btrfs: move btrfs on-disk definitions out of ctree.h
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
141386e1
JB
66static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67{
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70}
71
d352ac68
CM
72/*
73 * async submit bios are used to offload expensive checksumming
74 * onto the worker threads. They checksum file and metadata bios
75 * just before they are sent down the IO stack.
76 */
44b8bd7e 77struct async_submit_bio {
8896a08d 78 struct inode *inode;
44b8bd7e 79 struct bio *bio;
a758781d 80 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 81 int mirror_num;
1941b64b
QW
82
83 /* Optional parameter for submit_bio_start used by direct io */
84 u64 dio_file_offset;
8b712842 85 struct btrfs_work work;
4e4cbee9 86 blk_status_t status;
44b8bd7e
CM
87};
88
d352ac68 89/*
2996e1f8 90 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 91 */
c67b3892 92static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 93{
d5178578 94 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 95 const int num_pages = num_extent_pages(buf);
a26663e7 96 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 97 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 98 char *kaddr;
e9be5a30 99 int i;
d5178578
JT
100
101 shash->tfm = fs_info->csum_shash;
102 crypto_shash_init(shash);
a26663e7 103 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 104 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 105 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 106
e9be5a30
DS
107 for (i = 1; i < num_pages; i++) {
108 kaddr = page_address(buf->pages[i]);
109 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 110 }
71a63551 111 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 112 crypto_shash_final(shash, result);
19c00ddc
CM
113}
114
d352ac68
CM
115/*
116 * we can't consider a given block up to date unless the transid of the
117 * block matches the transid in the parent node's pointer. This is how we
118 * detect blocks that either didn't get written at all or got written
119 * in the wrong place.
120 */
1259ab75 121static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
122 struct extent_buffer *eb, u64 parent_transid,
123 int atomic)
1259ab75 124{
2ac55d41 125 struct extent_state *cached_state = NULL;
1259ab75
CM
126 int ret;
127
128 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 return 0;
130
b9fab919
CM
131 if (atomic)
132 return -EAGAIN;
133
570eb97b 134 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
0b32f4bb 135 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
136 btrfs_header_generation(eb) == parent_transid) {
137 ret = 0;
138 goto out;
139 }
94647322 140 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
141"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
142 eb->start, eb->read_mirror,
29549aec 143 parent_transid, btrfs_header_generation(eb));
1259ab75 144 ret = 1;
35b22c19 145 clear_extent_buffer_uptodate(eb);
33958dc6 146out:
570eb97b
JB
147 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
148 &cached_state);
1259ab75 149 return ret;
1259ab75
CM
150}
151
e7e16f48
JT
152static bool btrfs_supported_super_csum(u16 csum_type)
153{
154 switch (csum_type) {
155 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 156 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 157 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 158 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
159 return true;
160 default:
161 return false;
162 }
163}
164
1104a885
DS
165/*
166 * Return 0 if the superblock checksum type matches the checksum value of that
167 * algorithm. Pass the raw disk superblock data.
168 */
3d17adea
QW
169int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
170 const struct btrfs_super_block *disk_sb)
1104a885 171{
51bce6c9 172 char result[BTRFS_CSUM_SIZE];
d5178578
JT
173 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
174
175 shash->tfm = fs_info->csum_shash;
1104a885 176
51bce6c9
JT
177 /*
178 * The super_block structure does not span the whole
179 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
180 * filled with zeros and is included in the checksum.
181 */
3d17adea 182 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 183 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 184
55fc29be 185 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 186 return 1;
1104a885 187
e7e16f48 188 return 0;
1104a885
DS
189}
190
e064d5e9 191int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 192 struct btrfs_key *first_key, u64 parent_transid)
581c1760 193{
e064d5e9 194 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
195 int found_level;
196 struct btrfs_key found_key;
197 int ret;
198
199 found_level = btrfs_header_level(eb);
200 if (found_level != level) {
63489055
QW
201 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
202 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
203 btrfs_err(fs_info,
204"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
205 eb->start, level, found_level);
581c1760
QW
206 return -EIO;
207 }
208
209 if (!first_key)
210 return 0;
211
5d41be6f
QW
212 /*
213 * For live tree block (new tree blocks in current transaction),
214 * we need proper lock context to avoid race, which is impossible here.
215 * So we only checks tree blocks which is read from disk, whose
216 * generation <= fs_info->last_trans_committed.
217 */
218 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
219 return 0;
62fdaa52
QW
220
221 /* We have @first_key, so this @eb must have at least one item */
222 if (btrfs_header_nritems(eb) == 0) {
223 btrfs_err(fs_info,
224 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
225 eb->start);
226 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
227 return -EUCLEAN;
228 }
229
581c1760
QW
230 if (found_level)
231 btrfs_node_key_to_cpu(eb, &found_key, 0);
232 else
233 btrfs_item_key_to_cpu(eb, &found_key, 0);
234 ret = btrfs_comp_cpu_keys(first_key, &found_key);
235
581c1760 236 if (ret) {
63489055
QW
237 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
238 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 239 btrfs_err(fs_info,
ff76a864
LB
240"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
241 eb->start, parent_transid, first_key->objectid,
242 first_key->type, first_key->offset,
243 found_key.objectid, found_key.type,
244 found_key.offset);
581c1760 245 }
581c1760
QW
246 return ret;
247}
248
d352ac68
CM
249/*
250 * helper to read a given tree block, doing retries as required when
251 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
252 *
253 * @parent_transid: expected transid, skip check if 0
254 * @level: expected level, mandatory check
255 * @first_key: expected key of first slot, skip check if NULL
d352ac68 256 */
6a2e9dc4
FM
257int btrfs_read_extent_buffer(struct extent_buffer *eb,
258 u64 parent_transid, int level,
259 struct btrfs_key *first_key)
f188591e 260{
5ab12d1f 261 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 262 struct extent_io_tree *io_tree;
ea466794 263 int failed = 0;
f188591e
CM
264 int ret;
265 int num_copies = 0;
266 int mirror_num = 0;
ea466794 267 int failed_mirror = 0;
f188591e 268
0b246afa 269 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 270 while (1) {
f8397d69 271 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 272 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 273 if (!ret) {
581c1760 274 if (verify_parent_transid(io_tree, eb,
b9fab919 275 parent_transid, 0))
256dd1bb 276 ret = -EIO;
e064d5e9 277 else if (btrfs_verify_level_key(eb, level,
448de471 278 first_key, parent_transid))
581c1760
QW
279 ret = -EUCLEAN;
280 else
281 break;
256dd1bb 282 }
d397712b 283
0b246afa 284 num_copies = btrfs_num_copies(fs_info,
f188591e 285 eb->start, eb->len);
4235298e 286 if (num_copies == 1)
ea466794 287 break;
4235298e 288
5cf1ab56
JB
289 if (!failed_mirror) {
290 failed = 1;
291 failed_mirror = eb->read_mirror;
292 }
293
f188591e 294 mirror_num++;
ea466794
JB
295 if (mirror_num == failed_mirror)
296 mirror_num++;
297
4235298e 298 if (mirror_num > num_copies)
ea466794 299 break;
f188591e 300 }
ea466794 301
c0901581 302 if (failed && !ret && failed_mirror)
20a1fbf9 303 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
304
305 return ret;
f188591e 306}
19c00ddc 307
eca0f6f6
QW
308static int csum_one_extent_buffer(struct extent_buffer *eb)
309{
310 struct btrfs_fs_info *fs_info = eb->fs_info;
311 u8 result[BTRFS_CSUM_SIZE];
312 int ret;
313
314 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
315 offsetof(struct btrfs_header, fsid),
316 BTRFS_FSID_SIZE) == 0);
317 csum_tree_block(eb, result);
318
319 if (btrfs_header_level(eb))
320 ret = btrfs_check_node(eb);
321 else
322 ret = btrfs_check_leaf_full(eb);
323
3777369f
QW
324 if (ret < 0)
325 goto error;
326
327 /*
328 * Also check the generation, the eb reached here must be newer than
329 * last committed. Or something seriously wrong happened.
330 */
331 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
332 ret = -EUCLEAN;
eca0f6f6 333 btrfs_err(fs_info,
3777369f
QW
334 "block=%llu bad generation, have %llu expect > %llu",
335 eb->start, btrfs_header_generation(eb),
336 fs_info->last_trans_committed);
337 goto error;
eca0f6f6
QW
338 }
339 write_extent_buffer(eb, result, 0, fs_info->csum_size);
340
341 return 0;
3777369f
QW
342
343error:
344 btrfs_print_tree(eb, 0);
345 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
346 eb->start);
347 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
348 return ret;
eca0f6f6
QW
349}
350
351/* Checksum all dirty extent buffers in one bio_vec */
352static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
353 struct bio_vec *bvec)
354{
355 struct page *page = bvec->bv_page;
356 u64 bvec_start = page_offset(page) + bvec->bv_offset;
357 u64 cur;
358 int ret = 0;
359
360 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
361 cur += fs_info->nodesize) {
362 struct extent_buffer *eb;
363 bool uptodate;
364
365 eb = find_extent_buffer(fs_info, cur);
366 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
367 fs_info->nodesize);
368
01cd3909 369 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
370 if (WARN_ON(!eb))
371 return -EUCLEAN;
372
373 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
374 free_extent_buffer(eb);
375 return -EUCLEAN;
376 }
377 if (WARN_ON(!uptodate)) {
378 free_extent_buffer(eb);
379 return -EUCLEAN;
380 }
381
382 ret = csum_one_extent_buffer(eb);
383 free_extent_buffer(eb);
384 if (ret < 0)
385 return ret;
386 }
387 return ret;
388}
389
d352ac68 390/*
ac303b69
QW
391 * Checksum a dirty tree block before IO. This has extra checks to make sure
392 * we only fill in the checksum field in the first page of a multi-page block.
393 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 394 */
ac303b69 395static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 396{
ac303b69 397 struct page *page = bvec->bv_page;
4eee4fa4 398 u64 start = page_offset(page);
19c00ddc 399 u64 found_start;
19c00ddc 400 struct extent_buffer *eb;
eca0f6f6 401
fbca46eb 402 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 403 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 404
4f2de97a
JB
405 eb = (struct extent_buffer *)page->private;
406 if (page != eb->pages[0])
407 return 0;
0f805531 408
19c00ddc 409 found_start = btrfs_header_bytenr(eb);
d3575156
NA
410
411 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
412 WARN_ON(found_start != 0);
413 return 0;
414 }
415
0f805531
AL
416 /*
417 * Please do not consolidate these warnings into a single if.
418 * It is useful to know what went wrong.
419 */
420 if (WARN_ON(found_start != start))
421 return -EUCLEAN;
422 if (WARN_ON(!PageUptodate(page)))
423 return -EUCLEAN;
424
eca0f6f6 425 return csum_one_extent_buffer(eb);
19c00ddc
CM
426}
427
b0c9b3b0 428static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 429{
b0c9b3b0 430 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 431 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 432 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 433 u8 *metadata_uuid;
2b82032c 434
9a8658e3
DS
435 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
436 BTRFS_FSID_SIZE);
944d3f9f
NB
437 /*
438 * Checking the incompat flag is only valid for the current fs. For
439 * seed devices it's forbidden to have their uuid changed so reading
440 * ->fsid in this case is fine
441 */
442 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
443 metadata_uuid = fs_devices->metadata_uuid;
444 else
445 metadata_uuid = fs_devices->fsid;
446
447 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
448 return 0;
449
450 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
451 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
452 return 0;
453
454 return 1;
2b82032c
YZ
455}
456
77bf40a2
QW
457/* Do basic extent buffer checks at read time */
458static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 459{
77bf40a2 460 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 461 u64 found_start;
77bf40a2
QW
462 const u32 csum_size = fs_info->csum_size;
463 u8 found_level;
2996e1f8 464 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 465 const u8 *header_csum;
77bf40a2 466 int ret = 0;
ea466794 467
ce9adaa5 468 found_start = btrfs_header_bytenr(eb);
727011e0 469 if (found_start != eb->start) {
8f0ed7d4
QW
470 btrfs_err_rl(fs_info,
471 "bad tree block start, mirror %u want %llu have %llu",
472 eb->read_mirror, eb->start, found_start);
f188591e 473 ret = -EIO;
77bf40a2 474 goto out;
ce9adaa5 475 }
b0c9b3b0 476 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
477 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
478 eb->start, eb->read_mirror);
1259ab75 479 ret = -EIO;
77bf40a2 480 goto out;
1259ab75 481 }
ce9adaa5 482 found_level = btrfs_header_level(eb);
1c24c3ce 483 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
484 btrfs_err(fs_info,
485 "bad tree block level, mirror %u level %d on logical %llu",
486 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 487 ret = -EIO;
77bf40a2 488 goto out;
1c24c3ce 489 }
ce9adaa5 490
c67b3892 491 csum_tree_block(eb, result);
dfd29eed
DS
492 header_csum = page_address(eb->pages[0]) +
493 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 494
dfd29eed 495 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 496 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
497"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
498 eb->start, eb->read_mirror,
dfd29eed 499 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
500 CSUM_FMT_VALUE(csum_size, result),
501 btrfs_header_level(eb));
2996e1f8 502 ret = -EUCLEAN;
77bf40a2 503 goto out;
2996e1f8
JT
504 }
505
a826d6dc
JB
506 /*
507 * If this is a leaf block and it is corrupt, set the corrupt bit so
508 * that we don't try and read the other copies of this block, just
509 * return -EIO.
510 */
1c4360ee 511 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
512 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
513 ret = -EIO;
514 }
ce9adaa5 515
813fd1dc 516 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
517 ret = -EIO;
518
0b32f4bb
JB
519 if (!ret)
520 set_extent_buffer_uptodate(eb);
75391f0d
QW
521 else
522 btrfs_err(fs_info,
8f0ed7d4
QW
523 "read time tree block corruption detected on logical %llu mirror %u",
524 eb->start, eb->read_mirror);
77bf40a2
QW
525out:
526 return ret;
527}
528
371cdc07
QW
529static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
530 int mirror)
531{
532 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
533 struct extent_buffer *eb;
534 bool reads_done;
535 int ret = 0;
536
537 /*
538 * We don't allow bio merge for subpage metadata read, so we should
539 * only get one eb for each endio hook.
540 */
541 ASSERT(end == start + fs_info->nodesize - 1);
542 ASSERT(PagePrivate(page));
543
544 eb = find_extent_buffer(fs_info, start);
545 /*
546 * When we are reading one tree block, eb must have been inserted into
547 * the radix tree. If not, something is wrong.
548 */
549 ASSERT(eb);
550
551 reads_done = atomic_dec_and_test(&eb->io_pages);
552 /* Subpage read must finish in page read */
553 ASSERT(reads_done);
554
555 eb->read_mirror = mirror;
556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 ret = -EIO;
558 goto err;
559 }
560 ret = validate_extent_buffer(eb);
561 if (ret < 0)
562 goto err;
563
371cdc07
QW
564 set_extent_buffer_uptodate(eb);
565
566 free_extent_buffer(eb);
567 return ret;
568err:
569 /*
570 * end_bio_extent_readpage decrements io_pages in case of error,
571 * make sure it has something to decrement.
572 */
573 atomic_inc(&eb->io_pages);
574 clear_extent_buffer_uptodate(eb);
575 free_extent_buffer(eb);
576 return ret;
577}
578
c3a3b19b 579int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
580 struct page *page, u64 start, u64 end,
581 int mirror)
582{
583 struct extent_buffer *eb;
584 int ret = 0;
585 int reads_done;
586
587 ASSERT(page->private);
371cdc07 588
fbca46eb 589 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
371cdc07
QW
590 return validate_subpage_buffer(page, start, end, mirror);
591
77bf40a2
QW
592 eb = (struct extent_buffer *)page->private;
593
594 /*
595 * The pending IO might have been the only thing that kept this buffer
596 * in memory. Make sure we have a ref for all this other checks
597 */
598 atomic_inc(&eb->refs);
599
600 reads_done = atomic_dec_and_test(&eb->io_pages);
601 if (!reads_done)
602 goto err;
603
604 eb->read_mirror = mirror;
605 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
606 ret = -EIO;
607 goto err;
608 }
609 ret = validate_extent_buffer(eb);
ce9adaa5 610err:
53b381b3
DW
611 if (ret) {
612 /*
613 * our io error hook is going to dec the io pages
614 * again, we have to make sure it has something
615 * to decrement
616 */
617 atomic_inc(&eb->io_pages);
0b32f4bb 618 clear_extent_buffer_uptodate(eb);
53b381b3 619 }
0b32f4bb 620 free_extent_buffer(eb);
77bf40a2 621
f188591e 622 return ret;
ce9adaa5
CM
623}
624
4a69a410
CM
625static void run_one_async_start(struct btrfs_work *work)
626{
4a69a410 627 struct async_submit_bio *async;
4e4cbee9 628 blk_status_t ret;
4a69a410
CM
629
630 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
631 ret = async->submit_bio_start(async->inode, async->bio,
632 async->dio_file_offset);
79787eaa 633 if (ret)
4e4cbee9 634 async->status = ret;
4a69a410
CM
635}
636
06ea01b1
DS
637/*
638 * In order to insert checksums into the metadata in large chunks, we wait
639 * until bio submission time. All the pages in the bio are checksummed and
640 * sums are attached onto the ordered extent record.
641 *
642 * At IO completion time the csums attached on the ordered extent record are
643 * inserted into the tree.
644 */
4a69a410 645static void run_one_async_done(struct btrfs_work *work)
8b712842 646{
917f32a2
CH
647 struct async_submit_bio *async =
648 container_of(work, struct async_submit_bio, work);
649 struct inode *inode = async->inode;
650 struct btrfs_bio *bbio = btrfs_bio(async->bio);
4854ddd0 651
bb7ab3b9 652 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9 653 if (async->status) {
917f32a2 654 btrfs_bio_end_io(bbio, async->status);
79787eaa
JM
655 return;
656 }
657
ec39f769
CM
658 /*
659 * All of the bios that pass through here are from async helpers.
660 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
661 * This changes nothing when cgroups aren't in use.
662 */
663 async->bio->bi_opf |= REQ_CGROUP_PUNT;
1a722d8f 664 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
4a69a410
CM
665}
666
667static void run_one_async_free(struct btrfs_work *work)
668{
669 struct async_submit_bio *async;
670
671 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
672 kfree(async);
673}
674
ea1f0ced
CH
675/*
676 * Submit bio to an async queue.
677 *
678 * Retrun:
679 * - true if the work has been succesfuly submitted
680 * - false in case of error
681 */
682bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
683 u64 dio_file_offset,
684 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 685{
8896a08d 686 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
687 struct async_submit_bio *async;
688
689 async = kmalloc(sizeof(*async), GFP_NOFS);
690 if (!async)
ea1f0ced 691 return false;
44b8bd7e 692
8896a08d 693 async->inode = inode;
44b8bd7e
CM
694 async->bio = bio;
695 async->mirror_num = mirror_num;
4a69a410 696 async->submit_bio_start = submit_bio_start;
4a69a410 697
a0cac0ec
OS
698 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
699 run_one_async_free);
4a69a410 700
1941b64b 701 async->dio_file_offset = dio_file_offset;
8c8bee1d 702
4e4cbee9 703 async->status = 0;
79787eaa 704
67f055c7 705 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
706 btrfs_queue_work(fs_info->hipri_workers, &async->work);
707 else
708 btrfs_queue_work(fs_info->workers, &async->work);
ea1f0ced 709 return true;
44b8bd7e
CM
710}
711
4e4cbee9 712static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 713{
2c30c71b 714 struct bio_vec *bvec;
ce3ed71a 715 struct btrfs_root *root;
2b070cfe 716 int ret = 0;
6dc4f100 717 struct bvec_iter_all iter_all;
ce3ed71a 718
c09abff8 719 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 720 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 721 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 722 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
723 if (ret)
724 break;
ce3ed71a 725 }
2c30c71b 726
4e4cbee9 727 return errno_to_blk_status(ret);
ce3ed71a
CM
728}
729
8896a08d 730static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 731 u64 dio_file_offset)
22c59948 732{
8b712842
CM
733 /*
734 * when we're called for a write, we're already in the async
1a722d8f 735 * submission context. Just jump into btrfs_submit_bio.
