btrfs: change BUG_ON to assertion in btrfs_read_roots()
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
103c1972 26#include "bio.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
8dabb742 32#include "dev-replace.h"
53b381b3 33#include "raid56.h"
5ac1d209 34#include "sysfs.h"
fcebe456 35#include "qgroup.h"
ebb8765b 36#include "compression.h"
557ea5dd 37#include "tree-checker.h"
fd708b81 38#include "ref-verify.h"
aac0023c 39#include "block-group.h"
b0643e59 40#include "discard.h"
f603bb94 41#include "space-info.h"
b70f5097 42#include "zoned.h"
139e8cd3 43#include "subpage.h"
c7f13d42 44#include "fs.h"
07e81dc9 45#include "accessors.h"
a0231804 46#include "extent-tree.h"
45c40c8f 47#include "root-tree.h"
59b818e0 48#include "defrag.h"
c7a03b52 49#include "uuid-tree.h"
67707479 50#include "relocation.h"
2fc6822c 51#include "scrub.h"
c03b2207 52#include "super.h"
eb60ceac 53
319e4d06
QW
54#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
55 BTRFS_HEADER_FLAG_RELOC |\
56 BTRFS_SUPER_FLAG_ERROR |\
57 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
58 BTRFS_SUPER_FLAG_METADUMP |\
59 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 60
2ff7e61e
JM
61static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 63
141386e1
JB
64static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65{
66 if (fs_info->csum_shash)
67 crypto_free_shash(fs_info->csum_shash);
68}
69
d352ac68 70/*
2996e1f8 71 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 72 */
c67b3892 73static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 74{
d5178578 75 struct btrfs_fs_info *fs_info = buf->fs_info;
397239ed
QW
76 int num_pages;
77 u32 first_page_part;
d5178578 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 79 char *kaddr;
e9be5a30 80 int i;
d5178578
JT
81
82 shash->tfm = fs_info->csum_shash;
83 crypto_shash_init(shash);
397239ed
QW
84
85 if (buf->addr) {
86 /* Pages are contiguous, handle them as a big one. */
87 kaddr = buf->addr;
88 first_page_part = fs_info->nodesize;
89 num_pages = 1;
90 } else {
082d5bb9 91 kaddr = folio_address(buf->folios[0]);
397239ed
QW
92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 num_pages = num_extent_pages(buf);
94 }
95
e9be5a30 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 97 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 98
13df3775
QW
99 /*
100 * Multiple single-page folios case would reach here.
101 *
102 * nodesize <= PAGE_SIZE and large folio all handled by above
103 * crypto_shash_update() already.
104 */
5ad9b471 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
082d5bb9 106 kaddr = folio_address(buf->folios[i]);
e9be5a30 107 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 108 }
71a63551 109 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 110 crypto_shash_final(shash, result);
19c00ddc
CM
111}
112
d352ac68
CM
113/*
114 * we can't consider a given block up to date unless the transid of the
115 * block matches the transid in the parent node's pointer. This is how we
116 * detect blocks that either didn't get written at all or got written
117 * in the wrong place.
118 */
d87e6575 119int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
1259ab75 120{
d87e6575 121 if (!extent_buffer_uptodate(eb))
1259ab75
CM
122 return 0;
123
d87e6575
CH
124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 return 1;
126
b9fab919
CM
127 if (atomic)
128 return -EAGAIN;
129
d87e6575
CH
130 if (!extent_buffer_uptodate(eb) ||
131 btrfs_header_generation(eb) != parent_transid) {
132 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
133"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 eb->start, eb->read_mirror,
29549aec 135 parent_transid, btrfs_header_generation(eb));
d87e6575 136 clear_extent_buffer_uptodate(eb);
9e2aff90 137 return 0;
d87e6575 138 }
9e2aff90 139 return 1;
1259ab75
CM
140}
141
e7e16f48
JT
142static bool btrfs_supported_super_csum(u16 csum_type)
143{
144 switch (csum_type) {
145 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 146 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 147 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 148 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
149 return true;
150 default:
151 return false;
152 }
153}
154
1104a885
DS
155/*
156 * Return 0 if the superblock checksum type matches the checksum value of that
157 * algorithm. Pass the raw disk superblock data.
158 */
3d17adea
QW
159int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 const struct btrfs_super_block *disk_sb)
1104a885 161{
51bce6c9 162 char result[BTRFS_CSUM_SIZE];
d5178578
JT
163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165 shash->tfm = fs_info->csum_shash;
1104a885 166
51bce6c9
JT
167 /*
168 * The super_block structure does not span the whole
169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 * filled with zeros and is included in the checksum.
171 */
3d17adea 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 174
55fc29be 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 176 return 1;
1104a885 177
e7e16f48 178 return 0;
1104a885
DS
179}
180
bacf60e5
CH
181static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 int mirror_num)
183{
184 struct btrfs_fs_info *fs_info = eb->fs_info;
96c36eaa 185 int num_folios = num_extent_folios(eb);
bacf60e5
CH
186 int ret = 0;
187
188 if (sb_rdonly(fs_info->sb))
189 return -EROFS;
190
96c36eaa
QW
191 for (int i = 0; i < num_folios; i++) {
192 struct folio *folio = eb->folios[i];
193 u64 start = max_t(u64, eb->start, folio_pos(folio));
082d5bb9 194 u64 end = min_t(u64, eb->start + eb->len,
84cda1a6 195 folio_pos(folio) + eb->folio_size);
917ac778 196 u32 len = end - start;
bacf60e5 197
917ac778 198 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
96c36eaa
QW
199 start, folio, offset_in_folio(folio, start),
200 mirror_num);
bacf60e5
CH
201 if (ret)
202 break;
bacf60e5
CH
203 }
204
205 return ret;
206}
207
d352ac68
CM
208/*
209 * helper to read a given tree block, doing retries as required when
210 * the checksums don't match and we have alternate mirrors to try.
581c1760 211 *
789d6a3a
QW
212 * @check: expected tree parentness check, see the comments of the
213 * structure for details.
d352ac68 214 */
6a2e9dc4 215int btrfs_read_extent_buffer(struct extent_buffer *eb,
789d6a3a 216 struct btrfs_tree_parent_check *check)
f188591e 217{
5ab12d1f 218 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 219 int failed = 0;
f188591e
CM
220 int ret;
221 int num_copies = 0;
222 int mirror_num = 0;
ea466794 223 int failed_mirror = 0;
f188591e 224
789d6a3a
QW
225 ASSERT(check);
226
f188591e 227 while (1) {
f8397d69 228 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
947a6299
QW
229 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230 if (!ret)
231 break;
d397712b 232
0b246afa 233 num_copies = btrfs_num_copies(fs_info,
f188591e 234 eb->start, eb->len);
4235298e 235 if (num_copies == 1)
ea466794 236 break;
4235298e 237
5cf1ab56
JB
238 if (!failed_mirror) {
239 failed = 1;
240 failed_mirror = eb->read_mirror;
241 }
242
f188591e 243 mirror_num++;
ea466794
JB
244 if (mirror_num == failed_mirror)
245 mirror_num++;
246
4235298e 247 if (mirror_num > num_copies)
ea466794 248 break;
f188591e 249 }
ea466794 250
c0901581 251 if (failed && !ret && failed_mirror)
20a1fbf9 252 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
253
254 return ret;
f188591e 255}
19c00ddc 256
31d89399
CH
257/*
258 * Checksum a dirty tree block before IO.
259 */
260blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
eca0f6f6 261{
31d89399 262 struct extent_buffer *eb = bbio->private;
eca0f6f6 263 struct btrfs_fs_info *fs_info = eb->fs_info;
31d89399 264 u64 found_start = btrfs_header_bytenr(eb);
0124855f 265 u64 last_trans;
eca0f6f6
QW
266 u8 result[BTRFS_CSUM_SIZE];
267 int ret;
268
31d89399
CH
269 /* Btree blocks are always contiguous on disk. */
270 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271 return BLK_STS_IOERR;
272 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273 return BLK_STS_IOERR;
274
aa6313e6
JT
275 /*
276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277 * checksum it but zero-out its content. This is done to preserve
278 * ordering of I/O without unnecessarily writing out data.
279 */
cbf44cd9 280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
aa6313e6 281 memzero_extent_buffer(eb, 0, eb->len);
31d89399
CH
282 return BLK_STS_OK;
283 }
284
285 if (WARN_ON_ONCE(found_start != eb->start))
286 return BLK_STS_IOERR;
55151ea9
QW
287 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288 eb->start, eb->len)))
31d89399
CH
289 return BLK_STS_IOERR;
290
eca0f6f6
QW
291 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292 offsetof(struct btrfs_header, fsid),
293 BTRFS_FSID_SIZE) == 0);
294 csum_tree_block(eb, result);
295
296 if (btrfs_header_level(eb))
297 ret = btrfs_check_node(eb);
298 else
85d8a826 299 ret = btrfs_check_leaf(eb);
eca0f6f6 300
3777369f
QW
301 if (ret < 0)
302 goto error;
303
304 /*
305 * Also check the generation, the eb reached here must be newer than
306 * last committed. Or something seriously wrong happened.
