btrfs: introduce btrfs_is_data_reloc_root
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
8896a08d 113 struct inode *inode;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
1941b64b
QW
117
118 /* Optional parameter for submit_bio_start used by direct io */
119 u64 dio_file_offset;
8b712842 120 struct btrfs_work work;
4e4cbee9 121 blk_status_t status;
44b8bd7e
CM
122};
123
85d4e461
CM
124/*
125 * Lockdep class keys for extent_buffer->lock's in this root. For a given
126 * eb, the lockdep key is determined by the btrfs_root it belongs to and
127 * the level the eb occupies in the tree.
128 *
129 * Different roots are used for different purposes and may nest inside each
130 * other and they require separate keysets. As lockdep keys should be
131 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
132 * by btrfs_root->root_key.objectid. This ensures that all special purpose
133 * roots have separate keysets.
4008c04a 134 *
85d4e461
CM
135 * Lock-nesting across peer nodes is always done with the immediate parent
136 * node locked thus preventing deadlock. As lockdep doesn't know this, use
137 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 138 *
85d4e461
CM
139 * The key is set by the readpage_end_io_hook after the buffer has passed
140 * csum validation but before the pages are unlocked. It is also set by
141 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 142 *
85d4e461
CM
143 * We also add a check to make sure the highest level of the tree is the
144 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
145 * needs update as well.
4008c04a
CM
146 */
147#ifdef CONFIG_DEBUG_LOCK_ALLOC
148# if BTRFS_MAX_LEVEL != 8
149# error
150# endif
85d4e461 151
ab1405aa
DS
152#define DEFINE_LEVEL(stem, level) \
153 .names[level] = "btrfs-" stem "-0" #level,
154
155#define DEFINE_NAME(stem) \
156 DEFINE_LEVEL(stem, 0) \
157 DEFINE_LEVEL(stem, 1) \
158 DEFINE_LEVEL(stem, 2) \
159 DEFINE_LEVEL(stem, 3) \
160 DEFINE_LEVEL(stem, 4) \
161 DEFINE_LEVEL(stem, 5) \
162 DEFINE_LEVEL(stem, 6) \
163 DEFINE_LEVEL(stem, 7)
164
85d4e461
CM
165static struct btrfs_lockdep_keyset {
166 u64 id; /* root objectid */
ab1405aa 167 /* Longest entry: btrfs-free-space-00 */
387824af
DS
168 char names[BTRFS_MAX_LEVEL][20];
169 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 170} btrfs_lockdep_keysets[] = {
ab1405aa
DS
171 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
172 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
173 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
174 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
175 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
176 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
177 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
178 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
179 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
180 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
181 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182 { .id = 0, DEFINE_NAME("tree") },
4008c04a 183};
85d4e461 184
ab1405aa
DS
185#undef DEFINE_LEVEL
186#undef DEFINE_NAME
85d4e461
CM
187
188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190{
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202}
203
4008c04a
CM
204#endif
205
d352ac68 206/*
2996e1f8 207 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 208 */
c67b3892 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 210{
d5178578 211 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 212 const int num_pages = num_extent_pages(buf);
a26663e7 213 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 214 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 215 char *kaddr;
e9be5a30 216 int i;
d5178578
JT
217
218 shash->tfm = fs_info->csum_shash;
219 crypto_shash_init(shash);
a26663e7 220 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 221 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 222 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 223
e9be5a30
DS
224 for (i = 1; i < num_pages; i++) {
225 kaddr = page_address(buf->pages[i]);
226 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 227 }
71a63551 228 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 229 crypto_shash_final(shash, result);
19c00ddc
CM
230}
231
d352ac68
CM
232/*
233 * we can't consider a given block up to date unless the transid of the
234 * block matches the transid in the parent node's pointer. This is how we
235 * detect blocks that either didn't get written at all or got written
236 * in the wrong place.
237 */
1259ab75 238static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
239 struct extent_buffer *eb, u64 parent_transid,
240 int atomic)
1259ab75 241{
2ac55d41 242 struct extent_state *cached_state = NULL;
1259ab75
CM
243 int ret;
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
b9fab919
CM
248 if (atomic)
249 return -EAGAIN;
250
2ac55d41 251 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 252 &cached_state);
0b32f4bb 253 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
254 btrfs_header_generation(eb) == parent_transid) {
255 ret = 0;
256 goto out;
257 }
94647322
DS
258 btrfs_err_rl(eb->fs_info,
259 "parent transid verify failed on %llu wanted %llu found %llu",
260 eb->start,
29549aec 261 parent_transid, btrfs_header_generation(eb));
1259ab75 262 ret = 1;
35b22c19 263 clear_extent_buffer_uptodate(eb);
33958dc6 264out:
2ac55d41 265 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 266 &cached_state);
1259ab75 267 return ret;
1259ab75
CM
268}
269
e7e16f48
JT
270static bool btrfs_supported_super_csum(u16 csum_type)
271{
272 switch (csum_type) {
273 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 274 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 275 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 276 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
277 return true;
278 default:
279 return false;
280 }
281}
282
1104a885
DS
283/*
284 * Return 0 if the superblock checksum type matches the checksum value of that
285 * algorithm. Pass the raw disk superblock data.
286 */
ab8d0fc4
JM
287static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288 char *raw_disk_sb)
1104a885
DS
289{
290 struct btrfs_super_block *disk_sb =
291 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 292 char result[BTRFS_CSUM_SIZE];
d5178578
JT
293 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294
295 shash->tfm = fs_info->csum_shash;
1104a885 296
51bce6c9
JT
297 /*
298 * The super_block structure does not span the whole
299 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300 * filled with zeros and is included in the checksum.
301 */
fd08001f
EB
302 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 304
55fc29be 305 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 306 return 1;
1104a885 307
e7e16f48 308 return 0;
1104a885
DS
309}
310
e064d5e9 311int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 312 struct btrfs_key *first_key, u64 parent_transid)
581c1760 313{
e064d5e9 314 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
315 int found_level;
316 struct btrfs_key found_key;
317 int ret;
318
319 found_level = btrfs_header_level(eb);
320 if (found_level != level) {
63489055
QW
321 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
323 btrfs_err(fs_info,
324"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325 eb->start, level, found_level);
581c1760
QW
326 return -EIO;
327 }
328
329 if (!first_key)
330 return 0;
331
5d41be6f
QW
332 /*
333 * For live tree block (new tree blocks in current transaction),
334 * we need proper lock context to avoid race, which is impossible here.
335 * So we only checks tree blocks which is read from disk, whose
336 * generation <= fs_info->last_trans_committed.
337 */
338 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339 return 0;
62fdaa52
QW
340
341 /* We have @first_key, so this @eb must have at least one item */
342 if (btrfs_header_nritems(eb) == 0) {
343 btrfs_err(fs_info,
344 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345 eb->start);
346 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347 return -EUCLEAN;
348 }
349
581c1760
QW
350 if (found_level)
351 btrfs_node_key_to_cpu(eb, &found_key, 0);
352 else
353 btrfs_item_key_to_cpu(eb, &found_key, 0);
354 ret = btrfs_comp_cpu_keys(first_key, &found_key);
355
581c1760 356 if (ret) {
63489055
QW
357 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 359 btrfs_err(fs_info,
ff76a864
LB
360"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361 eb->start, parent_transid, first_key->objectid,
362 first_key->type, first_key->offset,
363 found_key.objectid, found_key.type,
364 found_key.offset);
581c1760 365 }
581c1760
QW
366 return ret;
367}
368
d352ac68
CM
369/*
370 * helper to read a given tree block, doing retries as required when
371 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
372 *
373 * @parent_transid: expected transid, skip check if 0
374 * @level: expected level, mandatory check
375 * @first_key: expected key of first slot, skip check if NULL
d352ac68 376 */
5ab12d1f 377static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
378 u64 parent_transid, int level,
379 struct btrfs_key *first_key)
f188591e 380{
5ab12d1f 381 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 382 struct extent_io_tree *io_tree;
ea466794 383 int failed = 0;
f188591e
CM
384 int ret;
385 int num_copies = 0;
386 int mirror_num = 0;
ea466794 387 int failed_mirror = 0;
f188591e 388
0b246afa 389 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 390 while (1) {
f8397d69 391 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 392 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 393 if (!ret) {
581c1760 394 if (verify_parent_transid(io_tree, eb,
b9fab919 395 parent_transid, 0))
256dd1bb 396 ret = -EIO;
e064d5e9 397 else if (btrfs_verify_level_key(eb, level,
448de471 398 first_key, parent_transid))
581c1760
QW
399 ret = -EUCLEAN;
400 else
401 break;
256dd1bb 402 }
d397712b 403
0b246afa 404 num_copies = btrfs_num_copies(fs_info,
f188591e 405 eb->start, eb->len);
4235298e 406 if (num_copies == 1)
ea466794 407 break;
4235298e 408
5cf1ab56
JB
409 if (!failed_mirror) {
410 failed = 1;
411 failed_mirror = eb->read_mirror;
412 }
413
f188591e 414 mirror_num++;
ea466794
JB
415 if (mirror_num == failed_mirror)
416 mirror_num++;
417
4235298e 418 if (mirror_num > num_copies)
ea466794 419 break;
f188591e 420 }
ea466794 421
c0901581 422 if (failed && !ret && failed_mirror)
20a1fbf9 423 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
424
425 return ret;
f188591e 426}
19c00ddc 427
eca0f6f6
QW
428static int csum_one_extent_buffer(struct extent_buffer *eb)
429{
430 struct btrfs_fs_info *fs_info = eb->fs_info;
431 u8 result[BTRFS_CSUM_SIZE];
432 int ret;
433
434 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435 offsetof(struct btrfs_header, fsid),
436 BTRFS_FSID_SIZE) == 0);
437 csum_tree_block(eb, result);
438
439 if (btrfs_header_level(eb))
440 ret = btrfs_check_node(eb);
441 else
442 ret = btrfs_check_leaf_full(eb);
443
444 if (ret < 0) {
445 btrfs_print_tree(eb, 0);
446 btrfs_err(fs_info,
447 "block=%llu write time tree block corruption detected",
448 eb->start);
449 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
450 return ret;
451 }
452 write_extent_buffer(eb, result, 0, fs_info->csum_size);
453
454 return 0;
455}
456
457/* Checksum all dirty extent buffers in one bio_vec */
458static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
459 struct bio_vec *bvec)
460{
461 struct page *page = bvec->bv_page;
462 u64 bvec_start = page_offset(page) + bvec->bv_offset;
463 u64 cur;
464 int ret = 0;
465
466 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
467 cur += fs_info->nodesize) {
468 struct extent_buffer *eb;
469 bool uptodate;
470
471 eb = find_extent_buffer(fs_info, cur);
472 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
473 fs_info->nodesize);
474
475 /* A dirty eb shouldn't disappear from buffer_radix */
476 if (WARN_ON(!eb))
477 return -EUCLEAN;
478
479 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
480 free_extent_buffer(eb);
481 return -EUCLEAN;
482 }
483 if (WARN_ON(!uptodate)) {
484 free_extent_buffer(eb);
485 return -EUCLEAN;
486 }
487
488 ret = csum_one_extent_buffer(eb);
489 free_extent_buffer(eb);
490 if (ret < 0)
491 return ret;
492 }
493 return ret;
494}
495
d352ac68 496/*
ac303b69
QW
497 * Checksum a dirty tree block before IO. This has extra checks to make sure
498 * we only fill in the checksum field in the first page of a multi-page block.
499 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 500 */
ac303b69 501static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 502{
ac303b69 503 struct page *page = bvec->bv_page;
4eee4fa4 504 u64 start = page_offset(page);
19c00ddc 505 u64 found_start;
19c00ddc 506 struct extent_buffer *eb;
eca0f6f6
QW
507
508 if (fs_info->sectorsize < PAGE_SIZE)
509 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 510
4f2de97a
JB
511 eb = (struct extent_buffer *)page->private;
512 if (page != eb->pages[0])
513 return 0;
0f805531 514
19c00ddc 515 found_start = btrfs_header_bytenr(eb);
d3575156
NA
516
517 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
518 WARN_ON(found_start != 0);
519 return 0;
520 }
521
0f805531
AL
522 /*
523 * Please do not consolidate these warnings into a single if.
524 * It is useful to know what went wrong.
525 */
526 if (WARN_ON(found_start != start))
527 return -EUCLEAN;
528 if (WARN_ON(!PageUptodate(page)))
529 return -EUCLEAN;
530
eca0f6f6 531 return csum_one_extent_buffer(eb);
19c00ddc
CM
532}
533
b0c9b3b0 534static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 535{
b0c9b3b0 536 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 537 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 538 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 539 u8 *metadata_uuid;
2b82032c 540
9a8658e3
DS
541 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
542 BTRFS_FSID_SIZE);
944d3f9f
NB
543 /*
544 * Checking the incompat flag is only valid for the current fs. For
545 * seed devices it's forbidden to have their uuid changed so reading
546 * ->fsid in this case is fine
547 */
548 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
549 metadata_uuid = fs_devices->metadata_uuid;
550 else
551 metadata_uuid = fs_devices->fsid;
552
553 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
554 return 0;
555
556 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
557 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
558 return 0;
559
560 return 1;
2b82032c
YZ
561}
562
77bf40a2
QW
563/* Do basic extent buffer checks at read time */
564static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 565{
77bf40a2 566 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 567 u64 found_start;
77bf40a2
QW
568 const u32 csum_size = fs_info->csum_size;
569 u8 found_level;
2996e1f8 570 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 571 const u8 *header_csum;
77bf40a2 572 int ret = 0;
ea466794 573
ce9adaa5 574 found_start = btrfs_header_bytenr(eb);
727011e0 575 if (found_start != eb->start) {
893bf4b1
SY
576 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
577 eb->start, found_start);
f188591e 578 ret = -EIO;
77bf40a2 579 goto out;
ce9adaa5 580 }
b0c9b3b0 581 if (check_tree_block_fsid(eb)) {
02873e43
ZL
582 btrfs_err_rl(fs_info, "bad fsid on block %llu",
583 eb->start);
1259ab75 584 ret = -EIO;
77bf40a2 585 goto out;
1259ab75 586 }
ce9adaa5 587 found_level = btrfs_header_level(eb);
1c24c3ce 588 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
589 btrfs_err(fs_info, "bad tree block level %d on %llu",
590 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 591 ret = -EIO;
77bf40a2 592 goto out;
1c24c3ce 593 }
ce9adaa5 594
c67b3892 595 csum_tree_block(eb, result);
dfd29eed
DS
596 header_csum = page_address(eb->pages[0]) +
597 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 598
dfd29eed 599 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 600 btrfs_warn_rl(fs_info,
ff14aa79
DS
601 "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
602 eb->start,
dfd29eed 603 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
604 CSUM_FMT_VALUE(csum_size, result),
605 btrfs_header_level(eb));
2996e1f8 606 ret = -EUCLEAN;
77bf40a2 607 goto out;
2996e1f8
JT
608 }
609
a826d6dc
JB
610 /*
611 * If this is a leaf block and it is corrupt, set the corrupt bit so
612 * that we don't try and read the other copies of this block, just
613 * return -EIO.
614 */
1c4360ee 615 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
616 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
617 ret = -EIO;
618 }
ce9adaa5 619
813fd1dc 620 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
621 ret = -EIO;
622
0b32f4bb
JB
623 if (!ret)
624 set_extent_buffer_uptodate(eb);
75391f0d
QW
625 else
626 btrfs_err(fs_info,
627 "block=%llu read time tree block corruption detected",
628 eb->start);
77bf40a2
QW
629out:
630 return ret;
631}
632
371cdc07
QW
633static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
634 int mirror)
635{
636 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
637 struct extent_buffer *eb;
638 bool reads_done;
639 int ret = 0;
640
641 /*
642 * We don't allow bio merge for subpage metadata read, so we should
643 * only get one eb for each endio hook.
644 */
645 ASSERT(end == start + fs_info->nodesize - 1);
646 ASSERT(PagePrivate(page));
647
648 eb = find_extent_buffer(fs_info, start);
649 /*
650 * When we are reading one tree block, eb must have been inserted into
651 * the radix tree. If not, something is wrong.
652 */
653 ASSERT(eb);
654
655 reads_done = atomic_dec_and_test(&eb->io_pages);
656 /* Subpage read must finish in page read */
657 ASSERT(reads_done);
658
659 eb->read_mirror = mirror;
660 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
661 ret = -EIO;
662 goto err;
663 }
664 ret = validate_extent_buffer(eb);
665 if (ret < 0)
666 goto err;
667
668 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
669 btree_readahead_hook(eb, ret);
670
671 set_extent_buffer_uptodate(eb);
672
673 free_extent_buffer(eb);
674 return ret;
675err:
676 /*
677 * end_bio_extent_readpage decrements io_pages in case of error,
678 * make sure it has something to decrement.
679 */
680 atomic_inc(&eb->io_pages);
681 clear_extent_buffer_uptodate(eb);
682 free_extent_buffer(eb);
683 return ret;
684}
685
8e1dc982 686int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
77bf40a2
QW
687 struct page *page, u64 start, u64 end,
688 int mirror)
689{
690 struct extent_buffer *eb;
691 int ret = 0;
692 int reads_done;
693
694 ASSERT(page->private);
371cdc07
QW
695
696 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
697 return validate_subpage_buffer(page, start, end, mirror);
698
77bf40a2
QW
699 eb = (struct extent_buffer *)page->private;
700
701 /*
702 * The pending IO might have been the only thing that kept this buffer
703 * in memory. Make sure we have a ref for all this other checks
704 */
705 atomic_inc(&eb->refs);
706
707 reads_done = atomic_dec_and_test(&eb->io_pages);
708 if (!reads_done)
709 goto err;
710
711 eb->read_mirror = mirror;
712 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
713 ret = -EIO;
714 goto err;
715 }
716 ret = validate_extent_buffer(eb);
ce9adaa5 717err:
79fb65a1
JB
718 if (reads_done &&
719 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 720 btree_readahead_hook(eb, ret);
4bb31e92 721
53b381b3
DW
722 if (ret) {
723 /*
724 * our io error hook is going to dec the io pages
725 * again, we have to make sure it has something
726 * to decrement
727 */
728 atomic_inc(&eb->io_pages);
0b32f4bb 729 clear_extent_buffer_uptodate(eb);
53b381b3 730 }
0b32f4bb 731 free_extent_buffer(eb);
77bf40a2 732
f188591e 733 return ret;
ce9adaa5
CM
734}
735
4246a0b6 736static void end_workqueue_bio(struct bio *bio)
ce9adaa5 737{
97eb6b69 738 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 739 struct btrfs_fs_info *fs_info;
9e0af237 740 struct btrfs_workqueue *wq;
ce9adaa5 741
ce9adaa5 742 fs_info = end_io_wq->info;
4e4cbee9 743 end_io_wq->status = bio->bi_status;
d20f7043 744
cfe94440 745 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
a0cac0ec 746 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 747 wq = fs_info->endio_meta_write_workers;
a0cac0ec 748 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 749 wq = fs_info->endio_freespace_worker;
a0cac0ec 750 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 751 wq = fs_info->endio_raid56_workers;
a0cac0ec 752 else
9e0af237 753 wq = fs_info->endio_write_workers;
d20f7043 754 } else {
5c047a69 755 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 756 wq = fs_info->endio_raid56_workers;
a0cac0ec 757 else if (end_io_wq->metadata)
9e0af237 758 wq = fs_info->endio_meta_workers;
a0cac0ec 759 else
9e0af237 760 wq = fs_info->endio_workers;
d20f7043 761 }
9e0af237 762
a0cac0ec 763 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 764 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
765}
766
4e4cbee9 767blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 768 enum btrfs_wq_endio_type metadata)
0b86a832 769{
97eb6b69 770 struct btrfs_end_io_wq *end_io_wq;
8b110e39 771
97eb6b69 772 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 773 if (!end_io_wq)
4e4cbee9 774 return BLK_STS_RESOURCE;
ce9adaa5
CM
775
776 end_io_wq->private = bio->bi_private;
777 end_io_wq->end_io = bio->bi_end_io;
22c59948 778 end_io_wq->info = info;
4e4cbee9 779 end_io_wq->status = 0;
ce9adaa5 780 end_io_wq->bio = bio;
22c59948 781 end_io_wq->metadata = metadata;
ce9adaa5
CM
782
783 bio->bi_private = end_io_wq;
784 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
785 return 0;
786}
787
4a69a410
CM
788static void run_one_async_start(struct btrfs_work *work)
789{
4a69a410 790 struct async_submit_bio *async;
4e4cbee9 791 blk_status_t ret;
4a69a410
CM
792
793 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
794 ret = async->submit_bio_start(async->inode, async->bio,
795 async->dio_file_offset);
79787eaa 796 if (ret)
4e4cbee9 797 async->status = ret;
4a69a410
CM
798}
799
06ea01b1
DS
800/*
801 * In order to insert checksums into the metadata in large chunks, we wait
802 * until bio submission time. All the pages in the bio are checksummed and
803 * sums are attached onto the ordered extent record.
