = PTR_ERR(root->node);
cb517eab
MX
1434 goto find_fail;
1435 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1436 ret = -EIO;
64c043de
LB
1437 free_extent_buffer(root->node);
1438 goto find_fail;
416bc658 1439 }
5d4f98a2 1440 root->commit_root = btrfs_root_node(root);
13a8a7c8 1441out:
cb517eab
MX
1442 btrfs_free_path(path);
1443 return root;
1444
cb517eab
MX
1445find_fail:
1446 kfree(root);
1447alloc_fail:
1448 root = ERR_PTR(ret);
1449 goto out;
1450}
1451
1452struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1453 struct btrfs_key *location)
1454{
1455 struct btrfs_root *root;
1456
1457 root = btrfs_read_tree_root(tree_root, location);
1458 if (IS_ERR(root))
1459 return root;
1460
1461 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1462 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1463 btrfs_check_and_init_root_item(&root->root_item);
1464 }
13a8a7c8 1465
5eda7b5e
CM
1466 return root;
1467}
1468
cb517eab
MX
1469int btrfs_init_fs_root(struct btrfs_root *root)
1470{
1471 int ret;
8257b2dc 1472 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1473
1474 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1475 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1476 GFP_NOFS);
1477 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1478 ret = -ENOMEM;
1479 goto fail;
1480 }
1481
8257b2dc
MX
1482 writers = btrfs_alloc_subvolume_writers();
1483 if (IS_ERR(writers)) {
1484 ret = PTR_ERR(writers);
1485 goto fail;
1486 }
1487 root->subv_writers = writers;
1488
cb517eab 1489 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1490 spin_lock_init(&root->ino_cache_lock);
1491 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1492
1493 ret = get_anon_bdev(&root->anon_dev);
1494 if (ret)
876d2cf1 1495 goto fail;
f32e48e9
CR
1496
1497 mutex_lock(&root->objectid_mutex);
1498 ret = btrfs_find_highest_objectid(root,
1499 &root->highest_objectid);
1500 if (ret) {
1501 mutex_unlock(&root->objectid_mutex);
876d2cf1 1502 goto fail;
f32e48e9
CR
1503 }
1504
1505 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1506
1507 mutex_unlock(&root->objectid_mutex);
1508
cb517eab
MX
1509 return 0;
1510fail:
84db5ccf 1511 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1512 return ret;
1513}
1514
35bbb97f
JM
1515struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1516 u64 root_id)
cb517eab
MX
1517{
1518 struct btrfs_root *root;
1519
1520 spin_lock(&fs_info->fs_roots_radix_lock);
1521 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1522 (unsigned long)root_id);
1523 spin_unlock(&fs_info->fs_roots_radix_lock);
1524 return root;
1525}
1526
1527int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1528 struct btrfs_root *root)
1529{
1530 int ret;
1531
e1860a77 1532 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1533 if (ret)
1534 return ret;
1535
1536 spin_lock(&fs_info->fs_roots_radix_lock);
1537 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1538 (unsigned long)root->root_key.objectid,
1539 root);
1540 if (ret == 0)
27cdeb70 1541 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1542 spin_unlock(&fs_info->fs_roots_radix_lock);
1543 radix_tree_preload_end();
1544
1545 return ret;
1546}
1547
c00869f1
MX
1548struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1549 struct btrfs_key *location,
1550 bool check_ref)
5eda7b5e
CM
1551{
1552 struct btrfs_root *root;
381cf658 1553 struct btrfs_path *path;
1d4c08e0 1554 struct btrfs_key key;
5eda7b5e
CM
1555 int ret;
1556
edbd8d4e
CM
1557 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1558 return fs_info->tree_root;
1559 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1560 return fs_info->extent_root;
8f18cf13
CM
1561 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1562 return fs_info->chunk_root;
1563 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1564 return fs_info->dev_root;
0403e47e
YZ
1565 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1566 return fs_info->csum_root;
bcef60f2
AJ
1567 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1568 return fs_info->quota_root ? fs_info->quota_root :
1569 ERR_PTR(-ENOENT);
f7a81ea4
SB
1570 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1571 return fs_info->uuid_root ? fs_info->uuid_root :
1572 ERR_PTR(-ENOENT);
70f6d82e
OS
1573 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1574 return fs_info->free_space_root ? fs_info->free_space_root :
1575 ERR_PTR(-ENOENT);
4df27c4d 1576again:
cb517eab 1577 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1578 if (root) {
c00869f1 1579 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1580 return ERR_PTR(-ENOENT);
5eda7b5e 1581 return root;
48475471 1582 }
5eda7b5e 1583
cb517eab 1584 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1585 if (IS_ERR(root))
1586 return root;
3394e160 1587
c00869f1 1588 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1589 ret = -ENOENT;
581bb050 1590 goto fail;
35a30d7c 1591 }
581bb050 1592
cb517eab 1593 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1594 if (ret)
1595 goto fail;
3394e160 1596
381cf658
DS
1597 path = btrfs_alloc_path();
1598 if (!path) {
1599 ret = -ENOMEM;
1600 goto fail;
1601 }
1d4c08e0
DS
1602 key.objectid = BTRFS_ORPHAN_OBJECTID;
1603 key.type = BTRFS_ORPHAN_ITEM_KEY;
1604 key.offset = location->objectid;
1605
1606 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1607 btrfs_free_path(path);
d68fc57b
YZ
1608 if (ret < 0)
1609 goto fail;
1610 if (ret == 0)
27cdeb70 1611 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1612
cb517eab 1613 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1614 if (ret) {
4df27c4d 1615 if (ret == -EEXIST) {
84db5ccf 1616 btrfs_free_fs_root(root);
4df27c4d
YZ
1617 goto again;
1618 }
1619 goto fail;
0f7d52f4 1620 }
edbd8d4e 1621 return root;
4df27c4d 1622fail:
84db5ccf 1623 btrfs_free_fs_root(root);
4df27c4d 1624 return ERR_PTR(ret);
edbd8d4e
CM
1625}
1626
04160088
CM
1627static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1628{
1629 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1630 int ret = 0;
04160088
CM
1631 struct btrfs_device *device;
1632 struct backing_dev_info *bdi;
b7967db7 1633
1f78160c
XG
1634 rcu_read_lock();
1635 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1636 if (!device->bdev)
1637 continue;
efa7c9f9 1638 bdi = device->bdev->bd_bdi;
ff9ea323 1639 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1640 ret = 1;
1641 break;
1642 }
1643 }
1f78160c 1644 rcu_read_unlock();
04160088
CM
1645 return ret;
1646}
1647
8b712842
CM
1648/*
1649 * called by the kthread helper functions to finally call the bio end_io
1650 * functions. This is where read checksum verification actually happens
1651 */
1652static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1653{
ce9adaa5 1654 struct bio *bio;
97eb6b69 1655 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1656
97eb6b69 1657 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1658 bio = end_io_wq->bio;
ce9adaa5 1659
4e4cbee9 1660 bio->bi_status = end_io_wq->status;
8b712842
CM
1661 bio->bi_private = end_io_wq->private;
1662 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1663 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1664 bio_endio(bio);
44b8bd7e
CM
1665}
1666
a74a4b97
CM
1667static int cleaner_kthread(void *arg)
1668{
1669 struct btrfs_root *root = arg;
0b246afa 1670 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1671 int again;
a74a4b97 1672
d6fd0ae2 1673 while (1) {
d0278245 1674 again = 0;
a74a4b97 1675
d0278245 1676 /* Make the cleaner go to sleep early. */
2ff7e61e 1677 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1678 goto sleep;
1679
90c711ab
ZB
1680 /*
1681 * Do not do anything if we might cause open_ctree() to block
1682 * before we have finished mounting the filesystem.
1683 */
0b246afa 1684 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1685 goto sleep;
1686
0b246afa 1687 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1688 goto sleep;
1689
dc7f370c
MX
1690 /*
1691 * Avoid the problem that we change the status of the fs
1692 * during the above check and trylock.
1693 */
2ff7e61e 1694 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1695 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1696 goto sleep;
76dda93c 1697 }
a74a4b97 1698
0b246afa 1699 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1700 btrfs_run_delayed_iputs(fs_info);
0b246afa 1701 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1702
d0278245 1703 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1704 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1705
1706 /*
05323cd1
MX
1707 * The defragger has dealt with the R/O remount and umount,
1708 * needn't do anything special here.
d0278245 1709 */
0b246afa 1710 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1711
1712 /*
1713 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1714 * with relocation (btrfs_relocate_chunk) and relocation
1715 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1716 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1717 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1718 * unused block groups.
1719 */
0b246afa 1720 btrfs_delete_unused_bgs(fs_info);
d0278245 1721sleep:
d6fd0ae2
OS
1722 if (kthread_should_park())
1723 kthread_parkme();
1724 if (kthread_should_stop())
1725 return 0;
838fe188 1726 if (!again) {
a74a4b97 1727 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1728 schedule();
a74a4b97
CM
1729 __set_current_state(TASK_RUNNING);
1730 }
da288d28 1731 }
a74a4b97
CM
1732}
1733
1734static int transaction_kthread(void *arg)
1735{
1736 struct btrfs_root *root = arg;
0b246afa 1737 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1738 struct btrfs_trans_handle *trans;
1739 struct btrfs_transaction *cur;
8929ecfa 1740 u64 transid;
a944442c 1741 time64_t now;
a74a4b97 1742 unsigned long delay;
914b2007 1743 bool cannot_commit;
a74a4b97
CM
1744
1745 do {
914b2007 1746 cannot_commit = false;
0b246afa
JM
1747 delay = HZ * fs_info->commit_interval;
1748 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1749
0b246afa
JM
1750 spin_lock(&fs_info->trans_lock);
1751 cur = fs_info->running_transaction;
a74a4b97 1752 if (!cur) {
0b246afa 1753 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1754 goto sleep;
1755 }
31153d81 1756
afd48513 1757 now = ktime_get_seconds();
4a9d8bde 1758 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1759 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1760 (now < cur->start_time ||
0b246afa
JM
1761 now - cur->start_time < fs_info->commit_interval)) {
1762 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1763 delay = HZ * 5;
1764 goto sleep;
1765 }
8929ecfa 1766 transid = cur->transid;
0b246afa 1767 spin_unlock(&fs_info->trans_lock);
56bec294 1768
79787eaa 1769 /* If the file system is aborted, this will always fail. */
354aa0fb 1770 trans = btrfs_attach_transaction(root);
914b2007 1771 if (IS_ERR(trans)) {
354aa0fb
MX
1772 if (PTR_ERR(trans) != -ENOENT)
1773 cannot_commit = true;
79787eaa 1774 goto sleep;
914b2007 1775 }
8929ecfa 1776 if (transid == trans->transid) {
3a45bb20 1777 btrfs_commit_transaction(trans);
8929ecfa 1778 } else {
3a45bb20 1779 btrfs_end_transaction(trans);
8929ecfa 1780 }
a74a4b97 1781sleep:
0b246afa
JM
1782 wake_up_process(fs_info->cleaner_kthread);
1783 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1784
4e121c06 1785 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1786 &fs_info->fs_state)))
2ff7e61e 1787 btrfs_cleanup_transaction(fs_info);
ce63f891 1788 if (!kthread_should_stop() &&
0b246afa 1789 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1790 cannot_commit))
bc5511d0 1791 schedule_timeout_interruptible(delay);
a74a4b97
CM
1792 } while (!kthread_should_stop());
1793 return 0;
1794}
1795
af31f5e5
CM
1796/*
1797 * this will find the highest generation in the array of
1798 * root backups. The index of the highest array is returned,
1799 * or -1 if we can't find anything.
1800 *
1801 * We check to make sure the array is valid by comparing the
1802 * generation of the latest root in the array with the generation
1803 * in the super block. If they don't match we pitch it.
