btrfs: qgroup: export qgroups in sysfs
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
c6100a4b 113 void *private_data;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
7eccb903 214{
fc4f21b1 215 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
216 struct extent_map *em;
217 int ret;
218
890871be 219 read_lock(&em_tree->lock);
d1310b2e 220 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 221 if (em) {
890871be 222 read_unlock(&em_tree->lock);
5f39d397 223 goto out;
a061fc8d 224 }
890871be 225 read_unlock(&em_tree->lock);
7b13b7b1 226
172ddd60 227 em = alloc_extent_map();
5f39d397
CM
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
0afbaf8c 233 em->len = (u64)-1;
c8b97818 234 em->block_len = (u64)-1;
5f39d397 235 em->block_start = 0;
d1310b2e 236
890871be 237 write_lock(&em_tree->lock);
09a2a8f9 238 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
239 if (ret == -EEXIST) {
240 free_extent_map(em);
7b13b7b1 241 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 242 if (!em)
0433f20d 243 em = ERR_PTR(-EIO);
5f39d397 244 } else if (ret) {
7b13b7b1 245 free_extent_map(em);
0433f20d 246 em = ERR_PTR(ret);
5f39d397 247 }
890871be 248 write_unlock(&em_tree->lock);
7b13b7b1 249
5f39d397
CM
250out:
251 return em;
7eccb903
CM
252}
253
d352ac68 254/*
2996e1f8 255 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 256 */
c67b3892 257static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 258{
d5178578 259 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
d5178578 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 262 char *kaddr;
e9be5a30 263 int i;
d5178578
JT
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
e9be5a30
DS
267 kaddr = page_address(buf->pages[0]);
268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 PAGE_SIZE - BTRFS_CSUM_SIZE);
19c00ddc 270
e9be5a30
DS
271 for (i = 1; i < num_pages; i++) {
272 kaddr = page_address(buf->pages[i]);
273 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 274 }
71a63551 275 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 276 crypto_shash_final(shash, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
284 */
1259ab75 285static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
286 struct extent_buffer *eb, u64 parent_transid,
287 int atomic)
1259ab75 288{
2ac55d41 289 struct extent_state *cached_state = NULL;
1259ab75 290 int ret;
2755a0de 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
292
293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 return 0;
295
b9fab919
CM
296 if (atomic)
297 return -EAGAIN;
298
a26e8c9f
JB
299 if (need_lock) {
300 btrfs_tree_read_lock(eb);
300aa896 301 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
302 }
303
2ac55d41 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 305 &cached_state);
0b32f4bb 306 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
307 btrfs_header_generation(eb) == parent_transid) {
308 ret = 0;
309 goto out;
310 }
94647322
DS
311 btrfs_err_rl(eb->fs_info,
312 "parent transid verify failed on %llu wanted %llu found %llu",
313 eb->start,
29549aec 314 parent_transid, btrfs_header_generation(eb));
1259ab75 315 ret = 1;
a26e8c9f
JB
316
317 /*
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
01327610 320 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
324 */
325 if (!extent_buffer_under_io(eb))
326 clear_extent_buffer_uptodate(eb);
33958dc6 327out:
2ac55d41 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 329 &cached_state);
472b909f
JB
330 if (need_lock)
331 btrfs_tree_read_unlock_blocking(eb);
1259ab75 332 return ret;
1259ab75
CM
333}
334
e7e16f48
JT
335static bool btrfs_supported_super_csum(u16 csum_type)
336{
337 switch (csum_type) {
338 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 339 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 340 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 341 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
342 return true;
343 default:
344 return false;
345 }
346}
347
1104a885
DS
348/*
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
351 */
ab8d0fc4
JM
352static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 char *raw_disk_sb)
1104a885
DS
354{
355 struct btrfs_super_block *disk_sb =
356 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 357 char result[BTRFS_CSUM_SIZE];
d5178578
JT
358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360 shash->tfm = fs_info->csum_shash;
1104a885 361
51bce6c9
JT
362 /*
363 * The super_block structure does not span the whole
364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 * filled with zeros and is included in the checksum.
366 */
fd08001f
EB
367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 369
51bce6c9
JT
370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371 return 1;
1104a885 372
e7e16f48 373 return 0;
1104a885
DS
374}
375
e064d5e9 376int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 377 struct btrfs_key *first_key, u64 parent_transid)
581c1760 378{
e064d5e9 379 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
380 int found_level;
381 struct btrfs_key found_key;
382 int ret;
383
384 found_level = btrfs_header_level(eb);
385 if (found_level != level) {
63489055
QW
386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
388 btrfs_err(fs_info,
389"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 eb->start, level, found_level);
581c1760
QW
391 return -EIO;
392 }
393
394 if (!first_key)
395 return 0;
396
5d41be6f
QW
397 /*
398 * For live tree block (new tree blocks in current transaction),
399 * we need proper lock context to avoid race, which is impossible here.
400 * So we only checks tree blocks which is read from disk, whose
401 * generation <= fs_info->last_trans_committed.
402 */
403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404 return 0;
62fdaa52
QW
405
406 /* We have @first_key, so this @eb must have at least one item */
407 if (btrfs_header_nritems(eb) == 0) {
408 btrfs_err(fs_info,
409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410 eb->start);
411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412 return -EUCLEAN;
413 }
414
581c1760
QW
415 if (found_level)
416 btrfs_node_key_to_cpu(eb, &found_key, 0);
417 else
418 btrfs_item_key_to_cpu(eb, &found_key, 0);
419 ret = btrfs_comp_cpu_keys(first_key, &found_key);
420
581c1760 421 if (ret) {
63489055
QW
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 424 btrfs_err(fs_info,
ff76a864
LB
425"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 eb->start, parent_transid, first_key->objectid,
427 first_key->type, first_key->offset,
428 found_key.objectid, found_key.type,
429 found_key.offset);
581c1760 430 }
581c1760
QW
431 return ret;
432}
433
d352ac68
CM
434/*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
437 *
438 * @parent_transid: expected transid, skip check if 0
439 * @level: expected level, mandatory check
440 * @first_key: expected key of first slot, skip check if NULL
d352ac68 441 */
5ab12d1f 442static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
443 u64 parent_transid, int level,
444 struct btrfs_key *first_key)
f188591e 445{
5ab12d1f 446 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 447 struct extent_io_tree *io_tree;
ea466794 448 int failed = 0;
f188591e
CM
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
ea466794 452 int failed_mirror = 0;
f188591e 453
0b246afa 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 455 while (1) {
f8397d69 456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 458 if (!ret) {
581c1760 459 if (verify_parent_transid(io_tree, eb,
b9fab919 460 parent_transid, 0))
256dd1bb 461 ret = -EIO;
e064d5e9 462 else if (btrfs_verify_level_key(eb, level,
448de471 463 first_key, parent_transid))
581c1760
QW
464 ret = -EUCLEAN;
465 else
466 break;
256dd1bb 467 }
d397712b 468
0b246afa 469 num_copies = btrfs_num_copies(fs_info,
f188591e 470 eb->start, eb->len);
4235298e 471 if (num_copies == 1)
ea466794 472 break;
4235298e 473
5cf1ab56
JB
474 if (!failed_mirror) {
475 failed = 1;
476 failed_mirror = eb->read_mirror;
477 }
478
f188591e 479 mirror_num++;
ea466794
JB
480 if (mirror_num == failed_mirror)
481 mirror_num++;
482
4235298e 483 if (mirror_num > num_copies)
ea466794 484 break;
f188591e 485 }
ea466794 486
c0901581 487 if (failed && !ret && failed_mirror)
20a1fbf9 488 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
489
490 return ret;
f188591e 491}
19c00ddc 492
d352ac68 493/*
d397712b
CM
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 496 */
d397712b 497
01d58472 498static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 499{
4eee4fa4 500 u64 start = page_offset(page);
19c00ddc 501 u64 found_start;
2996e1f8
JT
502 u8 result[BTRFS_CSUM_SIZE];
503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 504 struct extent_buffer *eb;
8d47a0d8 505 int ret;
f188591e 506
4f2de97a
JB
507 eb = (struct extent_buffer *)page->private;
508 if (page != eb->pages[0])
509 return 0;
0f805531 510
19c00ddc 511 found_start = btrfs_header_bytenr(eb);
0f805531
AL
512 /*
513 * Please do not consolidate these warnings into a single if.
514 * It is useful to know what went wrong.
515 */
516 if (WARN_ON(found_start != start))
517 return -EUCLEAN;
518 if (WARN_ON(!PageUptodate(page)))
519 return -EUCLEAN;
520
de37aa51 521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
522 offsetof(struct btrfs_header, fsid),
523 BTRFS_FSID_SIZE) == 0);
0f805531 524
c67b3892 525 csum_tree_block(eb, result);
2996e1f8 526
8d47a0d8
QW
527 if (btrfs_header_level(eb))
528 ret = btrfs_check_node(eb);
529 else
530 ret = btrfs_check_leaf_full(eb);
531
532 if (ret < 0) {
c06631b0 533 btrfs_print_tree(eb, 0);
8d47a0d8
QW
534 btrfs_err(fs_info,
535 "block=%llu write time tree block corruption detected",
536 eb->start);
c06631b0 537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
538 return ret;
539 }
2996e1f8 540 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 541
2996e1f8 542 return 0;
19c00ddc
CM
543}
544
b0c9b3b0 545static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 546{
b0c9b3b0 547 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 549 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
550 int ret = 1;
551
9a8658e3
DS
552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553 BTRFS_FSID_SIZE);
2b82032c 554 while (fs_devices) {
7239ff4b
NB
555 u8 *metadata_uuid;
556
557 /*
558 * Checking the incompat flag is only valid for the current
559 * fs. For seed devices it's forbidden to have their uuid
560 * changed so reading ->fsid in this case is fine
561 */
562 if (fs_devices == fs_info->fs_devices &&
563 btrfs_fs_incompat(fs_info, METADATA_UUID))
564 metadata_uuid = fs_devices->metadata_uuid;
565 else
566 metadata_uuid = fs_devices->fsid;
567
568 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
569 ret = 0;
570 break;
571 }
572 fs_devices = fs_devices->seed;
573 }
574 return ret;
575}
576
facc8a22
MX
577static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578 u64 phy_offset, struct page *page,
579 u64 start, u64 end, int mirror)
ce9adaa5 580{
ce9adaa5
CM
581 u64 found_start;
582 int found_level;
ce9adaa5 583 struct extent_buffer *eb;
15b6e8a8
DS
584 struct btrfs_fs_info *fs_info;
585 u16 csum_size;
f188591e 586 int ret = 0;
2996e1f8 587 u8 result[BTRFS_CSUM_SIZE];
727011e0 588 int reads_done;
ce9adaa5 589
ce9adaa5
CM
590 if (!page->private)
591 goto out;
d397712b 592
4f2de97a 593 eb = (struct extent_buffer *)page->private;
15b6e8a8
DS
594 fs_info = eb->fs_info;
595 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d397712b 596
0b32f4bb
JB
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
67439dad 600 atomic_inc(&eb->refs);
0b32f4bb
JB
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
603 if (!reads_done)
604 goto err;
f188591e 605
5cf1ab56 606 eb->read_mirror = mirror;
656f30db 607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
608 ret = -EIO;
609 goto err;
610 }
611
ce9adaa5 612 found_start = btrfs_header_bytenr(eb);
727011e0 613 if (found_start != eb->start) {
893bf4b1
SY
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
f188591e 616 ret = -EIO;
ce9adaa5
CM
617 goto err;
618 }
b0c9b3b0 619 if (check_tree_block_fsid(eb)) {
02873e43
ZL
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 eb->start);
1259ab75
CM
622 ret = -EIO;
623 goto err;
624 }
ce9adaa5 625 found_level = btrfs_header_level(eb);
1c24c3ce 626 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
629 ret = -EIO;
630 goto err;
631 }
ce9adaa5 632
85d4e461
CM
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 eb, found_level);
4008c04a 635
c67b3892 636 csum_tree_block(eb, result);
a826d6dc 637
2996e1f8
JT
638 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639 u32 val;
640 u32 found = 0;
641
642 memcpy(&found, result, csum_size);
643
644 read_extent_buffer(eb, &val, 0, csum_size);
645 btrfs_warn_rl(fs_info,
646 "%s checksum verify failed on %llu wanted %x found %x level %d",
647 fs_info->sb->s_id, eb->start,
648 val, found, btrfs_header_level(eb));
649 ret = -EUCLEAN;
650 goto err;
651 }
652
a826d6dc
JB
653 /*
654 * If this is a leaf block and it is corrupt, set the corrupt bit so
655 * that we don't try and read the other copies of this block, just
656 * return -EIO.
657 */
1c4360ee 658 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
659 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
660 ret = -EIO;
661 }
ce9adaa5 662
813fd1dc 663 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
664 ret = -EIO;
665
0b32f4bb
JB
666 if (!ret)
667 set_extent_buffer_uptodate(eb);
75391f0d
QW
668 else
669 btrfs_err(fs_info,
670 "block=%llu read time tree block corruption detected",
671 eb->start);
ce9adaa5 672err:
79fb65a1
JB
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 675 btree_readahead_hook(eb, ret);
4bb31e92 676
53b381b3
DW
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
0b32f4bb 684 clear_extent_buffer_uptodate(eb);
53b381b3 685 }
0b32f4bb 686 free_extent_buffer(eb);
ce9adaa5 687out:
f188591e 688 return ret;
ce9adaa5
CM
689}
690
4246a0b6 691static void end_workqueue_bio(struct bio *bio)
ce9adaa5 692{
97eb6b69 693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 694 struct btrfs_fs_info *fs_info;
9e0af237 695 struct btrfs_workqueue *wq;
ce9adaa5 696
ce9adaa5 697 fs_info = end_io_wq->info;
4e4cbee9 698 end_io_wq->status = bio->bi_status;
d20f7043 699
37226b21 700 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 702 wq = fs_info->endio_meta_write_workers;
a0cac0ec 703 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 704 wq = fs_info->endio_freespace_worker;
a0cac0ec 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 706 wq = fs_info->endio_raid56_workers;
a0cac0ec 707 else
9e0af237 708 wq = fs_info->endio_write_workers;
d20f7043 709 } else {
5c047a69 710 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 711 wq = fs_info->endio_raid56_workers;
a0cac0ec 712 else if (end_io_wq->metadata)
9e0af237 713 wq = fs_info->endio_meta_workers;
a0cac0ec 714 else
9e0af237 715 wq = fs_info->endio_workers;
d20f7043 716 }
9e0af237 717
a0cac0ec 718 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 719 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
720}
721
4e4cbee9 722blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 723 enum btrfs_wq_endio_type metadata)
0b86a832 724{
97eb6b69 725 struct btrfs_end_io_wq *end_io_wq;
8b110e39 726
97eb6b69 727 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 728 if (!end_io_wq)
4e4cbee9 729 return BLK_STS_RESOURCE;
ce9adaa5
CM
730
731 end_io_wq->private = bio->bi_private;
732 end_io_wq->end_io = bio->bi_end_io;
22c59948 733 end_io_wq->info = info;
4e4cbee9 734 end_io_wq->status = 0;
ce9adaa5 735 end_io_wq->bio = bio;
22c59948 736 end_io_wq->metadata = metadata;
ce9adaa5
CM
737
738 bio->bi_private = end_io_wq;
739 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
740 return 0;
741}
742
4a69a410
CM
743static void run_one_async_start(struct btrfs_work *work)
744{
4a69a410 745 struct async_submit_bio *async;
4e4cbee9 746 blk_status_t ret;
4a69a410
CM
747
748 async = container_of(work, struct async_submit_bio, work);
c6100a4b 749 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
750 async->bio_offset);
751 if (ret)
4e4cbee9 752 async->status = ret;
4a69a410
CM
753}
754
06ea01b1
DS
755/*
756 * In order to insert checksums into the metadata in large chunks, we wait
757 * until bio submission time. All the pages in the bio are checksummed and
758 * sums are attached onto the ordered extent record.
759 *
760 * At IO completion time the csums attached on the ordered extent record are
761 * inserted into the tree.
762 */
4a69a410 763static void run_one_async_done(struct btrfs_work *work)
8b712842 764{
8b712842 765 struct async_submit_bio *async;
06ea01b1
DS
766 struct inode *inode;
767 blk_status_t ret;
8b712842
CM
768
769 async = container_of(work, struct async_submit_bio, work);
06ea01b1 770 inode = async->private_data;
4854ddd0 771
bb7ab3b9 772 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
773 if (async->status) {
774 async->bio->bi_status = async->status;
4246a0b6 775 bio_endio(async->bio);
79787eaa
JM
776 return;
777 }
778
ec39f769
CM
779 /*
780 * All of the bios that pass through here are from async helpers.
781 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782 * This changes nothing when cgroups aren't in use.
