btrfs: make buffer_radix take sector size units
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
141386e1
JB
100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104}
105
d352ac68
CM
106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
44b8bd7e 111struct async_submit_bio {
8896a08d 112 struct inode *inode;
44b8bd7e 113 struct bio *bio;
a758781d 114 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 115 int mirror_num;
eaf25d93
CM
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
8b712842 121 struct btrfs_work work;
4e4cbee9 122 blk_status_t status;
44b8bd7e
CM
123};
124
85d4e461
CM
125/*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
4008c04a 135 *
85d4e461
CM
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 139 *
85d4e461
CM
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 143 *
85d4e461
CM
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
4008c04a
CM
147 */
148#ifdef CONFIG_DEBUG_LOCK_ALLOC
149# if BTRFS_MAX_LEVEL != 8
150# error
151# endif
85d4e461 152
ab1405aa
DS
153#define DEFINE_LEVEL(stem, level) \
154 .names[level] = "btrfs-" stem "-0" #level,
155
156#define DEFINE_NAME(stem) \
157 DEFINE_LEVEL(stem, 0) \
158 DEFINE_LEVEL(stem, 1) \
159 DEFINE_LEVEL(stem, 2) \
160 DEFINE_LEVEL(stem, 3) \
161 DEFINE_LEVEL(stem, 4) \
162 DEFINE_LEVEL(stem, 5) \
163 DEFINE_LEVEL(stem, 6) \
164 DEFINE_LEVEL(stem, 7)
165
85d4e461
CM
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
ab1405aa 168 /* Longest entry: btrfs-free-space-00 */
387824af
DS
169 char names[BTRFS_MAX_LEVEL][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 171} btrfs_lockdep_keysets[] = {
ab1405aa
DS
172 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
175 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
176 { .id = BTRFS_FS_TREE_OBJECTID, DEFINE_NAME("fs") },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
179 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
182 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
184 { .id = 0, DEFINE_NAME("tree") },
4008c04a 185};
85d4e461 186
ab1405aa
DS
187#undef DEFINE_LEVEL
188#undef DEFINE_NAME
85d4e461
CM
189
190void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
191 int level)
192{
193 struct btrfs_lockdep_keyset *ks;
194
195 BUG_ON(level >= ARRAY_SIZE(ks->keys));
196
197 /* find the matching keyset, id 0 is the default entry */
198 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
199 if (ks->id == objectid)
200 break;
201
202 lockdep_set_class_and_name(&eb->lock,
203 &ks->keys[level], ks->names[level]);
204}
205
4008c04a
CM
206#endif
207
d352ac68 208/*
2996e1f8 209 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 210 */
c67b3892 211static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 212{
d5178578 213 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 214 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
d5178578 215 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 216 char *kaddr;
e9be5a30 217 int i;
d5178578
JT
218
219 shash->tfm = fs_info->csum_shash;
220 crypto_shash_init(shash);
e9be5a30
DS
221 kaddr = page_address(buf->pages[0]);
222 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
223 PAGE_SIZE - BTRFS_CSUM_SIZE);
19c00ddc 224
e9be5a30
DS
225 for (i = 1; i < num_pages; i++) {
226 kaddr = page_address(buf->pages[i]);
227 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 228 }
71a63551 229 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 230 crypto_shash_final(shash, result);
19c00ddc
CM
231}
232
d352ac68
CM
233/*
234 * we can't consider a given block up to date unless the transid of the
235 * block matches the transid in the parent node's pointer. This is how we
236 * detect blocks that either didn't get written at all or got written
237 * in the wrong place.
238 */
1259ab75 239static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
240 struct extent_buffer *eb, u64 parent_transid,
241 int atomic)
1259ab75 242{
2ac55d41 243 struct extent_state *cached_state = NULL;
1259ab75 244 int ret;
2755a0de 245 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
246
247 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
248 return 0;
249
b9fab919
CM
250 if (atomic)
251 return -EAGAIN;
252
ac5887c8 253 if (need_lock)
a26e8c9f 254 btrfs_tree_read_lock(eb);
a26e8c9f 255
2ac55d41 256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 257 &cached_state);
0b32f4bb 258 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
259 btrfs_header_generation(eb) == parent_transid) {
260 ret = 0;
261 goto out;
262 }
94647322
DS
263 btrfs_err_rl(eb->fs_info,
264 "parent transid verify failed on %llu wanted %llu found %llu",
265 eb->start,
29549aec 266 parent_transid, btrfs_header_generation(eb));
1259ab75 267 ret = 1;
a26e8c9f
JB
268
269 /*
270 * Things reading via commit roots that don't have normal protection,
271 * like send, can have a really old block in cache that may point at a
01327610 272 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
273 * if we find an eb that is under IO (dirty/writeback) because we could
274 * end up reading in the stale data and then writing it back out and
275 * making everybody very sad.
276 */
277 if (!extent_buffer_under_io(eb))
278 clear_extent_buffer_uptodate(eb);
33958dc6 279out:
2ac55d41 280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 281 &cached_state);
472b909f 282 if (need_lock)
ac5887c8 283 btrfs_tree_read_unlock(eb);
1259ab75 284 return ret;
1259ab75
CM
285}
286
e7e16f48
JT
287static bool btrfs_supported_super_csum(u16 csum_type)
288{
289 switch (csum_type) {
290 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 291 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 292 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 293 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
294 return true;
295 default:
296 return false;
297 }
298}
299
1104a885
DS
300/*
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
303 */
ab8d0fc4
JM
304static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305 char *raw_disk_sb)
1104a885
DS
306{
307 struct btrfs_super_block *disk_sb =
308 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 309 char result[BTRFS_CSUM_SIZE];
d5178578
JT
310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312 shash->tfm = fs_info->csum_shash;
1104a885 313
51bce6c9
JT
314 /*
315 * The super_block structure does not span the whole
316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 * filled with zeros and is included in the checksum.
318 */
fd08001f
EB
319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 321
55fc29be 322 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 323 return 1;
1104a885 324
e7e16f48 325 return 0;
1104a885
DS
326}
327
e064d5e9 328int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 329 struct btrfs_key *first_key, u64 parent_transid)
581c1760 330{
e064d5e9 331 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
332 int found_level;
333 struct btrfs_key found_key;
334 int ret;
335
336 found_level = btrfs_header_level(eb);
337 if (found_level != level) {
63489055
QW
338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
340 btrfs_err(fs_info,
341"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 eb->start, level, found_level);
581c1760
QW
343 return -EIO;
344 }
345
346 if (!first_key)
347 return 0;
348
5d41be6f
QW
349 /*
350 * For live tree block (new tree blocks in current transaction),
351 * we need proper lock context to avoid race, which is impossible here.
352 * So we only checks tree blocks which is read from disk, whose
353 * generation <= fs_info->last_trans_committed.
354 */
355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356 return 0;
62fdaa52
QW
357
358 /* We have @first_key, so this @eb must have at least one item */
359 if (btrfs_header_nritems(eb) == 0) {
360 btrfs_err(fs_info,
361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362 eb->start);
363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364 return -EUCLEAN;
365 }
366
581c1760
QW
367 if (found_level)
368 btrfs_node_key_to_cpu(eb, &found_key, 0);
369 else
370 btrfs_item_key_to_cpu(eb, &found_key, 0);
371 ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
581c1760 373 if (ret) {
63489055
QW
374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 376 btrfs_err(fs_info,
ff76a864
LB
377"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 eb->start, parent_transid, first_key->objectid,
379 first_key->type, first_key->offset,
380 found_key.objectid, found_key.type,
381 found_key.offset);
581c1760 382 }
581c1760
QW
383 return ret;
384}
385
d352ac68
CM
386/*
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
389 *
390 * @parent_transid: expected transid, skip check if 0
391 * @level: expected level, mandatory check
392 * @first_key: expected key of first slot, skip check if NULL
d352ac68 393 */
5ab12d1f 394static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
395 u64 parent_transid, int level,
396 struct btrfs_key *first_key)
f188591e 397{
5ab12d1f 398 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 399 struct extent_io_tree *io_tree;
ea466794 400 int failed = 0;
f188591e
CM
401 int ret;
402 int num_copies = 0;
403 int mirror_num = 0;
ea466794 404 int failed_mirror = 0;
f188591e 405
0b246afa 406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 407 while (1) {
f8397d69 408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 410 if (!ret) {
581c1760 411 if (verify_parent_transid(io_tree, eb,
b9fab919 412 parent_transid, 0))
256dd1bb 413 ret = -EIO;
e064d5e9 414 else if (btrfs_verify_level_key(eb, level,
448de471 415 first_key, parent_transid))
581c1760
QW
416 ret = -EUCLEAN;
417 else
418 break;
256dd1bb 419 }
d397712b 420
0b246afa 421 num_copies = btrfs_num_copies(fs_info,
f188591e 422 eb->start, eb->len);
4235298e 423 if (num_copies == 1)
ea466794 424 break;
4235298e 425
5cf1ab56
JB
426 if (!failed_mirror) {
427 failed = 1;
428 failed_mirror = eb->read_mirror;
429 }
430
f188591e 431 mirror_num++;
ea466794
JB
432 if (mirror_num == failed_mirror)
433 mirror_num++;
434
4235298e 435 if (mirror_num > num_copies)
ea466794 436 break;
f188591e 437 }
ea466794 438
c0901581 439 if (failed && !ret && failed_mirror)
20a1fbf9 440 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
441
442 return ret;
f188591e 443}
19c00ddc 444
d352ac68 445/*
d397712b
CM
446 * checksum a dirty tree block before IO. This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 448 */
d397712b 449
01d58472 450static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 451{
4eee4fa4 452 u64 start = page_offset(page);
19c00ddc 453 u64 found_start;
2996e1f8 454 u8 result[BTRFS_CSUM_SIZE];
19c00ddc 455 struct extent_buffer *eb;
8d47a0d8 456 int ret;
f188591e 457
4f2de97a
JB
458 eb = (struct extent_buffer *)page->private;
459 if (page != eb->pages[0])
460 return 0;
0f805531 461
19c00ddc 462 found_start = btrfs_header_bytenr(eb);
0f805531
AL
463 /*
464 * Please do not consolidate these warnings into a single if.
465 * It is useful to know what went wrong.
466 */
467 if (WARN_ON(found_start != start))
468 return -EUCLEAN;
469 if (WARN_ON(!PageUptodate(page)))
470 return -EUCLEAN;
471
de37aa51 472 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
473 offsetof(struct btrfs_header, fsid),
474 BTRFS_FSID_SIZE) == 0);
0f805531 475
c67b3892 476 csum_tree_block(eb, result);
2996e1f8 477
8d47a0d8
QW
478 if (btrfs_header_level(eb))
479 ret = btrfs_check_node(eb);
480 else
481 ret = btrfs_check_leaf_full(eb);
482
483 if (ret < 0) {
c06631b0 484 btrfs_print_tree(eb, 0);
8d47a0d8
QW
485 btrfs_err(fs_info,
486 "block=%llu write time tree block corruption detected",
487 eb->start);
c06631b0 488 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
489 return ret;
490 }
713cebfb 491 write_extent_buffer(eb, result, 0, fs_info->csum_size);
8d47a0d8 492
2996e1f8 493 return 0;
19c00ddc
CM
494}
495
b0c9b3b0 496static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 497{
b0c9b3b0 498 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 499 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 500 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 501 u8 *metadata_uuid;
2b82032c 502
9a8658e3
DS
503 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
504 BTRFS_FSID_SIZE);
944d3f9f
NB
505 /*
506 * Checking the incompat flag is only valid for the current fs. For
507 * seed devices it's forbidden to have their uuid changed so reading
508 * ->fsid in this case is fine
509 */
510 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
511 metadata_uuid = fs_devices->metadata_uuid;
512 else
513 metadata_uuid = fs_devices->fsid;
514
515 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
516 return 0;
517
518 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
519 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
520 return 0;
521
522 return 1;
2b82032c
YZ
523}
524
9a446d6a
NB
525int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
526 struct page *page, u64 start, u64 end,
527 int mirror)
ce9adaa5 528{
ce9adaa5
CM
529 u64 found_start;
530 int found_level;
ce9adaa5 531 struct extent_buffer *eb;
15b6e8a8
DS
532 struct btrfs_fs_info *fs_info;
533 u16 csum_size;
f188591e 534 int ret = 0;
2996e1f8 535 u8 result[BTRFS_CSUM_SIZE];
727011e0 536 int reads_done;
ce9adaa5 537
ce9adaa5
CM
538 if (!page->private)
539 goto out;
d397712b 540
4f2de97a 541 eb = (struct extent_buffer *)page->private;
15b6e8a8 542 fs_info = eb->fs_info;
55fc29be 543 csum_size = fs_info->csum_size;
d397712b 544
0b32f4bb
JB
545 /* the pending IO might have been the only thing that kept this buffer
546 * in memory. Make sure we have a ref for all this other checks
547 */
67439dad 548 atomic_inc(&eb->refs);
0b32f4bb
JB
549
550 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
551 if (!reads_done)
552 goto err;
f188591e 553
5cf1ab56 554 eb->read_mirror = mirror;
656f30db 555 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
556 ret = -EIO;
557 goto err;
558 }
559
ce9adaa5 560 found_start = btrfs_header_bytenr(eb);
727011e0 561 if (found_start != eb->start) {
893bf4b1
SY
562 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
563 eb->start, found_start);
f188591e 564 ret = -EIO;
ce9adaa5
CM
565 goto err;
566 }
b0c9b3b0 567 if (check_tree_block_fsid(eb)) {
02873e43
ZL
568 btrfs_err_rl(fs_info, "bad fsid on block %llu",
569 eb->start);
1259ab75
CM
570 ret = -EIO;
571 goto err;
572 }
ce9adaa5 573 found_level = btrfs_header_level(eb);
1c24c3ce 574 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
575 btrfs_err(fs_info, "bad tree block level %d on %llu",
576 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
577 ret = -EIO;
578 goto err;
579 }
ce9adaa5 580
85d4e461
CM
581 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
582 eb, found_level);
4008c04a 583
c67b3892 584 csum_tree_block(eb, result);
a826d6dc 585
2996e1f8 586 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 587 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
588
589 read_extent_buffer(eb, &val, 0, csum_size);
590 btrfs_warn_rl(fs_info,
35be8851 591 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 592 fs_info->sb->s_id, eb->start,
35be8851
JT
593 CSUM_FMT_VALUE(csum_size, val),
594 CSUM_FMT_VALUE(csum_size, result),
595 btrfs_header_level(eb));
2996e1f8
JT
596 ret = -EUCLEAN;
597 goto err;
598 }
599
a826d6dc
JB
600 /*
601 * If this is a leaf block and it is corrupt, set the corrupt bit so
602 * that we don't try and read the other copies of this block, just
603 * return -EIO.
604 */
1c4360ee 605 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
606 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
607 ret = -EIO;
608 }
ce9adaa5 609
813fd1dc 610 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
611 ret = -EIO;
612
0b32f4bb
JB
613 if (!ret)
614 set_extent_buffer_uptodate(eb);
75391f0d
QW
615 else
616 btrfs_err(fs_info,
617 "block=%llu read time tree block corruption detected",
618 eb->start);
ce9adaa5 619err:
79fb65a1
JB
620 if (reads_done &&
621 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 622 btree_readahead_hook(eb, ret);
4bb31e92 623
53b381b3
DW
624 if (ret) {
625 /*
626 * our io error hook is going to dec the io pages
627 * again, we have to make sure it has something
628 * to decrement
629 */
630 atomic_inc(&eb->io_pages);
0b32f4bb 631 clear_extent_buffer_uptodate(eb);
53b381b3 632 }
0b32f4bb 633 free_extent_buffer(eb);
ce9adaa5 634out:
f188591e 635 return ret;
ce9adaa5
CM
636}
637
4246a0b6 638static void end_workqueue_bio(struct bio *bio)
ce9adaa5 639{
97eb6b69 640 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 641 struct btrfs_fs_info *fs_info;
9e0af237 642 struct btrfs_workqueue *wq;
ce9adaa5 643
ce9adaa5 644 fs_info = end_io_wq->info;
4e4cbee9 645 end_io_wq->status = bio->bi_status;
d20f7043 646
37226b21 647 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 648 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 649 wq = fs_info->endio_meta_write_workers;
a0cac0ec 650 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 651 wq = fs_info->endio_freespace_worker;
a0cac0ec 652 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 653 wq = fs_info->endio_raid56_workers;
a0cac0ec 654 else
9e0af237 655 wq = fs_info->endio_write_workers;
d20f7043 656 } else {
5c047a69 657 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 658 wq = fs_info->endio_raid56_workers;
a0cac0ec 659 else if (end_io_wq->metadata)
9e0af237 660 wq = fs_info->endio_meta_workers;
a0cac0ec 661 else
9e0af237 662 wq = fs_info->endio_workers;
d20f7043 663 }
9e0af237 664
a0cac0ec 665 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 666 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
667}
668
4e4cbee9 669blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 670 enum btrfs_wq_endio_type metadata)
0b86a832 671{
97eb6b69 672 struct btrfs_end_io_wq *end_io_wq;
8b110e39 673
97eb6b69 674 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 675 if (!end_io_wq)
4e4cbee9 676 return BLK_STS_RESOURCE;
ce9adaa5
CM
677
678 end_io_wq->private = bio->bi_private;
679 end_io_wq->end_io = bio->bi_end_io;
22c59948 680 end_io_wq->info = info;
4e4cbee9 681 end_io_wq->status = 0;
ce9adaa5 682 end_io_wq->bio = bio;
22c59948 683 end_io_wq->metadata = metadata;
ce9adaa5
CM
684
685 bio->bi_private = end_io_wq;
686 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
687 return 0;
688}
689
4a69a410
CM
690static void run_one_async_start(struct btrfs_work *work)
691{
4a69a410 692 struct async_submit_bio *async;
4e4cbee9 693 blk_status_t ret;
4a69a410
CM
694
695 async = container_of(work, struct async_submit_bio, work);
8896a08d 696 ret = async->submit_bio_start(async->inode, async->bio, async->bio_offset);
79787eaa 697 if (ret)
4e4cbee9 698 async->status = ret;
4a69a410
CM
699}
700
06ea01b1
DS
701/*
702 * In order to insert checksums into the metadata in large chunks, we wait
703 * until bio submission time. All the pages in the bio are checksummed and
704 * sums are attached onto the ordered extent record.
