btrfs: subpage: introduce helpers for writeback status
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
141386e1
JB
100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104}
105
d352ac68
CM
106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
44b8bd7e 111struct async_submit_bio {
8896a08d 112 struct inode *inode;
44b8bd7e 113 struct bio *bio;
a758781d 114 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 115 int mirror_num;
1941b64b
QW
116
117 /* Optional parameter for submit_bio_start used by direct io */
118 u64 dio_file_offset;
8b712842 119 struct btrfs_work work;
4e4cbee9 120 blk_status_t status;
44b8bd7e
CM
121};
122
85d4e461
CM
123/*
124 * Lockdep class keys for extent_buffer->lock's in this root. For a given
125 * eb, the lockdep key is determined by the btrfs_root it belongs to and
126 * the level the eb occupies in the tree.
127 *
128 * Different roots are used for different purposes and may nest inside each
129 * other and they require separate keysets. As lockdep keys should be
130 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
131 * by btrfs_root->root_key.objectid. This ensures that all special purpose
132 * roots have separate keysets.
4008c04a 133 *
85d4e461
CM
134 * Lock-nesting across peer nodes is always done with the immediate parent
135 * node locked thus preventing deadlock. As lockdep doesn't know this, use
136 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 137 *
85d4e461
CM
138 * The key is set by the readpage_end_io_hook after the buffer has passed
139 * csum validation but before the pages are unlocked. It is also set by
140 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 141 *
85d4e461
CM
142 * We also add a check to make sure the highest level of the tree is the
143 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
144 * needs update as well.
4008c04a
CM
145 */
146#ifdef CONFIG_DEBUG_LOCK_ALLOC
147# if BTRFS_MAX_LEVEL != 8
148# error
149# endif
85d4e461 150
ab1405aa
DS
151#define DEFINE_LEVEL(stem, level) \
152 .names[level] = "btrfs-" stem "-0" #level,
153
154#define DEFINE_NAME(stem) \
155 DEFINE_LEVEL(stem, 0) \
156 DEFINE_LEVEL(stem, 1) \
157 DEFINE_LEVEL(stem, 2) \
158 DEFINE_LEVEL(stem, 3) \
159 DEFINE_LEVEL(stem, 4) \
160 DEFINE_LEVEL(stem, 5) \
161 DEFINE_LEVEL(stem, 6) \
162 DEFINE_LEVEL(stem, 7)
163
85d4e461
CM
164static struct btrfs_lockdep_keyset {
165 u64 id; /* root objectid */
ab1405aa 166 /* Longest entry: btrfs-free-space-00 */
387824af
DS
167 char names[BTRFS_MAX_LEVEL][20];
168 struct lock_class_key keys[BTRFS_MAX_LEVEL];
85d4e461 169} btrfs_lockdep_keysets[] = {
ab1405aa
DS
170 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
171 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
172 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
173 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
ab1405aa
DS
174 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
175 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
176 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
177 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
178 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
179 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
180 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
181 { .id = 0, DEFINE_NAME("tree") },
4008c04a 182};
85d4e461 183
ab1405aa
DS
184#undef DEFINE_LEVEL
185#undef DEFINE_NAME
85d4e461
CM
186
187void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
188 int level)
189{
190 struct btrfs_lockdep_keyset *ks;
191
192 BUG_ON(level >= ARRAY_SIZE(ks->keys));
193
194 /* find the matching keyset, id 0 is the default entry */
195 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
196 if (ks->id == objectid)
197 break;
198
199 lockdep_set_class_and_name(&eb->lock,
200 &ks->keys[level], ks->names[level]);
201}
202
4008c04a
CM
203#endif
204
d352ac68 205/*
2996e1f8 206 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 207 */
c67b3892 208static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 209{
d5178578 210 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 211 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
a26663e7 212 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 214 char *kaddr;
e9be5a30 215 int i;
d5178578
JT
216
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
a26663e7 219 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 221 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 222
e9be5a30
DS
223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 226 }
71a63551 227 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 228 crypto_shash_final(shash, result);
19c00ddc
CM
229}
230
d352ac68
CM
231/*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
1259ab75 237static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
238 struct extent_buffer *eb, u64 parent_transid,
239 int atomic)
1259ab75 240{
2ac55d41 241 struct extent_state *cached_state = NULL;
1259ab75 242 int ret;
2755a0de 243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
b9fab919
CM
248 if (atomic)
249 return -EAGAIN;
250
ac5887c8 251 if (need_lock)
a26e8c9f 252 btrfs_tree_read_lock(eb);
a26e8c9f 253
2ac55d41 254 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 255 &cached_state);
0b32f4bb 256 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
257 btrfs_header_generation(eb) == parent_transid) {
258 ret = 0;
259 goto out;
260 }
94647322
DS
261 btrfs_err_rl(eb->fs_info,
262 "parent transid verify failed on %llu wanted %llu found %llu",
263 eb->start,
29549aec 264 parent_transid, btrfs_header_generation(eb));
1259ab75 265 ret = 1;
a26e8c9f
JB
266
267 /*
268 * Things reading via commit roots that don't have normal protection,
269 * like send, can have a really old block in cache that may point at a
01327610 270 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
271 * if we find an eb that is under IO (dirty/writeback) because we could
272 * end up reading in the stale data and then writing it back out and
273 * making everybody very sad.
274 */
275 if (!extent_buffer_under_io(eb))
276 clear_extent_buffer_uptodate(eb);
33958dc6 277out:
2ac55d41 278 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 279 &cached_state);
472b909f 280 if (need_lock)
ac5887c8 281 btrfs_tree_read_unlock(eb);
1259ab75 282 return ret;
1259ab75
CM
283}
284
e7e16f48
JT
285static bool btrfs_supported_super_csum(u16 csum_type)
286{
287 switch (csum_type) {
288 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 289 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 290 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 291 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
292 return true;
293 default:
294 return false;
295 }
296}
297
1104a885
DS
298/*
299 * Return 0 if the superblock checksum type matches the checksum value of that
300 * algorithm. Pass the raw disk superblock data.
301 */
ab8d0fc4
JM
302static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
303 char *raw_disk_sb)
1104a885
DS
304{
305 struct btrfs_super_block *disk_sb =
306 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 307 char result[BTRFS_CSUM_SIZE];
d5178578
JT
308 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
309
310 shash->tfm = fs_info->csum_shash;
1104a885 311
51bce6c9
JT
312 /*
313 * The super_block structure does not span the whole
314 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
315 * filled with zeros and is included in the checksum.
316 */
fd08001f
EB
317 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
318 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 319
55fc29be 320 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 321 return 1;
1104a885 322
e7e16f48 323 return 0;
1104a885
DS
324}
325
e064d5e9 326int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 327 struct btrfs_key *first_key, u64 parent_transid)
581c1760 328{
e064d5e9 329 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
330 int found_level;
331 struct btrfs_key found_key;
332 int ret;
333
334 found_level = btrfs_header_level(eb);
335 if (found_level != level) {
63489055
QW
336 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
337 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
338 btrfs_err(fs_info,
339"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
340 eb->start, level, found_level);
581c1760
QW
341 return -EIO;
342 }
343
344 if (!first_key)
345 return 0;
346
5d41be6f
QW
347 /*
348 * For live tree block (new tree blocks in current transaction),
349 * we need proper lock context to avoid race, which is impossible here.
350 * So we only checks tree blocks which is read from disk, whose
351 * generation <= fs_info->last_trans_committed.
352 */
353 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
354 return 0;
62fdaa52
QW
355
356 /* We have @first_key, so this @eb must have at least one item */
357 if (btrfs_header_nritems(eb) == 0) {
358 btrfs_err(fs_info,
359 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
360 eb->start);
361 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
362 return -EUCLEAN;
363 }
364
581c1760
QW
365 if (found_level)
366 btrfs_node_key_to_cpu(eb, &found_key, 0);
367 else
368 btrfs_item_key_to_cpu(eb, &found_key, 0);
369 ret = btrfs_comp_cpu_keys(first_key, &found_key);
370
581c1760 371 if (ret) {
63489055
QW
372 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
373 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 374 btrfs_err(fs_info,
ff76a864
LB
375"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
376 eb->start, parent_transid, first_key->objectid,
377 first_key->type, first_key->offset,
378 found_key.objectid, found_key.type,
379 found_key.offset);
581c1760 380 }
581c1760
QW
381 return ret;
382}
383
d352ac68
CM
384/*
385 * helper to read a given tree block, doing retries as required when
386 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
387 *
388 * @parent_transid: expected transid, skip check if 0
389 * @level: expected level, mandatory check
390 * @first_key: expected key of first slot, skip check if NULL
d352ac68 391 */
5ab12d1f 392static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
393 u64 parent_transid, int level,
394 struct btrfs_key *first_key)
f188591e 395{
5ab12d1f 396 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 397 struct extent_io_tree *io_tree;
ea466794 398 int failed = 0;
f188591e
CM
399 int ret;
400 int num_copies = 0;
401 int mirror_num = 0;
ea466794 402 int failed_mirror = 0;
f188591e 403
0b246afa 404 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 405 while (1) {
f8397d69 406 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 407 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 408 if (!ret) {
581c1760 409 if (verify_parent_transid(io_tree, eb,
b9fab919 410 parent_transid, 0))
256dd1bb 411 ret = -EIO;
e064d5e9 412 else if (btrfs_verify_level_key(eb, level,
448de471 413 first_key, parent_transid))
581c1760
QW
414 ret = -EUCLEAN;
415 else
416 break;
256dd1bb 417 }
d397712b 418
0b246afa 419 num_copies = btrfs_num_copies(fs_info,
f188591e 420 eb->start, eb->len);
4235298e 421 if (num_copies == 1)
ea466794 422 break;
4235298e 423
5cf1ab56
JB
424 if (!failed_mirror) {
425 failed = 1;
426 failed_mirror = eb->read_mirror;
427 }
428
f188591e 429 mirror_num++;
ea466794
JB
430 if (mirror_num == failed_mirror)
431 mirror_num++;
432
4235298e 433 if (mirror_num > num_copies)
ea466794 434 break;
f188591e 435 }
ea466794 436
c0901581 437 if (failed && !ret && failed_mirror)
20a1fbf9 438 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
439
440 return ret;
f188591e 441}
19c00ddc 442
d352ac68 443/*
ac303b69
QW
444 * Checksum a dirty tree block before IO. This has extra checks to make sure
445 * we only fill in the checksum field in the first page of a multi-page block.
446 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 447 */
ac303b69 448static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 449{
ac303b69 450 struct page *page = bvec->bv_page;
4eee4fa4 451 u64 start = page_offset(page);
19c00ddc 452 u64 found_start;
2996e1f8 453 u8 result[BTRFS_CSUM_SIZE];
19c00ddc 454 struct extent_buffer *eb;
8d47a0d8 455 int ret;
f188591e 456
4f2de97a
JB
457 eb = (struct extent_buffer *)page->private;
458 if (page != eb->pages[0])
459 return 0;
0f805531 460
19c00ddc 461 found_start = btrfs_header_bytenr(eb);
d3575156
NA
462
463 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
464 WARN_ON(found_start != 0);
465 return 0;
466 }
467
0f805531
AL
468 /*
469 * Please do not consolidate these warnings into a single if.
470 * It is useful to know what went wrong.
471 */
472 if (WARN_ON(found_start != start))
473 return -EUCLEAN;
474 if (WARN_ON(!PageUptodate(page)))
475 return -EUCLEAN;
476
de37aa51 477 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
478 offsetof(struct btrfs_header, fsid),
479 BTRFS_FSID_SIZE) == 0);
0f805531 480
c67b3892 481 csum_tree_block(eb, result);
2996e1f8 482
8d47a0d8
QW
483 if (btrfs_header_level(eb))
484 ret = btrfs_check_node(eb);
485 else
486 ret = btrfs_check_leaf_full(eb);
487
488 if (ret < 0) {
c06631b0 489 btrfs_print_tree(eb, 0);
8d47a0d8
QW
490 btrfs_err(fs_info,
491 "block=%llu write time tree block corruption detected",
492 eb->start);
c06631b0 493 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
494 return ret;
495 }
713cebfb 496 write_extent_buffer(eb, result, 0, fs_info->csum_size);
8d47a0d8 497
2996e1f8 498 return 0;
19c00ddc
CM
499}
500
b0c9b3b0 501static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 502{
b0c9b3b0 503 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 504 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 505 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 506 u8 *metadata_uuid;
2b82032c 507
9a8658e3
DS
508 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
509 BTRFS_FSID_SIZE);
944d3f9f
NB
510 /*
511 * Checking the incompat flag is only valid for the current fs. For
512 * seed devices it's forbidden to have their uuid changed so reading
513 * ->fsid in this case is fine
514 */
515 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
516 metadata_uuid = fs_devices->metadata_uuid;
517 else
518 metadata_uuid = fs_devices->fsid;
519
520 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
521 return 0;
522
523 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
524 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
525 return 0;
526
527 return 1;
2b82032c
YZ
528}
529
77bf40a2
QW
530/* Do basic extent buffer checks at read time */
531static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 532{
77bf40a2 533 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 534 u64 found_start;
77bf40a2
QW
535 const u32 csum_size = fs_info->csum_size;
536 u8 found_level;
2996e1f8 537 u8 result[BTRFS_CSUM_SIZE];
77bf40a2 538 int ret = 0;
ea466794 539
ce9adaa5 540 found_start = btrfs_header_bytenr(eb);
727011e0 541 if (found_start != eb->start) {
893bf4b1
SY
542 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
543 eb->start, found_start);
f188591e 544 ret = -EIO;
77bf40a2 545 goto out;
ce9adaa5 546 }
b0c9b3b0 547 if (check_tree_block_fsid(eb)) {
02873e43
ZL
548 btrfs_err_rl(fs_info, "bad fsid on block %llu",
549 eb->start);
1259ab75 550 ret = -EIO;
77bf40a2 551 goto out;
1259ab75 552 }
ce9adaa5 553 found_level = btrfs_header_level(eb);
1c24c3ce 554 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
555 btrfs_err(fs_info, "bad tree block level %d on %llu",
556 (int)btrfs_header_level(eb), eb->start);
1c24c3ce 557 ret = -EIO;
77bf40a2 558 goto out;
1c24c3ce 559 }
ce9adaa5 560
c67b3892 561 csum_tree_block(eb, result);
a826d6dc 562
2996e1f8 563 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
35be8851 564 u8 val[BTRFS_CSUM_SIZE] = { 0 };
2996e1f8
JT
565
566 read_extent_buffer(eb, &val, 0, csum_size);
567 btrfs_warn_rl(fs_info,
35be8851 568 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
2996e1f8 569 fs_info->sb->s_id, eb->start,
35be8851
JT
570 CSUM_FMT_VALUE(csum_size, val),
571 CSUM_FMT_VALUE(csum_size, result),
572 btrfs_header_level(eb));
2996e1f8 573 ret = -EUCLEAN;
77bf40a2 574 goto out;
2996e1f8
JT
575 }
576
a826d6dc
JB
577 /*
578 * If this is a leaf block and it is corrupt, set the corrupt bit so
579 * that we don't try and read the other copies of this block, just
580 * return -EIO.
581 */
1c4360ee 582 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
583 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
584 ret = -EIO;
585 }
ce9adaa5 586
813fd1dc 587 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
588 ret = -EIO;
589
0b32f4bb
JB
590 if (!ret)
591 set_extent_buffer_uptodate(eb);
75391f0d
QW
592 else
593 btrfs_err(fs_info,
594 "block=%llu read time tree block corruption detected",
595 eb->start);
77bf40a2
QW
596out:
597 return ret;
598}
599
371cdc07
QW
600static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
601 int mirror)
602{
603 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
604 struct extent_buffer *eb;
605 bool reads_done;
606 int ret = 0;
607
608 /*
609 * We don't allow bio merge for subpage metadata read, so we should
610 * only get one eb for each endio hook.
611 */
612 ASSERT(end == start + fs_info->nodesize - 1);
613 ASSERT(PagePrivate(page));
614
615 eb = find_extent_buffer(fs_info, start);
616 /*
617 * When we are reading one tree block, eb must have been inserted into
618 * the radix tree. If not, something is wrong.
619 */
620 ASSERT(eb);
621
622 reads_done = atomic_dec_and_test(&eb->io_pages);
623 /* Subpage read must finish in page read */
624 ASSERT(reads_done);
625
626 eb->read_mirror = mirror;
627 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
628 ret = -EIO;
629 goto err;
630 }
631 ret = validate_extent_buffer(eb);
632 if (ret < 0)
633 goto err;
634
635 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
636 btree_readahead_hook(eb, ret);
637
638 set_extent_buffer_uptodate(eb);
639
640 free_extent_buffer(eb);
641 return ret;
642err:
643 /*
644 * end_bio_extent_readpage decrements io_pages in case of error,
645 * make sure it has something to decrement.
646 */
647 atomic_inc(&eb->io_pages);
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
650 return ret;
651}
652
8e1dc982 653int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
77bf40a2
QW
654 struct page *page, u64 start, u64 end,
655 int mirror)
656{
657 struct extent_buffer *eb;
658 int ret = 0;
659 int reads_done;
660
661 ASSERT(page->private);
371cdc07
QW
662
663 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
664 return validate_subpage_buffer(page, start, end, mirror);
665
77bf40a2
QW
666 eb = (struct extent_buffer *)page->private;
667
668 /*
669 * The pending IO might have been the only thing that kept this buffer
670 * in memory. Make sure we have a ref for all this other checks
671 */
672 atomic_inc(&eb->refs);
673
674 reads_done = atomic_dec_and_test(&eb->io_pages);
675 if (!reads_done)
676 goto err;
677
678 eb->read_mirror = mirror;
679 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
680 ret = -EIO;
681 goto err;
682 }
683 ret = validate_extent_buffer(eb);
ce9adaa5 684err:
79fb65a1
JB
685 if (reads_done &&
686 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 687 btree_readahead_hook(eb, ret);
4bb31e92 688
53b381b3
DW
689 if (ret) {
690 /*
691 * our io error hook is going to dec the io pages
692 * again, we have to make sure it has something
693 * to decrement
694 */
695 atomic_inc(&eb->io_pages);
0b32f4bb 696 clear_extent_buffer_uptodate(eb);
53b381b3 697 }
0b32f4bb 698 free_extent_buffer(eb);
77bf40a2 699
f188591e 700 return ret;
ce9adaa5
CM
701}
702
4246a0b6 703static void end_workqueue_bio(struct bio *bio)
ce9adaa5 704{
97eb6b69 705 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 706 struct btrfs_fs_info *fs_info;
9e0af237 707 struct btrfs_workqueue *wq;
ce9adaa5 708
ce9adaa5 709 fs_info = end_io_wq->info;
4e4cbee9 710 end_io_wq->status = bio->bi_status;
d20f7043 711
cfe94440 712 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
a0cac0ec 713 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 714 wq = fs_info->endio_meta_write_workers;
a0cac0ec 715 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 716 wq = fs_info->endio_freespace_worker;
a0cac0ec 717 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 718 wq = fs_info->endio_raid56_workers;
a0cac0ec 719 else
9e0af237 720 wq = fs_info->endio_write_workers;
d20f7043 721 } else {
5c047a69 722 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 723 wq = fs_info->endio_raid56_workers;
a0cac0ec 724 else if (end_io_wq->metadata)
9e0af237 725 wq = fs_info->endio_meta_workers;
a0cac0ec 726 else
9e0af237 727 wq = fs_info->endio_workers;
d20f7043 728 }
9e0af237 729
a0cac0ec 730 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 731 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
732}
733
4e4cbee9 734blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 735 enum btrfs_wq_endio_type metadata)
0b86a832 736{
97eb6b69 737 struct btrfs_end_io_wq *end_io_wq;
8b110e39 738
97eb6b69 739 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 740 if (!end_io_wq)
4e4cbee9 741 return BLK_STS_RESOURCE;
ce9adaa5
CM
742
743 end_io_wq->private = bio->bi_private;
744 end_io_wq->end_io = bio->bi_end_io;
22c59948 745 end_io_wq->info = info;
4e4cbee9 746 end_io_wq->status = 0;
ce9adaa5 747 end_io_wq->bio = bio;
22c59948 748 end_io_wq->metadata = metadata;
ce9adaa5
CM
749
750 bio->bi_private = end_io_wq;
751 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
752 return 0;
753}
754
4a69a410
CM
755static void run_one_async_start(struct btrfs_work *work)
756{
4a69a410 757 struct async_submit_bio *async;
4e4cbee9 758 blk_status_t ret;
4a69a410
CM
759
760 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
761 ret = async->submit_bio_start(async->inode, async->bio,
762 async->dio_file_offset);
79787eaa 763 if (ret)
4e4cbee9 764 async->status = ret;
4a69a410
CM
765}
766
06ea01b1
DS
767/*
768 * In order to insert checksums into the metadata in large chunks, we wait
769 * until bio submission time. All the pages in the bio are checksummed and
770 * sums are attached onto the ordered extent record.
