btrfs: move end_io_func argument to btrfs_bio_ctrl structure
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
141386e1
JB
66static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67{
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70}
71
d352ac68
CM
72/*
73 * async submit bios are used to offload expensive checksumming
74 * onto the worker threads. They checksum file and metadata bios
75 * just before they are sent down the IO stack.
76 */
44b8bd7e 77struct async_submit_bio {
8896a08d 78 struct inode *inode;
44b8bd7e 79 struct bio *bio;
a758781d 80 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 81 int mirror_num;
1941b64b
QW
82
83 /* Optional parameter for submit_bio_start used by direct io */
84 u64 dio_file_offset;
8b712842 85 struct btrfs_work work;
4e4cbee9 86 blk_status_t status;
44b8bd7e
CM
87};
88
d352ac68 89/*
2996e1f8 90 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 91 */
c67b3892 92static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 93{
d5178578 94 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 95 const int num_pages = num_extent_pages(buf);
a26663e7 96 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 97 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 98 char *kaddr;
e9be5a30 99 int i;
d5178578
JT
100
101 shash->tfm = fs_info->csum_shash;
102 crypto_shash_init(shash);
a26663e7 103 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 104 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 105 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 106
e9be5a30
DS
107 for (i = 1; i < num_pages; i++) {
108 kaddr = page_address(buf->pages[i]);
109 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 110 }
71a63551 111 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 112 crypto_shash_final(shash, result);
19c00ddc
CM
113}
114
d352ac68
CM
115/*
116 * we can't consider a given block up to date unless the transid of the
117 * block matches the transid in the parent node's pointer. This is how we
118 * detect blocks that either didn't get written at all or got written
119 * in the wrong place.
120 */
1259ab75 121static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
122 struct extent_buffer *eb, u64 parent_transid,
123 int atomic)
1259ab75 124{
2ac55d41 125 struct extent_state *cached_state = NULL;
1259ab75
CM
126 int ret;
127
128 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 return 0;
130
b9fab919
CM
131 if (atomic)
132 return -EAGAIN;
133
570eb97b 134 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
0b32f4bb 135 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
136 btrfs_header_generation(eb) == parent_transid) {
137 ret = 0;
138 goto out;
139 }
94647322 140 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
141"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
142 eb->start, eb->read_mirror,
29549aec 143 parent_transid, btrfs_header_generation(eb));
1259ab75 144 ret = 1;
35b22c19 145 clear_extent_buffer_uptodate(eb);
33958dc6 146out:
570eb97b
JB
147 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
148 &cached_state);
1259ab75 149 return ret;
1259ab75
CM
150}
151
e7e16f48
JT
152static bool btrfs_supported_super_csum(u16 csum_type)
153{
154 switch (csum_type) {
155 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 156 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 157 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 158 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
159 return true;
160 default:
161 return false;
162 }
163}
164
1104a885
DS
165/*
166 * Return 0 if the superblock checksum type matches the checksum value of that
167 * algorithm. Pass the raw disk superblock data.
168 */
ab8d0fc4
JM
169static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
170 char *raw_disk_sb)
1104a885
DS
171{
172 struct btrfs_super_block *disk_sb =
173 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 174 char result[BTRFS_CSUM_SIZE];
d5178578
JT
175 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
176
177 shash->tfm = fs_info->csum_shash;
1104a885 178
51bce6c9
JT
179 /*
180 * The super_block structure does not span the whole
181 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
182 * filled with zeros and is included in the checksum.
183 */
fd08001f
EB
184 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
185 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 186
55fc29be 187 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 188 return 1;
1104a885 189
e7e16f48 190 return 0;
1104a885
DS
191}
192
e064d5e9 193int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 194 struct btrfs_key *first_key, u64 parent_transid)
581c1760 195{
e064d5e9 196 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
197 int found_level;
198 struct btrfs_key found_key;
199 int ret;
200
201 found_level = btrfs_header_level(eb);
202 if (found_level != level) {
63489055
QW
203 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
204 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
205 btrfs_err(fs_info,
206"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
207 eb->start, level, found_level);
581c1760
QW
208 return -EIO;
209 }
210
211 if (!first_key)
212 return 0;
213
5d41be6f
QW
214 /*
215 * For live tree block (new tree blocks in current transaction),
216 * we need proper lock context to avoid race, which is impossible here.
217 * So we only checks tree blocks which is read from disk, whose
218 * generation <= fs_info->last_trans_committed.
219 */
220 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
221 return 0;
62fdaa52
QW
222
223 /* We have @first_key, so this @eb must have at least one item */
224 if (btrfs_header_nritems(eb) == 0) {
225 btrfs_err(fs_info,
226 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
227 eb->start);
228 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
229 return -EUCLEAN;
230 }
231
581c1760
QW
232 if (found_level)
233 btrfs_node_key_to_cpu(eb, &found_key, 0);
234 else
235 btrfs_item_key_to_cpu(eb, &found_key, 0);
236 ret = btrfs_comp_cpu_keys(first_key, &found_key);
237
581c1760 238 if (ret) {
63489055
QW
239 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
240 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 241 btrfs_err(fs_info,
ff76a864
LB
242"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
243 eb->start, parent_transid, first_key->objectid,
244 first_key->type, first_key->offset,
245 found_key.objectid, found_key.type,
246 found_key.offset);
581c1760 247 }
581c1760
QW
248 return ret;
249}
250
d352ac68
CM
251/*
252 * helper to read a given tree block, doing retries as required when
253 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
254 *
255 * @parent_transid: expected transid, skip check if 0
256 * @level: expected level, mandatory check
257 * @first_key: expected key of first slot, skip check if NULL
d352ac68 258 */
6a2e9dc4
FM
259int btrfs_read_extent_buffer(struct extent_buffer *eb,
260 u64 parent_transid, int level,
261 struct btrfs_key *first_key)
f188591e 262{
5ab12d1f 263 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 264 struct extent_io_tree *io_tree;
ea466794 265 int failed = 0;
f188591e
CM
266 int ret;
267 int num_copies = 0;
268 int mirror_num = 0;
ea466794 269 int failed_mirror = 0;
f188591e 270
0b246afa 271 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 272 while (1) {
f8397d69 273 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 274 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 275 if (!ret) {
581c1760 276 if (verify_parent_transid(io_tree, eb,
b9fab919 277 parent_transid, 0))
256dd1bb 278 ret = -EIO;
e064d5e9 279 else if (btrfs_verify_level_key(eb, level,
448de471 280 first_key, parent_transid))
581c1760
QW
281 ret = -EUCLEAN;
282 else
283 break;
256dd1bb 284 }
d397712b 285
0b246afa 286 num_copies = btrfs_num_copies(fs_info,
f188591e 287 eb->start, eb->len);
4235298e 288 if (num_copies == 1)
ea466794 289 break;
4235298e 290
5cf1ab56
JB
291 if (!failed_mirror) {
292 failed = 1;
293 failed_mirror = eb->read_mirror;
294 }
295
f188591e 296 mirror_num++;
ea466794
JB
297 if (mirror_num == failed_mirror)
298 mirror_num++;
299
4235298e 300 if (mirror_num > num_copies)
ea466794 301 break;
f188591e 302 }
ea466794 303
c0901581 304 if (failed && !ret && failed_mirror)
20a1fbf9 305 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
306
307 return ret;
f188591e 308}
19c00ddc 309
eca0f6f6
QW
310static int csum_one_extent_buffer(struct extent_buffer *eb)
311{
312 struct btrfs_fs_info *fs_info = eb->fs_info;
313 u8 result[BTRFS_CSUM_SIZE];
314 int ret;
315
316 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
317 offsetof(struct btrfs_header, fsid),
318 BTRFS_FSID_SIZE) == 0);
319 csum_tree_block(eb, result);
320
321 if (btrfs_header_level(eb))
322 ret = btrfs_check_node(eb);
323 else
324 ret = btrfs_check_leaf_full(eb);
325
3777369f
QW
326 if (ret < 0)
327 goto error;
328
329 /*
330 * Also check the generation, the eb reached here must be newer than
331 * last committed. Or something seriously wrong happened.
332 */
333 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
334 ret = -EUCLEAN;
eca0f6f6 335 btrfs_err(fs_info,
3777369f
QW
336 "block=%llu bad generation, have %llu expect > %llu",
337 eb->start, btrfs_header_generation(eb),
338 fs_info->last_trans_committed);
339 goto error;
eca0f6f6
QW
340 }
341 write_extent_buffer(eb, result, 0, fs_info->csum_size);
342
343 return 0;
3777369f
QW
344
345error:
346 btrfs_print_tree(eb, 0);
347 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
348 eb->start);
349 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
350 return ret;
eca0f6f6
QW
351}
352
353/* Checksum all dirty extent buffers in one bio_vec */
354static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
355 struct bio_vec *bvec)
356{
357 struct page *page = bvec->bv_page;
358 u64 bvec_start = page_offset(page) + bvec->bv_offset;
359 u64 cur;
360 int ret = 0;
361
362 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
363 cur += fs_info->nodesize) {
364 struct extent_buffer *eb;
365 bool uptodate;
366
367 eb = find_extent_buffer(fs_info, cur);
368 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
369 fs_info->nodesize);
370
01cd3909 371 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
372 if (WARN_ON(!eb))
373 return -EUCLEAN;
374
375 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
376 free_extent_buffer(eb);
377 return -EUCLEAN;
378 }
379 if (WARN_ON(!uptodate)) {
380 free_extent_buffer(eb);
381 return -EUCLEAN;
382 }
383
384 ret = csum_one_extent_buffer(eb);
385 free_extent_buffer(eb);
386 if (ret < 0)
387 return ret;
388 }
389 return ret;
390}
391
d352ac68 392/*
ac303b69
QW
393 * Checksum a dirty tree block before IO. This has extra checks to make sure
394 * we only fill in the checksum field in the first page of a multi-page block.
395 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 396 */
ac303b69 397static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 398{
ac303b69 399 struct page *page = bvec->bv_page;
4eee4fa4 400 u64 start = page_offset(page);
19c00ddc 401 u64 found_start;
19c00ddc 402 struct extent_buffer *eb;
eca0f6f6 403
fbca46eb 404 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 405 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 406
4f2de97a
JB
407 eb = (struct extent_buffer *)page->private;
408 if (page != eb->pages[0])
409 return 0;
0f805531 410
19c00ddc 411 found_start = btrfs_header_bytenr(eb);
d3575156
NA
412
413 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
414 WARN_ON(found_start != 0);
415 return 0;
416 }
417
0f805531
AL
418 /*
419 * Please do not consolidate these warnings into a single if.
420 * It is useful to know what went wrong.
421 */
422 if (WARN_ON(found_start != start))
423 return -EUCLEAN;
424 if (WARN_ON(!PageUptodate(page)))
425 return -EUCLEAN;
426
eca0f6f6 427 return csum_one_extent_buffer(eb);
19c00ddc
CM
428}
429
b0c9b3b0 430static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 431{
b0c9b3b0 432 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 433 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 434 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 435 u8 *metadata_uuid;
2b82032c 436
9a8658e3
DS
437 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
438 BTRFS_FSID_SIZE);
944d3f9f
NB
439 /*
440 * Checking the incompat flag is only valid for the current fs. For
441 * seed devices it's forbidden to have their uuid changed so reading
442 * ->fsid in this case is fine
443 */
444 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
445 metadata_uuid = fs_devices->metadata_uuid;
446 else
447 metadata_uuid = fs_devices->fsid;
448
449 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
450 return 0;
451
452 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
453 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
454 return 0;
455
456 return 1;
2b82032c
YZ
457}
458
77bf40a2
QW
459/* Do basic extent buffer checks at read time */
460static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 461{
77bf40a2 462 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 463 u64 found_start;
77bf40a2
QW
464 const u32 csum_size = fs_info->csum_size;
465 u8 found_level;
2996e1f8 466 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 467 const u8 *header_csum;
77bf40a2 468 int ret = 0;
ea466794 469
ce9adaa5 470 found_start = btrfs_header_bytenr(eb);
727011e0 471 if (found_start != eb->start) {
8f0ed7d4
QW
472 btrfs_err_rl(fs_info,
473 "bad tree block start, mirror %u want %llu have %llu",
474 eb->read_mirror, eb->start, found_start);
f188591e 475 ret = -EIO;
77bf40a2 476 goto out;
ce9adaa5 477 }
b0c9b3b0 478 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
479 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
480 eb->start, eb->read_mirror);
1259ab75 481 ret = -EIO;
77bf40a2 482 goto out;
1259ab75 483 }
ce9adaa5 484 found_level = btrfs_header_level(eb);
1c24c3ce 485 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
486 btrfs_err(fs_info,
487 "bad tree block level, mirror %u level %d on logical %llu",
488 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 489 ret = -EIO;
77bf40a2 490 goto out;
1c24c3ce 491 }
ce9adaa5 492
c67b3892 493 csum_tree_block(eb, result);
dfd29eed
DS
494 header_csum = page_address(eb->pages[0]) +
495 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 496
dfd29eed 497 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 498 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
499"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
500 eb->start, eb->read_mirror,
dfd29eed 501 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
502 CSUM_FMT_VALUE(csum_size, result),
503 btrfs_header_level(eb));
2996e1f8 504 ret = -EUCLEAN;
77bf40a2 505 goto out;
2996e1f8
JT
506 }
507
a826d6dc
JB
508 /*
509 * If this is a leaf block and it is corrupt, set the corrupt bit so
510 * that we don't try and read the other copies of this block, just
511 * return -EIO.
512 */
1c4360ee 513 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
514 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
515 ret = -EIO;
516 }
ce9adaa5 517
813fd1dc 518 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
519 ret = -EIO;
520
0b32f4bb
JB
521 if (!ret)
522 set_extent_buffer_uptodate(eb);
75391f0d
QW
523 else
524 btrfs_err(fs_info,
8f0ed7d4
QW
525 "read time tree block corruption detected on logical %llu mirror %u",
526 eb->start, eb->read_mirror);
77bf40a2
QW
527out:
528 return ret;
529}
530
371cdc07
QW
531static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
532 int mirror)
533{
534 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
535 struct extent_buffer *eb;
536 bool reads_done;
537 int ret = 0;
538
539 /*
540 * We don't allow bio merge for subpage metadata read, so we should
541 * only get one eb for each endio hook.
542 */
543 ASSERT(end == start + fs_info->nodesize - 1);
544 ASSERT(PagePrivate(page));
545
546 eb = find_extent_buffer(fs_info, start);
547 /*
548 * When we are reading one tree block, eb must have been inserted into
549 * the radix tree. If not, something is wrong.
550 */
551 ASSERT(eb);
552
553 reads_done = atomic_dec_and_test(&eb->io_pages);
554 /* Subpage read must finish in page read */
555 ASSERT(reads_done);
556
557 eb->read_mirror = mirror;
558 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
559 ret = -EIO;
560 goto err;
561 }
562 ret = validate_extent_buffer(eb);
563 if (ret < 0)
564 goto err;
565
371cdc07
QW
566 set_extent_buffer_uptodate(eb);
567
568 free_extent_buffer(eb);
569 return ret;
570err:
571 /*
572 * end_bio_extent_readpage decrements io_pages in case of error,
573 * make sure it has something to decrement.
574 */
575 atomic_inc(&eb->io_pages);
576 clear_extent_buffer_uptodate(eb);
577 free_extent_buffer(eb);
578 return ret;
579}
580
c3a3b19b 581int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
582 struct page *page, u64 start, u64 end,
583 int mirror)
584{
585 struct extent_buffer *eb;
586 int ret = 0;
587 int reads_done;
588
589 ASSERT(page->private);
371cdc07 590
fbca46eb 591 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
371cdc07
QW
592 return validate_subpage_buffer(page, start, end, mirror);
593
77bf40a2
QW
594 eb = (struct extent_buffer *)page->private;
595
596 /*
597 * The pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
600 atomic_inc(&eb->refs);
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
603 if (!reads_done)
604 goto err;
605
606 eb->read_mirror = mirror;
607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 ret = -EIO;
609 goto err;
610 }
611 ret = validate_extent_buffer(eb);
ce9adaa5 612err:
53b381b3
DW
613 if (ret) {
614 /*
615 * our io error hook is going to dec the io pages
616 * again, we have to make sure it has something
617 * to decrement
618 */
619 atomic_inc(&eb->io_pages);
0b32f4bb 620 clear_extent_buffer_uptodate(eb);
53b381b3 621 }
0b32f4bb 622 free_extent_buffer(eb);
77bf40a2 623
f188591e 624 return ret;
ce9adaa5
CM
625}
626
4a69a410
CM
627static void run_one_async_start(struct btrfs_work *work)
628{
4a69a410 629 struct async_submit_bio *async;
4e4cbee9 630 blk_status_t ret;
4a69a410
CM
631
632 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
633 ret = async->submit_bio_start(async->inode, async->bio,
634 async->dio_file_offset);
79787eaa 635 if (ret)
4e4cbee9 636 async->status = ret;
4a69a410
CM
637}
638
06ea01b1
DS
639/*
640 * In order to insert checksums into the metadata in large chunks, we wait
641 * until bio submission time. All the pages in the bio are checksummed and
642 * sums are attached onto the ordered extent record.
643 *
644 * At IO completion time the csums attached on the ordered extent record are
645 * inserted into the tree.
646 */
4a69a410 647static void run_one_async_done(struct btrfs_work *work)
8b712842 648{
917f32a2
CH
649 struct async_submit_bio *async =
650 container_of(work, struct async_submit_bio, work);
651 struct inode *inode = async->inode;
652 struct btrfs_bio *bbio = btrfs_bio(async->bio);
4854ddd0 653
bb7ab3b9 654 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9 655 if (async->status) {
917f32a2 656 btrfs_bio_end_io(bbio, async->status);
79787eaa
JM
657 return;
658 }
659
ec39f769
CM
660 /*
661 * All of the bios that pass through here are from async helpers.
662 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
663 * This changes nothing when cgroups aren't in use.
664 */
665 async->bio->bi_opf |= REQ_CGROUP_PUNT;
1a722d8f 666 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
4a69a410
CM
667}
668
669static void run_one_async_free(struct btrfs_work *work)
670{
671 struct async_submit_bio *async;
672
673 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
674 kfree(async);
675}
676
ea1f0ced
CH
677/*
678 * Submit bio to an async queue.
679 *
680 * Retrun:
681 * - true if the work has been succesfuly submitted
682 * - false in case of error
683 */
684bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
685 u64 dio_file_offset,
686 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 687{
8896a08d 688 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
689 struct async_submit_bio *async;
690
691 async = kmalloc(sizeof(*async), GFP_NOFS);
692 if (!async)
ea1f0ced 693 return false;
44b8bd7e 694
8896a08d 695 async->inode = inode;
44b8bd7e
CM
696 async->bio = bio;
697 async->mirror_num = mirror_num;
4a69a410 698 async->submit_bio_start = submit_bio_start;
4a69a410 699
a0cac0ec
OS
700 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
701 run_one_async_free);
4a69a410 702
1941b64b 703 async->dio_file_offset = dio_file_offset;
8c8bee1d 704
4e4cbee9 705 async->status = 0;
79787eaa 706
67f055c7 707 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
708 btrfs_queue_work(fs_info->hipri_workers, &async->work);
709 else
710 btrfs_queue_work(fs_info->workers, &async->work);
ea1f0ced 711 return true;
44b8bd7e
CM
712}
713
4e4cbee9 714static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 715{
2c30c71b 716 struct bio_vec *bvec;
ce3ed71a 717 struct btrfs_root *root;
2b070cfe 718 int ret = 0;
6dc4f100 719 struct bvec_iter_all iter_all;
ce3ed71a 720
c09abff8 721 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 722 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 723 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 724 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
725 if (ret)
726 break;
ce3ed71a 727 }
2c30c71b 728
4e4cbee9 729 return errno_to_blk_status(ret);
ce3ed71a
CM
730}
731
8896a08d 732static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 733 u64 dio_file_offset)
22c59948 734{
8b712842
CM
735 /*
736 * when we're called for a write, we're already in the async
1a722d8f 737 * submission context. Just jump into btrfs_submit_bio.
