btrfs: move struct btrfs_tree_parent_check out of disk-io.h
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
c7f13d42 46#include "fs.h"
07e81dc9 47#include "accessors.h"
a0231804 48#include "extent-tree.h"
45c40c8f 49#include "root-tree.h"
59b818e0 50#include "defrag.h"
c7a03b52 51#include "uuid-tree.h"
67707479 52#include "relocation.h"
2fc6822c 53#include "scrub.h"
c03b2207 54#include "super.h"
eb60ceac 55
319e4d06
QW
56#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 BTRFS_HEADER_FLAG_RELOC |\
58 BTRFS_SUPER_FLAG_ERROR |\
59 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
60 BTRFS_SUPER_FLAG_METADUMP |\
61 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 62
143bede5 63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 65 struct btrfs_fs_info *fs_info);
143bede5 66static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 67static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 68 struct extent_io_tree *dirty_pages,
69 int mark);
2ff7e61e 70static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 71 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
72static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
73static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 74
141386e1
JB
75static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
76{
77 if (fs_info->csum_shash)
78 crypto_free_shash(fs_info->csum_shash);
79}
80
d352ac68
CM
81/*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
44b8bd7e 86struct async_submit_bio {
da67daab 87 struct btrfs_inode *inode;
44b8bd7e 88 struct bio *bio;
ab2072b2 89 enum btrfs_wq_submit_cmd submit_cmd;
44b8bd7e 90 int mirror_num;
1941b64b 91
ab2072b2 92 /* Optional parameter for used by direct io */
1941b64b 93 u64 dio_file_offset;
8b712842 94 struct btrfs_work work;
4e4cbee9 95 blk_status_t status;
44b8bd7e
CM
96};
97
d352ac68 98/*
2996e1f8 99 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 100 */
c67b3892 101static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 102{
d5178578 103 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 104 const int num_pages = num_extent_pages(buf);
a26663e7 105 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 106 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 107 char *kaddr;
e9be5a30 108 int i;
d5178578
JT
109
110 shash->tfm = fs_info->csum_shash;
111 crypto_shash_init(shash);
a26663e7 112 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 113 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 114 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 115
e9be5a30
DS
116 for (i = 1; i < num_pages; i++) {
117 kaddr = page_address(buf->pages[i]);
118 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 119 }
71a63551 120 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 121 crypto_shash_final(shash, result);
19c00ddc
CM
122}
123
d352ac68
CM
124/*
125 * we can't consider a given block up to date unless the transid of the
126 * block matches the transid in the parent node's pointer. This is how we
127 * detect blocks that either didn't get written at all or got written
128 * in the wrong place.
129 */
1259ab75 130static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
131 struct extent_buffer *eb, u64 parent_transid,
132 int atomic)
1259ab75 133{
2ac55d41 134 struct extent_state *cached_state = NULL;
1259ab75
CM
135 int ret;
136
137 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
138 return 0;
139
b9fab919
CM
140 if (atomic)
141 return -EAGAIN;
142
570eb97b 143 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
0b32f4bb 144 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
145 btrfs_header_generation(eb) == parent_transid) {
146 ret = 0;
147 goto out;
148 }
94647322 149 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
150"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
151 eb->start, eb->read_mirror,
29549aec 152 parent_transid, btrfs_header_generation(eb));
1259ab75 153 ret = 1;
35b22c19 154 clear_extent_buffer_uptodate(eb);
33958dc6 155out:
570eb97b
JB
156 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
157 &cached_state);
1259ab75 158 return ret;
1259ab75
CM
159}
160
e7e16f48
JT
161static bool btrfs_supported_super_csum(u16 csum_type)
162{
163 switch (csum_type) {
164 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 165 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 166 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 167 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
168 return true;
169 default:
170 return false;
171 }
172}
173
1104a885
DS
174/*
175 * Return 0 if the superblock checksum type matches the checksum value of that
176 * algorithm. Pass the raw disk superblock data.
177 */
3d17adea
QW
178int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
179 const struct btrfs_super_block *disk_sb)
1104a885 180{
51bce6c9 181 char result[BTRFS_CSUM_SIZE];
d5178578
JT
182 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
183
184 shash->tfm = fs_info->csum_shash;
1104a885 185
51bce6c9
JT
186 /*
187 * The super_block structure does not span the whole
188 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
189 * filled with zeros and is included in the checksum.
190 */
3d17adea 191 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 192 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 193
55fc29be 194 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 195 return 1;
1104a885 196
e7e16f48 197 return 0;
1104a885
DS
198}
199
e064d5e9 200int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 201 struct btrfs_key *first_key, u64 parent_transid)
581c1760 202{
e064d5e9 203 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
204 int found_level;
205 struct btrfs_key found_key;
206 int ret;
207
208 found_level = btrfs_header_level(eb);
209 if (found_level != level) {
63489055
QW
210 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
211 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
212 btrfs_err(fs_info,
213"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
214 eb->start, level, found_level);
581c1760
QW
215 return -EIO;
216 }
217
218 if (!first_key)
219 return 0;
220
5d41be6f
QW
221 /*
222 * For live tree block (new tree blocks in current transaction),
223 * we need proper lock context to avoid race, which is impossible here.
224 * So we only checks tree blocks which is read from disk, whose
225 * generation <= fs_info->last_trans_committed.
226 */
227 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
228 return 0;
62fdaa52
QW
229
230 /* We have @first_key, so this @eb must have at least one item */
231 if (btrfs_header_nritems(eb) == 0) {
232 btrfs_err(fs_info,
233 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
234 eb->start);
235 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
236 return -EUCLEAN;
237 }
238
581c1760
QW
239 if (found_level)
240 btrfs_node_key_to_cpu(eb, &found_key, 0);
241 else
242 btrfs_item_key_to_cpu(eb, &found_key, 0);
243 ret = btrfs_comp_cpu_keys(first_key, &found_key);
244
581c1760 245 if (ret) {
63489055
QW
246 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
247 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 248 btrfs_err(fs_info,
ff76a864
LB
249"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
250 eb->start, parent_transid, first_key->objectid,
251 first_key->type, first_key->offset,
252 found_key.objectid, found_key.type,
253 found_key.offset);
581c1760 254 }
581c1760
QW
255 return ret;
256}
257
d352ac68
CM
258/*
259 * helper to read a given tree block, doing retries as required when
260 * the checksums don't match and we have alternate mirrors to try.
581c1760 261 *
789d6a3a
QW
262 * @check: expected tree parentness check, see the comments of the
263 * structure for details.
d352ac68 264 */
6a2e9dc4 265int btrfs_read_extent_buffer(struct extent_buffer *eb,
789d6a3a 266 struct btrfs_tree_parent_check *check)
f188591e 267{
5ab12d1f 268 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 269 int failed = 0;
f188591e
CM
270 int ret;
271 int num_copies = 0;
272 int mirror_num = 0;
ea466794 273 int failed_mirror = 0;
f188591e 274
789d6a3a
QW
275 ASSERT(check);
276
f188591e 277 while (1) {
f8397d69 278 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
947a6299
QW
279 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
280 if (!ret)
281 break;
d397712b 282
0b246afa 283 num_copies = btrfs_num_copies(fs_info,
f188591e 284 eb->start, eb->len);
4235298e 285 if (num_copies == 1)
ea466794 286 break;
4235298e 287
5cf1ab56
JB
288 if (!failed_mirror) {
289 failed = 1;
290 failed_mirror = eb->read_mirror;
291 }
292
f188591e 293 mirror_num++;
ea466794
JB
294 if (mirror_num == failed_mirror)
295 mirror_num++;
296
4235298e 297 if (mirror_num > num_copies)
ea466794 298 break;
f188591e 299 }
ea466794 300
c0901581 301 if (failed && !ret && failed_mirror)
20a1fbf9 302 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
303
304 return ret;
f188591e 305}
19c00ddc 306
eca0f6f6
QW
307static int csum_one_extent_buffer(struct extent_buffer *eb)
308{
309 struct btrfs_fs_info *fs_info = eb->fs_info;
310 u8 result[BTRFS_CSUM_SIZE];
311 int ret;
312
313 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
314 offsetof(struct btrfs_header, fsid),
315 BTRFS_FSID_SIZE) == 0);
316 csum_tree_block(eb, result);
317
318 if (btrfs_header_level(eb))
319 ret = btrfs_check_node(eb);
320 else
321 ret = btrfs_check_leaf_full(eb);
322
3777369f
QW
323 if (ret < 0)
324 goto error;
325
326 /*
327 * Also check the generation, the eb reached here must be newer than
328 * last committed. Or something seriously wrong happened.
329 */
330 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
331 ret = -EUCLEAN;
eca0f6f6 332 btrfs_err(fs_info,
3777369f
QW
333 "block=%llu bad generation, have %llu expect > %llu",
334 eb->start, btrfs_header_generation(eb),
335 fs_info->last_trans_committed);
336 goto error;
eca0f6f6
QW
337 }
338 write_extent_buffer(eb, result, 0, fs_info->csum_size);
339
340 return 0;
3777369f
QW
341
342error:
343 btrfs_print_tree(eb, 0);
344 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
345 eb->start);
346 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347 return ret;
eca0f6f6
QW
348}
349
350/* Checksum all dirty extent buffers in one bio_vec */
351static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
352 struct bio_vec *bvec)
353{
354 struct page *page = bvec->bv_page;
355 u64 bvec_start = page_offset(page) + bvec->bv_offset;
356 u64 cur;
357 int ret = 0;
358
359 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
360 cur += fs_info->nodesize) {
361 struct extent_buffer *eb;
362 bool uptodate;
363
364 eb = find_extent_buffer(fs_info, cur);
365 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
366 fs_info->nodesize);
367
01cd3909 368 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
369 if (WARN_ON(!eb))
370 return -EUCLEAN;
371
372 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
373 free_extent_buffer(eb);
374 return -EUCLEAN;
375 }
376 if (WARN_ON(!uptodate)) {
377 free_extent_buffer(eb);
378 return -EUCLEAN;
379 }
380
381 ret = csum_one_extent_buffer(eb);
382 free_extent_buffer(eb);
383 if (ret < 0)
384 return ret;
385 }
386 return ret;
387}
388
d352ac68 389/*
ac303b69
QW
390 * Checksum a dirty tree block before IO. This has extra checks to make sure
391 * we only fill in the checksum field in the first page of a multi-page block.
392 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 393 */
ac303b69 394static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 395{
ac303b69 396 struct page *page = bvec->bv_page;
4eee4fa4 397 u64 start = page_offset(page);
19c00ddc 398 u64 found_start;
19c00ddc 399 struct extent_buffer *eb;
eca0f6f6 400
fbca46eb 401 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 402 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 403
4f2de97a
JB
404 eb = (struct extent_buffer *)page->private;
405 if (page != eb->pages[0])
406 return 0;
0f805531 407
19c00ddc 408 found_start = btrfs_header_bytenr(eb);
d3575156
NA
409
410 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
411 WARN_ON(found_start != 0);
412 return 0;
413 }
414
0f805531
AL
415 /*
416 * Please do not consolidate these warnings into a single if.
417 * It is useful to know what went wrong.
418 */
419 if (WARN_ON(found_start != start))
420 return -EUCLEAN;
421 if (WARN_ON(!PageUptodate(page)))
422 return -EUCLEAN;
423
eca0f6f6 424 return csum_one_extent_buffer(eb);
19c00ddc
CM
425}
426
b0c9b3b0 427static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 428{
b0c9b3b0 429 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 430 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 431 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 432 u8 *metadata_uuid;
2b82032c 433
9a8658e3
DS
434 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
435 BTRFS_FSID_SIZE);
944d3f9f
NB
436 /*
437 * Checking the incompat flag is only valid for the current fs. For
438 * seed devices it's forbidden to have their uuid changed so reading
439 * ->fsid in this case is fine
440 */
441 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
442 metadata_uuid = fs_devices->metadata_uuid;
443 else
444 metadata_uuid = fs_devices->fsid;
445
446 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
447 return 0;
448
449 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
450 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
451 return 0;
452
453 return 1;
2b82032c
YZ
454}
455
77bf40a2 456/* Do basic extent buffer checks at read time */
947a6299
QW
457static int validate_extent_buffer(struct extent_buffer *eb,
458 struct btrfs_tree_parent_check *check)
ce9adaa5 459{
77bf40a2 460 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 461 u64 found_start;
77bf40a2
QW
462 const u32 csum_size = fs_info->csum_size;
463 u8 found_level;
2996e1f8 464 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 465 const u8 *header_csum;
77bf40a2 466 int ret = 0;
ea466794 467
947a6299
QW
468 ASSERT(check);
469
ce9adaa5 470 found_start = btrfs_header_bytenr(eb);
727011e0 471 if (found_start != eb->start) {
8f0ed7d4
QW
472 btrfs_err_rl(fs_info,
473 "bad tree block start, mirror %u want %llu have %llu",
474 eb->read_mirror, eb->start, found_start);
f188591e 475 ret = -EIO;
77bf40a2 476 goto out;
ce9adaa5 477 }
b0c9b3b0 478 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
479 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
480 eb->start, eb->read_mirror);
1259ab75 481 ret = -EIO;
77bf40a2 482 goto out;
1259ab75 483 }
ce9adaa5 484 found_level = btrfs_header_level(eb);
1c24c3ce 485 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
486 btrfs_err(fs_info,
487 "bad tree block level, mirror %u level %d on logical %llu",
488 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 489 ret = -EIO;
77bf40a2 490 goto out;
1c24c3ce 491 }
ce9adaa5 492
c67b3892 493 csum_tree_block(eb, result);
dfd29eed
DS
494 header_csum = page_address(eb->pages[0]) +
495 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 496
dfd29eed 497 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 498 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
499"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
500 eb->start, eb->read_mirror,
dfd29eed 501 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
502 CSUM_FMT_VALUE(csum_size, result),
503 btrfs_header_level(eb));
2996e1f8 504 ret = -EUCLEAN;
77bf40a2 505 goto out;
2996e1f8
JT
506 }
507
947a6299
QW
508 if (found_level != check->level) {
509 ret = -EIO;
510 goto out;
511 }
512 if (unlikely(check->transid &&
513 btrfs_header_generation(eb) != check->transid)) {
514 btrfs_err_rl(eb->fs_info,
515"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
516 eb->start, eb->read_mirror, check->transid,
517 btrfs_header_generation(eb));
518 ret = -EIO;
519 goto out;
520 }
521 if (check->has_first_key) {
522 struct btrfs_key *expect_key = &check->first_key;
523 struct btrfs_key found_key;
524
525 if (found_level)
526 btrfs_node_key_to_cpu(eb, &found_key, 0);
527 else
528 btrfs_item_key_to_cpu(eb, &found_key, 0);
529 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
530 btrfs_err(fs_info,
531"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
532 eb->start, check->transid,
533 expect_key->objectid,
534 expect_key->type, expect_key->offset,
535 found_key.objectid, found_key.type,
536 found_key.offset);
537 ret = -EUCLEAN;
538 goto out;
539 }
540 }
541 if (check->owner_root) {
542 ret = btrfs_check_eb_owner(eb, check->owner_root);
543 if (ret < 0)
544 goto out;
545 }
546
a826d6dc
JB
547 /*
548 * If this is a leaf block and it is corrupt, set the corrupt bit so
549 * that we don't try and read the other copies of this block, just
550 * return -EIO.
551 */
1c4360ee 552 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
553 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
554 ret = -EIO;
555 }
ce9adaa5 556
813fd1dc 557 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
558 ret = -EIO;
559
0b32f4bb
JB
560 if (!ret)
561 set_extent_buffer_uptodate(eb);
75391f0d
QW
562 else
563 btrfs_err(fs_info,
8f0ed7d4
QW
564 "read time tree block corruption detected on logical %llu mirror %u",
565 eb->start, eb->read_mirror);
77bf40a2
QW
566out:
567 return ret;
568}
569
371cdc07 570static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
947a6299 571 int mirror, struct btrfs_tree_parent_check *check)
371cdc07
QW
572{
573 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
574 struct extent_buffer *eb;
575 bool reads_done;
576 int ret = 0;
577
947a6299
QW
578 ASSERT(check);
579
371cdc07
QW
580 /*
581 * We don't allow bio merge for subpage metadata read, so we should
582 * only get one eb for each endio hook.
583 */
584 ASSERT(end == start + fs_info->nodesize - 1);
585 ASSERT(PagePrivate(page));
586
587 eb = find_extent_buffer(fs_info, start);
588 /*
589 * When we are reading one tree block, eb must have been inserted into
590 * the radix tree. If not, something is wrong.
591 */
592 ASSERT(eb);
593
594 reads_done = atomic_dec_and_test(&eb->io_pages);
595 /* Subpage read must finish in page read */
596 ASSERT(reads_done);
597
598 eb->read_mirror = mirror;
599 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
600 ret = -EIO;
601 goto err;
602 }
947a6299 603 ret = validate_extent_buffer(eb, check);
371cdc07
QW
604 if (ret < 0)
605 goto err;
606
371cdc07
QW
607 set_extent_buffer_uptodate(eb);
608
609 free_extent_buffer(eb);
610 return ret;
611err:
612 /*
613 * end_bio_extent_readpage decrements io_pages in case of error,
614 * make sure it has something to decrement.
615 */
616 atomic_inc(&eb->io_pages);
617 clear_extent_buffer_uptodate(eb);
618 free_extent_buffer(eb);
619 return ret;
620}
621
c3a3b19b 622int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
623 struct page *page, u64 start, u64 end,
624 int mirror)
625{
626 struct extent_buffer *eb;
627 int ret = 0;
628 int reads_done;
629
630 ASSERT(page->private);
371cdc07 631
fbca46eb 632 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
947a6299
QW
633 return validate_subpage_buffer(page, start, end, mirror,
634 &bbio->parent_check);
371cdc07 635
77bf40a2
QW
636 eb = (struct extent_buffer *)page->private;
637
638 /*
639 * The pending IO might have been the only thing that kept this buffer
640 * in memory. Make sure we have a ref for all this other checks
641 */
642 atomic_inc(&eb->refs);
643
644 reads_done = atomic_dec_and_test(&eb->io_pages);
645 if (!reads_done)
646 goto err;
647
648 eb->read_mirror = mirror;
649 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
650 ret = -EIO;
651 goto err;
652 }
947a6299 653 ret = validate_extent_buffer(eb, &bbio->parent_check);
ce9adaa5 654err:
53b381b3
DW
655 if (ret) {
656 /*
657 * our io error hook is going to dec the io pages
658 * again, we have to make sure it has something
659 * to decrement
660 */
661 atomic_inc(&eb->io_pages);
0b32f4bb 662 clear_extent_buffer_uptodate(eb);
53b381b3 663 }
0b32f4bb 664 free_extent_buffer(eb);
77bf40a2 665
f188591e 666 return ret;
ce9adaa5
CM
667}
668
4a69a410
CM
669static void run_one_async_start(struct btrfs_work *work)
670{
4a69a410 671 struct async_submit_bio *async;
4e4cbee9 672 blk_status_t ret;
4a69a410
CM
673
674 async = container_of(work, struct async_submit_bio, work);
ab2072b2
DS
675 switch (async->submit_cmd) {
676 case WQ_SUBMIT_METADATA:
ad65ecf3 677 ret = btree_submit_bio_start(async->bio);
ab2072b2
DS
678 break;
679 case WQ_SUBMIT_DATA:
882681ac 680 ret = btrfs_submit_bio_start(async->inode, async->bio);
ab2072b2
DS
681 break;
682 case WQ_SUBMIT_DATA_DIO:
bfa17066 683 ret = btrfs_submit_bio_start_direct_io(async->inode,
da67daab 684 async->bio, async->dio_file_offset);
ab2072b2
DS
685 break;
686 }
79787eaa 687 if (ret)
4e4cbee9 688 async->status = ret;
4a69a410
CM
689}
690
06ea01b1
DS
691/*
692 * In order to insert checksums into the metadata in large chunks, we wait
693 * until bio submission time. All the pages in the bio are checksummed and
694 * sums are attached onto the ordered extent record.
695 *
696 * At IO completion time the csums attached on the ordered extent record are
697 * inserted into the tree.
698 */
4a69a410 699static void run_one_async_done(struct btrfs_work *work)
8b712842 700{
917f32a2
CH
701 struct async_submit_bio *async =
702 container_of(work, struct async_submit_bio, work);
da67daab 703 struct btrfs_inode *inode = async->inode;
917f32a2 704 struct btrfs_bio *bbio = btrfs_bio(async->bio);
4854ddd0 705
bb7ab3b9 706 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9 707 if (async->status) {
917f32a2 708 btrfs_bio_end_io(bbio, async->status);
79787eaa
JM
709 return;
710 }
711
ec39f769
CM
712 /*
713 * All of the bios that pass through here are from async helpers.
714 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
715 * This changes nothing when cgroups aren't in use.