771 *
772 * At IO completion time the csums attached on the ordered extent record are
773 * inserted into the tree.
774 */
4a69a410 775static void run_one_async_done(struct btrfs_work *work)
8b712842 776{
8b712842 777 struct async_submit_bio *async;
06ea01b1
DS
778 struct inode *inode;
779 blk_status_t ret;
8b712842
CM
780
781 async = container_of(work, struct async_submit_bio, work);
8896a08d 782 inode = async->inode;
4854ddd0 783
bb7ab3b9 784 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
785 if (async->status) {
786 async->bio->bi_status = async->status;
4246a0b6 787 bio_endio(async->bio);
79787eaa
JM
788 return;
789 }
790
ec39f769
CM
791 /*
792 * All of the bios that pass through here are from async helpers.
793 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
794 * This changes nothing when cgroups aren't in use.
795 */
796 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 797 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
798 if (ret) {
799 async->bio->bi_status = ret;
800 bio_endio(async->bio);
801 }
4a69a410
CM
802}
803
804static void run_one_async_free(struct btrfs_work *work)
805{
806 struct async_submit_bio *async;
807
808 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
809 kfree(async);
810}
811
8896a08d 812blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
8c27cb35 813 int mirror_num, unsigned long bio_flags,
1941b64b 814 u64 dio_file_offset,
e288c080 815 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 816{
8896a08d 817 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
818 struct async_submit_bio *async;
819
820 async = kmalloc(sizeof(*async), GFP_NOFS);
821 if (!async)
4e4cbee9 822 return BLK_STS_RESOURCE;
44b8bd7e 823
8896a08d 824 async->inode = inode;
44b8bd7e
CM
825 async->bio = bio;
826 async->mirror_num = mirror_num;
4a69a410 827 async->submit_bio_start = submit_bio_start;
4a69a410 828
a0cac0ec
OS
829 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
830 run_one_async_free);
4a69a410 831
1941b64b 832 async->dio_file_offset = dio_file_offset;
8c8bee1d 833
4e4cbee9 834 async->status = 0;
79787eaa 835
67f055c7 836 if (op_is_sync(bio->bi_opf))
5cdc7ad3 837 btrfs_set_work_high_priority(&async->work);
d313d7a3 838
5cdc7ad3 839 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
840 return 0;
841}
842
4e4cbee9 843static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 844{
2c30c71b 845 struct bio_vec *bvec;
ce3ed71a 846 struct btrfs_root *root;
2b070cfe 847 int ret = 0;
6dc4f100 848 struct bvec_iter_all iter_all;
ce3ed71a 849
c09abff8 850 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 851 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 852 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 853 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
854 if (ret)
855 break;
ce3ed71a 856 }
2c30c71b 857
4e4cbee9 858 return errno_to_blk_status(ret);
ce3ed71a
CM
859}
860
8896a08d 861static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 862 u64 dio_file_offset)
22c59948 863{
8b712842
CM
864 /*
865 * when we're called for a write, we're already in the async
5443be45 866 * submission context. Just jump into btrfs_map_bio
8b712842 867 */
79787eaa 868 return btree_csum_one_bio(bio);
4a69a410 869}
22c59948 870
9b4e675a
DS
871static int check_async_write(struct btrfs_fs_info *fs_info,
872 struct btrfs_inode *bi)
de0022b9 873{
4eef29ef
NA
874 if (btrfs_is_zoned(fs_info))
875 return 0;
6300463b
LB
876 if (atomic_read(&bi->sync_writers))
877 return 0;
9b4e675a 878 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 879 return 0;
de0022b9
JB
880 return 1;
881}
882
1b36294a
NB
883blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
884 int mirror_num, unsigned long bio_flags)
44b8bd7e 885{
0b246afa 886 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 887 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 888 blk_status_t ret;
cad321ad 889
cfe94440 890 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
4a69a410
CM
891 /*
892 * called for a read, do the setup so that checksum validation
893 * can happen in the async kernel threads
894 */
0b246afa
JM
895 ret = btrfs_bio_wq_end_io(fs_info, bio,
896 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 897 if (ret)
61891923 898 goto out_w_error;
08635bae 899 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
900 } else if (!async) {
901 ret = btree_csum_one_bio(bio);
902 if (ret)
61891923 903 goto out_w_error;
08635bae 904 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
905 } else {
906 /*
907 * kthread helpers are used to submit writes so that
908 * checksumming can happen in parallel across all CPUs
909 */
8896a08d
QW
910 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
911 0, btree_submit_bio_start);
44b8bd7e 912 }
d313d7a3 913
4246a0b6
CH
914 if (ret)
915 goto out_w_error;
916 return 0;
917
61891923 918out_w_error:
4e4cbee9 919 bio->bi_status = ret;
4246a0b6 920 bio_endio(bio);
61891923 921 return ret;
44b8bd7e
CM
922}
923
3dd1462e 924#ifdef CONFIG_MIGRATION
784b4e29 925static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
926 struct page *newpage, struct page *page,
927 enum migrate_mode mode)
784b4e29
CM
928{
929 /*
930 * we can't safely write a btree page from here,
931 * we haven't done the locking hook
932 */
933 if (PageDirty(page))
934 return -EAGAIN;
935 /*
936 * Buffers may be managed in a filesystem specific way.
937 * We must have no buffers or drop them.
938 */
939 if (page_has_private(page) &&
940 !try_to_release_page(page, GFP_KERNEL))
941 return -EAGAIN;
a6bc32b8 942 return migrate_page(mapping, newpage, page, mode);
784b4e29 943}
3dd1462e 944#endif
784b4e29 945
0da5468f
CM
946
947static int btree_writepages(struct address_space *mapping,
948 struct writeback_control *wbc)
949{
e2d84521
MX
950 struct btrfs_fs_info *fs_info;
951 int ret;
952
d8d5f3e1 953 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
954
955 if (wbc->for_kupdate)
956 return 0;
957
e2d84521 958 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 959 /* this is a bit racy, but that's ok */
d814a491
EL
960 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
961 BTRFS_DIRTY_METADATA_THRESH,
962 fs_info->dirty_metadata_batch);
e2d84521 963 if (ret < 0)
793955bc 964 return 0;
793955bc 965 }
0b32f4bb 966 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
967}
968
70dec807 969static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 970{
98509cfc 971 if (PageWriteback(page) || PageDirty(page))
d397712b 972 return 0;
0c4e538b 973
f7a52a40 974 return try_release_extent_buffer(page);
d98237b3
CM
975}
976
d47992f8
LC
977static void btree_invalidatepage(struct page *page, unsigned int offset,
978 unsigned int length)
d98237b3 979{
d1310b2e
CM
980 struct extent_io_tree *tree;
981 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
982 extent_invalidatepage(tree, page, offset);
983 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 984 if (PagePrivate(page)) {
efe120a0
FH
985 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
986 "page private not zero on page %llu",
987 (unsigned long long)page_offset(page));
d1b89bc0 988 detach_page_private(page);
9ad6b7bc 989 }
d98237b3
CM
990}
991
0b32f4bb
JB
992static int btree_set_page_dirty(struct page *page)
993{
bb146eb2 994#ifdef DEBUG
0b32f4bb
JB
995 struct extent_buffer *eb;
996
997 BUG_ON(!PagePrivate(page));
998 eb = (struct extent_buffer *)page->private;
999 BUG_ON(!eb);
1000 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1001 BUG_ON(!atomic_read(&eb->refs));
1002 btrfs_assert_tree_locked(eb);
bb146eb2 1003#endif
0b32f4bb
JB
1004 return __set_page_dirty_nobuffers(page);
1005}
1006
7f09410b 1007static const struct address_space_operations btree_aops = {
0da5468f 1008 .writepages = btree_writepages,
5f39d397
CM
1009 .releasepage = btree_releasepage,
1010 .invalidatepage = btree_invalidatepage,
5a92bc88 1011#ifdef CONFIG_MIGRATION
784b4e29 1012 .migratepage = btree_migratepage,
5a92bc88 1013#endif
0b32f4bb 1014 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1015};
1016
2ff7e61e
JM
1017struct extent_buffer *btrfs_find_create_tree_block(
1018 struct btrfs_fs_info *fs_info,
3fbaf258
JB
1019 u64 bytenr, u64 owner_root,
1020 int level)
0999df54 1021{
0b246afa
JM
1022 if (btrfs_is_testing(fs_info))
1023 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 1024 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
1025}
1026
581c1760
QW
1027/*
1028 * Read tree block at logical address @bytenr and do variant basic but critical
1029 * verification.
1030 *
1b7ec85e 1031 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
1032 * @parent_transid: expected transid of this tree block, skip check if 0
1033 * @level: expected level, mandatory check
1034 * @first_key: expected key in slot 0, skip check if NULL
1035 */
2ff7e61e 1036struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
1037 u64 owner_root, u64 parent_transid,
1038 int level, struct btrfs_key *first_key)
0999df54
CM
1039{
1040 struct extent_buffer *buf = NULL;
0999df54
CM
1041 int ret;
1042
3fbaf258 1043 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
1044 if (IS_ERR(buf))
1045 return buf;
0999df54 1046
5ab12d1f 1047 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1048 level, first_key);
0f0fe8f7 1049 if (ret) {
537f38f0 1050 free_extent_buffer_stale(buf);
64c043de 1051 return ERR_PTR(ret);
0f0fe8f7 1052 }
5f39d397 1053 return buf;
ce9adaa5 1054
eb60ceac
CM
1055}
1056
6a884d7d 1057void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1058{
6a884d7d 1059 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1060 if (btrfs_header_generation(buf) ==
e2d84521 1061 fs_info->running_transaction->transid) {
b9447ef8 1062 btrfs_assert_tree_locked(buf);
b4ce94de 1063
b9473439 1064 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1065 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1066 -buf->len,
1067 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1068 clear_extent_buffer_dirty(buf);
1069 }
925baedd 1070 }
5f39d397
CM
1071}
1072
da17066c 1073static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1074 u64 objectid)
d97e63b6 1075{
7c0260ee 1076 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1077 root->fs_info = fs_info;
cfaa7295 1078 root->node = NULL;
a28ec197 1079 root->commit_root = NULL;
27cdeb70 1080 root->state = 0;
d68fc57b 1081 root->orphan_cleanup_state = 0;
0b86a832 1082
0f7d52f4 1083 root->last_trans = 0;
6b8fad57 1084 root->free_objectid = 0;
eb73c1b7 1085 root->nr_delalloc_inodes = 0;
199c2a9c 1086 root->nr_ordered_extents = 0;
6bef4d31 1087 root->inode_tree = RB_ROOT;
16cdcec7 1088 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1089 root->block_rsv = NULL;
0b86a832
CM
1090
1091 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1092 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1093 INIT_LIST_HEAD(&root->delalloc_inodes);
1094 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1095 INIT_LIST_HEAD(&root->ordered_extents);
1096 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1097 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1098 INIT_LIST_HEAD(&root->logged_list[0]);
1099 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1100 spin_lock_init(&root->inode_lock);
eb73c1b7 1101 spin_lock_init(&root->delalloc_lock);
199c2a9c 1102 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1103 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1104 spin_lock_init(&root->log_extents_lock[0]);
1105 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1106 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1107 mutex_init(&root->objectid_mutex);
e02119d5 1108 mutex_init(&root->log_mutex);
31f3d255 1109 mutex_init(&root->ordered_extent_mutex);
573bfb72 1110 mutex_init(&root->delalloc_mutex);
c53e9653 1111 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1112 init_waitqueue_head(&root->log_writer_wait);
1113 init_waitqueue_head(&root->log_commit_wait[0]);
1114 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1115 INIT_LIST_HEAD(&root->log_ctxs[0]);
1116 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1117 atomic_set(&root->log_commit[0], 0);
1118 atomic_set(&root->log_commit[1], 0);
1119 atomic_set(&root->log_writers, 0);
2ecb7923 1120 atomic_set(&root->log_batch, 0);
0700cea7 1121 refcount_set(&root->refs, 1);
8ecebf4d 1122 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1123 atomic_set(&root->nr_swapfiles, 0);
7237f183 1124 root->log_transid = 0;
d1433deb 1125 root->log_transid_committed = -1;
257c62e1 1126 root->last_log_commit = 0;
e289f03e 1127 if (!dummy) {
43eb5f29
QW
1128 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1129 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1130 extent_io_tree_init(fs_info, &root->log_csum_range,
1131 IO_TREE_LOG_CSUM_RANGE, NULL);
1132 }
017e5369 1133
3768f368
CM
1134 memset(&root->root_key, 0, sizeof(root->root_key));
1135 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1136 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1137 root->root_key.objectid = objectid;
0ee5dc67 1138 root->anon_dev = 0;
8ea05e3a 1139
5f3ab90a 1140 spin_lock_init(&root->root_item_lock);
370a11b8 1141 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1142#ifdef CONFIG_BTRFS_DEBUG
1143 INIT_LIST_HEAD(&root->leak_list);
1144 spin_lock(&fs_info->fs_roots_radix_lock);
1145 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1146 spin_unlock(&fs_info->fs_roots_radix_lock);
1147#endif
3768f368
CM
1148}
1149
74e4d827 1150static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1151 u64 objectid, gfp_t flags)
6f07e42e 1152{
74e4d827 1153 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1154 if (root)
96dfcb46 1155 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1156 return root;
1157}
1158
06ea65a3
JB
1159#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1160/* Should only be used by the testing infrastructure */
da17066c 1161struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1162{
1163 struct btrfs_root *root;
1164
7c0260ee
JM
1165 if (!fs_info)
1166 return ERR_PTR(-EINVAL);
1167
96dfcb46 1168 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1169 if (!root)
1170 return ERR_PTR(-ENOMEM);
da17066c 1171
b9ef22de 1172 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1173 root->alloc_bytenr = 0;
06ea65a3
JB
1174
1175 return root;
1176}
1177#endif
1178
20897f5c 1179struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1180 u64 objectid)
1181{
9b7a2440 1182 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1183 struct extent_buffer *leaf;
1184 struct btrfs_root *tree_root = fs_info->tree_root;
1185 struct btrfs_root *root;
1186 struct btrfs_key key;
b89f6d1f 1187 unsigned int nofs_flag;
20897f5c 1188 int ret = 0;
20897f5c 1189
b89f6d1f
FM
1190 /*
1191 * We're holding a transaction handle, so use a NOFS memory allocation
1192 * context to avoid deadlock if reclaim happens.
1193 */
1194 nofs_flag = memalloc_nofs_save();
96dfcb46 1195 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1196 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1197 if (!root)
1198 return ERR_PTR(-ENOMEM);
1199
20897f5c
AJ
1200 root->root_key.objectid = objectid;
1201 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1202 root->root_key.offset = 0;
1203
9631e4cc
JB
1204 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1205 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1206 if (IS_ERR(leaf)) {
1207 ret = PTR_ERR(leaf);
1dd05682 1208 leaf = NULL;
8a6a87cd 1209 goto fail_unlock;
20897f5c
AJ
1210 }
1211
20897f5c 1212 root->node = leaf;
20897f5c
AJ
1213 btrfs_mark_buffer_dirty(leaf);
1214
1215 root->commit_root = btrfs_root_node(root);
27cdeb70 1216 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1217
f944d2cb
DS
1218 btrfs_set_root_flags(&root->root_item, 0);
1219 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1220 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1221 btrfs_set_root_generation(&root->root_item, trans->transid);
1222 btrfs_set_root_level(&root->root_item, 0);
1223 btrfs_set_root_refs(&root->root_item, 1);
1224 btrfs_set_root_used(&root->root_item, leaf->len);
1225 btrfs_set_root_last_snapshot(&root->root_item, 0);
1226 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1227 if (is_fstree(objectid))
807fc790
AS
1228 generate_random_guid(root->root_item.uuid);
1229 else
1230 export_guid(root->root_item.uuid, &guid_null);
c8422684 1231 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1232
8a6a87cd
BB
1233 btrfs_tree_unlock(leaf);
1234
20897f5c
AJ
1235 key.objectid = objectid;
1236 key.type = BTRFS_ROOT_ITEM_KEY;
1237 key.offset = 0;
1238 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1239 if (ret)
1240 goto fail;
1241
1dd05682
TI
1242 return root;
1243
8a6a87cd 1244fail_unlock:
8c38938c 1245 if (leaf)
1dd05682 1246 btrfs_tree_unlock(leaf);
8a6a87cd 1247fail:
00246528 1248 btrfs_put_root(root);
20897f5c 1249
1dd05682 1250 return ERR_PTR(ret);
20897f5c
AJ
1251}
1252
7237f183
YZ
1253static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1254 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1255{
1256 struct btrfs_root *root;
e02119d5 1257
96dfcb46 1258 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1259 if (!root)
7237f183 1260 return ERR_PTR(-ENOMEM);
e02119d5 1261
e02119d5
CM
1262 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1263 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1264 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1265
6ab6ebb7
NA
1266 return root;
1267}
1268
1269int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root)
1271{
1272 struct extent_buffer *leaf;
1273
7237f183 1274 /*
92a7cc42 1275 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1276 *
92a7cc42
QW
1277 * Log trees are not exposed to user space thus can't be snapshotted,
1278 * and they go away before a real commit is actually done.