705 *
706 * At IO completion time the csums attached on the ordered extent record are
707 * inserted into the tree.
708 */
4a69a410 709static void run_one_async_done(struct btrfs_work *work)
8b712842 710{
8b712842 711 struct async_submit_bio *async;
06ea01b1
DS
712 struct inode *inode;
713 blk_status_t ret;
8b712842
CM
714
715 async = container_of(work, struct async_submit_bio, work);
8896a08d 716 inode = async->inode;
4854ddd0 717
bb7ab3b9 718 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
719 if (async->status) {
720 async->bio->bi_status = async->status;
4246a0b6 721 bio_endio(async->bio);
79787eaa
JM
722 return;
723 }
724
ec39f769
CM
725 /*
726 * All of the bios that pass through here are from async helpers.
727 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
728 * This changes nothing when cgroups aren't in use.
729 */
730 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 731 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
732 if (ret) {
733 async->bio->bi_status = ret;
734 bio_endio(async->bio);
735 }
4a69a410
CM
736}
737
738static void run_one_async_free(struct btrfs_work *work)
739{
740 struct async_submit_bio *async;
741
742 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
743 kfree(async);
744}
745
8896a08d 746blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 747 int mirror_num, unsigned long bio_flags,
8896a08d 748 u64 bio_offset,
e288c080 749 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 750{
8896a08d 751 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
752 struct async_submit_bio *async;
753
754 async = kmalloc(sizeof(*async), GFP_NOFS);
755 if (!async)
4e4cbee9 756 return BLK_STS_RESOURCE;
44b8bd7e 757
8896a08d 758 async->inode = inode;
44b8bd7e
CM
759 async->bio = bio;
760 async->mirror_num = mirror_num;
4a69a410 761 async->submit_bio_start = submit_bio_start;
4a69a410 762
a0cac0ec
OS
763 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
764 run_one_async_free);
4a69a410 765
eaf25d93 766 async->bio_offset = bio_offset;
8c8bee1d 767
4e4cbee9 768 async->status = 0;
79787eaa 769
67f055c7 770 if (op_is_sync(bio->bi_opf))
5cdc7ad3 771 btrfs_set_work_high_priority(&async->work);
d313d7a3 772
5cdc7ad3 773 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
774 return 0;
775}
776
4e4cbee9 777static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 778{
2c30c71b 779 struct bio_vec *bvec;
ce3ed71a 780 struct btrfs_root *root;
2b070cfe 781 int ret = 0;
6dc4f100 782 struct bvec_iter_all iter_all;
ce3ed71a 783
c09abff8 784 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 785 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 786 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 787 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
788 if (ret)
789 break;
ce3ed71a 790 }
2c30c71b 791
4e4cbee9 792 return errno_to_blk_status(ret);
ce3ed71a
CM
793}
794
8896a08d
QW
795static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
796 u64 bio_offset)
22c59948 797{
8b712842
CM
798 /*
799 * when we're called for a write, we're already in the async
5443be45 800 * submission context. Just jump into btrfs_map_bio
8b712842 801 */
79787eaa 802 return btree_csum_one_bio(bio);
4a69a410 803}
22c59948 804
9b4e675a
DS
805static int check_async_write(struct btrfs_fs_info *fs_info,
806 struct btrfs_inode *bi)
de0022b9 807{
6300463b
LB
808 if (atomic_read(&bi->sync_writers))
809 return 0;
9b4e675a 810 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 811 return 0;
de0022b9
JB
812 return 1;
813}
814
1b36294a
NB
815blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
816 int mirror_num, unsigned long bio_flags)
44b8bd7e 817{
0b246afa 818 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 819 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 820 blk_status_t ret;
cad321ad 821
37226b21 822 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
823 /*
824 * called for a read, do the setup so that checksum validation
825 * can happen in the async kernel threads
826 */
0b246afa
JM
827 ret = btrfs_bio_wq_end_io(fs_info, bio,
828 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 829 if (ret)
61891923 830 goto out_w_error;
08635bae 831 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
832 } else if (!async) {
833 ret = btree_csum_one_bio(bio);
834 if (ret)
61891923 835 goto out_w_error;
08635bae 836 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
837 } else {
838 /*
839 * kthread helpers are used to submit writes so that
840 * checksumming can happen in parallel across all CPUs
841 */
8896a08d
QW
842 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
843 0, btree_submit_bio_start);
44b8bd7e 844 }
d313d7a3 845
4246a0b6
CH
846 if (ret)
847 goto out_w_error;
848 return 0;
849
61891923 850out_w_error:
4e4cbee9 851 bio->bi_status = ret;
4246a0b6 852 bio_endio(bio);
61891923 853 return ret;
44b8bd7e
CM
854}
855
3dd1462e 856#ifdef CONFIG_MIGRATION
784b4e29 857static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
858 struct page *newpage, struct page *page,
859 enum migrate_mode mode)
784b4e29
CM
860{
861 /*
862 * we can't safely write a btree page from here,
863 * we haven't done the locking hook
864 */
865 if (PageDirty(page))
866 return -EAGAIN;
867 /*
868 * Buffers may be managed in a filesystem specific way.
869 * We must have no buffers or drop them.
870 */
871 if (page_has_private(page) &&
872 !try_to_release_page(page, GFP_KERNEL))
873 return -EAGAIN;
a6bc32b8 874 return migrate_page(mapping, newpage, page, mode);
784b4e29 875}
3dd1462e 876#endif
784b4e29 877
0da5468f
CM
878
879static int btree_writepages(struct address_space *mapping,
880 struct writeback_control *wbc)
881{
e2d84521
MX
882 struct btrfs_fs_info *fs_info;
883 int ret;
884
d8d5f3e1 885 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
886
887 if (wbc->for_kupdate)
888 return 0;
889
e2d84521 890 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 891 /* this is a bit racy, but that's ok */
d814a491
EL
892 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
893 BTRFS_DIRTY_METADATA_THRESH,
894 fs_info->dirty_metadata_batch);
e2d84521 895 if (ret < 0)
793955bc 896 return 0;
793955bc 897 }
0b32f4bb 898 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
899}
900
70dec807 901static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 902{
98509cfc 903 if (PageWriteback(page) || PageDirty(page))
d397712b 904 return 0;
0c4e538b 905
f7a52a40 906 return try_release_extent_buffer(page);
d98237b3
CM
907}
908
d47992f8
LC
909static void btree_invalidatepage(struct page *page, unsigned int offset,
910 unsigned int length)
d98237b3 911{
d1310b2e
CM
912 struct extent_io_tree *tree;
913 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
914 extent_invalidatepage(tree, page, offset);
915 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 916 if (PagePrivate(page)) {
efe120a0
FH
917 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
918 "page private not zero on page %llu",
919 (unsigned long long)page_offset(page));
d1b89bc0 920 detach_page_private(page);
9ad6b7bc 921 }
d98237b3
CM
922}
923
0b32f4bb
JB
924static int btree_set_page_dirty(struct page *page)
925{
bb146eb2 926#ifdef DEBUG
0b32f4bb
JB
927 struct extent_buffer *eb;
928
929 BUG_ON(!PagePrivate(page));
930 eb = (struct extent_buffer *)page->private;
931 BUG_ON(!eb);
932 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
933 BUG_ON(!atomic_read(&eb->refs));
934 btrfs_assert_tree_locked(eb);
bb146eb2 935#endif
0b32f4bb
JB
936 return __set_page_dirty_nobuffers(page);
937}
938
7f09410b 939static const struct address_space_operations btree_aops = {
0da5468f 940 .writepages = btree_writepages,
5f39d397
CM
941 .releasepage = btree_releasepage,
942 .invalidatepage = btree_invalidatepage,
5a92bc88 943#ifdef CONFIG_MIGRATION
784b4e29 944 .migratepage = btree_migratepage,
5a92bc88 945#endif
0b32f4bb 946 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
947};
948
2ff7e61e 949void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 950{
5f39d397 951 struct extent_buffer *buf = NULL;
537f38f0 952 int ret;
090d1875 953
2ff7e61e 954 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 955 if (IS_ERR(buf))
6197d86e 956 return;
537f38f0 957
c2ccfbc6 958 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
959 if (ret < 0)
960 free_extent_buffer_stale(buf);
961 else
962 free_extent_buffer(buf);
090d1875
CM
963}
964
2ff7e61e
JM
965struct extent_buffer *btrfs_find_create_tree_block(
966 struct btrfs_fs_info *fs_info,
967 u64 bytenr)
0999df54 968{
0b246afa
JM
969 if (btrfs_is_testing(fs_info))
970 return alloc_test_extent_buffer(fs_info, bytenr);
971 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
972}
973
581c1760
QW
974/*
975 * Read tree block at logical address @bytenr and do variant basic but critical
976 * verification.
977 *
978 * @parent_transid: expected transid of this tree block, skip check if 0
979 * @level: expected level, mandatory check
980 * @first_key: expected key in slot 0, skip check if NULL
981 */
2ff7e61e 982struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
983 u64 parent_transid, int level,
984 struct btrfs_key *first_key)
0999df54
CM
985{
986 struct extent_buffer *buf = NULL;
0999df54
CM
987 int ret;
988
2ff7e61e 989 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
990 if (IS_ERR(buf))
991 return buf;
0999df54 992
5ab12d1f 993 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 994 level, first_key);
0f0fe8f7 995 if (ret) {
537f38f0 996 free_extent_buffer_stale(buf);
64c043de 997 return ERR_PTR(ret);
0f0fe8f7 998 }
5f39d397 999 return buf;
ce9adaa5 1000
eb60ceac
CM
1001}
1002
6a884d7d 1003void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1004{
6a884d7d 1005 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1006 if (btrfs_header_generation(buf) ==
e2d84521 1007 fs_info->running_transaction->transid) {
b9447ef8 1008 btrfs_assert_tree_locked(buf);
b4ce94de 1009
b9473439 1010 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1011 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1012 -buf->len,
1013 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1014 clear_extent_buffer_dirty(buf);
1015 }
925baedd 1016 }
5f39d397
CM
1017}
1018
da17066c 1019static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1020 u64 objectid)
d97e63b6 1021{
7c0260ee 1022 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1023 root->fs_info = fs_info;
cfaa7295 1024 root->node = NULL;
a28ec197 1025 root->commit_root = NULL;
27cdeb70 1026 root->state = 0;
d68fc57b 1027 root->orphan_cleanup_state = 0;
0b86a832 1028
0f7d52f4 1029 root->last_trans = 0;
13a8a7c8 1030 root->highest_objectid = 0;
eb73c1b7 1031 root->nr_delalloc_inodes = 0;
199c2a9c 1032 root->nr_ordered_extents = 0;
6bef4d31 1033 root->inode_tree = RB_ROOT;
16cdcec7 1034 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1035 root->block_rsv = NULL;
0b86a832
CM
1036
1037 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1038 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1039 INIT_LIST_HEAD(&root->delalloc_inodes);
1040 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1041 INIT_LIST_HEAD(&root->ordered_extents);
1042 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1043 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1044 INIT_LIST_HEAD(&root->logged_list[0]);
1045 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1046 spin_lock_init(&root->inode_lock);
eb73c1b7 1047 spin_lock_init(&root->delalloc_lock);
199c2a9c 1048 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1049 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1050 spin_lock_init(&root->log_extents_lock[0]);
1051 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1052 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1053 mutex_init(&root->objectid_mutex);
e02119d5 1054 mutex_init(&root->log_mutex);
31f3d255 1055 mutex_init(&root->ordered_extent_mutex);
573bfb72 1056 mutex_init(&root->delalloc_mutex);
c53e9653 1057 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1058 init_waitqueue_head(&root->log_writer_wait);
1059 init_waitqueue_head(&root->log_commit_wait[0]);
1060 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1061 INIT_LIST_HEAD(&root->log_ctxs[0]);
1062 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1063 atomic_set(&root->log_commit[0], 0);
1064 atomic_set(&root->log_commit[1], 0);
1065 atomic_set(&root->log_writers, 0);
2ecb7923 1066 atomic_set(&root->log_batch, 0);
0700cea7 1067 refcount_set(&root->refs, 1);
8ecebf4d 1068 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1069 atomic_set(&root->nr_swapfiles, 0);
7237f183 1070 root->log_transid = 0;
d1433deb 1071 root->log_transid_committed = -1;
257c62e1 1072 root->last_log_commit = 0;
e289f03e 1073 if (!dummy) {
43eb5f29
QW
1074 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1075 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1076 extent_io_tree_init(fs_info, &root->log_csum_range,
1077 IO_TREE_LOG_CSUM_RANGE, NULL);
1078 }
017e5369 1079
3768f368
CM
1080 memset(&root->root_key, 0, sizeof(root->root_key));
1081 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1082 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1083 root->root_key.objectid = objectid;
0ee5dc67 1084 root->anon_dev = 0;
8ea05e3a 1085
5f3ab90a 1086 spin_lock_init(&root->root_item_lock);
370a11b8 1087 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1088#ifdef CONFIG_BTRFS_DEBUG
1089 INIT_LIST_HEAD(&root->leak_list);
1090 spin_lock(&fs_info->fs_roots_radix_lock);
1091 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1092 spin_unlock(&fs_info->fs_roots_radix_lock);
1093#endif
3768f368
CM
1094}
1095
74e4d827 1096static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1097 u64 objectid, gfp_t flags)
6f07e42e 1098{
74e4d827 1099 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1100 if (root)
96dfcb46 1101 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1102 return root;
1103}
1104
06ea65a3
JB
1105#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1106/* Should only be used by the testing infrastructure */
da17066c 1107struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1108{
1109 struct btrfs_root *root;
1110
7c0260ee
JM
1111 if (!fs_info)
1112 return ERR_PTR(-EINVAL);
1113
96dfcb46 1114 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1115 if (!root)
1116 return ERR_PTR(-ENOMEM);
da17066c 1117
b9ef22de 1118 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1119 root->alloc_bytenr = 0;
06ea65a3
JB
1120
1121 return root;
1122}
1123#endif
1124
20897f5c 1125struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1126 u64 objectid)
1127{
9b7a2440 1128 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1129 struct extent_buffer *leaf;
1130 struct btrfs_root *tree_root = fs_info->tree_root;
1131 struct btrfs_root *root;
1132 struct btrfs_key key;
b89f6d1f 1133 unsigned int nofs_flag;
20897f5c 1134 int ret = 0;
20897f5c 1135
b89f6d1f
FM
1136 /*
1137 * We're holding a transaction handle, so use a NOFS memory allocation
1138 * context to avoid deadlock if reclaim happens.
1139 */
1140 nofs_flag = memalloc_nofs_save();
96dfcb46 1141 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1142 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1143 if (!root)
1144 return ERR_PTR(-ENOMEM);
1145
20897f5c
AJ
1146 root->root_key.objectid = objectid;
1147 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1148 root->root_key.offset = 0;
1149
9631e4cc
JB
1150 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1151 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1152 if (IS_ERR(leaf)) {
1153 ret = PTR_ERR(leaf);
1dd05682 1154 leaf = NULL;
20897f5c
AJ
1155 goto fail;
1156 }
1157
20897f5c 1158 root->node = leaf;
20897f5c
AJ
1159 btrfs_mark_buffer_dirty(leaf);
1160
1161 root->commit_root = btrfs_root_node(root);
27cdeb70 1162 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1163
f944d2cb
DS
1164 btrfs_set_root_flags(&root->root_item, 0);
1165 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1166 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1167 btrfs_set_root_generation(&root->root_item, trans->transid);
1168 btrfs_set_root_level(&root->root_item, 0);
1169 btrfs_set_root_refs(&root->root_item, 1);
1170 btrfs_set_root_used(&root->root_item, leaf->len);
1171 btrfs_set_root_last_snapshot(&root->root_item, 0);
1172 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1173 if (is_fstree(objectid))
807fc790
AS
1174 generate_random_guid(root->root_item.uuid);
1175 else
1176 export_guid(root->root_item.uuid, &guid_null);
c8422684 1177 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c
AJ
1178
1179 key.objectid = objectid;
1180 key.type = BTRFS_ROOT_ITEM_KEY;
1181 key.offset = 0;
1182 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1183 if (ret)
1184 goto fail;
1185
1186 btrfs_tree_unlock(leaf);
1187
1dd05682
TI
1188 return root;
1189
20897f5c 1190fail:
8c38938c 1191 if (leaf)
1dd05682 1192 btrfs_tree_unlock(leaf);
00246528 1193 btrfs_put_root(root);
20897f5c 1194
1dd05682 1195 return ERR_PTR(ret);
20897f5c
AJ
1196}
1197
7237f183
YZ
1198static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1199 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1200{
1201 struct btrfs_root *root;
7237f183 1202 struct extent_buffer *leaf;
e02119d5 1203
96dfcb46 1204 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1205 if (!root)
7237f183 1206 return ERR_PTR(-ENOMEM);
e02119d5 1207
e02119d5
CM
1208 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1209 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1210 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1211
7237f183 1212 /*
92a7cc42 1213 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1214 *
92a7cc42
QW
1215 * Log trees are not exposed to user space thus can't be snapshotted,
1216 * and they go away before a real commit is actually done.
1217 *
1218 * They do store pointers to file data extents, and those reference
1219 * counts still get updated (along with back refs to the log tree).