716 */
717 async->bio->bi_opf |= REQ_CGROUP_PUNT;
da67daab 718 btrfs_submit_bio(inode->root->fs_info, async->bio, async->mirror_num);
4a69a410
CM
719}
720
721static void run_one_async_free(struct btrfs_work *work)
722{
723 struct async_submit_bio *async;
724
725 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
726 kfree(async);
727}
728
ea1f0ced
CH
729/*
730 * Submit bio to an async queue.
731 *
732 * Retrun:
733 * - true if the work has been succesfuly submitted
734 * - false in case of error
735 */
5fcdadc2 736bool btrfs_wq_submit_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num,
ab2072b2 737 u64 dio_file_offset, enum btrfs_wq_submit_cmd cmd)
44b8bd7e 738{
5fcdadc2 739 struct btrfs_fs_info *fs_info = inode->root->fs_info;
44b8bd7e
CM
740 struct async_submit_bio *async;
741
742 async = kmalloc(sizeof(*async), GFP_NOFS);
743 if (!async)
ea1f0ced 744 return false;
44b8bd7e 745
5fcdadc2 746 async->inode = inode;
44b8bd7e
CM
747 async->bio = bio;
748 async->mirror_num = mirror_num;
ab2072b2 749 async->submit_cmd = cmd;
4a69a410 750
a0cac0ec
OS
751 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
752 run_one_async_free);
4a69a410 753
1941b64b 754 async->dio_file_offset = dio_file_offset;
8c8bee1d 755
4e4cbee9 756 async->status = 0;
79787eaa 757
67f055c7 758 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
759 btrfs_queue_work(fs_info->hipri_workers, &async->work);
760 else
761 btrfs_queue_work(fs_info->workers, &async->work);
ea1f0ced 762 return true;
44b8bd7e
CM
763}
764
4e4cbee9 765static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 766{
2c30c71b 767 struct bio_vec *bvec;
ce3ed71a 768 struct btrfs_root *root;
2b070cfe 769 int ret = 0;
6dc4f100 770 struct bvec_iter_all iter_all;
ce3ed71a 771
c09abff8 772 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 773 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 774 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 775 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
776 if (ret)
777 break;
ce3ed71a 778 }
2c30c71b 779
4e4cbee9 780 return errno_to_blk_status(ret);
ce3ed71a
CM
781}
782
ad65ecf3 783blk_status_t btree_submit_bio_start(struct bio *bio)
22c59948 784{
8b712842
CM
785 /*
786 * when we're called for a write, we're already in the async
1a722d8f 787 * submission context. Just jump into btrfs_submit_bio.
8b712842 788 */
79787eaa 789 return btree_csum_one_bio(bio);
4a69a410 790}
22c59948 791
f4dcfb30 792static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 793 struct btrfs_inode *bi)
de0022b9 794{
4eef29ef 795 if (btrfs_is_zoned(fs_info))
f4dcfb30 796 return false;
6300463b 797 if (atomic_read(&bi->sync_writers))
f4dcfb30 798 return false;
9b4e675a 799 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
800 return false;
801 return true;
de0022b9
JB
802}
803
644094fd 804void btrfs_submit_metadata_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 805{
644094fd 806 struct btrfs_fs_info *fs_info = inode->root->fs_info;
917f32a2 807 struct btrfs_bio *bbio = btrfs_bio(bio);
4e4cbee9 808 blk_status_t ret;
cad321ad 809
08a6f464 810 bio->bi_opf |= REQ_META;
947a6299 811 bbio->is_metadata = 1;
08a6f464 812
cfe94440 813 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
1a722d8f
CH
814 btrfs_submit_bio(fs_info, bio, mirror_num);
815 return;
44b8bd7e 816 }
d313d7a3 817
ea1f0ced
CH
818 /*
819 * Kthread helpers are used to submit writes so that checksumming can
820 * happen in parallel across all CPUs.
821 */
644094fd
DS
822 if (should_async_write(fs_info, inode) &&
823 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, WQ_SUBMIT_METADATA))
ea1f0ced
CH
824 return;
825
826 ret = btree_csum_one_bio(bio);
94d9e11b 827 if (ret) {
917f32a2 828 btrfs_bio_end_io(bbio, ret);
ea1f0ced 829 return;
94d9e11b 830 }
ea1f0ced
CH
831
832 btrfs_submit_bio(fs_info, bio, mirror_num);
44b8bd7e
CM
833}
834
3dd1462e 835#ifdef CONFIG_MIGRATION
8958b551
MWO
836static int btree_migrate_folio(struct address_space *mapping,
837 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
838{
839 /*
840 * we can't safely write a btree page from here,
841 * we haven't done the locking hook
842 */
8958b551 843 if (folio_test_dirty(src))
784b4e29
CM
844 return -EAGAIN;
845 /*
846 * Buffers may be managed in a filesystem specific way.
847 * We must have no buffers or drop them.
848 */
8958b551
MWO
849 if (folio_get_private(src) &&
850 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 851 return -EAGAIN;
54184650 852 return migrate_folio(mapping, dst, src, mode);
784b4e29 853}
8958b551
MWO
854#else
855#define btree_migrate_folio NULL
3dd1462e 856#endif
784b4e29 857
0da5468f
CM
858static int btree_writepages(struct address_space *mapping,
859 struct writeback_control *wbc)
860{
e2d84521
MX
861 struct btrfs_fs_info *fs_info;
862 int ret;
863
d8d5f3e1 864 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
865
866 if (wbc->for_kupdate)
867 return 0;
868
e2d84521 869 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 870 /* this is a bit racy, but that's ok */
d814a491
EL
871 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
872 BTRFS_DIRTY_METADATA_THRESH,
873 fs_info->dirty_metadata_batch);
e2d84521 874 if (ret < 0)
793955bc 875 return 0;
793955bc 876 }
0b32f4bb 877 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
878}
879
f913cff3 880static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 881{
f913cff3
MWO
882 if (folio_test_writeback(folio) || folio_test_dirty(folio))
883 return false;
0c4e538b 884
f913cff3 885 return try_release_extent_buffer(&folio->page);
d98237b3
CM
886}
887
895586eb
MWO
888static void btree_invalidate_folio(struct folio *folio, size_t offset,
889 size_t length)
d98237b3 890{
d1310b2e 891 struct extent_io_tree *tree;
895586eb
MWO
892 tree = &BTRFS_I(folio->mapping->host)->io_tree;
893 extent_invalidate_folio(tree, folio, offset);
f913cff3 894 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
895 if (folio_get_private(folio)) {
896 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
897 "folio private not zero on folio %llu",
898 (unsigned long long)folio_pos(folio));
899 folio_detach_private(folio);
9ad6b7bc 900 }
d98237b3
CM
901}
902
bb146eb2 903#ifdef DEBUG
0079c3b1
MWO
904static bool btree_dirty_folio(struct address_space *mapping,
905 struct folio *folio)
906{
907 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 908 struct btrfs_subpage *subpage;
0b32f4bb 909 struct extent_buffer *eb;
139e8cd3 910 int cur_bit = 0;
0079c3b1 911 u64 page_start = folio_pos(folio);
139e8cd3
QW
912
913 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 914 eb = folio_get_private(folio);
139e8cd3
QW
915 BUG_ON(!eb);
916 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
917 BUG_ON(!atomic_read(&eb->refs));
49d0c642 918 btrfs_assert_tree_write_locked(eb);
0079c3b1 919 return filemap_dirty_folio(mapping, folio);
139e8cd3 920 }
0079c3b1 921 subpage = folio_get_private(folio);
139e8cd3
QW
922
923 ASSERT(subpage->dirty_bitmap);
924 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
925 unsigned long flags;
926 u64 cur;
927 u16 tmp = (1 << cur_bit);
928
929 spin_lock_irqsave(&subpage->lock, flags);
930 if (!(tmp & subpage->dirty_bitmap)) {
931 spin_unlock_irqrestore(&subpage->lock, flags);
932 cur_bit++;
933 continue;
934 }
935 spin_unlock_irqrestore(&subpage->lock, flags);
936 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 937
139e8cd3
QW
938 eb = find_extent_buffer(fs_info, cur);
939 ASSERT(eb);
940 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
941 ASSERT(atomic_read(&eb->refs));
49d0c642 942 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
943 free_extent_buffer(eb);
944
945 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
946 }
0079c3b1 947 return filemap_dirty_folio(mapping, folio);
0b32f4bb 948}
0079c3b1
MWO
949#else
950#define btree_dirty_folio filemap_dirty_folio
951#endif
0b32f4bb 952
7f09410b 953static const struct address_space_operations btree_aops = {
0da5468f 954 .writepages = btree_writepages,
f913cff3 955 .release_folio = btree_release_folio,
895586eb 956 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
957 .migrate_folio = btree_migrate_folio,
958 .dirty_folio = btree_dirty_folio,
d98237b3
CM
959};
960
2ff7e61e
JM
961struct extent_buffer *btrfs_find_create_tree_block(
962 struct btrfs_fs_info *fs_info,
3fbaf258
JB
963 u64 bytenr, u64 owner_root,
964 int level)
0999df54 965{
0b246afa
JM
966 if (btrfs_is_testing(fs_info))
967 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 968 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
969}
970
581c1760
QW
971/*
972 * Read tree block at logical address @bytenr and do variant basic but critical
973 * verification.
974 *
789d6a3a
QW
975 * @check: expected tree parentness check, see comments of the
976 * structure for details.
581c1760 977 */
2ff7e61e 978struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
789d6a3a 979 struct btrfs_tree_parent_check *check)
0999df54
CM
980{
981 struct extent_buffer *buf = NULL;
0999df54
CM
982 int ret;
983
789d6a3a
QW
984 ASSERT(check);
985
986 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
987 check->level);
c871b0f2
LB
988 if (IS_ERR(buf))
989 return buf;
0999df54 990
789d6a3a 991 ret = btrfs_read_extent_buffer(buf, check);
0f0fe8f7 992 if (ret) {
537f38f0 993 free_extent_buffer_stale(buf);
64c043de 994 return ERR_PTR(ret);
0f0fe8f7 995 }
789d6a3a 996 if (btrfs_check_eb_owner(buf, check->owner_root)) {
88c602ab
QW
997 free_extent_buffer_stale(buf);
998 return ERR_PTR(-EUCLEAN);
999 }
5f39d397 1000 return buf;
ce9adaa5 1001
eb60ceac
CM
1002}
1003
6a884d7d 1004void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1005{
6a884d7d 1006 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1007 if (btrfs_header_generation(buf) ==
e2d84521 1008 fs_info->running_transaction->transid) {
49d0c642 1009 btrfs_assert_tree_write_locked(buf);
b4ce94de 1010
b9473439 1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013 -buf->len,
1014 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1015 clear_extent_buffer_dirty(buf);
1016 }
925baedd 1017 }
5f39d397
CM
1018}
1019
da17066c 1020static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1021 u64 objectid)
d97e63b6 1022{
7c0260ee 1023 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
1024
1025 memset(&root->root_key, 0, sizeof(root->root_key));
1026 memset(&root->root_item, 0, sizeof(root->root_item));
1027 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 1028 root->fs_info = fs_info;
2e608bd1 1029 root->root_key.objectid = objectid;
cfaa7295 1030 root->node = NULL;
a28ec197 1031 root->commit_root = NULL;
27cdeb70 1032 root->state = 0;
abed4aaa 1033 RB_CLEAR_NODE(&root->rb_node);
0b86a832 1034
0f7d52f4 1035 root->last_trans = 0;
6b8fad57 1036 root->free_objectid = 0;
eb73c1b7 1037 root->nr_delalloc_inodes = 0;
199c2a9c 1038 root->nr_ordered_extents = 0;
6bef4d31 1039 root->inode_tree = RB_ROOT;
088aea3b 1040 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
1041
1042 btrfs_init_root_block_rsv(root);
0b86a832
CM
1043
1044 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1045 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1046 INIT_LIST_HEAD(&root->delalloc_inodes);
1047 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1048 INIT_LIST_HEAD(&root->ordered_extents);
1049 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1050 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1051 INIT_LIST_HEAD(&root->logged_list[0]);
1052 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1053 spin_lock_init(&root->inode_lock);
eb73c1b7 1054 spin_lock_init(&root->delalloc_lock);
199c2a9c 1055 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1056 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1057 spin_lock_init(&root->log_extents_lock[0]);
1058 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1059 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1060 mutex_init(&root->objectid_mutex);
e02119d5 1061 mutex_init(&root->log_mutex);
31f3d255 1062 mutex_init(&root->ordered_extent_mutex);
573bfb72 1063 mutex_init(&root->delalloc_mutex);
c53e9653 1064 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1065 init_waitqueue_head(&root->log_writer_wait);
1066 init_waitqueue_head(&root->log_commit_wait[0]);
1067 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1068 INIT_LIST_HEAD(&root->log_ctxs[0]);
1069 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1070 atomic_set(&root->log_commit[0], 0);
1071 atomic_set(&root->log_commit[1], 0);
1072 atomic_set(&root->log_writers, 0);
2ecb7923 1073 atomic_set(&root->log_batch, 0);
0700cea7 1074 refcount_set(&root->refs, 1);
8ecebf4d 1075 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1076 atomic_set(&root->nr_swapfiles, 0);
7237f183 1077 root->log_transid = 0;
d1433deb 1078 root->log_transid_committed = -1;
257c62e1 1079 root->last_log_commit = 0;
2e608bd1 1080 root->anon_dev = 0;
e289f03e 1081 if (!dummy) {
43eb5f29 1082 extent_io_tree_init(fs_info, &root->dirty_log_pages,
35da5a7e 1083 IO_TREE_ROOT_DIRTY_LOG_PAGES);
e289f03e 1084 extent_io_tree_init(fs_info, &root->log_csum_range,
35da5a7e 1085 IO_TREE_LOG_CSUM_RANGE);
e289f03e 1086 }
017e5369 1087
5f3ab90a 1088 spin_lock_init(&root->root_item_lock);
370a11b8 1089 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1090#ifdef CONFIG_BTRFS_DEBUG
1091 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 1092 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 1093 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 1094 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 1095#endif
3768f368
CM
1096}
1097
74e4d827 1098static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1099 u64 objectid, gfp_t flags)
6f07e42e 1100{
74e4d827 1101 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1102 if (root)
96dfcb46 1103 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1104 return root;
1105}
1106
06ea65a3
JB
1107#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1108/* Should only be used by the testing infrastructure */
da17066c 1109struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1110{
1111 struct btrfs_root *root;
1112
7c0260ee
JM
1113 if (!fs_info)
1114 return ERR_PTR(-EINVAL);
1115
96dfcb46 1116 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1117 if (!root)
1118 return ERR_PTR(-ENOMEM);
da17066c 1119
b9ef22de 1120 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1121 root->alloc_bytenr = 0;
06ea65a3
JB
1122
1123 return root;
1124}
1125#endif
1126
abed4aaa
JB
1127static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1128{
1129 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1130 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1131
1132 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1133}
1134
1135static int global_root_key_cmp(const void *k, const struct rb_node *node)
1136{
1137 const struct btrfs_key *key = k;
1138 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1139
1140 return btrfs_comp_cpu_keys(key, &root->root_key);
1141}
1142
1143int btrfs_global_root_insert(struct btrfs_root *root)
1144{
1145 struct btrfs_fs_info *fs_info = root->fs_info;
1146 struct rb_node *tmp;
1147
1148 write_lock(&fs_info->global_root_lock);
1149 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1150 write_unlock(&fs_info->global_root_lock);
1151 ASSERT(!tmp);
1152
1153 return tmp ? -EEXIST : 0;
1154}
1155
1156void btrfs_global_root_delete(struct btrfs_root *root)
1157{
1158 struct btrfs_fs_info *fs_info = root->fs_info;
1159
1160 write_lock(&fs_info->global_root_lock);
1161 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1162 write_unlock(&fs_info->global_root_lock);
1163}
1164
1165struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1166 struct btrfs_key *key)
1167{
1168 struct rb_node *node;
1169 struct btrfs_root *root = NULL;
1170
1171 read_lock(&fs_info->global_root_lock);
1172 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1173 if (node)
1174 root = container_of(node, struct btrfs_root, rb_node);
1175 read_unlock(&fs_info->global_root_lock);
1176
1177 return root;
1178}
1179
f7238e50
JB
1180static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1181{
1182 struct btrfs_block_group *block_group;
1183 u64 ret;
1184
1185 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1186 return 0;
1187
1188 if (bytenr)
1189 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1190 else
1191 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1192 ASSERT(block_group);
1193 if (!block_group)
1194 return 0;
1195 ret = block_group->global_root_id;
1196 btrfs_put_block_group(block_group);
1197
1198 return ret;
1199}
1200
abed4aaa
JB
1201struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1202{
1203 struct btrfs_key key = {
1204 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1205 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1206 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1207 };
1208
1209 return btrfs_global_root(fs_info, &key);
1210}
1211
1212struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1213{
1214 struct btrfs_key key = {
1215 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1216 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1217 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1218 };
1219
1220 return btrfs_global_root(fs_info, &key);
1221}
1222
51129b33
JB
1223struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1224{
1225 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1226 return fs_info->block_group_root;
1227 return btrfs_extent_root(fs_info, 0);
1228}
1229
20897f5c 1230struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1231 u64 objectid)
1232{
9b7a2440 1233 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1234 struct extent_buffer *leaf;
1235 struct btrfs_root *tree_root = fs_info->tree_root;
1236 struct btrfs_root *root;
1237 struct btrfs_key key;
b89f6d1f 1238 unsigned int nofs_flag;
20897f5c 1239 int ret = 0;
20897f5c 1240
b89f6d1f
FM
1241 /*
1242 * We're holding a transaction handle, so use a NOFS memory allocation
1243 * context to avoid deadlock if reclaim happens.
1244 */
1245 nofs_flag = memalloc_nofs_save();
96dfcb46 1246 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1247 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1248 if (!root)
1249 return ERR_PTR(-ENOMEM);
1250
20897f5c
AJ
1251 root->root_key.objectid = objectid;
1252 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1253 root->root_key.offset = 0;
1254
9631e4cc
JB
1255 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1256 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1257 if (IS_ERR(leaf)) {
1258 ret = PTR_ERR(leaf);
1dd05682 1259 leaf = NULL;
c1b07854 1260 goto fail;
20897f5c
AJ
1261 }
1262
20897f5c 1263 root->node = leaf;
20897f5c
AJ
1264 btrfs_mark_buffer_dirty(leaf);
1265
1266 root->commit_root = btrfs_root_node(root);
27cdeb70 1267 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1268
f944d2cb
DS
1269 btrfs_set_root_flags(&root->root_item, 0);
1270 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1271 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1272 btrfs_set_root_generation(&root->root_item, trans->transid);
1273 btrfs_set_root_level(&root->root_item, 0);
1274 btrfs_set_root_refs(&root->root_item, 1);
1275 btrfs_set_root_used(&root->root_item, leaf->len);
1276 btrfs_set_root_last_snapshot(&root->root_item, 0);
1277 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1278 if (is_fstree(objectid))
807fc790
AS
1279 generate_random_guid(root->root_item.uuid);
1280 else
1281 export_guid(root->root_item.uuid, &guid_null);
c8422684 1282 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1283
8a6a87cd
BB
1284 btrfs_tree_unlock(leaf);
1285
20897f5c
AJ
1286 key.objectid = objectid;
1287 key.type = BTRFS_ROOT_ITEM_KEY;
1288 key.offset = 0;
1289 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1290 if (ret)
1291 goto fail;
1292
1dd05682
TI
1293 return root;
1294
8a6a87cd 1295fail:
00246528 1296 btrfs_put_root(root);
20897f5c 1297
1dd05682 1298 return ERR_PTR(ret);
20897f5c
AJ
1299}
1300
7237f183
YZ
1301static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1302 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1303{
1304 struct btrfs_root *root;
e02119d5 1305
96dfcb46 1306 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1307 if (!root)
7237f183 1308 return ERR_PTR(-ENOMEM);
e02119d5 1309
e02119d5
CM
1310 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1311 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1312 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1313
6ab6ebb7
NA
1314 return root;
1315}
1316
1317int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1318 struct btrfs_root *root)
1319{
1320 struct extent_buffer *leaf;
1321
7237f183 1322 /*
92a7cc42 1323 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1324 *
92a7cc42
QW
1325 * Log trees are not exposed to user space thus can't be snapshotted,
1326 * and they go away before a real commit is actually done.
1327 *
1328 * They do store pointers to file data extents, and those reference
1329 * counts still get updated (along with back refs to the log tree).
