btrfs: introduce mount option rescue=ignorebadroots
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
141386e1
JB
100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104}
105
d352ac68
CM
106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
44b8bd7e 111struct async_submit_bio {
c6100a4b 112 void *private_data;
44b8bd7e 113 struct bio *bio;
a758781d 114 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 115 int mirror_num;
eaf25d93
CM
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
8b712842 121 struct btrfs_work work;
4e4cbee9 122 blk_status_t status;
44b8bd7e
CM
123};
124
85d4e461
CM
125/*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
4008c04a 135 *
85d4e461
CM
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 139 *
85d4e461
CM
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 143 *
85d4e461
CM
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
4008c04a
CM
147 */
148#ifdef CONFIG_DEBUG_LOCK_ALLOC
149# if BTRFS_MAX_LEVEL != 8
150# error
151# endif
85d4e461
CM
152
153static struct btrfs_lockdep_keyset {
154 u64 id; /* root objectid */
155 const char *name_stem; /* lock name stem */
156 char names[BTRFS_MAX_LEVEL + 1][20];
157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
158} btrfs_lockdep_keysets[] = {
159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 171 { .id = 0, .name_stem = "tree" },
4008c04a 172};
85d4e461
CM
173
174void __init btrfs_init_lockdep(void)
175{
176 int i, j;
177
178 /* initialize lockdep class names */
179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181
182 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183 snprintf(ks->names[j], sizeof(ks->names[j]),
184 "btrfs-%s-%02d", ks->name_stem, j);
185 }
186}
187
188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190{
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202}
203
4008c04a
CM
204#endif
205
d352ac68 206/*
2996e1f8 207 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 208 */
c67b3892 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 210{
d5178578 211 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
d5178578 213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 214 char *kaddr;
e9be5a30 215 int i;
d5178578
JT
216
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
e9be5a30
DS
219 kaddr = page_address(buf->pages[0]);
220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 PAGE_SIZE - BTRFS_CSUM_SIZE);
19c00ddc 222
e9be5a30
DS
223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 226 }
71a63551 227 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 228 crypto_shash_final(shash, result);
19c00ddc
CM
229}
230
d352ac68
CM
231/*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
1259ab75 237static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
238 struct extent_buffer *eb, u64 parent_transid,
239 int atomic)
1259ab75 240{
2ac55d41 241 struct extent_state *cached_state = NULL;
1259ab75 242 int ret;
2755a0de 243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
b9fab919
CM
248 if (atomic)
249 return -EAGAIN;
250
a26e8c9f
JB
251 if (need_lock) {
252 btrfs_tree_read_lock(eb);
300aa896 253 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
254 }
255
2ac55d41 256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 257 &cached_state);
0b32f4bb 258 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
259 btrfs_header_generation(eb) == parent_transid) {
260 ret = 0;
261 goto out;
262 }
94647322
DS
263 btrfs_err_rl(eb->fs_info,
264 "parent transid verify failed on %llu wanted %llu found %llu",
265 eb->start,
29549aec 266 parent_transid, btrfs_header_generation(eb));
1259ab75 267 ret = 1;
a26e8c9f
JB
268
269 /*
270 * Things reading via commit roots that don't have normal protection,
271 * like send, can have a really old block in cache that may point at a
01327610 272 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
273 * if we find an eb that is under IO (dirty/writeback) because we could
274 * end up reading in the stale data and then writing it back out and
275 * making everybody very sad.
276 */
277 if (!extent_buffer_under_io(eb))
278 clear_extent_buffer_uptodate(eb);
33958dc6 279out:
2ac55d41 280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 281 &cached_state);
472b909f
JB
282 if (need_lock)
283 btrfs_tree_read_unlock_blocking(eb);
1259ab75 284 return ret;
1259ab75
CM
285}
286
e7e16f48
JT
287static bool btrfs_supported_super_csum(u16 csum_type)
288{
289 switch (csum_type) {
290 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 291 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 292 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 293 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
294 return true;
295 default:
296 return false;
297 }
298}
299
1104a885
DS
300/*
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
303 */
ab8d0fc4
JM
304static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305 char *raw_disk_sb)
1104a885
DS
306{
307 struct btrfs_super_block *disk_sb =
308 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 309 char result[BTRFS_CSUM_SIZE];
d5178578
JT
310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312 shash->tfm = fs_info->csum_shash;
1104a885 313
51bce6c9
JT
314 /*
315 * The super_block structure does not span the whole
316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 * filled with zeros and is included in the checksum.
318 */
fd08001f
EB
319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 321
51bce6c9
JT
322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323 return 1;
1104a885 324
e7e16f48 325 return 0;
1104a885
DS
326}
327
e064d5e9 328int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 329 struct btrfs_key *first_key, u64 parent_transid)
581c1760 330{
e064d5e9 331 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
332 int found_level;
333 struct btrfs_key found_key;
334 int ret;
335
336 found_level = btrfs_header_level(eb);
337 if (found_level != level) {
63489055
QW
338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
340 btrfs_err(fs_info,
341"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 eb->start, level, found_level);
581c1760
QW
343 return -EIO;
344 }
345
346 if (!first_key)
347 return 0;
348
5d41be6f
QW
349 /*
350 * For live tree block (new tree blocks in current transaction),
351 * we need proper lock context to avoid race, which is impossible here.
352 * So we only checks tree blocks which is read from disk, whose
353 * generation <= fs_info->last_trans_committed.
354 */
355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356 return 0;
62fdaa52
QW
357
358 /* We have @first_key, so this @eb must have at least one item */
359 if (btrfs_header_nritems(eb) == 0) {
360 btrfs_err(fs_info,
361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362 eb->start);
363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364 return -EUCLEAN;
365 }
366
581c1760
QW
367 if (found_level)
368 btrfs_node_key_to_cpu(eb, &found_key, 0);
369 else
370 btrfs_item_key_to_cpu(eb, &found_key, 0);
371 ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
581c1760 373 if (ret) {
63489055
QW
374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 376 btrfs_err(fs_info,
ff76a864
LB
377"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 eb->start, parent_transid, first_key->objectid,
379 first_key->type, first_key->offset,
380 found_key.objectid, found_key.type,
381 found_key.offset);
581c1760 382 }
581c1760
QW
383 return ret;
384}
385
d352ac68
CM
386/*
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
389 *
390 * @parent_transid: expected transid, skip check if 0
391 * @level: expected level, mandatory check
392 * @first_key: expected key of first slot, skip check if NULL
d352ac68 393 */
5ab12d1f 394static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
395 u64 parent_transid, int level,
396 struct btrfs_key *first_key)
f188591e 397{
5ab12d1f 398 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 399 struct extent_io_tree *io_tree;
ea466794 400 int failed = 0;
f188591e
CM
401 int ret;
402 int num_copies = 0;
403 int mirror_num = 0;
ea466794 404 int failed_mirror = 0;
f188591e 405
0b246afa 406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 407 while (1) {
f8397d69 408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 410 if (!ret) {
581c1760 411 if (verify_parent_transid(io_tree, eb,
b9fab919 412 parent_transid, 0))
256dd1bb 413 ret = -EIO;
e064d5e9 414 else if (btrfs_verify_level_key(eb, level,
448de471 415 first_key, parent_transid))
581c1760
QW
416 ret = -EUCLEAN;
417 else
418 break;
256dd1bb 419 }
d397712b 420
0b246afa 421 num_copies = btrfs_num_copies(fs_info,
f188591e 422 eb->start, eb->len);
4235298e 423 if (num_copies == 1)
ea466794 424 break;
4235298e 425
5cf1ab56
JB
426 if (!failed_mirror) {
427 failed = 1;
428 failed_mirror = eb->read_mirror;
429 }
430
f188591e 431 mirror_num++;
ea466794
JB
432 if (mirror_num == failed_mirror)
433 mirror_num++;
434
4235298e 435 if (mirror_num > num_copies)
ea466794 436 break;
f188591e 437 }
ea466794 438
c0901581 439 if (failed && !ret && failed_mirror)
20a1fbf9 440 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
441
442 return ret;
f188591e 443}
19c00ddc 444
d352ac68 445/*
d397712b
CM
446 * checksum a dirty tree block before IO. This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 448 */
d397712b 449
01d58472 450static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 451{
4eee4fa4 452 u64 start = page_offset(page);
19c00ddc 453 u64 found_start;
2996e1f8
JT
454 u8 result[BTRFS_CSUM_SIZE];
455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 456 struct extent_buffer *eb;
8d47a0d8 457 int ret;
f188591e 458
4f2de97a
JB
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
461 return 0;
0f805531 462
19c00ddc 463 found_start = btrfs_header_bytenr(eb);
0f805531
AL
464 /*
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
467 */
468 if (WARN_ON(found_start != start))
469 return -EUCLEAN;
470 if (WARN_ON(!PageUptodate(page)))
471 return -EUCLEAN;
472
de37aa51 473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
0f805531 476
c67b3892 477 csum_tree_block(eb, result);
2996e1f8 478
8d47a0d8
QW
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
481 else
482 ret = btrfs_check_leaf_full(eb);
483
484 if (ret < 0) {
c06631b0 485 btrfs_print_tree(eb, 0);
8d47a0d8
QW
486 btrfs_err(fs_info,
487 "block=%llu write time tree block corruption detected",
488 eb->start);
c06631b0 489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
490 return ret;
491 }
2996e1f8 492 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 493
2996e1f8 494 return 0;
19c00ddc
CM
495}
496
b0c9b3b0 497static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 498{
b0c9b3b0 499 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 501 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 502 u8 *metadata_uuid;
2b82032c 503
9a8658e3
DS
504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 BTRFS_FSID_SIZE);
944d3f9f
NB
506 /*
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
510 */
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
513 else
514 metadata_uuid = fs_devices->fsid;
515
516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 return 0;
518
519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 return 0;
522
523 return 1;
2b82032c
YZ
524}
525
9a446d6a
NB
526int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 struct page *page, u64 start, u64 end,
528 int mirror)
ce9adaa5 529{
ce9adaa5
CM
530 u64 found_start;
531 int found_level;
ce9adaa5 532 struct extent_buffer *eb;
15b6e8a8
DS
533 struct btrfs_fs_info *fs_info;
534 u16 csum_size;
f188591e 535 int ret = 0;
2996e1f8 536 u8 result[BTRFS_CSUM_SIZE];
727011e0 537 int reads_done;
ce9adaa5 538
ce9adaa5
CM
539 if (!page->private)
540 goto out;
d397712b 541
4f2de97a 542 eb = (struct extent_buffer *)page->private;
15b6e8a8
DS
543 fs_info = eb->fs_info;
544 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d397712b 545
0b32f4bb
JB
546 /* the pending IO might have been the only thing that kept this buffer
547 * in memory. Make sure we have a ref for all this other checks
548 */
67439dad 549 atomic_inc(&eb->refs);
0b32f4bb
JB
550
551 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
552 if (!reads_done)
553 goto err;
f188591e 554
5cf1ab56 555 eb->read_mirror = mirror;
656f30db 556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
557 ret = -EIO;
558 goto err;
559 }
560
ce9adaa5 561 found_start = btrfs_header_bytenr(eb);
727011e0 562 if (found_start != eb->start) {
893bf4b1
SY
563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 eb->start, found_start);
f188591e 565 ret = -EIO;
ce9adaa5
CM
566 goto err;
567 }
b0c9b3b0 568 if (check_tree_block_fsid(eb)) {
02873e43
ZL
569 btrfs_err_rl(fs_info, "bad fsid on block %llu",
570 eb->start);
1259ab75
CM
571 ret = -EIO;
572 goto err;
573 }
ce9adaa5 574 found_level = btrfs_header_level(eb);
1c24c3ce 575 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
576 btrfs_err(fs_info, "bad tree block level %d on %llu",
577 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
578 ret = -EIO;
579 goto err;
580 }
ce9adaa5 581
85d4e461
CM
582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583 eb, found_level);
4008c04a 584
c67b3892 585 csum_tree_block(eb, result);
a826d6dc 586
2996e1f8 587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 588 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
589
590 read_extent_buffer(eb, &val, 0, csum_size);
591 btrfs_warn_rl(fs_info,
35be8851 592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 593 fs_info->sb->s_id, eb->start,
35be8851
JT
594 CSUM_FMT_VALUE(csum_size, val),
595 CSUM_FMT_VALUE(csum_size, result),
596 btrfs_header_level(eb));
2996e1f8
JT
597 ret = -EUCLEAN;
598 goto err;
599 }
600
a826d6dc
JB
601 /*
602 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 * that we don't try and read the other copies of this block, just
604 * return -EIO.
605 */
1c4360ee 606 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608 ret = -EIO;
609 }
ce9adaa5 610
813fd1dc 611 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
612 ret = -EIO;
613
0b32f4bb
JB
614 if (!ret)
615 set_extent_buffer_uptodate(eb);
75391f0d
QW
616 else
617 btrfs_err(fs_info,
618 "block=%llu read time tree block corruption detected",
619 eb->start);
ce9adaa5 620err:
79fb65a1
JB
621 if (reads_done &&
622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 623 btree_readahead_hook(eb, ret);
4bb31e92 624
53b381b3
DW
625 if (ret) {
626 /*
627 * our io error hook is going to dec the io pages
628 * again, we have to make sure it has something
629 * to decrement
630 */
631 atomic_inc(&eb->io_pages);
0b32f4bb 632 clear_extent_buffer_uptodate(eb);
53b381b3 633 }
0b32f4bb 634 free_extent_buffer(eb);
ce9adaa5 635out:
f188591e 636 return ret;
ce9adaa5
CM
637}
638
4246a0b6 639static void end_workqueue_bio(struct bio *bio)
ce9adaa5 640{
97eb6b69 641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 642 struct btrfs_fs_info *fs_info;
9e0af237 643 struct btrfs_workqueue *wq;
ce9adaa5 644
ce9adaa5 645 fs_info = end_io_wq->info;
4e4cbee9 646 end_io_wq->status = bio->bi_status;
d20f7043 647
37226b21 648 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 650 wq = fs_info->endio_meta_write_workers;
a0cac0ec 651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 652 wq = fs_info->endio_freespace_worker;
a0cac0ec 653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 654 wq = fs_info->endio_raid56_workers;
a0cac0ec 655 else
9e0af237 656 wq = fs_info->endio_write_workers;
d20f7043 657 } else {
5c047a69 658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 659 wq = fs_info->endio_raid56_workers;
a0cac0ec 660 else if (end_io_wq->metadata)
9e0af237 661 wq = fs_info->endio_meta_workers;
a0cac0ec 662 else
9e0af237 663 wq = fs_info->endio_workers;
d20f7043 664 }
9e0af237 665
a0cac0ec 666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 667 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
668}
669
4e4cbee9 670blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 671 enum btrfs_wq_endio_type metadata)
0b86a832 672{
97eb6b69 673 struct btrfs_end_io_wq *end_io_wq;
8b110e39 674
97eb6b69 675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 676 if (!end_io_wq)
4e4cbee9 677 return BLK_STS_RESOURCE;
ce9adaa5
CM
678
679 end_io_wq->private = bio->bi_private;
680 end_io_wq->end_io = bio->bi_end_io;
22c59948 681 end_io_wq->info = info;
4e4cbee9 682 end_io_wq->status = 0;
ce9adaa5 683 end_io_wq->bio = bio;
22c59948 684 end_io_wq->metadata = metadata;
ce9adaa5
CM
685
686 bio->bi_private = end_io_wq;
687 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
688 return 0;
689}
690
4a69a410
CM
691static void run_one_async_start(struct btrfs_work *work)
692{
4a69a410 693 struct async_submit_bio *async;
4e4cbee9 694 blk_status_t ret;
4a69a410
CM
695
696 async = container_of(work, struct async_submit_bio, work);
c6100a4b 697 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
698 async->bio_offset);
699 if (ret)
4e4cbee9 700 async->status = ret;
4a69a410
CM
701}
702
06ea01b1
DS
703/*
704 * In order to insert checksums into the metadata in large chunks, we wait
705 * until bio submission time. All the pages in the bio are checksummed and
706 * sums are attached onto the ordered extent record.
707 *
708 * At IO completion time the csums attached on the ordered extent record are
709 * inserted into the tree.
710 */
4a69a410 711static void run_one_async_done(struct btrfs_work *work)
8b712842 712{
8b712842 713 struct async_submit_bio *async;
06ea01b1
DS
714 struct inode *inode;
715 blk_status_t ret;
8b712842
CM
716
717 async = container_of(work, struct async_submit_bio, work);
06ea01b1 718 inode = async->private_data;
4854ddd0 719
bb7ab3b9 720 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
721 if (async->status) {
722 async->bio->bi_status = async->status;
4246a0b6 723 bio_endio(async->bio);
79787eaa
JM
724 return;
725 }
726
ec39f769
CM
727 /*
728 * All of the bios that pass through here are from async helpers.
729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730 * This changes nothing when cgroups aren't in use.