7237f183 1220 */
e02119d5 1221
4d75f8a9 1222 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1223 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
7237f183 1224 if (IS_ERR(leaf)) {
00246528 1225 btrfs_put_root(root);
7237f183
YZ
1226 return ERR_CAST(leaf);
1227 }
e02119d5 1228
7237f183 1229 root->node = leaf;
e02119d5 1230
e02119d5
CM
1231 btrfs_mark_buffer_dirty(root->node);
1232 btrfs_tree_unlock(root->node);
7237f183
YZ
1233 return root;
1234}
1235
1236int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1237 struct btrfs_fs_info *fs_info)
1238{
1239 struct btrfs_root *log_root;
1240
1241 log_root = alloc_log_tree(trans, fs_info);
1242 if (IS_ERR(log_root))
1243 return PTR_ERR(log_root);
1244 WARN_ON(fs_info->log_root_tree);
1245 fs_info->log_root_tree = log_root;
1246 return 0;
1247}
1248
1249int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1250 struct btrfs_root *root)
1251{
0b246afa 1252 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1253 struct btrfs_root *log_root;
1254 struct btrfs_inode_item *inode_item;
1255
0b246afa 1256 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1257 if (IS_ERR(log_root))
1258 return PTR_ERR(log_root);
1259
1260 log_root->last_trans = trans->transid;
1261 log_root->root_key.offset = root->root_key.objectid;
1262
1263 inode_item = &log_root->root_item.inode;
3cae210f
QW
1264 btrfs_set_stack_inode_generation(inode_item, 1);
1265 btrfs_set_stack_inode_size(inode_item, 3);
1266 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1267 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1268 fs_info->nodesize);
3cae210f 1269 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1270
5d4f98a2 1271 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1272
1273 WARN_ON(root->log_root);
1274 root->log_root = log_root;
1275 root->log_transid = 0;
d1433deb 1276 root->log_transid_committed = -1;
257c62e1 1277 root->last_log_commit = 0;
e02119d5
CM
1278 return 0;
1279}
1280
49d11bea
JB
1281static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1282 struct btrfs_path *path,
1283 struct btrfs_key *key)
e02119d5
CM
1284{
1285 struct btrfs_root *root;
1286 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1287 u64 generation;
cb517eab 1288 int ret;
581c1760 1289 int level;
0f7d52f4 1290
96dfcb46 1291 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1292 if (!root)
1293 return ERR_PTR(-ENOMEM);
0f7d52f4 1294
cb517eab
MX
1295 ret = btrfs_find_root(tree_root, key, path,
1296 &root->root_item, &root->root_key);
0f7d52f4 1297 if (ret) {
13a8a7c8
YZ
1298 if (ret > 0)
1299 ret = -ENOENT;
49d11bea 1300 goto fail;
0f7d52f4 1301 }
13a8a7c8 1302
84234f3a 1303 generation = btrfs_root_generation(&root->root_item);
581c1760 1304 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1305 root->node = read_tree_block(fs_info,
1306 btrfs_root_bytenr(&root->root_item),
581c1760 1307 generation, level, NULL);
64c043de
LB
1308 if (IS_ERR(root->node)) {
1309 ret = PTR_ERR(root->node);
8c38938c 1310 root->node = NULL;
49d11bea 1311 goto fail;
cb517eab
MX
1312 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1313 ret = -EIO;
49d11bea 1314 goto fail;
416bc658 1315 }
5d4f98a2 1316 root->commit_root = btrfs_root_node(root);
cb517eab 1317 return root;
49d11bea 1318fail:
00246528 1319 btrfs_put_root(root);
49d11bea
JB
1320 return ERR_PTR(ret);
1321}
1322
1323struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1324 struct btrfs_key *key)
1325{
1326 struct btrfs_root *root;
1327 struct btrfs_path *path;
1328
1329 path = btrfs_alloc_path();
1330 if (!path)
1331 return ERR_PTR(-ENOMEM);
1332 root = read_tree_root_path(tree_root, path, key);
1333 btrfs_free_path(path);
1334
1335 return root;
cb517eab
MX
1336}
1337
2dfb1e43
QW
1338/*
1339 * Initialize subvolume root in-memory structure
1340 *
1341 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1342 */
1343static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1344{
1345 int ret;
dcc3eb96 1346 unsigned int nofs_flag;
cb517eab
MX
1347
1348 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1349 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1350 GFP_NOFS);
1351 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1352 ret = -ENOMEM;
1353 goto fail;
1354 }
1355
dcc3eb96
NB
1356 /*
1357 * We might be called under a transaction (e.g. indirect backref
1358 * resolution) which could deadlock if it triggers memory reclaim
1359 */
1360 nofs_flag = memalloc_nofs_save();
1361 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1362 memalloc_nofs_restore(nofs_flag);
1363 if (ret)
8257b2dc 1364 goto fail;
8257b2dc 1365
aeb935a4
QW
1366 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1367 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1368 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1369 btrfs_check_and_init_root_item(&root->root_item);
1370 }
1371
cb517eab 1372 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1373 spin_lock_init(&root->ino_cache_lock);
1374 init_waitqueue_head(&root->ino_cache_wait);
cb517eab 1375
851fd730
QW
1376 /*
1377 * Don't assign anonymous block device to roots that are not exposed to
1378 * userspace, the id pool is limited to 1M
1379 */
1380 if (is_fstree(root->root_key.objectid) &&
1381 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1382 if (!anon_dev) {
1383 ret = get_anon_bdev(&root->anon_dev);
1384 if (ret)
1385 goto fail;
1386 } else {
1387 root->anon_dev = anon_dev;
1388 }
851fd730 1389 }
f32e48e9
CR
1390
1391 mutex_lock(&root->objectid_mutex);
1392 ret = btrfs_find_highest_objectid(root,
1393 &root->highest_objectid);
1394 if (ret) {
1395 mutex_unlock(&root->objectid_mutex);
876d2cf1 1396 goto fail;
f32e48e9
CR
1397 }
1398
1399 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1400
1401 mutex_unlock(&root->objectid_mutex);
1402
cb517eab
MX
1403 return 0;
1404fail:
84db5ccf 1405 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1406 return ret;
1407}
1408
a98db0f3
JB
1409static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1410 u64 root_id)
cb517eab
MX
1411{
1412 struct btrfs_root *root;
1413
1414 spin_lock(&fs_info->fs_roots_radix_lock);
1415 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1416 (unsigned long)root_id);
bc44d7c4 1417 if (root)
00246528 1418 root = btrfs_grab_root(root);
cb517eab
MX
1419 spin_unlock(&fs_info->fs_roots_radix_lock);
1420 return root;
1421}
1422
49d11bea
JB
1423static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1424 u64 objectid)
1425{
1426 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1427 return btrfs_grab_root(fs_info->tree_root);
1428 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1429 return btrfs_grab_root(fs_info->extent_root);
1430 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1431 return btrfs_grab_root(fs_info->chunk_root);
1432 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1433 return btrfs_grab_root(fs_info->dev_root);
1434 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1435 return btrfs_grab_root(fs_info->csum_root);
1436 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1437 return btrfs_grab_root(fs_info->quota_root) ?
1438 fs_info->quota_root : ERR_PTR(-ENOENT);
1439 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1440 return btrfs_grab_root(fs_info->uuid_root) ?
1441 fs_info->uuid_root : ERR_PTR(-ENOENT);
1442 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1443 return btrfs_grab_root(fs_info->free_space_root) ?
1444 fs_info->free_space_root : ERR_PTR(-ENOENT);
1445 return NULL;
1446}
1447
cb517eab
MX
1448int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1449 struct btrfs_root *root)
1450{
1451 int ret;
1452
e1860a77 1453 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1454 if (ret)
1455 return ret;
1456
1457 spin_lock(&fs_info->fs_roots_radix_lock);
1458 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1459 (unsigned long)root->root_key.objectid,
1460 root);
af01d2e5 1461 if (ret == 0) {
00246528 1462 btrfs_grab_root(root);
27cdeb70 1463 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1464 }
cb517eab
MX
1465 spin_unlock(&fs_info->fs_roots_radix_lock);
1466 radix_tree_preload_end();
1467
1468 return ret;
1469}
1470
bd647ce3
JB
1471void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1472{
1473#ifdef CONFIG_BTRFS_DEBUG
1474 struct btrfs_root *root;
1475
1476 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1477 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1478
bd647ce3
JB
1479 root = list_first_entry(&fs_info->allocated_roots,
1480 struct btrfs_root, leak_list);
457f1864
JB
1481 btrfs_err(fs_info, "leaked root %s refcount %d",
1482 btrfs_root_name(root->root_key.objectid, buf),
bd647ce3
JB
1483 refcount_read(&root->refs));
1484 while (refcount_read(&root->refs) > 1)
00246528
JB
1485 btrfs_put_root(root);
1486 btrfs_put_root(root);
bd647ce3
JB
1487 }
1488#endif
1489}
1490
0d4b0463
JB
1491void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1492{
141386e1
JB
1493 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1494 percpu_counter_destroy(&fs_info->delalloc_bytes);
1495 percpu_counter_destroy(&fs_info->dio_bytes);
1496 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1497 btrfs_free_csum_hash(fs_info);
1498 btrfs_free_stripe_hash_table(fs_info);
1499 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1500 kfree(fs_info->balance_ctl);
1501 kfree(fs_info->delayed_root);
00246528
JB
1502 btrfs_put_root(fs_info->extent_root);
1503 btrfs_put_root(fs_info->tree_root);
1504 btrfs_put_root(fs_info->chunk_root);
1505 btrfs_put_root(fs_info->dev_root);
1506 btrfs_put_root(fs_info->csum_root);
1507 btrfs_put_root(fs_info->quota_root);
1508 btrfs_put_root(fs_info->uuid_root);
1509 btrfs_put_root(fs_info->free_space_root);
1510 btrfs_put_root(fs_info->fs_root);
aeb935a4 1511 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1512 btrfs_check_leaked_roots(fs_info);
3fd63727 1513 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1514 kfree(fs_info->super_copy);
1515 kfree(fs_info->super_for_commit);
1516 kvfree(fs_info);
1517}
1518
1519
2dfb1e43
QW
1520/*
1521 * Get an in-memory reference of a root structure.
1522 *
1523 * For essential trees like root/extent tree, we grab it from fs_info directly.
1524 * For subvolume trees, we check the cached filesystem roots first. If not
1525 * found, then read it from disk and add it to cached fs roots.
1526 *
1527 * Caller should release the root by calling btrfs_put_root() after the usage.
1528 *
1529 * NOTE: Reloc and log trees can't be read by this function as they share the
1530 * same root objectid.
1531 *
1532 * @objectid: root id
1533 * @anon_dev: preallocated anonymous block device number for new roots,
1534 * pass 0 for new allocation.
1535 * @check_ref: whether to check root item references, If true, return -ENOENT
1536 * for orphan roots
1537 */
1538static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1539 u64 objectid, dev_t anon_dev,
1540 bool check_ref)
5eda7b5e
CM
1541{
1542 struct btrfs_root *root;
381cf658 1543 struct btrfs_path *path;
1d4c08e0 1544 struct btrfs_key key;
5eda7b5e
CM
1545 int ret;
1546
49d11bea
JB
1547 root = btrfs_get_global_root(fs_info, objectid);
1548 if (root)
1549 return root;
4df27c4d 1550again:
56e9357a 1551 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1552 if (root) {
2dfb1e43
QW
1553 /* Shouldn't get preallocated anon_dev for cached roots */
1554 ASSERT(!anon_dev);
bc44d7c4 1555 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1556 btrfs_put_root(root);
48475471 1557 return ERR_PTR(-ENOENT);
bc44d7c4 1558 }
5eda7b5e 1559 return root;
48475471 1560 }
5eda7b5e 1561
56e9357a
DS
1562 key.objectid = objectid;
1563 key.type = BTRFS_ROOT_ITEM_KEY;
1564 key.offset = (u64)-1;
1565 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1566 if (IS_ERR(root))
1567 return root;
3394e160 1568
c00869f1 1569 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1570 ret = -ENOENT;
581bb050 1571 goto fail;
35a30d7c 1572 }
581bb050 1573
2dfb1e43 1574 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1575 if (ret)
1576 goto fail;
3394e160 1577
381cf658
DS
1578 path = btrfs_alloc_path();
1579 if (!path) {
1580 ret = -ENOMEM;
1581 goto fail;
1582 }
1d4c08e0
DS
1583 key.objectid = BTRFS_ORPHAN_OBJECTID;
1584 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1585 key.offset = objectid;
1d4c08e0
DS
1586
1587 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1588 btrfs_free_path(path);
d68fc57b
YZ
1589 if (ret < 0)
1590 goto fail;
1591 if (ret == 0)
27cdeb70 1592 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1593
cb517eab 1594 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1595 if (ret) {
00246528 1596 btrfs_put_root(root);
4785e24f 1597 if (ret == -EEXIST)
4df27c4d 1598 goto again;
4df27c4d 1599 goto fail;
0f7d52f4 1600 }
edbd8d4e 1601 return root;
4df27c4d 1602fail:
8c38938c 1603 btrfs_put_root(root);
4df27c4d 1604 return ERR_PTR(ret);
edbd8d4e
CM
1605}
1606
2dfb1e43
QW
1607/*
1608 * Get in-memory reference of a root structure
1609 *
1610 * @objectid: tree objectid
1611 * @check_ref: if set, verify that the tree exists and the item has at least
1612 * one reference
1613 */
1614struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1615 u64 objectid, bool check_ref)
1616{
1617 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1618}
1619
1620/*
1621 * Get in-memory reference of a root structure, created as new, optionally pass
1622 * the anonymous block device id
1623 *
1624 * @objectid: tree objectid
1625 * @anon_dev: if zero, allocate a new anonymous block device or use the
1626 * parameter value
1627 */
1628struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1629 u64 objectid, dev_t anon_dev)
1630{
1631 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1632}
1633
49d11bea
JB
1634/*
1635 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1636 * @fs_info: the fs_info
1637 * @objectid: the objectid we need to lookup
1638 *
1639 * This is exclusively used for backref walking, and exists specifically because
1640 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1641 * creation time, which means we may have to read the tree_root in order to look
1642 * up a fs root that is not in memory. If the root is not in memory we will
1643 * read the tree root commit root and look up the fs root from there. This is a
1644 * temporary root, it will not be inserted into the radix tree as it doesn't
1645 * have the most uptodate information, it'll simply be discarded once the
1646 * backref code is finished using the root.
1647 */
1648struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1649 struct btrfs_path *path,
1650 u64 objectid)
1651{
1652 struct btrfs_root *root;
1653 struct btrfs_key key;
1654
1655 ASSERT(path->search_commit_root && path->skip_locking);
1656
1657 /*
1658 * This can return -ENOENT if we ask for a root that doesn't exist, but
1659 * since this is called via the backref walking code we won't be looking
1660 * up a root that doesn't exist, unless there's corruption. So if root
1661 * != NULL just return it.
1662 */
1663 root = btrfs_get_global_root(fs_info, objectid);
1664 if (root)
1665 return root;
1666
1667 root = btrfs_lookup_fs_root(fs_info, objectid);
1668 if (root)
1669 return root;
1670
1671 key.objectid = objectid;
1672 key.type = BTRFS_ROOT_ITEM_KEY;
1673 key.offset = (u64)-1;
1674 root = read_tree_root_path(fs_info->tree_root, path, &key);
1675 btrfs_release_path(path);
1676
1677 return root;
1678}
1679
8b712842
CM
1680/*
1681 * called by the kthread helper functions to finally call the bio end_io
1682 * functions. This is where read checksum verification actually happens
1683 */
1684static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1685{
ce9adaa5 1686 struct bio *bio;
97eb6b69 1687 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1688
97eb6b69 1689 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1690 bio = end_io_wq->bio;
ce9adaa5 1691
4e4cbee9 1692 bio->bi_status = end_io_wq->status;
8b712842
CM
1693 bio->bi_private = end_io_wq->private;
1694 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1695 bio_endio(bio);
9be490f1 1696 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1697}
1698
a74a4b97
CM
1699static int cleaner_kthread(void *arg)
1700{
1701 struct btrfs_root *root = arg;
0b246afa 1702 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1703 int again;
a74a4b97 1704
d6fd0ae2 1705 while (1) {
d0278245 1706 again = 0;
a74a4b97 1707
fd340d0f
JB
1708 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1709
d0278245 1710 /* Make the cleaner go to sleep early. */
2ff7e61e 1711 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1712 goto sleep;
1713
90c711ab
ZB
1714 /*
1715 * Do not do anything if we might cause open_ctree() to block
1716 * before we have finished mounting the filesystem.
1717 */
0b246afa 1718 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1719 goto sleep;
1720
0b246afa 1721 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1722 goto sleep;
1723
dc7f370c
MX
1724 /*
1725 * Avoid the problem that we change the status of the fs
1726 * during the above check and trylock.
1727 */
2ff7e61e 1728 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1729 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1730 goto sleep;
76dda93c 1731 }
a74a4b97 1732
2ff7e61e 1733 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1734
d0278245 1735 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1736 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1737
1738 /*
05323cd1
MX
1739 * The defragger has dealt with the R/O remount and umount,
1740 * needn't do anything special here.
d0278245 1741 */
0b246afa 1742 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1743
1744 /*
1745 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1746 * with relocation (btrfs_relocate_chunk) and relocation
1747 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1748 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1749 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1750 * unused block groups.
1751 */
0b246afa 1752 btrfs_delete_unused_bgs(fs_info);
d0278245 1753sleep:
fd340d0f 1754 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1755 if (kthread_should_park())
1756 kthread_parkme();
1757 if (kthread_should_stop())
1758 return 0;
838fe188 1759 if (!again) {
a74a4b97 1760 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1761 schedule();
a74a4b97
CM
1762 __set_current_state(TASK_RUNNING);
1763 }
da288d28 1764 }
a74a4b97
CM
1765}
1766
1767static int transaction_kthread(void *arg)
1768{
1769 struct btrfs_root *root = arg;
0b246afa 1770 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1771 struct btrfs_trans_handle *trans;
1772 struct btrfs_transaction *cur;
8929ecfa 1773 u64 transid;
643900be 1774 time64_t delta;
a74a4b97 1775 unsigned long delay;
914b2007 1776 bool cannot_commit;
a74a4b97
CM
1777
1778 do {
914b2007 1779 cannot_commit = false;
ba1bc00f 1780 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1781 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1782
0b246afa
JM
1783 spin_lock(&fs_info->trans_lock);
1784 cur = fs_info->running_transaction;
a74a4b97 1785 if (!cur) {
0b246afa 1786 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1787 goto sleep;
1788 }
31153d81 1789
643900be 1790 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1791 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1792 delta < fs_info->commit_interval) {
0b246afa 1793 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1794 delay -= msecs_to_jiffies((delta - 1) * 1000);
1795 delay = min(delay,
1796 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1797 goto sleep;
1798 }
8929ecfa 1799 transid = cur->transid;
0b246afa 1800 spin_unlock(&fs_info->trans_lock);
56bec294 1801
79787eaa 1802 /* If the file system is aborted, this will always fail. */
354aa0fb 1803 trans = btrfs_attach_transaction(root);
914b2007 1804 if (IS_ERR(trans)) {
354aa0fb
MX
1805 if (PTR_ERR(trans) != -ENOENT)
1806 cannot_commit = true;
79787eaa 1807 goto sleep;
914b2007 1808 }
8929ecfa 1809 if (transid == trans->transid) {
3a45bb20 1810 btrfs_commit_transaction(trans);
8929ecfa 1811 } else {
3a45bb20 1812 btrfs_end_transaction(trans);
8929ecfa 1813 }
a74a4b97 1814sleep:
0b246afa
JM
1815 wake_up_process(fs_info->cleaner_kthread);
1816 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1817
4e121c06 1818 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1819 &fs_info->fs_state)))
2ff7e61e 1820 btrfs_cleanup_transaction(fs_info);
ce63f891 1821 if (!kthread_should_stop() &&
0b246afa 1822 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1823 cannot_commit))
bc5511d0 1824 schedule_timeout_interruptible(delay);
a74a4b97
CM
1825 } while (!kthread_should_stop());
1826 return 0;
1827}
1828
af31f5e5 1829/*
01f0f9da
NB
1830 * This will find the highest generation in the array of root backups. The
1831 * index of the highest array is returned, or -EINVAL if we can't find
1832 * anything.
af31f5e5
CM
1833 *
1834 * We check to make sure the array is valid by comparing the
1835 * generation of the latest root in the array with the generation
1836 * in the super block. If they don't match we pitch it.