7237f183 1330 */
e02119d5 1331
4d75f8a9 1332 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1333 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1334 if (IS_ERR(leaf))
1335 return PTR_ERR(leaf);
e02119d5 1336
7237f183 1337 root->node = leaf;
e02119d5 1338
e02119d5
CM
1339 btrfs_mark_buffer_dirty(root->node);
1340 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1341
1342 return 0;
7237f183
YZ
1343}
1344
1345int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1346 struct btrfs_fs_info *fs_info)
1347{
1348 struct btrfs_root *log_root;
1349
1350 log_root = alloc_log_tree(trans, fs_info);
1351 if (IS_ERR(log_root))
1352 return PTR_ERR(log_root);
6ab6ebb7 1353
3ddebf27
NA
1354 if (!btrfs_is_zoned(fs_info)) {
1355 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1356
1357 if (ret) {
1358 btrfs_put_root(log_root);
1359 return ret;
1360 }
6ab6ebb7
NA
1361 }
1362
7237f183
YZ
1363 WARN_ON(fs_info->log_root_tree);
1364 fs_info->log_root_tree = log_root;
1365 return 0;
1366}
1367
1368int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root)
1370{
0b246afa 1371 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1372 struct btrfs_root *log_root;
1373 struct btrfs_inode_item *inode_item;
6ab6ebb7 1374 int ret;
7237f183 1375
0b246afa 1376 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1377 if (IS_ERR(log_root))
1378 return PTR_ERR(log_root);
1379
6ab6ebb7
NA
1380 ret = btrfs_alloc_log_tree_node(trans, log_root);
1381 if (ret) {
1382 btrfs_put_root(log_root);
1383 return ret;
1384 }
1385
7237f183
YZ
1386 log_root->last_trans = trans->transid;
1387 log_root->root_key.offset = root->root_key.objectid;
1388
1389 inode_item = &log_root->root_item.inode;
3cae210f
QW
1390 btrfs_set_stack_inode_generation(inode_item, 1);
1391 btrfs_set_stack_inode_size(inode_item, 3);
1392 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1393 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1394 fs_info->nodesize);
3cae210f 1395 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1396
5d4f98a2 1397 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1398
1399 WARN_ON(root->log_root);
1400 root->log_root = log_root;
1401 root->log_transid = 0;
d1433deb 1402 root->log_transid_committed = -1;
257c62e1 1403 root->last_log_commit = 0;
e02119d5
CM
1404 return 0;
1405}
1406
49d11bea
JB
1407static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1408 struct btrfs_path *path,
1409 struct btrfs_key *key)
e02119d5
CM
1410{
1411 struct btrfs_root *root;
789d6a3a 1412 struct btrfs_tree_parent_check check = { 0 };
e02119d5 1413 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1414 u64 generation;
cb517eab 1415 int ret;
581c1760 1416 int level;
0f7d52f4 1417
96dfcb46 1418 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1419 if (!root)
1420 return ERR_PTR(-ENOMEM);
0f7d52f4 1421
cb517eab
MX
1422 ret = btrfs_find_root(tree_root, key, path,
1423 &root->root_item, &root->root_key);
0f7d52f4 1424 if (ret) {
13a8a7c8
YZ
1425 if (ret > 0)
1426 ret = -ENOENT;
49d11bea 1427 goto fail;
0f7d52f4 1428 }
13a8a7c8 1429
84234f3a 1430 generation = btrfs_root_generation(&root->root_item);
581c1760 1431 level = btrfs_root_level(&root->root_item);
789d6a3a
QW
1432 check.level = level;
1433 check.transid = generation;
1434 check.owner_root = key->objectid;
1435 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1436 &check);
64c043de
LB
1437 if (IS_ERR(root->node)) {
1438 ret = PTR_ERR(root->node);
8c38938c 1439 root->node = NULL;
49d11bea 1440 goto fail;
4eb150d6
QW
1441 }
1442 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1443 ret = -EIO;
49d11bea 1444 goto fail;
416bc658 1445 }
88c602ab
QW
1446
1447 /*
1448 * For real fs, and not log/reloc trees, root owner must
1449 * match its root node owner
1450 */
1451 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1452 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1453 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1454 root->root_key.objectid != btrfs_header_owner(root->node)) {
1455 btrfs_crit(fs_info,
1456"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1457 root->root_key.objectid, root->node->start,
1458 btrfs_header_owner(root->node),
1459 root->root_key.objectid);
1460 ret = -EUCLEAN;
1461 goto fail;
1462 }
5d4f98a2 1463 root->commit_root = btrfs_root_node(root);
cb517eab 1464 return root;
49d11bea 1465fail:
00246528 1466 btrfs_put_root(root);
49d11bea
JB
1467 return ERR_PTR(ret);
1468}
1469
1470struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1471 struct btrfs_key *key)
1472{
1473 struct btrfs_root *root;
1474 struct btrfs_path *path;
1475
1476 path = btrfs_alloc_path();
1477 if (!path)
1478 return ERR_PTR(-ENOMEM);
1479 root = read_tree_root_path(tree_root, path, key);
1480 btrfs_free_path(path);
1481
1482 return root;
cb517eab
MX
1483}
1484
2dfb1e43
QW
1485/*
1486 * Initialize subvolume root in-memory structure
1487 *
1488 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1489 */
1490static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1491{
1492 int ret;
dcc3eb96 1493 unsigned int nofs_flag;
cb517eab 1494
dcc3eb96
NB
1495 /*
1496 * We might be called under a transaction (e.g. indirect backref
1497 * resolution) which could deadlock if it triggers memory reclaim
1498 */
1499 nofs_flag = memalloc_nofs_save();
1500 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1501 memalloc_nofs_restore(nofs_flag);
1502 if (ret)
8257b2dc 1503 goto fail;
8257b2dc 1504
aeb935a4 1505 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1506 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1507 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1508 btrfs_check_and_init_root_item(&root->root_item);
1509 }
1510
851fd730
QW
1511 /*
1512 * Don't assign anonymous block device to roots that are not exposed to
1513 * userspace, the id pool is limited to 1M
1514 */
1515 if (is_fstree(root->root_key.objectid) &&
1516 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1517 if (!anon_dev) {
1518 ret = get_anon_bdev(&root->anon_dev);
1519 if (ret)
1520 goto fail;
1521 } else {
1522 root->anon_dev = anon_dev;
1523 }
851fd730 1524 }
f32e48e9
CR
1525
1526 mutex_lock(&root->objectid_mutex);
453e4873 1527 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1528 if (ret) {
1529 mutex_unlock(&root->objectid_mutex);
876d2cf1 1530 goto fail;
f32e48e9
CR
1531 }
1532
6b8fad57 1533 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1534
1535 mutex_unlock(&root->objectid_mutex);
1536
cb517eab
MX
1537 return 0;
1538fail:
84db5ccf 1539 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1540 return ret;
1541}
1542
a98db0f3
JB
1543static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1544 u64 root_id)
cb517eab
MX
1545{
1546 struct btrfs_root *root;
1547
fc7cbcd4
DS
1548 spin_lock(&fs_info->fs_roots_radix_lock);
1549 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1550 (unsigned long)root_id);
bc44d7c4 1551 if (root)
00246528 1552 root = btrfs_grab_root(root);
fc7cbcd4 1553 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1554 return root;
1555}
1556
49d11bea
JB
1557static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1558 u64 objectid)
1559{
abed4aaa
JB
1560 struct btrfs_key key = {
1561 .objectid = objectid,
1562 .type = BTRFS_ROOT_ITEM_KEY,
1563 .offset = 0,
1564 };
1565
49d11bea
JB
1566 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1567 return btrfs_grab_root(fs_info->tree_root);
1568 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1569 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1570 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1571 return btrfs_grab_root(fs_info->chunk_root);
1572 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1573 return btrfs_grab_root(fs_info->dev_root);
1574 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1575 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1576 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1577 return btrfs_grab_root(fs_info->quota_root) ?
1578 fs_info->quota_root : ERR_PTR(-ENOENT);
1579 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1580 return btrfs_grab_root(fs_info->uuid_root) ?
1581 fs_info->uuid_root : ERR_PTR(-ENOENT);
14033b08
QW
1582 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1583 return btrfs_grab_root(fs_info->block_group_root) ?
1584 fs_info->block_group_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1585 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1586 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1587
1588 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1589 }
49d11bea
JB
1590 return NULL;
1591}
1592
cb517eab
MX
1593int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1594 struct btrfs_root *root)
1595{
1596 int ret;
1597
fc7cbcd4
DS
1598 ret = radix_tree_preload(GFP_NOFS);
1599 if (ret)
1600 return ret;
1601
1602 spin_lock(&fs_info->fs_roots_radix_lock);
1603 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1604 (unsigned long)root->root_key.objectid,
1605 root);
af01d2e5 1606 if (ret == 0) {
00246528 1607 btrfs_grab_root(root);
fc7cbcd4 1608 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1609 }
fc7cbcd4
DS
1610 spin_unlock(&fs_info->fs_roots_radix_lock);
1611 radix_tree_preload_end();
cb517eab
MX
1612
1613 return ret;
1614}
1615
bd647ce3
JB
1616void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1617{
1618#ifdef CONFIG_BTRFS_DEBUG
1619 struct btrfs_root *root;
1620
1621 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1622 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1623
bd647ce3
JB
1624 root = list_first_entry(&fs_info->allocated_roots,
1625 struct btrfs_root, leak_list);
457f1864 1626 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1627 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1628 refcount_read(&root->refs));
1629 while (refcount_read(&root->refs) > 1)
00246528
JB
1630 btrfs_put_root(root);
1631 btrfs_put_root(root);
bd647ce3
JB
1632 }
1633#endif
1634}
1635
abed4aaa
JB
1636static void free_global_roots(struct btrfs_fs_info *fs_info)
1637{
1638 struct btrfs_root *root;
1639 struct rb_node *node;
1640
1641 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1642 root = rb_entry(node, struct btrfs_root, rb_node);
1643 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1644 btrfs_put_root(root);
1645 }
1646}
1647
0d4b0463
JB
1648void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1649{
141386e1
JB
1650 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1651 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1652 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1653 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1654 btrfs_free_csum_hash(fs_info);
1655 btrfs_free_stripe_hash_table(fs_info);
1656 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1657 kfree(fs_info->balance_ctl);
1658 kfree(fs_info->delayed_root);
abed4aaa 1659 free_global_roots(fs_info);
00246528
JB
1660 btrfs_put_root(fs_info->tree_root);
1661 btrfs_put_root(fs_info->chunk_root);
1662 btrfs_put_root(fs_info->dev_root);
00246528
JB
1663 btrfs_put_root(fs_info->quota_root);
1664 btrfs_put_root(fs_info->uuid_root);
00246528 1665 btrfs_put_root(fs_info->fs_root);
aeb935a4 1666 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1667 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1668 btrfs_check_leaked_roots(fs_info);
3fd63727 1669 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1670 kfree(fs_info->super_copy);
1671 kfree(fs_info->super_for_commit);
8481dd80 1672 kfree(fs_info->subpage_info);
0d4b0463
JB
1673 kvfree(fs_info);
1674}
1675
1676
2dfb1e43
QW
1677/*
1678 * Get an in-memory reference of a root structure.
1679 *
1680 * For essential trees like root/extent tree, we grab it from fs_info directly.
1681 * For subvolume trees, we check the cached filesystem roots first. If not
1682 * found, then read it from disk and add it to cached fs roots.
1683 *
1684 * Caller should release the root by calling btrfs_put_root() after the usage.
1685 *
1686 * NOTE: Reloc and log trees can't be read by this function as they share the
1687 * same root objectid.
1688 *
1689 * @objectid: root id
1690 * @anon_dev: preallocated anonymous block device number for new roots,
1691 * pass 0 for new allocation.
1692 * @check_ref: whether to check root item references, If true, return -ENOENT
1693 * for orphan roots
1694 */
1695static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1696 u64 objectid, dev_t anon_dev,
1697 bool check_ref)
5eda7b5e
CM
1698{
1699 struct btrfs_root *root;
381cf658 1700 struct btrfs_path *path;
1d4c08e0 1701 struct btrfs_key key;
5eda7b5e
CM
1702 int ret;
1703
49d11bea
JB
1704 root = btrfs_get_global_root(fs_info, objectid);
1705 if (root)
1706 return root;
4df27c4d 1707again:
56e9357a 1708 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1709 if (root) {
2dfb1e43
QW
1710 /* Shouldn't get preallocated anon_dev for cached roots */
1711 ASSERT(!anon_dev);
bc44d7c4 1712 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1713 btrfs_put_root(root);
48475471 1714 return ERR_PTR(-ENOENT);
bc44d7c4 1715 }
5eda7b5e 1716 return root;
48475471 1717 }
5eda7b5e 1718
56e9357a
DS
1719 key.objectid = objectid;
1720 key.type = BTRFS_ROOT_ITEM_KEY;
1721 key.offset = (u64)-1;
1722 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1723 if (IS_ERR(root))
1724 return root;
3394e160 1725
c00869f1 1726 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1727 ret = -ENOENT;
581bb050 1728 goto fail;
35a30d7c 1729 }
581bb050 1730
2dfb1e43 1731 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1732 if (ret)
1733 goto fail;
3394e160 1734
381cf658
DS
1735 path = btrfs_alloc_path();
1736 if (!path) {
1737 ret = -ENOMEM;
1738 goto fail;
1739 }
1d4c08e0
DS
1740 key.objectid = BTRFS_ORPHAN_OBJECTID;
1741 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1742 key.offset = objectid;
1d4c08e0
DS
1743
1744 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1745 btrfs_free_path(path);
d68fc57b
YZ
1746 if (ret < 0)
1747 goto fail;
1748 if (ret == 0)
27cdeb70 1749 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1750
cb517eab 1751 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1752 if (ret) {
168a2f77
JJB
1753 if (ret == -EEXIST) {
1754 btrfs_put_root(root);
4df27c4d 1755 goto again;
168a2f77 1756 }
4df27c4d 1757 goto fail;
0f7d52f4 1758 }
edbd8d4e 1759 return root;
4df27c4d 1760fail:
33fab972
FM
1761 /*
1762 * If our caller provided us an anonymous device, then it's his
143823cf 1763 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1764 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1765 * and once again by our caller.
1766 */
1767 if (anon_dev)
1768 root->anon_dev = 0;
8c38938c 1769 btrfs_put_root(root);
4df27c4d 1770 return ERR_PTR(ret);
edbd8d4e
CM
1771}
1772
2dfb1e43
QW
1773/*
1774 * Get in-memory reference of a root structure
1775 *
1776 * @objectid: tree objectid
1777 * @check_ref: if set, verify that the tree exists and the item has at least
1778 * one reference
1779 */
1780struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1781 u64 objectid, bool check_ref)
1782{
1783 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1784}
1785
1786/*
1787 * Get in-memory reference of a root structure, created as new, optionally pass
1788 * the anonymous block device id
1789 *
1790 * @objectid: tree objectid
1791 * @anon_dev: if zero, allocate a new anonymous block device or use the
1792 * parameter value
1793 */
1794struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1795 u64 objectid, dev_t anon_dev)
1796{
1797 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1798}
1799
49d11bea
JB
1800/*
1801 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1802 * @fs_info: the fs_info
1803 * @objectid: the objectid we need to lookup
1804 *
1805 * This is exclusively used for backref walking, and exists specifically because
1806 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1807 * creation time, which means we may have to read the tree_root in order to look
1808 * up a fs root that is not in memory. If the root is not in memory we will
1809 * read the tree root commit root and look up the fs root from there. This is a
1810 * temporary root, it will not be inserted into the radix tree as it doesn't
1811 * have the most uptodate information, it'll simply be discarded once the
1812 * backref code is finished using the root.
1813 */
1814struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1815 struct btrfs_path *path,
1816 u64 objectid)
1817{
1818 struct btrfs_root *root;
1819 struct btrfs_key key;
1820
1821 ASSERT(path->search_commit_root && path->skip_locking);
1822
1823 /*
1824 * This can return -ENOENT if we ask for a root that doesn't exist, but
1825 * since this is called via the backref walking code we won't be looking
1826 * up a root that doesn't exist, unless there's corruption. So if root
1827 * != NULL just return it.
1828 */
1829 root = btrfs_get_global_root(fs_info, objectid);
1830 if (root)
1831 return root;
1832
1833 root = btrfs_lookup_fs_root(fs_info, objectid);
1834 if (root)
1835 return root;
1836
1837 key.objectid = objectid;
1838 key.type = BTRFS_ROOT_ITEM_KEY;
1839 key.offset = (u64)-1;
1840 root = read_tree_root_path(fs_info->tree_root, path, &key);
1841 btrfs_release_path(path);
1842
1843 return root;
1844}
1845
a74a4b97
CM
1846static int cleaner_kthread(void *arg)
1847{
0d031dc4 1848 struct btrfs_fs_info *fs_info = arg;
d0278245 1849 int again;
a74a4b97 1850
d6fd0ae2 1851 while (1) {
d0278245 1852 again = 0;
a74a4b97 1853
fd340d0f
JB
1854 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1855
d0278245 1856 /* Make the cleaner go to sleep early. */
2ff7e61e 1857 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1858 goto sleep;
1859
90c711ab
ZB
1860 /*
1861 * Do not do anything if we might cause open_ctree() to block
1862 * before we have finished mounting the filesystem.
1863 */
0b246afa 1864 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1865 goto sleep;
1866
0b246afa 1867 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1868 goto sleep;
1869
dc7f370c
MX
1870 /*
1871 * Avoid the problem that we change the status of the fs
1872 * during the above check and trylock.
1873 */
2ff7e61e 1874 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1875 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1876 goto sleep;
76dda93c 1877 }
a74a4b97 1878
2ff7e61e 1879 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1880
33c44184 1881 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1882 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1883
1884 /*
05323cd1
MX
1885 * The defragger has dealt with the R/O remount and umount,
1886 * needn't do anything special here.
d0278245 1887 */
0b246afa 1888 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1889
1890 /*
f3372065 1891 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1892 * with relocation (btrfs_relocate_chunk) and relocation
1893 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1894 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1895 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1896 * unused block groups.
1897 */
0b246afa 1898 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1899
1900 /*
1901 * Reclaim block groups in the reclaim_bgs list after we deleted
1902 * all unused block_groups. This possibly gives us some more free
1903 * space.
1904 */
1905 btrfs_reclaim_bgs(fs_info);
d0278245 1906sleep:
a0a1db70 1907 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1908 if (kthread_should_park())
1909 kthread_parkme();
1910 if (kthread_should_stop())
1911 return 0;
838fe188 1912 if (!again) {
a74a4b97 1913 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1914 schedule();
a74a4b97
CM
1915 __set_current_state(TASK_RUNNING);
1916 }
da288d28 1917 }
a74a4b97
CM
1918}
1919
1920static int transaction_kthread(void *arg)
1921{
1922 struct btrfs_root *root = arg;
0b246afa 1923 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1924 struct btrfs_trans_handle *trans;
1925 struct btrfs_transaction *cur;
8929ecfa 1926 u64 transid;
643900be 1927 time64_t delta;
a74a4b97 1928 unsigned long delay;
914b2007 1929 bool cannot_commit;
a74a4b97
CM
1930
1931 do {
914b2007 1932 cannot_commit = false;
ba1bc00f 1933 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1934 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1935
0b246afa
JM
1936 spin_lock(&fs_info->trans_lock);
1937 cur = fs_info->running_transaction;
a74a4b97 1938 if (!cur) {
0b246afa 1939 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1940 goto sleep;
1941 }
31153d81 1942
643900be 1943 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1944 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1945 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1946 delta < fs_info->commit_interval) {
0b246afa 1947 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1948 delay -= msecs_to_jiffies((delta - 1) * 1000);
1949 delay = min(delay,
1950 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1951 goto sleep;
1952 }
8929ecfa 1953 transid = cur->transid;
0b246afa 1954 spin_unlock(&fs_info->trans_lock);
56bec294 1955
79787eaa 1956 /* If the file system is aborted, this will always fail. */
354aa0fb 1957 trans = btrfs_attach_transaction(root);
914b2007 1958 if (IS_ERR(trans)) {
354aa0fb
MX
1959 if (PTR_ERR(trans) != -ENOENT)
1960 cannot_commit = true;
79787eaa 1961 goto sleep;
914b2007 1962 }
8929ecfa 1963 if (transid == trans->transid) {
3a45bb20 1964 btrfs_commit_transaction(trans);
8929ecfa 1965 } else {
3a45bb20 1966 btrfs_end_transaction(trans);
8929ecfa 1967 }
a74a4b97 1968sleep:
0b246afa
JM
1969 wake_up_process(fs_info->cleaner_kthread);
1970 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1971
84961539 1972 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1973 btrfs_cleanup_transaction(fs_info);
ce63f891 1974 if (!kthread_should_stop() &&
0b246afa 1975 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1976 cannot_commit))
bc5511d0 1977 schedule_timeout_interruptible(delay);
a74a4b97
CM
1978 } while (!kthread_should_stop());
1979 return 0;
1980}
1981
af31f5e5 1982/*
01f0f9da
NB
1983 * This will find the highest generation in the array of root backups. The
1984 * index of the highest array is returned, or -EINVAL if we can't find
1985 * anything.
af31f5e5
CM
1986 *
1987 * We check to make sure the array is valid by comparing the
1988 * generation of the latest root in the array with the generation
1989 * in the super block. If they don't match we pitch it.
