btrfs: don't double put our subpage reference in alloc_extent_buffer
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
103c1972 26#include "bio.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
606686ee 32#include "rcu-string.h"
8dabb742 33#include "dev-replace.h"
53b381b3 34#include "raid56.h"
5ac1d209 35#include "sysfs.h"
fcebe456 36#include "qgroup.h"
ebb8765b 37#include "compression.h"
557ea5dd 38#include "tree-checker.h"
fd708b81 39#include "ref-verify.h"
aac0023c 40#include "block-group.h"
b0643e59 41#include "discard.h"
f603bb94 42#include "space-info.h"
b70f5097 43#include "zoned.h"
139e8cd3 44#include "subpage.h"
c7f13d42 45#include "fs.h"
07e81dc9 46#include "accessors.h"
a0231804 47#include "extent-tree.h"
45c40c8f 48#include "root-tree.h"
59b818e0 49#include "defrag.h"
c7a03b52 50#include "uuid-tree.h"
67707479 51#include "relocation.h"
2fc6822c 52#include "scrub.h"
c03b2207 53#include "super.h"
eb60ceac 54
319e4d06
QW
55#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
56 BTRFS_HEADER_FLAG_RELOC |\
57 BTRFS_SUPER_FLAG_ERROR |\
58 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
59 BTRFS_SUPER_FLAG_METADUMP |\
60 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 61
2ff7e61e
JM
62static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 64
141386e1
JB
65static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
66{
67 if (fs_info->csum_shash)
68 crypto_free_shash(fs_info->csum_shash);
69}
70
d352ac68 71/*
2996e1f8 72 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 73 */
c67b3892 74static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 75{
d5178578 76 struct btrfs_fs_info *fs_info = buf->fs_info;
397239ed
QW
77 int num_pages;
78 u32 first_page_part;
d5178578 79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 80 char *kaddr;
e9be5a30 81 int i;
d5178578
JT
82
83 shash->tfm = fs_info->csum_shash;
84 crypto_shash_init(shash);
397239ed
QW
85
86 if (buf->addr) {
87 /* Pages are contiguous, handle them as a big one. */
88 kaddr = buf->addr;
89 first_page_part = fs_info->nodesize;
90 num_pages = 1;
91 } else {
082d5bb9 92 kaddr = folio_address(buf->folios[0]);
397239ed
QW
93 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
94 num_pages = num_extent_pages(buf);
95 }
96
e9be5a30 97 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 98 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 99
13df3775
QW
100 /*
101 * Multiple single-page folios case would reach here.
102 *
103 * nodesize <= PAGE_SIZE and large folio all handled by above
104 * crypto_shash_update() already.
105 */
5ad9b471 106 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
082d5bb9 107 kaddr = folio_address(buf->folios[i]);
e9be5a30 108 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 109 }
71a63551 110 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 111 crypto_shash_final(shash, result);
19c00ddc
CM
112}
113
d352ac68
CM
114/*
115 * we can't consider a given block up to date unless the transid of the
116 * block matches the transid in the parent node's pointer. This is how we
117 * detect blocks that either didn't get written at all or got written
118 * in the wrong place.
119 */
d87e6575 120int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
1259ab75 121{
d87e6575 122 if (!extent_buffer_uptodate(eb))
1259ab75
CM
123 return 0;
124
d87e6575
CH
125 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
126 return 1;
127
b9fab919
CM
128 if (atomic)
129 return -EAGAIN;
130
d87e6575
CH
131 if (!extent_buffer_uptodate(eb) ||
132 btrfs_header_generation(eb) != parent_transid) {
133 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
134"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
135 eb->start, eb->read_mirror,
29549aec 136 parent_transid, btrfs_header_generation(eb));
d87e6575 137 clear_extent_buffer_uptodate(eb);
9e2aff90 138 return 0;
d87e6575 139 }
9e2aff90 140 return 1;
1259ab75
CM
141}
142
e7e16f48
JT
143static bool btrfs_supported_super_csum(u16 csum_type)
144{
145 switch (csum_type) {
146 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 147 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 148 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 149 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
150 return true;
151 default:
152 return false;
153 }
154}
155
1104a885
DS
156/*
157 * Return 0 if the superblock checksum type matches the checksum value of that
158 * algorithm. Pass the raw disk superblock data.
159 */
3d17adea
QW
160int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
161 const struct btrfs_super_block *disk_sb)
1104a885 162{
51bce6c9 163 char result[BTRFS_CSUM_SIZE];
d5178578
JT
164 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
165
166 shash->tfm = fs_info->csum_shash;
1104a885 167
51bce6c9
JT
168 /*
169 * The super_block structure does not span the whole
170 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
171 * filled with zeros and is included in the checksum.
172 */
3d17adea 173 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 174 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 175
55fc29be 176 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 177 return 1;
1104a885 178
e7e16f48 179 return 0;
1104a885
DS
180}
181
bacf60e5
CH
182static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
183 int mirror_num)
184{
185 struct btrfs_fs_info *fs_info = eb->fs_info;
bacf60e5
CH
186 int i, num_pages = num_extent_pages(eb);
187 int ret = 0;
188
189 if (sb_rdonly(fs_info->sb))
190 return -EROFS;
191
192 for (i = 0; i < num_pages; i++) {
082d5bb9
QW
193 u64 start = max_t(u64, eb->start, folio_pos(eb->folios[i]));
194 u64 end = min_t(u64, eb->start + eb->len,
195 folio_pos(eb->folios[i]) + PAGE_SIZE);
917ac778 196 u32 len = end - start;
bacf60e5 197
917ac778 198 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
082d5bb9
QW
199 start, folio_page(eb->folios[i], 0),
200 offset_in_page(start), mirror_num);
bacf60e5
CH
201 if (ret)
202 break;
bacf60e5
CH
203 }
204
205 return ret;
206}
207
d352ac68
CM
208/*
209 * helper to read a given tree block, doing retries as required when
210 * the checksums don't match and we have alternate mirrors to try.
581c1760 211 *
789d6a3a
QW
212 * @check: expected tree parentness check, see the comments of the
213 * structure for details.
d352ac68 214 */
6a2e9dc4 215int btrfs_read_extent_buffer(struct extent_buffer *eb,
789d6a3a 216 struct btrfs_tree_parent_check *check)
f188591e 217{
5ab12d1f 218 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 219 int failed = 0;
f188591e
CM
220 int ret;
221 int num_copies = 0;
222 int mirror_num = 0;
ea466794 223 int failed_mirror = 0;
f188591e 224
789d6a3a
QW
225 ASSERT(check);
226
f188591e 227 while (1) {
f8397d69 228 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
947a6299
QW
229 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230 if (!ret)
231 break;
d397712b 232
0b246afa 233 num_copies = btrfs_num_copies(fs_info,
f188591e 234 eb->start, eb->len);
4235298e 235 if (num_copies == 1)
ea466794 236 break;
4235298e 237
5cf1ab56
JB
238 if (!failed_mirror) {
239 failed = 1;
240 failed_mirror = eb->read_mirror;
241 }
242
f188591e 243 mirror_num++;
ea466794
JB
244 if (mirror_num == failed_mirror)
245 mirror_num++;
246
4235298e 247 if (mirror_num > num_copies)
ea466794 248 break;
f188591e 249 }
ea466794 250
c0901581 251 if (failed && !ret && failed_mirror)
20a1fbf9 252 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
253
254 return ret;
f188591e 255}
19c00ddc 256
31d89399
CH
257/*
258 * Checksum a dirty tree block before IO.
259 */
260blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
eca0f6f6 261{
31d89399 262 struct extent_buffer *eb = bbio->private;
eca0f6f6 263 struct btrfs_fs_info *fs_info = eb->fs_info;
31d89399 264 u64 found_start = btrfs_header_bytenr(eb);
0124855f 265 u64 last_trans;
eca0f6f6
QW
266 u8 result[BTRFS_CSUM_SIZE];
267 int ret;
268
31d89399
CH
269 /* Btree blocks are always contiguous on disk. */
270 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271 return BLK_STS_IOERR;
272 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273 return BLK_STS_IOERR;
274
aa6313e6
JT
275 /*
276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277 * checksum it but zero-out its content. This is done to preserve
278 * ordering of I/O without unnecessarily writing out data.
279 */
cbf44cd9 280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
aa6313e6 281 memzero_extent_buffer(eb, 0, eb->len);
31d89399
CH
282 return BLK_STS_OK;
283 }
284
285 if (WARN_ON_ONCE(found_start != eb->start))
286 return BLK_STS_IOERR;
082d5bb9
QW
287 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, folio_page(eb->folios[0], 0),
288 eb->start, eb->len)))
31d89399
CH
289 return BLK_STS_IOERR;
290
eca0f6f6
QW
291 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292 offsetof(struct btrfs_header, fsid),
293 BTRFS_FSID_SIZE) == 0);
294 csum_tree_block(eb, result);
295
296 if (btrfs_header_level(eb))
297 ret = btrfs_check_node(eb);
298 else
85d8a826 299 ret = btrfs_check_leaf(eb);
eca0f6f6 300
3777369f
QW
301 if (ret < 0)
302 goto error;
303
304 /*
305 * Also check the generation, the eb reached here must be newer than
306 * last committed. Or something seriously wrong happened.
307 */
0124855f
FM
308 last_trans = btrfs_get_last_trans_committed(fs_info);
309 if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
3777369f 310 ret = -EUCLEAN;
eca0f6f6 311 btrfs_err(fs_info,
3777369f 312 "block=%llu bad generation, have %llu expect > %llu",
0124855f 313 eb->start, btrfs_header_generation(eb), last_trans);
3777369f 314 goto error;
eca0f6f6
QW
315 }
316 write_extent_buffer(eb, result, 0, fs_info->csum_size);
31d89399 317 return BLK_STS_OK;
3777369f
QW
318
319error:
320 btrfs_print_tree(eb, 0);
321 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322 eb->start);
16199ad9
FM
323 /*
324 * Be noisy if this is an extent buffer from a log tree. We don't abort
325 * a transaction in case there's a bad log tree extent buffer, we just
326 * fallback to a transaction commit. Still we want to know when there is
327 * a bad log tree extent buffer, as that may signal a bug somewhere.
328 */
329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
deb6216f
CH
331 return errno_to_blk_status(ret);
332}
333
413fb1bc 334static bool check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 335{
b0c9b3b0 336 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 338 u8 fsid[BTRFS_FSID_SIZE];
2b82032c 339
9a8658e3
DS
340 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341 BTRFS_FSID_SIZE);
67bc5ad0 342
944d3f9f 343 /*
f7361d8c
AJ
344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345 * This is then overwritten by metadata_uuid if it is present in the
346 * device_list_add(). The same true for a seed device as well. So use of
347 * fs_devices::metadata_uuid is appropriate here.
944d3f9f 348 */
67bc5ad0 349 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
413fb1bc 350 return false;
944d3f9f
NB
351
352 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
413fb1bc 354 return false;
944d3f9f 355
413fb1bc 356 return true;
2b82032c
YZ
357}
358
77bf40a2 359/* Do basic extent buffer checks at read time */
046b562b
CH
360int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361 struct btrfs_tree_parent_check *check)
ce9adaa5 362{
77bf40a2 363 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 364 u64 found_start;
77bf40a2
QW
365 const u32 csum_size = fs_info->csum_size;
366 u8 found_level;
2996e1f8 367 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 368 const u8 *header_csum;
77bf40a2 369 int ret = 0;
ea466794 370
947a6299
QW
371 ASSERT(check);
372
ce9adaa5 373 found_start = btrfs_header_bytenr(eb);
727011e0 374 if (found_start != eb->start) {
8f0ed7d4
QW
375 btrfs_err_rl(fs_info,
376 "bad tree block start, mirror %u want %llu have %llu",
377 eb->read_mirror, eb->start, found_start);
f188591e 378 ret = -EIO;
77bf40a2 379 goto out;
ce9adaa5 380 }
b0c9b3b0 381 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
382 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
383 eb->start, eb->read_mirror);
1259ab75 384 ret = -EIO;
77bf40a2 385 goto out;
1259ab75 386 }
ce9adaa5 387 found_level = btrfs_header_level(eb);
1c24c3ce 388 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
389 btrfs_err(fs_info,
390 "bad tree block level, mirror %u level %d on logical %llu",
391 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 392 ret = -EIO;
77bf40a2 393 goto out;
1c24c3ce 394 }
ce9adaa5 395
c67b3892 396 csum_tree_block(eb, result);
082d5bb9 397 header_csum = folio_address(eb->folios[0]) +
dfd29eed 398 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 399
dfd29eed 400 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 401 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
402"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
403 eb->start, eb->read_mirror,
dfd29eed 404 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
405 CSUM_FMT_VALUE(csum_size, result),
406 btrfs_header_level(eb));
2996e1f8 407 ret = -EUCLEAN;
77bf40a2 408 goto out;
2996e1f8
JT
409 }
410
947a6299 411 if (found_level != check->level) {
77177ed1
QW
412 btrfs_err(fs_info,
413 "level verify failed on logical %llu mirror %u wanted %u found %u",
414 eb->start, eb->read_mirror, check->level, found_level);
947a6299
QW
415 ret = -EIO;
416 goto out;
417 }
418 if (unlikely(check->transid &&
419 btrfs_header_generation(eb) != check->transid)) {
420 btrfs_err_rl(eb->fs_info,
421"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
422 eb->start, eb->read_mirror, check->transid,
423 btrfs_header_generation(eb));
424 ret = -EIO;
425 goto out;
426 }
427 if (check->has_first_key) {
428 struct btrfs_key *expect_key = &check->first_key;
429 struct btrfs_key found_key;
430
431 if (found_level)
432 btrfs_node_key_to_cpu(eb, &found_key, 0);
433 else
434 btrfs_item_key_to_cpu(eb, &found_key, 0);
435 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
436 btrfs_err(fs_info,
437"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
438 eb->start, check->transid,
439 expect_key->objectid,
440 expect_key->type, expect_key->offset,
441 found_key.objectid, found_key.type,
442 found_key.offset);
443 ret = -EUCLEAN;
444 goto out;
445 }
446 }
447 if (check->owner_root) {
448 ret = btrfs_check_eb_owner(eb, check->owner_root);
449 if (ret < 0)
450 goto out;
451 }
452
a826d6dc
JB
453 /*
454 * If this is a leaf block and it is corrupt, set the corrupt bit so
455 * that we don't try and read the other copies of this block, just
456 * return -EIO.
457 */
85d8a826 458 if (found_level == 0 && btrfs_check_leaf(eb)) {
a826d6dc
JB
459 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
460 ret = -EIO;
461 }
ce9adaa5 462
813fd1dc 463 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
464 ret = -EIO;
465
aebcc159 466 if (ret)
75391f0d 467 btrfs_err(fs_info,
8f0ed7d4
QW
468 "read time tree block corruption detected on logical %llu mirror %u",
469 eb->start, eb->read_mirror);
77bf40a2
QW
470out:
471 return ret;
472}
473
3dd1462e 474#ifdef CONFIG_MIGRATION
8958b551
MWO
475static int btree_migrate_folio(struct address_space *mapping,
476 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
477{
478 /*
479 * we can't safely write a btree page from here,
480 * we haven't done the locking hook
481 */
8958b551 482 if (folio_test_dirty(src))
784b4e29
CM
483 return -EAGAIN;
484 /*
485 * Buffers may be managed in a filesystem specific way.
486 * We must have no buffers or drop them.
487 */
8958b551
MWO
488 if (folio_get_private(src) &&
489 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 490 return -EAGAIN;
54184650 491 return migrate_folio(mapping, dst, src, mode);
784b4e29 492}
8958b551
MWO
493#else
494#define btree_migrate_folio NULL
3dd1462e 495#endif
784b4e29 496
0da5468f
CM
497static int btree_writepages(struct address_space *mapping,
498 struct writeback_control *wbc)
499{
e2d84521
MX
500 struct btrfs_fs_info *fs_info;
501 int ret;
502
d8d5f3e1 503 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
504
505 if (wbc->for_kupdate)
506 return 0;
507
e2d84521 508 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 509 /* this is a bit racy, but that's ok */
d814a491
EL
510 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
511 BTRFS_DIRTY_METADATA_THRESH,
512 fs_info->dirty_metadata_batch);
e2d84521 513 if (ret < 0)
793955bc 514 return 0;
793955bc 515 }
0b32f4bb 516 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
517}
518
f913cff3 519static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 520{
f913cff3
MWO
521 if (folio_test_writeback(folio) || folio_test_dirty(folio))
522 return false;
0c4e538b 523
f913cff3 524 return try_release_extent_buffer(&folio->page);
d98237b3
CM
525}
526
895586eb
MWO
527static void btree_invalidate_folio(struct folio *folio, size_t offset,
528 size_t length)
d98237b3 529{
d1310b2e 530 struct extent_io_tree *tree;
895586eb
MWO
531 tree = &BTRFS_I(folio->mapping->host)->io_tree;
532 extent_invalidate_folio(tree, folio, offset);
f913cff3 533 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
534 if (folio_get_private(folio)) {
535 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
536 "folio private not zero on folio %llu",
537 (unsigned long long)folio_pos(folio));
538 folio_detach_private(folio);
9ad6b7bc 539 }
d98237b3
CM
540}
541
bb146eb2 542#ifdef DEBUG
0079c3b1
MWO
543static bool btree_dirty_folio(struct address_space *mapping,
544 struct folio *folio)
545{
546 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
5e0e8799 547 struct btrfs_subpage_info *spi = fs_info->subpage_info;
139e8cd3 548 struct btrfs_subpage *subpage;
0b32f4bb 549 struct extent_buffer *eb;
139e8cd3 550 int cur_bit = 0;
0079c3b1 551 u64 page_start = folio_pos(folio);
139e8cd3
QW
552
553 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 554 eb = folio_get_private(folio);
139e8cd3
QW
555 BUG_ON(!eb);
556 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
557 BUG_ON(!atomic_read(&eb->refs));
49d0c642 558 btrfs_assert_tree_write_locked(eb);
0079c3b1 559 return filemap_dirty_folio(mapping, folio);
139e8cd3 560 }
5e0e8799
QW
561
562 ASSERT(spi);
0079c3b1 563 subpage = folio_get_private(folio);
139e8cd3 564
5e0e8799
QW
565 for (cur_bit = spi->dirty_offset;
566 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
567 cur_bit++) {
139e8cd3
QW
568 unsigned long flags;
569 u64 cur;
139e8cd3
QW
570
571 spin_lock_irqsave(&subpage->lock, flags);
5e0e8799 572 if (!test_bit(cur_bit, subpage->bitmaps)) {
139e8cd3 573 spin_unlock_irqrestore(&subpage->lock, flags);
139e8cd3
QW
574 continue;
575 }
576 spin_unlock_irqrestore(&subpage->lock, flags);
577 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 578
139e8cd3
QW
579 eb = find_extent_buffer(fs_info, cur);
580 ASSERT(eb);
581 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
582 ASSERT(atomic_read(&eb->refs));
49d0c642 583 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
584 free_extent_buffer(eb);
585
5e0e8799 586 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
139e8cd3 587 }
0079c3b1 588 return filemap_dirty_folio(mapping, folio);
0b32f4bb 589}
0079c3b1
MWO
590#else
591#define btree_dirty_folio filemap_dirty_folio
592#endif
0b32f4bb 593
7f09410b 594static const struct address_space_operations btree_aops = {
0da5468f 595 .writepages = btree_writepages,
f913cff3 596 .release_folio = btree_release_folio,
895586eb 597 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
598 .migrate_folio = btree_migrate_folio,
599 .dirty_folio = btree_dirty_folio,
d98237b3
CM
600};
601
2ff7e61e
JM
602struct extent_buffer *btrfs_find_create_tree_block(
603 struct btrfs_fs_info *fs_info,
3fbaf258
JB
604 u64 bytenr, u64 owner_root,
605 int level)
0999df54 606{
0b246afa
JM
607 if (btrfs_is_testing(fs_info))
608 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 609 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
610}
611
581c1760
QW
612/*
613 * Read tree block at logical address @bytenr and do variant basic but critical
614 * verification.