1837 */
01f0f9da 1838static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1839{
01f0f9da 1840 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1841 u64 cur;
af31f5e5
CM
1842 struct btrfs_root_backup *root_backup;
1843 int i;
1844
1845 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1846 root_backup = info->super_copy->super_roots + i;
1847 cur = btrfs_backup_tree_root_gen(root_backup);
1848 if (cur == newest_gen)
01f0f9da 1849 return i;
af31f5e5
CM
1850 }
1851
01f0f9da 1852 return -EINVAL;
af31f5e5
CM
1853}
1854
af31f5e5
CM
1855/*
1856 * copy all the root pointers into the super backup array.
1857 * this will bump the backup pointer by one when it is
1858 * done
1859 */
1860static void backup_super_roots(struct btrfs_fs_info *info)
1861{
6ef108dd 1862 const int next_backup = info->backup_root_index;
af31f5e5 1863 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1864
1865 root_backup = info->super_for_commit->super_roots + next_backup;
1866
1867 /*
1868 * make sure all of our padding and empty slots get zero filled
1869 * regardless of which ones we use today
1870 */
1871 memset(root_backup, 0, sizeof(*root_backup));
1872
1873 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1874
1875 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1876 btrfs_set_backup_tree_root_gen(root_backup,
1877 btrfs_header_generation(info->tree_root->node));
1878
1879 btrfs_set_backup_tree_root_level(root_backup,
1880 btrfs_header_level(info->tree_root->node));
1881
1882 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1883 btrfs_set_backup_chunk_root_gen(root_backup,
1884 btrfs_header_generation(info->chunk_root->node));
1885 btrfs_set_backup_chunk_root_level(root_backup,
1886 btrfs_header_level(info->chunk_root->node));
1887
1888 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1889 btrfs_set_backup_extent_root_gen(root_backup,
1890 btrfs_header_generation(info->extent_root->node));
1891 btrfs_set_backup_extent_root_level(root_backup,
1892 btrfs_header_level(info->extent_root->node));
1893
7c7e82a7
CM
1894 /*
1895 * we might commit during log recovery, which happens before we set
1896 * the fs_root. Make sure it is valid before we fill it in.
1897 */
1898 if (info->fs_root && info->fs_root->node) {
1899 btrfs_set_backup_fs_root(root_backup,
1900 info->fs_root->node->start);
1901 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1902 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1903 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1904 btrfs_header_level(info->fs_root->node));
7c7e82a7 1905 }
af31f5e5
CM
1906
1907 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1908 btrfs_set_backup_dev_root_gen(root_backup,
1909 btrfs_header_generation(info->dev_root->node));
1910 btrfs_set_backup_dev_root_level(root_backup,
1911 btrfs_header_level(info->dev_root->node));
1912
1913 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1914 btrfs_set_backup_csum_root_gen(root_backup,
1915 btrfs_header_generation(info->csum_root->node));
1916 btrfs_set_backup_csum_root_level(root_backup,
1917 btrfs_header_level(info->csum_root->node));
1918
1919 btrfs_set_backup_total_bytes(root_backup,
1920 btrfs_super_total_bytes(info->super_copy));
1921 btrfs_set_backup_bytes_used(root_backup,
1922 btrfs_super_bytes_used(info->super_copy));
1923 btrfs_set_backup_num_devices(root_backup,
1924 btrfs_super_num_devices(info->super_copy));
1925
1926 /*
1927 * if we don't copy this out to the super_copy, it won't get remembered
1928 * for the next commit
1929 */
1930 memcpy(&info->super_copy->super_roots,
1931 &info->super_for_commit->super_roots,
1932 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1933}
1934
bd2336b2
NB
1935/*
1936 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1937 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1938 *
1939 * fs_info - filesystem whose backup roots need to be read
1940 * priority - priority of backup root required
1941 *
1942 * Returns backup root index on success and -EINVAL otherwise.
1943 */
1944static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1945{
1946 int backup_index = find_newest_super_backup(fs_info);
1947 struct btrfs_super_block *super = fs_info->super_copy;
1948 struct btrfs_root_backup *root_backup;
1949
1950 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1951 if (priority == 0)
1952 return backup_index;
1953
1954 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1955 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1956 } else {
1957 return -EINVAL;
1958 }
1959
1960 root_backup = super->super_roots + backup_index;
1961
1962 btrfs_set_super_generation(super,
1963 btrfs_backup_tree_root_gen(root_backup));
1964 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1965 btrfs_set_super_root_level(super,
1966 btrfs_backup_tree_root_level(root_backup));
1967 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1968
1969 /*
1970 * Fixme: the total bytes and num_devices need to match or we should
1971 * need a fsck
1972 */
1973 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1974 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1975
1976 return backup_index;
1977}
1978
7abadb64
LB
1979/* helper to cleanup workers */
1980static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1981{
dc6e3209 1982 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1983 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1984 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1985 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1986 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 1987 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1988 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1989 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1990 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1991 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1992 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1993 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1994 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1995 if (fs_info->discard_ctl.discard_workers)
1996 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1997 /*
1998 * Now that all other work queues are destroyed, we can safely destroy
1999 * the queues used for metadata I/O, since tasks from those other work
2000 * queues can do metadata I/O operations.
2001 */
2002 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2003 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2004}
2005
2e9f5954
R
2006static void free_root_extent_buffers(struct btrfs_root *root)
2007{
2008 if (root) {
2009 free_extent_buffer(root->node);
2010 free_extent_buffer(root->commit_root);
2011 root->node = NULL;
2012 root->commit_root = NULL;
2013 }
2014}
2015
af31f5e5 2016/* helper to cleanup tree roots */
4273eaff 2017static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2018{
2e9f5954 2019 free_root_extent_buffers(info->tree_root);
655b09fe 2020
2e9f5954
R
2021 free_root_extent_buffers(info->dev_root);
2022 free_root_extent_buffers(info->extent_root);
2023 free_root_extent_buffers(info->csum_root);
2024 free_root_extent_buffers(info->quota_root);
2025 free_root_extent_buffers(info->uuid_root);
8c38938c 2026 free_root_extent_buffers(info->fs_root);
aeb935a4 2027 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2028 if (free_chunk_root)
2e9f5954 2029 free_root_extent_buffers(info->chunk_root);
70f6d82e 2030 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2031}
2032
8c38938c
JB
2033void btrfs_put_root(struct btrfs_root *root)
2034{
2035 if (!root)
2036 return;
2037
2038 if (refcount_dec_and_test(&root->refs)) {
2039 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2040 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2041 if (root->anon_dev)
2042 free_anon_bdev(root->anon_dev);
2043 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2044 free_root_extent_buffers(root);
8c38938c
JB
2045 kfree(root->free_ino_ctl);
2046 kfree(root->free_ino_pinned);
2047#ifdef CONFIG_BTRFS_DEBUG
2048 spin_lock(&root->fs_info->fs_roots_radix_lock);
2049 list_del_init(&root->leak_list);
2050 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2051#endif
2052 kfree(root);
2053 }
2054}
2055
faa2dbf0 2056void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2057{
2058 int ret;
2059 struct btrfs_root *gang[8];
2060 int i;
2061
2062 while (!list_empty(&fs_info->dead_roots)) {
2063 gang[0] = list_entry(fs_info->dead_roots.next,
2064 struct btrfs_root, root_list);
2065 list_del(&gang[0]->root_list);
2066
8c38938c 2067 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2068 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2069 btrfs_put_root(gang[0]);
171f6537
JB
2070 }
2071
2072 while (1) {
2073 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2074 (void **)gang, 0,
2075 ARRAY_SIZE(gang));
2076 if (!ret)
2077 break;
2078 for (i = 0; i < ret; i++)
cb517eab 2079 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2080 }
2081}
af31f5e5 2082
638aa7ed
ES
2083static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2084{
2085 mutex_init(&fs_info->scrub_lock);
2086 atomic_set(&fs_info->scrubs_running, 0);
2087 atomic_set(&fs_info->scrub_pause_req, 0);
2088 atomic_set(&fs_info->scrubs_paused, 0);
2089 atomic_set(&fs_info->scrub_cancel_req, 0);
2090 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2091 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2092}
2093
779a65a4
ES
2094static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2095{
2096 spin_lock_init(&fs_info->balance_lock);
2097 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2098 atomic_set(&fs_info->balance_pause_req, 0);
2099 atomic_set(&fs_info->balance_cancel_req, 0);
2100 fs_info->balance_ctl = NULL;
2101 init_waitqueue_head(&fs_info->balance_wait_q);
2102}
2103
6bccf3ab 2104static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2105{
2ff7e61e
JM
2106 struct inode *inode = fs_info->btree_inode;
2107
2108 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2109 set_nlink(inode, 1);
f37938e0
ES
2110 /*
2111 * we set the i_size on the btree inode to the max possible int.
2112 * the real end of the address space is determined by all of
2113 * the devices in the system
2114 */
2ff7e61e
JM
2115 inode->i_size = OFFSET_MAX;
2116 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2117
2ff7e61e 2118 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2119 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2120 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2121 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2122 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2123
5c8fd99f 2124 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2125 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127 btrfs_insert_inode_hash(inode);
f37938e0
ES
2128}
2129
ad618368
ES
2130static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131{
ad618368 2132 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2133 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2134 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2135}
2136
f9e92e40
ES
2137static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138{
2139 spin_lock_init(&fs_info->qgroup_lock);
2140 mutex_init(&fs_info->qgroup_ioctl_lock);
2141 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2142 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143 fs_info->qgroup_seq = 1;
f9e92e40 2144 fs_info->qgroup_ulist = NULL;
d2c609b8 2145 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2146 mutex_init(&fs_info->qgroup_rescan_lock);
2147}
2148
2a458198
ES
2149static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150 struct btrfs_fs_devices *fs_devices)
2151{
f7b885be 2152 u32 max_active = fs_info->thread_pool_size;
6f011058 2153 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2154
2155 fs_info->workers =
cb001095
JM
2156 btrfs_alloc_workqueue(fs_info, "worker",
2157 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2158
2159 fs_info->delalloc_workers =
cb001095
JM
2160 btrfs_alloc_workqueue(fs_info, "delalloc",
2161 flags, max_active, 2);
2a458198
ES
2162
2163 fs_info->flush_workers =
cb001095
JM
2164 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165 flags, max_active, 0);
2a458198
ES
2166
2167 fs_info->caching_workers =
cb001095 2168 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2169
2a458198 2170 fs_info->fixup_workers =
cb001095 2171 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2172
2173 /*
2174 * endios are largely parallel and should have a very
2175 * low idle thresh
2176 */
2177 fs_info->endio_workers =
cb001095 2178 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2179 fs_info->endio_meta_workers =
cb001095
JM
2180 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2181 max_active, 4);
2a458198 2182 fs_info->endio_meta_write_workers =
cb001095
JM
2183 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2184 max_active, 2);
2a458198 2185 fs_info->endio_raid56_workers =
cb001095
JM
2186 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2187 max_active, 4);
2a458198 2188 fs_info->rmw_workers =
cb001095 2189 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2190 fs_info->endio_write_workers =
cb001095
JM
2191 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2192 max_active, 2);
2a458198 2193 fs_info->endio_freespace_worker =
cb001095
JM
2194 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2195 max_active, 0);
2a458198 2196 fs_info->delayed_workers =
cb001095
JM
2197 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2198 max_active, 0);
2a458198 2199 fs_info->readahead_workers =
cb001095
JM
2200 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2201 max_active, 2);
2a458198 2202 fs_info->qgroup_rescan_workers =
cb001095 2203 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2204 fs_info->discard_ctl.discard_workers =
2205 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2206
2207 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2208 fs_info->flush_workers &&
2a458198
ES
2209 fs_info->endio_workers && fs_info->endio_meta_workers &&
2210 fs_info->endio_meta_write_workers &&
2a458198
ES
2211 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2212 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2213 fs_info->caching_workers && fs_info->readahead_workers &&
2214 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2215 fs_info->qgroup_rescan_workers &&
2216 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2217 return -ENOMEM;
2218 }
2219
2220 return 0;
2221}
2222
6d97c6e3
JT
2223static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2224{
2225 struct crypto_shash *csum_shash;
b4e967be 2226 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2227
b4e967be 2228 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2229
2230 if (IS_ERR(csum_shash)) {
2231 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2232 csum_driver);
6d97c6e3
JT
2233 return PTR_ERR(csum_shash);
2234 }
2235
2236 fs_info->csum_shash = csum_shash;
2237
2238 return 0;
2239}
2240
63443bf5
ES
2241static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2242 struct btrfs_fs_devices *fs_devices)
2243{
2244 int ret;
63443bf5
ES
2245 struct btrfs_root *log_tree_root;
2246 struct btrfs_super_block *disk_super = fs_info->super_copy;
2247 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2248 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2249
2250 if (fs_devices->rw_devices == 0) {
f14d104d 2251 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2252 return -EIO;
2253 }
2254
96dfcb46
JB
2255 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2256 GFP_KERNEL);
63443bf5
ES
2257 if (!log_tree_root)
2258 return -ENOMEM;
2259
2ff7e61e 2260 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2261 fs_info->generation + 1,
2262 level, NULL);
64c043de 2263 if (IS_ERR(log_tree_root->node)) {
f14d104d 2264 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2265 ret = PTR_ERR(log_tree_root->node);
8c38938c 2266 log_tree_root->node = NULL;
00246528 2267 btrfs_put_root(log_tree_root);
0eeff236 2268 return ret;
64c043de 2269 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2270 btrfs_err(fs_info, "failed to read log tree");
00246528 2271 btrfs_put_root(log_tree_root);
63443bf5
ES
2272 return -EIO;
2273 }
2274 /* returns with log_tree_root freed on success */
2275 ret = btrfs_recover_log_trees(log_tree_root);
2276 if (ret) {
0b246afa
JM
2277 btrfs_handle_fs_error(fs_info, ret,
2278 "Failed to recover log tree");
00246528 2279 btrfs_put_root(log_tree_root);
63443bf5
ES
2280 return ret;
2281 }
2282
bc98a42c 2283 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2284 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2285 if (ret)
2286 return ret;
2287 }
2288
2289 return 0;
2290}
2291
6bccf3ab 2292static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2293{
6bccf3ab 2294 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2295 struct btrfs_root *root;
4bbcaa64
ES
2296 struct btrfs_key location;
2297 int ret;
2298
6bccf3ab
JM
2299 BUG_ON(!fs_info->tree_root);
2300
4bbcaa64
ES
2301 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2302 location.type = BTRFS_ROOT_ITEM_KEY;
2303 location.offset = 0;
2304
a4f3d2c4 2305 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2306 if (IS_ERR(root)) {
42437a63
JB
2307 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2308 ret = PTR_ERR(root);
2309 goto out;
2310 }
2311 } else {
2312 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2313 fs_info->extent_root = root;
f50f4353 2314 }
4bbcaa64
ES
2315
2316 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2317 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2318 if (IS_ERR(root)) {
42437a63
JB
2319 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2320 ret = PTR_ERR(root);
2321 goto out;
2322 }
2323 } else {
2324 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2325 fs_info->dev_root = root;
2326 btrfs_init_devices_late(fs_info);
f50f4353 2327 }
4bbcaa64 2328
882dbe0c
JB
2329 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2330 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2331 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2332 root = btrfs_read_tree_root(tree_root, &location);
2333 if (IS_ERR(root)) {
2334 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2335 ret = PTR_ERR(root);
2336 goto out;
2337 }
2338 } else {
2339 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2340 fs_info->csum_root = root;
42437a63 2341 }
f50f4353 2342 }
4bbcaa64 2343
aeb935a4
QW
2344 /*
2345 * This tree can share blocks with some other fs tree during relocation
2346 * and we need a proper setup by btrfs_get_fs_root
2347 */
56e9357a
DS
2348 root = btrfs_get_fs_root(tree_root->fs_info,
2349 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2350 if (IS_ERR(root)) {
42437a63
JB
2351 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2352 ret = PTR_ERR(root);
2353 goto out;
2354 }
2355 } else {
2356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2357 fs_info->data_reloc_root = root;
aeb935a4 2358 }
aeb935a4 2359
4bbcaa64 2360 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2361 root = btrfs_read_tree_root(tree_root, &location);
2362 if (!IS_ERR(root)) {
2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2364 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2365 fs_info->quota_root = root;
4bbcaa64
ES
2366 }
2367
2368 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2369 root = btrfs_read_tree_root(tree_root, &location);
2370 if (IS_ERR(root)) {
42437a63
JB
2371 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2372 ret = PTR_ERR(root);
2373 if (ret != -ENOENT)
2374 goto out;
2375 }
4bbcaa64 2376 } else {
a4f3d2c4
DS
2377 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2378 fs_info->uuid_root = root;
4bbcaa64
ES
2379 }
2380
70f6d82e
OS
2381 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2382 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2383 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2384 if (IS_ERR(root)) {
42437a63
JB
2385 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2386 ret = PTR_ERR(root);
2387 goto out;
2388 }
2389 } else {
2390 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2391 fs_info->free_space_root = root;
f50f4353 2392 }
70f6d82e
OS
2393 }
2394
4bbcaa64 2395 return 0;
f50f4353
LB
2396out:
2397 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2398 location.objectid, ret);
2399 return ret;
4bbcaa64
ES
2400}
2401
069ec957
QW
2402/*
2403 * Real super block validation
2404 * NOTE: super csum type and incompat features will not be checked here.