8b712842 736 */
79787eaa 737 return btree_csum_one_bio(bio);
4a69a410 738}
22c59948 739
f4dcfb30 740static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 741 struct btrfs_inode *bi)
de0022b9 742{
4eef29ef 743 if (btrfs_is_zoned(fs_info))
f4dcfb30 744 return false;
6300463b 745 if (atomic_read(&bi->sync_writers))
f4dcfb30 746 return false;
9b4e675a 747 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
748 return false;
749 return true;
de0022b9
JB
750}
751
94d9e11b 752void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 753{
0b246afa 754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
917f32a2 755 struct btrfs_bio *bbio = btrfs_bio(bio);
4e4cbee9 756 blk_status_t ret;
cad321ad 757
08a6f464
CH
758 bio->bi_opf |= REQ_META;
759
cfe94440 760 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
1a722d8f
CH
761 btrfs_submit_bio(fs_info, bio, mirror_num);
762 return;
44b8bd7e 763 }
d313d7a3 764
ea1f0ced
CH
765 /*
766 * Kthread helpers are used to submit writes so that checksumming can
767 * happen in parallel across all CPUs.
768 */
769 if (should_async_write(fs_info, BTRFS_I(inode)) &&
770 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
771 return;
772
773 ret = btree_csum_one_bio(bio);
94d9e11b 774 if (ret) {
917f32a2 775 btrfs_bio_end_io(bbio, ret);
ea1f0ced 776 return;
94d9e11b 777 }
ea1f0ced
CH
778
779 btrfs_submit_bio(fs_info, bio, mirror_num);
44b8bd7e
CM
780}
781
3dd1462e 782#ifdef CONFIG_MIGRATION
8958b551
MWO
783static int btree_migrate_folio(struct address_space *mapping,
784 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
785{
786 /*
787 * we can't safely write a btree page from here,
788 * we haven't done the locking hook
789 */
8958b551 790 if (folio_test_dirty(src))
784b4e29
CM
791 return -EAGAIN;
792 /*
793 * Buffers may be managed in a filesystem specific way.
794 * We must have no buffers or drop them.
795 */
8958b551
MWO
796 if (folio_get_private(src) &&
797 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 798 return -EAGAIN;
54184650 799 return migrate_folio(mapping, dst, src, mode);
784b4e29 800}
8958b551
MWO
801#else
802#define btree_migrate_folio NULL
3dd1462e 803#endif
784b4e29 804
0da5468f
CM
805static int btree_writepages(struct address_space *mapping,
806 struct writeback_control *wbc)
807{
e2d84521
MX
808 struct btrfs_fs_info *fs_info;
809 int ret;
810
d8d5f3e1 811 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
812
813 if (wbc->for_kupdate)
814 return 0;
815
e2d84521 816 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 817 /* this is a bit racy, but that's ok */
d814a491
EL
818 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
819 BTRFS_DIRTY_METADATA_THRESH,
820 fs_info->dirty_metadata_batch);
e2d84521 821 if (ret < 0)
793955bc 822 return 0;
793955bc 823 }
0b32f4bb 824 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
825}
826
f913cff3 827static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 828{
f913cff3
MWO
829 if (folio_test_writeback(folio) || folio_test_dirty(folio))
830 return false;
0c4e538b 831
f913cff3 832 return try_release_extent_buffer(&folio->page);
d98237b3
CM
833}
834
895586eb
MWO
835static void btree_invalidate_folio(struct folio *folio, size_t offset,
836 size_t length)
d98237b3 837{
d1310b2e 838 struct extent_io_tree *tree;
895586eb
MWO
839 tree = &BTRFS_I(folio->mapping->host)->io_tree;
840 extent_invalidate_folio(tree, folio, offset);
f913cff3 841 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
842 if (folio_get_private(folio)) {
843 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
844 "folio private not zero on folio %llu",
845 (unsigned long long)folio_pos(folio));
846 folio_detach_private(folio);
9ad6b7bc 847 }
d98237b3
CM
848}
849
bb146eb2 850#ifdef DEBUG
0079c3b1
MWO
851static bool btree_dirty_folio(struct address_space *mapping,
852 struct folio *folio)
853{
854 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 855 struct btrfs_subpage *subpage;
0b32f4bb 856 struct extent_buffer *eb;
139e8cd3 857 int cur_bit = 0;
0079c3b1 858 u64 page_start = folio_pos(folio);
139e8cd3
QW
859
860 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 861 eb = folio_get_private(folio);
139e8cd3
QW
862 BUG_ON(!eb);
863 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
864 BUG_ON(!atomic_read(&eb->refs));
49d0c642 865 btrfs_assert_tree_write_locked(eb);
0079c3b1 866 return filemap_dirty_folio(mapping, folio);
139e8cd3 867 }
0079c3b1 868 subpage = folio_get_private(folio);
139e8cd3
QW
869
870 ASSERT(subpage->dirty_bitmap);
871 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
872 unsigned long flags;
873 u64 cur;
874 u16 tmp = (1 << cur_bit);
875
876 spin_lock_irqsave(&subpage->lock, flags);
877 if (!(tmp & subpage->dirty_bitmap)) {
878 spin_unlock_irqrestore(&subpage->lock, flags);
879 cur_bit++;
880 continue;
881 }
882 spin_unlock_irqrestore(&subpage->lock, flags);
883 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 884
139e8cd3
QW
885 eb = find_extent_buffer(fs_info, cur);
886 ASSERT(eb);
887 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
888 ASSERT(atomic_read(&eb->refs));
49d0c642 889 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
890 free_extent_buffer(eb);
891
892 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
893 }
0079c3b1 894 return filemap_dirty_folio(mapping, folio);
0b32f4bb 895}
0079c3b1
MWO
896#else
897#define btree_dirty_folio filemap_dirty_folio
898#endif
0b32f4bb 899
7f09410b 900static const struct address_space_operations btree_aops = {
0da5468f 901 .writepages = btree_writepages,
f913cff3 902 .release_folio = btree_release_folio,
895586eb 903 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
904 .migrate_folio = btree_migrate_folio,
905 .dirty_folio = btree_dirty_folio,
d98237b3
CM
906};
907
2ff7e61e
JM
908struct extent_buffer *btrfs_find_create_tree_block(
909 struct btrfs_fs_info *fs_info,
3fbaf258
JB
910 u64 bytenr, u64 owner_root,
911 int level)
0999df54 912{
0b246afa
JM
913 if (btrfs_is_testing(fs_info))
914 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 915 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
916}
917
581c1760
QW
918/*
919 * Read tree block at logical address @bytenr and do variant basic but critical
920 * verification.
921 *
1b7ec85e 922 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
923 * @parent_transid: expected transid of this tree block, skip check if 0
924 * @level: expected level, mandatory check
925 * @first_key: expected key in slot 0, skip check if NULL
926 */
2ff7e61e 927struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
928 u64 owner_root, u64 parent_transid,
929 int level, struct btrfs_key *first_key)
0999df54
CM
930{
931 struct extent_buffer *buf = NULL;
0999df54
CM
932 int ret;
933
3fbaf258 934 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
935 if (IS_ERR(buf))
936 return buf;
0999df54 937
6a2e9dc4 938 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
0f0fe8f7 939 if (ret) {
537f38f0 940 free_extent_buffer_stale(buf);
64c043de 941 return ERR_PTR(ret);
0f0fe8f7 942 }
88c602ab
QW
943 if (btrfs_check_eb_owner(buf, owner_root)) {
944 free_extent_buffer_stale(buf);
945 return ERR_PTR(-EUCLEAN);
946 }
5f39d397 947 return buf;
ce9adaa5 948
eb60ceac
CM
949}
950
6a884d7d 951void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 952{
6a884d7d 953 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 954 if (btrfs_header_generation(buf) ==
e2d84521 955 fs_info->running_transaction->transid) {
49d0c642 956 btrfs_assert_tree_write_locked(buf);
b4ce94de 957
b9473439 958 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
959 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
960 -buf->len,
961 fs_info->dirty_metadata_batch);
ed7b63eb
JB
962 clear_extent_buffer_dirty(buf);
963 }
925baedd 964 }
5f39d397
CM
965}
966
da17066c 967static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 968 u64 objectid)
d97e63b6 969{
7c0260ee 970 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
971
972 memset(&root->root_key, 0, sizeof(root->root_key));
973 memset(&root->root_item, 0, sizeof(root->root_item));
974 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 975 root->fs_info = fs_info;
2e608bd1 976 root->root_key.objectid = objectid;
cfaa7295 977 root->node = NULL;
a28ec197 978 root->commit_root = NULL;
27cdeb70 979 root->state = 0;
abed4aaa 980 RB_CLEAR_NODE(&root->rb_node);
0b86a832 981
0f7d52f4 982 root->last_trans = 0;
6b8fad57 983 root->free_objectid = 0;
eb73c1b7 984 root->nr_delalloc_inodes = 0;
199c2a9c 985 root->nr_ordered_extents = 0;
6bef4d31 986 root->inode_tree = RB_ROOT;
088aea3b 987 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
988
989 btrfs_init_root_block_rsv(root);
0b86a832
CM
990
991 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 992 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
993 INIT_LIST_HEAD(&root->delalloc_inodes);
994 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
995 INIT_LIST_HEAD(&root->ordered_extents);
996 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 997 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
998 INIT_LIST_HEAD(&root->logged_list[0]);
999 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1000 spin_lock_init(&root->inode_lock);
eb73c1b7 1001 spin_lock_init(&root->delalloc_lock);
199c2a9c 1002 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1003 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1004 spin_lock_init(&root->log_extents_lock[0]);
1005 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1006 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1007 mutex_init(&root->objectid_mutex);
e02119d5 1008 mutex_init(&root->log_mutex);
31f3d255 1009 mutex_init(&root->ordered_extent_mutex);
573bfb72 1010 mutex_init(&root->delalloc_mutex);
c53e9653 1011 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1012 init_waitqueue_head(&root->log_writer_wait);
1013 init_waitqueue_head(&root->log_commit_wait[0]);
1014 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1015 INIT_LIST_HEAD(&root->log_ctxs[0]);
1016 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1017 atomic_set(&root->log_commit[0], 0);
1018 atomic_set(&root->log_commit[1], 0);
1019 atomic_set(&root->log_writers, 0);
2ecb7923 1020 atomic_set(&root->log_batch, 0);
0700cea7 1021 refcount_set(&root->refs, 1);
8ecebf4d 1022 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1023 atomic_set(&root->nr_swapfiles, 0);
7237f183 1024 root->log_transid = 0;
d1433deb 1025 root->log_transid_committed = -1;
257c62e1 1026 root->last_log_commit = 0;
2e608bd1 1027 root->anon_dev = 0;
e289f03e 1028 if (!dummy) {
43eb5f29
QW
1029 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1030 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1031 extent_io_tree_init(fs_info, &root->log_csum_range,
1032 IO_TREE_LOG_CSUM_RANGE, NULL);
1033 }
017e5369 1034
5f3ab90a 1035 spin_lock_init(&root->root_item_lock);
370a11b8 1036 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1037#ifdef CONFIG_BTRFS_DEBUG
1038 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 1039 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 1040 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 1041 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 1042#endif
3768f368
CM
1043}
1044
74e4d827 1045static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1046 u64 objectid, gfp_t flags)
6f07e42e 1047{
74e4d827 1048 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1049 if (root)
96dfcb46 1050 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1051 return root;
1052}
1053
06ea65a3
JB
1054#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1055/* Should only be used by the testing infrastructure */
da17066c 1056struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1057{
1058 struct btrfs_root *root;
1059
7c0260ee
JM
1060 if (!fs_info)
1061 return ERR_PTR(-EINVAL);
1062
96dfcb46 1063 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1064 if (!root)
1065 return ERR_PTR(-ENOMEM);
da17066c 1066
b9ef22de 1067 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1068 root->alloc_bytenr = 0;
06ea65a3
JB
1069
1070 return root;
1071}
1072#endif
1073
abed4aaa
JB
1074static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1075{
1076 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1077 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1078
1079 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1080}
1081
1082static int global_root_key_cmp(const void *k, const struct rb_node *node)
1083{
1084 const struct btrfs_key *key = k;
1085 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1086
1087 return btrfs_comp_cpu_keys(key, &root->root_key);
1088}
1089
1090int btrfs_global_root_insert(struct btrfs_root *root)
1091{
1092 struct btrfs_fs_info *fs_info = root->fs_info;
1093 struct rb_node *tmp;
1094
1095 write_lock(&fs_info->global_root_lock);
1096 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1097 write_unlock(&fs_info->global_root_lock);
1098 ASSERT(!tmp);
1099
1100 return tmp ? -EEXIST : 0;
1101}
1102
1103void btrfs_global_root_delete(struct btrfs_root *root)
1104{
1105 struct btrfs_fs_info *fs_info = root->fs_info;
1106
1107 write_lock(&fs_info->global_root_lock);
1108 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1109 write_unlock(&fs_info->global_root_lock);
1110}
1111
1112struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1113 struct btrfs_key *key)
1114{
1115 struct rb_node *node;
1116 struct btrfs_root *root = NULL;
1117
1118 read_lock(&fs_info->global_root_lock);
1119 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1120 if (node)
1121 root = container_of(node, struct btrfs_root, rb_node);
1122 read_unlock(&fs_info->global_root_lock);
1123
1124 return root;
1125}
1126
f7238e50
JB
1127static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1128{
1129 struct btrfs_block_group *block_group;
1130 u64 ret;
1131
1132 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1133 return 0;
1134
1135 if (bytenr)
1136 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1137 else
1138 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1139 ASSERT(block_group);
1140 if (!block_group)
1141 return 0;
1142 ret = block_group->global_root_id;
1143 btrfs_put_block_group(block_group);
1144
1145 return ret;
1146}
1147
abed4aaa
JB
1148struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1149{
1150 struct btrfs_key key = {
1151 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1152 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1153 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1154 };
1155
1156 return btrfs_global_root(fs_info, &key);
1157}
1158
1159struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1160{
1161 struct btrfs_key key = {
1162 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1163 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1164 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1165 };
1166
1167 return btrfs_global_root(fs_info, &key);
1168}
1169
20897f5c 1170struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1171 u64 objectid)
1172{
9b7a2440 1173 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1174 struct extent_buffer *leaf;
1175 struct btrfs_root *tree_root = fs_info->tree_root;
1176 struct btrfs_root *root;
1177 struct btrfs_key key;
b89f6d1f 1178 unsigned int nofs_flag;
20897f5c 1179 int ret = 0;
20897f5c 1180
b89f6d1f
FM
1181 /*
1182 * We're holding a transaction handle, so use a NOFS memory allocation
1183 * context to avoid deadlock if reclaim happens.
1184 */
1185 nofs_flag = memalloc_nofs_save();
96dfcb46 1186 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1187 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1188 if (!root)
1189 return ERR_PTR(-ENOMEM);
1190
20897f5c
AJ
1191 root->root_key.objectid = objectid;
1192 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1193 root->root_key.offset = 0;
1194
9631e4cc
JB
1195 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1196 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1197 if (IS_ERR(leaf)) {
1198 ret = PTR_ERR(leaf);
1dd05682 1199 leaf = NULL;
c1b07854 1200 goto fail;
20897f5c
AJ
1201 }
1202
20897f5c 1203 root->node = leaf;
20897f5c
AJ
1204 btrfs_mark_buffer_dirty(leaf);
1205
1206 root->commit_root = btrfs_root_node(root);
27cdeb70 1207 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1208
f944d2cb
DS
1209 btrfs_set_root_flags(&root->root_item, 0);
1210 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1211 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1212 btrfs_set_root_generation(&root->root_item, trans->transid);
1213 btrfs_set_root_level(&root->root_item, 0);
1214 btrfs_set_root_refs(&root->root_item, 1);
1215 btrfs_set_root_used(&root->root_item, leaf->len);
1216 btrfs_set_root_last_snapshot(&root->root_item, 0);
1217 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1218 if (is_fstree(objectid))
807fc790
AS
1219 generate_random_guid(root->root_item.uuid);
1220 else
1221 export_guid(root->root_item.uuid, &guid_null);
c8422684 1222 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1223
8a6a87cd
BB
1224 btrfs_tree_unlock(leaf);
1225
20897f5c
AJ
1226 key.objectid = objectid;
1227 key.type = BTRFS_ROOT_ITEM_KEY;
1228 key.offset = 0;
1229 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1230 if (ret)
1231 goto fail;
1232
1dd05682
TI
1233 return root;
1234
8a6a87cd 1235fail:
00246528 1236 btrfs_put_root(root);
20897f5c 1237
1dd05682 1238 return ERR_PTR(ret);
20897f5c
AJ
1239}
1240
7237f183
YZ
1241static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1242 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1243{
1244 struct btrfs_root *root;
e02119d5 1245
96dfcb46 1246 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1247 if (!root)
7237f183 1248 return ERR_PTR(-ENOMEM);
e02119d5 1249
e02119d5
CM
1250 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1251 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1252 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1253
6ab6ebb7
NA
1254 return root;
1255}
1256
1257int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1258 struct btrfs_root *root)
1259{
1260 struct extent_buffer *leaf;
1261
7237f183 1262 /*
92a7cc42 1263 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1264 *
92a7cc42
QW
1265 * Log trees are not exposed to user space thus can't be snapshotted,
1266 * and they go away before a real commit is actually done.
1267 *
1268 * They do store pointers to file data extents, and those reference
1269 * counts still get updated (along with back refs to the log tree).