615 *
789d6a3a
QW
616 * @check: expected tree parentness check, see comments of the
617 * structure for details.
581c1760 618 */
2ff7e61e 619struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
789d6a3a 620 struct btrfs_tree_parent_check *check)
0999df54
CM
621{
622 struct extent_buffer *buf = NULL;
0999df54
CM
623 int ret;
624
789d6a3a
QW
625 ASSERT(check);
626
627 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
628 check->level);
c871b0f2
LB
629 if (IS_ERR(buf))
630 return buf;
0999df54 631
789d6a3a 632 ret = btrfs_read_extent_buffer(buf, check);
0f0fe8f7 633 if (ret) {
537f38f0 634 free_extent_buffer_stale(buf);
64c043de 635 return ERR_PTR(ret);
0f0fe8f7 636 }
789d6a3a 637 if (btrfs_check_eb_owner(buf, check->owner_root)) {
88c602ab
QW
638 free_extent_buffer_stale(buf);
639 return ERR_PTR(-EUCLEAN);
640 }
5f39d397 641 return buf;
ce9adaa5 642
eb60ceac
CM
643}
644
da17066c 645static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 646 u64 objectid)
d97e63b6 647{
7c0260ee 648 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
649
650 memset(&root->root_key, 0, sizeof(root->root_key));
651 memset(&root->root_item, 0, sizeof(root->root_item));
652 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 653 root->fs_info = fs_info;
2e608bd1 654 root->root_key.objectid = objectid;
cfaa7295 655 root->node = NULL;
a28ec197 656 root->commit_root = NULL;
27cdeb70 657 root->state = 0;
abed4aaa 658 RB_CLEAR_NODE(&root->rb_node);
0b86a832 659
0f7d52f4 660 root->last_trans = 0;
6b8fad57 661 root->free_objectid = 0;
eb73c1b7 662 root->nr_delalloc_inodes = 0;
199c2a9c 663 root->nr_ordered_extents = 0;
6bef4d31 664 root->inode_tree = RB_ROOT;
6140ba8a
DS
665 /* GFP flags are compatible with XA_FLAGS_*. */
666 xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
2e608bd1
JB
667
668 btrfs_init_root_block_rsv(root);
0b86a832
CM
669
670 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 671 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
672 INIT_LIST_HEAD(&root->delalloc_inodes);
673 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
674 INIT_LIST_HEAD(&root->ordered_extents);
675 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 676 INIT_LIST_HEAD(&root->reloc_dirty_list);
5d4f98a2 677 spin_lock_init(&root->inode_lock);
eb73c1b7 678 spin_lock_init(&root->delalloc_lock);
199c2a9c 679 spin_lock_init(&root->ordered_extent_lock);
f0486c68 680 spin_lock_init(&root->accounting_lock);
8287475a 681 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 682 mutex_init(&root->objectid_mutex);
e02119d5 683 mutex_init(&root->log_mutex);
31f3d255 684 mutex_init(&root->ordered_extent_mutex);
573bfb72 685 mutex_init(&root->delalloc_mutex);
c53e9653 686 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
687 init_waitqueue_head(&root->log_writer_wait);
688 init_waitqueue_head(&root->log_commit_wait[0]);
689 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
690 INIT_LIST_HEAD(&root->log_ctxs[0]);
691 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
692 atomic_set(&root->log_commit[0], 0);
693 atomic_set(&root->log_commit[1], 0);
694 atomic_set(&root->log_writers, 0);
2ecb7923 695 atomic_set(&root->log_batch, 0);
0700cea7 696 refcount_set(&root->refs, 1);
8ecebf4d 697 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 698 atomic_set(&root->nr_swapfiles, 0);
6008859b 699 btrfs_set_root_log_transid(root, 0);
d1433deb 700 root->log_transid_committed = -1;
f9850787 701 btrfs_set_root_last_log_commit(root, 0);
2e608bd1 702 root->anon_dev = 0;
e289f03e 703 if (!dummy) {
43eb5f29 704 extent_io_tree_init(fs_info, &root->dirty_log_pages,
35da5a7e 705 IO_TREE_ROOT_DIRTY_LOG_PAGES);
e289f03e 706 extent_io_tree_init(fs_info, &root->log_csum_range,
35da5a7e 707 IO_TREE_LOG_CSUM_RANGE);
e289f03e 708 }
017e5369 709
5f3ab90a 710 spin_lock_init(&root->root_item_lock);
370a11b8 711 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
712#ifdef CONFIG_BTRFS_DEBUG
713 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 714 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 715 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 716 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 717#endif
3768f368
CM
718}
719
74e4d827 720static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 721 u64 objectid, gfp_t flags)
6f07e42e 722{
74e4d827 723 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 724 if (root)
96dfcb46 725 __setup_root(root, fs_info, objectid);
6f07e42e
AV
726 return root;
727}
728
06ea65a3
JB
729#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
730/* Should only be used by the testing infrastructure */
da17066c 731struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
732{
733 struct btrfs_root *root;
734
7c0260ee
JM
735 if (!fs_info)
736 return ERR_PTR(-EINVAL);
737
96dfcb46 738 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
739 if (!root)
740 return ERR_PTR(-ENOMEM);
da17066c 741
b9ef22de 742 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 743 root->alloc_bytenr = 0;
06ea65a3
JB
744
745 return root;
746}
747#endif
748
abed4aaa
JB
749static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
750{
751 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
752 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
753
754 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
755}
756
757static int global_root_key_cmp(const void *k, const struct rb_node *node)
758{
759 const struct btrfs_key *key = k;
760 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
761
762 return btrfs_comp_cpu_keys(key, &root->root_key);
763}
764
765int btrfs_global_root_insert(struct btrfs_root *root)
766{
767 struct btrfs_fs_info *fs_info = root->fs_info;
768 struct rb_node *tmp;
745806fb 769 int ret = 0;
abed4aaa
JB
770
771 write_lock(&fs_info->global_root_lock);
772 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
773 write_unlock(&fs_info->global_root_lock);
abed4aaa 774
745806fb
QW
775 if (tmp) {
776 ret = -EEXIST;
777 btrfs_warn(fs_info, "global root %llu %llu already exists",
778 root->root_key.objectid, root->root_key.offset);
779 }
780 return ret;
abed4aaa
JB
781}
782
783void btrfs_global_root_delete(struct btrfs_root *root)
784{
785 struct btrfs_fs_info *fs_info = root->fs_info;
786
787 write_lock(&fs_info->global_root_lock);
788 rb_erase(&root->rb_node, &fs_info->global_root_tree);
789 write_unlock(&fs_info->global_root_lock);
790}
791
792struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
793 struct btrfs_key *key)
794{
795 struct rb_node *node;
796 struct btrfs_root *root = NULL;
797
798 read_lock(&fs_info->global_root_lock);
799 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
800 if (node)
801 root = container_of(node, struct btrfs_root, rb_node);
802 read_unlock(&fs_info->global_root_lock);
803
804 return root;
805}
806
f7238e50
JB
807static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
808{
809 struct btrfs_block_group *block_group;
810 u64 ret;
811
812 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
813 return 0;
814
815 if (bytenr)
816 block_group = btrfs_lookup_block_group(fs_info, bytenr);
817 else
818 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
819 ASSERT(block_group);
820 if (!block_group)
821 return 0;
822 ret = block_group->global_root_id;
823 btrfs_put_block_group(block_group);
824
825 return ret;
826}
827
abed4aaa
JB
828struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
829{
830 struct btrfs_key key = {
831 .objectid = BTRFS_CSUM_TREE_OBJECTID,
832 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 833 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
834 };
835
836 return btrfs_global_root(fs_info, &key);
837}
838
839struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
840{
841 struct btrfs_key key = {
842 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
843 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 844 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
845 };
846
847 return btrfs_global_root(fs_info, &key);
848}
849
51129b33
JB
850struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
851{
852 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
853 return fs_info->block_group_root;
854 return btrfs_extent_root(fs_info, 0);
855}
856
20897f5c 857struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
858 u64 objectid)
859{
9b7a2440 860 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
861 struct extent_buffer *leaf;
862 struct btrfs_root *tree_root = fs_info->tree_root;
863 struct btrfs_root *root;
864 struct btrfs_key key;
b89f6d1f 865 unsigned int nofs_flag;
20897f5c 866 int ret = 0;
20897f5c 867
b89f6d1f
FM
868 /*
869 * We're holding a transaction handle, so use a NOFS memory allocation
870 * context to avoid deadlock if reclaim happens.
871 */
872 nofs_flag = memalloc_nofs_save();
96dfcb46 873 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 874 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
875 if (!root)
876 return ERR_PTR(-ENOMEM);
877
20897f5c
AJ
878 root->root_key.objectid = objectid;
879 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
880 root->root_key.offset = 0;
881
9631e4cc 882 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
60ea105a 883 0, BTRFS_NESTING_NORMAL);
20897f5c
AJ
884 if (IS_ERR(leaf)) {
885 ret = PTR_ERR(leaf);
1dd05682 886 leaf = NULL;
c1b07854 887 goto fail;
20897f5c
AJ
888 }
889
20897f5c 890 root->node = leaf;
50564b65 891 btrfs_mark_buffer_dirty(trans, leaf);
20897f5c
AJ
892
893 root->commit_root = btrfs_root_node(root);
27cdeb70 894 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 895
f944d2cb
DS
896 btrfs_set_root_flags(&root->root_item, 0);
897 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
898 btrfs_set_root_bytenr(&root->root_item, leaf->start);
899 btrfs_set_root_generation(&root->root_item, trans->transid);
900 btrfs_set_root_level(&root->root_item, 0);
901 btrfs_set_root_refs(&root->root_item, 1);
902 btrfs_set_root_used(&root->root_item, leaf->len);
903 btrfs_set_root_last_snapshot(&root->root_item, 0);
904 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 905 if (is_fstree(objectid))
807fc790
AS
906 generate_random_guid(root->root_item.uuid);
907 else
908 export_guid(root->root_item.uuid, &guid_null);
c8422684 909 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 910
8a6a87cd
BB
911 btrfs_tree_unlock(leaf);
912
20897f5c
AJ
913 key.objectid = objectid;
914 key.type = BTRFS_ROOT_ITEM_KEY;
915 key.offset = 0;
916 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
917 if (ret)
918 goto fail;
919
1dd05682
TI
920 return root;
921
8a6a87cd 922fail:
00246528 923 btrfs_put_root(root);
20897f5c 924
1dd05682 925 return ERR_PTR(ret);
20897f5c
AJ
926}
927
7237f183
YZ
928static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
929 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
930{
931 struct btrfs_root *root;
e02119d5 932
96dfcb46 933 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 934 if (!root)
7237f183 935 return ERR_PTR(-ENOMEM);
e02119d5 936
e02119d5
CM
937 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
938 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
939 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 940
6ab6ebb7
NA
941 return root;
942}
943
944int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
945 struct btrfs_root *root)
946{
947 struct extent_buffer *leaf;
948
7237f183 949 /*
92a7cc42 950 * DON'T set SHAREABLE bit for log trees.
27cdeb70 951 *
92a7cc42
QW
952 * Log trees are not exposed to user space thus can't be snapshotted,
953 * and they go away before a real commit is actually done.
954 *
955 * They do store pointers to file data extents, and those reference
956 * counts still get updated (along with back refs to the log tree).
7237f183 957 */
e02119d5 958
4d75f8a9 959 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
60ea105a 960 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
961 if (IS_ERR(leaf))
962 return PTR_ERR(leaf);
e02119d5 963
7237f183 964 root->node = leaf;
e02119d5 965
50564b65 966 btrfs_mark_buffer_dirty(trans, root->node);
e02119d5 967 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
968
969 return 0;
7237f183
YZ
970}
971
972int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
973 struct btrfs_fs_info *fs_info)
974{
975 struct btrfs_root *log_root;
976
977 log_root = alloc_log_tree(trans, fs_info);
978 if (IS_ERR(log_root))
979 return PTR_ERR(log_root);
6ab6ebb7 980
3ddebf27
NA
981 if (!btrfs_is_zoned(fs_info)) {
982 int ret = btrfs_alloc_log_tree_node(trans, log_root);
983
984 if (ret) {
985 btrfs_put_root(log_root);
986 return ret;
987 }
6ab6ebb7
NA
988 }
989
7237f183
YZ
990 WARN_ON(fs_info->log_root_tree);
991 fs_info->log_root_tree = log_root;
992 return 0;
993}
994
995int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
996 struct btrfs_root *root)
997{
0b246afa 998 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
999 struct btrfs_root *log_root;
1000 struct btrfs_inode_item *inode_item;
6ab6ebb7 1001 int ret;
7237f183 1002
0b246afa 1003 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1004 if (IS_ERR(log_root))
1005 return PTR_ERR(log_root);
1006
6ab6ebb7
NA
1007 ret = btrfs_alloc_log_tree_node(trans, log_root);
1008 if (ret) {
1009 btrfs_put_root(log_root);
1010 return ret;
1011 }
1012
7237f183
YZ
1013 log_root->last_trans = trans->transid;
1014 log_root->root_key.offset = root->root_key.objectid;
1015
1016 inode_item = &log_root->root_item.inode;
3cae210f
QW
1017 btrfs_set_stack_inode_generation(inode_item, 1);
1018 btrfs_set_stack_inode_size(inode_item, 3);
1019 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1020 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1021 fs_info->nodesize);
3cae210f 1022 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1023
5d4f98a2 1024 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1025
1026 WARN_ON(root->log_root);
1027 root->log_root = log_root;
6008859b 1028 btrfs_set_root_log_transid(root, 0);
d1433deb 1029 root->log_transid_committed = -1;
f9850787 1030 btrfs_set_root_last_log_commit(root, 0);
e02119d5
CM
1031 return 0;
1032}
1033
49d11bea
JB
1034static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1035 struct btrfs_path *path,
1036 struct btrfs_key *key)
e02119d5
CM
1037{
1038 struct btrfs_root *root;
789d6a3a 1039 struct btrfs_tree_parent_check check = { 0 };
e02119d5 1040 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1041 u64 generation;
cb517eab 1042 int ret;
581c1760 1043 int level;
0f7d52f4 1044
96dfcb46 1045 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1046 if (!root)
1047 return ERR_PTR(-ENOMEM);
0f7d52f4 1048
cb517eab
MX
1049 ret = btrfs_find_root(tree_root, key, path,
1050 &root->root_item, &root->root_key);
0f7d52f4 1051 if (ret) {
13a8a7c8
YZ
1052 if (ret > 0)
1053 ret = -ENOENT;
49d11bea 1054 goto fail;
0f7d52f4 1055 }
13a8a7c8 1056
84234f3a 1057 generation = btrfs_root_generation(&root->root_item);
581c1760 1058 level = btrfs_root_level(&root->root_item);
789d6a3a
QW
1059 check.level = level;
1060 check.transid = generation;
1061 check.owner_root = key->objectid;
1062 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1063 &check);
64c043de
LB
1064 if (IS_ERR(root->node)) {
1065 ret = PTR_ERR(root->node);
8c38938c 1066 root->node = NULL;
49d11bea 1067 goto fail;
4eb150d6
QW
1068 }
1069 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1070 ret = -EIO;
49d11bea 1071 goto fail;
416bc658 1072 }
88c602ab
QW
1073
1074 /*
1075 * For real fs, and not log/reloc trees, root owner must
1076 * match its root node owner
1077 */
1078 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1079 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1080 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1081 root->root_key.objectid != btrfs_header_owner(root->node)) {
1082 btrfs_crit(fs_info,
1083"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1084 root->root_key.objectid, root->node->start,
1085 btrfs_header_owner(root->node),
1086 root->root_key.objectid);
1087 ret = -EUCLEAN;
1088 goto fail;
1089 }
5d4f98a2 1090 root->commit_root = btrfs_root_node(root);
cb517eab 1091 return root;
49d11bea 1092fail:
00246528 1093 btrfs_put_root(root);
49d11bea
JB
1094 return ERR_PTR(ret);
1095}
1096
1097struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1098 struct btrfs_key *key)
1099{
1100 struct btrfs_root *root;
1101 struct btrfs_path *path;
1102
1103 path = btrfs_alloc_path();
1104 if (!path)
1105 return ERR_PTR(-ENOMEM);
1106 root = read_tree_root_path(tree_root, path, key);
1107 btrfs_free_path(path);
1108
1109 return root;
cb517eab
MX
1110}
1111
2dfb1e43
QW
1112/*
1113 * Initialize subvolume root in-memory structure
1114 *
1115 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1116 */
1117static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1118{
1119 int ret;
1120
0b548539 1121 btrfs_drew_lock_init(&root->snapshot_lock);
8257b2dc 1122
aeb935a4 1123 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
6ebcd021
QW
1124 !btrfs_is_data_reloc_root(root) &&
1125 is_fstree(root->root_key.objectid)) {
92a7cc42 1126 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1127 btrfs_check_and_init_root_item(&root->root_item);
1128 }
1129
851fd730
QW
1130 /*
1131 * Don't assign anonymous block device to roots that are not exposed to
1132 * userspace, the id pool is limited to 1M
1133 */
1134 if (is_fstree(root->root_key.objectid) &&
1135 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1136 if (!anon_dev) {
1137 ret = get_anon_bdev(&root->anon_dev);
1138 if (ret)
1139 goto fail;
1140 } else {
1141 root->anon_dev = anon_dev;
1142 }
851fd730 1143 }
f32e48e9
CR
1144
1145 mutex_lock(&root->objectid_mutex);
453e4873 1146 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1147 if (ret) {
1148 mutex_unlock(&root->objectid_mutex);
876d2cf1 1149 goto fail;
f32e48e9
CR
1150 }
1151
6b8fad57 1152 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1153
1154 mutex_unlock(&root->objectid_mutex);
1155
cb517eab
MX
1156 return 0;
1157fail:
84db5ccf 1158 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1159 return ret;
1160}
1161
a98db0f3
JB
1162static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1163 u64 root_id)
cb517eab
MX
1164{
1165 struct btrfs_root *root;
1166
fc7cbcd4
DS
1167 spin_lock(&fs_info->fs_roots_radix_lock);
1168 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1169 (unsigned long)root_id);
25ac047c 1170 root = btrfs_grab_root(root);
fc7cbcd4 1171 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1172 return root;
1173}
1174
49d11bea
JB
1175static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1176 u64 objectid)
1177{
abed4aaa
JB
1178 struct btrfs_key key = {
1179 .objectid = objectid,
1180 .type = BTRFS_ROOT_ITEM_KEY,
1181 .offset = 0,
1182 };
1183
e91909aa
CH
1184 switch (objectid) {
1185 case BTRFS_ROOT_TREE_OBJECTID:
49d11bea 1186 return btrfs_grab_root(fs_info->tree_root);
e91909aa 1187 case BTRFS_EXTENT_TREE_OBJECTID:
abed4aaa 1188 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1189 case BTRFS_CHUNK_TREE_OBJECTID:
49d11bea 1190 return btrfs_grab_root(fs_info->chunk_root);
e91909aa 1191 case BTRFS_DEV_TREE_OBJECTID:
49d11bea 1192 return btrfs_grab_root(fs_info->dev_root);
e91909aa 1193 case BTRFS_CSUM_TREE_OBJECTID:
abed4aaa 1194 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1195 case BTRFS_QUOTA_TREE_OBJECTID:
85724171 1196 return btrfs_grab_root(fs_info->quota_root);
e91909aa 1197 case BTRFS_UUID_TREE_OBJECTID:
85724171 1198 return btrfs_grab_root(fs_info->uuid_root);
e91909aa 1199 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
85724171 1200 return btrfs_grab_root(fs_info->block_group_root);
e91909aa 1201 case BTRFS_FREE_SPACE_TREE_OBJECTID:
85724171 1202 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
51502090
JT
1203 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1204 return btrfs_grab_root(fs_info->stripe_root);
e91909aa
CH
1205 default:
1206 return NULL;
1207 }
49d11bea
JB
1208}
1209
cb517eab
MX
1210int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1211 struct btrfs_root *root)
1212{
1213 int ret;
1214
fc7cbcd4
DS
1215 ret = radix_tree_preload(GFP_NOFS);
1216 if (ret)
1217 return ret;
1218
1219 spin_lock(&fs_info->fs_roots_radix_lock);
1220 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1221 (unsigned long)root->root_key.objectid,
1222 root);
af01d2e5 1223 if (ret == 0) {
00246528 1224 btrfs_grab_root(root);
fc7cbcd4 1225 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1226 }
fc7cbcd4
DS
1227 spin_unlock(&fs_info->fs_roots_radix_lock);
1228 radix_tree_preload_end();
cb517eab
MX
1229
1230 return ret;
1231}
1232
bd647ce3
JB
1233void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1234{
1235#ifdef CONFIG_BTRFS_DEBUG
1236 struct btrfs_root *root;
1237
1238 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1239 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1240
bd647ce3
JB
1241 root = list_first_entry(&fs_info->allocated_roots,
1242 struct btrfs_root, leak_list);
457f1864 1243 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1244 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1245 refcount_read(&root->refs));
1246 while (refcount_read(&root->refs) > 1)
00246528
JB
1247 btrfs_put_root(root);
1248 btrfs_put_root(root);
bd647ce3
JB
1249 }
1250#endif
1251}
1252
abed4aaa
JB
1253static void free_global_roots(struct btrfs_fs_info *fs_info)
1254{
1255 struct btrfs_root *root;
1256 struct rb_node *node;
1257
1258 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1259 root = rb_entry(node, struct btrfs_root, rb_node);
1260 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1261 btrfs_put_root(root);
1262 }
1263}
1264
0d4b0463
JB
1265void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1266{
141386e1
JB
1267 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1268 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1269 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1270 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1271 btrfs_free_csum_hash(fs_info);
1272 btrfs_free_stripe_hash_table(fs_info);
1273 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1274 kfree(fs_info->balance_ctl);
1275 kfree(fs_info->delayed_root);
abed4aaa 1276 free_global_roots(fs_info);
00246528
JB
1277 btrfs_put_root(fs_info->tree_root);
1278 btrfs_put_root(fs_info->chunk_root);
1279 btrfs_put_root(fs_info->dev_root);
00246528
JB
1280 btrfs_put_root(fs_info->quota_root);
1281 btrfs_put_root(fs_info->uuid_root);
00246528 1282 btrfs_put_root(fs_info->fs_root);
aeb935a4 1283 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1284 btrfs_put_root(fs_info->block_group_root);
51502090 1285 btrfs_put_root(fs_info->stripe_root);
bd647ce3 1286 btrfs_check_leaked_roots(fs_info);
3fd63727 1287 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1288 kfree(fs_info->super_copy);
1289 kfree(fs_info->super_for_commit);
8481dd80 1290 kfree(fs_info->subpage_info);
0d4b0463
JB
1291 kvfree(fs_info);
1292}
1293
1294
2dfb1e43
QW
1295/*
1296 * Get an in-memory reference of a root structure.