307 */
0124855f
FM
308 last_trans = btrfs_get_last_trans_committed(fs_info);
309 if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
3777369f 310 ret = -EUCLEAN;
eca0f6f6 311 btrfs_err(fs_info,
3777369f 312 "block=%llu bad generation, have %llu expect > %llu",
0124855f 313 eb->start, btrfs_header_generation(eb), last_trans);
3777369f 314 goto error;
eca0f6f6
QW
315 }
316 write_extent_buffer(eb, result, 0, fs_info->csum_size);
31d89399 317 return BLK_STS_OK;
3777369f
QW
318
319error:
320 btrfs_print_tree(eb, 0);
321 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322 eb->start);
16199ad9
FM
323 /*
324 * Be noisy if this is an extent buffer from a log tree. We don't abort
325 * a transaction in case there's a bad log tree extent buffer, we just
326 * fallback to a transaction commit. Still we want to know when there is
327 * a bad log tree extent buffer, as that may signal a bug somewhere.
328 */
329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
deb6216f
CH
331 return errno_to_blk_status(ret);
332}
333
413fb1bc 334static bool check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 335{
b0c9b3b0 336 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 338 u8 fsid[BTRFS_FSID_SIZE];
2b82032c 339
9a8658e3
DS
340 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341 BTRFS_FSID_SIZE);
67bc5ad0 342
944d3f9f 343 /*
f7361d8c
AJ
344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345 * This is then overwritten by metadata_uuid if it is present in the
346 * device_list_add(). The same true for a seed device as well. So use of
347 * fs_devices::metadata_uuid is appropriate here.
944d3f9f 348 */
67bc5ad0 349 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
413fb1bc 350 return false;
944d3f9f
NB
351
352 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
413fb1bc 354 return false;
944d3f9f 355
413fb1bc 356 return true;
2b82032c
YZ
357}
358
77bf40a2 359/* Do basic extent buffer checks at read time */
046b562b
CH
360int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361 struct btrfs_tree_parent_check *check)
ce9adaa5 362{
77bf40a2 363 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 364 u64 found_start;
77bf40a2
QW
365 const u32 csum_size = fs_info->csum_size;
366 u8 found_level;
2996e1f8 367 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 368 const u8 *header_csum;
77bf40a2 369 int ret = 0;
ea466794 370
947a6299
QW
371 ASSERT(check);
372
ce9adaa5 373 found_start = btrfs_header_bytenr(eb);
727011e0 374 if (found_start != eb->start) {
8f0ed7d4
QW
375 btrfs_err_rl(fs_info,
376 "bad tree block start, mirror %u want %llu have %llu",
377 eb->read_mirror, eb->start, found_start);
f188591e 378 ret = -EIO;
77bf40a2 379 goto out;
ce9adaa5 380 }
b0c9b3b0 381 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
382 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
383 eb->start, eb->read_mirror);
1259ab75 384 ret = -EIO;
77bf40a2 385 goto out;
1259ab75 386 }
ce9adaa5 387 found_level = btrfs_header_level(eb);
1c24c3ce 388 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
389 btrfs_err(fs_info,
390 "bad tree block level, mirror %u level %d on logical %llu",
391 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 392 ret = -EIO;
77bf40a2 393 goto out;
1c24c3ce 394 }
ce9adaa5 395
c67b3892 396 csum_tree_block(eb, result);
082d5bb9 397 header_csum = folio_address(eb->folios[0]) +
8d993618 398 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
a826d6dc 399
dfd29eed 400 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 401 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
402"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
403 eb->start, eb->read_mirror,
dfd29eed 404 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
405 CSUM_FMT_VALUE(csum_size, result),
406 btrfs_header_level(eb));
2996e1f8 407 ret = -EUCLEAN;
77bf40a2 408 goto out;
2996e1f8
JT
409 }
410
947a6299 411 if (found_level != check->level) {
77177ed1
QW
412 btrfs_err(fs_info,
413 "level verify failed on logical %llu mirror %u wanted %u found %u",
414 eb->start, eb->read_mirror, check->level, found_level);
947a6299
QW
415 ret = -EIO;
416 goto out;
417 }
418 if (unlikely(check->transid &&
419 btrfs_header_generation(eb) != check->transid)) {
420 btrfs_err_rl(eb->fs_info,
421"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
422 eb->start, eb->read_mirror, check->transid,
423 btrfs_header_generation(eb));
424 ret = -EIO;
425 goto out;
426 }
427 if (check->has_first_key) {
428 struct btrfs_key *expect_key = &check->first_key;
429 struct btrfs_key found_key;
430
431 if (found_level)
432 btrfs_node_key_to_cpu(eb, &found_key, 0);
433 else
434 btrfs_item_key_to_cpu(eb, &found_key, 0);
435 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
436 btrfs_err(fs_info,
437"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
438 eb->start, check->transid,
439 expect_key->objectid,
440 expect_key->type, expect_key->offset,
441 found_key.objectid, found_key.type,
442 found_key.offset);
443 ret = -EUCLEAN;
444 goto out;
445 }
446 }
447 if (check->owner_root) {
448 ret = btrfs_check_eb_owner(eb, check->owner_root);
449 if (ret < 0)
450 goto out;
451 }
452
a826d6dc
JB
453 /*
454 * If this is a leaf block and it is corrupt, set the corrupt bit so
455 * that we don't try and read the other copies of this block, just
456 * return -EIO.
457 */
85d8a826 458 if (found_level == 0 && btrfs_check_leaf(eb)) {
a826d6dc
JB
459 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
460 ret = -EIO;
461 }
ce9adaa5 462
813fd1dc 463 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
464 ret = -EIO;
465
aebcc159 466 if (ret)
75391f0d 467 btrfs_err(fs_info,
8f0ed7d4
QW
468 "read time tree block corruption detected on logical %llu mirror %u",
469 eb->start, eb->read_mirror);
77bf40a2
QW
470out:
471 return ret;
472}
473
3dd1462e 474#ifdef CONFIG_MIGRATION
8958b551
MWO
475static int btree_migrate_folio(struct address_space *mapping,
476 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
477{
478 /*
479 * we can't safely write a btree page from here,
480 * we haven't done the locking hook
481 */
8958b551 482 if (folio_test_dirty(src))
784b4e29
CM
483 return -EAGAIN;
484 /*
485 * Buffers may be managed in a filesystem specific way.
486 * We must have no buffers or drop them.
487 */
8958b551
MWO
488 if (folio_get_private(src) &&
489 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 490 return -EAGAIN;
54184650 491 return migrate_folio(mapping, dst, src, mode);
784b4e29 492}
8958b551
MWO
493#else
494#define btree_migrate_folio NULL
3dd1462e 495#endif
784b4e29 496
0da5468f
CM
497static int btree_writepages(struct address_space *mapping,
498 struct writeback_control *wbc)
499{
e2d84521
MX
500 struct btrfs_fs_info *fs_info;
501 int ret;
502
d8d5f3e1 503 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
504
505 if (wbc->for_kupdate)
506 return 0;
507
e2d84521 508 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 509 /* this is a bit racy, but that's ok */
d814a491
EL
510 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
511 BTRFS_DIRTY_METADATA_THRESH,
512 fs_info->dirty_metadata_batch);
e2d84521 513 if (ret < 0)
793955bc 514 return 0;
793955bc 515 }
0b32f4bb 516 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
517}
518
f913cff3 519static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 520{
f913cff3
MWO
521 if (folio_test_writeback(folio) || folio_test_dirty(folio))
522 return false;
0c4e538b 523
f913cff3 524 return try_release_extent_buffer(&folio->page);
d98237b3
CM
525}
526
895586eb
MWO
527static void btree_invalidate_folio(struct folio *folio, size_t offset,
528 size_t length)
d98237b3 529{
d1310b2e 530 struct extent_io_tree *tree;
895586eb
MWO
531 tree = &BTRFS_I(folio->mapping->host)->io_tree;
532 extent_invalidate_folio(tree, folio, offset);
f913cff3 533 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
534 if (folio_get_private(folio)) {
535 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
536 "folio private not zero on folio %llu",
537 (unsigned long long)folio_pos(folio));
538 folio_detach_private(folio);
9ad6b7bc 539 }
d98237b3
CM
540}
541
bb146eb2 542#ifdef DEBUG
0079c3b1
MWO
543static bool btree_dirty_folio(struct address_space *mapping,
544 struct folio *folio)
545{
546 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
5e0e8799 547 struct btrfs_subpage_info *spi = fs_info->subpage_info;
139e8cd3 548 struct btrfs_subpage *subpage;
0b32f4bb 549 struct extent_buffer *eb;
139e8cd3 550 int cur_bit = 0;
0079c3b1 551 u64 page_start = folio_pos(folio);
139e8cd3
QW
552
553 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 554 eb = folio_get_private(folio);
139e8cd3
QW
555 BUG_ON(!eb);
556 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
557 BUG_ON(!atomic_read(&eb->refs));
49d0c642 558 btrfs_assert_tree_write_locked(eb);
0079c3b1 559 return filemap_dirty_folio(mapping, folio);
139e8cd3 560 }
5e0e8799
QW
561
562 ASSERT(spi);
0079c3b1 563 subpage = folio_get_private(folio);
139e8cd3 564
5e0e8799
QW
565 for (cur_bit = spi->dirty_offset;
566 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
567 cur_bit++) {
139e8cd3
QW
568 unsigned long flags;
569 u64 cur;
139e8cd3
QW
570
571 spin_lock_irqsave(&subpage->lock, flags);
5e0e8799 572 if (!test_bit(cur_bit, subpage->bitmaps)) {
139e8cd3 573 spin_unlock_irqrestore(&subpage->lock, flags);
139e8cd3
QW
574 continue;
575 }
576 spin_unlock_irqrestore(&subpage->lock, flags);
577 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 578
139e8cd3
QW
579 eb = find_extent_buffer(fs_info, cur);
580 ASSERT(eb);
581 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
582 ASSERT(atomic_read(&eb->refs));
49d0c642 583 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
584 free_extent_buffer(eb);
585
5e0e8799 586 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
139e8cd3 587 }
0079c3b1 588 return filemap_dirty_folio(mapping, folio);
0b32f4bb 589}
0079c3b1
MWO
590#else
591#define btree_dirty_folio filemap_dirty_folio
592#endif
0b32f4bb 593
7f09410b 594static const struct address_space_operations btree_aops = {
0da5468f 595 .writepages = btree_writepages,
f913cff3 596 .release_folio = btree_release_folio,
895586eb 597 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
598 .migrate_folio = btree_migrate_folio,
599 .dirty_folio = btree_dirty_folio,
d98237b3
CM
600};
601
2ff7e61e
JM
602struct extent_buffer *btrfs_find_create_tree_block(
603 struct btrfs_fs_info *fs_info,
3fbaf258
JB
604 u64 bytenr, u64 owner_root,
605 int level)
0999df54 606{
0b246afa
JM
607 if (btrfs_is_testing(fs_info))
608 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 609 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
610}
611
581c1760
QW
612/*
613 * Read tree block at logical address @bytenr and do variant basic but critical
614 * verification.