783 */
784 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
786 if (ret) {
787 async->bio->bi_status = ret;
788 bio_endio(async->bio);
789 }
4a69a410
CM
790}
791
792static void run_one_async_free(struct btrfs_work *work)
793{
794 struct async_submit_bio *async;
795
796 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
797 kfree(async);
798}
799
8c27cb35
LT
800blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 int mirror_num, unsigned long bio_flags,
802 u64 bio_offset, void *private_data,
e288c080 803 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
804{
805 struct async_submit_bio *async;
806
807 async = kmalloc(sizeof(*async), GFP_NOFS);
808 if (!async)
4e4cbee9 809 return BLK_STS_RESOURCE;
44b8bd7e 810
c6100a4b 811 async->private_data = private_data;
44b8bd7e
CM
812 async->bio = bio;
813 async->mirror_num = mirror_num;
4a69a410 814 async->submit_bio_start = submit_bio_start;
4a69a410 815
a0cac0ec
OS
816 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
817 run_one_async_free);
4a69a410 818
eaf25d93 819 async->bio_offset = bio_offset;
8c8bee1d 820
4e4cbee9 821 async->status = 0;
79787eaa 822
67f055c7 823 if (op_is_sync(bio->bi_opf))
5cdc7ad3 824 btrfs_set_work_high_priority(&async->work);
d313d7a3 825
5cdc7ad3 826 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
827 return 0;
828}
829
4e4cbee9 830static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 831{
2c30c71b 832 struct bio_vec *bvec;
ce3ed71a 833 struct btrfs_root *root;
2b070cfe 834 int ret = 0;
6dc4f100 835 struct bvec_iter_all iter_all;
ce3ed71a 836
c09abff8 837 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 838 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
841 if (ret)
842 break;
ce3ed71a 843 }
2c30c71b 844
4e4cbee9 845 return errno_to_blk_status(ret);
ce3ed71a
CM
846}
847
d0ee3934 848static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 849 u64 bio_offset)
22c59948 850{
8b712842
CM
851 /*
852 * when we're called for a write, we're already in the async
5443be45 853 * submission context. Just jump into btrfs_map_bio
8b712842 854 */
79787eaa 855 return btree_csum_one_bio(bio);
4a69a410 856}
22c59948 857
9b4e675a
DS
858static int check_async_write(struct btrfs_fs_info *fs_info,
859 struct btrfs_inode *bi)
de0022b9 860{
6300463b
LB
861 if (atomic_read(&bi->sync_writers))
862 return 0;
9b4e675a 863 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 864 return 0;
de0022b9
JB
865 return 1;
866}
867
a56b1c7b 868static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
869 int mirror_num,
870 unsigned long bio_flags)
44b8bd7e 871{
0b246afa 872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 873 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 874 blk_status_t ret;
cad321ad 875
37226b21 876 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
877 /*
878 * called for a read, do the setup so that checksum validation
879 * can happen in the async kernel threads
880 */
0b246afa
JM
881 ret = btrfs_bio_wq_end_io(fs_info, bio,
882 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 883 if (ret)
61891923 884 goto out_w_error;
08635bae 885 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
886 } else if (!async) {
887 ret = btree_csum_one_bio(bio);
888 if (ret)
61891923 889 goto out_w_error;
08635bae 890 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
891 } else {
892 /*
893 * kthread helpers are used to submit writes so that
894 * checksumming can happen in parallel across all CPUs
895 */
c6100a4b 896 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 897 0, inode, btree_submit_bio_start);
44b8bd7e 898 }
d313d7a3 899
4246a0b6
CH
900 if (ret)
901 goto out_w_error;
902 return 0;
903
61891923 904out_w_error:
4e4cbee9 905 bio->bi_status = ret;
4246a0b6 906 bio_endio(bio);
61891923 907 return ret;
44b8bd7e
CM
908}
909
3dd1462e 910#ifdef CONFIG_MIGRATION
784b4e29 911static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
912 struct page *newpage, struct page *page,
913 enum migrate_mode mode)
784b4e29
CM
914{
915 /*
916 * we can't safely write a btree page from here,
917 * we haven't done the locking hook
918 */
919 if (PageDirty(page))
920 return -EAGAIN;
921 /*
922 * Buffers may be managed in a filesystem specific way.
923 * We must have no buffers or drop them.
924 */
925 if (page_has_private(page) &&
926 !try_to_release_page(page, GFP_KERNEL))
927 return -EAGAIN;
a6bc32b8 928 return migrate_page(mapping, newpage, page, mode);
784b4e29 929}
3dd1462e 930#endif
784b4e29 931
0da5468f
CM
932
933static int btree_writepages(struct address_space *mapping,
934 struct writeback_control *wbc)
935{
e2d84521
MX
936 struct btrfs_fs_info *fs_info;
937 int ret;
938
d8d5f3e1 939 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
940
941 if (wbc->for_kupdate)
942 return 0;
943
e2d84521 944 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 945 /* this is a bit racy, but that's ok */
d814a491
EL
946 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
947 BTRFS_DIRTY_METADATA_THRESH,
948 fs_info->dirty_metadata_batch);
e2d84521 949 if (ret < 0)
793955bc 950 return 0;
793955bc 951 }
0b32f4bb 952 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
953}
954
b2950863 955static int btree_readpage(struct file *file, struct page *page)
5f39d397 956{
71ad38b4 957 return extent_read_full_page(page, btree_get_extent, 0);
5f39d397 958}
22b0ebda 959
70dec807 960static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 961{
98509cfc 962 if (PageWriteback(page) || PageDirty(page))
d397712b 963 return 0;
0c4e538b 964
f7a52a40 965 return try_release_extent_buffer(page);
d98237b3
CM
966}
967
d47992f8
LC
968static void btree_invalidatepage(struct page *page, unsigned int offset,
969 unsigned int length)
d98237b3 970{
d1310b2e
CM
971 struct extent_io_tree *tree;
972 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
973 extent_invalidatepage(tree, page, offset);
974 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 975 if (PagePrivate(page)) {
efe120a0
FH
976 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977 "page private not zero on page %llu",
978 (unsigned long long)page_offset(page));
d1b89bc0 979 detach_page_private(page);
9ad6b7bc 980 }
d98237b3
CM
981}
982
0b32f4bb
JB
983static int btree_set_page_dirty(struct page *page)
984{
bb146eb2 985#ifdef DEBUG
0b32f4bb
JB
986 struct extent_buffer *eb;
987
988 BUG_ON(!PagePrivate(page));
989 eb = (struct extent_buffer *)page->private;
990 BUG_ON(!eb);
991 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
992 BUG_ON(!atomic_read(&eb->refs));
993 btrfs_assert_tree_locked(eb);
bb146eb2 994#endif
0b32f4bb
JB
995 return __set_page_dirty_nobuffers(page);
996}
997
7f09410b 998static const struct address_space_operations btree_aops = {
d98237b3 999 .readpage = btree_readpage,
0da5468f 1000 .writepages = btree_writepages,
5f39d397
CM
1001 .releasepage = btree_releasepage,
1002 .invalidatepage = btree_invalidatepage,
5a92bc88 1003#ifdef CONFIG_MIGRATION
784b4e29 1004 .migratepage = btree_migratepage,
5a92bc88 1005#endif
0b32f4bb 1006 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1007};
1008
2ff7e61e 1009void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1010{
5f39d397 1011 struct extent_buffer *buf = NULL;
537f38f0 1012 int ret;
090d1875 1013
2ff7e61e 1014 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1015 if (IS_ERR(buf))
6197d86e 1016 return;
537f38f0 1017
c2ccfbc6 1018 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1019 if (ret < 0)
1020 free_extent_buffer_stale(buf);
1021 else
1022 free_extent_buffer(buf);
090d1875
CM
1023}
1024
2ff7e61e
JM
1025struct extent_buffer *btrfs_find_create_tree_block(
1026 struct btrfs_fs_info *fs_info,
1027 u64 bytenr)
0999df54 1028{
0b246afa
JM
1029 if (btrfs_is_testing(fs_info))
1030 return alloc_test_extent_buffer(fs_info, bytenr);
1031 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1032}
1033
581c1760
QW
1034/*
1035 * Read tree block at logical address @bytenr and do variant basic but critical
1036 * verification.
1037 *
1038 * @parent_transid: expected transid of this tree block, skip check if 0
1039 * @level: expected level, mandatory check
1040 * @first_key: expected key in slot 0, skip check if NULL
1041 */
2ff7e61e 1042struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1043 u64 parent_transid, int level,
1044 struct btrfs_key *first_key)
0999df54
CM
1045{
1046 struct extent_buffer *buf = NULL;
0999df54
CM
1047 int ret;
1048
2ff7e61e 1049 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1050 if (IS_ERR(buf))
1051 return buf;
0999df54 1052
5ab12d1f 1053 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1054 level, first_key);
0f0fe8f7 1055 if (ret) {
537f38f0 1056 free_extent_buffer_stale(buf);
64c043de 1057 return ERR_PTR(ret);
0f0fe8f7 1058 }
5f39d397 1059 return buf;
ce9adaa5 1060
eb60ceac
CM
1061}
1062
6a884d7d 1063void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1064{
6a884d7d 1065 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1066 if (btrfs_header_generation(buf) ==
e2d84521 1067 fs_info->running_transaction->transid) {
b9447ef8 1068 btrfs_assert_tree_locked(buf);
b4ce94de 1069
b9473439 1070 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1071 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1072 -buf->len,
1073 fs_info->dirty_metadata_batch);
ed7b63eb 1074 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1075 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1076 clear_extent_buffer_dirty(buf);
1077 }
925baedd 1078 }
5f39d397
CM
1079}
1080
da17066c 1081static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1082 u64 objectid)
d97e63b6 1083{
7c0260ee 1084 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1085 root->fs_info = fs_info;
cfaa7295 1086 root->node = NULL;
a28ec197 1087 root->commit_root = NULL;
27cdeb70 1088 root->state = 0;
d68fc57b 1089 root->orphan_cleanup_state = 0;
0b86a832 1090
0f7d52f4 1091 root->last_trans = 0;
13a8a7c8 1092 root->highest_objectid = 0;
eb73c1b7 1093 root->nr_delalloc_inodes = 0;
199c2a9c 1094 root->nr_ordered_extents = 0;
6bef4d31 1095 root->inode_tree = RB_ROOT;
16cdcec7 1096 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1097 root->block_rsv = NULL;
0b86a832
CM
1098
1099 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1100 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1101 INIT_LIST_HEAD(&root->delalloc_inodes);
1102 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1103 INIT_LIST_HEAD(&root->ordered_extents);
1104 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1105 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1106 INIT_LIST_HEAD(&root->logged_list[0]);
1107 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1108 spin_lock_init(&root->inode_lock);
eb73c1b7 1109 spin_lock_init(&root->delalloc_lock);
199c2a9c 1110 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1111 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1112 spin_lock_init(&root->log_extents_lock[0]);
1113 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1114 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1115 mutex_init(&root->objectid_mutex);
e02119d5 1116 mutex_init(&root->log_mutex);
31f3d255 1117 mutex_init(&root->ordered_extent_mutex);
573bfb72 1118 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1119 init_waitqueue_head(&root->log_writer_wait);
1120 init_waitqueue_head(&root->log_commit_wait[0]);
1121 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1122 INIT_LIST_HEAD(&root->log_ctxs[0]);
1123 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1124 atomic_set(&root->log_commit[0], 0);
1125 atomic_set(&root->log_commit[1], 0);
1126 atomic_set(&root->log_writers, 0);
2ecb7923 1127 atomic_set(&root->log_batch, 0);
0700cea7 1128 refcount_set(&root->refs, 1);
8ecebf4d 1129 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1130 atomic_set(&root->nr_swapfiles, 0);
7237f183 1131 root->log_transid = 0;
d1433deb 1132 root->log_transid_committed = -1;
257c62e1 1133 root->last_log_commit = 0;
e289f03e 1134 if (!dummy) {
43eb5f29
QW
1135 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1137 extent_io_tree_init(fs_info, &root->log_csum_range,
1138 IO_TREE_LOG_CSUM_RANGE, NULL);
1139 }
017e5369 1140
3768f368
CM
1141 memset(&root->root_key, 0, sizeof(root->root_key));
1142 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1143 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1144 root->root_key.objectid = objectid;
0ee5dc67 1145 root->anon_dev = 0;
8ea05e3a 1146
5f3ab90a 1147 spin_lock_init(&root->root_item_lock);
370a11b8 1148 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1149#ifdef CONFIG_BTRFS_DEBUG
1150 INIT_LIST_HEAD(&root->leak_list);
1151 spin_lock(&fs_info->fs_roots_radix_lock);
1152 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1153 spin_unlock(&fs_info->fs_roots_radix_lock);
1154#endif
3768f368
CM
1155}
1156
74e4d827 1157static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1158 u64 objectid, gfp_t flags)
6f07e42e 1159{
74e4d827 1160 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1161 if (root)
96dfcb46 1162 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1163 return root;
1164}
1165
06ea65a3
JB
1166#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1167/* Should only be used by the testing infrastructure */
da17066c 1168struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1169{
1170 struct btrfs_root *root;
1171
7c0260ee
JM
1172 if (!fs_info)
1173 return ERR_PTR(-EINVAL);
1174
96dfcb46 1175 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1176 if (!root)
1177 return ERR_PTR(-ENOMEM);
da17066c 1178
b9ef22de 1179 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1180 root->alloc_bytenr = 0;
06ea65a3
JB
1181
1182 return root;
1183}
1184#endif
1185
20897f5c 1186struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1187 u64 objectid)
1188{
9b7a2440 1189 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1190 struct extent_buffer *leaf;
1191 struct btrfs_root *tree_root = fs_info->tree_root;
1192 struct btrfs_root *root;
1193 struct btrfs_key key;
b89f6d1f 1194 unsigned int nofs_flag;
20897f5c 1195 int ret = 0;
20897f5c 1196
b89f6d1f
FM
1197 /*
1198 * We're holding a transaction handle, so use a NOFS memory allocation
1199 * context to avoid deadlock if reclaim happens.
1200 */
1201 nofs_flag = memalloc_nofs_save();
96dfcb46 1202 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1203 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1204 if (!root)
1205 return ERR_PTR(-ENOMEM);
1206
20897f5c
AJ
1207 root->root_key.objectid = objectid;
1208 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1209 root->root_key.offset = 0;
1210
4d75f8a9 1211 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1212 if (IS_ERR(leaf)) {
1213 ret = PTR_ERR(leaf);
1dd05682 1214 leaf = NULL;
20897f5c
AJ
1215 goto fail;
1216 }
1217
20897f5c 1218 root->node = leaf;
20897f5c
AJ
1219 btrfs_mark_buffer_dirty(leaf);
1220
1221 root->commit_root = btrfs_root_node(root);
27cdeb70 1222 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1223
1224 root->root_item.flags = 0;
1225 root->root_item.byte_limit = 0;
1226 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1227 btrfs_set_root_generation(&root->root_item, trans->transid);
1228 btrfs_set_root_level(&root->root_item, 0);
1229 btrfs_set_root_refs(&root->root_item, 1);
1230 btrfs_set_root_used(&root->root_item, leaf->len);
1231 btrfs_set_root_last_snapshot(&root->root_item, 0);
1232 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1233 if (is_fstree(objectid))
807fc790
AS
1234 generate_random_guid(root->root_item.uuid);
1235 else
1236 export_guid(root->root_item.uuid, &guid_null);
20897f5c
AJ
1237 root->root_item.drop_level = 0;
1238
1239 key.objectid = objectid;
1240 key.type = BTRFS_ROOT_ITEM_KEY;
1241 key.offset = 0;
1242 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1243 if (ret)
1244 goto fail;
1245
1246 btrfs_tree_unlock(leaf);
1247
1dd05682
TI
1248 return root;
1249
20897f5c 1250fail:
8c38938c 1251 if (leaf)
1dd05682 1252 btrfs_tree_unlock(leaf);
00246528 1253 btrfs_put_root(root);
20897f5c 1254
1dd05682 1255 return ERR_PTR(ret);
20897f5c
AJ
1256}
1257
7237f183
YZ
1258static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1259 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1260{
1261 struct btrfs_root *root;
7237f183 1262 struct extent_buffer *leaf;
e02119d5 1263
96dfcb46 1264 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1265 if (!root)
7237f183 1266 return ERR_PTR(-ENOMEM);
e02119d5 1267
e02119d5
CM
1268 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1269 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1271
7237f183 1272 /*
92a7cc42 1273 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1274 *
92a7cc42
QW
1275 * Log trees are not exposed to user space thus can't be snapshotted,
1276 * and they go away before a real commit is actually done.
1277 *
1278 * They do store pointers to file data extents, and those reference
1279 * counts still get updated (along with back refs to the log tree).