8b712842 738 */
79787eaa 739 return btree_csum_one_bio(bio);
4a69a410 740}
22c59948 741
f4dcfb30 742static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 743 struct btrfs_inode *bi)
de0022b9 744{
4eef29ef 745 if (btrfs_is_zoned(fs_info))
f4dcfb30 746 return false;
6300463b 747 if (atomic_read(&bi->sync_writers))
f4dcfb30 748 return false;
9b4e675a 749 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
750 return false;
751 return true;
de0022b9
JB
752}
753
94d9e11b 754void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 755{
0b246afa 756 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
917f32a2 757 struct btrfs_bio *bbio = btrfs_bio(bio);
4e4cbee9 758 blk_status_t ret;
cad321ad 759
08a6f464
CH
760 bio->bi_opf |= REQ_META;
761
cfe94440 762 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
1a722d8f
CH
763 btrfs_submit_bio(fs_info, bio, mirror_num);
764 return;
44b8bd7e 765 }
d313d7a3 766
ea1f0ced
CH
767 /*
768 * Kthread helpers are used to submit writes so that checksumming can
769 * happen in parallel across all CPUs.
770 */
771 if (should_async_write(fs_info, BTRFS_I(inode)) &&
772 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
773 return;
774
775 ret = btree_csum_one_bio(bio);
94d9e11b 776 if (ret) {
917f32a2 777 btrfs_bio_end_io(bbio, ret);
ea1f0ced 778 return;
94d9e11b 779 }
ea1f0ced
CH
780
781 btrfs_submit_bio(fs_info, bio, mirror_num);
44b8bd7e
CM
782}
783
3dd1462e 784#ifdef CONFIG_MIGRATION
8958b551
MWO
785static int btree_migrate_folio(struct address_space *mapping,
786 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
787{
788 /*
789 * we can't safely write a btree page from here,
790 * we haven't done the locking hook
791 */
8958b551 792 if (folio_test_dirty(src))
784b4e29
CM
793 return -EAGAIN;
794 /*
795 * Buffers may be managed in a filesystem specific way.
796 * We must have no buffers or drop them.
797 */
8958b551
MWO
798 if (folio_get_private(src) &&
799 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 800 return -EAGAIN;
54184650 801 return migrate_folio(mapping, dst, src, mode);
784b4e29 802}
8958b551
MWO
803#else
804#define btree_migrate_folio NULL
3dd1462e 805#endif
784b4e29 806
0da5468f
CM
807static int btree_writepages(struct address_space *mapping,
808 struct writeback_control *wbc)
809{
e2d84521
MX
810 struct btrfs_fs_info *fs_info;
811 int ret;
812
d8d5f3e1 813 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
814
815 if (wbc->for_kupdate)
816 return 0;
817
e2d84521 818 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 819 /* this is a bit racy, but that's ok */
d814a491
EL
820 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
821 BTRFS_DIRTY_METADATA_THRESH,
822 fs_info->dirty_metadata_batch);
e2d84521 823 if (ret < 0)
793955bc 824 return 0;
793955bc 825 }
0b32f4bb 826 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
827}
828
f913cff3 829static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 830{
f913cff3
MWO
831 if (folio_test_writeback(folio) || folio_test_dirty(folio))
832 return false;
0c4e538b 833
f913cff3 834 return try_release_extent_buffer(&folio->page);
d98237b3
CM
835}
836
895586eb
MWO
837static void btree_invalidate_folio(struct folio *folio, size_t offset,
838 size_t length)
d98237b3 839{
d1310b2e 840 struct extent_io_tree *tree;
895586eb
MWO
841 tree = &BTRFS_I(folio->mapping->host)->io_tree;
842 extent_invalidate_folio(tree, folio, offset);
f913cff3 843 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
844 if (folio_get_private(folio)) {
845 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
846 "folio private not zero on folio %llu",
847 (unsigned long long)folio_pos(folio));
848 folio_detach_private(folio);
9ad6b7bc 849 }
d98237b3
CM
850}
851
bb146eb2 852#ifdef DEBUG
0079c3b1
MWO
853static bool btree_dirty_folio(struct address_space *mapping,
854 struct folio *folio)
855{
856 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 857 struct btrfs_subpage *subpage;
0b32f4bb 858 struct extent_buffer *eb;
139e8cd3 859 int cur_bit = 0;
0079c3b1 860 u64 page_start = folio_pos(folio);
139e8cd3
QW
861
862 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 863 eb = folio_get_private(folio);
139e8cd3
QW
864 BUG_ON(!eb);
865 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
866 BUG_ON(!atomic_read(&eb->refs));
49d0c642 867 btrfs_assert_tree_write_locked(eb);
0079c3b1 868 return filemap_dirty_folio(mapping, folio);
139e8cd3 869 }
0079c3b1 870 subpage = folio_get_private(folio);
139e8cd3
QW
871
872 ASSERT(subpage->dirty_bitmap);
873 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
874 unsigned long flags;
875 u64 cur;
876 u16 tmp = (1 << cur_bit);
877
878 spin_lock_irqsave(&subpage->lock, flags);
879 if (!(tmp & subpage->dirty_bitmap)) {
880 spin_unlock_irqrestore(&subpage->lock, flags);
881 cur_bit++;
882 continue;
883 }
884 spin_unlock_irqrestore(&subpage->lock, flags);
885 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 886
139e8cd3
QW
887 eb = find_extent_buffer(fs_info, cur);
888 ASSERT(eb);
889 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
890 ASSERT(atomic_read(&eb->refs));
49d0c642 891 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
892 free_extent_buffer(eb);
893
894 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
895 }
0079c3b1 896 return filemap_dirty_folio(mapping, folio);
0b32f4bb 897}
0079c3b1
MWO
898#else
899#define btree_dirty_folio filemap_dirty_folio
900#endif
0b32f4bb 901
7f09410b 902static const struct address_space_operations btree_aops = {
0da5468f 903 .writepages = btree_writepages,
f913cff3 904 .release_folio = btree_release_folio,
895586eb 905 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
906 .migrate_folio = btree_migrate_folio,
907 .dirty_folio = btree_dirty_folio,
d98237b3
CM
908};
909
2ff7e61e
JM
910struct extent_buffer *btrfs_find_create_tree_block(
911 struct btrfs_fs_info *fs_info,
3fbaf258
JB
912 u64 bytenr, u64 owner_root,
913 int level)
0999df54 914{
0b246afa
JM
915 if (btrfs_is_testing(fs_info))
916 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 917 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
918}
919
581c1760
QW
920/*
921 * Read tree block at logical address @bytenr and do variant basic but critical
922 * verification.
923 *
1b7ec85e 924 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
925 * @parent_transid: expected transid of this tree block, skip check if 0
926 * @level: expected level, mandatory check
927 * @first_key: expected key in slot 0, skip check if NULL
928 */
2ff7e61e 929struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
930 u64 owner_root, u64 parent_transid,
931 int level, struct btrfs_key *first_key)
0999df54
CM
932{
933 struct extent_buffer *buf = NULL;
0999df54
CM
934 int ret;
935
3fbaf258 936 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
937 if (IS_ERR(buf))
938 return buf;
0999df54 939
6a2e9dc4 940 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
0f0fe8f7 941 if (ret) {
537f38f0 942 free_extent_buffer_stale(buf);
64c043de 943 return ERR_PTR(ret);
0f0fe8f7 944 }
88c602ab
QW
945 if (btrfs_check_eb_owner(buf, owner_root)) {
946 free_extent_buffer_stale(buf);
947 return ERR_PTR(-EUCLEAN);
948 }
5f39d397 949 return buf;
ce9adaa5 950
eb60ceac
CM
951}
952
6a884d7d 953void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 954{
6a884d7d 955 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 956 if (btrfs_header_generation(buf) ==
e2d84521 957 fs_info->running_transaction->transid) {
49d0c642 958 btrfs_assert_tree_write_locked(buf);
b4ce94de 959
b9473439 960 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
961 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
962 -buf->len,
963 fs_info->dirty_metadata_batch);
ed7b63eb
JB
964 clear_extent_buffer_dirty(buf);
965 }
925baedd 966 }
5f39d397
CM
967}
968
da17066c 969static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 970 u64 objectid)
d97e63b6 971{
7c0260ee 972 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
973
974 memset(&root->root_key, 0, sizeof(root->root_key));
975 memset(&root->root_item, 0, sizeof(root->root_item));
976 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 977 root->fs_info = fs_info;
2e608bd1 978 root->root_key.objectid = objectid;
cfaa7295 979 root->node = NULL;
a28ec197 980 root->commit_root = NULL;
27cdeb70 981 root->state = 0;
abed4aaa 982 RB_CLEAR_NODE(&root->rb_node);
0b86a832 983
0f7d52f4 984 root->last_trans = 0;
6b8fad57 985 root->free_objectid = 0;
eb73c1b7 986 root->nr_delalloc_inodes = 0;
199c2a9c 987 root->nr_ordered_extents = 0;
6bef4d31 988 root->inode_tree = RB_ROOT;
088aea3b 989 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
990
991 btrfs_init_root_block_rsv(root);
0b86a832
CM
992
993 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 994 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
995 INIT_LIST_HEAD(&root->delalloc_inodes);
996 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
997 INIT_LIST_HEAD(&root->ordered_extents);
998 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 999 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1000 INIT_LIST_HEAD(&root->logged_list[0]);
1001 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1002 spin_lock_init(&root->inode_lock);
eb73c1b7 1003 spin_lock_init(&root->delalloc_lock);
199c2a9c 1004 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1005 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1006 spin_lock_init(&root->log_extents_lock[0]);
1007 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1008 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1009 mutex_init(&root->objectid_mutex);
e02119d5 1010 mutex_init(&root->log_mutex);
31f3d255 1011 mutex_init(&root->ordered_extent_mutex);
573bfb72 1012 mutex_init(&root->delalloc_mutex);
c53e9653 1013 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1014 init_waitqueue_head(&root->log_writer_wait);
1015 init_waitqueue_head(&root->log_commit_wait[0]);
1016 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1017 INIT_LIST_HEAD(&root->log_ctxs[0]);
1018 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1019 atomic_set(&root->log_commit[0], 0);
1020 atomic_set(&root->log_commit[1], 0);
1021 atomic_set(&root->log_writers, 0);
2ecb7923 1022 atomic_set(&root->log_batch, 0);
0700cea7 1023 refcount_set(&root->refs, 1);
8ecebf4d 1024 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1025 atomic_set(&root->nr_swapfiles, 0);
7237f183 1026 root->log_transid = 0;
d1433deb 1027 root->log_transid_committed = -1;
257c62e1 1028 root->last_log_commit = 0;
2e608bd1 1029 root->anon_dev = 0;
e289f03e 1030 if (!dummy) {
43eb5f29
QW
1031 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1032 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1033 extent_io_tree_init(fs_info, &root->log_csum_range,
1034 IO_TREE_LOG_CSUM_RANGE, NULL);
1035 }
017e5369 1036
5f3ab90a 1037 spin_lock_init(&root->root_item_lock);
370a11b8 1038 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1039#ifdef CONFIG_BTRFS_DEBUG
1040 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 1041 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 1042 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 1043 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 1044#endif
3768f368
CM
1045}
1046
74e4d827 1047static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1048 u64 objectid, gfp_t flags)
6f07e42e 1049{
74e4d827 1050 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1051 if (root)
96dfcb46 1052 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1053 return root;
1054}
1055
06ea65a3
JB
1056#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1057/* Should only be used by the testing infrastructure */
da17066c 1058struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1059{
1060 struct btrfs_root *root;
1061
7c0260ee
JM
1062 if (!fs_info)
1063 return ERR_PTR(-EINVAL);
1064
96dfcb46 1065 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1066 if (!root)
1067 return ERR_PTR(-ENOMEM);
da17066c 1068
b9ef22de 1069 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1070 root->alloc_bytenr = 0;
06ea65a3
JB
1071
1072 return root;
1073}
1074#endif
1075
abed4aaa
JB
1076static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1077{
1078 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1079 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1080
1081 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1082}
1083
1084static int global_root_key_cmp(const void *k, const struct rb_node *node)
1085{
1086 const struct btrfs_key *key = k;
1087 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1088
1089 return btrfs_comp_cpu_keys(key, &root->root_key);
1090}
1091
1092int btrfs_global_root_insert(struct btrfs_root *root)
1093{
1094 struct btrfs_fs_info *fs_info = root->fs_info;
1095 struct rb_node *tmp;
1096
1097 write_lock(&fs_info->global_root_lock);
1098 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1099 write_unlock(&fs_info->global_root_lock);
1100 ASSERT(!tmp);
1101
1102 return tmp ? -EEXIST : 0;
1103}
1104
1105void btrfs_global_root_delete(struct btrfs_root *root)
1106{
1107 struct btrfs_fs_info *fs_info = root->fs_info;
1108
1109 write_lock(&fs_info->global_root_lock);
1110 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1111 write_unlock(&fs_info->global_root_lock);
1112}
1113
1114struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1115 struct btrfs_key *key)
1116{
1117 struct rb_node *node;
1118 struct btrfs_root *root = NULL;
1119
1120 read_lock(&fs_info->global_root_lock);
1121 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1122 if (node)
1123 root = container_of(node, struct btrfs_root, rb_node);
1124 read_unlock(&fs_info->global_root_lock);
1125
1126 return root;
1127}
1128
f7238e50
JB
1129static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1130{
1131 struct btrfs_block_group *block_group;
1132 u64 ret;
1133
1134 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1135 return 0;
1136
1137 if (bytenr)
1138 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1139 else
1140 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1141 ASSERT(block_group);
1142 if (!block_group)
1143 return 0;
1144 ret = block_group->global_root_id;
1145 btrfs_put_block_group(block_group);
1146
1147 return ret;
1148}
1149
abed4aaa
JB
1150struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1151{
1152 struct btrfs_key key = {
1153 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1154 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1155 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1156 };
1157
1158 return btrfs_global_root(fs_info, &key);
1159}
1160
1161struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1162{
1163 struct btrfs_key key = {
1164 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1165 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1166 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1167 };
1168
1169 return btrfs_global_root(fs_info, &key);
1170}
1171
20897f5c 1172struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1173 u64 objectid)
1174{
9b7a2440 1175 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1176 struct extent_buffer *leaf;
1177 struct btrfs_root *tree_root = fs_info->tree_root;
1178 struct btrfs_root *root;
1179 struct btrfs_key key;
b89f6d1f 1180 unsigned int nofs_flag;
20897f5c 1181 int ret = 0;
20897f5c 1182
b89f6d1f
FM
1183 /*
1184 * We're holding a transaction handle, so use a NOFS memory allocation
1185 * context to avoid deadlock if reclaim happens.
1186 */
1187 nofs_flag = memalloc_nofs_save();
96dfcb46 1188 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1189 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1190 if (!root)
1191 return ERR_PTR(-ENOMEM);
1192
20897f5c
AJ
1193 root->root_key.objectid = objectid;
1194 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1195 root->root_key.offset = 0;
1196
9631e4cc
JB
1197 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1198 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1199 if (IS_ERR(leaf)) {
1200 ret = PTR_ERR(leaf);
1dd05682 1201 leaf = NULL;
8a6a87cd 1202 goto fail_unlock;
20897f5c
AJ
1203 }
1204
20897f5c 1205 root->node = leaf;
20897f5c
AJ
1206 btrfs_mark_buffer_dirty(leaf);
1207
1208 root->commit_root = btrfs_root_node(root);
27cdeb70 1209 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1210
f944d2cb
DS
1211 btrfs_set_root_flags(&root->root_item, 0);
1212 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1213 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1214 btrfs_set_root_generation(&root->root_item, trans->transid);
1215 btrfs_set_root_level(&root->root_item, 0);
1216 btrfs_set_root_refs(&root->root_item, 1);
1217 btrfs_set_root_used(&root->root_item, leaf->len);
1218 btrfs_set_root_last_snapshot(&root->root_item, 0);
1219 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1220 if (is_fstree(objectid))
807fc790
AS
1221 generate_random_guid(root->root_item.uuid);
1222 else
1223 export_guid(root->root_item.uuid, &guid_null);
c8422684 1224 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1225
8a6a87cd
BB
1226 btrfs_tree_unlock(leaf);
1227
20897f5c
AJ
1228 key.objectid = objectid;
1229 key.type = BTRFS_ROOT_ITEM_KEY;
1230 key.offset = 0;
1231 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1232 if (ret)
1233 goto fail;
1234
1dd05682
TI
1235 return root;
1236
8a6a87cd 1237fail_unlock:
8c38938c 1238 if (leaf)
1dd05682 1239 btrfs_tree_unlock(leaf);
8a6a87cd 1240fail:
00246528 1241 btrfs_put_root(root);
20897f5c 1242
1dd05682 1243 return ERR_PTR(ret);
20897f5c
AJ
1244}
1245
7237f183
YZ
1246static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1247 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1248{
1249 struct btrfs_root *root;
e02119d5 1250
96dfcb46 1251 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1252 if (!root)
7237f183 1253 return ERR_PTR(-ENOMEM);
e02119d5 1254
e02119d5
CM
1255 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1256 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1257 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1258
6ab6ebb7
NA
1259 return root;
1260}
1261
1262int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root)
1264{
1265 struct extent_buffer *leaf;
1266
7237f183 1267 /*
92a7cc42 1268 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1269 *
92a7cc42
QW
1270 * Log trees are not exposed to user space thus can't be snapshotted,
1271 * and they go away before a real commit is actually done.
1272 *
1273 * They do store pointers to file data extents, and those reference
1274 * counts still get updated (along with back refs to the log tree).