1804 */
1805static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1806{
1807 u64 cur;
1808 int newest_index = -1;
1809 struct btrfs_root_backup *root_backup;
1810 int i;
1811
1812 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1813 root_backup = info->super_copy->super_roots + i;
1814 cur = btrfs_backup_tree_root_gen(root_backup);
1815 if (cur == newest_gen)
1816 newest_index = i;
1817 }
1818
1819 /* check to see if we actually wrapped around */
1820 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1821 root_backup = info->super_copy->super_roots;
1822 cur = btrfs_backup_tree_root_gen(root_backup);
1823 if (cur == newest_gen)
1824 newest_index = 0;
1825 }
1826 return newest_index;
1827}
1828
1829
1830/*
1831 * find the oldest backup so we know where to store new entries
1832 * in the backup array. This will set the backup_root_index
1833 * field in the fs_info struct
1834 */
1835static void find_oldest_super_backup(struct btrfs_fs_info *info,
1836 u64 newest_gen)
1837{
1838 int newest_index = -1;
1839
1840 newest_index = find_newest_super_backup(info, newest_gen);
1841 /* if there was garbage in there, just move along */
1842 if (newest_index == -1) {
1843 info->backup_root_index = 0;
1844 } else {
1845 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1846 }
1847}
1848
1849/*
1850 * copy all the root pointers into the super backup array.
1851 * this will bump the backup pointer by one when it is
1852 * done
1853 */
1854static void backup_super_roots(struct btrfs_fs_info *info)
1855{
1856 int next_backup;
1857 struct btrfs_root_backup *root_backup;
1858 int last_backup;
1859
1860 next_backup = info->backup_root_index;
1861 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1862 BTRFS_NUM_BACKUP_ROOTS;
1863
1864 /*
1865 * just overwrite the last backup if we're at the same generation
1866 * this happens only at umount
1867 */
1868 root_backup = info->super_for_commit->super_roots + last_backup;
1869 if (btrfs_backup_tree_root_gen(root_backup) ==
1870 btrfs_header_generation(info->tree_root->node))
1871 next_backup = last_backup;
1872
1873 root_backup = info->super_for_commit->super_roots + next_backup;
1874
1875 /*
1876 * make sure all of our padding and empty slots get zero filled
1877 * regardless of which ones we use today
1878 */
1879 memset(root_backup, 0, sizeof(*root_backup));
1880
1881 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1882
1883 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1884 btrfs_set_backup_tree_root_gen(root_backup,
1885 btrfs_header_generation(info->tree_root->node));
1886
1887 btrfs_set_backup_tree_root_level(root_backup,
1888 btrfs_header_level(info->tree_root->node));
1889
1890 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1891 btrfs_set_backup_chunk_root_gen(root_backup,
1892 btrfs_header_generation(info->chunk_root->node));
1893 btrfs_set_backup_chunk_root_level(root_backup,
1894 btrfs_header_level(info->chunk_root->node));
1895
1896 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1897 btrfs_set_backup_extent_root_gen(root_backup,
1898 btrfs_header_generation(info->extent_root->node));
1899 btrfs_set_backup_extent_root_level(root_backup,
1900 btrfs_header_level(info->extent_root->node));
1901
7c7e82a7
CM
1902 /*
1903 * we might commit during log recovery, which happens before we set
1904 * the fs_root. Make sure it is valid before we fill it in.
1905 */
1906 if (info->fs_root && info->fs_root->node) {
1907 btrfs_set_backup_fs_root(root_backup,
1908 info->fs_root->node->start);
1909 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1910 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1911 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1912 btrfs_header_level(info->fs_root->node));
7c7e82a7 1913 }
af31f5e5
CM
1914
1915 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1916 btrfs_set_backup_dev_root_gen(root_backup,
1917 btrfs_header_generation(info->dev_root->node));
1918 btrfs_set_backup_dev_root_level(root_backup,
1919 btrfs_header_level(info->dev_root->node));
1920
1921 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1922 btrfs_set_backup_csum_root_gen(root_backup,
1923 btrfs_header_generation(info->csum_root->node));
1924 btrfs_set_backup_csum_root_level(root_backup,
1925 btrfs_header_level(info->csum_root->node));
1926
1927 btrfs_set_backup_total_bytes(root_backup,
1928 btrfs_super_total_bytes(info->super_copy));
1929 btrfs_set_backup_bytes_used(root_backup,
1930 btrfs_super_bytes_used(info->super_copy));
1931 btrfs_set_backup_num_devices(root_backup,
1932 btrfs_super_num_devices(info->super_copy));
1933
1934 /*
1935 * if we don't copy this out to the super_copy, it won't get remembered
1936 * for the next commit
1937 */
1938 memcpy(&info->super_copy->super_roots,
1939 &info->super_for_commit->super_roots,
1940 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1941}
1942
1943/*
1944 * this copies info out of the root backup array and back into
1945 * the in-memory super block. It is meant to help iterate through
1946 * the array, so you send it the number of backups you've already
1947 * tried and the last backup index you used.
1948 *
1949 * this returns -1 when it has tried all the backups
1950 */
1951static noinline int next_root_backup(struct btrfs_fs_info *info,
1952 struct btrfs_super_block *super,
1953 int *num_backups_tried, int *backup_index)
1954{
1955 struct btrfs_root_backup *root_backup;
1956 int newest = *backup_index;
1957
1958 if (*num_backups_tried == 0) {
1959 u64 gen = btrfs_super_generation(super);
1960
1961 newest = find_newest_super_backup(info, gen);
1962 if (newest == -1)
1963 return -1;
1964
1965 *backup_index = newest;
1966 *num_backups_tried = 1;
1967 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1968 /* we've tried all the backups, all done */
1969 return -1;
1970 } else {
1971 /* jump to the next oldest backup */
1972 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1973 BTRFS_NUM_BACKUP_ROOTS;
1974 *backup_index = newest;
1975 *num_backups_tried += 1;
1976 }
1977 root_backup = super->super_roots + newest;
1978
1979 btrfs_set_super_generation(super,
1980 btrfs_backup_tree_root_gen(root_backup));
1981 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1982 btrfs_set_super_root_level(super,
1983 btrfs_backup_tree_root_level(root_backup));
1984 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1985
1986 /*
1987 * fixme: the total bytes and num_devices need to match or we should
1988 * need a fsck
1989 */
1990 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1991 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1992 return 0;
1993}
1994
7abadb64
LB
1995/* helper to cleanup workers */
1996static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1997{
dc6e3209 1998 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1999 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2000 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2001 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2002 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2003 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2004 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2005 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2006 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2007 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2008 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2009 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2010 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2011 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2012 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2013 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2014 /*
2015 * Now that all other work queues are destroyed, we can safely destroy
2016 * the queues used for metadata I/O, since tasks from those other work
2017 * queues can do metadata I/O operations.
2018 */
2019 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2020 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2021}
2022
2e9f5954
R
2023static void free_root_extent_buffers(struct btrfs_root *root)
2024{
2025 if (root) {
2026 free_extent_buffer(root->node);
2027 free_extent_buffer(root->commit_root);
2028 root->node = NULL;
2029 root->commit_root = NULL;
2030 }
2031}
2032
af31f5e5
CM
2033/* helper to cleanup tree roots */
2034static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2035{
2e9f5954 2036 free_root_extent_buffers(info->tree_root);
655b09fe 2037
2e9f5954
R
2038 free_root_extent_buffers(info->dev_root);
2039 free_root_extent_buffers(info->extent_root);
2040 free_root_extent_buffers(info->csum_root);
2041 free_root_extent_buffers(info->quota_root);
2042 free_root_extent_buffers(info->uuid_root);
2043 if (chunk_root)
2044 free_root_extent_buffers(info->chunk_root);
70f6d82e 2045 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2046}
2047
faa2dbf0 2048void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2049{
2050 int ret;
2051 struct btrfs_root *gang[8];
2052 int i;
2053
2054 while (!list_empty(&fs_info->dead_roots)) {
2055 gang[0] = list_entry(fs_info->dead_roots.next,
2056 struct btrfs_root, root_list);
2057 list_del(&gang[0]->root_list);
2058
27cdeb70 2059 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2060 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2061 } else {
2062 free_extent_buffer(gang[0]->node);
2063 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2064 btrfs_put_fs_root(gang[0]);
171f6537
JB
2065 }
2066 }
2067
2068 while (1) {
2069 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2070 (void **)gang, 0,
2071 ARRAY_SIZE(gang));
2072 if (!ret)
2073 break;
2074 for (i = 0; i < ret; i++)
cb517eab 2075 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2076 }
1a4319cc
LB
2077
2078 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2079 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2080 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2081 }
171f6537 2082}
af31f5e5 2083
638aa7ed
ES
2084static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2085{
2086 mutex_init(&fs_info->scrub_lock);
2087 atomic_set(&fs_info->scrubs_running, 0);
2088 atomic_set(&fs_info->scrub_pause_req, 0);
2089 atomic_set(&fs_info->scrubs_paused, 0);
2090 atomic_set(&fs_info->scrub_cancel_req, 0);
2091 init_waitqueue_head(&fs_info->scrub_pause_wait);
2092 fs_info->scrub_workers_refcnt = 0;
2093}
2094
779a65a4
ES
2095static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2096{
2097 spin_lock_init(&fs_info->balance_lock);
2098 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2099 atomic_set(&fs_info->balance_pause_req, 0);
2100 atomic_set(&fs_info->balance_cancel_req, 0);
2101 fs_info->balance_ctl = NULL;
2102 init_waitqueue_head(&fs_info->balance_wait_q);
2103}
2104
6bccf3ab 2105static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2106{
2ff7e61e
JM
2107 struct inode *inode = fs_info->btree_inode;
2108
2109 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2110 set_nlink(inode, 1);
f37938e0
ES
2111 /*
2112 * we set the i_size on the btree inode to the max possible int.