7237f183 1280 */
e02119d5 1281
4d75f8a9
DS
1282 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1283 NULL, 0, 0, 0);
7237f183 1284 if (IS_ERR(leaf)) {
00246528 1285 btrfs_put_root(root);
7237f183
YZ
1286 return ERR_CAST(leaf);
1287 }
e02119d5 1288
7237f183 1289 root->node = leaf;
e02119d5 1290
e02119d5
CM
1291 btrfs_mark_buffer_dirty(root->node);
1292 btrfs_tree_unlock(root->node);
7237f183
YZ
1293 return root;
1294}
1295
1296int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1297 struct btrfs_fs_info *fs_info)
1298{
1299 struct btrfs_root *log_root;
1300
1301 log_root = alloc_log_tree(trans, fs_info);
1302 if (IS_ERR(log_root))
1303 return PTR_ERR(log_root);
1304 WARN_ON(fs_info->log_root_tree);
1305 fs_info->log_root_tree = log_root;
1306 return 0;
1307}
1308
1309int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1310 struct btrfs_root *root)
1311{
0b246afa 1312 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1313 struct btrfs_root *log_root;
1314 struct btrfs_inode_item *inode_item;
1315
0b246afa 1316 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1317 if (IS_ERR(log_root))
1318 return PTR_ERR(log_root);
1319
1320 log_root->last_trans = trans->transid;
1321 log_root->root_key.offset = root->root_key.objectid;
1322
1323 inode_item = &log_root->root_item.inode;
3cae210f
QW
1324 btrfs_set_stack_inode_generation(inode_item, 1);
1325 btrfs_set_stack_inode_size(inode_item, 3);
1326 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1327 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1328 fs_info->nodesize);
3cae210f 1329 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1330
5d4f98a2 1331 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1332
1333 WARN_ON(root->log_root);
1334 root->log_root = log_root;
1335 root->log_transid = 0;
d1433deb 1336 root->log_transid_committed = -1;
257c62e1 1337 root->last_log_commit = 0;
e02119d5
CM
1338 return 0;
1339}
1340
62a2c73e
JB
1341struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1342 struct btrfs_key *key)
e02119d5
CM
1343{
1344 struct btrfs_root *root;
1345 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1346 struct btrfs_path *path;
84234f3a 1347 u64 generation;
cb517eab 1348 int ret;
581c1760 1349 int level;
0f7d52f4 1350
cb517eab
MX
1351 path = btrfs_alloc_path();
1352 if (!path)
0f7d52f4 1353 return ERR_PTR(-ENOMEM);
cb517eab 1354
96dfcb46 1355 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1356 if (!root) {
1357 ret = -ENOMEM;
1358 goto alloc_fail;
0f7d52f4
CM
1359 }
1360
cb517eab
MX
1361 ret = btrfs_find_root(tree_root, key, path,
1362 &root->root_item, &root->root_key);
0f7d52f4 1363 if (ret) {
13a8a7c8
YZ
1364 if (ret > 0)
1365 ret = -ENOENT;
cb517eab 1366 goto find_fail;
0f7d52f4 1367 }
13a8a7c8 1368
84234f3a 1369 generation = btrfs_root_generation(&root->root_item);
581c1760 1370 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1371 root->node = read_tree_block(fs_info,
1372 btrfs_root_bytenr(&root->root_item),
581c1760 1373 generation, level, NULL);
64c043de
LB
1374 if (IS_ERR(root->node)) {
1375 ret = PTR_ERR(root->node);
8c38938c 1376 root->node = NULL;
cb517eab
MX
1377 goto find_fail;
1378 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1379 ret = -EIO;
64c043de 1380 goto find_fail;
416bc658 1381 }
5d4f98a2 1382 root->commit_root = btrfs_root_node(root);
13a8a7c8 1383out:
cb517eab
MX
1384 btrfs_free_path(path);
1385 return root;
1386
cb517eab 1387find_fail:
00246528 1388 btrfs_put_root(root);
cb517eab
MX
1389alloc_fail:
1390 root = ERR_PTR(ret);
1391 goto out;
1392}
1393
a98db0f3 1394static int btrfs_init_fs_root(struct btrfs_root *root)
cb517eab
MX
1395{
1396 int ret;
dcc3eb96 1397 unsigned int nofs_flag;
cb517eab
MX
1398
1399 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1400 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1401 GFP_NOFS);
1402 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1403 ret = -ENOMEM;
1404 goto fail;
1405 }
1406
dcc3eb96
NB
1407 /*
1408 * We might be called under a transaction (e.g. indirect backref
1409 * resolution) which could deadlock if it triggers memory reclaim
1410 */
1411 nofs_flag = memalloc_nofs_save();
1412 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1413 memalloc_nofs_restore(nofs_flag);
1414 if (ret)
8257b2dc 1415 goto fail;
8257b2dc 1416
aeb935a4
QW
1417 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1418 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1419 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1420 btrfs_check_and_init_root_item(&root->root_item);
1421 }
1422
cb517eab 1423 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1424 spin_lock_init(&root->ino_cache_lock);
1425 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1426
1427 ret = get_anon_bdev(&root->anon_dev);
1428 if (ret)
876d2cf1 1429 goto fail;
f32e48e9
CR
1430
1431 mutex_lock(&root->objectid_mutex);
1432 ret = btrfs_find_highest_objectid(root,
1433 &root->highest_objectid);
1434 if (ret) {
1435 mutex_unlock(&root->objectid_mutex);
876d2cf1 1436 goto fail;
f32e48e9
CR
1437 }
1438
1439 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1440
1441 mutex_unlock(&root->objectid_mutex);
1442
cb517eab
MX
1443 return 0;
1444fail:
84db5ccf 1445 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1446 return ret;
1447}
1448
a98db0f3
JB
1449static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1450 u64 root_id)
cb517eab
MX
1451{
1452 struct btrfs_root *root;
1453
1454 spin_lock(&fs_info->fs_roots_radix_lock);
1455 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1456 (unsigned long)root_id);
bc44d7c4 1457 if (root)
00246528 1458 root = btrfs_grab_root(root);
cb517eab
MX
1459 spin_unlock(&fs_info->fs_roots_radix_lock);
1460 return root;
1461}
1462
1463int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1464 struct btrfs_root *root)
1465{
1466 int ret;
1467
e1860a77 1468 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1469 if (ret)
1470 return ret;
1471
1472 spin_lock(&fs_info->fs_roots_radix_lock);
1473 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1474 (unsigned long)root->root_key.objectid,
1475 root);
af01d2e5 1476 if (ret == 0) {
00246528 1477 btrfs_grab_root(root);
27cdeb70 1478 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1479 }
cb517eab
MX
1480 spin_unlock(&fs_info->fs_roots_radix_lock);
1481 radix_tree_preload_end();
1482
1483 return ret;
1484}
1485
bd647ce3
JB
1486void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1487{
1488#ifdef CONFIG_BTRFS_DEBUG
1489 struct btrfs_root *root;
1490
1491 while (!list_empty(&fs_info->allocated_roots)) {
1492 root = list_first_entry(&fs_info->allocated_roots,
1493 struct btrfs_root, leak_list);
1494 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1495 root->root_key.objectid, root->root_key.offset,
1496 refcount_read(&root->refs));
1497 while (refcount_read(&root->refs) > 1)
00246528
JB
1498 btrfs_put_root(root);
1499 btrfs_put_root(root);
bd647ce3
JB
1500 }
1501#endif
1502}
1503
0d4b0463
JB
1504void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1505{
141386e1
JB
1506 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1507 percpu_counter_destroy(&fs_info->delalloc_bytes);
1508 percpu_counter_destroy(&fs_info->dio_bytes);
1509 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1510 btrfs_free_csum_hash(fs_info);
1511 btrfs_free_stripe_hash_table(fs_info);
1512 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1513 kfree(fs_info->balance_ctl);
1514 kfree(fs_info->delayed_root);
00246528
JB
1515 btrfs_put_root(fs_info->extent_root);
1516 btrfs_put_root(fs_info->tree_root);
1517 btrfs_put_root(fs_info->chunk_root);
1518 btrfs_put_root(fs_info->dev_root);
1519 btrfs_put_root(fs_info->csum_root);
1520 btrfs_put_root(fs_info->quota_root);
1521 btrfs_put_root(fs_info->uuid_root);
1522 btrfs_put_root(fs_info->free_space_root);
1523 btrfs_put_root(fs_info->fs_root);
aeb935a4 1524 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1525 btrfs_check_leaked_roots(fs_info);
3fd63727 1526 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1527 kfree(fs_info->super_copy);
1528 kfree(fs_info->super_for_commit);
1529 kvfree(fs_info);
1530}
1531
1532
c00869f1 1533struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
56e9357a 1534 u64 objectid, bool check_ref)
5eda7b5e
CM
1535{
1536 struct btrfs_root *root;
381cf658 1537 struct btrfs_path *path;
1d4c08e0 1538 struct btrfs_key key;
5eda7b5e
CM
1539 int ret;
1540
56e9357a 1541 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
00246528 1542 return btrfs_grab_root(fs_info->tree_root);
56e9357a 1543 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
00246528 1544 return btrfs_grab_root(fs_info->extent_root);
56e9357a 1545 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
00246528 1546 return btrfs_grab_root(fs_info->chunk_root);
56e9357a 1547 if (objectid == BTRFS_DEV_TREE_OBJECTID)
00246528 1548 return btrfs_grab_root(fs_info->dev_root);
56e9357a 1549 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
00246528 1550 return btrfs_grab_root(fs_info->csum_root);
56e9357a 1551 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
00246528 1552 return btrfs_grab_root(fs_info->quota_root) ?
bc44d7c4 1553 fs_info->quota_root : ERR_PTR(-ENOENT);
56e9357a 1554 if (objectid == BTRFS_UUID_TREE_OBJECTID)
00246528 1555 return btrfs_grab_root(fs_info->uuid_root) ?
bc44d7c4 1556 fs_info->uuid_root : ERR_PTR(-ENOENT);
56e9357a 1557 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
00246528 1558 return btrfs_grab_root(fs_info->free_space_root) ?
bc44d7c4 1559 fs_info->free_space_root : ERR_PTR(-ENOENT);
4df27c4d 1560again:
56e9357a 1561 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1562 if (root) {
bc44d7c4 1563 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1564 btrfs_put_root(root);
48475471 1565 return ERR_PTR(-ENOENT);
bc44d7c4 1566 }
5eda7b5e 1567 return root;
48475471 1568 }
5eda7b5e 1569
56e9357a
DS
1570 key.objectid = objectid;
1571 key.type = BTRFS_ROOT_ITEM_KEY;
1572 key.offset = (u64)-1;
1573 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1574 if (IS_ERR(root))
1575 return root;
3394e160 1576
c00869f1 1577 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1578 ret = -ENOENT;
581bb050 1579 goto fail;
35a30d7c 1580 }
581bb050 1581
cb517eab 1582 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1583 if (ret)
1584 goto fail;
3394e160 1585
381cf658
DS
1586 path = btrfs_alloc_path();
1587 if (!path) {
1588 ret = -ENOMEM;
1589 goto fail;
1590 }
1d4c08e0
DS
1591 key.objectid = BTRFS_ORPHAN_OBJECTID;
1592 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1593 key.offset = objectid;
1d4c08e0
DS
1594
1595 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1596 btrfs_free_path(path);
d68fc57b
YZ
1597 if (ret < 0)
1598 goto fail;
1599 if (ret == 0)
27cdeb70 1600 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1601
cb517eab 1602 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1603 if (ret) {
00246528 1604 btrfs_put_root(root);
4785e24f 1605 if (ret == -EEXIST)
4df27c4d 1606 goto again;
4df27c4d 1607 goto fail;
0f7d52f4 1608 }
edbd8d4e 1609 return root;
4df27c4d 1610fail:
8c38938c 1611 btrfs_put_root(root);
4df27c4d 1612 return ERR_PTR(ret);
edbd8d4e
CM
1613}
1614
04160088
CM
1615static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1616{
1617 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1618 int ret = 0;
04160088
CM
1619 struct btrfs_device *device;
1620 struct backing_dev_info *bdi;
b7967db7 1621
1f78160c
XG
1622 rcu_read_lock();
1623 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1624 if (!device->bdev)
1625 continue;
efa7c9f9 1626 bdi = device->bdev->bd_bdi;
ff9ea323 1627 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1628 ret = 1;
1629 break;
1630 }
1631 }
1f78160c 1632 rcu_read_unlock();
04160088
CM
1633 return ret;
1634}
1635
8b712842
CM
1636/*
1637 * called by the kthread helper functions to finally call the bio end_io
1638 * functions. This is where read checksum verification actually happens
1639 */
1640static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1641{
ce9adaa5 1642 struct bio *bio;
97eb6b69 1643 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1644
97eb6b69 1645 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1646 bio = end_io_wq->bio;
ce9adaa5 1647
4e4cbee9 1648 bio->bi_status = end_io_wq->status;
8b712842
CM
1649 bio->bi_private = end_io_wq->private;
1650 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1651 bio_endio(bio);
9be490f1 1652 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1653}
1654
a74a4b97
CM
1655static int cleaner_kthread(void *arg)
1656{
1657 struct btrfs_root *root = arg;
0b246afa 1658 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1659 int again;
a74a4b97 1660
d6fd0ae2 1661 while (1) {
d0278245 1662 again = 0;
a74a4b97 1663
fd340d0f
JB
1664 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1665
d0278245 1666 /* Make the cleaner go to sleep early. */
2ff7e61e 1667 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1668 goto sleep;
1669
90c711ab
ZB
1670 /*
1671 * Do not do anything if we might cause open_ctree() to block
1672 * before we have finished mounting the filesystem.
1673 */
0b246afa 1674 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1675 goto sleep;
1676
0b246afa 1677 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1678 goto sleep;
1679
dc7f370c
MX
1680 /*
1681 * Avoid the problem that we change the status of the fs
1682 * during the above check and trylock.
1683 */
2ff7e61e 1684 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1685 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1686 goto sleep;
76dda93c 1687 }
a74a4b97 1688
2ff7e61e 1689 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1690
d0278245 1691 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1692 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1693
1694 /*
05323cd1
MX
1695 * The defragger has dealt with the R/O remount and umount,
1696 * needn't do anything special here.
d0278245 1697 */
0b246afa 1698 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1699
1700 /*
1701 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1702 * with relocation (btrfs_relocate_chunk) and relocation
1703 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1704 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1705 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1706 * unused block groups.
1707 */
0b246afa 1708 btrfs_delete_unused_bgs(fs_info);
d0278245 1709sleep:
fd340d0f 1710 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1711 if (kthread_should_park())
1712 kthread_parkme();
1713 if (kthread_should_stop())
1714 return 0;
838fe188 1715 if (!again) {
a74a4b97 1716 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1717 schedule();
a74a4b97
CM
1718 __set_current_state(TASK_RUNNING);
1719 }
da288d28 1720 }
a74a4b97
CM
1721}
1722
1723static int transaction_kthread(void *arg)
1724{
1725 struct btrfs_root *root = arg;
0b246afa 1726 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1727 struct btrfs_trans_handle *trans;
1728 struct btrfs_transaction *cur;
8929ecfa 1729 u64 transid;
a944442c 1730 time64_t now;
a74a4b97 1731 unsigned long delay;
914b2007 1732 bool cannot_commit;
a74a4b97
CM
1733
1734 do {
914b2007 1735 cannot_commit = false;
0b246afa
JM
1736 delay = HZ * fs_info->commit_interval;
1737 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1738
0b246afa
JM
1739 spin_lock(&fs_info->trans_lock);
1740 cur = fs_info->running_transaction;
a74a4b97 1741 if (!cur) {
0b246afa 1742 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1743 goto sleep;
1744 }
31153d81 1745
afd48513 1746 now = ktime_get_seconds();
3296bf56 1747 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1748 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1749 (now < cur->start_time ||
0b246afa
JM
1750 now - cur->start_time < fs_info->commit_interval)) {
1751 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1752 delay = HZ * 5;
1753 goto sleep;
1754 }
8929ecfa 1755 transid = cur->transid;
0b246afa 1756 spin_unlock(&fs_info->trans_lock);
56bec294 1757
79787eaa 1758 /* If the file system is aborted, this will always fail. */
354aa0fb 1759 trans = btrfs_attach_transaction(root);
914b2007 1760 if (IS_ERR(trans)) {
354aa0fb
MX
1761 if (PTR_ERR(trans) != -ENOENT)
1762 cannot_commit = true;
79787eaa 1763 goto sleep;
914b2007 1764 }
8929ecfa 1765 if (transid == trans->transid) {
3a45bb20 1766 btrfs_commit_transaction(trans);
8929ecfa 1767 } else {
3a45bb20 1768 btrfs_end_transaction(trans);
8929ecfa 1769 }
a74a4b97 1770sleep:
0b246afa
JM
1771 wake_up_process(fs_info->cleaner_kthread);
1772 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1773
4e121c06 1774 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1775 &fs_info->fs_state)))
2ff7e61e 1776 btrfs_cleanup_transaction(fs_info);
ce63f891 1777 if (!kthread_should_stop() &&
0b246afa 1778 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1779 cannot_commit))
bc5511d0 1780 schedule_timeout_interruptible(delay);
a74a4b97
CM
1781 } while (!kthread_should_stop());
1782 return 0;
1783}
1784
af31f5e5 1785/*
01f0f9da
NB
1786 * This will find the highest generation in the array of root backups. The
1787 * index of the highest array is returned, or -EINVAL if we can't find
1788 * anything.
af31f5e5
CM
1789 *
1790 * We check to make sure the array is valid by comparing the
1791 * generation of the latest root in the array with the generation
1792 * in the super block. If they don't match we pitch it.
1793 */
01f0f9da 1794static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1795{
01f0f9da 1796 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1797 u64 cur;
af31f5e5
CM
1798 struct btrfs_root_backup *root_backup;
1799 int i;
1800
1801 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1802 root_backup = info->super_copy->super_roots + i;
1803 cur = btrfs_backup_tree_root_gen(root_backup);
1804 if (cur == newest_gen)
01f0f9da 1805 return i;
af31f5e5
CM
1806 }
1807
01f0f9da 1808 return -EINVAL;
af31f5e5
CM
1809}
1810
af31f5e5
CM
1811/*
1812 * copy all the root pointers into the super backup array.
1813 * this will bump the backup pointer by one when it is
1814 * done
1815 */
1816static void backup_super_roots(struct btrfs_fs_info *info)
1817{
6ef108dd 1818 const int next_backup = info->backup_root_index;
af31f5e5 1819 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1820
1821 root_backup = info->super_for_commit->super_roots + next_backup;
1822
1823 /*
1824 * make sure all of our padding and empty slots get zero filled
1825 * regardless of which ones we use today
1826 */
1827 memset(root_backup, 0, sizeof(*root_backup));
1828
1829 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1830
1831 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1832 btrfs_set_backup_tree_root_gen(root_backup,
1833 btrfs_header_generation(info->tree_root->node));
1834
1835 btrfs_set_backup_tree_root_level(root_backup,
1836 btrfs_header_level(info->tree_root->node));
1837
1838 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1839 btrfs_set_backup_chunk_root_gen(root_backup,
1840 btrfs_header_generation(info->chunk_root->node));
1841 btrfs_set_backup_chunk_root_level(root_backup,
1842 btrfs_header_level(info->chunk_root->node));
1843
1844 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1845 btrfs_set_backup_extent_root_gen(root_backup,
1846 btrfs_header_generation(info->extent_root->node));
1847 btrfs_set_backup_extent_root_level(root_backup,
1848 btrfs_header_level(info->extent_root->node));
1849
7c7e82a7
CM
1850 /*
1851 * we might commit during log recovery, which happens before we set
1852 * the fs_root. Make sure it is valid before we fill it in.