1279 *
1280 * They do store pointers to file data extents, and those reference
1281 * counts still get updated (along with back refs to the log tree).
7237f183 1282 */
e02119d5 1283
4d75f8a9 1284 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1285 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1286 if (IS_ERR(leaf))
1287 return PTR_ERR(leaf);
e02119d5 1288
7237f183 1289 root->node = leaf;
e02119d5 1290
e02119d5
CM
1291 btrfs_mark_buffer_dirty(root->node);
1292 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1293
1294 return 0;
7237f183
YZ
1295}
1296
1297int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1298 struct btrfs_fs_info *fs_info)
1299{
1300 struct btrfs_root *log_root;
1301
1302 log_root = alloc_log_tree(trans, fs_info);
1303 if (IS_ERR(log_root))
1304 return PTR_ERR(log_root);
6ab6ebb7 1305
3ddebf27
NA
1306 if (!btrfs_is_zoned(fs_info)) {
1307 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1308
1309 if (ret) {
1310 btrfs_put_root(log_root);
1311 return ret;
1312 }
6ab6ebb7
NA
1313 }
1314
7237f183
YZ
1315 WARN_ON(fs_info->log_root_tree);
1316 fs_info->log_root_tree = log_root;
1317 return 0;
1318}
1319
1320int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1321 struct btrfs_root *root)
1322{
0b246afa 1323 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1324 struct btrfs_root *log_root;
1325 struct btrfs_inode_item *inode_item;
6ab6ebb7 1326 int ret;
7237f183 1327
0b246afa 1328 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1329 if (IS_ERR(log_root))
1330 return PTR_ERR(log_root);
1331
6ab6ebb7
NA
1332 ret = btrfs_alloc_log_tree_node(trans, log_root);
1333 if (ret) {
1334 btrfs_put_root(log_root);
1335 return ret;
1336 }
1337
7237f183
YZ
1338 log_root->last_trans = trans->transid;
1339 log_root->root_key.offset = root->root_key.objectid;
1340
1341 inode_item = &log_root->root_item.inode;
3cae210f
QW
1342 btrfs_set_stack_inode_generation(inode_item, 1);
1343 btrfs_set_stack_inode_size(inode_item, 3);
1344 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1345 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1346 fs_info->nodesize);
3cae210f 1347 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1348
5d4f98a2 1349 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1350
1351 WARN_ON(root->log_root);
1352 root->log_root = log_root;
1353 root->log_transid = 0;
d1433deb 1354 root->log_transid_committed = -1;
257c62e1 1355 root->last_log_commit = 0;
e02119d5
CM
1356 return 0;
1357}
1358
49d11bea
JB
1359static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1360 struct btrfs_path *path,
1361 struct btrfs_key *key)
e02119d5
CM
1362{
1363 struct btrfs_root *root;
1364 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1365 u64 generation;
cb517eab 1366 int ret;
581c1760 1367 int level;
0f7d52f4 1368
96dfcb46 1369 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1370 if (!root)
1371 return ERR_PTR(-ENOMEM);
0f7d52f4 1372
cb517eab
MX
1373 ret = btrfs_find_root(tree_root, key, path,
1374 &root->root_item, &root->root_key);
0f7d52f4 1375 if (ret) {
13a8a7c8
YZ
1376 if (ret > 0)
1377 ret = -ENOENT;
49d11bea 1378 goto fail;
0f7d52f4 1379 }
13a8a7c8 1380
84234f3a 1381 generation = btrfs_root_generation(&root->root_item);
581c1760 1382 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1383 root->node = read_tree_block(fs_info,
1384 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1385 key->objectid, generation, level, NULL);
64c043de
LB
1386 if (IS_ERR(root->node)) {
1387 ret = PTR_ERR(root->node);
8c38938c 1388 root->node = NULL;
49d11bea 1389 goto fail;
cb517eab
MX
1390 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1391 ret = -EIO;
49d11bea 1392 goto fail;
416bc658 1393 }
5d4f98a2 1394 root->commit_root = btrfs_root_node(root);
cb517eab 1395 return root;
49d11bea 1396fail:
00246528 1397 btrfs_put_root(root);
49d11bea
JB
1398 return ERR_PTR(ret);
1399}
1400
1401struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1402 struct btrfs_key *key)
1403{
1404 struct btrfs_root *root;
1405 struct btrfs_path *path;
1406
1407 path = btrfs_alloc_path();
1408 if (!path)
1409 return ERR_PTR(-ENOMEM);
1410 root = read_tree_root_path(tree_root, path, key);
1411 btrfs_free_path(path);
1412
1413 return root;
cb517eab
MX
1414}
1415
2dfb1e43
QW
1416/*
1417 * Initialize subvolume root in-memory structure
1418 *
1419 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1420 */
1421static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1422{
1423 int ret;
dcc3eb96 1424 unsigned int nofs_flag;
cb517eab 1425
dcc3eb96
NB
1426 /*
1427 * We might be called under a transaction (e.g. indirect backref
1428 * resolution) which could deadlock if it triggers memory reclaim
1429 */
1430 nofs_flag = memalloc_nofs_save();
1431 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1432 memalloc_nofs_restore(nofs_flag);
1433 if (ret)
8257b2dc 1434 goto fail;
8257b2dc 1435
aeb935a4
QW
1436 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1437 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1438 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1439 btrfs_check_and_init_root_item(&root->root_item);
1440 }
1441
851fd730
QW
1442 /*
1443 * Don't assign anonymous block device to roots that are not exposed to
1444 * userspace, the id pool is limited to 1M
1445 */
1446 if (is_fstree(root->root_key.objectid) &&
1447 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1448 if (!anon_dev) {
1449 ret = get_anon_bdev(&root->anon_dev);
1450 if (ret)
1451 goto fail;
1452 } else {
1453 root->anon_dev = anon_dev;
1454 }
851fd730 1455 }
f32e48e9
CR
1456
1457 mutex_lock(&root->objectid_mutex);
453e4873 1458 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1459 if (ret) {
1460 mutex_unlock(&root->objectid_mutex);
876d2cf1 1461 goto fail;
f32e48e9
CR
1462 }
1463
6b8fad57 1464 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1465
1466 mutex_unlock(&root->objectid_mutex);
1467
cb517eab
MX
1468 return 0;
1469fail:
84db5ccf 1470 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1471 return ret;
1472}
1473
a98db0f3
JB
1474static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1475 u64 root_id)
cb517eab
MX
1476{
1477 struct btrfs_root *root;
1478
1479 spin_lock(&fs_info->fs_roots_radix_lock);
1480 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1481 (unsigned long)root_id);
bc44d7c4 1482 if (root)
00246528 1483 root = btrfs_grab_root(root);
cb517eab
MX
1484 spin_unlock(&fs_info->fs_roots_radix_lock);
1485 return root;
1486}
1487
49d11bea
JB
1488static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1489 u64 objectid)
1490{
1491 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1492 return btrfs_grab_root(fs_info->tree_root);
1493 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1494 return btrfs_grab_root(fs_info->extent_root);
1495 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1496 return btrfs_grab_root(fs_info->chunk_root);
1497 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1498 return btrfs_grab_root(fs_info->dev_root);
1499 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1500 return btrfs_grab_root(fs_info->csum_root);
1501 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1502 return btrfs_grab_root(fs_info->quota_root) ?
1503 fs_info->quota_root : ERR_PTR(-ENOENT);
1504 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1505 return btrfs_grab_root(fs_info->uuid_root) ?
1506 fs_info->uuid_root : ERR_PTR(-ENOENT);
1507 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1508 return btrfs_grab_root(fs_info->free_space_root) ?
1509 fs_info->free_space_root : ERR_PTR(-ENOENT);
1510 return NULL;
1511}
1512
cb517eab
MX
1513int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1514 struct btrfs_root *root)
1515{
1516 int ret;
1517
e1860a77 1518 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1519 if (ret)
1520 return ret;
1521
1522 spin_lock(&fs_info->fs_roots_radix_lock);
1523 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1524 (unsigned long)root->root_key.objectid,
1525 root);
af01d2e5 1526 if (ret == 0) {
00246528 1527 btrfs_grab_root(root);
27cdeb70 1528 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1529 }
cb517eab
MX
1530 spin_unlock(&fs_info->fs_roots_radix_lock);
1531 radix_tree_preload_end();
1532
1533 return ret;
1534}
1535
bd647ce3
JB
1536void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1537{
1538#ifdef CONFIG_BTRFS_DEBUG
1539 struct btrfs_root *root;
1540
1541 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1542 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1543
bd647ce3
JB
1544 root = list_first_entry(&fs_info->allocated_roots,
1545 struct btrfs_root, leak_list);
457f1864 1546 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1547 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1548 refcount_read(&root->refs));
1549 while (refcount_read(&root->refs) > 1)
00246528
JB
1550 btrfs_put_root(root);
1551 btrfs_put_root(root);
bd647ce3
JB
1552 }
1553#endif
1554}
1555
0d4b0463
JB
1556void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1557{
141386e1
JB
1558 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1559 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1560 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1561 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1562 btrfs_free_csum_hash(fs_info);
1563 btrfs_free_stripe_hash_table(fs_info);
1564 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1565 kfree(fs_info->balance_ctl);
1566 kfree(fs_info->delayed_root);
00246528
JB
1567 btrfs_put_root(fs_info->extent_root);
1568 btrfs_put_root(fs_info->tree_root);
1569 btrfs_put_root(fs_info->chunk_root);
1570 btrfs_put_root(fs_info->dev_root);
1571 btrfs_put_root(fs_info->csum_root);
1572 btrfs_put_root(fs_info->quota_root);
1573 btrfs_put_root(fs_info->uuid_root);
1574 btrfs_put_root(fs_info->free_space_root);
1575 btrfs_put_root(fs_info->fs_root);
aeb935a4 1576 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1577 btrfs_check_leaked_roots(fs_info);
3fd63727 1578 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1579 kfree(fs_info->super_copy);
1580 kfree(fs_info->super_for_commit);
1581 kvfree(fs_info);
1582}
1583
1584
2dfb1e43
QW
1585/*
1586 * Get an in-memory reference of a root structure.
1587 *
1588 * For essential trees like root/extent tree, we grab it from fs_info directly.
1589 * For subvolume trees, we check the cached filesystem roots first. If not
1590 * found, then read it from disk and add it to cached fs roots.
1591 *
1592 * Caller should release the root by calling btrfs_put_root() after the usage.
1593 *
1594 * NOTE: Reloc and log trees can't be read by this function as they share the
1595 * same root objectid.
1596 *
1597 * @objectid: root id
1598 * @anon_dev: preallocated anonymous block device number for new roots,
1599 * pass 0 for new allocation.
1600 * @check_ref: whether to check root item references, If true, return -ENOENT
1601 * for orphan roots
1602 */
1603static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1604 u64 objectid, dev_t anon_dev,
1605 bool check_ref)
5eda7b5e
CM
1606{
1607 struct btrfs_root *root;
381cf658 1608 struct btrfs_path *path;
1d4c08e0 1609 struct btrfs_key key;
5eda7b5e
CM
1610 int ret;
1611
49d11bea
JB
1612 root = btrfs_get_global_root(fs_info, objectid);
1613 if (root)
1614 return root;
4df27c4d 1615again:
56e9357a 1616 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1617 if (root) {
2dfb1e43
QW
1618 /* Shouldn't get preallocated anon_dev for cached roots */
1619 ASSERT(!anon_dev);
bc44d7c4 1620 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1621 btrfs_put_root(root);
48475471 1622 return ERR_PTR(-ENOENT);
bc44d7c4 1623 }
5eda7b5e 1624 return root;
48475471 1625 }
5eda7b5e 1626
56e9357a
DS
1627 key.objectid = objectid;
1628 key.type = BTRFS_ROOT_ITEM_KEY;
1629 key.offset = (u64)-1;
1630 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1631 if (IS_ERR(root))
1632 return root;
3394e160 1633
c00869f1 1634 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1635 ret = -ENOENT;
581bb050 1636 goto fail;
35a30d7c 1637 }
581bb050 1638
2dfb1e43 1639 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1640 if (ret)
1641 goto fail;
3394e160 1642
381cf658
DS
1643 path = btrfs_alloc_path();
1644 if (!path) {
1645 ret = -ENOMEM;
1646 goto fail;
1647 }
1d4c08e0
DS
1648 key.objectid = BTRFS_ORPHAN_OBJECTID;
1649 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1650 key.offset = objectid;
1d4c08e0
DS
1651
1652 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1653 btrfs_free_path(path);
d68fc57b
YZ
1654 if (ret < 0)
1655 goto fail;
1656 if (ret == 0)
27cdeb70 1657 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1658
cb517eab 1659 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1660 if (ret) {
00246528 1661 btrfs_put_root(root);
4785e24f 1662 if (ret == -EEXIST)
4df27c4d 1663 goto again;
4df27c4d 1664 goto fail;
0f7d52f4 1665 }
edbd8d4e 1666 return root;
4df27c4d 1667fail:
8c38938c 1668 btrfs_put_root(root);
4df27c4d 1669 return ERR_PTR(ret);
edbd8d4e
CM
1670}
1671
2dfb1e43
QW
1672/*
1673 * Get in-memory reference of a root structure
1674 *
1675 * @objectid: tree objectid
1676 * @check_ref: if set, verify that the tree exists and the item has at least
1677 * one reference
1678 */
1679struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1680 u64 objectid, bool check_ref)
1681{
1682 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1683}
1684
1685/*
1686 * Get in-memory reference of a root structure, created as new, optionally pass
1687 * the anonymous block device id
1688 *
1689 * @objectid: tree objectid
1690 * @anon_dev: if zero, allocate a new anonymous block device or use the
1691 * parameter value
1692 */
1693struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1694 u64 objectid, dev_t anon_dev)
1695{
1696 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1697}
1698
49d11bea
JB
1699/*
1700 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1701 * @fs_info: the fs_info
1702 * @objectid: the objectid we need to lookup
1703 *
1704 * This is exclusively used for backref walking, and exists specifically because
1705 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1706 * creation time, which means we may have to read the tree_root in order to look
1707 * up a fs root that is not in memory. If the root is not in memory we will
1708 * read the tree root commit root and look up the fs root from there. This is a
1709 * temporary root, it will not be inserted into the radix tree as it doesn't
1710 * have the most uptodate information, it'll simply be discarded once the
1711 * backref code is finished using the root.
1712 */
1713struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1714 struct btrfs_path *path,
1715 u64 objectid)
1716{
1717 struct btrfs_root *root;
1718 struct btrfs_key key;
1719
1720 ASSERT(path->search_commit_root && path->skip_locking);
1721
1722 /*
1723 * This can return -ENOENT if we ask for a root that doesn't exist, but
1724 * since this is called via the backref walking code we won't be looking
1725 * up a root that doesn't exist, unless there's corruption. So if root
1726 * != NULL just return it.
1727 */
1728 root = btrfs_get_global_root(fs_info, objectid);
1729 if (root)
1730 return root;
1731
1732 root = btrfs_lookup_fs_root(fs_info, objectid);
1733 if (root)
1734 return root;
1735
1736 key.objectid = objectid;
1737 key.type = BTRFS_ROOT_ITEM_KEY;
1738 key.offset = (u64)-1;
1739 root = read_tree_root_path(fs_info->tree_root, path, &key);
1740 btrfs_release_path(path);
1741
1742 return root;
1743}
1744
8b712842
CM
1745/*
1746 * called by the kthread helper functions to finally call the bio end_io
1747 * functions. This is where read checksum verification actually happens
1748 */
1749static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1750{
ce9adaa5 1751 struct bio *bio;
97eb6b69 1752 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1753
97eb6b69 1754 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1755 bio = end_io_wq->bio;
ce9adaa5 1756
4e4cbee9 1757 bio->bi_status = end_io_wq->status;
8b712842
CM
1758 bio->bi_private = end_io_wq->private;
1759 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1760 bio_endio(bio);
9be490f1 1761 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1762}
1763
a74a4b97
CM
1764static int cleaner_kthread(void *arg)
1765{
1766 struct btrfs_root *root = arg;
0b246afa 1767 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1768 int again;
a74a4b97 1769
d6fd0ae2 1770 while (1) {
d0278245 1771 again = 0;
a74a4b97 1772
fd340d0f
JB
1773 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1774
d0278245 1775 /* Make the cleaner go to sleep early. */
2ff7e61e 1776 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1777 goto sleep;
1778
90c711ab
ZB
1779 /*
1780 * Do not do anything if we might cause open_ctree() to block
1781 * before we have finished mounting the filesystem.
1782 */
0b246afa 1783 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1784 goto sleep;
1785
0b246afa 1786 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1787 goto sleep;
1788
dc7f370c
MX
1789 /*
1790 * Avoid the problem that we change the status of the fs
1791 * during the above check and trylock.
1792 */
2ff7e61e 1793 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1794 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1795 goto sleep;
76dda93c 1796 }
a74a4b97 1797
2ff7e61e 1798 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1799
d0278245 1800 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1801 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1802
1803 /*
05323cd1
MX
1804 * The defragger has dealt with the R/O remount and umount,
1805 * needn't do anything special here.
d0278245 1806 */
0b246afa 1807 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1808
1809 /*
1810 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1811 * with relocation (btrfs_relocate_chunk) and relocation
1812 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1813 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1814 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1815 * unused block groups.
1816 */
0b246afa 1817 btrfs_delete_unused_bgs(fs_info);
d0278245 1818sleep:
a0a1db70 1819 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1820 if (kthread_should_park())
1821 kthread_parkme();
1822 if (kthread_should_stop())
1823 return 0;
838fe188 1824 if (!again) {
a74a4b97 1825 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1826 schedule();
a74a4b97
CM
1827 __set_current_state(TASK_RUNNING);
1828 }
da288d28 1829 }
a74a4b97
CM
1830}
1831
1832static int transaction_kthread(void *arg)
1833{
1834 struct btrfs_root *root = arg;
0b246afa 1835 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1836 struct btrfs_trans_handle *trans;
1837 struct btrfs_transaction *cur;
8929ecfa 1838 u64 transid;
643900be 1839 time64_t delta;
a74a4b97 1840 unsigned long delay;
914b2007 1841 bool cannot_commit;
a74a4b97
CM
1842
1843 do {
914b2007 1844 cannot_commit = false;
ba1bc00f 1845 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1846 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1847
0b246afa
JM
1848 spin_lock(&fs_info->trans_lock);
1849 cur = fs_info->running_transaction;
a74a4b97 1850 if (!cur) {
0b246afa 1851 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1852 goto sleep;
1853 }
31153d81 1854
643900be 1855 delta = ktime_get_seconds() - cur->start_time;
3296bf56 1856 if (cur->state < TRANS_STATE_COMMIT_START &&
643900be 1857 delta < fs_info->commit_interval) {
0b246afa 1858 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1859 delay -= msecs_to_jiffies((delta - 1) * 1000);
1860 delay = min(delay,
1861 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1862 goto sleep;
1863 }
8929ecfa 1864 transid = cur->transid;
0b246afa 1865 spin_unlock(&fs_info->trans_lock);
56bec294 1866
79787eaa 1867 /* If the file system is aborted, this will always fail. */
354aa0fb 1868 trans = btrfs_attach_transaction(root);
914b2007 1869 if (IS_ERR(trans)) {
354aa0fb
MX
1870 if (PTR_ERR(trans) != -ENOENT)
1871 cannot_commit = true;
79787eaa 1872 goto sleep;
914b2007 1873 }
8929ecfa 1874 if (transid == trans->transid) {
3a45bb20 1875 btrfs_commit_transaction(trans);
8929ecfa 1876 } else {
3a45bb20 1877 btrfs_end_transaction(trans);
8929ecfa 1878 }
a74a4b97 1879sleep:
0b246afa
JM
1880 wake_up_process(fs_info->cleaner_kthread);
1881 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1882
4e121c06 1883 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1884 &fs_info->fs_state)))
2ff7e61e 1885 btrfs_cleanup_transaction(fs_info);
ce63f891 1886 if (!kthread_should_stop() &&
0b246afa 1887 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1888 cannot_commit))
bc5511d0 1889 schedule_timeout_interruptible(delay);
a74a4b97
CM
1890 } while (!kthread_should_stop());
1891 return 0;
1892}
1893
af31f5e5 1894/*
01f0f9da
NB
1895 * This will find the highest generation in the array of root backups. The
1896 * index of the highest array is returned, or -EINVAL if we can't find
1897 * anything.
af31f5e5
CM
1898 *
1899 * We check to make sure the array is valid by comparing the
1900 * generation of the latest root in the array with the generation
1901 * in the super block. If they don't match we pitch it.