7237f183 1270 */
e02119d5 1271
4d75f8a9 1272 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1273 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1274 if (IS_ERR(leaf))
1275 return PTR_ERR(leaf);
e02119d5 1276
7237f183 1277 root->node = leaf;
e02119d5 1278
e02119d5
CM
1279 btrfs_mark_buffer_dirty(root->node);
1280 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1281
1282 return 0;
7237f183
YZ
1283}
1284
1285int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1286 struct btrfs_fs_info *fs_info)
1287{
1288 struct btrfs_root *log_root;
1289
1290 log_root = alloc_log_tree(trans, fs_info);
1291 if (IS_ERR(log_root))
1292 return PTR_ERR(log_root);
6ab6ebb7 1293
3ddebf27
NA
1294 if (!btrfs_is_zoned(fs_info)) {
1295 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1296
1297 if (ret) {
1298 btrfs_put_root(log_root);
1299 return ret;
1300 }
6ab6ebb7
NA
1301 }
1302
7237f183
YZ
1303 WARN_ON(fs_info->log_root_tree);
1304 fs_info->log_root_tree = log_root;
1305 return 0;
1306}
1307
1308int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1309 struct btrfs_root *root)
1310{
0b246afa 1311 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1312 struct btrfs_root *log_root;
1313 struct btrfs_inode_item *inode_item;
6ab6ebb7 1314 int ret;
7237f183 1315
0b246afa 1316 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1317 if (IS_ERR(log_root))
1318 return PTR_ERR(log_root);
1319
6ab6ebb7
NA
1320 ret = btrfs_alloc_log_tree_node(trans, log_root);
1321 if (ret) {
1322 btrfs_put_root(log_root);
1323 return ret;
1324 }
1325
7237f183
YZ
1326 log_root->last_trans = trans->transid;
1327 log_root->root_key.offset = root->root_key.objectid;
1328
1329 inode_item = &log_root->root_item.inode;
3cae210f
QW
1330 btrfs_set_stack_inode_generation(inode_item, 1);
1331 btrfs_set_stack_inode_size(inode_item, 3);
1332 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1333 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1334 fs_info->nodesize);
3cae210f 1335 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1336
5d4f98a2 1337 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1338
1339 WARN_ON(root->log_root);
1340 root->log_root = log_root;
1341 root->log_transid = 0;
d1433deb 1342 root->log_transid_committed = -1;
257c62e1 1343 root->last_log_commit = 0;
e02119d5
CM
1344 return 0;
1345}
1346
49d11bea
JB
1347static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1348 struct btrfs_path *path,
1349 struct btrfs_key *key)
e02119d5
CM
1350{
1351 struct btrfs_root *root;
1352 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1353 u64 generation;
cb517eab 1354 int ret;
581c1760 1355 int level;
0f7d52f4 1356
96dfcb46 1357 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1358 if (!root)
1359 return ERR_PTR(-ENOMEM);
0f7d52f4 1360
cb517eab
MX
1361 ret = btrfs_find_root(tree_root, key, path,
1362 &root->root_item, &root->root_key);
0f7d52f4 1363 if (ret) {
13a8a7c8
YZ
1364 if (ret > 0)
1365 ret = -ENOENT;
49d11bea 1366 goto fail;
0f7d52f4 1367 }
13a8a7c8 1368
84234f3a 1369 generation = btrfs_root_generation(&root->root_item);
581c1760 1370 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1371 root->node = read_tree_block(fs_info,
1372 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1373 key->objectid, generation, level, NULL);
64c043de
LB
1374 if (IS_ERR(root->node)) {
1375 ret = PTR_ERR(root->node);
8c38938c 1376 root->node = NULL;
49d11bea 1377 goto fail;
4eb150d6
QW
1378 }
1379 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1380 ret = -EIO;
49d11bea 1381 goto fail;
416bc658 1382 }
88c602ab
QW
1383
1384 /*
1385 * For real fs, and not log/reloc trees, root owner must
1386 * match its root node owner
1387 */
1388 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1389 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1390 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1391 root->root_key.objectid != btrfs_header_owner(root->node)) {
1392 btrfs_crit(fs_info,
1393"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1394 root->root_key.objectid, root->node->start,
1395 btrfs_header_owner(root->node),
1396 root->root_key.objectid);
1397 ret = -EUCLEAN;
1398 goto fail;
1399 }
5d4f98a2 1400 root->commit_root = btrfs_root_node(root);
cb517eab 1401 return root;
49d11bea 1402fail:
00246528 1403 btrfs_put_root(root);
49d11bea
JB
1404 return ERR_PTR(ret);
1405}
1406
1407struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1408 struct btrfs_key *key)
1409{
1410 struct btrfs_root *root;
1411 struct btrfs_path *path;
1412
1413 path = btrfs_alloc_path();
1414 if (!path)
1415 return ERR_PTR(-ENOMEM);
1416 root = read_tree_root_path(tree_root, path, key);
1417 btrfs_free_path(path);
1418
1419 return root;
cb517eab
MX
1420}
1421
2dfb1e43
QW
1422/*
1423 * Initialize subvolume root in-memory structure
1424 *
1425 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1426 */
1427static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1428{
1429 int ret;
dcc3eb96 1430 unsigned int nofs_flag;
cb517eab 1431
dcc3eb96
NB
1432 /*
1433 * We might be called under a transaction (e.g. indirect backref
1434 * resolution) which could deadlock if it triggers memory reclaim
1435 */
1436 nofs_flag = memalloc_nofs_save();
1437 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1438 memalloc_nofs_restore(nofs_flag);
1439 if (ret)
8257b2dc 1440 goto fail;
8257b2dc 1441
aeb935a4 1442 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1443 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1444 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1445 btrfs_check_and_init_root_item(&root->root_item);
1446 }
1447
851fd730
QW
1448 /*
1449 * Don't assign anonymous block device to roots that are not exposed to
1450 * userspace, the id pool is limited to 1M
1451 */
1452 if (is_fstree(root->root_key.objectid) &&
1453 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1454 if (!anon_dev) {
1455 ret = get_anon_bdev(&root->anon_dev);
1456 if (ret)
1457 goto fail;
1458 } else {
1459 root->anon_dev = anon_dev;
1460 }
851fd730 1461 }
f32e48e9
CR
1462
1463 mutex_lock(&root->objectid_mutex);
453e4873 1464 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1465 if (ret) {
1466 mutex_unlock(&root->objectid_mutex);
876d2cf1 1467 goto fail;
f32e48e9
CR
1468 }
1469
6b8fad57 1470 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1471
1472 mutex_unlock(&root->objectid_mutex);
1473
cb517eab
MX
1474 return 0;
1475fail:
84db5ccf 1476 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1477 return ret;
1478}
1479
a98db0f3
JB
1480static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1481 u64 root_id)
cb517eab
MX
1482{
1483 struct btrfs_root *root;
1484
fc7cbcd4
DS
1485 spin_lock(&fs_info->fs_roots_radix_lock);
1486 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1487 (unsigned long)root_id);
bc44d7c4 1488 if (root)
00246528 1489 root = btrfs_grab_root(root);
fc7cbcd4 1490 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1491 return root;
1492}
1493
49d11bea
JB
1494static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1495 u64 objectid)
1496{
abed4aaa
JB
1497 struct btrfs_key key = {
1498 .objectid = objectid,
1499 .type = BTRFS_ROOT_ITEM_KEY,
1500 .offset = 0,
1501 };
1502
49d11bea
JB
1503 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1504 return btrfs_grab_root(fs_info->tree_root);
1505 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1506 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1507 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1508 return btrfs_grab_root(fs_info->chunk_root);
1509 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1510 return btrfs_grab_root(fs_info->dev_root);
1511 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1512 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1513 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1514 return btrfs_grab_root(fs_info->quota_root) ?
1515 fs_info->quota_root : ERR_PTR(-ENOENT);
1516 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1517 return btrfs_grab_root(fs_info->uuid_root) ?
1518 fs_info->uuid_root : ERR_PTR(-ENOENT);
14033b08
QW
1519 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1520 return btrfs_grab_root(fs_info->block_group_root) ?
1521 fs_info->block_group_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1522 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1523 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1524
1525 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1526 }
49d11bea
JB
1527 return NULL;
1528}
1529
cb517eab
MX
1530int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1531 struct btrfs_root *root)
1532{
1533 int ret;
1534
fc7cbcd4
DS
1535 ret = radix_tree_preload(GFP_NOFS);
1536 if (ret)
1537 return ret;
1538
1539 spin_lock(&fs_info->fs_roots_radix_lock);
1540 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1541 (unsigned long)root->root_key.objectid,
1542 root);
af01d2e5 1543 if (ret == 0) {
00246528 1544 btrfs_grab_root(root);
fc7cbcd4 1545 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1546 }
fc7cbcd4
DS
1547 spin_unlock(&fs_info->fs_roots_radix_lock);
1548 radix_tree_preload_end();
cb517eab
MX
1549
1550 return ret;
1551}
1552
bd647ce3
JB
1553void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1554{
1555#ifdef CONFIG_BTRFS_DEBUG
1556 struct btrfs_root *root;
1557
1558 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1559 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1560
bd647ce3
JB
1561 root = list_first_entry(&fs_info->allocated_roots,
1562 struct btrfs_root, leak_list);
457f1864 1563 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1564 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1565 refcount_read(&root->refs));
1566 while (refcount_read(&root->refs) > 1)
00246528
JB
1567 btrfs_put_root(root);
1568 btrfs_put_root(root);
bd647ce3
JB
1569 }
1570#endif
1571}
1572
abed4aaa
JB
1573static void free_global_roots(struct btrfs_fs_info *fs_info)
1574{
1575 struct btrfs_root *root;
1576 struct rb_node *node;
1577
1578 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1579 root = rb_entry(node, struct btrfs_root, rb_node);
1580 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1581 btrfs_put_root(root);
1582 }
1583}
1584
0d4b0463
JB
1585void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1586{
141386e1
JB
1587 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1588 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1589 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1590 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1591 btrfs_free_csum_hash(fs_info);
1592 btrfs_free_stripe_hash_table(fs_info);
1593 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1594 kfree(fs_info->balance_ctl);
1595 kfree(fs_info->delayed_root);
abed4aaa 1596 free_global_roots(fs_info);
00246528
JB
1597 btrfs_put_root(fs_info->tree_root);
1598 btrfs_put_root(fs_info->chunk_root);
1599 btrfs_put_root(fs_info->dev_root);
00246528
JB
1600 btrfs_put_root(fs_info->quota_root);
1601 btrfs_put_root(fs_info->uuid_root);
00246528 1602 btrfs_put_root(fs_info->fs_root);
aeb935a4 1603 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1604 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1605 btrfs_check_leaked_roots(fs_info);
3fd63727 1606 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1607 kfree(fs_info->super_copy);
1608 kfree(fs_info->super_for_commit);
8481dd80 1609 kfree(fs_info->subpage_info);
0d4b0463
JB
1610 kvfree(fs_info);
1611}
1612
1613
2dfb1e43
QW
1614/*
1615 * Get an in-memory reference of a root structure.
1616 *
1617 * For essential trees like root/extent tree, we grab it from fs_info directly.
1618 * For subvolume trees, we check the cached filesystem roots first. If not
1619 * found, then read it from disk and add it to cached fs roots.
1620 *
1621 * Caller should release the root by calling btrfs_put_root() after the usage.
1622 *
1623 * NOTE: Reloc and log trees can't be read by this function as they share the
1624 * same root objectid.
1625 *
1626 * @objectid: root id
1627 * @anon_dev: preallocated anonymous block device number for new roots,
1628 * pass 0 for new allocation.
1629 * @check_ref: whether to check root item references, If true, return -ENOENT
1630 * for orphan roots
1631 */
1632static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1633 u64 objectid, dev_t anon_dev,
1634 bool check_ref)
5eda7b5e
CM
1635{
1636 struct btrfs_root *root;
381cf658 1637 struct btrfs_path *path;
1d4c08e0 1638 struct btrfs_key key;
5eda7b5e
CM
1639 int ret;
1640
49d11bea
JB
1641 root = btrfs_get_global_root(fs_info, objectid);
1642 if (root)
1643 return root;
4df27c4d 1644again:
56e9357a 1645 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1646 if (root) {
2dfb1e43
QW
1647 /* Shouldn't get preallocated anon_dev for cached roots */
1648 ASSERT(!anon_dev);
bc44d7c4 1649 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1650 btrfs_put_root(root);
48475471 1651 return ERR_PTR(-ENOENT);
bc44d7c4 1652 }
5eda7b5e 1653 return root;
48475471 1654 }
5eda7b5e 1655
56e9357a
DS
1656 key.objectid = objectid;
1657 key.type = BTRFS_ROOT_ITEM_KEY;
1658 key.offset = (u64)-1;
1659 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1660 if (IS_ERR(root))
1661 return root;
3394e160 1662
c00869f1 1663 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1664 ret = -ENOENT;
581bb050 1665 goto fail;
35a30d7c 1666 }
581bb050 1667
2dfb1e43 1668 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1669 if (ret)
1670 goto fail;
3394e160 1671
381cf658
DS
1672 path = btrfs_alloc_path();
1673 if (!path) {
1674 ret = -ENOMEM;
1675 goto fail;
1676 }
1d4c08e0
DS
1677 key.objectid = BTRFS_ORPHAN_OBJECTID;
1678 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1679 key.offset = objectid;
1d4c08e0
DS
1680
1681 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1682 btrfs_free_path(path);
d68fc57b
YZ
1683 if (ret < 0)
1684 goto fail;
1685 if (ret == 0)
27cdeb70 1686 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1687
cb517eab 1688 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1689 if (ret) {
168a2f77
JJB
1690 if (ret == -EEXIST) {
1691 btrfs_put_root(root);
4df27c4d 1692 goto again;
168a2f77 1693 }
4df27c4d 1694 goto fail;
0f7d52f4 1695 }
edbd8d4e 1696 return root;
4df27c4d 1697fail:
33fab972
FM
1698 /*
1699 * If our caller provided us an anonymous device, then it's his
143823cf 1700 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1701 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1702 * and once again by our caller.
1703 */
1704 if (anon_dev)
1705 root->anon_dev = 0;
8c38938c 1706 btrfs_put_root(root);
4df27c4d 1707 return ERR_PTR(ret);
edbd8d4e
CM
1708}
1709
2dfb1e43
QW
1710/*
1711 * Get in-memory reference of a root structure
1712 *
1713 * @objectid: tree objectid
1714 * @check_ref: if set, verify that the tree exists and the item has at least
1715 * one reference
1716 */
1717struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1718 u64 objectid, bool check_ref)
1719{
1720 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1721}
1722
1723/*
1724 * Get in-memory reference of a root structure, created as new, optionally pass
1725 * the anonymous block device id
1726 *
1727 * @objectid: tree objectid
1728 * @anon_dev: if zero, allocate a new anonymous block device or use the
1729 * parameter value
1730 */
1731struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1732 u64 objectid, dev_t anon_dev)
1733{
1734 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1735}
1736
49d11bea
JB
1737/*
1738 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1739 * @fs_info: the fs_info
1740 * @objectid: the objectid we need to lookup
1741 *
1742 * This is exclusively used for backref walking, and exists specifically because
1743 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1744 * creation time, which means we may have to read the tree_root in order to look
1745 * up a fs root that is not in memory. If the root is not in memory we will
1746 * read the tree root commit root and look up the fs root from there. This is a
1747 * temporary root, it will not be inserted into the radix tree as it doesn't
1748 * have the most uptodate information, it'll simply be discarded once the
1749 * backref code is finished using the root.
1750 */
1751struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1752 struct btrfs_path *path,
1753 u64 objectid)
1754{
1755 struct btrfs_root *root;
1756 struct btrfs_key key;
1757
1758 ASSERT(path->search_commit_root && path->skip_locking);
1759
1760 /*
1761 * This can return -ENOENT if we ask for a root that doesn't exist, but
1762 * since this is called via the backref walking code we won't be looking
1763 * up a root that doesn't exist, unless there's corruption. So if root
1764 * != NULL just return it.
1765 */
1766 root = btrfs_get_global_root(fs_info, objectid);
1767 if (root)
1768 return root;
1769
1770 root = btrfs_lookup_fs_root(fs_info, objectid);
1771 if (root)
1772 return root;
1773
1774 key.objectid = objectid;
1775 key.type = BTRFS_ROOT_ITEM_KEY;
1776 key.offset = (u64)-1;
1777 root = read_tree_root_path(fs_info->tree_root, path, &key);
1778 btrfs_release_path(path);
1779
1780 return root;
1781}
1782
a74a4b97
CM
1783static int cleaner_kthread(void *arg)
1784{
0d031dc4 1785 struct btrfs_fs_info *fs_info = arg;
d0278245 1786 int again;
a74a4b97 1787
d6fd0ae2 1788 while (1) {
d0278245 1789 again = 0;
a74a4b97 1790
fd340d0f
JB
1791 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1792
d0278245 1793 /* Make the cleaner go to sleep early. */
2ff7e61e 1794 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1795 goto sleep;
1796
90c711ab
ZB
1797 /*
1798 * Do not do anything if we might cause open_ctree() to block
1799 * before we have finished mounting the filesystem.
1800 */
0b246afa 1801 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1802 goto sleep;
1803
0b246afa 1804 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1805 goto sleep;
1806
dc7f370c
MX
1807 /*
1808 * Avoid the problem that we change the status of the fs
1809 * during the above check and trylock.
1810 */
2ff7e61e 1811 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1812 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1813 goto sleep;
76dda93c 1814 }
a74a4b97 1815
2ff7e61e 1816 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1817
33c44184 1818 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1819 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1820
1821 /*
05323cd1
MX
1822 * The defragger has dealt with the R/O remount and umount,
1823 * needn't do anything special here.
d0278245 1824 */
0b246afa 1825 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1826
1827 /*
f3372065 1828 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1829 * with relocation (btrfs_relocate_chunk) and relocation
1830 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1831 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1832 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1833 * unused block groups.
1834 */
0b246afa 1835 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1836
1837 /*
1838 * Reclaim block groups in the reclaim_bgs list after we deleted
1839 * all unused block_groups. This possibly gives us some more free
1840 * space.
1841 */
1842 btrfs_reclaim_bgs(fs_info);
d0278245 1843sleep:
a0a1db70 1844 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1845 if (kthread_should_park())
1846 kthread_parkme();
1847 if (kthread_should_stop())
1848 return 0;
838fe188 1849 if (!again) {
a74a4b97 1850 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1851 schedule();
a74a4b97
CM
1852 __set_current_state(TASK_RUNNING);
1853 }
da288d28 1854 }
a74a4b97
CM
1855}
1856
1857static int transaction_kthread(void *arg)
1858{
1859 struct btrfs_root *root = arg;
0b246afa 1860 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1861 struct btrfs_trans_handle *trans;
1862 struct btrfs_transaction *cur;
8929ecfa 1863 u64 transid;
643900be 1864 time64_t delta;
a74a4b97 1865 unsigned long delay;
914b2007 1866 bool cannot_commit;
a74a4b97
CM
1867
1868 do {
914b2007 1869 cannot_commit = false;
ba1bc00f 1870 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1871 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1872
0b246afa
JM
1873 spin_lock(&fs_info->trans_lock);
1874 cur = fs_info->running_transaction;
a74a4b97 1875 if (!cur) {
0b246afa 1876 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1877 goto sleep;
1878 }
31153d81 1879
643900be 1880 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1881 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1882 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1883 delta < fs_info->commit_interval) {
0b246afa 1884 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1885 delay -= msecs_to_jiffies((delta - 1) * 1000);
1886 delay = min(delay,
1887 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1888 goto sleep;
1889 }
8929ecfa 1890 transid = cur->transid;
0b246afa 1891 spin_unlock(&fs_info->trans_lock);
56bec294 1892
79787eaa 1893 /* If the file system is aborted, this will always fail. */
354aa0fb 1894 trans = btrfs_attach_transaction(root);
914b2007 1895 if (IS_ERR(trans)) {
354aa0fb
MX
1896 if (PTR_ERR(trans) != -ENOENT)
1897 cannot_commit = true;
79787eaa 1898 goto sleep;
914b2007 1899 }
8929ecfa 1900 if (transid == trans->transid) {
3a45bb20 1901 btrfs_commit_transaction(trans);
8929ecfa 1902 } else {
3a45bb20 1903 btrfs_end_transaction(trans);
8929ecfa 1904 }
a74a4b97 1905sleep:
0b246afa
JM
1906 wake_up_process(fs_info->cleaner_kthread);
1907 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1908
84961539 1909 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1910 btrfs_cleanup_transaction(fs_info);
ce63f891 1911 if (!kthread_should_stop() &&
0b246afa 1912 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1913 cannot_commit))
bc5511d0 1914 schedule_timeout_interruptible(delay);
a74a4b97
CM
1915 } while (!kthread_should_stop());
1916 return 0;
1917}
1918
af31f5e5 1919/*
01f0f9da
NB
1920 * This will find the highest generation in the array of root backups. The
1921 * index of the highest array is returned, or -EINVAL if we can't find
1922 * anything.
af31f5e5
CM
1923 *
1924 * We check to make sure the array is valid by comparing the
1925 * generation of the latest root in the array with the generation
1926 * in the super block. If they don't match we pitch it.
1927 */
01f0f9da 1928static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1929{
01f0f9da 1930 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1931 u64 cur;
af31f5e5
CM
1932 struct btrfs_root_backup *root_backup;
1933 int i;
1934
1935 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1936 root_backup = info->super_copy->super_roots + i;
1937 cur = btrfs_backup_tree_root_gen(root_backup);
1938 if (cur == newest_gen)
01f0f9da 1939 return i;
af31f5e5
CM
1940 }
1941
01f0f9da 1942 return -EINVAL;
af31f5e5
CM
1943}
1944
af31f5e5
CM
1945/*
1946 * copy all the root pointers into the super backup array.
1947 * this will bump the backup pointer by one when it is
1948 * done
1949 */
1950static void backup_super_roots(struct btrfs_fs_info *info)
1951{
6ef108dd 1952 const int next_backup = info->backup_root_index;
af31f5e5 1953 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1954
1955 root_backup = info->super_for_commit->super_roots + next_backup;
1956
1957 /*
1958 * make sure all of our padding and empty slots get zero filled
1959 * regardless of which ones we use today
1960 */
1961 memset(root_backup, 0, sizeof(*root_backup));
1962
1963 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1964
1965 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1966 btrfs_set_backup_tree_root_gen(root_backup,
1967 btrfs_header_generation(info->tree_root->node));
1968
1969 btrfs_set_backup_tree_root_level(root_backup,
1970 btrfs_header_level(info->tree_root->node));
1971
1972 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1973 btrfs_set_backup_chunk_root_gen(root_backup,
1974 btrfs_header_generation(info->chunk_root->node));
1975 btrfs_set_backup_chunk_root_level(root_backup,
1976 btrfs_header_level(info->chunk_root->node));
1977
1c56ab99 1978 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1979 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1980 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1981
1982 btrfs_set_backup_extent_root(root_backup,
1983 extent_root->node->start);
1984 btrfs_set_backup_extent_root_gen(root_backup,
1985 btrfs_header_generation(extent_root->node));
1986 btrfs_set_backup_extent_root_level(root_backup,
1987 btrfs_header_level(extent_root->node));
f7238e50
JB
1988
1989 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1990 btrfs_set_backup_csum_root_gen(root_backup,
1991 btrfs_header_generation(csum_root->node));
1992 btrfs_set_backup_csum_root_level(root_backup,
1993 btrfs_header_level(csum_root->node));
9c54e80d 1994 }
af31f5e5 1995
7c7e82a7
CM
1996 /*
1997 * we might commit during log recovery, which happens before we set
1998 * the fs_root. Make sure it is valid before we fill it in.