1853 */
1854 if (info->fs_root && info->fs_root->node) {
1855 btrfs_set_backup_fs_root(root_backup,
1856 info->fs_root->node->start);
1857 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1858 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1859 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1860 btrfs_header_level(info->fs_root->node));
7c7e82a7 1861 }
af31f5e5
CM
1862
1863 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1864 btrfs_set_backup_dev_root_gen(root_backup,
1865 btrfs_header_generation(info->dev_root->node));
1866 btrfs_set_backup_dev_root_level(root_backup,
1867 btrfs_header_level(info->dev_root->node));
1868
1869 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1870 btrfs_set_backup_csum_root_gen(root_backup,
1871 btrfs_header_generation(info->csum_root->node));
1872 btrfs_set_backup_csum_root_level(root_backup,
1873 btrfs_header_level(info->csum_root->node));
1874
1875 btrfs_set_backup_total_bytes(root_backup,
1876 btrfs_super_total_bytes(info->super_copy));
1877 btrfs_set_backup_bytes_used(root_backup,
1878 btrfs_super_bytes_used(info->super_copy));
1879 btrfs_set_backup_num_devices(root_backup,
1880 btrfs_super_num_devices(info->super_copy));
1881
1882 /*
1883 * if we don't copy this out to the super_copy, it won't get remembered
1884 * for the next commit
1885 */
1886 memcpy(&info->super_copy->super_roots,
1887 &info->super_for_commit->super_roots,
1888 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1889}
1890
bd2336b2
NB
1891/*
1892 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1893 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1894 *
1895 * fs_info - filesystem whose backup roots need to be read
1896 * priority - priority of backup root required
1897 *
1898 * Returns backup root index on success and -EINVAL otherwise.
1899 */
1900static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1901{
1902 int backup_index = find_newest_super_backup(fs_info);
1903 struct btrfs_super_block *super = fs_info->super_copy;
1904 struct btrfs_root_backup *root_backup;
1905
1906 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1907 if (priority == 0)
1908 return backup_index;
1909
1910 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1911 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1912 } else {
1913 return -EINVAL;
1914 }
1915
1916 root_backup = super->super_roots + backup_index;
1917
1918 btrfs_set_super_generation(super,
1919 btrfs_backup_tree_root_gen(root_backup));
1920 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1921 btrfs_set_super_root_level(super,
1922 btrfs_backup_tree_root_level(root_backup));
1923 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1924
1925 /*
1926 * Fixme: the total bytes and num_devices need to match or we should
1927 * need a fsck
1928 */
1929 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1930 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1931
1932 return backup_index;
1933}
1934
7abadb64
LB
1935/* helper to cleanup workers */
1936static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1937{
dc6e3209 1938 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1939 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1940 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1941 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1942 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 1943 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1944 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1945 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1946 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1947 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1948 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1949 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1950 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1951 if (fs_info->discard_ctl.discard_workers)
1952 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1953 /*
1954 * Now that all other work queues are destroyed, we can safely destroy
1955 * the queues used for metadata I/O, since tasks from those other work
1956 * queues can do metadata I/O operations.
1957 */
1958 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1959 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1960}
1961
2e9f5954
R
1962static void free_root_extent_buffers(struct btrfs_root *root)
1963{
1964 if (root) {
1965 free_extent_buffer(root->node);
1966 free_extent_buffer(root->commit_root);
1967 root->node = NULL;
1968 root->commit_root = NULL;
1969 }
1970}
1971
af31f5e5 1972/* helper to cleanup tree roots */
4273eaff 1973static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1974{
2e9f5954 1975 free_root_extent_buffers(info->tree_root);
655b09fe 1976
2e9f5954
R
1977 free_root_extent_buffers(info->dev_root);
1978 free_root_extent_buffers(info->extent_root);
1979 free_root_extent_buffers(info->csum_root);
1980 free_root_extent_buffers(info->quota_root);
1981 free_root_extent_buffers(info->uuid_root);
8c38938c 1982 free_root_extent_buffers(info->fs_root);
aeb935a4 1983 free_root_extent_buffers(info->data_reloc_root);
4273eaff 1984 if (free_chunk_root)
2e9f5954 1985 free_root_extent_buffers(info->chunk_root);
70f6d82e 1986 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
1987}
1988
8c38938c
JB
1989void btrfs_put_root(struct btrfs_root *root)
1990{
1991 if (!root)
1992 return;
1993
1994 if (refcount_dec_and_test(&root->refs)) {
1995 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 1996 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
1997 if (root->anon_dev)
1998 free_anon_bdev(root->anon_dev);
1999 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2000 free_root_extent_buffers(root);
8c38938c
JB
2001 kfree(root->free_ino_ctl);
2002 kfree(root->free_ino_pinned);
2003#ifdef CONFIG_BTRFS_DEBUG
2004 spin_lock(&root->fs_info->fs_roots_radix_lock);
2005 list_del_init(&root->leak_list);
2006 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2007#endif
2008 kfree(root);
2009 }
2010}
2011
faa2dbf0 2012void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2013{
2014 int ret;
2015 struct btrfs_root *gang[8];
2016 int i;
2017
2018 while (!list_empty(&fs_info->dead_roots)) {
2019 gang[0] = list_entry(fs_info->dead_roots.next,
2020 struct btrfs_root, root_list);
2021 list_del(&gang[0]->root_list);
2022
8c38938c 2023 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2024 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2025 btrfs_put_root(gang[0]);
171f6537
JB
2026 }
2027
2028 while (1) {
2029 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2030 (void **)gang, 0,
2031 ARRAY_SIZE(gang));
2032 if (!ret)
2033 break;
2034 for (i = 0; i < ret; i++)
cb517eab 2035 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2036 }
2037}
af31f5e5 2038
638aa7ed
ES
2039static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2040{
2041 mutex_init(&fs_info->scrub_lock);
2042 atomic_set(&fs_info->scrubs_running, 0);
2043 atomic_set(&fs_info->scrub_pause_req, 0);
2044 atomic_set(&fs_info->scrubs_paused, 0);
2045 atomic_set(&fs_info->scrub_cancel_req, 0);
2046 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2047 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2048}
2049
779a65a4
ES
2050static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2051{
2052 spin_lock_init(&fs_info->balance_lock);
2053 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2054 atomic_set(&fs_info->balance_pause_req, 0);
2055 atomic_set(&fs_info->balance_cancel_req, 0);
2056 fs_info->balance_ctl = NULL;
2057 init_waitqueue_head(&fs_info->balance_wait_q);
2058}
2059
6bccf3ab 2060static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2061{
2ff7e61e
JM
2062 struct inode *inode = fs_info->btree_inode;
2063
2064 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2065 set_nlink(inode, 1);
f37938e0
ES
2066 /*
2067 * we set the i_size on the btree inode to the max possible int.
2068 * the real end of the address space is determined by all of
2069 * the devices in the system
2070 */
2ff7e61e
JM
2071 inode->i_size = OFFSET_MAX;
2072 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2073
2ff7e61e 2074 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2075 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2076 IO_TREE_INODE_IO, inode);
7b439738 2077 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2078 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2079
2ff7e61e 2080 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2081
5c8fd99f 2082 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2083 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2084 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2085 btrfs_insert_inode_hash(inode);
f37938e0
ES
2086}
2087
ad618368
ES
2088static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2089{
ad618368 2090 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2091 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2092 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2093}
2094
f9e92e40
ES
2095static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2096{
2097 spin_lock_init(&fs_info->qgroup_lock);
2098 mutex_init(&fs_info->qgroup_ioctl_lock);
2099 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2100 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2101 fs_info->qgroup_seq = 1;
f9e92e40 2102 fs_info->qgroup_ulist = NULL;
d2c609b8 2103 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2104 mutex_init(&fs_info->qgroup_rescan_lock);
2105}
2106
2a458198
ES
2107static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2108 struct btrfs_fs_devices *fs_devices)
2109{
f7b885be 2110 u32 max_active = fs_info->thread_pool_size;
6f011058 2111 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2112
2113 fs_info->workers =
cb001095
JM
2114 btrfs_alloc_workqueue(fs_info, "worker",
2115 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2116
2117 fs_info->delalloc_workers =
cb001095
JM
2118 btrfs_alloc_workqueue(fs_info, "delalloc",
2119 flags, max_active, 2);
2a458198
ES
2120
2121 fs_info->flush_workers =
cb001095
JM
2122 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2123 flags, max_active, 0);
2a458198
ES
2124
2125 fs_info->caching_workers =
cb001095 2126 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2127
2a458198 2128 fs_info->fixup_workers =
cb001095 2129 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2130
2131 /*
2132 * endios are largely parallel and should have a very
2133 * low idle thresh
2134 */
2135 fs_info->endio_workers =
cb001095 2136 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2137 fs_info->endio_meta_workers =
cb001095
JM
2138 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2139 max_active, 4);
2a458198 2140 fs_info->endio_meta_write_workers =
cb001095
JM
2141 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2142 max_active, 2);
2a458198 2143 fs_info->endio_raid56_workers =
cb001095
JM
2144 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2145 max_active, 4);
2a458198 2146 fs_info->rmw_workers =
cb001095 2147 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2148 fs_info->endio_write_workers =
cb001095
JM
2149 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2150 max_active, 2);
2a458198 2151 fs_info->endio_freespace_worker =
cb001095
JM
2152 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2153 max_active, 0);
2a458198 2154 fs_info->delayed_workers =
cb001095
JM
2155 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2156 max_active, 0);
2a458198 2157 fs_info->readahead_workers =
cb001095
JM
2158 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2159 max_active, 2);
2a458198 2160 fs_info->qgroup_rescan_workers =
cb001095 2161 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2162 fs_info->discard_ctl.discard_workers =
2163 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2164
2165 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2166 fs_info->flush_workers &&
2a458198
ES
2167 fs_info->endio_workers && fs_info->endio_meta_workers &&
2168 fs_info->endio_meta_write_workers &&
2a458198
ES
2169 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2170 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2171 fs_info->caching_workers && fs_info->readahead_workers &&
2172 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2173 fs_info->qgroup_rescan_workers &&
2174 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2175 return -ENOMEM;
2176 }
2177
2178 return 0;
2179}
2180
6d97c6e3
JT
2181static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2182{
2183 struct crypto_shash *csum_shash;
b4e967be 2184 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2185
b4e967be 2186 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2187
2188 if (IS_ERR(csum_shash)) {
2189 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2190 csum_driver);
6d97c6e3
JT
2191 return PTR_ERR(csum_shash);
2192 }
2193
2194 fs_info->csum_shash = csum_shash;
2195
2196 return 0;
2197}
2198
63443bf5
ES
2199static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2200 struct btrfs_fs_devices *fs_devices)
2201{
2202 int ret;
63443bf5
ES
2203 struct btrfs_root *log_tree_root;
2204 struct btrfs_super_block *disk_super = fs_info->super_copy;
2205 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2206 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2207
2208 if (fs_devices->rw_devices == 0) {
f14d104d 2209 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2210 return -EIO;
2211 }
2212
96dfcb46
JB
2213 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2214 GFP_KERNEL);
63443bf5
ES
2215 if (!log_tree_root)
2216 return -ENOMEM;
2217
2ff7e61e 2218 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2219 fs_info->generation + 1,
2220 level, NULL);
64c043de 2221 if (IS_ERR(log_tree_root->node)) {
f14d104d 2222 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2223 ret = PTR_ERR(log_tree_root->node);
8c38938c 2224 log_tree_root->node = NULL;
00246528 2225 btrfs_put_root(log_tree_root);
0eeff236 2226 return ret;
64c043de 2227 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2228 btrfs_err(fs_info, "failed to read log tree");
00246528 2229 btrfs_put_root(log_tree_root);
63443bf5
ES
2230 return -EIO;
2231 }
2232 /* returns with log_tree_root freed on success */
2233 ret = btrfs_recover_log_trees(log_tree_root);
2234 if (ret) {
0b246afa
JM
2235 btrfs_handle_fs_error(fs_info, ret,
2236 "Failed to recover log tree");
00246528 2237 btrfs_put_root(log_tree_root);
63443bf5
ES
2238 return ret;
2239 }
2240
bc98a42c 2241 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2242 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2243 if (ret)
2244 return ret;
2245 }
2246
2247 return 0;
2248}
2249
6bccf3ab 2250static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2251{
6bccf3ab 2252 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2253 struct btrfs_root *root;
4bbcaa64
ES
2254 struct btrfs_key location;
2255 int ret;
2256
6bccf3ab
JM
2257 BUG_ON(!fs_info->tree_root);
2258
4bbcaa64
ES
2259 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2260 location.type = BTRFS_ROOT_ITEM_KEY;
2261 location.offset = 0;
2262
a4f3d2c4 2263 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2264 if (IS_ERR(root)) {
2265 ret = PTR_ERR(root);
2266 goto out;
2267 }
a4f3d2c4
DS
2268 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2269 fs_info->extent_root = root;
4bbcaa64
ES
2270
2271 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2272 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2273 if (IS_ERR(root)) {
2274 ret = PTR_ERR(root);
2275 goto out;
2276 }
a4f3d2c4
DS
2277 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2278 fs_info->dev_root = root;
4bbcaa64
ES
2279 btrfs_init_devices_late(fs_info);
2280
2281 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2282 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2283 if (IS_ERR(root)) {
2284 ret = PTR_ERR(root);
2285 goto out;
2286 }
a4f3d2c4
DS
2287 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2288 fs_info->csum_root = root;
4bbcaa64 2289
aeb935a4
QW
2290 /*
2291 * This tree can share blocks with some other fs tree during relocation
2292 * and we need a proper setup by btrfs_get_fs_root
2293 */
56e9357a
DS
2294 root = btrfs_get_fs_root(tree_root->fs_info,
2295 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4
QW
2296 if (IS_ERR(root)) {
2297 ret = PTR_ERR(root);
2298 goto out;
2299 }
2300 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2301 fs_info->data_reloc_root = root;
2302
4bbcaa64 2303 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2304 root = btrfs_read_tree_root(tree_root, &location);
2305 if (!IS_ERR(root)) {
2306 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2307 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2308 fs_info->quota_root = root;
4bbcaa64
ES
2309 }
2310
2311 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2312 root = btrfs_read_tree_root(tree_root, &location);
2313 if (IS_ERR(root)) {
2314 ret = PTR_ERR(root);
4bbcaa64 2315 if (ret != -ENOENT)
f50f4353 2316 goto out;
4bbcaa64 2317 } else {
a4f3d2c4
DS
2318 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319 fs_info->uuid_root = root;
4bbcaa64
ES
2320 }
2321
70f6d82e
OS
2322 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2323 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2324 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2325 if (IS_ERR(root)) {
2326 ret = PTR_ERR(root);
2327 goto out;
2328 }
70f6d82e
OS
2329 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2330 fs_info->free_space_root = root;
2331 }
2332
4bbcaa64 2333 return 0;
f50f4353
LB
2334out:
2335 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2336 location.objectid, ret);
2337 return ret;
4bbcaa64
ES
2338}
2339
069ec957
QW
2340/*
2341 * Real super block validation
2342 * NOTE: super csum type and incompat features will not be checked here.
2343 *
2344 * @sb: super block to check
2345 * @mirror_num: the super block number to check its bytenr:
2346 * 0 the primary (1st) sb
2347 * 1, 2 2nd and 3rd backup copy
2348 * -1 skip bytenr check
2349 */
2350static int validate_super(struct btrfs_fs_info *fs_info,
2351 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2352{
21a852b0
QW
2353 u64 nodesize = btrfs_super_nodesize(sb);
2354 u64 sectorsize = btrfs_super_sectorsize(sb);
2355 int ret = 0;
2356
2357 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2358 btrfs_err(fs_info, "no valid FS found");
2359 ret = -EINVAL;
2360 }
2361 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2362 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2363 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2364 ret = -EINVAL;
2365 }
2366 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2367 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2368 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2369 ret = -EINVAL;
2370 }
2371 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2372 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2373 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2374 ret = -EINVAL;
2375 }
2376 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2377 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2378 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2379 ret = -EINVAL;
2380 }
2381
2382 /*
2383 * Check sectorsize and nodesize first, other check will need it.