7237f183 1275 */
e02119d5 1276
4d75f8a9 1277 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1278 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1279 if (IS_ERR(leaf))
1280 return PTR_ERR(leaf);
e02119d5 1281
7237f183 1282 root->node = leaf;
e02119d5 1283
e02119d5
CM
1284 btrfs_mark_buffer_dirty(root->node);
1285 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1286
1287 return 0;
7237f183
YZ
1288}
1289
1290int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1291 struct btrfs_fs_info *fs_info)
1292{
1293 struct btrfs_root *log_root;
1294
1295 log_root = alloc_log_tree(trans, fs_info);
1296 if (IS_ERR(log_root))
1297 return PTR_ERR(log_root);
6ab6ebb7 1298
3ddebf27
NA
1299 if (!btrfs_is_zoned(fs_info)) {
1300 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1301
1302 if (ret) {
1303 btrfs_put_root(log_root);
1304 return ret;
1305 }
6ab6ebb7
NA
1306 }
1307
7237f183
YZ
1308 WARN_ON(fs_info->log_root_tree);
1309 fs_info->log_root_tree = log_root;
1310 return 0;
1311}
1312
1313int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1314 struct btrfs_root *root)
1315{
0b246afa 1316 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1317 struct btrfs_root *log_root;
1318 struct btrfs_inode_item *inode_item;
6ab6ebb7 1319 int ret;
7237f183 1320
0b246afa 1321 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1322 if (IS_ERR(log_root))
1323 return PTR_ERR(log_root);
1324
6ab6ebb7
NA
1325 ret = btrfs_alloc_log_tree_node(trans, log_root);
1326 if (ret) {
1327 btrfs_put_root(log_root);
1328 return ret;
1329 }
1330
7237f183
YZ
1331 log_root->last_trans = trans->transid;
1332 log_root->root_key.offset = root->root_key.objectid;
1333
1334 inode_item = &log_root->root_item.inode;
3cae210f
QW
1335 btrfs_set_stack_inode_generation(inode_item, 1);
1336 btrfs_set_stack_inode_size(inode_item, 3);
1337 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1338 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1339 fs_info->nodesize);
3cae210f 1340 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1341
5d4f98a2 1342 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1343
1344 WARN_ON(root->log_root);
1345 root->log_root = log_root;
1346 root->log_transid = 0;
d1433deb 1347 root->log_transid_committed = -1;
257c62e1 1348 root->last_log_commit = 0;
e02119d5
CM
1349 return 0;
1350}
1351
49d11bea
JB
1352static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1353 struct btrfs_path *path,
1354 struct btrfs_key *key)
e02119d5
CM
1355{
1356 struct btrfs_root *root;
1357 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1358 u64 generation;
cb517eab 1359 int ret;
581c1760 1360 int level;
0f7d52f4 1361
96dfcb46 1362 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1363 if (!root)
1364 return ERR_PTR(-ENOMEM);
0f7d52f4 1365
cb517eab
MX
1366 ret = btrfs_find_root(tree_root, key, path,
1367 &root->root_item, &root->root_key);
0f7d52f4 1368 if (ret) {
13a8a7c8
YZ
1369 if (ret > 0)
1370 ret = -ENOENT;
49d11bea 1371 goto fail;
0f7d52f4 1372 }
13a8a7c8 1373
84234f3a 1374 generation = btrfs_root_generation(&root->root_item);
581c1760 1375 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1376 root->node = read_tree_block(fs_info,
1377 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1378 key->objectid, generation, level, NULL);
64c043de
LB
1379 if (IS_ERR(root->node)) {
1380 ret = PTR_ERR(root->node);
8c38938c 1381 root->node = NULL;
49d11bea 1382 goto fail;
4eb150d6
QW
1383 }
1384 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1385 ret = -EIO;
49d11bea 1386 goto fail;
416bc658 1387 }
88c602ab
QW
1388
1389 /*
1390 * For real fs, and not log/reloc trees, root owner must
1391 * match its root node owner
1392 */
1393 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1394 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1395 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1396 root->root_key.objectid != btrfs_header_owner(root->node)) {
1397 btrfs_crit(fs_info,
1398"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1399 root->root_key.objectid, root->node->start,
1400 btrfs_header_owner(root->node),
1401 root->root_key.objectid);
1402 ret = -EUCLEAN;
1403 goto fail;
1404 }
5d4f98a2 1405 root->commit_root = btrfs_root_node(root);
cb517eab 1406 return root;
49d11bea 1407fail:
00246528 1408 btrfs_put_root(root);
49d11bea
JB
1409 return ERR_PTR(ret);
1410}
1411
1412struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1413 struct btrfs_key *key)
1414{
1415 struct btrfs_root *root;
1416 struct btrfs_path *path;
1417
1418 path = btrfs_alloc_path();
1419 if (!path)
1420 return ERR_PTR(-ENOMEM);
1421 root = read_tree_root_path(tree_root, path, key);
1422 btrfs_free_path(path);
1423
1424 return root;
cb517eab
MX
1425}
1426
2dfb1e43
QW
1427/*
1428 * Initialize subvolume root in-memory structure
1429 *
1430 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1431 */
1432static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1433{
1434 int ret;
dcc3eb96 1435 unsigned int nofs_flag;
cb517eab 1436
dcc3eb96
NB
1437 /*
1438 * We might be called under a transaction (e.g. indirect backref
1439 * resolution) which could deadlock if it triggers memory reclaim
1440 */
1441 nofs_flag = memalloc_nofs_save();
1442 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1443 memalloc_nofs_restore(nofs_flag);
1444 if (ret)
8257b2dc 1445 goto fail;
8257b2dc 1446
aeb935a4 1447 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1448 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1449 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1450 btrfs_check_and_init_root_item(&root->root_item);
1451 }
1452
851fd730
QW
1453 /*
1454 * Don't assign anonymous block device to roots that are not exposed to
1455 * userspace, the id pool is limited to 1M
1456 */
1457 if (is_fstree(root->root_key.objectid) &&
1458 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1459 if (!anon_dev) {
1460 ret = get_anon_bdev(&root->anon_dev);
1461 if (ret)
1462 goto fail;
1463 } else {
1464 root->anon_dev = anon_dev;
1465 }
851fd730 1466 }
f32e48e9
CR
1467
1468 mutex_lock(&root->objectid_mutex);
453e4873 1469 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1470 if (ret) {
1471 mutex_unlock(&root->objectid_mutex);
876d2cf1 1472 goto fail;
f32e48e9
CR
1473 }
1474
6b8fad57 1475 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1476
1477 mutex_unlock(&root->objectid_mutex);
1478
cb517eab
MX
1479 return 0;
1480fail:
84db5ccf 1481 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1482 return ret;
1483}
1484
a98db0f3
JB
1485static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1486 u64 root_id)
cb517eab
MX
1487{
1488 struct btrfs_root *root;
1489
fc7cbcd4
DS
1490 spin_lock(&fs_info->fs_roots_radix_lock);
1491 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1492 (unsigned long)root_id);
bc44d7c4 1493 if (root)
00246528 1494 root = btrfs_grab_root(root);
fc7cbcd4 1495 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1496 return root;
1497}
1498
49d11bea
JB
1499static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1500 u64 objectid)
1501{
abed4aaa
JB
1502 struct btrfs_key key = {
1503 .objectid = objectid,
1504 .type = BTRFS_ROOT_ITEM_KEY,
1505 .offset = 0,
1506 };
1507
49d11bea
JB
1508 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1509 return btrfs_grab_root(fs_info->tree_root);
1510 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1511 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1512 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1513 return btrfs_grab_root(fs_info->chunk_root);
1514 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1515 return btrfs_grab_root(fs_info->dev_root);
1516 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1517 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1518 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1519 return btrfs_grab_root(fs_info->quota_root) ?
1520 fs_info->quota_root : ERR_PTR(-ENOENT);
1521 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1522 return btrfs_grab_root(fs_info->uuid_root) ?
1523 fs_info->uuid_root : ERR_PTR(-ENOENT);
14033b08
QW
1524 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1525 return btrfs_grab_root(fs_info->block_group_root) ?
1526 fs_info->block_group_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1527 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1528 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1529
1530 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1531 }
49d11bea
JB
1532 return NULL;
1533}
1534
cb517eab
MX
1535int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1536 struct btrfs_root *root)
1537{
1538 int ret;
1539
fc7cbcd4
DS
1540 ret = radix_tree_preload(GFP_NOFS);
1541 if (ret)
1542 return ret;
1543
1544 spin_lock(&fs_info->fs_roots_radix_lock);
1545 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1546 (unsigned long)root->root_key.objectid,
1547 root);
af01d2e5 1548 if (ret == 0) {
00246528 1549 btrfs_grab_root(root);
fc7cbcd4 1550 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1551 }
fc7cbcd4
DS
1552 spin_unlock(&fs_info->fs_roots_radix_lock);
1553 radix_tree_preload_end();
cb517eab
MX
1554
1555 return ret;
1556}
1557
bd647ce3
JB
1558void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1559{
1560#ifdef CONFIG_BTRFS_DEBUG
1561 struct btrfs_root *root;
1562
1563 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1564 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1565
bd647ce3
JB
1566 root = list_first_entry(&fs_info->allocated_roots,
1567 struct btrfs_root, leak_list);
457f1864 1568 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1569 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1570 refcount_read(&root->refs));
1571 while (refcount_read(&root->refs) > 1)
00246528
JB
1572 btrfs_put_root(root);
1573 btrfs_put_root(root);
bd647ce3
JB
1574 }
1575#endif
1576}
1577
abed4aaa
JB
1578static void free_global_roots(struct btrfs_fs_info *fs_info)
1579{
1580 struct btrfs_root *root;
1581 struct rb_node *node;
1582
1583 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1584 root = rb_entry(node, struct btrfs_root, rb_node);
1585 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1586 btrfs_put_root(root);
1587 }
1588}
1589
0d4b0463
JB
1590void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1591{
141386e1
JB
1592 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1593 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1594 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1595 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1596 btrfs_free_csum_hash(fs_info);
1597 btrfs_free_stripe_hash_table(fs_info);
1598 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1599 kfree(fs_info->balance_ctl);
1600 kfree(fs_info->delayed_root);
abed4aaa 1601 free_global_roots(fs_info);
00246528
JB
1602 btrfs_put_root(fs_info->tree_root);
1603 btrfs_put_root(fs_info->chunk_root);
1604 btrfs_put_root(fs_info->dev_root);
00246528
JB
1605 btrfs_put_root(fs_info->quota_root);
1606 btrfs_put_root(fs_info->uuid_root);
00246528 1607 btrfs_put_root(fs_info->fs_root);
aeb935a4 1608 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1609 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1610 btrfs_check_leaked_roots(fs_info);
3fd63727 1611 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1612 kfree(fs_info->super_copy);
1613 kfree(fs_info->super_for_commit);
8481dd80 1614 kfree(fs_info->subpage_info);
0d4b0463
JB
1615 kvfree(fs_info);
1616}
1617
1618
2dfb1e43
QW
1619/*
1620 * Get an in-memory reference of a root structure.
1621 *
1622 * For essential trees like root/extent tree, we grab it from fs_info directly.
1623 * For subvolume trees, we check the cached filesystem roots first. If not
1624 * found, then read it from disk and add it to cached fs roots.
1625 *
1626 * Caller should release the root by calling btrfs_put_root() after the usage.
1627 *
1628 * NOTE: Reloc and log trees can't be read by this function as they share the
1629 * same root objectid.
1630 *
1631 * @objectid: root id
1632 * @anon_dev: preallocated anonymous block device number for new roots,
1633 * pass 0 for new allocation.
1634 * @check_ref: whether to check root item references, If true, return -ENOENT
1635 * for orphan roots
1636 */
1637static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1638 u64 objectid, dev_t anon_dev,
1639 bool check_ref)
5eda7b5e
CM
1640{
1641 struct btrfs_root *root;
381cf658 1642 struct btrfs_path *path;
1d4c08e0 1643 struct btrfs_key key;
5eda7b5e
CM
1644 int ret;
1645
49d11bea
JB
1646 root = btrfs_get_global_root(fs_info, objectid);
1647 if (root)
1648 return root;
4df27c4d 1649again:
56e9357a 1650 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1651 if (root) {
2dfb1e43
QW
1652 /* Shouldn't get preallocated anon_dev for cached roots */
1653 ASSERT(!anon_dev);
bc44d7c4 1654 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1655 btrfs_put_root(root);
48475471 1656 return ERR_PTR(-ENOENT);
bc44d7c4 1657 }
5eda7b5e 1658 return root;
48475471 1659 }
5eda7b5e 1660
56e9357a
DS
1661 key.objectid = objectid;
1662 key.type = BTRFS_ROOT_ITEM_KEY;
1663 key.offset = (u64)-1;
1664 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1665 if (IS_ERR(root))
1666 return root;
3394e160 1667
c00869f1 1668 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1669 ret = -ENOENT;
581bb050 1670 goto fail;
35a30d7c 1671 }
581bb050 1672
2dfb1e43 1673 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1674 if (ret)
1675 goto fail;
3394e160 1676
381cf658
DS
1677 path = btrfs_alloc_path();
1678 if (!path) {
1679 ret = -ENOMEM;
1680 goto fail;
1681 }
1d4c08e0
DS
1682 key.objectid = BTRFS_ORPHAN_OBJECTID;
1683 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1684 key.offset = objectid;
1d4c08e0
DS
1685
1686 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1687 btrfs_free_path(path);
d68fc57b
YZ
1688 if (ret < 0)
1689 goto fail;
1690 if (ret == 0)
27cdeb70 1691 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1692
cb517eab 1693 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1694 if (ret) {
168a2f77
JJB
1695 if (ret == -EEXIST) {
1696 btrfs_put_root(root);
4df27c4d 1697 goto again;
168a2f77 1698 }
4df27c4d 1699 goto fail;
0f7d52f4 1700 }
edbd8d4e 1701 return root;
4df27c4d 1702fail:
33fab972
FM
1703 /*
1704 * If our caller provided us an anonymous device, then it's his
143823cf 1705 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1706 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1707 * and once again by our caller.
1708 */
1709 if (anon_dev)
1710 root->anon_dev = 0;
8c38938c 1711 btrfs_put_root(root);
4df27c4d 1712 return ERR_PTR(ret);
edbd8d4e
CM
1713}
1714
2dfb1e43
QW
1715/*
1716 * Get in-memory reference of a root structure
1717 *
1718 * @objectid: tree objectid
1719 * @check_ref: if set, verify that the tree exists and the item has at least
1720 * one reference
1721 */
1722struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1723 u64 objectid, bool check_ref)
1724{
1725 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1726}
1727
1728/*
1729 * Get in-memory reference of a root structure, created as new, optionally pass
1730 * the anonymous block device id
1731 *
1732 * @objectid: tree objectid
1733 * @anon_dev: if zero, allocate a new anonymous block device or use the
1734 * parameter value
1735 */
1736struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1737 u64 objectid, dev_t anon_dev)
1738{
1739 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1740}
1741
49d11bea
JB
1742/*
1743 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1744 * @fs_info: the fs_info
1745 * @objectid: the objectid we need to lookup
1746 *
1747 * This is exclusively used for backref walking, and exists specifically because
1748 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1749 * creation time, which means we may have to read the tree_root in order to look
1750 * up a fs root that is not in memory. If the root is not in memory we will
1751 * read the tree root commit root and look up the fs root from there. This is a
1752 * temporary root, it will not be inserted into the radix tree as it doesn't
1753 * have the most uptodate information, it'll simply be discarded once the
1754 * backref code is finished using the root.
1755 */
1756struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1757 struct btrfs_path *path,
1758 u64 objectid)
1759{
1760 struct btrfs_root *root;
1761 struct btrfs_key key;
1762
1763 ASSERT(path->search_commit_root && path->skip_locking);
1764
1765 /*
1766 * This can return -ENOENT if we ask for a root that doesn't exist, but
1767 * since this is called via the backref walking code we won't be looking
1768 * up a root that doesn't exist, unless there's corruption. So if root
1769 * != NULL just return it.
1770 */
1771 root = btrfs_get_global_root(fs_info, objectid);
1772 if (root)
1773 return root;
1774
1775 root = btrfs_lookup_fs_root(fs_info, objectid);
1776 if (root)
1777 return root;
1778
1779 key.objectid = objectid;
1780 key.type = BTRFS_ROOT_ITEM_KEY;
1781 key.offset = (u64)-1;
1782 root = read_tree_root_path(fs_info->tree_root, path, &key);
1783 btrfs_release_path(path);
1784
1785 return root;
1786}
1787
a74a4b97
CM
1788static int cleaner_kthread(void *arg)
1789{
0d031dc4 1790 struct btrfs_fs_info *fs_info = arg;
d0278245 1791 int again;
a74a4b97 1792
d6fd0ae2 1793 while (1) {
d0278245 1794 again = 0;
a74a4b97 1795
fd340d0f
JB
1796 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1797
d0278245 1798 /* Make the cleaner go to sleep early. */
2ff7e61e 1799 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1800 goto sleep;
1801
90c711ab
ZB
1802 /*
1803 * Do not do anything if we might cause open_ctree() to block
1804 * before we have finished mounting the filesystem.
1805 */
0b246afa 1806 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1807 goto sleep;
1808
0b246afa 1809 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1810 goto sleep;
1811
dc7f370c
MX
1812 /*
1813 * Avoid the problem that we change the status of the fs
1814 * during the above check and trylock.
1815 */
2ff7e61e 1816 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1817 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1818 goto sleep;
76dda93c 1819 }
a74a4b97 1820
2ff7e61e 1821 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1822
33c44184 1823 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1824 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1825
1826 /*
05323cd1
MX
1827 * The defragger has dealt with the R/O remount and umount,
1828 * needn't do anything special here.
d0278245 1829 */
0b246afa 1830 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1831
1832 /*
f3372065 1833 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1834 * with relocation (btrfs_relocate_chunk) and relocation
1835 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1836 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1837 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1838 * unused block groups.
1839 */
0b246afa 1840 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1841
1842 /*
1843 * Reclaim block groups in the reclaim_bgs list after we deleted
1844 * all unused block_groups. This possibly gives us some more free
1845 * space.
1846 */
1847 btrfs_reclaim_bgs(fs_info);
d0278245 1848sleep:
a0a1db70 1849 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1850 if (kthread_should_park())
1851 kthread_parkme();
1852 if (kthread_should_stop())
1853 return 0;
838fe188 1854 if (!again) {
a74a4b97 1855 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1856 schedule();
a74a4b97
CM
1857 __set_current_state(TASK_RUNNING);
1858 }
da288d28 1859 }
a74a4b97
CM
1860}
1861
1862static int transaction_kthread(void *arg)
1863{
1864 struct btrfs_root *root = arg;
0b246afa 1865 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1866 struct btrfs_trans_handle *trans;
1867 struct btrfs_transaction *cur;
8929ecfa 1868 u64 transid;
643900be 1869 time64_t delta;
a74a4b97 1870 unsigned long delay;
914b2007 1871 bool cannot_commit;
a74a4b97
CM
1872
1873 do {
914b2007 1874 cannot_commit = false;
ba1bc00f 1875 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1876 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1877
0b246afa
JM
1878 spin_lock(&fs_info->trans_lock);
1879 cur = fs_info->running_transaction;
a74a4b97 1880 if (!cur) {
0b246afa 1881 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1882 goto sleep;
1883 }
31153d81 1884
643900be 1885 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1886 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1887 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1888 delta < fs_info->commit_interval) {
0b246afa 1889 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1890 delay -= msecs_to_jiffies((delta - 1) * 1000);
1891 delay = min(delay,
1892 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1893 goto sleep;
1894 }
8929ecfa 1895 transid = cur->transid;
0b246afa 1896 spin_unlock(&fs_info->trans_lock);
56bec294 1897
79787eaa 1898 /* If the file system is aborted, this will always fail. */
354aa0fb 1899 trans = btrfs_attach_transaction(root);
914b2007 1900 if (IS_ERR(trans)) {
354aa0fb
MX
1901 if (PTR_ERR(trans) != -ENOENT)
1902 cannot_commit = true;
79787eaa 1903 goto sleep;
914b2007 1904 }
8929ecfa 1905 if (transid == trans->transid) {
3a45bb20 1906 btrfs_commit_transaction(trans);
8929ecfa 1907 } else {
3a45bb20 1908 btrfs_end_transaction(trans);
8929ecfa 1909 }
a74a4b97 1910sleep:
0b246afa
JM
1911 wake_up_process(fs_info->cleaner_kthread);
1912 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1913
84961539 1914 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1915 btrfs_cleanup_transaction(fs_info);
ce63f891 1916 if (!kthread_should_stop() &&
0b246afa 1917 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1918 cannot_commit))
bc5511d0 1919 schedule_timeout_interruptible(delay);
a74a4b97
CM
1920 } while (!kthread_should_stop());
1921 return 0;
1922}
1923
af31f5e5 1924/*
01f0f9da
NB
1925 * This will find the highest generation in the array of root backups. The
1926 * index of the highest array is returned, or -EINVAL if we can't find
1927 * anything.
af31f5e5
CM
1928 *
1929 * We check to make sure the array is valid by comparing the
1930 * generation of the latest root in the array with the generation
1931 * in the super block. If they don't match we pitch it.
1932 */
01f0f9da 1933static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1934{
01f0f9da 1935 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1936 u64 cur;
af31f5e5
CM
1937 struct btrfs_root_backup *root_backup;
1938 int i;
1939
1940 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1941 root_backup = info->super_copy->super_roots + i;
1942 cur = btrfs_backup_tree_root_gen(root_backup);
1943 if (cur == newest_gen)
01f0f9da 1944 return i;
af31f5e5
CM
1945 }
1946
01f0f9da 1947 return -EINVAL;
af31f5e5
CM
1948}
1949
af31f5e5
CM
1950/*
1951 * copy all the root pointers into the super backup array.
1952 * this will bump the backup pointer by one when it is
1953 * done
1954 */
1955static void backup_super_roots(struct btrfs_fs_info *info)
1956{
6ef108dd 1957 const int next_backup = info->backup_root_index;
af31f5e5 1958 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1959
1960 root_backup = info->super_for_commit->super_roots + next_backup;
1961
1962 /*
1963 * make sure all of our padding and empty slots get zero filled
1964 * regardless of which ones we use today
1965 */
1966 memset(root_backup, 0, sizeof(*root_backup));
1967
1968 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1969
1970 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1971 btrfs_set_backup_tree_root_gen(root_backup,
1972 btrfs_header_generation(info->tree_root->node));
1973
1974 btrfs_set_backup_tree_root_level(root_backup,
1975 btrfs_header_level(info->tree_root->node));
1976
1977 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1978 btrfs_set_backup_chunk_root_gen(root_backup,
1979 btrfs_header_generation(info->chunk_root->node));
1980 btrfs_set_backup_chunk_root_level(root_backup,
1981 btrfs_header_level(info->chunk_root->node));
1982
1c56ab99 1983 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1984 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1985 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1986
1987 btrfs_set_backup_extent_root(root_backup,
1988 extent_root->node->start);
1989 btrfs_set_backup_extent_root_gen(root_backup,
1990 btrfs_header_generation(extent_root->node));
1991 btrfs_set_backup_extent_root_level(root_backup,
1992 btrfs_header_level(extent_root->node));
f7238e50
JB
1993
1994 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1995 btrfs_set_backup_csum_root_gen(root_backup,
1996 btrfs_header_generation(csum_root->node));
1997 btrfs_set_backup_csum_root_level(root_backup,
1998 btrfs_header_level(csum_root->node));
9c54e80d 1999 }
af31f5e5 2000
7c7e82a7
CM
2001 /*
2002 * we might commit during log recovery, which happens before we set
2003 * the fs_root. Make sure it is valid before we fill it in.