1999 */
2000 if (info->fs_root && info->fs_root->node) {
2001 btrfs_set_backup_fs_root(root_backup,
2002 info->fs_root->node->start);
2003 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2004 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2005 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2006 btrfs_header_level(info->fs_root->node));
7c7e82a7 2007 }
af31f5e5
CM
2008
2009 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2010 btrfs_set_backup_dev_root_gen(root_backup,
2011 btrfs_header_generation(info->dev_root->node));
2012 btrfs_set_backup_dev_root_level(root_backup,
2013 btrfs_header_level(info->dev_root->node));
2014
af31f5e5
CM
2015 btrfs_set_backup_total_bytes(root_backup,
2016 btrfs_super_total_bytes(info->super_copy));
2017 btrfs_set_backup_bytes_used(root_backup,
2018 btrfs_super_bytes_used(info->super_copy));
2019 btrfs_set_backup_num_devices(root_backup,
2020 btrfs_super_num_devices(info->super_copy));
2021
2022 /*
2023 * if we don't copy this out to the super_copy, it won't get remembered
2024 * for the next commit
2025 */
2026 memcpy(&info->super_copy->super_roots,
2027 &info->super_for_commit->super_roots,
2028 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2029}
2030
bd2336b2
NB
2031/*
2032 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2033 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2034 *
2035 * fs_info - filesystem whose backup roots need to be read
2036 * priority - priority of backup root required
2037 *
2038 * Returns backup root index on success and -EINVAL otherwise.
2039 */
2040static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2041{
2042 int backup_index = find_newest_super_backup(fs_info);
2043 struct btrfs_super_block *super = fs_info->super_copy;
2044 struct btrfs_root_backup *root_backup;
2045
2046 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2047 if (priority == 0)
2048 return backup_index;
2049
2050 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2051 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2052 } else {
2053 return -EINVAL;
2054 }
2055
2056 root_backup = super->super_roots + backup_index;
2057
2058 btrfs_set_super_generation(super,
2059 btrfs_backup_tree_root_gen(root_backup));
2060 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2061 btrfs_set_super_root_level(super,
2062 btrfs_backup_tree_root_level(root_backup));
2063 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2064
2065 /*
2066 * Fixme: the total bytes and num_devices need to match or we should
2067 * need a fsck
2068 */
2069 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2070 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2071
2072 return backup_index;
2073}
2074
7abadb64
LB
2075/* helper to cleanup workers */
2076static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2077{
dc6e3209 2078 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2079 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2080 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2081 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
2082 if (fs_info->endio_workers)
2083 destroy_workqueue(fs_info->endio_workers);
d34e123d
CH
2084 if (fs_info->endio_raid56_workers)
2085 destroy_workqueue(fs_info->endio_raid56_workers);
385de0ef
CH
2086 if (fs_info->rmw_workers)
2087 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
2088 if (fs_info->compressed_write_workers)
2089 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
2090 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2091 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2092 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2093 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2094 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2095 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2096 if (fs_info->discard_ctl.discard_workers)
2097 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2098 /*
2099 * Now that all other work queues are destroyed, we can safely destroy
2100 * the queues used for metadata I/O, since tasks from those other work
2101 * queues can do metadata I/O operations.
2102 */
d7b9416f
CH
2103 if (fs_info->endio_meta_workers)
2104 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2105}
2106
2e9f5954
R
2107static void free_root_extent_buffers(struct btrfs_root *root)
2108{
2109 if (root) {
2110 free_extent_buffer(root->node);
2111 free_extent_buffer(root->commit_root);
2112 root->node = NULL;
2113 root->commit_root = NULL;
2114 }
2115}
2116
abed4aaa
JB
2117static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2118{
2119 struct btrfs_root *root, *tmp;
2120
2121 rbtree_postorder_for_each_entry_safe(root, tmp,
2122 &fs_info->global_root_tree,
2123 rb_node)
2124 free_root_extent_buffers(root);
2125}
2126
af31f5e5 2127/* helper to cleanup tree roots */
4273eaff 2128static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2129{
2e9f5954 2130 free_root_extent_buffers(info->tree_root);
655b09fe 2131
abed4aaa 2132 free_global_root_pointers(info);
2e9f5954 2133 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2134 free_root_extent_buffers(info->quota_root);
2135 free_root_extent_buffers(info->uuid_root);
8c38938c 2136 free_root_extent_buffers(info->fs_root);
aeb935a4 2137 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2138 free_root_extent_buffers(info->block_group_root);
4273eaff 2139 if (free_chunk_root)
2e9f5954 2140 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2141}
2142
8c38938c
JB
2143void btrfs_put_root(struct btrfs_root *root)
2144{
2145 if (!root)
2146 return;
2147
2148 if (refcount_dec_and_test(&root->refs)) {
2149 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2150 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2151 if (root->anon_dev)
2152 free_anon_bdev(root->anon_dev);
2153 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2154 free_root_extent_buffers(root);
8c38938c 2155#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2156 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2157 list_del_init(&root->leak_list);
fc7cbcd4 2158 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2159#endif
2160 kfree(root);
2161 }
2162}
2163
faa2dbf0 2164void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2165{
fc7cbcd4
DS
2166 int ret;
2167 struct btrfs_root *gang[8];
2168 int i;
171f6537
JB
2169
2170 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2171 gang[0] = list_entry(fs_info->dead_roots.next,
2172 struct btrfs_root, root_list);
2173 list_del(&gang[0]->root_list);
171f6537 2174
fc7cbcd4
DS
2175 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2176 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2177 btrfs_put_root(gang[0]);
171f6537
JB
2178 }
2179
fc7cbcd4
DS
2180 while (1) {
2181 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2182 (void **)gang, 0,
2183 ARRAY_SIZE(gang));
2184 if (!ret)
2185 break;
2186 for (i = 0; i < ret; i++)
2187 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2188 }
2189}
af31f5e5 2190
638aa7ed
ES
2191static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2192{
2193 mutex_init(&fs_info->scrub_lock);
2194 atomic_set(&fs_info->scrubs_running, 0);
2195 atomic_set(&fs_info->scrub_pause_req, 0);
2196 atomic_set(&fs_info->scrubs_paused, 0);
2197 atomic_set(&fs_info->scrub_cancel_req, 0);
2198 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2199 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2200}
2201
779a65a4
ES
2202static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2203{
2204 spin_lock_init(&fs_info->balance_lock);
2205 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2206 atomic_set(&fs_info->balance_pause_req, 0);
2207 atomic_set(&fs_info->balance_cancel_req, 0);
2208 fs_info->balance_ctl = NULL;
2209 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2210 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2211}
2212
6bccf3ab 2213static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2214{
2ff7e61e 2215 struct inode *inode = fs_info->btree_inode;
e256927b
JB
2216 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2217 fs_info->tree_root);
2ff7e61e
JM
2218
2219 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2220 set_nlink(inode, 1);
f37938e0
ES
2221 /*
2222 * we set the i_size on the btree inode to the max possible int.
2223 * the real end of the address space is determined by all of
2224 * the devices in the system
2225 */
2ff7e61e
JM
2226 inode->i_size = OFFSET_MAX;
2227 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2228
2ff7e61e 2229 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2230 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
efb0645b 2231 IO_TREE_BTREE_INODE_IO, NULL);
2ff7e61e 2232 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2233
5c8fd99f 2234 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
2235 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2236 BTRFS_I(inode)->location.type = 0;
2237 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 2238 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 2239 __insert_inode_hash(inode, hash);
f37938e0
ES
2240}
2241
ad618368
ES
2242static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2243{
ad618368 2244 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2245 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2246 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2247}
2248
f9e92e40
ES
2249static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2250{
2251 spin_lock_init(&fs_info->qgroup_lock);
2252 mutex_init(&fs_info->qgroup_ioctl_lock);
2253 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2254 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2255 fs_info->qgroup_seq = 1;
f9e92e40 2256 fs_info->qgroup_ulist = NULL;
d2c609b8 2257 fs_info->qgroup_rescan_running = false;
011b46c3 2258 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
2259 mutex_init(&fs_info->qgroup_rescan_lock);
2260}
2261
d21deec5 2262static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2263{
f7b885be 2264 u32 max_active = fs_info->thread_pool_size;
6f011058 2265 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2266
2267 fs_info->workers =
a31b4a43
CH
2268 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2269 fs_info->hipri_workers =
2270 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2271 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2272
2273 fs_info->delalloc_workers =
cb001095
JM
2274 btrfs_alloc_workqueue(fs_info, "delalloc",
2275 flags, max_active, 2);
2a458198
ES
2276
2277 fs_info->flush_workers =
cb001095
JM
2278 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2279 flags, max_active, 0);
2a458198
ES
2280
2281 fs_info->caching_workers =
cb001095 2282 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2283
2a458198 2284 fs_info->fixup_workers =
cb001095 2285 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198 2286
2a458198 2287 fs_info->endio_workers =
d7b9416f 2288 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2289 fs_info->endio_meta_workers =
d7b9416f 2290 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2a458198 2291 fs_info->endio_raid56_workers =
d34e123d 2292 alloc_workqueue("btrfs-endio-raid56", flags, max_active);
385de0ef 2293 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2294 fs_info->endio_write_workers =
cb001095
JM
2295 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2296 max_active, 2);
fed8a72d
CH
2297 fs_info->compressed_write_workers =
2298 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2299 fs_info->endio_freespace_worker =
cb001095
JM
2300 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2301 max_active, 0);
2a458198 2302 fs_info->delayed_workers =
cb001095
JM
2303 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2304 max_active, 0);
2a458198 2305 fs_info->qgroup_rescan_workers =
cb001095 2306 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2307 fs_info->discard_ctl.discard_workers =
2308 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2309
a31b4a43
CH
2310 if (!(fs_info->workers && fs_info->hipri_workers &&
2311 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2312 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2313 fs_info->compressed_write_workers &&
2a458198
ES
2314 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2315 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2316 fs_info->caching_workers && fs_info->fixup_workers &&
2317 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2318 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2319 return -ENOMEM;
2320 }
2321
2322 return 0;
2323}
2324
6d97c6e3
JT
2325static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2326{
2327 struct crypto_shash *csum_shash;
b4e967be 2328 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2329
b4e967be 2330 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2331
2332 if (IS_ERR(csum_shash)) {
2333 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2334 csum_driver);
6d97c6e3
JT
2335 return PTR_ERR(csum_shash);
2336 }
2337
2338 fs_info->csum_shash = csum_shash;
2339
c8a5f8ca
DS
2340 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2341 btrfs_super_csum_name(csum_type),
2342 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2343 return 0;
2344}
2345
63443bf5
ES
2346static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2347 struct btrfs_fs_devices *fs_devices)
2348{
2349 int ret;
63443bf5
ES
2350 struct btrfs_root *log_tree_root;
2351 struct btrfs_super_block *disk_super = fs_info->super_copy;
2352 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2353 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2354
2355 if (fs_devices->rw_devices == 0) {
f14d104d 2356 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2357 return -EIO;
2358 }
2359
96dfcb46
JB
2360 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2361 GFP_KERNEL);
63443bf5
ES
2362 if (!log_tree_root)
2363 return -ENOMEM;
2364
2ff7e61e 2365 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2366 BTRFS_TREE_LOG_OBJECTID,
2367 fs_info->generation + 1, level,
2368 NULL);
64c043de 2369 if (IS_ERR(log_tree_root->node)) {
f14d104d 2370 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2371 ret = PTR_ERR(log_tree_root->node);
8c38938c 2372 log_tree_root->node = NULL;
00246528 2373 btrfs_put_root(log_tree_root);
0eeff236 2374 return ret;
4eb150d6
QW
2375 }
2376 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2377 btrfs_err(fs_info, "failed to read log tree");
00246528 2378 btrfs_put_root(log_tree_root);
63443bf5
ES
2379 return -EIO;
2380 }
4eb150d6 2381
63443bf5
ES
2382 /* returns with log_tree_root freed on success */
2383 ret = btrfs_recover_log_trees(log_tree_root);
2384 if (ret) {
0b246afa
JM
2385 btrfs_handle_fs_error(fs_info, ret,
2386 "Failed to recover log tree");
00246528 2387 btrfs_put_root(log_tree_root);
63443bf5
ES
2388 return ret;
2389 }
2390
bc98a42c 2391 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2392 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2393 if (ret)
2394 return ret;
2395 }
2396
2397 return 0;
2398}
2399
abed4aaa
JB
2400static int load_global_roots_objectid(struct btrfs_root *tree_root,
2401 struct btrfs_path *path, u64 objectid,
2402 const char *name)
2403{
2404 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2405 struct btrfs_root *root;
f7238e50 2406 u64 max_global_id = 0;
abed4aaa
JB
2407 int ret;
2408 struct btrfs_key key = {
2409 .objectid = objectid,
2410 .type = BTRFS_ROOT_ITEM_KEY,
2411 .offset = 0,
2412 };
2413 bool found = false;
2414
2415 /* If we have IGNOREDATACSUMS skip loading these roots. */
2416 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2417 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2418 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2419 return 0;
2420 }
2421
2422 while (1) {
2423 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2424 if (ret < 0)
2425 break;
2426
2427 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2428 ret = btrfs_next_leaf(tree_root, path);
2429 if (ret) {
2430 if (ret > 0)
2431 ret = 0;
2432 break;
2433 }
2434 }
2435 ret = 0;
2436
2437 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2438 if (key.objectid != objectid)
2439 break;
2440 btrfs_release_path(path);
2441
f7238e50
JB
2442 /*
2443 * Just worry about this for extent tree, it'll be the same for
2444 * everybody.
2445 */
2446 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2447 max_global_id = max(max_global_id, key.offset);
2448
abed4aaa
JB
2449 found = true;
2450 root = read_tree_root_path(tree_root, path, &key);
2451 if (IS_ERR(root)) {
2452 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2453 ret = PTR_ERR(root);
2454 break;
2455 }
2456 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2457 ret = btrfs_global_root_insert(root);
2458 if (ret) {
2459 btrfs_put_root(root);
2460 break;
2461 }
2462 key.offset++;
2463 }
2464 btrfs_release_path(path);
2465
f7238e50
JB
2466 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2467 fs_info->nr_global_roots = max_global_id + 1;
2468
abed4aaa
JB
2469 if (!found || ret) {
2470 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2471 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2472
2473 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2474 ret = ret ? ret : -ENOENT;
2475 else
2476 ret = 0;
2477 btrfs_err(fs_info, "failed to load root %s", name);
2478 }
2479 return ret;
2480}
2481
2482static int load_global_roots(struct btrfs_root *tree_root)
2483{
2484 struct btrfs_path *path;
2485 int ret = 0;
2486
2487 path = btrfs_alloc_path();
2488 if (!path)
2489 return -ENOMEM;
2490
2491 ret = load_global_roots_objectid(tree_root, path,
2492 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2493 if (ret)
2494 goto out;
2495 ret = load_global_roots_objectid(tree_root, path,
2496 BTRFS_CSUM_TREE_OBJECTID, "csum");
2497 if (ret)
2498 goto out;
2499 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2500 goto out;
2501 ret = load_global_roots_objectid(tree_root, path,
2502 BTRFS_FREE_SPACE_TREE_OBJECTID,
2503 "free space");
2504out:
2505 btrfs_free_path(path);
2506 return ret;
2507}
2508
6bccf3ab 2509static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2510{
6bccf3ab 2511 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2512 struct btrfs_root *root;
4bbcaa64
ES
2513 struct btrfs_key location;
2514 int ret;
2515
6bccf3ab
JM
2516 BUG_ON(!fs_info->tree_root);
2517
abed4aaa
JB
2518 ret = load_global_roots(tree_root);
2519 if (ret)
2520 return ret;
2521
4bbcaa64
ES
2522 location.type = BTRFS_ROOT_ITEM_KEY;
2523 location.offset = 0;
2524
1c56ab99 2525 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2526 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2527 root = btrfs_read_tree_root(tree_root, &location);
2528 if (IS_ERR(root)) {
2529 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2530 ret = PTR_ERR(root);
2531 goto out;
2532 }
2533 } else {
2534 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2535 fs_info->block_group_root = root;
2536 }
2537 }
2538
2539 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2540 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2541 if (IS_ERR(root)) {
42437a63
JB
2542 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2543 ret = PTR_ERR(root);
2544 goto out;
2545 }
2546 } else {
2547 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2548 fs_info->dev_root = root;
f50f4353 2549 }
820a49da 2550 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2551 ret = btrfs_init_devices_late(fs_info);
2552 if (ret)
2553 goto out;
4bbcaa64 2554
aeb935a4
QW
2555 /*
2556 * This tree can share blocks with some other fs tree during relocation
2557 * and we need a proper setup by btrfs_get_fs_root
2558 */
56e9357a
DS
2559 root = btrfs_get_fs_root(tree_root->fs_info,
2560 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2561 if (IS_ERR(root)) {
42437a63
JB
2562 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2563 ret = PTR_ERR(root);
2564 goto out;
2565 }
2566 } else {
2567 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2568 fs_info->data_reloc_root = root;
aeb935a4 2569 }
aeb935a4 2570
4bbcaa64 2571 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2572 root = btrfs_read_tree_root(tree_root, &location);
2573 if (!IS_ERR(root)) {
2574 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2575 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2576 fs_info->quota_root = root;
4bbcaa64
ES
2577 }
2578
2579 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2580 root = btrfs_read_tree_root(tree_root, &location);
2581 if (IS_ERR(root)) {
42437a63
JB
2582 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2583 ret = PTR_ERR(root);
2584 if (ret != -ENOENT)
2585 goto out;
2586 }
4bbcaa64 2587 } else {
a4f3d2c4
DS
2588 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2589 fs_info->uuid_root = root;
4bbcaa64
ES
2590 }
2591
2592 return 0;
f50f4353
LB
2593out:
2594 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2595 location.objectid, ret);
2596 return ret;
4bbcaa64
ES
2597}
2598
069ec957
QW
2599/*
2600 * Real super block validation
2601 * NOTE: super csum type and incompat features will not be checked here.
2602 *
2603 * @sb: super block to check
2604 * @mirror_num: the super block number to check its bytenr:
2605 * 0 the primary (1st) sb
2606 * 1, 2 2nd and 3rd backup copy
2607 * -1 skip bytenr check
2608 */
a05d3c91
QW
2609int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2610 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2611{
21a852b0
QW
2612 u64 nodesize = btrfs_super_nodesize(sb);
2613 u64 sectorsize = btrfs_super_sectorsize(sb);
2614 int ret = 0;
2615
2616 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2617 btrfs_err(fs_info, "no valid FS found");
2618 ret = -EINVAL;
2619 }
2620 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2621 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2622 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2623 ret = -EINVAL;
2624 }
2625 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2626 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2627 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2628 ret = -EINVAL;
2629 }
2630 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2631 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2632 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2633 ret = -EINVAL;
2634 }
2635 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2636 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2637 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2638 ret = -EINVAL;
2639 }
2640
2641 /*
2642 * Check sectorsize and nodesize first, other check will need it.
2643 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2644 */
2645 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2646 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2647 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2648 ret = -EINVAL;
2649 }
0bb3eb3e
QW
2650
2651 /*
1a42daab
QW
2652 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2653 *
2654 * We can support 16K sectorsize with 64K page size without problem,
2655 * but such sectorsize/pagesize combination doesn't make much sense.
2656 * 4K will be our future standard, PAGE_SIZE is supported from the very
2657 * beginning.