2384 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2385 */
2386 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2387 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2388 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2389 ret = -EINVAL;
2390 }
2391 /* Only PAGE SIZE is supported yet */
2392 if (sectorsize != PAGE_SIZE) {
2393 btrfs_err(fs_info,
2394 "sectorsize %llu not supported yet, only support %lu",
2395 sectorsize, PAGE_SIZE);
2396 ret = -EINVAL;
2397 }
2398 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2399 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2400 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2401 ret = -EINVAL;
2402 }
2403 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2404 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2405 le32_to_cpu(sb->__unused_leafsize), nodesize);
2406 ret = -EINVAL;
2407 }
2408
2409 /* Root alignment check */
2410 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2411 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2412 btrfs_super_root(sb));
2413 ret = -EINVAL;
2414 }
2415 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2416 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2417 btrfs_super_chunk_root(sb));
2418 ret = -EINVAL;
2419 }
2420 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2421 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2422 btrfs_super_log_root(sb));
2423 ret = -EINVAL;
2424 }
2425
de37aa51 2426 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2427 BTRFS_FSID_SIZE) != 0) {
21a852b0 2428 btrfs_err(fs_info,
7239ff4b 2429 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2430 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2431 ret = -EINVAL;
2432 }
2433
2434 /*
2435 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2436 * done later
2437 */
2438 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2439 btrfs_err(fs_info, "bytes_used is too small %llu",
2440 btrfs_super_bytes_used(sb));
2441 ret = -EINVAL;
2442 }
2443 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2444 btrfs_err(fs_info, "invalid stripesize %u",
2445 btrfs_super_stripesize(sb));
2446 ret = -EINVAL;
2447 }
2448 if (btrfs_super_num_devices(sb) > (1UL << 31))
2449 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2450 btrfs_super_num_devices(sb));
2451 if (btrfs_super_num_devices(sb) == 0) {
2452 btrfs_err(fs_info, "number of devices is 0");
2453 ret = -EINVAL;
2454 }
2455
069ec957
QW
2456 if (mirror_num >= 0 &&
2457 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2458 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2459 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2460 ret = -EINVAL;
2461 }
2462
2463 /*
2464 * Obvious sys_chunk_array corruptions, it must hold at least one key
2465 * and one chunk
2466 */
2467 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2468 btrfs_err(fs_info, "system chunk array too big %u > %u",
2469 btrfs_super_sys_array_size(sb),
2470 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2471 ret = -EINVAL;
2472 }
2473 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2474 + sizeof(struct btrfs_chunk)) {
2475 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2476 btrfs_super_sys_array_size(sb),
2477 sizeof(struct btrfs_disk_key)
2478 + sizeof(struct btrfs_chunk));
2479 ret = -EINVAL;
2480 }
2481
2482 /*
2483 * The generation is a global counter, we'll trust it more than the others
2484 * but it's still possible that it's the one that's wrong.
2485 */
2486 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2487 btrfs_warn(fs_info,
2488 "suspicious: generation < chunk_root_generation: %llu < %llu",
2489 btrfs_super_generation(sb),
2490 btrfs_super_chunk_root_generation(sb));
2491 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2492 && btrfs_super_cache_generation(sb) != (u64)-1)
2493 btrfs_warn(fs_info,
2494 "suspicious: generation < cache_generation: %llu < %llu",
2495 btrfs_super_generation(sb),
2496 btrfs_super_cache_generation(sb));
2497
2498 return ret;
2499}
2500
069ec957
QW
2501/*
2502 * Validation of super block at mount time.
2503 * Some checks already done early at mount time, like csum type and incompat
2504 * flags will be skipped.
2505 */
2506static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2507{
2508 return validate_super(fs_info, fs_info->super_copy, 0);
2509}
2510
75cb857d
QW
2511/*
2512 * Validation of super block at write time.
2513 * Some checks like bytenr check will be skipped as their values will be
2514 * overwritten soon.
2515 * Extra checks like csum type and incompat flags will be done here.
2516 */
2517static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2518 struct btrfs_super_block *sb)
2519{
2520 int ret;
2521
2522 ret = validate_super(fs_info, sb, -1);
2523 if (ret < 0)
2524 goto out;
e7e16f48 2525 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2526 ret = -EUCLEAN;
2527 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2528 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2529 goto out;
2530 }
2531 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2532 ret = -EUCLEAN;
2533 btrfs_err(fs_info,
2534 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2535 btrfs_super_incompat_flags(sb),
2536 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2537 goto out;
2538 }
2539out:
2540 if (ret < 0)
2541 btrfs_err(fs_info,
2542 "super block corruption detected before writing it to disk");
2543 return ret;
2544}
2545
6ef108dd 2546static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2547{
6ef108dd 2548 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2549 struct btrfs_super_block *sb = fs_info->super_copy;
2550 struct btrfs_root *tree_root = fs_info->tree_root;
2551 bool handle_error = false;
2552 int ret = 0;
2553 int i;
2554
2555 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2556 u64 generation;
2557 int level;
2558
2559 if (handle_error) {
2560 if (!IS_ERR(tree_root->node))
2561 free_extent_buffer(tree_root->node);
2562 tree_root->node = NULL;
2563
2564 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2565 break;
2566
2567 free_root_pointers(fs_info, 0);
2568
2569 /*
2570 * Don't use the log in recovery mode, it won't be
2571 * valid
2572 */
2573 btrfs_set_super_log_root(sb, 0);
2574
2575 /* We can't trust the free space cache either */
2576 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2577
2578 ret = read_backup_root(fs_info, i);
6ef108dd 2579 backup_index = ret;
b8522a1e
NB
2580 if (ret < 0)
2581 return ret;
2582 }
2583 generation = btrfs_super_generation(sb);
2584 level = btrfs_super_root_level(sb);
2585 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2586 generation, level, NULL);
2587 if (IS_ERR(tree_root->node) ||
2588 !extent_buffer_uptodate(tree_root->node)) {
2589 handle_error = true;
2590
0465337c 2591 if (IS_ERR(tree_root->node)) {
b8522a1e 2592 ret = PTR_ERR(tree_root->node);
0465337c
JB
2593 tree_root->node = NULL;
2594 } else if (!extent_buffer_uptodate(tree_root->node)) {
b8522a1e 2595 ret = -EUCLEAN;
0465337c 2596 }
b8522a1e
NB
2597
2598 btrfs_warn(fs_info, "failed to read tree root");
2599 continue;
2600 }
2601
2602 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2603 tree_root->commit_root = btrfs_root_node(tree_root);
2604 btrfs_set_root_refs(&tree_root->root_item, 1);
2605
336a0d8d
NB
2606 /*
2607 * No need to hold btrfs_root::objectid_mutex since the fs
2608 * hasn't been fully initialised and we are the only user
2609 */
b8522a1e
NB
2610 ret = btrfs_find_highest_objectid(tree_root,
2611 &tree_root->highest_objectid);
2612 if (ret < 0) {
b8522a1e
NB
2613 handle_error = true;
2614 continue;
2615 }
2616
2617 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2618
2619 ret = btrfs_read_roots(fs_info);
2620 if (ret < 0) {
2621 handle_error = true;
2622 continue;
2623 }
2624
2625 /* All successful */
2626 fs_info->generation = generation;
2627 fs_info->last_trans_committed = generation;
6ef108dd
NB
2628
2629 /* Always begin writing backup roots after the one being used */
2630 if (backup_index < 0) {
2631 fs_info->backup_root_index = 0;
2632 } else {
2633 fs_info->backup_root_index = backup_index + 1;
2634 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2635 }
b8522a1e
NB
2636 break;
2637 }
2638
2639 return ret;
2640}
2641
8260edba 2642void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2643{
76dda93c 2644 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2645 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2646 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2647 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2648 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2649 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2650 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2651 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2652 spin_lock_init(&fs_info->trans_lock);
76dda93c 2653 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2654 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2655 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2656 spin_lock_init(&fs_info->super_lock);
f28491e0 2657 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2658 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2659 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2660 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2661 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2662 mutex_init(&fs_info->reloc_mutex);
573bfb72 2663 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2664 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2665
0b86a832 2666 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2667 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2668 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2669 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2670#ifdef CONFIG_BTRFS_DEBUG
2671 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2672 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2673 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2674#endif
c8bf1b67 2675 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2676 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2677 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2678 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2679 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2680 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2681 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2682 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2683 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2684 BTRFS_BLOCK_RSV_DELREFS);
2685
771ed689 2686 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2687 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2688 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2689 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2690 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2691 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2692 fs_info->metadata_ratio = 0;
4cb5300b 2693 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2694 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2695 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2696 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2697 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2698 /* readahead state */
d0164adc 2699 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2700 spin_lock_init(&fs_info->reada_lock);
fd708b81 2701 btrfs_init_ref_verify(fs_info);
c8b97818 2702
b34b086c
CM
2703 fs_info->thread_pool_size = min_t(unsigned long,
2704 num_online_cpus() + 2, 8);
0afbaf8c 2705
199c2a9c
MX
2706 INIT_LIST_HEAD(&fs_info->ordered_roots);
2707 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2708
638aa7ed 2709 btrfs_init_scrub(fs_info);
21adbd5c
SB
2710#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2711 fs_info->check_integrity_print_mask = 0;
2712#endif
779a65a4 2713 btrfs_init_balance(fs_info);
21c7e756 2714 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2715
0f9dd46c 2716 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2717 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2718 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2719
fe119a6e
NB
2720 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2721 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2722 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2723
5a3f23d5 2724 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2725 mutex_init(&fs_info->tree_log_mutex);
925baedd 2726 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2727 mutex_init(&fs_info->transaction_kthread_mutex);
2728 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2729 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2730 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2731 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2732 init_rwsem(&fs_info->subvol_sem);
803b2f54 2733 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2734
ad618368 2735 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2736 btrfs_init_qgroup(fs_info);
b0643e59 2737 btrfs_discard_init(fs_info);
416ac51d 2738
fa9c0d79
CM
2739 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2740 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2741
e6dcd2dc 2742 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2743 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2744 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2745 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2746 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2747
da17066c
JM
2748 /* Usable values until the real ones are cached from the superblock */
2749 fs_info->nodesize = 4096;
2750 fs_info->sectorsize = 4096;
2751 fs_info->stripesize = 4096;
2752
eede2bf3
OS
2753 spin_lock_init(&fs_info->swapfile_pins_lock);
2754 fs_info->swapfile_pins = RB_ROOT;
2755
9e967495 2756 fs_info->send_in_progress = 0;
8260edba
JB
2757}
2758
2759static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2760{
2761 int ret;
2762
2763 fs_info->sb = sb;
2764 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2765 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2766
ae18c37a
JB
2767 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2768 if (ret)
c75e8394 2769 return ret;
ae18c37a
JB
2770
2771 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2772 if (ret)
c75e8394 2773 return ret;
ae18c37a
JB
2774
2775 fs_info->dirty_metadata_batch = PAGE_SIZE *
2776 (1 + ilog2(nr_cpu_ids));
2777
2778 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2779 if (ret)
c75e8394 2780 return ret;
ae18c37a
JB
2781
2782 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2783 GFP_KERNEL);
2784 if (ret)
c75e8394 2785 return ret;
ae18c37a
JB
2786
2787 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2788 GFP_KERNEL);
c75e8394
JB
2789 if (!fs_info->delayed_root)
2790 return -ENOMEM;
ae18c37a
JB
2791 btrfs_init_delayed_root(fs_info->delayed_root);
2792
c75e8394 2793 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2794}
2795
97f4dd09
NB
2796static int btrfs_uuid_rescan_kthread(void *data)
2797{
2798 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2799 int ret;
2800
2801 /*
2802 * 1st step is to iterate through the existing UUID tree and
2803 * to delete all entries that contain outdated data.
2804 * 2nd step is to add all missing entries to the UUID tree.
2805 */
2806 ret = btrfs_uuid_tree_iterate(fs_info);
2807 if (ret < 0) {
c94bec2c
JB
2808 if (ret != -EINTR)
2809 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2810 ret);
97f4dd09
NB
2811 up(&fs_info->uuid_tree_rescan_sem);
2812 return ret;
2813 }
2814 return btrfs_uuid_scan_kthread(data);
2815}
2816
2817static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2818{
2819 struct task_struct *task;
2820
2821 down(&fs_info->uuid_tree_rescan_sem);
2822 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2823 if (IS_ERR(task)) {
2824 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2825 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2826 up(&fs_info->uuid_tree_rescan_sem);
2827 return PTR_ERR(task);
2828 }
2829
2830 return 0;
2831}
2832
ae18c37a
JB
2833int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2834 char *options)
2835{
2836 u32 sectorsize;
2837 u32 nodesize;
2838 u32 stripesize;
2839 u64 generation;
2840 u64 features;
2841 u16 csum_type;
ae18c37a
JB
2842 struct btrfs_super_block *disk_super;
2843 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2844 struct btrfs_root *tree_root;
2845 struct btrfs_root *chunk_root;
2846 int ret;
2847 int err = -EINVAL;
2848 int clear_free_space_tree = 0;
2849 int level;
2850
8260edba 2851 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2852 if (ret) {
83c8266a 2853 err = ret;
ae18c37a 2854 goto fail;
53b381b3
DW
2855 }
2856
ae18c37a
JB
2857 /* These need to be init'ed before we start creating inodes and such. */
2858 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2859 GFP_KERNEL);
2860 fs_info->tree_root = tree_root;
2861 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2862 GFP_KERNEL);
2863 fs_info->chunk_root = chunk_root;
2864 if (!tree_root || !chunk_root) {
2865 err = -ENOMEM;
c75e8394 2866 goto fail;
ae18c37a
JB
2867 }
2868
2869 fs_info->btree_inode = new_inode(sb);
2870 if (!fs_info->btree_inode) {
2871 err = -ENOMEM;
c75e8394 2872 goto fail;
ae18c37a
JB
2873 }
2874 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2875 btrfs_init_btree_inode(fs_info);
2876
3c4bb26b 2877 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2878
2879 /*
2880 * Read super block and check the signature bytes only
2881 */
8f32380d
JT
2882 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2883 if (IS_ERR(disk_super)) {
2884 err = PTR_ERR(disk_super);
16cdcec7 2885 goto fail_alloc;
20b45077 2886 }
39279cc3 2887
8dc3f22c
JT
2888 /*
2889 * Verify the type first, if that or the the checksum value are
2890 * corrupted, we'll find out
2891 */
8f32380d 2892 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2893 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2894 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2895 csum_type);
8dc3f22c 2896 err = -EINVAL;
8f32380d 2897 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2898 goto fail_alloc;
2899 }
2900
6d97c6e3
JT
2901 ret = btrfs_init_csum_hash(fs_info, csum_type);
2902 if (ret) {
2903 err = ret;
8f32380d 2904 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2905 goto fail_alloc;
2906 }
2907
1104a885
DS
2908 /*
2909 * We want to check superblock checksum, the type is stored inside.
2910 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2911 */
8f32380d 2912 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2913 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2914 err = -EINVAL;
8f32380d 2915 btrfs_release_disk_super(disk_super);
141386e1 2916 goto fail_alloc;
1104a885
DS
2917 }
2918
2919 /*
2920 * super_copy is zeroed at allocation time and we never touch the
2921 * following bytes up to INFO_SIZE, the checksum is calculated from
2922 * the whole block of INFO_SIZE
2923 */
8f32380d
JT
2924 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2925 btrfs_release_disk_super(disk_super);
5f39d397 2926
fbc6feae
NB
2927 disk_super = fs_info->super_copy;
2928
de37aa51
NB
2929 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2930 BTRFS_FSID_SIZE));
2931
7239ff4b 2932 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2933 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2934 fs_info->super_copy->metadata_uuid,
2935 BTRFS_FSID_SIZE));
7239ff4b 2936 }
0b86a832 2937
fbc6feae
NB
2938 features = btrfs_super_flags(disk_super);
2939 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2940 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2941 btrfs_set_super_flags(disk_super, features);
2942 btrfs_info(fs_info,
2943 "found metadata UUID change in progress flag, clearing");
2944 }
2945
2946 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2947 sizeof(*fs_info->super_for_commit));
de37aa51 2948
069ec957 2949 ret = btrfs_validate_mount_super(fs_info);
1104a885 2950 if (ret) {
05135f59 2951 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2952 err = -EINVAL;
141386e1 2953 goto fail_alloc;
1104a885
DS
2954 }
2955
0f7d52f4 2956 if (!btrfs_super_root(disk_super))
141386e1 2957 goto fail_alloc;
0f7d52f4 2958
acce952b 2959 /* check FS state, whether FS is broken. */
87533c47
MX
2960 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2961 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2962
75e7cb7f
LB
2963 /*
2964 * In the long term, we'll store the compression type in the super
2965 * block, and it'll be used for per file compression control.
2966 */
2967 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2968
2ff7e61e 2969 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2970 if (ret) {
2971 err = ret;
141386e1 2972 goto fail_alloc;
2b82032c 2973 }
dfe25020 2974
f2b636e8
JB
2975 features = btrfs_super_incompat_flags(disk_super) &
2976 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2977 if (features) {
05135f59
DS
2978 btrfs_err(fs_info,
2979 "cannot mount because of unsupported optional features (%llx)",
2980 features);
f2b636e8 2981 err = -EINVAL;
141386e1 2982 goto fail_alloc;
f2b636e8
JB
2983 }
2984
5d4f98a2 2985 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2986 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2987 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2988 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2989 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2990 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2991
3173a18f 2992 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2993 btrfs_info(fs_info, "has skinny extents");
3173a18f 2994
727011e0
CM
2995 /*
2996 * flag our filesystem as having big metadata blocks if
2997 * they are bigger than the page size
2998 */
09cbfeaf 2999 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3000 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3001 btrfs_info(fs_info,
3002 "flagging fs with big metadata feature");
727011e0
CM
3003 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3004 }
3005
bc3f116f 3006 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3007 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3008 stripesize = sectorsize;
707e8a07 3009 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3010 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3011
da17066c
JM
3012 /* Cache block sizes */
3013 fs_info->nodesize = nodesize;
3014 fs_info->sectorsize = sectorsize;
3015 fs_info->stripesize = stripesize;
3016
bc3f116f
CM
3017 /*
3018 * mixed block groups end up with duplicate but slightly offset
3019 * extent buffers for the same range. It leads to corruptions
3020 */
3021 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3022 (sectorsize != nodesize)) {
05135f59
DS
3023 btrfs_err(fs_info,
3024"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3025 nodesize, sectorsize);
141386e1 3026 goto fail_alloc;
bc3f116f
CM
3027 }
3028
ceda0864
MX
3029 /*
3030 * Needn't use the lock because there is no other task which will
3031 * update the flag.