615 *
789d6a3a
QW
616 * @check: expected tree parentness check, see comments of the
617 * structure for details.
581c1760 618 */
2ff7e61e 619struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
789d6a3a 620 struct btrfs_tree_parent_check *check)
0999df54
CM
621{
622 struct extent_buffer *buf = NULL;
0999df54
CM
623 int ret;
624
789d6a3a
QW
625 ASSERT(check);
626
627 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
628 check->level);
c871b0f2
LB
629 if (IS_ERR(buf))
630 return buf;
0999df54 631
789d6a3a 632 ret = btrfs_read_extent_buffer(buf, check);
0f0fe8f7 633 if (ret) {
537f38f0 634 free_extent_buffer_stale(buf);
64c043de 635 return ERR_PTR(ret);
0f0fe8f7 636 }
789d6a3a 637 if (btrfs_check_eb_owner(buf, check->owner_root)) {
88c602ab
QW
638 free_extent_buffer_stale(buf);
639 return ERR_PTR(-EUCLEAN);
640 }
5f39d397 641 return buf;
ce9adaa5 642
eb60ceac
CM
643}
644
da17066c 645static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 646 u64 objectid)
d97e63b6 647{
7c0260ee 648 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
649
650 memset(&root->root_key, 0, sizeof(root->root_key));
651 memset(&root->root_item, 0, sizeof(root->root_item));
652 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 653 root->fs_info = fs_info;
2e608bd1 654 root->root_key.objectid = objectid;
cfaa7295 655 root->node = NULL;
a28ec197 656 root->commit_root = NULL;
27cdeb70 657 root->state = 0;
abed4aaa 658 RB_CLEAR_NODE(&root->rb_node);
0b86a832 659
0f7d52f4 660 root->last_trans = 0;
6b8fad57 661 root->free_objectid = 0;
eb73c1b7 662 root->nr_delalloc_inodes = 0;
199c2a9c 663 root->nr_ordered_extents = 0;
6bef4d31 664 root->inode_tree = RB_ROOT;
6140ba8a
DS
665 /* GFP flags are compatible with XA_FLAGS_*. */
666 xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
2e608bd1
JB
667
668 btrfs_init_root_block_rsv(root);
0b86a832
CM
669
670 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 671 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
672 INIT_LIST_HEAD(&root->delalloc_inodes);
673 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
674 INIT_LIST_HEAD(&root->ordered_extents);
675 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 676 INIT_LIST_HEAD(&root->reloc_dirty_list);
5d4f98a2 677 spin_lock_init(&root->inode_lock);
eb73c1b7 678 spin_lock_init(&root->delalloc_lock);
199c2a9c 679 spin_lock_init(&root->ordered_extent_lock);
f0486c68 680 spin_lock_init(&root->accounting_lock);
8287475a 681 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 682 mutex_init(&root->objectid_mutex);
e02119d5 683 mutex_init(&root->log_mutex);
31f3d255 684 mutex_init(&root->ordered_extent_mutex);
573bfb72 685 mutex_init(&root->delalloc_mutex);
c53e9653 686 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
687 init_waitqueue_head(&root->log_writer_wait);
688 init_waitqueue_head(&root->log_commit_wait[0]);
689 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
690 INIT_LIST_HEAD(&root->log_ctxs[0]);
691 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
692 atomic_set(&root->log_commit[0], 0);
693 atomic_set(&root->log_commit[1], 0);
694 atomic_set(&root->log_writers, 0);
2ecb7923 695 atomic_set(&root->log_batch, 0);
0700cea7 696 refcount_set(&root->refs, 1);
8ecebf4d 697 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 698 atomic_set(&root->nr_swapfiles, 0);
6008859b 699 btrfs_set_root_log_transid(root, 0);
d1433deb 700 root->log_transid_committed = -1;
f9850787 701 btrfs_set_root_last_log_commit(root, 0);
2e608bd1 702 root->anon_dev = 0;
e289f03e 703 if (!dummy) {
43eb5f29 704 extent_io_tree_init(fs_info, &root->dirty_log_pages,
35da5a7e 705 IO_TREE_ROOT_DIRTY_LOG_PAGES);
e289f03e 706 extent_io_tree_init(fs_info, &root->log_csum_range,
35da5a7e 707 IO_TREE_LOG_CSUM_RANGE);
e289f03e 708 }
017e5369 709
5f3ab90a 710 spin_lock_init(&root->root_item_lock);
370a11b8 711 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
712#ifdef CONFIG_BTRFS_DEBUG
713 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 714 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 715 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 716 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 717#endif
3768f368
CM
718}
719
74e4d827 720static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 721 u64 objectid, gfp_t flags)
6f07e42e 722{
74e4d827 723 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 724 if (root)
96dfcb46 725 __setup_root(root, fs_info, objectid);
6f07e42e
AV
726 return root;
727}
728
06ea65a3
JB
729#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
730/* Should only be used by the testing infrastructure */
da17066c 731struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
732{
733 struct btrfs_root *root;
734
7c0260ee
JM
735 if (!fs_info)
736 return ERR_PTR(-EINVAL);
737
96dfcb46 738 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
739 if (!root)
740 return ERR_PTR(-ENOMEM);
da17066c 741
b9ef22de 742 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 743 root->alloc_bytenr = 0;
06ea65a3
JB
744
745 return root;
746}
747#endif
748
abed4aaa
JB
749static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
750{
751 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
752 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
753
754 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
755}
756
757static int global_root_key_cmp(const void *k, const struct rb_node *node)
758{
759 const struct btrfs_key *key = k;
760 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
761
762 return btrfs_comp_cpu_keys(key, &root->root_key);
763}
764
765int btrfs_global_root_insert(struct btrfs_root *root)
766{
767 struct btrfs_fs_info *fs_info = root->fs_info;
768 struct rb_node *tmp;
745806fb 769 int ret = 0;
abed4aaa
JB
770
771 write_lock(&fs_info->global_root_lock);
772 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
773 write_unlock(&fs_info->global_root_lock);
abed4aaa 774
745806fb
QW
775 if (tmp) {
776 ret = -EEXIST;
777 btrfs_warn(fs_info, "global root %llu %llu already exists",
778 root->root_key.objectid, root->root_key.offset);
779 }
780 return ret;
abed4aaa
JB
781}
782
783void btrfs_global_root_delete(struct btrfs_root *root)
784{
785 struct btrfs_fs_info *fs_info = root->fs_info;
786
787 write_lock(&fs_info->global_root_lock);
788 rb_erase(&root->rb_node, &fs_info->global_root_tree);
789 write_unlock(&fs_info->global_root_lock);
790}
791
792struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
793 struct btrfs_key *key)
794{
795 struct rb_node *node;
796 struct btrfs_root *root = NULL;
797
798 read_lock(&fs_info->global_root_lock);
799 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
800 if (node)
801 root = container_of(node, struct btrfs_root, rb_node);
802 read_unlock(&fs_info->global_root_lock);
803
804 return root;
805}
806
f7238e50
JB
807static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
808{
809 struct btrfs_block_group *block_group;
810 u64 ret;
811
812 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
813 return 0;
814
815 if (bytenr)
816 block_group = btrfs_lookup_block_group(fs_info, bytenr);
817 else
818 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
819 ASSERT(block_group);
820 if (!block_group)
821 return 0;
822 ret = block_group->global_root_id;
823 btrfs_put_block_group(block_group);
824
825 return ret;
826}
827
abed4aaa
JB
828struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
829{
830 struct btrfs_key key = {
831 .objectid = BTRFS_CSUM_TREE_OBJECTID,
832 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 833 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
834 };
835
836 return btrfs_global_root(fs_info, &key);
837}
838
839struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
840{
841 struct btrfs_key key = {
842 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
843 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 844 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
845 };
846
847 return btrfs_global_root(fs_info, &key);
848}
849
51129b33
JB
850struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
851{
852 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
853 return fs_info->block_group_root;
854 return btrfs_extent_root(fs_info, 0);
855}
856
20897f5c 857struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
858 u64 objectid)
859{
9b7a2440 860 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
861 struct extent_buffer *leaf;
862 struct btrfs_root *tree_root = fs_info->tree_root;
863 struct btrfs_root *root;
864 struct btrfs_key key;
b89f6d1f 865 unsigned int nofs_flag;
20897f5c 866 int ret = 0;
20897f5c 867
b89f6d1f
FM
868 /*
869 * We're holding a transaction handle, so use a NOFS memory allocation
870 * context to avoid deadlock if reclaim happens.