2004 */
2005 if (info->fs_root && info->fs_root->node) {
2006 btrfs_set_backup_fs_root(root_backup,
2007 info->fs_root->node->start);
2008 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2009 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2010 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2011 btrfs_header_level(info->fs_root->node));
7c7e82a7 2012 }
af31f5e5
CM
2013
2014 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2015 btrfs_set_backup_dev_root_gen(root_backup,
2016 btrfs_header_generation(info->dev_root->node));
2017 btrfs_set_backup_dev_root_level(root_backup,
2018 btrfs_header_level(info->dev_root->node));
2019
af31f5e5
CM
2020 btrfs_set_backup_total_bytes(root_backup,
2021 btrfs_super_total_bytes(info->super_copy));
2022 btrfs_set_backup_bytes_used(root_backup,
2023 btrfs_super_bytes_used(info->super_copy));
2024 btrfs_set_backup_num_devices(root_backup,
2025 btrfs_super_num_devices(info->super_copy));
2026
2027 /*
2028 * if we don't copy this out to the super_copy, it won't get remembered
2029 * for the next commit
2030 */
2031 memcpy(&info->super_copy->super_roots,
2032 &info->super_for_commit->super_roots,
2033 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2034}
2035
bd2336b2
NB
2036/*
2037 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2038 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2039 *
2040 * fs_info - filesystem whose backup roots need to be read
2041 * priority - priority of backup root required
2042 *
2043 * Returns backup root index on success and -EINVAL otherwise.
2044 */
2045static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2046{
2047 int backup_index = find_newest_super_backup(fs_info);
2048 struct btrfs_super_block *super = fs_info->super_copy;
2049 struct btrfs_root_backup *root_backup;
2050
2051 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2052 if (priority == 0)
2053 return backup_index;
2054
2055 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2056 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2057 } else {
2058 return -EINVAL;
2059 }
2060
2061 root_backup = super->super_roots + backup_index;
2062
2063 btrfs_set_super_generation(super,
2064 btrfs_backup_tree_root_gen(root_backup));
2065 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2066 btrfs_set_super_root_level(super,
2067 btrfs_backup_tree_root_level(root_backup));
2068 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2069
2070 /*
2071 * Fixme: the total bytes and num_devices need to match or we should
2072 * need a fsck
2073 */
2074 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2075 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2076
2077 return backup_index;
2078}
2079
7abadb64
LB
2080/* helper to cleanup workers */
2081static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2082{
dc6e3209 2083 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2084 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2085 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2086 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
2087 if (fs_info->endio_workers)
2088 destroy_workqueue(fs_info->endio_workers);
d34e123d
CH
2089 if (fs_info->endio_raid56_workers)
2090 destroy_workqueue(fs_info->endio_raid56_workers);
385de0ef
CH
2091 if (fs_info->rmw_workers)
2092 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
2093 if (fs_info->compressed_write_workers)
2094 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
2095 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2096 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2097 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2098 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2099 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2100 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2101 if (fs_info->discard_ctl.discard_workers)
2102 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2103 /*
2104 * Now that all other work queues are destroyed, we can safely destroy
2105 * the queues used for metadata I/O, since tasks from those other work
2106 * queues can do metadata I/O operations.
2107 */
d7b9416f
CH
2108 if (fs_info->endio_meta_workers)
2109 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2110}
2111
2e9f5954
R
2112static void free_root_extent_buffers(struct btrfs_root *root)
2113{
2114 if (root) {
2115 free_extent_buffer(root->node);
2116 free_extent_buffer(root->commit_root);
2117 root->node = NULL;
2118 root->commit_root = NULL;
2119 }
2120}
2121
abed4aaa
JB
2122static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2123{
2124 struct btrfs_root *root, *tmp;
2125
2126 rbtree_postorder_for_each_entry_safe(root, tmp,
2127 &fs_info->global_root_tree,
2128 rb_node)
2129 free_root_extent_buffers(root);
2130}
2131
af31f5e5 2132/* helper to cleanup tree roots */
4273eaff 2133static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2134{
2e9f5954 2135 free_root_extent_buffers(info->tree_root);
655b09fe 2136
abed4aaa 2137 free_global_root_pointers(info);
2e9f5954 2138 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2139 free_root_extent_buffers(info->quota_root);
2140 free_root_extent_buffers(info->uuid_root);
8c38938c 2141 free_root_extent_buffers(info->fs_root);
aeb935a4 2142 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2143 free_root_extent_buffers(info->block_group_root);
4273eaff 2144 if (free_chunk_root)
2e9f5954 2145 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2146}
2147
8c38938c
JB
2148void btrfs_put_root(struct btrfs_root *root)
2149{
2150 if (!root)
2151 return;
2152
2153 if (refcount_dec_and_test(&root->refs)) {
2154 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2155 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2156 if (root->anon_dev)
2157 free_anon_bdev(root->anon_dev);
2158 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2159 free_root_extent_buffers(root);
8c38938c 2160#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2161 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2162 list_del_init(&root->leak_list);
fc7cbcd4 2163 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2164#endif
2165 kfree(root);
2166 }
2167}
2168
faa2dbf0 2169void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2170{
fc7cbcd4
DS
2171 int ret;
2172 struct btrfs_root *gang[8];
2173 int i;
171f6537
JB
2174
2175 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2176 gang[0] = list_entry(fs_info->dead_roots.next,
2177 struct btrfs_root, root_list);
2178 list_del(&gang[0]->root_list);
171f6537 2179
fc7cbcd4
DS
2180 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2181 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2182 btrfs_put_root(gang[0]);
171f6537
JB
2183 }
2184
fc7cbcd4
DS
2185 while (1) {
2186 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2187 (void **)gang, 0,
2188 ARRAY_SIZE(gang));
2189 if (!ret)
2190 break;
2191 for (i = 0; i < ret; i++)
2192 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2193 }
2194}
af31f5e5 2195
638aa7ed
ES
2196static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2197{
2198 mutex_init(&fs_info->scrub_lock);
2199 atomic_set(&fs_info->scrubs_running, 0);
2200 atomic_set(&fs_info->scrub_pause_req, 0);
2201 atomic_set(&fs_info->scrubs_paused, 0);
2202 atomic_set(&fs_info->scrub_cancel_req, 0);
2203 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2204 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2205}
2206
779a65a4
ES
2207static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2208{
2209 spin_lock_init(&fs_info->balance_lock);
2210 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2211 atomic_set(&fs_info->balance_pause_req, 0);
2212 atomic_set(&fs_info->balance_cancel_req, 0);
2213 fs_info->balance_ctl = NULL;
2214 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2215 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2216}
2217
6bccf3ab 2218static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2219{
2ff7e61e 2220 struct inode *inode = fs_info->btree_inode;
e256927b
JB
2221 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2222 fs_info->tree_root);
2ff7e61e
JM
2223
2224 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2225 set_nlink(inode, 1);
f37938e0
ES
2226 /*
2227 * we set the i_size on the btree inode to the max possible int.
2228 * the real end of the address space is determined by all of
2229 * the devices in the system
2230 */
2ff7e61e
JM
2231 inode->i_size = OFFSET_MAX;
2232 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2233
2ff7e61e 2234 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2235 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
efb0645b 2236 IO_TREE_BTREE_INODE_IO, NULL);
2ff7e61e 2237 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2238
5c8fd99f 2239 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
2240 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2241 BTRFS_I(inode)->location.type = 0;
2242 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 2243 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 2244 __insert_inode_hash(inode, hash);
f37938e0
ES
2245}
2246
ad618368
ES
2247static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2248{
ad618368 2249 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2250 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2251 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2252}
2253
f9e92e40
ES
2254static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2255{
2256 spin_lock_init(&fs_info->qgroup_lock);
2257 mutex_init(&fs_info->qgroup_ioctl_lock);
2258 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2259 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2260 fs_info->qgroup_seq = 1;
f9e92e40 2261 fs_info->qgroup_ulist = NULL;
d2c609b8 2262 fs_info->qgroup_rescan_running = false;
011b46c3 2263 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
2264 mutex_init(&fs_info->qgroup_rescan_lock);
2265}
2266
d21deec5 2267static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2268{
f7b885be 2269 u32 max_active = fs_info->thread_pool_size;
6f011058 2270 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2271
2272 fs_info->workers =
a31b4a43
CH
2273 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2274 fs_info->hipri_workers =
2275 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2276 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2277
2278 fs_info->delalloc_workers =
cb001095
JM
2279 btrfs_alloc_workqueue(fs_info, "delalloc",
2280 flags, max_active, 2);
2a458198
ES
2281
2282 fs_info->flush_workers =
cb001095
JM
2283 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2284 flags, max_active, 0);
2a458198
ES
2285
2286 fs_info->caching_workers =
cb001095 2287 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2288
2a458198 2289 fs_info->fixup_workers =
cb001095 2290 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198 2291
2a458198 2292 fs_info->endio_workers =
d7b9416f 2293 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2294 fs_info->endio_meta_workers =
d7b9416f 2295 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2a458198 2296 fs_info->endio_raid56_workers =
d34e123d 2297 alloc_workqueue("btrfs-endio-raid56", flags, max_active);
385de0ef 2298 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2299 fs_info->endio_write_workers =
cb001095
JM
2300 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2301 max_active, 2);
fed8a72d
CH
2302 fs_info->compressed_write_workers =
2303 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2304 fs_info->endio_freespace_worker =
cb001095
JM
2305 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2306 max_active, 0);
2a458198 2307 fs_info->delayed_workers =
cb001095
JM
2308 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2309 max_active, 0);
2a458198 2310 fs_info->qgroup_rescan_workers =
cb001095 2311 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2312 fs_info->discard_ctl.discard_workers =
2313 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2314
a31b4a43
CH
2315 if (!(fs_info->workers && fs_info->hipri_workers &&
2316 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2317 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2318 fs_info->compressed_write_workers &&
2a458198
ES
2319 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2320 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2321 fs_info->caching_workers && fs_info->fixup_workers &&
2322 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2323 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2324 return -ENOMEM;
2325 }
2326
2327 return 0;
2328}
2329
6d97c6e3
JT
2330static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2331{
2332 struct crypto_shash *csum_shash;
b4e967be 2333 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2334
b4e967be 2335 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2336
2337 if (IS_ERR(csum_shash)) {
2338 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2339 csum_driver);
6d97c6e3
JT
2340 return PTR_ERR(csum_shash);
2341 }
2342
2343 fs_info->csum_shash = csum_shash;
2344
c8a5f8ca
DS
2345 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2346 btrfs_super_csum_name(csum_type),
2347 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2348 return 0;
2349}
2350
63443bf5
ES
2351static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2352 struct btrfs_fs_devices *fs_devices)
2353{
2354 int ret;
63443bf5
ES
2355 struct btrfs_root *log_tree_root;
2356 struct btrfs_super_block *disk_super = fs_info->super_copy;
2357 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2358 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2359
2360 if (fs_devices->rw_devices == 0) {
f14d104d 2361 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2362 return -EIO;
2363 }
2364
96dfcb46
JB
2365 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2366 GFP_KERNEL);
63443bf5
ES
2367 if (!log_tree_root)
2368 return -ENOMEM;
2369
2ff7e61e 2370 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2371 BTRFS_TREE_LOG_OBJECTID,
2372 fs_info->generation + 1, level,
2373 NULL);
64c043de 2374 if (IS_ERR(log_tree_root->node)) {
f14d104d 2375 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2376 ret = PTR_ERR(log_tree_root->node);
8c38938c 2377 log_tree_root->node = NULL;
00246528 2378 btrfs_put_root(log_tree_root);
0eeff236 2379 return ret;
4eb150d6
QW
2380 }
2381 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2382 btrfs_err(fs_info, "failed to read log tree");
00246528 2383 btrfs_put_root(log_tree_root);
63443bf5
ES
2384 return -EIO;
2385 }
4eb150d6 2386
63443bf5
ES
2387 /* returns with log_tree_root freed on success */
2388 ret = btrfs_recover_log_trees(log_tree_root);
2389 if (ret) {
0b246afa
JM
2390 btrfs_handle_fs_error(fs_info, ret,
2391 "Failed to recover log tree");
00246528 2392 btrfs_put_root(log_tree_root);
63443bf5
ES
2393 return ret;
2394 }
2395
bc98a42c 2396 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2397 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2398 if (ret)
2399 return ret;
2400 }
2401
2402 return 0;
2403}
2404
abed4aaa
JB
2405static int load_global_roots_objectid(struct btrfs_root *tree_root,
2406 struct btrfs_path *path, u64 objectid,
2407 const char *name)
2408{
2409 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2410 struct btrfs_root *root;
f7238e50 2411 u64 max_global_id = 0;
abed4aaa
JB
2412 int ret;
2413 struct btrfs_key key = {
2414 .objectid = objectid,
2415 .type = BTRFS_ROOT_ITEM_KEY,
2416 .offset = 0,
2417 };
2418 bool found = false;
2419
2420 /* If we have IGNOREDATACSUMS skip loading these roots. */
2421 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2422 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2423 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2424 return 0;
2425 }
2426
2427 while (1) {
2428 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2429 if (ret < 0)
2430 break;
2431
2432 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2433 ret = btrfs_next_leaf(tree_root, path);
2434 if (ret) {
2435 if (ret > 0)
2436 ret = 0;
2437 break;
2438 }
2439 }
2440 ret = 0;
2441
2442 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2443 if (key.objectid != objectid)
2444 break;
2445 btrfs_release_path(path);
2446
f7238e50
JB
2447 /*
2448 * Just worry about this for extent tree, it'll be the same for
2449 * everybody.
2450 */
2451 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2452 max_global_id = max(max_global_id, key.offset);
2453
abed4aaa
JB
2454 found = true;
2455 root = read_tree_root_path(tree_root, path, &key);
2456 if (IS_ERR(root)) {
2457 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2458 ret = PTR_ERR(root);
2459 break;
2460 }
2461 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462 ret = btrfs_global_root_insert(root);
2463 if (ret) {
2464 btrfs_put_root(root);
2465 break;
2466 }
2467 key.offset++;
2468 }
2469 btrfs_release_path(path);
2470
f7238e50
JB
2471 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2472 fs_info->nr_global_roots = max_global_id + 1;
2473
abed4aaa
JB
2474 if (!found || ret) {
2475 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2476 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2477
2478 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2479 ret = ret ? ret : -ENOENT;
2480 else
2481 ret = 0;
2482 btrfs_err(fs_info, "failed to load root %s", name);
2483 }
2484 return ret;
2485}
2486
2487static int load_global_roots(struct btrfs_root *tree_root)
2488{
2489 struct btrfs_path *path;
2490 int ret = 0;
2491
2492 path = btrfs_alloc_path();
2493 if (!path)
2494 return -ENOMEM;
2495
2496 ret = load_global_roots_objectid(tree_root, path,
2497 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2498 if (ret)
2499 goto out;
2500 ret = load_global_roots_objectid(tree_root, path,
2501 BTRFS_CSUM_TREE_OBJECTID, "csum");
2502 if (ret)
2503 goto out;
2504 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2505 goto out;
2506 ret = load_global_roots_objectid(tree_root, path,
2507 BTRFS_FREE_SPACE_TREE_OBJECTID,
2508 "free space");
2509out:
2510 btrfs_free_path(path);
2511 return ret;
2512}
2513
6bccf3ab 2514static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2515{
6bccf3ab 2516 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2517 struct btrfs_root *root;
4bbcaa64
ES
2518 struct btrfs_key location;
2519 int ret;
2520
6bccf3ab
JM
2521 BUG_ON(!fs_info->tree_root);
2522
abed4aaa
JB
2523 ret = load_global_roots(tree_root);
2524 if (ret)
2525 return ret;
2526
4bbcaa64
ES
2527 location.type = BTRFS_ROOT_ITEM_KEY;
2528 location.offset = 0;
2529
1c56ab99 2530 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2531 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2532 root = btrfs_read_tree_root(tree_root, &location);
2533 if (IS_ERR(root)) {
2534 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2535 ret = PTR_ERR(root);
2536 goto out;
2537 }
2538 } else {
2539 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2540 fs_info->block_group_root = root;
2541 }
2542 }
2543
2544 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2545 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2546 if (IS_ERR(root)) {
42437a63
JB
2547 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2548 ret = PTR_ERR(root);
2549 goto out;
2550 }
2551 } else {
2552 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2553 fs_info->dev_root = root;
f50f4353 2554 }
820a49da
JB
2555 /* Initialize fs_info for all devices in any case */
2556 btrfs_init_devices_late(fs_info);
4bbcaa64 2557
aeb935a4
QW
2558 /*
2559 * This tree can share blocks with some other fs tree during relocation
2560 * and we need a proper setup by btrfs_get_fs_root
2561 */
56e9357a
DS
2562 root = btrfs_get_fs_root(tree_root->fs_info,
2563 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2564 if (IS_ERR(root)) {
42437a63
JB
2565 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2566 ret = PTR_ERR(root);
2567 goto out;
2568 }
2569 } else {
2570 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2571 fs_info->data_reloc_root = root;
aeb935a4 2572 }
aeb935a4 2573
4bbcaa64 2574 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2575 root = btrfs_read_tree_root(tree_root, &location);
2576 if (!IS_ERR(root)) {
2577 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2578 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2579 fs_info->quota_root = root;
4bbcaa64
ES
2580 }
2581
2582 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2583 root = btrfs_read_tree_root(tree_root, &location);
2584 if (IS_ERR(root)) {
42437a63
JB
2585 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2586 ret = PTR_ERR(root);
2587 if (ret != -ENOENT)
2588 goto out;
2589 }
4bbcaa64 2590 } else {
a4f3d2c4
DS
2591 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2592 fs_info->uuid_root = root;
4bbcaa64
ES
2593 }
2594
2595 return 0;
f50f4353
LB
2596out:
2597 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2598 location.objectid, ret);
2599 return ret;
4bbcaa64
ES
2600}
2601
069ec957
QW
2602/*
2603 * Real super block validation
2604 * NOTE: super csum type and incompat features will not be checked here.
2605 *
2606 * @sb: super block to check
2607 * @mirror_num: the super block number to check its bytenr:
2608 * 0 the primary (1st) sb
2609 * 1, 2 2nd and 3rd backup copy
2610 * -1 skip bytenr check
2611 */
a05d3c91
QW
2612int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2613 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2614{
21a852b0
QW
2615 u64 nodesize = btrfs_super_nodesize(sb);
2616 u64 sectorsize = btrfs_super_sectorsize(sb);
2617 int ret = 0;
2618
2619 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2620 btrfs_err(fs_info, "no valid FS found");
2621 ret = -EINVAL;
2622 }
2623 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2624 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2625 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2626 ret = -EINVAL;
2627 }
2628 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2629 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2630 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2631 ret = -EINVAL;
2632 }
2633 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2634 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2635 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2636 ret = -EINVAL;
2637 }
2638 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2639 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2640 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2641 ret = -EINVAL;
2642 }
2643
2644 /*
2645 * Check sectorsize and nodesize first, other check will need it.
2646 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2647 */
2648 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2649 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2650 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2651 ret = -EINVAL;
2652 }
0bb3eb3e
QW
2653
2654 /*
1a42daab
QW
2655 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2656 *
2657 * We can support 16K sectorsize with 64K page size without problem,
2658 * but such sectorsize/pagesize combination doesn't make much sense.