1297 *
1298 * For essential trees like root/extent tree, we grab it from fs_info directly.
1299 * For subvolume trees, we check the cached filesystem roots first. If not
1300 * found, then read it from disk and add it to cached fs roots.
1301 *
1302 * Caller should release the root by calling btrfs_put_root() after the usage.
1303 *
1304 * NOTE: Reloc and log trees can't be read by this function as they share the
1305 * same root objectid.
1306 *
1307 * @objectid: root id
1308 * @anon_dev: preallocated anonymous block device number for new roots,
1309 * pass 0 for new allocation.
1310 * @check_ref: whether to check root item references, If true, return -ENOENT
1311 * for orphan roots
1312 */
1313static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1314 u64 objectid, dev_t anon_dev,
1315 bool check_ref)
5eda7b5e
CM
1316{
1317 struct btrfs_root *root;
381cf658 1318 struct btrfs_path *path;
1d4c08e0 1319 struct btrfs_key key;
5eda7b5e
CM
1320 int ret;
1321
49d11bea
JB
1322 root = btrfs_get_global_root(fs_info, objectid);
1323 if (root)
1324 return root;
773e722a
QW
1325
1326 /*
1327 * If we're called for non-subvolume trees, and above function didn't
1328 * find one, do not try to read it from disk.
1329 *
1330 * This is namely for free-space-tree and quota tree, which can change
1331 * at runtime and should only be grabbed from fs_info.
1332 */
1333 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1334 return ERR_PTR(-ENOENT);
4df27c4d 1335again:
56e9357a 1336 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1337 if (root) {
2dfb1e43
QW
1338 /* Shouldn't get preallocated anon_dev for cached roots */
1339 ASSERT(!anon_dev);
bc44d7c4 1340 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1341 btrfs_put_root(root);
48475471 1342 return ERR_PTR(-ENOENT);
bc44d7c4 1343 }
5eda7b5e 1344 return root;
48475471 1345 }
5eda7b5e 1346
56e9357a
DS
1347 key.objectid = objectid;
1348 key.type = BTRFS_ROOT_ITEM_KEY;
1349 key.offset = (u64)-1;
1350 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1351 if (IS_ERR(root))
1352 return root;
3394e160 1353
c00869f1 1354 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1355 ret = -ENOENT;
581bb050 1356 goto fail;
35a30d7c 1357 }
581bb050 1358
2dfb1e43 1359 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1360 if (ret)
1361 goto fail;
3394e160 1362
381cf658
DS
1363 path = btrfs_alloc_path();
1364 if (!path) {
1365 ret = -ENOMEM;
1366 goto fail;
1367 }
1d4c08e0
DS
1368 key.objectid = BTRFS_ORPHAN_OBJECTID;
1369 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1370 key.offset = objectid;
1d4c08e0
DS
1371
1372 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1373 btrfs_free_path(path);
d68fc57b
YZ
1374 if (ret < 0)
1375 goto fail;
1376 if (ret == 0)
27cdeb70 1377 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1378
cb517eab 1379 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1380 if (ret) {
168a2f77
JJB
1381 if (ret == -EEXIST) {
1382 btrfs_put_root(root);
4df27c4d 1383 goto again;
168a2f77 1384 }
4df27c4d 1385 goto fail;
0f7d52f4 1386 }
edbd8d4e 1387 return root;
4df27c4d 1388fail:
33fab972
FM
1389 /*
1390 * If our caller provided us an anonymous device, then it's his
143823cf 1391 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1392 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1393 * and once again by our caller.
1394 */
1395 if (anon_dev)
1396 root->anon_dev = 0;
8c38938c 1397 btrfs_put_root(root);
4df27c4d 1398 return ERR_PTR(ret);
edbd8d4e
CM
1399}
1400
2dfb1e43
QW
1401/*
1402 * Get in-memory reference of a root structure
1403 *
1404 * @objectid: tree objectid
1405 * @check_ref: if set, verify that the tree exists and the item has at least
1406 * one reference
1407 */
1408struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1409 u64 objectid, bool check_ref)
1410{
1411 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1412}
1413
1414/*
1415 * Get in-memory reference of a root structure, created as new, optionally pass
1416 * the anonymous block device id
1417 *
1418 * @objectid: tree objectid
1419 * @anon_dev: if zero, allocate a new anonymous block device or use the
1420 * parameter value
1421 */
1422struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1423 u64 objectid, dev_t anon_dev)
1424{
1425 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1426}
1427
49d11bea 1428/*
9580503b
DS
1429 * Return a root for the given objectid.
1430 *
49d11bea
JB
1431 * @fs_info: the fs_info
1432 * @objectid: the objectid we need to lookup
1433 *
1434 * This is exclusively used for backref walking, and exists specifically because
1435 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1436 * creation time, which means we may have to read the tree_root in order to look
1437 * up a fs root that is not in memory. If the root is not in memory we will
1438 * read the tree root commit root and look up the fs root from there. This is a
1439 * temporary root, it will not be inserted into the radix tree as it doesn't
1440 * have the most uptodate information, it'll simply be discarded once the
1441 * backref code is finished using the root.
1442 */
1443struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1444 struct btrfs_path *path,
1445 u64 objectid)
1446{
1447 struct btrfs_root *root;
1448 struct btrfs_key key;
1449
1450 ASSERT(path->search_commit_root && path->skip_locking);
1451
1452 /*
1453 * This can return -ENOENT if we ask for a root that doesn't exist, but
1454 * since this is called via the backref walking code we won't be looking
1455 * up a root that doesn't exist, unless there's corruption. So if root
1456 * != NULL just return it.
1457 */
1458 root = btrfs_get_global_root(fs_info, objectid);
1459 if (root)
1460 return root;
1461
1462 root = btrfs_lookup_fs_root(fs_info, objectid);
1463 if (root)
1464 return root;
1465
1466 key.objectid = objectid;
1467 key.type = BTRFS_ROOT_ITEM_KEY;
1468 key.offset = (u64)-1;
1469 root = read_tree_root_path(fs_info->tree_root, path, &key);
1470 btrfs_release_path(path);
1471
1472 return root;
1473}
1474
a74a4b97
CM
1475static int cleaner_kthread(void *arg)
1476{
0d031dc4 1477 struct btrfs_fs_info *fs_info = arg;
d0278245 1478 int again;
a74a4b97 1479
d6fd0ae2 1480 while (1) {
d0278245 1481 again = 0;
a74a4b97 1482
fd340d0f
JB
1483 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1484
d0278245 1485 /* Make the cleaner go to sleep early. */
2ff7e61e 1486 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1487 goto sleep;
1488
90c711ab
ZB
1489 /*
1490 * Do not do anything if we might cause open_ctree() to block
1491 * before we have finished mounting the filesystem.
1492 */
0b246afa 1493 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1494 goto sleep;
1495
0b246afa 1496 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1497 goto sleep;
1498
dc7f370c
MX
1499 /*
1500 * Avoid the problem that we change the status of the fs
1501 * during the above check and trylock.
1502 */
2ff7e61e 1503 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1504 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1505 goto sleep;
76dda93c 1506 }
a74a4b97 1507
b7625f46
QW
1508 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1509 btrfs_sysfs_feature_update(fs_info);
1510
2ff7e61e 1511 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1512
33c44184 1513 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1514 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1515
1516 /*
05323cd1
MX
1517 * The defragger has dealt with the R/O remount and umount,
1518 * needn't do anything special here.
d0278245 1519 */
0b246afa 1520 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1521
1522 /*
f3372065 1523 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1524 * with relocation (btrfs_relocate_chunk) and relocation
1525 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1526 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1527 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1528 * unused block groups.
1529 */
0b246afa 1530 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1531
1532 /*
1533 * Reclaim block groups in the reclaim_bgs list after we deleted
1534 * all unused block_groups. This possibly gives us some more free
1535 * space.
1536 */
1537 btrfs_reclaim_bgs(fs_info);
d0278245 1538sleep:
a0a1db70 1539 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1540 if (kthread_should_park())
1541 kthread_parkme();
1542 if (kthread_should_stop())
1543 return 0;
838fe188 1544 if (!again) {
a74a4b97 1545 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1546 schedule();
a74a4b97
CM
1547 __set_current_state(TASK_RUNNING);
1548 }
da288d28 1549 }
a74a4b97
CM
1550}
1551
1552static int transaction_kthread(void *arg)
1553{
1554 struct btrfs_root *root = arg;
0b246afa 1555 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1556 struct btrfs_trans_handle *trans;
1557 struct btrfs_transaction *cur;
8929ecfa 1558 u64 transid;
643900be 1559 time64_t delta;
a74a4b97 1560 unsigned long delay;
914b2007 1561 bool cannot_commit;
a74a4b97
CM
1562
1563 do {
914b2007 1564 cannot_commit = false;
ba1bc00f 1565 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1566 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1567
0b246afa
JM
1568 spin_lock(&fs_info->trans_lock);
1569 cur = fs_info->running_transaction;
a74a4b97 1570 if (!cur) {
0b246afa 1571 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1572 goto sleep;
1573 }
31153d81 1574
643900be 1575 delta = ktime_get_seconds() - cur->start_time;
fdfbf020 1576 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
77d20c68 1577 cur->state < TRANS_STATE_COMMIT_PREP &&
643900be 1578 delta < fs_info->commit_interval) {
0b246afa 1579 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1580 delay -= msecs_to_jiffies((delta - 1) * 1000);
1581 delay = min(delay,
1582 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1583 goto sleep;
1584 }
8929ecfa 1585 transid = cur->transid;
0b246afa 1586 spin_unlock(&fs_info->trans_lock);
56bec294 1587
79787eaa 1588 /* If the file system is aborted, this will always fail. */
354aa0fb 1589 trans = btrfs_attach_transaction(root);
914b2007 1590 if (IS_ERR(trans)) {
354aa0fb
MX
1591 if (PTR_ERR(trans) != -ENOENT)
1592 cannot_commit = true;
79787eaa 1593 goto sleep;
914b2007 1594 }
8929ecfa 1595 if (transid == trans->transid) {
3a45bb20 1596 btrfs_commit_transaction(trans);
8929ecfa 1597 } else {
3a45bb20 1598 btrfs_end_transaction(trans);
8929ecfa 1599 }
a74a4b97 1600sleep:
0b246afa
JM
1601 wake_up_process(fs_info->cleaner_kthread);
1602 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1603
84961539 1604 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1605 btrfs_cleanup_transaction(fs_info);
ce63f891 1606 if (!kthread_should_stop() &&
0b246afa 1607 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1608 cannot_commit))
bc5511d0 1609 schedule_timeout_interruptible(delay);
a74a4b97
CM
1610 } while (!kthread_should_stop());
1611 return 0;
1612}
1613
af31f5e5 1614/*
01f0f9da
NB
1615 * This will find the highest generation in the array of root backups. The
1616 * index of the highest array is returned, or -EINVAL if we can't find
1617 * anything.
af31f5e5
CM
1618 *
1619 * We check to make sure the array is valid by comparing the
1620 * generation of the latest root in the array with the generation
1621 * in the super block. If they don't match we pitch it.
1622 */
01f0f9da 1623static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1624{
01f0f9da 1625 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1626 u64 cur;
af31f5e5
CM
1627 struct btrfs_root_backup *root_backup;
1628 int i;
1629
1630 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1631 root_backup = info->super_copy->super_roots + i;
1632 cur = btrfs_backup_tree_root_gen(root_backup);
1633 if (cur == newest_gen)
01f0f9da 1634 return i;
af31f5e5
CM
1635 }
1636
01f0f9da 1637 return -EINVAL;
af31f5e5
CM
1638}
1639
af31f5e5
CM
1640/*
1641 * copy all the root pointers into the super backup array.
1642 * this will bump the backup pointer by one when it is
1643 * done
1644 */
1645static void backup_super_roots(struct btrfs_fs_info *info)
1646{
6ef108dd 1647 const int next_backup = info->backup_root_index;
af31f5e5 1648 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1649
1650 root_backup = info->super_for_commit->super_roots + next_backup;
1651
1652 /*
1653 * make sure all of our padding and empty slots get zero filled
1654 * regardless of which ones we use today
1655 */
1656 memset(root_backup, 0, sizeof(*root_backup));
1657
1658 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1659
1660 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1661 btrfs_set_backup_tree_root_gen(root_backup,
1662 btrfs_header_generation(info->tree_root->node));
1663
1664 btrfs_set_backup_tree_root_level(root_backup,
1665 btrfs_header_level(info->tree_root->node));
1666
1667 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1668 btrfs_set_backup_chunk_root_gen(root_backup,
1669 btrfs_header_generation(info->chunk_root->node));
1670 btrfs_set_backup_chunk_root_level(root_backup,
1671 btrfs_header_level(info->chunk_root->node));
1672
1c56ab99 1673 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1674 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1675 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1676
1677 btrfs_set_backup_extent_root(root_backup,
1678 extent_root->node->start);
1679 btrfs_set_backup_extent_root_gen(root_backup,
1680 btrfs_header_generation(extent_root->node));
1681 btrfs_set_backup_extent_root_level(root_backup,
1682 btrfs_header_level(extent_root->node));
f7238e50
JB
1683
1684 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1685 btrfs_set_backup_csum_root_gen(root_backup,
1686 btrfs_header_generation(csum_root->node));
1687 btrfs_set_backup_csum_root_level(root_backup,
1688 btrfs_header_level(csum_root->node));
9c54e80d 1689 }
af31f5e5 1690
7c7e82a7
CM
1691 /*
1692 * we might commit during log recovery, which happens before we set
1693 * the fs_root. Make sure it is valid before we fill it in.
1694 */
1695 if (info->fs_root && info->fs_root->node) {
1696 btrfs_set_backup_fs_root(root_backup,
1697 info->fs_root->node->start);
1698 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1699 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1700 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1701 btrfs_header_level(info->fs_root->node));
7c7e82a7 1702 }
af31f5e5
CM
1703
1704 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1705 btrfs_set_backup_dev_root_gen(root_backup,
1706 btrfs_header_generation(info->dev_root->node));
1707 btrfs_set_backup_dev_root_level(root_backup,
1708 btrfs_header_level(info->dev_root->node));
1709
af31f5e5
CM
1710 btrfs_set_backup_total_bytes(root_backup,
1711 btrfs_super_total_bytes(info->super_copy));
1712 btrfs_set_backup_bytes_used(root_backup,
1713 btrfs_super_bytes_used(info->super_copy));
1714 btrfs_set_backup_num_devices(root_backup,
1715 btrfs_super_num_devices(info->super_copy));
1716
1717 /*
1718 * if we don't copy this out to the super_copy, it won't get remembered
1719 * for the next commit
1720 */
1721 memcpy(&info->super_copy->super_roots,
1722 &info->super_for_commit->super_roots,
1723 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1724}
1725
bd2336b2 1726/*
9580503b
DS
1727 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1728 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
bd2336b2 1729 *
9580503b
DS
1730 * @fs_info: filesystem whose backup roots need to be read
1731 * @priority: priority of backup root required
bd2336b2
NB
1732 *
1733 * Returns backup root index on success and -EINVAL otherwise.
1734 */
1735static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1736{
1737 int backup_index = find_newest_super_backup(fs_info);
1738 struct btrfs_super_block *super = fs_info->super_copy;
1739 struct btrfs_root_backup *root_backup;
1740
1741 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1742 if (priority == 0)
1743 return backup_index;
1744
1745 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1746 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1747 } else {
1748 return -EINVAL;
1749 }
1750
1751 root_backup = super->super_roots + backup_index;
1752
1753 btrfs_set_super_generation(super,
1754 btrfs_backup_tree_root_gen(root_backup));
1755 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1756 btrfs_set_super_root_level(super,
1757 btrfs_backup_tree_root_level(root_backup));
1758 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1759
1760 /*
1761 * Fixme: the total bytes and num_devices need to match or we should
1762 * need a fsck
1763 */
1764 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1765 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1766
1767 return backup_index;
1768}
1769
7abadb64
LB
1770/* helper to cleanup workers */
1771static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1772{
dc6e3209 1773 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1774 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1775 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
1776 if (fs_info->endio_workers)
1777 destroy_workqueue(fs_info->endio_workers);
385de0ef
CH
1778 if (fs_info->rmw_workers)
1779 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
1780 if (fs_info->compressed_write_workers)
1781 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
1782 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1783 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1784 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1785 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 1786 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1787 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1788 if (fs_info->discard_ctl.discard_workers)
1789 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1790 /*
1791 * Now that all other work queues are destroyed, we can safely destroy
1792 * the queues used for metadata I/O, since tasks from those other work
1793 * queues can do metadata I/O operations.