0bb3eb3e 2658 */
1a42daab 2659 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2660 btrfs_err(fs_info,
0bb3eb3e 2661 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2662 sectorsize, PAGE_SIZE);
2663 ret = -EINVAL;
2664 }
0bb3eb3e 2665
21a852b0
QW
2666 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2667 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2668 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2669 ret = -EINVAL;
2670 }
2671 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2672 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2673 le32_to_cpu(sb->__unused_leafsize), nodesize);
2674 ret = -EINVAL;
2675 }
2676
2677 /* Root alignment check */
2678 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2679 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2680 btrfs_super_root(sb));
2681 ret = -EINVAL;
2682 }
2683 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2684 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2685 btrfs_super_chunk_root(sb));
2686 ret = -EINVAL;
2687 }
2688 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2689 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2690 btrfs_super_log_root(sb));
2691 ret = -EINVAL;
2692 }
2693
aefd7f70
NB
2694 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2695 BTRFS_FSID_SIZE)) {
2696 btrfs_err(fs_info,
2697 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2698 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2699 ret = -EINVAL;
2700 }
2701
2702 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2703 memcmp(fs_info->fs_devices->metadata_uuid,
2704 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2705 btrfs_err(fs_info,
2706"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2707 fs_info->super_copy->metadata_uuid,
2708 fs_info->fs_devices->metadata_uuid);
2709 ret = -EINVAL;
2710 }
2711
1c56ab99
QW
2712 /*
2713 * Artificial requirement for block-group-tree to force newer features
2714 * (free-space-tree, no-holes) so the test matrix is smaller.
2715 */
2716 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2717 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2718 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2719 btrfs_err(fs_info,
2720 "block-group-tree feature requires fres-space-tree and no-holes");
2721 ret = -EINVAL;
2722 }
2723
de37aa51 2724 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2725 BTRFS_FSID_SIZE) != 0) {
21a852b0 2726 btrfs_err(fs_info,
7239ff4b 2727 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2728 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2729 ret = -EINVAL;
2730 }
2731
2732 /*
2733 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2734 * done later
2735 */
2736 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2737 btrfs_err(fs_info, "bytes_used is too small %llu",
2738 btrfs_super_bytes_used(sb));
2739 ret = -EINVAL;
2740 }
2741 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2742 btrfs_err(fs_info, "invalid stripesize %u",
2743 btrfs_super_stripesize(sb));
2744 ret = -EINVAL;
2745 }
2746 if (btrfs_super_num_devices(sb) > (1UL << 31))
2747 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2748 btrfs_super_num_devices(sb));
2749 if (btrfs_super_num_devices(sb) == 0) {
2750 btrfs_err(fs_info, "number of devices is 0");
2751 ret = -EINVAL;
2752 }
2753
069ec957
QW
2754 if (mirror_num >= 0 &&
2755 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2756 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2757 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2758 ret = -EINVAL;
2759 }
2760
2761 /*
2762 * Obvious sys_chunk_array corruptions, it must hold at least one key
2763 * and one chunk
2764 */
2765 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2766 btrfs_err(fs_info, "system chunk array too big %u > %u",
2767 btrfs_super_sys_array_size(sb),
2768 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2769 ret = -EINVAL;
2770 }
2771 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2772 + sizeof(struct btrfs_chunk)) {
2773 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2774 btrfs_super_sys_array_size(sb),
2775 sizeof(struct btrfs_disk_key)
2776 + sizeof(struct btrfs_chunk));
2777 ret = -EINVAL;
2778 }
2779
2780 /*
2781 * The generation is a global counter, we'll trust it more than the others
2782 * but it's still possible that it's the one that's wrong.
2783 */
2784 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2785 btrfs_warn(fs_info,
2786 "suspicious: generation < chunk_root_generation: %llu < %llu",
2787 btrfs_super_generation(sb),
2788 btrfs_super_chunk_root_generation(sb));
2789 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2790 && btrfs_super_cache_generation(sb) != (u64)-1)
2791 btrfs_warn(fs_info,
2792 "suspicious: generation < cache_generation: %llu < %llu",
2793 btrfs_super_generation(sb),
2794 btrfs_super_cache_generation(sb));
2795
2796 return ret;
2797}
2798
069ec957
QW
2799/*
2800 * Validation of super block at mount time.
2801 * Some checks already done early at mount time, like csum type and incompat
2802 * flags will be skipped.
2803 */
2804static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2805{
a05d3c91 2806 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2807}
2808
75cb857d
QW
2809/*
2810 * Validation of super block at write time.
2811 * Some checks like bytenr check will be skipped as their values will be
2812 * overwritten soon.
2813 * Extra checks like csum type and incompat flags will be done here.
2814 */
2815static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2816 struct btrfs_super_block *sb)
2817{
2818 int ret;
2819
a05d3c91 2820 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2821 if (ret < 0)
2822 goto out;
e7e16f48 2823 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2824 ret = -EUCLEAN;
2825 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2826 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2827 goto out;
2828 }
2829 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2830 ret = -EUCLEAN;
2831 btrfs_err(fs_info,
2832 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2833 btrfs_super_incompat_flags(sb),
2834 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2835 goto out;
2836 }
2837out:
2838 if (ret < 0)
2839 btrfs_err(fs_info,
2840 "super block corruption detected before writing it to disk");
2841 return ret;
2842}
2843
bd676446
JB
2844static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2845{
2846 int ret = 0;
2847
2848 root->node = read_tree_block(root->fs_info, bytenr,
2849 root->root_key.objectid, gen, level, NULL);
2850 if (IS_ERR(root->node)) {
2851 ret = PTR_ERR(root->node);
2852 root->node = NULL;
4eb150d6
QW
2853 return ret;
2854 }
2855 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2856 free_extent_buffer(root->node);
2857 root->node = NULL;
4eb150d6 2858 return -EIO;
bd676446
JB
2859 }
2860
bd676446
JB
2861 btrfs_set_root_node(&root->root_item, root->node);
2862 root->commit_root = btrfs_root_node(root);
2863 btrfs_set_root_refs(&root->root_item, 1);
2864 return ret;
2865}
2866
2867static int load_important_roots(struct btrfs_fs_info *fs_info)
2868{
2869 struct btrfs_super_block *sb = fs_info->super_copy;
2870 u64 gen, bytenr;
2871 int level, ret;
2872
2873 bytenr = btrfs_super_root(sb);
2874 gen = btrfs_super_generation(sb);
2875 level = btrfs_super_root_level(sb);
2876 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2877 if (ret) {
bd676446 2878 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2879 return ret;
2880 }
14033b08 2881 return 0;
bd676446
JB
2882}
2883
6ef108dd 2884static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2885{
6ef108dd 2886 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2887 struct btrfs_super_block *sb = fs_info->super_copy;
2888 struct btrfs_root *tree_root = fs_info->tree_root;
2889 bool handle_error = false;
2890 int ret = 0;
2891 int i;
2892
2893 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2894 if (handle_error) {
2895 if (!IS_ERR(tree_root->node))
2896 free_extent_buffer(tree_root->node);
2897 tree_root->node = NULL;
2898
2899 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2900 break;
2901
2902 free_root_pointers(fs_info, 0);
2903
2904 /*
2905 * Don't use the log in recovery mode, it won't be
2906 * valid
2907 */
2908 btrfs_set_super_log_root(sb, 0);
2909
2910 /* We can't trust the free space cache either */
2911 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2912
2913 ret = read_backup_root(fs_info, i);
6ef108dd 2914 backup_index = ret;
b8522a1e
NB
2915 if (ret < 0)
2916 return ret;
2917 }
b8522a1e 2918
bd676446
JB
2919 ret = load_important_roots(fs_info);
2920 if (ret) {
217f5004 2921 handle_error = true;
b8522a1e
NB
2922 continue;
2923 }
2924
336a0d8d
NB
2925 /*
2926 * No need to hold btrfs_root::objectid_mutex since the fs
2927 * hasn't been fully initialised and we are the only user
2928 */
453e4873 2929 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2930 if (ret < 0) {
b8522a1e
NB
2931 handle_error = true;
2932 continue;
2933 }
2934
6b8fad57 2935 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2936
2937 ret = btrfs_read_roots(fs_info);
2938 if (ret < 0) {
2939 handle_error = true;
2940 continue;
2941 }
2942
2943 /* All successful */
bd676446
JB
2944 fs_info->generation = btrfs_header_generation(tree_root->node);
2945 fs_info->last_trans_committed = fs_info->generation;
d96b3424 2946 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2947
2948 /* Always begin writing backup roots after the one being used */
2949 if (backup_index < 0) {
2950 fs_info->backup_root_index = 0;
2951 } else {
2952 fs_info->backup_root_index = backup_index + 1;
2953 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2954 }
b8522a1e
NB
2955 break;
2956 }
2957
2958 return ret;
2959}
2960
8260edba 2961void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2962{
fc7cbcd4 2963 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2964 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2965 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2966 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2967 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2968 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2969 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2970 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2971 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2972 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2973 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2974 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2975 spin_lock_init(&fs_info->super_lock);
f28491e0 2976 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2977 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2978 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2979 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2980 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2981 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2982 rwlock_init(&fs_info->global_root_lock);
d7c15171 2983 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2984 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2985 mutex_init(&fs_info->reloc_mutex);
573bfb72 2986 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2987 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2988 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2989 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2990
e1489b4f 2991 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2992 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2993 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2994 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3e738c53
IA
2995 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2996 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2997 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2998 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2999 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3000 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3001 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3002 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 3003
0b86a832 3004 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3005 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3006 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3007 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3008 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3009 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3010#ifdef CONFIG_BTRFS_DEBUG
3011 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3012 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3013 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3014#endif
c8bf1b67 3015 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3016 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3017 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3018 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3019 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3020 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3021 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3022 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3023 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3024 BTRFS_BLOCK_RSV_DELREFS);
3025
771ed689 3026 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3027 atomic_set(&fs_info->defrag_running, 0);
034f784d 3028 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3029 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3030 fs_info->global_root_tree = RB_ROOT;
95ac567a 3031 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3032 fs_info->metadata_ratio = 0;
4cb5300b 3033 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3034 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3035 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3036 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3037 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3038 btrfs_init_ref_verify(fs_info);
c8b97818 3039
b34b086c
CM
3040 fs_info->thread_pool_size = min_t(unsigned long,
3041 num_online_cpus() + 2, 8);
0afbaf8c 3042
199c2a9c
MX
3043 INIT_LIST_HEAD(&fs_info->ordered_roots);
3044 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3045
638aa7ed 3046 btrfs_init_scrub(fs_info);
21adbd5c
SB
3047#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3048 fs_info->check_integrity_print_mask = 0;
3049#endif
779a65a4 3050 btrfs_init_balance(fs_info);
57056740 3051 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3052
16b0c258 3053 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3054 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3055
fe119a6e
NB
3056 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3057 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3058
5a3f23d5 3059 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3060 mutex_init(&fs_info->tree_log_mutex);
925baedd 3061 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3062 mutex_init(&fs_info->transaction_kthread_mutex);
3063 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3064 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3065 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3066 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3067 init_rwsem(&fs_info->subvol_sem);
803b2f54 3068 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3069
ad618368 3070 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3071 btrfs_init_qgroup(fs_info);
b0643e59 3072 btrfs_discard_init(fs_info);
416ac51d 3073
fa9c0d79
CM
3074 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3075 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3076
e6dcd2dc 3077 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3078 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3079 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3080 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3081 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3082
da17066c
JM
3083 /* Usable values until the real ones are cached from the superblock */
3084 fs_info->nodesize = 4096;
3085 fs_info->sectorsize = 4096;
ab108d99 3086 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3087 fs_info->stripesize = 4096;
3088
f7b12a62
NA
3089 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3090
eede2bf3
OS
3091 spin_lock_init(&fs_info->swapfile_pins_lock);
3092 fs_info->swapfile_pins = RB_ROOT;
3093
18bb8bbf
JT
3094 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3095 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3096}
3097
3098static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3099{
3100 int ret;
3101
3102 fs_info->sb = sb;
3103 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3104 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3105
5deb17e1 3106 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3107 if (ret)
c75e8394 3108 return ret;
ae18c37a
JB
3109
3110 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3111 if (ret)
c75e8394 3112 return ret;
ae18c37a
JB
3113
3114 fs_info->dirty_metadata_batch = PAGE_SIZE *
3115 (1 + ilog2(nr_cpu_ids));
3116
3117 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3118 if (ret)
c75e8394 3119 return ret;
ae18c37a
JB
3120
3121 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3122 GFP_KERNEL);
3123 if (ret)
c75e8394 3124 return ret;
ae18c37a
JB
3125
3126 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3127 GFP_KERNEL);
c75e8394
JB
3128 if (!fs_info->delayed_root)
3129 return -ENOMEM;
ae18c37a
JB
3130 btrfs_init_delayed_root(fs_info->delayed_root);
3131
a0a1db70
FM
3132 if (sb_rdonly(sb))
3133 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3134
c75e8394 3135 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3136}
3137
97f4dd09
NB
3138static int btrfs_uuid_rescan_kthread(void *data)
3139{
0d031dc4 3140 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3141 int ret;
3142
3143 /*
3144 * 1st step is to iterate through the existing UUID tree and
3145 * to delete all entries that contain outdated data.
3146 * 2nd step is to add all missing entries to the UUID tree.
3147 */
3148 ret = btrfs_uuid_tree_iterate(fs_info);
3149 if (ret < 0) {
c94bec2c
JB
3150 if (ret != -EINTR)
3151 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3152 ret);
97f4dd09
NB
3153 up(&fs_info->uuid_tree_rescan_sem);
3154 return ret;
3155 }
3156 return btrfs_uuid_scan_kthread(data);
3157}
3158
3159static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3160{
3161 struct task_struct *task;
3162
3163 down(&fs_info->uuid_tree_rescan_sem);
3164 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3165 if (IS_ERR(task)) {
3166 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3167 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3168 up(&fs_info->uuid_tree_rescan_sem);
3169 return PTR_ERR(task);
3170 }
3171
3172 return 0;
3173}
3174
8cd29088
BB
3175/*
3176 * Some options only have meaning at mount time and shouldn't persist across
3177 * remounts, or be displayed. Clear these at the end of mount and remount
3178 * code paths.
3179 */
3180void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3181{
3182 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3183 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3184}
3185
44c0ca21
BB
3186/*
3187 * Mounting logic specific to read-write file systems. Shared by open_ctree
3188 * and btrfs_remount when remounting from read-only to read-write.
3189 */
3190int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3191{
3192 int ret;
94846229 3193 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3194 bool clear_free_space_tree = false;
3195
3196 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3197 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3198 clear_free_space_tree = true;
3199 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3200 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3201 btrfs_warn(fs_info, "free space tree is invalid");
3202 clear_free_space_tree = true;
3203 }
3204
3205 if (clear_free_space_tree) {
3206 btrfs_info(fs_info, "clearing free space tree");
3207 ret = btrfs_clear_free_space_tree(fs_info);
3208 if (ret) {
3209 btrfs_warn(fs_info,
3210 "failed to clear free space tree: %d", ret);
3211 goto out;
3212 }
3213 }
44c0ca21 3214
8d488a8c
FM
3215 /*
3216 * btrfs_find_orphan_roots() is responsible for finding all the dead
3217 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3218 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3219 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3220 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3221 * item before the root's tree is deleted - this means that if we unmount
3222 * or crash before the deletion completes, on the next mount we will not
3223 * delete what remains of the tree because the orphan item does not
3224 * exists anymore, which is what tells us we have a pending deletion.
3225 */
3226 ret = btrfs_find_orphan_roots(fs_info);
3227 if (ret)
3228 goto out;
3229
44c0ca21
BB
3230 ret = btrfs_cleanup_fs_roots(fs_info);
3231 if (ret)
3232 goto out;
3233
8f1c21d7
BB
3234 down_read(&fs_info->cleanup_work_sem);
3235 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3236 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3237 up_read(&fs_info->cleanup_work_sem);
3238 goto out;
3239 }
3240 up_read(&fs_info->cleanup_work_sem);
3241
44c0ca21 3242 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3243 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3244 mutex_unlock(&fs_info->cleaner_mutex);
3245 if (ret < 0) {
3246 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3247 goto out;
3248 }
3249
5011139a
BB
3250 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3251 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3252 btrfs_info(fs_info, "creating free space tree");
3253 ret = btrfs_create_free_space_tree(fs_info);
3254 if (ret) {
3255 btrfs_warn(fs_info,
3256 "failed to create free space tree: %d", ret);
3257 goto out;
3258 }
3259 }
3260
94846229
BB
3261 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3262 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3263 if (ret)
3264 goto out;
3265 }
3266
44c0ca21
BB
3267 ret = btrfs_resume_balance_async(fs_info);
3268 if (ret)
3269 goto out;
3270
3271 ret = btrfs_resume_dev_replace_async(fs_info);
3272 if (ret) {
3273 btrfs_warn(fs_info, "failed to resume dev_replace");
3274 goto out;
3275 }
3276
3277 btrfs_qgroup_rescan_resume(fs_info);
3278
3279 if (!fs_info->uuid_root) {
3280 btrfs_info(fs_info, "creating UUID tree");
3281 ret = btrfs_create_uuid_tree(fs_info);
3282 if (ret) {
3283 btrfs_warn(fs_info,
3284 "failed to create the UUID tree %d", ret);
3285 goto out;
3286 }
3287 }
3288
3289out:
3290 return ret;
3291}
3292
d7f67ac9
QW
3293/*
3294 * Do various sanity and dependency checks of different features.
3295 *
3296 * This is the place for less strict checks (like for subpage or artificial
3297 * feature dependencies).
3298 *
3299 * For strict checks or possible corruption detection, see
3300 * btrfs_validate_super().
3301 *
3302 * This should be called after btrfs_parse_options(), as some mount options
3303 * (space cache related) can modify on-disk format like free space tree and
3304 * screw up certain feature dependencies.
3305 */
3306int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb)
3307{
3308 struct btrfs_super_block *disk_super = fs_info->super_copy;
3309 u64 incompat = btrfs_super_incompat_flags(disk_super);
3310 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3311 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3312
3313 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3314 btrfs_err(fs_info,
3315 "cannot mount because of unknown incompat features (0x%llx)",
3316 incompat);
3317 return -EINVAL;
3318 }
3319
3320 /* Runtime limitation for mixed block groups. */
3321 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3322 (fs_info->sectorsize != fs_info->nodesize)) {
3323 btrfs_err(fs_info,
3324"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3325 fs_info->nodesize, fs_info->sectorsize);
3326 return -EINVAL;
3327 }
3328
3329 /* Mixed backref is an always-enabled feature. */
3330 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3331
3332 /* Set compression related flags just in case. */
3333 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3334 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3335 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3336 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3337
3338 /*
3339 * An ancient flag, which should really be marked deprecated.
3340 * Such runtime limitation doesn't really need a incompat flag.
3341 */
3342 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3343 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3344
3345 if (compat_ro_unsupp && !sb_rdonly(sb)) {
3346 btrfs_err(fs_info,
3347 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3348 compat_ro);
3349 return -EINVAL;
3350 }
3351
3352 /*
3353 * We have unsupported RO compat features, although RO mounted, we
3354 * should not cause any metadata writes, including log replay.
3355 * Or we could screw up whatever the new feature requires.
3356 */
3357 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3358 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3359 btrfs_err(fs_info,
3360"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3361 compat_ro);
3362 return -EINVAL;
3363 }
3364
3365 /*
3366 * Artificial limitations for block group tree, to force
3367 * block-group-tree to rely on no-holes and free-space-tree.
3368 */
3369 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3370 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3371 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3372 btrfs_err(fs_info,
3373"block-group-tree feature requires no-holes and free-space-tree features");
3374 return -EINVAL;
3375 }
3376
3377 /*
3378 * Subpage runtime limitation on v1 cache.
3379 *
3380 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3381 * we're already defaulting to v2 cache, no need to bother v1 as it's
3382 * going to be deprecated anyway.