2659 * 4K will be our future standard, PAGE_SIZE is supported from the very
2660 * beginning.
0bb3eb3e 2661 */
1a42daab 2662 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2663 btrfs_err(fs_info,
0bb3eb3e 2664 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2665 sectorsize, PAGE_SIZE);
2666 ret = -EINVAL;
2667 }
0bb3eb3e 2668
21a852b0
QW
2669 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2670 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2671 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2672 ret = -EINVAL;
2673 }
2674 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2675 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2676 le32_to_cpu(sb->__unused_leafsize), nodesize);
2677 ret = -EINVAL;
2678 }
2679
2680 /* Root alignment check */
2681 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2682 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2683 btrfs_super_root(sb));
2684 ret = -EINVAL;
2685 }
2686 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2687 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2688 btrfs_super_chunk_root(sb));
2689 ret = -EINVAL;
2690 }
2691 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2692 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2693 btrfs_super_log_root(sb));
2694 ret = -EINVAL;
2695 }
2696
aefd7f70
NB
2697 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2698 BTRFS_FSID_SIZE)) {
2699 btrfs_err(fs_info,
2700 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2701 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2702 ret = -EINVAL;
2703 }
2704
2705 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2706 memcmp(fs_info->fs_devices->metadata_uuid,
2707 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2708 btrfs_err(fs_info,
2709"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2710 fs_info->super_copy->metadata_uuid,
2711 fs_info->fs_devices->metadata_uuid);
2712 ret = -EINVAL;
2713 }
2714
1c56ab99
QW
2715 /*
2716 * Artificial requirement for block-group-tree to force newer features
2717 * (free-space-tree, no-holes) so the test matrix is smaller.
2718 */
2719 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2720 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2721 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2722 btrfs_err(fs_info,
2723 "block-group-tree feature requires fres-space-tree and no-holes");
2724 ret = -EINVAL;
2725 }
2726
de37aa51 2727 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2728 BTRFS_FSID_SIZE) != 0) {
21a852b0 2729 btrfs_err(fs_info,
7239ff4b 2730 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2731 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2732 ret = -EINVAL;
2733 }
2734
2735 /*
2736 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2737 * done later
2738 */
2739 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2740 btrfs_err(fs_info, "bytes_used is too small %llu",
2741 btrfs_super_bytes_used(sb));
2742 ret = -EINVAL;
2743 }
2744 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2745 btrfs_err(fs_info, "invalid stripesize %u",
2746 btrfs_super_stripesize(sb));
2747 ret = -EINVAL;
2748 }
2749 if (btrfs_super_num_devices(sb) > (1UL << 31))
2750 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2751 btrfs_super_num_devices(sb));
2752 if (btrfs_super_num_devices(sb) == 0) {
2753 btrfs_err(fs_info, "number of devices is 0");
2754 ret = -EINVAL;
2755 }
2756
069ec957
QW
2757 if (mirror_num >= 0 &&
2758 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2759 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2760 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2761 ret = -EINVAL;
2762 }
2763
2764 /*
2765 * Obvious sys_chunk_array corruptions, it must hold at least one key
2766 * and one chunk
2767 */
2768 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2769 btrfs_err(fs_info, "system chunk array too big %u > %u",
2770 btrfs_super_sys_array_size(sb),
2771 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2772 ret = -EINVAL;
2773 }
2774 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2775 + sizeof(struct btrfs_chunk)) {
2776 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2777 btrfs_super_sys_array_size(sb),
2778 sizeof(struct btrfs_disk_key)
2779 + sizeof(struct btrfs_chunk));
2780 ret = -EINVAL;
2781 }
2782
2783 /*
2784 * The generation is a global counter, we'll trust it more than the others
2785 * but it's still possible that it's the one that's wrong.
2786 */
2787 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2788 btrfs_warn(fs_info,
2789 "suspicious: generation < chunk_root_generation: %llu < %llu",
2790 btrfs_super_generation(sb),
2791 btrfs_super_chunk_root_generation(sb));
2792 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2793 && btrfs_super_cache_generation(sb) != (u64)-1)
2794 btrfs_warn(fs_info,
2795 "suspicious: generation < cache_generation: %llu < %llu",
2796 btrfs_super_generation(sb),
2797 btrfs_super_cache_generation(sb));
2798
2799 return ret;
2800}
2801
069ec957
QW
2802/*
2803 * Validation of super block at mount time.
2804 * Some checks already done early at mount time, like csum type and incompat
2805 * flags will be skipped.
2806 */
2807static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2808{
a05d3c91 2809 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2810}
2811
75cb857d
QW
2812/*
2813 * Validation of super block at write time.
2814 * Some checks like bytenr check will be skipped as their values will be
2815 * overwritten soon.
2816 * Extra checks like csum type and incompat flags will be done here.
2817 */
2818static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2819 struct btrfs_super_block *sb)
2820{
2821 int ret;
2822
a05d3c91 2823 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2824 if (ret < 0)
2825 goto out;
e7e16f48 2826 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2827 ret = -EUCLEAN;
2828 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2829 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2830 goto out;
2831 }
2832 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2833 ret = -EUCLEAN;
2834 btrfs_err(fs_info,
2835 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2836 btrfs_super_incompat_flags(sb),
2837 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2838 goto out;
2839 }
2840out:
2841 if (ret < 0)
2842 btrfs_err(fs_info,
2843 "super block corruption detected before writing it to disk");
2844 return ret;
2845}
2846
bd676446
JB
2847static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2848{
2849 int ret = 0;
2850
2851 root->node = read_tree_block(root->fs_info, bytenr,
2852 root->root_key.objectid, gen, level, NULL);
2853 if (IS_ERR(root->node)) {
2854 ret = PTR_ERR(root->node);
2855 root->node = NULL;
4eb150d6
QW
2856 return ret;
2857 }
2858 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2859 free_extent_buffer(root->node);
2860 root->node = NULL;
4eb150d6 2861 return -EIO;
bd676446
JB
2862 }
2863
bd676446
JB
2864 btrfs_set_root_node(&root->root_item, root->node);
2865 root->commit_root = btrfs_root_node(root);
2866 btrfs_set_root_refs(&root->root_item, 1);
2867 return ret;
2868}
2869
2870static int load_important_roots(struct btrfs_fs_info *fs_info)
2871{
2872 struct btrfs_super_block *sb = fs_info->super_copy;
2873 u64 gen, bytenr;
2874 int level, ret;
2875
2876 bytenr = btrfs_super_root(sb);
2877 gen = btrfs_super_generation(sb);
2878 level = btrfs_super_root_level(sb);
2879 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2880 if (ret) {
bd676446 2881 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2882 return ret;
2883 }
14033b08 2884 return 0;
bd676446
JB
2885}
2886
6ef108dd 2887static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2888{
6ef108dd 2889 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2890 struct btrfs_super_block *sb = fs_info->super_copy;
2891 struct btrfs_root *tree_root = fs_info->tree_root;
2892 bool handle_error = false;
2893 int ret = 0;
2894 int i;
2895
2896 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2897 if (handle_error) {
2898 if (!IS_ERR(tree_root->node))
2899 free_extent_buffer(tree_root->node);
2900 tree_root->node = NULL;
2901
2902 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2903 break;
2904
2905 free_root_pointers(fs_info, 0);
2906
2907 /*
2908 * Don't use the log in recovery mode, it won't be
2909 * valid
2910 */
2911 btrfs_set_super_log_root(sb, 0);
2912
2913 /* We can't trust the free space cache either */
2914 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2915
2916 ret = read_backup_root(fs_info, i);
6ef108dd 2917 backup_index = ret;
b8522a1e
NB
2918 if (ret < 0)
2919 return ret;
2920 }
b8522a1e 2921
bd676446
JB
2922 ret = load_important_roots(fs_info);
2923 if (ret) {
217f5004 2924 handle_error = true;
b8522a1e
NB
2925 continue;
2926 }
2927
336a0d8d
NB
2928 /*
2929 * No need to hold btrfs_root::objectid_mutex since the fs
2930 * hasn't been fully initialised and we are the only user
2931 */
453e4873 2932 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2933 if (ret < 0) {
b8522a1e
NB
2934 handle_error = true;
2935 continue;
2936 }
2937
6b8fad57 2938 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2939
2940 ret = btrfs_read_roots(fs_info);
2941 if (ret < 0) {
2942 handle_error = true;
2943 continue;
2944 }
2945
2946 /* All successful */
bd676446
JB
2947 fs_info->generation = btrfs_header_generation(tree_root->node);
2948 fs_info->last_trans_committed = fs_info->generation;
d96b3424 2949 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2950
2951 /* Always begin writing backup roots after the one being used */
2952 if (backup_index < 0) {
2953 fs_info->backup_root_index = 0;
2954 } else {
2955 fs_info->backup_root_index = backup_index + 1;
2956 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2957 }
b8522a1e
NB
2958 break;
2959 }
2960
2961 return ret;
2962}
2963
8260edba 2964void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2965{
fc7cbcd4 2966 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2967 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2968 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2969 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2970 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2971 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2972 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2973 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2974 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2975 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2976 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2977 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2978 spin_lock_init(&fs_info->super_lock);
f28491e0 2979 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2980 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2981 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2982 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2983 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2984 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2985 rwlock_init(&fs_info->global_root_lock);
d7c15171 2986 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2987 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2988 mutex_init(&fs_info->reloc_mutex);
573bfb72 2989 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2990 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2991 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2992 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2993
e1489b4f 2994 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2995 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2996 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2997 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3e738c53
IA
2998 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2999 BTRFS_LOCKDEP_TRANS_COMMIT_START);
3000 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3001 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3002 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3003 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3004 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3005 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 3006
0b86a832 3007 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3008 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3009 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3010 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3011 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3012 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3013#ifdef CONFIG_BTRFS_DEBUG
3014 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3015 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3016 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3017#endif
c8bf1b67 3018 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3019 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3020 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3021 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3022 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3023 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3024 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3025 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3026 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3027 BTRFS_BLOCK_RSV_DELREFS);
3028
771ed689 3029 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3030 atomic_set(&fs_info->defrag_running, 0);
034f784d 3031 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3032 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3033 fs_info->global_root_tree = RB_ROOT;
95ac567a 3034 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3035 fs_info->metadata_ratio = 0;
4cb5300b 3036 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3037 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3038 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3039 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3040 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3041 btrfs_init_ref_verify(fs_info);
c8b97818 3042
b34b086c
CM
3043 fs_info->thread_pool_size = min_t(unsigned long,
3044 num_online_cpus() + 2, 8);
0afbaf8c 3045
199c2a9c
MX
3046 INIT_LIST_HEAD(&fs_info->ordered_roots);
3047 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3048
638aa7ed 3049 btrfs_init_scrub(fs_info);
21adbd5c
SB
3050#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3051 fs_info->check_integrity_print_mask = 0;
3052#endif
779a65a4 3053 btrfs_init_balance(fs_info);
57056740 3054 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3055
16b0c258 3056 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3057 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3058
fe119a6e
NB
3059 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3060 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3061
5a3f23d5 3062 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3063 mutex_init(&fs_info->tree_log_mutex);
925baedd 3064 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3065 mutex_init(&fs_info->transaction_kthread_mutex);
3066 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3067 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3068 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3069 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3070 init_rwsem(&fs_info->subvol_sem);
803b2f54 3071 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3072
ad618368 3073 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3074 btrfs_init_qgroup(fs_info);
b0643e59 3075 btrfs_discard_init(fs_info);
416ac51d 3076
fa9c0d79
CM
3077 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3078 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3079
e6dcd2dc 3080 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3081 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3082 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3083 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3084 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3085
da17066c
JM
3086 /* Usable values until the real ones are cached from the superblock */
3087 fs_info->nodesize = 4096;
3088 fs_info->sectorsize = 4096;
ab108d99 3089 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3090 fs_info->stripesize = 4096;
3091
f7b12a62
NA
3092 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3093
eede2bf3
OS
3094 spin_lock_init(&fs_info->swapfile_pins_lock);
3095 fs_info->swapfile_pins = RB_ROOT;
3096
18bb8bbf
JT
3097 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3098 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3099}
3100
3101static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3102{
3103 int ret;
3104
3105 fs_info->sb = sb;
3106 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3107 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3108
5deb17e1 3109 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3110 if (ret)
c75e8394 3111 return ret;
ae18c37a
JB
3112
3113 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3114 if (ret)
c75e8394 3115 return ret;
ae18c37a
JB
3116
3117 fs_info->dirty_metadata_batch = PAGE_SIZE *
3118 (1 + ilog2(nr_cpu_ids));
3119
3120 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3121 if (ret)
c75e8394 3122 return ret;
ae18c37a
JB
3123
3124 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3125 GFP_KERNEL);
3126 if (ret)
c75e8394 3127 return ret;
ae18c37a
JB
3128
3129 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3130 GFP_KERNEL);
c75e8394
JB
3131 if (!fs_info->delayed_root)
3132 return -ENOMEM;
ae18c37a
JB
3133 btrfs_init_delayed_root(fs_info->delayed_root);
3134
a0a1db70
FM
3135 if (sb_rdonly(sb))
3136 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3137
c75e8394 3138 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3139}
3140
97f4dd09
NB
3141static int btrfs_uuid_rescan_kthread(void *data)
3142{
0d031dc4 3143 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3144 int ret;
3145
3146 /*
3147 * 1st step is to iterate through the existing UUID tree and
3148 * to delete all entries that contain outdated data.
3149 * 2nd step is to add all missing entries to the UUID tree.
3150 */
3151 ret = btrfs_uuid_tree_iterate(fs_info);
3152 if (ret < 0) {
c94bec2c
JB
3153 if (ret != -EINTR)
3154 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3155 ret);
97f4dd09
NB
3156 up(&fs_info->uuid_tree_rescan_sem);
3157 return ret;
3158 }
3159 return btrfs_uuid_scan_kthread(data);
3160}
3161
3162static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3163{
3164 struct task_struct *task;
3165
3166 down(&fs_info->uuid_tree_rescan_sem);
3167 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3168 if (IS_ERR(task)) {
3169 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3170 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3171 up(&fs_info->uuid_tree_rescan_sem);
3172 return PTR_ERR(task);
3173 }
3174
3175 return 0;
3176}
3177
8cd29088
BB
3178/*
3179 * Some options only have meaning at mount time and shouldn't persist across
3180 * remounts, or be displayed. Clear these at the end of mount and remount
3181 * code paths.
3182 */
3183void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3184{
3185 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3186 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3187}
3188
44c0ca21
BB
3189/*
3190 * Mounting logic specific to read-write file systems. Shared by open_ctree
3191 * and btrfs_remount when remounting from read-only to read-write.
3192 */
3193int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3194{
3195 int ret;
94846229 3196 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3197 bool clear_free_space_tree = false;
3198
3199 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3200 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3201 clear_free_space_tree = true;
3202 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3203 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3204 btrfs_warn(fs_info, "free space tree is invalid");
3205 clear_free_space_tree = true;
3206 }
3207
3208 if (clear_free_space_tree) {
3209 btrfs_info(fs_info, "clearing free space tree");
3210 ret = btrfs_clear_free_space_tree(fs_info);
3211 if (ret) {
3212 btrfs_warn(fs_info,
3213 "failed to clear free space tree: %d", ret);
3214 goto out;
3215 }
3216 }
44c0ca21 3217
8d488a8c
FM
3218 /*
3219 * btrfs_find_orphan_roots() is responsible for finding all the dead
3220 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3221 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3222 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3223 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3224 * item before the root's tree is deleted - this means that if we unmount
3225 * or crash before the deletion completes, on the next mount we will not
3226 * delete what remains of the tree because the orphan item does not
3227 * exists anymore, which is what tells us we have a pending deletion.
3228 */
3229 ret = btrfs_find_orphan_roots(fs_info);
3230 if (ret)
3231 goto out;
3232
44c0ca21
BB
3233 ret = btrfs_cleanup_fs_roots(fs_info);
3234 if (ret)
3235 goto out;
3236
8f1c21d7
BB
3237 down_read(&fs_info->cleanup_work_sem);
3238 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3239 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3240 up_read(&fs_info->cleanup_work_sem);
3241 goto out;
3242 }
3243 up_read(&fs_info->cleanup_work_sem);
3244
44c0ca21 3245 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3246 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3247 mutex_unlock(&fs_info->cleaner_mutex);
3248 if (ret < 0) {
3249 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3250 goto out;
3251 }
3252
5011139a
BB
3253 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3254 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3255 btrfs_info(fs_info, "creating free space tree");
3256 ret = btrfs_create_free_space_tree(fs_info);
3257 if (ret) {
3258 btrfs_warn(fs_info,
3259 "failed to create free space tree: %d", ret);
3260 goto out;
3261 }
3262 }
3263
94846229
BB
3264 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3265 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3266 if (ret)
3267 goto out;
3268 }
3269
44c0ca21
BB
3270 ret = btrfs_resume_balance_async(fs_info);
3271 if (ret)
3272 goto out;
3273
3274 ret = btrfs_resume_dev_replace_async(fs_info);
3275 if (ret) {
3276 btrfs_warn(fs_info, "failed to resume dev_replace");
3277 goto out;
3278 }
3279
3280 btrfs_qgroup_rescan_resume(fs_info);
3281
3282 if (!fs_info->uuid_root) {
3283 btrfs_info(fs_info, "creating UUID tree");
3284 ret = btrfs_create_uuid_tree(fs_info);
3285 if (ret) {
3286 btrfs_warn(fs_info,
3287 "failed to create the UUID tree %d", ret);
3288 goto out;
3289 }
3290 }
3291
3292out:
3293 return ret;
3294}
3295
ae18c37a
JB
3296int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3297 char *options)
3298{
3299 u32 sectorsize;
3300 u32 nodesize;
3301 u32 stripesize;
3302 u64 generation;
3303 u64 features;
3304 u16 csum_type;
ae18c37a
JB
3305 struct btrfs_super_block *disk_super;
3306 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3307 struct btrfs_root *tree_root;
3308 struct btrfs_root *chunk_root;
3309 int ret;
3310 int err = -EINVAL;
ae18c37a
JB
3311 int level;
3312
8260edba 3313 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3314 if (ret) {
83c8266a 3315 err = ret;
ae18c37a 3316 goto fail;
53b381b3
DW
3317 }
3318
ae18c37a
JB
3319 /* These need to be init'ed before we start creating inodes and such. */
3320 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3321 GFP_KERNEL);
3322 fs_info->tree_root = tree_root;
3323 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3324 GFP_KERNEL);
3325 fs_info->chunk_root = chunk_root;
3326 if (!tree_root || !chunk_root) {
3327 err = -ENOMEM;
c75e8394 3328 goto fail;
ae18c37a
JB
3329 }
3330
3331 fs_info->btree_inode = new_inode(sb);
3332 if (!fs_info->btree_inode) {
3333 err = -ENOMEM;
c75e8394 3334 goto fail;
ae18c37a
JB
3335 }
3336 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3337 btrfs_init_btree_inode(fs_info);
3338
d24fa5c1 3339 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3340
3341 /*
3342 * Read super block and check the signature bytes only
3343 */
d24fa5c1 3344 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3345 if (IS_ERR(disk_super)) {
3346 err = PTR_ERR(disk_super);
16cdcec7 3347 goto fail_alloc;
20b45077 3348 }
39279cc3 3349
8dc3f22c 3350 /*
260db43c 3351 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3352 * corrupted, we'll find out
3353 */
8f32380d 3354 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3355 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3356 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3357 csum_type);
8dc3f22c 3358 err = -EINVAL;
8f32380d 3359 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3360 goto fail_alloc;
3361 }
3362
83c68bbc
SY
3363 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3364
6d97c6e3
JT
3365 ret = btrfs_init_csum_hash(fs_info, csum_type);
3366 if (ret) {
3367 err = ret;
8f32380d 3368 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3369 goto fail_alloc;
3370 }
3371
1104a885
DS
3372 /*
3373 * We want to check superblock checksum, the type is stored inside.