731 */
732 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
734 if (ret) {
735 async->bio->bi_status = ret;
736 bio_endio(async->bio);
737 }
4a69a410
CM
738}
739
740static void run_one_async_free(struct btrfs_work *work)
741{
742 struct async_submit_bio *async;
743
744 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
745 kfree(async);
746}
747
8c27cb35
LT
748blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749 int mirror_num, unsigned long bio_flags,
750 u64 bio_offset, void *private_data,
e288c080 751 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
752{
753 struct async_submit_bio *async;
754
755 async = kmalloc(sizeof(*async), GFP_NOFS);
756 if (!async)
4e4cbee9 757 return BLK_STS_RESOURCE;
44b8bd7e 758
c6100a4b 759 async->private_data = private_data;
44b8bd7e
CM
760 async->bio = bio;
761 async->mirror_num = mirror_num;
4a69a410 762 async->submit_bio_start = submit_bio_start;
4a69a410 763
a0cac0ec
OS
764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765 run_one_async_free);
4a69a410 766
eaf25d93 767 async->bio_offset = bio_offset;
8c8bee1d 768
4e4cbee9 769 async->status = 0;
79787eaa 770
67f055c7 771 if (op_is_sync(bio->bi_opf))
5cdc7ad3 772 btrfs_set_work_high_priority(&async->work);
d313d7a3 773
5cdc7ad3 774 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
775 return 0;
776}
777
4e4cbee9 778static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 779{
2c30c71b 780 struct bio_vec *bvec;
ce3ed71a 781 struct btrfs_root *root;
2b070cfe 782 int ret = 0;
6dc4f100 783 struct bvec_iter_all iter_all;
ce3ed71a 784
c09abff8 785 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 786 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 787 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
789 if (ret)
790 break;
ce3ed71a 791 }
2c30c71b 792
4e4cbee9 793 return errno_to_blk_status(ret);
ce3ed71a
CM
794}
795
d0ee3934 796static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 797 u64 bio_offset)
22c59948 798{
8b712842
CM
799 /*
800 * when we're called for a write, we're already in the async
5443be45 801 * submission context. Just jump into btrfs_map_bio
8b712842 802 */
79787eaa 803 return btree_csum_one_bio(bio);
4a69a410 804}
22c59948 805
9b4e675a
DS
806static int check_async_write(struct btrfs_fs_info *fs_info,
807 struct btrfs_inode *bi)
de0022b9 808{
6300463b
LB
809 if (atomic_read(&bi->sync_writers))
810 return 0;
9b4e675a 811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 812 return 0;
de0022b9
JB
813 return 1;
814}
815
1b36294a
NB
816blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 int mirror_num, unsigned long bio_flags)
44b8bd7e 818{
0b246afa 819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 820 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 821 blk_status_t ret;
cad321ad 822
37226b21 823 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
824 /*
825 * called for a read, do the setup so that checksum validation
826 * can happen in the async kernel threads
827 */
0b246afa
JM
828 ret = btrfs_bio_wq_end_io(fs_info, bio,
829 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 830 if (ret)
61891923 831 goto out_w_error;
08635bae 832 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
833 } else if (!async) {
834 ret = btree_csum_one_bio(bio);
835 if (ret)
61891923 836 goto out_w_error;
08635bae 837 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
838 } else {
839 /*
840 * kthread helpers are used to submit writes so that
841 * checksumming can happen in parallel across all CPUs
842 */
c6100a4b 843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 844 0, inode, btree_submit_bio_start);
44b8bd7e 845 }
d313d7a3 846
4246a0b6
CH
847 if (ret)
848 goto out_w_error;
849 return 0;
850
61891923 851out_w_error:
4e4cbee9 852 bio->bi_status = ret;
4246a0b6 853 bio_endio(bio);
61891923 854 return ret;
44b8bd7e
CM
855}
856
3dd1462e 857#ifdef CONFIG_MIGRATION
784b4e29 858static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
859 struct page *newpage, struct page *page,
860 enum migrate_mode mode)
784b4e29
CM
861{
862 /*
863 * we can't safely write a btree page from here,
864 * we haven't done the locking hook
865 */
866 if (PageDirty(page))
867 return -EAGAIN;
868 /*
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
871 */
872 if (page_has_private(page) &&
873 !try_to_release_page(page, GFP_KERNEL))
874 return -EAGAIN;
a6bc32b8 875 return migrate_page(mapping, newpage, page, mode);
784b4e29 876}
3dd1462e 877#endif
784b4e29 878
0da5468f
CM
879
880static int btree_writepages(struct address_space *mapping,
881 struct writeback_control *wbc)
882{
e2d84521
MX
883 struct btrfs_fs_info *fs_info;
884 int ret;
885
d8d5f3e1 886 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
887
888 if (wbc->for_kupdate)
889 return 0;
890
e2d84521 891 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 892 /* this is a bit racy, but that's ok */
d814a491
EL
893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 BTRFS_DIRTY_METADATA_THRESH,
895 fs_info->dirty_metadata_batch);
e2d84521 896 if (ret < 0)
793955bc 897 return 0;
793955bc 898 }
0b32f4bb 899 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
900}
901
70dec807 902static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 903{
98509cfc 904 if (PageWriteback(page) || PageDirty(page))
d397712b 905 return 0;
0c4e538b 906
f7a52a40 907 return try_release_extent_buffer(page);
d98237b3
CM
908}
909
d47992f8
LC
910static void btree_invalidatepage(struct page *page, unsigned int offset,
911 unsigned int length)
d98237b3 912{
d1310b2e
CM
913 struct extent_io_tree *tree;
914 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
915 extent_invalidatepage(tree, page, offset);
916 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 917 if (PagePrivate(page)) {
efe120a0
FH
918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 "page private not zero on page %llu",
920 (unsigned long long)page_offset(page));
d1b89bc0 921 detach_page_private(page);
9ad6b7bc 922 }
d98237b3
CM
923}
924
0b32f4bb
JB
925static int btree_set_page_dirty(struct page *page)
926{
bb146eb2 927#ifdef DEBUG
0b32f4bb
JB
928 struct extent_buffer *eb;
929
930 BUG_ON(!PagePrivate(page));
931 eb = (struct extent_buffer *)page->private;
932 BUG_ON(!eb);
933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 BUG_ON(!atomic_read(&eb->refs));
935 btrfs_assert_tree_locked(eb);
bb146eb2 936#endif
0b32f4bb
JB
937 return __set_page_dirty_nobuffers(page);
938}
939
7f09410b 940static const struct address_space_operations btree_aops = {
0da5468f 941 .writepages = btree_writepages,
5f39d397
CM
942 .releasepage = btree_releasepage,
943 .invalidatepage = btree_invalidatepage,
5a92bc88 944#ifdef CONFIG_MIGRATION
784b4e29 945 .migratepage = btree_migratepage,
5a92bc88 946#endif
0b32f4bb 947 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
948};
949
2ff7e61e 950void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 951{
5f39d397 952 struct extent_buffer *buf = NULL;
537f38f0 953 int ret;
090d1875 954
2ff7e61e 955 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 956 if (IS_ERR(buf))
6197d86e 957 return;
537f38f0 958
c2ccfbc6 959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
960 if (ret < 0)
961 free_extent_buffer_stale(buf);
962 else
963 free_extent_buffer(buf);
090d1875
CM
964}
965
2ff7e61e
JM
966struct extent_buffer *btrfs_find_create_tree_block(
967 struct btrfs_fs_info *fs_info,
968 u64 bytenr)
0999df54 969{
0b246afa
JM
970 if (btrfs_is_testing(fs_info))
971 return alloc_test_extent_buffer(fs_info, bytenr);
972 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
973}
974
581c1760
QW
975/*
976 * Read tree block at logical address @bytenr and do variant basic but critical
977 * verification.
978 *
979 * @parent_transid: expected transid of this tree block, skip check if 0
980 * @level: expected level, mandatory check
981 * @first_key: expected key in slot 0, skip check if NULL
982 */
2ff7e61e 983struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
984 u64 parent_transid, int level,
985 struct btrfs_key *first_key)
0999df54
CM
986{
987 struct extent_buffer *buf = NULL;
0999df54
CM
988 int ret;
989
2ff7e61e 990 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
991 if (IS_ERR(buf))
992 return buf;
0999df54 993
5ab12d1f 994 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 995 level, first_key);
0f0fe8f7 996 if (ret) {
537f38f0 997 free_extent_buffer_stale(buf);
64c043de 998 return ERR_PTR(ret);
0f0fe8f7 999 }
5f39d397 1000 return buf;
ce9adaa5 1001
eb60ceac
CM
1002}
1003
6a884d7d 1004void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1005{
6a884d7d 1006 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1007 if (btrfs_header_generation(buf) ==
e2d84521 1008 fs_info->running_transaction->transid) {
b9447ef8 1009 btrfs_assert_tree_locked(buf);
b4ce94de 1010
b9473439 1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013 -buf->len,
1014 fs_info->dirty_metadata_batch);
ed7b63eb 1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1016 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1017 clear_extent_buffer_dirty(buf);
1018 }
925baedd 1019 }
5f39d397
CM
1020}
1021
da17066c 1022static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1023 u64 objectid)
d97e63b6 1024{
7c0260ee 1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1026 root->fs_info = fs_info;
cfaa7295 1027 root->node = NULL;
a28ec197 1028 root->commit_root = NULL;
27cdeb70 1029 root->state = 0;
d68fc57b 1030 root->orphan_cleanup_state = 0;
0b86a832 1031
0f7d52f4 1032 root->last_trans = 0;
13a8a7c8 1033 root->highest_objectid = 0;
eb73c1b7 1034 root->nr_delalloc_inodes = 0;
199c2a9c 1035 root->nr_ordered_extents = 0;
6bef4d31 1036 root->inode_tree = RB_ROOT;
16cdcec7 1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1038 root->block_rsv = NULL;
0b86a832
CM
1039
1040 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1041 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1042 INIT_LIST_HEAD(&root->delalloc_inodes);
1043 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1044 INIT_LIST_HEAD(&root->ordered_extents);
1045 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1046 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1047 INIT_LIST_HEAD(&root->logged_list[0]);
1048 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1049 spin_lock_init(&root->inode_lock);
eb73c1b7 1050 spin_lock_init(&root->delalloc_lock);
199c2a9c 1051 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1052 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1053 spin_lock_init(&root->log_extents_lock[0]);
1054 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1055 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1056 mutex_init(&root->objectid_mutex);
e02119d5 1057 mutex_init(&root->log_mutex);
31f3d255 1058 mutex_init(&root->ordered_extent_mutex);
573bfb72 1059 mutex_init(&root->delalloc_mutex);
c53e9653 1060 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1061 init_waitqueue_head(&root->log_writer_wait);
1062 init_waitqueue_head(&root->log_commit_wait[0]);
1063 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1064 INIT_LIST_HEAD(&root->log_ctxs[0]);
1065 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1066 atomic_set(&root->log_commit[0], 0);
1067 atomic_set(&root->log_commit[1], 0);
1068 atomic_set(&root->log_writers, 0);
2ecb7923 1069 atomic_set(&root->log_batch, 0);
0700cea7 1070 refcount_set(&root->refs, 1);
8ecebf4d 1071 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1072 atomic_set(&root->nr_swapfiles, 0);
7237f183 1073 root->log_transid = 0;
d1433deb 1074 root->log_transid_committed = -1;
257c62e1 1075 root->last_log_commit = 0;
e289f03e 1076 if (!dummy) {
43eb5f29
QW
1077 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1079 extent_io_tree_init(fs_info, &root->log_csum_range,
1080 IO_TREE_LOG_CSUM_RANGE, NULL);
1081 }
017e5369 1082
3768f368
CM
1083 memset(&root->root_key, 0, sizeof(root->root_key));
1084 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1086 root->root_key.objectid = objectid;
0ee5dc67 1087 root->anon_dev = 0;
8ea05e3a 1088
5f3ab90a 1089 spin_lock_init(&root->root_item_lock);
370a11b8 1090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1091#ifdef CONFIG_BTRFS_DEBUG
1092 INIT_LIST_HEAD(&root->leak_list);
1093 spin_lock(&fs_info->fs_roots_radix_lock);
1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095 spin_unlock(&fs_info->fs_roots_radix_lock);
1096#endif
3768f368
CM
1097}
1098
74e4d827 1099static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1100 u64 objectid, gfp_t flags)
6f07e42e 1101{
74e4d827 1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1103 if (root)
96dfcb46 1104 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1105 return root;
1106}
1107
06ea65a3
JB
1108#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109/* Should only be used by the testing infrastructure */
da17066c 1110struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1111{
1112 struct btrfs_root *root;
1113
7c0260ee
JM
1114 if (!fs_info)
1115 return ERR_PTR(-EINVAL);
1116
96dfcb46 1117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1118 if (!root)
1119 return ERR_PTR(-ENOMEM);
da17066c 1120
b9ef22de 1121 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1122 root->alloc_bytenr = 0;
06ea65a3
JB
1123
1124 return root;
1125}
1126#endif
1127
20897f5c 1128struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1129 u64 objectid)
1130{
9b7a2440 1131 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1132 struct extent_buffer *leaf;
1133 struct btrfs_root *tree_root = fs_info->tree_root;
1134 struct btrfs_root *root;
1135 struct btrfs_key key;
b89f6d1f 1136 unsigned int nofs_flag;
20897f5c 1137 int ret = 0;
20897f5c 1138
b89f6d1f
FM
1139 /*
1140 * We're holding a transaction handle, so use a NOFS memory allocation
1141 * context to avoid deadlock if reclaim happens.
1142 */
1143 nofs_flag = memalloc_nofs_save();
96dfcb46 1144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1145 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1146 if (!root)
1147 return ERR_PTR(-ENOMEM);
1148
20897f5c
AJ
1149 root->root_key.objectid = objectid;
1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151 root->root_key.offset = 0;
1152
9631e4cc
JB
1153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1155 if (IS_ERR(leaf)) {
1156 ret = PTR_ERR(leaf);
1dd05682 1157 leaf = NULL;
20897f5c
AJ
1158 goto fail;
1159 }
1160
20897f5c 1161 root->node = leaf;
20897f5c
AJ
1162 btrfs_mark_buffer_dirty(leaf);
1163
1164 root->commit_root = btrfs_root_node(root);
27cdeb70 1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1166
1167 root->root_item.flags = 0;
1168 root->root_item.byte_limit = 0;
1169 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170 btrfs_set_root_generation(&root->root_item, trans->transid);
1171 btrfs_set_root_level(&root->root_item, 0);
1172 btrfs_set_root_refs(&root->root_item, 1);
1173 btrfs_set_root_used(&root->root_item, leaf->len);
1174 btrfs_set_root_last_snapshot(&root->root_item, 0);
1175 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1176 if (is_fstree(objectid))
807fc790
AS
1177 generate_random_guid(root->root_item.uuid);
1178 else
1179 export_guid(root->root_item.uuid, &guid_null);
20897f5c
AJ
1180 root->root_item.drop_level = 0;
1181
1182 key.objectid = objectid;
1183 key.type = BTRFS_ROOT_ITEM_KEY;
1184 key.offset = 0;
1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186 if (ret)
1187 goto fail;
1188
1189 btrfs_tree_unlock(leaf);
1190
1dd05682
TI
1191 return root;
1192
20897f5c 1193fail:
8c38938c 1194 if (leaf)
1dd05682 1195 btrfs_tree_unlock(leaf);
00246528 1196 btrfs_put_root(root);
20897f5c 1197
1dd05682 1198 return ERR_PTR(ret);
20897f5c
AJ
1199}
1200
7237f183
YZ
1201static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1203{
1204 struct btrfs_root *root;
7237f183 1205 struct extent_buffer *leaf;
e02119d5 1206
96dfcb46 1207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1208 if (!root)
7237f183 1209 return ERR_PTR(-ENOMEM);
e02119d5 1210
e02119d5
CM
1211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1214
7237f183 1215 /*
92a7cc42 1216 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1217 *
92a7cc42
QW
1218 * Log trees are not exposed to user space thus can't be snapshotted,
1219 * and they go away before a real commit is actually done.
1220 *
1221 * They do store pointers to file data extents, and those reference
1222 * counts still get updated (along with back refs to the log tree).