804 *
805 * At IO completion time the csums attached on the ordered extent record are
806 * inserted into the tree.
807 */
4a69a410 808static void run_one_async_done(struct btrfs_work *work)
8b712842 809{
8b712842 810 struct async_submit_bio *async;
06ea01b1
DS
811 struct inode *inode;
812 blk_status_t ret;
8b712842
CM
813
814 async = container_of(work, struct async_submit_bio, work);
8896a08d 815 inode = async->inode;
4854ddd0 816
bb7ab3b9 817 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
818 if (async->status) {
819 async->bio->bi_status = async->status;
4246a0b6 820 bio_endio(async->bio);
79787eaa
JM
821 return;
822 }
823
ec39f769
CM
824 /*
825 * All of the bios that pass through here are from async helpers.
826 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
827 * This changes nothing when cgroups aren't in use.
828 */
829 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 830 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
831 if (ret) {
832 async->bio->bi_status = ret;
833 bio_endio(async->bio);
834 }
4a69a410
CM
835}
836
837static void run_one_async_free(struct btrfs_work *work)
838{
839 struct async_submit_bio *async;
840
841 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
842 kfree(async);
843}
844
8896a08d 845blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 846 int mirror_num, unsigned long bio_flags,
1941b64b 847 u64 dio_file_offset,
e288c080 848 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 849{
8896a08d 850 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
851 struct async_submit_bio *async;
852
853 async = kmalloc(sizeof(*async), GFP_NOFS);
854 if (!async)
4e4cbee9 855 return BLK_STS_RESOURCE;
44b8bd7e 856
8896a08d 857 async->inode = inode;
44b8bd7e
CM
858 async->bio = bio;
859 async->mirror_num = mirror_num;
4a69a410 860 async->submit_bio_start = submit_bio_start;
4a69a410 861
a0cac0ec
OS
862 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
863 run_one_async_free);
4a69a410 864
1941b64b 865 async->dio_file_offset = dio_file_offset;
8c8bee1d 866
4e4cbee9 867 async->status = 0;
79787eaa 868
67f055c7 869 if (op_is_sync(bio->bi_opf))
5cdc7ad3 870 btrfs_set_work_high_priority(&async->work);
d313d7a3 871
5cdc7ad3 872 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
873 return 0;
874}
875
4e4cbee9 876static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 877{
2c30c71b 878 struct bio_vec *bvec;
ce3ed71a 879 struct btrfs_root *root;
2b070cfe 880 int ret = 0;
6dc4f100 881 struct bvec_iter_all iter_all;
ce3ed71a 882
c09abff8 883 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 884 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 885 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 886 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
887 if (ret)
888 break;
ce3ed71a 889 }
2c30c71b 890
4e4cbee9 891 return errno_to_blk_status(ret);
ce3ed71a
CM
892}
893
8896a08d 894static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 895 u64 dio_file_offset)
22c59948 896{
8b712842
CM
897 /*
898 * when we're called for a write, we're already in the async
5443be45 899 * submission context. Just jump into btrfs_map_bio
8b712842 900 */
79787eaa 901 return btree_csum_one_bio(bio);
4a69a410 902}
22c59948 903
f4dcfb30 904static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 905 struct btrfs_inode *bi)
de0022b9 906{
4eef29ef 907 if (btrfs_is_zoned(fs_info))
f4dcfb30 908 return false;
6300463b 909 if (atomic_read(&bi->sync_writers))
f4dcfb30 910 return false;
9b4e675a 911 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
912 return false;
913 return true;
de0022b9
JB
914}
915
1b36294a
NB
916blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
917 int mirror_num, unsigned long bio_flags)
44b8bd7e 918{
0b246afa 919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 920 blk_status_t ret;
cad321ad 921
cfe94440 922 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
4a69a410
CM
923 /*
924 * called for a read, do the setup so that checksum validation
925 * can happen in the async kernel threads
926 */
0b246afa
JM
927 ret = btrfs_bio_wq_end_io(fs_info, bio,
928 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 929 if (ret)
61891923 930 goto out_w_error;
08635bae 931 ret = btrfs_map_bio(fs_info, bio, mirror_num);
f4dcfb30 932 } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
de0022b9
JB
933 ret = btree_csum_one_bio(bio);
934 if (ret)
61891923 935 goto out_w_error;
08635bae 936 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
937 } else {
938 /*
939 * kthread helpers are used to submit writes so that
940 * checksumming can happen in parallel across all CPUs
941 */
8896a08d
QW
942 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
943 0, btree_submit_bio_start);
44b8bd7e 944 }
d313d7a3 945
4246a0b6
CH
946 if (ret)
947 goto out_w_error;
948 return 0;
949
61891923 950out_w_error:
4e4cbee9 951 bio->bi_status = ret;
4246a0b6 952 bio_endio(bio);
61891923 953 return ret;
44b8bd7e
CM
954}
955
3dd1462e 956#ifdef CONFIG_MIGRATION
784b4e29 957static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
958 struct page *newpage, struct page *page,
959 enum migrate_mode mode)
784b4e29
CM
960{
961 /*
962 * we can't safely write a btree page from here,
963 * we haven't done the locking hook
964 */
965 if (PageDirty(page))
966 return -EAGAIN;
967 /*
968 * Buffers may be managed in a filesystem specific way.
969 * We must have no buffers or drop them.
970 */
971 if (page_has_private(page) &&
972 !try_to_release_page(page, GFP_KERNEL))
973 return -EAGAIN;
a6bc32b8 974 return migrate_page(mapping, newpage, page, mode);
784b4e29 975}
3dd1462e 976#endif
784b4e29 977
0da5468f
CM
978
979static int btree_writepages(struct address_space *mapping,
980 struct writeback_control *wbc)
981{
e2d84521
MX
982 struct btrfs_fs_info *fs_info;
983 int ret;
984
d8d5f3e1 985 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
986
987 if (wbc->for_kupdate)
988 return 0;
989
e2d84521 990 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 991 /* this is a bit racy, but that's ok */
d814a491
EL
992 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
993 BTRFS_DIRTY_METADATA_THRESH,
994 fs_info->dirty_metadata_batch);
e2d84521 995 if (ret < 0)
793955bc 996 return 0;
793955bc 997 }
0b32f4bb 998 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
999}
1000
70dec807 1001static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1002{
98509cfc 1003 if (PageWriteback(page) || PageDirty(page))
d397712b 1004 return 0;
0c4e538b 1005
f7a52a40 1006 return try_release_extent_buffer(page);
d98237b3
CM
1007}
1008
d47992f8
LC
1009static void btree_invalidatepage(struct page *page, unsigned int offset,
1010 unsigned int length)
d98237b3 1011{
d1310b2e
CM
1012 struct extent_io_tree *tree;
1013 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1014 extent_invalidatepage(tree, page, offset);
1015 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1016 if (PagePrivate(page)) {
efe120a0
FH
1017 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1018 "page private not zero on page %llu",
1019 (unsigned long long)page_offset(page));
d1b89bc0 1020 detach_page_private(page);
9ad6b7bc 1021 }
d98237b3
CM
1022}
1023
0b32f4bb
JB
1024static int btree_set_page_dirty(struct page *page)
1025{
bb146eb2 1026#ifdef DEBUG
139e8cd3
QW
1027 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1028 struct btrfs_subpage *subpage;
0b32f4bb 1029 struct extent_buffer *eb;
139e8cd3
QW
1030 int cur_bit = 0;
1031 u64 page_start = page_offset(page);
1032
1033 if (fs_info->sectorsize == PAGE_SIZE) {
1034 BUG_ON(!PagePrivate(page));
1035 eb = (struct extent_buffer *)page->private;
1036 BUG_ON(!eb);
1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 BUG_ON(!atomic_read(&eb->refs));
1039 btrfs_assert_tree_locked(eb);
1040 return __set_page_dirty_nobuffers(page);
1041 }
1042 ASSERT(PagePrivate(page) && page->private);
1043 subpage = (struct btrfs_subpage *)page->private;
1044
1045 ASSERT(subpage->dirty_bitmap);
1046 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1047 unsigned long flags;
1048 u64 cur;
1049 u16 tmp = (1 << cur_bit);
1050
1051 spin_lock_irqsave(&subpage->lock, flags);
1052 if (!(tmp & subpage->dirty_bitmap)) {
1053 spin_unlock_irqrestore(&subpage->lock, flags);
1054 cur_bit++;
1055 continue;
1056 }
1057 spin_unlock_irqrestore(&subpage->lock, flags);
1058 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 1059
139e8cd3
QW
1060 eb = find_extent_buffer(fs_info, cur);
1061 ASSERT(eb);
1062 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063 ASSERT(atomic_read(&eb->refs));
1064 btrfs_assert_tree_locked(eb);
1065 free_extent_buffer(eb);
1066
1067 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1068 }
bb146eb2 1069#endif
0b32f4bb
JB
1070 return __set_page_dirty_nobuffers(page);
1071}
1072
7f09410b 1073static const struct address_space_operations btree_aops = {
0da5468f 1074 .writepages = btree_writepages,
5f39d397
CM
1075 .releasepage = btree_releasepage,
1076 .invalidatepage = btree_invalidatepage,
5a92bc88 1077#ifdef CONFIG_MIGRATION
784b4e29 1078 .migratepage = btree_migratepage,
5a92bc88 1079#endif
0b32f4bb 1080 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1081};
1082
2ff7e61e
JM
1083struct extent_buffer *btrfs_find_create_tree_block(
1084 struct btrfs_fs_info *fs_info,
3fbaf258
JB
1085 u64 bytenr, u64 owner_root,
1086 int level)
0999df54 1087{
0b246afa
JM
1088 if (btrfs_is_testing(fs_info))
1089 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 1090 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
1091}
1092
581c1760
QW
1093/*
1094 * Read tree block at logical address @bytenr and do variant basic but critical
1095 * verification.
1096 *
1b7ec85e 1097 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
1098 * @parent_transid: expected transid of this tree block, skip check if 0
1099 * @level: expected level, mandatory check
1100 * @first_key: expected key in slot 0, skip check if NULL
1101 */
2ff7e61e 1102struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
1103 u64 owner_root, u64 parent_transid,
1104 int level, struct btrfs_key *first_key)
0999df54
CM
1105{
1106 struct extent_buffer *buf = NULL;
0999df54
CM
1107 int ret;
1108
3fbaf258 1109 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
1110 if (IS_ERR(buf))
1111 return buf;
0999df54 1112
5ab12d1f 1113 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1114 level, first_key);
0f0fe8f7 1115 if (ret) {
537f38f0 1116 free_extent_buffer_stale(buf);
64c043de 1117 return ERR_PTR(ret);
0f0fe8f7 1118 }
5f39d397 1119 return buf;
ce9adaa5 1120
eb60ceac
CM
1121}
1122
6a884d7d 1123void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1124{
6a884d7d 1125 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1126 if (btrfs_header_generation(buf) ==
e2d84521 1127 fs_info->running_transaction->transid) {
b9447ef8 1128 btrfs_assert_tree_locked(buf);
b4ce94de 1129
b9473439 1130 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1131 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1132 -buf->len,
1133 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1134 clear_extent_buffer_dirty(buf);
1135 }
925baedd 1136 }
5f39d397
CM
1137}
1138
da17066c 1139static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1140 u64 objectid)
d97e63b6 1141{
7c0260ee 1142 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1143 root->fs_info = fs_info;
cfaa7295 1144 root->node = NULL;
a28ec197 1145 root->commit_root = NULL;
27cdeb70 1146 root->state = 0;
d68fc57b 1147 root->orphan_cleanup_state = 0;
0b86a832 1148
0f7d52f4 1149 root->last_trans = 0;
6b8fad57 1150 root->free_objectid = 0;
eb73c1b7 1151 root->nr_delalloc_inodes = 0;
199c2a9c 1152 root->nr_ordered_extents = 0;
6bef4d31 1153 root->inode_tree = RB_ROOT;
16cdcec7 1154 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1155 root->block_rsv = NULL;
0b86a832
CM
1156
1157 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1158 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1159 INIT_LIST_HEAD(&root->delalloc_inodes);
1160 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1161 INIT_LIST_HEAD(&root->ordered_extents);
1162 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1163 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1164 INIT_LIST_HEAD(&root->logged_list[0]);
1165 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1166 spin_lock_init(&root->inode_lock);
eb73c1b7 1167 spin_lock_init(&root->delalloc_lock);
199c2a9c 1168 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1169 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1170 spin_lock_init(&root->log_extents_lock[0]);
1171 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1172 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1173 mutex_init(&root->objectid_mutex);
e02119d5 1174 mutex_init(&root->log_mutex);
31f3d255 1175 mutex_init(&root->ordered_extent_mutex);
573bfb72 1176 mutex_init(&root->delalloc_mutex);
c53e9653 1177 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1178 init_waitqueue_head(&root->log_writer_wait);
1179 init_waitqueue_head(&root->log_commit_wait[0]);
1180 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1181 INIT_LIST_HEAD(&root->log_ctxs[0]);
1182 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1183 atomic_set(&root->log_commit[0], 0);
1184 atomic_set(&root->log_commit[1], 0);
1185 atomic_set(&root->log_writers, 0);
2ecb7923 1186 atomic_set(&root->log_batch, 0);
0700cea7 1187 refcount_set(&root->refs, 1);
8ecebf4d 1188 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1189 atomic_set(&root->nr_swapfiles, 0);
7237f183 1190 root->log_transid = 0;
d1433deb 1191 root->log_transid_committed = -1;
257c62e1 1192 root->last_log_commit = 0;
e289f03e 1193 if (!dummy) {
43eb5f29
QW
1194 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1195 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1196 extent_io_tree_init(fs_info, &root->log_csum_range,
1197 IO_TREE_LOG_CSUM_RANGE, NULL);
1198 }
017e5369 1199
3768f368
CM
1200 memset(&root->root_key, 0, sizeof(root->root_key));
1201 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1202 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1203 root->root_key.objectid = objectid;
0ee5dc67 1204 root->anon_dev = 0;
8ea05e3a 1205
5f3ab90a 1206 spin_lock_init(&root->root_item_lock);
370a11b8 1207 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1208#ifdef CONFIG_BTRFS_DEBUG
1209 INIT_LIST_HEAD(&root->leak_list);
1210 spin_lock(&fs_info->fs_roots_radix_lock);
1211 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1212 spin_unlock(&fs_info->fs_roots_radix_lock);
1213#endif
3768f368
CM
1214}
1215
74e4d827 1216static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1217 u64 objectid, gfp_t flags)
6f07e42e 1218{
74e4d827 1219 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1220 if (root)
96dfcb46 1221 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1222 return root;
1223}
1224
06ea65a3
JB
1225#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1226/* Should only be used by the testing infrastructure */
da17066c 1227struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1228{
1229 struct btrfs_root *root;
1230
7c0260ee
JM
1231 if (!fs_info)
1232 return ERR_PTR(-EINVAL);
1233
96dfcb46 1234 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1235 if (!root)
1236 return ERR_PTR(-ENOMEM);
da17066c 1237
b9ef22de 1238 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1239 root->alloc_bytenr = 0;
06ea65a3
JB
1240
1241 return root;
1242}
1243#endif
1244
20897f5c 1245struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1246 u64 objectid)
1247{
9b7a2440 1248 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1249 struct extent_buffer *leaf;
1250 struct btrfs_root *tree_root = fs_info->tree_root;
1251 struct btrfs_root *root;
1252 struct btrfs_key key;
b89f6d1f 1253 unsigned int nofs_flag;
20897f5c 1254 int ret = 0;
20897f5c 1255
b89f6d1f
FM
1256 /*
1257 * We're holding a transaction handle, so use a NOFS memory allocation
1258 * context to avoid deadlock if reclaim happens.
1259 */
1260 nofs_flag = memalloc_nofs_save();
96dfcb46 1261 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1262 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1263 if (!root)
1264 return ERR_PTR(-ENOMEM);
1265
20897f5c
AJ
1266 root->root_key.objectid = objectid;
1267 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1268 root->root_key.offset = 0;
1269
9631e4cc
JB
1270 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1271 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1272 if (IS_ERR(leaf)) {
1273 ret = PTR_ERR(leaf);
1dd05682 1274 leaf = NULL;
8a6a87cd 1275 goto fail_unlock;
20897f5c
AJ
1276 }
1277
20897f5c 1278 root->node = leaf;
20897f5c
AJ
1279 btrfs_mark_buffer_dirty(leaf);
1280
1281 root->commit_root = btrfs_root_node(root);
27cdeb70 1282 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1283
f944d2cb
DS
1284 btrfs_set_root_flags(&root->root_item, 0);
1285 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1286 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1287 btrfs_set_root_generation(&root->root_item, trans->transid);
1288 btrfs_set_root_level(&root->root_item, 0);
1289 btrfs_set_root_refs(&root->root_item, 1);
1290 btrfs_set_root_used(&root->root_item, leaf->len);
1291 btrfs_set_root_last_snapshot(&root->root_item, 0);
1292 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1293 if (is_fstree(objectid))
807fc790
AS
1294 generate_random_guid(root->root_item.uuid);
1295 else
1296 export_guid(root->root_item.uuid, &guid_null);
c8422684 1297 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1298
8a6a87cd
BB
1299 btrfs_tree_unlock(leaf);
1300
20897f5c
AJ
1301 key.objectid = objectid;
1302 key.type = BTRFS_ROOT_ITEM_KEY;
1303 key.offset = 0;
1304 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1305 if (ret)
1306 goto fail;
1307
1dd05682
TI
1308 return root;
1309
8a6a87cd 1310fail_unlock:
8c38938c 1311 if (leaf)
1dd05682 1312 btrfs_tree_unlock(leaf);
8a6a87cd 1313fail:
00246528 1314 btrfs_put_root(root);
20897f5c 1315
1dd05682 1316 return ERR_PTR(ret);
20897f5c
AJ
1317}
1318
7237f183
YZ
1319static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1320 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1321{
1322 struct btrfs_root *root;
e02119d5 1323
96dfcb46 1324 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1325 if (!root)
7237f183 1326 return ERR_PTR(-ENOMEM);
e02119d5 1327
e02119d5
CM
1328 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1329 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1330 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1331
6ab6ebb7
NA
1332 return root;
1333}
1334
1335int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1336 struct btrfs_root *root)
1337{
1338 struct extent_buffer *leaf;
1339
7237f183 1340 /*
92a7cc42 1341 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1342 *
92a7cc42
QW
1343 * Log trees are not exposed to user space thus can't be snapshotted,
1344 * and they go away before a real commit is actually done.