3374 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3375 */
8f32380d 3376 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3377 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3378 err = -EINVAL;
8f32380d 3379 btrfs_release_disk_super(disk_super);
141386e1 3380 goto fail_alloc;
1104a885
DS
3381 }
3382
3383 /*
3384 * super_copy is zeroed at allocation time and we never touch the
3385 * following bytes up to INFO_SIZE, the checksum is calculated from
3386 * the whole block of INFO_SIZE
3387 */
8f32380d
JT
3388 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3389 btrfs_release_disk_super(disk_super);
5f39d397 3390
fbc6feae
NB
3391 disk_super = fs_info->super_copy;
3392
0b86a832 3393
fbc6feae
NB
3394 features = btrfs_super_flags(disk_super);
3395 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3396 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3397 btrfs_set_super_flags(disk_super, features);
3398 btrfs_info(fs_info,
3399 "found metadata UUID change in progress flag, clearing");
3400 }
3401
3402 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3403 sizeof(*fs_info->super_for_commit));
de37aa51 3404
069ec957 3405 ret = btrfs_validate_mount_super(fs_info);
1104a885 3406 if (ret) {
05135f59 3407 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3408 err = -EINVAL;
141386e1 3409 goto fail_alloc;
1104a885
DS
3410 }
3411
0f7d52f4 3412 if (!btrfs_super_root(disk_super))
141386e1 3413 goto fail_alloc;
0f7d52f4 3414
acce952b 3415 /* check FS state, whether FS is broken. */
87533c47
MX
3416 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3417 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3418
75e7cb7f
LB
3419 /*
3420 * In the long term, we'll store the compression type in the super
3421 * block, and it'll be used for per file compression control.
3422 */
3423 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3424
6f93e834
AJ
3425
3426 /* Set up fs_info before parsing mount options */
3427 nodesize = btrfs_super_nodesize(disk_super);
3428 sectorsize = btrfs_super_sectorsize(disk_super);
3429 stripesize = sectorsize;
3430 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3431 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3432
3433 fs_info->nodesize = nodesize;
3434 fs_info->sectorsize = sectorsize;
3435 fs_info->sectorsize_bits = ilog2(sectorsize);
3436 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3437 fs_info->stripesize = stripesize;
3438
2ff7e61e 3439 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3440 if (ret) {
3441 err = ret;
141386e1 3442 goto fail_alloc;
2b82032c 3443 }
dfe25020 3444
f2b636e8
JB
3445 features = btrfs_super_incompat_flags(disk_super) &
3446 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3447 if (features) {
05135f59 3448 btrfs_err(fs_info,
d5321a0f 3449 "cannot mount because of unsupported optional features (0x%llx)",
05135f59 3450 features);
f2b636e8 3451 err = -EINVAL;
141386e1 3452 goto fail_alloc;
f2b636e8
JB
3453 }
3454
5d4f98a2 3455 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3456 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3457 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3458 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3459 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3460 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3461
e26b04c4
NB
3462 /*
3463 * Flag our filesystem as having big metadata blocks if they are bigger
3464 * than the page size.
3465 */
6b769dac 3466 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
e26b04c4 3467 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3173a18f 3468
bc3f116f
CM
3469 /*
3470 * mixed block groups end up with duplicate but slightly offset
3471 * extent buffers for the same range. It leads to corruptions
3472 */
3473 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3474 (sectorsize != nodesize)) {
05135f59
DS
3475 btrfs_err(fs_info,
3476"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3477 nodesize, sectorsize);
141386e1 3478 goto fail_alloc;
bc3f116f
CM
3479 }
3480
ceda0864
MX
3481 /*
3482 * Needn't use the lock because there is no other task which will
3483 * update the flag.
3484 */
a6fa6fae 3485 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3486
f2b636e8
JB
3487 features = btrfs_super_compat_ro_flags(disk_super) &
3488 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3489 if (!sb_rdonly(sb) && features) {
05135f59 3490 btrfs_err(fs_info,
d5321a0f 3491 "cannot mount read-write because of unsupported optional features (0x%llx)",
c1c9ff7c 3492 features);
f2b636e8 3493 err = -EINVAL;
141386e1 3494 goto fail_alloc;
f2b636e8 3495 }
dc4d3168
QW
3496 /*
3497 * We have unsupported RO compat features, although RO mounted, we
3498 * should not cause any metadata write, including log replay.
3499 * Or we could screw up whatever the new feature requires.
3500 */
3501 if (unlikely(features && btrfs_super_log_root(disk_super) &&
3502 !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3503 btrfs_err(fs_info,
3504"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3505 features);
3506 err = -EINVAL;
3507 goto fail_alloc;
3508 }
3509
61d92c32 3510
8481dd80
QW
3511 if (sectorsize < PAGE_SIZE) {
3512 struct btrfs_subpage_info *subpage_info;
3513
9f73f1ae
QW
3514 /*
3515 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3516 * going to be deprecated.
3517 *
3518 * Force to use v2 cache for subpage case.
3519 */
3520 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3521 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3522 "forcing free space tree for sector size %u with page size %lu",
3523 sectorsize, PAGE_SIZE);
3524
95ea0486
QW
3525 btrfs_warn(fs_info,
3526 "read-write for sector size %u with page size %lu is experimental",
3527 sectorsize, PAGE_SIZE);
8481dd80
QW
3528 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3529 if (!subpage_info)
3530 goto fail_alloc;
3531 btrfs_init_subpage_info(subpage_info, sectorsize);
3532 fs_info->subpage_info = subpage_info;
c8050b3b 3533 }
0bb3eb3e 3534
d21deec5 3535 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3536 if (ret) {
3537 err = ret;
0dc3b84a
JB
3538 goto fail_sb_buffer;
3539 }
4543df7e 3540
9e11ceee
JK
3541 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3542 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3543
a061fc8d
CM
3544 sb->s_blocksize = sectorsize;
3545 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3546 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3547
925baedd 3548 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3549 ret = btrfs_read_sys_array(fs_info);
925baedd 3550 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3551 if (ret) {
05135f59 3552 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3553 goto fail_sb_buffer;
84eed90f 3554 }
0b86a832 3555
84234f3a 3556 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3557 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3558 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3559 generation, level);
3560 if (ret) {
05135f59 3561 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3562 goto fail_tree_roots;
83121942 3563 }
0b86a832 3564
e17cade2 3565 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3566 offsetof(struct btrfs_header, chunk_tree_uuid),
3567 BTRFS_UUID_SIZE);
e17cade2 3568
5b4aacef 3569 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3570 if (ret) {
05135f59 3571 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3572 goto fail_tree_roots;
2b82032c 3573 }
0b86a832 3574
8dabb742 3575 /*
bacce86a
AJ
3576 * At this point we know all the devices that make this filesystem,
3577 * including the seed devices but we don't know yet if the replace
3578 * target is required. So free devices that are not part of this
1a9fd417 3579 * filesystem but skip the replace target device which is checked
bacce86a 3580 * below in btrfs_init_dev_replace().
8dabb742 3581 */
bacce86a 3582 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3583 if (!fs_devices->latest_dev->bdev) {
05135f59 3584 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3585 goto fail_tree_roots;
3586 }
3587
b8522a1e 3588 ret = init_tree_roots(fs_info);
4bbcaa64 3589 if (ret)
b8522a1e 3590 goto fail_tree_roots;
8929ecfa 3591
73651042
NA
3592 /*
3593 * Get zone type information of zoned block devices. This will also
3594 * handle emulation of a zoned filesystem if a regular device has the
3595 * zoned incompat feature flag set.
3596 */
3597 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3598 if (ret) {
3599 btrfs_err(fs_info,
3600 "zoned: failed to read device zone info: %d",
3601 ret);
3602 goto fail_block_groups;
3603 }
3604
75ec1db8
JB
3605 /*
3606 * If we have a uuid root and we're not being told to rescan we need to
3607 * check the generation here so we can set the
3608 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3609 * transaction during a balance or the log replay without updating the
3610 * uuid generation, and then if we crash we would rescan the uuid tree,
3611 * even though it was perfectly fine.
3612 */
3613 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3614 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3615 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3616
cf90d884
QW
3617 ret = btrfs_verify_dev_extents(fs_info);
3618 if (ret) {
3619 btrfs_err(fs_info,
3620 "failed to verify dev extents against chunks: %d",
3621 ret);
3622 goto fail_block_groups;
3623 }
68310a5e
ID
3624 ret = btrfs_recover_balance(fs_info);
3625 if (ret) {
05135f59 3626 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3627 goto fail_block_groups;
3628 }
3629
733f4fbb
SB
3630 ret = btrfs_init_dev_stats(fs_info);
3631 if (ret) {
05135f59 3632 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3633 goto fail_block_groups;
3634 }
3635
8dabb742
SB
3636 ret = btrfs_init_dev_replace(fs_info);
3637 if (ret) {
05135f59 3638 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3639 goto fail_block_groups;
3640 }
3641
b70f5097
NA
3642 ret = btrfs_check_zoned_mode(fs_info);
3643 if (ret) {
3644 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3645 ret);
3646 goto fail_block_groups;
3647 }
3648
c6761a9e 3649 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3650 if (ret) {
05135f59
DS
3651 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3652 ret);
b7c35e81
AJ
3653 goto fail_block_groups;
3654 }
3655
96f3136e 3656 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3657 if (ret) {
05135f59 3658 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3659 goto fail_fsdev_sysfs;
c59021f8 3660 }
3661
c59021f8 3662 ret = btrfs_init_space_info(fs_info);
3663 if (ret) {
05135f59 3664 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3665 goto fail_sysfs;
c59021f8 3666 }
3667
5b4aacef 3668 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3669 if (ret) {
05135f59 3670 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3671 goto fail_sysfs;
1b1d1f66 3672 }
4330e183 3673
16beac87
NA
3674 btrfs_free_zone_cache(fs_info);
3675
5c78a5e7
AJ
3676 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3677 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3678 btrfs_warn(fs_info,
52042d8e 3679 "writable mount is not allowed due to too many missing devices");
2365dd3c 3680 goto fail_sysfs;
292fd7fc 3681 }
9078a3e1 3682
33c44184 3683 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3684 "btrfs-cleaner");
57506d50 3685 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3686 goto fail_sysfs;
a74a4b97
CM
3687
3688 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3689 tree_root,
3690 "btrfs-transaction");
57506d50 3691 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3692 goto fail_cleaner;
a74a4b97 3693
583b7231 3694 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3695 !fs_info->fs_devices->rotating) {
583b7231 3696 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3697 }
3698
572d9ab7 3699 /*
01327610 3700 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3701 * not have to wait for transaction commit
3702 */
3703 btrfs_apply_pending_changes(fs_info);
3818aea2 3704
21adbd5c 3705#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3706 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3707 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3708 btrfs_test_opt(fs_info,
cbeaae4f 3709 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3710 fs_info->check_integrity_print_mask);
3711 if (ret)
05135f59
DS
3712 btrfs_warn(fs_info,
3713 "failed to initialize integrity check module: %d",
3714 ret);
21adbd5c
SB
3715 }
3716#endif
bcef60f2
AJ
3717 ret = btrfs_read_qgroup_config(fs_info);
3718 if (ret)
3719 goto fail_trans_kthread;
21adbd5c 3720
fd708b81
JB
3721 if (btrfs_build_ref_tree(fs_info))
3722 btrfs_err(fs_info, "couldn't build ref tree");
3723
96da0919
QW
3724 /* do not make disk changes in broken FS or nologreplay is given */
3725 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3726 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3727 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3728 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3729 if (ret) {
63443bf5 3730 err = ret;
28c16cbb 3731 goto fail_qgroup;
79787eaa 3732 }
e02119d5 3733 }
1a40e23b 3734
56e9357a 3735 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3736 if (IS_ERR(fs_info->fs_root)) {
3737 err = PTR_ERR(fs_info->fs_root);
f50f4353 3738 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3739 fs_info->fs_root = NULL;
bcef60f2 3740 goto fail_qgroup;
3140c9a3 3741 }
c289811c 3742
bc98a42c 3743 if (sb_rdonly(sb))
8cd29088 3744 goto clear_oneshot;
59641015 3745
44c0ca21 3746 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3747 if (ret) {
6bccf3ab 3748 close_ctree(fs_info);
2b6ba629 3749 return ret;
e3acc2a6 3750 }
b0643e59 3751 btrfs_discard_resume(fs_info);
b382a324 3752
44c0ca21
BB
3753 if (fs_info->uuid_root &&
3754 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3755 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3756 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3757 ret = btrfs_check_uuid_tree(fs_info);
3758 if (ret) {
05135f59
DS
3759 btrfs_warn(fs_info,
3760 "failed to check the UUID tree: %d", ret);
6bccf3ab 3761 close_ctree(fs_info);
70f80175
SB
3762 return ret;
3763 }
f7a81ea4 3764 }
94846229 3765
afcdd129 3766 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3767
b4be6aef
JB
3768 /* Kick the cleaner thread so it'll start deleting snapshots. */
3769 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3770 wake_up_process(fs_info->cleaner_kthread);
3771
8cd29088
BB
3772clear_oneshot:
3773 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3774 return 0;
39279cc3 3775
bcef60f2
AJ
3776fail_qgroup:
3777 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3778fail_trans_kthread:
3779 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3780 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3781 btrfs_free_fs_roots(fs_info);
3f157a2f 3782fail_cleaner:
a74a4b97 3783 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3784
3785 /*
3786 * make sure we're done with the btree inode before we stop our
3787 * kthreads
3788 */
3789 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3790
2365dd3c 3791fail_sysfs:
6618a59b 3792 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3793
b7c35e81
AJ
3794fail_fsdev_sysfs:
3795 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3796
1b1d1f66 3797fail_block_groups:
54067ae9 3798 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3799
3800fail_tree_roots:
9e3aa805
JB
3801 if (fs_info->data_reloc_root)
3802 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3803 free_root_pointers(fs_info, true);
2b8195bb 3804 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3805
39279cc3 3806fail_sb_buffer:
7abadb64 3807 btrfs_stop_all_workers(fs_info);
5cdd7db6 3808 btrfs_free_block_groups(fs_info);
16cdcec7 3809fail_alloc:
586e46e2
ID
3810 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3811
4543df7e 3812 iput(fs_info->btree_inode);
7e662854 3813fail:
586e46e2 3814 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3815 return err;
eb60ceac 3816}
663faf9f 3817ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3818
314b6dd0 3819static void btrfs_end_super_write(struct bio *bio)
f2984462 3820{
314b6dd0
JT
3821 struct btrfs_device *device = bio->bi_private;
3822 struct bio_vec *bvec;
3823 struct bvec_iter_all iter_all;
3824 struct page *page;
3825
3826 bio_for_each_segment_all(bvec, bio, iter_all) {
3827 page = bvec->bv_page;
3828
3829 if (bio->bi_status) {
3830 btrfs_warn_rl_in_rcu(device->fs_info,
3831 "lost page write due to IO error on %s (%d)",
3832 rcu_str_deref(device->name),
3833 blk_status_to_errno(bio->bi_status));
3834 ClearPageUptodate(page);
3835 SetPageError(page);
3836 btrfs_dev_stat_inc_and_print(device,
3837 BTRFS_DEV_STAT_WRITE_ERRS);
3838 } else {
3839 SetPageUptodate(page);
3840 }
3841
3842 put_page(page);
3843 unlock_page(page);
f2984462 3844 }
314b6dd0
JT
3845
3846 bio_put(bio);
f2984462
CM
3847}
3848
8f32380d 3849struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3850 int copy_num, bool drop_cache)
29c36d72 3851{
29c36d72 3852 struct btrfs_super_block *super;
8f32380d 3853 struct page *page;
12659251 3854 u64 bytenr, bytenr_orig;
8f32380d 3855 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3856 int ret;
3857
3858 bytenr_orig = btrfs_sb_offset(copy_num);
3859 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3860 if (ret == -ENOENT)
3861 return ERR_PTR(-EINVAL);
3862 else if (ret)
3863 return ERR_PTR(ret);
29c36d72 3864
cda00eba 3865 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3866 return ERR_PTR(-EINVAL);
29c36d72 3867
a05d3c91
QW
3868 if (drop_cache) {
3869 /* This should only be called with the primary sb. */
3870 ASSERT(copy_num == 0);
3871
3872 /*
3873 * Drop the page of the primary superblock, so later read will
3874 * always read from the device.
3875 */
3876 invalidate_inode_pages2_range(mapping,
3877 bytenr >> PAGE_SHIFT,
3878 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3879 }
3880
8f32380d
JT
3881 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3882 if (IS_ERR(page))
3883 return ERR_CAST(page);
29c36d72 3884
8f32380d 3885 super = page_address(page);
96c2e067
AJ
3886 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3887 btrfs_release_disk_super(super);
3888 return ERR_PTR(-ENODATA);
3889 }
3890
12659251 3891 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3892 btrfs_release_disk_super(super);
3893 return ERR_PTR(-EINVAL);
29c36d72
AJ
3894 }
3895
8f32380d 3896 return super;
29c36d72
AJ
3897}
3898
3899
8f32380d 3900struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3901{
8f32380d 3902 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3903 int i;
3904 u64 transid = 0;
a512bbf8
YZ
3905
3906 /* we would like to check all the supers, but that would make
3907 * a btrfs mount succeed after a mkfs from a different FS.
3908 * So, we need to add a special mount option to scan for
3909 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3910 */
3911 for (i = 0; i < 1; i++) {
a05d3c91 3912 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3913 if (IS_ERR(super))
a512bbf8
YZ
3914 continue;
3915
a512bbf8 3916 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3917 if (latest)
3918 btrfs_release_disk_super(super);
3919
3920 latest = super;
a512bbf8 3921 transid = btrfs_super_generation(super);
a512bbf8
YZ
3922 }
3923 }
92fc03fb 3924
8f32380d 3925 return super;
a512bbf8
YZ
3926}
3927
4eedeb75 3928/*
abbb3b8e 3929 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3930 * pages we use for writing are locked.
4eedeb75 3931 *
abbb3b8e
DS
3932 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3933 * the expected device size at commit time. Note that max_mirrors must be
3934 * same for write and wait phases.
4eedeb75 3935 *
314b6dd0 3936 * Return number of errors when page is not found or submission fails.
4eedeb75 3937 */
a512bbf8 3938static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3939 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3940{
d5178578 3941 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3942 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3943 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3944 int i;
a512bbf8 3945 int errors = 0;
12659251
NA
3946 int ret;
3947 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3948
3949 if (max_mirrors == 0)
3950 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3951
d5178578
JT
3952 shash->tfm = fs_info->csum_shash;
3953
a512bbf8 3954 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3955 struct page *page;
3956 struct bio *bio;
3957 struct btrfs_super_block *disk_super;
3958
12659251
NA
3959 bytenr_orig = btrfs_sb_offset(i);
3960 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3961 if (ret == -ENOENT) {
3962 continue;
3963 } else if (ret < 0) {
3964 btrfs_err(device->fs_info,
3965 "couldn't get super block location for mirror %d",
3966 i);
3967 errors++;
3968 continue;
3969 }
935e5cc9
MX
3970 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3971 device->commit_total_bytes)
a512bbf8
YZ
3972 break;
3973
12659251 3974 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3975
fd08001f
EB
3976 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3977 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3978 sb->csum);
4eedeb75 3979
314b6dd0
JT
3980 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3981 GFP_NOFS);
3982 if (!page) {
abbb3b8e 3983 btrfs_err(device->fs_info,
314b6dd0 3984 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3985 bytenr);
3986 errors++;
4eedeb75 3987 continue;
abbb3b8e 3988 }
634554dc 3989
314b6dd0
JT
3990 /* Bump the refcount for wait_dev_supers() */
3991 get_page(page);
a512bbf8 3992
314b6dd0
JT
3993 disk_super = page_address(page);
3994 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3995
314b6dd0
JT
3996 /*
3997 * Directly use bios here instead of relying on the page cache
3998 * to do I/O, so we don't lose the ability to do integrity
3999 * checking.
4000 */
07888c66
CH
4001 bio = bio_alloc(device->bdev, 1,
4002 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4003 GFP_NOFS);
314b6dd0
JT
4004 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4005 bio->bi_private = device;
4006 bio->bi_end_io = btrfs_end_super_write;
4007 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4008 offset_in_page(bytenr));
a512bbf8 4009
387125fc 4010 /*
314b6dd0
JT
4011 * We FUA only the first super block. The others we allow to
4012 * go down lazy and there's a short window where the on-disk
4013 * copies might still contain the older version.