7237f183 1223 */
e02119d5 1224
4d75f8a9 1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
7237f183 1227 if (IS_ERR(leaf)) {
00246528 1228 btrfs_put_root(root);
7237f183
YZ
1229 return ERR_CAST(leaf);
1230 }
e02119d5 1231
7237f183 1232 root->node = leaf;
e02119d5 1233
e02119d5
CM
1234 btrfs_mark_buffer_dirty(root->node);
1235 btrfs_tree_unlock(root->node);
7237f183
YZ
1236 return root;
1237}
1238
1239int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info)
1241{
1242 struct btrfs_root *log_root;
1243
1244 log_root = alloc_log_tree(trans, fs_info);
1245 if (IS_ERR(log_root))
1246 return PTR_ERR(log_root);
1247 WARN_ON(fs_info->log_root_tree);
1248 fs_info->log_root_tree = log_root;
1249 return 0;
1250}
1251
1252int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_root *root)
1254{
0b246afa 1255 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1256 struct btrfs_root *log_root;
1257 struct btrfs_inode_item *inode_item;
1258
0b246afa 1259 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1260 if (IS_ERR(log_root))
1261 return PTR_ERR(log_root);
1262
1263 log_root->last_trans = trans->transid;
1264 log_root->root_key.offset = root->root_key.objectid;
1265
1266 inode_item = &log_root->root_item.inode;
3cae210f
QW
1267 btrfs_set_stack_inode_generation(inode_item, 1);
1268 btrfs_set_stack_inode_size(inode_item, 3);
1269 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1270 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1271 fs_info->nodesize);
3cae210f 1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1273
5d4f98a2 1274 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1275
1276 WARN_ON(root->log_root);
1277 root->log_root = log_root;
1278 root->log_transid = 0;
d1433deb 1279 root->log_transid_committed = -1;
257c62e1 1280 root->last_log_commit = 0;
e02119d5
CM
1281 return 0;
1282}
1283
49d11bea
JB
1284static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285 struct btrfs_path *path,
1286 struct btrfs_key *key)
e02119d5
CM
1287{
1288 struct btrfs_root *root;
1289 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1290 u64 generation;
cb517eab 1291 int ret;
581c1760 1292 int level;
0f7d52f4 1293
96dfcb46 1294 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1295 if (!root)
1296 return ERR_PTR(-ENOMEM);
0f7d52f4 1297
cb517eab
MX
1298 ret = btrfs_find_root(tree_root, key, path,
1299 &root->root_item, &root->root_key);
0f7d52f4 1300 if (ret) {
13a8a7c8
YZ
1301 if (ret > 0)
1302 ret = -ENOENT;
49d11bea 1303 goto fail;
0f7d52f4 1304 }
13a8a7c8 1305
84234f3a 1306 generation = btrfs_root_generation(&root->root_item);
581c1760 1307 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1308 root->node = read_tree_block(fs_info,
1309 btrfs_root_bytenr(&root->root_item),
581c1760 1310 generation, level, NULL);
64c043de
LB
1311 if (IS_ERR(root->node)) {
1312 ret = PTR_ERR(root->node);
8c38938c 1313 root->node = NULL;
49d11bea 1314 goto fail;
cb517eab
MX
1315 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316 ret = -EIO;
49d11bea 1317 goto fail;
416bc658 1318 }
5d4f98a2 1319 root->commit_root = btrfs_root_node(root);
cb517eab 1320 return root;
49d11bea 1321fail:
00246528 1322 btrfs_put_root(root);
49d11bea
JB
1323 return ERR_PTR(ret);
1324}
1325
1326struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327 struct btrfs_key *key)
1328{
1329 struct btrfs_root *root;
1330 struct btrfs_path *path;
1331
1332 path = btrfs_alloc_path();
1333 if (!path)
1334 return ERR_PTR(-ENOMEM);
1335 root = read_tree_root_path(tree_root, path, key);
1336 btrfs_free_path(path);
1337
1338 return root;
cb517eab
MX
1339}
1340
2dfb1e43
QW
1341/*
1342 * Initialize subvolume root in-memory structure
1343 *
1344 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1345 */
1346static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1347{
1348 int ret;
dcc3eb96 1349 unsigned int nofs_flag;
cb517eab
MX
1350
1351 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353 GFP_NOFS);
1354 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355 ret = -ENOMEM;
1356 goto fail;
1357 }
1358
dcc3eb96
NB
1359 /*
1360 * We might be called under a transaction (e.g. indirect backref
1361 * resolution) which could deadlock if it triggers memory reclaim
1362 */
1363 nofs_flag = memalloc_nofs_save();
1364 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365 memalloc_nofs_restore(nofs_flag);
1366 if (ret)
8257b2dc 1367 goto fail;
8257b2dc 1368
aeb935a4
QW
1369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1371 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1372 btrfs_check_and_init_root_item(&root->root_item);
1373 }
1374
cb517eab 1375 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1376 spin_lock_init(&root->ino_cache_lock);
1377 init_waitqueue_head(&root->ino_cache_wait);
cb517eab 1378
851fd730
QW
1379 /*
1380 * Don't assign anonymous block device to roots that are not exposed to
1381 * userspace, the id pool is limited to 1M
1382 */
1383 if (is_fstree(root->root_key.objectid) &&
1384 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1385 if (!anon_dev) {
1386 ret = get_anon_bdev(&root->anon_dev);
1387 if (ret)
1388 goto fail;
1389 } else {
1390 root->anon_dev = anon_dev;
1391 }
851fd730 1392 }
f32e48e9
CR
1393
1394 mutex_lock(&root->objectid_mutex);
1395 ret = btrfs_find_highest_objectid(root,
1396 &root->highest_objectid);
1397 if (ret) {
1398 mutex_unlock(&root->objectid_mutex);
876d2cf1 1399 goto fail;
f32e48e9
CR
1400 }
1401
1402 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403
1404 mutex_unlock(&root->objectid_mutex);
1405
cb517eab
MX
1406 return 0;
1407fail:
84db5ccf 1408 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1409 return ret;
1410}
1411
a98db0f3
JB
1412static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413 u64 root_id)
cb517eab
MX
1414{
1415 struct btrfs_root *root;
1416
1417 spin_lock(&fs_info->fs_roots_radix_lock);
1418 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419 (unsigned long)root_id);
bc44d7c4 1420 if (root)
00246528 1421 root = btrfs_grab_root(root);
cb517eab
MX
1422 spin_unlock(&fs_info->fs_roots_radix_lock);
1423 return root;
1424}
1425
49d11bea
JB
1426static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427 u64 objectid)
1428{
1429 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430 return btrfs_grab_root(fs_info->tree_root);
1431 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432 return btrfs_grab_root(fs_info->extent_root);
1433 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->chunk_root);
1435 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436 return btrfs_grab_root(fs_info->dev_root);
1437 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438 return btrfs_grab_root(fs_info->csum_root);
1439 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440 return btrfs_grab_root(fs_info->quota_root) ?
1441 fs_info->quota_root : ERR_PTR(-ENOENT);
1442 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443 return btrfs_grab_root(fs_info->uuid_root) ?
1444 fs_info->uuid_root : ERR_PTR(-ENOENT);
1445 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446 return btrfs_grab_root(fs_info->free_space_root) ?
1447 fs_info->free_space_root : ERR_PTR(-ENOENT);
1448 return NULL;
1449}
1450
cb517eab
MX
1451int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452 struct btrfs_root *root)
1453{
1454 int ret;
1455
e1860a77 1456 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1457 if (ret)
1458 return ret;
1459
1460 spin_lock(&fs_info->fs_roots_radix_lock);
1461 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462 (unsigned long)root->root_key.objectid,
1463 root);
af01d2e5 1464 if (ret == 0) {
00246528 1465 btrfs_grab_root(root);
27cdeb70 1466 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1467 }
cb517eab
MX
1468 spin_unlock(&fs_info->fs_roots_radix_lock);
1469 radix_tree_preload_end();
1470
1471 return ret;
1472}
1473
bd647ce3
JB
1474void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475{
1476#ifdef CONFIG_BTRFS_DEBUG
1477 struct btrfs_root *root;
1478
1479 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1480 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481
bd647ce3
JB
1482 root = list_first_entry(&fs_info->allocated_roots,
1483 struct btrfs_root, leak_list);
457f1864
JB
1484 btrfs_err(fs_info, "leaked root %s refcount %d",
1485 btrfs_root_name(root->root_key.objectid, buf),
bd647ce3
JB
1486 refcount_read(&root->refs));
1487 while (refcount_read(&root->refs) > 1)
00246528
JB
1488 btrfs_put_root(root);
1489 btrfs_put_root(root);
bd647ce3
JB
1490 }
1491#endif
1492}
1493
0d4b0463
JB
1494void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495{
141386e1
JB
1496 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497 percpu_counter_destroy(&fs_info->delalloc_bytes);
1498 percpu_counter_destroy(&fs_info->dio_bytes);
1499 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500 btrfs_free_csum_hash(fs_info);
1501 btrfs_free_stripe_hash_table(fs_info);
1502 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1503 kfree(fs_info->balance_ctl);
1504 kfree(fs_info->delayed_root);
00246528
JB
1505 btrfs_put_root(fs_info->extent_root);
1506 btrfs_put_root(fs_info->tree_root);
1507 btrfs_put_root(fs_info->chunk_root);
1508 btrfs_put_root(fs_info->dev_root);
1509 btrfs_put_root(fs_info->csum_root);
1510 btrfs_put_root(fs_info->quota_root);
1511 btrfs_put_root(fs_info->uuid_root);
1512 btrfs_put_root(fs_info->free_space_root);
1513 btrfs_put_root(fs_info->fs_root);
aeb935a4 1514 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1515 btrfs_check_leaked_roots(fs_info);
3fd63727 1516 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1517 kfree(fs_info->super_copy);
1518 kfree(fs_info->super_for_commit);
1519 kvfree(fs_info);
1520}
1521
1522
2dfb1e43
QW
1523/*
1524 * Get an in-memory reference of a root structure.
1525 *
1526 * For essential trees like root/extent tree, we grab it from fs_info directly.
1527 * For subvolume trees, we check the cached filesystem roots first. If not
1528 * found, then read it from disk and add it to cached fs roots.
1529 *
1530 * Caller should release the root by calling btrfs_put_root() after the usage.
1531 *
1532 * NOTE: Reloc and log trees can't be read by this function as they share the
1533 * same root objectid.
1534 *
1535 * @objectid: root id
1536 * @anon_dev: preallocated anonymous block device number for new roots,
1537 * pass 0 for new allocation.
1538 * @check_ref: whether to check root item references, If true, return -ENOENT
1539 * for orphan roots
1540 */
1541static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542 u64 objectid, dev_t anon_dev,
1543 bool check_ref)
5eda7b5e
CM
1544{
1545 struct btrfs_root *root;
381cf658 1546 struct btrfs_path *path;
1d4c08e0 1547 struct btrfs_key key;
5eda7b5e
CM
1548 int ret;
1549
49d11bea
JB
1550 root = btrfs_get_global_root(fs_info, objectid);
1551 if (root)
1552 return root;
4df27c4d 1553again:
56e9357a 1554 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1555 if (root) {
2dfb1e43
QW
1556 /* Shouldn't get preallocated anon_dev for cached roots */
1557 ASSERT(!anon_dev);
bc44d7c4 1558 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1559 btrfs_put_root(root);
48475471 1560 return ERR_PTR(-ENOENT);
bc44d7c4 1561 }
5eda7b5e 1562 return root;
48475471 1563 }
5eda7b5e 1564
56e9357a
DS
1565 key.objectid = objectid;
1566 key.type = BTRFS_ROOT_ITEM_KEY;
1567 key.offset = (u64)-1;
1568 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1569 if (IS_ERR(root))
1570 return root;
3394e160 1571
c00869f1 1572 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1573 ret = -ENOENT;
581bb050 1574 goto fail;
35a30d7c 1575 }
581bb050 1576
2dfb1e43 1577 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1578 if (ret)
1579 goto fail;
3394e160 1580
381cf658
DS
1581 path = btrfs_alloc_path();
1582 if (!path) {
1583 ret = -ENOMEM;
1584 goto fail;
1585 }
1d4c08e0
DS
1586 key.objectid = BTRFS_ORPHAN_OBJECTID;
1587 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1588 key.offset = objectid;
1d4c08e0
DS
1589
1590 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1591 btrfs_free_path(path);
d68fc57b
YZ
1592 if (ret < 0)
1593 goto fail;
1594 if (ret == 0)
27cdeb70 1595 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1596
cb517eab 1597 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1598 if (ret) {
00246528 1599 btrfs_put_root(root);
4785e24f 1600 if (ret == -EEXIST)
4df27c4d 1601 goto again;
4df27c4d 1602 goto fail;
0f7d52f4 1603 }
edbd8d4e 1604 return root;
4df27c4d 1605fail:
8c38938c 1606 btrfs_put_root(root);
4df27c4d 1607 return ERR_PTR(ret);
edbd8d4e
CM
1608}
1609
2dfb1e43
QW
1610/*
1611 * Get in-memory reference of a root structure
1612 *
1613 * @objectid: tree objectid
1614 * @check_ref: if set, verify that the tree exists and the item has at least
1615 * one reference
1616 */
1617struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1618 u64 objectid, bool check_ref)
1619{
1620 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1621}
1622
1623/*
1624 * Get in-memory reference of a root structure, created as new, optionally pass
1625 * the anonymous block device id
1626 *
1627 * @objectid: tree objectid
1628 * @anon_dev: if zero, allocate a new anonymous block device or use the
1629 * parameter value
1630 */
1631struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1632 u64 objectid, dev_t anon_dev)
1633{
1634 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1635}
1636
49d11bea
JB
1637/*
1638 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1639 * @fs_info: the fs_info
1640 * @objectid: the objectid we need to lookup
1641 *
1642 * This is exclusively used for backref walking, and exists specifically because
1643 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1644 * creation time, which means we may have to read the tree_root in order to look
1645 * up a fs root that is not in memory. If the root is not in memory we will
1646 * read the tree root commit root and look up the fs root from there. This is a
1647 * temporary root, it will not be inserted into the radix tree as it doesn't
1648 * have the most uptodate information, it'll simply be discarded once the
1649 * backref code is finished using the root.
1650 */
1651struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1652 struct btrfs_path *path,
1653 u64 objectid)
1654{
1655 struct btrfs_root *root;
1656 struct btrfs_key key;
1657
1658 ASSERT(path->search_commit_root && path->skip_locking);
1659
1660 /*
1661 * This can return -ENOENT if we ask for a root that doesn't exist, but
1662 * since this is called via the backref walking code we won't be looking
1663 * up a root that doesn't exist, unless there's corruption. So if root
1664 * != NULL just return it.
1665 */
1666 root = btrfs_get_global_root(fs_info, objectid);
1667 if (root)
1668 return root;
1669
1670 root = btrfs_lookup_fs_root(fs_info, objectid);
1671 if (root)
1672 return root;
1673
1674 key.objectid = objectid;
1675 key.type = BTRFS_ROOT_ITEM_KEY;
1676 key.offset = (u64)-1;
1677 root = read_tree_root_path(fs_info->tree_root, path, &key);
1678 btrfs_release_path(path);
1679
1680 return root;
1681}
1682
8b712842
CM
1683/*
1684 * called by the kthread helper functions to finally call the bio end_io
1685 * functions. This is where read checksum verification actually happens
1686 */
1687static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1688{
ce9adaa5 1689 struct bio *bio;
97eb6b69 1690 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1691
97eb6b69 1692 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1693 bio = end_io_wq->bio;
ce9adaa5 1694
4e4cbee9 1695 bio->bi_status = end_io_wq->status;
8b712842
CM
1696 bio->bi_private = end_io_wq->private;
1697 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1698 bio_endio(bio);
9be490f1 1699 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1700}
1701
a74a4b97
CM
1702static int cleaner_kthread(void *arg)
1703{
1704 struct btrfs_root *root = arg;
0b246afa 1705 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1706 int again;
a74a4b97 1707
d6fd0ae2 1708 while (1) {
d0278245 1709 again = 0;
a74a4b97 1710
fd340d0f
JB
1711 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1712
d0278245 1713 /* Make the cleaner go to sleep early. */
2ff7e61e 1714 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1715 goto sleep;
1716
90c711ab
ZB
1717 /*
1718 * Do not do anything if we might cause open_ctree() to block
1719 * before we have finished mounting the filesystem.
1720 */
0b246afa 1721 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1722 goto sleep;
1723
0b246afa 1724 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1725 goto sleep;
1726
dc7f370c
MX
1727 /*
1728 * Avoid the problem that we change the status of the fs
1729 * during the above check and trylock.
1730 */
2ff7e61e 1731 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1732 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1733 goto sleep;
76dda93c 1734 }
a74a4b97 1735
2ff7e61e 1736 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1737
d0278245 1738 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1739 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1740
1741 /*
05323cd1
MX
1742 * The defragger has dealt with the R/O remount and umount,
1743 * needn't do anything special here.
d0278245 1744 */
0b246afa 1745 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1746
1747 /*
1748 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1749 * with relocation (btrfs_relocate_chunk) and relocation
1750 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1751 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1752 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1753 * unused block groups.
1754 */
0b246afa 1755 btrfs_delete_unused_bgs(fs_info);
d0278245 1756sleep:
fd340d0f 1757 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1758 if (kthread_should_park())
1759 kthread_parkme();
1760 if (kthread_should_stop())
1761 return 0;
838fe188 1762 if (!again) {
a74a4b97 1763 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1764 schedule();
a74a4b97
CM
1765 __set_current_state(TASK_RUNNING);
1766 }
da288d28 1767 }
a74a4b97
CM
1768}
1769
1770static int transaction_kthread(void *arg)
1771{
1772 struct btrfs_root *root = arg;
0b246afa 1773 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1774 struct btrfs_trans_handle *trans;
1775 struct btrfs_transaction *cur;
8929ecfa 1776 u64 transid;
643900be 1777 time64_t delta;
a74a4b97 1778 unsigned long delay;
914b2007 1779 bool cannot_commit;
a74a4b97
CM
1780
1781 do {
914b2007 1782 cannot_commit = false;
ba1bc00f 1783 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1784 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1785
0b246afa
JM
1786 spin_lock(&fs_info->trans_lock);
1787 cur = fs_info->running_transaction;
a74a4b97 1788 if (!cur) {
0b246afa 1789 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1790 goto sleep;
1791 }
31153d81 1792
643900be 1793 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1794 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1795 delta < fs_info->commit_interval) {
0b246afa 1796 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1797 delay -= msecs_to_jiffies((delta - 1) * 1000);
1798 delay = min(delay,
1799 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1800 goto sleep;
1801 }
8929ecfa 1802 transid = cur->transid;
0b246afa 1803 spin_unlock(&fs_info->trans_lock);
56bec294 1804
79787eaa 1805 /* If the file system is aborted, this will always fail. */
354aa0fb 1806 trans = btrfs_attach_transaction(root);
914b2007 1807 if (IS_ERR(trans)) {
354aa0fb
MX
1808 if (PTR_ERR(trans) != -ENOENT)
1809 cannot_commit = true;
79787eaa 1810 goto sleep;
914b2007 1811 }
8929ecfa 1812 if (transid == trans->transid) {
3a45bb20 1813 btrfs_commit_transaction(trans);
8929ecfa 1814 } else {
3a45bb20 1815 btrfs_end_transaction(trans);
8929ecfa 1816 }
a74a4b97 1817sleep:
0b246afa
JM
1818 wake_up_process(fs_info->cleaner_kthread);
1819 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1820
4e121c06 1821 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1822 &fs_info->fs_state)))
2ff7e61e 1823 btrfs_cleanup_transaction(fs_info);
ce63f891 1824 if (!kthread_should_stop() &&
0b246afa 1825 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1826 cannot_commit))
bc5511d0 1827 schedule_timeout_interruptible(delay);
a74a4b97
CM
1828 } while (!kthread_should_stop());
1829 return 0;
1830}
1831
af31f5e5 1832/*
01f0f9da
NB
1833 * This will find the highest generation in the array of root backups. The
1834 * index of the highest array is returned, or -EINVAL if we can't find
1835 * anything.
af31f5e5
CM
1836 *
1837 * We check to make sure the array is valid by comparing the
1838 * generation of the latest root in the array with the generation
1839 * in the super block. If they don't match we pitch it.