1345 *
1346 * They do store pointers to file data extents, and those reference
1347 * counts still get updated (along with back refs to the log tree).
7237f183 1348 */
e02119d5 1349
4d75f8a9 1350 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1351 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1352 if (IS_ERR(leaf))
1353 return PTR_ERR(leaf);
e02119d5 1354
7237f183 1355 root->node = leaf;
e02119d5 1356
e02119d5
CM
1357 btrfs_mark_buffer_dirty(root->node);
1358 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1359
1360 return 0;
7237f183
YZ
1361}
1362
1363int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1364 struct btrfs_fs_info *fs_info)
1365{
1366 struct btrfs_root *log_root;
1367
1368 log_root = alloc_log_tree(trans, fs_info);
1369 if (IS_ERR(log_root))
1370 return PTR_ERR(log_root);
6ab6ebb7 1371
3ddebf27
NA
1372 if (!btrfs_is_zoned(fs_info)) {
1373 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1374
1375 if (ret) {
1376 btrfs_put_root(log_root);
1377 return ret;
1378 }
6ab6ebb7
NA
1379 }
1380
7237f183
YZ
1381 WARN_ON(fs_info->log_root_tree);
1382 fs_info->log_root_tree = log_root;
1383 return 0;
1384}
1385
1386int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1387 struct btrfs_root *root)
1388{
0b246afa 1389 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1390 struct btrfs_root *log_root;
1391 struct btrfs_inode_item *inode_item;
6ab6ebb7 1392 int ret;
7237f183 1393
0b246afa 1394 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1395 if (IS_ERR(log_root))
1396 return PTR_ERR(log_root);
1397
6ab6ebb7
NA
1398 ret = btrfs_alloc_log_tree_node(trans, log_root);
1399 if (ret) {
1400 btrfs_put_root(log_root);
1401 return ret;
1402 }
1403
7237f183
YZ
1404 log_root->last_trans = trans->transid;
1405 log_root->root_key.offset = root->root_key.objectid;
1406
1407 inode_item = &log_root->root_item.inode;
3cae210f
QW
1408 btrfs_set_stack_inode_generation(inode_item, 1);
1409 btrfs_set_stack_inode_size(inode_item, 3);
1410 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1411 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1412 fs_info->nodesize);
3cae210f 1413 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1414
5d4f98a2 1415 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1416
1417 WARN_ON(root->log_root);
1418 root->log_root = log_root;
1419 root->log_transid = 0;
d1433deb 1420 root->log_transid_committed = -1;
257c62e1 1421 root->last_log_commit = 0;
e02119d5
CM
1422 return 0;
1423}
1424
49d11bea
JB
1425static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1426 struct btrfs_path *path,
1427 struct btrfs_key *key)
e02119d5
CM
1428{
1429 struct btrfs_root *root;
1430 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1431 u64 generation;
cb517eab 1432 int ret;
581c1760 1433 int level;
0f7d52f4 1434
96dfcb46 1435 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1436 if (!root)
1437 return ERR_PTR(-ENOMEM);
0f7d52f4 1438
cb517eab
MX
1439 ret = btrfs_find_root(tree_root, key, path,
1440 &root->root_item, &root->root_key);
0f7d52f4 1441 if (ret) {
13a8a7c8
YZ
1442 if (ret > 0)
1443 ret = -ENOENT;
49d11bea 1444 goto fail;
0f7d52f4 1445 }
13a8a7c8 1446
84234f3a 1447 generation = btrfs_root_generation(&root->root_item);
581c1760 1448 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1449 root->node = read_tree_block(fs_info,
1450 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1451 key->objectid, generation, level, NULL);
64c043de
LB
1452 if (IS_ERR(root->node)) {
1453 ret = PTR_ERR(root->node);
8c38938c 1454 root->node = NULL;
49d11bea 1455 goto fail;
cb517eab
MX
1456 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1457 ret = -EIO;
49d11bea 1458 goto fail;
416bc658 1459 }
5d4f98a2 1460 root->commit_root = btrfs_root_node(root);
cb517eab 1461 return root;
49d11bea 1462fail:
00246528 1463 btrfs_put_root(root);
49d11bea
JB
1464 return ERR_PTR(ret);
1465}
1466
1467struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1468 struct btrfs_key *key)
1469{
1470 struct btrfs_root *root;
1471 struct btrfs_path *path;
1472
1473 path = btrfs_alloc_path();
1474 if (!path)
1475 return ERR_PTR(-ENOMEM);
1476 root = read_tree_root_path(tree_root, path, key);
1477 btrfs_free_path(path);
1478
1479 return root;
cb517eab
MX
1480}
1481
2dfb1e43
QW
1482/*
1483 * Initialize subvolume root in-memory structure
1484 *
1485 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1486 */
1487static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1488{
1489 int ret;
dcc3eb96 1490 unsigned int nofs_flag;
cb517eab 1491
dcc3eb96
NB
1492 /*
1493 * We might be called under a transaction (e.g. indirect backref
1494 * resolution) which could deadlock if it triggers memory reclaim
1495 */
1496 nofs_flag = memalloc_nofs_save();
1497 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1498 memalloc_nofs_restore(nofs_flag);
1499 if (ret)
8257b2dc 1500 goto fail;
8257b2dc 1501
aeb935a4 1502 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1503 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1504 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1505 btrfs_check_and_init_root_item(&root->root_item);
1506 }
1507
851fd730
QW
1508 /*
1509 * Don't assign anonymous block device to roots that are not exposed to
1510 * userspace, the id pool is limited to 1M
1511 */
1512 if (is_fstree(root->root_key.objectid) &&
1513 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1514 if (!anon_dev) {
1515 ret = get_anon_bdev(&root->anon_dev);
1516 if (ret)
1517 goto fail;
1518 } else {
1519 root->anon_dev = anon_dev;
1520 }
851fd730 1521 }
f32e48e9
CR
1522
1523 mutex_lock(&root->objectid_mutex);
453e4873 1524 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1525 if (ret) {
1526 mutex_unlock(&root->objectid_mutex);
876d2cf1 1527 goto fail;
f32e48e9
CR
1528 }
1529
6b8fad57 1530 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1531
1532 mutex_unlock(&root->objectid_mutex);
1533
cb517eab
MX
1534 return 0;
1535fail:
84db5ccf 1536 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1537 return ret;
1538}
1539
a98db0f3
JB
1540static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1541 u64 root_id)
cb517eab
MX
1542{
1543 struct btrfs_root *root;
1544
1545 spin_lock(&fs_info->fs_roots_radix_lock);
1546 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547 (unsigned long)root_id);
bc44d7c4 1548 if (root)
00246528 1549 root = btrfs_grab_root(root);
cb517eab
MX
1550 spin_unlock(&fs_info->fs_roots_radix_lock);
1551 return root;
1552}
1553
49d11bea
JB
1554static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1555 u64 objectid)
1556{
1557 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1558 return btrfs_grab_root(fs_info->tree_root);
1559 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1560 return btrfs_grab_root(fs_info->extent_root);
1561 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1562 return btrfs_grab_root(fs_info->chunk_root);
1563 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1564 return btrfs_grab_root(fs_info->dev_root);
1565 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1566 return btrfs_grab_root(fs_info->csum_root);
1567 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1568 return btrfs_grab_root(fs_info->quota_root) ?
1569 fs_info->quota_root : ERR_PTR(-ENOENT);
1570 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1571 return btrfs_grab_root(fs_info->uuid_root) ?
1572 fs_info->uuid_root : ERR_PTR(-ENOENT);
1573 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1574 return btrfs_grab_root(fs_info->free_space_root) ?
1575 fs_info->free_space_root : ERR_PTR(-ENOENT);
1576 return NULL;
1577}
1578
cb517eab
MX
1579int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1580 struct btrfs_root *root)
1581{
1582 int ret;
1583
e1860a77 1584 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1585 if (ret)
1586 return ret;
1587
1588 spin_lock(&fs_info->fs_roots_radix_lock);
1589 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590 (unsigned long)root->root_key.objectid,
1591 root);
af01d2e5 1592 if (ret == 0) {
00246528 1593 btrfs_grab_root(root);
27cdeb70 1594 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1595 }
cb517eab
MX
1596 spin_unlock(&fs_info->fs_roots_radix_lock);
1597 radix_tree_preload_end();
1598
1599 return ret;
1600}
1601
bd647ce3
JB
1602void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1603{
1604#ifdef CONFIG_BTRFS_DEBUG
1605 struct btrfs_root *root;
1606
1607 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1608 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1609
bd647ce3
JB
1610 root = list_first_entry(&fs_info->allocated_roots,
1611 struct btrfs_root, leak_list);
457f1864 1612 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1613 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1614 refcount_read(&root->refs));
1615 while (refcount_read(&root->refs) > 1)
00246528
JB
1616 btrfs_put_root(root);
1617 btrfs_put_root(root);
bd647ce3
JB
1618 }
1619#endif
1620}
1621
0d4b0463
JB
1622void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1623{
141386e1
JB
1624 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1625 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1626 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1627 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1628 btrfs_free_csum_hash(fs_info);
1629 btrfs_free_stripe_hash_table(fs_info);
1630 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1631 kfree(fs_info->balance_ctl);
1632 kfree(fs_info->delayed_root);
00246528
JB
1633 btrfs_put_root(fs_info->extent_root);
1634 btrfs_put_root(fs_info->tree_root);
1635 btrfs_put_root(fs_info->chunk_root);
1636 btrfs_put_root(fs_info->dev_root);
1637 btrfs_put_root(fs_info->csum_root);
1638 btrfs_put_root(fs_info->quota_root);
1639 btrfs_put_root(fs_info->uuid_root);
1640 btrfs_put_root(fs_info->free_space_root);
1641 btrfs_put_root(fs_info->fs_root);
aeb935a4 1642 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1643 btrfs_check_leaked_roots(fs_info);
3fd63727 1644 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1645 kfree(fs_info->super_copy);
1646 kfree(fs_info->super_for_commit);
8481dd80 1647 kfree(fs_info->subpage_info);
0d4b0463
JB
1648 kvfree(fs_info);
1649}
1650
1651
2dfb1e43
QW
1652/*
1653 * Get an in-memory reference of a root structure.
1654 *
1655 * For essential trees like root/extent tree, we grab it from fs_info directly.
1656 * For subvolume trees, we check the cached filesystem roots first. If not
1657 * found, then read it from disk and add it to cached fs roots.
1658 *
1659 * Caller should release the root by calling btrfs_put_root() after the usage.
1660 *
1661 * NOTE: Reloc and log trees can't be read by this function as they share the
1662 * same root objectid.
1663 *
1664 * @objectid: root id
1665 * @anon_dev: preallocated anonymous block device number for new roots,
1666 * pass 0 for new allocation.
1667 * @check_ref: whether to check root item references, If true, return -ENOENT
1668 * for orphan roots
1669 */
1670static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1671 u64 objectid, dev_t anon_dev,
1672 bool check_ref)
5eda7b5e
CM
1673{
1674 struct btrfs_root *root;
381cf658 1675 struct btrfs_path *path;
1d4c08e0 1676 struct btrfs_key key;
5eda7b5e
CM
1677 int ret;
1678
49d11bea
JB
1679 root = btrfs_get_global_root(fs_info, objectid);
1680 if (root)
1681 return root;
4df27c4d 1682again:
56e9357a 1683 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1684 if (root) {
2dfb1e43
QW
1685 /* Shouldn't get preallocated anon_dev for cached roots */
1686 ASSERT(!anon_dev);
bc44d7c4 1687 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1688 btrfs_put_root(root);
48475471 1689 return ERR_PTR(-ENOENT);
bc44d7c4 1690 }
5eda7b5e 1691 return root;
48475471 1692 }
5eda7b5e 1693
56e9357a
DS
1694 key.objectid = objectid;
1695 key.type = BTRFS_ROOT_ITEM_KEY;
1696 key.offset = (u64)-1;
1697 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1698 if (IS_ERR(root))
1699 return root;
3394e160 1700
c00869f1 1701 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1702 ret = -ENOENT;
581bb050 1703 goto fail;
35a30d7c 1704 }
581bb050 1705
2dfb1e43 1706 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1707 if (ret)
1708 goto fail;
3394e160 1709
381cf658
DS
1710 path = btrfs_alloc_path();
1711 if (!path) {
1712 ret = -ENOMEM;
1713 goto fail;
1714 }
1d4c08e0
DS
1715 key.objectid = BTRFS_ORPHAN_OBJECTID;
1716 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1717 key.offset = objectid;
1d4c08e0
DS
1718
1719 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1720 btrfs_free_path(path);
d68fc57b
YZ
1721 if (ret < 0)
1722 goto fail;
1723 if (ret == 0)
27cdeb70 1724 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1725
cb517eab 1726 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1727 if (ret) {
00246528 1728 btrfs_put_root(root);
4785e24f 1729 if (ret == -EEXIST)
4df27c4d 1730 goto again;
4df27c4d 1731 goto fail;
0f7d52f4 1732 }
edbd8d4e 1733 return root;
4df27c4d 1734fail:
8c38938c 1735 btrfs_put_root(root);
4df27c4d 1736 return ERR_PTR(ret);
edbd8d4e
CM
1737}
1738
2dfb1e43
QW
1739/*
1740 * Get in-memory reference of a root structure
1741 *
1742 * @objectid: tree objectid
1743 * @check_ref: if set, verify that the tree exists and the item has at least
1744 * one reference
1745 */
1746struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1747 u64 objectid, bool check_ref)
1748{
1749 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1750}
1751
1752/*
1753 * Get in-memory reference of a root structure, created as new, optionally pass
1754 * the anonymous block device id
1755 *
1756 * @objectid: tree objectid
1757 * @anon_dev: if zero, allocate a new anonymous block device or use the
1758 * parameter value
1759 */
1760struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1761 u64 objectid, dev_t anon_dev)
1762{
1763 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1764}
1765
49d11bea
JB
1766/*
1767 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1768 * @fs_info: the fs_info
1769 * @objectid: the objectid we need to lookup
1770 *
1771 * This is exclusively used for backref walking, and exists specifically because
1772 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1773 * creation time, which means we may have to read the tree_root in order to look
1774 * up a fs root that is not in memory. If the root is not in memory we will
1775 * read the tree root commit root and look up the fs root from there. This is a
1776 * temporary root, it will not be inserted into the radix tree as it doesn't
1777 * have the most uptodate information, it'll simply be discarded once the
1778 * backref code is finished using the root.
1779 */
1780struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1781 struct btrfs_path *path,
1782 u64 objectid)
1783{
1784 struct btrfs_root *root;
1785 struct btrfs_key key;
1786
1787 ASSERT(path->search_commit_root && path->skip_locking);
1788
1789 /*
1790 * This can return -ENOENT if we ask for a root that doesn't exist, but
1791 * since this is called via the backref walking code we won't be looking
1792 * up a root that doesn't exist, unless there's corruption. So if root
1793 * != NULL just return it.
1794 */
1795 root = btrfs_get_global_root(fs_info, objectid);
1796 if (root)
1797 return root;
1798
1799 root = btrfs_lookup_fs_root(fs_info, objectid);
1800 if (root)
1801 return root;
1802
1803 key.objectid = objectid;
1804 key.type = BTRFS_ROOT_ITEM_KEY;
1805 key.offset = (u64)-1;
1806 root = read_tree_root_path(fs_info->tree_root, path, &key);
1807 btrfs_release_path(path);
1808
1809 return root;
1810}
1811
8b712842
CM
1812/*
1813 * called by the kthread helper functions to finally call the bio end_io
1814 * functions. This is where read checksum verification actually happens
1815 */
1816static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1817{
ce9adaa5 1818 struct bio *bio;
97eb6b69 1819 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1820
97eb6b69 1821 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1822 bio = end_io_wq->bio;
ce9adaa5 1823
4e4cbee9 1824 bio->bi_status = end_io_wq->status;
8b712842
CM
1825 bio->bi_private = end_io_wq->private;
1826 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1827 bio_endio(bio);
9be490f1 1828 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1829}
1830
a74a4b97
CM
1831static int cleaner_kthread(void *arg)
1832{
1833 struct btrfs_root *root = arg;
0b246afa 1834 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1835 int again;
a74a4b97 1836
d6fd0ae2 1837 while (1) {
d0278245 1838 again = 0;
a74a4b97 1839
fd340d0f
JB
1840 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1841
d0278245 1842 /* Make the cleaner go to sleep early. */
2ff7e61e 1843 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1844 goto sleep;
1845
90c711ab
ZB
1846 /*
1847 * Do not do anything if we might cause open_ctree() to block
1848 * before we have finished mounting the filesystem.
1849 */
0b246afa 1850 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1851 goto sleep;
1852
0b246afa 1853 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1854 goto sleep;
1855
dc7f370c
MX
1856 /*
1857 * Avoid the problem that we change the status of the fs
1858 * during the above check and trylock.
1859 */
2ff7e61e 1860 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1861 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1862 goto sleep;
76dda93c 1863 }
a74a4b97 1864
2ff7e61e 1865 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1866
d0278245 1867 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1868 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1869
1870 /*
05323cd1
MX
1871 * The defragger has dealt with the R/O remount and umount,
1872 * needn't do anything special here.
d0278245 1873 */
0b246afa 1874 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1875
1876 /*
f3372065 1877 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1878 * with relocation (btrfs_relocate_chunk) and relocation
1879 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1880 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1881 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1882 * unused block groups.
1883 */
0b246afa 1884 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1885
1886 /*
1887 * Reclaim block groups in the reclaim_bgs list after we deleted
1888 * all unused block_groups. This possibly gives us some more free
1889 * space.