3383 */
3384 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3385 btrfs_warn(fs_info,
3386 "v1 space cache is not supported for page size %lu with sectorsize %u",
3387 PAGE_SIZE, fs_info->sectorsize);
3388 return -EINVAL;
3389 }
3390
3391 /* This can be called by remount, we need to protect the super block. */
3392 spin_lock(&fs_info->super_lock);
3393 btrfs_set_super_incompat_flags(disk_super, incompat);
3394 spin_unlock(&fs_info->super_lock);
3395
3396 return 0;
3397}
3398
ae18c37a
JB
3399int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3400 char *options)
3401{
3402 u32 sectorsize;
3403 u32 nodesize;
3404 u32 stripesize;
3405 u64 generation;
3406 u64 features;
3407 u16 csum_type;
ae18c37a
JB
3408 struct btrfs_super_block *disk_super;
3409 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3410 struct btrfs_root *tree_root;
3411 struct btrfs_root *chunk_root;
3412 int ret;
3413 int err = -EINVAL;
ae18c37a
JB
3414 int level;
3415
8260edba 3416 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3417 if (ret) {
83c8266a 3418 err = ret;
ae18c37a 3419 goto fail;
53b381b3
DW
3420 }
3421
ae18c37a
JB
3422 /* These need to be init'ed before we start creating inodes and such. */
3423 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3424 GFP_KERNEL);
3425 fs_info->tree_root = tree_root;
3426 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3427 GFP_KERNEL);
3428 fs_info->chunk_root = chunk_root;
3429 if (!tree_root || !chunk_root) {
3430 err = -ENOMEM;
c75e8394 3431 goto fail;
ae18c37a
JB
3432 }
3433
3434 fs_info->btree_inode = new_inode(sb);
3435 if (!fs_info->btree_inode) {
3436 err = -ENOMEM;
c75e8394 3437 goto fail;
ae18c37a
JB
3438 }
3439 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3440 btrfs_init_btree_inode(fs_info);
3441
d24fa5c1 3442 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3443
3444 /*
3445 * Read super block and check the signature bytes only
3446 */
d24fa5c1 3447 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3448 if (IS_ERR(disk_super)) {
3449 err = PTR_ERR(disk_super);
16cdcec7 3450 goto fail_alloc;
20b45077 3451 }
39279cc3 3452
8dc3f22c 3453 /*
260db43c 3454 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3455 * corrupted, we'll find out
3456 */
8f32380d 3457 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3458 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3459 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3460 csum_type);
8dc3f22c 3461 err = -EINVAL;
8f32380d 3462 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3463 goto fail_alloc;
3464 }
3465
83c68bbc
SY
3466 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3467
6d97c6e3
JT
3468 ret = btrfs_init_csum_hash(fs_info, csum_type);
3469 if (ret) {
3470 err = ret;
8f32380d 3471 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3472 goto fail_alloc;
3473 }
3474
1104a885
DS
3475 /*
3476 * We want to check superblock checksum, the type is stored inside.
3477 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3478 */
3d17adea 3479 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3480 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3481 err = -EINVAL;
8f32380d 3482 btrfs_release_disk_super(disk_super);
141386e1 3483 goto fail_alloc;
1104a885
DS
3484 }
3485
3486 /*
3487 * super_copy is zeroed at allocation time and we never touch the
3488 * following bytes up to INFO_SIZE, the checksum is calculated from
3489 * the whole block of INFO_SIZE
3490 */
8f32380d
JT
3491 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3492 btrfs_release_disk_super(disk_super);
5f39d397 3493
fbc6feae
NB
3494 disk_super = fs_info->super_copy;
3495
0b86a832 3496
fbc6feae
NB
3497 features = btrfs_super_flags(disk_super);
3498 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3499 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3500 btrfs_set_super_flags(disk_super, features);
3501 btrfs_info(fs_info,
3502 "found metadata UUID change in progress flag, clearing");
3503 }
3504
3505 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3506 sizeof(*fs_info->super_for_commit));
de37aa51 3507
069ec957 3508 ret = btrfs_validate_mount_super(fs_info);
1104a885 3509 if (ret) {
05135f59 3510 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3511 err = -EINVAL;
141386e1 3512 goto fail_alloc;
1104a885
DS
3513 }
3514
0f7d52f4 3515 if (!btrfs_super_root(disk_super))
141386e1 3516 goto fail_alloc;
0f7d52f4 3517
acce952b 3518 /* check FS state, whether FS is broken. */
87533c47
MX
3519 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3520 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3521
75e7cb7f
LB
3522 /*
3523 * In the long term, we'll store the compression type in the super
3524 * block, and it'll be used for per file compression control.
3525 */
3526 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3527
6f93e834
AJ
3528
3529 /* Set up fs_info before parsing mount options */
3530 nodesize = btrfs_super_nodesize(disk_super);
3531 sectorsize = btrfs_super_sectorsize(disk_super);
3532 stripesize = sectorsize;
3533 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3534 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3535
3536 fs_info->nodesize = nodesize;
3537 fs_info->sectorsize = sectorsize;
3538 fs_info->sectorsize_bits = ilog2(sectorsize);
3539 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3540 fs_info->stripesize = stripesize;
3541
2ff7e61e 3542 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3543 if (ret) {
3544 err = ret;
141386e1 3545 goto fail_alloc;
2b82032c 3546 }
dfe25020 3547
d7f67ac9
QW
3548 ret = btrfs_check_features(fs_info, sb);
3549 if (ret < 0) {
3550 err = ret;
dc4d3168
QW
3551 goto fail_alloc;
3552 }
3553
8481dd80
QW
3554 if (sectorsize < PAGE_SIZE) {
3555 struct btrfs_subpage_info *subpage_info;
3556
9f73f1ae
QW
3557 /*
3558 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3559 * going to be deprecated.
3560 *
3561 * Force to use v2 cache for subpage case.
3562 */
3563 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3564 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3565 "forcing free space tree for sector size %u with page size %lu",
3566 sectorsize, PAGE_SIZE);
3567
95ea0486
QW
3568 btrfs_warn(fs_info,
3569 "read-write for sector size %u with page size %lu is experimental",
3570 sectorsize, PAGE_SIZE);
8481dd80
QW
3571 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3572 if (!subpage_info)
3573 goto fail_alloc;
3574 btrfs_init_subpage_info(subpage_info, sectorsize);
3575 fs_info->subpage_info = subpage_info;
c8050b3b 3576 }
0bb3eb3e 3577
d21deec5 3578 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3579 if (ret) {
3580 err = ret;
0dc3b84a
JB
3581 goto fail_sb_buffer;
3582 }
4543df7e 3583
9e11ceee
JK
3584 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3585 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3586
a061fc8d
CM
3587 sb->s_blocksize = sectorsize;
3588 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3589 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3590
925baedd 3591 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3592 ret = btrfs_read_sys_array(fs_info);
925baedd 3593 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3594 if (ret) {
05135f59 3595 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3596 goto fail_sb_buffer;
84eed90f 3597 }
0b86a832 3598
84234f3a 3599 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3600 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3601 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3602 generation, level);
3603 if (ret) {
05135f59 3604 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3605 goto fail_tree_roots;
83121942 3606 }
0b86a832 3607
e17cade2 3608 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3609 offsetof(struct btrfs_header, chunk_tree_uuid),
3610 BTRFS_UUID_SIZE);
e17cade2 3611
5b4aacef 3612 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3613 if (ret) {
05135f59 3614 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3615 goto fail_tree_roots;
2b82032c 3616 }
0b86a832 3617
8dabb742 3618 /*
bacce86a
AJ
3619 * At this point we know all the devices that make this filesystem,
3620 * including the seed devices but we don't know yet if the replace
3621 * target is required. So free devices that are not part of this
1a9fd417 3622 * filesystem but skip the replace target device which is checked
bacce86a 3623 * below in btrfs_init_dev_replace().
8dabb742 3624 */
bacce86a 3625 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3626 if (!fs_devices->latest_dev->bdev) {
05135f59 3627 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3628 goto fail_tree_roots;
3629 }
3630
b8522a1e 3631 ret = init_tree_roots(fs_info);
4bbcaa64 3632 if (ret)
b8522a1e 3633 goto fail_tree_roots;
8929ecfa 3634
73651042
NA
3635 /*
3636 * Get zone type information of zoned block devices. This will also
3637 * handle emulation of a zoned filesystem if a regular device has the
3638 * zoned incompat feature flag set.
3639 */
3640 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3641 if (ret) {
3642 btrfs_err(fs_info,
3643 "zoned: failed to read device zone info: %d",
3644 ret);
3645 goto fail_block_groups;
3646 }
3647
75ec1db8
JB
3648 /*
3649 * If we have a uuid root and we're not being told to rescan we need to
3650 * check the generation here so we can set the
3651 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3652 * transaction during a balance or the log replay without updating the
3653 * uuid generation, and then if we crash we would rescan the uuid tree,
3654 * even though it was perfectly fine.
3655 */
3656 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3657 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3658 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3659
cf90d884
QW
3660 ret = btrfs_verify_dev_extents(fs_info);
3661 if (ret) {
3662 btrfs_err(fs_info,
3663 "failed to verify dev extents against chunks: %d",
3664 ret);
3665 goto fail_block_groups;
3666 }
68310a5e
ID
3667 ret = btrfs_recover_balance(fs_info);
3668 if (ret) {
05135f59 3669 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3670 goto fail_block_groups;
3671 }
3672
733f4fbb
SB
3673 ret = btrfs_init_dev_stats(fs_info);
3674 if (ret) {
05135f59 3675 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3676 goto fail_block_groups;
3677 }
3678
8dabb742
SB
3679 ret = btrfs_init_dev_replace(fs_info);
3680 if (ret) {
05135f59 3681 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3682 goto fail_block_groups;
3683 }
3684
b70f5097
NA
3685 ret = btrfs_check_zoned_mode(fs_info);
3686 if (ret) {
3687 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3688 ret);
3689 goto fail_block_groups;
3690 }
3691
c6761a9e 3692 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3693 if (ret) {
05135f59
DS
3694 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3695 ret);
b7c35e81
AJ
3696 goto fail_block_groups;
3697 }
3698
96f3136e 3699 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3700 if (ret) {
05135f59 3701 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3702 goto fail_fsdev_sysfs;
c59021f8 3703 }
3704
c59021f8 3705 ret = btrfs_init_space_info(fs_info);
3706 if (ret) {
05135f59 3707 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3708 goto fail_sysfs;
c59021f8 3709 }
3710
5b4aacef 3711 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3712 if (ret) {
05135f59 3713 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3714 goto fail_sysfs;
1b1d1f66 3715 }
4330e183 3716
16beac87
NA
3717 btrfs_free_zone_cache(fs_info);
3718
5c78a5e7
AJ
3719 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3720 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3721 btrfs_warn(fs_info,
52042d8e 3722 "writable mount is not allowed due to too many missing devices");
2365dd3c 3723 goto fail_sysfs;
292fd7fc 3724 }
9078a3e1 3725
33c44184 3726 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3727 "btrfs-cleaner");
57506d50 3728 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3729 goto fail_sysfs;
a74a4b97
CM
3730
3731 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3732 tree_root,
3733 "btrfs-transaction");
57506d50 3734 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3735 goto fail_cleaner;
a74a4b97 3736
583b7231 3737 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3738 !fs_info->fs_devices->rotating) {
583b7231 3739 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3740 }
3741
572d9ab7 3742 /*
01327610 3743 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3744 * not have to wait for transaction commit
3745 */
3746 btrfs_apply_pending_changes(fs_info);
3818aea2 3747
21adbd5c 3748#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3749 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3750 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3751 btrfs_test_opt(fs_info,
cbeaae4f 3752 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3753 fs_info->check_integrity_print_mask);
3754 if (ret)
05135f59
DS
3755 btrfs_warn(fs_info,
3756 "failed to initialize integrity check module: %d",
3757 ret);
21adbd5c
SB
3758 }
3759#endif
bcef60f2
AJ
3760 ret = btrfs_read_qgroup_config(fs_info);
3761 if (ret)
3762 goto fail_trans_kthread;
21adbd5c 3763
fd708b81
JB
3764 if (btrfs_build_ref_tree(fs_info))
3765 btrfs_err(fs_info, "couldn't build ref tree");
3766
96da0919
QW
3767 /* do not make disk changes in broken FS or nologreplay is given */
3768 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3769 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3770 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3771 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3772 if (ret) {
63443bf5 3773 err = ret;
28c16cbb 3774 goto fail_qgroup;
79787eaa 3775 }
e02119d5 3776 }
1a40e23b 3777
56e9357a 3778 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3779 if (IS_ERR(fs_info->fs_root)) {
3780 err = PTR_ERR(fs_info->fs_root);
f50f4353 3781 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3782 fs_info->fs_root = NULL;
bcef60f2 3783 goto fail_qgroup;
3140c9a3 3784 }
c289811c 3785
bc98a42c 3786 if (sb_rdonly(sb))
8cd29088 3787 goto clear_oneshot;
59641015 3788
44c0ca21 3789 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3790 if (ret) {
6bccf3ab 3791 close_ctree(fs_info);
2b6ba629 3792 return ret;
e3acc2a6 3793 }
b0643e59 3794 btrfs_discard_resume(fs_info);
b382a324 3795
44c0ca21
BB
3796 if (fs_info->uuid_root &&
3797 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3798 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3799 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3800 ret = btrfs_check_uuid_tree(fs_info);
3801 if (ret) {
05135f59
DS
3802 btrfs_warn(fs_info,
3803 "failed to check the UUID tree: %d", ret);
6bccf3ab 3804 close_ctree(fs_info);
70f80175
SB
3805 return ret;
3806 }
f7a81ea4 3807 }
94846229 3808
afcdd129 3809 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3810
b4be6aef
JB
3811 /* Kick the cleaner thread so it'll start deleting snapshots. */
3812 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3813 wake_up_process(fs_info->cleaner_kthread);
3814
8cd29088
BB
3815clear_oneshot:
3816 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3817 return 0;
39279cc3 3818
bcef60f2
AJ
3819fail_qgroup:
3820 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3821fail_trans_kthread:
3822 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3823 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3824 btrfs_free_fs_roots(fs_info);
3f157a2f 3825fail_cleaner:
a74a4b97 3826 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3827
3828 /*
3829 * make sure we're done with the btree inode before we stop our
3830 * kthreads
3831 */
3832 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3833
2365dd3c 3834fail_sysfs:
6618a59b 3835 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3836
b7c35e81
AJ
3837fail_fsdev_sysfs:
3838 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3839
1b1d1f66 3840fail_block_groups:
54067ae9 3841 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3842
3843fail_tree_roots:
9e3aa805
JB
3844 if (fs_info->data_reloc_root)
3845 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3846 free_root_pointers(fs_info, true);
2b8195bb 3847 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3848
39279cc3 3849fail_sb_buffer:
7abadb64 3850 btrfs_stop_all_workers(fs_info);
5cdd7db6 3851 btrfs_free_block_groups(fs_info);
16cdcec7 3852fail_alloc:
586e46e2
ID
3853 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3854
4543df7e 3855 iput(fs_info->btree_inode);
7e662854 3856fail:
586e46e2 3857 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3858 return err;
eb60ceac 3859}
663faf9f 3860ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3861
314b6dd0 3862static void btrfs_end_super_write(struct bio *bio)
f2984462 3863{
314b6dd0
JT
3864 struct btrfs_device *device = bio->bi_private;
3865 struct bio_vec *bvec;
3866 struct bvec_iter_all iter_all;
3867 struct page *page;
3868
3869 bio_for_each_segment_all(bvec, bio, iter_all) {
3870 page = bvec->bv_page;
3871
3872 if (bio->bi_status) {
3873 btrfs_warn_rl_in_rcu(device->fs_info,
3874 "lost page write due to IO error on %s (%d)",
3875 rcu_str_deref(device->name),
3876 blk_status_to_errno(bio->bi_status));
3877 ClearPageUptodate(page);
3878 SetPageError(page);
3879 btrfs_dev_stat_inc_and_print(device,
3880 BTRFS_DEV_STAT_WRITE_ERRS);
3881 } else {
3882 SetPageUptodate(page);
3883 }
3884
3885 put_page(page);
3886 unlock_page(page);
f2984462 3887 }
314b6dd0
JT
3888
3889 bio_put(bio);
f2984462
CM
3890}
3891
8f32380d 3892struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3893 int copy_num, bool drop_cache)
29c36d72 3894{
29c36d72 3895 struct btrfs_super_block *super;
8f32380d 3896 struct page *page;
12659251 3897 u64 bytenr, bytenr_orig;
8f32380d 3898 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3899 int ret;
3900
3901 bytenr_orig = btrfs_sb_offset(copy_num);
3902 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3903 if (ret == -ENOENT)
3904 return ERR_PTR(-EINVAL);
3905 else if (ret)
3906 return ERR_PTR(ret);
29c36d72 3907
cda00eba 3908 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3909 return ERR_PTR(-EINVAL);
29c36d72 3910
a05d3c91
QW
3911 if (drop_cache) {
3912 /* This should only be called with the primary sb. */
3913 ASSERT(copy_num == 0);
3914
3915 /*
3916 * Drop the page of the primary superblock, so later read will
3917 * always read from the device.
3918 */
3919 invalidate_inode_pages2_range(mapping,
3920 bytenr >> PAGE_SHIFT,
3921 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3922 }
3923
8f32380d
JT
3924 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3925 if (IS_ERR(page))
3926 return ERR_CAST(page);
29c36d72 3927
8f32380d 3928 super = page_address(page);
96c2e067
AJ
3929 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3930 btrfs_release_disk_super(super);
3931 return ERR_PTR(-ENODATA);
3932 }
3933
12659251 3934 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3935 btrfs_release_disk_super(super);
3936 return ERR_PTR(-EINVAL);
29c36d72
AJ
3937 }
3938
8f32380d 3939 return super;
29c36d72
AJ
3940}
3941
3942
8f32380d 3943struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3944{
8f32380d 3945 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3946 int i;
3947 u64 transid = 0;
a512bbf8
YZ
3948
3949 /* we would like to check all the supers, but that would make
3950 * a btrfs mount succeed after a mkfs from a different FS.
3951 * So, we need to add a special mount option to scan for
3952 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3953 */
3954 for (i = 0; i < 1; i++) {
a05d3c91 3955 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3956 if (IS_ERR(super))
a512bbf8
YZ
3957 continue;
3958
a512bbf8 3959 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3960 if (latest)
3961 btrfs_release_disk_super(super);
3962
3963 latest = super;
a512bbf8 3964 transid = btrfs_super_generation(super);
a512bbf8
YZ
3965 }
3966 }
92fc03fb 3967
8f32380d 3968 return super;
a512bbf8
YZ
3969}
3970
4eedeb75 3971/*
abbb3b8e 3972 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3973 * pages we use for writing are locked.
4eedeb75 3974 *
abbb3b8e
DS
3975 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3976 * the expected device size at commit time. Note that max_mirrors must be
3977 * same for write and wait phases.
4eedeb75 3978 *
314b6dd0 3979 * Return number of errors when page is not found or submission fails.
4eedeb75 3980 */
a512bbf8 3981static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3982 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3983{
d5178578 3984 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3985 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3986 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3987 int i;
a512bbf8 3988 int errors = 0;
12659251
NA
3989 int ret;
3990 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3991
3992 if (max_mirrors == 0)
3993 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3994
d5178578
JT
3995 shash->tfm = fs_info->csum_shash;
3996
a512bbf8 3997 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3998 struct page *page;
3999 struct bio *bio;
4000 struct btrfs_super_block *disk_super;
4001
12659251
NA
4002 bytenr_orig = btrfs_sb_offset(i);
4003 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4004 if (ret == -ENOENT) {
4005 continue;
4006 } else if (ret < 0) {
4007 btrfs_err(device->fs_info,
4008 "couldn't get super block location for mirror %d",
4009 i);
4010 errors++;
4011 continue;
4012 }
935e5cc9
MX
4013 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4014 device->commit_total_bytes)
a512bbf8
YZ
4015 break;
4016
12659251 4017 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 4018
fd08001f
EB
4019 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4020 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4021 sb->csum);
4eedeb75 4022
314b6dd0
JT
4023 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4024 GFP_NOFS);
4025 if (!page) {
abbb3b8e 4026 btrfs_err(device->fs_info,
314b6dd0 4027 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
4028 bytenr);
4029 errors++;
4eedeb75 4030 continue;
abbb3b8e 4031 }
634554dc 4032
314b6dd0
JT
4033 /* Bump the refcount for wait_dev_supers() */
4034 get_page(page);
a512bbf8 4035
314b6dd0
JT
4036 disk_super = page_address(page);
4037 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 4038
314b6dd0
JT
4039 /*
4040 * Directly use bios here instead of relying on the page cache
4041 * to do I/O, so we don't lose the ability to do integrity
4042 * checking.
4043 */
07888c66
CH
4044 bio = bio_alloc(device->bdev, 1,
4045 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4046 GFP_NOFS);
314b6dd0
JT
4047 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4048 bio->bi_private = device;
4049 bio->bi_end_io = btrfs_end_super_write;
4050 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4051 offset_in_page(bytenr));
a512bbf8 4052
387125fc 4053 /*
314b6dd0
JT
4054 * We FUA only the first super block. The others we allow to
4055 * go down lazy and there's a short window where the on-disk
4056 * copies might still contain the older version.