1990 */
01f0f9da 1991static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1992{
01f0f9da 1993 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1994 u64 cur;
af31f5e5
CM
1995 struct btrfs_root_backup *root_backup;
1996 int i;
1997
1998 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1999 root_backup = info->super_copy->super_roots + i;
2000 cur = btrfs_backup_tree_root_gen(root_backup);
2001 if (cur == newest_gen)
01f0f9da 2002 return i;
af31f5e5
CM
2003 }
2004
01f0f9da 2005 return -EINVAL;
af31f5e5
CM
2006}
2007
af31f5e5
CM
2008/*
2009 * copy all the root pointers into the super backup array.
2010 * this will bump the backup pointer by one when it is
2011 * done
2012 */
2013static void backup_super_roots(struct btrfs_fs_info *info)
2014{
6ef108dd 2015 const int next_backup = info->backup_root_index;
af31f5e5 2016 struct btrfs_root_backup *root_backup;
af31f5e5
CM
2017
2018 root_backup = info->super_for_commit->super_roots + next_backup;
2019
2020 /*
2021 * make sure all of our padding and empty slots get zero filled
2022 * regardless of which ones we use today
2023 */
2024 memset(root_backup, 0, sizeof(*root_backup));
2025
2026 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2027
2028 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2029 btrfs_set_backup_tree_root_gen(root_backup,
2030 btrfs_header_generation(info->tree_root->node));
2031
2032 btrfs_set_backup_tree_root_level(root_backup,
2033 btrfs_header_level(info->tree_root->node));
2034
2035 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2036 btrfs_set_backup_chunk_root_gen(root_backup,
2037 btrfs_header_generation(info->chunk_root->node));
2038 btrfs_set_backup_chunk_root_level(root_backup,
2039 btrfs_header_level(info->chunk_root->node));
2040
1c56ab99 2041 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 2042 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 2043 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
2044
2045 btrfs_set_backup_extent_root(root_backup,
2046 extent_root->node->start);
2047 btrfs_set_backup_extent_root_gen(root_backup,
2048 btrfs_header_generation(extent_root->node));
2049 btrfs_set_backup_extent_root_level(root_backup,
2050 btrfs_header_level(extent_root->node));
f7238e50
JB
2051
2052 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2053 btrfs_set_backup_csum_root_gen(root_backup,
2054 btrfs_header_generation(csum_root->node));
2055 btrfs_set_backup_csum_root_level(root_backup,
2056 btrfs_header_level(csum_root->node));
9c54e80d 2057 }
af31f5e5 2058
7c7e82a7
CM
2059 /*
2060 * we might commit during log recovery, which happens before we set
2061 * the fs_root. Make sure it is valid before we fill it in.
2062 */
2063 if (info->fs_root && info->fs_root->node) {
2064 btrfs_set_backup_fs_root(root_backup,
2065 info->fs_root->node->start);
2066 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2067 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2068 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2069 btrfs_header_level(info->fs_root->node));
7c7e82a7 2070 }
af31f5e5
CM
2071
2072 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2073 btrfs_set_backup_dev_root_gen(root_backup,
2074 btrfs_header_generation(info->dev_root->node));
2075 btrfs_set_backup_dev_root_level(root_backup,
2076 btrfs_header_level(info->dev_root->node));
2077
af31f5e5
CM
2078 btrfs_set_backup_total_bytes(root_backup,
2079 btrfs_super_total_bytes(info->super_copy));
2080 btrfs_set_backup_bytes_used(root_backup,
2081 btrfs_super_bytes_used(info->super_copy));
2082 btrfs_set_backup_num_devices(root_backup,
2083 btrfs_super_num_devices(info->super_copy));
2084
2085 /*
2086 * if we don't copy this out to the super_copy, it won't get remembered
2087 * for the next commit
2088 */
2089 memcpy(&info->super_copy->super_roots,
2090 &info->super_for_commit->super_roots,
2091 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2092}
2093
bd2336b2
NB
2094/*
2095 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2096 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2097 *
2098 * fs_info - filesystem whose backup roots need to be read
2099 * priority - priority of backup root required
2100 *
2101 * Returns backup root index on success and -EINVAL otherwise.
2102 */
2103static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2104{
2105 int backup_index = find_newest_super_backup(fs_info);
2106 struct btrfs_super_block *super = fs_info->super_copy;
2107 struct btrfs_root_backup *root_backup;
2108
2109 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2110 if (priority == 0)
2111 return backup_index;
2112
2113 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2114 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2115 } else {
2116 return -EINVAL;
2117 }
2118
2119 root_backup = super->super_roots + backup_index;
2120
2121 btrfs_set_super_generation(super,
2122 btrfs_backup_tree_root_gen(root_backup));
2123 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2124 btrfs_set_super_root_level(super,
2125 btrfs_backup_tree_root_level(root_backup));
2126 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2127
2128 /*
2129 * Fixme: the total bytes and num_devices need to match or we should
2130 * need a fsck
2131 */
2132 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2133 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2134
2135 return backup_index;
2136}
2137
7abadb64
LB
2138/* helper to cleanup workers */
2139static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2140{
dc6e3209 2141 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2142 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2143 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2144 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
2145 if (fs_info->endio_workers)
2146 destroy_workqueue(fs_info->endio_workers);
385de0ef
CH
2147 if (fs_info->rmw_workers)
2148 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
2149 if (fs_info->compressed_write_workers)
2150 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
2151 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2152 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2153 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2154 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2155 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2156 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2157 if (fs_info->discard_ctl.discard_workers)
2158 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2159 /*
2160 * Now that all other work queues are destroyed, we can safely destroy
2161 * the queues used for metadata I/O, since tasks from those other work
2162 * queues can do metadata I/O operations.
2163 */
d7b9416f
CH
2164 if (fs_info->endio_meta_workers)
2165 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2166}
2167
2e9f5954
R
2168static void free_root_extent_buffers(struct btrfs_root *root)
2169{
2170 if (root) {
2171 free_extent_buffer(root->node);
2172 free_extent_buffer(root->commit_root);
2173 root->node = NULL;
2174 root->commit_root = NULL;
2175 }
2176}
2177
abed4aaa
JB
2178static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2179{
2180 struct btrfs_root *root, *tmp;
2181
2182 rbtree_postorder_for_each_entry_safe(root, tmp,
2183 &fs_info->global_root_tree,
2184 rb_node)
2185 free_root_extent_buffers(root);
2186}
2187
af31f5e5 2188/* helper to cleanup tree roots */
4273eaff 2189static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2190{
2e9f5954 2191 free_root_extent_buffers(info->tree_root);
655b09fe 2192
abed4aaa 2193 free_global_root_pointers(info);
2e9f5954 2194 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2195 free_root_extent_buffers(info->quota_root);
2196 free_root_extent_buffers(info->uuid_root);
8c38938c 2197 free_root_extent_buffers(info->fs_root);
aeb935a4 2198 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2199 free_root_extent_buffers(info->block_group_root);
4273eaff 2200 if (free_chunk_root)
2e9f5954 2201 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2202}
2203
8c38938c
JB
2204void btrfs_put_root(struct btrfs_root *root)
2205{
2206 if (!root)
2207 return;
2208
2209 if (refcount_dec_and_test(&root->refs)) {
2210 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2211 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2212 if (root->anon_dev)
2213 free_anon_bdev(root->anon_dev);
2214 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2215 free_root_extent_buffers(root);
8c38938c 2216#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2217 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2218 list_del_init(&root->leak_list);
fc7cbcd4 2219 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2220#endif
2221 kfree(root);
2222 }
2223}
2224
faa2dbf0 2225void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2226{
fc7cbcd4
DS
2227 int ret;
2228 struct btrfs_root *gang[8];
2229 int i;
171f6537
JB
2230
2231 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2232 gang[0] = list_entry(fs_info->dead_roots.next,
2233 struct btrfs_root, root_list);
2234 list_del(&gang[0]->root_list);
171f6537 2235
fc7cbcd4
DS
2236 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2237 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2238 btrfs_put_root(gang[0]);
171f6537
JB
2239 }
2240
fc7cbcd4
DS
2241 while (1) {
2242 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2243 (void **)gang, 0,
2244 ARRAY_SIZE(gang));
2245 if (!ret)
2246 break;
2247 for (i = 0; i < ret; i++)
2248 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2249 }
2250}
af31f5e5 2251
638aa7ed
ES
2252static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2253{
2254 mutex_init(&fs_info->scrub_lock);
2255 atomic_set(&fs_info->scrubs_running, 0);
2256 atomic_set(&fs_info->scrub_pause_req, 0);
2257 atomic_set(&fs_info->scrubs_paused, 0);
2258 atomic_set(&fs_info->scrub_cancel_req, 0);
2259 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2260 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2261}
2262
779a65a4
ES
2263static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2264{
2265 spin_lock_init(&fs_info->balance_lock);
2266 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2267 atomic_set(&fs_info->balance_pause_req, 0);
2268 atomic_set(&fs_info->balance_cancel_req, 0);
2269 fs_info->balance_ctl = NULL;
2270 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2271 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2272}
2273
6bccf3ab 2274static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2275{
2ff7e61e 2276 struct inode *inode = fs_info->btree_inode;
e256927b
JB
2277 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2278 fs_info->tree_root);
2ff7e61e
JM
2279
2280 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2281 set_nlink(inode, 1);
f37938e0
ES
2282 /*
2283 * we set the i_size on the btree inode to the max possible int.
2284 * the real end of the address space is determined by all of
2285 * the devices in the system
2286 */
2ff7e61e
JM
2287 inode->i_size = OFFSET_MAX;
2288 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2289
2ff7e61e 2290 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2291 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
35da5a7e 2292 IO_TREE_BTREE_INODE_IO);
2ff7e61e 2293 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2294
5c8fd99f 2295 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
2296 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2297 BTRFS_I(inode)->location.type = 0;
2298 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 2299 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 2300 __insert_inode_hash(inode, hash);
f37938e0
ES
2301}
2302
ad618368
ES
2303static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2304{
ad618368 2305 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2306 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2307 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2308}
2309
f9e92e40
ES
2310static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2311{
2312 spin_lock_init(&fs_info->qgroup_lock);
2313 mutex_init(&fs_info->qgroup_ioctl_lock);
2314 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2315 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2316 fs_info->qgroup_seq = 1;
f9e92e40 2317 fs_info->qgroup_ulist = NULL;
d2c609b8 2318 fs_info->qgroup_rescan_running = false;
011b46c3 2319 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
2320 mutex_init(&fs_info->qgroup_rescan_lock);
2321}
2322
d21deec5 2323static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2324{
f7b885be 2325 u32 max_active = fs_info->thread_pool_size;
6f011058 2326 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2327
2328 fs_info->workers =
a31b4a43
CH
2329 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2330 fs_info->hipri_workers =
2331 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2332 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2333
2334 fs_info->delalloc_workers =
cb001095
JM
2335 btrfs_alloc_workqueue(fs_info, "delalloc",
2336 flags, max_active, 2);
2a458198
ES
2337
2338 fs_info->flush_workers =
cb001095
JM
2339 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2340 flags, max_active, 0);
2a458198
ES
2341
2342 fs_info->caching_workers =
cb001095 2343 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2344
2a458198 2345 fs_info->fixup_workers =
cb001095 2346 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198 2347
2a458198 2348 fs_info->endio_workers =
d7b9416f 2349 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2350 fs_info->endio_meta_workers =
d7b9416f 2351 alloc_workqueue("btrfs-endio-meta", flags, max_active);
385de0ef 2352 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2353 fs_info->endio_write_workers =
cb001095
JM
2354 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2355 max_active, 2);
fed8a72d
CH
2356 fs_info->compressed_write_workers =
2357 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2358 fs_info->endio_freespace_worker =
cb001095
JM
2359 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2360 max_active, 0);
2a458198 2361 fs_info->delayed_workers =
cb001095
JM
2362 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2363 max_active, 0);
2a458198 2364 fs_info->qgroup_rescan_workers =
cb001095 2365 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2366 fs_info->discard_ctl.discard_workers =
2367 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2368
a31b4a43
CH
2369 if (!(fs_info->workers && fs_info->hipri_workers &&
2370 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2371 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2372 fs_info->compressed_write_workers &&
1a1a2851 2373 fs_info->endio_write_workers &&
2a458198 2374 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2375 fs_info->caching_workers && fs_info->fixup_workers &&
2376 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2377 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2378 return -ENOMEM;
2379 }
2380
2381 return 0;
2382}
2383
6d97c6e3
JT
2384static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2385{
2386 struct crypto_shash *csum_shash;
b4e967be 2387 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2388
b4e967be 2389 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2390
2391 if (IS_ERR(csum_shash)) {
2392 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2393 csum_driver);
6d97c6e3
JT
2394 return PTR_ERR(csum_shash);
2395 }
2396
2397 fs_info->csum_shash = csum_shash;
2398
c8a5f8ca
DS
2399 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2400 btrfs_super_csum_name(csum_type),
2401 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2402 return 0;
2403}
2404
63443bf5
ES
2405static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2406 struct btrfs_fs_devices *fs_devices)
2407{
2408 int ret;
789d6a3a 2409 struct btrfs_tree_parent_check check = { 0 };
63443bf5
ES
2410 struct btrfs_root *log_tree_root;
2411 struct btrfs_super_block *disk_super = fs_info->super_copy;
2412 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2413 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2414
2415 if (fs_devices->rw_devices == 0) {
f14d104d 2416 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2417 return -EIO;
2418 }
2419
96dfcb46
JB
2420 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2421 GFP_KERNEL);
63443bf5
ES
2422 if (!log_tree_root)
2423 return -ENOMEM;
2424
789d6a3a
QW
2425 check.level = level;
2426 check.transid = fs_info->generation + 1;
2427 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2428 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
64c043de 2429 if (IS_ERR(log_tree_root->node)) {
f14d104d 2430 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2431 ret = PTR_ERR(log_tree_root->node);
8c38938c 2432 log_tree_root->node = NULL;
00246528 2433 btrfs_put_root(log_tree_root);
0eeff236 2434 return ret;
4eb150d6
QW
2435 }
2436 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2437 btrfs_err(fs_info, "failed to read log tree");
00246528 2438 btrfs_put_root(log_tree_root);
63443bf5
ES
2439 return -EIO;
2440 }
4eb150d6 2441
63443bf5
ES
2442 /* returns with log_tree_root freed on success */
2443 ret = btrfs_recover_log_trees(log_tree_root);
2444 if (ret) {
0b246afa
JM
2445 btrfs_handle_fs_error(fs_info, ret,
2446 "Failed to recover log tree");
00246528 2447 btrfs_put_root(log_tree_root);
63443bf5
ES
2448 return ret;
2449 }
2450
bc98a42c 2451 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2452 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2453 if (ret)
2454 return ret;
2455 }
2456
2457 return 0;
2458}
2459
abed4aaa
JB
2460static int load_global_roots_objectid(struct btrfs_root *tree_root,
2461 struct btrfs_path *path, u64 objectid,
2462 const char *name)
2463{
2464 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2465 struct btrfs_root *root;
f7238e50 2466 u64 max_global_id = 0;
abed4aaa
JB
2467 int ret;
2468 struct btrfs_key key = {
2469 .objectid = objectid,
2470 .type = BTRFS_ROOT_ITEM_KEY,
2471 .offset = 0,
2472 };
2473 bool found = false;
2474
2475 /* If we have IGNOREDATACSUMS skip loading these roots. */
2476 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2477 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2478 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2479 return 0;
2480 }
2481
2482 while (1) {
2483 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2484 if (ret < 0)
2485 break;
2486
2487 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2488 ret = btrfs_next_leaf(tree_root, path);
2489 if (ret) {
2490 if (ret > 0)
2491 ret = 0;
2492 break;
2493 }
2494 }
2495 ret = 0;
2496
2497 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2498 if (key.objectid != objectid)
2499 break;
2500 btrfs_release_path(path);
2501
f7238e50
JB
2502 /*
2503 * Just worry about this for extent tree, it'll be the same for
2504 * everybody.
2505 */
2506 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2507 max_global_id = max(max_global_id, key.offset);
2508
abed4aaa
JB
2509 found = true;
2510 root = read_tree_root_path(tree_root, path, &key);
2511 if (IS_ERR(root)) {
2512 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2513 ret = PTR_ERR(root);
2514 break;
2515 }
2516 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2517 ret = btrfs_global_root_insert(root);
2518 if (ret) {
2519 btrfs_put_root(root);
2520 break;
2521 }
2522 key.offset++;
2523 }
2524 btrfs_release_path(path);
2525
f7238e50
JB
2526 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2527 fs_info->nr_global_roots = max_global_id + 1;
2528
abed4aaa
JB
2529 if (!found || ret) {
2530 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2531 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2532
2533 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2534 ret = ret ? ret : -ENOENT;
2535 else
2536 ret = 0;
2537 btrfs_err(fs_info, "failed to load root %s", name);
2538 }
2539 return ret;
2540}
2541
2542static int load_global_roots(struct btrfs_root *tree_root)
2543{
2544 struct btrfs_path *path;
2545 int ret = 0;
2546
2547 path = btrfs_alloc_path();
2548 if (!path)
2549 return -ENOMEM;
2550
2551 ret = load_global_roots_objectid(tree_root, path,
2552 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2553 if (ret)
2554 goto out;
2555 ret = load_global_roots_objectid(tree_root, path,
2556 BTRFS_CSUM_TREE_OBJECTID, "csum");
2557 if (ret)
2558 goto out;
2559 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2560 goto out;
2561 ret = load_global_roots_objectid(tree_root, path,
2562 BTRFS_FREE_SPACE_TREE_OBJECTID,
2563 "free space");
2564out:
2565 btrfs_free_path(path);
2566 return ret;
2567}
2568
6bccf3ab 2569static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2570{
6bccf3ab 2571 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2572 struct btrfs_root *root;
4bbcaa64
ES
2573 struct btrfs_key location;
2574 int ret;
2575
6bccf3ab
JM
2576 BUG_ON(!fs_info->tree_root);
2577
abed4aaa
JB
2578 ret = load_global_roots(tree_root);
2579 if (ret)
2580 return ret;
2581
4bbcaa64
ES
2582 location.type = BTRFS_ROOT_ITEM_KEY;
2583 location.offset = 0;
2584
1c56ab99 2585 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2586 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2587 root = btrfs_read_tree_root(tree_root, &location);
2588 if (IS_ERR(root)) {
2589 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2590 ret = PTR_ERR(root);
2591 goto out;
2592 }
2593 } else {
2594 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2595 fs_info->block_group_root = root;
2596 }
2597 }
2598
2599 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2600 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2601 if (IS_ERR(root)) {
42437a63
JB
2602 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2603 ret = PTR_ERR(root);
2604 goto out;
2605 }
2606 } else {
2607 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2608 fs_info->dev_root = root;
f50f4353 2609 }
820a49da 2610 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2611 ret = btrfs_init_devices_late(fs_info);
2612 if (ret)
2613 goto out;
4bbcaa64 2614
aeb935a4
QW
2615 /*
2616 * This tree can share blocks with some other fs tree during relocation
2617 * and we need a proper setup by btrfs_get_fs_root
2618 */
56e9357a
DS
2619 root = btrfs_get_fs_root(tree_root->fs_info,
2620 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2621 if (IS_ERR(root)) {
42437a63
JB
2622 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2623 ret = PTR_ERR(root);
2624 goto out;
2625 }
2626 } else {
2627 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2628 fs_info->data_reloc_root = root;
aeb935a4 2629 }
aeb935a4 2630
4bbcaa64 2631 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2632 root = btrfs_read_tree_root(tree_root, &location);
2633 if (!IS_ERR(root)) {
2634 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2635 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2636 fs_info->quota_root = root;
4bbcaa64
ES
2637 }
2638
2639 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2640 root = btrfs_read_tree_root(tree_root, &location);
2641 if (IS_ERR(root)) {
42437a63
JB
2642 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2643 ret = PTR_ERR(root);
2644 if (ret != -ENOENT)
2645 goto out;
2646 }
4bbcaa64 2647 } else {
a4f3d2c4
DS
2648 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2649 fs_info->uuid_root = root;
4bbcaa64
ES
2650 }
2651
2652 return 0;
f50f4353
LB
2653out:
2654 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2655 location.objectid, ret);
2656 return ret;
4bbcaa64
ES
2657}
2658
069ec957
QW
2659/*
2660 * Real super block validation
2661 * NOTE: super csum type and incompat features will not be checked here.
2662 *
2663 * @sb: super block to check
2664 * @mirror_num: the super block number to check its bytenr:
2665 * 0 the primary (1st) sb
2666 * 1, 2 2nd and 3rd backup copy
2667 * -1 skip bytenr check
2668 */
a05d3c91
QW
2669int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2670 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2671{
21a852b0
QW
2672 u64 nodesize = btrfs_super_nodesize(sb);
2673 u64 sectorsize = btrfs_super_sectorsize(sb);
2674 int ret = 0;
2675
2676 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2677 btrfs_err(fs_info, "no valid FS found");
2678 ret = -EINVAL;
2679 }
2680 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2681 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2682 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2683 ret = -EINVAL;
2684 }
2685 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2686 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2687 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2688 ret = -EINVAL;
2689 }
2690 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2691 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2692 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2693 ret = -EINVAL;
2694 }
2695 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2696 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2697 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2698 ret = -EINVAL;
2699 }
2700
2701 /*
2702 * Check sectorsize and nodesize first, other check will need it.