2113 * the real end of the address space is determined by all of
2114 * the devices in the system
2115 */
2ff7e61e
JM
2116 inode->i_size = OFFSET_MAX;
2117 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2118
2ff7e61e 2119 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2120 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2121 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2122 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2123
2ff7e61e 2124 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2125
2ff7e61e
JM
2126 BTRFS_I(inode)->root = fs_info->tree_root;
2127 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2128 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2129 btrfs_insert_inode_hash(inode);
f37938e0
ES
2130}
2131
ad618368
ES
2132static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2133{
ad618368 2134 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9 2135 rwlock_init(&fs_info->dev_replace.lock);
73beece9 2136 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
7f8d236a 2137 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
73beece9 2138 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2139}
2140
f9e92e40
ES
2141static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2142{
2143 spin_lock_init(&fs_info->qgroup_lock);
2144 mutex_init(&fs_info->qgroup_ioctl_lock);
2145 fs_info->qgroup_tree = RB_ROOT;
2146 fs_info->qgroup_op_tree = RB_ROOT;
2147 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2148 fs_info->qgroup_seq = 1;
f9e92e40 2149 fs_info->qgroup_ulist = NULL;
d2c609b8 2150 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2151 mutex_init(&fs_info->qgroup_rescan_lock);
2152}
2153
2a458198
ES
2154static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2155 struct btrfs_fs_devices *fs_devices)
2156{
f7b885be 2157 u32 max_active = fs_info->thread_pool_size;
6f011058 2158 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2159
2160 fs_info->workers =
cb001095
JM
2161 btrfs_alloc_workqueue(fs_info, "worker",
2162 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2163
2164 fs_info->delalloc_workers =
cb001095
JM
2165 btrfs_alloc_workqueue(fs_info, "delalloc",
2166 flags, max_active, 2);
2a458198
ES
2167
2168 fs_info->flush_workers =
cb001095
JM
2169 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2170 flags, max_active, 0);
2a458198
ES
2171
2172 fs_info->caching_workers =
cb001095 2173 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2174
2175 /*
2176 * a higher idle thresh on the submit workers makes it much more
2177 * likely that bios will be send down in a sane order to the
2178 * devices
2179 */
2180 fs_info->submit_workers =
cb001095 2181 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2182 min_t(u64, fs_devices->num_devices,
2183 max_active), 64);
2184
2185 fs_info->fixup_workers =
cb001095 2186 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2187
2188 /*
2189 * endios are largely parallel and should have a very
2190 * low idle thresh
2191 */
2192 fs_info->endio_workers =
cb001095 2193 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2194 fs_info->endio_meta_workers =
cb001095
JM
2195 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2196 max_active, 4);
2a458198 2197 fs_info->endio_meta_write_workers =
cb001095
JM
2198 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2199 max_active, 2);
2a458198 2200 fs_info->endio_raid56_workers =
cb001095
JM
2201 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2202 max_active, 4);
2a458198 2203 fs_info->endio_repair_workers =
cb001095 2204 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2205 fs_info->rmw_workers =
cb001095 2206 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2207 fs_info->endio_write_workers =
cb001095
JM
2208 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2209 max_active, 2);
2a458198 2210 fs_info->endio_freespace_worker =
cb001095
JM
2211 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2212 max_active, 0);
2a458198 2213 fs_info->delayed_workers =
cb001095
JM
2214 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2215 max_active, 0);
2a458198 2216 fs_info->readahead_workers =
cb001095
JM
2217 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2218 max_active, 2);
2a458198 2219 fs_info->qgroup_rescan_workers =
cb001095 2220 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2221 fs_info->extent_workers =
cb001095 2222 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2223 min_t(u64, fs_devices->num_devices,
2224 max_active), 8);
2225
2226 if (!(fs_info->workers && fs_info->delalloc_workers &&
2227 fs_info->submit_workers && fs_info->flush_workers &&
2228 fs_info->endio_workers && fs_info->endio_meta_workers &&
2229 fs_info->endio_meta_write_workers &&
2230 fs_info->endio_repair_workers &&
2231 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2232 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2233 fs_info->caching_workers && fs_info->readahead_workers &&
2234 fs_info->fixup_workers && fs_info->delayed_workers &&
2235 fs_info->extent_workers &&
2236 fs_info->qgroup_rescan_workers)) {
2237 return -ENOMEM;
2238 }
2239
2240 return 0;
2241}
2242
63443bf5
ES
2243static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2244 struct btrfs_fs_devices *fs_devices)
2245{
2246 int ret;
63443bf5
ES
2247 struct btrfs_root *log_tree_root;
2248 struct btrfs_super_block *disk_super = fs_info->super_copy;
2249 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2250 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2251
2252 if (fs_devices->rw_devices == 0) {
f14d104d 2253 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2254 return -EIO;
2255 }
2256
74e4d827 2257 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2258 if (!log_tree_root)
2259 return -ENOMEM;
2260
da17066c 2261 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2262
2ff7e61e 2263 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2264 fs_info->generation + 1,
2265 level, NULL);
64c043de 2266 if (IS_ERR(log_tree_root->node)) {
f14d104d 2267 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2268 ret = PTR_ERR(log_tree_root->node);
64c043de 2269 kfree(log_tree_root);
0eeff236 2270 return ret;
64c043de 2271 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2272 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2273 free_extent_buffer(log_tree_root->node);
2274 kfree(log_tree_root);
2275 return -EIO;
2276 }
2277 /* returns with log_tree_root freed on success */
2278 ret = btrfs_recover_log_trees(log_tree_root);
2279 if (ret) {
0b246afa
JM
2280 btrfs_handle_fs_error(fs_info, ret,
2281 "Failed to recover log tree");
63443bf5
ES
2282 free_extent_buffer(log_tree_root->node);
2283 kfree(log_tree_root);
2284 return ret;
2285 }
2286
bc98a42c 2287 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2288 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2289 if (ret)
2290 return ret;
2291 }
2292
2293 return 0;
2294}
2295
6bccf3ab 2296static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2297{
6bccf3ab 2298 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2299 struct btrfs_root *root;
4bbcaa64
ES
2300 struct btrfs_key location;
2301 int ret;
2302
6bccf3ab
JM
2303 BUG_ON(!fs_info->tree_root);
2304
4bbcaa64
ES
2305 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2306 location.type = BTRFS_ROOT_ITEM_KEY;
2307 location.offset = 0;
2308
a4f3d2c4 2309 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2310 if (IS_ERR(root)) {
2311 ret = PTR_ERR(root);
2312 goto out;
2313 }
a4f3d2c4
DS
2314 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315 fs_info->extent_root = root;
4bbcaa64
ES
2316
2317 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2318 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2319 if (IS_ERR(root)) {
2320 ret = PTR_ERR(root);
2321 goto out;
2322 }
a4f3d2c4
DS
2323 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2324 fs_info->dev_root = root;
4bbcaa64
ES
2325 btrfs_init_devices_late(fs_info);
2326
2327 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2328 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2329 if (IS_ERR(root)) {
2330 ret = PTR_ERR(root);
2331 goto out;
2332 }
a4f3d2c4
DS
2333 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2334 fs_info->csum_root = root;
4bbcaa64
ES
2335
2336 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2337 root = btrfs_read_tree_root(tree_root, &location);
2338 if (!IS_ERR(root)) {
2339 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2340 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2341 fs_info->quota_root = root;
4bbcaa64
ES
2342 }
2343
2344 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2345 root = btrfs_read_tree_root(tree_root, &location);
2346 if (IS_ERR(root)) {
2347 ret = PTR_ERR(root);
4bbcaa64 2348 if (ret != -ENOENT)
f50f4353 2349 goto out;
4bbcaa64 2350 } else {
a4f3d2c4
DS
2351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352 fs_info->uuid_root = root;
4bbcaa64
ES
2353 }
2354
70f6d82e
OS
2355 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2356 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2357 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2358 if (IS_ERR(root)) {
2359 ret = PTR_ERR(root);
2360 goto out;
2361 }
70f6d82e
OS
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 fs_info->free_space_root = root;
2364 }
2365
4bbcaa64 2366 return 0;
f50f4353
LB
2367out:
2368 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2369 location.objectid, ret);
2370 return ret;
4bbcaa64
ES
2371}
2372
069ec957
QW
2373/*
2374 * Real super block validation
2375 * NOTE: super csum type and incompat features will not be checked here.
2376 *
2377 * @sb: super block to check
2378 * @mirror_num: the super block number to check its bytenr:
2379 * 0 the primary (1st) sb
2380 * 1, 2 2nd and 3rd backup copy
2381 * -1 skip bytenr check
2382 */
2383static int validate_super(struct btrfs_fs_info *fs_info,
2384 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2385{
21a852b0
QW
2386 u64 nodesize = btrfs_super_nodesize(sb);
2387 u64 sectorsize = btrfs_super_sectorsize(sb);
2388 int ret = 0;
2389
2390 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2391 btrfs_err(fs_info, "no valid FS found");
2392 ret = -EINVAL;
2393 }
2394 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2395 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2396 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2397 ret = -EINVAL;
2398 }
2399 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2400 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2401 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2402 ret = -EINVAL;
2403 }
2404 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2405 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2406 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2407 ret = -EINVAL;
2408 }
2409 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2410 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2411 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2412 ret = -EINVAL;
2413 }
2414
2415 /*
2416 * Check sectorsize and nodesize first, other check will need it.
2417 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2418 */
2419 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2420 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2421 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2422 ret = -EINVAL;
2423 }
2424 /* Only PAGE SIZE is supported yet */
2425 if (sectorsize != PAGE_SIZE) {
2426 btrfs_err(fs_info,
2427 "sectorsize %llu not supported yet, only support %lu",
2428 sectorsize, PAGE_SIZE);
2429 ret = -EINVAL;
2430 }
2431 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2432 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2433 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2434 ret = -EINVAL;
2435 }
2436 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2437 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2438 le32_to_cpu(sb->__unused_leafsize), nodesize);
2439 ret = -EINVAL;
2440 }
2441
2442 /* Root alignment check */
2443 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2444 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2445 btrfs_super_root(sb));
2446 ret = -EINVAL;
2447 }
2448 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2449 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2450 btrfs_super_chunk_root(sb));
2451 ret = -EINVAL;
2452 }
2453 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2454 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2455 btrfs_super_log_root(sb));
2456 ret = -EINVAL;
2457 }
2458
7239ff4b
NB
2459 if (memcmp(fs_info->metadata_fsid, sb->dev_item.fsid,
2460 BTRFS_FSID_SIZE) != 0) {
21a852b0 2461 btrfs_err(fs_info,
7239ff4b
NB
2462 "dev_item UUID does not match metadata fsid: %pU != %pU",
2463 fs_info->metadata_fsid, sb->dev_item.fsid);
21a852b0
QW
2464 ret = -EINVAL;
2465 }
2466
2467 /*
2468 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2469 * done later
2470 */
2471 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2472 btrfs_err(fs_info, "bytes_used is too small %llu",
2473 btrfs_super_bytes_used(sb));
2474 ret = -EINVAL;
2475 }
2476 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2477 btrfs_err(fs_info, "invalid stripesize %u",
2478 btrfs_super_stripesize(sb));
2479 ret = -EINVAL;
2480 }
2481 if (btrfs_super_num_devices(sb) > (1UL << 31))
2482 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2483 btrfs_super_num_devices(sb));
2484 if (btrfs_super_num_devices(sb) == 0) {
2485 btrfs_err(fs_info, "number of devices is 0");
2486 ret = -EINVAL;
2487 }
2488
069ec957
QW
2489 if (mirror_num >= 0 &&
2490 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2491 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2492 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2493 ret = -EINVAL;
2494 }
2495
2496 /*
2497 * Obvious sys_chunk_array corruptions, it must hold at least one key
2498 * and one chunk
2499 */
2500 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2501 btrfs_err(fs_info, "system chunk array too big %u > %u",
2502 btrfs_super_sys_array_size(sb),
2503 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2504 ret = -EINVAL;
2505 }
2506 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2507 + sizeof(struct btrfs_chunk)) {
2508 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2509 btrfs_super_sys_array_size(sb),
2510 sizeof(struct btrfs_disk_key)
2511 + sizeof(struct btrfs_chunk));
2512 ret = -EINVAL;
2513 }
2514
2515 /*
2516 * The generation is a global counter, we'll trust it more than the others
2517 * but it's still possible that it's the one that's wrong.
2518 */
2519 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2520 btrfs_warn(fs_info,
2521 "suspicious: generation < chunk_root_generation: %llu < %llu",
2522 btrfs_super_generation(sb),
2523 btrfs_super_chunk_root_generation(sb));
2524 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2525 && btrfs_super_cache_generation(sb) != (u64)-1)
2526 btrfs_warn(fs_info,
2527 "suspicious: generation < cache_generation: %llu < %llu",
2528 btrfs_super_generation(sb),
2529 btrfs_super_cache_generation(sb));
2530
2531 return ret;
2532}
2533
069ec957
QW
2534/*
2535 * Validation of super block at mount time.
2536 * Some checks already done early at mount time, like csum type and incompat
2537 * flags will be skipped.
2538 */
2539static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2540{
2541 return validate_super(fs_info, fs_info->super_copy, 0);
2542}
2543
75cb857d
QW
2544/*
2545 * Validation of super block at write time.
2546 * Some checks like bytenr check will be skipped as their values will be
2547 * overwritten soon.
2548 * Extra checks like csum type and incompat flags will be done here.