387125fc 4057 */
1b9e619c 4058 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4059 bio->bi_opf |= REQ_FUA;
4060
58ff51f1
CH
4061 btrfsic_check_bio(bio);
4062 submit_bio(bio);
8376d9e1
NA
4063
4064 if (btrfs_advance_sb_log(device, i))
4065 errors++;
a512bbf8
YZ
4066 }
4067 return errors < i ? 0 : -1;
4068}
4069
abbb3b8e
DS
4070/*
4071 * Wait for write completion of superblocks done by write_dev_supers,
4072 * @max_mirrors same for write and wait phases.
4073 *
314b6dd0 4074 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4075 * date.
4076 */
4077static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4078{
abbb3b8e
DS
4079 int i;
4080 int errors = 0;
b6a535fa 4081 bool primary_failed = false;
12659251 4082 int ret;
abbb3b8e
DS
4083 u64 bytenr;
4084
4085 if (max_mirrors == 0)
4086 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4087
4088 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4089 struct page *page;
4090
12659251
NA
4091 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4092 if (ret == -ENOENT) {
4093 break;
4094 } else if (ret < 0) {
4095 errors++;
4096 if (i == 0)
4097 primary_failed = true;
4098 continue;
4099 }
abbb3b8e
DS
4100 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4101 device->commit_total_bytes)
4102 break;
4103
314b6dd0
JT
4104 page = find_get_page(device->bdev->bd_inode->i_mapping,
4105 bytenr >> PAGE_SHIFT);
4106 if (!page) {
abbb3b8e 4107 errors++;
b6a535fa
HM
4108 if (i == 0)
4109 primary_failed = true;
abbb3b8e
DS
4110 continue;
4111 }
314b6dd0
JT
4112 /* Page is submitted locked and unlocked once the IO completes */
4113 wait_on_page_locked(page);
4114 if (PageError(page)) {
abbb3b8e 4115 errors++;
b6a535fa
HM
4116 if (i == 0)
4117 primary_failed = true;
4118 }
abbb3b8e 4119
314b6dd0
JT
4120 /* Drop our reference */
4121 put_page(page);
abbb3b8e 4122
314b6dd0
JT
4123 /* Drop the reference from the writing run */
4124 put_page(page);
abbb3b8e
DS
4125 }
4126
b6a535fa
HM
4127 /* log error, force error return */
4128 if (primary_failed) {
4129 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4130 device->devid);
4131 return -1;
4132 }
4133
abbb3b8e
DS
4134 return errors < i ? 0 : -1;
4135}
4136
387125fc
CM
4137/*
4138 * endio for the write_dev_flush, this will wake anyone waiting
4139 * for the barrier when it is done
4140 */
4246a0b6 4141static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4142{
f9e69aa9 4143 bio_uninit(bio);
e0ae9994 4144 complete(bio->bi_private);
387125fc
CM
4145}
4146
4147/*
4fc6441a
AJ
4148 * Submit a flush request to the device if it supports it. Error handling is
4149 * done in the waiting counterpart.
387125fc 4150 */
4fc6441a 4151static void write_dev_flush(struct btrfs_device *device)
387125fc 4152{
f9e69aa9 4153 struct bio *bio = &device->flush_bio;
387125fc 4154
a91cf0ff
WY
4155#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4156 /*
4157 * When a disk has write caching disabled, we skip submission of a bio
4158 * with flush and sync requests before writing the superblock, since
4159 * it's not needed. However when the integrity checker is enabled, this
4160 * results in reports that there are metadata blocks referred by a
4161 * superblock that were not properly flushed. So don't skip the bio
4162 * submission only when the integrity checker is enabled for the sake
4163 * of simplicity, since this is a debug tool and not meant for use in
4164 * non-debug builds.
4165 */
08e688fd 4166 if (!bdev_write_cache(device->bdev))
4fc6441a 4167 return;
a91cf0ff 4168#endif
387125fc 4169
f9e69aa9
CH
4170 bio_init(bio, device->bdev, NULL, 0,
4171 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4172 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4173 init_completion(&device->flush_wait);
4174 bio->bi_private = &device->flush_wait;
387125fc 4175
58ff51f1
CH
4176 btrfsic_check_bio(bio);
4177 submit_bio(bio);
1c3063b6 4178 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4179}
387125fc 4180
4fc6441a
AJ
4181/*
4182 * If the flush bio has been submitted by write_dev_flush, wait for it.
4183 */
8c27cb35 4184static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4185{
f9e69aa9 4186 struct bio *bio = &device->flush_bio;
387125fc 4187
1c3063b6 4188 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4189 return BLK_STS_OK;
387125fc 4190
1c3063b6 4191 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4192 wait_for_completion_io(&device->flush_wait);
387125fc 4193
8c27cb35 4194 return bio->bi_status;
387125fc 4195}
387125fc 4196
d10b82fe 4197static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4198{
6528b99d 4199 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4200 return -EIO;
387125fc
CM
4201 return 0;
4202}
4203
4204/*
4205 * send an empty flush down to each device in parallel,
4206 * then wait for them
4207 */
4208static int barrier_all_devices(struct btrfs_fs_info *info)
4209{
4210 struct list_head *head;
4211 struct btrfs_device *dev;
5af3e8cc 4212 int errors_wait = 0;
4e4cbee9 4213 blk_status_t ret;
387125fc 4214
1538e6c5 4215 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4216 /* send down all the barriers */
4217 head = &info->fs_devices->devices;
1538e6c5 4218 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4219 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4220 continue;
cea7c8bf 4221 if (!dev->bdev)
387125fc 4222 continue;
e12c9621 4223 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4224 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4225 continue;
4226
4fc6441a 4227 write_dev_flush(dev);
58efbc9f 4228 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4229 }
4230
4231 /* wait for all the barriers */
1538e6c5 4232 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4233 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4234 continue;
387125fc 4235 if (!dev->bdev) {
5af3e8cc 4236 errors_wait++;
387125fc
CM
4237 continue;
4238 }
e12c9621 4239 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4240 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4241 continue;
4242
4fc6441a 4243 ret = wait_dev_flush(dev);
401b41e5
AJ
4244 if (ret) {
4245 dev->last_flush_error = ret;
66b4993e
DS
4246 btrfs_dev_stat_inc_and_print(dev,
4247 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4248 errors_wait++;
401b41e5
AJ
4249 }
4250 }
4251
cea7c8bf 4252 if (errors_wait) {
401b41e5
AJ
4253 /*
4254 * At some point we need the status of all disks
4255 * to arrive at the volume status. So error checking
4256 * is being pushed to a separate loop.
4257 */
d10b82fe 4258 return check_barrier_error(info);
387125fc 4259 }
387125fc
CM
4260 return 0;
4261}
4262
943c6e99
ZL
4263int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4264{
8789f4fe
ZL
4265 int raid_type;
4266 int min_tolerated = INT_MAX;
943c6e99 4267
8789f4fe
ZL
4268 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4269 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4270 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4271 btrfs_raid_array[BTRFS_RAID_SINGLE].
4272 tolerated_failures);
943c6e99 4273
8789f4fe
ZL
4274 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4275 if (raid_type == BTRFS_RAID_SINGLE)
4276 continue;
41a6e891 4277 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4278 continue;
8c3e3582 4279 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4280 btrfs_raid_array[raid_type].
4281 tolerated_failures);
4282 }
943c6e99 4283
8789f4fe 4284 if (min_tolerated == INT_MAX) {
ab8d0fc4 4285 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4286 min_tolerated = 0;
4287 }
4288
4289 return min_tolerated;
943c6e99
ZL
4290}
4291
eece6a9c 4292int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4293{
e5e9a520 4294 struct list_head *head;
f2984462 4295 struct btrfs_device *dev;
a061fc8d 4296 struct btrfs_super_block *sb;
f2984462 4297 struct btrfs_dev_item *dev_item;
f2984462
CM
4298 int ret;
4299 int do_barriers;
a236aed1
CM
4300 int max_errors;
4301 int total_errors = 0;
a061fc8d 4302 u64 flags;
f2984462 4303
0b246afa 4304 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4305
4306 /*
4307 * max_mirrors == 0 indicates we're from commit_transaction,
4308 * not from fsync where the tree roots in fs_info have not
4309 * been consistent on disk.
4310 */
4311 if (max_mirrors == 0)
4312 backup_super_roots(fs_info);
f2984462 4313
0b246afa 4314 sb = fs_info->super_for_commit;
a061fc8d 4315 dev_item = &sb->dev_item;
e5e9a520 4316
0b246afa
JM
4317 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4318 head = &fs_info->fs_devices->devices;
4319 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4320
5af3e8cc 4321 if (do_barriers) {
0b246afa 4322 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4323 if (ret) {
4324 mutex_unlock(
0b246afa
JM
4325 &fs_info->fs_devices->device_list_mutex);
4326 btrfs_handle_fs_error(fs_info, ret,
4327 "errors while submitting device barriers.");
5af3e8cc
SB
4328 return ret;
4329 }
4330 }
387125fc 4331
1538e6c5 4332 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4333 if (!dev->bdev) {
4334 total_errors++;
4335 continue;
4336 }
e12c9621 4337 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4338 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4339 continue;
4340
2b82032c 4341 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4342 btrfs_set_stack_device_type(dev_item, dev->type);
4343 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4344 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4345 dev->commit_total_bytes);
ce7213c7
MX
4346 btrfs_set_stack_device_bytes_used(dev_item,
4347 dev->commit_bytes_used);
a061fc8d
CM
4348 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4349 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4350 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4351 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4352 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4353 BTRFS_FSID_SIZE);
a512bbf8 4354
a061fc8d
CM
4355 flags = btrfs_super_flags(sb);
4356 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4357
75cb857d
QW
4358 ret = btrfs_validate_write_super(fs_info, sb);
4359 if (ret < 0) {
4360 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4361 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4362 "unexpected superblock corruption detected");
4363 return -EUCLEAN;
4364 }
4365
abbb3b8e 4366 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4367 if (ret)
4368 total_errors++;
f2984462 4369 }
a236aed1 4370 if (total_errors > max_errors) {
0b246afa
JM
4371 btrfs_err(fs_info, "%d errors while writing supers",
4372 total_errors);
4373 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4374
9d565ba4 4375 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4376 btrfs_handle_fs_error(fs_info, -EIO,
4377 "%d errors while writing supers",
4378 total_errors);
9d565ba4 4379 return -EIO;
a236aed1 4380 }
f2984462 4381
a512bbf8 4382 total_errors = 0;
1538e6c5 4383 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4384 if (!dev->bdev)
4385 continue;
e12c9621 4386 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4387 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4388 continue;
4389
abbb3b8e 4390 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4391 if (ret)
4392 total_errors++;
f2984462 4393 }
0b246afa 4394 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4395 if (total_errors > max_errors) {
0b246afa
JM
4396 btrfs_handle_fs_error(fs_info, -EIO,
4397 "%d errors while writing supers",
4398 total_errors);
79787eaa 4399 return -EIO;
a236aed1 4400 }
f2984462
CM
4401 return 0;
4402}
4403
cb517eab
MX
4404/* Drop a fs root from the radix tree and free it. */
4405void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4406 struct btrfs_root *root)
2619ba1f 4407{
4785e24f
JB
4408 bool drop_ref = false;
4409
fc7cbcd4
DS
4410 spin_lock(&fs_info->fs_roots_radix_lock);
4411 radix_tree_delete(&fs_info->fs_roots_radix,
4412 (unsigned long)root->root_key.objectid);
4413 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4414 drop_ref = true;
fc7cbcd4 4415 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4416
84961539 4417 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4418 ASSERT(root->log_root == NULL);
1c1ea4f7 4419 if (root->reloc_root) {
00246528 4420 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4421 root->reloc_root = NULL;
4422 }
4423 }
3321719e 4424
4785e24f
JB
4425 if (drop_ref)
4426 btrfs_put_root(root);
2619ba1f
CM
4427}
4428
c146afad 4429int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4430{
fc7cbcd4
DS
4431 u64 root_objectid = 0;
4432 struct btrfs_root *gang[8];
4433 int i = 0;
65d33fd7 4434 int err = 0;
fc7cbcd4 4435 unsigned int ret = 0;
e089f05c 4436
c146afad 4437 while (1) {
fc7cbcd4
DS
4438 spin_lock(&fs_info->fs_roots_radix_lock);
4439 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4440 (void **)gang, root_objectid,
4441 ARRAY_SIZE(gang));
4442 if (!ret) {
4443 spin_unlock(&fs_info->fs_roots_radix_lock);
4444 break;
65d33fd7 4445 }
fc7cbcd4 4446 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4447
fc7cbcd4
DS
4448 for (i = 0; i < ret; i++) {
4449 /* Avoid to grab roots in dead_roots */
4450 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4451 gang[i] = NULL;
4452 continue;
4453 }
4454 /* grab all the search result for later use */
4455 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4456 }
fc7cbcd4 4457 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4458
fc7cbcd4
DS
4459 for (i = 0; i < ret; i++) {
4460 if (!gang[i])
65d33fd7 4461 continue;
fc7cbcd4
DS
4462 root_objectid = gang[i]->root_key.objectid;
4463 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4464 if (err)
fc7cbcd4
DS
4465 break;
4466 btrfs_put_root(gang[i]);
c146afad 4467 }
fc7cbcd4 4468 root_objectid++;
c146afad 4469 }
65d33fd7 4470
fc7cbcd4
DS
4471 /* release the uncleaned roots due to error */
4472 for (; i < ret; i++) {
4473 if (gang[i])
4474 btrfs_put_root(gang[i]);
65d33fd7
QW
4475 }
4476 return err;
c146afad 4477}
a2135011 4478
6bccf3ab 4479int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4480{
6bccf3ab 4481 struct btrfs_root *root = fs_info->tree_root;
c146afad 4482 struct btrfs_trans_handle *trans;
a74a4b97 4483
0b246afa 4484 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4485 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4486 mutex_unlock(&fs_info->cleaner_mutex);
4487 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4488
4489 /* wait until ongoing cleanup work done */
0b246afa
JM
4490 down_write(&fs_info->cleanup_work_sem);
4491 up_write(&fs_info->cleanup_work_sem);
c71bf099 4492
7a7eaa40 4493 trans = btrfs_join_transaction(root);
3612b495
TI
4494 if (IS_ERR(trans))
4495 return PTR_ERR(trans);
3a45bb20 4496 return btrfs_commit_transaction(trans);
c146afad
YZ
4497}
4498
36c86a9e
QW
4499static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4500{
4501 struct btrfs_transaction *trans;
4502 struct btrfs_transaction *tmp;
4503 bool found = false;
4504
4505 if (list_empty(&fs_info->trans_list))
4506 return;
4507
4508 /*
4509 * This function is only called at the very end of close_ctree(),
4510 * thus no other running transaction, no need to take trans_lock.
4511 */
4512 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4513 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4514 struct extent_state *cached = NULL;
4515 u64 dirty_bytes = 0;
4516 u64 cur = 0;
4517 u64 found_start;
4518 u64 found_end;
4519
4520 found = true;
4521 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4522 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4523 dirty_bytes += found_end + 1 - found_start;
4524 cur = found_end + 1;
4525 }
4526 btrfs_warn(fs_info,
4527 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4528 trans->transid, dirty_bytes);
4529 btrfs_cleanup_one_transaction(trans, fs_info);
4530
4531 if (trans == fs_info->running_transaction)
4532 fs_info->running_transaction = NULL;
4533 list_del_init(&trans->list);
4534
4535 btrfs_put_transaction(trans);
4536 trace_btrfs_transaction_commit(fs_info);
4537 }
4538 ASSERT(!found);
4539}
4540
b105e927 4541void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4542{
c146afad
YZ
4543 int ret;
4544
afcdd129 4545 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4546
8a1f1e3d
FM
4547 /*
4548 * If we had UNFINISHED_DROPS we could still be processing them, so
4549 * clear that bit and wake up relocation so it can stop.
4550 * We must do this before stopping the block group reclaim task, because
4551 * at btrfs_relocate_block_group() we wait for this bit, and after the
4552 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4553 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4554 * return 1.
4555 */
4556 btrfs_wake_unfinished_drop(fs_info);
4557
31e70e52
FM
4558 /*
4559 * We may have the reclaim task running and relocating a data block group,
4560 * in which case it may create delayed iputs. So stop it before we park
4561 * the cleaner kthread otherwise we can get new delayed iputs after
4562 * parking the cleaner, and that can make the async reclaim task to hang
4563 * if it's waiting for delayed iputs to complete, since the cleaner is
4564 * parked and can not run delayed iputs - this will make us hang when
4565 * trying to stop the async reclaim task.
4566 */
4567 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4568 /*
4569 * We don't want the cleaner to start new transactions, add more delayed
4570 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4571 * because that frees the task_struct, and the transaction kthread might
4572 * still try to wake up the cleaner.
4573 */
4574 kthread_park(fs_info->cleaner_kthread);
c146afad 4575
7343dd61 4576 /* wait for the qgroup rescan worker to stop */
d06f23d6 4577 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4578
803b2f54
SB
4579 /* wait for the uuid_scan task to finish */
4580 down(&fs_info->uuid_tree_rescan_sem);
4581 /* avoid complains from lockdep et al., set sem back to initial state */
4582 up(&fs_info->uuid_tree_rescan_sem);
4583
837d5b6e 4584 /* pause restriper - we want to resume on mount */
aa1b8cd4 4585 btrfs_pause_balance(fs_info);
837d5b6e 4586
8dabb742
SB
4587 btrfs_dev_replace_suspend_for_unmount(fs_info);
4588
aa1b8cd4 4589 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4590
4591 /* wait for any defraggers to finish */
4592 wait_event(fs_info->transaction_wait,
4593 (atomic_read(&fs_info->defrag_running) == 0));
4594
4595 /* clear out the rbtree of defraggable inodes */
26176e7c 4596 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4597
a362bb86
FM
4598 /*
4599 * After we parked the cleaner kthread, ordered extents may have
4600 * completed and created new delayed iputs. If one of the async reclaim
4601 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4602 * can hang forever trying to stop it, because if a delayed iput is
4603 * added after it ran btrfs_run_delayed_iputs() and before it called
4604 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4605 * no one else to run iputs.
4606 *
4607 * So wait for all ongoing ordered extents to complete and then run
4608 * delayed iputs. This works because once we reach this point no one
4609 * can either create new ordered extents nor create delayed iputs
4610 * through some other means.
4611 *
4612 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4613 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4614 * but the delayed iput for the respective inode is made only when doing
4615 * the final btrfs_put_ordered_extent() (which must happen at
4616 * btrfs_finish_ordered_io() when we are unmounting).
4617 */
4618 btrfs_flush_workqueue(fs_info->endio_write_workers);
4619 /* Ordered extents for free space inodes. */
4620 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4621 btrfs_run_delayed_iputs(fs_info);
4622
21c7e756 4623 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4624 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4625 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4626
b0643e59
DZ
4627 /* Cancel or finish ongoing discard work */
4628 btrfs_discard_cleanup(fs_info);
4629
bc98a42c 4630 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4631 /*
d6fd0ae2
OS
4632 * The cleaner kthread is stopped, so do one final pass over
4633 * unused block groups.
e44163e1 4634 */
0b246afa 4635 btrfs_delete_unused_bgs(fs_info);
e44163e1 4636
f0cc2cd7
FM
4637 /*
4638 * There might be existing delayed inode workers still running
4639 * and holding an empty delayed inode item. We must wait for
4640 * them to complete first because they can create a transaction.
4641 * This happens when someone calls btrfs_balance_delayed_items()
4642 * and then a transaction commit runs the same delayed nodes
4643 * before any delayed worker has done something with the nodes.
4644 * We must wait for any worker here and not at transaction
4645 * commit time since that could cause a deadlock.
4646 * This is a very rare case.