3032 */
a6fa6fae 3033 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3034
f2b636e8
JB
3035 features = btrfs_super_compat_ro_flags(disk_super) &
3036 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3037 if (!sb_rdonly(sb) && features) {
05135f59
DS
3038 btrfs_err(fs_info,
3039 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3040 features);
f2b636e8 3041 err = -EINVAL;
141386e1 3042 goto fail_alloc;
f2b636e8 3043 }
61d92c32 3044
2a458198
ES
3045 ret = btrfs_init_workqueues(fs_info, fs_devices);
3046 if (ret) {
3047 err = ret;
0dc3b84a
JB
3048 goto fail_sb_buffer;
3049 }
4543df7e 3050
9e11ceee
JK
3051 sb->s_bdi->congested_fn = btrfs_congested_fn;
3052 sb->s_bdi->congested_data = fs_info;
3053 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3054 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3055 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3056 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3057
a061fc8d
CM
3058 sb->s_blocksize = sectorsize;
3059 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3060 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3061
925baedd 3062 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3063 ret = btrfs_read_sys_array(fs_info);
925baedd 3064 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3065 if (ret) {
05135f59 3066 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3067 goto fail_sb_buffer;
84eed90f 3068 }
0b86a832 3069
84234f3a 3070 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3071 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3072
2ff7e61e 3073 chunk_root->node = read_tree_block(fs_info,
0b86a832 3074 btrfs_super_chunk_root(disk_super),
581c1760 3075 generation, level, NULL);
64c043de
LB
3076 if (IS_ERR(chunk_root->node) ||
3077 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3078 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3079 if (!IS_ERR(chunk_root->node))
3080 free_extent_buffer(chunk_root->node);
95ab1f64 3081 chunk_root->node = NULL;
af31f5e5 3082 goto fail_tree_roots;
83121942 3083 }
5d4f98a2
YZ
3084 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3085 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3086
e17cade2 3087 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3088 offsetof(struct btrfs_header, chunk_tree_uuid),
3089 BTRFS_UUID_SIZE);
e17cade2 3090
5b4aacef 3091 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3092 if (ret) {
05135f59 3093 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3094 goto fail_tree_roots;
2b82032c 3095 }
0b86a832 3096
8dabb742 3097 /*
9b99b115
AJ
3098 * Keep the devid that is marked to be the target device for the
3099 * device replace procedure
8dabb742 3100 */
9b99b115 3101 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3102
a6b0d5c8 3103 if (!fs_devices->latest_bdev) {
05135f59 3104 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3105 goto fail_tree_roots;
3106 }
3107
b8522a1e 3108 ret = init_tree_roots(fs_info);
4bbcaa64 3109 if (ret)
b8522a1e 3110 goto fail_tree_roots;
8929ecfa 3111
75ec1db8
JB
3112 /*
3113 * If we have a uuid root and we're not being told to rescan we need to
3114 * check the generation here so we can set the
3115 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3116 * transaction during a balance or the log replay without updating the
3117 * uuid generation, and then if we crash we would rescan the uuid tree,
3118 * even though it was perfectly fine.
3119 */
3120 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3121 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3122 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3123
cf90d884
QW
3124 ret = btrfs_verify_dev_extents(fs_info);
3125 if (ret) {
3126 btrfs_err(fs_info,
3127 "failed to verify dev extents against chunks: %d",
3128 ret);
3129 goto fail_block_groups;
3130 }
68310a5e
ID
3131 ret = btrfs_recover_balance(fs_info);
3132 if (ret) {
05135f59 3133 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3134 goto fail_block_groups;
3135 }
3136
733f4fbb
SB
3137 ret = btrfs_init_dev_stats(fs_info);
3138 if (ret) {
05135f59 3139 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3140 goto fail_block_groups;
3141 }
3142
8dabb742
SB
3143 ret = btrfs_init_dev_replace(fs_info);
3144 if (ret) {
05135f59 3145 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3146 goto fail_block_groups;
3147 }
3148
9b99b115 3149 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3150
c6761a9e 3151 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3152 if (ret) {
05135f59
DS
3153 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3154 ret);
b7c35e81
AJ
3155 goto fail_block_groups;
3156 }
3157
96f3136e 3158 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3159 if (ret) {
05135f59 3160 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3161 goto fail_fsdev_sysfs;
c59021f8 3162 }
3163
c59021f8 3164 ret = btrfs_init_space_info(fs_info);
3165 if (ret) {
05135f59 3166 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3167 goto fail_sysfs;
c59021f8 3168 }
3169
5b4aacef 3170 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3171 if (ret) {
05135f59 3172 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3173 goto fail_sysfs;
1b1d1f66 3174 }
4330e183 3175
6528b99d 3176 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3177 btrfs_warn(fs_info,
52042d8e 3178 "writable mount is not allowed due to too many missing devices");
2365dd3c 3179 goto fail_sysfs;
292fd7fc 3180 }
9078a3e1 3181
a74a4b97
CM
3182 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3183 "btrfs-cleaner");
57506d50 3184 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3185 goto fail_sysfs;
a74a4b97
CM
3186
3187 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3188 tree_root,
3189 "btrfs-transaction");
57506d50 3190 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3191 goto fail_cleaner;
a74a4b97 3192
583b7231 3193 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3194 !fs_info->fs_devices->rotating) {
583b7231 3195 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3196 }
3197
572d9ab7 3198 /*
01327610 3199 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3200 * not have to wait for transaction commit
3201 */
3202 btrfs_apply_pending_changes(fs_info);
3818aea2 3203
21adbd5c 3204#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3205 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3206 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3207 btrfs_test_opt(fs_info,
21adbd5c
SB
3208 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3209 1 : 0,
3210 fs_info->check_integrity_print_mask);
3211 if (ret)
05135f59
DS
3212 btrfs_warn(fs_info,
3213 "failed to initialize integrity check module: %d",
3214 ret);
21adbd5c
SB
3215 }
3216#endif
bcef60f2
AJ
3217 ret = btrfs_read_qgroup_config(fs_info);
3218 if (ret)
3219 goto fail_trans_kthread;
21adbd5c 3220
fd708b81
JB
3221 if (btrfs_build_ref_tree(fs_info))
3222 btrfs_err(fs_info, "couldn't build ref tree");
3223
96da0919
QW
3224 /* do not make disk changes in broken FS or nologreplay is given */
3225 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3226 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3227 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3228 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3229 if (ret) {
63443bf5 3230 err = ret;
28c16cbb 3231 goto fail_qgroup;
79787eaa 3232 }
e02119d5 3233 }
1a40e23b 3234
6bccf3ab 3235 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3236 if (ret)
28c16cbb 3237 goto fail_qgroup;
76dda93c 3238
bc98a42c 3239 if (!sb_rdonly(sb)) {
d68fc57b 3240 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3241 if (ret)
28c16cbb 3242 goto fail_qgroup;
90c711ab
ZB
3243
3244 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3245 ret = btrfs_recover_relocation(tree_root);
90c711ab 3246 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3247 if (ret < 0) {
05135f59
DS
3248 btrfs_warn(fs_info, "failed to recover relocation: %d",
3249 ret);
d7ce5843 3250 err = -EINVAL;
bcef60f2 3251 goto fail_qgroup;
d7ce5843 3252 }
7c2ca468 3253 }
1a40e23b 3254
56e9357a 3255 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3256 if (IS_ERR(fs_info->fs_root)) {
3257 err = PTR_ERR(fs_info->fs_root);
f50f4353 3258 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3259 fs_info->fs_root = NULL;
bcef60f2 3260 goto fail_qgroup;
3140c9a3 3261 }
c289811c 3262
bc98a42c 3263 if (sb_rdonly(sb))
2b6ba629 3264 return 0;
59641015 3265
f8d468a1
OS
3266 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3267 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3268 clear_free_space_tree = 1;
3269 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3270 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3271 btrfs_warn(fs_info, "free space tree is invalid");
3272 clear_free_space_tree = 1;
3273 }
3274
3275 if (clear_free_space_tree) {
f8d468a1
OS
3276 btrfs_info(fs_info, "clearing free space tree");
3277 ret = btrfs_clear_free_space_tree(fs_info);
3278 if (ret) {
3279 btrfs_warn(fs_info,
3280 "failed to clear free space tree: %d", ret);
6bccf3ab 3281 close_ctree(fs_info);
f8d468a1
OS
3282 return ret;
3283 }
3284 }
3285
0b246afa 3286 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3287 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3288 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3289 ret = btrfs_create_free_space_tree(fs_info);
3290 if (ret) {
05135f59
DS
3291 btrfs_warn(fs_info,
3292 "failed to create free space tree: %d", ret);
6bccf3ab 3293 close_ctree(fs_info);
511711af
CM
3294 return ret;
3295 }
3296 }
3297
2b6ba629
ID
3298 down_read(&fs_info->cleanup_work_sem);
3299 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3300 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3301 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3302 close_ctree(fs_info);
2b6ba629
ID
3303 return ret;
3304 }
3305 up_read(&fs_info->cleanup_work_sem);
59641015 3306
2b6ba629
ID
3307 ret = btrfs_resume_balance_async(fs_info);
3308 if (ret) {
05135f59 3309 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3310 close_ctree(fs_info);
2b6ba629 3311 return ret;
e3acc2a6
JB
3312 }
3313
8dabb742
SB
3314 ret = btrfs_resume_dev_replace_async(fs_info);
3315 if (ret) {
05135f59 3316 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3317 close_ctree(fs_info);
8dabb742
SB
3318 return ret;
3319 }
3320
b382a324 3321 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3322 btrfs_discard_resume(fs_info);
b382a324 3323
4bbcaa64 3324 if (!fs_info->uuid_root) {
05135f59 3325 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3326 ret = btrfs_create_uuid_tree(fs_info);
3327 if (ret) {
05135f59
DS
3328 btrfs_warn(fs_info,
3329 "failed to create the UUID tree: %d", ret);
6bccf3ab 3330 close_ctree(fs_info);
f7a81ea4
SB
3331 return ret;
3332 }
0b246afa 3333 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3334 fs_info->generation !=
3335 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3336 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3337 ret = btrfs_check_uuid_tree(fs_info);
3338 if (ret) {
05135f59
DS
3339 btrfs_warn(fs_info,
3340 "failed to check the UUID tree: %d", ret);
6bccf3ab 3341 close_ctree(fs_info);
70f80175
SB
3342 return ret;
3343 }
f7a81ea4 3344 }
afcdd129 3345 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3346
8dcddfa0
QW
3347 /*
3348 * backuproot only affect mount behavior, and if open_ctree succeeded,
3349 * no need to keep the flag
3350 */
3351 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3352
ad2b2c80 3353 return 0;
39279cc3 3354
bcef60f2
AJ
3355fail_qgroup:
3356 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3357fail_trans_kthread:
3358 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3359 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3360 btrfs_free_fs_roots(fs_info);
3f157a2f 3361fail_cleaner:
a74a4b97 3362 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3363
3364 /*
3365 * make sure we're done with the btree inode before we stop our
3366 * kthreads
3367 */
3368 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3369
2365dd3c 3370fail_sysfs:
6618a59b 3371 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3372
b7c35e81
AJ
3373fail_fsdev_sysfs:
3374 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3375
1b1d1f66 3376fail_block_groups:
54067ae9 3377 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3378
3379fail_tree_roots:
4273eaff 3380 free_root_pointers(fs_info, true);
2b8195bb 3381 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3382
39279cc3 3383fail_sb_buffer:
7abadb64 3384 btrfs_stop_all_workers(fs_info);
5cdd7db6 3385 btrfs_free_block_groups(fs_info);
16cdcec7 3386fail_alloc:
586e46e2
ID
3387 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3388
4543df7e 3389 iput(fs_info->btree_inode);
7e662854 3390fail:
586e46e2 3391 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3392 return err;
eb60ceac 3393}
663faf9f 3394ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3395
314b6dd0 3396static void btrfs_end_super_write(struct bio *bio)
f2984462 3397{
314b6dd0
JT
3398 struct btrfs_device *device = bio->bi_private;
3399 struct bio_vec *bvec;
3400 struct bvec_iter_all iter_all;
3401 struct page *page;
3402
3403 bio_for_each_segment_all(bvec, bio, iter_all) {
3404 page = bvec->bv_page;
3405
3406 if (bio->bi_status) {
3407 btrfs_warn_rl_in_rcu(device->fs_info,
3408 "lost page write due to IO error on %s (%d)",
3409 rcu_str_deref(device->name),
3410 blk_status_to_errno(bio->bi_status));
3411 ClearPageUptodate(page);
3412 SetPageError(page);
3413 btrfs_dev_stat_inc_and_print(device,
3414 BTRFS_DEV_STAT_WRITE_ERRS);
3415 } else {
3416 SetPageUptodate(page);
3417 }
3418
3419 put_page(page);
3420 unlock_page(page);
f2984462 3421 }
314b6dd0
JT
3422
3423 bio_put(bio);
f2984462
CM
3424}
3425
8f32380d
JT
3426struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3427 int copy_num)
29c36d72 3428{
29c36d72 3429 struct btrfs_super_block *super;
8f32380d 3430 struct page *page;
29c36d72 3431 u64 bytenr;
8f32380d 3432 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3433
3434 bytenr = btrfs_sb_offset(copy_num);
3435 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3436 return ERR_PTR(-EINVAL);
29c36d72 3437
8f32380d
JT
3438 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3439 if (IS_ERR(page))
3440 return ERR_CAST(page);
29c36d72 3441
8f32380d 3442 super = page_address(page);
29c36d72
AJ
3443 if (btrfs_super_bytenr(super) != bytenr ||
3444 btrfs_super_magic(super) != BTRFS_MAGIC) {
8f32380d
JT
3445 btrfs_release_disk_super(super);
3446 return ERR_PTR(-EINVAL);
29c36d72
AJ
3447 }
3448
8f32380d 3449 return super;
29c36d72
AJ
3450}
3451
3452
8f32380d 3453struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3454{
8f32380d 3455 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3456 int i;
3457 u64 transid = 0;
a512bbf8
YZ
3458
3459 /* we would like to check all the supers, but that would make
3460 * a btrfs mount succeed after a mkfs from a different FS.
3461 * So, we need to add a special mount option to scan for
3462 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3463 */
3464 for (i = 0; i < 1; i++) {
8f32380d
JT
3465 super = btrfs_read_dev_one_super(bdev, i);
3466 if (IS_ERR(super))
a512bbf8
YZ
3467 continue;
3468
a512bbf8 3469 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3470 if (latest)
3471 btrfs_release_disk_super(super);
3472
3473 latest = super;
a512bbf8 3474 transid = btrfs_super_generation(super);
a512bbf8
YZ
3475 }
3476 }
92fc03fb 3477
8f32380d 3478 return super;
a512bbf8
YZ
3479}
3480
4eedeb75 3481/*
abbb3b8e 3482 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3483 * pages we use for writing are locked.
4eedeb75 3484 *
abbb3b8e
DS
3485 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3486 * the expected device size at commit time. Note that max_mirrors must be
3487 * same for write and wait phases.
4eedeb75 3488 *
314b6dd0 3489 * Return number of errors when page is not found or submission fails.
4eedeb75 3490 */
a512bbf8 3491static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3492 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3493{
d5178578 3494 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3495 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3496 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3497 int i;
a512bbf8 3498 int errors = 0;
a512bbf8 3499 u64 bytenr;
a512bbf8
YZ
3500
3501 if (max_mirrors == 0)
3502 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3503
d5178578
JT
3504 shash->tfm = fs_info->csum_shash;
3505
a512bbf8 3506 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3507 struct page *page;
3508 struct bio *bio;
3509 struct btrfs_super_block *disk_super;
3510
a512bbf8 3511 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3512 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3513 device->commit_total_bytes)
a512bbf8
YZ
3514 break;
3515
abbb3b8e 3516 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3517
fd08001f
EB
3518 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3519 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3520 sb->csum);
4eedeb75 3521
314b6dd0
JT
3522 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3523 GFP_NOFS);
3524 if (!page) {
abbb3b8e 3525 btrfs_err(device->fs_info,
314b6dd0 3526 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3527 bytenr);
3528 errors++;
4eedeb75 3529 continue;
abbb3b8e 3530 }
634554dc 3531
314b6dd0
JT
3532 /* Bump the refcount for wait_dev_supers() */
3533 get_page(page);
a512bbf8 3534
314b6dd0
JT
3535 disk_super = page_address(page);
3536 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3537
314b6dd0
JT
3538 /*
3539 * Directly use bios here instead of relying on the page cache
3540 * to do I/O, so we don't lose the ability to do integrity
3541 * checking.
3542 */
3543 bio = bio_alloc(GFP_NOFS, 1);
3544 bio_set_dev(bio, device->bdev);
3545 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3546 bio->bi_private = device;
3547 bio->bi_end_io = btrfs_end_super_write;
3548 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3549 offset_in_page(bytenr));
a512bbf8 3550
387125fc 3551 /*
314b6dd0
JT
3552 * We FUA only the first super block. The others we allow to
3553 * go down lazy and there's a short window where the on-disk
3554 * copies might still contain the older version.
387125fc 3555 */
314b6dd0 3556 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3557 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3558 bio->bi_opf |= REQ_FUA;
3559
3560 btrfsic_submit_bio(bio);
a512bbf8
YZ
3561 }
3562 return errors < i ? 0 : -1;
3563}
3564
abbb3b8e
DS
3565/*
3566 * Wait for write completion of superblocks done by write_dev_supers,
3567 * @max_mirrors same for write and wait phases.