1840 */
01f0f9da 1841static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1842{
01f0f9da 1843 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1844 u64 cur;
af31f5e5
CM
1845 struct btrfs_root_backup *root_backup;
1846 int i;
1847
1848 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1849 root_backup = info->super_copy->super_roots + i;
1850 cur = btrfs_backup_tree_root_gen(root_backup);
1851 if (cur == newest_gen)
01f0f9da 1852 return i;
af31f5e5
CM
1853 }
1854
01f0f9da 1855 return -EINVAL;
af31f5e5
CM
1856}
1857
af31f5e5
CM
1858/*
1859 * copy all the root pointers into the super backup array.
1860 * this will bump the backup pointer by one when it is
1861 * done
1862 */
1863static void backup_super_roots(struct btrfs_fs_info *info)
1864{
6ef108dd 1865 const int next_backup = info->backup_root_index;
af31f5e5 1866 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1867
1868 root_backup = info->super_for_commit->super_roots + next_backup;
1869
1870 /*
1871 * make sure all of our padding and empty slots get zero filled
1872 * regardless of which ones we use today
1873 */
1874 memset(root_backup, 0, sizeof(*root_backup));
1875
1876 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1877
1878 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1879 btrfs_set_backup_tree_root_gen(root_backup,
1880 btrfs_header_generation(info->tree_root->node));
1881
1882 btrfs_set_backup_tree_root_level(root_backup,
1883 btrfs_header_level(info->tree_root->node));
1884
1885 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1886 btrfs_set_backup_chunk_root_gen(root_backup,
1887 btrfs_header_generation(info->chunk_root->node));
1888 btrfs_set_backup_chunk_root_level(root_backup,
1889 btrfs_header_level(info->chunk_root->node));
1890
1891 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1892 btrfs_set_backup_extent_root_gen(root_backup,
1893 btrfs_header_generation(info->extent_root->node));
1894 btrfs_set_backup_extent_root_level(root_backup,
1895 btrfs_header_level(info->extent_root->node));
1896
7c7e82a7
CM
1897 /*
1898 * we might commit during log recovery, which happens before we set
1899 * the fs_root. Make sure it is valid before we fill it in.
1900 */
1901 if (info->fs_root && info->fs_root->node) {
1902 btrfs_set_backup_fs_root(root_backup,
1903 info->fs_root->node->start);
1904 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1905 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1906 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1907 btrfs_header_level(info->fs_root->node));
7c7e82a7 1908 }
af31f5e5
CM
1909
1910 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1911 btrfs_set_backup_dev_root_gen(root_backup,
1912 btrfs_header_generation(info->dev_root->node));
1913 btrfs_set_backup_dev_root_level(root_backup,
1914 btrfs_header_level(info->dev_root->node));
1915
1916 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1917 btrfs_set_backup_csum_root_gen(root_backup,
1918 btrfs_header_generation(info->csum_root->node));
1919 btrfs_set_backup_csum_root_level(root_backup,
1920 btrfs_header_level(info->csum_root->node));
1921
1922 btrfs_set_backup_total_bytes(root_backup,
1923 btrfs_super_total_bytes(info->super_copy));
1924 btrfs_set_backup_bytes_used(root_backup,
1925 btrfs_super_bytes_used(info->super_copy));
1926 btrfs_set_backup_num_devices(root_backup,
1927 btrfs_super_num_devices(info->super_copy));
1928
1929 /*
1930 * if we don't copy this out to the super_copy, it won't get remembered
1931 * for the next commit
1932 */
1933 memcpy(&info->super_copy->super_roots,
1934 &info->super_for_commit->super_roots,
1935 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1936}
1937
bd2336b2
NB
1938/*
1939 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1940 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1941 *
1942 * fs_info - filesystem whose backup roots need to be read
1943 * priority - priority of backup root required
1944 *
1945 * Returns backup root index on success and -EINVAL otherwise.
1946 */
1947static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1948{
1949 int backup_index = find_newest_super_backup(fs_info);
1950 struct btrfs_super_block *super = fs_info->super_copy;
1951 struct btrfs_root_backup *root_backup;
1952
1953 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1954 if (priority == 0)
1955 return backup_index;
1956
1957 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1958 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1959 } else {
1960 return -EINVAL;
1961 }
1962
1963 root_backup = super->super_roots + backup_index;
1964
1965 btrfs_set_super_generation(super,
1966 btrfs_backup_tree_root_gen(root_backup));
1967 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1968 btrfs_set_super_root_level(super,
1969 btrfs_backup_tree_root_level(root_backup));
1970 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1971
1972 /*
1973 * Fixme: the total bytes and num_devices need to match or we should
1974 * need a fsck
1975 */
1976 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1977 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1978
1979 return backup_index;
1980}
1981
7abadb64
LB
1982/* helper to cleanup workers */
1983static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1984{
dc6e3209 1985 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1986 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1987 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1988 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1989 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 1990 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1991 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1992 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1993 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1994 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1995 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1996 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1997 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1998 if (fs_info->discard_ctl.discard_workers)
1999 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2000 /*
2001 * Now that all other work queues are destroyed, we can safely destroy
2002 * the queues used for metadata I/O, since tasks from those other work
2003 * queues can do metadata I/O operations.
2004 */
2005 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2006 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2007}
2008
2e9f5954
R
2009static void free_root_extent_buffers(struct btrfs_root *root)
2010{
2011 if (root) {
2012 free_extent_buffer(root->node);
2013 free_extent_buffer(root->commit_root);
2014 root->node = NULL;
2015 root->commit_root = NULL;
2016 }
2017}
2018
af31f5e5 2019/* helper to cleanup tree roots */
4273eaff 2020static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2021{
2e9f5954 2022 free_root_extent_buffers(info->tree_root);
655b09fe 2023
2e9f5954
R
2024 free_root_extent_buffers(info->dev_root);
2025 free_root_extent_buffers(info->extent_root);
2026 free_root_extent_buffers(info->csum_root);
2027 free_root_extent_buffers(info->quota_root);
2028 free_root_extent_buffers(info->uuid_root);
8c38938c 2029 free_root_extent_buffers(info->fs_root);
aeb935a4 2030 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2031 if (free_chunk_root)
2e9f5954 2032 free_root_extent_buffers(info->chunk_root);
70f6d82e 2033 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2034}
2035
8c38938c
JB
2036void btrfs_put_root(struct btrfs_root *root)
2037{
2038 if (!root)
2039 return;
2040
2041 if (refcount_dec_and_test(&root->refs)) {
2042 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2043 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2044 if (root->anon_dev)
2045 free_anon_bdev(root->anon_dev);
2046 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2047 free_root_extent_buffers(root);
8c38938c
JB
2048 kfree(root->free_ino_ctl);
2049 kfree(root->free_ino_pinned);
2050#ifdef CONFIG_BTRFS_DEBUG
2051 spin_lock(&root->fs_info->fs_roots_radix_lock);
2052 list_del_init(&root->leak_list);
2053 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2054#endif
2055 kfree(root);
2056 }
2057}
2058
faa2dbf0 2059void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2060{
2061 int ret;
2062 struct btrfs_root *gang[8];
2063 int i;
2064
2065 while (!list_empty(&fs_info->dead_roots)) {
2066 gang[0] = list_entry(fs_info->dead_roots.next,
2067 struct btrfs_root, root_list);
2068 list_del(&gang[0]->root_list);
2069
8c38938c 2070 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2071 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2072 btrfs_put_root(gang[0]);
171f6537
JB
2073 }
2074
2075 while (1) {
2076 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2077 (void **)gang, 0,
2078 ARRAY_SIZE(gang));
2079 if (!ret)
2080 break;
2081 for (i = 0; i < ret; i++)
cb517eab 2082 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2083 }
2084}
af31f5e5 2085
638aa7ed
ES
2086static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2087{
2088 mutex_init(&fs_info->scrub_lock);
2089 atomic_set(&fs_info->scrubs_running, 0);
2090 atomic_set(&fs_info->scrub_pause_req, 0);
2091 atomic_set(&fs_info->scrubs_paused, 0);
2092 atomic_set(&fs_info->scrub_cancel_req, 0);
2093 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2094 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2095}
2096
779a65a4
ES
2097static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2098{
2099 spin_lock_init(&fs_info->balance_lock);
2100 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2101 atomic_set(&fs_info->balance_pause_req, 0);
2102 atomic_set(&fs_info->balance_cancel_req, 0);
2103 fs_info->balance_ctl = NULL;
2104 init_waitqueue_head(&fs_info->balance_wait_q);
2105}
2106
6bccf3ab 2107static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2108{
2ff7e61e
JM
2109 struct inode *inode = fs_info->btree_inode;
2110
2111 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2112 set_nlink(inode, 1);
f37938e0
ES
2113 /*
2114 * we set the i_size on the btree inode to the max possible int.
2115 * the real end of the address space is determined by all of
2116 * the devices in the system
2117 */
2ff7e61e
JM
2118 inode->i_size = OFFSET_MAX;
2119 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2120
2ff7e61e 2121 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2122 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2123 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2124 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2125 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2126
5c8fd99f 2127 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2128 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2129 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2130 btrfs_insert_inode_hash(inode);
f37938e0
ES
2131}
2132
ad618368
ES
2133static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2134{
ad618368 2135 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2136 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2137 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2138}
2139
f9e92e40
ES
2140static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2141{
2142 spin_lock_init(&fs_info->qgroup_lock);
2143 mutex_init(&fs_info->qgroup_ioctl_lock);
2144 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2145 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2146 fs_info->qgroup_seq = 1;
f9e92e40 2147 fs_info->qgroup_ulist = NULL;
d2c609b8 2148 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2149 mutex_init(&fs_info->qgroup_rescan_lock);
2150}
2151
2a458198
ES
2152static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2153 struct btrfs_fs_devices *fs_devices)
2154{
f7b885be 2155 u32 max_active = fs_info->thread_pool_size;
6f011058 2156 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2157
2158 fs_info->workers =
cb001095
JM
2159 btrfs_alloc_workqueue(fs_info, "worker",
2160 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2161
2162 fs_info->delalloc_workers =
cb001095
JM
2163 btrfs_alloc_workqueue(fs_info, "delalloc",
2164 flags, max_active, 2);
2a458198
ES
2165
2166 fs_info->flush_workers =
cb001095
JM
2167 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2168 flags, max_active, 0);
2a458198
ES
2169
2170 fs_info->caching_workers =
cb001095 2171 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2172
2a458198 2173 fs_info->fixup_workers =
cb001095 2174 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2175
2176 /*
2177 * endios are largely parallel and should have a very
2178 * low idle thresh
2179 */
2180 fs_info->endio_workers =
cb001095 2181 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2182 fs_info->endio_meta_workers =
cb001095
JM
2183 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2184 max_active, 4);
2a458198 2185 fs_info->endio_meta_write_workers =
cb001095
JM
2186 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2187 max_active, 2);
2a458198 2188 fs_info->endio_raid56_workers =
cb001095
JM
2189 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2190 max_active, 4);
2a458198 2191 fs_info->rmw_workers =
cb001095 2192 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2193 fs_info->endio_write_workers =
cb001095
JM
2194 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2195 max_active, 2);
2a458198 2196 fs_info->endio_freespace_worker =
cb001095
JM
2197 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2198 max_active, 0);
2a458198 2199 fs_info->delayed_workers =
cb001095
JM
2200 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2201 max_active, 0);
2a458198 2202 fs_info->readahead_workers =
cb001095
JM
2203 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2204 max_active, 2);
2a458198 2205 fs_info->qgroup_rescan_workers =
cb001095 2206 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2207 fs_info->discard_ctl.discard_workers =
2208 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2209
2210 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2211 fs_info->flush_workers &&
2a458198
ES
2212 fs_info->endio_workers && fs_info->endio_meta_workers &&
2213 fs_info->endio_meta_write_workers &&
2a458198
ES
2214 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2215 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2216 fs_info->caching_workers && fs_info->readahead_workers &&
2217 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2218 fs_info->qgroup_rescan_workers &&
2219 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2220 return -ENOMEM;
2221 }
2222
2223 return 0;
2224}
2225
6d97c6e3
JT
2226static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2227{
2228 struct crypto_shash *csum_shash;
b4e967be 2229 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2230
b4e967be 2231 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2232
2233 if (IS_ERR(csum_shash)) {
2234 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2235 csum_driver);
6d97c6e3
JT
2236 return PTR_ERR(csum_shash);
2237 }
2238
2239 fs_info->csum_shash = csum_shash;
2240
2241 return 0;
2242}
2243
63443bf5
ES
2244static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2245 struct btrfs_fs_devices *fs_devices)
2246{
2247 int ret;
63443bf5
ES
2248 struct btrfs_root *log_tree_root;
2249 struct btrfs_super_block *disk_super = fs_info->super_copy;
2250 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2251 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2252
2253 if (fs_devices->rw_devices == 0) {
f14d104d 2254 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2255 return -EIO;
2256 }
2257
96dfcb46
JB
2258 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2259 GFP_KERNEL);
63443bf5
ES
2260 if (!log_tree_root)
2261 return -ENOMEM;
2262
2ff7e61e 2263 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2264 fs_info->generation + 1,
2265 level, NULL);
64c043de 2266 if (IS_ERR(log_tree_root->node)) {
f14d104d 2267 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2268 ret = PTR_ERR(log_tree_root->node);
8c38938c 2269 log_tree_root->node = NULL;
00246528 2270 btrfs_put_root(log_tree_root);
0eeff236 2271 return ret;
64c043de 2272 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2273 btrfs_err(fs_info, "failed to read log tree");
00246528 2274 btrfs_put_root(log_tree_root);
63443bf5
ES
2275 return -EIO;
2276 }
2277 /* returns with log_tree_root freed on success */
2278 ret = btrfs_recover_log_trees(log_tree_root);
2279 if (ret) {
0b246afa
JM
2280 btrfs_handle_fs_error(fs_info, ret,
2281 "Failed to recover log tree");
00246528 2282 btrfs_put_root(log_tree_root);
63443bf5
ES
2283 return ret;
2284 }
2285
bc98a42c 2286 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2287 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2288 if (ret)
2289 return ret;
2290 }
2291
2292 return 0;
2293}
2294
6bccf3ab 2295static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2296{
6bccf3ab 2297 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2298 struct btrfs_root *root;
4bbcaa64
ES
2299 struct btrfs_key location;
2300 int ret;
2301
6bccf3ab
JM
2302 BUG_ON(!fs_info->tree_root);
2303
4bbcaa64
ES
2304 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2305 location.type = BTRFS_ROOT_ITEM_KEY;
2306 location.offset = 0;
2307
a4f3d2c4 2308 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2309 if (IS_ERR(root)) {
42437a63
JB
2310 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2311 ret = PTR_ERR(root);
2312 goto out;
2313 }
2314 } else {
2315 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2316 fs_info->extent_root = root;
f50f4353 2317 }
4bbcaa64
ES
2318
2319 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2320 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2321 if (IS_ERR(root)) {
42437a63
JB
2322 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2323 ret = PTR_ERR(root);
2324 goto out;
2325 }
2326 } else {
2327 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328 fs_info->dev_root = root;
2329 btrfs_init_devices_late(fs_info);
f50f4353 2330 }
4bbcaa64
ES
2331
2332 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2333 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2334 if (IS_ERR(root)) {
42437a63
JB
2335 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2336 ret = PTR_ERR(root);
2337 goto out;
2338 }
2339 } else {
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 fs_info->csum_root = root;
f50f4353 2342 }
4bbcaa64 2343
aeb935a4
QW
2344 /*
2345 * This tree can share blocks with some other fs tree during relocation
2346 * and we need a proper setup by btrfs_get_fs_root
2347 */
56e9357a
DS
2348 root = btrfs_get_fs_root(tree_root->fs_info,
2349 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2350 if (IS_ERR(root)) {
42437a63
JB
2351 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2352 ret = PTR_ERR(root);
2353 goto out;
2354 }
2355 } else {
2356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2357 fs_info->data_reloc_root = root;
aeb935a4 2358 }
aeb935a4 2359
4bbcaa64 2360 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2361 root = btrfs_read_tree_root(tree_root, &location);
2362 if (!IS_ERR(root)) {
2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2364 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2365 fs_info->quota_root = root;
4bbcaa64
ES
2366 }
2367
2368 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2369 root = btrfs_read_tree_root(tree_root, &location);
2370 if (IS_ERR(root)) {
42437a63
JB
2371 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2372 ret = PTR_ERR(root);
2373 if (ret != -ENOENT)
2374 goto out;
2375 }
4bbcaa64 2376 } else {
a4f3d2c4
DS
2377 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2378 fs_info->uuid_root = root;
4bbcaa64
ES
2379 }
2380
70f6d82e
OS
2381 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2382 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2383 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2384 if (IS_ERR(root)) {
42437a63
JB
2385 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2386 ret = PTR_ERR(root);
2387 goto out;
2388 }
2389 } else {
2390 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2391 fs_info->free_space_root = root;
f50f4353 2392 }
70f6d82e
OS
2393 }
2394
4bbcaa64 2395 return 0;
f50f4353
LB
2396out:
2397 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2398 location.objectid, ret);
2399 return ret;
4bbcaa64
ES
2400}
2401
069ec957
QW
2402/*
2403 * Real super block validation
2404 * NOTE: super csum type and incompat features will not be checked here.
2405 *
2406 * @sb: super block to check
2407 * @mirror_num: the super block number to check its bytenr:
2408 * 0 the primary (1st) sb
2409 * 1, 2 2nd and 3rd backup copy
2410 * -1 skip bytenr check
2411 */
2412static int validate_super(struct btrfs_fs_info *fs_info,
2413 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2414{
21a852b0
QW
2415 u64 nodesize = btrfs_super_nodesize(sb);
2416 u64 sectorsize = btrfs_super_sectorsize(sb);
2417 int ret = 0;
2418
2419 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2420 btrfs_err(fs_info, "no valid FS found");
2421 ret = -EINVAL;
2422 }
2423 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2424 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2425 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2426 ret = -EINVAL;
2427 }
2428 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2430 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2431 ret = -EINVAL;
2432 }
2433 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2434 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2435 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2436 ret = -EINVAL;
2437 }
2438 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2439 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2440 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2441 ret = -EINVAL;
2442 }
2443
2444 /*
2445 * Check sectorsize and nodesize first, other check will need it.