871 */
872 nofs_flag = memalloc_nofs_save();
96dfcb46 873 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 874 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
875 if (!root)
876 return ERR_PTR(-ENOMEM);
877
20897f5c
AJ
878 root->root_key.objectid = objectid;
879 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
880 root->root_key.offset = 0;
881
9631e4cc 882 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
60ea105a 883 0, BTRFS_NESTING_NORMAL);
20897f5c
AJ
884 if (IS_ERR(leaf)) {
885 ret = PTR_ERR(leaf);
1dd05682 886 leaf = NULL;
c1b07854 887 goto fail;
20897f5c
AJ
888 }
889
20897f5c 890 root->node = leaf;
50564b65 891 btrfs_mark_buffer_dirty(trans, leaf);
20897f5c
AJ
892
893 root->commit_root = btrfs_root_node(root);
27cdeb70 894 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 895
f944d2cb
DS
896 btrfs_set_root_flags(&root->root_item, 0);
897 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
898 btrfs_set_root_bytenr(&root->root_item, leaf->start);
899 btrfs_set_root_generation(&root->root_item, trans->transid);
900 btrfs_set_root_level(&root->root_item, 0);
901 btrfs_set_root_refs(&root->root_item, 1);
902 btrfs_set_root_used(&root->root_item, leaf->len);
903 btrfs_set_root_last_snapshot(&root->root_item, 0);
904 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 905 if (is_fstree(objectid))
807fc790
AS
906 generate_random_guid(root->root_item.uuid);
907 else
908 export_guid(root->root_item.uuid, &guid_null);
c8422684 909 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 910
8a6a87cd
BB
911 btrfs_tree_unlock(leaf);
912
20897f5c
AJ
913 key.objectid = objectid;
914 key.type = BTRFS_ROOT_ITEM_KEY;
915 key.offset = 0;
916 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
917 if (ret)
918 goto fail;
919
1dd05682
TI
920 return root;
921
8a6a87cd 922fail:
00246528 923 btrfs_put_root(root);
20897f5c 924
1dd05682 925 return ERR_PTR(ret);
20897f5c
AJ
926}
927
7237f183
YZ
928static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
929 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
930{
931 struct btrfs_root *root;
e02119d5 932
96dfcb46 933 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 934 if (!root)
7237f183 935 return ERR_PTR(-ENOMEM);
e02119d5 936
e02119d5
CM
937 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
938 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
939 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 940
6ab6ebb7
NA
941 return root;
942}
943
944int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
945 struct btrfs_root *root)
946{
947 struct extent_buffer *leaf;
948
7237f183 949 /*
92a7cc42 950 * DON'T set SHAREABLE bit for log trees.
27cdeb70 951 *
92a7cc42
QW
952 * Log trees are not exposed to user space thus can't be snapshotted,
953 * and they go away before a real commit is actually done.
954 *
955 * They do store pointers to file data extents, and those reference
956 * counts still get updated (along with back refs to the log tree).
7237f183 957 */
e02119d5 958
4d75f8a9 959 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
60ea105a 960 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
961 if (IS_ERR(leaf))
962 return PTR_ERR(leaf);
e02119d5 963
7237f183 964 root->node = leaf;
e02119d5 965
50564b65 966 btrfs_mark_buffer_dirty(trans, root->node);
e02119d5 967 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
968
969 return 0;
7237f183
YZ
970}
971
972int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
973 struct btrfs_fs_info *fs_info)
974{
975 struct btrfs_root *log_root;
976
977 log_root = alloc_log_tree(trans, fs_info);
978 if (IS_ERR(log_root))
979 return PTR_ERR(log_root);
6ab6ebb7 980
3ddebf27
NA
981 if (!btrfs_is_zoned(fs_info)) {
982 int ret = btrfs_alloc_log_tree_node(trans, log_root);
983
984 if (ret) {
985 btrfs_put_root(log_root);
986 return ret;
987 }
6ab6ebb7
NA
988 }
989
7237f183
YZ
990 WARN_ON(fs_info->log_root_tree);
991 fs_info->log_root_tree = log_root;
992 return 0;
993}
994
995int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
996 struct btrfs_root *root)
997{
0b246afa 998 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
999 struct btrfs_root *log_root;
1000 struct btrfs_inode_item *inode_item;
6ab6ebb7 1001 int ret;
7237f183 1002
0b246afa 1003 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1004 if (IS_ERR(log_root))
1005 return PTR_ERR(log_root);
1006
6ab6ebb7
NA
1007 ret = btrfs_alloc_log_tree_node(trans, log_root);
1008 if (ret) {
1009 btrfs_put_root(log_root);
1010 return ret;
1011 }
1012
7237f183
YZ
1013 log_root->last_trans = trans->transid;
1014 log_root->root_key.offset = root->root_key.objectid;
1015
1016 inode_item = &log_root->root_item.inode;
3cae210f
QW
1017 btrfs_set_stack_inode_generation(inode_item, 1);
1018 btrfs_set_stack_inode_size(inode_item, 3);
1019 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1020 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1021 fs_info->nodesize);
3cae210f 1022 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1023
5d4f98a2 1024 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1025
1026 WARN_ON(root->log_root);
1027 root->log_root = log_root;
6008859b 1028 btrfs_set_root_log_transid(root, 0);
d1433deb 1029 root->log_transid_committed = -1;
f9850787 1030 btrfs_set_root_last_log_commit(root, 0);
e02119d5
CM
1031 return 0;
1032}
1033
49d11bea
JB
1034static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1035 struct btrfs_path *path,
1036 struct btrfs_key *key)
e02119d5
CM
1037{
1038 struct btrfs_root *root;
789d6a3a 1039 struct btrfs_tree_parent_check check = { 0 };
e02119d5 1040 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1041 u64 generation;
cb517eab 1042 int ret;
581c1760 1043 int level;
0f7d52f4 1044
96dfcb46 1045 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1046 if (!root)
1047 return ERR_PTR(-ENOMEM);
0f7d52f4 1048
cb517eab
MX
1049 ret = btrfs_find_root(tree_root, key, path,
1050 &root->root_item, &root->root_key);
0f7d52f4 1051 if (ret) {
13a8a7c8
YZ
1052 if (ret > 0)
1053 ret = -ENOENT;
49d11bea 1054 goto fail;
0f7d52f4 1055 }
13a8a7c8 1056
84234f3a 1057 generation = btrfs_root_generation(&root->root_item);
581c1760 1058 level = btrfs_root_level(&root->root_item);
789d6a3a
QW
1059 check.level = level;
1060 check.transid = generation;
1061 check.owner_root = key->objectid;
1062 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1063 &check);
64c043de
LB
1064 if (IS_ERR(root->node)) {
1065 ret = PTR_ERR(root->node);
8c38938c 1066 root->node = NULL;
49d11bea 1067 goto fail;
4eb150d6
QW
1068 }
1069 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1070 ret = -EIO;
49d11bea 1071 goto fail;
416bc658 1072 }
88c602ab
QW
1073
1074 /*
1075 * For real fs, and not log/reloc trees, root owner must
1076 * match its root node owner
1077 */
1078 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1079 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1080 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1081 root->root_key.objectid != btrfs_header_owner(root->node)) {
1082 btrfs_crit(fs_info,
1083"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1084 root->root_key.objectid, root->node->start,
1085 btrfs_header_owner(root->node),
1086 root->root_key.objectid);
1087 ret = -EUCLEAN;
1088 goto fail;
1089 }
5d4f98a2 1090 root->commit_root = btrfs_root_node(root);
cb517eab 1091 return root;
49d11bea 1092fail:
00246528 1093 btrfs_put_root(root);
49d11bea
JB
1094 return ERR_PTR(ret);
1095}
1096
1097struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1098 struct btrfs_key *key)
1099{
1100 struct btrfs_root *root;
1101 struct btrfs_path *path;
1102
1103 path = btrfs_alloc_path();
1104 if (!path)
1105 return ERR_PTR(-ENOMEM);
1106 root = read_tree_root_path(tree_root, path, key);
1107 btrfs_free_path(path);
1108
1109 return root;
cb517eab
MX
1110}
1111
2dfb1e43
QW
1112/*
1113 * Initialize subvolume root in-memory structure
1114 *
1115 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1116 */
1117static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1118{
1119 int ret;
1120