1794 */
d7b9416f
CH
1795 if (fs_info->endio_meta_workers)
1796 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
1797}
1798
2e9f5954
R
1799static void free_root_extent_buffers(struct btrfs_root *root)
1800{
1801 if (root) {
1802 free_extent_buffer(root->node);
1803 free_extent_buffer(root->commit_root);
1804 root->node = NULL;
1805 root->commit_root = NULL;
1806 }
1807}
1808
abed4aaa
JB
1809static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1810{
1811 struct btrfs_root *root, *tmp;
1812
1813 rbtree_postorder_for_each_entry_safe(root, tmp,
1814 &fs_info->global_root_tree,
1815 rb_node)
1816 free_root_extent_buffers(root);
1817}
1818
af31f5e5 1819/* helper to cleanup tree roots */
4273eaff 1820static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1821{
2e9f5954 1822 free_root_extent_buffers(info->tree_root);
655b09fe 1823
abed4aaa 1824 free_global_root_pointers(info);
2e9f5954 1825 free_root_extent_buffers(info->dev_root);
2e9f5954
R
1826 free_root_extent_buffers(info->quota_root);
1827 free_root_extent_buffers(info->uuid_root);
8c38938c 1828 free_root_extent_buffers(info->fs_root);
aeb935a4 1829 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 1830 free_root_extent_buffers(info->block_group_root);
51502090 1831 free_root_extent_buffers(info->stripe_root);
4273eaff 1832 if (free_chunk_root)
2e9f5954 1833 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
1834}
1835
8c38938c
JB
1836void btrfs_put_root(struct btrfs_root *root)
1837{
1838 if (!root)
1839 return;
1840
1841 if (refcount_dec_and_test(&root->refs)) {
1842 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 1843 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
1844 if (root->anon_dev)
1845 free_anon_bdev(root->anon_dev);
923eb523 1846 free_root_extent_buffers(root);
8c38938c 1847#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 1848 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 1849 list_del_init(&root->leak_list);
fc7cbcd4 1850 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
1851#endif
1852 kfree(root);
1853 }
1854}
1855
faa2dbf0 1856void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 1857{
fc7cbcd4
DS
1858 int ret;
1859 struct btrfs_root *gang[8];
1860 int i;
171f6537
JB
1861
1862 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
1863 gang[0] = list_entry(fs_info->dead_roots.next,
1864 struct btrfs_root, root_list);
1865 list_del(&gang[0]->root_list);
171f6537 1866
fc7cbcd4
DS
1867 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1868 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1869 btrfs_put_root(gang[0]);
171f6537
JB
1870 }
1871
fc7cbcd4
DS
1872 while (1) {
1873 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1874 (void **)gang, 0,
1875 ARRAY_SIZE(gang));
1876 if (!ret)
1877 break;
1878 for (i = 0; i < ret; i++)
1879 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
1880 }
1881}
af31f5e5 1882
638aa7ed
ES
1883static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1884{
1885 mutex_init(&fs_info->scrub_lock);
1886 atomic_set(&fs_info->scrubs_running, 0);
1887 atomic_set(&fs_info->scrub_pause_req, 0);
1888 atomic_set(&fs_info->scrubs_paused, 0);
1889 atomic_set(&fs_info->scrub_cancel_req, 0);
1890 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 1891 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
1892}
1893
779a65a4
ES
1894static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1895{
1896 spin_lock_init(&fs_info->balance_lock);
1897 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
1898 atomic_set(&fs_info->balance_pause_req, 0);
1899 atomic_set(&fs_info->balance_cancel_req, 0);
1900 fs_info->balance_ctl = NULL;
1901 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 1902 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
1903}
1904
dcb2137c 1905static int btrfs_init_btree_inode(struct super_block *sb)
f37938e0 1906{
dcb2137c 1907 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
e256927b
JB
1908 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1909 fs_info->tree_root);
dcb2137c
CH
1910 struct inode *inode;
1911
1912 inode = new_inode(sb);
1913 if (!inode)
1914 return -ENOMEM;
2ff7e61e
JM
1915
1916 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1917 set_nlink(inode, 1);
f37938e0
ES
1918 /*
1919 * we set the i_size on the btree inode to the max possible int.
1920 * the real end of the address space is determined by all of
1921 * the devices in the system
1922 */
2ff7e61e
JM
1923 inode->i_size = OFFSET_MAX;
1924 inode->i_mapping->a_ops = &btree_aops;
dcb2137c 1925 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
f37938e0 1926
2ff7e61e 1927 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 1928 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
35da5a7e 1929 IO_TREE_BTREE_INODE_IO);
2ff7e61e 1930 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 1931
5c8fd99f 1932 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
1933 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1934 BTRFS_I(inode)->location.type = 0;
1935 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 1936 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 1937 __insert_inode_hash(inode, hash);
dcb2137c
CH
1938 fs_info->btree_inode = inode;
1939
1940 return 0;
f37938e0
ES
1941}
1942
ad618368
ES
1943static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1944{
ad618368 1945 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 1946 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 1947 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
1948}
1949
f9e92e40
ES
1950static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1951{
1952 spin_lock_init(&fs_info->qgroup_lock);
1953 mutex_init(&fs_info->qgroup_ioctl_lock);
1954 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
1955 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1956 fs_info->qgroup_seq = 1;
f9e92e40 1957 fs_info->qgroup_ulist = NULL;
d2c609b8 1958 fs_info->qgroup_rescan_running = false;
011b46c3 1959 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
1960 mutex_init(&fs_info->qgroup_rescan_lock);
1961}
1962
d21deec5 1963static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 1964{
f7b885be 1965 u32 max_active = fs_info->thread_pool_size;
6f011058 1966 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
58e814fc 1967 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
2a458198
ES
1968
1969 fs_info->workers =
a31b4a43 1970 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2a458198
ES
1971
1972 fs_info->delalloc_workers =
cb001095
JM
1973 btrfs_alloc_workqueue(fs_info, "delalloc",
1974 flags, max_active, 2);
2a458198
ES
1975
1976 fs_info->flush_workers =
cb001095
JM
1977 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1978 flags, max_active, 0);
2a458198
ES
1979
1980 fs_info->caching_workers =
cb001095 1981 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 1982
2a458198 1983 fs_info->fixup_workers =
58e814fc 1984 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
2a458198 1985
2a458198 1986 fs_info->endio_workers =
d7b9416f 1987 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 1988 fs_info->endio_meta_workers =
d7b9416f 1989 alloc_workqueue("btrfs-endio-meta", flags, max_active);
385de0ef 1990 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 1991 fs_info->endio_write_workers =
cb001095
JM
1992 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1993 max_active, 2);
fed8a72d
CH
1994 fs_info->compressed_write_workers =
1995 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 1996 fs_info->endio_freespace_worker =
cb001095
JM
1997 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1998 max_active, 0);
2a458198 1999 fs_info->delayed_workers =
cb001095
JM
2000 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2001 max_active, 0);
2a458198 2002 fs_info->qgroup_rescan_workers =
58e814fc
TH
2003 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2004 ordered_flags);
b0643e59 2005 fs_info->discard_ctl.discard_workers =
58e814fc 2006 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2a458198 2007
8bfec2e4 2008 if (!(fs_info->workers &&
a31b4a43 2009 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2010 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2011 fs_info->compressed_write_workers &&
1a1a2851 2012 fs_info->endio_write_workers &&
2a458198 2013 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2014 fs_info->caching_workers && fs_info->fixup_workers &&
2015 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2016 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2017 return -ENOMEM;
2018 }
2019
2020 return 0;
2021}
2022
6d97c6e3
JT
2023static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2024{
2025 struct crypto_shash *csum_shash;
b4e967be 2026 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2027
b4e967be 2028 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2029
2030 if (IS_ERR(csum_shash)) {
2031 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2032 csum_driver);
6d97c6e3
JT
2033 return PTR_ERR(csum_shash);
2034 }
2035
2036 fs_info->csum_shash = csum_shash;
2037
68d99ab0
CH
2038 /*
2039 * Check if the checksum implementation is a fast accelerated one.
2040 * As-is this is a bit of a hack and should be replaced once the csum
2041 * implementations provide that information themselves.
2042 */
2043 switch (csum_type) {
2044 case BTRFS_CSUM_TYPE_CRC32:
2045 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2046 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2047 break;
efcfcbc6
DS
2048 case BTRFS_CSUM_TYPE_XXHASH:
2049 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2050 break;
68d99ab0
CH
2051 default:
2052 break;
2053 }
2054
c8a5f8ca
DS
2055 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2056 btrfs_super_csum_name(csum_type),
2057 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2058 return 0;
2059}
2060
63443bf5
ES
2061static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2062 struct btrfs_fs_devices *fs_devices)
2063{
2064 int ret;
789d6a3a 2065 struct btrfs_tree_parent_check check = { 0 };
63443bf5
ES
2066 struct btrfs_root *log_tree_root;
2067 struct btrfs_super_block *disk_super = fs_info->super_copy;
2068 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2069 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2070
2071 if (fs_devices->rw_devices == 0) {
f14d104d 2072 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2073 return -EIO;
2074 }
2075
96dfcb46
JB
2076 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2077 GFP_KERNEL);
63443bf5
ES
2078 if (!log_tree_root)
2079 return -ENOMEM;
2080
789d6a3a
QW
2081 check.level = level;
2082 check.transid = fs_info->generation + 1;
2083 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2084 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
64c043de 2085 if (IS_ERR(log_tree_root->node)) {
f14d104d 2086 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2087 ret = PTR_ERR(log_tree_root->node);
8c38938c 2088 log_tree_root->node = NULL;
00246528 2089 btrfs_put_root(log_tree_root);
0eeff236 2090 return ret;
4eb150d6
QW
2091 }
2092 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2093 btrfs_err(fs_info, "failed to read log tree");
00246528 2094 btrfs_put_root(log_tree_root);
63443bf5
ES
2095 return -EIO;
2096 }
4eb150d6 2097
63443bf5
ES
2098 /* returns with log_tree_root freed on success */
2099 ret = btrfs_recover_log_trees(log_tree_root);
2100 if (ret) {
0b246afa
JM
2101 btrfs_handle_fs_error(fs_info, ret,
2102 "Failed to recover log tree");
00246528 2103 btrfs_put_root(log_tree_root);
63443bf5
ES
2104 return ret;
2105 }
2106
bc98a42c 2107 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2108 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2109 if (ret)
2110 return ret;
2111 }
2112
2113 return 0;
2114}
2115
abed4aaa
JB
2116static int load_global_roots_objectid(struct btrfs_root *tree_root,
2117 struct btrfs_path *path, u64 objectid,
2118 const char *name)
2119{
2120 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2121 struct btrfs_root *root;
f7238e50 2122 u64 max_global_id = 0;
abed4aaa
JB
2123 int ret;
2124 struct btrfs_key key = {
2125 .objectid = objectid,
2126 .type = BTRFS_ROOT_ITEM_KEY,
2127 .offset = 0,
2128 };
2129 bool found = false;
2130
2131 /* If we have IGNOREDATACSUMS skip loading these roots. */
2132 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2133 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2134 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2135 return 0;
2136 }
2137
2138 while (1) {
2139 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2140 if (ret < 0)
2141 break;
2142
2143 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2144 ret = btrfs_next_leaf(tree_root, path);
2145 if (ret) {
2146 if (ret > 0)
2147 ret = 0;
2148 break;
2149 }
2150 }
2151 ret = 0;
2152
2153 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2154 if (key.objectid != objectid)
2155 break;
2156 btrfs_release_path(path);
2157
f7238e50
JB
2158 /*
2159 * Just worry about this for extent tree, it'll be the same for
2160 * everybody.
2161 */
2162 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2163 max_global_id = max(max_global_id, key.offset);
2164
abed4aaa
JB
2165 found = true;
2166 root = read_tree_root_path(tree_root, path, &key);
2167 if (IS_ERR(root)) {
2168 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2169 ret = PTR_ERR(root);
2170 break;
2171 }
2172 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2173 ret = btrfs_global_root_insert(root);
2174 if (ret) {
2175 btrfs_put_root(root);
2176 break;
2177 }
2178 key.offset++;
2179 }
2180 btrfs_release_path(path);
2181
f7238e50
JB
2182 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2183 fs_info->nr_global_roots = max_global_id + 1;
2184
abed4aaa
JB
2185 if (!found || ret) {
2186 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2187 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2188
2189 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2190 ret = ret ? ret : -ENOENT;
2191 else
2192 ret = 0;
2193 btrfs_err(fs_info, "failed to load root %s", name);
2194 }
2195 return ret;
2196}
2197
2198static int load_global_roots(struct btrfs_root *tree_root)
2199{
2200 struct btrfs_path *path;
2201 int ret = 0;
2202
2203 path = btrfs_alloc_path();
2204 if (!path)
2205 return -ENOMEM;
2206
2207 ret = load_global_roots_objectid(tree_root, path,
2208 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2209 if (ret)
2210 goto out;
2211 ret = load_global_roots_objectid(tree_root, path,
2212 BTRFS_CSUM_TREE_OBJECTID, "csum");
2213 if (ret)
2214 goto out;
2215 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2216 goto out;
2217 ret = load_global_roots_objectid(tree_root, path,
2218 BTRFS_FREE_SPACE_TREE_OBJECTID,
2219 "free space");
2220out:
2221 btrfs_free_path(path);
2222 return ret;
2223}
2224
6bccf3ab 2225static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2226{
6bccf3ab 2227 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2228 struct btrfs_root *root;
4bbcaa64
ES
2229 struct btrfs_key location;
2230 int ret;
2231
6bccf3ab
JM
2232 BUG_ON(!fs_info->tree_root);
2233
abed4aaa
JB
2234 ret = load_global_roots(tree_root);
2235 if (ret)
2236 return ret;
2237
4bbcaa64
ES
2238 location.type = BTRFS_ROOT_ITEM_KEY;
2239 location.offset = 0;
2240
1c56ab99 2241 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2242 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2243 root = btrfs_read_tree_root(tree_root, &location);
2244 if (IS_ERR(root)) {
2245 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2246 ret = PTR_ERR(root);
2247 goto out;
2248 }
2249 } else {
2250 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2251 fs_info->block_group_root = root;
2252 }
2253 }
2254
2255 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2256 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2257 if (IS_ERR(root)) {
42437a63
JB
2258 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2259 ret = PTR_ERR(root);
2260 goto out;
2261 }
2262 } else {
2263 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2264 fs_info->dev_root = root;
f50f4353 2265 }
820a49da 2266 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2267 ret = btrfs_init_devices_late(fs_info);
2268 if (ret)
2269 goto out;
4bbcaa64 2270
aeb935a4
QW
2271 /*
2272 * This tree can share blocks with some other fs tree during relocation
2273 * and we need a proper setup by btrfs_get_fs_root
2274 */
56e9357a
DS
2275 root = btrfs_get_fs_root(tree_root->fs_info,
2276 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2277 if (IS_ERR(root)) {
42437a63
JB
2278 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2279 ret = PTR_ERR(root);
2280 goto out;
2281 }
2282 } else {
2283 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2284 fs_info->data_reloc_root = root;
aeb935a4 2285 }
aeb935a4 2286
4bbcaa64 2287 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2288 root = btrfs_read_tree_root(tree_root, &location);
2289 if (!IS_ERR(root)) {
2290 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
a4f3d2c4 2291 fs_info->quota_root = root;
4bbcaa64
ES
2292 }
2293
2294 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2295 root = btrfs_read_tree_root(tree_root, &location);
2296 if (IS_ERR(root)) {
42437a63
JB
2297 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2298 ret = PTR_ERR(root);
2299 if (ret != -ENOENT)
2300 goto out;
2301 }
4bbcaa64 2302 } else {
a4f3d2c4
DS
2303 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2304 fs_info->uuid_root = root;
4bbcaa64
ES
2305 }
2306
51502090
JT
2307 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2308 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2309 root = btrfs_read_tree_root(tree_root, &location);
2310 if (IS_ERR(root)) {
2311 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2312 ret = PTR_ERR(root);
2313 goto out;
2314 }
2315 } else {
2316 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2317 fs_info->stripe_root = root;
2318 }
2319 }
2320
4bbcaa64 2321 return 0;
f50f4353
LB
2322out:
2323 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2324 location.objectid, ret);
2325 return ret;
4bbcaa64
ES
2326}
2327
069ec957
QW
2328/*
2329 * Real super block validation
2330 * NOTE: super csum type and incompat features will not be checked here.
2331 *
2332 * @sb: super block to check
2333 * @mirror_num: the super block number to check its bytenr:
2334 * 0 the primary (1st) sb
2335 * 1, 2 2nd and 3rd backup copy
2336 * -1 skip bytenr check
2337 */
a05d3c91
QW
2338int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2339 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2340{
21a852b0
QW
2341 u64 nodesize = btrfs_super_nodesize(sb);
2342 u64 sectorsize = btrfs_super_sectorsize(sb);
2343 int ret = 0;
2344
2345 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2346 btrfs_err(fs_info, "no valid FS found");
2347 ret = -EINVAL;
2348 }
2349 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2350 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2351 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2352 ret = -EINVAL;
2353 }
2354 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2355 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2356 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2357 ret = -EINVAL;
2358 }
2359 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2360 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2361 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2362 ret = -EINVAL;
2363 }
2364 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2365 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2366 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2367 ret = -EINVAL;
2368 }
2369
2370 /*
2371 * Check sectorsize and nodesize first, other check will need it.
2372 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2373 */
2374 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2375 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2376 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2377 ret = -EINVAL;
2378 }
0bb3eb3e
QW
2379
2380 /*
1a42daab
QW
2381 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2382 *
2383 * We can support 16K sectorsize with 64K page size without problem,
2384 * but such sectorsize/pagesize combination doesn't make much sense.
2385 * 4K will be our future standard, PAGE_SIZE is supported from the very
2386 * beginning.
0bb3eb3e 2387 */
1a42daab 2388 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2389 btrfs_err(fs_info,
0bb3eb3e 2390 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2391 sectorsize, PAGE_SIZE);
2392 ret = -EINVAL;
2393 }
0bb3eb3e 2394
21a852b0
QW
2395 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2396 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2397 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2398 ret = -EINVAL;
2399 }
2400 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2401 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2402 le32_to_cpu(sb->__unused_leafsize), nodesize);
2403 ret = -EINVAL;
2404 }
2405
2406 /* Root alignment check */
2407 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2408 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2409 btrfs_super_root(sb));
2410 ret = -EINVAL;
2411 }
2412 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2413 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2414 btrfs_super_chunk_root(sb));
2415 ret = -EINVAL;
2416 }
2417 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2418 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2419 btrfs_super_log_root(sb));
2420 ret = -EINVAL;
2421 }
2422
a5b8a5f9
AJ
2423 if (!fs_info->fs_devices->temp_fsid &&
2424 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2425 btrfs_err(fs_info,
2426 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
d167aa76 2427 sb->fsid, fs_info->fs_devices->fsid);
aefd7f70
NB
2428 ret = -EINVAL;
2429 }
2430
6bfe3959
AJ
2431 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2432 BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2433 btrfs_err(fs_info,
2434"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
6bfe3959 2435 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
aefd7f70
NB
2436 ret = -EINVAL;
2437 }
2438
25984a5a
AJ
2439 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2440 BTRFS_FSID_SIZE) != 0) {
2441 btrfs_err(fs_info,
2442 "dev_item UUID does not match metadata fsid: %pU != %pU",
2443 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2444 ret = -EINVAL;
2445 }
2446
1c56ab99
QW
2447 /*
2448 * Artificial requirement for block-group-tree to force newer features
2449 * (free-space-tree, no-holes) so the test matrix is smaller.
2450 */
2451 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2452 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2453 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2454 btrfs_err(fs_info,
2455 "block-group-tree feature requires fres-space-tree and no-holes");
2456 ret = -EINVAL;
2457 }
2458
21a852b0
QW
2459 /*
2460 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2461 * done later
2462 */
2463 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2464 btrfs_err(fs_info, "bytes_used is too small %llu",
2465 btrfs_super_bytes_used(sb));
2466 ret = -EINVAL;
2467 }
2468 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2469 btrfs_err(fs_info, "invalid stripesize %u",
2470 btrfs_super_stripesize(sb));
2471 ret = -EINVAL;
2472 }
2473 if (btrfs_super_num_devices(sb) > (1UL << 31))
2474 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2475 btrfs_super_num_devices(sb));
2476 if (btrfs_super_num_devices(sb) == 0) {
2477 btrfs_err(fs_info, "number of devices is 0");
2478 ret = -EINVAL;
2479 }
2480
069ec957
QW
2481 if (mirror_num >= 0 &&
2482 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2483 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2484 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2485 ret = -EINVAL;
2486 }
2487
2488 /*
2489 * Obvious sys_chunk_array corruptions, it must hold at least one key
2490 * and one chunk
2491 */
2492 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2493 btrfs_err(fs_info, "system chunk array too big %u > %u",
2494 btrfs_super_sys_array_size(sb),
2495 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2496 ret = -EINVAL;
2497 }
2498 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2499 + sizeof(struct btrfs_chunk)) {
2500 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2501 btrfs_super_sys_array_size(sb),
2502 sizeof(struct btrfs_disk_key)
2503 + sizeof(struct btrfs_chunk));
2504 ret = -EINVAL;
2505 }
2506
2507 /*
2508 * The generation is a global counter, we'll trust it more than the others
2509 * but it's still possible that it's the one that's wrong.