2549 */
2550static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2551 struct btrfs_super_block *sb)
2552{
2553 int ret;
2554
2555 ret = validate_super(fs_info, sb, -1);
2556 if (ret < 0)
2557 goto out;
2558 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2559 ret = -EUCLEAN;
2560 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2561 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2562 goto out;
2563 }
2564 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2565 ret = -EUCLEAN;
2566 btrfs_err(fs_info,
2567 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2568 btrfs_super_incompat_flags(sb),
2569 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2570 goto out;
2571 }
2572out:
2573 if (ret < 0)
2574 btrfs_err(fs_info,
2575 "super block corruption detected before writing it to disk");
2576 return ret;
2577}
2578
ad2b2c80
AV
2579int open_ctree(struct super_block *sb,
2580 struct btrfs_fs_devices *fs_devices,
2581 char *options)
2e635a27 2582{
db94535d
CM
2583 u32 sectorsize;
2584 u32 nodesize;
87ee04eb 2585 u32 stripesize;
84234f3a 2586 u64 generation;
f2b636e8 2587 u64 features;
3de4586c 2588 struct btrfs_key location;
a061fc8d 2589 struct buffer_head *bh;
4d34b278 2590 struct btrfs_super_block *disk_super;
815745cf 2591 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2592 struct btrfs_root *tree_root;
4d34b278 2593 struct btrfs_root *chunk_root;
eb60ceac 2594 int ret;
e58ca020 2595 int err = -EINVAL;
af31f5e5
CM
2596 int num_backups_tried = 0;
2597 int backup_index = 0;
6675df31 2598 int clear_free_space_tree = 0;
581c1760 2599 int level;
4543df7e 2600
74e4d827
DS
2601 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2602 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2603 if (!tree_root || !chunk_root) {
39279cc3
CM
2604 err = -ENOMEM;
2605 goto fail;
2606 }
76dda93c
YZ
2607
2608 ret = init_srcu_struct(&fs_info->subvol_srcu);
2609 if (ret) {
2610 err = ret;
2611 goto fail;
2612 }
2613
908c7f19 2614 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2615 if (ret) {
2616 err = ret;
9e11ceee 2617 goto fail_srcu;
e2d84521 2618 }
09cbfeaf 2619 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2620 (1 + ilog2(nr_cpu_ids));
2621
908c7f19 2622 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2623 if (ret) {
2624 err = ret;
2625 goto fail_dirty_metadata_bytes;
2626 }
2627
7f8d236a
DS
2628 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2629 GFP_KERNEL);
c404e0dc
MX
2630 if (ret) {
2631 err = ret;
2632 goto fail_delalloc_bytes;
2633 }
2634
76dda93c 2635 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2636 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2637 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2638 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2639 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2640 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2641 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2642 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2643 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2644 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2645 spin_lock_init(&fs_info->trans_lock);
76dda93c 2646 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2647 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2648 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2649 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2650 spin_lock_init(&fs_info->super_lock);
fcebe456 2651 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2652 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2653 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2654 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2655 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2656 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2657 mutex_init(&fs_info->reloc_mutex);
573bfb72 2658 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2659 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2660 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2661
0b86a832 2662 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2663 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2664 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2665 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2666 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2667 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2668 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2669 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2670 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2671 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2672 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2673 BTRFS_BLOCK_RSV_DELOPS);
771ed689 2674 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2675 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2676 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2677 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2678 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2679 fs_info->sb = sb;
95ac567a 2680 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2681 fs_info->metadata_ratio = 0;
4cb5300b 2682 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2683 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2684 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2685 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2686 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2687 /* readahead state */
d0164adc 2688 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2689 spin_lock_init(&fs_info->reada_lock);
fd708b81 2690 btrfs_init_ref_verify(fs_info);
c8b97818 2691
b34b086c
CM
2692 fs_info->thread_pool_size = min_t(unsigned long,
2693 num_online_cpus() + 2, 8);
0afbaf8c 2694
199c2a9c
MX
2695 INIT_LIST_HEAD(&fs_info->ordered_roots);
2696 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2697
2698 fs_info->btree_inode = new_inode(sb);
2699 if (!fs_info->btree_inode) {
2700 err = -ENOMEM;
2701 goto fail_bio_counter;
2702 }
2703 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2704
16cdcec7 2705 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2706 GFP_KERNEL);
16cdcec7
MX
2707 if (!fs_info->delayed_root) {
2708 err = -ENOMEM;
2709 goto fail_iput;
2710 }
2711 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2712
638aa7ed 2713 btrfs_init_scrub(fs_info);
21adbd5c
SB
2714#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2715 fs_info->check_integrity_print_mask = 0;
2716#endif
779a65a4 2717 btrfs_init_balance(fs_info);
21c7e756 2718 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2719
9f6d2510
DS
2720 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2721 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2722
6bccf3ab 2723 btrfs_init_btree_inode(fs_info);
76dda93c 2724
0f9dd46c 2725 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2726 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2727 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2728
c6100a4b
JB
2729 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2730 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2731 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2732 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2733
5a3f23d5 2734 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2735 mutex_init(&fs_info->tree_log_mutex);
925baedd 2736 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2737 mutex_init(&fs_info->transaction_kthread_mutex);
2738 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2739 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2740 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2741 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2742 init_rwsem(&fs_info->subvol_sem);
803b2f54 2743 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2744
ad618368 2745 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2746 btrfs_init_qgroup(fs_info);
416ac51d 2747
fa9c0d79
CM
2748 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2749 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2750
e6dcd2dc 2751 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2752 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2753 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2754 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2755
04216820
FM
2756 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2757
da17066c
JM
2758 /* Usable values until the real ones are cached from the superblock */
2759 fs_info->nodesize = 4096;
2760 fs_info->sectorsize = 4096;
2761 fs_info->stripesize = 4096;
2762
eede2bf3
OS
2763 spin_lock_init(&fs_info->swapfile_pins_lock);
2764 fs_info->swapfile_pins = RB_ROOT;
2765
53b381b3
DW
2766 ret = btrfs_alloc_stripe_hash_table(fs_info);
2767 if (ret) {
83c8266a 2768 err = ret;
53b381b3
DW
2769 goto fail_alloc;
2770 }
2771
da17066c 2772 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2773
3c4bb26b 2774 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2775
2776 /*
2777 * Read super block and check the signature bytes only
2778 */
a512bbf8 2779 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2780 if (IS_ERR(bh)) {
2781 err = PTR_ERR(bh);
16cdcec7 2782 goto fail_alloc;
20b45077 2783 }
39279cc3 2784
1104a885
DS
2785 /*
2786 * We want to check superblock checksum, the type is stored inside.
2787 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2788 */
ab8d0fc4 2789 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2790 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2791 err = -EINVAL;
b2acdddf 2792 brelse(bh);
1104a885
DS
2793 goto fail_alloc;
2794 }
2795
2796 /*
2797 * super_copy is zeroed at allocation time and we never touch the
2798 * following bytes up to INFO_SIZE, the checksum is calculated from
2799 * the whole block of INFO_SIZE
2800 */
6c41761f
DS
2801 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2802 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2803 sizeof(*fs_info->super_for_commit));
a061fc8d 2804 brelse(bh);
5f39d397 2805
6c41761f 2806 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
7239ff4b
NB
2807 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2808 memcpy(fs_info->metadata_fsid,
2809 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE);
2810 } else {
2811 memcpy(fs_info->metadata_fsid, fs_info->fsid, BTRFS_FSID_SIZE);
2812 }
0b86a832 2813
069ec957 2814 ret = btrfs_validate_mount_super(fs_info);
1104a885 2815 if (ret) {
05135f59 2816 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2817 err = -EINVAL;
2818 goto fail_alloc;
2819 }
2820
6c41761f 2821 disk_super = fs_info->super_copy;
0f7d52f4 2822 if (!btrfs_super_root(disk_super))
16cdcec7 2823 goto fail_alloc;
0f7d52f4 2824
acce952b 2825 /* check FS state, whether FS is broken. */
87533c47
MX
2826 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2827 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2828
af31f5e5
CM
2829 /*
2830 * run through our array of backup supers and setup
2831 * our ring pointer to the oldest one
2832 */
2833 generation = btrfs_super_generation(disk_super);
2834 find_oldest_super_backup(fs_info, generation);
2835
75e7cb7f
LB
2836 /*
2837 * In the long term, we'll store the compression type in the super
2838 * block, and it'll be used for per file compression control.
2839 */
2840 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2841
2ff7e61e 2842 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2843 if (ret) {
2844 err = ret;
16cdcec7 2845 goto fail_alloc;
2b82032c 2846 }
dfe25020 2847
f2b636e8
JB
2848 features = btrfs_super_incompat_flags(disk_super) &
2849 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2850 if (features) {
05135f59
DS
2851 btrfs_err(fs_info,
2852 "cannot mount because of unsupported optional features (%llx)",
2853 features);
f2b636e8 2854 err = -EINVAL;
16cdcec7 2855 goto fail_alloc;
f2b636e8
JB
2856 }
2857
5d4f98a2 2858 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2859 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2860 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2861 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2862 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2863 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2864
3173a18f 2865 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2866 btrfs_info(fs_info, "has skinny extents");
3173a18f 2867
727011e0
CM
2868 /*
2869 * flag our filesystem as having big metadata blocks if
2870 * they are bigger than the page size
2871 */
09cbfeaf 2872 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2873 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2874 btrfs_info(fs_info,
2875 "flagging fs with big metadata feature");
727011e0
CM
2876 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2877 }
2878
bc3f116f 2879 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2880 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2881 stripesize = sectorsize;
707e8a07 2882 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2883 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2884
da17066c
JM
2885 /* Cache block sizes */
2886 fs_info->nodesize = nodesize;
2887 fs_info->sectorsize = sectorsize;
2888 fs_info->stripesize = stripesize;
2889
bc3f116f
CM
2890 /*
2891 * mixed block groups end up with duplicate but slightly offset
2892 * extent buffers for the same range. It leads to corruptions
2893 */
2894 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2895 (sectorsize != nodesize)) {
05135f59
DS
2896 btrfs_err(fs_info,
2897"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2898 nodesize, sectorsize);
bc3f116f
CM
2899 goto fail_alloc;
2900 }
2901
ceda0864
MX
2902 /*
2903 * Needn't use the lock because there is no other task which will
2904 * update the flag.
2905 */
a6fa6fae 2906 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2907
f2b636e8
JB
2908 features = btrfs_super_compat_ro_flags(disk_super) &
2909 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2910 if (!sb_rdonly(sb) && features) {
05135f59
DS
2911 btrfs_err(fs_info,
2912 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2913 features);
f2b636e8 2914 err = -EINVAL;
16cdcec7 2915 goto fail_alloc;
f2b636e8 2916 }
61d92c32 2917
2a458198
ES
2918 ret = btrfs_init_workqueues(fs_info, fs_devices);
2919 if (ret) {
2920 err = ret;
0dc3b84a
JB
2921 goto fail_sb_buffer;
2922 }
4543df7e 2923
9e11ceee
JK
2924 sb->s_bdi->congested_fn = btrfs_congested_fn;
2925 sb->s_bdi->congested_data = fs_info;
2926 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2927 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2928 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2929 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2930
a061fc8d
CM
2931 sb->s_blocksize = sectorsize;
2932 sb->s_blocksize_bits = blksize_bits(sectorsize);
ee87cf5e 2933 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
db94535d 2934
925baedd 2935 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2936 ret = btrfs_read_sys_array(fs_info);
925baedd 2937 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2938 if (ret) {
05135f59 2939 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2940 goto fail_sb_buffer;
84eed90f 2941 }
0b86a832 2942
84234f3a 2943 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2944 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2945
da17066c 2946 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2947
2ff7e61e 2948 chunk_root->node = read_tree_block(fs_info,
0b86a832 2949 btrfs_super_chunk_root(disk_super),
581c1760 2950 generation, level, NULL);
64c043de
LB
2951 if (IS_ERR(chunk_root->node) ||
2952 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2953 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2954 if (!IS_ERR(chunk_root->node))