2446 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2447 */
2448 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2449 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2450 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2451 ret = -EINVAL;
2452 }
2453 /* Only PAGE SIZE is supported yet */
2454 if (sectorsize != PAGE_SIZE) {
2455 btrfs_err(fs_info,
2456 "sectorsize %llu not supported yet, only support %lu",
2457 sectorsize, PAGE_SIZE);
2458 ret = -EINVAL;
2459 }
2460 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2461 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2462 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2463 ret = -EINVAL;
2464 }
2465 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2466 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2467 le32_to_cpu(sb->__unused_leafsize), nodesize);
2468 ret = -EINVAL;
2469 }
2470
2471 /* Root alignment check */
2472 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2473 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2474 btrfs_super_root(sb));
2475 ret = -EINVAL;
2476 }
2477 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2478 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2479 btrfs_super_chunk_root(sb));
2480 ret = -EINVAL;
2481 }
2482 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2483 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2484 btrfs_super_log_root(sb));
2485 ret = -EINVAL;
2486 }
2487
de37aa51 2488 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2489 BTRFS_FSID_SIZE) != 0) {
21a852b0 2490 btrfs_err(fs_info,
7239ff4b 2491 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2492 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2493 ret = -EINVAL;
2494 }
2495
2496 /*
2497 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2498 * done later
2499 */
2500 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2501 btrfs_err(fs_info, "bytes_used is too small %llu",
2502 btrfs_super_bytes_used(sb));
2503 ret = -EINVAL;
2504 }
2505 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2506 btrfs_err(fs_info, "invalid stripesize %u",
2507 btrfs_super_stripesize(sb));
2508 ret = -EINVAL;
2509 }
2510 if (btrfs_super_num_devices(sb) > (1UL << 31))
2511 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2512 btrfs_super_num_devices(sb));
2513 if (btrfs_super_num_devices(sb) == 0) {
2514 btrfs_err(fs_info, "number of devices is 0");
2515 ret = -EINVAL;
2516 }
2517
069ec957
QW
2518 if (mirror_num >= 0 &&
2519 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2520 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2521 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2522 ret = -EINVAL;
2523 }
2524
2525 /*
2526 * Obvious sys_chunk_array corruptions, it must hold at least one key
2527 * and one chunk
2528 */
2529 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2530 btrfs_err(fs_info, "system chunk array too big %u > %u",
2531 btrfs_super_sys_array_size(sb),
2532 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2533 ret = -EINVAL;
2534 }
2535 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2536 + sizeof(struct btrfs_chunk)) {
2537 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2538 btrfs_super_sys_array_size(sb),
2539 sizeof(struct btrfs_disk_key)
2540 + sizeof(struct btrfs_chunk));
2541 ret = -EINVAL;
2542 }
2543
2544 /*
2545 * The generation is a global counter, we'll trust it more than the others
2546 * but it's still possible that it's the one that's wrong.
2547 */
2548 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2549 btrfs_warn(fs_info,
2550 "suspicious: generation < chunk_root_generation: %llu < %llu",
2551 btrfs_super_generation(sb),
2552 btrfs_super_chunk_root_generation(sb));
2553 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2554 && btrfs_super_cache_generation(sb) != (u64)-1)
2555 btrfs_warn(fs_info,
2556 "suspicious: generation < cache_generation: %llu < %llu",
2557 btrfs_super_generation(sb),
2558 btrfs_super_cache_generation(sb));
2559
2560 return ret;
2561}
2562
069ec957
QW
2563/*
2564 * Validation of super block at mount time.
2565 * Some checks already done early at mount time, like csum type and incompat
2566 * flags will be skipped.
2567 */
2568static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2569{
2570 return validate_super(fs_info, fs_info->super_copy, 0);
2571}
2572
75cb857d
QW
2573/*
2574 * Validation of super block at write time.
2575 * Some checks like bytenr check will be skipped as their values will be
2576 * overwritten soon.
2577 * Extra checks like csum type and incompat flags will be done here.
2578 */
2579static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2580 struct btrfs_super_block *sb)
2581{
2582 int ret;
2583
2584 ret = validate_super(fs_info, sb, -1);
2585 if (ret < 0)
2586 goto out;
e7e16f48 2587 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2588 ret = -EUCLEAN;
2589 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2590 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2591 goto out;
2592 }
2593 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2594 ret = -EUCLEAN;
2595 btrfs_err(fs_info,
2596 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2597 btrfs_super_incompat_flags(sb),
2598 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2599 goto out;
2600 }
2601out:
2602 if (ret < 0)
2603 btrfs_err(fs_info,
2604 "super block corruption detected before writing it to disk");
2605 return ret;
2606}
2607
6ef108dd 2608static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2609{
6ef108dd 2610 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2611 struct btrfs_super_block *sb = fs_info->super_copy;
2612 struct btrfs_root *tree_root = fs_info->tree_root;
2613 bool handle_error = false;
2614 int ret = 0;
2615 int i;
2616
2617 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2618 u64 generation;
2619 int level;
2620
2621 if (handle_error) {
2622 if (!IS_ERR(tree_root->node))
2623 free_extent_buffer(tree_root->node);
2624 tree_root->node = NULL;
2625
2626 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2627 break;
2628
2629 free_root_pointers(fs_info, 0);
2630
2631 /*
2632 * Don't use the log in recovery mode, it won't be
2633 * valid
2634 */
2635 btrfs_set_super_log_root(sb, 0);
2636
2637 /* We can't trust the free space cache either */
2638 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2639
2640 ret = read_backup_root(fs_info, i);
6ef108dd 2641 backup_index = ret;
b8522a1e
NB
2642 if (ret < 0)
2643 return ret;
2644 }
2645 generation = btrfs_super_generation(sb);
2646 level = btrfs_super_root_level(sb);
2647 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2648 generation, level, NULL);
217f5004 2649 if (IS_ERR(tree_root->node)) {
b8522a1e 2650 handle_error = true;
217f5004
NB
2651 ret = PTR_ERR(tree_root->node);
2652 tree_root->node = NULL;
2653 btrfs_warn(fs_info, "couldn't read tree root");
2654 continue;
b8522a1e 2655
217f5004
NB
2656 } else if (!extent_buffer_uptodate(tree_root->node)) {
2657 handle_error = true;
2658 ret = -EIO;
2659 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2660 continue;
2661 }
2662
2663 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2664 tree_root->commit_root = btrfs_root_node(tree_root);
2665 btrfs_set_root_refs(&tree_root->root_item, 1);
2666
336a0d8d
NB
2667 /*
2668 * No need to hold btrfs_root::objectid_mutex since the fs
2669 * hasn't been fully initialised and we are the only user
2670 */
b8522a1e
NB
2671 ret = btrfs_find_highest_objectid(tree_root,
2672 &tree_root->highest_objectid);
2673 if (ret < 0) {
b8522a1e
NB
2674 handle_error = true;
2675 continue;
2676 }
2677
2678 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2679
2680 ret = btrfs_read_roots(fs_info);
2681 if (ret < 0) {
2682 handle_error = true;
2683 continue;
2684 }
2685
2686 /* All successful */
2687 fs_info->generation = generation;
2688 fs_info->last_trans_committed = generation;
6ef108dd
NB
2689
2690 /* Always begin writing backup roots after the one being used */
2691 if (backup_index < 0) {
2692 fs_info->backup_root_index = 0;
2693 } else {
2694 fs_info->backup_root_index = backup_index + 1;
2695 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2696 }
b8522a1e
NB
2697 break;
2698 }
2699
2700 return ret;
2701}
2702
8260edba 2703void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2704{
76dda93c 2705 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2706 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2707 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2708 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2709 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2710 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2711 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2712 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2713 spin_lock_init(&fs_info->trans_lock);
76dda93c 2714 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2715 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2716 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2717 spin_lock_init(&fs_info->super_lock);
f28491e0 2718 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2719 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2720 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2721 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2722 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2723 mutex_init(&fs_info->reloc_mutex);
573bfb72 2724 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2725 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2726
0b86a832 2727 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2728 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2729 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2730 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2731#ifdef CONFIG_BTRFS_DEBUG
2732 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2733 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2734 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2735#endif
c8bf1b67 2736 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2737 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2738 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2739 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2740 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2741 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2742 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2743 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2744 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2745 BTRFS_BLOCK_RSV_DELREFS);
2746
771ed689 2747 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2748 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2749 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2750 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2751 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2752 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2753 fs_info->metadata_ratio = 0;
4cb5300b 2754 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2755 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2756 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2757 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2758 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2759 /* readahead state */
d0164adc 2760 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2761 spin_lock_init(&fs_info->reada_lock);
fd708b81 2762 btrfs_init_ref_verify(fs_info);
c8b97818 2763
b34b086c
CM
2764 fs_info->thread_pool_size = min_t(unsigned long,
2765 num_online_cpus() + 2, 8);
0afbaf8c 2766
199c2a9c
MX
2767 INIT_LIST_HEAD(&fs_info->ordered_roots);
2768 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2769
638aa7ed 2770 btrfs_init_scrub(fs_info);
21adbd5c
SB
2771#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2772 fs_info->check_integrity_print_mask = 0;
2773#endif
779a65a4 2774 btrfs_init_balance(fs_info);
57056740 2775 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2776
0f9dd46c 2777 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2778 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2779 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2780
fe119a6e
NB
2781 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2782 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2783 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2784
5a3f23d5 2785 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2786 mutex_init(&fs_info->tree_log_mutex);
925baedd 2787 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2788 mutex_init(&fs_info->transaction_kthread_mutex);
2789 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2790 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2791 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2792 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2793 init_rwsem(&fs_info->subvol_sem);
803b2f54 2794 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2795
ad618368 2796 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2797 btrfs_init_qgroup(fs_info);
b0643e59 2798 btrfs_discard_init(fs_info);
416ac51d 2799
fa9c0d79
CM
2800 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2801 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2802
e6dcd2dc 2803 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2804 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2805 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2806 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2807 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2808
da17066c
JM
2809 /* Usable values until the real ones are cached from the superblock */
2810 fs_info->nodesize = 4096;
2811 fs_info->sectorsize = 4096;
2812 fs_info->stripesize = 4096;
2813
eede2bf3
OS
2814 spin_lock_init(&fs_info->swapfile_pins_lock);
2815 fs_info->swapfile_pins = RB_ROOT;
2816
9e967495 2817 fs_info->send_in_progress = 0;
8260edba
JB
2818}
2819
2820static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2821{
2822 int ret;
2823
2824 fs_info->sb = sb;
2825 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2826 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2827
ae18c37a
JB
2828 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2829 if (ret)
c75e8394 2830 return ret;
ae18c37a
JB
2831
2832 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2833 if (ret)
c75e8394 2834 return ret;
ae18c37a
JB
2835
2836 fs_info->dirty_metadata_batch = PAGE_SIZE *
2837 (1 + ilog2(nr_cpu_ids));
2838
2839 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2840 if (ret)
c75e8394 2841 return ret;
ae18c37a
JB
2842
2843 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2844 GFP_KERNEL);
2845 if (ret)
c75e8394 2846 return ret;
ae18c37a
JB
2847
2848 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2849 GFP_KERNEL);
c75e8394
JB
2850 if (!fs_info->delayed_root)
2851 return -ENOMEM;
ae18c37a
JB
2852 btrfs_init_delayed_root(fs_info->delayed_root);
2853
c75e8394 2854 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2855}
2856
97f4dd09
NB
2857static int btrfs_uuid_rescan_kthread(void *data)
2858{
2859 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2860 int ret;
2861
2862 /*
2863 * 1st step is to iterate through the existing UUID tree and
2864 * to delete all entries that contain outdated data.
2865 * 2nd step is to add all missing entries to the UUID tree.
2866 */
2867 ret = btrfs_uuid_tree_iterate(fs_info);
2868 if (ret < 0) {
c94bec2c
JB
2869 if (ret != -EINTR)
2870 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2871 ret);
97f4dd09
NB
2872 up(&fs_info->uuid_tree_rescan_sem);
2873 return ret;
2874 }
2875 return btrfs_uuid_scan_kthread(data);
2876}
2877
2878static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2879{
2880 struct task_struct *task;
2881
2882 down(&fs_info->uuid_tree_rescan_sem);
2883 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2884 if (IS_ERR(task)) {
2885 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2886 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2887 up(&fs_info->uuid_tree_rescan_sem);
2888 return PTR_ERR(task);
2889 }
2890
2891 return 0;
2892}
2893
ae18c37a
JB
2894int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2895 char *options)
2896{
2897 u32 sectorsize;
2898 u32 nodesize;
2899 u32 stripesize;
2900 u64 generation;
2901 u64 features;
2902 u16 csum_type;
ae18c37a
JB
2903 struct btrfs_super_block *disk_super;
2904 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2905 struct btrfs_root *tree_root;
2906 struct btrfs_root *chunk_root;
2907 int ret;
2908 int err = -EINVAL;
2909 int clear_free_space_tree = 0;
2910 int level;
2911
8260edba 2912 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2913 if (ret) {
83c8266a 2914 err = ret;
ae18c37a 2915 goto fail;
53b381b3
DW
2916 }
2917
ae18c37a
JB
2918 /* These need to be init'ed before we start creating inodes and such. */
2919 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2920 GFP_KERNEL);
2921 fs_info->tree_root = tree_root;
2922 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2923 GFP_KERNEL);
2924 fs_info->chunk_root = chunk_root;
2925 if (!tree_root || !chunk_root) {
2926 err = -ENOMEM;
c75e8394 2927 goto fail;
ae18c37a
JB
2928 }
2929
2930 fs_info->btree_inode = new_inode(sb);
2931 if (!fs_info->btree_inode) {
2932 err = -ENOMEM;
c75e8394 2933 goto fail;
ae18c37a
JB
2934 }
2935 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2936 btrfs_init_btree_inode(fs_info);
2937
3c4bb26b 2938 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2939
2940 /*
2941 * Read super block and check the signature bytes only
2942 */
8f32380d
JT
2943 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2944 if (IS_ERR(disk_super)) {
2945 err = PTR_ERR(disk_super);
16cdcec7 2946 goto fail_alloc;
20b45077 2947 }
39279cc3 2948
8dc3f22c 2949 /*
260db43c 2950 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
2951 * corrupted, we'll find out
2952 */
8f32380d 2953 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2954 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2955 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2956 csum_type);
8dc3f22c 2957 err = -EINVAL;
8f32380d 2958 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2959 goto fail_alloc;
2960 }
2961
6d97c6e3
JT
2962 ret = btrfs_init_csum_hash(fs_info, csum_type);
2963 if (ret) {
2964 err = ret;
8f32380d 2965 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2966 goto fail_alloc;
2967 }
2968
1104a885
DS
2969 /*
2970 * We want to check superblock checksum, the type is stored inside.
2971 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2972 */
8f32380d 2973 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2974 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2975 err = -EINVAL;
8f32380d 2976 btrfs_release_disk_super(disk_super);
141386e1 2977 goto fail_alloc;
1104a885
DS
2978 }
2979
2980 /*
2981 * super_copy is zeroed at allocation time and we never touch the
2982 * following bytes up to INFO_SIZE, the checksum is calculated from
2983 * the whole block of INFO_SIZE
2984 */
8f32380d
JT
2985 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2986 btrfs_release_disk_super(disk_super);
5f39d397 2987
fbc6feae
NB
2988 disk_super = fs_info->super_copy;
2989
de37aa51
NB
2990 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2991 BTRFS_FSID_SIZE));
2992
7239ff4b 2993 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2994 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2995 fs_info->super_copy->metadata_uuid,
2996 BTRFS_FSID_SIZE));
7239ff4b 2997 }
0b86a832 2998
fbc6feae
NB
2999 features = btrfs_super_flags(disk_super);
3000 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3001 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3002 btrfs_set_super_flags(disk_super, features);
3003 btrfs_info(fs_info,
3004 "found metadata UUID change in progress flag, clearing");
3005 }
3006
3007 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3008 sizeof(*fs_info->super_for_commit));
de37aa51 3009
069ec957 3010 ret = btrfs_validate_mount_super(fs_info);
1104a885 3011 if (ret) {
05135f59 3012 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3013 err = -EINVAL;
141386e1 3014 goto fail_alloc;
1104a885
DS
3015 }
3016
0f7d52f4 3017 if (!btrfs_super_root(disk_super))
141386e1 3018 goto fail_alloc;
0f7d52f4 3019
acce952b 3020 /* check FS state, whether FS is broken. */
87533c47
MX
3021 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3022 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3023
75e7cb7f
LB
3024 /*
3025 * In the long term, we'll store the compression type in the super
3026 * block, and it'll be used for per file compression control.