1902 */
01f0f9da 1903static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1904{
01f0f9da 1905 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1906 u64 cur;
af31f5e5
CM
1907 struct btrfs_root_backup *root_backup;
1908 int i;
1909
1910 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1911 root_backup = info->super_copy->super_roots + i;
1912 cur = btrfs_backup_tree_root_gen(root_backup);
1913 if (cur == newest_gen)
01f0f9da 1914 return i;
af31f5e5
CM
1915 }
1916
01f0f9da 1917 return -EINVAL;
af31f5e5
CM
1918}
1919
af31f5e5
CM
1920/*
1921 * copy all the root pointers into the super backup array.
1922 * this will bump the backup pointer by one when it is
1923 * done
1924 */
1925static void backup_super_roots(struct btrfs_fs_info *info)
1926{
6ef108dd 1927 const int next_backup = info->backup_root_index;
af31f5e5 1928 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1929
1930 root_backup = info->super_for_commit->super_roots + next_backup;
1931
1932 /*
1933 * make sure all of our padding and empty slots get zero filled
1934 * regardless of which ones we use today
1935 */
1936 memset(root_backup, 0, sizeof(*root_backup));
1937
1938 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1939
1940 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1941 btrfs_set_backup_tree_root_gen(root_backup,
1942 btrfs_header_generation(info->tree_root->node));
1943
1944 btrfs_set_backup_tree_root_level(root_backup,
1945 btrfs_header_level(info->tree_root->node));
1946
1947 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1948 btrfs_set_backup_chunk_root_gen(root_backup,
1949 btrfs_header_generation(info->chunk_root->node));
1950 btrfs_set_backup_chunk_root_level(root_backup,
1951 btrfs_header_level(info->chunk_root->node));
1952
1953 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1954 btrfs_set_backup_extent_root_gen(root_backup,
1955 btrfs_header_generation(info->extent_root->node));
1956 btrfs_set_backup_extent_root_level(root_backup,
1957 btrfs_header_level(info->extent_root->node));
1958
7c7e82a7
CM
1959 /*
1960 * we might commit during log recovery, which happens before we set
1961 * the fs_root. Make sure it is valid before we fill it in.
1962 */
1963 if (info->fs_root && info->fs_root->node) {
1964 btrfs_set_backup_fs_root(root_backup,
1965 info->fs_root->node->start);
1966 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1967 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1968 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1969 btrfs_header_level(info->fs_root->node));
7c7e82a7 1970 }
af31f5e5
CM
1971
1972 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1973 btrfs_set_backup_dev_root_gen(root_backup,
1974 btrfs_header_generation(info->dev_root->node));
1975 btrfs_set_backup_dev_root_level(root_backup,
1976 btrfs_header_level(info->dev_root->node));
1977
1978 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1979 btrfs_set_backup_csum_root_gen(root_backup,
1980 btrfs_header_generation(info->csum_root->node));
1981 btrfs_set_backup_csum_root_level(root_backup,
1982 btrfs_header_level(info->csum_root->node));
1983
1984 btrfs_set_backup_total_bytes(root_backup,
1985 btrfs_super_total_bytes(info->super_copy));
1986 btrfs_set_backup_bytes_used(root_backup,
1987 btrfs_super_bytes_used(info->super_copy));
1988 btrfs_set_backup_num_devices(root_backup,
1989 btrfs_super_num_devices(info->super_copy));
1990
1991 /*
1992 * if we don't copy this out to the super_copy, it won't get remembered
1993 * for the next commit
1994 */
1995 memcpy(&info->super_copy->super_roots,
1996 &info->super_for_commit->super_roots,
1997 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1998}
1999
bd2336b2
NB
2000/*
2001 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2002 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2003 *
2004 * fs_info - filesystem whose backup roots need to be read
2005 * priority - priority of backup root required
2006 *
2007 * Returns backup root index on success and -EINVAL otherwise.
2008 */
2009static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2010{
2011 int backup_index = find_newest_super_backup(fs_info);
2012 struct btrfs_super_block *super = fs_info->super_copy;
2013 struct btrfs_root_backup *root_backup;
2014
2015 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2016 if (priority == 0)
2017 return backup_index;
2018
2019 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2020 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2021 } else {
2022 return -EINVAL;
2023 }
2024
2025 root_backup = super->super_roots + backup_index;
2026
2027 btrfs_set_super_generation(super,
2028 btrfs_backup_tree_root_gen(root_backup));
2029 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2030 btrfs_set_super_root_level(super,
2031 btrfs_backup_tree_root_level(root_backup));
2032 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2033
2034 /*
2035 * Fixme: the total bytes and num_devices need to match or we should
2036 * need a fsck
2037 */
2038 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2039 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2040
2041 return backup_index;
2042}
2043
7abadb64
LB
2044/* helper to cleanup workers */
2045static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2046{
dc6e3209 2047 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2048 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2049 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2050 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2051 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2052 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2053 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2054 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2055 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2056 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2057 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2058 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2059 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2060 if (fs_info->discard_ctl.discard_workers)
2061 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2062 /*
2063 * Now that all other work queues are destroyed, we can safely destroy
2064 * the queues used for metadata I/O, since tasks from those other work
2065 * queues can do metadata I/O operations.
2066 */
2067 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2068 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2069}
2070
2e9f5954
R
2071static void free_root_extent_buffers(struct btrfs_root *root)
2072{
2073 if (root) {
2074 free_extent_buffer(root->node);
2075 free_extent_buffer(root->commit_root);
2076 root->node = NULL;
2077 root->commit_root = NULL;
2078 }
2079}
2080
af31f5e5 2081/* helper to cleanup tree roots */
4273eaff 2082static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2083{
2e9f5954 2084 free_root_extent_buffers(info->tree_root);
655b09fe 2085
2e9f5954
R
2086 free_root_extent_buffers(info->dev_root);
2087 free_root_extent_buffers(info->extent_root);
2088 free_root_extent_buffers(info->csum_root);
2089 free_root_extent_buffers(info->quota_root);
2090 free_root_extent_buffers(info->uuid_root);
8c38938c 2091 free_root_extent_buffers(info->fs_root);
aeb935a4 2092 free_root_extent_buffers(info->data_reloc_root);
4273eaff 2093 if (free_chunk_root)
2e9f5954 2094 free_root_extent_buffers(info->chunk_root);
70f6d82e 2095 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2096}
2097
8c38938c
JB
2098void btrfs_put_root(struct btrfs_root *root)
2099{
2100 if (!root)
2101 return;
2102
2103 if (refcount_dec_and_test(&root->refs)) {
2104 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2105 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2106 if (root->anon_dev)
2107 free_anon_bdev(root->anon_dev);
2108 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2109 free_root_extent_buffers(root);
8c38938c
JB
2110#ifdef CONFIG_BTRFS_DEBUG
2111 spin_lock(&root->fs_info->fs_roots_radix_lock);
2112 list_del_init(&root->leak_list);
2113 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2114#endif
2115 kfree(root);
2116 }
2117}
2118
faa2dbf0 2119void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2120{
2121 int ret;
2122 struct btrfs_root *gang[8];
2123 int i;
2124
2125 while (!list_empty(&fs_info->dead_roots)) {
2126 gang[0] = list_entry(fs_info->dead_roots.next,
2127 struct btrfs_root, root_list);
2128 list_del(&gang[0]->root_list);
2129
8c38938c 2130 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2131 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2132 btrfs_put_root(gang[0]);
171f6537
JB
2133 }
2134
2135 while (1) {
2136 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2137 (void **)gang, 0,
2138 ARRAY_SIZE(gang));
2139 if (!ret)
2140 break;
2141 for (i = 0; i < ret; i++)
cb517eab 2142 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2143 }
2144}
af31f5e5 2145
638aa7ed
ES
2146static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2147{
2148 mutex_init(&fs_info->scrub_lock);
2149 atomic_set(&fs_info->scrubs_running, 0);
2150 atomic_set(&fs_info->scrub_pause_req, 0);
2151 atomic_set(&fs_info->scrubs_paused, 0);
2152 atomic_set(&fs_info->scrub_cancel_req, 0);
2153 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2154 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2155}
2156
779a65a4
ES
2157static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2158{
2159 spin_lock_init(&fs_info->balance_lock);
2160 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2161 atomic_set(&fs_info->balance_pause_req, 0);
2162 atomic_set(&fs_info->balance_cancel_req, 0);
2163 fs_info->balance_ctl = NULL;
2164 init_waitqueue_head(&fs_info->balance_wait_q);
2165}
2166
6bccf3ab 2167static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2168{
2ff7e61e
JM
2169 struct inode *inode = fs_info->btree_inode;
2170
2171 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2172 set_nlink(inode, 1);
f37938e0
ES
2173 /*
2174 * we set the i_size on the btree inode to the max possible int.
2175 * the real end of the address space is determined by all of
2176 * the devices in the system
2177 */
2ff7e61e
JM
2178 inode->i_size = OFFSET_MAX;
2179 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2180
2ff7e61e 2181 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2182 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2c53a14d 2183 IO_TREE_BTREE_INODE_IO, inode);
7b439738 2184 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2185 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2186
5c8fd99f 2187 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2188 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2189 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2190 btrfs_insert_inode_hash(inode);
f37938e0
ES
2191}
2192
ad618368
ES
2193static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2194{
ad618368 2195 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2196 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2197 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2198}
2199
f9e92e40
ES
2200static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2201{
2202 spin_lock_init(&fs_info->qgroup_lock);
2203 mutex_init(&fs_info->qgroup_ioctl_lock);
2204 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2205 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2206 fs_info->qgroup_seq = 1;
f9e92e40 2207 fs_info->qgroup_ulist = NULL;
d2c609b8 2208 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2209 mutex_init(&fs_info->qgroup_rescan_lock);
2210}
2211
2a458198
ES
2212static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2213 struct btrfs_fs_devices *fs_devices)
2214{
f7b885be 2215 u32 max_active = fs_info->thread_pool_size;
6f011058 2216 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2217
2218 fs_info->workers =
cb001095
JM
2219 btrfs_alloc_workqueue(fs_info, "worker",
2220 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2221
2222 fs_info->delalloc_workers =
cb001095
JM
2223 btrfs_alloc_workqueue(fs_info, "delalloc",
2224 flags, max_active, 2);
2a458198
ES
2225
2226 fs_info->flush_workers =
cb001095
JM
2227 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2228 flags, max_active, 0);
2a458198
ES
2229
2230 fs_info->caching_workers =
cb001095 2231 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2232
2a458198 2233 fs_info->fixup_workers =
cb001095 2234 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2235
2236 /*
2237 * endios are largely parallel and should have a very
2238 * low idle thresh
2239 */
2240 fs_info->endio_workers =
cb001095 2241 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2242 fs_info->endio_meta_workers =
cb001095
JM
2243 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2244 max_active, 4);
2a458198 2245 fs_info->endio_meta_write_workers =
cb001095
JM
2246 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2247 max_active, 2);
2a458198 2248 fs_info->endio_raid56_workers =
cb001095
JM
2249 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2250 max_active, 4);
2a458198 2251 fs_info->rmw_workers =
cb001095 2252 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2253 fs_info->endio_write_workers =
cb001095
JM
2254 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2255 max_active, 2);
2a458198 2256 fs_info->endio_freespace_worker =
cb001095
JM
2257 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2258 max_active, 0);
2a458198 2259 fs_info->delayed_workers =
cb001095
JM
2260 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2261 max_active, 0);
2a458198 2262 fs_info->readahead_workers =
cb001095
JM
2263 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2264 max_active, 2);
2a458198 2265 fs_info->qgroup_rescan_workers =
cb001095 2266 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2267 fs_info->discard_ctl.discard_workers =
2268 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2269
2270 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2271 fs_info->flush_workers &&
2a458198
ES
2272 fs_info->endio_workers && fs_info->endio_meta_workers &&
2273 fs_info->endio_meta_write_workers &&
2a458198
ES
2274 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2275 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2276 fs_info->caching_workers && fs_info->readahead_workers &&
2277 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2278 fs_info->qgroup_rescan_workers &&
2279 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2280 return -ENOMEM;
2281 }
2282
2283 return 0;
2284}
2285
6d97c6e3
JT
2286static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2287{
2288 struct crypto_shash *csum_shash;
b4e967be 2289 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2290
b4e967be 2291 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2292
2293 if (IS_ERR(csum_shash)) {
2294 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2295 csum_driver);
6d97c6e3
JT
2296 return PTR_ERR(csum_shash);
2297 }
2298
2299 fs_info->csum_shash = csum_shash;
2300
2301 return 0;
2302}
2303
63443bf5
ES
2304static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2305 struct btrfs_fs_devices *fs_devices)
2306{
2307 int ret;
63443bf5
ES
2308 struct btrfs_root *log_tree_root;
2309 struct btrfs_super_block *disk_super = fs_info->super_copy;
2310 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2311 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2312
2313 if (fs_devices->rw_devices == 0) {
f14d104d 2314 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2315 return -EIO;
2316 }
2317
96dfcb46
JB
2318 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2319 GFP_KERNEL);
63443bf5
ES
2320 if (!log_tree_root)
2321 return -ENOMEM;
2322
2ff7e61e 2323 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2324 BTRFS_TREE_LOG_OBJECTID,
2325 fs_info->generation + 1, level,
2326 NULL);
64c043de 2327 if (IS_ERR(log_tree_root->node)) {
f14d104d 2328 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2329 ret = PTR_ERR(log_tree_root->node);
8c38938c 2330 log_tree_root->node = NULL;
00246528 2331 btrfs_put_root(log_tree_root);
0eeff236 2332 return ret;
64c043de 2333 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2334 btrfs_err(fs_info, "failed to read log tree");
00246528 2335 btrfs_put_root(log_tree_root);
63443bf5
ES
2336 return -EIO;
2337 }
2338 /* returns with log_tree_root freed on success */
2339 ret = btrfs_recover_log_trees(log_tree_root);
2340 if (ret) {
0b246afa
JM
2341 btrfs_handle_fs_error(fs_info, ret,
2342 "Failed to recover log tree");
00246528 2343 btrfs_put_root(log_tree_root);
63443bf5
ES
2344 return ret;
2345 }
2346
bc98a42c 2347 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2348 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2349 if (ret)
2350 return ret;
2351 }
2352
2353 return 0;
2354}
2355
6bccf3ab 2356static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2357{
6bccf3ab 2358 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2359 struct btrfs_root *root;
4bbcaa64
ES
2360 struct btrfs_key location;
2361 int ret;
2362
6bccf3ab
JM
2363 BUG_ON(!fs_info->tree_root);
2364
4bbcaa64
ES
2365 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2366 location.type = BTRFS_ROOT_ITEM_KEY;
2367 location.offset = 0;
2368
a4f3d2c4 2369 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2370 if (IS_ERR(root)) {
42437a63
JB
2371 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2372 ret = PTR_ERR(root);
2373 goto out;
2374 }
2375 } else {
2376 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2377 fs_info->extent_root = root;
f50f4353 2378 }
4bbcaa64
ES
2379
2380 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2381 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2382 if (IS_ERR(root)) {
42437a63
JB
2383 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2384 ret = PTR_ERR(root);
2385 goto out;
2386 }
2387 } else {
2388 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389 fs_info->dev_root = root;
f50f4353 2390 }
820a49da
JB
2391 /* Initialize fs_info for all devices in any case */
2392 btrfs_init_devices_late(fs_info);
4bbcaa64 2393
882dbe0c
JB
2394 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2395 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2396 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2397 root = btrfs_read_tree_root(tree_root, &location);
2398 if (IS_ERR(root)) {
2399 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2400 ret = PTR_ERR(root);
2401 goto out;
2402 }
2403 } else {
2404 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2405 fs_info->csum_root = root;
42437a63 2406 }
f50f4353 2407 }
4bbcaa64 2408
aeb935a4
QW
2409 /*
2410 * This tree can share blocks with some other fs tree during relocation
2411 * and we need a proper setup by btrfs_get_fs_root
2412 */
56e9357a
DS
2413 root = btrfs_get_fs_root(tree_root->fs_info,
2414 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2415 if (IS_ERR(root)) {
42437a63
JB
2416 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2417 ret = PTR_ERR(root);
2418 goto out;
2419 }
2420 } else {
2421 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2422 fs_info->data_reloc_root = root;
aeb935a4 2423 }
aeb935a4 2424
4bbcaa64 2425 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2426 root = btrfs_read_tree_root(tree_root, &location);
2427 if (!IS_ERR(root)) {
2428 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2429 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2430 fs_info->quota_root = root;
4bbcaa64
ES
2431 }
2432
2433 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2434 root = btrfs_read_tree_root(tree_root, &location);
2435 if (IS_ERR(root)) {
42437a63
JB
2436 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2437 ret = PTR_ERR(root);
2438 if (ret != -ENOENT)
2439 goto out;
2440 }
4bbcaa64 2441 } else {
a4f3d2c4
DS
2442 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2443 fs_info->uuid_root = root;
4bbcaa64
ES
2444 }
2445
70f6d82e
OS
2446 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2447 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2448 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2449 if (IS_ERR(root)) {
42437a63
JB
2450 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2451 ret = PTR_ERR(root);
2452 goto out;
2453 }
2454 } else {
2455 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2456 fs_info->free_space_root = root;
f50f4353 2457 }
70f6d82e
OS
2458 }
2459
4bbcaa64 2460 return 0;
f50f4353
LB
2461out:
2462 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2463 location.objectid, ret);
2464 return ret;
4bbcaa64
ES
2465}
2466
069ec957
QW
2467/*
2468 * Real super block validation
2469 * NOTE: super csum type and incompat features will not be checked here.