1890 */
1891 btrfs_reclaim_bgs(fs_info);
d0278245 1892sleep:
a0a1db70 1893 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1894 if (kthread_should_park())
1895 kthread_parkme();
1896 if (kthread_should_stop())
1897 return 0;
838fe188 1898 if (!again) {
a74a4b97 1899 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1900 schedule();
a74a4b97
CM
1901 __set_current_state(TASK_RUNNING);
1902 }
da288d28 1903 }
a74a4b97
CM
1904}
1905
1906static int transaction_kthread(void *arg)
1907{
1908 struct btrfs_root *root = arg;
0b246afa 1909 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1910 struct btrfs_trans_handle *trans;
1911 struct btrfs_transaction *cur;
8929ecfa 1912 u64 transid;
643900be 1913 time64_t delta;
a74a4b97 1914 unsigned long delay;
914b2007 1915 bool cannot_commit;
a74a4b97
CM
1916
1917 do {
914b2007 1918 cannot_commit = false;
ba1bc00f 1919 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1920 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1921
0b246afa
JM
1922 spin_lock(&fs_info->trans_lock);
1923 cur = fs_info->running_transaction;
a74a4b97 1924 if (!cur) {
0b246afa 1925 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1926 goto sleep;
1927 }
31153d81 1928
643900be 1929 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1930 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1931 delta < fs_info->commit_interval) {
0b246afa 1932 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1933 delay -= msecs_to_jiffies((delta - 1) * 1000);
1934 delay = min(delay,
1935 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1936 goto sleep;
1937 }
8929ecfa 1938 transid = cur->transid;
0b246afa 1939 spin_unlock(&fs_info->trans_lock);
56bec294 1940
79787eaa 1941 /* If the file system is aborted, this will always fail. */
354aa0fb 1942 trans = btrfs_attach_transaction(root);
914b2007 1943 if (IS_ERR(trans)) {
354aa0fb
MX
1944 if (PTR_ERR(trans) != -ENOENT)
1945 cannot_commit = true;
79787eaa 1946 goto sleep;
914b2007 1947 }
8929ecfa 1948 if (transid == trans->transid) {
3a45bb20 1949 btrfs_commit_transaction(trans);
8929ecfa 1950 } else {
3a45bb20 1951 btrfs_end_transaction(trans);
8929ecfa 1952 }
a74a4b97 1953sleep:
0b246afa
JM
1954 wake_up_process(fs_info->cleaner_kthread);
1955 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1956
4e121c06 1957 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1958 &fs_info->fs_state)))
2ff7e61e 1959 btrfs_cleanup_transaction(fs_info);
ce63f891 1960 if (!kthread_should_stop() &&
0b246afa 1961 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1962 cannot_commit))
bc5511d0 1963 schedule_timeout_interruptible(delay);
a74a4b97
CM
1964 } while (!kthread_should_stop());
1965 return 0;
1966}
1967
af31f5e5 1968/*
01f0f9da
NB
1969 * This will find the highest generation in the array of root backups. The
1970 * index of the highest array is returned, or -EINVAL if we can't find
1971 * anything.
af31f5e5
CM
1972 *
1973 * We check to make sure the array is valid by comparing the
1974 * generation of the latest root in the array with the generation
1975 * in the super block. If they don't match we pitch it.
1976 */
01f0f9da 1977static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1978{
01f0f9da 1979 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1980 u64 cur;
af31f5e5
CM
1981 struct btrfs_root_backup *root_backup;
1982 int i;
1983
1984 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1985 root_backup = info->super_copy->super_roots + i;
1986 cur = btrfs_backup_tree_root_gen(root_backup);
1987 if (cur == newest_gen)
01f0f9da 1988 return i;
af31f5e5
CM
1989 }
1990
01f0f9da 1991 return -EINVAL;
af31f5e5
CM
1992}
1993
af31f5e5
CM
1994/*
1995 * copy all the root pointers into the super backup array.
1996 * this will bump the backup pointer by one when it is
1997 * done
1998 */
1999static void backup_super_roots(struct btrfs_fs_info *info)
2000{
6ef108dd 2001 const int next_backup = info->backup_root_index;
af31f5e5 2002 struct btrfs_root_backup *root_backup;
af31f5e5
CM
2003
2004 root_backup = info->super_for_commit->super_roots + next_backup;
2005
2006 /*
2007 * make sure all of our padding and empty slots get zero filled
2008 * regardless of which ones we use today
2009 */
2010 memset(root_backup, 0, sizeof(*root_backup));
2011
2012 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2013
2014 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2015 btrfs_set_backup_tree_root_gen(root_backup,
2016 btrfs_header_generation(info->tree_root->node));
2017
2018 btrfs_set_backup_tree_root_level(root_backup,
2019 btrfs_header_level(info->tree_root->node));
2020
2021 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2022 btrfs_set_backup_chunk_root_gen(root_backup,
2023 btrfs_header_generation(info->chunk_root->node));
2024 btrfs_set_backup_chunk_root_level(root_backup,
2025 btrfs_header_level(info->chunk_root->node));
2026
2027 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2028 btrfs_set_backup_extent_root_gen(root_backup,
2029 btrfs_header_generation(info->extent_root->node));
2030 btrfs_set_backup_extent_root_level(root_backup,
2031 btrfs_header_level(info->extent_root->node));
2032
7c7e82a7
CM
2033 /*
2034 * we might commit during log recovery, which happens before we set
2035 * the fs_root. Make sure it is valid before we fill it in.
2036 */
2037 if (info->fs_root && info->fs_root->node) {
2038 btrfs_set_backup_fs_root(root_backup,
2039 info->fs_root->node->start);
2040 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2041 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2042 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2043 btrfs_header_level(info->fs_root->node));
7c7e82a7 2044 }
af31f5e5
CM
2045
2046 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2047 btrfs_set_backup_dev_root_gen(root_backup,
2048 btrfs_header_generation(info->dev_root->node));
2049 btrfs_set_backup_dev_root_level(root_backup,
2050 btrfs_header_level(info->dev_root->node));
2051
2052 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2053 btrfs_set_backup_csum_root_gen(root_backup,
2054 btrfs_header_generation(info->csum_root->node));
2055 btrfs_set_backup_csum_root_level(root_backup,
2056 btrfs_header_level(info->csum_root->node));
2057
2058 btrfs_set_backup_total_bytes(root_backup,
2059 btrfs_super_total_bytes(info->super_copy));
2060 btrfs_set_backup_bytes_used(root_backup,
2061 btrfs_super_bytes_used(info->super_copy));
2062 btrfs_set_backup_num_devices(root_backup,
2063 btrfs_super_num_devices(info->super_copy));
2064
2065 /*
2066 * if we don't copy this out to the super_copy, it won't get remembered
2067 * for the next commit
2068 */
2069 memcpy(&info->super_copy->super_roots,
2070 &info->super_for_commit->super_roots,
2071 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2072}
2073
bd2336b2
NB
2074/*
2075 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2076 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2077 *
2078 * fs_info - filesystem whose backup roots need to be read
2079 * priority - priority of backup root required
2080 *
2081 * Returns backup root index on success and -EINVAL otherwise.
2082 */
2083static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2084{
2085 int backup_index = find_newest_super_backup(fs_info);
2086 struct btrfs_super_block *super = fs_info->super_copy;
2087 struct btrfs_root_backup *root_backup;
2088
2089 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2090 if (priority == 0)
2091 return backup_index;
2092
2093 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2094 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2095 } else {
2096 return -EINVAL;
2097 }
2098
2099 root_backup = super->super_roots + backup_index;
2100
2101 btrfs_set_super_generation(super,
2102 btrfs_backup_tree_root_gen(root_backup));
2103 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2104 btrfs_set_super_root_level(super,
2105 btrfs_backup_tree_root_level(root_backup));
2106 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2107
2108 /*
2109 * Fixme: the total bytes and num_devices need to match or we should
2110 * need a fsck
2111 */
2112 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2113 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2114
2115 return backup_index;
2116}
2117
7abadb64
LB
2118/* helper to cleanup workers */
2119static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2120{
dc6e3209 2121 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2122 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2123 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2124 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2125 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2126 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2127 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2128 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2129 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2130 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2131 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2132 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2133 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2134 if (fs_info->discard_ctl.discard_workers)
2135 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2136 /*
2137 * Now that all other work queues are destroyed, we can safely destroy
2138 * the queues used for metadata I/O, since tasks from those other work
2139 * queues can do metadata I/O operations.
2140 */
2141 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2142 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2143}
2144
2e9f5954
R
2145static void free_root_extent_buffers(struct btrfs_root *root)
2146{
2147 if (root) {
2148 free_extent_buffer(root->node);
2149 free_extent_buffer(root->commit_root);
2150 root->node = NULL;
2151 root->commit_root = NULL;
2152 }
2153}
2154
af31f5e5 2155/* helper to cleanup tree roots */
4273eaff 2156static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2157{
2e9f5954 2158 free_root_extent_buffers(info->tree_root);
655b09fe 2159
2e9f5954
R
2160 free_root_extent_buffers(info->dev_root);
2161 free_root_extent_buffers(info->extent_root);
2162 free_root_extent_buffers(info->csum_root);
2163 free_root_extent_buffers(info->quota_root);
2164 free_root_extent_buffers(info->uuid_root);
8c38938c 2165 free_root_extent_buffers(info->fs_root);
aeb935a4 2166 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2167 if (free_chunk_root)
2e9f5954 2168 free_root_extent_buffers(info->chunk_root);
70f6d82e 2169 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2170}
2171
8c38938c
JB
2172void btrfs_put_root(struct btrfs_root *root)
2173{
2174 if (!root)
2175 return;
2176
2177 if (refcount_dec_and_test(&root->refs)) {
2178 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2179 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2180 if (root->anon_dev)
2181 free_anon_bdev(root->anon_dev);
2182 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2183 free_root_extent_buffers(root);
8c38938c
JB
2184#ifdef CONFIG_BTRFS_DEBUG
2185 spin_lock(&root->fs_info->fs_roots_radix_lock);
2186 list_del_init(&root->leak_list);
2187 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2188#endif
2189 kfree(root);
2190 }
2191}
2192
faa2dbf0 2193void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2194{
2195 int ret;
2196 struct btrfs_root *gang[8];
2197 int i;
2198
2199 while (!list_empty(&fs_info->dead_roots)) {
2200 gang[0] = list_entry(fs_info->dead_roots.next,
2201 struct btrfs_root, root_list);
2202 list_del(&gang[0]->root_list);
2203
8c38938c 2204 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2205 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2206 btrfs_put_root(gang[0]);
171f6537
JB
2207 }
2208
2209 while (1) {
2210 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2211 (void **)gang, 0,
2212 ARRAY_SIZE(gang));
2213 if (!ret)
2214 break;
2215 for (i = 0; i < ret; i++)
cb517eab 2216 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2217 }
2218}
af31f5e5 2219
638aa7ed
ES
2220static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2221{
2222 mutex_init(&fs_info->scrub_lock);
2223 atomic_set(&fs_info->scrubs_running, 0);
2224 atomic_set(&fs_info->scrub_pause_req, 0);
2225 atomic_set(&fs_info->scrubs_paused, 0);
2226 atomic_set(&fs_info->scrub_cancel_req, 0);
2227 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2228 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2229}
2230
779a65a4
ES
2231static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2232{
2233 spin_lock_init(&fs_info->balance_lock);
2234 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2235 atomic_set(&fs_info->balance_pause_req, 0);
2236 atomic_set(&fs_info->balance_cancel_req, 0);
2237 fs_info->balance_ctl = NULL;
2238 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2239 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2240}
2241
6bccf3ab 2242static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2243{
2ff7e61e
JM
2244 struct inode *inode = fs_info->btree_inode;
2245
2246 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2247 set_nlink(inode, 1);
f37938e0
ES
2248 /*
2249 * we set the i_size on the btree inode to the max possible int.
2250 * the real end of the address space is determined by all of
2251 * the devices in the system
2252 */
2ff7e61e
JM
2253 inode->i_size = OFFSET_MAX;
2254 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2255
2ff7e61e 2256 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2257 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2258 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2259 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2260 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2261
5c8fd99f 2262 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2263 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2264 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2265 btrfs_insert_inode_hash(inode);
f37938e0
ES
2266}
2267
ad618368
ES
2268static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2269{
ad618368 2270 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2271 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2272 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2273}
2274
f9e92e40
ES
2275static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2276{
2277 spin_lock_init(&fs_info->qgroup_lock);
2278 mutex_init(&fs_info->qgroup_ioctl_lock);
2279 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2280 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2281 fs_info->qgroup_seq = 1;
f9e92e40 2282 fs_info->qgroup_ulist = NULL;
d2c609b8 2283 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2284 mutex_init(&fs_info->qgroup_rescan_lock);
2285}
2286
2a458198
ES
2287static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2288 struct btrfs_fs_devices *fs_devices)
2289{
f7b885be 2290 u32 max_active = fs_info->thread_pool_size;
6f011058 2291 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2292
2293 fs_info->workers =
cb001095
JM
2294 btrfs_alloc_workqueue(fs_info, "worker",
2295 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2296
2297 fs_info->delalloc_workers =
cb001095
JM
2298 btrfs_alloc_workqueue(fs_info, "delalloc",
2299 flags, max_active, 2);
2a458198
ES
2300
2301 fs_info->flush_workers =
cb001095
JM
2302 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2303 flags, max_active, 0);
2a458198
ES
2304
2305 fs_info->caching_workers =
cb001095 2306 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2307
2a458198 2308 fs_info->fixup_workers =
cb001095 2309 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2310
2311 /*
2312 * endios are largely parallel and should have a very
2313 * low idle thresh
2314 */
2315 fs_info->endio_workers =
cb001095 2316 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2317 fs_info->endio_meta_workers =
cb001095
JM
2318 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2319 max_active, 4);
2a458198 2320 fs_info->endio_meta_write_workers =
cb001095
JM
2321 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2322 max_active, 2);
2a458198 2323 fs_info->endio_raid56_workers =
cb001095
JM
2324 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2325 max_active, 4);
2a458198 2326 fs_info->rmw_workers =
cb001095 2327 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2328 fs_info->endio_write_workers =
cb001095
JM
2329 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2330 max_active, 2);
2a458198 2331 fs_info->endio_freespace_worker =
cb001095
JM
2332 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2333 max_active, 0);
2a458198 2334 fs_info->delayed_workers =
cb001095
JM
2335 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2336 max_active, 0);
2a458198 2337 fs_info->readahead_workers =
cb001095
JM
2338 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2339 max_active, 2);
2a458198 2340 fs_info->qgroup_rescan_workers =
cb001095 2341 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2342 fs_info->discard_ctl.discard_workers =
2343 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2344
2345 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2346 fs_info->flush_workers &&
2a458198
ES
2347 fs_info->endio_workers && fs_info->endio_meta_workers &&
2348 fs_info->endio_meta_write_workers &&
2a458198
ES
2349 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2350 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2351 fs_info->caching_workers && fs_info->readahead_workers &&
2352 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2353 fs_info->qgroup_rescan_workers &&
2354 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2355 return -ENOMEM;
2356 }
2357
2358 return 0;
2359}
2360
6d97c6e3
JT
2361static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2362{
2363 struct crypto_shash *csum_shash;
b4e967be 2364 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2365
b4e967be 2366 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2367
2368 if (IS_ERR(csum_shash)) {
2369 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2370 csum_driver);
6d97c6e3
JT
2371 return PTR_ERR(csum_shash);
2372 }
2373
2374 fs_info->csum_shash = csum_shash;
2375
2376 return 0;
2377}
2378
63443bf5
ES
2379static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2380 struct btrfs_fs_devices *fs_devices)
2381{
2382 int ret;
63443bf5
ES
2383 struct btrfs_root *log_tree_root;
2384 struct btrfs_super_block *disk_super = fs_info->super_copy;
2385 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2386 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2387
2388 if (fs_devices->rw_devices == 0) {
f14d104d 2389 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2390 return -EIO;
2391 }
2392
96dfcb46
JB
2393 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2394 GFP_KERNEL);
63443bf5
ES
2395 if (!log_tree_root)
2396 return -ENOMEM;
2397
2ff7e61e 2398 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2399 BTRFS_TREE_LOG_OBJECTID,
2400 fs_info->generation + 1, level,
2401 NULL);
64c043de 2402 if (IS_ERR(log_tree_root->node)) {
f14d104d 2403 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2404 ret = PTR_ERR(log_tree_root->node);
8c38938c 2405 log_tree_root->node = NULL;
00246528 2406 btrfs_put_root(log_tree_root);
0eeff236 2407 return ret;
64c043de 2408 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2409 btrfs_err(fs_info, "failed to read log tree");
00246528 2410 btrfs_put_root(log_tree_root);
63443bf5
ES
2411 return -EIO;
2412 }
2413 /* returns with log_tree_root freed on success */
2414 ret = btrfs_recover_log_trees(log_tree_root);
2415 if (ret) {
0b246afa
JM
2416 btrfs_handle_fs_error(fs_info, ret,
2417 "Failed to recover log tree");
00246528 2418 btrfs_put_root(log_tree_root);
63443bf5
ES
2419 return ret;
2420 }
2421
bc98a42c 2422 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2423 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2424 if (ret)
2425 return ret;
2426 }
2427
2428 return 0;
2429}
2430
6bccf3ab 2431static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2432{
6bccf3ab 2433 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2434 struct btrfs_root *root;
4bbcaa64
ES
2435 struct btrfs_key location;
2436 int ret;
2437
6bccf3ab
JM
2438 BUG_ON(!fs_info->tree_root);
2439
4bbcaa64
ES
2440 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2441 location.type = BTRFS_ROOT_ITEM_KEY;
2442 location.offset = 0;
2443
a4f3d2c4 2444 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2445 if (IS_ERR(root)) {
42437a63
JB
2446 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2447 ret = PTR_ERR(root);
2448 goto out;
2449 }
2450 } else {
2451 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2452 fs_info->extent_root = root;
f50f4353 2453 }
4bbcaa64
ES
2454
2455 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2456 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2457 if (IS_ERR(root)) {
42437a63
JB
2458 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2459 ret = PTR_ERR(root);
2460 goto out;
2461 }
2462 } else {
2463 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2464 fs_info->dev_root = root;
f50f4353 2465 }
820a49da
JB
2466 /* Initialize fs_info for all devices in any case */
2467 btrfs_init_devices_late(fs_info);
4bbcaa64 2468
882dbe0c
JB
2469 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2470 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2471 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2472 root = btrfs_read_tree_root(tree_root, &location);
2473 if (IS_ERR(root)) {
2474 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2475 ret = PTR_ERR(root);
2476 goto out;
2477 }
2478 } else {
2479 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2480 fs_info->csum_root = root;
42437a63 2481 }
f50f4353 2482 }
4bbcaa64 2483
aeb935a4
QW
2484 /*
2485 * This tree can share blocks with some other fs tree during relocation
2486 * and we need a proper setup by btrfs_get_fs_root
2487 */
56e9357a
DS
2488 root = btrfs_get_fs_root(tree_root->fs_info,
2489 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2490 if (IS_ERR(root)) {
42437a63
JB
2491 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2492 ret = PTR_ERR(root);
2493 goto out;
2494 }
2495 } else {
2496 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2497 fs_info->data_reloc_root = root;
aeb935a4 2498 }
aeb935a4 2499
4bbcaa64 2500 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2501 root = btrfs_read_tree_root(tree_root, &location);
2502 if (!IS_ERR(root)) {
2503 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2504 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2505 fs_info->quota_root = root;
4bbcaa64
ES
2506 }
2507
2508 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2509 root = btrfs_read_tree_root(tree_root, &location);
2510 if (IS_ERR(root)) {
42437a63
JB
2511 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2512 ret = PTR_ERR(root);
2513 if (ret != -ENOENT)
2514 goto out;
2515 }
4bbcaa64 2516 } else {
a4f3d2c4
DS
2517 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2518 fs_info->uuid_root = root;
4bbcaa64
ES
2519 }
2520
70f6d82e
OS
2521 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2522 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2523 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2524 if (IS_ERR(root)) {
42437a63
JB
2525 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2526 ret = PTR_ERR(root);
2527 goto out;
2528 }
2529 } else {
2530 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2531 fs_info->free_space_root = root;
f50f4353 2532 }
70f6d82e
OS
2533 }
2534
4bbcaa64 2535 return 0;
f50f4353
LB
2536out:
2537 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2538 location.objectid, ret);
2539 return ret;
4bbcaa64
ES
2540}
2541
069ec957
QW
2542/*
2543 * Real super block validation
2544 * NOTE: super csum type and incompat features will not be checked here.