2955 free_extent_buffer(chunk_root->node);
95ab1f64 2956 chunk_root->node = NULL;
af31f5e5 2957 goto fail_tree_roots;
83121942 2958 }
5d4f98a2
YZ
2959 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2960 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2961
e17cade2 2962 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2963 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2964
5b4aacef 2965 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2966 if (ret) {
05135f59 2967 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2968 goto fail_tree_roots;
2b82032c 2969 }
0b86a832 2970
8dabb742 2971 /*
9b99b115
AJ
2972 * Keep the devid that is marked to be the target device for the
2973 * device replace procedure
8dabb742 2974 */
9b99b115 2975 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 2976
a6b0d5c8 2977 if (!fs_devices->latest_bdev) {
05135f59 2978 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2979 goto fail_tree_roots;
2980 }
2981
af31f5e5 2982retry_root_backup:
84234f3a 2983 generation = btrfs_super_generation(disk_super);
581c1760 2984 level = btrfs_super_root_level(disk_super);
0b86a832 2985
2ff7e61e 2986 tree_root->node = read_tree_block(fs_info,
db94535d 2987 btrfs_super_root(disk_super),
581c1760 2988 generation, level, NULL);
64c043de
LB
2989 if (IS_ERR(tree_root->node) ||
2990 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2991 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2992 if (!IS_ERR(tree_root->node))
2993 free_extent_buffer(tree_root->node);
95ab1f64 2994 tree_root->node = NULL;
af31f5e5 2995 goto recovery_tree_root;
83121942 2996 }
af31f5e5 2997
5d4f98a2
YZ
2998 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2999 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3000 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3001
f32e48e9
CR
3002 mutex_lock(&tree_root->objectid_mutex);
3003 ret = btrfs_find_highest_objectid(tree_root,
3004 &tree_root->highest_objectid);
3005 if (ret) {
3006 mutex_unlock(&tree_root->objectid_mutex);
3007 goto recovery_tree_root;
3008 }
3009
3010 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3011
3012 mutex_unlock(&tree_root->objectid_mutex);
3013
6bccf3ab 3014 ret = btrfs_read_roots(fs_info);
4bbcaa64 3015 if (ret)
af31f5e5 3016 goto recovery_tree_root;
f7a81ea4 3017
8929ecfa
YZ
3018 fs_info->generation = generation;
3019 fs_info->last_trans_committed = generation;
8929ecfa 3020
cf90d884
QW
3021 ret = btrfs_verify_dev_extents(fs_info);
3022 if (ret) {
3023 btrfs_err(fs_info,
3024 "failed to verify dev extents against chunks: %d",
3025 ret);
3026 goto fail_block_groups;
3027 }
68310a5e
ID
3028 ret = btrfs_recover_balance(fs_info);
3029 if (ret) {
05135f59 3030 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3031 goto fail_block_groups;
3032 }
3033
733f4fbb
SB
3034 ret = btrfs_init_dev_stats(fs_info);
3035 if (ret) {
05135f59 3036 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3037 goto fail_block_groups;
3038 }
3039
8dabb742
SB
3040 ret = btrfs_init_dev_replace(fs_info);
3041 if (ret) {
05135f59 3042 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3043 goto fail_block_groups;
3044 }
3045
9b99b115 3046 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3047
b7c35e81
AJ
3048 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3049 if (ret) {
05135f59
DS
3050 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3051 ret);
b7c35e81
AJ
3052 goto fail_block_groups;
3053 }
3054
3055 ret = btrfs_sysfs_add_device(fs_devices);
3056 if (ret) {
05135f59
DS
3057 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3058 ret);
b7c35e81
AJ
3059 goto fail_fsdev_sysfs;
3060 }
3061
96f3136e 3062 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3063 if (ret) {
05135f59 3064 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3065 goto fail_fsdev_sysfs;
c59021f8 3066 }
3067
c59021f8 3068 ret = btrfs_init_space_info(fs_info);
3069 if (ret) {
05135f59 3070 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3071 goto fail_sysfs;
c59021f8 3072 }
3073
5b4aacef 3074 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3075 if (ret) {
05135f59 3076 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3077 goto fail_sysfs;
1b1d1f66 3078 }
4330e183 3079
6528b99d 3080 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3081 btrfs_warn(fs_info,
4330e183 3082 "writeable mount is not allowed due to too many missing devices");
2365dd3c 3083 goto fail_sysfs;
292fd7fc 3084 }
9078a3e1 3085
a74a4b97
CM
3086 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3087 "btrfs-cleaner");
57506d50 3088 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3089 goto fail_sysfs;
a74a4b97
CM
3090
3091 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3092 tree_root,
3093 "btrfs-transaction");
57506d50 3094 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3095 goto fail_cleaner;
a74a4b97 3096
583b7231 3097 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3098 !fs_info->fs_devices->rotating) {
583b7231 3099 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3100 }
3101
572d9ab7 3102 /*
01327610 3103 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3104 * not have to wait for transaction commit
3105 */
3106 btrfs_apply_pending_changes(fs_info);
3818aea2 3107
21adbd5c 3108#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3109 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3110 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3111 btrfs_test_opt(fs_info,
21adbd5c
SB
3112 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3113 1 : 0,
3114 fs_info->check_integrity_print_mask);
3115 if (ret)
05135f59
DS
3116 btrfs_warn(fs_info,
3117 "failed to initialize integrity check module: %d",
3118 ret);
21adbd5c
SB
3119 }
3120#endif
bcef60f2
AJ
3121 ret = btrfs_read_qgroup_config(fs_info);
3122 if (ret)
3123 goto fail_trans_kthread;
21adbd5c 3124
fd708b81
JB
3125 if (btrfs_build_ref_tree(fs_info))
3126 btrfs_err(fs_info, "couldn't build ref tree");
3127
96da0919
QW
3128 /* do not make disk changes in broken FS or nologreplay is given */
3129 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3130 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3131 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3132 if (ret) {
63443bf5 3133 err = ret;
28c16cbb 3134 goto fail_qgroup;
79787eaa 3135 }
e02119d5 3136 }
1a40e23b 3137
6bccf3ab 3138 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3139 if (ret)
28c16cbb 3140 goto fail_qgroup;
76dda93c 3141
bc98a42c 3142 if (!sb_rdonly(sb)) {
d68fc57b 3143 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3144 if (ret)
28c16cbb 3145 goto fail_qgroup;
90c711ab
ZB
3146
3147 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3148 ret = btrfs_recover_relocation(tree_root);
90c711ab 3149 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3150 if (ret < 0) {
05135f59
DS
3151 btrfs_warn(fs_info, "failed to recover relocation: %d",
3152 ret);
d7ce5843 3153 err = -EINVAL;
bcef60f2 3154 goto fail_qgroup;
d7ce5843 3155 }
7c2ca468 3156 }
1a40e23b 3157
3de4586c
CM
3158 location.objectid = BTRFS_FS_TREE_OBJECTID;
3159 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3160 location.offset = 0;
3de4586c 3161
3de4586c 3162 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3163 if (IS_ERR(fs_info->fs_root)) {
3164 err = PTR_ERR(fs_info->fs_root);
f50f4353 3165 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3166 goto fail_qgroup;
3140c9a3 3167 }
c289811c 3168
bc98a42c 3169 if (sb_rdonly(sb))
2b6ba629 3170 return 0;
59641015 3171
f8d468a1
OS
3172 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3173 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3174 clear_free_space_tree = 1;
3175 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3176 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3177 btrfs_warn(fs_info, "free space tree is invalid");
3178 clear_free_space_tree = 1;
3179 }
3180
3181 if (clear_free_space_tree) {
f8d468a1
OS
3182 btrfs_info(fs_info, "clearing free space tree");
3183 ret = btrfs_clear_free_space_tree(fs_info);
3184 if (ret) {
3185 btrfs_warn(fs_info,
3186 "failed to clear free space tree: %d", ret);
6bccf3ab 3187 close_ctree(fs_info);
f8d468a1
OS
3188 return ret;
3189 }
3190 }
3191
0b246afa 3192 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3193 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3194 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3195 ret = btrfs_create_free_space_tree(fs_info);
3196 if (ret) {
05135f59
DS
3197 btrfs_warn(fs_info,
3198 "failed to create free space tree: %d", ret);
6bccf3ab 3199 close_ctree(fs_info);
511711af
CM
3200 return ret;
3201 }
3202 }
3203
2b6ba629
ID
3204 down_read(&fs_info->cleanup_work_sem);
3205 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3206 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3207 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3208 close_ctree(fs_info);
2b6ba629
ID
3209 return ret;
3210 }
3211 up_read(&fs_info->cleanup_work_sem);
59641015 3212
2b6ba629
ID
3213 ret = btrfs_resume_balance_async(fs_info);
3214 if (ret) {
05135f59 3215 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3216 close_ctree(fs_info);
2b6ba629 3217 return ret;
e3acc2a6
JB
3218 }
3219
8dabb742
SB
3220 ret = btrfs_resume_dev_replace_async(fs_info);
3221 if (ret) {
05135f59 3222 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3223 close_ctree(fs_info);
8dabb742
SB
3224 return ret;
3225 }
3226
b382a324
JS
3227 btrfs_qgroup_rescan_resume(fs_info);
3228
4bbcaa64 3229 if (!fs_info->uuid_root) {
05135f59 3230 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3231 ret = btrfs_create_uuid_tree(fs_info);
3232 if (ret) {
05135f59
DS
3233 btrfs_warn(fs_info,
3234 "failed to create the UUID tree: %d", ret);
6bccf3ab 3235 close_ctree(fs_info);
f7a81ea4
SB
3236 return ret;
3237 }
0b246afa 3238 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3239 fs_info->generation !=
3240 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3241 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3242 ret = btrfs_check_uuid_tree(fs_info);
3243 if (ret) {
05135f59
DS
3244 btrfs_warn(fs_info,
3245 "failed to check the UUID tree: %d", ret);
6bccf3ab 3246 close_ctree(fs_info);
70f80175
SB
3247 return ret;
3248 }
3249 } else {
afcdd129 3250 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3251 }
afcdd129 3252 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3253
8dcddfa0
QW
3254 /*
3255 * backuproot only affect mount behavior, and if open_ctree succeeded,
3256 * no need to keep the flag
3257 */
3258 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3259
ad2b2c80 3260 return 0;
39279cc3 3261
bcef60f2
AJ
3262fail_qgroup:
3263 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3264fail_trans_kthread:
3265 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3266 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3267 btrfs_free_fs_roots(fs_info);
3f157a2f 3268fail_cleaner:
a74a4b97 3269 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3270
3271 /*
3272 * make sure we're done with the btree inode before we stop our
3273 * kthreads
3274 */
3275 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3276
2365dd3c 3277fail_sysfs:
6618a59b 3278 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3279
b7c35e81
AJ
3280fail_fsdev_sysfs:
3281 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3282
1b1d1f66 3283fail_block_groups:
54067ae9 3284 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3285
3286fail_tree_roots:
3287 free_root_pointers(fs_info, 1);
2b8195bb 3288 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3289
39279cc3 3290fail_sb_buffer:
7abadb64 3291 btrfs_stop_all_workers(fs_info);
5cdd7db6 3292 btrfs_free_block_groups(fs_info);
16cdcec7 3293fail_alloc:
4543df7e 3294fail_iput:
586e46e2
ID
3295 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3296
4543df7e 3297 iput(fs_info->btree_inode);
c404e0dc 3298fail_bio_counter:
7f8d236a 3299 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3300fail_delalloc_bytes:
3301 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3302fail_dirty_metadata_bytes:
3303 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3304fail_srcu:
3305 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3306fail:
53b381b3 3307 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3308 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3309 return err;
af31f5e5
CM
3310
3311recovery_tree_root:
0b246afa 3312 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3313 goto fail_tree_roots;
3314
3315 free_root_pointers(fs_info, 0);
3316
3317 /* don't use the log in recovery mode, it won't be valid */
3318 btrfs_set_super_log_root(disk_super, 0);
3319
3320 /* we can't trust the free space cache either */
3321 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3322
3323 ret = next_root_backup(fs_info, fs_info->super_copy,
3324 &num_backups_tried, &backup_index);
3325 if (ret == -1)
3326 goto fail_block_groups;
3327 goto retry_root_backup;
eb60ceac 3328}
663faf9f 3329ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3330
f2984462
CM
3331static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3332{
f2984462
CM
3333 if (uptodate) {
3334 set_buffer_uptodate(bh);
3335 } else {
442a4f63
SB
3336 struct btrfs_device *device = (struct btrfs_device *)
3337 bh->b_private;
3338
fb456252 3339 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3340 "lost page write due to IO error on %s",
606686ee 3341 rcu_str_deref(device->name));
01327610 3342 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3343 * our own ways of dealing with the IO errors
3344 */
f2984462 3345 clear_buffer_uptodate(bh);
442a4f63 3346 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3347 }
3348 unlock_buffer(bh);
3349 put_bh(bh);
3350}
3351
29c36d72
AJ
3352int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3353 struct buffer_head **bh_ret)
3354{
3355 struct buffer_head *bh;
3356 struct btrfs_super_block *super;
3357 u64 bytenr;
3358
3359 bytenr = btrfs_sb_offset(copy_num);
3360 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3361 return -EINVAL;
3362
9f6d2510 3363 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3364 /*
3365 * If we fail to read from the underlying devices, as of now
3366 * the best option we have is to mark it EIO.
3367 */
3368 if (!bh)
3369 return -EIO;
3370
3371 super = (struct btrfs_super_block *)bh->b_data;
3372 if (btrfs_super_bytenr(super) != bytenr ||
3373 btrfs_super_magic(super) != BTRFS_MAGIC) {
3374 brelse(bh);
3375 return -EINVAL;
3376 }
3377
3378 *bh_ret = bh;
3379 return 0;
3380}
3381
3382
a512bbf8
YZ
3383struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3384{
3385 struct buffer_head *bh;
3386 struct buffer_head *latest = NULL;
3387 struct btrfs_super_block *super;
3388 int i;
3389 u64 transid = 0;
92fc03fb 3390 int ret = -EINVAL;
a512bbf8
YZ
3391
3392 /* we would like to check all the supers, but that would make
3393 * a btrfs mount succeed after a mkfs from a different FS.
3394 * So, we need to add a special mount option to scan for
3395 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3396 */
3397 for (i = 0; i < 1; i++) {
29c36d72
AJ
3398 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3399 if (ret)
a512bbf8
YZ
3400 continue;
3401
3402 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3403
3404 if (!latest || btrfs_super_generation(super) > transid) {
3405 brelse(latest);
3406 latest = bh;
3407 transid = btrfs_super_generation(super);
3408 } else {
3409 brelse(bh);
3410 }
3411 }
92fc03fb
AJ
3412
3413 if (!latest)
3414 return ERR_PTR(ret);
3415
a512bbf8
YZ
3416 return latest;
3417}
3418
4eedeb75 3419/*
abbb3b8e
DS
3420 * Write superblock @sb to the @device. Do not wait for completion, all the
3421 * buffer heads we write are pinned.