2470 *
2471 * @sb: super block to check
2472 * @mirror_num: the super block number to check its bytenr:
2473 * 0 the primary (1st) sb
2474 * 1, 2 2nd and 3rd backup copy
2475 * -1 skip bytenr check
2476 */
2477static int validate_super(struct btrfs_fs_info *fs_info,
2478 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2479{
21a852b0
QW
2480 u64 nodesize = btrfs_super_nodesize(sb);
2481 u64 sectorsize = btrfs_super_sectorsize(sb);
2482 int ret = 0;
2483
2484 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2485 btrfs_err(fs_info, "no valid FS found");
2486 ret = -EINVAL;
2487 }
2488 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2489 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2490 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2491 ret = -EINVAL;
2492 }
2493 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2494 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2495 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2496 ret = -EINVAL;
2497 }
2498 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2499 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2500 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2501 ret = -EINVAL;
2502 }
2503 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2504 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2505 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2506 ret = -EINVAL;
2507 }
2508
2509 /*
2510 * Check sectorsize and nodesize first, other check will need it.
2511 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2512 */
2513 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2514 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2515 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2516 ret = -EINVAL;
2517 }
0bb3eb3e
QW
2518
2519 /*
2520 * For 4K page size, we only support 4K sector size.
2521 * For 64K page size, we support read-write for 64K sector size, and
2522 * read-only for 4K sector size.
2523 */
2524 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2525 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2526 sectorsize != SZ_64K))) {
21a852b0 2527 btrfs_err(fs_info,
0bb3eb3e 2528 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2529 sectorsize, PAGE_SIZE);
2530 ret = -EINVAL;
2531 }
0bb3eb3e 2532
21a852b0
QW
2533 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2534 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2535 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2536 ret = -EINVAL;
2537 }
2538 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2539 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2540 le32_to_cpu(sb->__unused_leafsize), nodesize);
2541 ret = -EINVAL;
2542 }
2543
2544 /* Root alignment check */
2545 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2546 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2547 btrfs_super_root(sb));
2548 ret = -EINVAL;
2549 }
2550 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2551 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2552 btrfs_super_chunk_root(sb));
2553 ret = -EINVAL;
2554 }
2555 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2556 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2557 btrfs_super_log_root(sb));
2558 ret = -EINVAL;
2559 }
2560
de37aa51 2561 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2562 BTRFS_FSID_SIZE) != 0) {
21a852b0 2563 btrfs_err(fs_info,
7239ff4b 2564 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2565 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2566 ret = -EINVAL;
2567 }
2568
2569 /*
2570 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2571 * done later
2572 */
2573 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2574 btrfs_err(fs_info, "bytes_used is too small %llu",
2575 btrfs_super_bytes_used(sb));
2576 ret = -EINVAL;
2577 }
2578 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2579 btrfs_err(fs_info, "invalid stripesize %u",
2580 btrfs_super_stripesize(sb));
2581 ret = -EINVAL;
2582 }
2583 if (btrfs_super_num_devices(sb) > (1UL << 31))
2584 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2585 btrfs_super_num_devices(sb));
2586 if (btrfs_super_num_devices(sb) == 0) {
2587 btrfs_err(fs_info, "number of devices is 0");
2588 ret = -EINVAL;
2589 }
2590
069ec957
QW
2591 if (mirror_num >= 0 &&
2592 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2593 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2594 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2595 ret = -EINVAL;
2596 }
2597
2598 /*
2599 * Obvious sys_chunk_array corruptions, it must hold at least one key
2600 * and one chunk
2601 */
2602 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2603 btrfs_err(fs_info, "system chunk array too big %u > %u",
2604 btrfs_super_sys_array_size(sb),
2605 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2606 ret = -EINVAL;
2607 }
2608 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2609 + sizeof(struct btrfs_chunk)) {
2610 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2611 btrfs_super_sys_array_size(sb),
2612 sizeof(struct btrfs_disk_key)
2613 + sizeof(struct btrfs_chunk));
2614 ret = -EINVAL;
2615 }
2616
2617 /*
2618 * The generation is a global counter, we'll trust it more than the others
2619 * but it's still possible that it's the one that's wrong.
2620 */
2621 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2622 btrfs_warn(fs_info,
2623 "suspicious: generation < chunk_root_generation: %llu < %llu",
2624 btrfs_super_generation(sb),
2625 btrfs_super_chunk_root_generation(sb));
2626 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2627 && btrfs_super_cache_generation(sb) != (u64)-1)
2628 btrfs_warn(fs_info,
2629 "suspicious: generation < cache_generation: %llu < %llu",
2630 btrfs_super_generation(sb),
2631 btrfs_super_cache_generation(sb));
2632
2633 return ret;
2634}
2635
069ec957
QW
2636/*
2637 * Validation of super block at mount time.
2638 * Some checks already done early at mount time, like csum type and incompat
2639 * flags will be skipped.
2640 */
2641static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2642{
2643 return validate_super(fs_info, fs_info->super_copy, 0);
2644}
2645
75cb857d
QW
2646/*
2647 * Validation of super block at write time.
2648 * Some checks like bytenr check will be skipped as their values will be
2649 * overwritten soon.
2650 * Extra checks like csum type and incompat flags will be done here.
2651 */
2652static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2653 struct btrfs_super_block *sb)
2654{
2655 int ret;
2656
2657 ret = validate_super(fs_info, sb, -1);
2658 if (ret < 0)
2659 goto out;
e7e16f48 2660 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2661 ret = -EUCLEAN;
2662 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2663 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2664 goto out;
2665 }
2666 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2667 ret = -EUCLEAN;
2668 btrfs_err(fs_info,
2669 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2670 btrfs_super_incompat_flags(sb),
2671 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2672 goto out;
2673 }
2674out:
2675 if (ret < 0)
2676 btrfs_err(fs_info,
2677 "super block corruption detected before writing it to disk");
2678 return ret;
2679}
2680
6ef108dd 2681static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2682{
6ef108dd 2683 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2684 struct btrfs_super_block *sb = fs_info->super_copy;
2685 struct btrfs_root *tree_root = fs_info->tree_root;
2686 bool handle_error = false;
2687 int ret = 0;
2688 int i;
2689
2690 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2691 u64 generation;
2692 int level;
2693
2694 if (handle_error) {
2695 if (!IS_ERR(tree_root->node))
2696 free_extent_buffer(tree_root->node);
2697 tree_root->node = NULL;
2698
2699 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2700 break;
2701
2702 free_root_pointers(fs_info, 0);
2703
2704 /*
2705 * Don't use the log in recovery mode, it won't be
2706 * valid
2707 */
2708 btrfs_set_super_log_root(sb, 0);
2709
2710 /* We can't trust the free space cache either */
2711 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2712
2713 ret = read_backup_root(fs_info, i);
6ef108dd 2714 backup_index = ret;
b8522a1e
NB
2715 if (ret < 0)
2716 return ret;
2717 }
2718 generation = btrfs_super_generation(sb);
2719 level = btrfs_super_root_level(sb);
2720 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
1b7ec85e 2721 BTRFS_ROOT_TREE_OBJECTID,
b8522a1e 2722 generation, level, NULL);
217f5004 2723 if (IS_ERR(tree_root->node)) {
b8522a1e 2724 handle_error = true;
217f5004
NB
2725 ret = PTR_ERR(tree_root->node);
2726 tree_root->node = NULL;
2727 btrfs_warn(fs_info, "couldn't read tree root");
2728 continue;
b8522a1e 2729
217f5004
NB
2730 } else if (!extent_buffer_uptodate(tree_root->node)) {
2731 handle_error = true;
2732 ret = -EIO;
2733 btrfs_warn(fs_info, "error while reading tree root");
b8522a1e
NB
2734 continue;
2735 }
2736
2737 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2738 tree_root->commit_root = btrfs_root_node(tree_root);
2739 btrfs_set_root_refs(&tree_root->root_item, 1);
2740
336a0d8d
NB
2741 /*
2742 * No need to hold btrfs_root::objectid_mutex since the fs
2743 * hasn't been fully initialised and we are the only user
2744 */
453e4873 2745 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2746 if (ret < 0) {
b8522a1e
NB
2747 handle_error = true;
2748 continue;
2749 }
2750
6b8fad57 2751 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2752
2753 ret = btrfs_read_roots(fs_info);
2754 if (ret < 0) {
2755 handle_error = true;
2756 continue;
2757 }
2758
2759 /* All successful */
2760 fs_info->generation = generation;
2761 fs_info->last_trans_committed = generation;
6ef108dd
NB
2762
2763 /* Always begin writing backup roots after the one being used */
2764 if (backup_index < 0) {
2765 fs_info->backup_root_index = 0;
2766 } else {
2767 fs_info->backup_root_index = backup_index + 1;
2768 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2769 }
b8522a1e
NB
2770 break;
2771 }
2772
2773 return ret;
2774}
2775
8260edba 2776void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2777{
76dda93c 2778 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2779 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2780 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2781 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2782 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2783 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2784 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2785 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2786 spin_lock_init(&fs_info->trans_lock);
76dda93c 2787 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2788 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2789 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2790 spin_lock_init(&fs_info->super_lock);
f28491e0 2791 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2792 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2793 spin_lock_init(&fs_info->treelog_bg_lock);
f29021b2 2794 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2795 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2796 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2797 mutex_init(&fs_info->reloc_mutex);
573bfb72 2798 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2799 mutex_init(&fs_info->zoned_meta_io_lock);
de98ced9 2800 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2801
0b86a832 2802 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2803 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2804 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2805 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2806#ifdef CONFIG_BTRFS_DEBUG
2807 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2808 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2809 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2810#endif
c8bf1b67 2811 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2812 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2813 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2814 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2815 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2816 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2817 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2818 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2819 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2820 BTRFS_BLOCK_RSV_DELREFS);
2821
771ed689 2822 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2823 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2824 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2825 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2826 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2827 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2828 fs_info->metadata_ratio = 0;
4cb5300b 2829 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2830 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2831 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2832 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2833 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2834 /* readahead state */
d0164adc 2835 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2836 spin_lock_init(&fs_info->reada_lock);
fd708b81 2837 btrfs_init_ref_verify(fs_info);
c8b97818 2838
b34b086c
CM
2839 fs_info->thread_pool_size = min_t(unsigned long,
2840 num_online_cpus() + 2, 8);
0afbaf8c 2841
199c2a9c
MX
2842 INIT_LIST_HEAD(&fs_info->ordered_roots);
2843 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2844
638aa7ed 2845 btrfs_init_scrub(fs_info);
21adbd5c
SB
2846#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2847 fs_info->check_integrity_print_mask = 0;
2848#endif
779a65a4 2849 btrfs_init_balance(fs_info);
57056740 2850 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2851
0f9dd46c 2852 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2853 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2854 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2855
fe119a6e
NB
2856 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2857 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2858 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2859
5a3f23d5 2860 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2861 mutex_init(&fs_info->tree_log_mutex);
925baedd 2862 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2863 mutex_init(&fs_info->transaction_kthread_mutex);
2864 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2865 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2866 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2867 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2868 init_rwsem(&fs_info->subvol_sem);
803b2f54 2869 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2870
ad618368 2871 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2872 btrfs_init_qgroup(fs_info);
b0643e59 2873 btrfs_discard_init(fs_info);
416ac51d 2874
fa9c0d79
CM
2875 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2876 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2877
e6dcd2dc 2878 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2879 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2880 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2881 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2882 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2883
da17066c
JM
2884 /* Usable values until the real ones are cached from the superblock */
2885 fs_info->nodesize = 4096;
2886 fs_info->sectorsize = 4096;
ab108d99 2887 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2888 fs_info->stripesize = 4096;
2889
eede2bf3
OS
2890 spin_lock_init(&fs_info->swapfile_pins_lock);
2891 fs_info->swapfile_pins = RB_ROOT;
2892
9e967495 2893 fs_info->send_in_progress = 0;
8260edba
JB
2894}
2895
2896static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2897{
2898 int ret;
2899
2900 fs_info->sb = sb;
2901 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2902 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2903
5deb17e1 2904 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 2905 if (ret)
c75e8394 2906 return ret;
ae18c37a
JB
2907
2908 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2909 if (ret)
c75e8394 2910 return ret;
ae18c37a
JB
2911
2912 fs_info->dirty_metadata_batch = PAGE_SIZE *
2913 (1 + ilog2(nr_cpu_ids));
2914
2915 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2916 if (ret)
c75e8394 2917 return ret;
ae18c37a
JB
2918
2919 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2920 GFP_KERNEL);
2921 if (ret)
c75e8394 2922 return ret;
ae18c37a
JB
2923
2924 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2925 GFP_KERNEL);
c75e8394
JB
2926 if (!fs_info->delayed_root)
2927 return -ENOMEM;
ae18c37a
JB
2928 btrfs_init_delayed_root(fs_info->delayed_root);
2929
a0a1db70
FM
2930 if (sb_rdonly(sb))
2931 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2932
c75e8394 2933 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2934}
2935
97f4dd09
NB
2936static int btrfs_uuid_rescan_kthread(void *data)
2937{
2938 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2939 int ret;
2940
2941 /*
2942 * 1st step is to iterate through the existing UUID tree and
2943 * to delete all entries that contain outdated data.
2944 * 2nd step is to add all missing entries to the UUID tree.
2945 */
2946 ret = btrfs_uuid_tree_iterate(fs_info);
2947 if (ret < 0) {
c94bec2c
JB
2948 if (ret != -EINTR)
2949 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2950 ret);
97f4dd09
NB
2951 up(&fs_info->uuid_tree_rescan_sem);
2952 return ret;
2953 }
2954 return btrfs_uuid_scan_kthread(data);
2955}
2956
2957static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2958{
2959 struct task_struct *task;
2960
2961 down(&fs_info->uuid_tree_rescan_sem);
2962 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2963 if (IS_ERR(task)) {
2964 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2965 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2966 up(&fs_info->uuid_tree_rescan_sem);
2967 return PTR_ERR(task);
2968 }
2969
2970 return 0;
2971}
2972
8cd29088
BB
2973/*
2974 * Some options only have meaning at mount time and shouldn't persist across
2975 * remounts, or be displayed. Clear these at the end of mount and remount
2976 * code paths.
2977 */
2978void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2979{
2980 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 2981 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
2982}
2983
44c0ca21
BB
2984/*
2985 * Mounting logic specific to read-write file systems. Shared by open_ctree
2986 * and btrfs_remount when remounting from read-only to read-write.
2987 */
2988int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2989{
2990 int ret;
94846229 2991 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
2992 bool clear_free_space_tree = false;
2993
2994 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2995 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2996 clear_free_space_tree = true;
2997 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2998 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2999 btrfs_warn(fs_info, "free space tree is invalid");
3000 clear_free_space_tree = true;
3001 }
3002
3003 if (clear_free_space_tree) {
3004 btrfs_info(fs_info, "clearing free space tree");
3005 ret = btrfs_clear_free_space_tree(fs_info);
3006 if (ret) {
3007 btrfs_warn(fs_info,
3008 "failed to clear free space tree: %d", ret);
3009 goto out;
3010 }
3011 }
44c0ca21 3012
8d488a8c
FM
3013 /*
3014 * btrfs_find_orphan_roots() is responsible for finding all the dead
3015 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3016 * them into the fs_info->fs_roots_radix tree. This must be done before
3017 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3018 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3019 * item before the root's tree is deleted - this means that if we unmount
3020 * or crash before the deletion completes, on the next mount we will not
3021 * delete what remains of the tree because the orphan item does not
3022 * exists anymore, which is what tells us we have a pending deletion.
3023 */
3024 ret = btrfs_find_orphan_roots(fs_info);
3025 if (ret)
3026 goto out;
3027
44c0ca21
BB
3028 ret = btrfs_cleanup_fs_roots(fs_info);
3029 if (ret)
3030 goto out;
3031
8f1c21d7
BB
3032 down_read(&fs_info->cleanup_work_sem);
3033 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3034 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3035 up_read(&fs_info->cleanup_work_sem);
3036 goto out;
3037 }
3038 up_read(&fs_info->cleanup_work_sem);
3039
44c0ca21
BB
3040 mutex_lock(&fs_info->cleaner_mutex);
3041 ret = btrfs_recover_relocation(fs_info->tree_root);
3042 mutex_unlock(&fs_info->cleaner_mutex);
3043 if (ret < 0) {
3044 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3045 goto out;
3046 }
3047
5011139a
BB
3048 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3049 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3050 btrfs_info(fs_info, "creating free space tree");
3051 ret = btrfs_create_free_space_tree(fs_info);
3052 if (ret) {
3053 btrfs_warn(fs_info,
3054 "failed to create free space tree: %d", ret);
3055 goto out;
3056 }
3057 }
3058
94846229
BB
3059 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3060 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3061 if (ret)
3062 goto out;
3063 }
3064
44c0ca21
BB
3065 ret = btrfs_resume_balance_async(fs_info);
3066 if (ret)
3067 goto out;
3068
3069 ret = btrfs_resume_dev_replace_async(fs_info);
3070 if (ret) {
3071 btrfs_warn(fs_info, "failed to resume dev_replace");
3072 goto out;
3073 }
3074
3075 btrfs_qgroup_rescan_resume(fs_info);
3076
3077 if (!fs_info->uuid_root) {
3078 btrfs_info(fs_info, "creating UUID tree");
3079 ret = btrfs_create_uuid_tree(fs_info);
3080 if (ret) {
3081 btrfs_warn(fs_info,
3082 "failed to create the UUID tree %d", ret);
3083 goto out;
3084 }
3085 }
3086
3087out:
3088 return ret;
3089}
3090
ae18c37a
JB
3091int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3092 char *options)
3093{
3094 u32 sectorsize;
3095 u32 nodesize;
3096 u32 stripesize;
3097 u64 generation;
3098 u64 features;
3099 u16 csum_type;
ae18c37a
JB
3100 struct btrfs_super_block *disk_super;
3101 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3102 struct btrfs_root *tree_root;
3103 struct btrfs_root *chunk_root;
3104 int ret;
3105 int err = -EINVAL;
ae18c37a
JB
3106 int level;
3107
8260edba 3108 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3109 if (ret) {
83c8266a 3110 err = ret;
ae18c37a 3111 goto fail;
53b381b3
DW
3112 }
3113
ae18c37a
JB
3114 /* These need to be init'ed before we start creating inodes and such. */
3115 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3116 GFP_KERNEL);
3117 fs_info->tree_root = tree_root;
3118 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3119 GFP_KERNEL);
3120 fs_info->chunk_root = chunk_root;
3121 if (!tree_root || !chunk_root) {
3122 err = -ENOMEM;
c75e8394 3123 goto fail;
ae18c37a
JB
3124 }
3125
3126 fs_info->btree_inode = new_inode(sb);
3127 if (!fs_info->btree_inode) {
3128 err = -ENOMEM;
c75e8394 3129 goto fail;
ae18c37a
JB
3130 }
3131 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3132 btrfs_init_btree_inode(fs_info);
3133
3c4bb26b 3134 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
3135
3136 /*
3137 * Read super block and check the signature bytes only
3138 */
8f32380d
JT
3139 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3140 if (IS_ERR(disk_super)) {
3141 err = PTR_ERR(disk_super);
16cdcec7 3142 goto fail_alloc;
20b45077 3143 }
39279cc3 3144
8dc3f22c 3145 /*
260db43c 3146 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3147 * corrupted, we'll find out
3148 */
8f32380d 3149 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3150 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3151 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3152 csum_type);
8dc3f22c 3153 err = -EINVAL;
8f32380d 3154 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3155 goto fail_alloc;
3156 }
3157
83c68bbc
SY
3158 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3159
6d97c6e3
JT
3160 ret = btrfs_init_csum_hash(fs_info, csum_type);
3161 if (ret) {
3162 err = ret;
8f32380d 3163 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3164 goto fail_alloc;
3165 }
3166
1104a885
DS
3167 /*
3168 * We want to check superblock checksum, the type is stored inside.