2545 *
2546 * @sb: super block to check
2547 * @mirror_num: the super block number to check its bytenr:
2548 * 0 the primary (1st) sb
2549 * 1, 2 2nd and 3rd backup copy
2550 * -1 skip bytenr check
2551 */
2552static int validate_super(struct btrfs_fs_info *fs_info,
2553 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2554{
21a852b0
QW
2555 u64 nodesize = btrfs_super_nodesize(sb);
2556 u64 sectorsize = btrfs_super_sectorsize(sb);
2557 int ret = 0;
2558
2559 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2560 btrfs_err(fs_info, "no valid FS found");
2561 ret = -EINVAL;
2562 }
2563 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2564 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2565 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2566 ret = -EINVAL;
2567 }
2568 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2569 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2570 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2571 ret = -EINVAL;
2572 }
2573 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2574 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2575 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2576 ret = -EINVAL;
2577 }
2578 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2579 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2580 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2581 ret = -EINVAL;
2582 }
2583
2584 /*
2585 * Check sectorsize and nodesize first, other check will need it.
2586 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2587 */
2588 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2589 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2590 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2591 ret = -EINVAL;
2592 }
0bb3eb3e
QW
2593
2594 /*
2595 * For 4K page size, we only support 4K sector size.
2596 * For 64K page size, we support read-write for 64K sector size, and
2597 * read-only for 4K sector size.
2598 */
2599 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2600 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2601 sectorsize != SZ_64K))) {
21a852b0 2602 btrfs_err(fs_info,
0bb3eb3e 2603 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2604 sectorsize, PAGE_SIZE);
2605 ret = -EINVAL;
2606 }
0bb3eb3e 2607
21a852b0
QW
2608 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2609 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2610 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2611 ret = -EINVAL;
2612 }
2613 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2614 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2615 le32_to_cpu(sb->__unused_leafsize), nodesize);
2616 ret = -EINVAL;
2617 }
2618
2619 /* Root alignment check */
2620 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2621 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2622 btrfs_super_root(sb));
2623 ret = -EINVAL;
2624 }
2625 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2626 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2627 btrfs_super_chunk_root(sb));
2628 ret = -EINVAL;
2629 }
2630 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2631 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2632 btrfs_super_log_root(sb));
2633 ret = -EINVAL;
2634 }
2635
aefd7f70
NB
2636 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2637 BTRFS_FSID_SIZE)) {
2638 btrfs_err(fs_info,
2639 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2640 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2641 ret = -EINVAL;
2642 }
2643
2644 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2645 memcmp(fs_info->fs_devices->metadata_uuid,
2646 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2647 btrfs_err(fs_info,
2648"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2649 fs_info->super_copy->metadata_uuid,
2650 fs_info->fs_devices->metadata_uuid);
2651 ret = -EINVAL;
2652 }
2653
de37aa51 2654 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2655 BTRFS_FSID_SIZE) != 0) {
21a852b0 2656 btrfs_err(fs_info,
7239ff4b 2657 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2658 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2659 ret = -EINVAL;
2660 }
2661
2662 /*
2663 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2664 * done later
2665 */
2666 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2667 btrfs_err(fs_info, "bytes_used is too small %llu",
2668 btrfs_super_bytes_used(sb));
2669 ret = -EINVAL;
2670 }
2671 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2672 btrfs_err(fs_info, "invalid stripesize %u",
2673 btrfs_super_stripesize(sb));
2674 ret = -EINVAL;
2675 }
2676 if (btrfs_super_num_devices(sb) > (1UL << 31))
2677 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2678 btrfs_super_num_devices(sb));
2679 if (btrfs_super_num_devices(sb) == 0) {
2680 btrfs_err(fs_info, "number of devices is 0");
2681 ret = -EINVAL;
2682 }
2683
069ec957
QW
2684 if (mirror_num >= 0 &&
2685 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2686 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2687 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2688 ret = -EINVAL;
2689 }
2690
2691 /*
2692 * Obvious sys_chunk_array corruptions, it must hold at least one key
2693 * and one chunk
2694 */
2695 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2696 btrfs_err(fs_info, "system chunk array too big %u > %u",
2697 btrfs_super_sys_array_size(sb),
2698 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2699 ret = -EINVAL;
2700 }
2701 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2702 + sizeof(struct btrfs_chunk)) {
2703 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2704 btrfs_super_sys_array_size(sb),
2705 sizeof(struct btrfs_disk_key)
2706 + sizeof(struct btrfs_chunk));
2707 ret = -EINVAL;
2708 }
2709
2710 /*
2711 * The generation is a global counter, we'll trust it more than the others
2712 * but it's still possible that it's the one that's wrong.
2713 */
2714 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2715 btrfs_warn(fs_info,
2716 "suspicious: generation < chunk_root_generation: %llu < %llu",
2717 btrfs_super_generation(sb),
2718 btrfs_super_chunk_root_generation(sb));
2719 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2720 && btrfs_super_cache_generation(sb) != (u64)-1)
2721 btrfs_warn(fs_info,
2722 "suspicious: generation < cache_generation: %llu < %llu",
2723 btrfs_super_generation(sb),
2724 btrfs_super_cache_generation(sb));
2725
2726 return ret;
2727}
2728
069ec957
QW
2729/*
2730 * Validation of super block at mount time.
2731 * Some checks already done early at mount time, like csum type and incompat
2732 * flags will be skipped.
2733 */
2734static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2735{
2736 return validate_super(fs_info, fs_info->super_copy, 0);
2737}
2738
75cb857d
QW
2739/*
2740 * Validation of super block at write time.
2741 * Some checks like bytenr check will be skipped as their values will be
2742 * overwritten soon.
2743 * Extra checks like csum type and incompat flags will be done here.
2744 */
2745static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2746 struct btrfs_super_block *sb)
2747{
2748 int ret;
2749
2750 ret = validate_super(fs_info, sb, -1);
2751 if (ret < 0)
2752 goto out;
e7e16f48 2753 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2754 ret = -EUCLEAN;
2755 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2756 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2757 goto out;
2758 }
2759 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2760 ret = -EUCLEAN;
2761 btrfs_err(fs_info,
2762 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2763 btrfs_super_incompat_flags(sb),
2764 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2765 goto out;
2766 }
2767out:
2768 if (ret < 0)
2769 btrfs_err(fs_info,
2770 "super block corruption detected before writing it to disk");
2771 return ret;
2772}
2773
6ef108dd 2774static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2775{
6ef108dd 2776 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2777 struct btrfs_super_block *sb = fs_info->super_copy;
2778 struct btrfs_root *tree_root = fs_info->tree_root;
2779 bool handle_error = false;
2780 int ret = 0;
2781 int i;
2782
2783 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2784 u64 generation;
2785 int level;
2786
2787 if (handle_error) {
2788 if (!IS_ERR(tree_root->node))
2789 free_extent_buffer(tree_root->node);
2790 tree_root->node = NULL;
2791
2792 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2793 break;
2794
2795 free_root_pointers(fs_info, 0);
2796
2797 /*
2798 * Don't use the log in recovery mode, it won't be
2799 * valid
2800 */
2801 btrfs_set_super_log_root(sb, 0);
2802
2803 /* We can't trust the free space cache either */
2804 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2805
2806 ret = read_backup_root(fs_info, i);
6ef108dd 2807 backup_index = ret;
b8522a1e
NB
2808 if (ret < 0)
2809 return ret;
2810 }
2811 generation = btrfs_super_generation(sb);
2812 level = btrfs_super_root_level(sb);
2813 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
1b7ec85e 2814 BTRFS_ROOT_TREE_OBJECTID,
b8522a1e 2815 generation, level, NULL);
217f5004 2816 if (IS_ERR(tree_root->node)) {
b8522a1e 2817 handle_error = true;
217f5004
NB
2818 ret = PTR_ERR(tree_root->node);
2819 tree_root->node = NULL;
2820 btrfs_warn(fs_info, "couldn't read tree root");
2821 continue;
b8522a1e 2822
217f5004
NB
2823 } else if (!extent_buffer_uptodate(tree_root->node)) {
2824 handle_error = true;
2825 ret = -EIO;
2826 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2827 continue;
2828 }
2829
2830 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2831 tree_root->commit_root = btrfs_root_node(tree_root);
2832 btrfs_set_root_refs(&tree_root->root_item, 1);
2833
336a0d8d
NB
2834 /*
2835 * No need to hold btrfs_root::objectid_mutex since the fs
2836 * hasn't been fully initialised and we are the only user
2837 */
453e4873 2838 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2839 if (ret < 0) {
b8522a1e
NB
2840 handle_error = true;
2841 continue;
2842 }
2843
6b8fad57 2844 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2845
2846 ret = btrfs_read_roots(fs_info);
2847 if (ret < 0) {
2848 handle_error = true;
2849 continue;
2850 }
2851
2852 /* All successful */
2853 fs_info->generation = generation;
2854 fs_info->last_trans_committed = generation;
6ef108dd
NB
2855
2856 /* Always begin writing backup roots after the one being used */
2857 if (backup_index < 0) {
2858 fs_info->backup_root_index = 0;
2859 } else {
2860 fs_info->backup_root_index = backup_index + 1;
2861 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2862 }
b8522a1e
NB
2863 break;
2864 }
2865
2866 return ret;
2867}
2868
8260edba 2869void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2870{
76dda93c 2871 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2872 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2873 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2874 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2875 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2876 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2877 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2878 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2879 spin_lock_init(&fs_info->trans_lock);
76dda93c 2880 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2881 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2882 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2883 spin_lock_init(&fs_info->super_lock);
f28491e0 2884 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2885 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2886 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2887 spin_lock_init(&fs_info->zone_active_bgs_lock);
f29021b2 2888 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2889 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2890 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2891 mutex_init(&fs_info->reloc_mutex);
573bfb72 2892 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2893 mutex_init(&fs_info->zoned_meta_io_lock);
de98ced9 2894 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2895
0b86a832 2896 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2897 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2898 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2899 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2900 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 2901 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
2902#ifdef CONFIG_BTRFS_DEBUG
2903 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2904 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2905 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2906#endif
c8bf1b67 2907 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2908 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2909 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2910 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2911 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2912 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2913 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2914 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2915 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2916 BTRFS_BLOCK_RSV_DELREFS);
2917
771ed689 2918 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2919 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2920 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2921 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2922 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2923 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2924 fs_info->metadata_ratio = 0;
4cb5300b 2925 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2926 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2927 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2928 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2929 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2930 /* readahead state */
d0164adc 2931 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2932 spin_lock_init(&fs_info->reada_lock);
fd708b81 2933 btrfs_init_ref_verify(fs_info);
c8b97818 2934
b34b086c
CM
2935 fs_info->thread_pool_size = min_t(unsigned long,
2936 num_online_cpus() + 2, 8);
0afbaf8c 2937
199c2a9c
MX
2938 INIT_LIST_HEAD(&fs_info->ordered_roots);
2939 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2940
638aa7ed 2941 btrfs_init_scrub(fs_info);
21adbd5c
SB
2942#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2943 fs_info->check_integrity_print_mask = 0;
2944#endif
779a65a4 2945 btrfs_init_balance(fs_info);
57056740 2946 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2947
0f9dd46c 2948 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2949 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2950 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2951
fe119a6e
NB
2952 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2953 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2954 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2955
5a3f23d5 2956 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2957 mutex_init(&fs_info->tree_log_mutex);
925baedd 2958 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2959 mutex_init(&fs_info->transaction_kthread_mutex);
2960 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2961 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2962 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2963 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2964 init_rwsem(&fs_info->subvol_sem);
803b2f54 2965 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2966
ad618368 2967 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2968 btrfs_init_qgroup(fs_info);
b0643e59 2969 btrfs_discard_init(fs_info);
416ac51d 2970
fa9c0d79
CM
2971 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2972 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2973
e6dcd2dc 2974 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2975 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2976 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2977 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2978 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2979
da17066c
JM
2980 /* Usable values until the real ones are cached from the superblock */
2981 fs_info->nodesize = 4096;
2982 fs_info->sectorsize = 4096;
ab108d99 2983 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2984 fs_info->stripesize = 4096;
2985
eede2bf3
OS
2986 spin_lock_init(&fs_info->swapfile_pins_lock);
2987 fs_info->swapfile_pins = RB_ROOT;
2988
1cea5cf0 2989 spin_lock_init(&fs_info->send_reloc_lock);
9e967495 2990 fs_info->send_in_progress = 0;
18bb8bbf
JT
2991
2992 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2993 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
2994}
2995
2996static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2997{
2998 int ret;
2999
3000 fs_info->sb = sb;
3001 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3002 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3003
5deb17e1 3004 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3005 if (ret)
c75e8394 3006 return ret;
ae18c37a
JB
3007
3008 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3009 if (ret)
c75e8394 3010 return ret;
ae18c37a
JB
3011
3012 fs_info->dirty_metadata_batch = PAGE_SIZE *
3013 (1 + ilog2(nr_cpu_ids));
3014
3015 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3016 if (ret)
c75e8394 3017 return ret;
ae18c37a
JB
3018
3019 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3020 GFP_KERNEL);
3021 if (ret)
c75e8394 3022 return ret;
ae18c37a
JB
3023
3024 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3025 GFP_KERNEL);
c75e8394
JB
3026 if (!fs_info->delayed_root)
3027 return -ENOMEM;
ae18c37a
JB
3028 btrfs_init_delayed_root(fs_info->delayed_root);
3029
a0a1db70
FM
3030 if (sb_rdonly(sb))
3031 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3032
c75e8394 3033 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3034}
3035
97f4dd09
NB
3036static int btrfs_uuid_rescan_kthread(void *data)
3037{
3038 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3039 int ret;
3040
3041 /*
3042 * 1st step is to iterate through the existing UUID tree and
3043 * to delete all entries that contain outdated data.
3044 * 2nd step is to add all missing entries to the UUID tree.
3045 */
3046 ret = btrfs_uuid_tree_iterate(fs_info);
3047 if (ret < 0) {
c94bec2c
JB
3048 if (ret != -EINTR)
3049 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3050 ret);
97f4dd09
NB
3051 up(&fs_info->uuid_tree_rescan_sem);
3052 return ret;
3053 }
3054 return btrfs_uuid_scan_kthread(data);
3055}
3056
3057static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3058{
3059 struct task_struct *task;
3060
3061 down(&fs_info->uuid_tree_rescan_sem);
3062 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3063 if (IS_ERR(task)) {
3064 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3065 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3066 up(&fs_info->uuid_tree_rescan_sem);
3067 return PTR_ERR(task);
3068 }
3069
3070 return 0;
3071}
3072
8cd29088
BB
3073/*
3074 * Some options only have meaning at mount time and shouldn't persist across
3075 * remounts, or be displayed. Clear these at the end of mount and remount
3076 * code paths.
3077 */
3078void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3079{
3080 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3081 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3082}
3083
44c0ca21
BB
3084/*
3085 * Mounting logic specific to read-write file systems. Shared by open_ctree
3086 * and btrfs_remount when remounting from read-only to read-write.
3087 */
3088int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3089{
3090 int ret;
94846229 3091 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3092 bool clear_free_space_tree = false;
3093
3094 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3095 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3096 clear_free_space_tree = true;
3097 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3098 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3099 btrfs_warn(fs_info, "free space tree is invalid");
3100 clear_free_space_tree = true;
3101 }
3102
3103 if (clear_free_space_tree) {
3104 btrfs_info(fs_info, "clearing free space tree");
3105 ret = btrfs_clear_free_space_tree(fs_info);
3106 if (ret) {
3107 btrfs_warn(fs_info,
3108 "failed to clear free space tree: %d", ret);
3109 goto out;
3110 }
3111 }
44c0ca21 3112
8d488a8c
FM
3113 /*
3114 * btrfs_find_orphan_roots() is responsible for finding all the dead
3115 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3116 * them into the fs_info->fs_roots_radix tree. This must be done before
3117 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3118 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3119 * item before the root's tree is deleted - this means that if we unmount
3120 * or crash before the deletion completes, on the next mount we will not
3121 * delete what remains of the tree because the orphan item does not
3122 * exists anymore, which is what tells us we have a pending deletion.
3123 */
3124 ret = btrfs_find_orphan_roots(fs_info);
3125 if (ret)
3126 goto out;
3127
44c0ca21
BB
3128 ret = btrfs_cleanup_fs_roots(fs_info);
3129 if (ret)
3130 goto out;
3131
8f1c21d7
BB
3132 down_read(&fs_info->cleanup_work_sem);
3133 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3134 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3135 up_read(&fs_info->cleanup_work_sem);
3136 goto out;
3137 }
3138 up_read(&fs_info->cleanup_work_sem);
3139
44c0ca21
BB
3140 mutex_lock(&fs_info->cleaner_mutex);
3141 ret = btrfs_recover_relocation(fs_info->tree_root);
3142 mutex_unlock(&fs_info->cleaner_mutex);
3143 if (ret < 0) {
3144 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3145 goto out;
3146 }
3147
5011139a
BB
3148 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3149 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3150 btrfs_info(fs_info, "creating free space tree");
3151 ret = btrfs_create_free_space_tree(fs_info);
3152 if (ret) {
3153 btrfs_warn(fs_info,
3154 "failed to create free space tree: %d", ret);
3155 goto out;
3156 }
3157 }
3158
94846229
BB
3159 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3160 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3161 if (ret)
3162 goto out;
3163 }
3164
44c0ca21
BB
3165 ret = btrfs_resume_balance_async(fs_info);
3166 if (ret)
3167 goto out;
3168
3169 ret = btrfs_resume_dev_replace_async(fs_info);
3170 if (ret) {
3171 btrfs_warn(fs_info, "failed to resume dev_replace");
3172 goto out;
3173 }
3174
3175 btrfs_qgroup_rescan_resume(fs_info);
3176
3177 if (!fs_info->uuid_root) {
3178 btrfs_info(fs_info, "creating UUID tree");
3179 ret = btrfs_create_uuid_tree(fs_info);
3180 if (ret) {
3181 btrfs_warn(fs_info,
3182 "failed to create the UUID tree %d", ret);
3183 goto out;
3184 }
3185 }
3186
3187out:
3188 return ret;
3189}
3190
ae18c37a
JB
3191int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3192 char *options)
3193{
3194 u32 sectorsize;
3195 u32 nodesize;
3196 u32 stripesize;
3197 u64 generation;
3198 u64 features;
3199 u16 csum_type;
ae18c37a
JB
3200 struct btrfs_super_block *disk_super;
3201 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3202 struct btrfs_root *tree_root;
3203 struct btrfs_root *chunk_root;
3204 int ret;
3205 int err = -EINVAL;
ae18c37a
JB
3206 int level;
3207
8260edba 3208 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3209 if (ret) {
83c8266a 3210 err = ret;
ae18c37a 3211 goto fail;
53b381b3
DW
3212 }
3213
ae18c37a
JB
3214 /* These need to be init'ed before we start creating inodes and such. */
3215 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3216 GFP_KERNEL);
3217 fs_info->tree_root = tree_root;
3218 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3219 GFP_KERNEL);
3220 fs_info->chunk_root = chunk_root;
3221 if (!tree_root || !chunk_root) {
3222 err = -ENOMEM;
c75e8394 3223 goto fail;
ae18c37a
JB
3224 }
3225
3226 fs_info->btree_inode = new_inode(sb);
3227 if (!fs_info->btree_inode) {
3228 err = -ENOMEM;
c75e8394 3229 goto fail;
ae18c37a
JB
3230 }
3231 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3232 btrfs_init_btree_inode(fs_info);
3233
d24fa5c1 3234 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3235
3236 /*
3237 * Read super block and check the signature bytes only
3238 */
d24fa5c1 3239 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3240 if (IS_ERR(disk_super)) {
3241 err = PTR_ERR(disk_super);
16cdcec7 3242 goto fail_alloc;
20b45077 3243 }
39279cc3 3244
8dc3f22c 3245 /*
260db43c 3246 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3247 * corrupted, we'll find out
3248 */
8f32380d 3249 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3250 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3251 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3252 csum_type);
8dc3f22c 3253 err = -EINVAL;
8f32380d 3254 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3255 goto fail_alloc;
3256 }
3257
83c68bbc
SY
3258 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3259
6d97c6e3
JT
3260 ret = btrfs_init_csum_hash(fs_info, csum_type);
3261 if (ret) {
3262 err = ret;
8f32380d 3263 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3264 goto fail_alloc;
3265 }
3266
1104a885
DS
3267 /*
3268 * We want to check superblock checksum, the type is stored inside.