0b548539 1121 btrfs_drew_lock_init(&root->snapshot_lock);
8257b2dc 1122
aeb935a4 1123 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
6ebcd021
QW
1124 !btrfs_is_data_reloc_root(root) &&
1125 is_fstree(root->root_key.objectid)) {
92a7cc42 1126 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1127 btrfs_check_and_init_root_item(&root->root_item);
1128 }
1129
851fd730
QW
1130 /*
1131 * Don't assign anonymous block device to roots that are not exposed to
1132 * userspace, the id pool is limited to 1M
1133 */
1134 if (is_fstree(root->root_key.objectid) &&
1135 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1136 if (!anon_dev) {
1137 ret = get_anon_bdev(&root->anon_dev);
1138 if (ret)
1139 goto fail;
1140 } else {
1141 root->anon_dev = anon_dev;
1142 }
851fd730 1143 }
f32e48e9
CR
1144
1145 mutex_lock(&root->objectid_mutex);
453e4873 1146 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1147 if (ret) {
1148 mutex_unlock(&root->objectid_mutex);
876d2cf1 1149 goto fail;
f32e48e9
CR
1150 }
1151
6b8fad57 1152 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1153
1154 mutex_unlock(&root->objectid_mutex);
1155
cb517eab
MX
1156 return 0;
1157fail:
84db5ccf 1158 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1159 return ret;
1160}
1161
a98db0f3
JB
1162static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1163 u64 root_id)
cb517eab
MX
1164{
1165 struct btrfs_root *root;
1166
fc7cbcd4
DS
1167 spin_lock(&fs_info->fs_roots_radix_lock);
1168 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1169 (unsigned long)root_id);
25ac047c 1170 root = btrfs_grab_root(root);
fc7cbcd4 1171 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1172 return root;
1173}
1174
49d11bea
JB
1175static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1176 u64 objectid)
1177{
abed4aaa
JB
1178 struct btrfs_key key = {
1179 .objectid = objectid,
1180 .type = BTRFS_ROOT_ITEM_KEY,
1181 .offset = 0,
1182 };
1183
e91909aa
CH
1184 switch (objectid) {
1185 case BTRFS_ROOT_TREE_OBJECTID:
49d11bea 1186 return btrfs_grab_root(fs_info->tree_root);
e91909aa 1187 case BTRFS_EXTENT_TREE_OBJECTID:
abed4aaa 1188 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1189 case BTRFS_CHUNK_TREE_OBJECTID:
49d11bea 1190 return btrfs_grab_root(fs_info->chunk_root);
e91909aa 1191 case BTRFS_DEV_TREE_OBJECTID:
49d11bea 1192 return btrfs_grab_root(fs_info->dev_root);
e91909aa 1193 case BTRFS_CSUM_TREE_OBJECTID:
abed4aaa 1194 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1195 case BTRFS_QUOTA_TREE_OBJECTID:
85724171 1196 return btrfs_grab_root(fs_info->quota_root);
e91909aa 1197 case BTRFS_UUID_TREE_OBJECTID:
85724171 1198 return btrfs_grab_root(fs_info->uuid_root);
e91909aa 1199 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
85724171 1200 return btrfs_grab_root(fs_info->block_group_root);
e91909aa 1201 case BTRFS_FREE_SPACE_TREE_OBJECTID:
85724171 1202 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
51502090
JT
1203 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1204 return btrfs_grab_root(fs_info->stripe_root);
e91909aa
CH
1205 default:
1206 return NULL;
1207 }
49d11bea
JB
1208}
1209
cb517eab
MX
1210int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1211 struct btrfs_root *root)
1212{
1213 int ret;
1214
fc7cbcd4
DS
1215 ret = radix_tree_preload(GFP_NOFS);
1216 if (ret)
1217 return ret;
1218
1219 spin_lock(&fs_info->fs_roots_radix_lock);
1220 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1221 (unsigned long)root->root_key.objectid,
1222 root);
af01d2e5 1223 if (ret == 0) {
00246528 1224 btrfs_grab_root(root);
fc7cbcd4 1225 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1226 }
fc7cbcd4
DS
1227 spin_unlock(&fs_info->fs_roots_radix_lock);
1228 radix_tree_preload_end();
cb517eab
MX
1229
1230 return ret;
1231}
1232
bd647ce3
JB
1233void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1234{
1235#ifdef CONFIG_BTRFS_DEBUG
1236 struct btrfs_root *root;
1237
1238 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1239 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1240
bd647ce3
JB
1241 root = list_first_entry(&fs_info->allocated_roots,
1242 struct btrfs_root, leak_list);
457f1864 1243 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1244 btrfs_root_name(&root->root_key, buf),
bd647ce3 1245 refcount_read(&root->refs));
8fd2b12e 1246 WARN_ON_ONCE(1);
bd647ce3 1247 while (refcount_read(&root->refs) > 1)
00246528
JB
1248 btrfs_put_root(root);
1249 btrfs_put_root(root);
bd647ce3
JB
1250 }
1251#endif
1252}
1253
abed4aaa
JB
1254static void free_global_roots(struct btrfs_fs_info *fs_info)
1255{
1256 struct btrfs_root *root;
1257 struct rb_node *node;
1258
1259 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1260 root = rb_entry(node, struct btrfs_root, rb_node);
1261 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1262 btrfs_put_root(root);
1263 }
1264}
1265
0d4b0463
JB
1266void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1267{
141386e1
JB
1268 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1269 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1270 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1271 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1272 btrfs_free_csum_hash(fs_info);
1273 btrfs_free_stripe_hash_table(fs_info);
1274 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1275 kfree(fs_info->balance_ctl);
1276 kfree(fs_info->delayed_root);
abed4aaa 1277 free_global_roots(fs_info);
00246528
JB
1278 btrfs_put_root(fs_info->tree_root);
1279 btrfs_put_root(fs_info->chunk_root);
1280 btrfs_put_root(fs_info->dev_root);
00246528
JB
1281 btrfs_put_root(fs_info->quota_root);
1282 btrfs_put_root(fs_info->uuid_root);
00246528 1283 btrfs_put_root(fs_info->fs_root);
aeb935a4 1284 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1285 btrfs_put_root(fs_info->block_group_root);
51502090 1286 btrfs_put_root(fs_info->stripe_root);
bd647ce3 1287 btrfs_check_leaked_roots(fs_info);
3fd63727 1288 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1289 kfree(fs_info->super_copy);
1290 kfree(fs_info->super_for_commit);
8481dd80 1291 kfree(fs_info->subpage_info);
0d4b0463
JB
1292 kvfree(fs_info);
1293}
1294
1295
2dfb1e43
QW
1296/*
1297 * Get an in-memory reference of a root structure.
1298 *
1299 * For essential trees like root/extent tree, we grab it from fs_info directly.
1300 * For subvolume trees, we check the cached filesystem roots first. If not
1301 * found, then read it from disk and add it to cached fs roots.
1302 *
1303 * Caller should release the root by calling btrfs_put_root() after the usage.
1304 *
1305 * NOTE: Reloc and log trees can't be read by this function as they share the
1306 * same root objectid.
1307 *
1308 * @objectid: root id
1309 * @anon_dev: preallocated anonymous block device number for new roots,
e2b54eaf 1310 * pass NULL for a new allocation.
2dfb1e43
QW
1311 * @check_ref: whether to check root item references, If true, return -ENOENT
1312 * for orphan roots
1313 */
1314static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
e2b54eaf 1315 u64 objectid, dev_t *anon_dev,
2dfb1e43 1316 bool check_ref)
5eda7b5e
CM
1317{
1318 struct btrfs_root *root;
381cf658 1319 struct btrfs_path *path;
1d4c08e0 1320 struct btrfs_key key;
5eda7b5e
CM
1321 int ret;
1322
49d11bea
JB
1323 root = btrfs_get_global_root(fs_info, objectid);
1324 if (root)
1325 return root;
773e722a
QW
1326
1327 /*
1328 * If we're called for non-subvolume trees, and above function didn't
1329 * find one, do not try to read it from disk.
1330 *
1331 * This is namely for free-space-tree and quota tree, which can change
1332 * at runtime and should only be grabbed from fs_info.
1333 */
1334 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1335 return ERR_PTR(-ENOENT);
4df27c4d 1336again:
56e9357a 1337 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1338 if (root) {
e03ee2fe
QW
1339 /*
1340 * Some other caller may have read out the newly inserted
1341 * subvolume already (for things like backref walk etc). Not
1342 * that common but still possible. In that case, we just need
1343 * to free the anon_dev.