387125fc 4014 */
1b9e619c 4015 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4016 bio->bi_opf |= REQ_FUA;
4017
58ff51f1
CH
4018 btrfsic_check_bio(bio);
4019 submit_bio(bio);
8376d9e1
NA
4020
4021 if (btrfs_advance_sb_log(device, i))
4022 errors++;
a512bbf8
YZ
4023 }
4024 return errors < i ? 0 : -1;
4025}
4026
abbb3b8e
DS
4027/*
4028 * Wait for write completion of superblocks done by write_dev_supers,
4029 * @max_mirrors same for write and wait phases.
4030 *
314b6dd0 4031 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4032 * date.
4033 */
4034static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4035{
abbb3b8e
DS
4036 int i;
4037 int errors = 0;
b6a535fa 4038 bool primary_failed = false;
12659251 4039 int ret;
abbb3b8e
DS
4040 u64 bytenr;
4041
4042 if (max_mirrors == 0)
4043 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4044
4045 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4046 struct page *page;
4047
12659251
NA
4048 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4049 if (ret == -ENOENT) {
4050 break;
4051 } else if (ret < 0) {
4052 errors++;
4053 if (i == 0)
4054 primary_failed = true;
4055 continue;
4056 }
abbb3b8e
DS
4057 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4058 device->commit_total_bytes)
4059 break;
4060
314b6dd0
JT
4061 page = find_get_page(device->bdev->bd_inode->i_mapping,
4062 bytenr >> PAGE_SHIFT);
4063 if (!page) {
abbb3b8e 4064 errors++;
b6a535fa
HM
4065 if (i == 0)
4066 primary_failed = true;
abbb3b8e
DS
4067 continue;
4068 }
314b6dd0
JT
4069 /* Page is submitted locked and unlocked once the IO completes */
4070 wait_on_page_locked(page);
4071 if (PageError(page)) {
abbb3b8e 4072 errors++;
b6a535fa
HM
4073 if (i == 0)
4074 primary_failed = true;
4075 }
abbb3b8e 4076
314b6dd0
JT
4077 /* Drop our reference */
4078 put_page(page);
abbb3b8e 4079
314b6dd0
JT
4080 /* Drop the reference from the writing run */
4081 put_page(page);
abbb3b8e
DS
4082 }
4083
b6a535fa
HM
4084 /* log error, force error return */
4085 if (primary_failed) {
4086 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4087 device->devid);
4088 return -1;
4089 }
4090
abbb3b8e
DS
4091 return errors < i ? 0 : -1;
4092}
4093
387125fc
CM
4094/*
4095 * endio for the write_dev_flush, this will wake anyone waiting
4096 * for the barrier when it is done
4097 */
4246a0b6 4098static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4099{
f9e69aa9 4100 bio_uninit(bio);
e0ae9994 4101 complete(bio->bi_private);
387125fc
CM
4102}
4103
4104/*
4fc6441a
AJ
4105 * Submit a flush request to the device if it supports it. Error handling is
4106 * done in the waiting counterpart.
387125fc 4107 */
4fc6441a 4108static void write_dev_flush(struct btrfs_device *device)
387125fc 4109{
f9e69aa9 4110 struct bio *bio = &device->flush_bio;
387125fc 4111
a91cf0ff
WY
4112#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4113 /*
4114 * When a disk has write caching disabled, we skip submission of a bio
4115 * with flush and sync requests before writing the superblock, since
4116 * it's not needed. However when the integrity checker is enabled, this
4117 * results in reports that there are metadata blocks referred by a
4118 * superblock that were not properly flushed. So don't skip the bio
4119 * submission only when the integrity checker is enabled for the sake
4120 * of simplicity, since this is a debug tool and not meant for use in
4121 * non-debug builds.
4122 */
08e688fd 4123 if (!bdev_write_cache(device->bdev))
4fc6441a 4124 return;
a91cf0ff 4125#endif
387125fc 4126
f9e69aa9
CH
4127 bio_init(bio, device->bdev, NULL, 0,
4128 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4129 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4130 init_completion(&device->flush_wait);
4131 bio->bi_private = &device->flush_wait;
387125fc 4132
58ff51f1
CH
4133 btrfsic_check_bio(bio);
4134 submit_bio(bio);
1c3063b6 4135 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4136}
387125fc 4137
4fc6441a
AJ
4138/*
4139 * If the flush bio has been submitted by write_dev_flush, wait for it.
4140 */
8c27cb35 4141static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4142{
f9e69aa9 4143 struct bio *bio = &device->flush_bio;
387125fc 4144
1c3063b6 4145 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4146 return BLK_STS_OK;
387125fc 4147
1c3063b6 4148 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4149 wait_for_completion_io(&device->flush_wait);
387125fc 4150
8c27cb35 4151 return bio->bi_status;
387125fc 4152}
387125fc 4153
d10b82fe 4154static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4155{
6528b99d 4156 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4157 return -EIO;
387125fc
CM
4158 return 0;
4159}
4160
4161/*
4162 * send an empty flush down to each device in parallel,
4163 * then wait for them
4164 */
4165static int barrier_all_devices(struct btrfs_fs_info *info)
4166{
4167 struct list_head *head;
4168 struct btrfs_device *dev;
5af3e8cc 4169 int errors_wait = 0;
4e4cbee9 4170 blk_status_t ret;
387125fc 4171
1538e6c5 4172 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4173 /* send down all the barriers */
4174 head = &info->fs_devices->devices;
1538e6c5 4175 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4176 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4177 continue;
cea7c8bf 4178 if (!dev->bdev)
387125fc 4179 continue;
e12c9621 4180 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4181 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4182 continue;
4183
4fc6441a 4184 write_dev_flush(dev);
58efbc9f 4185 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4186 }
4187
4188 /* wait for all the barriers */
1538e6c5 4189 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4190 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4191 continue;
387125fc 4192 if (!dev->bdev) {
5af3e8cc 4193 errors_wait++;
387125fc
CM
4194 continue;
4195 }
e12c9621 4196 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4197 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4198 continue;
4199
4fc6441a 4200 ret = wait_dev_flush(dev);
401b41e5
AJ
4201 if (ret) {
4202 dev->last_flush_error = ret;
66b4993e
DS
4203 btrfs_dev_stat_inc_and_print(dev,
4204 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4205 errors_wait++;
401b41e5
AJ
4206 }
4207 }
4208
cea7c8bf 4209 if (errors_wait) {
401b41e5
AJ
4210 /*
4211 * At some point we need the status of all disks
4212 * to arrive at the volume status. So error checking
4213 * is being pushed to a separate loop.
4214 */
d10b82fe 4215 return check_barrier_error(info);
387125fc 4216 }
387125fc
CM
4217 return 0;
4218}
4219
943c6e99
ZL
4220int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4221{
8789f4fe
ZL
4222 int raid_type;
4223 int min_tolerated = INT_MAX;
943c6e99 4224
8789f4fe
ZL
4225 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4226 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4227 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4228 btrfs_raid_array[BTRFS_RAID_SINGLE].
4229 tolerated_failures);
943c6e99 4230
8789f4fe
ZL
4231 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4232 if (raid_type == BTRFS_RAID_SINGLE)
4233 continue;
41a6e891 4234 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4235 continue;
8c3e3582 4236 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4237 btrfs_raid_array[raid_type].
4238 tolerated_failures);
4239 }
943c6e99 4240
8789f4fe 4241 if (min_tolerated == INT_MAX) {
ab8d0fc4 4242 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4243 min_tolerated = 0;
4244 }
4245
4246 return min_tolerated;
943c6e99
ZL
4247}
4248
eece6a9c 4249int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4250{
e5e9a520 4251 struct list_head *head;
f2984462 4252 struct btrfs_device *dev;
a061fc8d 4253 struct btrfs_super_block *sb;
f2984462 4254 struct btrfs_dev_item *dev_item;
f2984462
CM
4255 int ret;
4256 int do_barriers;
a236aed1
CM
4257 int max_errors;
4258 int total_errors = 0;
a061fc8d 4259 u64 flags;
f2984462 4260
0b246afa 4261 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4262
4263 /*
4264 * max_mirrors == 0 indicates we're from commit_transaction,
4265 * not from fsync where the tree roots in fs_info have not
4266 * been consistent on disk.
4267 */
4268 if (max_mirrors == 0)
4269 backup_super_roots(fs_info);
f2984462 4270
0b246afa 4271 sb = fs_info->super_for_commit;
a061fc8d 4272 dev_item = &sb->dev_item;
e5e9a520 4273
0b246afa
JM
4274 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4275 head = &fs_info->fs_devices->devices;
4276 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4277
5af3e8cc 4278 if (do_barriers) {
0b246afa 4279 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4280 if (ret) {
4281 mutex_unlock(
0b246afa
JM
4282 &fs_info->fs_devices->device_list_mutex);
4283 btrfs_handle_fs_error(fs_info, ret,
4284 "errors while submitting device barriers.");
5af3e8cc
SB
4285 return ret;
4286 }
4287 }
387125fc 4288
1538e6c5 4289 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4290 if (!dev->bdev) {
4291 total_errors++;
4292 continue;
4293 }
e12c9621 4294 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4295 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4296 continue;
4297
2b82032c 4298 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4299 btrfs_set_stack_device_type(dev_item, dev->type);
4300 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4301 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4302 dev->commit_total_bytes);
ce7213c7
MX
4303 btrfs_set_stack_device_bytes_used(dev_item,
4304 dev->commit_bytes_used);
a061fc8d
CM
4305 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4306 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4307 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4308 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4309 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4310 BTRFS_FSID_SIZE);
a512bbf8 4311
a061fc8d
CM
4312 flags = btrfs_super_flags(sb);
4313 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4314
75cb857d
QW
4315 ret = btrfs_validate_write_super(fs_info, sb);
4316 if (ret < 0) {
4317 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4318 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4319 "unexpected superblock corruption detected");
4320 return -EUCLEAN;
4321 }
4322
abbb3b8e 4323 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4324 if (ret)
4325 total_errors++;
f2984462 4326 }
a236aed1 4327 if (total_errors > max_errors) {
0b246afa
JM
4328 btrfs_err(fs_info, "%d errors while writing supers",
4329 total_errors);
4330 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4331
9d565ba4 4332 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4333 btrfs_handle_fs_error(fs_info, -EIO,
4334 "%d errors while writing supers",
4335 total_errors);
9d565ba4 4336 return -EIO;
a236aed1 4337 }
f2984462 4338
a512bbf8 4339 total_errors = 0;
1538e6c5 4340 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4341 if (!dev->bdev)
4342 continue;
e12c9621 4343 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4344 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4345 continue;
4346
abbb3b8e 4347 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4348 if (ret)
4349 total_errors++;
f2984462 4350 }
0b246afa 4351 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4352 if (total_errors > max_errors) {
0b246afa
JM
4353 btrfs_handle_fs_error(fs_info, -EIO,
4354 "%d errors while writing supers",
4355 total_errors);
79787eaa 4356 return -EIO;
a236aed1 4357 }
f2984462
CM
4358 return 0;
4359}
4360
cb517eab
MX
4361/* Drop a fs root from the radix tree and free it. */
4362void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4363 struct btrfs_root *root)
2619ba1f 4364{
4785e24f
JB
4365 bool drop_ref = false;
4366
fc7cbcd4
DS
4367 spin_lock(&fs_info->fs_roots_radix_lock);
4368 radix_tree_delete(&fs_info->fs_roots_radix,
4369 (unsigned long)root->root_key.objectid);
4370 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4371 drop_ref = true;
fc7cbcd4 4372 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4373
84961539 4374 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4375 ASSERT(root->log_root == NULL);
1c1ea4f7 4376 if (root->reloc_root) {
00246528 4377 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4378 root->reloc_root = NULL;
4379 }
4380 }
3321719e 4381
4785e24f
JB
4382 if (drop_ref)
4383 btrfs_put_root(root);
2619ba1f
CM
4384}
4385
c146afad 4386int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4387{
fc7cbcd4
DS
4388 u64 root_objectid = 0;
4389 struct btrfs_root *gang[8];
4390 int i = 0;
65d33fd7 4391 int err = 0;
fc7cbcd4 4392 unsigned int ret = 0;
e089f05c 4393
c146afad 4394 while (1) {
fc7cbcd4
DS
4395 spin_lock(&fs_info->fs_roots_radix_lock);
4396 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4397 (void **)gang, root_objectid,
4398 ARRAY_SIZE(gang));
4399 if (!ret) {
4400 spin_unlock(&fs_info->fs_roots_radix_lock);
4401 break;
65d33fd7 4402 }
fc7cbcd4 4403 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4404
fc7cbcd4
DS
4405 for (i = 0; i < ret; i++) {
4406 /* Avoid to grab roots in dead_roots */
4407 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4408 gang[i] = NULL;
4409 continue;
4410 }
4411 /* grab all the search result for later use */
4412 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4413 }
fc7cbcd4 4414 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4415
fc7cbcd4
DS
4416 for (i = 0; i < ret; i++) {
4417 if (!gang[i])
65d33fd7 4418 continue;
fc7cbcd4
DS
4419 root_objectid = gang[i]->root_key.objectid;
4420 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4421 if (err)
fc7cbcd4
DS
4422 break;
4423 btrfs_put_root(gang[i]);
c146afad 4424 }
fc7cbcd4 4425 root_objectid++;
c146afad 4426 }
65d33fd7 4427
fc7cbcd4
DS
4428 /* release the uncleaned roots due to error */
4429 for (; i < ret; i++) {
4430 if (gang[i])
4431 btrfs_put_root(gang[i]);
65d33fd7
QW
4432 }
4433 return err;
c146afad 4434}
a2135011 4435
6bccf3ab 4436int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4437{
6bccf3ab 4438 struct btrfs_root *root = fs_info->tree_root;
c146afad 4439 struct btrfs_trans_handle *trans;
a74a4b97 4440
0b246afa 4441 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4442 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4443 mutex_unlock(&fs_info->cleaner_mutex);
4444 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4445
4446 /* wait until ongoing cleanup work done */
0b246afa
JM
4447 down_write(&fs_info->cleanup_work_sem);
4448 up_write(&fs_info->cleanup_work_sem);
c71bf099 4449
7a7eaa40 4450 trans = btrfs_join_transaction(root);
3612b495
TI
4451 if (IS_ERR(trans))
4452 return PTR_ERR(trans);
3a45bb20 4453 return btrfs_commit_transaction(trans);
c146afad
YZ
4454}
4455
36c86a9e
QW
4456static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4457{
4458 struct btrfs_transaction *trans;
4459 struct btrfs_transaction *tmp;
4460 bool found = false;
4461
4462 if (list_empty(&fs_info->trans_list))
4463 return;
4464
4465 /*
4466 * This function is only called at the very end of close_ctree(),
4467 * thus no other running transaction, no need to take trans_lock.
4468 */
4469 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4470 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4471 struct extent_state *cached = NULL;
4472 u64 dirty_bytes = 0;
4473 u64 cur = 0;
4474 u64 found_start;
4475 u64 found_end;
4476
4477 found = true;
4478 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4479 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4480 dirty_bytes += found_end + 1 - found_start;
4481 cur = found_end + 1;
4482 }
4483 btrfs_warn(fs_info,
4484 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4485 trans->transid, dirty_bytes);
4486 btrfs_cleanup_one_transaction(trans, fs_info);
4487
4488 if (trans == fs_info->running_transaction)
4489 fs_info->running_transaction = NULL;
4490 list_del_init(&trans->list);
4491
4492 btrfs_put_transaction(trans);
4493 trace_btrfs_transaction_commit(fs_info);
4494 }
4495 ASSERT(!found);
4496}
4497
b105e927 4498void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4499{
c146afad
YZ
4500 int ret;
4501
afcdd129 4502 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4503
8a1f1e3d
FM
4504 /*
4505 * If we had UNFINISHED_DROPS we could still be processing them, so
4506 * clear that bit and wake up relocation so it can stop.
4507 * We must do this before stopping the block group reclaim task, because
4508 * at btrfs_relocate_block_group() we wait for this bit, and after the
4509 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4510 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4511 * return 1.
4512 */
4513 btrfs_wake_unfinished_drop(fs_info);
4514
31e70e52
FM
4515 /*
4516 * We may have the reclaim task running and relocating a data block group,
4517 * in which case it may create delayed iputs. So stop it before we park
4518 * the cleaner kthread otherwise we can get new delayed iputs after
4519 * parking the cleaner, and that can make the async reclaim task to hang
4520 * if it's waiting for delayed iputs to complete, since the cleaner is
4521 * parked and can not run delayed iputs - this will make us hang when
4522 * trying to stop the async reclaim task.
4523 */
4524 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4525 /*
4526 * We don't want the cleaner to start new transactions, add more delayed
4527 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4528 * because that frees the task_struct, and the transaction kthread might
4529 * still try to wake up the cleaner.
4530 */
4531 kthread_park(fs_info->cleaner_kthread);
c146afad 4532
7343dd61 4533 /* wait for the qgroup rescan worker to stop */
d06f23d6 4534 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4535
803b2f54
SB
4536 /* wait for the uuid_scan task to finish */
4537 down(&fs_info->uuid_tree_rescan_sem);
4538 /* avoid complains from lockdep et al., set sem back to initial state */
4539 up(&fs_info->uuid_tree_rescan_sem);
4540
837d5b6e 4541 /* pause restriper - we want to resume on mount */
aa1b8cd4 4542 btrfs_pause_balance(fs_info);
837d5b6e 4543
8dabb742
SB
4544 btrfs_dev_replace_suspend_for_unmount(fs_info);
4545
aa1b8cd4 4546 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4547
4548 /* wait for any defraggers to finish */
4549 wait_event(fs_info->transaction_wait,
4550 (atomic_read(&fs_info->defrag_running) == 0));
4551
4552 /* clear out the rbtree of defraggable inodes */
26176e7c 4553 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4554
a362bb86
FM
4555 /*
4556 * After we parked the cleaner kthread, ordered extents may have
4557 * completed and created new delayed iputs. If one of the async reclaim
4558 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4559 * can hang forever trying to stop it, because if a delayed iput is
4560 * added after it ran btrfs_run_delayed_iputs() and before it called
4561 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4562 * no one else to run iputs.
4563 *
4564 * So wait for all ongoing ordered extents to complete and then run
4565 * delayed iputs. This works because once we reach this point no one
4566 * can either create new ordered extents nor create delayed iputs
4567 * through some other means.
4568 *
4569 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4570 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4571 * but the delayed iput for the respective inode is made only when doing
4572 * the final btrfs_put_ordered_extent() (which must happen at
4573 * btrfs_finish_ordered_io() when we are unmounting).
4574 */
4575 btrfs_flush_workqueue(fs_info->endio_write_workers);
4576 /* Ordered extents for free space inodes. */
4577 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4578 btrfs_run_delayed_iputs(fs_info);
4579
21c7e756 4580 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4581 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4582 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4583
b0643e59
DZ
4584 /* Cancel or finish ongoing discard work */
4585 btrfs_discard_cleanup(fs_info);
4586
bc98a42c 4587 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4588 /*
d6fd0ae2
OS
4589 * The cleaner kthread is stopped, so do one final pass over
4590 * unused block groups.
e44163e1 4591 */
0b246afa 4592 btrfs_delete_unused_bgs(fs_info);
e44163e1 4593
f0cc2cd7
FM
4594 /*
4595 * There might be existing delayed inode workers still running
4596 * and holding an empty delayed inode item. We must wait for
4597 * them to complete first because they can create a transaction.
4598 * This happens when someone calls btrfs_balance_delayed_items()
4599 * and then a transaction commit runs the same delayed nodes
4600 * before any delayed worker has done something with the nodes.
4601 * We must wait for any worker here and not at transaction
4602 * commit time since that could cause a deadlock.
4603 * This is a very rare case.