3027 */
3028 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3029
2ff7e61e 3030 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3031 if (ret) {
3032 err = ret;
141386e1 3033 goto fail_alloc;
2b82032c 3034 }
dfe25020 3035
f2b636e8
JB
3036 features = btrfs_super_incompat_flags(disk_super) &
3037 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3038 if (features) {
05135f59
DS
3039 btrfs_err(fs_info,
3040 "cannot mount because of unsupported optional features (%llx)",
3041 features);
f2b636e8 3042 err = -EINVAL;
141386e1 3043 goto fail_alloc;
f2b636e8
JB
3044 }
3045
5d4f98a2 3046 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3047 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3048 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3049 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3050 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3051 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3052
3173a18f 3053 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3054 btrfs_info(fs_info, "has skinny extents");
3173a18f 3055
727011e0
CM
3056 /*
3057 * flag our filesystem as having big metadata blocks if
3058 * they are bigger than the page size
3059 */
09cbfeaf 3060 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3061 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3062 btrfs_info(fs_info,
3063 "flagging fs with big metadata feature");
727011e0
CM
3064 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3065 }
3066
bc3f116f 3067 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3068 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3069 stripesize = sectorsize;
707e8a07 3070 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3071 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3072
da17066c
JM
3073 /* Cache block sizes */
3074 fs_info->nodesize = nodesize;
3075 fs_info->sectorsize = sectorsize;
3076 fs_info->stripesize = stripesize;
3077
bc3f116f
CM
3078 /*
3079 * mixed block groups end up with duplicate but slightly offset
3080 * extent buffers for the same range. It leads to corruptions
3081 */
3082 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3083 (sectorsize != nodesize)) {
05135f59
DS
3084 btrfs_err(fs_info,
3085"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3086 nodesize, sectorsize);
141386e1 3087 goto fail_alloc;
bc3f116f
CM
3088 }
3089
ceda0864
MX
3090 /*
3091 * Needn't use the lock because there is no other task which will
3092 * update the flag.
3093 */
a6fa6fae 3094 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3095
f2b636e8
JB
3096 features = btrfs_super_compat_ro_flags(disk_super) &
3097 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3098 if (!sb_rdonly(sb) && features) {
05135f59
DS
3099 btrfs_err(fs_info,
3100 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3101 features);
f2b636e8 3102 err = -EINVAL;
141386e1 3103 goto fail_alloc;
f2b636e8 3104 }
61d92c32 3105
2a458198
ES
3106 ret = btrfs_init_workqueues(fs_info, fs_devices);
3107 if (ret) {
3108 err = ret;
0dc3b84a
JB
3109 goto fail_sb_buffer;
3110 }
4543df7e 3111
9e11ceee
JK
3112 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3113 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3114
a061fc8d
CM
3115 sb->s_blocksize = sectorsize;
3116 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3117 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3118
925baedd 3119 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3120 ret = btrfs_read_sys_array(fs_info);
925baedd 3121 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3122 if (ret) {
05135f59 3123 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3124 goto fail_sb_buffer;
84eed90f 3125 }
0b86a832 3126
84234f3a 3127 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3128 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3129
2ff7e61e 3130 chunk_root->node = read_tree_block(fs_info,
0b86a832 3131 btrfs_super_chunk_root(disk_super),
581c1760 3132 generation, level, NULL);
64c043de
LB
3133 if (IS_ERR(chunk_root->node) ||
3134 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3135 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3136 if (!IS_ERR(chunk_root->node))
3137 free_extent_buffer(chunk_root->node);
95ab1f64 3138 chunk_root->node = NULL;
af31f5e5 3139 goto fail_tree_roots;
83121942 3140 }
5d4f98a2
YZ
3141 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3142 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3143
e17cade2 3144 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3145 offsetof(struct btrfs_header, chunk_tree_uuid),
3146 BTRFS_UUID_SIZE);
e17cade2 3147
5b4aacef 3148 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3149 if (ret) {
05135f59 3150 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3151 goto fail_tree_roots;
2b82032c 3152 }
0b86a832 3153
8dabb742 3154 /*
9b99b115
AJ
3155 * Keep the devid that is marked to be the target device for the
3156 * device replace procedure
8dabb742 3157 */
9b99b115 3158 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3159
a6b0d5c8 3160 if (!fs_devices->latest_bdev) {
05135f59 3161 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3162 goto fail_tree_roots;
3163 }
3164
b8522a1e 3165 ret = init_tree_roots(fs_info);
4bbcaa64 3166 if (ret)
b8522a1e 3167 goto fail_tree_roots;
8929ecfa 3168
75ec1db8
JB
3169 /*
3170 * If we have a uuid root and we're not being told to rescan we need to
3171 * check the generation here so we can set the
3172 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3173 * transaction during a balance or the log replay without updating the
3174 * uuid generation, and then if we crash we would rescan the uuid tree,
3175 * even though it was perfectly fine.
3176 */
3177 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3178 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3179 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3180
cf90d884
QW
3181 ret = btrfs_verify_dev_extents(fs_info);
3182 if (ret) {
3183 btrfs_err(fs_info,
3184 "failed to verify dev extents against chunks: %d",
3185 ret);
3186 goto fail_block_groups;
3187 }
68310a5e
ID
3188 ret = btrfs_recover_balance(fs_info);
3189 if (ret) {
05135f59 3190 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3191 goto fail_block_groups;
3192 }
3193
733f4fbb
SB
3194 ret = btrfs_init_dev_stats(fs_info);
3195 if (ret) {
05135f59 3196 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3197 goto fail_block_groups;
3198 }
3199
8dabb742
SB
3200 ret = btrfs_init_dev_replace(fs_info);
3201 if (ret) {
05135f59 3202 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3203 goto fail_block_groups;
3204 }
3205
9b99b115 3206 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3207
c6761a9e 3208 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3209 if (ret) {
05135f59
DS
3210 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3211 ret);
b7c35e81
AJ
3212 goto fail_block_groups;
3213 }
3214
96f3136e 3215 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3216 if (ret) {
05135f59 3217 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3218 goto fail_fsdev_sysfs;
c59021f8 3219 }
3220
c59021f8 3221 ret = btrfs_init_space_info(fs_info);
3222 if (ret) {
05135f59 3223 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3224 goto fail_sysfs;
c59021f8 3225 }
3226
5b4aacef 3227 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3228 if (ret) {
05135f59 3229 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3230 goto fail_sysfs;
1b1d1f66 3231 }
4330e183 3232
6528b99d 3233 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3234 btrfs_warn(fs_info,
52042d8e 3235 "writable mount is not allowed due to too many missing devices");
2365dd3c 3236 goto fail_sysfs;
292fd7fc 3237 }
9078a3e1 3238
a74a4b97
CM
3239 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3240 "btrfs-cleaner");
57506d50 3241 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3242 goto fail_sysfs;
a74a4b97
CM
3243
3244 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3245 tree_root,
3246 "btrfs-transaction");
57506d50 3247 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3248 goto fail_cleaner;
a74a4b97 3249
583b7231 3250 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3251 !fs_info->fs_devices->rotating) {
583b7231 3252 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3253 }
3254
572d9ab7 3255 /*
01327610 3256 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3257 * not have to wait for transaction commit
3258 */
3259 btrfs_apply_pending_changes(fs_info);
3818aea2 3260
21adbd5c 3261#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3262 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3263 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3264 btrfs_test_opt(fs_info,
21adbd5c
SB
3265 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3266 1 : 0,
3267 fs_info->check_integrity_print_mask);
3268 if (ret)
05135f59
DS
3269 btrfs_warn(fs_info,
3270 "failed to initialize integrity check module: %d",
3271 ret);
21adbd5c
SB
3272 }
3273#endif
bcef60f2
AJ
3274 ret = btrfs_read_qgroup_config(fs_info);
3275 if (ret)
3276 goto fail_trans_kthread;
21adbd5c 3277
fd708b81
JB
3278 if (btrfs_build_ref_tree(fs_info))
3279 btrfs_err(fs_info, "couldn't build ref tree");
3280
96da0919
QW
3281 /* do not make disk changes in broken FS or nologreplay is given */
3282 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3283 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3284 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3285 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3286 if (ret) {
63443bf5 3287 err = ret;
28c16cbb 3288 goto fail_qgroup;
79787eaa 3289 }
e02119d5 3290 }
1a40e23b 3291
6bccf3ab 3292 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3293 if (ret)
28c16cbb 3294 goto fail_qgroup;
76dda93c 3295
bc98a42c 3296 if (!sb_rdonly(sb)) {
d68fc57b 3297 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3298 if (ret)
28c16cbb 3299 goto fail_qgroup;
90c711ab
ZB
3300
3301 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3302 ret = btrfs_recover_relocation(tree_root);
90c711ab 3303 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3304 if (ret < 0) {
05135f59
DS
3305 btrfs_warn(fs_info, "failed to recover relocation: %d",
3306 ret);
d7ce5843 3307 err = -EINVAL;
bcef60f2 3308 goto fail_qgroup;
d7ce5843 3309 }
7c2ca468 3310 }
1a40e23b 3311
56e9357a 3312 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3313 if (IS_ERR(fs_info->fs_root)) {
3314 err = PTR_ERR(fs_info->fs_root);
f50f4353 3315 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3316 fs_info->fs_root = NULL;
bcef60f2 3317 goto fail_qgroup;
3140c9a3 3318 }
c289811c 3319
bc98a42c 3320 if (sb_rdonly(sb))
2b6ba629 3321 return 0;
59641015 3322
f8d468a1
OS
3323 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3324 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3325 clear_free_space_tree = 1;
3326 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3327 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3328 btrfs_warn(fs_info, "free space tree is invalid");
3329 clear_free_space_tree = 1;
3330 }
3331
3332 if (clear_free_space_tree) {
f8d468a1
OS
3333 btrfs_info(fs_info, "clearing free space tree");
3334 ret = btrfs_clear_free_space_tree(fs_info);
3335 if (ret) {
3336 btrfs_warn(fs_info,
3337 "failed to clear free space tree: %d", ret);
6bccf3ab 3338 close_ctree(fs_info);
f8d468a1
OS
3339 return ret;
3340 }
3341 }
3342
0b246afa 3343 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3344 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3345 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3346 ret = btrfs_create_free_space_tree(fs_info);
3347 if (ret) {
05135f59
DS
3348 btrfs_warn(fs_info,
3349 "failed to create free space tree: %d", ret);
6bccf3ab 3350 close_ctree(fs_info);
511711af
CM
3351 return ret;
3352 }
3353 }
3354
2b6ba629
ID
3355 down_read(&fs_info->cleanup_work_sem);
3356 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3357 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3358 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3359 close_ctree(fs_info);
2b6ba629
ID
3360 return ret;
3361 }
3362 up_read(&fs_info->cleanup_work_sem);
59641015 3363
2b6ba629
ID
3364 ret = btrfs_resume_balance_async(fs_info);
3365 if (ret) {
05135f59 3366 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3367 close_ctree(fs_info);
2b6ba629 3368 return ret;
e3acc2a6
JB
3369 }
3370
8dabb742
SB
3371 ret = btrfs_resume_dev_replace_async(fs_info);
3372 if (ret) {
05135f59 3373 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3374 close_ctree(fs_info);
8dabb742
SB
3375 return ret;
3376 }
3377
b382a324 3378 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3379 btrfs_discard_resume(fs_info);
b382a324 3380
4bbcaa64 3381 if (!fs_info->uuid_root) {
05135f59 3382 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3383 ret = btrfs_create_uuid_tree(fs_info);
3384 if (ret) {
05135f59
DS
3385 btrfs_warn(fs_info,
3386 "failed to create the UUID tree: %d", ret);
6bccf3ab 3387 close_ctree(fs_info);
f7a81ea4
SB
3388 return ret;
3389 }
0b246afa 3390 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3391 fs_info->generation !=
3392 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3393 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3394 ret = btrfs_check_uuid_tree(fs_info);
3395 if (ret) {
05135f59
DS
3396 btrfs_warn(fs_info,
3397 "failed to check the UUID tree: %d", ret);
6bccf3ab 3398 close_ctree(fs_info);
70f80175
SB
3399 return ret;
3400 }
f7a81ea4 3401 }
afcdd129 3402 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3403
ad2b2c80 3404 return 0;
39279cc3 3405
bcef60f2
AJ
3406fail_qgroup:
3407 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3408fail_trans_kthread:
3409 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3410 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3411 btrfs_free_fs_roots(fs_info);
3f157a2f 3412fail_cleaner:
a74a4b97 3413 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3414
3415 /*
3416 * make sure we're done with the btree inode before we stop our
3417 * kthreads
3418 */
3419 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3420
2365dd3c 3421fail_sysfs:
6618a59b 3422 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3423
b7c35e81
AJ
3424fail_fsdev_sysfs:
3425 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3426
1b1d1f66 3427fail_block_groups:
54067ae9 3428 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3429
3430fail_tree_roots:
9e3aa805
JB
3431 if (fs_info->data_reloc_root)
3432 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3433 free_root_pointers(fs_info, true);
2b8195bb 3434 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3435
39279cc3 3436fail_sb_buffer:
7abadb64 3437 btrfs_stop_all_workers(fs_info);
5cdd7db6 3438 btrfs_free_block_groups(fs_info);
16cdcec7 3439fail_alloc:
586e46e2
ID
3440 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3441
4543df7e 3442 iput(fs_info->btree_inode);
7e662854 3443fail:
586e46e2 3444 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3445 return err;
eb60ceac 3446}
663faf9f 3447ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3448
314b6dd0 3449static void btrfs_end_super_write(struct bio *bio)
f2984462 3450{
314b6dd0
JT
3451 struct btrfs_device *device = bio->bi_private;
3452 struct bio_vec *bvec;
3453 struct bvec_iter_all iter_all;
3454 struct page *page;
3455
3456 bio_for_each_segment_all(bvec, bio, iter_all) {
3457 page = bvec->bv_page;
3458
3459 if (bio->bi_status) {
3460 btrfs_warn_rl_in_rcu(device->fs_info,
3461 "lost page write due to IO error on %s (%d)",
3462 rcu_str_deref(device->name),
3463 blk_status_to_errno(bio->bi_status));
3464 ClearPageUptodate(page);
3465 SetPageError(page);
3466 btrfs_dev_stat_inc_and_print(device,
3467 BTRFS_DEV_STAT_WRITE_ERRS);
3468 } else {
3469 SetPageUptodate(page);
3470 }
3471
3472 put_page(page);
3473 unlock_page(page);
f2984462 3474 }
314b6dd0
JT
3475
3476 bio_put(bio);
f2984462
CM
3477}
3478
8f32380d
JT
3479struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3480 int copy_num)
29c36d72 3481{
29c36d72 3482 struct btrfs_super_block *super;
8f32380d 3483 struct page *page;
29c36d72 3484 u64 bytenr;
8f32380d 3485 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3486
3487 bytenr = btrfs_sb_offset(copy_num);
3488 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3489 return ERR_PTR(-EINVAL);
29c36d72 3490
8f32380d
JT
3491 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3492 if (IS_ERR(page))
3493 return ERR_CAST(page);
29c36d72 3494
8f32380d 3495 super = page_address(page);
96c2e067
AJ
3496 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3497 btrfs_release_disk_super(super);
3498 return ERR_PTR(-ENODATA);
3499 }
3500
3501 if (btrfs_super_bytenr(super) != bytenr) {
8f32380d
JT
3502 btrfs_release_disk_super(super);
3503 return ERR_PTR(-EINVAL);
29c36d72
AJ
3504 }
3505
8f32380d 3506 return super;
29c36d72
AJ
3507}
3508
3509
8f32380d 3510struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3511{
8f32380d 3512 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3513 int i;
3514 u64 transid = 0;
a512bbf8
YZ
3515
3516 /* we would like to check all the supers, but that would make
3517 * a btrfs mount succeed after a mkfs from a different FS.
3518 * So, we need to add a special mount option to scan for
3519 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3520 */
3521 for (i = 0; i < 1; i++) {
8f32380d
JT
3522 super = btrfs_read_dev_one_super(bdev, i);
3523 if (IS_ERR(super))
a512bbf8
YZ
3524 continue;
3525
a512bbf8 3526 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3527 if (latest)
3528 btrfs_release_disk_super(super);
3529
3530 latest = super;
a512bbf8 3531 transid = btrfs_super_generation(super);
a512bbf8
YZ
3532 }
3533 }
92fc03fb 3534
8f32380d 3535 return super;
a512bbf8
YZ
3536}
3537
4eedeb75 3538/*
abbb3b8e 3539 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3540 * pages we use for writing are locked.
4eedeb75 3541 *
abbb3b8e
DS
3542 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3543 * the expected device size at commit time. Note that max_mirrors must be
3544 * same for write and wait phases.
4eedeb75 3545 *
314b6dd0 3546 * Return number of errors when page is not found or submission fails.
4eedeb75 3547 */
a512bbf8 3548static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3549 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3550{
d5178578 3551 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3552 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3553 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3554 int i;
a512bbf8 3555 int errors = 0;
a512bbf8 3556 u64 bytenr;
a512bbf8
YZ
3557
3558 if (max_mirrors == 0)
3559 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3560
d5178578
JT
3561 shash->tfm = fs_info->csum_shash;
3562
a512bbf8 3563 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3564 struct page *page;
3565 struct bio *bio;
3566 struct btrfs_super_block *disk_super;
3567
a512bbf8 3568 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3569 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3570 device->commit_total_bytes)
a512bbf8
YZ
3571 break;
3572
abbb3b8e 3573 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3574
fd08001f
EB
3575 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3576 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3577 sb->csum);
4eedeb75 3578
314b6dd0
JT
3579 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3580 GFP_NOFS);
3581 if (!page) {
abbb3b8e 3582 btrfs_err(device->fs_info,
314b6dd0 3583 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3584 bytenr);
3585 errors++;
4eedeb75 3586 continue;
abbb3b8e 3587 }
634554dc 3588
314b6dd0
JT
3589 /* Bump the refcount for wait_dev_supers() */
3590 get_page(page);
a512bbf8 3591
314b6dd0
JT
3592 disk_super = page_address(page);
3593 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3594
314b6dd0
JT
3595 /*
3596 * Directly use bios here instead of relying on the page cache
3597 * to do I/O, so we don't lose the ability to do integrity
3598 * checking.
3599 */
3600 bio = bio_alloc(GFP_NOFS, 1);
3601 bio_set_dev(bio, device->bdev);
3602 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3603 bio->bi_private = device;
3604 bio->bi_end_io = btrfs_end_super_write;
3605 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3606 offset_in_page(bytenr));
a512bbf8 3607
387125fc 3608 /*
314b6dd0
JT
3609 * We FUA only the first super block. The others we allow to
3610 * go down lazy and there's a short window where the on-disk
3611 * copies might still contain the older version.