2405 *
2406 * @sb: super block to check
2407 * @mirror_num: the super block number to check its bytenr:
2408 * 0 the primary (1st) sb
2409 * 1, 2 2nd and 3rd backup copy
2410 * -1 skip bytenr check
2411 */
2412static int validate_super(struct btrfs_fs_info *fs_info,
2413 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2414{
21a852b0
QW
2415 u64 nodesize = btrfs_super_nodesize(sb);
2416 u64 sectorsize = btrfs_super_sectorsize(sb);
2417 int ret = 0;
2418
2419 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2420 btrfs_err(fs_info, "no valid FS found");
2421 ret = -EINVAL;
2422 }
2423 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2424 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2425 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2426 ret = -EINVAL;
2427 }
2428 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2430 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2431 ret = -EINVAL;
2432 }
2433 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2434 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2435 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2436 ret = -EINVAL;
2437 }
2438 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2439 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2440 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2441 ret = -EINVAL;
2442 }
2443
2444 /*
2445 * Check sectorsize and nodesize first, other check will need it.
2446 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2447 */
2448 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2449 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2450 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2451 ret = -EINVAL;
2452 }
2453 /* Only PAGE SIZE is supported yet */
2454 if (sectorsize != PAGE_SIZE) {
2455 btrfs_err(fs_info,
2456 "sectorsize %llu not supported yet, only support %lu",
2457 sectorsize, PAGE_SIZE);
2458 ret = -EINVAL;
2459 }
2460 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2461 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2462 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2463 ret = -EINVAL;
2464 }
2465 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2466 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2467 le32_to_cpu(sb->__unused_leafsize), nodesize);
2468 ret = -EINVAL;
2469 }
2470
2471 /* Root alignment check */
2472 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2473 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2474 btrfs_super_root(sb));
2475 ret = -EINVAL;
2476 }
2477 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2478 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2479 btrfs_super_chunk_root(sb));
2480 ret = -EINVAL;
2481 }
2482 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2483 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2484 btrfs_super_log_root(sb));
2485 ret = -EINVAL;
2486 }
2487
de37aa51 2488 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2489 BTRFS_FSID_SIZE) != 0) {
21a852b0 2490 btrfs_err(fs_info,
7239ff4b 2491 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2492 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2493 ret = -EINVAL;
2494 }
2495
2496 /*
2497 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2498 * done later
2499 */
2500 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2501 btrfs_err(fs_info, "bytes_used is too small %llu",
2502 btrfs_super_bytes_used(sb));
2503 ret = -EINVAL;
2504 }
2505 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2506 btrfs_err(fs_info, "invalid stripesize %u",
2507 btrfs_super_stripesize(sb));
2508 ret = -EINVAL;
2509 }
2510 if (btrfs_super_num_devices(sb) > (1UL << 31))
2511 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2512 btrfs_super_num_devices(sb));
2513 if (btrfs_super_num_devices(sb) == 0) {
2514 btrfs_err(fs_info, "number of devices is 0");
2515 ret = -EINVAL;
2516 }
2517
069ec957
QW
2518 if (mirror_num >= 0 &&
2519 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2520 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2521 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2522 ret = -EINVAL;
2523 }
2524
2525 /*
2526 * Obvious sys_chunk_array corruptions, it must hold at least one key
2527 * and one chunk
2528 */
2529 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2530 btrfs_err(fs_info, "system chunk array too big %u > %u",
2531 btrfs_super_sys_array_size(sb),
2532 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2533 ret = -EINVAL;
2534 }
2535 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2536 + sizeof(struct btrfs_chunk)) {
2537 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2538 btrfs_super_sys_array_size(sb),
2539 sizeof(struct btrfs_disk_key)
2540 + sizeof(struct btrfs_chunk));
2541 ret = -EINVAL;
2542 }
2543
2544 /*
2545 * The generation is a global counter, we'll trust it more than the others
2546 * but it's still possible that it's the one that's wrong.
2547 */
2548 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2549 btrfs_warn(fs_info,
2550 "suspicious: generation < chunk_root_generation: %llu < %llu",
2551 btrfs_super_generation(sb),
2552 btrfs_super_chunk_root_generation(sb));
2553 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2554 && btrfs_super_cache_generation(sb) != (u64)-1)
2555 btrfs_warn(fs_info,
2556 "suspicious: generation < cache_generation: %llu < %llu",
2557 btrfs_super_generation(sb),
2558 btrfs_super_cache_generation(sb));
2559
2560 return ret;
2561}
2562
069ec957
QW
2563/*
2564 * Validation of super block at mount time.
2565 * Some checks already done early at mount time, like csum type and incompat
2566 * flags will be skipped.
2567 */
2568static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2569{
2570 return validate_super(fs_info, fs_info->super_copy, 0);
2571}
2572
75cb857d
QW
2573/*
2574 * Validation of super block at write time.
2575 * Some checks like bytenr check will be skipped as their values will be
2576 * overwritten soon.
2577 * Extra checks like csum type and incompat flags will be done here.
2578 */
2579static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2580 struct btrfs_super_block *sb)
2581{
2582 int ret;
2583
2584 ret = validate_super(fs_info, sb, -1);
2585 if (ret < 0)
2586 goto out;
e7e16f48 2587 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2588 ret = -EUCLEAN;
2589 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2590 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2591 goto out;
2592 }
2593 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2594 ret = -EUCLEAN;
2595 btrfs_err(fs_info,
2596 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2597 btrfs_super_incompat_flags(sb),
2598 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2599 goto out;
2600 }
2601out:
2602 if (ret < 0)
2603 btrfs_err(fs_info,
2604 "super block corruption detected before writing it to disk");
2605 return ret;
2606}
2607
6ef108dd 2608static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2609{
6ef108dd 2610 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2611 struct btrfs_super_block *sb = fs_info->super_copy;
2612 struct btrfs_root *tree_root = fs_info->tree_root;
2613 bool handle_error = false;
2614 int ret = 0;
2615 int i;
2616
2617 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2618 u64 generation;
2619 int level;
2620
2621 if (handle_error) {
2622 if (!IS_ERR(tree_root->node))
2623 free_extent_buffer(tree_root->node);
2624 tree_root->node = NULL;
2625
2626 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2627 break;
2628
2629 free_root_pointers(fs_info, 0);
2630
2631 /*
2632 * Don't use the log in recovery mode, it won't be
2633 * valid
2634 */
2635 btrfs_set_super_log_root(sb, 0);
2636
2637 /* We can't trust the free space cache either */
2638 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2639
2640 ret = read_backup_root(fs_info, i);
6ef108dd 2641 backup_index = ret;
b8522a1e
NB
2642 if (ret < 0)
2643 return ret;
2644 }
2645 generation = btrfs_super_generation(sb);
2646 level = btrfs_super_root_level(sb);
2647 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2648 generation, level, NULL);
217f5004 2649 if (IS_ERR(tree_root->node)) {
b8522a1e 2650 handle_error = true;
217f5004
NB
2651 ret = PTR_ERR(tree_root->node);
2652 tree_root->node = NULL;
2653 btrfs_warn(fs_info, "couldn't read tree root");
2654 continue;
b8522a1e 2655
217f5004
NB
2656 } else if (!extent_buffer_uptodate(tree_root->node)) {
2657 handle_error = true;
2658 ret = -EIO;
2659 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2660 continue;
2661 }
2662
2663 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2664 tree_root->commit_root = btrfs_root_node(tree_root);
2665 btrfs_set_root_refs(&tree_root->root_item, 1);
2666
336a0d8d
NB
2667 /*
2668 * No need to hold btrfs_root::objectid_mutex since the fs
2669 * hasn't been fully initialised and we are the only user
2670 */
b8522a1e
NB
2671 ret = btrfs_find_highest_objectid(tree_root,
2672 &tree_root->highest_objectid);
2673 if (ret < 0) {
b8522a1e
NB
2674 handle_error = true;
2675 continue;
2676 }
2677
2678 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2679
2680 ret = btrfs_read_roots(fs_info);
2681 if (ret < 0) {
2682 handle_error = true;
2683 continue;
2684 }
2685
2686 /* All successful */
2687 fs_info->generation = generation;
2688 fs_info->last_trans_committed = generation;
6ef108dd
NB
2689
2690 /* Always begin writing backup roots after the one being used */
2691 if (backup_index < 0) {
2692 fs_info->backup_root_index = 0;
2693 } else {
2694 fs_info->backup_root_index = backup_index + 1;
2695 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2696 }
b8522a1e
NB
2697 break;
2698 }
2699
2700 return ret;
2701}
2702
8260edba 2703void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2704{
76dda93c 2705 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2706 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2707 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2708 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2709 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2710 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2711 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2712 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2713 spin_lock_init(&fs_info->trans_lock);
76dda93c 2714 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2715 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2716 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2717 spin_lock_init(&fs_info->super_lock);
f28491e0 2718 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2719 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2720 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2721 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2722 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2723 mutex_init(&fs_info->reloc_mutex);
573bfb72 2724 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2725 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2726
0b86a832 2727 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2728 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2729 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2730 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2731#ifdef CONFIG_BTRFS_DEBUG
2732 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2733 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2734 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2735#endif
c8bf1b67 2736 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2737 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2738 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2739 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2740 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2741 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2742 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2743 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2744 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2745 BTRFS_BLOCK_RSV_DELREFS);
2746
771ed689 2747 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2748 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2749 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2750 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2751 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2752 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2753 fs_info->metadata_ratio = 0;
4cb5300b 2754 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2755 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2756 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2757 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2758 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2759 /* readahead state */
d0164adc 2760 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2761 spin_lock_init(&fs_info->reada_lock);
fd708b81 2762 btrfs_init_ref_verify(fs_info);
c8b97818 2763
b34b086c
CM
2764 fs_info->thread_pool_size = min_t(unsigned long,
2765 num_online_cpus() + 2, 8);
0afbaf8c 2766
199c2a9c
MX
2767 INIT_LIST_HEAD(&fs_info->ordered_roots);
2768 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2769
638aa7ed 2770 btrfs_init_scrub(fs_info);
21adbd5c
SB
2771#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2772 fs_info->check_integrity_print_mask = 0;
2773#endif
779a65a4 2774 btrfs_init_balance(fs_info);
57056740 2775 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2776
0f9dd46c 2777 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2778 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2779 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2780
fe119a6e
NB
2781 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2782 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2783 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2784
5a3f23d5 2785 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2786 mutex_init(&fs_info->tree_log_mutex);
925baedd 2787 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2788 mutex_init(&fs_info->transaction_kthread_mutex);
2789 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2790 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2791 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2792 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2793 init_rwsem(&fs_info->subvol_sem);
803b2f54 2794 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2795
ad618368 2796 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2797 btrfs_init_qgroup(fs_info);
b0643e59 2798 btrfs_discard_init(fs_info);
416ac51d 2799
fa9c0d79
CM
2800 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2801 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2802
e6dcd2dc 2803 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2804 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2805 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2806 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2807 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2808
da17066c
JM
2809 /* Usable values until the real ones are cached from the superblock */
2810 fs_info->nodesize = 4096;
2811 fs_info->sectorsize = 4096;
ab108d99 2812 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2813 fs_info->stripesize = 4096;
2814
eede2bf3
OS
2815 spin_lock_init(&fs_info->swapfile_pins_lock);
2816 fs_info->swapfile_pins = RB_ROOT;
2817
9e967495 2818 fs_info->send_in_progress = 0;
8260edba
JB
2819}
2820
2821static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2822{
2823 int ret;
2824
2825 fs_info->sb = sb;
2826 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2827 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2828
ae18c37a
JB
2829 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2830 if (ret)
c75e8394 2831 return ret;
ae18c37a
JB
2832
2833 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2834 if (ret)
c75e8394 2835 return ret;
ae18c37a
JB
2836
2837 fs_info->dirty_metadata_batch = PAGE_SIZE *
2838 (1 + ilog2(nr_cpu_ids));
2839
2840 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2841 if (ret)
c75e8394 2842 return ret;
ae18c37a
JB
2843
2844 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2845 GFP_KERNEL);
2846 if (ret)
c75e8394 2847 return ret;
ae18c37a
JB
2848
2849 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2850 GFP_KERNEL);
c75e8394
JB
2851 if (!fs_info->delayed_root)
2852 return -ENOMEM;
ae18c37a
JB
2853 btrfs_init_delayed_root(fs_info->delayed_root);
2854
c75e8394 2855 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2856}
2857
97f4dd09
NB
2858static int btrfs_uuid_rescan_kthread(void *data)
2859{
2860 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2861 int ret;
2862
2863 /*
2864 * 1st step is to iterate through the existing UUID tree and
2865 * to delete all entries that contain outdated data.
2866 * 2nd step is to add all missing entries to the UUID tree.
2867 */
2868 ret = btrfs_uuid_tree_iterate(fs_info);
2869 if (ret < 0) {
c94bec2c
JB
2870 if (ret != -EINTR)
2871 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2872 ret);
97f4dd09
NB
2873 up(&fs_info->uuid_tree_rescan_sem);
2874 return ret;
2875 }
2876 return btrfs_uuid_scan_kthread(data);
2877}
2878
2879static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2880{
2881 struct task_struct *task;
2882
2883 down(&fs_info->uuid_tree_rescan_sem);
2884 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2885 if (IS_ERR(task)) {
2886 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2887 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2888 up(&fs_info->uuid_tree_rescan_sem);
2889 return PTR_ERR(task);
2890 }
2891
2892 return 0;
2893}
2894
ae18c37a
JB
2895int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2896 char *options)
2897{
2898 u32 sectorsize;
2899 u32 nodesize;
2900 u32 stripesize;
2901 u64 generation;
2902 u64 features;
2903 u16 csum_type;
ae18c37a
JB
2904 struct btrfs_super_block *disk_super;
2905 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2906 struct btrfs_root *tree_root;
2907 struct btrfs_root *chunk_root;
2908 int ret;
2909 int err = -EINVAL;
2910 int clear_free_space_tree = 0;
2911 int level;
2912
8260edba 2913 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2914 if (ret) {
83c8266a 2915 err = ret;
ae18c37a 2916 goto fail;
53b381b3
DW
2917 }
2918
ae18c37a
JB
2919 /* These need to be init'ed before we start creating inodes and such. */
2920 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2921 GFP_KERNEL);
2922 fs_info->tree_root = tree_root;
2923 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2924 GFP_KERNEL);
2925 fs_info->chunk_root = chunk_root;
2926 if (!tree_root || !chunk_root) {
2927 err = -ENOMEM;
c75e8394 2928 goto fail;
ae18c37a
JB
2929 }
2930
2931 fs_info->btree_inode = new_inode(sb);
2932 if (!fs_info->btree_inode) {
2933 err = -ENOMEM;
c75e8394 2934 goto fail;
ae18c37a
JB
2935 }
2936 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2937 btrfs_init_btree_inode(fs_info);
2938
3c4bb26b 2939 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2940
2941 /*
2942 * Read super block and check the signature bytes only
2943 */
8f32380d
JT
2944 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2945 if (IS_ERR(disk_super)) {
2946 err = PTR_ERR(disk_super);
16cdcec7 2947 goto fail_alloc;
20b45077 2948 }
39279cc3 2949
8dc3f22c 2950 /*
260db43c 2951 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
2952 * corrupted, we'll find out
2953 */
8f32380d 2954 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2955 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2956 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2957 csum_type);
8dc3f22c 2958 err = -EINVAL;
8f32380d 2959 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2960 goto fail_alloc;
2961 }
2962
6d97c6e3
JT
2963 ret = btrfs_init_csum_hash(fs_info, csum_type);
2964 if (ret) {
2965 err = ret;
8f32380d 2966 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2967 goto fail_alloc;
2968 }
2969
1104a885
DS
2970 /*
2971 * We want to check superblock checksum, the type is stored inside.
2972 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2973 */
8f32380d 2974 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2975 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2976 err = -EINVAL;
8f32380d 2977 btrfs_release_disk_super(disk_super);
141386e1 2978 goto fail_alloc;
1104a885
DS
2979 }
2980
2981 /*
2982 * super_copy is zeroed at allocation time and we never touch the
2983 * following bytes up to INFO_SIZE, the checksum is calculated from
2984 * the whole block of INFO_SIZE
2985 */
8f32380d
JT
2986 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2987 btrfs_release_disk_super(disk_super);
5f39d397 2988
fbc6feae
NB
2989 disk_super = fs_info->super_copy;
2990
de37aa51
NB
2991 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2992 BTRFS_FSID_SIZE));
2993
7239ff4b 2994 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2995 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2996 fs_info->super_copy->metadata_uuid,
2997 BTRFS_FSID_SIZE));
7239ff4b 2998 }
0b86a832 2999
fbc6feae
NB
3000 features = btrfs_super_flags(disk_super);
3001 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3002 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3003 btrfs_set_super_flags(disk_super, features);
3004 btrfs_info(fs_info,
3005 "found metadata UUID change in progress flag, clearing");
3006 }
3007
3008 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3009 sizeof(*fs_info->super_for_commit));
de37aa51 3010
069ec957 3011 ret = btrfs_validate_mount_super(fs_info);
1104a885 3012 if (ret) {
05135f59 3013 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3014 err = -EINVAL;
141386e1 3015 goto fail_alloc;
1104a885
DS
3016 }
3017
0f7d52f4 3018 if (!btrfs_super_root(disk_super))
141386e1 3019 goto fail_alloc;
0f7d52f4 3020
acce952b 3021 /* check FS state, whether FS is broken. */
87533c47
MX
3022 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3023 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3024
75e7cb7f
LB
3025 /*
3026 * In the long term, we'll store the compression type in the super
3027 * block, and it'll be used for per file compression control.