3169 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3170 */
8f32380d 3171 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 3172 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3173 err = -EINVAL;
8f32380d 3174 btrfs_release_disk_super(disk_super);
141386e1 3175 goto fail_alloc;
1104a885
DS
3176 }
3177
3178 /*
3179 * super_copy is zeroed at allocation time and we never touch the
3180 * following bytes up to INFO_SIZE, the checksum is calculated from
3181 * the whole block of INFO_SIZE
3182 */
8f32380d
JT
3183 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3184 btrfs_release_disk_super(disk_super);
5f39d397 3185
fbc6feae
NB
3186 disk_super = fs_info->super_copy;
3187
de37aa51
NB
3188 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3189 BTRFS_FSID_SIZE));
3190
7239ff4b 3191 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
3192 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3193 fs_info->super_copy->metadata_uuid,
3194 BTRFS_FSID_SIZE));
7239ff4b 3195 }
0b86a832 3196
fbc6feae
NB
3197 features = btrfs_super_flags(disk_super);
3198 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3199 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3200 btrfs_set_super_flags(disk_super, features);
3201 btrfs_info(fs_info,
3202 "found metadata UUID change in progress flag, clearing");
3203 }
3204
3205 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3206 sizeof(*fs_info->super_for_commit));
de37aa51 3207
069ec957 3208 ret = btrfs_validate_mount_super(fs_info);
1104a885 3209 if (ret) {
05135f59 3210 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3211 err = -EINVAL;
141386e1 3212 goto fail_alloc;
1104a885
DS
3213 }
3214
0f7d52f4 3215 if (!btrfs_super_root(disk_super))
141386e1 3216 goto fail_alloc;
0f7d52f4 3217
acce952b 3218 /* check FS state, whether FS is broken. */
87533c47
MX
3219 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3220 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3221
75e7cb7f
LB
3222 /*
3223 * In the long term, we'll store the compression type in the super
3224 * block, and it'll be used for per file compression control.
3225 */
3226 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3227
2ff7e61e 3228 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3229 if (ret) {
3230 err = ret;
141386e1 3231 goto fail_alloc;
2b82032c 3232 }
dfe25020 3233
f2b636e8
JB
3234 features = btrfs_super_incompat_flags(disk_super) &
3235 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3236 if (features) {
05135f59
DS
3237 btrfs_err(fs_info,
3238 "cannot mount because of unsupported optional features (%llx)",
3239 features);
f2b636e8 3240 err = -EINVAL;
141386e1 3241 goto fail_alloc;
f2b636e8
JB
3242 }
3243
5d4f98a2 3244 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 3245 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 3246 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 3247 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
3248 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3249 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 3250
3173a18f 3251 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3252 btrfs_info(fs_info, "has skinny extents");
3173a18f 3253
727011e0
CM
3254 /*
3255 * flag our filesystem as having big metadata blocks if
3256 * they are bigger than the page size
3257 */
09cbfeaf 3258 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3259 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3260 btrfs_info(fs_info,
3261 "flagging fs with big metadata feature");
727011e0
CM
3262 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3263 }
3264
bc3f116f 3265 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3266 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3267 stripesize = sectorsize;
707e8a07 3268 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3269 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3270
da17066c
JM
3271 /* Cache block sizes */
3272 fs_info->nodesize = nodesize;
3273 fs_info->sectorsize = sectorsize;
ab108d99 3274 fs_info->sectorsize_bits = ilog2(sectorsize);
fe5ecbe8 3275 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
da17066c
JM
3276 fs_info->stripesize = stripesize;
3277
bc3f116f
CM
3278 /*
3279 * mixed block groups end up with duplicate but slightly offset
3280 * extent buffers for the same range. It leads to corruptions
3281 */
3282 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3283 (sectorsize != nodesize)) {
05135f59
DS
3284 btrfs_err(fs_info,
3285"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3286 nodesize, sectorsize);
141386e1 3287 goto fail_alloc;
bc3f116f
CM
3288 }
3289
ceda0864
MX
3290 /*
3291 * Needn't use the lock because there is no other task which will
3292 * update the flag.
3293 */
a6fa6fae 3294 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3295
f2b636e8
JB
3296 features = btrfs_super_compat_ro_flags(disk_super) &
3297 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3298 if (!sb_rdonly(sb) && features) {
05135f59
DS
3299 btrfs_err(fs_info,
3300 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3301 features);
f2b636e8 3302 err = -EINVAL;
141386e1 3303 goto fail_alloc;
f2b636e8 3304 }
61d92c32 3305
0bb3eb3e
QW
3306 /* For 4K sector size support, it's only read-only */
3307 if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) {
3308 if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) {
3309 btrfs_err(fs_info,
3310 "subpage sectorsize %u only supported read-only for page size %lu",
3311 sectorsize, PAGE_SIZE);
3312 err = -EINVAL;
3313 goto fail_alloc;
3314 }
3315 }
3316
2a458198
ES
3317 ret = btrfs_init_workqueues(fs_info, fs_devices);
3318 if (ret) {
3319 err = ret;
0dc3b84a
JB
3320 goto fail_sb_buffer;
3321 }
4543df7e 3322
9e11ceee
JK
3323 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3324 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3325
a061fc8d
CM
3326 sb->s_blocksize = sectorsize;
3327 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3328 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3329
925baedd 3330 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3331 ret = btrfs_read_sys_array(fs_info);
925baedd 3332 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3333 if (ret) {
05135f59 3334 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3335 goto fail_sb_buffer;
84eed90f 3336 }
0b86a832 3337
84234f3a 3338 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3339 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3340
2ff7e61e 3341 chunk_root->node = read_tree_block(fs_info,
0b86a832 3342 btrfs_super_chunk_root(disk_super),
1b7ec85e 3343 BTRFS_CHUNK_TREE_OBJECTID,
581c1760 3344 generation, level, NULL);
64c043de
LB
3345 if (IS_ERR(chunk_root->node) ||
3346 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3347 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3348 if (!IS_ERR(chunk_root->node))
3349 free_extent_buffer(chunk_root->node);
95ab1f64 3350 chunk_root->node = NULL;
af31f5e5 3351 goto fail_tree_roots;
83121942 3352 }
5d4f98a2
YZ
3353 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3354 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3355
e17cade2 3356 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3357 offsetof(struct btrfs_header, chunk_tree_uuid),
3358 BTRFS_UUID_SIZE);
e17cade2 3359
5b4aacef 3360 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3361 if (ret) {
05135f59 3362 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3363 goto fail_tree_roots;
2b82032c 3364 }
0b86a832 3365
8dabb742 3366 /*
bacce86a
AJ
3367 * At this point we know all the devices that make this filesystem,
3368 * including the seed devices but we don't know yet if the replace
3369 * target is required. So free devices that are not part of this
3370 * filesystem but skip the replace traget device which is checked
3371 * below in btrfs_init_dev_replace().
8dabb742 3372 */
bacce86a 3373 btrfs_free_extra_devids(fs_devices);
a6b0d5c8 3374 if (!fs_devices->latest_bdev) {
05135f59 3375 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3376 goto fail_tree_roots;
3377 }
3378
b8522a1e 3379 ret = init_tree_roots(fs_info);
4bbcaa64 3380 if (ret)
b8522a1e 3381 goto fail_tree_roots;
8929ecfa 3382
73651042
NA
3383 /*
3384 * Get zone type information of zoned block devices. This will also
3385 * handle emulation of a zoned filesystem if a regular device has the
3386 * zoned incompat feature flag set.
3387 */
3388 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3389 if (ret) {
3390 btrfs_err(fs_info,
3391 "zoned: failed to read device zone info: %d",
3392 ret);
3393 goto fail_block_groups;
3394 }
3395
75ec1db8
JB
3396 /*
3397 * If we have a uuid root and we're not being told to rescan we need to
3398 * check the generation here so we can set the
3399 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3400 * transaction during a balance or the log replay without updating the
3401 * uuid generation, and then if we crash we would rescan the uuid tree,
3402 * even though it was perfectly fine.
3403 */
3404 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3405 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3406 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3407
cf90d884
QW
3408 ret = btrfs_verify_dev_extents(fs_info);
3409 if (ret) {
3410 btrfs_err(fs_info,
3411 "failed to verify dev extents against chunks: %d",
3412 ret);
3413 goto fail_block_groups;
3414 }
68310a5e
ID
3415 ret = btrfs_recover_balance(fs_info);
3416 if (ret) {
05135f59 3417 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3418 goto fail_block_groups;
3419 }
3420
733f4fbb
SB
3421 ret = btrfs_init_dev_stats(fs_info);
3422 if (ret) {
05135f59 3423 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3424 goto fail_block_groups;
3425 }
3426
8dabb742
SB
3427 ret = btrfs_init_dev_replace(fs_info);
3428 if (ret) {
05135f59 3429 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3430 goto fail_block_groups;
3431 }
3432
b70f5097
NA
3433 ret = btrfs_check_zoned_mode(fs_info);
3434 if (ret) {
3435 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3436 ret);
3437 goto fail_block_groups;
3438 }
3439
c6761a9e 3440 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3441 if (ret) {
05135f59
DS
3442 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3443 ret);
b7c35e81
AJ
3444 goto fail_block_groups;
3445 }
3446
96f3136e 3447 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3448 if (ret) {
05135f59 3449 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3450 goto fail_fsdev_sysfs;
c59021f8 3451 }
3452
c59021f8 3453 ret = btrfs_init_space_info(fs_info);
3454 if (ret) {
05135f59 3455 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3456 goto fail_sysfs;
c59021f8 3457 }
3458
5b4aacef 3459 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3460 if (ret) {
05135f59 3461 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3462 goto fail_sysfs;
1b1d1f66 3463 }
4330e183 3464
6528b99d 3465 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3466 btrfs_warn(fs_info,
52042d8e 3467 "writable mount is not allowed due to too many missing devices");
2365dd3c 3468 goto fail_sysfs;
292fd7fc 3469 }
9078a3e1 3470
a74a4b97
CM
3471 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3472 "btrfs-cleaner");
57506d50 3473 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3474 goto fail_sysfs;
a74a4b97
CM
3475
3476 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3477 tree_root,
3478 "btrfs-transaction");
57506d50 3479 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3480 goto fail_cleaner;
a74a4b97 3481
583b7231 3482 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3483 !fs_info->fs_devices->rotating) {
583b7231 3484 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3485 }
3486
572d9ab7 3487 /*
01327610 3488 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3489 * not have to wait for transaction commit
3490 */
3491 btrfs_apply_pending_changes(fs_info);
3818aea2 3492
21adbd5c 3493#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3494 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3495 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3496 btrfs_test_opt(fs_info,
21adbd5c
SB
3497 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3498 1 : 0,
3499 fs_info->check_integrity_print_mask);
3500 if (ret)
05135f59
DS
3501 btrfs_warn(fs_info,
3502 "failed to initialize integrity check module: %d",
3503 ret);
21adbd5c
SB
3504 }
3505#endif
bcef60f2
AJ
3506 ret = btrfs_read_qgroup_config(fs_info);
3507 if (ret)
3508 goto fail_trans_kthread;
21adbd5c 3509
fd708b81
JB
3510 if (btrfs_build_ref_tree(fs_info))
3511 btrfs_err(fs_info, "couldn't build ref tree");
3512
96da0919
QW
3513 /* do not make disk changes in broken FS or nologreplay is given */
3514 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3515 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3516 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3517 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3518 if (ret) {
63443bf5 3519 err = ret;
28c16cbb 3520 goto fail_qgroup;
79787eaa 3521 }
e02119d5 3522 }
1a40e23b 3523
56e9357a 3524 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3525 if (IS_ERR(fs_info->fs_root)) {
3526 err = PTR_ERR(fs_info->fs_root);
f50f4353 3527 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3528 fs_info->fs_root = NULL;
bcef60f2 3529 goto fail_qgroup;
3140c9a3 3530 }
c289811c 3531
bc98a42c 3532 if (sb_rdonly(sb))
8cd29088 3533 goto clear_oneshot;
59641015 3534
44c0ca21 3535 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3536 if (ret) {
6bccf3ab 3537 close_ctree(fs_info);
2b6ba629 3538 return ret;
e3acc2a6 3539 }
b0643e59 3540 btrfs_discard_resume(fs_info);
b382a324 3541
44c0ca21
BB
3542 if (fs_info->uuid_root &&
3543 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3544 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3545 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3546 ret = btrfs_check_uuid_tree(fs_info);
3547 if (ret) {
05135f59
DS
3548 btrfs_warn(fs_info,
3549 "failed to check the UUID tree: %d", ret);
6bccf3ab 3550 close_ctree(fs_info);
70f80175
SB
3551 return ret;
3552 }
f7a81ea4 3553 }
94846229 3554
afcdd129 3555 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3556
8cd29088
BB
3557clear_oneshot:
3558 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3559 return 0;
39279cc3 3560
bcef60f2
AJ
3561fail_qgroup:
3562 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3563fail_trans_kthread:
3564 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3565 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3566 btrfs_free_fs_roots(fs_info);
3f157a2f 3567fail_cleaner:
a74a4b97 3568 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3569
3570 /*
3571 * make sure we're done with the btree inode before we stop our
3572 * kthreads
3573 */
3574 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3575
2365dd3c 3576fail_sysfs:
6618a59b 3577 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3578
b7c35e81
AJ
3579fail_fsdev_sysfs:
3580 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3581
1b1d1f66 3582fail_block_groups:
54067ae9 3583 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3584
3585fail_tree_roots:
9e3aa805
JB
3586 if (fs_info->data_reloc_root)
3587 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3588 free_root_pointers(fs_info, true);
2b8195bb 3589 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3590
39279cc3 3591fail_sb_buffer:
7abadb64 3592 btrfs_stop_all_workers(fs_info);
5cdd7db6 3593 btrfs_free_block_groups(fs_info);
16cdcec7 3594fail_alloc:
586e46e2
ID
3595 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3596
4543df7e 3597 iput(fs_info->btree_inode);
7e662854 3598fail:
586e46e2 3599 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3600 return err;
eb60ceac 3601}
663faf9f 3602ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3603
314b6dd0 3604static void btrfs_end_super_write(struct bio *bio)
f2984462 3605{
314b6dd0
JT
3606 struct btrfs_device *device = bio->bi_private;
3607 struct bio_vec *bvec;
3608 struct bvec_iter_all iter_all;
3609 struct page *page;
3610
3611 bio_for_each_segment_all(bvec, bio, iter_all) {
3612 page = bvec->bv_page;
3613
3614 if (bio->bi_status) {
3615 btrfs_warn_rl_in_rcu(device->fs_info,
3616 "lost page write due to IO error on %s (%d)",
3617 rcu_str_deref(device->name),
3618 blk_status_to_errno(bio->bi_status));
3619 ClearPageUptodate(page);
3620 SetPageError(page);
3621 btrfs_dev_stat_inc_and_print(device,
3622 BTRFS_DEV_STAT_WRITE_ERRS);
3623 } else {
3624 SetPageUptodate(page);
3625 }
3626
3627 put_page(page);
3628 unlock_page(page);
f2984462 3629 }
314b6dd0
JT
3630
3631 bio_put(bio);
f2984462
CM
3632}
3633
8f32380d
JT
3634struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3635 int copy_num)
29c36d72 3636{
29c36d72 3637 struct btrfs_super_block *super;
8f32380d 3638 struct page *page;
12659251 3639 u64 bytenr, bytenr_orig;
8f32380d 3640 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3641 int ret;
3642
3643 bytenr_orig = btrfs_sb_offset(copy_num);
3644 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3645 if (ret == -ENOENT)
3646 return ERR_PTR(-EINVAL);
3647 else if (ret)
3648 return ERR_PTR(ret);
29c36d72 3649
29c36d72 3650 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3651 return ERR_PTR(-EINVAL);
29c36d72 3652
8f32380d
JT
3653 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3654 if (IS_ERR(page))
3655 return ERR_CAST(page);
29c36d72 3656
8f32380d 3657 super = page_address(page);
96c2e067
AJ
3658 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3659 btrfs_release_disk_super(super);
3660 return ERR_PTR(-ENODATA);
3661 }
3662
12659251 3663 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3664 btrfs_release_disk_super(super);
3665 return ERR_PTR(-EINVAL);
29c36d72
AJ
3666 }
3667
8f32380d 3668 return super;
29c36d72
AJ
3669}
3670
3671
8f32380d 3672struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3673{
8f32380d 3674 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3675 int i;
3676 u64 transid = 0;
a512bbf8
YZ
3677
3678 /* we would like to check all the supers, but that would make
3679 * a btrfs mount succeed after a mkfs from a different FS.
3680 * So, we need to add a special mount option to scan for
3681 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3682 */
3683 for (i = 0; i < 1; i++) {
8f32380d
JT
3684 super = btrfs_read_dev_one_super(bdev, i);
3685 if (IS_ERR(super))
a512bbf8
YZ
3686 continue;
3687
a512bbf8 3688 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3689 if (latest)
3690 btrfs_release_disk_super(super);
3691
3692 latest = super;
a512bbf8 3693 transid = btrfs_super_generation(super);
a512bbf8
YZ
3694 }
3695 }
92fc03fb 3696
8f32380d 3697 return super;
a512bbf8
YZ
3698}
3699
4eedeb75 3700/*
abbb3b8e 3701 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3702 * pages we use for writing are locked.
4eedeb75 3703 *
abbb3b8e
DS
3704 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3705 * the expected device size at commit time. Note that max_mirrors must be
3706 * same for write and wait phases.
4eedeb75 3707 *
314b6dd0 3708 * Return number of errors when page is not found or submission fails.