4eedeb75 3422 *
abbb3b8e
DS
3423 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3424 * the expected device size at commit time. Note that max_mirrors must be
3425 * same for write and wait phases.
4eedeb75 3426 *
abbb3b8e 3427 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3428 */
a512bbf8 3429static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3430 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3431{
3432 struct buffer_head *bh;
3433 int i;
3434 int ret;
3435 int errors = 0;
3436 u32 crc;
3437 u64 bytenr;
1b9e619c 3438 int op_flags;
a512bbf8
YZ
3439
3440 if (max_mirrors == 0)
3441 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3442
a512bbf8
YZ
3443 for (i = 0; i < max_mirrors; i++) {
3444 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3445 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3446 device->commit_total_bytes)
a512bbf8
YZ
3447 break;
3448
abbb3b8e 3449 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3450
abbb3b8e
DS
3451 crc = ~(u32)0;
3452 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3453 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3454 btrfs_csum_final(crc, sb->csum);
4eedeb75 3455
abbb3b8e 3456 /* One reference for us, and we leave it for the caller */
9f6d2510 3457 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3458 BTRFS_SUPER_INFO_SIZE);
3459 if (!bh) {
3460 btrfs_err(device->fs_info,
3461 "couldn't get super buffer head for bytenr %llu",
3462 bytenr);
3463 errors++;
4eedeb75 3464 continue;
abbb3b8e 3465 }
634554dc 3466
abbb3b8e 3467 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3468
abbb3b8e
DS
3469 /* one reference for submit_bh */
3470 get_bh(bh);
4eedeb75 3471
abbb3b8e
DS
3472 set_buffer_uptodate(bh);
3473 lock_buffer(bh);
3474 bh->b_end_io = btrfs_end_buffer_write_sync;
3475 bh->b_private = device;
a512bbf8 3476
387125fc
CM
3477 /*
3478 * we fua the first super. The others we allow
3479 * to go down lazy.
3480 */
1b9e619c
OS
3481 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3482 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3483 op_flags |= REQ_FUA;
3484 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3485 if (ret)
a512bbf8 3486 errors++;
a512bbf8
YZ
3487 }
3488 return errors < i ? 0 : -1;
3489}
3490
abbb3b8e
DS
3491/*
3492 * Wait for write completion of superblocks done by write_dev_supers,
3493 * @max_mirrors same for write and wait phases.
3494 *
3495 * Return number of errors when buffer head is not found or not marked up to
3496 * date.
3497 */
3498static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3499{
3500 struct buffer_head *bh;
3501 int i;
3502 int errors = 0;
b6a535fa 3503 bool primary_failed = false;
abbb3b8e
DS
3504 u64 bytenr;
3505
3506 if (max_mirrors == 0)
3507 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3508
3509 for (i = 0; i < max_mirrors; i++) {
3510 bytenr = btrfs_sb_offset(i);
3511 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3512 device->commit_total_bytes)
3513 break;
3514
9f6d2510
DS
3515 bh = __find_get_block(device->bdev,
3516 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3517 BTRFS_SUPER_INFO_SIZE);
3518 if (!bh) {
3519 errors++;
b6a535fa
HM
3520 if (i == 0)
3521 primary_failed = true;
abbb3b8e
DS
3522 continue;
3523 }
3524 wait_on_buffer(bh);
b6a535fa 3525 if (!buffer_uptodate(bh)) {
abbb3b8e 3526 errors++;
b6a535fa
HM
3527 if (i == 0)
3528 primary_failed = true;
3529 }
abbb3b8e
DS
3530
3531 /* drop our reference */
3532 brelse(bh);
3533
3534 /* drop the reference from the writing run */
3535 brelse(bh);
3536 }
3537
b6a535fa
HM
3538 /* log error, force error return */
3539 if (primary_failed) {
3540 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3541 device->devid);
3542 return -1;
3543 }
3544
abbb3b8e
DS
3545 return errors < i ? 0 : -1;
3546}
3547
387125fc
CM
3548/*
3549 * endio for the write_dev_flush, this will wake anyone waiting
3550 * for the barrier when it is done
3551 */
4246a0b6 3552static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3553{
e0ae9994 3554 complete(bio->bi_private);
387125fc
CM
3555}
3556
3557/*
4fc6441a
AJ
3558 * Submit a flush request to the device if it supports it. Error handling is
3559 * done in the waiting counterpart.
387125fc 3560 */
4fc6441a 3561static void write_dev_flush(struct btrfs_device *device)
387125fc 3562{
c2a9c7ab 3563 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3564 struct bio *bio = device->flush_bio;
387125fc 3565
c2a9c7ab 3566 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3567 return;
387125fc 3568
e0ae9994 3569 bio_reset(bio);
387125fc 3570 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3571 bio_set_dev(bio, device->bdev);
8d910125 3572 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3573 init_completion(&device->flush_wait);
3574 bio->bi_private = &device->flush_wait;
387125fc 3575
43a01111 3576 btrfsic_submit_bio(bio);
1c3063b6 3577 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3578}
387125fc 3579
4fc6441a
AJ
3580/*
3581 * If the flush bio has been submitted by write_dev_flush, wait for it.
3582 */
8c27cb35 3583static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3584{
4fc6441a 3585 struct bio *bio = device->flush_bio;
387125fc 3586
1c3063b6 3587 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3588 return BLK_STS_OK;
387125fc 3589
1c3063b6 3590 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3591 wait_for_completion_io(&device->flush_wait);
387125fc 3592
8c27cb35 3593 return bio->bi_status;
387125fc 3594}
387125fc 3595
d10b82fe 3596static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3597{
6528b99d 3598 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3599 return -EIO;
387125fc
CM
3600 return 0;
3601}
3602
3603/*
3604 * send an empty flush down to each device in parallel,
3605 * then wait for them
3606 */
3607static int barrier_all_devices(struct btrfs_fs_info *info)
3608{
3609 struct list_head *head;
3610 struct btrfs_device *dev;
5af3e8cc 3611 int errors_wait = 0;
4e4cbee9 3612 blk_status_t ret;
387125fc 3613
1538e6c5 3614 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3615 /* send down all the barriers */
3616 head = &info->fs_devices->devices;
1538e6c5 3617 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3618 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3619 continue;
cea7c8bf 3620 if (!dev->bdev)
387125fc 3621 continue;
e12c9621 3622 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3623 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3624 continue;
3625
4fc6441a 3626 write_dev_flush(dev);
58efbc9f 3627 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3628 }
3629
3630 /* wait for all the barriers */
1538e6c5 3631 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3632 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3633 continue;
387125fc 3634 if (!dev->bdev) {
5af3e8cc 3635 errors_wait++;
387125fc
CM
3636 continue;
3637 }
e12c9621 3638 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3639 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3640 continue;
3641
4fc6441a 3642 ret = wait_dev_flush(dev);
401b41e5
AJ
3643 if (ret) {
3644 dev->last_flush_error = ret;
66b4993e
DS
3645 btrfs_dev_stat_inc_and_print(dev,
3646 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3647 errors_wait++;
401b41e5
AJ
3648 }
3649 }
3650
cea7c8bf 3651 if (errors_wait) {
401b41e5
AJ
3652 /*
3653 * At some point we need the status of all disks
3654 * to arrive at the volume status. So error checking
3655 * is being pushed to a separate loop.
3656 */
d10b82fe 3657 return check_barrier_error(info);
387125fc 3658 }
387125fc
CM
3659 return 0;
3660}
3661
943c6e99
ZL
3662int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3663{
8789f4fe
ZL
3664 int raid_type;
3665 int min_tolerated = INT_MAX;
943c6e99 3666
8789f4fe
ZL
3667 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3668 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3669 min_tolerated = min(min_tolerated,
3670 btrfs_raid_array[BTRFS_RAID_SINGLE].
3671 tolerated_failures);
943c6e99 3672
8789f4fe
ZL
3673 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3674 if (raid_type == BTRFS_RAID_SINGLE)
3675 continue;
41a6e891 3676 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3677 continue;
3678 min_tolerated = min(min_tolerated,
3679 btrfs_raid_array[raid_type].
3680 tolerated_failures);
3681 }
943c6e99 3682
8789f4fe 3683 if (min_tolerated == INT_MAX) {
ab8d0fc4 3684 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3685 min_tolerated = 0;
3686 }
3687
3688 return min_tolerated;
943c6e99
ZL
3689}
3690
eece6a9c 3691int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3692{
e5e9a520 3693 struct list_head *head;
f2984462 3694 struct btrfs_device *dev;
a061fc8d 3695 struct btrfs_super_block *sb;
f2984462 3696 struct btrfs_dev_item *dev_item;
f2984462
CM
3697 int ret;
3698 int do_barriers;
a236aed1
CM
3699 int max_errors;
3700 int total_errors = 0;
a061fc8d 3701 u64 flags;
f2984462 3702
0b246afa 3703 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3704
3705 /*
3706 * max_mirrors == 0 indicates we're from commit_transaction,
3707 * not from fsync where the tree roots in fs_info have not
3708 * been consistent on disk.