2703 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2704 */
2705 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2706 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2707 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2708 ret = -EINVAL;
2709 }
0bb3eb3e
QW
2710
2711 /*
1a42daab
QW
2712 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2713 *
2714 * We can support 16K sectorsize with 64K page size without problem,
2715 * but such sectorsize/pagesize combination doesn't make much sense.
2716 * 4K will be our future standard, PAGE_SIZE is supported from the very
2717 * beginning.
0bb3eb3e 2718 */
1a42daab 2719 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2720 btrfs_err(fs_info,
0bb3eb3e 2721 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2722 sectorsize, PAGE_SIZE);
2723 ret = -EINVAL;
2724 }
0bb3eb3e 2725
21a852b0
QW
2726 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2727 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2728 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2729 ret = -EINVAL;
2730 }
2731 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2732 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2733 le32_to_cpu(sb->__unused_leafsize), nodesize);
2734 ret = -EINVAL;
2735 }
2736
2737 /* Root alignment check */
2738 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2739 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2740 btrfs_super_root(sb));
2741 ret = -EINVAL;
2742 }
2743 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2744 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2745 btrfs_super_chunk_root(sb));
2746 ret = -EINVAL;
2747 }
2748 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2749 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2750 btrfs_super_log_root(sb));
2751 ret = -EINVAL;
2752 }
2753
aefd7f70
NB
2754 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2755 BTRFS_FSID_SIZE)) {
2756 btrfs_err(fs_info,
2757 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2758 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2759 ret = -EINVAL;
2760 }
2761
2762 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2763 memcmp(fs_info->fs_devices->metadata_uuid,
2764 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2765 btrfs_err(fs_info,
2766"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2767 fs_info->super_copy->metadata_uuid,
2768 fs_info->fs_devices->metadata_uuid);
2769 ret = -EINVAL;
2770 }
2771
1c56ab99
QW
2772 /*
2773 * Artificial requirement for block-group-tree to force newer features
2774 * (free-space-tree, no-holes) so the test matrix is smaller.
2775 */
2776 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2777 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2778 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2779 btrfs_err(fs_info,
2780 "block-group-tree feature requires fres-space-tree and no-holes");
2781 ret = -EINVAL;
2782 }
2783
de37aa51 2784 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2785 BTRFS_FSID_SIZE) != 0) {
21a852b0 2786 btrfs_err(fs_info,
7239ff4b 2787 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2788 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2789 ret = -EINVAL;
2790 }
2791
2792 /*
2793 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2794 * done later
2795 */
2796 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2797 btrfs_err(fs_info, "bytes_used is too small %llu",
2798 btrfs_super_bytes_used(sb));
2799 ret = -EINVAL;
2800 }
2801 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2802 btrfs_err(fs_info, "invalid stripesize %u",
2803 btrfs_super_stripesize(sb));
2804 ret = -EINVAL;
2805 }
2806 if (btrfs_super_num_devices(sb) > (1UL << 31))
2807 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2808 btrfs_super_num_devices(sb));
2809 if (btrfs_super_num_devices(sb) == 0) {
2810 btrfs_err(fs_info, "number of devices is 0");
2811 ret = -EINVAL;
2812 }
2813
069ec957
QW
2814 if (mirror_num >= 0 &&
2815 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2816 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2817 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2818 ret = -EINVAL;
2819 }
2820
2821 /*
2822 * Obvious sys_chunk_array corruptions, it must hold at least one key
2823 * and one chunk
2824 */
2825 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2826 btrfs_err(fs_info, "system chunk array too big %u > %u",
2827 btrfs_super_sys_array_size(sb),
2828 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2829 ret = -EINVAL;
2830 }
2831 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2832 + sizeof(struct btrfs_chunk)) {
2833 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2834 btrfs_super_sys_array_size(sb),
2835 sizeof(struct btrfs_disk_key)
2836 + sizeof(struct btrfs_chunk));
2837 ret = -EINVAL;
2838 }
2839
2840 /*
2841 * The generation is a global counter, we'll trust it more than the others
2842 * but it's still possible that it's the one that's wrong.
2843 */
2844 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2845 btrfs_warn(fs_info,
2846 "suspicious: generation < chunk_root_generation: %llu < %llu",
2847 btrfs_super_generation(sb),
2848 btrfs_super_chunk_root_generation(sb));
2849 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2850 && btrfs_super_cache_generation(sb) != (u64)-1)
2851 btrfs_warn(fs_info,
2852 "suspicious: generation < cache_generation: %llu < %llu",
2853 btrfs_super_generation(sb),
2854 btrfs_super_cache_generation(sb));
2855
2856 return ret;
2857}
2858
069ec957
QW
2859/*
2860 * Validation of super block at mount time.
2861 * Some checks already done early at mount time, like csum type and incompat
2862 * flags will be skipped.
2863 */
2864static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2865{
a05d3c91 2866 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2867}
2868
75cb857d
QW
2869/*
2870 * Validation of super block at write time.
2871 * Some checks like bytenr check will be skipped as their values will be
2872 * overwritten soon.
2873 * Extra checks like csum type and incompat flags will be done here.
2874 */
2875static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2876 struct btrfs_super_block *sb)
2877{
2878 int ret;
2879
a05d3c91 2880 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2881 if (ret < 0)
2882 goto out;
e7e16f48 2883 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2884 ret = -EUCLEAN;
2885 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2886 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2887 goto out;
2888 }
2889 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2890 ret = -EUCLEAN;
2891 btrfs_err(fs_info,
2892 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2893 btrfs_super_incompat_flags(sb),
2894 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2895 goto out;
2896 }
2897out:
2898 if (ret < 0)
2899 btrfs_err(fs_info,
2900 "super block corruption detected before writing it to disk");
2901 return ret;
2902}
2903
bd676446
JB
2904static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2905{
789d6a3a
QW
2906 struct btrfs_tree_parent_check check = {
2907 .level = level,
2908 .transid = gen,
2909 .owner_root = root->root_key.objectid
2910 };
bd676446
JB
2911 int ret = 0;
2912
789d6a3a 2913 root->node = read_tree_block(root->fs_info, bytenr, &check);
bd676446
JB
2914 if (IS_ERR(root->node)) {
2915 ret = PTR_ERR(root->node);
2916 root->node = NULL;
4eb150d6
QW
2917 return ret;
2918 }
2919 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2920 free_extent_buffer(root->node);
2921 root->node = NULL;
4eb150d6 2922 return -EIO;
bd676446
JB
2923 }
2924
bd676446
JB
2925 btrfs_set_root_node(&root->root_item, root->node);
2926 root->commit_root = btrfs_root_node(root);
2927 btrfs_set_root_refs(&root->root_item, 1);
2928 return ret;
2929}
2930
2931static int load_important_roots(struct btrfs_fs_info *fs_info)
2932{
2933 struct btrfs_super_block *sb = fs_info->super_copy;
2934 u64 gen, bytenr;
2935 int level, ret;
2936
2937 bytenr = btrfs_super_root(sb);
2938 gen = btrfs_super_generation(sb);
2939 level = btrfs_super_root_level(sb);
2940 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2941 if (ret) {
bd676446 2942 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2943 return ret;
2944 }
14033b08 2945 return 0;
bd676446
JB
2946}
2947
6ef108dd 2948static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2949{
6ef108dd 2950 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2951 struct btrfs_super_block *sb = fs_info->super_copy;
2952 struct btrfs_root *tree_root = fs_info->tree_root;
2953 bool handle_error = false;
2954 int ret = 0;
2955 int i;
2956
2957 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2958 if (handle_error) {
2959 if (!IS_ERR(tree_root->node))
2960 free_extent_buffer(tree_root->node);
2961 tree_root->node = NULL;
2962
2963 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2964 break;
2965
2966 free_root_pointers(fs_info, 0);
2967
2968 /*
2969 * Don't use the log in recovery mode, it won't be
2970 * valid
2971 */
2972 btrfs_set_super_log_root(sb, 0);
2973
2974 /* We can't trust the free space cache either */
2975 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2976
2977 ret = read_backup_root(fs_info, i);
6ef108dd 2978 backup_index = ret;
b8522a1e
NB
2979 if (ret < 0)
2980 return ret;
2981 }
b8522a1e 2982
bd676446
JB
2983 ret = load_important_roots(fs_info);
2984 if (ret) {
217f5004 2985 handle_error = true;
b8522a1e
NB
2986 continue;
2987 }
2988
336a0d8d
NB
2989 /*
2990 * No need to hold btrfs_root::objectid_mutex since the fs
2991 * hasn't been fully initialised and we are the only user
2992 */
453e4873 2993 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2994 if (ret < 0) {
b8522a1e
NB
2995 handle_error = true;
2996 continue;
2997 }
2998
6b8fad57 2999 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
3000
3001 ret = btrfs_read_roots(fs_info);
3002 if (ret < 0) {
3003 handle_error = true;
3004 continue;
3005 }
3006
3007 /* All successful */
bd676446
JB
3008 fs_info->generation = btrfs_header_generation(tree_root->node);
3009 fs_info->last_trans_committed = fs_info->generation;
d96b3424 3010 fs_info->last_reloc_trans = 0;
6ef108dd
NB
3011
3012 /* Always begin writing backup roots after the one being used */
3013 if (backup_index < 0) {
3014 fs_info->backup_root_index = 0;
3015 } else {
3016 fs_info->backup_root_index = backup_index + 1;
3017 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3018 }
b8522a1e
NB
3019 break;
3020 }
3021
3022 return ret;
3023}
3024
8260edba 3025void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 3026{
fc7cbcd4 3027 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 3028 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 3029 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 3030 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 3031 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 3032 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 3033 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 3034 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 3035 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 3036 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 3037 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 3038 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 3039 spin_lock_init(&fs_info->super_lock);
f28491e0 3040 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 3041 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 3042 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 3043 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 3044 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 3045 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 3046 rwlock_init(&fs_info->global_root_lock);
d7c15171 3047 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 3048 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 3049 mutex_init(&fs_info->reloc_mutex);
573bfb72 3050 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 3051 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 3052 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 3053 seqlock_init(&fs_info->profiles_lock);
19c00ddc 3054
e1489b4f 3055 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 3056 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 3057 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 3058 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3e738c53
IA
3059 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
3060 BTRFS_LOCKDEP_TRANS_COMMIT_START);
3061 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3062 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3063 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3064 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3065 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3066 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 3067
0b86a832 3068 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3069 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3070 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3071 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3072 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3073 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3074#ifdef CONFIG_BTRFS_DEBUG
3075 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3076 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3077 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3078#endif
c8bf1b67 3079 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3080 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3081 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3082 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3083 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3084 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3085 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3086 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3087 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3088 BTRFS_BLOCK_RSV_DELREFS);
3089
771ed689 3090 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3091 atomic_set(&fs_info->defrag_running, 0);
034f784d 3092 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3093 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3094 fs_info->global_root_tree = RB_ROOT;
95ac567a 3095 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3096 fs_info->metadata_ratio = 0;
4cb5300b 3097 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3098 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3099 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3100 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3101 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3102 btrfs_init_ref_verify(fs_info);
c8b97818 3103
b34b086c
CM
3104 fs_info->thread_pool_size = min_t(unsigned long,
3105 num_online_cpus() + 2, 8);
0afbaf8c 3106
199c2a9c
MX
3107 INIT_LIST_HEAD(&fs_info->ordered_roots);
3108 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3109
638aa7ed 3110 btrfs_init_scrub(fs_info);
21adbd5c
SB
3111#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3112 fs_info->check_integrity_print_mask = 0;
3113#endif
779a65a4 3114 btrfs_init_balance(fs_info);
57056740 3115 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3116
16b0c258 3117 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3118 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3119
fe119a6e 3120 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
35da5a7e 3121 IO_TREE_FS_EXCLUDED_EXTENTS);
39279cc3 3122
5a3f23d5 3123 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3124 mutex_init(&fs_info->tree_log_mutex);
925baedd 3125 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3126 mutex_init(&fs_info->transaction_kthread_mutex);
3127 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3128 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3129 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3130 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3131 init_rwsem(&fs_info->subvol_sem);
803b2f54 3132 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3133
ad618368 3134 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3135 btrfs_init_qgroup(fs_info);
b0643e59 3136 btrfs_discard_init(fs_info);
416ac51d 3137
fa9c0d79
CM
3138 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3139 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3140
e6dcd2dc 3141 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3142 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3143 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3144 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3145 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3146
da17066c
JM
3147 /* Usable values until the real ones are cached from the superblock */
3148 fs_info->nodesize = 4096;
3149 fs_info->sectorsize = 4096;
ab108d99 3150 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3151 fs_info->stripesize = 4096;
3152
f7b12a62
NA
3153 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3154
eede2bf3
OS
3155 spin_lock_init(&fs_info->swapfile_pins_lock);
3156 fs_info->swapfile_pins = RB_ROOT;
3157
18bb8bbf
JT
3158 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3159 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3160}
3161
3162static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3163{
3164 int ret;
3165
3166 fs_info->sb = sb;
3167 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3168 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3169
5deb17e1 3170 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3171 if (ret)
c75e8394 3172 return ret;
ae18c37a
JB
3173
3174 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3175 if (ret)
c75e8394 3176 return ret;
ae18c37a
JB
3177
3178 fs_info->dirty_metadata_batch = PAGE_SIZE *
3179 (1 + ilog2(nr_cpu_ids));
3180
3181 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3182 if (ret)
c75e8394 3183 return ret;
ae18c37a
JB
3184
3185 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3186 GFP_KERNEL);
3187 if (ret)
c75e8394 3188 return ret;
ae18c37a
JB
3189
3190 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3191 GFP_KERNEL);
c75e8394
JB
3192 if (!fs_info->delayed_root)
3193 return -ENOMEM;
ae18c37a
JB
3194 btrfs_init_delayed_root(fs_info->delayed_root);
3195
a0a1db70
FM
3196 if (sb_rdonly(sb))
3197 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3198
c75e8394 3199 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3200}
3201
97f4dd09
NB
3202static int btrfs_uuid_rescan_kthread(void *data)
3203{
0d031dc4 3204 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3205 int ret;
3206
3207 /*
3208 * 1st step is to iterate through the existing UUID tree and
3209 * to delete all entries that contain outdated data.
3210 * 2nd step is to add all missing entries to the UUID tree.
3211 */
3212 ret = btrfs_uuid_tree_iterate(fs_info);
3213 if (ret < 0) {
c94bec2c
JB
3214 if (ret != -EINTR)
3215 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3216 ret);
97f4dd09
NB
3217 up(&fs_info->uuid_tree_rescan_sem);
3218 return ret;
3219 }
3220 return btrfs_uuid_scan_kthread(data);
3221}
3222
3223static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3224{
3225 struct task_struct *task;
3226
3227 down(&fs_info->uuid_tree_rescan_sem);
3228 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3229 if (IS_ERR(task)) {
3230 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3231 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3232 up(&fs_info->uuid_tree_rescan_sem);
3233 return PTR_ERR(task);
3234 }
3235
3236 return 0;
3237}
3238
8cd29088
BB
3239/*
3240 * Some options only have meaning at mount time and shouldn't persist across
3241 * remounts, or be displayed. Clear these at the end of mount and remount
3242 * code paths.
3243 */
3244void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3245{
3246 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3247 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3248}
3249
44c0ca21
BB
3250/*
3251 * Mounting logic specific to read-write file systems. Shared by open_ctree
3252 * and btrfs_remount when remounting from read-only to read-write.
3253 */
3254int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3255{
3256 int ret;
94846229 3257 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3258 bool clear_free_space_tree = false;
3259
3260 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3261 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3262 clear_free_space_tree = true;
3263 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3264 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3265 btrfs_warn(fs_info, "free space tree is invalid");
3266 clear_free_space_tree = true;
3267 }
3268
3269 if (clear_free_space_tree) {
3270 btrfs_info(fs_info, "clearing free space tree");
3271 ret = btrfs_clear_free_space_tree(fs_info);
3272 if (ret) {
3273 btrfs_warn(fs_info,
3274 "failed to clear free space tree: %d", ret);
3275 goto out;
3276 }
3277 }
44c0ca21 3278
8d488a8c
FM
3279 /*
3280 * btrfs_find_orphan_roots() is responsible for finding all the dead
3281 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3282 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3283 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3284 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3285 * item before the root's tree is deleted - this means that if we unmount
3286 * or crash before the deletion completes, on the next mount we will not
3287 * delete what remains of the tree because the orphan item does not
3288 * exists anymore, which is what tells us we have a pending deletion.
3289 */
3290 ret = btrfs_find_orphan_roots(fs_info);
3291 if (ret)
3292 goto out;
3293
44c0ca21
BB
3294 ret = btrfs_cleanup_fs_roots(fs_info);
3295 if (ret)
3296 goto out;
3297
8f1c21d7
BB
3298 down_read(&fs_info->cleanup_work_sem);
3299 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3300 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3301 up_read(&fs_info->cleanup_work_sem);
3302 goto out;
3303 }
3304 up_read(&fs_info->cleanup_work_sem);
3305
44c0ca21 3306 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3307 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3308 mutex_unlock(&fs_info->cleaner_mutex);
3309 if (ret < 0) {
3310 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3311 goto out;
3312 }
3313
5011139a
BB
3314 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3315 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3316 btrfs_info(fs_info, "creating free space tree");
3317 ret = btrfs_create_free_space_tree(fs_info);
3318 if (ret) {
3319 btrfs_warn(fs_info,
3320 "failed to create free space tree: %d", ret);
3321 goto out;
3322 }
3323 }
3324
94846229
BB
3325 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3326 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3327 if (ret)
3328 goto out;
3329 }
3330
44c0ca21
BB
3331 ret = btrfs_resume_balance_async(fs_info);
3332 if (ret)
3333 goto out;
3334
3335 ret = btrfs_resume_dev_replace_async(fs_info);
3336 if (ret) {
3337 btrfs_warn(fs_info, "failed to resume dev_replace");
3338 goto out;
3339 }
3340
3341 btrfs_qgroup_rescan_resume(fs_info);
3342
3343 if (!fs_info->uuid_root) {
3344 btrfs_info(fs_info, "creating UUID tree");
3345 ret = btrfs_create_uuid_tree(fs_info);
3346 if (ret) {
3347 btrfs_warn(fs_info,
3348 "failed to create the UUID tree %d", ret);
3349 goto out;
3350 }
3351 }
3352
3353out:
3354 return ret;
3355}
3356
d7f67ac9
QW
3357/*
3358 * Do various sanity and dependency checks of different features.
3359 *
3360 * This is the place for less strict checks (like for subpage or artificial
3361 * feature dependencies).
3362 *
3363 * For strict checks or possible corruption detection, see
3364 * btrfs_validate_super().
3365 *
3366 * This should be called after btrfs_parse_options(), as some mount options
3367 * (space cache related) can modify on-disk format like free space tree and
3368 * screw up certain feature dependencies.
3369 */
3370int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb)
3371{
3372 struct btrfs_super_block *disk_super = fs_info->super_copy;
3373 u64 incompat = btrfs_super_incompat_flags(disk_super);
3374 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3375 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3376
3377 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3378 btrfs_err(fs_info,
3379 "cannot mount because of unknown incompat features (0x%llx)",
3380 incompat);
3381 return -EINVAL;
3382 }
3383
3384 /* Runtime limitation for mixed block groups. */
3385 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3386 (fs_info->sectorsize != fs_info->nodesize)) {
3387 btrfs_err(fs_info,
3388"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3389 fs_info->nodesize, fs_info->sectorsize);
3390 return -EINVAL;
3391 }
3392
3393 /* Mixed backref is an always-enabled feature. */
3394 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3395
3396 /* Set compression related flags just in case. */
3397 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3398 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3399 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3400 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3401
3402 /*
3403 * An ancient flag, which should really be marked deprecated.
3404 * Such runtime limitation doesn't really need a incompat flag.
3405 */
3406 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3407 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3408
3409 if (compat_ro_unsupp && !sb_rdonly(sb)) {
3410 btrfs_err(fs_info,
3411 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3412 compat_ro);
3413 return -EINVAL;
3414 }
3415
3416 /*
3417 * We have unsupported RO compat features, although RO mounted, we
3418 * should not cause any metadata writes, including log replay.
3419 * Or we could screw up whatever the new feature requires.
3420 */
3421 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3422 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3423 btrfs_err(fs_info,
3424"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3425 compat_ro);
3426 return -EINVAL;
3427 }
3428
3429 /*
3430 * Artificial limitations for block group tree, to force
3431 * block-group-tree to rely on no-holes and free-space-tree.