1344 */
e2b54eaf
FM
1345 if (unlikely(anon_dev && *anon_dev)) {
1346 free_anon_bdev(*anon_dev);
1347 *anon_dev = 0;
e03ee2fe
QW
1348 }
1349
bc44d7c4 1350 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1351 btrfs_put_root(root);
48475471 1352 return ERR_PTR(-ENOENT);
bc44d7c4 1353 }
5eda7b5e 1354 return root;
48475471 1355 }
5eda7b5e 1356
56e9357a
DS
1357 key.objectid = objectid;
1358 key.type = BTRFS_ROOT_ITEM_KEY;
1359 key.offset = (u64)-1;
1360 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1361 if (IS_ERR(root))
1362 return root;
3394e160 1363
c00869f1 1364 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1365 ret = -ENOENT;
581bb050 1366 goto fail;
35a30d7c 1367 }
581bb050 1368
e2b54eaf 1369 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
ac08aedf
CM
1370 if (ret)
1371 goto fail;
3394e160 1372
381cf658
DS
1373 path = btrfs_alloc_path();
1374 if (!path) {
1375 ret = -ENOMEM;
1376 goto fail;
1377 }
1d4c08e0
DS
1378 key.objectid = BTRFS_ORPHAN_OBJECTID;
1379 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1380 key.offset = objectid;
1d4c08e0
DS
1381
1382 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1383 btrfs_free_path(path);
d68fc57b
YZ
1384 if (ret < 0)
1385 goto fail;
1386 if (ret == 0)
27cdeb70 1387 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1388
cb517eab 1389 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1390 if (ret) {
168a2f77
JJB
1391 if (ret == -EEXIST) {
1392 btrfs_put_root(root);
4df27c4d 1393 goto again;
168a2f77 1394 }
4df27c4d 1395 goto fail;
0f7d52f4 1396 }
edbd8d4e 1397 return root;
4df27c4d 1398fail:
33fab972
FM
1399 /*
1400 * If our caller provided us an anonymous device, then it's his
143823cf 1401 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1402 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1403 * and once again by our caller.
1404 */
e2b54eaf 1405 if (anon_dev && *anon_dev)
33fab972 1406 root->anon_dev = 0;
8c38938c 1407 btrfs_put_root(root);
4df27c4d 1408 return ERR_PTR(ret);
edbd8d4e
CM
1409}
1410
2dfb1e43
QW
1411/*
1412 * Get in-memory reference of a root structure
1413 *
1414 * @objectid: tree objectid
1415 * @check_ref: if set, verify that the tree exists and the item has at least
1416 * one reference
1417 */
1418struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1419 u64 objectid, bool check_ref)
1420{
e2b54eaf 1421 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
2dfb1e43
QW
1422}
1423
1424/*
1425 * Get in-memory reference of a root structure, created as new, optionally pass
1426 * the anonymous block device id
1427 *
1428 * @objectid: tree objectid
e2b54eaf
FM
1429 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1430 * parameter value if not NULL
2dfb1e43
QW
1431 */
1432struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
e2b54eaf 1433 u64 objectid, dev_t *anon_dev)
2dfb1e43
QW
1434{
1435 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1436}
1437
49d11bea 1438/*
9580503b
DS
1439 * Return a root for the given objectid.
1440 *
49d11bea
JB
1441 * @fs_info: the fs_info
1442 * @objectid: the objectid we need to lookup
1443 *
1444 * This is exclusively used for backref walking, and exists specifically because
1445 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1446 * creation time, which means we may have to read the tree_root in order to look
1447 * up a fs root that is not in memory. If the root is not in memory we will
1448 * read the tree root commit root and look up the fs root from there. This is a
1449 * temporary root, it will not be inserted into the radix tree as it doesn't
1450 * have the most uptodate information, it'll simply be discarded once the
1451 * backref code is finished using the root.
1452 */
1453struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1454 struct btrfs_path *path,
1455 u64 objectid)
1456{
1457 struct btrfs_root *root;
1458 struct btrfs_key key;
1459
1460 ASSERT(path->search_commit_root && path->skip_locking);
1461
1462 /*
1463 * This can return -ENOENT if we ask for a root that doesn't exist, but
1464 * since this is called via the backref walking code we won't be looking
1465 * up a root that doesn't exist, unless there's corruption. So if root
1466 * != NULL just return it.
1467 */
1468 root = btrfs_get_global_root(fs_info, objectid);
1469 if (root)
1470 return root;
1471
1472 root = btrfs_lookup_fs_root(fs_info, objectid);
1473 if (root)
1474 return root;
1475
1476 key.objectid = objectid;
1477 key.type = BTRFS_ROOT_ITEM_KEY;
1478 key.offset = (u64)-1;
1479 root = read_tree_root_path(fs_info->tree_root, path, &key);
1480 btrfs_release_path(path);
1481
1482 return root;
1483}
1484
a74a4b97
CM
1485static int cleaner_kthread(void *arg)
1486{
0d031dc4 1487 struct btrfs_fs_info *fs_info = arg;
d0278245 1488 int again;
a74a4b97 1489
d6fd0ae2 1490 while (1) {
d0278245 1491 again = 0;
a74a4b97 1492
fd340d0f
JB
1493 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1494
d0278245 1495 /* Make the cleaner go to sleep early. */
2ff7e61e 1496 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1497 goto sleep;
1498
90c711ab
ZB
1499 /*
1500 * Do not do anything if we might cause open_ctree() to block
1501 * before we have finished mounting the filesystem.
1502 */
0b246afa 1503 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1504 goto sleep;
1505
0b246afa 1506 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1507 goto sleep;
1508
dc7f370c
MX
1509 /*
1510 * Avoid the problem that we change the status of the fs
1511 * during the above check and trylock.
1512 */
2ff7e61e 1513 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1514 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1515 goto sleep;
76dda93c 1516 }
a74a4b97 1517
b7625f46
QW
1518 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1519 btrfs_sysfs_feature_update(fs_info);
1520
2ff7e61e 1521 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1522
33c44184 1523 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1524 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1525
1526 /*
05323cd1
MX
1527 * The defragger has dealt with the R/O remount and umount,
1528 * needn't do anything special here.
d0278245 1529 */
0b246afa 1530 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1531
1532 /*
f3372065 1533 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1534 * with relocation (btrfs_relocate_chunk) and relocation
1535 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1536 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1537 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1538 * unused block groups.
1539 */
0b246afa 1540 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1541
1542 /*
1543 * Reclaim block groups in the reclaim_bgs list after we deleted
1544 * all unused block_groups. This possibly gives us some more free
1545 * space.
1546 */
1547 btrfs_reclaim_bgs(fs_info);
d0278245 1548sleep:
a0a1db70 1549 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1550 if (kthread_should_park())
1551 kthread_parkme();
1552 if (kthread_should_stop())
1553 return 0;
838fe188 1554 if (!again) {
a74a4b97 1555 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1556 schedule();
a74a4b97
CM
1557 __set_current_state(TASK_RUNNING);
1558 }
da288d28 1559 }
a74a4b97
CM
1560}
1561
1562static int transaction_kthread(void *arg)
1563{
1564 struct btrfs_root *root = arg;
0b246afa 1565 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1566 struct btrfs_trans_handle *trans;
1567 struct btrfs_transaction *cur;
8929ecfa 1568 u64 transid;
643900be 1569 time64_t delta;
a74a4b97 1570 unsigned long delay;
914b2007 1571 bool cannot_commit;
a74a4b97
CM
1572
1573 do {
914b2007 1574 cannot_commit = false;
ba1bc00f 1575 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1576 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1577
0b246afa
JM
1578 spin_lock(&fs_info->trans_lock);
1579 cur = fs_info->running_transaction;
a74a4b97 1580 if (!cur) {
0b246afa 1581 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1582 goto sleep;
1583 }
31153d81 1584
643900be 1585 delta = ktime_get_seconds() - cur->start_time;
fdfbf020 1586 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
77d20c68 1587 cur->state < TRANS_STATE_COMMIT_PREP &&
643900be 1588 delta < fs_info->commit_interval) {
0b246afa 1589 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1590 delay -= msecs_to_jiffies((delta - 1) * 1000);
1591 delay = min(delay,
1592 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1593 goto sleep;
1594 }
8929ecfa 1595 transid = cur->transid;
0b246afa 1596 spin_unlock(&fs_info->trans_lock);
56bec294 1597
79787eaa 1598 /* If the file system is aborted, this will always fail. */
354aa0fb 1599 trans = btrfs_attach_transaction(root);
914b2007 1600 if (IS_ERR(trans)) {
354aa0fb
MX
1601 if (PTR_ERR(trans) != -ENOENT)
1602 cannot_commit = true;
79787eaa 1603 goto sleep;
914b2007 1604 }
8929ecfa 1605 if (transid == trans->transid) {
3a45bb20 1606 btrfs_commit_transaction(trans);
8929ecfa 1607 } else {
3a45bb20 1608 btrfs_end_transaction(trans);
8929ecfa 1609 }
a74a4b97 1610sleep:
0b246afa
JM
1611 wake_up_process(fs_info->cleaner_kthread);
1612 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1613
84961539 1614 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1615 btrfs_cleanup_transaction(fs_info);
ce63f891 1616 if (!kthread_should_stop() &&
0b246afa 1617 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1618 cannot_commit))
bc5511d0 1619 schedule_timeout_interruptible(delay);
a74a4b97
CM
1620 } while (!kthread_should_stop());
1621 return 0;
1622}
1623
af31f5e5 1624/*
01f0f9da
NB
1625 * This will find the highest generation in the array of root backups. The
1626 * index of the highest array is returned, or -EINVAL if we can't find
1627 * anything.
af31f5e5
CM
1628 *
1629 * We check to make sure the array is valid by comparing the
1630 * generation of the latest root in the array with the generation
1631 * in the super block. If they don't match we pitch it.
1632 */
01f0f9da 1633static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1634{
01f0f9da 1635 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1636 u64 cur;
af31f5e5
CM
1637 struct btrfs_root_backup *root_backup;
1638 int i;
1639
1640 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1641 root_backup = info->super_copy->super_roots + i;
1642 cur = btrfs_backup_tree_root_gen(root_backup);
1643 if (cur == newest_gen)
01f0f9da 1644 return i;
af31f5e5
CM
1645 }
1646
01f0f9da 1647 return -EINVAL;
af31f5e5
CM
1648}
1649
af31f5e5
CM
1650/*
1651 * copy all the root pointers into the super backup array.