3568 *
314b6dd0 3569 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3570 * date.
3571 */
3572static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3573{
abbb3b8e
DS
3574 int i;
3575 int errors = 0;
b6a535fa 3576 bool primary_failed = false;
abbb3b8e
DS
3577 u64 bytenr;
3578
3579 if (max_mirrors == 0)
3580 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3581
3582 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3583 struct page *page;
3584
abbb3b8e
DS
3585 bytenr = btrfs_sb_offset(i);
3586 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3587 device->commit_total_bytes)
3588 break;
3589
314b6dd0
JT
3590 page = find_get_page(device->bdev->bd_inode->i_mapping,
3591 bytenr >> PAGE_SHIFT);
3592 if (!page) {
abbb3b8e 3593 errors++;
b6a535fa
HM
3594 if (i == 0)
3595 primary_failed = true;
abbb3b8e
DS
3596 continue;
3597 }
314b6dd0
JT
3598 /* Page is submitted locked and unlocked once the IO completes */
3599 wait_on_page_locked(page);
3600 if (PageError(page)) {
abbb3b8e 3601 errors++;
b6a535fa
HM
3602 if (i == 0)
3603 primary_failed = true;
3604 }
abbb3b8e 3605
314b6dd0
JT
3606 /* Drop our reference */
3607 put_page(page);
abbb3b8e 3608
314b6dd0
JT
3609 /* Drop the reference from the writing run */
3610 put_page(page);
abbb3b8e
DS
3611 }
3612
b6a535fa
HM
3613 /* log error, force error return */
3614 if (primary_failed) {
3615 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3616 device->devid);
3617 return -1;
3618 }
3619
abbb3b8e
DS
3620 return errors < i ? 0 : -1;
3621}
3622
387125fc
CM
3623/*
3624 * endio for the write_dev_flush, this will wake anyone waiting
3625 * for the barrier when it is done
3626 */
4246a0b6 3627static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3628{
e0ae9994 3629 complete(bio->bi_private);
387125fc
CM
3630}
3631
3632/*
4fc6441a
AJ
3633 * Submit a flush request to the device if it supports it. Error handling is
3634 * done in the waiting counterpart.
387125fc 3635 */
4fc6441a 3636static void write_dev_flush(struct btrfs_device *device)
387125fc 3637{
c2a9c7ab 3638 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3639 struct bio *bio = device->flush_bio;
387125fc 3640
c2a9c7ab 3641 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3642 return;
387125fc 3643
e0ae9994 3644 bio_reset(bio);
387125fc 3645 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3646 bio_set_dev(bio, device->bdev);
8d910125 3647 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3648 init_completion(&device->flush_wait);
3649 bio->bi_private = &device->flush_wait;
387125fc 3650
43a01111 3651 btrfsic_submit_bio(bio);
1c3063b6 3652 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3653}
387125fc 3654
4fc6441a
AJ
3655/*
3656 * If the flush bio has been submitted by write_dev_flush, wait for it.
3657 */
8c27cb35 3658static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3659{
4fc6441a 3660 struct bio *bio = device->flush_bio;
387125fc 3661
1c3063b6 3662 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3663 return BLK_STS_OK;
387125fc 3664
1c3063b6 3665 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3666 wait_for_completion_io(&device->flush_wait);
387125fc 3667
8c27cb35 3668 return bio->bi_status;
387125fc 3669}
387125fc 3670
d10b82fe 3671static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3672{
6528b99d 3673 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3674 return -EIO;
387125fc
CM
3675 return 0;
3676}
3677
3678/*
3679 * send an empty flush down to each device in parallel,
3680 * then wait for them
3681 */
3682static int barrier_all_devices(struct btrfs_fs_info *info)
3683{
3684 struct list_head *head;
3685 struct btrfs_device *dev;
5af3e8cc 3686 int errors_wait = 0;
4e4cbee9 3687 blk_status_t ret;
387125fc 3688
1538e6c5 3689 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3690 /* send down all the barriers */
3691 head = &info->fs_devices->devices;
1538e6c5 3692 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3693 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3694 continue;
cea7c8bf 3695 if (!dev->bdev)
387125fc 3696 continue;
e12c9621 3697 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3698 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3699 continue;
3700
4fc6441a 3701 write_dev_flush(dev);
58efbc9f 3702 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3703 }
3704
3705 /* wait for all the barriers */
1538e6c5 3706 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3707 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3708 continue;
387125fc 3709 if (!dev->bdev) {
5af3e8cc 3710 errors_wait++;
387125fc
CM
3711 continue;
3712 }
e12c9621 3713 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3714 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3715 continue;
3716
4fc6441a 3717 ret = wait_dev_flush(dev);
401b41e5
AJ
3718 if (ret) {
3719 dev->last_flush_error = ret;
66b4993e
DS
3720 btrfs_dev_stat_inc_and_print(dev,
3721 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3722 errors_wait++;
401b41e5
AJ
3723 }
3724 }
3725
cea7c8bf 3726 if (errors_wait) {
401b41e5
AJ
3727 /*
3728 * At some point we need the status of all disks
3729 * to arrive at the volume status. So error checking
3730 * is being pushed to a separate loop.
3731 */
d10b82fe 3732 return check_barrier_error(info);
387125fc 3733 }
387125fc
CM
3734 return 0;
3735}
3736
943c6e99
ZL
3737int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3738{
8789f4fe
ZL
3739 int raid_type;
3740 int min_tolerated = INT_MAX;
943c6e99 3741
8789f4fe
ZL
3742 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3743 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3744 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3745 btrfs_raid_array[BTRFS_RAID_SINGLE].
3746 tolerated_failures);
943c6e99 3747
8789f4fe
ZL
3748 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3749 if (raid_type == BTRFS_RAID_SINGLE)
3750 continue;
41a6e891 3751 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3752 continue;
8c3e3582 3753 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3754 btrfs_raid_array[raid_type].
3755 tolerated_failures);
3756 }
943c6e99 3757
8789f4fe 3758 if (min_tolerated == INT_MAX) {
ab8d0fc4 3759 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3760 min_tolerated = 0;
3761 }
3762
3763 return min_tolerated;
943c6e99
ZL
3764}
3765
eece6a9c 3766int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3767{
e5e9a520 3768 struct list_head *head;
f2984462 3769 struct btrfs_device *dev;
a061fc8d 3770 struct btrfs_super_block *sb;
f2984462 3771 struct btrfs_dev_item *dev_item;
f2984462
CM
3772 int ret;
3773 int do_barriers;
a236aed1
CM
3774 int max_errors;
3775 int total_errors = 0;
a061fc8d 3776 u64 flags;
f2984462 3777
0b246afa 3778 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3779
3780 /*
3781 * max_mirrors == 0 indicates we're from commit_transaction,
3782 * not from fsync where the tree roots in fs_info have not
3783 * been consistent on disk.
3784 */
3785 if (max_mirrors == 0)
3786 backup_super_roots(fs_info);
f2984462 3787
0b246afa 3788 sb = fs_info->super_for_commit;
a061fc8d 3789 dev_item = &sb->dev_item;
e5e9a520 3790
0b246afa
JM
3791 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3792 head = &fs_info->fs_devices->devices;
3793 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3794
5af3e8cc 3795 if (do_barriers) {
0b246afa 3796 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3797 if (ret) {
3798 mutex_unlock(
0b246afa
JM
3799 &fs_info->fs_devices->device_list_mutex);
3800 btrfs_handle_fs_error(fs_info, ret,
3801 "errors while submitting device barriers.");
5af3e8cc
SB
3802 return ret;
3803 }
3804 }
387125fc 3805
1538e6c5 3806 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3807 if (!dev->bdev) {
3808 total_errors++;
3809 continue;
3810 }
e12c9621 3811 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3812 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3813 continue;
3814
2b82032c 3815 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3816 btrfs_set_stack_device_type(dev_item, dev->type);
3817 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3818 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3819 dev->commit_total_bytes);
ce7213c7
MX
3820 btrfs_set_stack_device_bytes_used(dev_item,
3821 dev->commit_bytes_used);
a061fc8d
CM
3822 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3823 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3824 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3825 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3826 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3827 BTRFS_FSID_SIZE);
a512bbf8 3828
a061fc8d
CM
3829 flags = btrfs_super_flags(sb);
3830 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3831
75cb857d
QW
3832 ret = btrfs_validate_write_super(fs_info, sb);
3833 if (ret < 0) {
3834 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3835 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3836 "unexpected superblock corruption detected");
3837 return -EUCLEAN;
3838 }
3839
abbb3b8e 3840 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3841 if (ret)
3842 total_errors++;
f2984462 3843 }
a236aed1 3844 if (total_errors > max_errors) {
0b246afa
JM
3845 btrfs_err(fs_info, "%d errors while writing supers",
3846 total_errors);
3847 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3848
9d565ba4 3849 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3850 btrfs_handle_fs_error(fs_info, -EIO,
3851 "%d errors while writing supers",
3852 total_errors);
9d565ba4 3853 return -EIO;
a236aed1 3854 }
f2984462 3855
a512bbf8 3856 total_errors = 0;
1538e6c5 3857 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3858 if (!dev->bdev)
3859 continue;
e12c9621 3860 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3861 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3862 continue;
3863
abbb3b8e 3864 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3865 if (ret)
3866 total_errors++;
f2984462 3867 }
0b246afa 3868 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3869 if (total_errors > max_errors) {
0b246afa
JM
3870 btrfs_handle_fs_error(fs_info, -EIO,
3871 "%d errors while writing supers",
3872 total_errors);
79787eaa 3873 return -EIO;
a236aed1 3874 }
f2984462
CM
3875 return 0;
3876}
3877
cb517eab
MX
3878/* Drop a fs root from the radix tree and free it. */
3879void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3880 struct btrfs_root *root)
2619ba1f 3881{
4785e24f
JB
3882 bool drop_ref = false;
3883
4df27c4d 3884 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3885 radix_tree_delete(&fs_info->fs_roots_radix,
3886 (unsigned long)root->root_key.objectid);
af01d2e5 3887 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3888 drop_ref = true;
4df27c4d 3889 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3890
1c1ea4f7 3891 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3892 ASSERT(root->log_root == NULL);
1c1ea4f7 3893 if (root->reloc_root) {
00246528 3894 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3895 root->reloc_root = NULL;
3896 }
3897 }
3321719e 3898
faa2dbf0
JB
3899 if (root->free_ino_pinned)
3900 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3901 if (root->free_ino_ctl)
3902 __btrfs_remove_free_space_cache(root->free_ino_ctl);
0e996e7f
JB
3903 if (root->ino_cache_inode) {
3904 iput(root->ino_cache_inode);
3905 root->ino_cache_inode = NULL;
3906 }
4785e24f
JB
3907 if (drop_ref)
3908 btrfs_put_root(root);
2619ba1f
CM
3909}
3910
c146afad 3911int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3912{
c146afad
YZ
3913 u64 root_objectid = 0;
3914 struct btrfs_root *gang[8];
65d33fd7
QW
3915 int i = 0;
3916 int err = 0;
3917 unsigned int ret = 0;
e089f05c 3918
c146afad 3919 while (1) {
efc34534 3920 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
3921 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3922 (void **)gang, root_objectid,
3923 ARRAY_SIZE(gang));
65d33fd7 3924 if (!ret) {
efc34534 3925 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 3926 break;
65d33fd7 3927 }
5d4f98a2 3928 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3929
c146afad 3930 for (i = 0; i < ret; i++) {
65d33fd7
QW
3931 /* Avoid to grab roots in dead_roots */
3932 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3933 gang[i] = NULL;
3934 continue;
3935 }
3936 /* grab all the search result for later use */
00246528 3937 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 3938 }
efc34534 3939 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 3940
65d33fd7
QW
3941 for (i = 0; i < ret; i++) {
3942 if (!gang[i])
3943 continue;
c146afad 3944 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3945 err = btrfs_orphan_cleanup(gang[i]);
3946 if (err)
65d33fd7 3947 break;
00246528 3948 btrfs_put_root(gang[i]);
c146afad
YZ
3949 }
3950 root_objectid++;
3951 }
65d33fd7
QW
3952
3953 /* release the uncleaned roots due to error */
3954 for (; i < ret; i++) {
3955 if (gang[i])
00246528 3956 btrfs_put_root(gang[i]);
65d33fd7
QW
3957 }
3958 return err;
c146afad 3959}
a2135011 3960
6bccf3ab 3961int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3962{
6bccf3ab 3963 struct btrfs_root *root = fs_info->tree_root;
c146afad 3964 struct btrfs_trans_handle *trans;
a74a4b97 3965
0b246afa 3966 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3967 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3968 mutex_unlock(&fs_info->cleaner_mutex);
3969 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3970
3971 /* wait until ongoing cleanup work done */
0b246afa
JM
3972 down_write(&fs_info->cleanup_work_sem);
3973 up_write(&fs_info->cleanup_work_sem);
c71bf099 3974
7a7eaa40 3975 trans = btrfs_join_transaction(root);
3612b495
TI
3976 if (IS_ERR(trans))
3977 return PTR_ERR(trans);
3a45bb20 3978 return btrfs_commit_transaction(trans);
c146afad
YZ
3979}
3980
b105e927 3981void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3982{
c146afad
YZ
3983 int ret;
3984
afcdd129 3985 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3986 /*
3987 * We don't want the cleaner to start new transactions, add more delayed
3988 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3989 * because that frees the task_struct, and the transaction kthread might
3990 * still try to wake up the cleaner.
3991 */
3992 kthread_park(fs_info->cleaner_kthread);
c146afad 3993
7343dd61 3994 /* wait for the qgroup rescan worker to stop */
d06f23d6 3995 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3996
803b2f54
SB
3997 /* wait for the uuid_scan task to finish */
3998 down(&fs_info->uuid_tree_rescan_sem);
3999 /* avoid complains from lockdep et al., set sem back to initial state */
4000 up(&fs_info->uuid_tree_rescan_sem);
4001
837d5b6e 4002 /* pause restriper - we want to resume on mount */
aa1b8cd4 4003 btrfs_pause_balance(fs_info);
837d5b6e 4004
8dabb742
SB
4005 btrfs_dev_replace_suspend_for_unmount(fs_info);
4006
aa1b8cd4 4007 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4008
4009 /* wait for any defraggers to finish */
4010 wait_event(fs_info->transaction_wait,
4011 (atomic_read(&fs_info->defrag_running) == 0));
4012
4013 /* clear out the rbtree of defraggable inodes */
26176e7c 4014 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4015
21c7e756
MX
4016 cancel_work_sync(&fs_info->async_reclaim_work);
4017
b0643e59
DZ
4018 /* Cancel or finish ongoing discard work */
4019 btrfs_discard_cleanup(fs_info);
4020
bc98a42c 4021 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4022 /*
d6fd0ae2
OS
4023 * The cleaner kthread is stopped, so do one final pass over
4024 * unused block groups.
e44163e1 4025 */
0b246afa 4026 btrfs_delete_unused_bgs(fs_info);
e44163e1 4027
f0cc2cd7
FM
4028 /*
4029 * There might be existing delayed inode workers still running
4030 * and holding an empty delayed inode item. We must wait for
4031 * them to complete first because they can create a transaction.
4032 * This happens when someone calls btrfs_balance_delayed_items()
4033 * and then a transaction commit runs the same delayed nodes
4034 * before any delayed worker has done something with the nodes.
4035 * We must wait for any worker here and not at transaction
4036 * commit time since that could cause a deadlock.
4037 * This is a very rare case.
4038 */
4039 btrfs_flush_workqueue(fs_info->delayed_workers);
4040
6bccf3ab 4041 ret = btrfs_commit_super(fs_info);
acce952b 4042 if (ret)
04892340 4043 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4044 }
4045
af722733
LB
4046 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4047 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4048 btrfs_error_commit_super(fs_info);
0f7d52f4 4049
e3029d9f
AV
4050 kthread_stop(fs_info->transaction_kthread);
4051 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4052
e187831e 4053 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4054 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4055
5958253c
QW
4056 if (btrfs_check_quota_leak(fs_info)) {
4057 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4058 btrfs_err(fs_info, "qgroup reserved space leaked");
4059 }
4060
04892340 4061 btrfs_free_qgroup_config(fs_info);
fe816d0f 4062 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4063
963d678b 4064 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4065 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4066 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4067 }
bcc63abb 4068
4297ff84
JB
4069 if (percpu_counter_sum(&fs_info->dio_bytes))
4070 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4071 percpu_counter_sum(&fs_info->dio_bytes));
4072
6618a59b 4073 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4074 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4075
1a4319cc
LB
4076 btrfs_put_block_group_cache(fs_info);
4077
de348ee0
WS
4078 /*
4079 * we must make sure there is not any read request to
4080 * submit after we stopping all workers.
4081 */
4082 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4083 btrfs_stop_all_workers(fs_info);
4084
afcdd129 4085 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4086 free_root_pointers(fs_info, true);
8c38938c 4087 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4088
4e19443d
JB
4089 /*
4090 * We must free the block groups after dropping the fs_roots as we could
4091 * have had an IO error and have left over tree log blocks that aren't
4092 * cleaned up until the fs roots are freed. This makes the block group
4093 * accounting appear to be wrong because there's pending reserved bytes,
4094 * so make sure we do the block group cleanup afterwards.