3709 */
3710 if (max_mirrors == 0)
3711 backup_super_roots(fs_info);
f2984462 3712
0b246afa 3713 sb = fs_info->super_for_commit;
a061fc8d 3714 dev_item = &sb->dev_item;
e5e9a520 3715
0b246afa
JM
3716 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3717 head = &fs_info->fs_devices->devices;
3718 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3719
5af3e8cc 3720 if (do_barriers) {
0b246afa 3721 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3722 if (ret) {
3723 mutex_unlock(
0b246afa
JM
3724 &fs_info->fs_devices->device_list_mutex);
3725 btrfs_handle_fs_error(fs_info, ret,
3726 "errors while submitting device barriers.");
5af3e8cc
SB
3727 return ret;
3728 }
3729 }
387125fc 3730
1538e6c5 3731 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3732 if (!dev->bdev) {
3733 total_errors++;
3734 continue;
3735 }
e12c9621 3736 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3737 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3738 continue;
3739
2b82032c 3740 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3741 btrfs_set_stack_device_type(dev_item, dev->type);
3742 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3743 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3744 dev->commit_total_bytes);
ce7213c7
MX
3745 btrfs_set_stack_device_bytes_used(dev_item,
3746 dev->commit_bytes_used);
a061fc8d
CM
3747 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3748 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3749 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3750 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3751 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3752 BTRFS_FSID_SIZE);
a512bbf8 3753
a061fc8d
CM
3754 flags = btrfs_super_flags(sb);
3755 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3756
75cb857d
QW
3757 ret = btrfs_validate_write_super(fs_info, sb);
3758 if (ret < 0) {
3759 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3760 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3761 "unexpected superblock corruption detected");
3762 return -EUCLEAN;
3763 }
3764
abbb3b8e 3765 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3766 if (ret)
3767 total_errors++;
f2984462 3768 }
a236aed1 3769 if (total_errors > max_errors) {
0b246afa
JM
3770 btrfs_err(fs_info, "%d errors while writing supers",
3771 total_errors);
3772 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3773
9d565ba4 3774 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3775 btrfs_handle_fs_error(fs_info, -EIO,
3776 "%d errors while writing supers",
3777 total_errors);
9d565ba4 3778 return -EIO;
a236aed1 3779 }
f2984462 3780
a512bbf8 3781 total_errors = 0;
1538e6c5 3782 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3783 if (!dev->bdev)
3784 continue;
e12c9621 3785 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3786 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3787 continue;
3788
abbb3b8e 3789 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3790 if (ret)
3791 total_errors++;
f2984462 3792 }
0b246afa 3793 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3794 if (total_errors > max_errors) {
0b246afa
JM
3795 btrfs_handle_fs_error(fs_info, -EIO,
3796 "%d errors while writing supers",
3797 total_errors);
79787eaa 3798 return -EIO;
a236aed1 3799 }
f2984462
CM
3800 return 0;
3801}
3802
cb517eab
MX
3803/* Drop a fs root from the radix tree and free it. */
3804void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3805 struct btrfs_root *root)
2619ba1f 3806{
4df27c4d 3807 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3808 radix_tree_delete(&fs_info->fs_roots_radix,
3809 (unsigned long)root->root_key.objectid);
4df27c4d 3810 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3811
3812 if (btrfs_root_refs(&root->root_item) == 0)
3813 synchronize_srcu(&fs_info->subvol_srcu);
3814
1c1ea4f7 3815 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3816 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3817 if (root->reloc_root) {
3818 free_extent_buffer(root->reloc_root->node);
3819 free_extent_buffer(root->reloc_root->commit_root);
3820 btrfs_put_fs_root(root->reloc_root);
3821 root->reloc_root = NULL;
3822 }
3823 }
3321719e 3824
faa2dbf0
JB
3825 if (root->free_ino_pinned)
3826 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3827 if (root->free_ino_ctl)
3828 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3829 btrfs_free_fs_root(root);
4df27c4d
YZ
3830}
3831
84db5ccf 3832void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3833{
57cdc8db 3834 iput(root->ino_cache_inode);
4df27c4d 3835 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3836 if (root->anon_dev)
3837 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3838 if (root->subv_writers)
3839 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3840 free_extent_buffer(root->node);
3841 free_extent_buffer(root->commit_root);
581bb050
LZ
3842 kfree(root->free_ino_ctl);
3843 kfree(root->free_ino_pinned);
b0feb9d9 3844 btrfs_put_fs_root(root);
2619ba1f
CM
3845}
3846
c146afad 3847int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3848{
c146afad
YZ
3849 u64 root_objectid = 0;
3850 struct btrfs_root *gang[8];
65d33fd7
QW
3851 int i = 0;
3852 int err = 0;
3853 unsigned int ret = 0;
3854 int index;
e089f05c 3855
c146afad 3856 while (1) {
65d33fd7 3857 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3858 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3859 (void **)gang, root_objectid,
3860 ARRAY_SIZE(gang));
65d33fd7
QW
3861 if (!ret) {
3862 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3863 break;
65d33fd7 3864 }
5d4f98a2 3865 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3866
c146afad 3867 for (i = 0; i < ret; i++) {
65d33fd7
QW
3868 /* Avoid to grab roots in dead_roots */
3869 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3870 gang[i] = NULL;
3871 continue;
3872 }
3873 /* grab all the search result for later use */
3874 gang[i] = btrfs_grab_fs_root(gang[i]);
3875 }
3876 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3877
65d33fd7
QW
3878 for (i = 0; i < ret; i++) {
3879 if (!gang[i])
3880 continue;
c146afad 3881 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3882 err = btrfs_orphan_cleanup(gang[i]);
3883 if (err)
65d33fd7
QW
3884 break;
3885 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3886 }
3887 root_objectid++;
3888 }
65d33fd7
QW
3889
3890 /* release the uncleaned roots due to error */
3891 for (; i < ret; i++) {
3892 if (gang[i])
3893 btrfs_put_fs_root(gang[i]);
3894 }
3895 return err;
c146afad 3896}
a2135011 3897
6bccf3ab 3898int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3899{
6bccf3ab 3900 struct btrfs_root *root = fs_info->tree_root;
c146afad 3901 struct btrfs_trans_handle *trans;
a74a4b97 3902
0b246afa 3903 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3904 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3905 mutex_unlock(&fs_info->cleaner_mutex);
3906 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3907
3908 /* wait until ongoing cleanup work done */
0b246afa
JM
3909 down_write(&fs_info->cleanup_work_sem);
3910 up_write(&fs_info->cleanup_work_sem);
c71bf099 3911
7a7eaa40 3912 trans = btrfs_join_transaction(root);
3612b495
TI
3913 if (IS_ERR(trans))
3914 return PTR_ERR(trans);
3a45bb20 3915 return btrfs_commit_transaction(trans);
c146afad
YZ
3916}
3917
6bccf3ab 3918void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3919{
c146afad
YZ
3920 int ret;
3921
afcdd129 3922 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3923 /*
3924 * We don't want the cleaner to start new transactions, add more delayed
3925 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3926 * because that frees the task_struct, and the transaction kthread might
3927 * still try to wake up the cleaner.
3928 */
3929 kthread_park(fs_info->cleaner_kthread);
c146afad 3930
7343dd61 3931 /* wait for the qgroup rescan worker to stop */
d06f23d6 3932 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3933
803b2f54
SB
3934 /* wait for the uuid_scan task to finish */
3935 down(&fs_info->uuid_tree_rescan_sem);
3936 /* avoid complains from lockdep et al., set sem back to initial state */
3937 up(&fs_info->uuid_tree_rescan_sem);
3938
837d5b6e 3939 /* pause restriper - we want to resume on mount */
aa1b8cd4 3940 btrfs_pause_balance(fs_info);
837d5b6e 3941
8dabb742
SB
3942 btrfs_dev_replace_suspend_for_unmount(fs_info);
3943
aa1b8cd4 3944 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3945
3946 /* wait for any defraggers to finish */
3947 wait_event(fs_info->transaction_wait,
3948 (atomic_read(&fs_info->defrag_running) == 0));
3949
3950 /* clear out the rbtree of defraggable inodes */
26176e7c 3951 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3952
21c7e756
MX
3953 cancel_work_sync(&fs_info->async_reclaim_work);
3954
bc98a42c 3955 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3956 /*
d6fd0ae2
OS
3957 * The cleaner kthread is stopped, so do one final pass over
3958 * unused block groups.
e44163e1 3959 */
0b246afa 3960 btrfs_delete_unused_bgs(fs_info);
e44163e1 3961
6bccf3ab 3962 ret = btrfs_commit_super(fs_info);
acce952b 3963 if (ret)
04892340 3964 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3965 }
3966
af722733
LB
3967 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3968 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 3969 btrfs_error_commit_super(fs_info);
0f7d52f4 3970
e3029d9f
AV
3971 kthread_stop(fs_info->transaction_kthread);
3972 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3973
e187831e 3974 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 3975 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3976
04892340 3977 btrfs_free_qgroup_config(fs_info);
fe816d0f 3978 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 3979
963d678b 3980 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3981 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3982 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3983 }
bcc63abb 3984
6618a59b 3985 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3986 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3987
faa2dbf0 3988 btrfs_free_fs_roots(fs_info);
d10c5f31 3989
1a4319cc
LB
3990 btrfs_put_block_group_cache(fs_info);
3991
de348ee0
WS
3992 /*
3993 * we must make sure there is not any read request to
3994 * submit after we stopping all workers.
3995 */
3996 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3997 btrfs_stop_all_workers(fs_info);
3998
5cdd7db6
FM
3999 btrfs_free_block_groups(fs_info);
4000
afcdd129 4001 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4002 free_root_pointers(fs_info, 1);
9ad6b7bc 4003
13e6c37b 4004 iput(fs_info->btree_inode);
d6bfde87 4005
21adbd5c 4006#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4007 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4008 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4009#endif
4010
dfe25020 4011 btrfs_close_devices(fs_info->fs_devices);
0b86a832 4012 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 4013
e2d84521 4014 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4015 percpu_counter_destroy(&fs_info->delalloc_bytes);
7f8d236a 4016 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4017 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4018
53b381b3 4019 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4020 btrfs_free_ref_cache(fs_info);
53b381b3 4021
04216820
FM
4022 while (!list_empty(&fs_info->pinned_chunks)) {
4023 struct extent_map *em;
4024
4025 em = list_first_entry(&fs_info->pinned_chunks,
4026 struct extent_map, list);
4027 list_del_init(&em->list);
4028 free_extent_map(em);
4029 }
eb60ceac
CM
4030}
4031
b9fab919
CM
4032int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4033 int atomic)
5f39d397 4034{
1259ab75 4035 int ret;
727011e0 4036 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4037
0b32f4bb 4038 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4039 if (!ret)
4040 return ret;
4041
4042 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4043 parent_transid, atomic);
4044 if (ret == -EAGAIN)
4045 return ret;
1259ab75 4046 return !ret;
5f39d397
CM
4047}
4048
5f39d397
CM
4049void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4050{
0b246afa 4051 struct btrfs_fs_info *fs_info;
06ea65a3 4052 struct btrfs_root *root;
5f39d397 4053 u64 transid = btrfs_header_generation(buf);
b9473439 4054 int was_dirty;
b4ce94de 4055
06ea65a3
JB
4056#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4057 /*
4058 * This is a fast path so only do this check if we have sanity tests
b0132a3b 4059 * enabled. Normal people shouldn't be using umapped buffers as dirty
06ea65a3
JB
4060 * outside of the sanity tests.
4061 */
b0132a3b 4062 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4063 return;
4064#endif
4065 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4066 fs_info = root->fs_info;
b9447ef8 4067 btrfs_assert_tree_locked(buf);
0b246afa 4068 if (transid != fs_info->generation)
5d163e0e 4069 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4070 buf->start, transid, fs_info->generation);
0b32f4bb 4071 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4072 if (!was_dirty)
104b4e51
NB
4073 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4074 buf->len,
4075 fs_info->dirty_metadata_batch);
1f21ef0a 4076#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4077 /*
4078 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4079 * but item data not updated.
4080 * So here we should only check item pointers, not item data.
4081 */
4082 if (btrfs_header_level(buf) == 0 &&
2f659546 4083 btrfs_check_leaf_relaxed(fs_info, buf)) {
a4f78750 4084 btrfs_print_leaf(buf);
1f21ef0a
FM
4085 ASSERT(0);
4086 }
4087#endif
eb60ceac
CM
4088}
4089
2ff7e61e 4090static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4091 int flush_delayed)
16cdcec7
MX
4092{
4093 /*
4094 * looks as though older kernels can get into trouble with
4095 * this code, they end up stuck in balance_dirty_pages forever
4096 */
e2d84521 4097 int ret;
16cdcec7
MX
4098
4099 if (current->flags & PF_MEMALLOC)
4100 return;
4101
b53d3f5d 4102 if (flush_delayed)
2ff7e61e 4103 btrfs_balance_delayed_items(fs_info);
16cdcec7 4104
d814a491
EL
4105 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4106 BTRFS_DIRTY_METADATA_THRESH,
4107 fs_info->dirty_metadata_batch);
e2d84521 4108 if (ret > 0) {
0b246afa 4109 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4110 }
16cdcec7
MX
4111}
4112
2ff7e61e 4113void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4114{
2ff7e61e 4115 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4116}
585ad2c3 4117
2ff7e61e 4118void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4119{
2ff7e61e 4120 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4121}
6b80053d 4122
581c1760
QW
4123int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4124 struct btrfs_key *first_key)
6b80053d 4125{
727011e0 4126 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4127 struct btrfs_fs_info *fs_info = root->fs_info;
4128
581c1760
QW
4129 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4130 level, first_key);
6b80053d 4131}
0da5468f 4132
2ff7e61e 4133static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4134{
fe816d0f
NB
4135 /* cleanup FS via transaction */
4136 btrfs_cleanup_transaction(fs_info);
4137
0b246afa 4138 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4139 btrfs_run_delayed_iputs(fs_info);
0b246afa 4140 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4141
0b246afa
JM
4142 down_write(&fs_info->cleanup_work_sem);
4143 up_write(&fs_info->cleanup_work_sem);
acce952b 4144}
4145
143bede5 4146static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4147{
acce952b 4148 struct btrfs_ordered_extent *ordered;
acce952b 4149
199c2a9c 4150 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4151 /*
4152 * This will just short circuit the ordered completion stuff which will
4153 * make sure the ordered extent gets properly cleaned up.