1652 * this will bump the backup pointer by one when it is
1653 * done
1654 */
1655static void backup_super_roots(struct btrfs_fs_info *info)
1656{
6ef108dd 1657 const int next_backup = info->backup_root_index;
af31f5e5 1658 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1659
1660 root_backup = info->super_for_commit->super_roots + next_backup;
1661
1662 /*
1663 * make sure all of our padding and empty slots get zero filled
1664 * regardless of which ones we use today
1665 */
1666 memset(root_backup, 0, sizeof(*root_backup));
1667
1668 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1669
1670 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1671 btrfs_set_backup_tree_root_gen(root_backup,
1672 btrfs_header_generation(info->tree_root->node));
1673
1674 btrfs_set_backup_tree_root_level(root_backup,
1675 btrfs_header_level(info->tree_root->node));
1676
1677 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1678 btrfs_set_backup_chunk_root_gen(root_backup,
1679 btrfs_header_generation(info->chunk_root->node));
1680 btrfs_set_backup_chunk_root_level(root_backup,
1681 btrfs_header_level(info->chunk_root->node));
1682
1c56ab99 1683 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1684 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1685 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1686
1687 btrfs_set_backup_extent_root(root_backup,
1688 extent_root->node->start);
1689 btrfs_set_backup_extent_root_gen(root_backup,
1690 btrfs_header_generation(extent_root->node));
1691 btrfs_set_backup_extent_root_level(root_backup,
1692 btrfs_header_level(extent_root->node));
f7238e50
JB
1693
1694 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1695 btrfs_set_backup_csum_root_gen(root_backup,
1696 btrfs_header_generation(csum_root->node));
1697 btrfs_set_backup_csum_root_level(root_backup,
1698 btrfs_header_level(csum_root->node));
9c54e80d 1699 }
af31f5e5 1700
7c7e82a7
CM
1701 /*
1702 * we might commit during log recovery, which happens before we set
1703 * the fs_root. Make sure it is valid before we fill it in.
1704 */
1705 if (info->fs_root && info->fs_root->node) {
1706 btrfs_set_backup_fs_root(root_backup,
1707 info->fs_root->node->start);
1708 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1709 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1710 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1711 btrfs_header_level(info->fs_root->node));
7c7e82a7 1712 }
af31f5e5
CM
1713
1714 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1715 btrfs_set_backup_dev_root_gen(root_backup,
1716 btrfs_header_generation(info->dev_root->node));
1717 btrfs_set_backup_dev_root_level(root_backup,
1718 btrfs_header_level(info->dev_root->node));
1719
af31f5e5
CM
1720 btrfs_set_backup_total_bytes(root_backup,
1721 btrfs_super_total_bytes(info->super_copy));
1722 btrfs_set_backup_bytes_used(root_backup,
1723 btrfs_super_bytes_used(info->super_copy));
1724 btrfs_set_backup_num_devices(root_backup,
1725 btrfs_super_num_devices(info->super_copy));
1726
1727 /*
1728 * if we don't copy this out to the super_copy, it won't get remembered
1729 * for the next commit
1730 */
1731 memcpy(&info->super_copy->super_roots,
1732 &info->super_for_commit->super_roots,
1733 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1734}
1735
bd2336b2 1736/*
9580503b
DS
1737 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1738 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
bd2336b2 1739 *
9580503b
DS
1740 * @fs_info: filesystem whose backup roots need to be read
1741 * @priority: priority of backup root required
bd2336b2
NB
1742 *
1743 * Returns backup root index on success and -EINVAL otherwise.
1744 */
1745static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1746{
1747 int backup_index = find_newest_super_backup(fs_info);
1748 struct btrfs_super_block *super = fs_info->super_copy;
1749 struct btrfs_root_backup *root_backup;
1750
1751 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1752 if (priority == 0)
1753 return backup_index;
1754
1755 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1756 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1757 } else {
1758 return -EINVAL;
1759 }
1760
1761 root_backup = super->super_roots + backup_index;
1762
1763 btrfs_set_super_generation(super,
1764 btrfs_backup_tree_root_gen(root_backup));
1765 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1766 btrfs_set_super_root_level(super,
1767 btrfs_backup_tree_root_level(root_backup));
1768 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1769
1770 /*
1771 * Fixme: the total bytes and num_devices need to match or we should
1772 * need a fsck
1773 */
1774 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1775 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1776
1777 return backup_index;
1778}
1779
7abadb64
LB
1780/* helper to cleanup workers */
1781static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1782{
dc6e3209 1783 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1784 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1785 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
1786 if (fs_info->endio_workers)
1787 destroy_workqueue(fs_info->endio_workers);
385de0ef
CH
1788 if (fs_info->rmw_workers)
1789 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
1790 if (fs_info->compressed_write_workers)
1791 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
1792 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1793 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1794 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1795 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 1796 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1797 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1798 if (fs_info->discard_ctl.discard_workers)
1799 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1800 /*
1801 * Now that all other work queues are destroyed, we can safely destroy
1802 * the queues used for metadata I/O, since tasks from those other work
1803 * queues can do metadata I/O operations.
1804 */
d7b9416f
CH
1805 if (fs_info->endio_meta_workers)
1806 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
1807}
1808
2e9f5954
R
1809static void free_root_extent_buffers(struct btrfs_root *root)
1810{
1811 if (root) {
1812 free_extent_buffer(root->node);
1813 free_extent_buffer(root->commit_root);
1814 root->node = NULL;
1815 root->commit_root = NULL;
1816 }
1817}
1818
abed4aaa
JB
1819static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1820{
1821 struct btrfs_root *root, *tmp;
1822
1823 rbtree_postorder_for_each_entry_safe(root, tmp,
1824 &fs_info->global_root_tree,
1825 rb_node)
1826 free_root_extent_buffers(root);
1827}
1828
af31f5e5 1829/* helper to cleanup tree roots */
4273eaff 1830static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1831{
2e9f5954 1832 free_root_extent_buffers(info->tree_root);
655b09fe 1833
abed4aaa 1834 free_global_root_pointers(info);
2e9f5954 1835 free_root_extent_buffers(info->dev_root);
2e9f5954
R
1836 free_root_extent_buffers(info->quota_root);
1837 free_root_extent_buffers(info->uuid_root);
8c38938c 1838 free_root_extent_buffers(info->fs_root);
aeb935a4 1839 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 1840 free_root_extent_buffers(info->block_group_root);
51502090 1841 free_root_extent_buffers(info->stripe_root);
4273eaff 1842 if (free_chunk_root)
2e9f5954 1843 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
1844}
1845
8c38938c
JB
1846void btrfs_put_root(struct btrfs_root *root)
1847{
1848 if (!root)
1849 return;
1850
1851 if (refcount_dec_and_test(&root->refs)) {
1852 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 1853 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
1854 if (root->anon_dev)
1855 free_anon_bdev(root->anon_dev);
923eb523 1856 free_root_extent_buffers(root);
8c38938c 1857#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 1858 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 1859 list_del_init(&root->leak_list);
fc7cbcd4 1860 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
1861#endif
1862 kfree(root);
1863 }
1864}
1865
faa2dbf0 1866void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 1867{
fc7cbcd4
DS
1868 int ret;
1869 struct btrfs_root *gang[8];
1870 int i;
171f6537
JB
1871
1872 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
1873 gang[0] = list_entry(fs_info->dead_roots.next,
1874 struct btrfs_root, root_list);
1875 list_del(&gang[0]->root_list);
171f6537 1876
fc7cbcd4
DS
1877 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1878 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1879 btrfs_put_root(gang[0]);
171f6537
JB
1880 }
1881
fc7cbcd4
DS
1882 while (1) {
1883 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1884 (void **)gang, 0,
1885 ARRAY_SIZE(gang));
1886 if (!ret)
1887 break;
1888 for (i = 0; i < ret; i++)
1889 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
1890 }
1891}
af31f5e5 1892
638aa7ed
ES
1893static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1894{
1895 mutex_init(&fs_info->scrub_lock);
1896 atomic_set(&fs_info->scrubs_running, 0);
1897 atomic_set(&fs_info->scrub_pause_req, 0);
1898 atomic_set(&fs_info->scrubs_paused, 0);
1899 atomic_set(&fs_info->scrub_cancel_req, 0);
1900 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 1901 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
1902}
1903
779a65a4
ES
1904static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1905{
1906 spin_lock_init(&fs_info->balance_lock);
1907 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
1908 atomic_set(&fs_info->balance_pause_req, 0);
1909 atomic_set(&fs_info->balance_cancel_req, 0);
1910 fs_info->balance_ctl = NULL;
1911 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 1912 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
1913}
1914
dcb2137c 1915static int btrfs_init_btree_inode(struct super_block *sb)
f37938e0 1916{
dcb2137c 1917 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
e256927b
JB
1918 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1919 fs_info->tree_root);
dcb2137c
CH
1920 struct inode *inode;
1921
1922 inode = new_inode(sb);
1923 if (!inode)
1924 return -ENOMEM;
2ff7e61e
JM
1925
1926 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1927 set_nlink(inode, 1);
f37938e0
ES
1928 /*
1929 * we set the i_size on the btree inode to the max possible int.