2510 */
2511 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2512 btrfs_warn(fs_info,
2513 "suspicious: generation < chunk_root_generation: %llu < %llu",
2514 btrfs_super_generation(sb),
2515 btrfs_super_chunk_root_generation(sb));
2516 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2517 && btrfs_super_cache_generation(sb) != (u64)-1)
2518 btrfs_warn(fs_info,
2519 "suspicious: generation < cache_generation: %llu < %llu",
2520 btrfs_super_generation(sb),
2521 btrfs_super_cache_generation(sb));
2522
2523 return ret;
2524}
2525
069ec957
QW
2526/*
2527 * Validation of super block at mount time.
2528 * Some checks already done early at mount time, like csum type and incompat
2529 * flags will be skipped.
2530 */
2531static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2532{
a05d3c91 2533 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2534}
2535
75cb857d
QW
2536/*
2537 * Validation of super block at write time.
2538 * Some checks like bytenr check will be skipped as their values will be
2539 * overwritten soon.
2540 * Extra checks like csum type and incompat flags will be done here.
2541 */
2542static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2543 struct btrfs_super_block *sb)
2544{
2545 int ret;
2546
a05d3c91 2547 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2548 if (ret < 0)
2549 goto out;
e7e16f48 2550 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2551 ret = -EUCLEAN;
2552 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2553 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2554 goto out;
2555 }
2556 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2557 ret = -EUCLEAN;
2558 btrfs_err(fs_info,
2559 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2560 btrfs_super_incompat_flags(sb),
2561 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2562 goto out;
2563 }
2564out:
2565 if (ret < 0)
2566 btrfs_err(fs_info,
2567 "super block corruption detected before writing it to disk");
2568 return ret;
2569}
2570
bd676446
JB
2571static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2572{
789d6a3a
QW
2573 struct btrfs_tree_parent_check check = {
2574 .level = level,
2575 .transid = gen,
2576 .owner_root = root->root_key.objectid
2577 };
bd676446
JB
2578 int ret = 0;
2579
789d6a3a 2580 root->node = read_tree_block(root->fs_info, bytenr, &check);
bd676446
JB
2581 if (IS_ERR(root->node)) {
2582 ret = PTR_ERR(root->node);
2583 root->node = NULL;
4eb150d6
QW
2584 return ret;
2585 }
2586 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2587 free_extent_buffer(root->node);
2588 root->node = NULL;
4eb150d6 2589 return -EIO;
bd676446
JB
2590 }
2591
bd676446
JB
2592 btrfs_set_root_node(&root->root_item, root->node);
2593 root->commit_root = btrfs_root_node(root);
2594 btrfs_set_root_refs(&root->root_item, 1);
2595 return ret;
2596}
2597
2598static int load_important_roots(struct btrfs_fs_info *fs_info)
2599{
2600 struct btrfs_super_block *sb = fs_info->super_copy;
2601 u64 gen, bytenr;
2602 int level, ret;
2603
2604 bytenr = btrfs_super_root(sb);
2605 gen = btrfs_super_generation(sb);
2606 level = btrfs_super_root_level(sb);
2607 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2608 if (ret) {
bd676446 2609 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2610 return ret;
2611 }
14033b08 2612 return 0;
bd676446
JB
2613}
2614
6ef108dd 2615static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2616{
6ef108dd 2617 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2618 struct btrfs_super_block *sb = fs_info->super_copy;
2619 struct btrfs_root *tree_root = fs_info->tree_root;
2620 bool handle_error = false;
2621 int ret = 0;
2622 int i;
2623
2624 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2625 if (handle_error) {
2626 if (!IS_ERR(tree_root->node))
2627 free_extent_buffer(tree_root->node);
2628 tree_root->node = NULL;
2629
2630 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2631 break;
2632
2633 free_root_pointers(fs_info, 0);
2634
2635 /*
2636 * Don't use the log in recovery mode, it won't be
2637 * valid
2638 */
2639 btrfs_set_super_log_root(sb, 0);
2640
745806fb 2641 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
b8522a1e 2642 ret = read_backup_root(fs_info, i);
6ef108dd 2643 backup_index = ret;
b8522a1e
NB
2644 if (ret < 0)
2645 return ret;
2646 }
b8522a1e 2647
bd676446
JB
2648 ret = load_important_roots(fs_info);
2649 if (ret) {
217f5004 2650 handle_error = true;
b8522a1e
NB
2651 continue;
2652 }
2653
336a0d8d
NB
2654 /*
2655 * No need to hold btrfs_root::objectid_mutex since the fs
2656 * hasn't been fully initialised and we are the only user
2657 */
453e4873 2658 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2659 if (ret < 0) {
b8522a1e
NB
2660 handle_error = true;
2661 continue;
2662 }
2663
6b8fad57 2664 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2665
2666 ret = btrfs_read_roots(fs_info);
2667 if (ret < 0) {
2668 handle_error = true;
2669 continue;
2670 }
2671
2672 /* All successful */
bd676446 2673 fs_info->generation = btrfs_header_generation(tree_root->node);
0124855f 2674 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
d96b3424 2675 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2676
2677 /* Always begin writing backup roots after the one being used */
2678 if (backup_index < 0) {
2679 fs_info->backup_root_index = 0;
2680 } else {
2681 fs_info->backup_root_index = backup_index + 1;
2682 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2683 }
b8522a1e
NB
2684 break;
2685 }
2686
2687 return ret;
2688}
2689
8260edba 2690void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2691{
fc7cbcd4 2692 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2693 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2694 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2695 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2696 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2697 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2698 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2699 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2700 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2701 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2702 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2703 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2704 spin_lock_init(&fs_info->super_lock);
f28491e0 2705 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2706 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2707 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2708 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2709 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2710 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2711 rwlock_init(&fs_info->global_root_lock);
d7c15171 2712 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2713 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2714 mutex_init(&fs_info->reloc_mutex);
573bfb72 2715 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2716 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2717 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2718 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2719
e1489b4f 2720 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2721 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2722 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2723 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
77d20c68
JB
2724 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2725 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
3e738c53
IA
2726 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2727 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2728 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2729 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2730 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2731 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 2732
0b86a832 2733 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2734 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2735 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2736 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2737 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 2738 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
2739#ifdef CONFIG_BTRFS_DEBUG
2740 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2741 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2742 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2743#endif
7dc66abb
FM
2744 fs_info->mapping_tree = RB_ROOT_CACHED;
2745 rwlock_init(&fs_info->mapping_tree_lock);
66d8f3dd
MX
2746 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2747 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2748 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2749 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2750 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2751 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2752 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2753 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2754 BTRFS_BLOCK_RSV_DELREFS);
2755
771ed689 2756 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2757 atomic_set(&fs_info->defrag_running, 0);
034f784d 2758 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2759 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 2760 fs_info->global_root_tree = RB_ROOT;
95ac567a 2761 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2762 fs_info->metadata_ratio = 0;
4cb5300b 2763 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2764 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2765 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2766 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
fd708b81 2767 btrfs_init_ref_verify(fs_info);
c8b97818 2768
b34b086c
CM
2769 fs_info->thread_pool_size = min_t(unsigned long,
2770 num_online_cpus() + 2, 8);
0afbaf8c 2771
199c2a9c
MX
2772 INIT_LIST_HEAD(&fs_info->ordered_roots);
2773 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2774
638aa7ed 2775 btrfs_init_scrub(fs_info);
779a65a4 2776 btrfs_init_balance(fs_info);
57056740 2777 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2778
16b0c258 2779 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 2780 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 2781
fe119a6e 2782 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
35da5a7e 2783 IO_TREE_FS_EXCLUDED_EXTENTS);
39279cc3 2784
5a3f23d5 2785 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2786 mutex_init(&fs_info->tree_log_mutex);
925baedd 2787 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2788 mutex_init(&fs_info->transaction_kthread_mutex);
2789 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2790 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2791 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2792 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2793 init_rwsem(&fs_info->subvol_sem);
803b2f54 2794 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2795
ad618368 2796 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2797 btrfs_init_qgroup(fs_info);
b0643e59 2798 btrfs_discard_init(fs_info);
416ac51d 2799
fa9c0d79
CM
2800 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2801 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2802
e6dcd2dc 2803 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2804 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2805 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2806 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2807 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2808
da17066c
JM
2809 /* Usable values until the real ones are cached from the superblock */
2810 fs_info->nodesize = 4096;
2811 fs_info->sectorsize = 4096;
ab108d99 2812 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2813 fs_info->stripesize = 4096;
2814
6207c9e3
JB
2815 /* Default compress algorithm when user does -o compress */
2816 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2817
f7b12a62
NA
2818 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2819
eede2bf3
OS
2820 spin_lock_init(&fs_info->swapfile_pins_lock);
2821 fs_info->swapfile_pins = RB_ROOT;
2822
18bb8bbf
JT
2823 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2824 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
2825}
2826
2827static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2828{
2829 int ret;
2830
2831 fs_info->sb = sb;
2832 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2833 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2834
5deb17e1 2835 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 2836 if (ret)
c75e8394 2837 return ret;
ae18c37a
JB
2838
2839 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2840 if (ret)
c75e8394 2841 return ret;
ae18c37a
JB
2842
2843 fs_info->dirty_metadata_batch = PAGE_SIZE *
2844 (1 + ilog2(nr_cpu_ids));
2845
2846 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2847 if (ret)
c75e8394 2848 return ret;
ae18c37a
JB
2849
2850 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2851 GFP_KERNEL);
2852 if (ret)
c75e8394 2853 return ret;
ae18c37a
JB
2854
2855 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2856 GFP_KERNEL);
c75e8394
JB
2857 if (!fs_info->delayed_root)
2858 return -ENOMEM;
ae18c37a
JB
2859 btrfs_init_delayed_root(fs_info->delayed_root);
2860
a0a1db70
FM
2861 if (sb_rdonly(sb))
2862 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2863
c75e8394 2864 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2865}
2866
97f4dd09
NB
2867static int btrfs_uuid_rescan_kthread(void *data)
2868{
0d031dc4 2869 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
2870 int ret;
2871
2872 /*
2873 * 1st step is to iterate through the existing UUID tree and
2874 * to delete all entries that contain outdated data.
2875 * 2nd step is to add all missing entries to the UUID tree.
2876 */
2877 ret = btrfs_uuid_tree_iterate(fs_info);
2878 if (ret < 0) {
c94bec2c
JB
2879 if (ret != -EINTR)
2880 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2881 ret);
97f4dd09
NB
2882 up(&fs_info->uuid_tree_rescan_sem);
2883 return ret;
2884 }
2885 return btrfs_uuid_scan_kthread(data);
2886}
2887
2888static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2889{
2890 struct task_struct *task;
2891
2892 down(&fs_info->uuid_tree_rescan_sem);
2893 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2894 if (IS_ERR(task)) {
2895 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2896 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2897 up(&fs_info->uuid_tree_rescan_sem);
2898 return PTR_ERR(task);
2899 }
2900
2901 return 0;
2902}
2903
504b1596
FM
2904static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2905{
2906 u64 root_objectid = 0;
2907 struct btrfs_root *gang[8];
2908 int i = 0;
2909 int err = 0;
2910 unsigned int ret = 0;
2911
2912 while (1) {
2913 spin_lock(&fs_info->fs_roots_radix_lock);
2914 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2915 (void **)gang, root_objectid,
2916 ARRAY_SIZE(gang));
2917 if (!ret) {
2918 spin_unlock(&fs_info->fs_roots_radix_lock);
2919 break;
2920 }
2921 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2922
2923 for (i = 0; i < ret; i++) {
2924 /* Avoid to grab roots in dead_roots. */
2925 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2926 gang[i] = NULL;
2927 continue;
2928 }
2929 /* Grab all the search result for later use. */
2930 gang[i] = btrfs_grab_root(gang[i]);
2931 }
2932 spin_unlock(&fs_info->fs_roots_radix_lock);
2933
2934 for (i = 0; i < ret; i++) {
2935 if (!gang[i])
2936 continue;
2937 root_objectid = gang[i]->root_key.objectid;
2938 err = btrfs_orphan_cleanup(gang[i]);
2939 if (err)
2940 goto out;
2941 btrfs_put_root(gang[i]);
2942 }
2943 root_objectid++;
2944 }
2945out:
2946 /* Release the uncleaned roots due to error. */
2947 for (; i < ret; i++) {
2948 if (gang[i])
2949 btrfs_put_root(gang[i]);
2950 }
2951 return err;
2952}
2953
44c0ca21
BB
2954/*
2955 * Mounting logic specific to read-write file systems. Shared by open_ctree
2956 * and btrfs_remount when remounting from read-only to read-write.
2957 */
2958int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2959{
2960 int ret;
94846229 2961 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1d6a4fc8 2962 bool rebuild_free_space_tree = false;
8b228324
BB
2963
2964 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2965 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
272efa30
JB
2966 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2967 btrfs_warn(fs_info,
2968 "'clear_cache' option is ignored with extent tree v2");
2969 else
2970 rebuild_free_space_tree = true;
8b228324
BB
2971 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2972 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2973 btrfs_warn(fs_info, "free space tree is invalid");
1d6a4fc8 2974 rebuild_free_space_tree = true;
8b228324
BB
2975 }
2976
1d6a4fc8
QW
2977 if (rebuild_free_space_tree) {
2978 btrfs_info(fs_info, "rebuilding free space tree");
2979 ret = btrfs_rebuild_free_space_tree(fs_info);
8b228324
BB
2980 if (ret) {
2981 btrfs_warn(fs_info,
1d6a4fc8
QW
2982 "failed to rebuild free space tree: %d", ret);
2983 goto out;
2984 }
2985 }
2986
2987 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2988 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2989 btrfs_info(fs_info, "disabling free space tree");
2990 ret = btrfs_delete_free_space_tree(fs_info);
2991 if (ret) {
2992 btrfs_warn(fs_info,
2993 "failed to disable free space tree: %d", ret);
8b228324
BB
2994 goto out;
2995 }
2996 }
44c0ca21 2997
8d488a8c
FM
2998 /*
2999 * btrfs_find_orphan_roots() is responsible for finding all the dead
3000 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3001 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3002 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3003 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3004 * item before the root's tree is deleted - this means that if we unmount
3005 * or crash before the deletion completes, on the next mount we will not
3006 * delete what remains of the tree because the orphan item does not
3007 * exists anymore, which is what tells us we have a pending deletion.
3008 */
3009 ret = btrfs_find_orphan_roots(fs_info);
3010 if (ret)
3011 goto out;
3012
44c0ca21
BB
3013 ret = btrfs_cleanup_fs_roots(fs_info);
3014 if (ret)
3015 goto out;
3016
8f1c21d7
BB
3017 down_read(&fs_info->cleanup_work_sem);
3018 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3019 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3020 up_read(&fs_info->cleanup_work_sem);
3021 goto out;
3022 }
3023 up_read(&fs_info->cleanup_work_sem);
3024
44c0ca21 3025 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3026 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3027 mutex_unlock(&fs_info->cleaner_mutex);
3028 if (ret < 0) {
3029 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3030 goto out;
3031 }
3032
5011139a
BB
3033 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3034 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3035 btrfs_info(fs_info, "creating free space tree");
3036 ret = btrfs_create_free_space_tree(fs_info);
3037 if (ret) {
3038 btrfs_warn(fs_info,
3039 "failed to create free space tree: %d", ret);
3040 goto out;
3041 }
3042 }
3043
94846229
BB
3044 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3045 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3046 if (ret)
3047 goto out;
3048 }
3049
44c0ca21
BB
3050 ret = btrfs_resume_balance_async(fs_info);
3051 if (ret)
3052 goto out;
3053
3054 ret = btrfs_resume_dev_replace_async(fs_info);
3055 if (ret) {
3056 btrfs_warn(fs_info, "failed to resume dev_replace");
3057 goto out;
3058 }
3059
3060 btrfs_qgroup_rescan_resume(fs_info);
3061
3062 if (!fs_info->uuid_root) {
3063 btrfs_info(fs_info, "creating UUID tree");
3064 ret = btrfs_create_uuid_tree(fs_info);
3065 if (ret) {
3066 btrfs_warn(fs_info,
3067 "failed to create the UUID tree %d", ret);
3068 goto out;
3069 }
3070 }
3071
3072out:
3073 return ret;
3074}
3075
d7f67ac9
QW
3076/*
3077 * Do various sanity and dependency checks of different features.
3078 *
2ba48b20
QW
3079 * @is_rw_mount: If the mount is read-write.
3080 *
d7f67ac9
QW
3081 * This is the place for less strict checks (like for subpage or artificial
3082 * feature dependencies).
3083 *
3084 * For strict checks or possible corruption detection, see
3085 * btrfs_validate_super().
3086 *
3087 * This should be called after btrfs_parse_options(), as some mount options
3088 * (space cache related) can modify on-disk format like free space tree and
3089 * screw up certain feature dependencies.
3090 */
2ba48b20 3091int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
d7f67ac9
QW
3092{
3093 struct btrfs_super_block *disk_super = fs_info->super_copy;
3094 u64 incompat = btrfs_super_incompat_flags(disk_super);
3095 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3096 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3097
3098 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3099 btrfs_err(fs_info,
3100 "cannot mount because of unknown incompat features (0x%llx)",
3101 incompat);
3102 return -EINVAL;
3103 }
3104
3105 /* Runtime limitation for mixed block groups. */
3106 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3107 (fs_info->sectorsize != fs_info->nodesize)) {
3108 btrfs_err(fs_info,
3109"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3110 fs_info->nodesize, fs_info->sectorsize);
3111 return -EINVAL;
3112 }
3113
3114 /* Mixed backref is an always-enabled feature. */
3115 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3116
3117 /* Set compression related flags just in case. */
3118 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3119 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3120 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3121 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3122
3123 /*
3124 * An ancient flag, which should really be marked deprecated.
3125 * Such runtime limitation doesn't really need a incompat flag.
3126 */
3127 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3128 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3129
2ba48b20 3130 if (compat_ro_unsupp && is_rw_mount) {
d7f67ac9
QW
3131 btrfs_err(fs_info,
3132 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3133 compat_ro);
3134 return -EINVAL;
3135 }
3136
3137 /*
3138 * We have unsupported RO compat features, although RO mounted, we
3139 * should not cause any metadata writes, including log replay.
3140 * Or we could screw up whatever the new feature requires.
3141 */
3142 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3143 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3144 btrfs_err(fs_info,
3145"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3146 compat_ro);
3147 return -EINVAL;
3148 }
3149
3150 /*
3151 * Artificial limitations for block group tree, to force
3152 * block-group-tree to rely on no-holes and free-space-tree.
3153 */
3154 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3155 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3156 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3157 btrfs_err(fs_info,
3158"block-group-tree feature requires no-holes and free-space-tree features");
3159 return -EINVAL;
3160 }
3161
3162 /*
3163 * Subpage runtime limitation on v1 cache.
3164 *
3165 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3166 * we're already defaulting to v2 cache, no need to bother v1 as it's
3167 * going to be deprecated anyway.