4154 */
199c2a9c 4155 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4156 root_extent_list)
4157 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4158 spin_unlock(&root->ordered_extent_lock);
4159}
4160
4161static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4162{
4163 struct btrfs_root *root;
4164 struct list_head splice;
4165
4166 INIT_LIST_HEAD(&splice);
4167
4168 spin_lock(&fs_info->ordered_root_lock);
4169 list_splice_init(&fs_info->ordered_roots, &splice);
4170 while (!list_empty(&splice)) {
4171 root = list_first_entry(&splice, struct btrfs_root,
4172 ordered_root);
1de2cfde
JB
4173 list_move_tail(&root->ordered_root,
4174 &fs_info->ordered_roots);
199c2a9c 4175
2a85d9ca 4176 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4177 btrfs_destroy_ordered_extents(root);
4178
2a85d9ca
LB
4179 cond_resched();
4180 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4181 }
4182 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4183}
4184
35a3621b 4185static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4186 struct btrfs_fs_info *fs_info)
acce952b 4187{
4188 struct rb_node *node;
4189 struct btrfs_delayed_ref_root *delayed_refs;
4190 struct btrfs_delayed_ref_node *ref;
4191 int ret = 0;
4192
4193 delayed_refs = &trans->delayed_refs;
4194
4195 spin_lock(&delayed_refs->lock);
d7df2c79 4196 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4197 spin_unlock(&delayed_refs->lock);
0b246afa 4198 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4199 return ret;
4200 }
4201
5c9d028b 4202 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4203 struct btrfs_delayed_ref_head *head;
0e0adbcf 4204 struct rb_node *n;
e78417d1 4205 bool pin_bytes = false;
acce952b 4206
d7df2c79
JB
4207 head = rb_entry(node, struct btrfs_delayed_ref_head,
4208 href_node);
4209 if (!mutex_trylock(&head->mutex)) {
d278850e 4210 refcount_inc(&head->refs);
d7df2c79 4211 spin_unlock(&delayed_refs->lock);
eb12db69 4212
d7df2c79 4213 mutex_lock(&head->mutex);
e78417d1 4214 mutex_unlock(&head->mutex);
d278850e 4215 btrfs_put_delayed_ref_head(head);
d7df2c79
JB
4216 spin_lock(&delayed_refs->lock);
4217 continue;
4218 }
4219 spin_lock(&head->lock);
e3d03965 4220 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4221 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4222 ref_node);
d7df2c79 4223 ref->in_tree = 0;
e3d03965 4224 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4225 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4226 if (!list_empty(&ref->add_list))
4227 list_del(&ref->add_list);
d7df2c79
JB
4228 atomic_dec(&delayed_refs->num_entries);
4229 btrfs_put_delayed_ref(ref);
e78417d1 4230 }
d7df2c79
JB
4231 if (head->must_insert_reserved)
4232 pin_bytes = true;
4233 btrfs_free_delayed_extent_op(head->extent_op);
4234 delayed_refs->num_heads--;
4235 if (head->processing == 0)
4236 delayed_refs->num_heads_ready--;
4237 atomic_dec(&delayed_refs->num_entries);
5c9d028b 4238 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
d278850e 4239 RB_CLEAR_NODE(&head->href_node);
d7df2c79
JB
4240 spin_unlock(&head->lock);
4241 spin_unlock(&delayed_refs->lock);
4242 mutex_unlock(&head->mutex);
acce952b 4243
d7df2c79 4244 if (pin_bytes)
d278850e
JB
4245 btrfs_pin_extent(fs_info, head->bytenr,
4246 head->num_bytes, 1);
4247 btrfs_put_delayed_ref_head(head);
acce952b 4248 cond_resched();
4249 spin_lock(&delayed_refs->lock);
4250 }
4251
4252 spin_unlock(&delayed_refs->lock);
4253
4254 return ret;
4255}
4256
143bede5 4257static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4258{
4259 struct btrfs_inode *btrfs_inode;
4260 struct list_head splice;
4261
4262 INIT_LIST_HEAD(&splice);
4263
eb73c1b7
MX
4264 spin_lock(&root->delalloc_lock);
4265 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4266
4267 while (!list_empty(&splice)) {
fe816d0f 4268 struct inode *inode = NULL;
eb73c1b7
MX
4269 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4270 delalloc_inodes);
fe816d0f 4271 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4272 spin_unlock(&root->delalloc_lock);
acce952b 4273
fe816d0f
NB
4274 /*
4275 * Make sure we get a live inode and that it'll not disappear
4276 * meanwhile.
4277 */
4278 inode = igrab(&btrfs_inode->vfs_inode);
4279 if (inode) {
4280 invalidate_inode_pages2(inode->i_mapping);
4281 iput(inode);
4282 }
eb73c1b7 4283 spin_lock(&root->delalloc_lock);
acce952b 4284 }
eb73c1b7
MX
4285 spin_unlock(&root->delalloc_lock);
4286}
4287
4288static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4289{
4290 struct btrfs_root *root;
4291 struct list_head splice;
4292
4293 INIT_LIST_HEAD(&splice);
4294
4295 spin_lock(&fs_info->delalloc_root_lock);
4296 list_splice_init(&fs_info->delalloc_roots, &splice);
4297 while (!list_empty(&splice)) {
4298 root = list_first_entry(&splice, struct btrfs_root,
4299 delalloc_root);
eb73c1b7
MX
4300 root = btrfs_grab_fs_root(root);
4301 BUG_ON(!root);
4302 spin_unlock(&fs_info->delalloc_root_lock);
4303
4304 btrfs_destroy_delalloc_inodes(root);
4305 btrfs_put_fs_root(root);
4306
4307 spin_lock(&fs_info->delalloc_root_lock);
4308 }
4309 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4310}
4311
2ff7e61e 4312static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4313 struct extent_io_tree *dirty_pages,
4314 int mark)
4315{
4316 int ret;
acce952b 4317 struct extent_buffer *eb;
4318 u64 start = 0;
4319 u64 end;
acce952b 4320
4321 while (1) {
4322 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4323 mark, NULL);
acce952b 4324 if (ret)
4325 break;
4326
91166212 4327 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4328 while (start <= end) {
0b246afa
JM
4329 eb = find_extent_buffer(fs_info, start);
4330 start += fs_info->nodesize;
fd8b2b61 4331 if (!eb)
acce952b 4332 continue;
fd8b2b61 4333 wait_on_extent_buffer_writeback(eb);
acce952b 4334
fd8b2b61
JB
4335 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4336 &eb->bflags))
4337 clear_extent_buffer_dirty(eb);
4338 free_extent_buffer_stale(eb);
acce952b 4339 }
4340 }
4341
4342 return ret;
4343}
4344
2ff7e61e 4345static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4346 struct extent_io_tree *pinned_extents)
4347{
4348 struct extent_io_tree *unpin;
4349 u64 start;
4350 u64 end;
4351 int ret;
ed0eaa14 4352 bool loop = true;
acce952b 4353
4354 unpin = pinned_extents;
ed0eaa14 4355again:
acce952b 4356 while (1) {
fcd5e742
LF
4357 /*
4358 * The btrfs_finish_extent_commit() may get the same range as
4359 * ours between find_first_extent_bit and clear_extent_dirty.
4360 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4361 * the same extent range.
4362 */
4363 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4364 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4365 EXTENT_DIRTY, NULL);
fcd5e742
LF
4366 if (ret) {
4367 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4368 break;
fcd5e742 4369 }
acce952b 4370
af6f8f60 4371 clear_extent_dirty(unpin, start, end);
2ff7e61e 4372 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4373 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4374 cond_resched();
4375 }
4376
ed0eaa14 4377 if (loop) {
0b246afa
JM
4378 if (unpin == &fs_info->freed_extents[0])
4379 unpin = &fs_info->freed_extents[1];
ed0eaa14 4380 else
0b246afa 4381 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4382 loop = false;
4383 goto again;
4384 }
4385
acce952b 4386 return 0;
4387}
4388
c79a1751
LB
4389static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4390{
4391 struct inode *inode;
4392
4393 inode = cache->io_ctl.inode;
4394 if (inode) {
4395 invalidate_inode_pages2(inode->i_mapping);
4396 BTRFS_I(inode)->generation = 0;
4397 cache->io_ctl.inode = NULL;
4398 iput(inode);
4399 }
4400 btrfs_put_block_group(cache);
4401}
4402
4403void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4404 struct btrfs_fs_info *fs_info)
c79a1751
LB
4405{
4406 struct btrfs_block_group_cache *cache;
4407
4408 spin_lock(&cur_trans->dirty_bgs_lock);
4409 while (!list_empty(&cur_trans->dirty_bgs)) {
4410 cache = list_first_entry(&cur_trans->dirty_bgs,
4411 struct btrfs_block_group_cache,
4412 dirty_list);
c79a1751
LB
4413
4414 if (!list_empty(&cache->io_list)) {
4415 spin_unlock(&cur_trans->dirty_bgs_lock);
4416 list_del_init(&cache->io_list);
4417 btrfs_cleanup_bg_io(cache);
4418 spin_lock(&cur_trans->dirty_bgs_lock);
4419 }
4420
4421 list_del_init(&cache->dirty_list);
4422 spin_lock(&cache->lock);
4423 cache->disk_cache_state = BTRFS_DC_ERROR;
4424 spin_unlock(&cache->lock);
4425
4426 spin_unlock(&cur_trans->dirty_bgs_lock);
4427 btrfs_put_block_group(cache);
4428 spin_lock(&cur_trans->dirty_bgs_lock);
4429 }
4430 spin_unlock(&cur_trans->dirty_bgs_lock);
4431
45ae2c18
NB
4432 /*
4433 * Refer to the definition of io_bgs member for details why it's safe
4434 * to use it without any locking
4435 */
c79a1751
LB
4436 while (!list_empty(&cur_trans->io_bgs)) {
4437 cache = list_first_entry(&cur_trans->io_bgs,
4438 struct btrfs_block_group_cache,
4439 io_list);
c79a1751
LB
4440
4441 list_del_init(&cache->io_list);
4442 spin_lock(&cache->lock);
4443 cache->disk_cache_state = BTRFS_DC_ERROR;
4444 spin_unlock(&cache->lock);
4445 btrfs_cleanup_bg_io(cache);
4446 }
4447}
4448
49b25e05 4449void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4450 struct btrfs_fs_info *fs_info)
49b25e05 4451{
2ff7e61e 4452 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4453 ASSERT(list_empty(&cur_trans->dirty_bgs));
4454 ASSERT(list_empty(&cur_trans->io_bgs));
4455
2ff7e61e 4456 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4457
4a9d8bde 4458 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4459 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4460
4a9d8bde 4461 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4462 wake_up(&fs_info->transaction_wait);
49b25e05 4463
ccdf9b30
JM
4464 btrfs_destroy_delayed_inodes(fs_info);
4465 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4466
2ff7e61e 4467 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4468 EXTENT_DIRTY);
2ff7e61e 4469 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4470 fs_info->pinned_extents);
49b25e05 4471
4a9d8bde
MX
4472 cur_trans->state =TRANS_STATE_COMPLETED;
4473 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4474}
4475
2ff7e61e 4476static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4477{
4478 struct btrfs_transaction *t;
acce952b 4479
0b246afa 4480 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4481
0b246afa
JM
4482 spin_lock(&fs_info->trans_lock);
4483 while (!list_empty(&fs_info->trans_list)) {
4484 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4485 struct btrfs_transaction, list);
4486 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4487 refcount_inc(&t->use_count);
0b246afa 4488 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4489 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4490 btrfs_put_transaction(t);
0b246afa 4491 spin_lock(&fs_info->trans_lock);
724e2315
JB
4492 continue;
4493 }
0b246afa 4494 if (t == fs_info->running_transaction) {
724e2315 4495 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4496 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4497 /*
4498 * We wait for 0 num_writers since we don't hold a trans
4499 * handle open currently for this transaction.
4500 */
4501 wait_event(t->writer_wait,
4502 atomic_read(&t->num_writers) == 0);
4503 } else {
0b246afa 4504 spin_unlock(&fs_info->trans_lock);
724e2315 4505 }
2ff7e61e 4506 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4507
0b246afa
JM
4508 spin_lock(&fs_info->trans_lock);
4509 if (t == fs_info->running_transaction)
4510 fs_info->running_transaction = NULL;
acce952b 4511 list_del_init(&t->list);
0b246afa 4512 spin_unlock(&fs_info->trans_lock);
acce952b 4513
724e2315 4514 btrfs_put_transaction(t);
2ff7e61e 4515 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4516 spin_lock(&fs_info->trans_lock);
724e2315 4517 }
0b246afa
JM
4518 spin_unlock(&fs_info->trans_lock);
4519 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4520 btrfs_destroy_delayed_inodes(fs_info);
4521 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4522 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4523 btrfs_destroy_all_delalloc_inodes(fs_info);
4524 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4525
4526 return 0;
4527}
4528
e8c9f186 4529static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4530 /* mandatory callbacks */
0b86a832 4531 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4532 .readpage_end_io_hook = btree_readpage_end_io_hook,
20a7db8a 4533 .readpage_io_failed_hook = btree_io_failed_hook,
4d53dddb
DS
4534
4535 /* optional callbacks */
0da5468f 4536};