3269 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3270 */
8f32380d 3271 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3272 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3273 err = -EINVAL;
8f32380d 3274 btrfs_release_disk_super(disk_super);
141386e1 3275 goto fail_alloc;
1104a885
DS
3276 }
3277
3278 /*
3279 * super_copy is zeroed at allocation time and we never touch the
3280 * following bytes up to INFO_SIZE, the checksum is calculated from
3281 * the whole block of INFO_SIZE
3282 */
8f32380d
JT
3283 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3284 btrfs_release_disk_super(disk_super);
5f39d397 3285
fbc6feae
NB
3286 disk_super = fs_info->super_copy;
3287
0b86a832 3288
fbc6feae
NB
3289 features = btrfs_super_flags(disk_super);
3290 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3291 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3292 btrfs_set_super_flags(disk_super, features);
3293 btrfs_info(fs_info,
3294 "found metadata UUID change in progress flag, clearing");
3295 }
3296
3297 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3298 sizeof(*fs_info->super_for_commit));
de37aa51 3299
069ec957 3300 ret = btrfs_validate_mount_super(fs_info);
1104a885 3301 if (ret) {
05135f59 3302 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3303 err = -EINVAL;
141386e1 3304 goto fail_alloc;
1104a885
DS
3305 }
3306
0f7d52f4 3307 if (!btrfs_super_root(disk_super))
141386e1 3308 goto fail_alloc;
0f7d52f4 3309
acce952b 3310 /* check FS state, whether FS is broken. */
87533c47
MX
3311 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3312 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3313
75e7cb7f
LB
3314 /*
3315 * In the long term, we'll store the compression type in the super
3316 * block, and it'll be used for per file compression control.
3317 */
3318 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3319
6f93e834
AJ
3320 /*
3321 * Flag our filesystem as having big metadata blocks if they are bigger
3322 * than the page size.
3323 */
3324 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3325 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3326 btrfs_info(fs_info,
3327 "flagging fs with big metadata feature");
3328 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3329 }
3330
3331 /* Set up fs_info before parsing mount options */
3332 nodesize = btrfs_super_nodesize(disk_super);
3333 sectorsize = btrfs_super_sectorsize(disk_super);
3334 stripesize = sectorsize;
3335 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3336 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3337
3338 fs_info->nodesize = nodesize;
3339 fs_info->sectorsize = sectorsize;
3340 fs_info->sectorsize_bits = ilog2(sectorsize);
3341 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3342 fs_info->stripesize = stripesize;
3343
2ff7e61e 3344 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3345 if (ret) {
3346 err = ret;
141386e1 3347 goto fail_alloc;
2b82032c 3348 }
dfe25020 3349
f2b636e8
JB
3350 features = btrfs_super_incompat_flags(disk_super) &
3351 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3352 if (features) {
05135f59
DS
3353 btrfs_err(fs_info,
3354 "cannot mount because of unsupported optional features (%llx)",
3355 features);
f2b636e8 3356 err = -EINVAL;
141386e1 3357 goto fail_alloc;
f2b636e8
JB
3358 }
3359
5d4f98a2 3360 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3361 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3362 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3363 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3364 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3365 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3366
3173a18f 3367 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3368 btrfs_info(fs_info, "has skinny extents");
3173a18f 3369
bc3f116f
CM
3370 /*
3371 * mixed block groups end up with duplicate but slightly offset
3372 * extent buffers for the same range. It leads to corruptions
3373 */
3374 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3375 (sectorsize != nodesize)) {
05135f59
DS
3376 btrfs_err(fs_info,
3377"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3378 nodesize, sectorsize);
141386e1 3379 goto fail_alloc;
bc3f116f
CM
3380 }
3381
ceda0864
MX
3382 /*
3383 * Needn't use the lock because there is no other task which will
3384 * update the flag.
3385 */
a6fa6fae 3386 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3387
f2b636e8
JB
3388 features = btrfs_super_compat_ro_flags(disk_super) &
3389 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3390 if (!sb_rdonly(sb) && features) {
05135f59
DS
3391 btrfs_err(fs_info,
3392 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3393 features);
f2b636e8 3394 err = -EINVAL;
141386e1 3395 goto fail_alloc;
f2b636e8 3396 }
61d92c32 3397
8481dd80
QW
3398 if (sectorsize < PAGE_SIZE) {
3399 struct btrfs_subpage_info *subpage_info;
3400
95ea0486
QW
3401 btrfs_warn(fs_info,
3402 "read-write for sector size %u with page size %lu is experimental",
3403 sectorsize, PAGE_SIZE);
c8050b3b
QW
3404 if (btrfs_super_incompat_flags(fs_info->super_copy) &
3405 BTRFS_FEATURE_INCOMPAT_RAID56) {
3406 btrfs_err(fs_info,
3407 "RAID56 is not yet supported for sector size %u with page size %lu",
3408 sectorsize, PAGE_SIZE);
3409 err = -EINVAL;
3410 goto fail_alloc;
3411 }
8481dd80
QW
3412 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3413 if (!subpage_info)
3414 goto fail_alloc;
3415 btrfs_init_subpage_info(subpage_info, sectorsize);
3416 fs_info->subpage_info = subpage_info;
c8050b3b 3417 }
0bb3eb3e 3418
2a458198
ES
3419 ret = btrfs_init_workqueues(fs_info, fs_devices);
3420 if (ret) {
3421 err = ret;
0dc3b84a
JB
3422 goto fail_sb_buffer;
3423 }
4543df7e 3424
9e11ceee
JK
3425 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3426 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3427
a061fc8d
CM
3428 sb->s_blocksize = sectorsize;
3429 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3430 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3431
925baedd 3432 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3433 ret = btrfs_read_sys_array(fs_info);
925baedd 3434 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3435 if (ret) {
05135f59 3436 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3437 goto fail_sb_buffer;
84eed90f 3438 }
0b86a832 3439
84234f3a 3440 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3441 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3442
2ff7e61e 3443 chunk_root->node = read_tree_block(fs_info,
0b86a832 3444 btrfs_super_chunk_root(disk_super),
1b7ec85e 3445 BTRFS_CHUNK_TREE_OBJECTID,
581c1760 3446 generation, level, NULL);
64c043de
LB
3447 if (IS_ERR(chunk_root->node) ||
3448 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3449 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3450 if (!IS_ERR(chunk_root->node))
3451 free_extent_buffer(chunk_root->node);
95ab1f64 3452 chunk_root->node = NULL;
af31f5e5 3453 goto fail_tree_roots;
83121942 3454 }
5d4f98a2
YZ
3455 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3456 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3457
e17cade2 3458 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3459 offsetof(struct btrfs_header, chunk_tree_uuid),
3460 BTRFS_UUID_SIZE);
e17cade2 3461
5b4aacef 3462 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3463 if (ret) {
05135f59 3464 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3465 goto fail_tree_roots;
2b82032c 3466 }
0b86a832 3467
8dabb742 3468 /*
bacce86a
AJ
3469 * At this point we know all the devices that make this filesystem,
3470 * including the seed devices but we don't know yet if the replace
3471 * target is required. So free devices that are not part of this
1a9fd417 3472 * filesystem but skip the replace target device which is checked
bacce86a 3473 * below in btrfs_init_dev_replace().
8dabb742 3474 */
bacce86a 3475 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3476 if (!fs_devices->latest_dev->bdev) {
05135f59 3477 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3478 goto fail_tree_roots;
3479 }
3480
b8522a1e 3481 ret = init_tree_roots(fs_info);
4bbcaa64 3482 if (ret)
b8522a1e 3483 goto fail_tree_roots;
8929ecfa 3484
73651042
NA
3485 /*
3486 * Get zone type information of zoned block devices. This will also
3487 * handle emulation of a zoned filesystem if a regular device has the
3488 * zoned incompat feature flag set.
3489 */
3490 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3491 if (ret) {
3492 btrfs_err(fs_info,
3493 "zoned: failed to read device zone info: %d",
3494 ret);
3495 goto fail_block_groups;
3496 }
3497
75ec1db8
JB
3498 /*
3499 * If we have a uuid root and we're not being told to rescan we need to
3500 * check the generation here so we can set the
3501 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3502 * transaction during a balance or the log replay without updating the
3503 * uuid generation, and then if we crash we would rescan the uuid tree,
3504 * even though it was perfectly fine.
3505 */
3506 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3507 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3508 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3509
cf90d884
QW
3510 ret = btrfs_verify_dev_extents(fs_info);
3511 if (ret) {
3512 btrfs_err(fs_info,
3513 "failed to verify dev extents against chunks: %d",
3514 ret);
3515 goto fail_block_groups;
3516 }
68310a5e
ID
3517 ret = btrfs_recover_balance(fs_info);
3518 if (ret) {
05135f59 3519 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3520 goto fail_block_groups;
3521 }
3522
733f4fbb
SB
3523 ret = btrfs_init_dev_stats(fs_info);
3524 if (ret) {
05135f59 3525 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3526 goto fail_block_groups;
3527 }
3528
8dabb742
SB
3529 ret = btrfs_init_dev_replace(fs_info);
3530 if (ret) {
05135f59 3531 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3532 goto fail_block_groups;
3533 }
3534
b70f5097
NA
3535 ret = btrfs_check_zoned_mode(fs_info);
3536 if (ret) {
3537 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3538 ret);
3539 goto fail_block_groups;
3540 }
3541
c6761a9e 3542 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3543 if (ret) {
05135f59
DS
3544 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3545 ret);
b7c35e81
AJ
3546 goto fail_block_groups;
3547 }
3548
96f3136e 3549 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3550 if (ret) {
05135f59 3551 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3552 goto fail_fsdev_sysfs;
c59021f8 3553 }
3554
c59021f8 3555 ret = btrfs_init_space_info(fs_info);
3556 if (ret) {
05135f59 3557 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3558 goto fail_sysfs;
c59021f8 3559 }
3560
5b4aacef 3561 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3562 if (ret) {
05135f59 3563 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3564 goto fail_sysfs;
1b1d1f66 3565 }
4330e183 3566
6528b99d 3567 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3568 btrfs_warn(fs_info,
52042d8e 3569 "writable mount is not allowed due to too many missing devices");
2365dd3c 3570 goto fail_sysfs;
292fd7fc 3571 }
9078a3e1 3572
a74a4b97
CM
3573 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3574 "btrfs-cleaner");
57506d50 3575 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3576 goto fail_sysfs;
a74a4b97
CM
3577
3578 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3579 tree_root,
3580 "btrfs-transaction");
57506d50 3581 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3582 goto fail_cleaner;
a74a4b97 3583
583b7231 3584 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3585 !fs_info->fs_devices->rotating) {
583b7231 3586 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3587 }
3588
572d9ab7 3589 /*
01327610 3590 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3591 * not have to wait for transaction commit
3592 */
3593 btrfs_apply_pending_changes(fs_info);
3818aea2 3594
21adbd5c 3595#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3596 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3597 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3598 btrfs_test_opt(fs_info,
cbeaae4f 3599 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3600 fs_info->check_integrity_print_mask);
3601 if (ret)
05135f59
DS
3602 btrfs_warn(fs_info,
3603 "failed to initialize integrity check module: %d",
3604 ret);
21adbd5c
SB
3605 }
3606#endif
bcef60f2
AJ
3607 ret = btrfs_read_qgroup_config(fs_info);
3608 if (ret)
3609 goto fail_trans_kthread;
21adbd5c 3610
fd708b81
JB
3611 if (btrfs_build_ref_tree(fs_info))
3612 btrfs_err(fs_info, "couldn't build ref tree");
3613
96da0919
QW
3614 /* do not make disk changes in broken FS or nologreplay is given */
3615 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3616 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3617 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3618 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3619 if (ret) {
63443bf5 3620 err = ret;
28c16cbb 3621 goto fail_qgroup;
79787eaa 3622 }
e02119d5 3623 }
1a40e23b 3624
56e9357a 3625 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3626 if (IS_ERR(fs_info->fs_root)) {
3627 err = PTR_ERR(fs_info->fs_root);
f50f4353 3628 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3629 fs_info->fs_root = NULL;
bcef60f2 3630 goto fail_qgroup;
3140c9a3 3631 }
c289811c 3632
bc98a42c 3633 if (sb_rdonly(sb))
8cd29088 3634 goto clear_oneshot;
59641015 3635
44c0ca21 3636 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3637 if (ret) {
6bccf3ab 3638 close_ctree(fs_info);
2b6ba629 3639 return ret;
e3acc2a6 3640 }
b0643e59 3641 btrfs_discard_resume(fs_info);
b382a324 3642
44c0ca21
BB
3643 if (fs_info->uuid_root &&
3644 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3645 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3646 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3647 ret = btrfs_check_uuid_tree(fs_info);
3648 if (ret) {
05135f59
DS
3649 btrfs_warn(fs_info,
3650 "failed to check the UUID tree: %d", ret);
6bccf3ab 3651 close_ctree(fs_info);
70f80175
SB
3652 return ret;
3653 }
f7a81ea4 3654 }
94846229 3655
afcdd129 3656 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3657
8cd29088
BB
3658clear_oneshot:
3659 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3660 return 0;
39279cc3 3661
bcef60f2
AJ
3662fail_qgroup:
3663 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3664fail_trans_kthread:
3665 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3666 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3667 btrfs_free_fs_roots(fs_info);
3f157a2f 3668fail_cleaner:
a74a4b97 3669 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3670
3671 /*
3672 * make sure we're done with the btree inode before we stop our
3673 * kthreads
3674 */
3675 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3676
2365dd3c 3677fail_sysfs:
6618a59b 3678 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3679
b7c35e81
AJ
3680fail_fsdev_sysfs:
3681 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3682
1b1d1f66 3683fail_block_groups:
54067ae9 3684 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3685
3686fail_tree_roots:
9e3aa805
JB
3687 if (fs_info->data_reloc_root)
3688 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3689 free_root_pointers(fs_info, true);
2b8195bb 3690 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3691
39279cc3 3692fail_sb_buffer:
7abadb64 3693 btrfs_stop_all_workers(fs_info);
5cdd7db6 3694 btrfs_free_block_groups(fs_info);
16cdcec7 3695fail_alloc:
586e46e2
ID
3696 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3697
4543df7e 3698 iput(fs_info->btree_inode);
7e662854 3699fail:
586e46e2 3700 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3701 return err;
eb60ceac 3702}
663faf9f 3703ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3704
314b6dd0 3705static void btrfs_end_super_write(struct bio *bio)
f2984462 3706{
314b6dd0
JT
3707 struct btrfs_device *device = bio->bi_private;
3708 struct bio_vec *bvec;
3709 struct bvec_iter_all iter_all;
3710 struct page *page;
3711
3712 bio_for_each_segment_all(bvec, bio, iter_all) {
3713 page = bvec->bv_page;
3714
3715 if (bio->bi_status) {
3716 btrfs_warn_rl_in_rcu(device->fs_info,
3717 "lost page write due to IO error on %s (%d)",
3718 rcu_str_deref(device->name),
3719 blk_status_to_errno(bio->bi_status));
3720 ClearPageUptodate(page);
3721 SetPageError(page);
3722 btrfs_dev_stat_inc_and_print(device,
3723 BTRFS_DEV_STAT_WRITE_ERRS);
3724 } else {
3725 SetPageUptodate(page);
3726 }
3727
3728 put_page(page);
3729 unlock_page(page);
f2984462 3730 }
314b6dd0
JT
3731
3732 bio_put(bio);
f2984462
CM
3733}
3734
8f32380d
JT
3735struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3736 int copy_num)
29c36d72 3737{
29c36d72 3738 struct btrfs_super_block *super;
8f32380d 3739 struct page *page;
12659251 3740 u64 bytenr, bytenr_orig;
8f32380d 3741 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3742 int ret;
3743
3744 bytenr_orig = btrfs_sb_offset(copy_num);
3745 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3746 if (ret == -ENOENT)
3747 return ERR_PTR(-EINVAL);
3748 else if (ret)
3749 return ERR_PTR(ret);
29c36d72 3750
29c36d72 3751 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3752 return ERR_PTR(-EINVAL);
29c36d72 3753
8f32380d
JT
3754 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3755 if (IS_ERR(page))
3756 return ERR_CAST(page);
29c36d72 3757
8f32380d 3758 super = page_address(page);
96c2e067
AJ
3759 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3760 btrfs_release_disk_super(super);
3761 return ERR_PTR(-ENODATA);
3762 }
3763
12659251 3764 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3765 btrfs_release_disk_super(super);
3766 return ERR_PTR(-EINVAL);
29c36d72
AJ
3767 }
3768
8f32380d 3769 return super;
29c36d72
AJ
3770}
3771
3772
8f32380d 3773struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3774{
8f32380d 3775 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3776 int i;
3777 u64 transid = 0;
a512bbf8
YZ
3778
3779 /* we would like to check all the supers, but that would make
3780 * a btrfs mount succeed after a mkfs from a different FS.
3781 * So, we need to add a special mount option to scan for
3782 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3783 */
3784 for (i = 0; i < 1; i++) {
8f32380d
JT
3785 super = btrfs_read_dev_one_super(bdev, i);
3786 if (IS_ERR(super))
a512bbf8
YZ
3787 continue;
3788
a512bbf8 3789 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3790 if (latest)
3791 btrfs_release_disk_super(super);
3792
3793 latest = super;
a512bbf8 3794 transid = btrfs_super_generation(super);
a512bbf8
YZ
3795 }
3796 }
92fc03fb 3797
8f32380d 3798 return super;
a512bbf8
YZ
3799}
3800
4eedeb75 3801/*
abbb3b8e 3802 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3803 * pages we use for writing are locked.
4eedeb75 3804 *
abbb3b8e
DS
3805 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3806 * the expected device size at commit time. Note that max_mirrors must be
3807 * same for write and wait phases.
4eedeb75 3808 *
314b6dd0 3809 * Return number of errors when page is not found or submission fails.