3432 */
3433 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3434 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3435 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3436 btrfs_err(fs_info,
3437"block-group-tree feature requires no-holes and free-space-tree features");
3438 return -EINVAL;
3439 }
3440
3441 /*
3442 * Subpage runtime limitation on v1 cache.
3443 *
3444 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3445 * we're already defaulting to v2 cache, no need to bother v1 as it's
3446 * going to be deprecated anyway.
3447 */
3448 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3449 btrfs_warn(fs_info,
3450 "v1 space cache is not supported for page size %lu with sectorsize %u",
3451 PAGE_SIZE, fs_info->sectorsize);
3452 return -EINVAL;
3453 }
3454
3455 /* This can be called by remount, we need to protect the super block. */
3456 spin_lock(&fs_info->super_lock);
3457 btrfs_set_super_incompat_flags(disk_super, incompat);
3458 spin_unlock(&fs_info->super_lock);
3459
3460 return 0;
3461}
3462
ae18c37a
JB
3463int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3464 char *options)
3465{
3466 u32 sectorsize;
3467 u32 nodesize;
3468 u32 stripesize;
3469 u64 generation;
3470 u64 features;
3471 u16 csum_type;
ae18c37a
JB
3472 struct btrfs_super_block *disk_super;
3473 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3474 struct btrfs_root *tree_root;
3475 struct btrfs_root *chunk_root;
3476 int ret;
3477 int err = -EINVAL;
ae18c37a
JB
3478 int level;
3479
8260edba 3480 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3481 if (ret) {
83c8266a 3482 err = ret;
ae18c37a 3483 goto fail;
53b381b3
DW
3484 }
3485
ae18c37a
JB
3486 /* These need to be init'ed before we start creating inodes and such. */
3487 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3488 GFP_KERNEL);
3489 fs_info->tree_root = tree_root;
3490 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3491 GFP_KERNEL);
3492 fs_info->chunk_root = chunk_root;
3493 if (!tree_root || !chunk_root) {
3494 err = -ENOMEM;
c75e8394 3495 goto fail;
ae18c37a
JB
3496 }
3497
3498 fs_info->btree_inode = new_inode(sb);
3499 if (!fs_info->btree_inode) {
3500 err = -ENOMEM;
c75e8394 3501 goto fail;
ae18c37a
JB
3502 }
3503 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3504 btrfs_init_btree_inode(fs_info);
3505
d24fa5c1 3506 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3507
3508 /*
3509 * Read super block and check the signature bytes only
3510 */
d24fa5c1 3511 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3512 if (IS_ERR(disk_super)) {
3513 err = PTR_ERR(disk_super);
16cdcec7 3514 goto fail_alloc;
20b45077 3515 }
39279cc3 3516
8dc3f22c 3517 /*
260db43c 3518 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3519 * corrupted, we'll find out
3520 */
8f32380d 3521 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3522 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3523 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3524 csum_type);
8dc3f22c 3525 err = -EINVAL;
8f32380d 3526 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3527 goto fail_alloc;
3528 }
3529
83c68bbc
SY
3530 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3531
6d97c6e3
JT
3532 ret = btrfs_init_csum_hash(fs_info, csum_type);
3533 if (ret) {
3534 err = ret;
8f32380d 3535 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3536 goto fail_alloc;
3537 }
3538
1104a885
DS
3539 /*
3540 * We want to check superblock checksum, the type is stored inside.
3541 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3542 */
3d17adea 3543 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3544 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3545 err = -EINVAL;
8f32380d 3546 btrfs_release_disk_super(disk_super);
141386e1 3547 goto fail_alloc;
1104a885
DS
3548 }
3549
3550 /*
3551 * super_copy is zeroed at allocation time and we never touch the
3552 * following bytes up to INFO_SIZE, the checksum is calculated from
3553 * the whole block of INFO_SIZE
3554 */
8f32380d
JT
3555 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3556 btrfs_release_disk_super(disk_super);
5f39d397 3557
fbc6feae
NB
3558 disk_super = fs_info->super_copy;
3559
0b86a832 3560
fbc6feae
NB
3561 features = btrfs_super_flags(disk_super);
3562 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3563 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3564 btrfs_set_super_flags(disk_super, features);
3565 btrfs_info(fs_info,
3566 "found metadata UUID change in progress flag, clearing");
3567 }
3568
3569 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3570 sizeof(*fs_info->super_for_commit));
de37aa51 3571
069ec957 3572 ret = btrfs_validate_mount_super(fs_info);
1104a885 3573 if (ret) {
05135f59 3574 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3575 err = -EINVAL;
141386e1 3576 goto fail_alloc;
1104a885
DS
3577 }
3578
0f7d52f4 3579 if (!btrfs_super_root(disk_super))
141386e1 3580 goto fail_alloc;
0f7d52f4 3581
acce952b 3582 /* check FS state, whether FS is broken. */
87533c47
MX
3583 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3584 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3585
75e7cb7f
LB
3586 /*
3587 * In the long term, we'll store the compression type in the super
3588 * block, and it'll be used for per file compression control.
3589 */
3590 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3591
6f93e834
AJ
3592
3593 /* Set up fs_info before parsing mount options */
3594 nodesize = btrfs_super_nodesize(disk_super);
3595 sectorsize = btrfs_super_sectorsize(disk_super);
3596 stripesize = sectorsize;
3597 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3598 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3599
3600 fs_info->nodesize = nodesize;
3601 fs_info->sectorsize = sectorsize;
3602 fs_info->sectorsize_bits = ilog2(sectorsize);
3603 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3604 fs_info->stripesize = stripesize;
3605
2ff7e61e 3606 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3607 if (ret) {
3608 err = ret;
141386e1 3609 goto fail_alloc;
2b82032c 3610 }
dfe25020 3611
d7f67ac9
QW
3612 ret = btrfs_check_features(fs_info, sb);
3613 if (ret < 0) {
3614 err = ret;
dc4d3168
QW
3615 goto fail_alloc;
3616 }
3617
8481dd80
QW
3618 if (sectorsize < PAGE_SIZE) {
3619 struct btrfs_subpage_info *subpage_info;
3620
9f73f1ae
QW
3621 /*
3622 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3623 * going to be deprecated.
3624 *
3625 * Force to use v2 cache for subpage case.
3626 */
3627 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3628 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3629 "forcing free space tree for sector size %u with page size %lu",
3630 sectorsize, PAGE_SIZE);
3631
95ea0486
QW
3632 btrfs_warn(fs_info,
3633 "read-write for sector size %u with page size %lu is experimental",
3634 sectorsize, PAGE_SIZE);
8481dd80
QW
3635 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3636 if (!subpage_info)
3637 goto fail_alloc;
3638 btrfs_init_subpage_info(subpage_info, sectorsize);
3639 fs_info->subpage_info = subpage_info;
c8050b3b 3640 }
0bb3eb3e 3641
d21deec5 3642 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3643 if (ret) {
3644 err = ret;
0dc3b84a
JB
3645 goto fail_sb_buffer;
3646 }
4543df7e 3647
9e11ceee
JK
3648 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3649 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3650
a061fc8d
CM
3651 sb->s_blocksize = sectorsize;
3652 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3653 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3654
925baedd 3655 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3656 ret = btrfs_read_sys_array(fs_info);
925baedd 3657 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3658 if (ret) {
05135f59 3659 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3660 goto fail_sb_buffer;
84eed90f 3661 }
0b86a832 3662
84234f3a 3663 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3664 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3665 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3666 generation, level);
3667 if (ret) {
05135f59 3668 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3669 goto fail_tree_roots;
83121942 3670 }
0b86a832 3671
e17cade2 3672 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3673 offsetof(struct btrfs_header, chunk_tree_uuid),
3674 BTRFS_UUID_SIZE);
e17cade2 3675
5b4aacef 3676 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3677 if (ret) {
05135f59 3678 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3679 goto fail_tree_roots;
2b82032c 3680 }
0b86a832 3681
8dabb742 3682 /*
bacce86a
AJ
3683 * At this point we know all the devices that make this filesystem,
3684 * including the seed devices but we don't know yet if the replace
3685 * target is required. So free devices that are not part of this
1a9fd417 3686 * filesystem but skip the replace target device which is checked
bacce86a 3687 * below in btrfs_init_dev_replace().
8dabb742 3688 */
bacce86a 3689 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3690 if (!fs_devices->latest_dev->bdev) {
05135f59 3691 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3692 goto fail_tree_roots;
3693 }
3694
b8522a1e 3695 ret = init_tree_roots(fs_info);
4bbcaa64 3696 if (ret)
b8522a1e 3697 goto fail_tree_roots;
8929ecfa 3698
73651042
NA
3699 /*
3700 * Get zone type information of zoned block devices. This will also
3701 * handle emulation of a zoned filesystem if a regular device has the
3702 * zoned incompat feature flag set.
3703 */
3704 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3705 if (ret) {
3706 btrfs_err(fs_info,
3707 "zoned: failed to read device zone info: %d",
3708 ret);
3709 goto fail_block_groups;
3710 }
3711
75ec1db8
JB
3712 /*
3713 * If we have a uuid root and we're not being told to rescan we need to
3714 * check the generation here so we can set the
3715 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3716 * transaction during a balance or the log replay without updating the
3717 * uuid generation, and then if we crash we would rescan the uuid tree,
3718 * even though it was perfectly fine.
3719 */
3720 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3721 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3722 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3723
cf90d884
QW
3724 ret = btrfs_verify_dev_extents(fs_info);
3725 if (ret) {
3726 btrfs_err(fs_info,
3727 "failed to verify dev extents against chunks: %d",
3728 ret);
3729 goto fail_block_groups;
3730 }
68310a5e
ID
3731 ret = btrfs_recover_balance(fs_info);
3732 if (ret) {
05135f59 3733 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3734 goto fail_block_groups;
3735 }
3736
733f4fbb
SB
3737 ret = btrfs_init_dev_stats(fs_info);
3738 if (ret) {
05135f59 3739 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3740 goto fail_block_groups;
3741 }
3742
8dabb742
SB
3743 ret = btrfs_init_dev_replace(fs_info);
3744 if (ret) {
05135f59 3745 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3746 goto fail_block_groups;
3747 }
3748
b70f5097
NA
3749 ret = btrfs_check_zoned_mode(fs_info);
3750 if (ret) {
3751 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3752 ret);
3753 goto fail_block_groups;
3754 }
3755
c6761a9e 3756 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3757 if (ret) {
05135f59
DS
3758 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3759 ret);
b7c35e81
AJ
3760 goto fail_block_groups;
3761 }
3762
96f3136e 3763 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3764 if (ret) {
05135f59 3765 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3766 goto fail_fsdev_sysfs;
c59021f8 3767 }
3768
c59021f8 3769 ret = btrfs_init_space_info(fs_info);
3770 if (ret) {
05135f59 3771 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3772 goto fail_sysfs;
c59021f8 3773 }
3774
5b4aacef 3775 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3776 if (ret) {
05135f59 3777 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3778 goto fail_sysfs;
1b1d1f66 3779 }
4330e183 3780
16beac87
NA
3781 btrfs_free_zone_cache(fs_info);
3782
5c78a5e7
AJ
3783 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3784 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3785 btrfs_warn(fs_info,
52042d8e 3786 "writable mount is not allowed due to too many missing devices");
2365dd3c 3787 goto fail_sysfs;
292fd7fc 3788 }
9078a3e1 3789
33c44184 3790 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3791 "btrfs-cleaner");
57506d50 3792 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3793 goto fail_sysfs;
a74a4b97
CM
3794
3795 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3796 tree_root,
3797 "btrfs-transaction");
57506d50 3798 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3799 goto fail_cleaner;
a74a4b97 3800
583b7231 3801 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3802 !fs_info->fs_devices->rotating) {
583b7231 3803 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3804 }
3805
63a7cb13
DS
3806 /*
3807 * For devices supporting discard turn on discard=async automatically,
3808 * unless it's already set or disabled. This could be turned off by
3809 * nodiscard for the same mount.
3810 */
3811 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3812 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3813 btrfs_test_opt(fs_info, NODISCARD)) &&
3814 fs_info->fs_devices->discardable) {
3815 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3816 "auto enabling async discard");
3817 btrfs_clear_opt(fs_info->mount_opt, NODISCARD);
3818 }
3819
21adbd5c 3820#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3821 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3822 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3823 btrfs_test_opt(fs_info,
cbeaae4f 3824 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3825 fs_info->check_integrity_print_mask);
3826 if (ret)
05135f59
DS
3827 btrfs_warn(fs_info,
3828 "failed to initialize integrity check module: %d",
3829 ret);
21adbd5c
SB
3830 }
3831#endif
bcef60f2
AJ
3832 ret = btrfs_read_qgroup_config(fs_info);
3833 if (ret)
3834 goto fail_trans_kthread;
21adbd5c 3835
fd708b81
JB
3836 if (btrfs_build_ref_tree(fs_info))
3837 btrfs_err(fs_info, "couldn't build ref tree");
3838
96da0919
QW
3839 /* do not make disk changes in broken FS or nologreplay is given */
3840 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3841 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3842 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3843 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3844 if (ret) {
63443bf5 3845 err = ret;
28c16cbb 3846 goto fail_qgroup;
79787eaa 3847 }
e02119d5 3848 }
1a40e23b 3849
56e9357a 3850 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3851 if (IS_ERR(fs_info->fs_root)) {
3852 err = PTR_ERR(fs_info->fs_root);
f50f4353 3853 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3854 fs_info->fs_root = NULL;
bcef60f2 3855 goto fail_qgroup;
3140c9a3 3856 }
c289811c 3857
bc98a42c 3858 if (sb_rdonly(sb))
8cd29088 3859 goto clear_oneshot;
59641015 3860
44c0ca21 3861 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3862 if (ret) {
6bccf3ab 3863 close_ctree(fs_info);
2b6ba629 3864 return ret;
e3acc2a6 3865 }
b0643e59 3866 btrfs_discard_resume(fs_info);
b382a324 3867
44c0ca21
BB
3868 if (fs_info->uuid_root &&
3869 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3870 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3871 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3872 ret = btrfs_check_uuid_tree(fs_info);
3873 if (ret) {
05135f59
DS
3874 btrfs_warn(fs_info,
3875 "failed to check the UUID tree: %d", ret);
6bccf3ab 3876 close_ctree(fs_info);
70f80175
SB
3877 return ret;
3878 }
f7a81ea4 3879 }
94846229 3880
afcdd129 3881 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3882
b4be6aef
JB
3883 /* Kick the cleaner thread so it'll start deleting snapshots. */
3884 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3885 wake_up_process(fs_info->cleaner_kthread);
3886
8cd29088
BB
3887clear_oneshot:
3888 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3889 return 0;
39279cc3 3890
bcef60f2
AJ
3891fail_qgroup:
3892 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3893fail_trans_kthread:
3894 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3895 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3896 btrfs_free_fs_roots(fs_info);
3f157a2f 3897fail_cleaner:
a74a4b97 3898 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3899
3900 /*
3901 * make sure we're done with the btree inode before we stop our
3902 * kthreads
3903 */
3904 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3905
2365dd3c 3906fail_sysfs:
6618a59b 3907 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3908
b7c35e81
AJ
3909fail_fsdev_sysfs:
3910 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3911
1b1d1f66 3912fail_block_groups:
54067ae9 3913 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3914
3915fail_tree_roots:
9e3aa805
JB
3916 if (fs_info->data_reloc_root)
3917 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3918 free_root_pointers(fs_info, true);
2b8195bb 3919 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3920
39279cc3 3921fail_sb_buffer:
7abadb64 3922 btrfs_stop_all_workers(fs_info);
5cdd7db6 3923 btrfs_free_block_groups(fs_info);
16cdcec7 3924fail_alloc:
586e46e2
ID
3925 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3926
4543df7e 3927 iput(fs_info->btree_inode);
7e662854 3928fail:
586e46e2 3929 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3930 return err;
eb60ceac 3931}
663faf9f 3932ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3933
314b6dd0 3934static void btrfs_end_super_write(struct bio *bio)
f2984462 3935{
314b6dd0
JT
3936 struct btrfs_device *device = bio->bi_private;
3937 struct bio_vec *bvec;
3938 struct bvec_iter_all iter_all;
3939 struct page *page;
3940
3941 bio_for_each_segment_all(bvec, bio, iter_all) {
3942 page = bvec->bv_page;
3943
3944 if (bio->bi_status) {
3945 btrfs_warn_rl_in_rcu(device->fs_info,
3946 "lost page write due to IO error on %s (%d)",
cb3e217b 3947 btrfs_dev_name(device),
314b6dd0
JT
3948 blk_status_to_errno(bio->bi_status));
3949 ClearPageUptodate(page);
3950 SetPageError(page);
3951 btrfs_dev_stat_inc_and_print(device,
3952 BTRFS_DEV_STAT_WRITE_ERRS);
3953 } else {
3954 SetPageUptodate(page);
3955 }
3956
3957 put_page(page);
3958 unlock_page(page);
f2984462 3959 }
314b6dd0
JT
3960
3961 bio_put(bio);
f2984462
CM
3962}
3963
8f32380d 3964struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3965 int copy_num, bool drop_cache)
29c36d72 3966{
29c36d72 3967 struct btrfs_super_block *super;
8f32380d 3968 struct page *page;
12659251 3969 u64 bytenr, bytenr_orig;
8f32380d 3970 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3971 int ret;
3972
3973 bytenr_orig = btrfs_sb_offset(copy_num);
3974 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3975 if (ret == -ENOENT)
3976 return ERR_PTR(-EINVAL);
3977 else if (ret)
3978 return ERR_PTR(ret);
29c36d72 3979
cda00eba 3980 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3981 return ERR_PTR(-EINVAL);
29c36d72 3982
a05d3c91
QW
3983 if (drop_cache) {
3984 /* This should only be called with the primary sb. */
3985 ASSERT(copy_num == 0);
3986
3987 /*
3988 * Drop the page of the primary superblock, so later read will
3989 * always read from the device.
3990 */
3991 invalidate_inode_pages2_range(mapping,
3992 bytenr >> PAGE_SHIFT,
3993 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3994 }
3995
8f32380d
JT
3996 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3997 if (IS_ERR(page))
3998 return ERR_CAST(page);
29c36d72 3999
8f32380d 4000 super = page_address(page);
96c2e067
AJ
4001 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4002 btrfs_release_disk_super(super);
4003 return ERR_PTR(-ENODATA);
4004 }
4005
12659251 4006 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
4007 btrfs_release_disk_super(super);
4008 return ERR_PTR(-EINVAL);
29c36d72
AJ
4009 }
4010
8f32380d 4011 return super;
29c36d72
AJ
4012}
4013
4014
8f32380d 4015struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 4016{
8f32380d 4017 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
4018 int i;
4019 u64 transid = 0;
a512bbf8
YZ
4020
4021 /* we would like to check all the supers, but that would make
4022 * a btrfs mount succeed after a mkfs from a different FS.
4023 * So, we need to add a special mount option to scan for
4024 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4025 */
4026 for (i = 0; i < 1; i++) {
a05d3c91 4027 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 4028 if (IS_ERR(super))
a512bbf8
YZ
4029 continue;
4030
a512bbf8 4031 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
4032 if (latest)
4033 btrfs_release_disk_super(super);
4034
4035 latest = super;
a512bbf8 4036 transid = btrfs_super_generation(super);
a512bbf8
YZ
4037 }
4038 }
92fc03fb 4039
8f32380d 4040 return super;
a512bbf8
YZ
4041}
4042
4eedeb75 4043/*
abbb3b8e 4044 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 4045 * pages we use for writing are locked.
4eedeb75 4046 *
abbb3b8e
DS
4047 * Write @max_mirrors copies of the superblock, where 0 means default that fit
4048 * the expected device size at commit time. Note that max_mirrors must be
4049 * same for write and wait phases.
4eedeb75 4050 *
314b6dd0 4051 * Return number of errors when page is not found or submission fails.
4eedeb75 4052 */
a512bbf8 4053static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 4054 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 4055{
d5178578 4056 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 4057 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 4058 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 4059 int i;
a512bbf8 4060 int errors = 0;
12659251
NA
4061 int ret;
4062 u64 bytenr, bytenr_orig;
a512bbf8
YZ
4063
4064 if (max_mirrors == 0)
4065 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4066
d5178578
JT
4067 shash->tfm = fs_info->csum_shash;
4068
a512bbf8 4069 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4070 struct page *page;
4071 struct bio *bio;
4072 struct btrfs_super_block *disk_super;
4073
12659251
NA
4074 bytenr_orig = btrfs_sb_offset(i);
4075 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4076 if (ret == -ENOENT) {
4077 continue;
4078 } else if (ret < 0) {
4079 btrfs_err(device->fs_info,
4080 "couldn't get super block location for mirror %d",
4081 i);
4082 errors++;
4083 continue;
4084 }
935e5cc9
MX
4085 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4086 device->commit_total_bytes)
a512bbf8
YZ
4087 break;
4088
12659251 4089 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 4090
fd08001f
EB
4091 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4092 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4093 sb->csum);
4eedeb75 4094
314b6dd0
JT
4095 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4096 GFP_NOFS);
4097 if (!page) {
abbb3b8e 4098 btrfs_err(device->fs_info,
314b6dd0 4099 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
4100 bytenr);
4101 errors++;
4eedeb75 4102 continue;
abbb3b8e 4103 }
634554dc 4104
314b6dd0
JT
4105 /* Bump the refcount for wait_dev_supers() */
4106 get_page(page);
a512bbf8 4107
314b6dd0
JT
4108 disk_super = page_address(page);
4109 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 4110
314b6dd0
JT
4111 /*
4112 * Directly use bios here instead of relying on the page cache
4113 * to do I/O, so we don't lose the ability to do integrity
4114 * checking.