3028 */
3029 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3030
2ff7e61e 3031 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3032 if (ret) {
3033 err = ret;
141386e1 3034 goto fail_alloc;
2b82032c 3035 }
dfe25020 3036
f2b636e8
JB
3037 features = btrfs_super_incompat_flags(disk_super) &
3038 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3039 if (features) {
05135f59
DS
3040 btrfs_err(fs_info,
3041 "cannot mount because of unsupported optional features (%llx)",
3042 features);
f2b636e8 3043 err = -EINVAL;
141386e1 3044 goto fail_alloc;
f2b636e8
JB
3045 }
3046
5d4f98a2 3047 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3048 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3049 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3050 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3051 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3052 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3053
3173a18f 3054 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3055 btrfs_info(fs_info, "has skinny extents");
3173a18f 3056
727011e0
CM
3057 /*
3058 * flag our filesystem as having big metadata blocks if
3059 * they are bigger than the page size
3060 */
09cbfeaf 3061 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3062 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3063 btrfs_info(fs_info,
3064 "flagging fs with big metadata feature");
727011e0
CM
3065 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3066 }
3067
bc3f116f 3068 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3069 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3070 stripesize = sectorsize;
707e8a07 3071 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3072 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3073
da17066c
JM
3074 /* Cache block sizes */
3075 fs_info->nodesize = nodesize;
3076 fs_info->sectorsize = sectorsize;
ab108d99 3077 fs_info->sectorsize_bits = ilog2(sectorsize);
22b6331d 3078 fs_info->csum_size = btrfs_super_csum_size(disk_super);
fe5ecbe8 3079 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
da17066c
JM
3080 fs_info->stripesize = stripesize;
3081
bc3f116f
CM
3082 /*
3083 * mixed block groups end up with duplicate but slightly offset
3084 * extent buffers for the same range. It leads to corruptions
3085 */
3086 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3087 (sectorsize != nodesize)) {
05135f59
DS
3088 btrfs_err(fs_info,
3089"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3090 nodesize, sectorsize);
141386e1 3091 goto fail_alloc;
bc3f116f
CM
3092 }
3093
ceda0864
MX
3094 /*
3095 * Needn't use the lock because there is no other task which will
3096 * update the flag.
3097 */
a6fa6fae 3098 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3099
f2b636e8
JB
3100 features = btrfs_super_compat_ro_flags(disk_super) &
3101 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3102 if (!sb_rdonly(sb) && features) {
05135f59
DS
3103 btrfs_err(fs_info,
3104 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3105 features);
f2b636e8 3106 err = -EINVAL;
141386e1 3107 goto fail_alloc;
f2b636e8 3108 }
61d92c32 3109
2a458198
ES
3110 ret = btrfs_init_workqueues(fs_info, fs_devices);
3111 if (ret) {
3112 err = ret;
0dc3b84a
JB
3113 goto fail_sb_buffer;
3114 }
4543df7e 3115
9e11ceee
JK
3116 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3117 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3118
a061fc8d
CM
3119 sb->s_blocksize = sectorsize;
3120 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3121 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3122
925baedd 3123 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3124 ret = btrfs_read_sys_array(fs_info);
925baedd 3125 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3126 if (ret) {
05135f59 3127 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3128 goto fail_sb_buffer;
84eed90f 3129 }
0b86a832 3130
84234f3a 3131 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3132 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3133
2ff7e61e 3134 chunk_root->node = read_tree_block(fs_info,
0b86a832 3135 btrfs_super_chunk_root(disk_super),
581c1760 3136 generation, level, NULL);
64c043de
LB
3137 if (IS_ERR(chunk_root->node) ||
3138 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3139 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3140 if (!IS_ERR(chunk_root->node))
3141 free_extent_buffer(chunk_root->node);
95ab1f64 3142 chunk_root->node = NULL;
af31f5e5 3143 goto fail_tree_roots;
83121942 3144 }
5d4f98a2
YZ
3145 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3146 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3147
e17cade2 3148 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3149 offsetof(struct btrfs_header, chunk_tree_uuid),
3150 BTRFS_UUID_SIZE);
e17cade2 3151
5b4aacef 3152 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3153 if (ret) {
05135f59 3154 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3155 goto fail_tree_roots;
2b82032c 3156 }
0b86a832 3157
8dabb742 3158 /*
9b99b115
AJ
3159 * Keep the devid that is marked to be the target device for the
3160 * device replace procedure
8dabb742 3161 */
9b99b115 3162 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3163
a6b0d5c8 3164 if (!fs_devices->latest_bdev) {
05135f59 3165 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3166 goto fail_tree_roots;
3167 }
3168
b8522a1e 3169 ret = init_tree_roots(fs_info);
4bbcaa64 3170 if (ret)
b8522a1e 3171 goto fail_tree_roots;
8929ecfa 3172
75ec1db8
JB
3173 /*
3174 * If we have a uuid root and we're not being told to rescan we need to
3175 * check the generation here so we can set the
3176 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3177 * transaction during a balance or the log replay without updating the
3178 * uuid generation, and then if we crash we would rescan the uuid tree,
3179 * even though it was perfectly fine.
3180 */
3181 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3182 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3183 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3184
cf90d884
QW
3185 ret = btrfs_verify_dev_extents(fs_info);
3186 if (ret) {
3187 btrfs_err(fs_info,
3188 "failed to verify dev extents against chunks: %d",
3189 ret);
3190 goto fail_block_groups;
3191 }
68310a5e
ID
3192 ret = btrfs_recover_balance(fs_info);
3193 if (ret) {
05135f59 3194 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3195 goto fail_block_groups;
3196 }
3197
733f4fbb
SB
3198 ret = btrfs_init_dev_stats(fs_info);
3199 if (ret) {
05135f59 3200 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3201 goto fail_block_groups;
3202 }
3203
8dabb742
SB
3204 ret = btrfs_init_dev_replace(fs_info);
3205 if (ret) {
05135f59 3206 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3207 goto fail_block_groups;
3208 }
3209
9b99b115 3210 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3211
c6761a9e 3212 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3213 if (ret) {
05135f59
DS
3214 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3215 ret);
b7c35e81
AJ
3216 goto fail_block_groups;
3217 }
3218
96f3136e 3219 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3220 if (ret) {
05135f59 3221 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3222 goto fail_fsdev_sysfs;
c59021f8 3223 }
3224
c59021f8 3225 ret = btrfs_init_space_info(fs_info);
3226 if (ret) {
05135f59 3227 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3228 goto fail_sysfs;
c59021f8 3229 }
3230
5b4aacef 3231 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3232 if (ret) {
05135f59 3233 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3234 goto fail_sysfs;
1b1d1f66 3235 }
4330e183 3236
6528b99d 3237 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3238 btrfs_warn(fs_info,
52042d8e 3239 "writable mount is not allowed due to too many missing devices");
2365dd3c 3240 goto fail_sysfs;
292fd7fc 3241 }
9078a3e1 3242
a74a4b97
CM
3243 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3244 "btrfs-cleaner");
57506d50 3245 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3246 goto fail_sysfs;
a74a4b97
CM
3247
3248 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3249 tree_root,
3250 "btrfs-transaction");
57506d50 3251 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3252 goto fail_cleaner;
a74a4b97 3253
583b7231 3254 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3255 !fs_info->fs_devices->rotating) {
583b7231 3256 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3257 }
3258
572d9ab7 3259 /*
01327610 3260 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3261 * not have to wait for transaction commit
3262 */
3263 btrfs_apply_pending_changes(fs_info);
3818aea2 3264
21adbd5c 3265#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3266 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3267 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3268 btrfs_test_opt(fs_info,
21adbd5c
SB
3269 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3270 1 : 0,
3271 fs_info->check_integrity_print_mask);
3272 if (ret)
05135f59
DS
3273 btrfs_warn(fs_info,
3274 "failed to initialize integrity check module: %d",
3275 ret);
21adbd5c
SB
3276 }
3277#endif
bcef60f2
AJ
3278 ret = btrfs_read_qgroup_config(fs_info);
3279 if (ret)
3280 goto fail_trans_kthread;
21adbd5c 3281
fd708b81
JB
3282 if (btrfs_build_ref_tree(fs_info))
3283 btrfs_err(fs_info, "couldn't build ref tree");
3284
96da0919
QW
3285 /* do not make disk changes in broken FS or nologreplay is given */
3286 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3287 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3288 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3289 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3290 if (ret) {
63443bf5 3291 err = ret;
28c16cbb 3292 goto fail_qgroup;
79787eaa 3293 }
e02119d5 3294 }
1a40e23b 3295
6bccf3ab 3296 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3297 if (ret)
28c16cbb 3298 goto fail_qgroup;
76dda93c 3299
bc98a42c 3300 if (!sb_rdonly(sb)) {
d68fc57b 3301 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3302 if (ret)
28c16cbb 3303 goto fail_qgroup;
90c711ab
ZB
3304
3305 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3306 ret = btrfs_recover_relocation(tree_root);
90c711ab 3307 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3308 if (ret < 0) {
05135f59
DS
3309 btrfs_warn(fs_info, "failed to recover relocation: %d",
3310 ret);
d7ce5843 3311 err = -EINVAL;
bcef60f2 3312 goto fail_qgroup;
d7ce5843 3313 }
7c2ca468 3314 }
1a40e23b 3315
56e9357a 3316 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3317 if (IS_ERR(fs_info->fs_root)) {
3318 err = PTR_ERR(fs_info->fs_root);
f50f4353 3319 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3320 fs_info->fs_root = NULL;
bcef60f2 3321 goto fail_qgroup;
3140c9a3 3322 }
c289811c 3323
bc98a42c 3324 if (sb_rdonly(sb))
2b6ba629 3325 return 0;
59641015 3326
f8d468a1
OS
3327 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3328 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3329 clear_free_space_tree = 1;
3330 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3331 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3332 btrfs_warn(fs_info, "free space tree is invalid");
3333 clear_free_space_tree = 1;
3334 }
3335
3336 if (clear_free_space_tree) {
f8d468a1
OS
3337 btrfs_info(fs_info, "clearing free space tree");
3338 ret = btrfs_clear_free_space_tree(fs_info);
3339 if (ret) {
3340 btrfs_warn(fs_info,
3341 "failed to clear free space tree: %d", ret);
6bccf3ab 3342 close_ctree(fs_info);
f8d468a1
OS
3343 return ret;
3344 }
3345 }
3346
0b246afa 3347 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3348 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3349 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3350 ret = btrfs_create_free_space_tree(fs_info);
3351 if (ret) {
05135f59
DS
3352 btrfs_warn(fs_info,
3353 "failed to create free space tree: %d", ret);
6bccf3ab 3354 close_ctree(fs_info);
511711af
CM
3355 return ret;
3356 }
3357 }
3358
2b6ba629
ID
3359 down_read(&fs_info->cleanup_work_sem);
3360 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3361 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3362 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3363 close_ctree(fs_info);
2b6ba629
ID
3364 return ret;
3365 }
3366 up_read(&fs_info->cleanup_work_sem);
59641015 3367
2b6ba629
ID
3368 ret = btrfs_resume_balance_async(fs_info);
3369 if (ret) {
05135f59 3370 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3371 close_ctree(fs_info);
2b6ba629 3372 return ret;
e3acc2a6
JB
3373 }
3374
8dabb742
SB
3375 ret = btrfs_resume_dev_replace_async(fs_info);
3376 if (ret) {
05135f59 3377 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3378 close_ctree(fs_info);
8dabb742
SB
3379 return ret;
3380 }
3381
b382a324 3382 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3383 btrfs_discard_resume(fs_info);
b382a324 3384
4bbcaa64 3385 if (!fs_info->uuid_root) {
05135f59 3386 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3387 ret = btrfs_create_uuid_tree(fs_info);
3388 if (ret) {
05135f59
DS
3389 btrfs_warn(fs_info,
3390 "failed to create the UUID tree: %d", ret);
6bccf3ab 3391 close_ctree(fs_info);
f7a81ea4
SB
3392 return ret;
3393 }
0b246afa 3394 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3395 fs_info->generation !=
3396 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3397 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3398 ret = btrfs_check_uuid_tree(fs_info);
3399 if (ret) {
05135f59
DS
3400 btrfs_warn(fs_info,
3401 "failed to check the UUID tree: %d", ret);
6bccf3ab 3402 close_ctree(fs_info);
70f80175
SB
3403 return ret;
3404 }
f7a81ea4 3405 }
afcdd129 3406 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3407
ad2b2c80 3408 return 0;
39279cc3 3409
bcef60f2
AJ
3410fail_qgroup:
3411 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3412fail_trans_kthread:
3413 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3414 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3415 btrfs_free_fs_roots(fs_info);
3f157a2f 3416fail_cleaner:
a74a4b97 3417 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3418
3419 /*
3420 * make sure we're done with the btree inode before we stop our
3421 * kthreads
3422 */
3423 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3424
2365dd3c 3425fail_sysfs:
6618a59b 3426 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3427
b7c35e81
AJ
3428fail_fsdev_sysfs:
3429 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3430
1b1d1f66 3431fail_block_groups:
54067ae9 3432 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3433
3434fail_tree_roots:
9e3aa805
JB
3435 if (fs_info->data_reloc_root)
3436 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3437 free_root_pointers(fs_info, true);
2b8195bb 3438 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3439
39279cc3 3440fail_sb_buffer:
7abadb64 3441 btrfs_stop_all_workers(fs_info);
5cdd7db6 3442 btrfs_free_block_groups(fs_info);
16cdcec7 3443fail_alloc:
586e46e2
ID
3444 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3445
4543df7e 3446 iput(fs_info->btree_inode);
7e662854 3447fail:
586e46e2 3448 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3449 return err;
eb60ceac 3450}
663faf9f 3451ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3452
314b6dd0 3453static void btrfs_end_super_write(struct bio *bio)
f2984462 3454{
314b6dd0
JT
3455 struct btrfs_device *device = bio->bi_private;
3456 struct bio_vec *bvec;
3457 struct bvec_iter_all iter_all;
3458 struct page *page;
3459
3460 bio_for_each_segment_all(bvec, bio, iter_all) {
3461 page = bvec->bv_page;
3462
3463 if (bio->bi_status) {
3464 btrfs_warn_rl_in_rcu(device->fs_info,
3465 "lost page write due to IO error on %s (%d)",
3466 rcu_str_deref(device->name),
3467 blk_status_to_errno(bio->bi_status));
3468 ClearPageUptodate(page);
3469 SetPageError(page);
3470 btrfs_dev_stat_inc_and_print(device,
3471 BTRFS_DEV_STAT_WRITE_ERRS);
3472 } else {
3473 SetPageUptodate(page);
3474 }
3475
3476 put_page(page);
3477 unlock_page(page);
f2984462 3478 }
314b6dd0
JT
3479
3480 bio_put(bio);
f2984462
CM
3481}
3482
8f32380d
JT
3483struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3484 int copy_num)
29c36d72 3485{
29c36d72 3486 struct btrfs_super_block *super;
8f32380d 3487 struct page *page;
29c36d72 3488 u64 bytenr;
8f32380d 3489 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3490
3491 bytenr = btrfs_sb_offset(copy_num);
3492 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3493 return ERR_PTR(-EINVAL);
29c36d72 3494
8f32380d
JT
3495 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3496 if (IS_ERR(page))
3497 return ERR_CAST(page);
29c36d72 3498
8f32380d 3499 super = page_address(page);
96c2e067
AJ
3500 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3501 btrfs_release_disk_super(super);
3502 return ERR_PTR(-ENODATA);
3503 }
3504
3505 if (btrfs_super_bytenr(super) != bytenr) {
8f32380d
JT
3506 btrfs_release_disk_super(super);
3507 return ERR_PTR(-EINVAL);
29c36d72
AJ
3508 }
3509
8f32380d 3510 return super;
29c36d72
AJ
3511}
3512
3513
8f32380d 3514struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3515{
8f32380d 3516 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3517 int i;
3518 u64 transid = 0;
a512bbf8
YZ
3519
3520 /* we would like to check all the supers, but that would make
3521 * a btrfs mount succeed after a mkfs from a different FS.
3522 * So, we need to add a special mount option to scan for
3523 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3524 */
3525 for (i = 0; i < 1; i++) {
8f32380d
JT
3526 super = btrfs_read_dev_one_super(bdev, i);
3527 if (IS_ERR(super))
a512bbf8
YZ
3528 continue;
3529
a512bbf8 3530 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3531 if (latest)
3532 btrfs_release_disk_super(super);
3533
3534 latest = super;
a512bbf8 3535 transid = btrfs_super_generation(super);
a512bbf8
YZ
3536 }
3537 }
92fc03fb 3538
8f32380d 3539 return super;
a512bbf8
YZ
3540}
3541
4eedeb75 3542/*
abbb3b8e 3543 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3544 * pages we use for writing are locked.
4eedeb75 3545 *
abbb3b8e
DS
3546 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3547 * the expected device size at commit time. Note that max_mirrors must be
3548 * same for write and wait phases.
4eedeb75 3549 *
314b6dd0 3550 * Return number of errors when page is not found or submission fails.
4eedeb75 3551 */
a512bbf8 3552static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3553 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3554{
d5178578 3555 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3556 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3557 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3558 int i;
a512bbf8 3559 int errors = 0;
a512bbf8 3560 u64 bytenr;
a512bbf8
YZ
3561
3562 if (max_mirrors == 0)
3563 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3564
d5178578
JT
3565 shash->tfm = fs_info->csum_shash;
3566
a512bbf8 3567 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3568 struct page *page;
3569 struct bio *bio;
3570 struct btrfs_super_block *disk_super;
3571
a512bbf8 3572 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3573 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3574 device->commit_total_bytes)
a512bbf8
YZ
3575 break;
3576
abbb3b8e 3577 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3578
fd08001f
EB
3579 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3580 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3581 sb->csum);
4eedeb75 3582
314b6dd0
JT
3583 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3584 GFP_NOFS);
3585 if (!page) {
abbb3b8e 3586 btrfs_err(device->fs_info,
314b6dd0 3587 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3588 bytenr);
3589 errors++;
4eedeb75 3590 continue;
abbb3b8e 3591 }
634554dc 3592
314b6dd0
JT
3593 /* Bump the refcount for wait_dev_supers() */
3594 get_page(page);
a512bbf8 3595
314b6dd0
JT
3596 disk_super = page_address(page);
3597 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3598
314b6dd0
JT
3599 /*
3600 * Directly use bios here instead of relying on the page cache
3601 * to do I/O, so we don't lose the ability to do integrity
3602 * checking.