3168 */
3169 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3170 btrfs_warn(fs_info,
3171 "v1 space cache is not supported for page size %lu with sectorsize %u",
3172 PAGE_SIZE, fs_info->sectorsize);
3173 return -EINVAL;
3174 }
3175
3176 /* This can be called by remount, we need to protect the super block. */
3177 spin_lock(&fs_info->super_lock);
3178 btrfs_set_super_incompat_flags(disk_super, incompat);
3179 spin_unlock(&fs_info->super_lock);
3180
3181 return 0;
3182}
3183
ae18c37a
JB
3184int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3185 char *options)
3186{
3187 u32 sectorsize;
3188 u32 nodesize;
3189 u32 stripesize;
3190 u64 generation;
ae18c37a 3191 u16 csum_type;
ae18c37a
JB
3192 struct btrfs_super_block *disk_super;
3193 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3194 struct btrfs_root *tree_root;
3195 struct btrfs_root *chunk_root;
3196 int ret;
ae18c37a
JB
3197 int level;
3198
8260edba 3199 ret = init_mount_fs_info(fs_info, sb);
4871c33b 3200 if (ret)
ae18c37a 3201 goto fail;
53b381b3 3202
ae18c37a
JB
3203 /* These need to be init'ed before we start creating inodes and such. */
3204 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3205 GFP_KERNEL);
3206 fs_info->tree_root = tree_root;
3207 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3208 GFP_KERNEL);
3209 fs_info->chunk_root = chunk_root;
3210 if (!tree_root || !chunk_root) {
4871c33b 3211 ret = -ENOMEM;
c75e8394 3212 goto fail;
ae18c37a
JB
3213 }
3214
dcb2137c 3215 ret = btrfs_init_btree_inode(sb);
4871c33b 3216 if (ret)
c75e8394 3217 goto fail;
ae18c37a 3218
d24fa5c1 3219 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3220
3221 /*
3222 * Read super block and check the signature bytes only
3223 */
d24fa5c1 3224 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d 3225 if (IS_ERR(disk_super)) {
4871c33b 3226 ret = PTR_ERR(disk_super);
16cdcec7 3227 goto fail_alloc;
20b45077 3228 }
39279cc3 3229
2db31320 3230 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
8dc3f22c 3231 /*
260db43c 3232 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3233 * corrupted, we'll find out
3234 */
8f32380d 3235 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3236 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3237 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3238 csum_type);
4871c33b 3239 ret = -EINVAL;
8f32380d 3240 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3241 goto fail_alloc;
3242 }
3243
83c68bbc
SY
3244 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3245
6d97c6e3
JT
3246 ret = btrfs_init_csum_hash(fs_info, csum_type);
3247 if (ret) {
8f32380d 3248 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3249 goto fail_alloc;
3250 }
3251
1104a885
DS
3252 /*
3253 * We want to check superblock checksum, the type is stored inside.
3254 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3255 */
3d17adea 3256 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3257 btrfs_err(fs_info, "superblock checksum mismatch");
4871c33b 3258 ret = -EINVAL;
8f32380d 3259 btrfs_release_disk_super(disk_super);
141386e1 3260 goto fail_alloc;
1104a885
DS
3261 }
3262
3263 /*
3264 * super_copy is zeroed at allocation time and we never touch the
3265 * following bytes up to INFO_SIZE, the checksum is calculated from
3266 * the whole block of INFO_SIZE
3267 */
8f32380d
JT
3268 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3269 btrfs_release_disk_super(disk_super);
5f39d397 3270
fbc6feae
NB
3271 disk_super = fs_info->super_copy;
3272
fbc6feae
NB
3273 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3274 sizeof(*fs_info->super_for_commit));
de37aa51 3275
069ec957 3276 ret = btrfs_validate_mount_super(fs_info);
1104a885 3277 if (ret) {
05135f59 3278 btrfs_err(fs_info, "superblock contains fatal errors");
4871c33b 3279 ret = -EINVAL;
141386e1 3280 goto fail_alloc;
1104a885
DS
3281 }
3282
4871c33b
QW
3283 if (!btrfs_super_root(disk_super)) {
3284 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3285 ret = -EINVAL;
141386e1 3286 goto fail_alloc;
4871c33b 3287 }
0f7d52f4 3288
acce952b 3289 /* check FS state, whether FS is broken. */
87533c47 3290 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
ae3364e5 3291 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
acce952b 3292
6f93e834
AJ
3293 /* Set up fs_info before parsing mount options */
3294 nodesize = btrfs_super_nodesize(disk_super);
3295 sectorsize = btrfs_super_sectorsize(disk_super);
3296 stripesize = sectorsize;
3297 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3298 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3299
3300 fs_info->nodesize = nodesize;
3301 fs_info->sectorsize = sectorsize;
3302 fs_info->sectorsize_bits = ilog2(sectorsize);
3303 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3304 fs_info->stripesize = stripesize;
3305
a6a8f22a
JB
3306 /*
3307 * Handle the space caching options appropriately now that we have the
3308 * super block loaded and validated.
3309 */
3310 btrfs_set_free_space_cache_settings(fs_info);
3311
ad21f15b
JB
3312 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3313 ret = -EINVAL;
141386e1 3314 goto fail_alloc;
ad21f15b 3315 }
dfe25020 3316
2ba48b20 3317 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
4871c33b 3318 if (ret < 0)
dc4d3168 3319 goto fail_alloc;
dc4d3168 3320
ad21f15b
JB
3321 /*
3322 * At this point our mount options are validated, if we set ->max_inline
3323 * to something non-standard make sure we truncate it to sectorsize.
3324 */
3325 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3326
8481dd80
QW
3327 if (sectorsize < PAGE_SIZE) {
3328 struct btrfs_subpage_info *subpage_info;
3329
95ea0486
QW
3330 btrfs_warn(fs_info,
3331 "read-write for sector size %u with page size %lu is experimental",
3332 sectorsize, PAGE_SIZE);
8481dd80 3333 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
4871c33b
QW
3334 if (!subpage_info) {
3335 ret = -ENOMEM;
8481dd80 3336 goto fail_alloc;
4871c33b 3337 }
8481dd80
QW
3338 btrfs_init_subpage_info(subpage_info, sectorsize);
3339 fs_info->subpage_info = subpage_info;
c8050b3b 3340 }
0bb3eb3e 3341
d21deec5 3342 ret = btrfs_init_workqueues(fs_info);
4871c33b 3343 if (ret)
0dc3b84a 3344 goto fail_sb_buffer;
4543df7e 3345
9e11ceee
JK
3346 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3347 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3348
a061fc8d
CM
3349 sb->s_blocksize = sectorsize;
3350 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3351 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3352
925baedd 3353 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3354 ret = btrfs_read_sys_array(fs_info);
925baedd 3355 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3356 if (ret) {
05135f59 3357 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3358 goto fail_sb_buffer;
84eed90f 3359 }
0b86a832 3360
84234f3a 3361 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3362 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3363 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3364 generation, level);
3365 if (ret) {
05135f59 3366 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3367 goto fail_tree_roots;
83121942 3368 }
0b86a832 3369
e17cade2 3370 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3371 offsetof(struct btrfs_header, chunk_tree_uuid),
3372 BTRFS_UUID_SIZE);
e17cade2 3373
5b4aacef 3374 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3375 if (ret) {
05135f59 3376 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3377 goto fail_tree_roots;
2b82032c 3378 }
0b86a832 3379
8dabb742 3380 /*
bacce86a
AJ
3381 * At this point we know all the devices that make this filesystem,
3382 * including the seed devices but we don't know yet if the replace
3383 * target is required. So free devices that are not part of this
1a9fd417 3384 * filesystem but skip the replace target device which is checked
bacce86a 3385 * below in btrfs_init_dev_replace().
8dabb742 3386 */
bacce86a 3387 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3388 if (!fs_devices->latest_dev->bdev) {
05135f59 3389 btrfs_err(fs_info, "failed to read devices");
4871c33b 3390 ret = -EIO;
a6b0d5c8
CM
3391 goto fail_tree_roots;
3392 }
3393
b8522a1e 3394 ret = init_tree_roots(fs_info);
4bbcaa64 3395 if (ret)
b8522a1e 3396 goto fail_tree_roots;
8929ecfa 3397
73651042
NA
3398 /*
3399 * Get zone type information of zoned block devices. This will also
3400 * handle emulation of a zoned filesystem if a regular device has the
3401 * zoned incompat feature flag set.
3402 */
3403 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3404 if (ret) {
3405 btrfs_err(fs_info,
4871c33b 3406 "zoned: failed to read device zone info: %d", ret);
73651042
NA
3407 goto fail_block_groups;
3408 }
3409
75ec1db8
JB
3410 /*
3411 * If we have a uuid root and we're not being told to rescan we need to
3412 * check the generation here so we can set the
3413 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3414 * transaction during a balance or the log replay without updating the
3415 * uuid generation, and then if we crash we would rescan the uuid tree,
3416 * even though it was perfectly fine.
3417 */
3418 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3419 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3420 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3421
cf90d884
QW
3422 ret = btrfs_verify_dev_extents(fs_info);
3423 if (ret) {
3424 btrfs_err(fs_info,
3425 "failed to verify dev extents against chunks: %d",
3426 ret);
3427 goto fail_block_groups;
3428 }
68310a5e
ID
3429 ret = btrfs_recover_balance(fs_info);
3430 if (ret) {
05135f59 3431 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3432 goto fail_block_groups;
3433 }
3434
733f4fbb
SB
3435 ret = btrfs_init_dev_stats(fs_info);
3436 if (ret) {
05135f59 3437 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3438 goto fail_block_groups;
3439 }
3440
8dabb742
SB
3441 ret = btrfs_init_dev_replace(fs_info);
3442 if (ret) {
05135f59 3443 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3444 goto fail_block_groups;
3445 }
3446
b70f5097
NA
3447 ret = btrfs_check_zoned_mode(fs_info);
3448 if (ret) {
3449 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3450 ret);
3451 goto fail_block_groups;
3452 }
3453
c6761a9e 3454 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3455 if (ret) {
05135f59
DS
3456 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3457 ret);
b7c35e81
AJ
3458 goto fail_block_groups;
3459 }
3460
96f3136e 3461 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3462 if (ret) {
05135f59 3463 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3464 goto fail_fsdev_sysfs;
c59021f8 3465 }
3466
c59021f8 3467 ret = btrfs_init_space_info(fs_info);
3468 if (ret) {
05135f59 3469 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3470 goto fail_sysfs;
c59021f8 3471 }
3472
5b4aacef 3473 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3474 if (ret) {
05135f59 3475 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3476 goto fail_sysfs;
1b1d1f66 3477 }
4330e183 3478
16beac87
NA
3479 btrfs_free_zone_cache(fs_info);
3480
a7e1ac7b
NA
3481 btrfs_check_active_zone_reservation(fs_info);
3482
5c78a5e7
AJ
3483 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3484 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3485 btrfs_warn(fs_info,
52042d8e 3486 "writable mount is not allowed due to too many missing devices");
4871c33b 3487 ret = -EINVAL;
2365dd3c 3488 goto fail_sysfs;
292fd7fc 3489 }
9078a3e1 3490
33c44184 3491 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3492 "btrfs-cleaner");
4871c33b
QW
3493 if (IS_ERR(fs_info->cleaner_kthread)) {
3494 ret = PTR_ERR(fs_info->cleaner_kthread);
2365dd3c 3495 goto fail_sysfs;
4871c33b 3496 }
a74a4b97
CM
3497
3498 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3499 tree_root,
3500 "btrfs-transaction");
4871c33b
QW
3501 if (IS_ERR(fs_info->transaction_kthread)) {
3502 ret = PTR_ERR(fs_info->transaction_kthread);
3f157a2f 3503 goto fail_cleaner;
4871c33b 3504 }
a74a4b97 3505
bcef60f2
AJ
3506 ret = btrfs_read_qgroup_config(fs_info);
3507 if (ret)
3508 goto fail_trans_kthread;
21adbd5c 3509
fd708b81
JB
3510 if (btrfs_build_ref_tree(fs_info))
3511 btrfs_err(fs_info, "couldn't build ref tree");
3512
96da0919
QW
3513 /* do not make disk changes in broken FS or nologreplay is given */
3514 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3515 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3516 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3517 ret = btrfs_replay_log(fs_info, fs_devices);
4871c33b 3518 if (ret)
28c16cbb 3519 goto fail_qgroup;
e02119d5 3520 }
1a40e23b 3521
56e9357a 3522 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3 3523 if (IS_ERR(fs_info->fs_root)) {
4871c33b
QW
3524 ret = PTR_ERR(fs_info->fs_root);
3525 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
315bf8ef 3526 fs_info->fs_root = NULL;
bcef60f2 3527 goto fail_qgroup;
3140c9a3 3528 }
c289811c 3529
bc98a42c 3530 if (sb_rdonly(sb))
83e3a40a 3531 return 0;
59641015 3532
44c0ca21 3533 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3534 if (ret) {
6bccf3ab 3535 close_ctree(fs_info);
2b6ba629 3536 return ret;
e3acc2a6 3537 }
b0643e59 3538 btrfs_discard_resume(fs_info);
b382a324 3539
44c0ca21
BB
3540 if (fs_info->uuid_root &&
3541 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3542 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3543 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3544 ret = btrfs_check_uuid_tree(fs_info);
3545 if (ret) {
05135f59
DS
3546 btrfs_warn(fs_info,
3547 "failed to check the UUID tree: %d", ret);
6bccf3ab 3548 close_ctree(fs_info);
70f80175
SB
3549 return ret;
3550 }
f7a81ea4 3551 }
94846229 3552
afcdd129 3553 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3554
b4be6aef
JB
3555 /* Kick the cleaner thread so it'll start deleting snapshots. */
3556 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3557 wake_up_process(fs_info->cleaner_kthread);
3558
ad2b2c80 3559 return 0;
39279cc3 3560
bcef60f2
AJ
3561fail_qgroup:
3562 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3563fail_trans_kthread:
3564 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3565 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3566 btrfs_free_fs_roots(fs_info);
3f157a2f 3567fail_cleaner:
a74a4b97 3568 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3569
3570 /*
3571 * make sure we're done with the btree inode before we stop our
3572 * kthreads
3573 */
3574 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3575
2365dd3c 3576fail_sysfs:
6618a59b 3577 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3578
b7c35e81
AJ
3579fail_fsdev_sysfs:
3580 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3581
1b1d1f66 3582fail_block_groups:
54067ae9 3583 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3584
3585fail_tree_roots:
9e3aa805
JB
3586 if (fs_info->data_reloc_root)
3587 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3588 free_root_pointers(fs_info, true);
2b8195bb 3589 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3590
39279cc3 3591fail_sb_buffer:
7abadb64 3592 btrfs_stop_all_workers(fs_info);
5cdd7db6 3593 btrfs_free_block_groups(fs_info);
16cdcec7 3594fail_alloc:
7dc66abb 3595 btrfs_mapping_tree_free(fs_info);
586e46e2 3596
4543df7e 3597 iput(fs_info->btree_inode);
7e662854 3598fail:
586e46e2 3599 btrfs_close_devices(fs_info->fs_devices);
4871c33b
QW
3600 ASSERT(ret < 0);
3601 return ret;
eb60ceac 3602}
663faf9f 3603ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3604
314b6dd0 3605static void btrfs_end_super_write(struct bio *bio)
f2984462 3606{
314b6dd0
JT
3607 struct btrfs_device *device = bio->bi_private;
3608 struct bio_vec *bvec;
3609 struct bvec_iter_all iter_all;
3610 struct page *page;
3611
3612 bio_for_each_segment_all(bvec, bio, iter_all) {
3613 page = bvec->bv_page;
3614
3615 if (bio->bi_status) {
3616 btrfs_warn_rl_in_rcu(device->fs_info,
3617 "lost page write due to IO error on %s (%d)",
cb3e217b 3618 btrfs_dev_name(device),
314b6dd0
JT
3619 blk_status_to_errno(bio->bi_status));
3620 ClearPageUptodate(page);
3621 SetPageError(page);
3622 btrfs_dev_stat_inc_and_print(device,
3623 BTRFS_DEV_STAT_WRITE_ERRS);
3624 } else {
3625 SetPageUptodate(page);
3626 }
3627
3628 put_page(page);
3629 unlock_page(page);
f2984462 3630 }
314b6dd0
JT
3631
3632 bio_put(bio);
f2984462
CM
3633}
3634
8f32380d 3635struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3636 int copy_num, bool drop_cache)
29c36d72 3637{
29c36d72 3638 struct btrfs_super_block *super;
8f32380d 3639 struct page *page;
12659251 3640 u64 bytenr, bytenr_orig;
8f32380d 3641 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3642 int ret;
3643
3644 bytenr_orig = btrfs_sb_offset(copy_num);
3645 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3646 if (ret == -ENOENT)
3647 return ERR_PTR(-EINVAL);
3648 else if (ret)
3649 return ERR_PTR(ret);
29c36d72 3650
cda00eba 3651 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3652 return ERR_PTR(-EINVAL);
29c36d72 3653
a05d3c91
QW
3654 if (drop_cache) {
3655 /* This should only be called with the primary sb. */
3656 ASSERT(copy_num == 0);
3657
3658 /*
3659 * Drop the page of the primary superblock, so later read will
3660 * always read from the device.
3661 */
3662 invalidate_inode_pages2_range(mapping,
3663 bytenr >> PAGE_SHIFT,
3664 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3665 }
3666
8f32380d
JT
3667 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3668 if (IS_ERR(page))
3669 return ERR_CAST(page);
29c36d72 3670
8f32380d 3671 super = page_address(page);
96c2e067
AJ
3672 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3673 btrfs_release_disk_super(super);
3674 return ERR_PTR(-ENODATA);
3675 }
3676
12659251 3677 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3678 btrfs_release_disk_super(super);
3679 return ERR_PTR(-EINVAL);
29c36d72
AJ
3680 }
3681
8f32380d 3682 return super;
29c36d72
AJ
3683}
3684
3685
8f32380d 3686struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3687{
8f32380d 3688 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3689 int i;
3690 u64 transid = 0;
a512bbf8
YZ
3691
3692 /* we would like to check all the supers, but that would make
3693 * a btrfs mount succeed after a mkfs from a different FS.
3694 * So, we need to add a special mount option to scan for
3695 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3696 */
3697 for (i = 0; i < 1; i++) {
a05d3c91 3698 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3699 if (IS_ERR(super))
a512bbf8
YZ
3700 continue;
3701
a512bbf8 3702 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3703 if (latest)
3704 btrfs_release_disk_super(super);
3705
3706 latest = super;
a512bbf8 3707 transid = btrfs_super_generation(super);
a512bbf8
YZ
3708 }
3709 }
92fc03fb 3710
8f32380d 3711 return super;
a512bbf8
YZ
3712}
3713
4eedeb75 3714/*
abbb3b8e 3715 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3716 * pages we use for writing are locked.
4eedeb75 3717 *
abbb3b8e
DS
3718 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3719 * the expected device size at commit time. Note that max_mirrors must be
3720 * same for write and wait phases.
4eedeb75 3721 *
314b6dd0 3722 * Return number of errors when page is not found or submission fails.
4eedeb75 3723 */
a512bbf8 3724static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3725 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3726{
d5178578 3727 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3728 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3729 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3730 int i;
a512bbf8 3731 int errors = 0;
12659251
NA
3732 int ret;
3733 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3734
3735 if (max_mirrors == 0)
3736 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3737
d5178578
JT
3738 shash->tfm = fs_info->csum_shash;
3739
a512bbf8 3740 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3741 struct page *page;
3742 struct bio *bio;
3743 struct btrfs_super_block *disk_super;
3744
12659251
NA
3745 bytenr_orig = btrfs_sb_offset(i);
3746 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3747 if (ret == -ENOENT) {
3748 continue;
3749 } else if (ret < 0) {
3750 btrfs_err(device->fs_info,
3751 "couldn't get super block location for mirror %d",
3752 i);
3753 errors++;
3754 continue;
3755 }
935e5cc9
MX
3756 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3757 device->commit_total_bytes)
a512bbf8
YZ
3758 break;
3759
12659251 3760 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3761
fd08001f
EB
3762 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3763 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3764 sb->csum);
4eedeb75 3765
314b6dd0
JT
3766 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3767 GFP_NOFS);
3768 if (!page) {
abbb3b8e 3769 btrfs_err(device->fs_info,
314b6dd0 3770 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3771 bytenr);
3772 errors++;
4eedeb75 3773 continue;
abbb3b8e 3774 }
634554dc 3775
314b6dd0
JT
3776 /* Bump the refcount for wait_dev_supers() */
3777 get_page(page);
a512bbf8 3778
314b6dd0
JT
3779 disk_super = page_address(page);
3780 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3781
314b6dd0
JT
3782 /*
3783 * Directly use bios here instead of relying on the page cache
3784 * to do I/O, so we don't lose the ability to do integrity
3785 * checking.