4eedeb75 3709 */
a512bbf8 3710static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3711 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3712{
d5178578 3713 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3714 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3715 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3716 int i;
a512bbf8 3717 int errors = 0;
12659251
NA
3718 int ret;
3719 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3720
3721 if (max_mirrors == 0)
3722 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3723
d5178578
JT
3724 shash->tfm = fs_info->csum_shash;
3725
a512bbf8 3726 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3727 struct page *page;
3728 struct bio *bio;
3729 struct btrfs_super_block *disk_super;
3730
12659251
NA
3731 bytenr_orig = btrfs_sb_offset(i);
3732 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3733 if (ret == -ENOENT) {
3734 continue;
3735 } else if (ret < 0) {
3736 btrfs_err(device->fs_info,
3737 "couldn't get super block location for mirror %d",
3738 i);
3739 errors++;
3740 continue;
3741 }
935e5cc9
MX
3742 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3743 device->commit_total_bytes)
a512bbf8
YZ
3744 break;
3745
12659251 3746 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3747
fd08001f
EB
3748 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3749 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3750 sb->csum);
4eedeb75 3751
314b6dd0
JT
3752 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3753 GFP_NOFS);
3754 if (!page) {
abbb3b8e 3755 btrfs_err(device->fs_info,
314b6dd0 3756 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3757 bytenr);
3758 errors++;
4eedeb75 3759 continue;
abbb3b8e 3760 }
634554dc 3761
314b6dd0
JT
3762 /* Bump the refcount for wait_dev_supers() */
3763 get_page(page);
a512bbf8 3764
314b6dd0
JT
3765 disk_super = page_address(page);
3766 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3767
314b6dd0
JT
3768 /*
3769 * Directly use bios here instead of relying on the page cache
3770 * to do I/O, so we don't lose the ability to do integrity
3771 * checking.
3772 */
3773 bio = bio_alloc(GFP_NOFS, 1);
3774 bio_set_dev(bio, device->bdev);
3775 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3776 bio->bi_private = device;
3777 bio->bi_end_io = btrfs_end_super_write;
3778 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3779 offset_in_page(bytenr));
a512bbf8 3780
387125fc 3781 /*
314b6dd0
JT
3782 * We FUA only the first super block. The others we allow to
3783 * go down lazy and there's a short window where the on-disk
3784 * copies might still contain the older version.
387125fc 3785 */
314b6dd0 3786 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3787 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3788 bio->bi_opf |= REQ_FUA;
3789
3790 btrfsic_submit_bio(bio);
12659251 3791 btrfs_advance_sb_log(device, i);
a512bbf8
YZ
3792 }
3793 return errors < i ? 0 : -1;
3794}
3795
abbb3b8e
DS
3796/*
3797 * Wait for write completion of superblocks done by write_dev_supers,
3798 * @max_mirrors same for write and wait phases.
3799 *
314b6dd0 3800 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3801 * date.
3802 */
3803static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3804{
abbb3b8e
DS
3805 int i;
3806 int errors = 0;
b6a535fa 3807 bool primary_failed = false;
12659251 3808 int ret;
abbb3b8e
DS
3809 u64 bytenr;
3810
3811 if (max_mirrors == 0)
3812 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3813
3814 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3815 struct page *page;
3816
12659251
NA
3817 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3818 if (ret == -ENOENT) {
3819 break;
3820 } else if (ret < 0) {
3821 errors++;
3822 if (i == 0)
3823 primary_failed = true;
3824 continue;
3825 }
abbb3b8e
DS
3826 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3827 device->commit_total_bytes)
3828 break;
3829
314b6dd0
JT
3830 page = find_get_page(device->bdev->bd_inode->i_mapping,
3831 bytenr >> PAGE_SHIFT);
3832 if (!page) {
abbb3b8e 3833 errors++;
b6a535fa
HM
3834 if (i == 0)
3835 primary_failed = true;
abbb3b8e
DS
3836 continue;
3837 }
314b6dd0
JT
3838 /* Page is submitted locked and unlocked once the IO completes */
3839 wait_on_page_locked(page);
3840 if (PageError(page)) {
abbb3b8e 3841 errors++;
b6a535fa
HM
3842 if (i == 0)
3843 primary_failed = true;
3844 }
abbb3b8e 3845
314b6dd0
JT
3846 /* Drop our reference */
3847 put_page(page);
abbb3b8e 3848
314b6dd0
JT
3849 /* Drop the reference from the writing run */
3850 put_page(page);
abbb3b8e
DS
3851 }
3852
b6a535fa
HM
3853 /* log error, force error return */
3854 if (primary_failed) {
3855 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3856 device->devid);
3857 return -1;
3858 }
3859
abbb3b8e
DS
3860 return errors < i ? 0 : -1;
3861}
3862
387125fc
CM
3863/*
3864 * endio for the write_dev_flush, this will wake anyone waiting
3865 * for the barrier when it is done
3866 */
4246a0b6 3867static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3868{
e0ae9994 3869 complete(bio->bi_private);
387125fc
CM
3870}
3871
3872/*
4fc6441a
AJ
3873 * Submit a flush request to the device if it supports it. Error handling is
3874 * done in the waiting counterpart.
387125fc 3875 */
4fc6441a 3876static void write_dev_flush(struct btrfs_device *device)
387125fc 3877{
c2a9c7ab 3878 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3879 struct bio *bio = device->flush_bio;
387125fc 3880
c2a9c7ab 3881 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3882 return;
387125fc 3883
e0ae9994 3884 bio_reset(bio);
387125fc 3885 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3886 bio_set_dev(bio, device->bdev);
8d910125 3887 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3888 init_completion(&device->flush_wait);
3889 bio->bi_private = &device->flush_wait;
387125fc 3890
43a01111 3891 btrfsic_submit_bio(bio);
1c3063b6 3892 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3893}
387125fc 3894
4fc6441a
AJ
3895/*
3896 * If the flush bio has been submitted by write_dev_flush, wait for it.
3897 */
8c27cb35 3898static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3899{
4fc6441a 3900 struct bio *bio = device->flush_bio;
387125fc 3901
1c3063b6 3902 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3903 return BLK_STS_OK;
387125fc 3904
1c3063b6 3905 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3906 wait_for_completion_io(&device->flush_wait);
387125fc 3907
8c27cb35 3908 return bio->bi_status;
387125fc 3909}
387125fc 3910
d10b82fe 3911static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3912{
6528b99d 3913 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3914 return -EIO;
387125fc
CM
3915 return 0;
3916}
3917
3918/*
3919 * send an empty flush down to each device in parallel,
3920 * then wait for them
3921 */
3922static int barrier_all_devices(struct btrfs_fs_info *info)
3923{
3924 struct list_head *head;
3925 struct btrfs_device *dev;
5af3e8cc 3926 int errors_wait = 0;
4e4cbee9 3927 blk_status_t ret;
387125fc 3928
1538e6c5 3929 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3930 /* send down all the barriers */
3931 head = &info->fs_devices->devices;
1538e6c5 3932 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3933 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3934 continue;
cea7c8bf 3935 if (!dev->bdev)
387125fc 3936 continue;
e12c9621 3937 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3938 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3939 continue;
3940
4fc6441a 3941 write_dev_flush(dev);
58efbc9f 3942 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3943 }
3944
3945 /* wait for all the barriers */
1538e6c5 3946 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3947 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3948 continue;
387125fc 3949 if (!dev->bdev) {
5af3e8cc 3950 errors_wait++;
387125fc
CM
3951 continue;
3952 }
e12c9621 3953 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3954 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3955 continue;
3956
4fc6441a 3957 ret = wait_dev_flush(dev);
401b41e5
AJ
3958 if (ret) {
3959 dev->last_flush_error = ret;
66b4993e
DS
3960 btrfs_dev_stat_inc_and_print(dev,
3961 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3962 errors_wait++;
401b41e5
AJ
3963 }
3964 }
3965
cea7c8bf 3966 if (errors_wait) {
401b41e5
AJ
3967 /*
3968 * At some point we need the status of all disks
3969 * to arrive at the volume status. So error checking
3970 * is being pushed to a separate loop.
3971 */
d10b82fe 3972 return check_barrier_error(info);
387125fc 3973 }
387125fc
CM
3974 return 0;
3975}
3976
943c6e99
ZL
3977int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3978{
8789f4fe
ZL
3979 int raid_type;
3980 int min_tolerated = INT_MAX;
943c6e99 3981
8789f4fe
ZL
3982 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3983 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3984 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3985 btrfs_raid_array[BTRFS_RAID_SINGLE].
3986 tolerated_failures);
943c6e99 3987
8789f4fe
ZL
3988 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3989 if (raid_type == BTRFS_RAID_SINGLE)
3990 continue;
41a6e891 3991 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3992 continue;
8c3e3582 3993 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3994 btrfs_raid_array[raid_type].
3995 tolerated_failures);
3996 }
943c6e99 3997
8789f4fe 3998 if (min_tolerated == INT_MAX) {
ab8d0fc4 3999 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4000 min_tolerated = 0;
4001 }
4002
4003 return min_tolerated;
943c6e99
ZL
4004}
4005
eece6a9c 4006int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4007{
e5e9a520 4008 struct list_head *head;
f2984462 4009 struct btrfs_device *dev;
a061fc8d 4010 struct btrfs_super_block *sb;
f2984462 4011 struct btrfs_dev_item *dev_item;
f2984462
CM
4012 int ret;
4013 int do_barriers;
a236aed1
CM
4014 int max_errors;
4015 int total_errors = 0;
a061fc8d 4016 u64 flags;
f2984462 4017
0b246afa 4018 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4019
4020 /*
4021 * max_mirrors == 0 indicates we're from commit_transaction,
4022 * not from fsync where the tree roots in fs_info have not
4023 * been consistent on disk.
4024 */
4025 if (max_mirrors == 0)
4026 backup_super_roots(fs_info);
f2984462 4027
0b246afa 4028 sb = fs_info->super_for_commit;
a061fc8d 4029 dev_item = &sb->dev_item;
e5e9a520 4030
0b246afa
JM
4031 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4032 head = &fs_info->fs_devices->devices;
4033 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4034
5af3e8cc 4035 if (do_barriers) {
0b246afa 4036 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4037 if (ret) {
4038 mutex_unlock(
0b246afa
JM
4039 &fs_info->fs_devices->device_list_mutex);
4040 btrfs_handle_fs_error(fs_info, ret,
4041 "errors while submitting device barriers.");
5af3e8cc
SB
4042 return ret;
4043 }
4044 }
387125fc 4045
1538e6c5 4046 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4047 if (!dev->bdev) {
4048 total_errors++;
4049 continue;
4050 }
e12c9621 4051 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4052 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4053 continue;
4054
2b82032c 4055 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4056 btrfs_set_stack_device_type(dev_item, dev->type);
4057 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4058 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4059 dev->commit_total_bytes);
ce7213c7
MX
4060 btrfs_set_stack_device_bytes_used(dev_item,
4061 dev->commit_bytes_used);
a061fc8d
CM
4062 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4063 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4064 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4065 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4066 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4067 BTRFS_FSID_SIZE);
a512bbf8 4068
a061fc8d
CM
4069 flags = btrfs_super_flags(sb);
4070 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4071
75cb857d
QW
4072 ret = btrfs_validate_write_super(fs_info, sb);
4073 if (ret < 0) {
4074 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4075 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4076 "unexpected superblock corruption detected");
4077 return -EUCLEAN;
4078 }
4079
abbb3b8e 4080 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4081 if (ret)
4082 total_errors++;
f2984462 4083 }
a236aed1 4084 if (total_errors > max_errors) {
0b246afa
JM
4085 btrfs_err(fs_info, "%d errors while writing supers",
4086 total_errors);
4087 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4088
9d565ba4 4089 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4090 btrfs_handle_fs_error(fs_info, -EIO,
4091 "%d errors while writing supers",
4092 total_errors);
9d565ba4 4093 return -EIO;
a236aed1 4094 }
f2984462 4095
a512bbf8 4096 total_errors = 0;
1538e6c5 4097 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4098 if (!dev->bdev)
4099 continue;
e12c9621 4100 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4101 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4102 continue;
4103
abbb3b8e 4104 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4105 if (ret)
4106 total_errors++;
f2984462 4107 }
0b246afa 4108 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4109 if (total_errors > max_errors) {
0b246afa
JM
4110 btrfs_handle_fs_error(fs_info, -EIO,
4111 "%d errors while writing supers",
4112 total_errors);
79787eaa 4113 return -EIO;
a236aed1 4114 }
f2984462
CM
4115 return 0;
4116}
4117
cb517eab
MX
4118/* Drop a fs root from the radix tree and free it. */
4119void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4120 struct btrfs_root *root)
2619ba1f 4121{
4785e24f
JB
4122 bool drop_ref = false;
4123
4df27c4d 4124 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
4125 radix_tree_delete(&fs_info->fs_roots_radix,
4126 (unsigned long)root->root_key.objectid);
af01d2e5 4127 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4128 drop_ref = true;
4df27c4d 4129 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4130
1c1ea4f7 4131 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 4132 ASSERT(root->log_root == NULL);
1c1ea4f7 4133 if (root->reloc_root) {
00246528 4134 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4135 root->reloc_root = NULL;
4136 }
4137 }
3321719e 4138
4785e24f
JB
4139 if (drop_ref)
4140 btrfs_put_root(root);
2619ba1f
CM
4141}
4142
c146afad 4143int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4144{
c146afad
YZ
4145 u64 root_objectid = 0;
4146 struct btrfs_root *gang[8];
65d33fd7
QW
4147 int i = 0;
4148 int err = 0;
4149 unsigned int ret = 0;
e089f05c 4150
c146afad 4151 while (1) {
efc34534 4152 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
4153 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4154 (void **)gang, root_objectid,
4155 ARRAY_SIZE(gang));
65d33fd7 4156 if (!ret) {
efc34534 4157 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 4158 break;
65d33fd7 4159 }
5d4f98a2 4160 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4161
c146afad 4162 for (i = 0; i < ret; i++) {
65d33fd7
QW
4163 /* Avoid to grab roots in dead_roots */
4164 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4165 gang[i] = NULL;
4166 continue;
4167 }
4168 /* grab all the search result for later use */
00246528 4169 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4170 }
efc34534 4171 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4172
65d33fd7
QW
4173 for (i = 0; i < ret; i++) {
4174 if (!gang[i])
4175 continue;
c146afad 4176 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
4177 err = btrfs_orphan_cleanup(gang[i]);
4178 if (err)
65d33fd7 4179 break;
00246528 4180 btrfs_put_root(gang[i]);
c146afad
YZ
4181 }
4182 root_objectid++;
4183 }
65d33fd7
QW
4184
4185 /* release the uncleaned roots due to error */
4186 for (; i < ret; i++) {
4187 if (gang[i])
00246528 4188 btrfs_put_root(gang[i]);
65d33fd7
QW
4189 }
4190 return err;
c146afad 4191}
a2135011 4192
6bccf3ab 4193int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4194{
6bccf3ab 4195 struct btrfs_root *root = fs_info->tree_root;
c146afad 4196 struct btrfs_trans_handle *trans;
a74a4b97 4197
0b246afa 4198 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4199 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4200 mutex_unlock(&fs_info->cleaner_mutex);
4201 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4202
4203 /* wait until ongoing cleanup work done */
0b246afa
JM
4204 down_write(&fs_info->cleanup_work_sem);
4205 up_write(&fs_info->cleanup_work_sem);
c71bf099 4206
7a7eaa40 4207 trans = btrfs_join_transaction(root);
3612b495
TI
4208 if (IS_ERR(trans))
4209 return PTR_ERR(trans);
3a45bb20 4210 return btrfs_commit_transaction(trans);
c146afad
YZ
4211}
4212
b105e927 4213void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4214{
c146afad
YZ
4215 int ret;
4216
afcdd129 4217 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
4218 /*
4219 * We don't want the cleaner to start new transactions, add more delayed
4220 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4221 * because that frees the task_struct, and the transaction kthread might
4222 * still try to wake up the cleaner.
4223 */
4224 kthread_park(fs_info->cleaner_kthread);
c146afad 4225
7343dd61 4226 /* wait for the qgroup rescan worker to stop */
d06f23d6 4227 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4228
803b2f54
SB
4229 /* wait for the uuid_scan task to finish */
4230 down(&fs_info->uuid_tree_rescan_sem);
4231 /* avoid complains from lockdep et al., set sem back to initial state */
4232 up(&fs_info->uuid_tree_rescan_sem);
4233
837d5b6e 4234 /* pause restriper - we want to resume on mount */
aa1b8cd4 4235 btrfs_pause_balance(fs_info);
837d5b6e 4236
8dabb742
SB
4237 btrfs_dev_replace_suspend_for_unmount(fs_info);
4238
aa1b8cd4 4239 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4240
4241 /* wait for any defraggers to finish */
4242 wait_event(fs_info->transaction_wait,
4243 (atomic_read(&fs_info->defrag_running) == 0));
4244
4245 /* clear out the rbtree of defraggable inodes */
26176e7c 4246 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4247
21c7e756 4248 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4249 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4250 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4251
b0643e59
DZ
4252 /* Cancel or finish ongoing discard work */
4253 btrfs_discard_cleanup(fs_info);
4254
bc98a42c 4255 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4256 /*
d6fd0ae2
OS
4257 * The cleaner kthread is stopped, so do one final pass over
4258 * unused block groups.
e44163e1 4259 */
0b246afa 4260 btrfs_delete_unused_bgs(fs_info);
e44163e1 4261
f0cc2cd7
FM
4262 /*
4263 * There might be existing delayed inode workers still running
4264 * and holding an empty delayed inode item. We must wait for
4265 * them to complete first because they can create a transaction.
4266 * This happens when someone calls btrfs_balance_delayed_items()
4267 * and then a transaction commit runs the same delayed nodes
4268 * before any delayed worker has done something with the nodes.
4269 * We must wait for any worker here and not at transaction
4270 * commit time since that could cause a deadlock.
4271 * This is a very rare case.
4272 */
4273 btrfs_flush_workqueue(fs_info->delayed_workers);
4274
6bccf3ab 4275 ret = btrfs_commit_super(fs_info);
acce952b 4276 if (ret)
04892340 4277 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4278 }
4279
af722733
LB
4280 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4281 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4282 btrfs_error_commit_super(fs_info);
0f7d52f4 4283
e3029d9f
AV
4284 kthread_stop(fs_info->transaction_kthread);
4285 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4286
e187831e 4287 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4288 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4289
5958253c
QW
4290 if (btrfs_check_quota_leak(fs_info)) {
4291 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4292 btrfs_err(fs_info, "qgroup reserved space leaked");
4293 }
4294
04892340 4295 btrfs_free_qgroup_config(fs_info);
fe816d0f 4296 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4297
963d678b 4298 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4299 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4300 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4301 }
bcc63abb 4302
5deb17e1 4303 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4304 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4305 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4306
6618a59b 4307 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4308 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4309
1a4319cc
LB
4310 btrfs_put_block_group_cache(fs_info);
4311
de348ee0
WS
4312 /*
4313 * we must make sure there is not any read request to
4314 * submit after we stopping all workers.
4315 */
4316 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4317 btrfs_stop_all_workers(fs_info);
4318
0a31daa4
FM
4319 /* We shouldn't have any transaction open at this point */
4320 ASSERT(list_empty(&fs_info->trans_list));
4321
afcdd129 4322 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4323 free_root_pointers(fs_info, true);
8c38938c 4324 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4325
4e19443d
JB
4326 /*
4327 * We must free the block groups after dropping the fs_roots as we could
4328 * have had an IO error and have left over tree log blocks that aren't
4329 * cleaned up until the fs roots are freed. This makes the block group
4330 * accounting appear to be wrong because there's pending reserved bytes,
4331 * so make sure we do the block group cleanup afterwards.