3603 */
3604 bio = bio_alloc(GFP_NOFS, 1);
3605 bio_set_dev(bio, device->bdev);
3606 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3607 bio->bi_private = device;
3608 bio->bi_end_io = btrfs_end_super_write;
3609 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3610 offset_in_page(bytenr));
a512bbf8 3611
387125fc 3612 /*
314b6dd0
JT
3613 * We FUA only the first super block. The others we allow to
3614 * go down lazy and there's a short window where the on-disk
3615 * copies might still contain the older version.
387125fc 3616 */
314b6dd0 3617 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3618 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3619 bio->bi_opf |= REQ_FUA;
3620
3621 btrfsic_submit_bio(bio);
a512bbf8
YZ
3622 }
3623 return errors < i ? 0 : -1;
3624}
3625
abbb3b8e
DS
3626/*
3627 * Wait for write completion of superblocks done by write_dev_supers,
3628 * @max_mirrors same for write and wait phases.
3629 *
314b6dd0 3630 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3631 * date.
3632 */
3633static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3634{
abbb3b8e
DS
3635 int i;
3636 int errors = 0;
b6a535fa 3637 bool primary_failed = false;
abbb3b8e
DS
3638 u64 bytenr;
3639
3640 if (max_mirrors == 0)
3641 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3642
3643 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3644 struct page *page;
3645
abbb3b8e
DS
3646 bytenr = btrfs_sb_offset(i);
3647 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3648 device->commit_total_bytes)
3649 break;
3650
314b6dd0
JT
3651 page = find_get_page(device->bdev->bd_inode->i_mapping,
3652 bytenr >> PAGE_SHIFT);
3653 if (!page) {
abbb3b8e 3654 errors++;
b6a535fa
HM
3655 if (i == 0)
3656 primary_failed = true;
abbb3b8e
DS
3657 continue;
3658 }
314b6dd0
JT
3659 /* Page is submitted locked and unlocked once the IO completes */
3660 wait_on_page_locked(page);
3661 if (PageError(page)) {
abbb3b8e 3662 errors++;
b6a535fa
HM
3663 if (i == 0)
3664 primary_failed = true;
3665 }
abbb3b8e 3666
314b6dd0
JT
3667 /* Drop our reference */
3668 put_page(page);
abbb3b8e 3669
314b6dd0
JT
3670 /* Drop the reference from the writing run */
3671 put_page(page);
abbb3b8e
DS
3672 }
3673
b6a535fa
HM
3674 /* log error, force error return */
3675 if (primary_failed) {
3676 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3677 device->devid);
3678 return -1;
3679 }
3680
abbb3b8e
DS
3681 return errors < i ? 0 : -1;
3682}
3683
387125fc
CM
3684/*
3685 * endio for the write_dev_flush, this will wake anyone waiting
3686 * for the barrier when it is done
3687 */
4246a0b6 3688static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3689{
e0ae9994 3690 complete(bio->bi_private);
387125fc
CM
3691}
3692
3693/*
4fc6441a
AJ
3694 * Submit a flush request to the device if it supports it. Error handling is
3695 * done in the waiting counterpart.
387125fc 3696 */
4fc6441a 3697static void write_dev_flush(struct btrfs_device *device)
387125fc 3698{
c2a9c7ab 3699 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3700 struct bio *bio = device->flush_bio;
387125fc 3701
c2a9c7ab 3702 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3703 return;
387125fc 3704
e0ae9994 3705 bio_reset(bio);
387125fc 3706 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3707 bio_set_dev(bio, device->bdev);
8d910125 3708 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3709 init_completion(&device->flush_wait);
3710 bio->bi_private = &device->flush_wait;
387125fc 3711
43a01111 3712 btrfsic_submit_bio(bio);
1c3063b6 3713 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3714}
387125fc 3715
4fc6441a
AJ
3716/*
3717 * If the flush bio has been submitted by write_dev_flush, wait for it.
3718 */
8c27cb35 3719static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3720{
4fc6441a 3721 struct bio *bio = device->flush_bio;
387125fc 3722
1c3063b6 3723 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3724 return BLK_STS_OK;
387125fc 3725
1c3063b6 3726 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3727 wait_for_completion_io(&device->flush_wait);
387125fc 3728
8c27cb35 3729 return bio->bi_status;
387125fc 3730}
387125fc 3731
d10b82fe 3732static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3733{
6528b99d 3734 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3735 return -EIO;
387125fc
CM
3736 return 0;
3737}
3738
3739/*
3740 * send an empty flush down to each device in parallel,
3741 * then wait for them
3742 */
3743static int barrier_all_devices(struct btrfs_fs_info *info)
3744{
3745 struct list_head *head;
3746 struct btrfs_device *dev;
5af3e8cc 3747 int errors_wait = 0;
4e4cbee9 3748 blk_status_t ret;
387125fc 3749
1538e6c5 3750 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3751 /* send down all the barriers */
3752 head = &info->fs_devices->devices;
1538e6c5 3753 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3754 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3755 continue;
cea7c8bf 3756 if (!dev->bdev)
387125fc 3757 continue;
e12c9621 3758 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3759 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3760 continue;
3761
4fc6441a 3762 write_dev_flush(dev);
58efbc9f 3763 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3764 }
3765
3766 /* wait for all the barriers */
1538e6c5 3767 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3768 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3769 continue;
387125fc 3770 if (!dev->bdev) {
5af3e8cc 3771 errors_wait++;
387125fc
CM
3772 continue;
3773 }
e12c9621 3774 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3775 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3776 continue;
3777
4fc6441a 3778 ret = wait_dev_flush(dev);
401b41e5
AJ
3779 if (ret) {
3780 dev->last_flush_error = ret;
66b4993e
DS
3781 btrfs_dev_stat_inc_and_print(dev,
3782 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3783 errors_wait++;
401b41e5
AJ
3784 }
3785 }
3786
cea7c8bf 3787 if (errors_wait) {
401b41e5
AJ
3788 /*
3789 * At some point we need the status of all disks
3790 * to arrive at the volume status. So error checking
3791 * is being pushed to a separate loop.
3792 */
d10b82fe 3793 return check_barrier_error(info);
387125fc 3794 }
387125fc
CM
3795 return 0;
3796}
3797
943c6e99
ZL
3798int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3799{
8789f4fe
ZL
3800 int raid_type;
3801 int min_tolerated = INT_MAX;
943c6e99 3802
8789f4fe
ZL
3803 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3804 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3805 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3806 btrfs_raid_array[BTRFS_RAID_SINGLE].
3807 tolerated_failures);
943c6e99 3808
8789f4fe
ZL
3809 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3810 if (raid_type == BTRFS_RAID_SINGLE)
3811 continue;
41a6e891 3812 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3813 continue;
8c3e3582 3814 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3815 btrfs_raid_array[raid_type].
3816 tolerated_failures);
3817 }
943c6e99 3818
8789f4fe 3819 if (min_tolerated == INT_MAX) {
ab8d0fc4 3820 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3821 min_tolerated = 0;
3822 }
3823
3824 return min_tolerated;
943c6e99
ZL
3825}
3826
eece6a9c 3827int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3828{
e5e9a520 3829 struct list_head *head;
f2984462 3830 struct btrfs_device *dev;
a061fc8d 3831 struct btrfs_super_block *sb;
f2984462 3832 struct btrfs_dev_item *dev_item;
f2984462
CM
3833 int ret;
3834 int do_barriers;
a236aed1
CM
3835 int max_errors;
3836 int total_errors = 0;
a061fc8d 3837 u64 flags;
f2984462 3838
0b246afa 3839 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3840
3841 /*
3842 * max_mirrors == 0 indicates we're from commit_transaction,
3843 * not from fsync where the tree roots in fs_info have not
3844 * been consistent on disk.
3845 */
3846 if (max_mirrors == 0)
3847 backup_super_roots(fs_info);
f2984462 3848
0b246afa 3849 sb = fs_info->super_for_commit;
a061fc8d 3850 dev_item = &sb->dev_item;
e5e9a520 3851
0b246afa
JM
3852 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3853 head = &fs_info->fs_devices->devices;
3854 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3855
5af3e8cc 3856 if (do_barriers) {
0b246afa 3857 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3858 if (ret) {
3859 mutex_unlock(
0b246afa
JM
3860 &fs_info->fs_devices->device_list_mutex);
3861 btrfs_handle_fs_error(fs_info, ret,
3862 "errors while submitting device barriers.");
5af3e8cc
SB
3863 return ret;
3864 }
3865 }
387125fc 3866
1538e6c5 3867 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3868 if (!dev->bdev) {
3869 total_errors++;
3870 continue;
3871 }
e12c9621 3872 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3873 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3874 continue;
3875
2b82032c 3876 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3877 btrfs_set_stack_device_type(dev_item, dev->type);
3878 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3879 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3880 dev->commit_total_bytes);
ce7213c7
MX
3881 btrfs_set_stack_device_bytes_used(dev_item,
3882 dev->commit_bytes_used);
a061fc8d
CM
3883 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3884 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3885 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3886 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3887 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3888 BTRFS_FSID_SIZE);
a512bbf8 3889
a061fc8d
CM
3890 flags = btrfs_super_flags(sb);
3891 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3892
75cb857d
QW
3893 ret = btrfs_validate_write_super(fs_info, sb);
3894 if (ret < 0) {
3895 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3896 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3897 "unexpected superblock corruption detected");
3898 return -EUCLEAN;
3899 }
3900
abbb3b8e 3901 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3902 if (ret)
3903 total_errors++;
f2984462 3904 }
a236aed1 3905 if (total_errors > max_errors) {
0b246afa
JM
3906 btrfs_err(fs_info, "%d errors while writing supers",
3907 total_errors);
3908 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3909
9d565ba4 3910 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3911 btrfs_handle_fs_error(fs_info, -EIO,
3912 "%d errors while writing supers",
3913 total_errors);
9d565ba4 3914 return -EIO;
a236aed1 3915 }
f2984462 3916
a512bbf8 3917 total_errors = 0;
1538e6c5 3918 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3919 if (!dev->bdev)
3920 continue;
e12c9621 3921 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3922 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3923 continue;
3924
abbb3b8e 3925 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3926 if (ret)
3927 total_errors++;
f2984462 3928 }
0b246afa 3929 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3930 if (total_errors > max_errors) {
0b246afa
JM
3931 btrfs_handle_fs_error(fs_info, -EIO,
3932 "%d errors while writing supers",
3933 total_errors);
79787eaa 3934 return -EIO;
a236aed1 3935 }
f2984462
CM
3936 return 0;
3937}
3938
cb517eab
MX
3939/* Drop a fs root from the radix tree and free it. */
3940void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3941 struct btrfs_root *root)
2619ba1f 3942{
4785e24f
JB
3943 bool drop_ref = false;
3944
4df27c4d 3945 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3946 radix_tree_delete(&fs_info->fs_roots_radix,
3947 (unsigned long)root->root_key.objectid);
af01d2e5 3948 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3949 drop_ref = true;
4df27c4d 3950 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3951
1c1ea4f7 3952 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3953 ASSERT(root->log_root == NULL);
1c1ea4f7 3954 if (root->reloc_root) {
00246528 3955 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3956 root->reloc_root = NULL;
3957 }
3958 }
3321719e 3959
faa2dbf0
JB
3960 if (root->free_ino_pinned)
3961 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3962 if (root->free_ino_ctl)
3963 __btrfs_remove_free_space_cache(root->free_ino_ctl);
0e996e7f
JB
3964 if (root->ino_cache_inode) {
3965 iput(root->ino_cache_inode);
3966 root->ino_cache_inode = NULL;
3967 }
4785e24f
JB
3968 if (drop_ref)
3969 btrfs_put_root(root);
2619ba1f
CM
3970}
3971
c146afad 3972int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3973{
c146afad
YZ
3974 u64 root_objectid = 0;
3975 struct btrfs_root *gang[8];
65d33fd7
QW
3976 int i = 0;
3977 int err = 0;
3978 unsigned int ret = 0;
e089f05c 3979
c146afad 3980 while (1) {
efc34534 3981 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
3982 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3983 (void **)gang, root_objectid,
3984 ARRAY_SIZE(gang));
65d33fd7 3985 if (!ret) {
efc34534 3986 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 3987 break;
65d33fd7 3988 }
5d4f98a2 3989 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3990
c146afad 3991 for (i = 0; i < ret; i++) {
65d33fd7
QW
3992 /* Avoid to grab roots in dead_roots */
3993 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3994 gang[i] = NULL;
3995 continue;
3996 }
3997 /* grab all the search result for later use */
00246528 3998 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 3999 }
efc34534 4000 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4001
65d33fd7
QW
4002 for (i = 0; i < ret; i++) {
4003 if (!gang[i])
4004 continue;
c146afad 4005 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4006 err = btrfs_orphan_cleanup(gang[i]);
4007 if (err)
65d33fd7 4008 break;
00246528 4009 btrfs_put_root(gang[i]);
c146afad
YZ
4010 }
4011 root_objectid++;
4012 }
65d33fd7
QW
4013
4014 /* release the uncleaned roots due to error */
4015 for (; i < ret; i++) {
4016 if (gang[i])
00246528 4017 btrfs_put_root(gang[i]);
65d33fd7
QW
4018 }
4019 return err;
c146afad 4020}
a2135011 4021
6bccf3ab 4022int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4023{
6bccf3ab 4024 struct btrfs_root *root = fs_info->tree_root;
c146afad 4025 struct btrfs_trans_handle *trans;
a74a4b97 4026
0b246afa 4027 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4028 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4029 mutex_unlock(&fs_info->cleaner_mutex);
4030 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4031
4032 /* wait until ongoing cleanup work done */
0b246afa
JM
4033 down_write(&fs_info->cleanup_work_sem);
4034 up_write(&fs_info->cleanup_work_sem);
c71bf099 4035
7a7eaa40 4036 trans = btrfs_join_transaction(root);
3612b495
TI
4037 if (IS_ERR(trans))
4038 return PTR_ERR(trans);
3a45bb20 4039 return btrfs_commit_transaction(trans);
c146afad
YZ
4040}
4041
b105e927 4042void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4043{
c146afad
YZ
4044 int ret;
4045
afcdd129 4046 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4047 /*
4048 * We don't want the cleaner to start new transactions, add more delayed
4049 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4050 * because that frees the task_struct, and the transaction kthread might
4051 * still try to wake up the cleaner.
4052 */
4053 kthread_park(fs_info->cleaner_kthread);
c146afad 4054
7343dd61 4055 /* wait for the qgroup rescan worker to stop */
d06f23d6 4056 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4057
803b2f54
SB
4058 /* wait for the uuid_scan task to finish */
4059 down(&fs_info->uuid_tree_rescan_sem);
4060 /* avoid complains from lockdep et al., set sem back to initial state */
4061 up(&fs_info->uuid_tree_rescan_sem);
4062
837d5b6e 4063 /* pause restriper - we want to resume on mount */
aa1b8cd4 4064 btrfs_pause_balance(fs_info);
837d5b6e 4065
8dabb742
SB
4066 btrfs_dev_replace_suspend_for_unmount(fs_info);
4067
aa1b8cd4 4068 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4069
4070 /* wait for any defraggers to finish */
4071 wait_event(fs_info->transaction_wait,
4072 (atomic_read(&fs_info->defrag_running) == 0));
4073
4074 /* clear out the rbtree of defraggable inodes */
26176e7c 4075 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4076
21c7e756 4077 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4078 cancel_work_sync(&fs_info->async_data_reclaim_work);
21c7e756 4079
b0643e59
DZ
4080 /* Cancel or finish ongoing discard work */
4081 btrfs_discard_cleanup(fs_info);
4082
bc98a42c 4083 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4084 /*
d6fd0ae2
OS
4085 * The cleaner kthread is stopped, so do one final pass over
4086 * unused block groups.
e44163e1 4087 */
0b246afa 4088 btrfs_delete_unused_bgs(fs_info);
e44163e1 4089
f0cc2cd7
FM
4090 /*
4091 * There might be existing delayed inode workers still running
4092 * and holding an empty delayed inode item. We must wait for
4093 * them to complete first because they can create a transaction.
4094 * This happens when someone calls btrfs_balance_delayed_items()
4095 * and then a transaction commit runs the same delayed nodes
4096 * before any delayed worker has done something with the nodes.
4097 * We must wait for any worker here and not at transaction
4098 * commit time since that could cause a deadlock.
4099 * This is a very rare case.
4100 */
4101 btrfs_flush_workqueue(fs_info->delayed_workers);
4102
6bccf3ab 4103 ret = btrfs_commit_super(fs_info);
acce952b 4104 if (ret)
04892340 4105 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4106 }
4107
af722733
LB
4108 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4109 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4110 btrfs_error_commit_super(fs_info);
0f7d52f4 4111
e3029d9f
AV
4112 kthread_stop(fs_info->transaction_kthread);
4113 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4114
e187831e 4115 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4116 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4117
5958253c
QW
4118 if (btrfs_check_quota_leak(fs_info)) {
4119 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4120 btrfs_err(fs_info, "qgroup reserved space leaked");
4121 }
4122
04892340 4123 btrfs_free_qgroup_config(fs_info);
fe816d0f 4124 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4125
963d678b 4126 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4127 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4128 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4129 }
bcc63abb 4130
4297ff84
JB
4131 if (percpu_counter_sum(&fs_info->dio_bytes))
4132 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4133 percpu_counter_sum(&fs_info->dio_bytes));
4134
6618a59b 4135 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4136 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4137
1a4319cc
LB
4138 btrfs_put_block_group_cache(fs_info);
4139
de348ee0
WS
4140 /*
4141 * we must make sure there is not any read request to
4142 * submit after we stopping all workers.