4095 */
4096 btrfs_free_block_groups(fs_info);
4097
13e6c37b 4098 iput(fs_info->btree_inode);
d6bfde87 4099
21adbd5c 4100#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4101 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4102 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4103#endif
4104
0b86a832 4105 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4106 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4107}
4108
b9fab919
CM
4109int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4110 int atomic)
5f39d397 4111{
1259ab75 4112 int ret;
727011e0 4113 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4114
0b32f4bb 4115 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4116 if (!ret)
4117 return ret;
4118
4119 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4120 parent_transid, atomic);
4121 if (ret == -EAGAIN)
4122 return ret;
1259ab75 4123 return !ret;
5f39d397
CM
4124}
4125
5f39d397
CM
4126void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4127{
0b246afa 4128 struct btrfs_fs_info *fs_info;
06ea65a3 4129 struct btrfs_root *root;
5f39d397 4130 u64 transid = btrfs_header_generation(buf);
b9473439 4131 int was_dirty;
b4ce94de 4132
06ea65a3
JB
4133#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4134 /*
4135 * This is a fast path so only do this check if we have sanity tests
52042d8e 4136 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4137 * outside of the sanity tests.
4138 */
b0132a3b 4139 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4140 return;
4141#endif
4142 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4143 fs_info = root->fs_info;
b9447ef8 4144 btrfs_assert_tree_locked(buf);
0b246afa 4145 if (transid != fs_info->generation)
5d163e0e 4146 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4147 buf->start, transid, fs_info->generation);
0b32f4bb 4148 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4149 if (!was_dirty)
104b4e51
NB
4150 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4151 buf->len,
4152 fs_info->dirty_metadata_batch);
1f21ef0a 4153#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4154 /*
4155 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4156 * but item data not updated.
4157 * So here we should only check item pointers, not item data.
4158 */
4159 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4160 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4161 btrfs_print_leaf(buf);
1f21ef0a
FM
4162 ASSERT(0);
4163 }
4164#endif
eb60ceac
CM
4165}
4166
2ff7e61e 4167static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4168 int flush_delayed)
16cdcec7
MX
4169{
4170 /*
4171 * looks as though older kernels can get into trouble with
4172 * this code, they end up stuck in balance_dirty_pages forever
4173 */
e2d84521 4174 int ret;
16cdcec7
MX
4175
4176 if (current->flags & PF_MEMALLOC)
4177 return;
4178
b53d3f5d 4179 if (flush_delayed)
2ff7e61e 4180 btrfs_balance_delayed_items(fs_info);
16cdcec7 4181
d814a491
EL
4182 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4183 BTRFS_DIRTY_METADATA_THRESH,
4184 fs_info->dirty_metadata_batch);
e2d84521 4185 if (ret > 0) {
0b246afa 4186 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4187 }
16cdcec7
MX
4188}
4189
2ff7e61e 4190void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4191{
2ff7e61e 4192 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4193}
585ad2c3 4194
2ff7e61e 4195void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4196{
2ff7e61e 4197 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4198}
6b80053d 4199
581c1760
QW
4200int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4201 struct btrfs_key *first_key)
6b80053d 4202{
5ab12d1f 4203 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4204 level, first_key);
6b80053d 4205}
0da5468f 4206
2ff7e61e 4207static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4208{
fe816d0f
NB
4209 /* cleanup FS via transaction */
4210 btrfs_cleanup_transaction(fs_info);
4211
0b246afa 4212 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4213 btrfs_run_delayed_iputs(fs_info);
0b246afa 4214 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4215
0b246afa
JM
4216 down_write(&fs_info->cleanup_work_sem);
4217 up_write(&fs_info->cleanup_work_sem);
acce952b 4218}
4219
ef67963d
JB
4220static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4221{
4222 struct btrfs_root *gang[8];
4223 u64 root_objectid = 0;
4224 int ret;
4225
4226 spin_lock(&fs_info->fs_roots_radix_lock);
4227 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4228 (void **)gang, root_objectid,
4229 ARRAY_SIZE(gang))) != 0) {
4230 int i;
4231
4232 for (i = 0; i < ret; i++)
4233 gang[i] = btrfs_grab_root(gang[i]);
4234 spin_unlock(&fs_info->fs_roots_radix_lock);
4235
4236 for (i = 0; i < ret; i++) {
4237 if (!gang[i])
4238 continue;
4239 root_objectid = gang[i]->root_key.objectid;
4240 btrfs_free_log(NULL, gang[i]);
4241 btrfs_put_root(gang[i]);
4242 }
4243 root_objectid++;
4244 spin_lock(&fs_info->fs_roots_radix_lock);
4245 }
4246 spin_unlock(&fs_info->fs_roots_radix_lock);
4247 btrfs_free_log_root_tree(NULL, fs_info);
4248}
4249
143bede5 4250static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4251{
acce952b 4252 struct btrfs_ordered_extent *ordered;
acce952b 4253
199c2a9c 4254 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4255 /*
4256 * This will just short circuit the ordered completion stuff which will
4257 * make sure the ordered extent gets properly cleaned up.
4258 */
199c2a9c 4259 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4260 root_extent_list)
4261 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4262 spin_unlock(&root->ordered_extent_lock);
4263}
4264
4265static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4266{
4267 struct btrfs_root *root;
4268 struct list_head splice;
4269
4270 INIT_LIST_HEAD(&splice);
4271
4272 spin_lock(&fs_info->ordered_root_lock);
4273 list_splice_init(&fs_info->ordered_roots, &splice);
4274 while (!list_empty(&splice)) {
4275 root = list_first_entry(&splice, struct btrfs_root,
4276 ordered_root);
1de2cfde
JB
4277 list_move_tail(&root->ordered_root,
4278 &fs_info->ordered_roots);
199c2a9c 4279
2a85d9ca 4280 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4281 btrfs_destroy_ordered_extents(root);
4282
2a85d9ca
LB
4283 cond_resched();
4284 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4285 }
4286 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4287
4288 /*
4289 * We need this here because if we've been flipped read-only we won't
4290 * get sync() from the umount, so we need to make sure any ordered
4291 * extents that haven't had their dirty pages IO start writeout yet
4292 * actually get run and error out properly.
4293 */
4294 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4295}
4296
35a3621b 4297static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4298 struct btrfs_fs_info *fs_info)
acce952b 4299{
4300 struct rb_node *node;
4301 struct btrfs_delayed_ref_root *delayed_refs;
4302 struct btrfs_delayed_ref_node *ref;
4303 int ret = 0;
4304
4305 delayed_refs = &trans->delayed_refs;
4306
4307 spin_lock(&delayed_refs->lock);
d7df2c79 4308 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4309 spin_unlock(&delayed_refs->lock);
b79ce3dd 4310 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4311 return ret;
4312 }
4313
5c9d028b 4314 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4315 struct btrfs_delayed_ref_head *head;
0e0adbcf 4316 struct rb_node *n;
e78417d1 4317 bool pin_bytes = false;
acce952b 4318
d7df2c79
JB
4319 head = rb_entry(node, struct btrfs_delayed_ref_head,
4320 href_node);
3069bd26 4321 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4322 continue;
3069bd26 4323
d7df2c79 4324 spin_lock(&head->lock);
e3d03965 4325 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4326 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4327 ref_node);
d7df2c79 4328 ref->in_tree = 0;
e3d03965 4329 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4330 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4331 if (!list_empty(&ref->add_list))
4332 list_del(&ref->add_list);
d7df2c79
JB
4333 atomic_dec(&delayed_refs->num_entries);
4334 btrfs_put_delayed_ref(ref);
e78417d1 4335 }
d7df2c79
JB
4336 if (head->must_insert_reserved)
4337 pin_bytes = true;
4338 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4339 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4340 spin_unlock(&head->lock);
4341 spin_unlock(&delayed_refs->lock);
4342 mutex_unlock(&head->mutex);
acce952b 4343
f603bb94
NB
4344 if (pin_bytes) {
4345 struct btrfs_block_group *cache;
4346
4347 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4348 BUG_ON(!cache);
4349
4350 spin_lock(&cache->space_info->lock);
4351 spin_lock(&cache->lock);
4352 cache->pinned += head->num_bytes;
4353 btrfs_space_info_update_bytes_pinned(fs_info,
4354 cache->space_info, head->num_bytes);
4355 cache->reserved -= head->num_bytes;
4356 cache->space_info->bytes_reserved -= head->num_bytes;
4357 spin_unlock(&cache->lock);
4358 spin_unlock(&cache->space_info->lock);
4359 percpu_counter_add_batch(
4360 &cache->space_info->total_bytes_pinned,
4361 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4362
4363 btrfs_put_block_group(cache);
4364
4365 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4366 head->bytenr + head->num_bytes - 1);
4367 }
31890da0 4368 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4369 btrfs_put_delayed_ref_head(head);
acce952b 4370 cond_resched();
4371 spin_lock(&delayed_refs->lock);
4372 }
81f7eb00 4373 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4374
4375 spin_unlock(&delayed_refs->lock);
4376
4377 return ret;
4378}
4379
143bede5 4380static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4381{
4382 struct btrfs_inode *btrfs_inode;
4383 struct list_head splice;
4384
4385 INIT_LIST_HEAD(&splice);
4386
eb73c1b7
MX
4387 spin_lock(&root->delalloc_lock);
4388 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4389
4390 while (!list_empty(&splice)) {
fe816d0f 4391 struct inode *inode = NULL;
eb73c1b7
MX
4392 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4393 delalloc_inodes);
fe816d0f 4394 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4395 spin_unlock(&root->delalloc_lock);
acce952b 4396
fe816d0f
NB
4397 /*
4398 * Make sure we get a live inode and that it'll not disappear
4399 * meanwhile.
4400 */
4401 inode = igrab(&btrfs_inode->vfs_inode);
4402 if (inode) {
4403 invalidate_inode_pages2(inode->i_mapping);
4404 iput(inode);
4405 }
eb73c1b7 4406 spin_lock(&root->delalloc_lock);
acce952b 4407 }
eb73c1b7
MX
4408 spin_unlock(&root->delalloc_lock);
4409}
4410
4411static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4412{
4413 struct btrfs_root *root;
4414 struct list_head splice;
4415
4416 INIT_LIST_HEAD(&splice);
4417
4418 spin_lock(&fs_info->delalloc_root_lock);
4419 list_splice_init(&fs_info->delalloc_roots, &splice);
4420 while (!list_empty(&splice)) {
4421 root = list_first_entry(&splice, struct btrfs_root,
4422 delalloc_root);
00246528 4423 root = btrfs_grab_root(root);
eb73c1b7
MX
4424 BUG_ON(!root);
4425 spin_unlock(&fs_info->delalloc_root_lock);
4426
4427 btrfs_destroy_delalloc_inodes(root);
00246528 4428 btrfs_put_root(root);
eb73c1b7
MX
4429
4430 spin_lock(&fs_info->delalloc_root_lock);
4431 }
4432 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4433}
4434
2ff7e61e 4435static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4436 struct extent_io_tree *dirty_pages,
4437 int mark)
4438{
4439 int ret;
acce952b 4440 struct extent_buffer *eb;
4441 u64 start = 0;
4442 u64 end;
acce952b 4443
4444 while (1) {
4445 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4446 mark, NULL);
acce952b 4447 if (ret)
4448 break;
4449
91166212 4450 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4451 while (start <= end) {
0b246afa
JM
4452 eb = find_extent_buffer(fs_info, start);
4453 start += fs_info->nodesize;
fd8b2b61 4454 if (!eb)
acce952b 4455 continue;
fd8b2b61 4456 wait_on_extent_buffer_writeback(eb);
acce952b 4457
fd8b2b61
JB
4458 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4459 &eb->bflags))
4460 clear_extent_buffer_dirty(eb);
4461 free_extent_buffer_stale(eb);
acce952b 4462 }
4463 }
4464
4465 return ret;
4466}
4467
2ff7e61e 4468static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4469 struct extent_io_tree *unpin)
acce952b 4470{
acce952b 4471 u64 start;
4472 u64 end;
4473 int ret;
4474
acce952b 4475 while (1) {
0e6ec385
FM
4476 struct extent_state *cached_state = NULL;
4477
fcd5e742
LF
4478 /*
4479 * The btrfs_finish_extent_commit() may get the same range as
4480 * ours between find_first_extent_bit and clear_extent_dirty.
4481 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4482 * the same extent range.
4483 */
4484 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4485 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4486 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4487 if (ret) {
4488 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4489 break;
fcd5e742 4490 }
acce952b 4491
0e6ec385
FM
4492 clear_extent_dirty(unpin, start, end, &cached_state);
4493 free_extent_state(cached_state);
2ff7e61e 4494 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4495 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4496 cond_resched();
4497 }
4498
4499 return 0;
4500}
4501
32da5386 4502static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4503{
4504 struct inode *inode;
4505
4506 inode = cache->io_ctl.inode;
4507 if (inode) {
4508 invalidate_inode_pages2(inode->i_mapping);
4509 BTRFS_I(inode)->generation = 0;
4510 cache->io_ctl.inode = NULL;
4511 iput(inode);
4512 }
4513 btrfs_put_block_group(cache);
4514}
4515
4516void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4517 struct btrfs_fs_info *fs_info)
c79a1751 4518{
32da5386 4519 struct btrfs_block_group *cache;
c79a1751
LB
4520
4521 spin_lock(&cur_trans->dirty_bgs_lock);
4522 while (!list_empty(&cur_trans->dirty_bgs)) {
4523 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4524 struct btrfs_block_group,
c79a1751 4525 dirty_list);
c79a1751
LB
4526
4527 if (!list_empty(&cache->io_list)) {
4528 spin_unlock(&cur_trans->dirty_bgs_lock);
4529 list_del_init(&cache->io_list);
4530 btrfs_cleanup_bg_io(cache);
4531 spin_lock(&cur_trans->dirty_bgs_lock);
4532 }
4533
4534 list_del_init(&cache->dirty_list);
4535 spin_lock(&cache->lock);
4536 cache->disk_cache_state = BTRFS_DC_ERROR;
4537 spin_unlock(&cache->lock);
4538
4539 spin_unlock(&cur_trans->dirty_bgs_lock);
4540 btrfs_put_block_group(cache);
ba2c4d4e 4541 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4542 spin_lock(&cur_trans->dirty_bgs_lock);
4543 }
4544 spin_unlock(&cur_trans->dirty_bgs_lock);
4545
45ae2c18
NB
4546 /*
4547 * Refer to the definition of io_bgs member for details why it's safe
4548 * to use it without any locking
4549 */
c79a1751
LB
4550 while (!list_empty(&cur_trans->io_bgs)) {
4551 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4552 struct btrfs_block_group,
c79a1751 4553 io_list);
c79a1751
LB
4554
4555 list_del_init(&cache->io_list);
4556 spin_lock(&cache->lock);
4557 cache->disk_cache_state = BTRFS_DC_ERROR;
4558 spin_unlock(&cache->lock);
4559 btrfs_cleanup_bg_io(cache);
4560 }
4561}
4562
49b25e05 4563void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4564 struct btrfs_fs_info *fs_info)
49b25e05 4565{
bbbf7243
NB
4566 struct btrfs_device *dev, *tmp;
4567
2ff7e61e 4568 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4569 ASSERT(list_empty(&cur_trans->dirty_bgs));
4570 ASSERT(list_empty(&cur_trans->io_bgs));
4571
bbbf7243
NB
4572 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4573 post_commit_list) {
4574 list_del_init(&dev->post_commit_list);
4575 }
4576
2ff7e61e 4577 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4578
4a9d8bde 4579 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4580 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4581
4a9d8bde 4582 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4583 wake_up(&fs_info->transaction_wait);
49b25e05 4584
ccdf9b30 4585 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4586
2ff7e61e 4587 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4588 EXTENT_DIRTY);
fe119a6e 4589 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4590
4a9d8bde
MX
4591 cur_trans->state =TRANS_STATE_COMPLETED;
4592 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4593}
4594
2ff7e61e 4595static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4596{
4597 struct btrfs_transaction *t;
acce952b 4598
0b246afa 4599 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4600
0b246afa
JM
4601 spin_lock(&fs_info->trans_lock);
4602 while (!list_empty(&fs_info->trans_list)) {
4603 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4604 struct btrfs_transaction, list);
4605 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4606 refcount_inc(&t->use_count);
0b246afa 4607 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4608 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4609 btrfs_put_transaction(t);
0b246afa 4610 spin_lock(&fs_info->trans_lock);
724e2315
JB
4611 continue;
4612 }
0b246afa 4613 if (t == fs_info->running_transaction) {
724e2315 4614 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4615 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4616 /*
4617 * We wait for 0 num_writers since we don't hold a trans
4618 * handle open currently for this transaction.
4619 */
4620 wait_event(t->writer_wait,
4621 atomic_read(&t->num_writers) == 0);
4622 } else {
0b246afa 4623 spin_unlock(&fs_info->trans_lock);
724e2315 4624 }
2ff7e61e 4625 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4626
0b246afa
JM
4627 spin_lock(&fs_info->trans_lock);
4628 if (t == fs_info->running_transaction)
4629 fs_info->running_transaction = NULL;
acce952b 4630 list_del_init(&t->list);
0b246afa 4631 spin_unlock(&fs_info->trans_lock);
acce952b 4632
724e2315 4633 btrfs_put_transaction(t);
2ff7e61e 4634 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4635 spin_lock(&fs_info->trans_lock);
724e2315 4636 }
0b246afa
JM
4637 spin_unlock(&fs_info->trans_lock);
4638 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4639 btrfs_destroy_delayed_inodes(fs_info);
4640 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4641 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4642 btrfs_drop_all_logs(fs_info);
0b246afa 4643 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4644
4645 return 0;
4646}
4647
e8c9f186 4648static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4649 /* mandatory callbacks */
0b86a832 4650 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4651 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4652};