3786 */
07888c66
CH
3787 bio = bio_alloc(device->bdev, 1,
3788 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3789 GFP_NOFS);
314b6dd0
JT
3790 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3791 bio->bi_private = device;
3792 bio->bi_end_io = btrfs_end_super_write;
3793 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3794 offset_in_page(bytenr));
a512bbf8 3795
387125fc 3796 /*
314b6dd0
JT
3797 * We FUA only the first super block. The others we allow to
3798 * go down lazy and there's a short window where the on-disk
3799 * copies might still contain the older version.
387125fc 3800 */
1b9e619c 3801 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0 3802 bio->bi_opf |= REQ_FUA;
58ff51f1 3803 submit_bio(bio);
8376d9e1
NA
3804
3805 if (btrfs_advance_sb_log(device, i))
3806 errors++;
a512bbf8
YZ
3807 }
3808 return errors < i ? 0 : -1;
3809}
3810
abbb3b8e
DS
3811/*
3812 * Wait for write completion of superblocks done by write_dev_supers,
3813 * @max_mirrors same for write and wait phases.
3814 *
314b6dd0 3815 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3816 * date.
3817 */
3818static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3819{
abbb3b8e
DS
3820 int i;
3821 int errors = 0;
b6a535fa 3822 bool primary_failed = false;
12659251 3823 int ret;
abbb3b8e
DS
3824 u64 bytenr;
3825
3826 if (max_mirrors == 0)
3827 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3828
3829 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3830 struct page *page;
3831
12659251
NA
3832 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3833 if (ret == -ENOENT) {
3834 break;
3835 } else if (ret < 0) {
3836 errors++;
3837 if (i == 0)
3838 primary_failed = true;
3839 continue;
3840 }
abbb3b8e
DS
3841 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3842 device->commit_total_bytes)
3843 break;
3844
314b6dd0
JT
3845 page = find_get_page(device->bdev->bd_inode->i_mapping,
3846 bytenr >> PAGE_SHIFT);
3847 if (!page) {
abbb3b8e 3848 errors++;
b6a535fa
HM
3849 if (i == 0)
3850 primary_failed = true;
abbb3b8e
DS
3851 continue;
3852 }
314b6dd0
JT
3853 /* Page is submitted locked and unlocked once the IO completes */
3854 wait_on_page_locked(page);
3855 if (PageError(page)) {
abbb3b8e 3856 errors++;
b6a535fa
HM
3857 if (i == 0)
3858 primary_failed = true;
3859 }
abbb3b8e 3860
314b6dd0
JT
3861 /* Drop our reference */
3862 put_page(page);
abbb3b8e 3863
314b6dd0
JT
3864 /* Drop the reference from the writing run */
3865 put_page(page);
abbb3b8e
DS
3866 }
3867
b6a535fa
HM
3868 /* log error, force error return */
3869 if (primary_failed) {
3870 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3871 device->devid);
3872 return -1;
3873 }
3874
abbb3b8e
DS
3875 return errors < i ? 0 : -1;
3876}
3877
387125fc
CM
3878/*
3879 * endio for the write_dev_flush, this will wake anyone waiting
3880 * for the barrier when it is done
3881 */
4246a0b6 3882static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3883{
f9e69aa9 3884 bio_uninit(bio);
e0ae9994 3885 complete(bio->bi_private);
387125fc
CM
3886}
3887
3888/*
4fc6441a
AJ
3889 * Submit a flush request to the device if it supports it. Error handling is
3890 * done in the waiting counterpart.
387125fc 3891 */
4fc6441a 3892static void write_dev_flush(struct btrfs_device *device)
387125fc 3893{
f9e69aa9 3894 struct bio *bio = &device->flush_bio;
387125fc 3895
bfd3ea94
AJ
3896 device->last_flush_error = BLK_STS_OK;
3897
f9e69aa9
CH
3898 bio_init(bio, device->bdev, NULL, 0,
3899 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 3900 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
3901 init_completion(&device->flush_wait);
3902 bio->bi_private = &device->flush_wait;
58ff51f1 3903 submit_bio(bio);
1c3063b6 3904 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3905}
387125fc 3906
4fc6441a
AJ
3907/*
3908 * If the flush bio has been submitted by write_dev_flush, wait for it.
1b465784 3909 * Return true for any error, and false otherwise.
4fc6441a 3910 */
1b465784 3911static bool wait_dev_flush(struct btrfs_device *device)
4fc6441a 3912{
f9e69aa9 3913 struct bio *bio = &device->flush_bio;
387125fc 3914
7e812f20 3915 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
1b465784 3916 return false;
387125fc 3917
2980d574 3918 wait_for_completion_io(&device->flush_wait);
387125fc 3919
bfd3ea94
AJ
3920 if (bio->bi_status) {
3921 device->last_flush_error = bio->bi_status;
3922 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
1b465784 3923 return true;
bfd3ea94
AJ
3924 }
3925
1b465784 3926 return false;
387125fc 3927}
387125fc 3928
387125fc
CM
3929/*
3930 * send an empty flush down to each device in parallel,
3931 * then wait for them
3932 */
3933static int barrier_all_devices(struct btrfs_fs_info *info)
3934{
3935 struct list_head *head;
3936 struct btrfs_device *dev;
5af3e8cc 3937 int errors_wait = 0;
387125fc 3938
1538e6c5 3939 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3940 /* send down all the barriers */
3941 head = &info->fs_devices->devices;
1538e6c5 3942 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3943 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3944 continue;
cea7c8bf 3945 if (!dev->bdev)
387125fc 3946 continue;
e12c9621 3947 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3948 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3949 continue;
3950
4fc6441a 3951 write_dev_flush(dev);
387125fc
CM
3952 }
3953
3954 /* wait for all the barriers */
1538e6c5 3955 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3956 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3957 continue;
387125fc 3958 if (!dev->bdev) {
5af3e8cc 3959 errors_wait++;
387125fc
CM
3960 continue;
3961 }
e12c9621 3962 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3963 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3964 continue;
3965
1b465784 3966 if (wait_dev_flush(dev))
5af3e8cc 3967 errors_wait++;
401b41e5
AJ
3968 }
3969
de38a206
AJ
3970 /*
3971 * Checks last_flush_error of disks in order to determine the device
3972 * state.
3973 */
3974 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3975 return -EIO;
3976
387125fc
CM
3977 return 0;
3978}
3979
943c6e99
ZL
3980int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3981{
8789f4fe
ZL
3982 int raid_type;
3983 int min_tolerated = INT_MAX;
943c6e99 3984
8789f4fe
ZL
3985 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3986 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3987 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3988 btrfs_raid_array[BTRFS_RAID_SINGLE].
3989 tolerated_failures);
943c6e99 3990
8789f4fe
ZL
3991 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3992 if (raid_type == BTRFS_RAID_SINGLE)
3993 continue;
41a6e891 3994 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3995 continue;
8c3e3582 3996 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3997 btrfs_raid_array[raid_type].
3998 tolerated_failures);
3999 }
943c6e99 4000
8789f4fe 4001 if (min_tolerated == INT_MAX) {
ab8d0fc4 4002 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4003 min_tolerated = 0;
4004 }
4005
4006 return min_tolerated;
943c6e99
ZL
4007}
4008
eece6a9c 4009int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4010{
e5e9a520 4011 struct list_head *head;
f2984462 4012 struct btrfs_device *dev;
a061fc8d 4013 struct btrfs_super_block *sb;
f2984462 4014 struct btrfs_dev_item *dev_item;
f2984462
CM
4015 int ret;
4016 int do_barriers;
a236aed1
CM
4017 int max_errors;
4018 int total_errors = 0;
a061fc8d 4019 u64 flags;
f2984462 4020
0b246afa 4021 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4022
4023 /*
4024 * max_mirrors == 0 indicates we're from commit_transaction,
4025 * not from fsync where the tree roots in fs_info have not
4026 * been consistent on disk.
4027 */
4028 if (max_mirrors == 0)
4029 backup_super_roots(fs_info);
f2984462 4030
0b246afa 4031 sb = fs_info->super_for_commit;
a061fc8d 4032 dev_item = &sb->dev_item;
e5e9a520 4033
0b246afa
JM
4034 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4035 head = &fs_info->fs_devices->devices;
4036 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4037
5af3e8cc 4038 if (do_barriers) {
0b246afa 4039 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4040 if (ret) {
4041 mutex_unlock(
0b246afa
JM
4042 &fs_info->fs_devices->device_list_mutex);
4043 btrfs_handle_fs_error(fs_info, ret,
4044 "errors while submitting device barriers.");
5af3e8cc
SB
4045 return ret;
4046 }
4047 }
387125fc 4048
1538e6c5 4049 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4050 if (!dev->bdev) {
4051 total_errors++;
4052 continue;
4053 }
e12c9621 4054 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4055 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4056 continue;
4057
2b82032c 4058 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4059 btrfs_set_stack_device_type(dev_item, dev->type);
4060 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4061 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4062 dev->commit_total_bytes);
ce7213c7
MX
4063 btrfs_set_stack_device_bytes_used(dev_item,
4064 dev->commit_bytes_used);
a061fc8d
CM
4065 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4066 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4067 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4068 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4069 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4070 BTRFS_FSID_SIZE);
a512bbf8 4071
a061fc8d
CM
4072 flags = btrfs_super_flags(sb);
4073 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4074
75cb857d
QW
4075 ret = btrfs_validate_write_super(fs_info, sb);
4076 if (ret < 0) {
4077 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4078 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4079 "unexpected superblock corruption detected");
4080 return -EUCLEAN;
4081 }
4082
abbb3b8e 4083 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4084 if (ret)
4085 total_errors++;
f2984462 4086 }
a236aed1 4087 if (total_errors > max_errors) {
0b246afa
JM
4088 btrfs_err(fs_info, "%d errors while writing supers",
4089 total_errors);
4090 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4091
9d565ba4 4092 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4093 btrfs_handle_fs_error(fs_info, -EIO,
4094 "%d errors while writing supers",
4095 total_errors);
9d565ba4 4096 return -EIO;
a236aed1 4097 }
f2984462 4098
a512bbf8 4099 total_errors = 0;
1538e6c5 4100 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4101 if (!dev->bdev)
4102 continue;
e12c9621 4103 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4104 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4105 continue;
4106
abbb3b8e 4107 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4108 if (ret)
4109 total_errors++;
f2984462 4110 }
0b246afa 4111 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4112 if (total_errors > max_errors) {
0b246afa
JM
4113 btrfs_handle_fs_error(fs_info, -EIO,
4114 "%d errors while writing supers",
4115 total_errors);
79787eaa 4116 return -EIO;
a236aed1 4117 }
f2984462
CM
4118 return 0;
4119}
4120
cb517eab
MX
4121/* Drop a fs root from the radix tree and free it. */
4122void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4123 struct btrfs_root *root)
2619ba1f 4124{
4785e24f
JB
4125 bool drop_ref = false;
4126
fc7cbcd4
DS
4127 spin_lock(&fs_info->fs_roots_radix_lock);
4128 radix_tree_delete(&fs_info->fs_roots_radix,
4129 (unsigned long)root->root_key.objectid);
4130 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4131 drop_ref = true;
fc7cbcd4 4132 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4133
84961539 4134 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4135 ASSERT(root->log_root == NULL);
1c1ea4f7 4136 if (root->reloc_root) {
00246528 4137 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4138 root->reloc_root = NULL;
4139 }
4140 }
3321719e 4141
4785e24f
JB
4142 if (drop_ref)
4143 btrfs_put_root(root);
2619ba1f
CM
4144}
4145
6bccf3ab 4146int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4147{
6bccf3ab 4148 struct btrfs_root *root = fs_info->tree_root;
c146afad 4149 struct btrfs_trans_handle *trans;
a74a4b97 4150
0b246afa 4151 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4152 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4153 mutex_unlock(&fs_info->cleaner_mutex);
4154 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4155
4156 /* wait until ongoing cleanup work done */
0b246afa
JM
4157 down_write(&fs_info->cleanup_work_sem);
4158 up_write(&fs_info->cleanup_work_sem);
c71bf099 4159
7a7eaa40 4160 trans = btrfs_join_transaction(root);
3612b495
TI
4161 if (IS_ERR(trans))
4162 return PTR_ERR(trans);
3a45bb20 4163 return btrfs_commit_transaction(trans);
c146afad
YZ
4164}
4165
36c86a9e
QW
4166static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4167{
4168 struct btrfs_transaction *trans;
4169 struct btrfs_transaction *tmp;
4170 bool found = false;
4171
4172 if (list_empty(&fs_info->trans_list))
4173 return;
4174
4175 /*
4176 * This function is only called at the very end of close_ctree(),
4177 * thus no other running transaction, no need to take trans_lock.
4178 */
4179 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4180 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4181 struct extent_state *cached = NULL;
4182 u64 dirty_bytes = 0;
4183 u64 cur = 0;
4184 u64 found_start;
4185 u64 found_end;
4186
4187 found = true;
e5860f82 4188 while (find_first_extent_bit(&trans->dirty_pages, cur,
36c86a9e
QW
4189 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4190 dirty_bytes += found_end + 1 - found_start;
4191 cur = found_end + 1;
4192 }
4193 btrfs_warn(fs_info,
4194 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4195 trans->transid, dirty_bytes);
4196 btrfs_cleanup_one_transaction(trans, fs_info);
4197
4198 if (trans == fs_info->running_transaction)
4199 fs_info->running_transaction = NULL;
4200 list_del_init(&trans->list);
4201
4202 btrfs_put_transaction(trans);
4203 trace_btrfs_transaction_commit(fs_info);
4204 }
4205 ASSERT(!found);
4206}
4207
b105e927 4208void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4209{
c146afad
YZ
4210 int ret;
4211
afcdd129 4212 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4213
8a1f1e3d
FM
4214 /*
4215 * If we had UNFINISHED_DROPS we could still be processing them, so
4216 * clear that bit and wake up relocation so it can stop.
4217 * We must do this before stopping the block group reclaim task, because
4218 * at btrfs_relocate_block_group() we wait for this bit, and after the
4219 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4220 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4221 * return 1.
4222 */
4223 btrfs_wake_unfinished_drop(fs_info);
4224
31e70e52
FM
4225 /*
4226 * We may have the reclaim task running and relocating a data block group,
4227 * in which case it may create delayed iputs. So stop it before we park
4228 * the cleaner kthread otherwise we can get new delayed iputs after
4229 * parking the cleaner, and that can make the async reclaim task to hang
4230 * if it's waiting for delayed iputs to complete, since the cleaner is
4231 * parked and can not run delayed iputs - this will make us hang when
4232 * trying to stop the async reclaim task.
4233 */
4234 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4235 /*
4236 * We don't want the cleaner to start new transactions, add more delayed
4237 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4238 * because that frees the task_struct, and the transaction kthread might
4239 * still try to wake up the cleaner.
4240 */
4241 kthread_park(fs_info->cleaner_kthread);
c146afad 4242
7343dd61 4243 /* wait for the qgroup rescan worker to stop */
d06f23d6 4244 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4245
803b2f54
SB
4246 /* wait for the uuid_scan task to finish */
4247 down(&fs_info->uuid_tree_rescan_sem);
4248 /* avoid complains from lockdep et al., set sem back to initial state */
4249 up(&fs_info->uuid_tree_rescan_sem);
4250
837d5b6e 4251 /* pause restriper - we want to resume on mount */
aa1b8cd4 4252 btrfs_pause_balance(fs_info);
837d5b6e 4253
8dabb742
SB
4254 btrfs_dev_replace_suspend_for_unmount(fs_info);
4255
aa1b8cd4 4256 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4257
4258 /* wait for any defraggers to finish */
4259 wait_event(fs_info->transaction_wait,
4260 (atomic_read(&fs_info->defrag_running) == 0));
4261
4262 /* clear out the rbtree of defraggable inodes */
26176e7c 4263 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4264
a362bb86
FM
4265 /*
4266 * After we parked the cleaner kthread, ordered extents may have
4267 * completed and created new delayed iputs. If one of the async reclaim
4268 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4269 * can hang forever trying to stop it, because if a delayed iput is
4270 * added after it ran btrfs_run_delayed_iputs() and before it called
4271 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4272 * no one else to run iputs.
4273 *
4274 * So wait for all ongoing ordered extents to complete and then run
4275 * delayed iputs. This works because once we reach this point no one
4276 * can either create new ordered extents nor create delayed iputs
4277 * through some other means.
4278 *
4279 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4280 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4281 * but the delayed iput for the respective inode is made only when doing
4282 * the final btrfs_put_ordered_extent() (which must happen at
4283 * btrfs_finish_ordered_io() when we are unmounting).
4284 */
4285 btrfs_flush_workqueue(fs_info->endio_write_workers);
4286 /* Ordered extents for free space inodes. */
4287 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4288 btrfs_run_delayed_iputs(fs_info);
4289
21c7e756 4290 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4291 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4292 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4293
b0643e59
DZ
4294 /* Cancel or finish ongoing discard work */
4295 btrfs_discard_cleanup(fs_info);
4296
bc98a42c 4297 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4298 /*
d6fd0ae2
OS
4299 * The cleaner kthread is stopped, so do one final pass over
4300 * unused block groups.
e44163e1 4301 */
0b246afa 4302 btrfs_delete_unused_bgs(fs_info);
e44163e1 4303
f0cc2cd7
FM
4304 /*
4305 * There might be existing delayed inode workers still running
4306 * and holding an empty delayed inode item. We must wait for
4307 * them to complete first because they can create a transaction.
4308 * This happens when someone calls btrfs_balance_delayed_items()
4309 * and then a transaction commit runs the same delayed nodes
4310 * before any delayed worker has done something with the nodes.
4311 * We must wait for any worker here and not at transaction
4312 * commit time since that could cause a deadlock.
4313 * This is a very rare case.
4314 */
4315 btrfs_flush_workqueue(fs_info->delayed_workers);
4316
6bccf3ab 4317 ret = btrfs_commit_super(fs_info);
acce952b 4318 if (ret)
04892340 4319 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4320 }
4321
84961539 4322 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4323 btrfs_error_commit_super(fs_info);
0f7d52f4 4324
e3029d9f
AV
4325 kthread_stop(fs_info->transaction_kthread);
4326 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4327
e187831e 4328 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4329 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4330
5958253c
QW
4331 if (btrfs_check_quota_leak(fs_info)) {
4332 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4333 btrfs_err(fs_info, "qgroup reserved space leaked");
4334 }
4335
04892340 4336 btrfs_free_qgroup_config(fs_info);
fe816d0f 4337 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4338
963d678b 4339 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4340 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4341 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4342 }
bcc63abb 4343
5deb17e1 4344 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4345 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4346 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4347
6618a59b 4348 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4349 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4350
1a4319cc
LB
4351 btrfs_put_block_group_cache(fs_info);
4352
de348ee0
WS
4353 /*
4354 * we must make sure there is not any read request to
4355 * submit after we stopping all workers.
4356 */
4357 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4358 btrfs_stop_all_workers(fs_info);
4359
0a31daa4 4360 /* We shouldn't have any transaction open at this point */
36c86a9e 4361 warn_about_uncommitted_trans(fs_info);
0a31daa4 4362
afcdd129 4363 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4364 free_root_pointers(fs_info, true);
8c38938c 4365 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4366
4e19443d
JB
4367 /*
4368 * We must free the block groups after dropping the fs_roots as we could
4369 * have had an IO error and have left over tree log blocks that aren't
4370 * cleaned up until the fs roots are freed. This makes the block group
4371 * accounting appear to be wrong because there's pending reserved bytes,
4372 * so make sure we do the block group cleanup afterwards.