4647 */
4648 btrfs_flush_workqueue(fs_info->delayed_workers);
4649
6bccf3ab 4650 ret = btrfs_commit_super(fs_info);
acce952b 4651 if (ret)
04892340 4652 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4653 }
4654
84961539 4655 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4656 btrfs_error_commit_super(fs_info);
0f7d52f4 4657
e3029d9f
AV
4658 kthread_stop(fs_info->transaction_kthread);
4659 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4660
e187831e 4661 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4662 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4663
5958253c
QW
4664 if (btrfs_check_quota_leak(fs_info)) {
4665 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4666 btrfs_err(fs_info, "qgroup reserved space leaked");
4667 }
4668
04892340 4669 btrfs_free_qgroup_config(fs_info);
fe816d0f 4670 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4671
963d678b 4672 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4673 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4674 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4675 }
bcc63abb 4676
5deb17e1 4677 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4678 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4679 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4680
6618a59b 4681 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4682 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4683
1a4319cc
LB
4684 btrfs_put_block_group_cache(fs_info);
4685
de348ee0
WS
4686 /*
4687 * we must make sure there is not any read request to
4688 * submit after we stopping all workers.
4689 */
4690 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4691 btrfs_stop_all_workers(fs_info);
4692
0a31daa4 4693 /* We shouldn't have any transaction open at this point */
36c86a9e 4694 warn_about_uncommitted_trans(fs_info);
0a31daa4 4695
afcdd129 4696 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4697 free_root_pointers(fs_info, true);
8c38938c 4698 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4699
4e19443d
JB
4700 /*
4701 * We must free the block groups after dropping the fs_roots as we could
4702 * have had an IO error and have left over tree log blocks that aren't
4703 * cleaned up until the fs roots are freed. This makes the block group
4704 * accounting appear to be wrong because there's pending reserved bytes,
4705 * so make sure we do the block group cleanup afterwards.
4706 */
4707 btrfs_free_block_groups(fs_info);
4708
13e6c37b 4709 iput(fs_info->btree_inode);
d6bfde87 4710
21adbd5c 4711#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4712 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4713 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4714#endif
4715
0b86a832 4716 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4717 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4718}
4719
b9fab919
CM
4720int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4721 int atomic)
5f39d397 4722{
1259ab75 4723 int ret;
727011e0 4724 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4725
0b32f4bb 4726 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4727 if (!ret)
4728 return ret;
4729
4730 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4731 parent_transid, atomic);
4732 if (ret == -EAGAIN)
4733 return ret;
1259ab75 4734 return !ret;
5f39d397
CM
4735}
4736
5f39d397
CM
4737void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4738{
2f4d60df 4739 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4740 u64 transid = btrfs_header_generation(buf);
b9473439 4741 int was_dirty;
b4ce94de 4742
06ea65a3
JB
4743#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4744 /*
4745 * This is a fast path so only do this check if we have sanity tests
52042d8e 4746 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4747 * outside of the sanity tests.
4748 */
b0132a3b 4749 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4750 return;
4751#endif
49d0c642 4752 btrfs_assert_tree_write_locked(buf);
0b246afa 4753 if (transid != fs_info->generation)
5d163e0e 4754 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4755 buf->start, transid, fs_info->generation);
0b32f4bb 4756 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4757 if (!was_dirty)
104b4e51
NB
4758 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4759 buf->len,
4760 fs_info->dirty_metadata_batch);
1f21ef0a 4761#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4762 /*
4763 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4764 * but item data not updated.
4765 * So here we should only check item pointers, not item data.
4766 */
4767 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4768 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4769 btrfs_print_leaf(buf);
1f21ef0a
FM
4770 ASSERT(0);
4771 }
4772#endif
eb60ceac
CM
4773}
4774
2ff7e61e 4775static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4776 int flush_delayed)
16cdcec7
MX
4777{
4778 /*
4779 * looks as though older kernels can get into trouble with
4780 * this code, they end up stuck in balance_dirty_pages forever
4781 */
e2d84521 4782 int ret;
16cdcec7
MX
4783
4784 if (current->flags & PF_MEMALLOC)
4785 return;
4786
b53d3f5d 4787 if (flush_delayed)
2ff7e61e 4788 btrfs_balance_delayed_items(fs_info);
16cdcec7 4789
d814a491
EL
4790 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4791 BTRFS_DIRTY_METADATA_THRESH,
4792 fs_info->dirty_metadata_batch);
e2d84521 4793 if (ret > 0) {
0b246afa 4794 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4795 }
16cdcec7
MX
4796}
4797
2ff7e61e 4798void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4799{
2ff7e61e 4800 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4801}
585ad2c3 4802
2ff7e61e 4803void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4804{
2ff7e61e 4805 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4806}
6b80053d 4807
2ff7e61e 4808static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4809{
fe816d0f
NB
4810 /* cleanup FS via transaction */
4811 btrfs_cleanup_transaction(fs_info);
4812
0b246afa 4813 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4814 btrfs_run_delayed_iputs(fs_info);
0b246afa 4815 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4816
0b246afa
JM
4817 down_write(&fs_info->cleanup_work_sem);
4818 up_write(&fs_info->cleanup_work_sem);
acce952b 4819}
4820
ef67963d
JB
4821static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4822{
fc7cbcd4
DS
4823 struct btrfs_root *gang[8];
4824 u64 root_objectid = 0;
4825 int ret;
4826
4827 spin_lock(&fs_info->fs_roots_radix_lock);
4828 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4829 (void **)gang, root_objectid,
4830 ARRAY_SIZE(gang))) != 0) {
4831 int i;
4832
4833 for (i = 0; i < ret; i++)
4834 gang[i] = btrfs_grab_root(gang[i]);
4835 spin_unlock(&fs_info->fs_roots_radix_lock);
4836
4837 for (i = 0; i < ret; i++) {
4838 if (!gang[i])
ef67963d 4839 continue;
fc7cbcd4
DS
4840 root_objectid = gang[i]->root_key.objectid;
4841 btrfs_free_log(NULL, gang[i]);
4842 btrfs_put_root(gang[i]);
ef67963d 4843 }
fc7cbcd4
DS
4844 root_objectid++;
4845 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4846 }
fc7cbcd4 4847 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4848 btrfs_free_log_root_tree(NULL, fs_info);
4849}
4850
143bede5 4851static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4852{
acce952b 4853 struct btrfs_ordered_extent *ordered;
acce952b 4854
199c2a9c 4855 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4856 /*
4857 * This will just short circuit the ordered completion stuff which will
4858 * make sure the ordered extent gets properly cleaned up.
4859 */
199c2a9c 4860 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4861 root_extent_list)
4862 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4863 spin_unlock(&root->ordered_extent_lock);
4864}
4865
4866static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4867{
4868 struct btrfs_root *root;
4869 struct list_head splice;
4870
4871 INIT_LIST_HEAD(&splice);
4872
4873 spin_lock(&fs_info->ordered_root_lock);
4874 list_splice_init(&fs_info->ordered_roots, &splice);
4875 while (!list_empty(&splice)) {
4876 root = list_first_entry(&splice, struct btrfs_root,
4877 ordered_root);
1de2cfde
JB
4878 list_move_tail(&root->ordered_root,
4879 &fs_info->ordered_roots);
199c2a9c 4880
2a85d9ca 4881 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4882 btrfs_destroy_ordered_extents(root);
4883
2a85d9ca
LB
4884 cond_resched();
4885 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4886 }
4887 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4888
4889 /*
4890 * We need this here because if we've been flipped read-only we won't
4891 * get sync() from the umount, so we need to make sure any ordered
4892 * extents that haven't had their dirty pages IO start writeout yet
4893 * actually get run and error out properly.
4894 */
4895 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4896}
4897
35a3621b 4898static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4899 struct btrfs_fs_info *fs_info)
acce952b 4900{
4901 struct rb_node *node;
4902 struct btrfs_delayed_ref_root *delayed_refs;
4903 struct btrfs_delayed_ref_node *ref;
4904 int ret = 0;
4905
4906 delayed_refs = &trans->delayed_refs;
4907
4908 spin_lock(&delayed_refs->lock);
d7df2c79 4909 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4910 spin_unlock(&delayed_refs->lock);
b79ce3dd 4911 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4912 return ret;
4913 }
4914
5c9d028b 4915 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4916 struct btrfs_delayed_ref_head *head;
0e0adbcf 4917 struct rb_node *n;
e78417d1 4918 bool pin_bytes = false;
acce952b 4919
d7df2c79
JB
4920 head = rb_entry(node, struct btrfs_delayed_ref_head,
4921 href_node);
3069bd26 4922 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4923 continue;
3069bd26 4924
d7df2c79 4925 spin_lock(&head->lock);
e3d03965 4926 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4927 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4928 ref_node);
d7df2c79 4929 ref->in_tree = 0;
e3d03965 4930 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4931 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4932 if (!list_empty(&ref->add_list))
4933 list_del(&ref->add_list);
d7df2c79
JB
4934 atomic_dec(&delayed_refs->num_entries);
4935 btrfs_put_delayed_ref(ref);
e78417d1 4936 }
d7df2c79
JB
4937 if (head->must_insert_reserved)
4938 pin_bytes = true;
4939 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4940 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4941 spin_unlock(&head->lock);
4942 spin_unlock(&delayed_refs->lock);
4943 mutex_unlock(&head->mutex);
acce952b 4944
f603bb94
NB
4945 if (pin_bytes) {
4946 struct btrfs_block_group *cache;
4947
4948 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4949 BUG_ON(!cache);
4950
4951 spin_lock(&cache->space_info->lock);
4952 spin_lock(&cache->lock);
4953 cache->pinned += head->num_bytes;
4954 btrfs_space_info_update_bytes_pinned(fs_info,
4955 cache->space_info, head->num_bytes);
4956 cache->reserved -= head->num_bytes;
4957 cache->space_info->bytes_reserved -= head->num_bytes;
4958 spin_unlock(&cache->lock);
4959 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4960
4961 btrfs_put_block_group(cache);
4962
4963 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4964 head->bytenr + head->num_bytes - 1);
4965 }
31890da0 4966 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4967 btrfs_put_delayed_ref_head(head);
acce952b 4968 cond_resched();
4969 spin_lock(&delayed_refs->lock);
4970 }
81f7eb00 4971 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4972
4973 spin_unlock(&delayed_refs->lock);
4974
4975 return ret;
4976}
4977
143bede5 4978static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4979{
4980 struct btrfs_inode *btrfs_inode;
4981 struct list_head splice;
4982
4983 INIT_LIST_HEAD(&splice);
4984
eb73c1b7
MX
4985 spin_lock(&root->delalloc_lock);
4986 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4987
4988 while (!list_empty(&splice)) {
fe816d0f 4989 struct inode *inode = NULL;
eb73c1b7
MX
4990 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4991 delalloc_inodes);
fe816d0f 4992 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4993 spin_unlock(&root->delalloc_lock);
acce952b 4994
fe816d0f
NB
4995 /*
4996 * Make sure we get a live inode and that it'll not disappear
4997 * meanwhile.
4998 */
4999 inode = igrab(&btrfs_inode->vfs_inode);
5000 if (inode) {
5001 invalidate_inode_pages2(inode->i_mapping);
5002 iput(inode);
5003 }
eb73c1b7 5004 spin_lock(&root->delalloc_lock);
acce952b 5005 }
eb73c1b7
MX
5006 spin_unlock(&root->delalloc_lock);
5007}
5008
5009static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5010{
5011 struct btrfs_root *root;
5012 struct list_head splice;
5013
5014 INIT_LIST_HEAD(&splice);
5015
5016 spin_lock(&fs_info->delalloc_root_lock);
5017 list_splice_init(&fs_info->delalloc_roots, &splice);
5018 while (!list_empty(&splice)) {
5019 root = list_first_entry(&splice, struct btrfs_root,
5020 delalloc_root);
00246528 5021 root = btrfs_grab_root(root);
eb73c1b7
MX
5022 BUG_ON(!root);
5023 spin_unlock(&fs_info->delalloc_root_lock);
5024
5025 btrfs_destroy_delalloc_inodes(root);
00246528 5026 btrfs_put_root(root);
eb73c1b7
MX
5027
5028 spin_lock(&fs_info->delalloc_root_lock);
5029 }
5030 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 5031}
5032
2ff7e61e 5033static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 5034 struct extent_io_tree *dirty_pages,
5035 int mark)
5036{
5037 int ret;
acce952b 5038 struct extent_buffer *eb;
5039 u64 start = 0;
5040 u64 end;
acce952b 5041
5042 while (1) {
5043 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 5044 mark, NULL);
acce952b 5045 if (ret)
5046 break;
5047
91166212 5048 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 5049 while (start <= end) {
0b246afa
JM
5050 eb = find_extent_buffer(fs_info, start);
5051 start += fs_info->nodesize;
fd8b2b61 5052 if (!eb)
acce952b 5053 continue;
fd8b2b61 5054 wait_on_extent_buffer_writeback(eb);
acce952b 5055
fd8b2b61
JB
5056 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5057 &eb->bflags))
5058 clear_extent_buffer_dirty(eb);
5059 free_extent_buffer_stale(eb);
acce952b 5060 }
5061 }
5062
5063 return ret;
5064}
5065
2ff7e61e 5066static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5067 struct extent_io_tree *unpin)
acce952b 5068{
acce952b 5069 u64 start;
5070 u64 end;
5071 int ret;
5072
acce952b 5073 while (1) {
0e6ec385
FM
5074 struct extent_state *cached_state = NULL;
5075
fcd5e742
LF
5076 /*
5077 * The btrfs_finish_extent_commit() may get the same range as
5078 * ours between find_first_extent_bit and clear_extent_dirty.
5079 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5080 * the same extent range.
5081 */
5082 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5083 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5084 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5085 if (ret) {
5086 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5087 break;
fcd5e742 5088 }
acce952b 5089
0e6ec385
FM
5090 clear_extent_dirty(unpin, start, end, &cached_state);
5091 free_extent_state(cached_state);
2ff7e61e 5092 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5093 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5094 cond_resched();
5095 }
5096
5097 return 0;
5098}
5099
32da5386 5100static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5101{
5102 struct inode *inode;
5103
5104 inode = cache->io_ctl.inode;
5105 if (inode) {
5106 invalidate_inode_pages2(inode->i_mapping);
5107 BTRFS_I(inode)->generation = 0;
5108 cache->io_ctl.inode = NULL;
5109 iput(inode);
5110 }
bbc37d6e 5111 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5112 btrfs_put_block_group(cache);
5113}
5114
5115void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5116 struct btrfs_fs_info *fs_info)
c79a1751 5117{
32da5386 5118 struct btrfs_block_group *cache;
c79a1751
LB
5119
5120 spin_lock(&cur_trans->dirty_bgs_lock);
5121 while (!list_empty(&cur_trans->dirty_bgs)) {
5122 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5123 struct btrfs_block_group,
c79a1751 5124 dirty_list);
c79a1751
LB
5125
5126 if (!list_empty(&cache->io_list)) {
5127 spin_unlock(&cur_trans->dirty_bgs_lock);
5128 list_del_init(&cache->io_list);
5129 btrfs_cleanup_bg_io(cache);
5130 spin_lock(&cur_trans->dirty_bgs_lock);
5131 }
5132
5133 list_del_init(&cache->dirty_list);
5134 spin_lock(&cache->lock);
5135 cache->disk_cache_state = BTRFS_DC_ERROR;
5136 spin_unlock(&cache->lock);
5137
5138 spin_unlock(&cur_trans->dirty_bgs_lock);
5139 btrfs_put_block_group(cache);
ba2c4d4e 5140 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5141 spin_lock(&cur_trans->dirty_bgs_lock);
5142 }
5143 spin_unlock(&cur_trans->dirty_bgs_lock);
5144
45ae2c18
NB
5145 /*
5146 * Refer to the definition of io_bgs member for details why it's safe
5147 * to use it without any locking
5148 */
c79a1751
LB
5149 while (!list_empty(&cur_trans->io_bgs)) {
5150 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5151 struct btrfs_block_group,
c79a1751 5152 io_list);
c79a1751
LB
5153
5154 list_del_init(&cache->io_list);
5155 spin_lock(&cache->lock);
5156 cache->disk_cache_state = BTRFS_DC_ERROR;
5157 spin_unlock(&cache->lock);
5158 btrfs_cleanup_bg_io(cache);
5159 }
5160}
5161
49b25e05 5162void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5163 struct btrfs_fs_info *fs_info)
49b25e05 5164{
bbbf7243
NB
5165 struct btrfs_device *dev, *tmp;
5166
2ff7e61e 5167 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5168 ASSERT(list_empty(&cur_trans->dirty_bgs));
5169 ASSERT(list_empty(&cur_trans->io_bgs));
5170
bbbf7243
NB
5171 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5172 post_commit_list) {
5173 list_del_init(&dev->post_commit_list);
5174 }
5175
2ff7e61e 5176 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5177
4a9d8bde 5178 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5179 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5180
4a9d8bde 5181 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5182 wake_up(&fs_info->transaction_wait);
49b25e05 5183
ccdf9b30 5184 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5185
2ff7e61e 5186 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5187 EXTENT_DIRTY);
fe119a6e 5188 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5189
d3575156
NA
5190 btrfs_free_redirty_list(cur_trans);
5191
4a9d8bde
MX
5192 cur_trans->state =TRANS_STATE_COMPLETED;
5193 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5194}
5195
2ff7e61e 5196static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5197{
5198 struct btrfs_transaction *t;
acce952b 5199
0b246afa 5200 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5201
0b246afa
JM
5202 spin_lock(&fs_info->trans_lock);
5203 while (!list_empty(&fs_info->trans_list)) {
5204 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5205 struct btrfs_transaction, list);
5206 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5207 refcount_inc(&t->use_count);
0b246afa 5208 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5209 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5210 btrfs_put_transaction(t);
0b246afa 5211 spin_lock(&fs_info->trans_lock);
724e2315
JB
5212 continue;
5213 }
0b246afa 5214 if (t == fs_info->running_transaction) {
724e2315 5215 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5216 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5217 /*
5218 * We wait for 0 num_writers since we don't hold a trans
5219 * handle open currently for this transaction.
5220 */
5221 wait_event(t->writer_wait,
5222 atomic_read(&t->num_writers) == 0);
5223 } else {
0b246afa 5224 spin_unlock(&fs_info->trans_lock);
724e2315 5225 }
2ff7e61e 5226 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5227
0b246afa
JM
5228 spin_lock(&fs_info->trans_lock);
5229 if (t == fs_info->running_transaction)
5230 fs_info->running_transaction = NULL;
acce952b 5231 list_del_init(&t->list);
0b246afa 5232 spin_unlock(&fs_info->trans_lock);
acce952b 5233
724e2315 5234 btrfs_put_transaction(t);
2e4e97ab 5235 trace_btrfs_transaction_commit(fs_info);
0b246afa 5236 spin_lock(&fs_info->trans_lock);
724e2315 5237 }
0b246afa
JM
5238 spin_unlock(&fs_info->trans_lock);
5239 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5240 btrfs_destroy_delayed_inodes(fs_info);
5241 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5242 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5243 btrfs_drop_all_logs(fs_info);
0b246afa 5244 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5245
5246 return 0;
5247}
ec7d6dfd 5248
453e4873 5249int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5250{
5251 struct btrfs_path *path;
5252 int ret;
5253 struct extent_buffer *l;
5254 struct btrfs_key search_key;
5255 struct btrfs_key found_key;
5256 int slot;
5257
5258 path = btrfs_alloc_path();
5259 if (!path)
5260 return -ENOMEM;
5261
5262 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5263 search_key.type = -1;
5264 search_key.offset = (u64)-1;
5265 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5266 if (ret < 0)
5267 goto error;
5268 BUG_ON(ret == 0); /* Corruption */
5269 if (path->slots[0] > 0) {
5270 slot = path->slots[0] - 1;
5271 l = path->nodes[0];
5272 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5273 root->free_objectid = max_t(u64, found_key.objectid + 1,
5274 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5275 } else {
23125104 5276 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5277 }
5278 ret = 0;
5279error:
5280 btrfs_free_path(path);
5281 return ret;
5282}
5283
543068a2 5284int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5285{
5286 int ret;
5287 mutex_lock(&root->objectid_mutex);
5288
6b8fad57 5289 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5290 btrfs_warn(root->fs_info,
5291 "the objectid of root %llu reaches its highest value",
5292 root->root_key.objectid);
5293 ret = -ENOSPC;
5294 goto out;
5295 }
5296
23125104 5297 *objectid = root->free_objectid++;
ec7d6dfd
NB
5298 ret = 0;
5299out:
5300 mutex_unlock(&root->objectid_mutex);
5301 return ret;
5302}