4332 */
4333 btrfs_free_block_groups(fs_info);
4334
13e6c37b 4335 iput(fs_info->btree_inode);
d6bfde87 4336
21adbd5c 4337#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4338 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4339 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4340#endif
4341
0b86a832 4342 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4343 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4344}
4345
b9fab919
CM
4346int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4347 int atomic)
5f39d397 4348{
1259ab75 4349 int ret;
727011e0 4350 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4351
0b32f4bb 4352 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4353 if (!ret)
4354 return ret;
4355
4356 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4357 parent_transid, atomic);
4358 if (ret == -EAGAIN)
4359 return ret;
1259ab75 4360 return !ret;
5f39d397
CM
4361}
4362
5f39d397
CM
4363void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4364{
2f4d60df 4365 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4366 u64 transid = btrfs_header_generation(buf);
b9473439 4367 int was_dirty;
b4ce94de 4368
06ea65a3
JB
4369#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4370 /*
4371 * This is a fast path so only do this check if we have sanity tests
52042d8e 4372 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4373 * outside of the sanity tests.
4374 */
b0132a3b 4375 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4376 return;
4377#endif
b9447ef8 4378 btrfs_assert_tree_locked(buf);
0b246afa 4379 if (transid != fs_info->generation)
5d163e0e 4380 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4381 buf->start, transid, fs_info->generation);
0b32f4bb 4382 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4383 if (!was_dirty)
104b4e51
NB
4384 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4385 buf->len,
4386 fs_info->dirty_metadata_batch);
1f21ef0a 4387#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4388 /*
4389 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4390 * but item data not updated.
4391 * So here we should only check item pointers, not item data.
4392 */
4393 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4394 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4395 btrfs_print_leaf(buf);
1f21ef0a
FM
4396 ASSERT(0);
4397 }
4398#endif
eb60ceac
CM
4399}
4400
2ff7e61e 4401static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4402 int flush_delayed)
16cdcec7
MX
4403{
4404 /*
4405 * looks as though older kernels can get into trouble with
4406 * this code, they end up stuck in balance_dirty_pages forever
4407 */
e2d84521 4408 int ret;
16cdcec7
MX
4409
4410 if (current->flags & PF_MEMALLOC)
4411 return;
4412
b53d3f5d 4413 if (flush_delayed)
2ff7e61e 4414 btrfs_balance_delayed_items(fs_info);
16cdcec7 4415
d814a491
EL
4416 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4417 BTRFS_DIRTY_METADATA_THRESH,
4418 fs_info->dirty_metadata_batch);
e2d84521 4419 if (ret > 0) {
0b246afa 4420 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4421 }
16cdcec7
MX
4422}
4423
2ff7e61e 4424void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4425{
2ff7e61e 4426 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4427}
585ad2c3 4428
2ff7e61e 4429void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4430{
2ff7e61e 4431 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4432}
6b80053d 4433
581c1760
QW
4434int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4435 struct btrfs_key *first_key)
6b80053d 4436{
5ab12d1f 4437 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4438 level, first_key);
6b80053d 4439}
0da5468f 4440
2ff7e61e 4441static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4442{
fe816d0f
NB
4443 /* cleanup FS via transaction */
4444 btrfs_cleanup_transaction(fs_info);
4445
0b246afa 4446 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4447 btrfs_run_delayed_iputs(fs_info);
0b246afa 4448 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4449
0b246afa
JM
4450 down_write(&fs_info->cleanup_work_sem);
4451 up_write(&fs_info->cleanup_work_sem);
acce952b 4452}
4453
ef67963d
JB
4454static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4455{
4456 struct btrfs_root *gang[8];
4457 u64 root_objectid = 0;
4458 int ret;
4459
4460 spin_lock(&fs_info->fs_roots_radix_lock);
4461 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4462 (void **)gang, root_objectid,
4463 ARRAY_SIZE(gang))) != 0) {
4464 int i;
4465
4466 for (i = 0; i < ret; i++)
4467 gang[i] = btrfs_grab_root(gang[i]);
4468 spin_unlock(&fs_info->fs_roots_radix_lock);
4469
4470 for (i = 0; i < ret; i++) {
4471 if (!gang[i])
4472 continue;
4473 root_objectid = gang[i]->root_key.objectid;
4474 btrfs_free_log(NULL, gang[i]);
4475 btrfs_put_root(gang[i]);
4476 }
4477 root_objectid++;
4478 spin_lock(&fs_info->fs_roots_radix_lock);
4479 }
4480 spin_unlock(&fs_info->fs_roots_radix_lock);
4481 btrfs_free_log_root_tree(NULL, fs_info);
4482}
4483
143bede5 4484static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4485{
acce952b 4486 struct btrfs_ordered_extent *ordered;
acce952b 4487
199c2a9c 4488 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4489 /*
4490 * This will just short circuit the ordered completion stuff which will
4491 * make sure the ordered extent gets properly cleaned up.
4492 */
199c2a9c 4493 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4494 root_extent_list)
4495 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4496 spin_unlock(&root->ordered_extent_lock);
4497}
4498
4499static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4500{
4501 struct btrfs_root *root;
4502 struct list_head splice;
4503
4504 INIT_LIST_HEAD(&splice);
4505
4506 spin_lock(&fs_info->ordered_root_lock);
4507 list_splice_init(&fs_info->ordered_roots, &splice);
4508 while (!list_empty(&splice)) {
4509 root = list_first_entry(&splice, struct btrfs_root,
4510 ordered_root);
1de2cfde
JB
4511 list_move_tail(&root->ordered_root,
4512 &fs_info->ordered_roots);
199c2a9c 4513
2a85d9ca 4514 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4515 btrfs_destroy_ordered_extents(root);
4516
2a85d9ca
LB
4517 cond_resched();
4518 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4519 }
4520 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4521
4522 /*
4523 * We need this here because if we've been flipped read-only we won't
4524 * get sync() from the umount, so we need to make sure any ordered
4525 * extents that haven't had their dirty pages IO start writeout yet
4526 * actually get run and error out properly.
4527 */
4528 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4529}
4530
35a3621b 4531static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4532 struct btrfs_fs_info *fs_info)
acce952b 4533{
4534 struct rb_node *node;
4535 struct btrfs_delayed_ref_root *delayed_refs;
4536 struct btrfs_delayed_ref_node *ref;
4537 int ret = 0;
4538
4539 delayed_refs = &trans->delayed_refs;
4540
4541 spin_lock(&delayed_refs->lock);
d7df2c79 4542 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4543 spin_unlock(&delayed_refs->lock);
b79ce3dd 4544 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4545 return ret;
4546 }
4547
5c9d028b 4548 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4549 struct btrfs_delayed_ref_head *head;
0e0adbcf 4550 struct rb_node *n;
e78417d1 4551 bool pin_bytes = false;
acce952b 4552
d7df2c79
JB
4553 head = rb_entry(node, struct btrfs_delayed_ref_head,
4554 href_node);
3069bd26 4555 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4556 continue;
3069bd26 4557
d7df2c79 4558 spin_lock(&head->lock);
e3d03965 4559 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4560 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4561 ref_node);
d7df2c79 4562 ref->in_tree = 0;
e3d03965 4563 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4564 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4565 if (!list_empty(&ref->add_list))
4566 list_del(&ref->add_list);
d7df2c79
JB
4567 atomic_dec(&delayed_refs->num_entries);
4568 btrfs_put_delayed_ref(ref);
e78417d1 4569 }
d7df2c79
JB
4570 if (head->must_insert_reserved)
4571 pin_bytes = true;
4572 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4573 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4574 spin_unlock(&head->lock);
4575 spin_unlock(&delayed_refs->lock);
4576 mutex_unlock(&head->mutex);
acce952b 4577
f603bb94
NB
4578 if (pin_bytes) {
4579 struct btrfs_block_group *cache;
4580
4581 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4582 BUG_ON(!cache);
4583
4584 spin_lock(&cache->space_info->lock);
4585 spin_lock(&cache->lock);
4586 cache->pinned += head->num_bytes;
4587 btrfs_space_info_update_bytes_pinned(fs_info,
4588 cache->space_info, head->num_bytes);
4589 cache->reserved -= head->num_bytes;
4590 cache->space_info->bytes_reserved -= head->num_bytes;
4591 spin_unlock(&cache->lock);
4592 spin_unlock(&cache->space_info->lock);
4593 percpu_counter_add_batch(
4594 &cache->space_info->total_bytes_pinned,
4595 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4596
4597 btrfs_put_block_group(cache);
4598
4599 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4600 head->bytenr + head->num_bytes - 1);
4601 }
31890da0 4602 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4603 btrfs_put_delayed_ref_head(head);
acce952b 4604 cond_resched();
4605 spin_lock(&delayed_refs->lock);
4606 }
81f7eb00 4607 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4608
4609 spin_unlock(&delayed_refs->lock);
4610
4611 return ret;
4612}
4613
143bede5 4614static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4615{
4616 struct btrfs_inode *btrfs_inode;
4617 struct list_head splice;
4618
4619 INIT_LIST_HEAD(&splice);
4620
eb73c1b7
MX
4621 spin_lock(&root->delalloc_lock);
4622 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4623
4624 while (!list_empty(&splice)) {
fe816d0f 4625 struct inode *inode = NULL;
eb73c1b7
MX
4626 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4627 delalloc_inodes);
fe816d0f 4628 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4629 spin_unlock(&root->delalloc_lock);
acce952b 4630
fe816d0f
NB
4631 /*
4632 * Make sure we get a live inode and that it'll not disappear
4633 * meanwhile.
4634 */
4635 inode = igrab(&btrfs_inode->vfs_inode);
4636 if (inode) {
4637 invalidate_inode_pages2(inode->i_mapping);
4638 iput(inode);
4639 }
eb73c1b7 4640 spin_lock(&root->delalloc_lock);
acce952b 4641 }
eb73c1b7
MX
4642 spin_unlock(&root->delalloc_lock);
4643}
4644
4645static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4646{
4647 struct btrfs_root *root;
4648 struct list_head splice;
4649
4650 INIT_LIST_HEAD(&splice);
4651
4652 spin_lock(&fs_info->delalloc_root_lock);
4653 list_splice_init(&fs_info->delalloc_roots, &splice);
4654 while (!list_empty(&splice)) {
4655 root = list_first_entry(&splice, struct btrfs_root,
4656 delalloc_root);
00246528 4657 root = btrfs_grab_root(root);
eb73c1b7
MX
4658 BUG_ON(!root);
4659 spin_unlock(&fs_info->delalloc_root_lock);
4660
4661 btrfs_destroy_delalloc_inodes(root);
00246528 4662 btrfs_put_root(root);
eb73c1b7
MX
4663
4664 spin_lock(&fs_info->delalloc_root_lock);
4665 }
4666 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4667}
4668
2ff7e61e 4669static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4670 struct extent_io_tree *dirty_pages,
4671 int mark)
4672{
4673 int ret;
acce952b 4674 struct extent_buffer *eb;
4675 u64 start = 0;
4676 u64 end;
acce952b 4677
4678 while (1) {
4679 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4680 mark, NULL);
acce952b 4681 if (ret)
4682 break;
4683
91166212 4684 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4685 while (start <= end) {
0b246afa
JM
4686 eb = find_extent_buffer(fs_info, start);
4687 start += fs_info->nodesize;
fd8b2b61 4688 if (!eb)
acce952b 4689 continue;
fd8b2b61 4690 wait_on_extent_buffer_writeback(eb);
acce952b 4691
fd8b2b61
JB
4692 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4693 &eb->bflags))
4694 clear_extent_buffer_dirty(eb);
4695 free_extent_buffer_stale(eb);
acce952b 4696 }
4697 }
4698
4699 return ret;
4700}
4701
2ff7e61e 4702static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4703 struct extent_io_tree *unpin)
acce952b 4704{
acce952b 4705 u64 start;
4706 u64 end;
4707 int ret;
4708
acce952b 4709 while (1) {
0e6ec385
FM
4710 struct extent_state *cached_state = NULL;
4711
fcd5e742
LF
4712 /*
4713 * The btrfs_finish_extent_commit() may get the same range as
4714 * ours between find_first_extent_bit and clear_extent_dirty.
4715 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4716 * the same extent range.
4717 */
4718 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4719 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4720 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4721 if (ret) {
4722 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4723 break;
fcd5e742 4724 }
acce952b 4725
0e6ec385
FM
4726 clear_extent_dirty(unpin, start, end, &cached_state);
4727 free_extent_state(cached_state);
2ff7e61e 4728 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4729 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4730 cond_resched();
4731 }
4732
4733 return 0;
4734}
4735
32da5386 4736static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4737{
4738 struct inode *inode;
4739
4740 inode = cache->io_ctl.inode;
4741 if (inode) {
4742 invalidate_inode_pages2(inode->i_mapping);
4743 BTRFS_I(inode)->generation = 0;
4744 cache->io_ctl.inode = NULL;
4745 iput(inode);
4746 }
bbc37d6e 4747 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4748 btrfs_put_block_group(cache);
4749}
4750
4751void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4752 struct btrfs_fs_info *fs_info)
c79a1751 4753{
32da5386 4754 struct btrfs_block_group *cache;
c79a1751
LB
4755
4756 spin_lock(&cur_trans->dirty_bgs_lock);
4757 while (!list_empty(&cur_trans->dirty_bgs)) {
4758 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4759 struct btrfs_block_group,
c79a1751 4760 dirty_list);
c79a1751
LB
4761
4762 if (!list_empty(&cache->io_list)) {
4763 spin_unlock(&cur_trans->dirty_bgs_lock);
4764 list_del_init(&cache->io_list);
4765 btrfs_cleanup_bg_io(cache);
4766 spin_lock(&cur_trans->dirty_bgs_lock);
4767 }
4768
4769 list_del_init(&cache->dirty_list);
4770 spin_lock(&cache->lock);
4771 cache->disk_cache_state = BTRFS_DC_ERROR;
4772 spin_unlock(&cache->lock);
4773
4774 spin_unlock(&cur_trans->dirty_bgs_lock);
4775 btrfs_put_block_group(cache);
ba2c4d4e 4776 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4777 spin_lock(&cur_trans->dirty_bgs_lock);
4778 }
4779 spin_unlock(&cur_trans->dirty_bgs_lock);
4780
45ae2c18
NB
4781 /*
4782 * Refer to the definition of io_bgs member for details why it's safe
4783 * to use it without any locking
4784 */
c79a1751
LB
4785 while (!list_empty(&cur_trans->io_bgs)) {
4786 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4787 struct btrfs_block_group,
c79a1751 4788 io_list);
c79a1751
LB
4789
4790 list_del_init(&cache->io_list);
4791 spin_lock(&cache->lock);
4792 cache->disk_cache_state = BTRFS_DC_ERROR;
4793 spin_unlock(&cache->lock);
4794 btrfs_cleanup_bg_io(cache);
4795 }
4796}
4797
49b25e05 4798void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4799 struct btrfs_fs_info *fs_info)
49b25e05 4800{
bbbf7243
NB
4801 struct btrfs_device *dev, *tmp;
4802
2ff7e61e 4803 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4804 ASSERT(list_empty(&cur_trans->dirty_bgs));
4805 ASSERT(list_empty(&cur_trans->io_bgs));
4806
bbbf7243
NB
4807 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4808 post_commit_list) {
4809 list_del_init(&dev->post_commit_list);
4810 }
4811
2ff7e61e 4812 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4813
4a9d8bde 4814 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4815 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4816
4a9d8bde 4817 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4818 wake_up(&fs_info->transaction_wait);
49b25e05 4819
ccdf9b30 4820 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4821
2ff7e61e 4822 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4823 EXTENT_DIRTY);
fe119a6e 4824 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4825
d3575156
NA
4826 btrfs_free_redirty_list(cur_trans);
4827
4a9d8bde
MX
4828 cur_trans->state =TRANS_STATE_COMPLETED;
4829 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4830}
4831
2ff7e61e 4832static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4833{
4834 struct btrfs_transaction *t;
acce952b 4835
0b246afa 4836 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4837
0b246afa
JM
4838 spin_lock(&fs_info->trans_lock);
4839 while (!list_empty(&fs_info->trans_list)) {
4840 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4841 struct btrfs_transaction, list);
4842 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4843 refcount_inc(&t->use_count);
0b246afa 4844 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4845 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4846 btrfs_put_transaction(t);
0b246afa 4847 spin_lock(&fs_info->trans_lock);
724e2315
JB
4848 continue;
4849 }
0b246afa 4850 if (t == fs_info->running_transaction) {
724e2315 4851 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4852 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4853 /*
4854 * We wait for 0 num_writers since we don't hold a trans
4855 * handle open currently for this transaction.
4856 */
4857 wait_event(t->writer_wait,
4858 atomic_read(&t->num_writers) == 0);
4859 } else {
0b246afa 4860 spin_unlock(&fs_info->trans_lock);
724e2315 4861 }
2ff7e61e 4862 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4863
0b246afa
JM
4864 spin_lock(&fs_info->trans_lock);
4865 if (t == fs_info->running_transaction)
4866 fs_info->running_transaction = NULL;
acce952b 4867 list_del_init(&t->list);
0b246afa 4868 spin_unlock(&fs_info->trans_lock);
acce952b 4869
724e2315 4870 btrfs_put_transaction(t);
2ff7e61e 4871 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4872 spin_lock(&fs_info->trans_lock);
724e2315 4873 }
0b246afa
JM
4874 spin_unlock(&fs_info->trans_lock);
4875 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4876 btrfs_destroy_delayed_inodes(fs_info);
4877 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4878 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4879 btrfs_drop_all_logs(fs_info);
0b246afa 4880 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4881
4882 return 0;
4883}
ec7d6dfd 4884
453e4873 4885int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4886{
4887 struct btrfs_path *path;
4888 int ret;
4889 struct extent_buffer *l;
4890 struct btrfs_key search_key;
4891 struct btrfs_key found_key;
4892 int slot;
4893
4894 path = btrfs_alloc_path();
4895 if (!path)
4896 return -ENOMEM;
4897
4898 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4899 search_key.type = -1;
4900 search_key.offset = (u64)-1;
4901 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4902 if (ret < 0)
4903 goto error;
4904 BUG_ON(ret == 0); /* Corruption */
4905 if (path->slots[0] > 0) {
4906 slot = path->slots[0] - 1;
4907 l = path->nodes[0];
4908 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
4909 root->free_objectid = max_t(u64, found_key.objectid + 1,
4910 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 4911 } else {
23125104 4912 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
4913 }
4914 ret = 0;
4915error:
4916 btrfs_free_path(path);
4917 return ret;
4918}
4919
543068a2 4920int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
4921{
4922 int ret;
4923 mutex_lock(&root->objectid_mutex);
4924
6b8fad57 4925 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
4926 btrfs_warn(root->fs_info,
4927 "the objectid of root %llu reaches its highest value",
4928 root->root_key.objectid);
4929 ret = -ENOSPC;
4930 goto out;
4931 }
4932
23125104 4933 *objectid = root->free_objectid++;
ec7d6dfd
NB
4934 ret = 0;
4935out:
4936 mutex_unlock(&root->objectid_mutex);
4937 return ret;
4938}