4373 */
4374 btrfs_free_block_groups(fs_info);
4375
13e6c37b 4376 iput(fs_info->btree_inode);
d6bfde87 4377
7dc66abb 4378 btrfs_mapping_tree_free(fs_info);
68c94e55 4379 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4380}
4381
50564b65
FM
4382void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4383 struct extent_buffer *buf)
5f39d397 4384{
2f4d60df 4385 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4386 u64 transid = btrfs_header_generation(buf);
b4ce94de 4387
06ea65a3
JB
4388#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4389 /*
4390 * This is a fast path so only do this check if we have sanity tests
52042d8e 4391 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4392 * outside of the sanity tests.
4393 */
b0132a3b 4394 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4395 return;
4396#endif
50564b65
FM
4397 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4398 ASSERT(trans->transid == fs_info->generation);
49d0c642 4399 btrfs_assert_tree_write_locked(buf);
4ebe8d47 4400 if (unlikely(transid != fs_info->generation)) {
50564b65 4401 btrfs_abort_transaction(trans, -EUCLEAN);
20cbe460
FM
4402 btrfs_crit(fs_info,
4403"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4404 buf->start, transid, fs_info->generation);
50564b65 4405 }
f18cc978 4406 set_extent_buffer_dirty(buf);
eb60ceac
CM
4407}
4408
2ff7e61e 4409static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4410 int flush_delayed)
16cdcec7
MX
4411{
4412 /*
4413 * looks as though older kernels can get into trouble with
4414 * this code, they end up stuck in balance_dirty_pages forever
4415 */
e2d84521 4416 int ret;
16cdcec7
MX
4417
4418 if (current->flags & PF_MEMALLOC)
4419 return;
4420
b53d3f5d 4421 if (flush_delayed)
2ff7e61e 4422 btrfs_balance_delayed_items(fs_info);
16cdcec7 4423
d814a491
EL
4424 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4425 BTRFS_DIRTY_METADATA_THRESH,
4426 fs_info->dirty_metadata_batch);
e2d84521 4427 if (ret > 0) {
0b246afa 4428 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4429 }
16cdcec7
MX
4430}
4431
2ff7e61e 4432void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4433{
2ff7e61e 4434 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4435}
585ad2c3 4436
2ff7e61e 4437void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4438{
2ff7e61e 4439 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4440}
6b80053d 4441
2ff7e61e 4442static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4443{
fe816d0f
NB
4444 /* cleanup FS via transaction */
4445 btrfs_cleanup_transaction(fs_info);
4446
0b246afa 4447 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4448 btrfs_run_delayed_iputs(fs_info);
0b246afa 4449 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4450
0b246afa
JM
4451 down_write(&fs_info->cleanup_work_sem);
4452 up_write(&fs_info->cleanup_work_sem);
acce952b 4453}
4454
ef67963d
JB
4455static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4456{
fc7cbcd4
DS
4457 struct btrfs_root *gang[8];
4458 u64 root_objectid = 0;
4459 int ret;
4460
4461 spin_lock(&fs_info->fs_roots_radix_lock);
4462 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4463 (void **)gang, root_objectid,
4464 ARRAY_SIZE(gang))) != 0) {
4465 int i;
4466
4467 for (i = 0; i < ret; i++)
4468 gang[i] = btrfs_grab_root(gang[i]);
4469 spin_unlock(&fs_info->fs_roots_radix_lock);
4470
4471 for (i = 0; i < ret; i++) {
4472 if (!gang[i])
ef67963d 4473 continue;
fc7cbcd4
DS
4474 root_objectid = gang[i]->root_key.objectid;
4475 btrfs_free_log(NULL, gang[i]);
4476 btrfs_put_root(gang[i]);
ef67963d 4477 }
fc7cbcd4
DS
4478 root_objectid++;
4479 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4480 }
fc7cbcd4 4481 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4482 btrfs_free_log_root_tree(NULL, fs_info);
4483}
4484
143bede5 4485static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4486{
acce952b 4487 struct btrfs_ordered_extent *ordered;
acce952b 4488
199c2a9c 4489 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4490 /*
4491 * This will just short circuit the ordered completion stuff which will
4492 * make sure the ordered extent gets properly cleaned up.
4493 */
199c2a9c 4494 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4495 root_extent_list)
4496 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4497 spin_unlock(&root->ordered_extent_lock);
4498}
4499
4500static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4501{
4502 struct btrfs_root *root;
84af994b 4503 LIST_HEAD(splice);
199c2a9c
MX
4504
4505 spin_lock(&fs_info->ordered_root_lock);
4506 list_splice_init(&fs_info->ordered_roots, &splice);
4507 while (!list_empty(&splice)) {
4508 root = list_first_entry(&splice, struct btrfs_root,
4509 ordered_root);
1de2cfde
JB
4510 list_move_tail(&root->ordered_root,
4511 &fs_info->ordered_roots);
199c2a9c 4512
2a85d9ca 4513 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4514 btrfs_destroy_ordered_extents(root);
4515
2a85d9ca
LB
4516 cond_resched();
4517 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4518 }
4519 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4520
4521 /*
4522 * We need this here because if we've been flipped read-only we won't
4523 * get sync() from the umount, so we need to make sure any ordered
4524 * extents that haven't had their dirty pages IO start writeout yet
4525 * actually get run and error out properly.
4526 */
4527 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4528}
4529
99f09ce3
FM
4530static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4531 struct btrfs_fs_info *fs_info)
acce952b 4532{
4533 struct rb_node *node;
4534 struct btrfs_delayed_ref_root *delayed_refs;
4535 struct btrfs_delayed_ref_node *ref;
acce952b 4536
4537 delayed_refs = &trans->delayed_refs;
4538
4539 spin_lock(&delayed_refs->lock);
d7df2c79 4540 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4541 spin_unlock(&delayed_refs->lock);
b79ce3dd 4542 btrfs_debug(fs_info, "delayed_refs has NO entry");
99f09ce3 4543 return;
acce952b 4544 }
4545
5c9d028b 4546 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4547 struct btrfs_delayed_ref_head *head;
0e0adbcf 4548 struct rb_node *n;
e78417d1 4549 bool pin_bytes = false;
acce952b 4550
d7df2c79
JB
4551 head = rb_entry(node, struct btrfs_delayed_ref_head,
4552 href_node);
3069bd26 4553 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4554 continue;
3069bd26 4555
d7df2c79 4556 spin_lock(&head->lock);
e3d03965 4557 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4558 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4559 ref_node);
e3d03965 4560 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4561 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4562 if (!list_empty(&ref->add_list))
4563 list_del(&ref->add_list);
d7df2c79
JB
4564 atomic_dec(&delayed_refs->num_entries);
4565 btrfs_put_delayed_ref(ref);
adb86dbe 4566 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
e78417d1 4567 }
d7df2c79
JB
4568 if (head->must_insert_reserved)
4569 pin_bytes = true;
4570 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4571 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4572 spin_unlock(&head->lock);
4573 spin_unlock(&delayed_refs->lock);
4574 mutex_unlock(&head->mutex);
acce952b 4575
f603bb94
NB
4576 if (pin_bytes) {
4577 struct btrfs_block_group *cache;
4578
4579 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4580 BUG_ON(!cache);
4581
4582 spin_lock(&cache->space_info->lock);
4583 spin_lock(&cache->lock);
4584 cache->pinned += head->num_bytes;
4585 btrfs_space_info_update_bytes_pinned(fs_info,
4586 cache->space_info, head->num_bytes);
4587 cache->reserved -= head->num_bytes;
4588 cache->space_info->bytes_reserved -= head->num_bytes;
4589 spin_unlock(&cache->lock);
4590 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4591
4592 btrfs_put_block_group(cache);
4593
4594 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4595 head->bytenr + head->num_bytes - 1);
4596 }
31890da0 4597 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4598 btrfs_put_delayed_ref_head(head);
acce952b 4599 cond_resched();
4600 spin_lock(&delayed_refs->lock);
4601 }
81f7eb00 4602 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4603
4604 spin_unlock(&delayed_refs->lock);
acce952b 4605}
4606
143bede5 4607static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4608{
4609 struct btrfs_inode *btrfs_inode;
84af994b 4610 LIST_HEAD(splice);
acce952b 4611
eb73c1b7
MX
4612 spin_lock(&root->delalloc_lock);
4613 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4614
4615 while (!list_empty(&splice)) {
fe816d0f 4616 struct inode *inode = NULL;
eb73c1b7
MX
4617 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4618 delalloc_inodes);
fe816d0f 4619 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4620 spin_unlock(&root->delalloc_lock);
acce952b 4621
fe816d0f
NB
4622 /*
4623 * Make sure we get a live inode and that it'll not disappear
4624 * meanwhile.
4625 */
4626 inode = igrab(&btrfs_inode->vfs_inode);
4627 if (inode) {
597441b3
JB
4628 unsigned int nofs_flag;
4629
4630 nofs_flag = memalloc_nofs_save();
fe816d0f 4631 invalidate_inode_pages2(inode->i_mapping);
597441b3 4632 memalloc_nofs_restore(nofs_flag);
fe816d0f
NB
4633 iput(inode);
4634 }
eb73c1b7 4635 spin_lock(&root->delalloc_lock);
acce952b 4636 }
eb73c1b7
MX
4637 spin_unlock(&root->delalloc_lock);
4638}
4639
4640static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4641{
4642 struct btrfs_root *root;
84af994b 4643 LIST_HEAD(splice);
eb73c1b7
MX
4644
4645 spin_lock(&fs_info->delalloc_root_lock);
4646 list_splice_init(&fs_info->delalloc_roots, &splice);
4647 while (!list_empty(&splice)) {
4648 root = list_first_entry(&splice, struct btrfs_root,
4649 delalloc_root);
00246528 4650 root = btrfs_grab_root(root);
eb73c1b7
MX
4651 BUG_ON(!root);
4652 spin_unlock(&fs_info->delalloc_root_lock);
4653
4654 btrfs_destroy_delalloc_inodes(root);
00246528 4655 btrfs_put_root(root);
eb73c1b7
MX
4656
4657 spin_lock(&fs_info->delalloc_root_lock);
4658 }
4659 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4660}
4661
aec5716c
FM
4662static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4663 struct extent_io_tree *dirty_pages,
4664 int mark)
acce952b 4665{
acce952b 4666 struct extent_buffer *eb;
4667 u64 start = 0;
4668 u64 end;
acce952b 4669
e5860f82
FM
4670 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4671 mark, NULL)) {
91166212 4672 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4673 while (start <= end) {
0b246afa
JM
4674 eb = find_extent_buffer(fs_info, start);
4675 start += fs_info->nodesize;
fd8b2b61 4676 if (!eb)
acce952b 4677 continue;
c4e54a65
JB
4678
4679 btrfs_tree_lock(eb);
fd8b2b61 4680 wait_on_extent_buffer_writeback(eb);
190a8339 4681 btrfs_clear_buffer_dirty(NULL, eb);
c4e54a65 4682 btrfs_tree_unlock(eb);
acce952b 4683
fd8b2b61 4684 free_extent_buffer_stale(eb);
acce952b 4685 }
4686 }
acce952b 4687}
4688
46d81ebd
FM
4689static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4690 struct extent_io_tree *unpin)
acce952b 4691{
acce952b 4692 u64 start;
4693 u64 end;
acce952b 4694
acce952b 4695 while (1) {
0e6ec385
FM
4696 struct extent_state *cached_state = NULL;
4697
fcd5e742
LF
4698 /*
4699 * The btrfs_finish_extent_commit() may get the same range as
4700 * ours between find_first_extent_bit and clear_extent_dirty.
4701 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4702 * the same extent range.
4703 */
4704 mutex_lock(&fs_info->unused_bg_unpin_mutex);
e5860f82
FM
4705 if (!find_first_extent_bit(unpin, 0, &start, &end,
4706 EXTENT_DIRTY, &cached_state)) {
fcd5e742 4707 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4708 break;
fcd5e742 4709 }
acce952b 4710
0e6ec385
FM
4711 clear_extent_dirty(unpin, start, end, &cached_state);
4712 free_extent_state(cached_state);
2ff7e61e 4713 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4714 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4715 cond_resched();
4716 }
acce952b 4717}
4718
32da5386 4719static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4720{
4721 struct inode *inode;
4722
4723 inode = cache->io_ctl.inode;
4724 if (inode) {
597441b3
JB
4725 unsigned int nofs_flag;
4726
4727 nofs_flag = memalloc_nofs_save();
c79a1751 4728 invalidate_inode_pages2(inode->i_mapping);
597441b3
JB
4729 memalloc_nofs_restore(nofs_flag);
4730
c79a1751
LB
4731 BTRFS_I(inode)->generation = 0;
4732 cache->io_ctl.inode = NULL;
4733 iput(inode);
4734 }
bbc37d6e 4735 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4736 btrfs_put_block_group(cache);
4737}
4738
4739void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4740 struct btrfs_fs_info *fs_info)
c79a1751 4741{
32da5386 4742 struct btrfs_block_group *cache;
c79a1751
LB
4743
4744 spin_lock(&cur_trans->dirty_bgs_lock);
4745 while (!list_empty(&cur_trans->dirty_bgs)) {
4746 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4747 struct btrfs_block_group,
c79a1751 4748 dirty_list);
c79a1751
LB
4749
4750 if (!list_empty(&cache->io_list)) {
4751 spin_unlock(&cur_trans->dirty_bgs_lock);
4752 list_del_init(&cache->io_list);
4753 btrfs_cleanup_bg_io(cache);
4754 spin_lock(&cur_trans->dirty_bgs_lock);
4755 }
4756
4757 list_del_init(&cache->dirty_list);
4758 spin_lock(&cache->lock);
4759 cache->disk_cache_state = BTRFS_DC_ERROR;
4760 spin_unlock(&cache->lock);
4761
4762 spin_unlock(&cur_trans->dirty_bgs_lock);
4763 btrfs_put_block_group(cache);
f66e0209 4764 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
c79a1751
LB
4765 spin_lock(&cur_trans->dirty_bgs_lock);
4766 }
4767 spin_unlock(&cur_trans->dirty_bgs_lock);
4768
45ae2c18
NB
4769 /*
4770 * Refer to the definition of io_bgs member for details why it's safe
4771 * to use it without any locking
4772 */
c79a1751
LB
4773 while (!list_empty(&cur_trans->io_bgs)) {
4774 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4775 struct btrfs_block_group,
c79a1751 4776 io_list);
c79a1751
LB
4777
4778 list_del_init(&cache->io_list);
4779 spin_lock(&cache->lock);
4780 cache->disk_cache_state = BTRFS_DC_ERROR;
4781 spin_unlock(&cache->lock);
4782 btrfs_cleanup_bg_io(cache);
4783 }
4784}
4785
b321a52c
BB
4786static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4787{
4788 struct btrfs_root *gang[8];
4789 int i;
4790 int ret;
4791
4792 spin_lock(&fs_info->fs_roots_radix_lock);
4793 while (1) {
4794 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4795 (void **)gang, 0,
4796 ARRAY_SIZE(gang),
4797 BTRFS_ROOT_TRANS_TAG);
4798 if (ret == 0)
4799 break;
4800 for (i = 0; i < ret; i++) {
4801 struct btrfs_root *root = gang[i];
4802
4803 btrfs_qgroup_free_meta_all_pertrans(root);
4804 radix_tree_tag_clear(&fs_info->fs_roots_radix,
4805 (unsigned long)root->root_key.objectid,
4806 BTRFS_ROOT_TRANS_TAG);
4807 }
4808 }
4809 spin_unlock(&fs_info->fs_roots_radix_lock);
4810}
4811
49b25e05 4812void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4813 struct btrfs_fs_info *fs_info)
49b25e05 4814{
bbbf7243
NB
4815 struct btrfs_device *dev, *tmp;
4816
2ff7e61e 4817 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4818 ASSERT(list_empty(&cur_trans->dirty_bgs));
4819 ASSERT(list_empty(&cur_trans->io_bgs));
4820
bbbf7243
NB
4821 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4822 post_commit_list) {
4823 list_del_init(&dev->post_commit_list);
4824 }
4825
2ff7e61e 4826 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4827
4a9d8bde 4828 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4829 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4830
4a9d8bde 4831 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4832 wake_up(&fs_info->transaction_wait);
49b25e05 4833
ccdf9b30 4834 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4835
2ff7e61e 4836 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4837 EXTENT_DIRTY);
fe119a6e 4838 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4839
b321a52c
BB
4840 btrfs_free_all_qgroup_pertrans(fs_info);
4841
4a9d8bde
MX
4842 cur_trans->state =TRANS_STATE_COMPLETED;
4843 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4844}
4845
2ff7e61e 4846static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4847{
4848 struct btrfs_transaction *t;
acce952b 4849
0b246afa 4850 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4851
0b246afa
JM
4852 spin_lock(&fs_info->trans_lock);
4853 while (!list_empty(&fs_info->trans_list)) {
4854 t = list_first_entry(&fs_info->trans_list,
724e2315 4855 struct btrfs_transaction, list);
77d20c68 4856 if (t->state >= TRANS_STATE_COMMIT_PREP) {
9b64f57d 4857 refcount_inc(&t->use_count);
0b246afa 4858 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4859 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4860 btrfs_put_transaction(t);
0b246afa 4861 spin_lock(&fs_info->trans_lock);
724e2315
JB
4862 continue;
4863 }
0b246afa 4864 if (t == fs_info->running_transaction) {
724e2315 4865 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4866 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4867 /*
4868 * We wait for 0 num_writers since we don't hold a trans
4869 * handle open currently for this transaction.
4870 */
4871 wait_event(t->writer_wait,
4872 atomic_read(&t->num_writers) == 0);
4873 } else {
0b246afa 4874 spin_unlock(&fs_info->trans_lock);
724e2315 4875 }
2ff7e61e 4876 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4877
0b246afa
JM
4878 spin_lock(&fs_info->trans_lock);
4879 if (t == fs_info->running_transaction)
4880 fs_info->running_transaction = NULL;
acce952b 4881 list_del_init(&t->list);
0b246afa 4882 spin_unlock(&fs_info->trans_lock);
acce952b 4883
724e2315 4884 btrfs_put_transaction(t);
2e4e97ab 4885 trace_btrfs_transaction_commit(fs_info);
0b246afa 4886 spin_lock(&fs_info->trans_lock);
724e2315 4887 }
0b246afa
JM
4888 spin_unlock(&fs_info->trans_lock);
4889 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4890 btrfs_destroy_delayed_inodes(fs_info);
4891 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4892 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4893 btrfs_drop_all_logs(fs_info);
0b246afa 4894 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4895
4896 return 0;
4897}
ec7d6dfd 4898
453e4873 4899int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4900{
4901 struct btrfs_path *path;
4902 int ret;
4903 struct extent_buffer *l;
4904 struct btrfs_key search_key;
4905 struct btrfs_key found_key;
4906 int slot;
4907
4908 path = btrfs_alloc_path();
4909 if (!path)
4910 return -ENOMEM;
4911
4912 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4913 search_key.type = -1;
4914 search_key.offset = (u64)-1;
4915 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4916 if (ret < 0)
4917 goto error;
4918 BUG_ON(ret == 0); /* Corruption */
4919 if (path->slots[0] > 0) {
4920 slot = path->slots[0] - 1;
4921 l = path->nodes[0];
4922 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
4923 root->free_objectid = max_t(u64, found_key.objectid + 1,
4924 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 4925 } else {
23125104 4926 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
4927 }
4928 ret = 0;
4929error:
4930 btrfs_free_path(path);
4931 return ret;
4932}
4933
543068a2 4934int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
4935{
4936 int ret;
4937 mutex_lock(&root->objectid_mutex);
4938
6b8fad57 4939 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
4940 btrfs_warn(root->fs_info,
4941 "the objectid of root %llu reaches its highest value",
4942 root->root_key.objectid);
4943 ret = -ENOSPC;
4944 goto out;
4945 }
4946
23125104 4947 *objectid = root->free_objectid++;
ec7d6dfd
NB
4948 ret = 0;
4949out:
4950 mutex_unlock(&root->objectid_mutex);
4951 return ret;
4952}