4eedeb75 3810 */
a512bbf8 3811static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3812 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3813{
d5178578 3814 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3815 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3816 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3817 int i;
a512bbf8 3818 int errors = 0;
12659251
NA
3819 int ret;
3820 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3821
3822 if (max_mirrors == 0)
3823 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3824
d5178578
JT
3825 shash->tfm = fs_info->csum_shash;
3826
a512bbf8 3827 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3828 struct page *page;
3829 struct bio *bio;
3830 struct btrfs_super_block *disk_super;
3831
12659251
NA
3832 bytenr_orig = btrfs_sb_offset(i);
3833 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3834 if (ret == -ENOENT) {
3835 continue;
3836 } else if (ret < 0) {
3837 btrfs_err(device->fs_info,
3838 "couldn't get super block location for mirror %d",
3839 i);
3840 errors++;
3841 continue;
3842 }
935e5cc9
MX
3843 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3844 device->commit_total_bytes)
a512bbf8
YZ
3845 break;
3846
12659251 3847 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3848
fd08001f
EB
3849 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3850 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3851 sb->csum);
4eedeb75 3852
314b6dd0
JT
3853 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3854 GFP_NOFS);
3855 if (!page) {
abbb3b8e 3856 btrfs_err(device->fs_info,
314b6dd0 3857 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3858 bytenr);
3859 errors++;
4eedeb75 3860 continue;
abbb3b8e 3861 }
634554dc 3862
314b6dd0
JT
3863 /* Bump the refcount for wait_dev_supers() */
3864 get_page(page);
a512bbf8 3865
314b6dd0
JT
3866 disk_super = page_address(page);
3867 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3868
314b6dd0
JT
3869 /*
3870 * Directly use bios here instead of relying on the page cache
3871 * to do I/O, so we don't lose the ability to do integrity
3872 * checking.
3873 */
3874 bio = bio_alloc(GFP_NOFS, 1);
3875 bio_set_dev(bio, device->bdev);
3876 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3877 bio->bi_private = device;
3878 bio->bi_end_io = btrfs_end_super_write;
3879 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3880 offset_in_page(bytenr));
a512bbf8 3881
387125fc 3882 /*
314b6dd0
JT
3883 * We FUA only the first super block. The others we allow to
3884 * go down lazy and there's a short window where the on-disk
3885 * copies might still contain the older version.
387125fc 3886 */
314b6dd0 3887 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3888 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3889 bio->bi_opf |= REQ_FUA;
3890
3891 btrfsic_submit_bio(bio);
8376d9e1
NA
3892
3893 if (btrfs_advance_sb_log(device, i))
3894 errors++;
a512bbf8
YZ
3895 }
3896 return errors < i ? 0 : -1;
3897}
3898
abbb3b8e
DS
3899/*
3900 * Wait for write completion of superblocks done by write_dev_supers,
3901 * @max_mirrors same for write and wait phases.
3902 *
314b6dd0 3903 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3904 * date.
3905 */
3906static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3907{
abbb3b8e
DS
3908 int i;
3909 int errors = 0;
b6a535fa 3910 bool primary_failed = false;
12659251 3911 int ret;
abbb3b8e
DS
3912 u64 bytenr;
3913
3914 if (max_mirrors == 0)
3915 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3916
3917 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3918 struct page *page;
3919
12659251
NA
3920 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3921 if (ret == -ENOENT) {
3922 break;
3923 } else if (ret < 0) {
3924 errors++;
3925 if (i == 0)
3926 primary_failed = true;
3927 continue;
3928 }
abbb3b8e
DS
3929 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3930 device->commit_total_bytes)
3931 break;
3932
314b6dd0
JT
3933 page = find_get_page(device->bdev->bd_inode->i_mapping,
3934 bytenr >> PAGE_SHIFT);
3935 if (!page) {
abbb3b8e 3936 errors++;
b6a535fa
HM
3937 if (i == 0)
3938 primary_failed = true;
abbb3b8e
DS
3939 continue;
3940 }
314b6dd0
JT
3941 /* Page is submitted locked and unlocked once the IO completes */
3942 wait_on_page_locked(page);
3943 if (PageError(page)) {
abbb3b8e 3944 errors++;
b6a535fa
HM
3945 if (i == 0)
3946 primary_failed = true;
3947 }
abbb3b8e 3948
314b6dd0
JT
3949 /* Drop our reference */
3950 put_page(page);
abbb3b8e 3951
314b6dd0
JT
3952 /* Drop the reference from the writing run */
3953 put_page(page);
abbb3b8e
DS
3954 }
3955
b6a535fa
HM
3956 /* log error, force error return */
3957 if (primary_failed) {
3958 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3959 device->devid);
3960 return -1;
3961 }
3962
abbb3b8e
DS
3963 return errors < i ? 0 : -1;
3964}
3965
387125fc
CM
3966/*
3967 * endio for the write_dev_flush, this will wake anyone waiting
3968 * for the barrier when it is done
3969 */
4246a0b6 3970static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3971{
e0ae9994 3972 complete(bio->bi_private);
387125fc
CM
3973}
3974
3975/*
4fc6441a
AJ
3976 * Submit a flush request to the device if it supports it. Error handling is
3977 * done in the waiting counterpart.
387125fc 3978 */
4fc6441a 3979static void write_dev_flush(struct btrfs_device *device)
387125fc 3980{
c2a9c7ab 3981 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3982 struct bio *bio = device->flush_bio;
387125fc 3983
c2a9c7ab 3984 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3985 return;
387125fc 3986
e0ae9994 3987 bio_reset(bio);
387125fc 3988 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3989 bio_set_dev(bio, device->bdev);
8d910125 3990 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3991 init_completion(&device->flush_wait);
3992 bio->bi_private = &device->flush_wait;
387125fc 3993
43a01111 3994 btrfsic_submit_bio(bio);
1c3063b6 3995 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3996}
387125fc 3997
4fc6441a
AJ
3998/*
3999 * If the flush bio has been submitted by write_dev_flush, wait for it.
4000 */
8c27cb35 4001static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4002{
4fc6441a 4003 struct bio *bio = device->flush_bio;
387125fc 4004
1c3063b6 4005 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4006 return BLK_STS_OK;
387125fc 4007
1c3063b6 4008 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4009 wait_for_completion_io(&device->flush_wait);
387125fc 4010
8c27cb35 4011 return bio->bi_status;
387125fc 4012}
387125fc 4013
d10b82fe 4014static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4015{
6528b99d 4016 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4017 return -EIO;
387125fc
CM
4018 return 0;
4019}
4020
4021/*
4022 * send an empty flush down to each device in parallel,
4023 * then wait for them
4024 */
4025static int barrier_all_devices(struct btrfs_fs_info *info)
4026{
4027 struct list_head *head;
4028 struct btrfs_device *dev;
5af3e8cc 4029 int errors_wait = 0;
4e4cbee9 4030 blk_status_t ret;
387125fc 4031
1538e6c5 4032 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4033 /* send down all the barriers */
4034 head = &info->fs_devices->devices;
1538e6c5 4035 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4036 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4037 continue;
cea7c8bf 4038 if (!dev->bdev)
387125fc 4039 continue;
e12c9621 4040 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4041 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4042 continue;
4043
4fc6441a 4044 write_dev_flush(dev);
58efbc9f 4045 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4046 }
4047
4048 /* wait for all the barriers */
1538e6c5 4049 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4050 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4051 continue;
387125fc 4052 if (!dev->bdev) {
5af3e8cc 4053 errors_wait++;
387125fc
CM
4054 continue;
4055 }
e12c9621 4056 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4057 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4058 continue;
4059
4fc6441a 4060 ret = wait_dev_flush(dev);
401b41e5
AJ
4061 if (ret) {
4062 dev->last_flush_error = ret;
66b4993e
DS
4063 btrfs_dev_stat_inc_and_print(dev,
4064 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4065 errors_wait++;
401b41e5
AJ
4066 }
4067 }
4068
cea7c8bf 4069 if (errors_wait) {
401b41e5
AJ
4070 /*
4071 * At some point we need the status of all disks
4072 * to arrive at the volume status. So error checking
4073 * is being pushed to a separate loop.
4074 */
d10b82fe 4075 return check_barrier_error(info);
387125fc 4076 }
387125fc
CM
4077 return 0;
4078}
4079
943c6e99
ZL
4080int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4081{
8789f4fe
ZL
4082 int raid_type;
4083 int min_tolerated = INT_MAX;
943c6e99 4084
8789f4fe
ZL
4085 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4086 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4087 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4088 btrfs_raid_array[BTRFS_RAID_SINGLE].
4089 tolerated_failures);
943c6e99 4090
8789f4fe
ZL
4091 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4092 if (raid_type == BTRFS_RAID_SINGLE)
4093 continue;
41a6e891 4094 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4095 continue;
8c3e3582 4096 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4097 btrfs_raid_array[raid_type].
4098 tolerated_failures);
4099 }
943c6e99 4100
8789f4fe 4101 if (min_tolerated == INT_MAX) {
ab8d0fc4 4102 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4103 min_tolerated = 0;
4104 }
4105
4106 return min_tolerated;
943c6e99
ZL
4107}
4108
eece6a9c 4109int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4110{
e5e9a520 4111 struct list_head *head;
f2984462 4112 struct btrfs_device *dev;
a061fc8d 4113 struct btrfs_super_block *sb;
f2984462 4114 struct btrfs_dev_item *dev_item;
f2984462
CM
4115 int ret;
4116 int do_barriers;
a236aed1
CM
4117 int max_errors;
4118 int total_errors = 0;
a061fc8d 4119 u64 flags;
f2984462 4120
0b246afa 4121 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4122
4123 /*
4124 * max_mirrors == 0 indicates we're from commit_transaction,
4125 * not from fsync where the tree roots in fs_info have not
4126 * been consistent on disk.
4127 */
4128 if (max_mirrors == 0)
4129 backup_super_roots(fs_info);
f2984462 4130
0b246afa 4131 sb = fs_info->super_for_commit;
a061fc8d 4132 dev_item = &sb->dev_item;
e5e9a520 4133
0b246afa
JM
4134 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4135 head = &fs_info->fs_devices->devices;
4136 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4137
5af3e8cc 4138 if (do_barriers) {
0b246afa 4139 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4140 if (ret) {
4141 mutex_unlock(
0b246afa
JM
4142 &fs_info->fs_devices->device_list_mutex);
4143 btrfs_handle_fs_error(fs_info, ret,
4144 "errors while submitting device barriers.");
5af3e8cc
SB
4145 return ret;
4146 }
4147 }
387125fc 4148
1538e6c5 4149 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4150 if (!dev->bdev) {
4151 total_errors++;
4152 continue;
4153 }
e12c9621 4154 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4155 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4156 continue;
4157
2b82032c 4158 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4159 btrfs_set_stack_device_type(dev_item, dev->type);
4160 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4161 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4162 dev->commit_total_bytes);
ce7213c7
MX
4163 btrfs_set_stack_device_bytes_used(dev_item,
4164 dev->commit_bytes_used);
a061fc8d
CM
4165 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4166 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4167 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4168 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4169 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4170 BTRFS_FSID_SIZE);
a512bbf8 4171
a061fc8d
CM
4172 flags = btrfs_super_flags(sb);
4173 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4174
75cb857d
QW
4175 ret = btrfs_validate_write_super(fs_info, sb);
4176 if (ret < 0) {
4177 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4178 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4179 "unexpected superblock corruption detected");
4180 return -EUCLEAN;
4181 }
4182
abbb3b8e 4183 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4184 if (ret)
4185 total_errors++;
f2984462 4186 }
a236aed1 4187 if (total_errors > max_errors) {
0b246afa
JM
4188 btrfs_err(fs_info, "%d errors while writing supers",
4189 total_errors);
4190 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4191
9d565ba4 4192 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4193 btrfs_handle_fs_error(fs_info, -EIO,
4194 "%d errors while writing supers",
4195 total_errors);
9d565ba4 4196 return -EIO;
a236aed1 4197 }
f2984462 4198
a512bbf8 4199 total_errors = 0;
1538e6c5 4200 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4201 if (!dev->bdev)
4202 continue;
e12c9621 4203 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4204 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4205 continue;
4206
abbb3b8e 4207 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4208 if (ret)
4209 total_errors++;
f2984462 4210 }
0b246afa 4211 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4212 if (total_errors > max_errors) {
0b246afa
JM
4213 btrfs_handle_fs_error(fs_info, -EIO,
4214 "%d errors while writing supers",
4215 total_errors);
79787eaa 4216 return -EIO;
a236aed1 4217 }
f2984462
CM
4218 return 0;
4219}
4220
cb517eab
MX
4221/* Drop a fs root from the radix tree and free it. */
4222void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4223 struct btrfs_root *root)
2619ba1f 4224{
4785e24f
JB
4225 bool drop_ref = false;
4226
4df27c4d 4227 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
4228 radix_tree_delete(&fs_info->fs_roots_radix,
4229 (unsigned long)root->root_key.objectid);
af01d2e5 4230 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4231 drop_ref = true;
4df27c4d 4232 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4233
1c1ea4f7 4234 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 4235 ASSERT(root->log_root == NULL);
1c1ea4f7 4236 if (root->reloc_root) {
00246528 4237 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4238 root->reloc_root = NULL;
4239 }
4240 }
3321719e 4241
4785e24f
JB
4242 if (drop_ref)
4243 btrfs_put_root(root);
2619ba1f
CM
4244}
4245
c146afad 4246int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4247{
c146afad
YZ
4248 u64 root_objectid = 0;
4249 struct btrfs_root *gang[8];
65d33fd7
QW
4250 int i = 0;
4251 int err = 0;
4252 unsigned int ret = 0;
e089f05c 4253
c146afad 4254 while (1) {
efc34534 4255 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
4256 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4257 (void **)gang, root_objectid,
4258 ARRAY_SIZE(gang));
65d33fd7 4259 if (!ret) {
efc34534 4260 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 4261 break;
65d33fd7 4262 }
5d4f98a2 4263 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4264
c146afad 4265 for (i = 0; i < ret; i++) {
65d33fd7
QW
4266 /* Avoid to grab roots in dead_roots */
4267 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4268 gang[i] = NULL;
4269 continue;
4270 }
4271 /* grab all the search result for later use */
00246528 4272 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4273 }
efc34534 4274 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4275
65d33fd7
QW
4276 for (i = 0; i < ret; i++) {
4277 if (!gang[i])
4278 continue;
c146afad 4279 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4280 err = btrfs_orphan_cleanup(gang[i]);
4281 if (err)
65d33fd7 4282 break;
00246528 4283 btrfs_put_root(gang[i]);
c146afad
YZ
4284 }
4285 root_objectid++;
4286 }
65d33fd7
QW
4287
4288 /* release the uncleaned roots due to error */
4289 for (; i < ret; i++) {
4290 if (gang[i])
00246528 4291 btrfs_put_root(gang[i]);
65d33fd7
QW
4292 }
4293 return err;
c146afad 4294}
a2135011 4295
6bccf3ab 4296int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4297{
6bccf3ab 4298 struct btrfs_root *root = fs_info->tree_root;
c146afad 4299 struct btrfs_trans_handle *trans;
a74a4b97 4300
0b246afa 4301 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4302 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4303 mutex_unlock(&fs_info->cleaner_mutex);
4304 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4305
4306 /* wait until ongoing cleanup work done */
0b246afa
JM
4307 down_write(&fs_info->cleanup_work_sem);
4308 up_write(&fs_info->cleanup_work_sem);
c71bf099 4309
7a7eaa40 4310 trans = btrfs_join_transaction(root);
3612b495
TI
4311 if (IS_ERR(trans))
4312 return PTR_ERR(trans);
3a45bb20 4313 return btrfs_commit_transaction(trans);
c146afad
YZ
4314}
4315
b105e927 4316void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4317{
c146afad
YZ
4318 int ret;
4319
afcdd129 4320 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4321 /*
4322 * We don't want the cleaner to start new transactions, add more delayed
4323 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4324 * because that frees the task_struct, and the transaction kthread might
4325 * still try to wake up the cleaner.
4326 */
4327 kthread_park(fs_info->cleaner_kthread);
c146afad 4328
7343dd61 4329 /* wait for the qgroup rescan worker to stop */
d06f23d6 4330 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4331
803b2f54
SB
4332 /* wait for the uuid_scan task to finish */
4333 down(&fs_info->uuid_tree_rescan_sem);
4334 /* avoid complains from lockdep et al., set sem back to initial state */
4335 up(&fs_info->uuid_tree_rescan_sem);
4336
837d5b6e 4337 /* pause restriper - we want to resume on mount */
aa1b8cd4 4338 btrfs_pause_balance(fs_info);
837d5b6e 4339
8dabb742
SB
4340 btrfs_dev_replace_suspend_for_unmount(fs_info);
4341
aa1b8cd4 4342 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4343
4344 /* wait for any defraggers to finish */
4345 wait_event(fs_info->transaction_wait,
4346 (atomic_read(&fs_info->defrag_running) == 0));
4347
4348 /* clear out the rbtree of defraggable inodes */
26176e7c 4349 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4350
21c7e756 4351 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4352 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4353 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4354
18bb8bbf
JT
4355 cancel_work_sync(&fs_info->reclaim_bgs_work);
4356
b0643e59
DZ
4357 /* Cancel or finish ongoing discard work */
4358 btrfs_discard_cleanup(fs_info);
4359
bc98a42c 4360 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4361 /*
d6fd0ae2
OS
4362 * The cleaner kthread is stopped, so do one final pass over
4363 * unused block groups.
e44163e1 4364 */
0b246afa 4365 btrfs_delete_unused_bgs(fs_info);
e44163e1 4366
f0cc2cd7
FM
4367 /*
4368 * There might be existing delayed inode workers still running
4369 * and holding an empty delayed inode item. We must wait for
4370 * them to complete first because they can create a transaction.
4371 * This happens when someone calls btrfs_balance_delayed_items()
4372 * and then a transaction commit runs the same delayed nodes
4373 * before any delayed worker has done something with the nodes.
4374 * We must wait for any worker here and not at transaction
4375 * commit time since that could cause a deadlock.
4376 * This is a very rare case.
4377 */
4378 btrfs_flush_workqueue(fs_info->delayed_workers);
4379
6bccf3ab 4380 ret = btrfs_commit_super(fs_info);
acce952b 4381 if (ret)
04892340 4382 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4383 }
4384
af722733
LB
4385 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4386 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4387 btrfs_error_commit_super(fs_info);
0f7d52f4 4388
e3029d9f
AV
4389 kthread_stop(fs_info->transaction_kthread);
4390 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4391
e187831e 4392 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4393 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4394
5958253c
QW
4395 if (btrfs_check_quota_leak(fs_info)) {
4396 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4397 btrfs_err(fs_info, "qgroup reserved space leaked");
4398 }
4399
04892340 4400 btrfs_free_qgroup_config(fs_info);
fe816d0f 4401 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4402
963d678b 4403 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4404 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4405 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4406 }
bcc63abb 4407
5deb17e1 4408 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4409 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4410 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4411
6618a59b 4412 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4413 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4414
1a4319cc
LB
4415 btrfs_put_block_group_cache(fs_info);
4416
de348ee0
WS
4417 /*
4418 * we must make sure there is not any read request to
4419 * submit after we stopping all workers.