4115 */
07888c66
CH
4116 bio = bio_alloc(device->bdev, 1,
4117 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4118 GFP_NOFS);
314b6dd0
JT
4119 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4120 bio->bi_private = device;
4121 bio->bi_end_io = btrfs_end_super_write;
4122 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4123 offset_in_page(bytenr));
a512bbf8 4124
387125fc 4125 /*
314b6dd0
JT
4126 * We FUA only the first super block. The others we allow to
4127 * go down lazy and there's a short window where the on-disk
4128 * copies might still contain the older version.
387125fc 4129 */
1b9e619c 4130 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4131 bio->bi_opf |= REQ_FUA;
4132
58ff51f1
CH
4133 btrfsic_check_bio(bio);
4134 submit_bio(bio);
8376d9e1
NA
4135
4136 if (btrfs_advance_sb_log(device, i))
4137 errors++;
a512bbf8
YZ
4138 }
4139 return errors < i ? 0 : -1;
4140}
4141
abbb3b8e
DS
4142/*
4143 * Wait for write completion of superblocks done by write_dev_supers,
4144 * @max_mirrors same for write and wait phases.
4145 *
314b6dd0 4146 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4147 * date.
4148 */
4149static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4150{
abbb3b8e
DS
4151 int i;
4152 int errors = 0;
b6a535fa 4153 bool primary_failed = false;
12659251 4154 int ret;
abbb3b8e
DS
4155 u64 bytenr;
4156
4157 if (max_mirrors == 0)
4158 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4159
4160 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4161 struct page *page;
4162
12659251
NA
4163 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4164 if (ret == -ENOENT) {
4165 break;
4166 } else if (ret < 0) {
4167 errors++;
4168 if (i == 0)
4169 primary_failed = true;
4170 continue;
4171 }
abbb3b8e
DS
4172 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4173 device->commit_total_bytes)
4174 break;
4175
314b6dd0
JT
4176 page = find_get_page(device->bdev->bd_inode->i_mapping,
4177 bytenr >> PAGE_SHIFT);
4178 if (!page) {
abbb3b8e 4179 errors++;
b6a535fa
HM
4180 if (i == 0)
4181 primary_failed = true;
abbb3b8e
DS
4182 continue;
4183 }
314b6dd0
JT
4184 /* Page is submitted locked and unlocked once the IO completes */
4185 wait_on_page_locked(page);
4186 if (PageError(page)) {
abbb3b8e 4187 errors++;
b6a535fa
HM
4188 if (i == 0)
4189 primary_failed = true;
4190 }
abbb3b8e 4191
314b6dd0
JT
4192 /* Drop our reference */
4193 put_page(page);
abbb3b8e 4194
314b6dd0
JT
4195 /* Drop the reference from the writing run */
4196 put_page(page);
abbb3b8e
DS
4197 }
4198
b6a535fa
HM
4199 /* log error, force error return */
4200 if (primary_failed) {
4201 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4202 device->devid);
4203 return -1;
4204 }
4205
abbb3b8e
DS
4206 return errors < i ? 0 : -1;
4207}
4208
387125fc
CM
4209/*
4210 * endio for the write_dev_flush, this will wake anyone waiting
4211 * for the barrier when it is done
4212 */
4246a0b6 4213static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4214{
f9e69aa9 4215 bio_uninit(bio);
e0ae9994 4216 complete(bio->bi_private);
387125fc
CM
4217}
4218
4219/*
4fc6441a
AJ
4220 * Submit a flush request to the device if it supports it. Error handling is
4221 * done in the waiting counterpart.
387125fc 4222 */
4fc6441a 4223static void write_dev_flush(struct btrfs_device *device)
387125fc 4224{
f9e69aa9 4225 struct bio *bio = &device->flush_bio;
387125fc 4226
a91cf0ff
WY
4227#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4228 /*
4229 * When a disk has write caching disabled, we skip submission of a bio
4230 * with flush and sync requests before writing the superblock, since
4231 * it's not needed. However when the integrity checker is enabled, this
4232 * results in reports that there are metadata blocks referred by a
4233 * superblock that were not properly flushed. So don't skip the bio
4234 * submission only when the integrity checker is enabled for the sake
4235 * of simplicity, since this is a debug tool and not meant for use in
4236 * non-debug builds.
4237 */
08e688fd 4238 if (!bdev_write_cache(device->bdev))
4fc6441a 4239 return;
a91cf0ff 4240#endif
387125fc 4241
f9e69aa9
CH
4242 bio_init(bio, device->bdev, NULL, 0,
4243 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4244 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4245 init_completion(&device->flush_wait);
4246 bio->bi_private = &device->flush_wait;
387125fc 4247
58ff51f1
CH
4248 btrfsic_check_bio(bio);
4249 submit_bio(bio);
1c3063b6 4250 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4251}
387125fc 4252
4fc6441a
AJ
4253/*
4254 * If the flush bio has been submitted by write_dev_flush, wait for it.
4255 */
8c27cb35 4256static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4257{
f9e69aa9 4258 struct bio *bio = &device->flush_bio;
387125fc 4259
1c3063b6 4260 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4261 return BLK_STS_OK;
387125fc 4262
1c3063b6 4263 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4264 wait_for_completion_io(&device->flush_wait);
387125fc 4265
8c27cb35 4266 return bio->bi_status;
387125fc 4267}
387125fc 4268
d10b82fe 4269static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4270{
6528b99d 4271 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4272 return -EIO;
387125fc
CM
4273 return 0;
4274}
4275
4276/*
4277 * send an empty flush down to each device in parallel,
4278 * then wait for them
4279 */
4280static int barrier_all_devices(struct btrfs_fs_info *info)
4281{
4282 struct list_head *head;
4283 struct btrfs_device *dev;
5af3e8cc 4284 int errors_wait = 0;
4e4cbee9 4285 blk_status_t ret;
387125fc 4286
1538e6c5 4287 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4288 /* send down all the barriers */
4289 head = &info->fs_devices->devices;
1538e6c5 4290 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4291 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4292 continue;
cea7c8bf 4293 if (!dev->bdev)
387125fc 4294 continue;
e12c9621 4295 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4296 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4297 continue;
4298
4fc6441a 4299 write_dev_flush(dev);
58efbc9f 4300 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4301 }
4302
4303 /* wait for all the barriers */
1538e6c5 4304 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4305 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4306 continue;
387125fc 4307 if (!dev->bdev) {
5af3e8cc 4308 errors_wait++;
387125fc
CM
4309 continue;
4310 }
e12c9621 4311 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4312 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4313 continue;
4314
4fc6441a 4315 ret = wait_dev_flush(dev);
401b41e5
AJ
4316 if (ret) {
4317 dev->last_flush_error = ret;
66b4993e
DS
4318 btrfs_dev_stat_inc_and_print(dev,
4319 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4320 errors_wait++;
401b41e5
AJ
4321 }
4322 }
4323
cea7c8bf 4324 if (errors_wait) {
401b41e5
AJ
4325 /*
4326 * At some point we need the status of all disks
4327 * to arrive at the volume status. So error checking
4328 * is being pushed to a separate loop.
4329 */
d10b82fe 4330 return check_barrier_error(info);
387125fc 4331 }
387125fc
CM
4332 return 0;
4333}
4334
943c6e99
ZL
4335int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4336{
8789f4fe
ZL
4337 int raid_type;
4338 int min_tolerated = INT_MAX;
943c6e99 4339
8789f4fe
ZL
4340 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4341 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4342 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4343 btrfs_raid_array[BTRFS_RAID_SINGLE].
4344 tolerated_failures);
943c6e99 4345
8789f4fe
ZL
4346 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4347 if (raid_type == BTRFS_RAID_SINGLE)
4348 continue;
41a6e891 4349 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4350 continue;
8c3e3582 4351 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4352 btrfs_raid_array[raid_type].
4353 tolerated_failures);
4354 }
943c6e99 4355
8789f4fe 4356 if (min_tolerated == INT_MAX) {
ab8d0fc4 4357 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4358 min_tolerated = 0;
4359 }
4360
4361 return min_tolerated;
943c6e99
ZL
4362}
4363
eece6a9c 4364int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4365{
e5e9a520 4366 struct list_head *head;
f2984462 4367 struct btrfs_device *dev;
a061fc8d 4368 struct btrfs_super_block *sb;
f2984462 4369 struct btrfs_dev_item *dev_item;
f2984462
CM
4370 int ret;
4371 int do_barriers;
a236aed1
CM
4372 int max_errors;
4373 int total_errors = 0;
a061fc8d 4374 u64 flags;
f2984462 4375
0b246afa 4376 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4377
4378 /*
4379 * max_mirrors == 0 indicates we're from commit_transaction,
4380 * not from fsync where the tree roots in fs_info have not
4381 * been consistent on disk.
4382 */
4383 if (max_mirrors == 0)
4384 backup_super_roots(fs_info);
f2984462 4385
0b246afa 4386 sb = fs_info->super_for_commit;
a061fc8d 4387 dev_item = &sb->dev_item;
e5e9a520 4388
0b246afa
JM
4389 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4390 head = &fs_info->fs_devices->devices;
4391 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4392
5af3e8cc 4393 if (do_barriers) {
0b246afa 4394 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4395 if (ret) {
4396 mutex_unlock(
0b246afa
JM
4397 &fs_info->fs_devices->device_list_mutex);
4398 btrfs_handle_fs_error(fs_info, ret,
4399 "errors while submitting device barriers.");
5af3e8cc
SB
4400 return ret;
4401 }
4402 }
387125fc 4403
1538e6c5 4404 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4405 if (!dev->bdev) {
4406 total_errors++;
4407 continue;
4408 }
e12c9621 4409 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4410 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4411 continue;
4412
2b82032c 4413 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4414 btrfs_set_stack_device_type(dev_item, dev->type);
4415 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4416 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4417 dev->commit_total_bytes);
ce7213c7
MX
4418 btrfs_set_stack_device_bytes_used(dev_item,
4419 dev->commit_bytes_used);
a061fc8d
CM
4420 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4421 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4422 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4423 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4424 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4425 BTRFS_FSID_SIZE);
a512bbf8 4426
a061fc8d
CM
4427 flags = btrfs_super_flags(sb);
4428 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4429
75cb857d
QW
4430 ret = btrfs_validate_write_super(fs_info, sb);
4431 if (ret < 0) {
4432 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4433 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4434 "unexpected superblock corruption detected");
4435 return -EUCLEAN;
4436 }
4437
abbb3b8e 4438 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4439 if (ret)
4440 total_errors++;
f2984462 4441 }
a236aed1 4442 if (total_errors > max_errors) {
0b246afa
JM
4443 btrfs_err(fs_info, "%d errors while writing supers",
4444 total_errors);
4445 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4446
9d565ba4 4447 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4448 btrfs_handle_fs_error(fs_info, -EIO,
4449 "%d errors while writing supers",
4450 total_errors);
9d565ba4 4451 return -EIO;
a236aed1 4452 }
f2984462 4453
a512bbf8 4454 total_errors = 0;
1538e6c5 4455 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4456 if (!dev->bdev)
4457 continue;
e12c9621 4458 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4459 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4460 continue;
4461
abbb3b8e 4462 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4463 if (ret)
4464 total_errors++;
f2984462 4465 }
0b246afa 4466 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4467 if (total_errors > max_errors) {
0b246afa
JM
4468 btrfs_handle_fs_error(fs_info, -EIO,
4469 "%d errors while writing supers",
4470 total_errors);
79787eaa 4471 return -EIO;
a236aed1 4472 }
f2984462
CM
4473 return 0;
4474}
4475
cb517eab
MX
4476/* Drop a fs root from the radix tree and free it. */
4477void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4478 struct btrfs_root *root)
2619ba1f 4479{
4785e24f
JB
4480 bool drop_ref = false;
4481
fc7cbcd4
DS
4482 spin_lock(&fs_info->fs_roots_radix_lock);
4483 radix_tree_delete(&fs_info->fs_roots_radix,
4484 (unsigned long)root->root_key.objectid);
4485 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4486 drop_ref = true;
fc7cbcd4 4487 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4488
84961539 4489 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4490 ASSERT(root->log_root == NULL);
1c1ea4f7 4491 if (root->reloc_root) {
00246528 4492 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4493 root->reloc_root = NULL;
4494 }
4495 }
3321719e 4496
4785e24f
JB
4497 if (drop_ref)
4498 btrfs_put_root(root);
2619ba1f
CM
4499}
4500
c146afad 4501int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4502{
fc7cbcd4
DS
4503 u64 root_objectid = 0;
4504 struct btrfs_root *gang[8];
4505 int i = 0;
65d33fd7 4506 int err = 0;
fc7cbcd4 4507 unsigned int ret = 0;
e089f05c 4508
c146afad 4509 while (1) {
fc7cbcd4
DS
4510 spin_lock(&fs_info->fs_roots_radix_lock);
4511 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4512 (void **)gang, root_objectid,
4513 ARRAY_SIZE(gang));
4514 if (!ret) {
4515 spin_unlock(&fs_info->fs_roots_radix_lock);
4516 break;
65d33fd7 4517 }
fc7cbcd4 4518 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4519
fc7cbcd4
DS
4520 for (i = 0; i < ret; i++) {
4521 /* Avoid to grab roots in dead_roots */
4522 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4523 gang[i] = NULL;
4524 continue;
4525 }
4526 /* grab all the search result for later use */
4527 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4528 }
fc7cbcd4 4529 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4530
fc7cbcd4
DS
4531 for (i = 0; i < ret; i++) {
4532 if (!gang[i])
65d33fd7 4533 continue;
fc7cbcd4
DS
4534 root_objectid = gang[i]->root_key.objectid;
4535 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4536 if (err)
fc7cbcd4
DS
4537 break;
4538 btrfs_put_root(gang[i]);
c146afad 4539 }
fc7cbcd4 4540 root_objectid++;
c146afad 4541 }
65d33fd7 4542
fc7cbcd4
DS
4543 /* release the uncleaned roots due to error */
4544 for (; i < ret; i++) {
4545 if (gang[i])
4546 btrfs_put_root(gang[i]);
65d33fd7
QW
4547 }
4548 return err;
c146afad 4549}
a2135011 4550
6bccf3ab 4551int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4552{
6bccf3ab 4553 struct btrfs_root *root = fs_info->tree_root;
c146afad 4554 struct btrfs_trans_handle *trans;
a74a4b97 4555
0b246afa 4556 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4557 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4558 mutex_unlock(&fs_info->cleaner_mutex);
4559 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4560
4561 /* wait until ongoing cleanup work done */
0b246afa
JM
4562 down_write(&fs_info->cleanup_work_sem);
4563 up_write(&fs_info->cleanup_work_sem);
c71bf099 4564
7a7eaa40 4565 trans = btrfs_join_transaction(root);
3612b495
TI
4566 if (IS_ERR(trans))
4567 return PTR_ERR(trans);
3a45bb20 4568 return btrfs_commit_transaction(trans);
c146afad
YZ
4569}
4570
36c86a9e
QW
4571static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4572{
4573 struct btrfs_transaction *trans;
4574 struct btrfs_transaction *tmp;
4575 bool found = false;
4576
4577 if (list_empty(&fs_info->trans_list))
4578 return;
4579
4580 /*
4581 * This function is only called at the very end of close_ctree(),
4582 * thus no other running transaction, no need to take trans_lock.
4583 */
4584 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4585 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4586 struct extent_state *cached = NULL;
4587 u64 dirty_bytes = 0;
4588 u64 cur = 0;
4589 u64 found_start;
4590 u64 found_end;
4591
4592 found = true;
4593 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4594 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4595 dirty_bytes += found_end + 1 - found_start;
4596 cur = found_end + 1;
4597 }
4598 btrfs_warn(fs_info,
4599 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4600 trans->transid, dirty_bytes);
4601 btrfs_cleanup_one_transaction(trans, fs_info);
4602
4603 if (trans == fs_info->running_transaction)
4604 fs_info->running_transaction = NULL;
4605 list_del_init(&trans->list);
4606
4607 btrfs_put_transaction(trans);
4608 trace_btrfs_transaction_commit(fs_info);
4609 }
4610 ASSERT(!found);
4611}
4612
b105e927 4613void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4614{
c146afad
YZ
4615 int ret;
4616
afcdd129 4617 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4618
8a1f1e3d
FM
4619 /*
4620 * If we had UNFINISHED_DROPS we could still be processing them, so
4621 * clear that bit and wake up relocation so it can stop.
4622 * We must do this before stopping the block group reclaim task, because
4623 * at btrfs_relocate_block_group() we wait for this bit, and after the
4624 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4625 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4626 * return 1.
4627 */
4628 btrfs_wake_unfinished_drop(fs_info);
4629
31e70e52
FM
4630 /*
4631 * We may have the reclaim task running and relocating a data block group,
4632 * in which case it may create delayed iputs. So stop it before we park
4633 * the cleaner kthread otherwise we can get new delayed iputs after
4634 * parking the cleaner, and that can make the async reclaim task to hang
4635 * if it's waiting for delayed iputs to complete, since the cleaner is
4636 * parked and can not run delayed iputs - this will make us hang when
4637 * trying to stop the async reclaim task.
4638 */
4639 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4640 /*
4641 * We don't want the cleaner to start new transactions, add more delayed
4642 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4643 * because that frees the task_struct, and the transaction kthread might
4644 * still try to wake up the cleaner.
4645 */
4646 kthread_park(fs_info->cleaner_kthread);
c146afad 4647
7343dd61 4648 /* wait for the qgroup rescan worker to stop */
d06f23d6 4649 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4650
803b2f54
SB
4651 /* wait for the uuid_scan task to finish */
4652 down(&fs_info->uuid_tree_rescan_sem);
4653 /* avoid complains from lockdep et al., set sem back to initial state */
4654 up(&fs_info->uuid_tree_rescan_sem);
4655
837d5b6e 4656 /* pause restriper - we want to resume on mount */
aa1b8cd4 4657 btrfs_pause_balance(fs_info);
837d5b6e 4658
8dabb742
SB
4659 btrfs_dev_replace_suspend_for_unmount(fs_info);
4660
aa1b8cd4 4661 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4662
4663 /* wait for any defraggers to finish */
4664 wait_event(fs_info->transaction_wait,
4665 (atomic_read(&fs_info->defrag_running) == 0));
4666
4667 /* clear out the rbtree of defraggable inodes */
26176e7c 4668 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4669
a362bb86
FM
4670 /*
4671 * After we parked the cleaner kthread, ordered extents may have
4672 * completed and created new delayed iputs. If one of the async reclaim
4673 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4674 * can hang forever trying to stop it, because if a delayed iput is
4675 * added after it ran btrfs_run_delayed_iputs() and before it called
4676 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4677 * no one else to run iputs.
4678 *
4679 * So wait for all ongoing ordered extents to complete and then run
4680 * delayed iputs. This works because once we reach this point no one
4681 * can either create new ordered extents nor create delayed iputs
4682 * through some other means.
4683 *
4684 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4685 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4686 * but the delayed iput for the respective inode is made only when doing
4687 * the final btrfs_put_ordered_extent() (which must happen at
4688 * btrfs_finish_ordered_io() when we are unmounting).
4689 */
4690 btrfs_flush_workqueue(fs_info->endio_write_workers);
4691 /* Ordered extents for free space inodes. */
4692 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4693 btrfs_run_delayed_iputs(fs_info);
4694
21c7e756 4695 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4696 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4697 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4698
b0643e59
DZ
4699 /* Cancel or finish ongoing discard work */
4700 btrfs_discard_cleanup(fs_info);
4701
bc98a42c 4702 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4703 /*
d6fd0ae2
OS
4704 * The cleaner kthread is stopped, so do one final pass over
4705 * unused block groups.
e44163e1 4706 */
0b246afa 4707 btrfs_delete_unused_bgs(fs_info);
e44163e1 4708
f0cc2cd7
FM
4709 /*
4710 * There might be existing delayed inode workers still running
4711 * and holding an empty delayed inode item. We must wait for
4712 * them to complete first because they can create a transaction.
4713 * This happens when someone calls btrfs_balance_delayed_items()
4714 * and then a transaction commit runs the same delayed nodes
4715 * before any delayed worker has done something with the nodes.
4716 * We must wait for any worker here and not at transaction
4717 * commit time since that could cause a deadlock.