4143 */
4144 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4145 btrfs_stop_all_workers(fs_info);
4146
afcdd129 4147 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4148 free_root_pointers(fs_info, true);
8c38938c 4149 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4150
4e19443d
JB
4151 /*
4152 * We must free the block groups after dropping the fs_roots as we could
4153 * have had an IO error and have left over tree log blocks that aren't
4154 * cleaned up until the fs roots are freed. This makes the block group
4155 * accounting appear to be wrong because there's pending reserved bytes,
4156 * so make sure we do the block group cleanup afterwards.
4157 */
4158 btrfs_free_block_groups(fs_info);
4159
13e6c37b 4160 iput(fs_info->btree_inode);
d6bfde87 4161
21adbd5c 4162#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4163 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4164 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4165#endif
4166
0b86a832 4167 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4168 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4169}
4170
b9fab919
CM
4171int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4172 int atomic)
5f39d397 4173{
1259ab75 4174 int ret;
727011e0 4175 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4176
0b32f4bb 4177 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4178 if (!ret)
4179 return ret;
4180
4181 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4182 parent_transid, atomic);
4183 if (ret == -EAGAIN)
4184 return ret;
1259ab75 4185 return !ret;
5f39d397
CM
4186}
4187
5f39d397
CM
4188void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4189{
0b246afa 4190 struct btrfs_fs_info *fs_info;
06ea65a3 4191 struct btrfs_root *root;
5f39d397 4192 u64 transid = btrfs_header_generation(buf);
b9473439 4193 int was_dirty;
b4ce94de 4194
06ea65a3
JB
4195#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4196 /*
4197 * This is a fast path so only do this check if we have sanity tests
52042d8e 4198 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4199 * outside of the sanity tests.
4200 */
b0132a3b 4201 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4202 return;
4203#endif
4204 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4205 fs_info = root->fs_info;
b9447ef8 4206 btrfs_assert_tree_locked(buf);
0b246afa 4207 if (transid != fs_info->generation)
5d163e0e 4208 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4209 buf->start, transid, fs_info->generation);
0b32f4bb 4210 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4211 if (!was_dirty)
104b4e51
NB
4212 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4213 buf->len,
4214 fs_info->dirty_metadata_batch);
1f21ef0a 4215#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4216 /*
4217 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4218 * but item data not updated.
4219 * So here we should only check item pointers, not item data.
4220 */
4221 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4222 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4223 btrfs_print_leaf(buf);
1f21ef0a
FM
4224 ASSERT(0);
4225 }
4226#endif
eb60ceac
CM
4227}
4228
2ff7e61e 4229static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4230 int flush_delayed)
16cdcec7
MX
4231{
4232 /*
4233 * looks as though older kernels can get into trouble with
4234 * this code, they end up stuck in balance_dirty_pages forever
4235 */
e2d84521 4236 int ret;
16cdcec7
MX
4237
4238 if (current->flags & PF_MEMALLOC)
4239 return;
4240
b53d3f5d 4241 if (flush_delayed)
2ff7e61e 4242 btrfs_balance_delayed_items(fs_info);
16cdcec7 4243
d814a491
EL
4244 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4245 BTRFS_DIRTY_METADATA_THRESH,
4246 fs_info->dirty_metadata_batch);
e2d84521 4247 if (ret > 0) {
0b246afa 4248 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4249 }
16cdcec7
MX
4250}
4251
2ff7e61e 4252void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4253{
2ff7e61e 4254 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4255}
585ad2c3 4256
2ff7e61e 4257void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4258{
2ff7e61e 4259 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4260}
6b80053d 4261
581c1760
QW
4262int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4263 struct btrfs_key *first_key)
6b80053d 4264{
5ab12d1f 4265 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4266 level, first_key);
6b80053d 4267}
0da5468f 4268
2ff7e61e 4269static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4270{
fe816d0f
NB
4271 /* cleanup FS via transaction */
4272 btrfs_cleanup_transaction(fs_info);
4273
0b246afa 4274 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4275 btrfs_run_delayed_iputs(fs_info);
0b246afa 4276 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4277
0b246afa
JM
4278 down_write(&fs_info->cleanup_work_sem);
4279 up_write(&fs_info->cleanup_work_sem);
acce952b 4280}
4281
ef67963d
JB
4282static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4283{
4284 struct btrfs_root *gang[8];
4285 u64 root_objectid = 0;
4286 int ret;
4287
4288 spin_lock(&fs_info->fs_roots_radix_lock);
4289 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4290 (void **)gang, root_objectid,
4291 ARRAY_SIZE(gang))) != 0) {
4292 int i;
4293
4294 for (i = 0; i < ret; i++)
4295 gang[i] = btrfs_grab_root(gang[i]);
4296 spin_unlock(&fs_info->fs_roots_radix_lock);
4297
4298 for (i = 0; i < ret; i++) {
4299 if (!gang[i])
4300 continue;
4301 root_objectid = gang[i]->root_key.objectid;
4302 btrfs_free_log(NULL, gang[i]);
4303 btrfs_put_root(gang[i]);
4304 }
4305 root_objectid++;
4306 spin_lock(&fs_info->fs_roots_radix_lock);
4307 }
4308 spin_unlock(&fs_info->fs_roots_radix_lock);
4309 btrfs_free_log_root_tree(NULL, fs_info);
4310}
4311
143bede5 4312static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4313{
acce952b 4314 struct btrfs_ordered_extent *ordered;
acce952b 4315
199c2a9c 4316 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4317 /*
4318 * This will just short circuit the ordered completion stuff which will
4319 * make sure the ordered extent gets properly cleaned up.
4320 */
199c2a9c 4321 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4322 root_extent_list)
4323 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4324 spin_unlock(&root->ordered_extent_lock);
4325}
4326
4327static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4328{
4329 struct btrfs_root *root;
4330 struct list_head splice;
4331
4332 INIT_LIST_HEAD(&splice);
4333
4334 spin_lock(&fs_info->ordered_root_lock);
4335 list_splice_init(&fs_info->ordered_roots, &splice);
4336 while (!list_empty(&splice)) {
4337 root = list_first_entry(&splice, struct btrfs_root,
4338 ordered_root);
1de2cfde
JB
4339 list_move_tail(&root->ordered_root,
4340 &fs_info->ordered_roots);
199c2a9c 4341
2a85d9ca 4342 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4343 btrfs_destroy_ordered_extents(root);
4344
2a85d9ca
LB
4345 cond_resched();
4346 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4347 }
4348 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4349
4350 /*
4351 * We need this here because if we've been flipped read-only we won't
4352 * get sync() from the umount, so we need to make sure any ordered
4353 * extents that haven't had their dirty pages IO start writeout yet
4354 * actually get run and error out properly.
4355 */
4356 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4357}
4358
35a3621b 4359static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4360 struct btrfs_fs_info *fs_info)
acce952b 4361{
4362 struct rb_node *node;
4363 struct btrfs_delayed_ref_root *delayed_refs;
4364 struct btrfs_delayed_ref_node *ref;
4365 int ret = 0;
4366
4367 delayed_refs = &trans->delayed_refs;
4368
4369 spin_lock(&delayed_refs->lock);
d7df2c79 4370 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4371 spin_unlock(&delayed_refs->lock);
b79ce3dd 4372 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4373 return ret;
4374 }
4375
5c9d028b 4376 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4377 struct btrfs_delayed_ref_head *head;
0e0adbcf 4378 struct rb_node *n;
e78417d1 4379 bool pin_bytes = false;
acce952b 4380
d7df2c79
JB
4381 head = rb_entry(node, struct btrfs_delayed_ref_head,
4382 href_node);
3069bd26 4383 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4384 continue;
3069bd26 4385
d7df2c79 4386 spin_lock(&head->lock);
e3d03965 4387 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4388 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4389 ref_node);
d7df2c79 4390 ref->in_tree = 0;
e3d03965 4391 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4392 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4393 if (!list_empty(&ref->add_list))
4394 list_del(&ref->add_list);
d7df2c79
JB
4395 atomic_dec(&delayed_refs->num_entries);
4396 btrfs_put_delayed_ref(ref);
e78417d1 4397 }
d7df2c79
JB
4398 if (head->must_insert_reserved)
4399 pin_bytes = true;
4400 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4401 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4402 spin_unlock(&head->lock);
4403 spin_unlock(&delayed_refs->lock);
4404 mutex_unlock(&head->mutex);
acce952b 4405
f603bb94
NB
4406 if (pin_bytes) {
4407 struct btrfs_block_group *cache;
4408
4409 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4410 BUG_ON(!cache);
4411
4412 spin_lock(&cache->space_info->lock);
4413 spin_lock(&cache->lock);
4414 cache->pinned += head->num_bytes;
4415 btrfs_space_info_update_bytes_pinned(fs_info,
4416 cache->space_info, head->num_bytes);
4417 cache->reserved -= head->num_bytes;
4418 cache->space_info->bytes_reserved -= head->num_bytes;
4419 spin_unlock(&cache->lock);
4420 spin_unlock(&cache->space_info->lock);
4421 percpu_counter_add_batch(
4422 &cache->space_info->total_bytes_pinned,
4423 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4424
4425 btrfs_put_block_group(cache);
4426
4427 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4428 head->bytenr + head->num_bytes - 1);
4429 }
31890da0 4430 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4431 btrfs_put_delayed_ref_head(head);
acce952b 4432 cond_resched();
4433 spin_lock(&delayed_refs->lock);
4434 }
81f7eb00 4435 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4436
4437 spin_unlock(&delayed_refs->lock);
4438
4439 return ret;
4440}
4441
143bede5 4442static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4443{
4444 struct btrfs_inode *btrfs_inode;
4445 struct list_head splice;
4446
4447 INIT_LIST_HEAD(&splice);
4448
eb73c1b7
MX
4449 spin_lock(&root->delalloc_lock);
4450 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4451
4452 while (!list_empty(&splice)) {
fe816d0f 4453 struct inode *inode = NULL;
eb73c1b7
MX
4454 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4455 delalloc_inodes);
fe816d0f 4456 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4457 spin_unlock(&root->delalloc_lock);
acce952b 4458
fe816d0f
NB
4459 /*
4460 * Make sure we get a live inode and that it'll not disappear
4461 * meanwhile.
4462 */
4463 inode = igrab(&btrfs_inode->vfs_inode);
4464 if (inode) {
4465 invalidate_inode_pages2(inode->i_mapping);
4466 iput(inode);
4467 }
eb73c1b7 4468 spin_lock(&root->delalloc_lock);
acce952b 4469 }
eb73c1b7
MX
4470 spin_unlock(&root->delalloc_lock);
4471}
4472
4473static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4474{
4475 struct btrfs_root *root;
4476 struct list_head splice;
4477
4478 INIT_LIST_HEAD(&splice);
4479
4480 spin_lock(&fs_info->delalloc_root_lock);
4481 list_splice_init(&fs_info->delalloc_roots, &splice);
4482 while (!list_empty(&splice)) {
4483 root = list_first_entry(&splice, struct btrfs_root,
4484 delalloc_root);
00246528 4485 root = btrfs_grab_root(root);
eb73c1b7
MX
4486 BUG_ON(!root);
4487 spin_unlock(&fs_info->delalloc_root_lock);
4488
4489 btrfs_destroy_delalloc_inodes(root);
00246528 4490 btrfs_put_root(root);
eb73c1b7
MX
4491
4492 spin_lock(&fs_info->delalloc_root_lock);
4493 }
4494 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4495}
4496
2ff7e61e 4497static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4498 struct extent_io_tree *dirty_pages,
4499 int mark)
4500{
4501 int ret;
acce952b 4502 struct extent_buffer *eb;
4503 u64 start = 0;
4504 u64 end;
acce952b 4505
4506 while (1) {
4507 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4508 mark, NULL);
acce952b 4509 if (ret)
4510 break;
4511
91166212 4512 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4513 while (start <= end) {
0b246afa
JM
4514 eb = find_extent_buffer(fs_info, start);
4515 start += fs_info->nodesize;
fd8b2b61 4516 if (!eb)
acce952b 4517 continue;
fd8b2b61 4518 wait_on_extent_buffer_writeback(eb);
acce952b 4519
fd8b2b61
JB
4520 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4521 &eb->bflags))
4522 clear_extent_buffer_dirty(eb);
4523 free_extent_buffer_stale(eb);
acce952b 4524 }
4525 }
4526
4527 return ret;
4528}
4529
2ff7e61e 4530static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4531 struct extent_io_tree *unpin)
acce952b 4532{
acce952b 4533 u64 start;
4534 u64 end;
4535 int ret;
4536
acce952b 4537 while (1) {
0e6ec385
FM
4538 struct extent_state *cached_state = NULL;
4539
fcd5e742
LF
4540 /*
4541 * The btrfs_finish_extent_commit() may get the same range as
4542 * ours between find_first_extent_bit and clear_extent_dirty.
4543 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4544 * the same extent range.
4545 */
4546 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4547 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4548 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4549 if (ret) {
4550 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4551 break;
fcd5e742 4552 }
acce952b 4553
0e6ec385
FM
4554 clear_extent_dirty(unpin, start, end, &cached_state);
4555 free_extent_state(cached_state);
2ff7e61e 4556 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4557 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4558 cond_resched();
4559 }
4560
4561 return 0;
4562}
4563
32da5386 4564static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4565{
4566 struct inode *inode;
4567
4568 inode = cache->io_ctl.inode;
4569 if (inode) {
4570 invalidate_inode_pages2(inode->i_mapping);
4571 BTRFS_I(inode)->generation = 0;
4572 cache->io_ctl.inode = NULL;
4573 iput(inode);
4574 }
bbc37d6e 4575 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4576 btrfs_put_block_group(cache);
4577}
4578
4579void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4580 struct btrfs_fs_info *fs_info)
c79a1751 4581{
32da5386 4582 struct btrfs_block_group *cache;
c79a1751
LB
4583
4584 spin_lock(&cur_trans->dirty_bgs_lock);
4585 while (!list_empty(&cur_trans->dirty_bgs)) {
4586 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4587 struct btrfs_block_group,
c79a1751 4588 dirty_list);
c79a1751
LB
4589
4590 if (!list_empty(&cache->io_list)) {
4591 spin_unlock(&cur_trans->dirty_bgs_lock);
4592 list_del_init(&cache->io_list);
4593 btrfs_cleanup_bg_io(cache);
4594 spin_lock(&cur_trans->dirty_bgs_lock);
4595 }
4596
4597 list_del_init(&cache->dirty_list);
4598 spin_lock(&cache->lock);
4599 cache->disk_cache_state = BTRFS_DC_ERROR;
4600 spin_unlock(&cache->lock);
4601
4602 spin_unlock(&cur_trans->dirty_bgs_lock);
4603 btrfs_put_block_group(cache);
ba2c4d4e 4604 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4605 spin_lock(&cur_trans->dirty_bgs_lock);
4606 }
4607 spin_unlock(&cur_trans->dirty_bgs_lock);
4608
45ae2c18
NB
4609 /*
4610 * Refer to the definition of io_bgs member for details why it's safe
4611 * to use it without any locking
4612 */
c79a1751
LB
4613 while (!list_empty(&cur_trans->io_bgs)) {
4614 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4615 struct btrfs_block_group,
c79a1751 4616 io_list);
c79a1751
LB
4617
4618 list_del_init(&cache->io_list);
4619 spin_lock(&cache->lock);
4620 cache->disk_cache_state = BTRFS_DC_ERROR;
4621 spin_unlock(&cache->lock);
4622 btrfs_cleanup_bg_io(cache);
4623 }
4624}
4625
49b25e05 4626void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4627 struct btrfs_fs_info *fs_info)
49b25e05 4628{
bbbf7243
NB
4629 struct btrfs_device *dev, *tmp;
4630
2ff7e61e 4631 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4632 ASSERT(list_empty(&cur_trans->dirty_bgs));
4633 ASSERT(list_empty(&cur_trans->io_bgs));
4634
bbbf7243
NB
4635 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4636 post_commit_list) {
4637 list_del_init(&dev->post_commit_list);
4638 }
4639
2ff7e61e 4640 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4641
4a9d8bde 4642 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4643 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4644
4a9d8bde 4645 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4646 wake_up(&fs_info->transaction_wait);
49b25e05 4647
ccdf9b30 4648 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4649
2ff7e61e 4650 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4651 EXTENT_DIRTY);
fe119a6e 4652 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4653
4a9d8bde
MX
4654 cur_trans->state =TRANS_STATE_COMPLETED;
4655 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4656}
4657
2ff7e61e 4658static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4659{
4660 struct btrfs_transaction *t;
acce952b 4661
0b246afa 4662 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4663
0b246afa
JM
4664 spin_lock(&fs_info->trans_lock);
4665 while (!list_empty(&fs_info->trans_list)) {
4666 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4667 struct btrfs_transaction, list);
4668 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4669 refcount_inc(&t->use_count);
0b246afa 4670 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4671 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4672 btrfs_put_transaction(t);
0b246afa 4673 spin_lock(&fs_info->trans_lock);
724e2315
JB
4674 continue;
4675 }
0b246afa 4676 if (t == fs_info->running_transaction) {
724e2315 4677 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4678 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4679 /*
4680 * We wait for 0 num_writers since we don't hold a trans
4681 * handle open currently for this transaction.
4682 */
4683 wait_event(t->writer_wait,
4684 atomic_read(&t->num_writers) == 0);
4685 } else {
0b246afa 4686 spin_unlock(&fs_info->trans_lock);
724e2315 4687 }
2ff7e61e 4688 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4689
0b246afa
JM
4690 spin_lock(&fs_info->trans_lock);
4691 if (t == fs_info->running_transaction)
4692 fs_info->running_transaction = NULL;
acce952b 4693 list_del_init(&t->list);
0b246afa 4694 spin_unlock(&fs_info->trans_lock);
acce952b 4695
724e2315 4696 btrfs_put_transaction(t);
2ff7e61e 4697 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4698 spin_lock(&fs_info->trans_lock);
724e2315 4699 }
0b246afa
JM
4700 spin_unlock(&fs_info->trans_lock);
4701 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4702 btrfs_destroy_delayed_inodes(fs_info);
4703 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4704 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4705 btrfs_drop_all_logs(fs_info);
0b246afa 4706 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4707
4708 return 0;
4709}