4420 */
4421 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4422 btrfs_stop_all_workers(fs_info);
4423
0a31daa4
FM
4424 /* We shouldn't have any transaction open at this point */
4425 ASSERT(list_empty(&fs_info->trans_list));
4426
afcdd129 4427 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4428 free_root_pointers(fs_info, true);
8c38938c 4429 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4430
4e19443d
JB
4431 /*
4432 * We must free the block groups after dropping the fs_roots as we could
4433 * have had an IO error and have left over tree log blocks that aren't
4434 * cleaned up until the fs roots are freed. This makes the block group
4435 * accounting appear to be wrong because there's pending reserved bytes,
4436 * so make sure we do the block group cleanup afterwards.
4437 */
4438 btrfs_free_block_groups(fs_info);
4439
13e6c37b 4440 iput(fs_info->btree_inode);
d6bfde87 4441
21adbd5c 4442#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4443 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4444 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4445#endif
4446
0b86a832 4447 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4448 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4449}
4450
b9fab919
CM
4451int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4452 int atomic)
5f39d397 4453{
1259ab75 4454 int ret;
727011e0 4455 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4456
0b32f4bb 4457 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4458 if (!ret)
4459 return ret;
4460
4461 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4462 parent_transid, atomic);
4463 if (ret == -EAGAIN)
4464 return ret;
1259ab75 4465 return !ret;
5f39d397
CM
4466}
4467
5f39d397
CM
4468void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4469{
2f4d60df 4470 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4471 u64 transid = btrfs_header_generation(buf);
b9473439 4472 int was_dirty;
b4ce94de 4473
06ea65a3
JB
4474#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4475 /*
4476 * This is a fast path so only do this check if we have sanity tests
52042d8e 4477 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4478 * outside of the sanity tests.
4479 */
b0132a3b 4480 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4481 return;
4482#endif
b9447ef8 4483 btrfs_assert_tree_locked(buf);
0b246afa 4484 if (transid != fs_info->generation)
5d163e0e 4485 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4486 buf->start, transid, fs_info->generation);
0b32f4bb 4487 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4488 if (!was_dirty)
104b4e51
NB
4489 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4490 buf->len,
4491 fs_info->dirty_metadata_batch);
1f21ef0a 4492#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4493 /*
4494 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4495 * but item data not updated.
4496 * So here we should only check item pointers, not item data.
4497 */
4498 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4499 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4500 btrfs_print_leaf(buf);
1f21ef0a
FM
4501 ASSERT(0);
4502 }
4503#endif
eb60ceac
CM
4504}
4505
2ff7e61e 4506static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4507 int flush_delayed)
16cdcec7
MX
4508{
4509 /*
4510 * looks as though older kernels can get into trouble with
4511 * this code, they end up stuck in balance_dirty_pages forever
4512 */
e2d84521 4513 int ret;
16cdcec7
MX
4514
4515 if (current->flags & PF_MEMALLOC)
4516 return;
4517
b53d3f5d 4518 if (flush_delayed)
2ff7e61e 4519 btrfs_balance_delayed_items(fs_info);
16cdcec7 4520
d814a491
EL
4521 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4522 BTRFS_DIRTY_METADATA_THRESH,
4523 fs_info->dirty_metadata_batch);
e2d84521 4524 if (ret > 0) {
0b246afa 4525 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4526 }
16cdcec7
MX
4527}
4528
2ff7e61e 4529void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4530{
2ff7e61e 4531 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4532}
585ad2c3 4533
2ff7e61e 4534void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4535{
2ff7e61e 4536 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4537}
6b80053d 4538
581c1760
QW
4539int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4540 struct btrfs_key *first_key)
6b80053d 4541{
5ab12d1f 4542 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4543 level, first_key);
6b80053d 4544}
0da5468f 4545
2ff7e61e 4546static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4547{
fe816d0f
NB
4548 /* cleanup FS via transaction */
4549 btrfs_cleanup_transaction(fs_info);
4550
0b246afa 4551 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4552 btrfs_run_delayed_iputs(fs_info);
0b246afa 4553 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4554
0b246afa
JM
4555 down_write(&fs_info->cleanup_work_sem);
4556 up_write(&fs_info->cleanup_work_sem);
acce952b 4557}
4558
ef67963d
JB
4559static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4560{
4561 struct btrfs_root *gang[8];
4562 u64 root_objectid = 0;
4563 int ret;
4564
4565 spin_lock(&fs_info->fs_roots_radix_lock);
4566 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4567 (void **)gang, root_objectid,
4568 ARRAY_SIZE(gang))) != 0) {
4569 int i;
4570
4571 for (i = 0; i < ret; i++)
4572 gang[i] = btrfs_grab_root(gang[i]);
4573 spin_unlock(&fs_info->fs_roots_radix_lock);
4574
4575 for (i = 0; i < ret; i++) {
4576 if (!gang[i])
4577 continue;
4578 root_objectid = gang[i]->root_key.objectid;
4579 btrfs_free_log(NULL, gang[i]);
4580 btrfs_put_root(gang[i]);
4581 }
4582 root_objectid++;
4583 spin_lock(&fs_info->fs_roots_radix_lock);
4584 }
4585 spin_unlock(&fs_info->fs_roots_radix_lock);
4586 btrfs_free_log_root_tree(NULL, fs_info);
4587}
4588
143bede5 4589static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4590{
acce952b 4591 struct btrfs_ordered_extent *ordered;
acce952b 4592
199c2a9c 4593 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4594 /*
4595 * This will just short circuit the ordered completion stuff which will
4596 * make sure the ordered extent gets properly cleaned up.
4597 */
199c2a9c 4598 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4599 root_extent_list)
4600 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4601 spin_unlock(&root->ordered_extent_lock);
4602}
4603
4604static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4605{
4606 struct btrfs_root *root;
4607 struct list_head splice;
4608
4609 INIT_LIST_HEAD(&splice);
4610
4611 spin_lock(&fs_info->ordered_root_lock);
4612 list_splice_init(&fs_info->ordered_roots, &splice);
4613 while (!list_empty(&splice)) {
4614 root = list_first_entry(&splice, struct btrfs_root,
4615 ordered_root);
1de2cfde
JB
4616 list_move_tail(&root->ordered_root,
4617 &fs_info->ordered_roots);
199c2a9c 4618
2a85d9ca 4619 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4620 btrfs_destroy_ordered_extents(root);
4621
2a85d9ca
LB
4622 cond_resched();
4623 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4624 }
4625 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4626
4627 /*
4628 * We need this here because if we've been flipped read-only we won't
4629 * get sync() from the umount, so we need to make sure any ordered
4630 * extents that haven't had their dirty pages IO start writeout yet
4631 * actually get run and error out properly.
4632 */
4633 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4634}
4635
35a3621b 4636static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4637 struct btrfs_fs_info *fs_info)
acce952b 4638{
4639 struct rb_node *node;
4640 struct btrfs_delayed_ref_root *delayed_refs;
4641 struct btrfs_delayed_ref_node *ref;
4642 int ret = 0;
4643
4644 delayed_refs = &trans->delayed_refs;
4645
4646 spin_lock(&delayed_refs->lock);
d7df2c79 4647 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4648 spin_unlock(&delayed_refs->lock);
b79ce3dd 4649 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4650 return ret;
4651 }
4652
5c9d028b 4653 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4654 struct btrfs_delayed_ref_head *head;
0e0adbcf 4655 struct rb_node *n;
e78417d1 4656 bool pin_bytes = false;
acce952b 4657
d7df2c79
JB
4658 head = rb_entry(node, struct btrfs_delayed_ref_head,
4659 href_node);
3069bd26 4660 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4661 continue;
3069bd26 4662
d7df2c79 4663 spin_lock(&head->lock);
e3d03965 4664 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4665 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4666 ref_node);
d7df2c79 4667 ref->in_tree = 0;
e3d03965 4668 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4669 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4670 if (!list_empty(&ref->add_list))
4671 list_del(&ref->add_list);
d7df2c79
JB
4672 atomic_dec(&delayed_refs->num_entries);
4673 btrfs_put_delayed_ref(ref);
e78417d1 4674 }
d7df2c79
JB
4675 if (head->must_insert_reserved)
4676 pin_bytes = true;
4677 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4678 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4679 spin_unlock(&head->lock);
4680 spin_unlock(&delayed_refs->lock);
4681 mutex_unlock(&head->mutex);
acce952b 4682
f603bb94
NB
4683 if (pin_bytes) {
4684 struct btrfs_block_group *cache;
4685
4686 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4687 BUG_ON(!cache);
4688
4689 spin_lock(&cache->space_info->lock);
4690 spin_lock(&cache->lock);
4691 cache->pinned += head->num_bytes;
4692 btrfs_space_info_update_bytes_pinned(fs_info,
4693 cache->space_info, head->num_bytes);
4694 cache->reserved -= head->num_bytes;
4695 cache->space_info->bytes_reserved -= head->num_bytes;
4696 spin_unlock(&cache->lock);
4697 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4698
4699 btrfs_put_block_group(cache);
4700
4701 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4702 head->bytenr + head->num_bytes - 1);
4703 }
31890da0 4704 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4705 btrfs_put_delayed_ref_head(head);
acce952b 4706 cond_resched();
4707 spin_lock(&delayed_refs->lock);
4708 }
81f7eb00 4709 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4710
4711 spin_unlock(&delayed_refs->lock);
4712
4713 return ret;
4714}
4715
143bede5 4716static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4717{
4718 struct btrfs_inode *btrfs_inode;
4719 struct list_head splice;
4720
4721 INIT_LIST_HEAD(&splice);
4722
eb73c1b7
MX
4723 spin_lock(&root->delalloc_lock);
4724 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4725
4726 while (!list_empty(&splice)) {
fe816d0f 4727 struct inode *inode = NULL;
eb73c1b7
MX
4728 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4729 delalloc_inodes);
fe816d0f 4730 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4731 spin_unlock(&root->delalloc_lock);
acce952b 4732
fe816d0f
NB
4733 /*
4734 * Make sure we get a live inode and that it'll not disappear
4735 * meanwhile.
4736 */
4737 inode = igrab(&btrfs_inode->vfs_inode);
4738 if (inode) {
4739 invalidate_inode_pages2(inode->i_mapping);
4740 iput(inode);
4741 }
eb73c1b7 4742 spin_lock(&root->delalloc_lock);
acce952b 4743 }
eb73c1b7
MX
4744 spin_unlock(&root->delalloc_lock);
4745}
4746
4747static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4748{
4749 struct btrfs_root *root;
4750 struct list_head splice;
4751
4752 INIT_LIST_HEAD(&splice);
4753
4754 spin_lock(&fs_info->delalloc_root_lock);
4755 list_splice_init(&fs_info->delalloc_roots, &splice);
4756 while (!list_empty(&splice)) {
4757 root = list_first_entry(&splice, struct btrfs_root,
4758 delalloc_root);
00246528 4759 root = btrfs_grab_root(root);
eb73c1b7
MX
4760 BUG_ON(!root);
4761 spin_unlock(&fs_info->delalloc_root_lock);
4762
4763 btrfs_destroy_delalloc_inodes(root);
00246528 4764 btrfs_put_root(root);
eb73c1b7
MX
4765
4766 spin_lock(&fs_info->delalloc_root_lock);
4767 }
4768 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4769}
4770
2ff7e61e 4771static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4772 struct extent_io_tree *dirty_pages,
4773 int mark)
4774{
4775 int ret;
acce952b 4776 struct extent_buffer *eb;
4777 u64 start = 0;
4778 u64 end;
acce952b 4779
4780 while (1) {
4781 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4782 mark, NULL);
acce952b 4783 if (ret)
4784 break;
4785
91166212 4786 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4787 while (start <= end) {
0b246afa
JM
4788 eb = find_extent_buffer(fs_info, start);
4789 start += fs_info->nodesize;
fd8b2b61 4790 if (!eb)
acce952b 4791 continue;
fd8b2b61 4792 wait_on_extent_buffer_writeback(eb);
acce952b 4793
fd8b2b61
JB
4794 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4795 &eb->bflags))
4796 clear_extent_buffer_dirty(eb);
4797 free_extent_buffer_stale(eb);
acce952b 4798 }
4799 }
4800
4801 return ret;
4802}
4803
2ff7e61e 4804static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4805 struct extent_io_tree *unpin)
acce952b 4806{
acce952b 4807 u64 start;
4808 u64 end;
4809 int ret;
4810
acce952b 4811 while (1) {
0e6ec385
FM
4812 struct extent_state *cached_state = NULL;
4813
fcd5e742
LF
4814 /*
4815 * The btrfs_finish_extent_commit() may get the same range as
4816 * ours between find_first_extent_bit and clear_extent_dirty.
4817 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4818 * the same extent range.
4819 */
4820 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4821 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4822 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4823 if (ret) {
4824 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4825 break;
fcd5e742 4826 }
acce952b 4827
0e6ec385
FM
4828 clear_extent_dirty(unpin, start, end, &cached_state);
4829 free_extent_state(cached_state);
2ff7e61e 4830 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4831 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4832 cond_resched();
4833 }
4834
4835 return 0;
4836}
4837
32da5386 4838static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4839{
4840 struct inode *inode;
4841
4842 inode = cache->io_ctl.inode;
4843 if (inode) {
4844 invalidate_inode_pages2(inode->i_mapping);
4845 BTRFS_I(inode)->generation = 0;
4846 cache->io_ctl.inode = NULL;
4847 iput(inode);
4848 }
bbc37d6e 4849 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4850 btrfs_put_block_group(cache);
4851}
4852
4853void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4854 struct btrfs_fs_info *fs_info)
c79a1751 4855{
32da5386 4856 struct btrfs_block_group *cache;
c79a1751
LB
4857
4858 spin_lock(&cur_trans->dirty_bgs_lock);
4859 while (!list_empty(&cur_trans->dirty_bgs)) {
4860 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4861 struct btrfs_block_group,
c79a1751 4862 dirty_list);
c79a1751
LB
4863
4864 if (!list_empty(&cache->io_list)) {
4865 spin_unlock(&cur_trans->dirty_bgs_lock);
4866 list_del_init(&cache->io_list);
4867 btrfs_cleanup_bg_io(cache);
4868 spin_lock(&cur_trans->dirty_bgs_lock);
4869 }
4870
4871 list_del_init(&cache->dirty_list);
4872 spin_lock(&cache->lock);
4873 cache->disk_cache_state = BTRFS_DC_ERROR;
4874 spin_unlock(&cache->lock);
4875
4876 spin_unlock(&cur_trans->dirty_bgs_lock);
4877 btrfs_put_block_group(cache);
ba2c4d4e 4878 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4879 spin_lock(&cur_trans->dirty_bgs_lock);
4880 }
4881 spin_unlock(&cur_trans->dirty_bgs_lock);
4882
45ae2c18
NB
4883 /*
4884 * Refer to the definition of io_bgs member for details why it's safe
4885 * to use it without any locking
4886 */
c79a1751
LB
4887 while (!list_empty(&cur_trans->io_bgs)) {
4888 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4889 struct btrfs_block_group,
c79a1751 4890 io_list);
c79a1751
LB
4891
4892 list_del_init(&cache->io_list);
4893 spin_lock(&cache->lock);
4894 cache->disk_cache_state = BTRFS_DC_ERROR;
4895 spin_unlock(&cache->lock);
4896 btrfs_cleanup_bg_io(cache);
4897 }
4898}
4899
49b25e05 4900void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4901 struct btrfs_fs_info *fs_info)
49b25e05 4902{
bbbf7243
NB
4903 struct btrfs_device *dev, *tmp;
4904
2ff7e61e 4905 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4906 ASSERT(list_empty(&cur_trans->dirty_bgs));
4907 ASSERT(list_empty(&cur_trans->io_bgs));
4908
bbbf7243
NB
4909 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4910 post_commit_list) {
4911 list_del_init(&dev->post_commit_list);
4912 }
4913
2ff7e61e 4914 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4915
4a9d8bde 4916 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4917 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4918
4a9d8bde 4919 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4920 wake_up(&fs_info->transaction_wait);
49b25e05 4921
ccdf9b30 4922 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4923
2ff7e61e 4924 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4925 EXTENT_DIRTY);
fe119a6e 4926 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4927
d3575156
NA
4928 btrfs_free_redirty_list(cur_trans);
4929
4a9d8bde
MX
4930 cur_trans->state =TRANS_STATE_COMPLETED;
4931 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4932}
4933
2ff7e61e 4934static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4935{
4936 struct btrfs_transaction *t;
acce952b 4937
0b246afa 4938 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4939
0b246afa
JM
4940 spin_lock(&fs_info->trans_lock);
4941 while (!list_empty(&fs_info->trans_list)) {
4942 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4943 struct btrfs_transaction, list);
4944 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4945 refcount_inc(&t->use_count);
0b246afa 4946 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4947 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4948 btrfs_put_transaction(t);
0b246afa 4949 spin_lock(&fs_info->trans_lock);
724e2315
JB
4950 continue;
4951 }
0b246afa 4952 if (t == fs_info->running_transaction) {
724e2315 4953 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4954 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4955 /*
4956 * We wait for 0 num_writers since we don't hold a trans
4957 * handle open currently for this transaction.
4958 */
4959 wait_event(t->writer_wait,
4960 atomic_read(&t->num_writers) == 0);
4961 } else {
0b246afa 4962 spin_unlock(&fs_info->trans_lock);
724e2315 4963 }
2ff7e61e 4964 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4965
0b246afa
JM
4966 spin_lock(&fs_info->trans_lock);
4967 if (t == fs_info->running_transaction)
4968 fs_info->running_transaction = NULL;
acce952b 4969 list_del_init(&t->list);
0b246afa 4970 spin_unlock(&fs_info->trans_lock);
acce952b 4971
724e2315 4972 btrfs_put_transaction(t);
2ff7e61e 4973 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4974 spin_lock(&fs_info->trans_lock);
724e2315 4975 }
0b246afa
JM
4976 spin_unlock(&fs_info->trans_lock);
4977 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4978 btrfs_destroy_delayed_inodes(fs_info);
4979 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4980 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4981 btrfs_drop_all_logs(fs_info);
0b246afa 4982 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4983
4984 return 0;
4985}
ec7d6dfd 4986
453e4873 4987int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4988{
4989 struct btrfs_path *path;
4990 int ret;
4991 struct extent_buffer *l;
4992 struct btrfs_key search_key;
4993 struct btrfs_key found_key;
4994 int slot;
4995
4996 path = btrfs_alloc_path();
4997 if (!path)
4998 return -ENOMEM;
4999
5000 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5001 search_key.type = -1;
5002 search_key.offset = (u64)-1;
5003 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5004 if (ret < 0)
5005 goto error;
5006 BUG_ON(ret == 0); /* Corruption */
5007 if (path->slots[0] > 0) {
5008 slot = path->slots[0] - 1;
5009 l = path->nodes[0];
5010 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5011 root->free_objectid = max_t(u64, found_key.objectid + 1,
5012 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5013 } else {
23125104 5014 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5015 }
5016 ret = 0;
5017error:
5018 btrfs_free_path(path);
5019 return ret;
5020}
5021
543068a2 5022int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5023{
5024 int ret;
5025 mutex_lock(&root->objectid_mutex);
5026
6b8fad57 5027 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5028 btrfs_warn(root->fs_info,
5029 "the objectid of root %llu reaches its highest value",
5030 root->root_key.objectid);
5031 ret = -ENOSPC;
5032 goto out;
5033 }
5034
23125104 5035 *objectid = root->free_objectid++;
ec7d6dfd
NB
5036 ret = 0;
5037out:
5038 mutex_unlock(&root->objectid_mutex);
5039 return ret;
5040}