4604 */
4605 btrfs_flush_workqueue(fs_info->delayed_workers);
4606
6bccf3ab 4607 ret = btrfs_commit_super(fs_info);
acce952b 4608 if (ret)
04892340 4609 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4610 }
4611
84961539 4612 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4613 btrfs_error_commit_super(fs_info);
0f7d52f4 4614
e3029d9f
AV
4615 kthread_stop(fs_info->transaction_kthread);
4616 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4617
e187831e 4618 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4619 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4620
5958253c
QW
4621 if (btrfs_check_quota_leak(fs_info)) {
4622 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4623 btrfs_err(fs_info, "qgroup reserved space leaked");
4624 }
4625
04892340 4626 btrfs_free_qgroup_config(fs_info);
fe816d0f 4627 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4628
963d678b 4629 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4630 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4631 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4632 }
bcc63abb 4633
5deb17e1 4634 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4635 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4636 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4637
6618a59b 4638 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4639 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4640
1a4319cc
LB
4641 btrfs_put_block_group_cache(fs_info);
4642
de348ee0
WS
4643 /*
4644 * we must make sure there is not any read request to
4645 * submit after we stopping all workers.
4646 */
4647 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4648 btrfs_stop_all_workers(fs_info);
4649
0a31daa4 4650 /* We shouldn't have any transaction open at this point */
36c86a9e 4651 warn_about_uncommitted_trans(fs_info);
0a31daa4 4652
afcdd129 4653 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4654 free_root_pointers(fs_info, true);
8c38938c 4655 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4656
4e19443d
JB
4657 /*
4658 * We must free the block groups after dropping the fs_roots as we could
4659 * have had an IO error and have left over tree log blocks that aren't
4660 * cleaned up until the fs roots are freed. This makes the block group
4661 * accounting appear to be wrong because there's pending reserved bytes,
4662 * so make sure we do the block group cleanup afterwards.
4663 */
4664 btrfs_free_block_groups(fs_info);
4665
13e6c37b 4666 iput(fs_info->btree_inode);
d6bfde87 4667
21adbd5c 4668#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4669 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4670 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4671#endif
4672
0b86a832 4673 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4674 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4675}
4676
b9fab919
CM
4677int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4678 int atomic)
5f39d397 4679{
1259ab75 4680 int ret;
727011e0 4681 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4682
0b32f4bb 4683 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4684 if (!ret)
4685 return ret;
4686
4687 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4688 parent_transid, atomic);
4689 if (ret == -EAGAIN)
4690 return ret;
1259ab75 4691 return !ret;
5f39d397
CM
4692}
4693
5f39d397
CM
4694void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4695{
2f4d60df 4696 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4697 u64 transid = btrfs_header_generation(buf);
b9473439 4698 int was_dirty;
b4ce94de 4699
06ea65a3
JB
4700#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4701 /*
4702 * This is a fast path so only do this check if we have sanity tests
52042d8e 4703 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4704 * outside of the sanity tests.
4705 */
b0132a3b 4706 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4707 return;
4708#endif
49d0c642 4709 btrfs_assert_tree_write_locked(buf);
0b246afa 4710 if (transid != fs_info->generation)
5d163e0e 4711 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4712 buf->start, transid, fs_info->generation);
0b32f4bb 4713 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4714 if (!was_dirty)
104b4e51
NB
4715 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4716 buf->len,
4717 fs_info->dirty_metadata_batch);
1f21ef0a 4718#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4719 /*
4720 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4721 * but item data not updated.
4722 * So here we should only check item pointers, not item data.
4723 */
4724 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4725 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4726 btrfs_print_leaf(buf);
1f21ef0a
FM
4727 ASSERT(0);
4728 }
4729#endif
eb60ceac
CM
4730}
4731
2ff7e61e 4732static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4733 int flush_delayed)
16cdcec7
MX
4734{
4735 /*
4736 * looks as though older kernels can get into trouble with
4737 * this code, they end up stuck in balance_dirty_pages forever
4738 */
e2d84521 4739 int ret;
16cdcec7
MX
4740
4741 if (current->flags & PF_MEMALLOC)
4742 return;
4743
b53d3f5d 4744 if (flush_delayed)
2ff7e61e 4745 btrfs_balance_delayed_items(fs_info);
16cdcec7 4746
d814a491
EL
4747 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4748 BTRFS_DIRTY_METADATA_THRESH,
4749 fs_info->dirty_metadata_batch);
e2d84521 4750 if (ret > 0) {
0b246afa 4751 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4752 }
16cdcec7
MX
4753}
4754
2ff7e61e 4755void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4756{
2ff7e61e 4757 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4758}
585ad2c3 4759
2ff7e61e 4760void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4761{
2ff7e61e 4762 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4763}
6b80053d 4764
2ff7e61e 4765static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4766{
fe816d0f
NB
4767 /* cleanup FS via transaction */
4768 btrfs_cleanup_transaction(fs_info);
4769
0b246afa 4770 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4771 btrfs_run_delayed_iputs(fs_info);
0b246afa 4772 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4773
0b246afa
JM
4774 down_write(&fs_info->cleanup_work_sem);
4775 up_write(&fs_info->cleanup_work_sem);
acce952b 4776}
4777
ef67963d
JB
4778static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4779{
fc7cbcd4
DS
4780 struct btrfs_root *gang[8];
4781 u64 root_objectid = 0;
4782 int ret;
4783
4784 spin_lock(&fs_info->fs_roots_radix_lock);
4785 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4786 (void **)gang, root_objectid,
4787 ARRAY_SIZE(gang))) != 0) {
4788 int i;
4789
4790 for (i = 0; i < ret; i++)
4791 gang[i] = btrfs_grab_root(gang[i]);
4792 spin_unlock(&fs_info->fs_roots_radix_lock);
4793
4794 for (i = 0; i < ret; i++) {
4795 if (!gang[i])
ef67963d 4796 continue;
fc7cbcd4
DS
4797 root_objectid = gang[i]->root_key.objectid;
4798 btrfs_free_log(NULL, gang[i]);
4799 btrfs_put_root(gang[i]);
ef67963d 4800 }
fc7cbcd4
DS
4801 root_objectid++;
4802 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4803 }
fc7cbcd4 4804 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4805 btrfs_free_log_root_tree(NULL, fs_info);
4806}
4807
143bede5 4808static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4809{
acce952b 4810 struct btrfs_ordered_extent *ordered;
acce952b 4811
199c2a9c 4812 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4813 /*
4814 * This will just short circuit the ordered completion stuff which will
4815 * make sure the ordered extent gets properly cleaned up.
4816 */
199c2a9c 4817 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4818 root_extent_list)
4819 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4820 spin_unlock(&root->ordered_extent_lock);
4821}
4822
4823static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4824{
4825 struct btrfs_root *root;
4826 struct list_head splice;
4827
4828 INIT_LIST_HEAD(&splice);
4829
4830 spin_lock(&fs_info->ordered_root_lock);
4831 list_splice_init(&fs_info->ordered_roots, &splice);
4832 while (!list_empty(&splice)) {
4833 root = list_first_entry(&splice, struct btrfs_root,
4834 ordered_root);
1de2cfde
JB
4835 list_move_tail(&root->ordered_root,
4836 &fs_info->ordered_roots);
199c2a9c 4837
2a85d9ca 4838 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4839 btrfs_destroy_ordered_extents(root);
4840
2a85d9ca
LB
4841 cond_resched();
4842 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4843 }
4844 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4845
4846 /*
4847 * We need this here because if we've been flipped read-only we won't
4848 * get sync() from the umount, so we need to make sure any ordered
4849 * extents that haven't had their dirty pages IO start writeout yet
4850 * actually get run and error out properly.
4851 */
4852 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4853}
4854
35a3621b 4855static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4856 struct btrfs_fs_info *fs_info)
acce952b 4857{
4858 struct rb_node *node;
4859 struct btrfs_delayed_ref_root *delayed_refs;
4860 struct btrfs_delayed_ref_node *ref;
4861 int ret = 0;
4862
4863 delayed_refs = &trans->delayed_refs;
4864
4865 spin_lock(&delayed_refs->lock);
d7df2c79 4866 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4867 spin_unlock(&delayed_refs->lock);
b79ce3dd 4868 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4869 return ret;
4870 }
4871
5c9d028b 4872 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4873 struct btrfs_delayed_ref_head *head;
0e0adbcf 4874 struct rb_node *n;
e78417d1 4875 bool pin_bytes = false;
acce952b 4876
d7df2c79
JB
4877 head = rb_entry(node, struct btrfs_delayed_ref_head,
4878 href_node);
3069bd26 4879 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4880 continue;
3069bd26 4881
d7df2c79 4882 spin_lock(&head->lock);
e3d03965 4883 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4884 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4885 ref_node);
d7df2c79 4886 ref->in_tree = 0;
e3d03965 4887 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4888 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4889 if (!list_empty(&ref->add_list))
4890 list_del(&ref->add_list);
d7df2c79
JB
4891 atomic_dec(&delayed_refs->num_entries);
4892 btrfs_put_delayed_ref(ref);
e78417d1 4893 }
d7df2c79
JB
4894 if (head->must_insert_reserved)
4895 pin_bytes = true;
4896 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4897 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4898 spin_unlock(&head->lock);
4899 spin_unlock(&delayed_refs->lock);
4900 mutex_unlock(&head->mutex);
acce952b 4901
f603bb94
NB
4902 if (pin_bytes) {
4903 struct btrfs_block_group *cache;
4904
4905 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4906 BUG_ON(!cache);
4907
4908 spin_lock(&cache->space_info->lock);
4909 spin_lock(&cache->lock);
4910 cache->pinned += head->num_bytes;
4911 btrfs_space_info_update_bytes_pinned(fs_info,
4912 cache->space_info, head->num_bytes);
4913 cache->reserved -= head->num_bytes;
4914 cache->space_info->bytes_reserved -= head->num_bytes;
4915 spin_unlock(&cache->lock);
4916 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4917
4918 btrfs_put_block_group(cache);
4919
4920 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4921 head->bytenr + head->num_bytes - 1);
4922 }
31890da0 4923 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4924 btrfs_put_delayed_ref_head(head);
acce952b 4925 cond_resched();
4926 spin_lock(&delayed_refs->lock);
4927 }
81f7eb00 4928 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4929
4930 spin_unlock(&delayed_refs->lock);
4931
4932 return ret;
4933}
4934
143bede5 4935static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4936{
4937 struct btrfs_inode *btrfs_inode;
4938 struct list_head splice;
4939
4940 INIT_LIST_HEAD(&splice);
4941
eb73c1b7
MX
4942 spin_lock(&root->delalloc_lock);
4943 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4944
4945 while (!list_empty(&splice)) {
fe816d0f 4946 struct inode *inode = NULL;
eb73c1b7
MX
4947 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4948 delalloc_inodes);
fe816d0f 4949 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4950 spin_unlock(&root->delalloc_lock);
acce952b 4951
fe816d0f
NB
4952 /*
4953 * Make sure we get a live inode and that it'll not disappear
4954 * meanwhile.
4955 */
4956 inode = igrab(&btrfs_inode->vfs_inode);
4957 if (inode) {
4958 invalidate_inode_pages2(inode->i_mapping);
4959 iput(inode);
4960 }
eb73c1b7 4961 spin_lock(&root->delalloc_lock);
acce952b 4962 }
eb73c1b7
MX
4963 spin_unlock(&root->delalloc_lock);
4964}
4965
4966static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4967{
4968 struct btrfs_root *root;
4969 struct list_head splice;
4970
4971 INIT_LIST_HEAD(&splice);
4972
4973 spin_lock(&fs_info->delalloc_root_lock);
4974 list_splice_init(&fs_info->delalloc_roots, &splice);
4975 while (!list_empty(&splice)) {
4976 root = list_first_entry(&splice, struct btrfs_root,
4977 delalloc_root);
00246528 4978 root = btrfs_grab_root(root);
eb73c1b7
MX
4979 BUG_ON(!root);
4980 spin_unlock(&fs_info->delalloc_root_lock);
4981
4982 btrfs_destroy_delalloc_inodes(root);
00246528 4983 btrfs_put_root(root);
eb73c1b7
MX
4984
4985 spin_lock(&fs_info->delalloc_root_lock);
4986 }
4987 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4988}
4989
2ff7e61e 4990static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4991 struct extent_io_tree *dirty_pages,
4992 int mark)
4993{
4994 int ret;
acce952b 4995 struct extent_buffer *eb;
4996 u64 start = 0;
4997 u64 end;
acce952b 4998
4999 while (1) {
5000 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 5001 mark, NULL);
acce952b 5002 if (ret)
5003 break;
5004
91166212 5005 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 5006 while (start <= end) {
0b246afa
JM
5007 eb = find_extent_buffer(fs_info, start);
5008 start += fs_info->nodesize;
fd8b2b61 5009 if (!eb)
acce952b 5010 continue;
fd8b2b61 5011 wait_on_extent_buffer_writeback(eb);
acce952b 5012
fd8b2b61
JB
5013 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5014 &eb->bflags))
5015 clear_extent_buffer_dirty(eb);
5016 free_extent_buffer_stale(eb);
acce952b 5017 }
5018 }
5019
5020 return ret;
5021}
5022
2ff7e61e 5023static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5024 struct extent_io_tree *unpin)
acce952b 5025{
acce952b 5026 u64 start;
5027 u64 end;
5028 int ret;
5029
acce952b 5030 while (1) {
0e6ec385
FM
5031 struct extent_state *cached_state = NULL;
5032
fcd5e742
LF
5033 /*
5034 * The btrfs_finish_extent_commit() may get the same range as
5035 * ours between find_first_extent_bit and clear_extent_dirty.
5036 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5037 * the same extent range.
5038 */
5039 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5040 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5041 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5042 if (ret) {
5043 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5044 break;
fcd5e742 5045 }
acce952b 5046
0e6ec385
FM
5047 clear_extent_dirty(unpin, start, end, &cached_state);
5048 free_extent_state(cached_state);
2ff7e61e 5049 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5050 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5051 cond_resched();
5052 }
5053
5054 return 0;
5055}
5056
32da5386 5057static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5058{
5059 struct inode *inode;
5060
5061 inode = cache->io_ctl.inode;
5062 if (inode) {
5063 invalidate_inode_pages2(inode->i_mapping);
5064 BTRFS_I(inode)->generation = 0;
5065 cache->io_ctl.inode = NULL;
5066 iput(inode);
5067 }
bbc37d6e 5068 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5069 btrfs_put_block_group(cache);
5070}
5071
5072void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5073 struct btrfs_fs_info *fs_info)
c79a1751 5074{
32da5386 5075 struct btrfs_block_group *cache;
c79a1751
LB
5076
5077 spin_lock(&cur_trans->dirty_bgs_lock);
5078 while (!list_empty(&cur_trans->dirty_bgs)) {
5079 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5080 struct btrfs_block_group,
c79a1751 5081 dirty_list);
c79a1751
LB
5082
5083 if (!list_empty(&cache->io_list)) {
5084 spin_unlock(&cur_trans->dirty_bgs_lock);
5085 list_del_init(&cache->io_list);
5086 btrfs_cleanup_bg_io(cache);
5087 spin_lock(&cur_trans->dirty_bgs_lock);
5088 }
5089
5090 list_del_init(&cache->dirty_list);
5091 spin_lock(&cache->lock);
5092 cache->disk_cache_state = BTRFS_DC_ERROR;
5093 spin_unlock(&cache->lock);
5094
5095 spin_unlock(&cur_trans->dirty_bgs_lock);
5096 btrfs_put_block_group(cache);
ba2c4d4e 5097 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5098 spin_lock(&cur_trans->dirty_bgs_lock);
5099 }
5100 spin_unlock(&cur_trans->dirty_bgs_lock);
5101
45ae2c18
NB
5102 /*
5103 * Refer to the definition of io_bgs member for details why it's safe
5104 * to use it without any locking
5105 */
c79a1751
LB
5106 while (!list_empty(&cur_trans->io_bgs)) {
5107 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5108 struct btrfs_block_group,
c79a1751 5109 io_list);
c79a1751
LB
5110
5111 list_del_init(&cache->io_list);
5112 spin_lock(&cache->lock);
5113 cache->disk_cache_state = BTRFS_DC_ERROR;
5114 spin_unlock(&cache->lock);
5115 btrfs_cleanup_bg_io(cache);
5116 }
5117}
5118
49b25e05 5119void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5120 struct btrfs_fs_info *fs_info)
49b25e05 5121{
bbbf7243
NB
5122 struct btrfs_device *dev, *tmp;
5123
2ff7e61e 5124 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5125 ASSERT(list_empty(&cur_trans->dirty_bgs));
5126 ASSERT(list_empty(&cur_trans->io_bgs));
5127
bbbf7243
NB
5128 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5129 post_commit_list) {
5130 list_del_init(&dev->post_commit_list);
5131 }
5132
2ff7e61e 5133 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5134
4a9d8bde 5135 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5136 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5137
4a9d8bde 5138 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5139 wake_up(&fs_info->transaction_wait);
49b25e05 5140
ccdf9b30 5141 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5142
2ff7e61e 5143 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5144 EXTENT_DIRTY);
fe119a6e 5145 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5146
d3575156
NA
5147 btrfs_free_redirty_list(cur_trans);
5148
4a9d8bde
MX
5149 cur_trans->state =TRANS_STATE_COMPLETED;
5150 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5151}
5152
2ff7e61e 5153static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5154{
5155 struct btrfs_transaction *t;
acce952b 5156
0b246afa 5157 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5158
0b246afa
JM
5159 spin_lock(&fs_info->trans_lock);
5160 while (!list_empty(&fs_info->trans_list)) {
5161 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5162 struct btrfs_transaction, list);
5163 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5164 refcount_inc(&t->use_count);
0b246afa 5165 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5166 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5167 btrfs_put_transaction(t);
0b246afa 5168 spin_lock(&fs_info->trans_lock);
724e2315
JB
5169 continue;
5170 }
0b246afa 5171 if (t == fs_info->running_transaction) {
724e2315 5172 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5173 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5174 /*
5175 * We wait for 0 num_writers since we don't hold a trans
5176 * handle open currently for this transaction.
5177 */
5178 wait_event(t->writer_wait,
5179 atomic_read(&t->num_writers) == 0);
5180 } else {
0b246afa 5181 spin_unlock(&fs_info->trans_lock);
724e2315 5182 }
2ff7e61e 5183 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5184
0b246afa
JM
5185 spin_lock(&fs_info->trans_lock);
5186 if (t == fs_info->running_transaction)
5187 fs_info->running_transaction = NULL;
acce952b 5188 list_del_init(&t->list);
0b246afa 5189 spin_unlock(&fs_info->trans_lock);
acce952b 5190
724e2315 5191 btrfs_put_transaction(t);
2e4e97ab 5192 trace_btrfs_transaction_commit(fs_info);
0b246afa 5193 spin_lock(&fs_info->trans_lock);
724e2315 5194 }
0b246afa
JM
5195 spin_unlock(&fs_info->trans_lock);
5196 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5197 btrfs_destroy_delayed_inodes(fs_info);
5198 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5199 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5200 btrfs_drop_all_logs(fs_info);
0b246afa 5201 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5202
5203 return 0;
5204}
ec7d6dfd 5205
453e4873 5206int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5207{
5208 struct btrfs_path *path;
5209 int ret;
5210 struct extent_buffer *l;
5211 struct btrfs_key search_key;
5212 struct btrfs_key found_key;
5213 int slot;
5214
5215 path = btrfs_alloc_path();
5216 if (!path)
5217 return -ENOMEM;
5218
5219 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5220 search_key.type = -1;
5221 search_key.offset = (u64)-1;
5222 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5223 if (ret < 0)
5224 goto error;
5225 BUG_ON(ret == 0); /* Corruption */
5226 if (path->slots[0] > 0) {
5227 slot = path->slots[0] - 1;
5228 l = path->nodes[0];
5229 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5230 root->free_objectid = max_t(u64, found_key.objectid + 1,
5231 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5232 } else {
23125104 5233 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5234 }
5235 ret = 0;
5236error:
5237 btrfs_free_path(path);
5238 return ret;
5239}
5240
543068a2 5241int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5242{
5243 int ret;
5244 mutex_lock(&root->objectid_mutex);
5245
6b8fad57 5246 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5247 btrfs_warn(root->fs_info,
5248 "the objectid of root %llu reaches its highest value",
5249 root->root_key.objectid);
5250 ret = -ENOSPC;
5251 goto out;
5252 }
5253
23125104 5254 *objectid = root->free_objectid++;
ec7d6dfd
NB
5255 ret = 0;
5256out:
5257 mutex_unlock(&root->objectid_mutex);
5258 return ret;
5259}