4718 * This is a very rare case.
4719 */
4720 btrfs_flush_workqueue(fs_info->delayed_workers);
4721
6bccf3ab 4722 ret = btrfs_commit_super(fs_info);
acce952b 4723 if (ret)
04892340 4724 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4725 }
4726
84961539 4727 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4728 btrfs_error_commit_super(fs_info);
0f7d52f4 4729
e3029d9f
AV
4730 kthread_stop(fs_info->transaction_kthread);
4731 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4732
e187831e 4733 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4734 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4735
5958253c
QW
4736 if (btrfs_check_quota_leak(fs_info)) {
4737 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4738 btrfs_err(fs_info, "qgroup reserved space leaked");
4739 }
4740
04892340 4741 btrfs_free_qgroup_config(fs_info);
fe816d0f 4742 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4743
963d678b 4744 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4745 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4746 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4747 }
bcc63abb 4748
5deb17e1 4749 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4750 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4751 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4752
6618a59b 4753 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4754 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4755
1a4319cc
LB
4756 btrfs_put_block_group_cache(fs_info);
4757
de348ee0
WS
4758 /*
4759 * we must make sure there is not any read request to
4760 * submit after we stopping all workers.
4761 */
4762 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4763 btrfs_stop_all_workers(fs_info);
4764
0a31daa4 4765 /* We shouldn't have any transaction open at this point */
36c86a9e 4766 warn_about_uncommitted_trans(fs_info);
0a31daa4 4767
afcdd129 4768 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4769 free_root_pointers(fs_info, true);
8c38938c 4770 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4771
4e19443d
JB
4772 /*
4773 * We must free the block groups after dropping the fs_roots as we could
4774 * have had an IO error and have left over tree log blocks that aren't
4775 * cleaned up until the fs roots are freed. This makes the block group
4776 * accounting appear to be wrong because there's pending reserved bytes,
4777 * so make sure we do the block group cleanup afterwards.
4778 */
4779 btrfs_free_block_groups(fs_info);
4780
13e6c37b 4781 iput(fs_info->btree_inode);
d6bfde87 4782
21adbd5c 4783#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4784 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4785 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4786#endif
4787
0b86a832 4788 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4789 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4790}
4791
b9fab919
CM
4792int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4793 int atomic)
5f39d397 4794{
1259ab75 4795 int ret;
727011e0 4796 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4797
0b32f4bb 4798 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4799 if (!ret)
4800 return ret;
4801
4802 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4803 parent_transid, atomic);
4804 if (ret == -EAGAIN)
4805 return ret;
1259ab75 4806 return !ret;
5f39d397
CM
4807}
4808
5f39d397
CM
4809void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4810{
2f4d60df 4811 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4812 u64 transid = btrfs_header_generation(buf);
b9473439 4813 int was_dirty;
b4ce94de 4814
06ea65a3
JB
4815#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4816 /*
4817 * This is a fast path so only do this check if we have sanity tests
52042d8e 4818 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4819 * outside of the sanity tests.
4820 */
b0132a3b 4821 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4822 return;
4823#endif
49d0c642 4824 btrfs_assert_tree_write_locked(buf);
0b246afa 4825 if (transid != fs_info->generation)
5d163e0e 4826 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4827 buf->start, transid, fs_info->generation);
0b32f4bb 4828 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4829 if (!was_dirty)
104b4e51
NB
4830 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4831 buf->len,
4832 fs_info->dirty_metadata_batch);
1f21ef0a 4833#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4834 /*
4835 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4836 * but item data not updated.
4837 * So here we should only check item pointers, not item data.
4838 */
4839 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4840 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4841 btrfs_print_leaf(buf);
1f21ef0a
FM
4842 ASSERT(0);
4843 }
4844#endif
eb60ceac
CM
4845}
4846
2ff7e61e 4847static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4848 int flush_delayed)
16cdcec7
MX
4849{
4850 /*
4851 * looks as though older kernels can get into trouble with
4852 * this code, they end up stuck in balance_dirty_pages forever
4853 */
e2d84521 4854 int ret;
16cdcec7
MX
4855
4856 if (current->flags & PF_MEMALLOC)
4857 return;
4858
b53d3f5d 4859 if (flush_delayed)
2ff7e61e 4860 btrfs_balance_delayed_items(fs_info);
16cdcec7 4861
d814a491
EL
4862 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4863 BTRFS_DIRTY_METADATA_THRESH,
4864 fs_info->dirty_metadata_batch);
e2d84521 4865 if (ret > 0) {
0b246afa 4866 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4867 }
16cdcec7
MX
4868}
4869
2ff7e61e 4870void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4871{
2ff7e61e 4872 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4873}
585ad2c3 4874
2ff7e61e 4875void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4876{
2ff7e61e 4877 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4878}
6b80053d 4879
2ff7e61e 4880static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4881{
fe816d0f
NB
4882 /* cleanup FS via transaction */
4883 btrfs_cleanup_transaction(fs_info);
4884
0b246afa 4885 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4886 btrfs_run_delayed_iputs(fs_info);
0b246afa 4887 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4888
0b246afa
JM
4889 down_write(&fs_info->cleanup_work_sem);
4890 up_write(&fs_info->cleanup_work_sem);
acce952b 4891}
4892
ef67963d
JB
4893static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4894{
fc7cbcd4
DS
4895 struct btrfs_root *gang[8];
4896 u64 root_objectid = 0;
4897 int ret;
4898
4899 spin_lock(&fs_info->fs_roots_radix_lock);
4900 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4901 (void **)gang, root_objectid,
4902 ARRAY_SIZE(gang))) != 0) {
4903 int i;
4904
4905 for (i = 0; i < ret; i++)
4906 gang[i] = btrfs_grab_root(gang[i]);
4907 spin_unlock(&fs_info->fs_roots_radix_lock);
4908
4909 for (i = 0; i < ret; i++) {
4910 if (!gang[i])
ef67963d 4911 continue;
fc7cbcd4
DS
4912 root_objectid = gang[i]->root_key.objectid;
4913 btrfs_free_log(NULL, gang[i]);
4914 btrfs_put_root(gang[i]);
ef67963d 4915 }
fc7cbcd4
DS
4916 root_objectid++;
4917 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4918 }
fc7cbcd4 4919 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4920 btrfs_free_log_root_tree(NULL, fs_info);
4921}
4922
143bede5 4923static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4924{
acce952b 4925 struct btrfs_ordered_extent *ordered;
acce952b 4926
199c2a9c 4927 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4928 /*
4929 * This will just short circuit the ordered completion stuff which will
4930 * make sure the ordered extent gets properly cleaned up.
4931 */
199c2a9c 4932 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4933 root_extent_list)
4934 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4935 spin_unlock(&root->ordered_extent_lock);
4936}
4937
4938static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4939{
4940 struct btrfs_root *root;
4941 struct list_head splice;
4942
4943 INIT_LIST_HEAD(&splice);
4944
4945 spin_lock(&fs_info->ordered_root_lock);
4946 list_splice_init(&fs_info->ordered_roots, &splice);
4947 while (!list_empty(&splice)) {
4948 root = list_first_entry(&splice, struct btrfs_root,
4949 ordered_root);
1de2cfde
JB
4950 list_move_tail(&root->ordered_root,
4951 &fs_info->ordered_roots);
199c2a9c 4952
2a85d9ca 4953 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4954 btrfs_destroy_ordered_extents(root);
4955
2a85d9ca
LB
4956 cond_resched();
4957 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4958 }
4959 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4960
4961 /*
4962 * We need this here because if we've been flipped read-only we won't
4963 * get sync() from the umount, so we need to make sure any ordered
4964 * extents that haven't had their dirty pages IO start writeout yet
4965 * actually get run and error out properly.
4966 */
4967 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4968}
4969
35a3621b 4970static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4971 struct btrfs_fs_info *fs_info)
acce952b 4972{
4973 struct rb_node *node;
4974 struct btrfs_delayed_ref_root *delayed_refs;
4975 struct btrfs_delayed_ref_node *ref;
4976 int ret = 0;
4977
4978 delayed_refs = &trans->delayed_refs;
4979
4980 spin_lock(&delayed_refs->lock);
d7df2c79 4981 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4982 spin_unlock(&delayed_refs->lock);
b79ce3dd 4983 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4984 return ret;
4985 }
4986
5c9d028b 4987 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4988 struct btrfs_delayed_ref_head *head;
0e0adbcf 4989 struct rb_node *n;
e78417d1 4990 bool pin_bytes = false;
acce952b 4991
d7df2c79
JB
4992 head = rb_entry(node, struct btrfs_delayed_ref_head,
4993 href_node);
3069bd26 4994 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4995 continue;
3069bd26 4996
d7df2c79 4997 spin_lock(&head->lock);
e3d03965 4998 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4999 ref = rb_entry(n, struct btrfs_delayed_ref_node,
5000 ref_node);
d7df2c79 5001 ref->in_tree = 0;
e3d03965 5002 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 5003 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
5004 if (!list_empty(&ref->add_list))
5005 list_del(&ref->add_list);
d7df2c79
JB
5006 atomic_dec(&delayed_refs->num_entries);
5007 btrfs_put_delayed_ref(ref);
e78417d1 5008 }
d7df2c79
JB
5009 if (head->must_insert_reserved)
5010 pin_bytes = true;
5011 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 5012 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
5013 spin_unlock(&head->lock);
5014 spin_unlock(&delayed_refs->lock);
5015 mutex_unlock(&head->mutex);
acce952b 5016
f603bb94
NB
5017 if (pin_bytes) {
5018 struct btrfs_block_group *cache;
5019
5020 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5021 BUG_ON(!cache);
5022
5023 spin_lock(&cache->space_info->lock);
5024 spin_lock(&cache->lock);
5025 cache->pinned += head->num_bytes;
5026 btrfs_space_info_update_bytes_pinned(fs_info,
5027 cache->space_info, head->num_bytes);
5028 cache->reserved -= head->num_bytes;
5029 cache->space_info->bytes_reserved -= head->num_bytes;
5030 spin_unlock(&cache->lock);
5031 spin_unlock(&cache->space_info->lock);
f603bb94
NB
5032
5033 btrfs_put_block_group(cache);
5034
5035 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5036 head->bytenr + head->num_bytes - 1);
5037 }
31890da0 5038 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 5039 btrfs_put_delayed_ref_head(head);
acce952b 5040 cond_resched();
5041 spin_lock(&delayed_refs->lock);
5042 }
81f7eb00 5043 btrfs_qgroup_destroy_extent_records(trans);
acce952b 5044
5045 spin_unlock(&delayed_refs->lock);
5046
5047 return ret;
5048}
5049
143bede5 5050static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 5051{
5052 struct btrfs_inode *btrfs_inode;
5053 struct list_head splice;
5054
5055 INIT_LIST_HEAD(&splice);
5056
eb73c1b7
MX
5057 spin_lock(&root->delalloc_lock);
5058 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 5059
5060 while (!list_empty(&splice)) {
fe816d0f 5061 struct inode *inode = NULL;
eb73c1b7
MX
5062 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5063 delalloc_inodes);
fe816d0f 5064 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 5065 spin_unlock(&root->delalloc_lock);
acce952b 5066
fe816d0f
NB
5067 /*
5068 * Make sure we get a live inode and that it'll not disappear
5069 * meanwhile.
5070 */
5071 inode = igrab(&btrfs_inode->vfs_inode);
5072 if (inode) {
5073 invalidate_inode_pages2(inode->i_mapping);
5074 iput(inode);
5075 }
eb73c1b7 5076 spin_lock(&root->delalloc_lock);
acce952b 5077 }
eb73c1b7
MX
5078 spin_unlock(&root->delalloc_lock);
5079}
5080
5081static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5082{
5083 struct btrfs_root *root;
5084 struct list_head splice;
5085
5086 INIT_LIST_HEAD(&splice);
5087
5088 spin_lock(&fs_info->delalloc_root_lock);
5089 list_splice_init(&fs_info->delalloc_roots, &splice);
5090 while (!list_empty(&splice)) {
5091 root = list_first_entry(&splice, struct btrfs_root,
5092 delalloc_root);
00246528 5093 root = btrfs_grab_root(root);
eb73c1b7
MX
5094 BUG_ON(!root);
5095 spin_unlock(&fs_info->delalloc_root_lock);
5096
5097 btrfs_destroy_delalloc_inodes(root);
00246528 5098 btrfs_put_root(root);
eb73c1b7
MX
5099
5100 spin_lock(&fs_info->delalloc_root_lock);
5101 }
5102 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 5103}
5104
2ff7e61e 5105static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 5106 struct extent_io_tree *dirty_pages,
5107 int mark)
5108{
5109 int ret;
acce952b 5110 struct extent_buffer *eb;
5111 u64 start = 0;
5112 u64 end;
acce952b 5113
5114 while (1) {
5115 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 5116 mark, NULL);
acce952b 5117 if (ret)
5118 break;
5119
91166212 5120 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 5121 while (start <= end) {
0b246afa
JM
5122 eb = find_extent_buffer(fs_info, start);
5123 start += fs_info->nodesize;
fd8b2b61 5124 if (!eb)
acce952b 5125 continue;
fd8b2b61 5126 wait_on_extent_buffer_writeback(eb);
acce952b 5127
fd8b2b61
JB
5128 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5129 &eb->bflags))
5130 clear_extent_buffer_dirty(eb);
5131 free_extent_buffer_stale(eb);
acce952b 5132 }
5133 }
5134
5135 return ret;
5136}
5137
2ff7e61e 5138static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5139 struct extent_io_tree *unpin)
acce952b 5140{
acce952b 5141 u64 start;
5142 u64 end;
5143 int ret;
5144
acce952b 5145 while (1) {
0e6ec385
FM
5146 struct extent_state *cached_state = NULL;
5147
fcd5e742
LF
5148 /*
5149 * The btrfs_finish_extent_commit() may get the same range as
5150 * ours between find_first_extent_bit and clear_extent_dirty.
5151 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5152 * the same extent range.
5153 */
5154 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5155 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5156 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5157 if (ret) {
5158 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5159 break;
fcd5e742 5160 }
acce952b 5161
0e6ec385
FM
5162 clear_extent_dirty(unpin, start, end, &cached_state);
5163 free_extent_state(cached_state);
2ff7e61e 5164 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5165 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5166 cond_resched();
5167 }
5168
5169 return 0;
5170}
5171
32da5386 5172static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5173{
5174 struct inode *inode;
5175
5176 inode = cache->io_ctl.inode;
5177 if (inode) {
5178 invalidate_inode_pages2(inode->i_mapping);
5179 BTRFS_I(inode)->generation = 0;
5180 cache->io_ctl.inode = NULL;
5181 iput(inode);
5182 }
bbc37d6e 5183 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5184 btrfs_put_block_group(cache);
5185}
5186
5187void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5188 struct btrfs_fs_info *fs_info)
c79a1751 5189{
32da5386 5190 struct btrfs_block_group *cache;
c79a1751
LB
5191
5192 spin_lock(&cur_trans->dirty_bgs_lock);
5193 while (!list_empty(&cur_trans->dirty_bgs)) {
5194 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5195 struct btrfs_block_group,
c79a1751 5196 dirty_list);
c79a1751
LB
5197
5198 if (!list_empty(&cache->io_list)) {
5199 spin_unlock(&cur_trans->dirty_bgs_lock);
5200 list_del_init(&cache->io_list);
5201 btrfs_cleanup_bg_io(cache);
5202 spin_lock(&cur_trans->dirty_bgs_lock);
5203 }
5204
5205 list_del_init(&cache->dirty_list);
5206 spin_lock(&cache->lock);
5207 cache->disk_cache_state = BTRFS_DC_ERROR;
5208 spin_unlock(&cache->lock);
5209
5210 spin_unlock(&cur_trans->dirty_bgs_lock);
5211 btrfs_put_block_group(cache);
ba2c4d4e 5212 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5213 spin_lock(&cur_trans->dirty_bgs_lock);
5214 }
5215 spin_unlock(&cur_trans->dirty_bgs_lock);
5216
45ae2c18
NB
5217 /*
5218 * Refer to the definition of io_bgs member for details why it's safe
5219 * to use it without any locking
5220 */
c79a1751
LB
5221 while (!list_empty(&cur_trans->io_bgs)) {
5222 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5223 struct btrfs_block_group,
c79a1751 5224 io_list);
c79a1751
LB
5225
5226 list_del_init(&cache->io_list);
5227 spin_lock(&cache->lock);
5228 cache->disk_cache_state = BTRFS_DC_ERROR;
5229 spin_unlock(&cache->lock);
5230 btrfs_cleanup_bg_io(cache);
5231 }
5232}
5233
49b25e05 5234void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5235 struct btrfs_fs_info *fs_info)
49b25e05 5236{
bbbf7243
NB
5237 struct btrfs_device *dev, *tmp;
5238
2ff7e61e 5239 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5240 ASSERT(list_empty(&cur_trans->dirty_bgs));
5241 ASSERT(list_empty(&cur_trans->io_bgs));
5242
bbbf7243
NB
5243 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5244 post_commit_list) {
5245 list_del_init(&dev->post_commit_list);
5246 }
5247
2ff7e61e 5248 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5249
4a9d8bde 5250 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5251 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5252
4a9d8bde 5253 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5254 wake_up(&fs_info->transaction_wait);
49b25e05 5255
ccdf9b30 5256 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5257
2ff7e61e 5258 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5259 EXTENT_DIRTY);
fe119a6e 5260 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5261
d3575156
NA
5262 btrfs_free_redirty_list(cur_trans);
5263
4a9d8bde
MX
5264 cur_trans->state =TRANS_STATE_COMPLETED;
5265 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5266}
5267
2ff7e61e 5268static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5269{
5270 struct btrfs_transaction *t;
acce952b 5271
0b246afa 5272 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5273
0b246afa
JM
5274 spin_lock(&fs_info->trans_lock);
5275 while (!list_empty(&fs_info->trans_list)) {
5276 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5277 struct btrfs_transaction, list);
5278 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5279 refcount_inc(&t->use_count);
0b246afa 5280 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5281 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5282 btrfs_put_transaction(t);
0b246afa 5283 spin_lock(&fs_info->trans_lock);
724e2315
JB
5284 continue;
5285 }
0b246afa 5286 if (t == fs_info->running_transaction) {
724e2315 5287 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5288 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5289 /*
5290 * We wait for 0 num_writers since we don't hold a trans
5291 * handle open currently for this transaction.
5292 */
5293 wait_event(t->writer_wait,
5294 atomic_read(&t->num_writers) == 0);
5295 } else {
0b246afa 5296 spin_unlock(&fs_info->trans_lock);
724e2315 5297 }
2ff7e61e 5298 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5299
0b246afa
JM
5300 spin_lock(&fs_info->trans_lock);
5301 if (t == fs_info->running_transaction)
5302 fs_info->running_transaction = NULL;
acce952b 5303 list_del_init(&t->list);
0b246afa 5304 spin_unlock(&fs_info->trans_lock);
acce952b 5305
724e2315 5306 btrfs_put_transaction(t);
2e4e97ab 5307 trace_btrfs_transaction_commit(fs_info);
0b246afa 5308 spin_lock(&fs_info->trans_lock);
724e2315 5309 }
0b246afa
JM
5310 spin_unlock(&fs_info->trans_lock);
5311 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5312 btrfs_destroy_delayed_inodes(fs_info);
5313 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5314 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5315 btrfs_drop_all_logs(fs_info);
0b246afa 5316 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5317
5318 return 0;
5319}
ec7d6dfd 5320
453e4873 5321int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5322{
5323 struct btrfs_path *path;
5324 int ret;
5325 struct extent_buffer *l;
5326 struct btrfs_key search_key;
5327 struct btrfs_key found_key;
5328 int slot;
5329
5330 path = btrfs_alloc_path();
5331 if (!path)
5332 return -ENOMEM;
5333
5334 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5335 search_key.type = -1;
5336 search_key.offset = (u64)-1;
5337 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5338 if (ret < 0)
5339 goto error;
5340 BUG_ON(ret == 0); /* Corruption */
5341 if (path->slots[0] > 0) {
5342 slot = path->slots[0] - 1;
5343 l = path->nodes[0];
5344 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5345 root->free_objectid = max_t(u64, found_key.objectid + 1,
5346 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5347 } else {
23125104 5348 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5349 }
5350 ret = 0;
5351error:
5352 btrfs_free_path(path);
5353 return ret;
5354}
5355
543068a2 5356int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5357{
5358 int ret;
5359 mutex_lock(&root->objectid_mutex);
5360
6b8fad57 5361 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5362 btrfs_warn(root->fs_info,
5363 "the objectid of root %llu reaches its highest value",
5364 root->root_key.objectid);
5365 ret = -ENOSPC;
5366 goto out;
5367 }
5368
23125104 5369 *objectid = root->free_objectid++;
ec7d6dfd
NB
5370 ret = 0;
5371out:
5372 mutex_unlock(&root->objectid_mutex);
5373 return ret;
5374}