387125fc 3612 */
314b6dd0 3613 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3614 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3615 bio->bi_opf |= REQ_FUA;
3616
3617 btrfsic_submit_bio(bio);
a512bbf8
YZ
3618 }
3619 return errors < i ? 0 : -1;
3620}
3621
abbb3b8e
DS
3622/*
3623 * Wait for write completion of superblocks done by write_dev_supers,
3624 * @max_mirrors same for write and wait phases.
3625 *
314b6dd0 3626 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3627 * date.
3628 */
3629static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3630{
abbb3b8e
DS
3631 int i;
3632 int errors = 0;
b6a535fa 3633 bool primary_failed = false;
abbb3b8e
DS
3634 u64 bytenr;
3635
3636 if (max_mirrors == 0)
3637 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3638
3639 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3640 struct page *page;
3641
abbb3b8e
DS
3642 bytenr = btrfs_sb_offset(i);
3643 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3644 device->commit_total_bytes)
3645 break;
3646
314b6dd0
JT
3647 page = find_get_page(device->bdev->bd_inode->i_mapping,
3648 bytenr >> PAGE_SHIFT);
3649 if (!page) {
abbb3b8e 3650 errors++;
b6a535fa
HM
3651 if (i == 0)
3652 primary_failed = true;
abbb3b8e
DS
3653 continue;
3654 }
314b6dd0
JT
3655 /* Page is submitted locked and unlocked once the IO completes */
3656 wait_on_page_locked(page);
3657 if (PageError(page)) {
abbb3b8e 3658 errors++;
b6a535fa
HM
3659 if (i == 0)
3660 primary_failed = true;
3661 }
abbb3b8e 3662
314b6dd0
JT
3663 /* Drop our reference */
3664 put_page(page);
abbb3b8e 3665
314b6dd0
JT
3666 /* Drop the reference from the writing run */
3667 put_page(page);
abbb3b8e
DS
3668 }
3669
b6a535fa
HM
3670 /* log error, force error return */
3671 if (primary_failed) {
3672 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3673 device->devid);
3674 return -1;
3675 }
3676
abbb3b8e
DS
3677 return errors < i ? 0 : -1;
3678}
3679
387125fc
CM
3680/*
3681 * endio for the write_dev_flush, this will wake anyone waiting
3682 * for the barrier when it is done
3683 */
4246a0b6 3684static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3685{
e0ae9994 3686 complete(bio->bi_private);
387125fc
CM
3687}
3688
3689/*
4fc6441a
AJ
3690 * Submit a flush request to the device if it supports it. Error handling is
3691 * done in the waiting counterpart.
387125fc 3692 */
4fc6441a 3693static void write_dev_flush(struct btrfs_device *device)
387125fc 3694{
c2a9c7ab 3695 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3696 struct bio *bio = device->flush_bio;
387125fc 3697
c2a9c7ab 3698 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3699 return;
387125fc 3700
e0ae9994 3701 bio_reset(bio);
387125fc 3702 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3703 bio_set_dev(bio, device->bdev);
8d910125 3704 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3705 init_completion(&device->flush_wait);
3706 bio->bi_private = &device->flush_wait;
387125fc 3707
43a01111 3708 btrfsic_submit_bio(bio);
1c3063b6 3709 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3710}
387125fc 3711
4fc6441a
AJ
3712/*
3713 * If the flush bio has been submitted by write_dev_flush, wait for it.
3714 */
8c27cb35 3715static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3716{
4fc6441a 3717 struct bio *bio = device->flush_bio;
387125fc 3718
1c3063b6 3719 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3720 return BLK_STS_OK;
387125fc 3721
1c3063b6 3722 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3723 wait_for_completion_io(&device->flush_wait);
387125fc 3724
8c27cb35 3725 return bio->bi_status;
387125fc 3726}
387125fc 3727
d10b82fe 3728static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3729{
6528b99d 3730 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3731 return -EIO;
387125fc
CM
3732 return 0;
3733}
3734
3735/*
3736 * send an empty flush down to each device in parallel,
3737 * then wait for them
3738 */
3739static int barrier_all_devices(struct btrfs_fs_info *info)
3740{
3741 struct list_head *head;
3742 struct btrfs_device *dev;
5af3e8cc 3743 int errors_wait = 0;
4e4cbee9 3744 blk_status_t ret;
387125fc 3745
1538e6c5 3746 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3747 /* send down all the barriers */
3748 head = &info->fs_devices->devices;
1538e6c5 3749 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3750 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3751 continue;
cea7c8bf 3752 if (!dev->bdev)
387125fc 3753 continue;
e12c9621 3754 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3755 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3756 continue;
3757
4fc6441a 3758 write_dev_flush(dev);
58efbc9f 3759 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3760 }
3761
3762 /* wait for all the barriers */
1538e6c5 3763 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3764 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3765 continue;
387125fc 3766 if (!dev->bdev) {
5af3e8cc 3767 errors_wait++;
387125fc
CM
3768 continue;
3769 }
e12c9621 3770 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3771 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3772 continue;
3773
4fc6441a 3774 ret = wait_dev_flush(dev);
401b41e5
AJ
3775 if (ret) {
3776 dev->last_flush_error = ret;
66b4993e
DS
3777 btrfs_dev_stat_inc_and_print(dev,
3778 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3779 errors_wait++;
401b41e5
AJ
3780 }
3781 }
3782
cea7c8bf 3783 if (errors_wait) {
401b41e5
AJ
3784 /*
3785 * At some point we need the status of all disks
3786 * to arrive at the volume status. So error checking
3787 * is being pushed to a separate loop.
3788 */
d10b82fe 3789 return check_barrier_error(info);
387125fc 3790 }
387125fc
CM
3791 return 0;
3792}
3793
943c6e99
ZL
3794int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3795{
8789f4fe
ZL
3796 int raid_type;
3797 int min_tolerated = INT_MAX;
943c6e99 3798
8789f4fe
ZL
3799 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3800 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3801 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3802 btrfs_raid_array[BTRFS_RAID_SINGLE].
3803 tolerated_failures);
943c6e99 3804
8789f4fe
ZL
3805 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3806 if (raid_type == BTRFS_RAID_SINGLE)
3807 continue;
41a6e891 3808 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3809 continue;
8c3e3582 3810 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3811 btrfs_raid_array[raid_type].
3812 tolerated_failures);
3813 }
943c6e99 3814
8789f4fe 3815 if (min_tolerated == INT_MAX) {
ab8d0fc4 3816 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3817 min_tolerated = 0;
3818 }
3819
3820 return min_tolerated;
943c6e99
ZL
3821}
3822
eece6a9c 3823int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3824{
e5e9a520 3825 struct list_head *head;
f2984462 3826 struct btrfs_device *dev;
a061fc8d 3827 struct btrfs_super_block *sb;
f2984462 3828 struct btrfs_dev_item *dev_item;
f2984462
CM
3829 int ret;
3830 int do_barriers;
a236aed1
CM
3831 int max_errors;
3832 int total_errors = 0;
a061fc8d 3833 u64 flags;
f2984462 3834
0b246afa 3835 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3836
3837 /*
3838 * max_mirrors == 0 indicates we're from commit_transaction,
3839 * not from fsync where the tree roots in fs_info have not
3840 * been consistent on disk.
3841 */
3842 if (max_mirrors == 0)
3843 backup_super_roots(fs_info);
f2984462 3844
0b246afa 3845 sb = fs_info->super_for_commit;
a061fc8d 3846 dev_item = &sb->dev_item;
e5e9a520 3847
0b246afa
JM
3848 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3849 head = &fs_info->fs_devices->devices;
3850 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3851
5af3e8cc 3852 if (do_barriers) {
0b246afa 3853 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3854 if (ret) {
3855 mutex_unlock(
0b246afa
JM
3856 &fs_info->fs_devices->device_list_mutex);
3857 btrfs_handle_fs_error(fs_info, ret,
3858 "errors while submitting device barriers.");
5af3e8cc
SB
3859 return ret;
3860 }
3861 }
387125fc 3862
1538e6c5 3863 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3864 if (!dev->bdev) {
3865 total_errors++;
3866 continue;
3867 }
e12c9621 3868 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3869 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3870 continue;
3871
2b82032c 3872 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3873 btrfs_set_stack_device_type(dev_item, dev->type);
3874 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3875 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3876 dev->commit_total_bytes);
ce7213c7
MX
3877 btrfs_set_stack_device_bytes_used(dev_item,
3878 dev->commit_bytes_used);
a061fc8d
CM
3879 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3880 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3881 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3882 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3883 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3884 BTRFS_FSID_SIZE);
a512bbf8 3885
a061fc8d
CM
3886 flags = btrfs_super_flags(sb);
3887 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3888
75cb857d
QW
3889 ret = btrfs_validate_write_super(fs_info, sb);
3890 if (ret < 0) {
3891 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3892 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3893 "unexpected superblock corruption detected");
3894 return -EUCLEAN;
3895 }
3896
abbb3b8e 3897 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3898 if (ret)
3899 total_errors++;
f2984462 3900 }
a236aed1 3901 if (total_errors > max_errors) {
0b246afa
JM
3902 btrfs_err(fs_info, "%d errors while writing supers",
3903 total_errors);
3904 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3905
9d565ba4 3906 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3907 btrfs_handle_fs_error(fs_info, -EIO,
3908 "%d errors while writing supers",
3909 total_errors);
9d565ba4 3910 return -EIO;
a236aed1 3911 }
f2984462 3912
a512bbf8 3913 total_errors = 0;
1538e6c5 3914 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3915 if (!dev->bdev)
3916 continue;
e12c9621 3917 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3918 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3919 continue;
3920
abbb3b8e 3921 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3922 if (ret)
3923 total_errors++;
f2984462 3924 }
0b246afa 3925 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3926 if (total_errors > max_errors) {
0b246afa
JM
3927 btrfs_handle_fs_error(fs_info, -EIO,
3928 "%d errors while writing supers",
3929 total_errors);
79787eaa 3930 return -EIO;
a236aed1 3931 }
f2984462
CM
3932 return 0;
3933}
3934
cb517eab
MX
3935/* Drop a fs root from the radix tree and free it. */
3936void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3937 struct btrfs_root *root)
2619ba1f 3938{
4785e24f
JB
3939 bool drop_ref = false;
3940
4df27c4d 3941 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3942 radix_tree_delete(&fs_info->fs_roots_radix,
3943 (unsigned long)root->root_key.objectid);
af01d2e5 3944 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3945 drop_ref = true;
4df27c4d 3946 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3947
1c1ea4f7 3948 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3949 ASSERT(root->log_root == NULL);
1c1ea4f7 3950 if (root->reloc_root) {
00246528 3951 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3952 root->reloc_root = NULL;
3953 }
3954 }
3321719e 3955
faa2dbf0
JB
3956 if (root->free_ino_pinned)
3957 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3958 if (root->free_ino_ctl)
3959 __btrfs_remove_free_space_cache(root->free_ino_ctl);
0e996e7f
JB
3960 if (root->ino_cache_inode) {
3961 iput(root->ino_cache_inode);
3962 root->ino_cache_inode = NULL;
3963 }
4785e24f
JB
3964 if (drop_ref)
3965 btrfs_put_root(root);
2619ba1f
CM
3966}
3967
c146afad 3968int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3969{
c146afad
YZ
3970 u64 root_objectid = 0;
3971 struct btrfs_root *gang[8];
65d33fd7
QW
3972 int i = 0;
3973 int err = 0;
3974 unsigned int ret = 0;
e089f05c 3975
c146afad 3976 while (1) {
efc34534 3977 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
3978 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3979 (void **)gang, root_objectid,
3980 ARRAY_SIZE(gang));
65d33fd7 3981 if (!ret) {
efc34534 3982 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 3983 break;
65d33fd7 3984 }
5d4f98a2 3985 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3986
c146afad 3987 for (i = 0; i < ret; i++) {
65d33fd7
QW
3988 /* Avoid to grab roots in dead_roots */
3989 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3990 gang[i] = NULL;
3991 continue;
3992 }
3993 /* grab all the search result for later use */
00246528 3994 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 3995 }
efc34534 3996 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 3997
65d33fd7
QW
3998 for (i = 0; i < ret; i++) {
3999 if (!gang[i])
4000 continue;
c146afad 4001 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4002 err = btrfs_orphan_cleanup(gang[i]);
4003 if (err)
65d33fd7 4004 break;
00246528 4005 btrfs_put_root(gang[i]);
c146afad
YZ
4006 }
4007 root_objectid++;
4008 }
65d33fd7
QW
4009
4010 /* release the uncleaned roots due to error */
4011 for (; i < ret; i++) {
4012 if (gang[i])
00246528 4013 btrfs_put_root(gang[i]);
65d33fd7
QW
4014 }
4015 return err;
c146afad 4016}
a2135011 4017
6bccf3ab 4018int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4019{
6bccf3ab 4020 struct btrfs_root *root = fs_info->tree_root;
c146afad 4021 struct btrfs_trans_handle *trans;
a74a4b97 4022
0b246afa 4023 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4024 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4025 mutex_unlock(&fs_info->cleaner_mutex);
4026 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4027
4028 /* wait until ongoing cleanup work done */
0b246afa
JM
4029 down_write(&fs_info->cleanup_work_sem);
4030 up_write(&fs_info->cleanup_work_sem);
c71bf099 4031
7a7eaa40 4032 trans = btrfs_join_transaction(root);
3612b495
TI
4033 if (IS_ERR(trans))
4034 return PTR_ERR(trans);
3a45bb20 4035 return btrfs_commit_transaction(trans);
c146afad
YZ
4036}
4037
b105e927 4038void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4039{
c146afad
YZ
4040 int ret;
4041
afcdd129 4042 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4043 /*
4044 * We don't want the cleaner to start new transactions, add more delayed
4045 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4046 * because that frees the task_struct, and the transaction kthread might
4047 * still try to wake up the cleaner.
4048 */
4049 kthread_park(fs_info->cleaner_kthread);
c146afad 4050
7343dd61 4051 /* wait for the qgroup rescan worker to stop */
d06f23d6 4052 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4053
803b2f54
SB
4054 /* wait for the uuid_scan task to finish */
4055 down(&fs_info->uuid_tree_rescan_sem);
4056 /* avoid complains from lockdep et al., set sem back to initial state */
4057 up(&fs_info->uuid_tree_rescan_sem);
4058
837d5b6e 4059 /* pause restriper - we want to resume on mount */
aa1b8cd4 4060 btrfs_pause_balance(fs_info);
837d5b6e 4061
8dabb742
SB
4062 btrfs_dev_replace_suspend_for_unmount(fs_info);
4063
aa1b8cd4 4064 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4065
4066 /* wait for any defraggers to finish */
4067 wait_event(fs_info->transaction_wait,
4068 (atomic_read(&fs_info->defrag_running) == 0));
4069
4070 /* clear out the rbtree of defraggable inodes */
26176e7c 4071 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4072
21c7e756 4073 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4074 cancel_work_sync(&fs_info->async_data_reclaim_work);
21c7e756 4075
b0643e59
DZ
4076 /* Cancel or finish ongoing discard work */
4077 btrfs_discard_cleanup(fs_info);
4078
bc98a42c 4079 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4080 /*
d6fd0ae2
OS
4081 * The cleaner kthread is stopped, so do one final pass over
4082 * unused block groups.
e44163e1 4083 */
0b246afa 4084 btrfs_delete_unused_bgs(fs_info);
e44163e1 4085
f0cc2cd7
FM
4086 /*
4087 * There might be existing delayed inode workers still running
4088 * and holding an empty delayed inode item. We must wait for
4089 * them to complete first because they can create a transaction.
4090 * This happens when someone calls btrfs_balance_delayed_items()
4091 * and then a transaction commit runs the same delayed nodes
4092 * before any delayed worker has done something with the nodes.
4093 * We must wait for any worker here and not at transaction
4094 * commit time since that could cause a deadlock.
4095 * This is a very rare case.
4096 */
4097 btrfs_flush_workqueue(fs_info->delayed_workers);
4098
6bccf3ab 4099 ret = btrfs_commit_super(fs_info);
acce952b 4100 if (ret)
04892340 4101 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4102 }
4103
af722733
LB
4104 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4105 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4106 btrfs_error_commit_super(fs_info);
0f7d52f4 4107
e3029d9f
AV
4108 kthread_stop(fs_info->transaction_kthread);
4109 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4110
e187831e 4111 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4112 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4113
5958253c
QW
4114 if (btrfs_check_quota_leak(fs_info)) {
4115 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4116 btrfs_err(fs_info, "qgroup reserved space leaked");
4117 }
4118
04892340 4119 btrfs_free_qgroup_config(fs_info);
fe816d0f 4120 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4121
963d678b 4122 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4123 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4124 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4125 }
bcc63abb 4126
4297ff84
JB
4127 if (percpu_counter_sum(&fs_info->dio_bytes))
4128 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4129 percpu_counter_sum(&fs_info->dio_bytes));
4130
6618a59b 4131 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4132 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4133
1a4319cc
LB
4134 btrfs_put_block_group_cache(fs_info);
4135
de348ee0
WS
4136 /*
4137 * we must make sure there is not any read request to
4138 * submit after we stopping all workers.
4139 */
4140 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4141 btrfs_stop_all_workers(fs_info);
4142
afcdd129 4143 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4144 free_root_pointers(fs_info, true);
8c38938c 4145 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4146
4e19443d
JB
4147 /*
4148 * We must free the block groups after dropping the fs_roots as we could
4149 * have had an IO error and have left over tree log blocks that aren't
4150 * cleaned up until the fs roots are freed. This makes the block group
4151 * accounting appear to be wrong because there's pending reserved bytes,
4152 * so make sure we do the block group cleanup afterwards.
4153 */
4154 btrfs_free_block_groups(fs_info);
4155
13e6c37b 4156 iput(fs_info->btree_inode);
d6bfde87 4157
21adbd5c 4158#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4159 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4160 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4161#endif
4162
0b86a832 4163 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4164 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4165}
4166
b9fab919
CM
4167int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4168 int atomic)
5f39d397 4169{
1259ab75 4170 int ret;
727011e0 4171 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4172
0b32f4bb 4173 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4174 if (!ret)
4175 return ret;
4176
4177 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4178 parent_transid, atomic);
4179 if (ret == -EAGAIN)
4180 return ret;
1259ab75 4181 return !ret;
5f39d397
CM
4182}
4183
5f39d397
CM
4184void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4185{
0b246afa 4186 struct btrfs_fs_info *fs_info;
06ea65a3 4187 struct btrfs_root *root;
5f39d397 4188 u64 transid = btrfs_header_generation(buf);
b9473439 4189 int was_dirty;
b4ce94de 4190
06ea65a3
JB
4191#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4192 /*
4193 * This is a fast path so only do this check if we have sanity tests
52042d8e 4194 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4195 * outside of the sanity tests.
4196 */
b0132a3b 4197 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4198 return;
4199#endif
4200 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4201 fs_info = root->fs_info;
b9447ef8 4202 btrfs_assert_tree_locked(buf);
0b246afa 4203 if (transid != fs_info->generation)
5d163e0e 4204 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4205 buf->start, transid, fs_info->generation);
0b32f4bb 4206 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4207 if (!was_dirty)
104b4e51
NB
4208 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4209 buf->len,
4210 fs_info->dirty_metadata_batch);
1f21ef0a 4211#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4212 /*
4213 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4214 * but item data not updated.
4215 * So here we should only check item pointers, not item data.
4216 */
4217 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4218 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4219 btrfs_print_leaf(buf);
1f21ef0a
FM
4220 ASSERT(0);
4221 }
4222#endif
eb60ceac
CM
4223}
4224
2ff7e61e 4225static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4226 int flush_delayed)
16cdcec7
MX
4227{
4228 /*
4229 * looks as though older kernels can get into trouble with
4230 * this code, they end up stuck in balance_dirty_pages forever
4231 */
e2d84521 4232 int ret;
16cdcec7
MX
4233
4234 if (current->flags & PF_MEMALLOC)
4235 return;
4236
b53d3f5d 4237 if (flush_delayed)
2ff7e61e 4238 btrfs_balance_delayed_items(fs_info);
16cdcec7 4239
d814a491
EL
4240 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4241 BTRFS_DIRTY_METADATA_THRESH,
4242 fs_info->dirty_metadata_batch);
e2d84521 4243 if (ret > 0) {
0b246afa 4244 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4245 }
16cdcec7
MX
4246}
4247
2ff7e61e 4248void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4249{
2ff7e61e 4250 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4251}
585ad2c3 4252
2ff7e61e 4253void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4254{
2ff7e61e 4255 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4256}
6b80053d 4257
581c1760
QW
4258int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4259 struct btrfs_key *first_key)
6b80053d 4260{
5ab12d1f 4261 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4262 level, first_key);
6b80053d 4263}
0da5468f 4264
2ff7e61e 4265static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4266{
fe816d0f
NB
4267 /* cleanup FS via transaction */
4268 btrfs_cleanup_transaction(fs_info);
4269
0b246afa 4270 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4271 btrfs_run_delayed_iputs(fs_info);
0b246afa 4272 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4273
0b246afa
JM
4274 down_write(&fs_info->cleanup_work_sem);
4275 up_write(&fs_info->cleanup_work_sem);
acce952b 4276}
4277
ef67963d
JB
4278static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4279{
4280 struct btrfs_root *gang[8];
4281 u64 root_objectid = 0;
4282 int ret;
4283
4284 spin_lock(&fs_info->fs_roots_radix_lock);
4285 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4286 (void **)gang, root_objectid,
4287 ARRAY_SIZE(gang))) != 0) {
4288 int i;
4289
4290 for (i = 0; i < ret; i++)
4291 gang[i] = btrfs_grab_root(gang[i]);
4292 spin_unlock(&fs_info->fs_roots_radix_lock);
4293
4294 for (i = 0; i < ret; i++) {
4295 if (!gang[i])
4296 continue;
4297 root_objectid = gang[i]->root_key.objectid;
4298 btrfs_free_log(NULL, gang[i]);
4299 btrfs_put_root(gang[i]);
4300 }
4301 root_objectid++;
4302 spin_lock(&fs_info->fs_roots_radix_lock);
4303 }
4304 spin_unlock(&fs_info->fs_roots_radix_lock);
4305 btrfs_free_log_root_tree(NULL, fs_info);
4306}
4307
143bede5 4308static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4309{
acce952b 4310 struct btrfs_ordered_extent *ordered;
acce952b 4311
199c2a9c 4312 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4313 /*
4314 * This will just short circuit the ordered completion stuff which will
4315 * make sure the ordered extent gets properly cleaned up.
4316 */
199c2a9c 4317 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4318 root_extent_list)
4319 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4320 spin_unlock(&root->ordered_extent_lock);
4321}
4322
4323static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4324{
4325 struct btrfs_root *root;
4326 struct list_head splice;
4327
4328 INIT_LIST_HEAD(&splice);
4329
4330 spin_lock(&fs_info->ordered_root_lock);
4331 list_splice_init(&fs_info->ordered_roots, &splice);
4332 while (!list_empty(&splice)) {
4333 root = list_first_entry(&splice, struct btrfs_root,
4334 ordered_root);
1de2cfde
JB
4335 list_move_tail(&root->ordered_root,
4336 &fs_info->ordered_roots);
199c2a9c 4337
2a85d9ca 4338 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4339 btrfs_destroy_ordered_extents(root);
4340
2a85d9ca
LB
4341 cond_resched();
4342 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4343 }
4344 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4345
4346 /*
4347 * We need this here because if we've been flipped read-only we won't
4348 * get sync() from the umount, so we need to make sure any ordered
4349 * extents that haven't had their dirty pages IO start writeout yet
4350 * actually get run and error out properly.
4351 */
4352 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4353}
4354
35a3621b 4355static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4356 struct btrfs_fs_info *fs_info)
acce952b 4357{
4358 struct rb_node *node;
4359 struct btrfs_delayed_ref_root *delayed_refs;
4360 struct btrfs_delayed_ref_node *ref;
4361 int ret = 0;
4362
4363 delayed_refs = &trans->delayed_refs;
4364
4365 spin_lock(&delayed_refs->lock);
d7df2c79 4366 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4367 spin_unlock(&delayed_refs->lock);
b79ce3dd 4368 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4369 return ret;
4370 }
4371
5c9d028b 4372 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4373 struct btrfs_delayed_ref_head *head;
0e0adbcf 4374 struct rb_node *n;
e78417d1 4375 bool pin_bytes = false;
acce952b 4376
d7df2c79
JB
4377 head = rb_entry(node, struct btrfs_delayed_ref_head,
4378 href_node);
3069bd26 4379 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4380 continue;
3069bd26 4381
d7df2c79 4382 spin_lock(&head->lock);
e3d03965 4383 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4384 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4385 ref_node);
d7df2c79 4386 ref->in_tree = 0;
e3d03965 4387 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4388 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4389 if (!list_empty(&ref->add_list))
4390 list_del(&ref->add_list);
d7df2c79
JB
4391 atomic_dec(&delayed_refs->num_entries);
4392 btrfs_put_delayed_ref(ref);
e78417d1 4393 }
d7df2c79
JB
4394 if (head->must_insert_reserved)
4395 pin_bytes = true;
4396 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4397 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4398 spin_unlock(&head->lock);
4399 spin_unlock(&delayed_refs->lock);
4400 mutex_unlock(&head->mutex);
acce952b 4401
f603bb94
NB
4402 if (pin_bytes) {
4403 struct btrfs_block_group *cache;
4404
4405 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4406 BUG_ON(!cache);
4407
4408 spin_lock(&cache->space_info->lock);
4409 spin_lock(&cache->lock);
4410 cache->pinned += head->num_bytes;
4411 btrfs_space_info_update_bytes_pinned(fs_info,
4412 cache->space_info, head->num_bytes);
4413 cache->reserved -= head->num_bytes;
4414 cache->space_info->bytes_reserved -= head->num_bytes;
4415 spin_unlock(&cache->lock);
4416 spin_unlock(&cache->space_info->lock);
4417 percpu_counter_add_batch(
4418 &cache->space_info->total_bytes_pinned,
4419 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4420
4421 btrfs_put_block_group(cache);
4422
4423 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4424 head->bytenr + head->num_bytes - 1);
4425 }
31890da0 4426 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4427 btrfs_put_delayed_ref_head(head);
acce952b 4428 cond_resched();
4429 spin_lock(&delayed_refs->lock);
4430 }
81f7eb00 4431 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4432
4433 spin_unlock(&delayed_refs->lock);
4434
4435 return ret;
4436}
4437
143bede5 4438static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4439{
4440 struct btrfs_inode *btrfs_inode;
4441 struct list_head splice;
4442
4443 INIT_LIST_HEAD(&splice);
4444
eb73c1b7
MX
4445 spin_lock(&root->delalloc_lock);
4446 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4447
4448 while (!list_empty(&splice)) {
fe816d0f 4449 struct inode *inode = NULL;
eb73c1b7
MX
4450 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4451 delalloc_inodes);
fe816d0f 4452 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4453 spin_unlock(&root->delalloc_lock);
acce952b 4454
fe816d0f
NB
4455 /*
4456 * Make sure we get a live inode and that it'll not disappear
4457 * meanwhile.
4458 */
4459 inode = igrab(&btrfs_inode->vfs_inode);
4460 if (inode) {
4461 invalidate_inode_pages2(inode->i_mapping);
4462 iput(inode);
4463 }
eb73c1b7 4464 spin_lock(&root->delalloc_lock);
acce952b 4465 }
eb73c1b7
MX
4466 spin_unlock(&root->delalloc_lock);
4467}
4468
4469static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4470{
4471 struct btrfs_root *root;
4472 struct list_head splice;
4473
4474 INIT_LIST_HEAD(&splice);
4475
4476 spin_lock(&fs_info->delalloc_root_lock);
4477 list_splice_init(&fs_info->delalloc_roots, &splice);
4478 while (!list_empty(&splice)) {
4479 root = list_first_entry(&splice, struct btrfs_root,
4480 delalloc_root);
00246528 4481 root = btrfs_grab_root(root);
eb73c1b7
MX
4482 BUG_ON(!root);
4483 spin_unlock(&fs_info->delalloc_root_lock);
4484
4485 btrfs_destroy_delalloc_inodes(root);
00246528 4486 btrfs_put_root(root);
eb73c1b7
MX
4487
4488 spin_lock(&fs_info->delalloc_root_lock);
4489 }
4490 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4491}
4492
2ff7e61e 4493static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4494 struct extent_io_tree *dirty_pages,
4495 int mark)
4496{
4497 int ret;
acce952b 4498 struct extent_buffer *eb;
4499 u64 start = 0;
4500 u64 end;
acce952b 4501
4502 while (1) {
4503 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4504 mark, NULL);
acce952b 4505 if (ret)
4506 break;
4507
91166212 4508 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4509 while (start <= end) {
0b246afa
JM
4510 eb = find_extent_buffer(fs_info, start);
4511 start += fs_info->nodesize;
fd8b2b61 4512 if (!eb)
acce952b 4513 continue;
fd8b2b61 4514 wait_on_extent_buffer_writeback(eb);
acce952b 4515
fd8b2b61
JB
4516 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4517 &eb->bflags))
4518 clear_extent_buffer_dirty(eb);
4519 free_extent_buffer_stale(eb);
acce952b 4520 }
4521 }
4522
4523 return ret;
4524}
4525
2ff7e61e 4526static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4527 struct extent_io_tree *unpin)
acce952b 4528{
acce952b 4529 u64 start;
4530 u64 end;
4531 int ret;
4532
acce952b 4533 while (1) {
0e6ec385
FM
4534 struct extent_state *cached_state = NULL;
4535
fcd5e742
LF
4536 /*
4537 * The btrfs_finish_extent_commit() may get the same range as
4538 * ours between find_first_extent_bit and clear_extent_dirty.
4539 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4540 * the same extent range.
4541 */
4542 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4543 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4544 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4545 if (ret) {
4546 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4547 break;
fcd5e742 4548 }
acce952b 4549
0e6ec385
FM
4550 clear_extent_dirty(unpin, start, end, &cached_state);
4551 free_extent_state(cached_state);
2ff7e61e 4552 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4553 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4554 cond_resched();
4555 }
4556
4557 return 0;
4558}
4559
32da5386 4560static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4561{
4562 struct inode *inode;
4563
4564 inode = cache->io_ctl.inode;
4565 if (inode) {
4566 invalidate_inode_pages2(inode->i_mapping);
4567 BTRFS_I(inode)->generation = 0;
4568 cache->io_ctl.inode = NULL;
4569 iput(inode);
4570 }
bbc37d6e 4571 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4572 btrfs_put_block_group(cache);
4573}
4574
4575void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4576 struct btrfs_fs_info *fs_info)
c79a1751 4577{
32da5386 4578 struct btrfs_block_group *cache;
c79a1751
LB
4579
4580 spin_lock(&cur_trans->dirty_bgs_lock);
4581 while (!list_empty(&cur_trans->dirty_bgs)) {
4582 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4583 struct btrfs_block_group,
c79a1751 4584 dirty_list);
c79a1751
LB
4585
4586 if (!list_empty(&cache->io_list)) {
4587 spin_unlock(&cur_trans->dirty_bgs_lock);
4588 list_del_init(&cache->io_list);
4589 btrfs_cleanup_bg_io(cache);
4590 spin_lock(&cur_trans->dirty_bgs_lock);
4591 }
4592
4593 list_del_init(&cache->dirty_list);
4594 spin_lock(&cache->lock);
4595 cache->disk_cache_state = BTRFS_DC_ERROR;
4596 spin_unlock(&cache->lock);
4597
4598 spin_unlock(&cur_trans->dirty_bgs_lock);
4599 btrfs_put_block_group(cache);
ba2c4d4e 4600 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4601 spin_lock(&cur_trans->dirty_bgs_lock);
4602 }
4603 spin_unlock(&cur_trans->dirty_bgs_lock);
4604
45ae2c18
NB
4605 /*
4606 * Refer to the definition of io_bgs member for details why it's safe
4607 * to use it without any locking
4608 */
c79a1751
LB
4609 while (!list_empty(&cur_trans->io_bgs)) {
4610 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4611 struct btrfs_block_group,
c79a1751 4612 io_list);
c79a1751
LB
4613
4614 list_del_init(&cache->io_list);
4615 spin_lock(&cache->lock);
4616 cache->disk_cache_state = BTRFS_DC_ERROR;
4617 spin_unlock(&cache->lock);
4618 btrfs_cleanup_bg_io(cache);
4619 }
4620}
4621
49b25e05 4622void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4623 struct btrfs_fs_info *fs_info)
49b25e05 4624{
bbbf7243
NB
4625 struct btrfs_device *dev, *tmp;
4626
2ff7e61e 4627 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4628 ASSERT(list_empty(&cur_trans->dirty_bgs));
4629 ASSERT(list_empty(&cur_trans->io_bgs));
4630
bbbf7243
NB
4631 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4632 post_commit_list) {
4633 list_del_init(&dev->post_commit_list);
4634 }
4635
2ff7e61e 4636 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4637
4a9d8bde 4638 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4639 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4640
4a9d8bde 4641 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4642 wake_up(&fs_info->transaction_wait);
49b25e05 4643
ccdf9b30 4644 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4645
2ff7e61e 4646 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4647 EXTENT_DIRTY);
fe119a6e 4648 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4649
4a9d8bde
MX
4650 cur_trans->state =TRANS_STATE_COMPLETED;
4651 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4652}
4653
2ff7e61e 4654static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4655{
4656 struct btrfs_transaction *t;
acce952b 4657
0b246afa 4658 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4659
0b246afa
JM
4660 spin_lock(&fs_info->trans_lock);
4661 while (!list_empty(&fs_info->trans_list)) {
4662 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4663 struct btrfs_transaction, list);
4664 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4665 refcount_inc(&t->use_count);
0b246afa 4666 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4667 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4668 btrfs_put_transaction(t);
0b246afa 4669 spin_lock(&fs_info->trans_lock);
724e2315
JB
4670 continue;
4671 }
0b246afa 4672 if (t == fs_info->running_transaction) {
724e2315 4673 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4674 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4675 /*
4676 * We wait for 0 num_writers since we don't hold a trans
4677 * handle open currently for this transaction.
4678 */
4679 wait_event(t->writer_wait,
4680 atomic_read(&t->num_writers) == 0);
4681 } else {
0b246afa 4682 spin_unlock(&fs_info->trans_lock);
724e2315 4683 }
2ff7e61e 4684 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4685
0b246afa
JM
4686 spin_lock(&fs_info->trans_lock);
4687 if (t == fs_info->running_transaction)
4688 fs_info->running_transaction = NULL;
acce952b 4689 list_del_init(&t->list);
0b246afa 4690 spin_unlock(&fs_info->trans_lock);
acce952b 4691
724e2315 4692 btrfs_put_transaction(t);
2ff7e61e 4693 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4694 spin_lock(&fs_info->trans_lock);
724e2315 4695 }
0b246afa
JM
4696 spin_unlock(&fs_info->trans_lock);
4697 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4698 btrfs_destroy_delayed_inodes(fs_info);
4699 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4700 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4701 btrfs_drop_all_logs(fs_info);
0b246afa 4702 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4703
4704 return 0;
4705}