1930 * the real end of the address space is determined by all of
1931 * the devices in the system
1932 */
2ff7e61e
JM
1933 inode->i_size = OFFSET_MAX;
1934 inode->i_mapping->a_ops = &btree_aops;
dcb2137c 1935 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
f37938e0 1936
2ff7e61e 1937 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 1938 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
35da5a7e 1939 IO_TREE_BTREE_INODE_IO);
2ff7e61e 1940 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 1941
5c8fd99f 1942 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
1943 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1944 BTRFS_I(inode)->location.type = 0;
1945 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 1946 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 1947 __insert_inode_hash(inode, hash);
dcb2137c
CH
1948 fs_info->btree_inode = inode;
1949
1950 return 0;
f37938e0
ES
1951}
1952
ad618368
ES
1953static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1954{
ad618368 1955 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 1956 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 1957 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
1958}
1959
f9e92e40
ES
1960static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1961{
1962 spin_lock_init(&fs_info->qgroup_lock);
1963 mutex_init(&fs_info->qgroup_ioctl_lock);
1964 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
1965 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1966 fs_info->qgroup_seq = 1;
f9e92e40 1967 fs_info->qgroup_ulist = NULL;
d2c609b8 1968 fs_info->qgroup_rescan_running = false;
011b46c3 1969 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
1970 mutex_init(&fs_info->qgroup_rescan_lock);
1971}
1972
d21deec5 1973static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 1974{
f7b885be 1975 u32 max_active = fs_info->thread_pool_size;
6f011058 1976 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
58e814fc 1977 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
2a458198
ES
1978
1979 fs_info->workers =
a31b4a43 1980 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2a458198
ES
1981
1982 fs_info->delalloc_workers =
cb001095
JM
1983 btrfs_alloc_workqueue(fs_info, "delalloc",
1984 flags, max_active, 2);
2a458198
ES
1985
1986 fs_info->flush_workers =
cb001095
JM
1987 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1988 flags, max_active, 0);
2a458198
ES
1989
1990 fs_info->caching_workers =
cb001095 1991 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 1992
2a458198 1993 fs_info->fixup_workers =
58e814fc 1994 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
2a458198 1995
2a458198 1996 fs_info->endio_workers =
d7b9416f 1997 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 1998 fs_info->endio_meta_workers =
d7b9416f 1999 alloc_workqueue("btrfs-endio-meta", flags, max_active);
385de0ef 2000 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2001 fs_info->endio_write_workers =
cb001095
JM
2002 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2003 max_active, 2);
fed8a72d
CH
2004 fs_info->compressed_write_workers =
2005 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2006 fs_info->endio_freespace_worker =
cb001095
JM
2007 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2008 max_active, 0);
2a458198 2009 fs_info->delayed_workers =
cb001095
JM
2010 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2011 max_active, 0);
2a458198 2012 fs_info->qgroup_rescan_workers =
58e814fc
TH
2013 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2014 ordered_flags);
b0643e59 2015 fs_info->discard_ctl.discard_workers =
58e814fc 2016 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2a458198 2017
8bfec2e4 2018 if (!(fs_info->workers &&
a31b4a43 2019 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2020 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2021 fs_info->compressed_write_workers &&
1a1a2851 2022 fs_info->endio_write_workers &&
2a458198 2023 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2024 fs_info->caching_workers && fs_info->fixup_workers &&
2025 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2026 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2027 return -ENOMEM;
2028 }
2029
2030 return 0;
2031}
2032
6d97c6e3
JT
2033static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2034{
2035 struct crypto_shash *csum_shash;
b4e967be 2036 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2037
b4e967be 2038 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2039
2040 if (IS_ERR(csum_shash)) {
2041 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2042 csum_driver);
6d97c6e3
JT
2043 return PTR_ERR(csum_shash);
2044 }
2045
2046 fs_info->csum_shash = csum_shash;
2047
68d99ab0
CH
2048 /*
2049 * Check if the checksum implementation is a fast accelerated one.
2050 * As-is this is a bit of a hack and should be replaced once the csum
2051 * implementations provide that information themselves.
2052 */
2053 switch (csum_type) {
2054 case BTRFS_CSUM_TYPE_CRC32:
2055 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2056 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2057 break;
efcfcbc6
DS
2058 case BTRFS_CSUM_TYPE_XXHASH:
2059 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2060 break;
68d99ab0
CH
2061 default:
2062 break;
2063 }
2064
c8a5f8ca
DS
2065 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2066 btrfs_super_csum_name(csum_type),
2067 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2068 return 0;
2069}
2070
63443bf5
ES
2071static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2072 struct btrfs_fs_devices *fs_devices)
2073{
2074 int ret;
789d6a3a 2075 struct btrfs_tree_parent_check check = { 0 };
63443bf5
ES
2076 struct btrfs_root *log_tree_root;
2077 struct btrfs_super_block *disk_super = fs_info->super_copy;
2078 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2079 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2080
2081 if (fs_devices->rw_devices == 0) {
f14d104d 2082 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2083 return -EIO;
2084 }
2085
96dfcb46
JB
2086 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2087 GFP_KERNEL);
63443bf5
ES
2088 if (!log_tree_root)
2089 return -ENOMEM;
2090
789d6a3a
QW
2091 check.level = level;
2092 check.transid = fs_info->generation + 1;
2093 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2094 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
64c043de 2095 if (IS_ERR(log_tree_root->node)) {
f14d104d 2096 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2097 ret = PTR_ERR(log_tree_root->node);
8c38938c 2098 log_tree_root->node = NULL;
00246528 2099 btrfs_put_root(log_tree_root);
0eeff236 2100 return ret;
4eb150d6
QW
2101 }
2102 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2103 btrfs_err(fs_info, "failed to read log tree");
00246528 2104 btrfs_put_root(log_tree_root);
63443bf5
ES
2105 return -EIO;
2106 }
4eb150d6 2107
63443bf5
ES
2108 /* returns with log_tree_root freed on success */
2109 ret = btrfs_recover_log_trees(log_tree_root);
2110 if (ret) {
0b246afa
JM
2111 btrfs_handle_fs_error(fs_info, ret,
2112 "Failed to recover log tree");
00246528 2113 btrfs_put_root(log_tree_root);
63443bf5
ES
2114 return ret;
2115 }
2116
bc98a42c 2117 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2118 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2119 if (ret)
2120 return ret;
2121 }
2122
2123 return 0;
2124}
2125
abed4aaa
JB
2126static int load_global_roots_objectid(struct btrfs_root *tree_root,
2127 struct btrfs_path *path, u64 objectid,
2128 const char *name)
2129{
2130 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2131 struct btrfs_root *root;
f7238e50 2132 u64 max_global_id = 0;
abed4aaa
JB
2133 int ret;
2134 struct btrfs_key key = {
2135 .objectid = objectid,
2136 .type = BTRFS_ROOT_ITEM_KEY,
2137 .offset = 0,
2138 };
2139 bool found = false;
2140
2141 /* If we have IGNOREDATACSUMS skip loading these roots. */
2142 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2143 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2144 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2145 return 0;
2146 }
2147
2148 while (1) {
2149 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2150 if (ret < 0)
2151 break;
2152
2153 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2154 ret = btrfs_next_leaf(tree_root, path);
2155 if (ret) {
2156 if (ret > 0)
2157 ret = 0;
2158 break;
2159 }
2160 }
2161 ret = 0;
2162
2163 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2164 if (key.objectid != objectid)
2165 break;
2166 btrfs_release_path(path);
2167
f7238e50
JB
2168 /*
2169 * Just worry about this for extent tree, it'll be the same for
2170 * everybody.
2171 */
2172 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2173 max_global_id = max(max_global_id, key.offset);
2174
abed4aaa
JB
2175 found = true;
2176 root = read_tree_root_path(tree_root, path, &key);
2177 if (IS_ERR(root)) {
2178 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2179 ret = PTR_ERR(root);
2180 break;
2181 }
2182 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2183 ret = btrfs_global_root_insert(root);
2184 if (ret) {
2185 btrfs_put_root(root);
2186 break;
2187 }
2188 key.offset++;
2189 }
2190 btrfs_release_path(path);
2191
f7238e50
JB
2192 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2193 fs_info->nr_global_roots = max_global_id + 1;
2194
abed4aaa
JB
2195 if (!found || ret) {
2196 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2197 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2198
2199 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2200 ret = ret ? ret : -ENOENT;
2201 else
2202 ret = 0;
2203 btrfs_err(fs_info, "failed to load root %s", name);
2204 }
2205 return ret;
2206}
2207
2208static int load_global_roots(struct btrfs_root *tree_root)
2209{
2210 struct btrfs_path *path;
2211 int ret = 0;
2212
2213 path = btrfs_alloc_path();
2214 if (!path)
2215 return -ENOMEM;
2216
2217 ret = load_global_roots_objectid(tree_root, path,
2218 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2219 if (ret)
2220 goto out;
2221 ret = load_global_roots_objectid(tree_root, path,
2222 BTRFS_CSUM_TREE_OBJECTID, "csum");
2223 if (ret)
2224 goto out;
2225 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2226 goto out;
2227 ret = load_global_roots_objectid(tree_root, path,
2228 BTRFS_FREE_SPACE_TREE_OBJECTID,
2229 "free space");
2230out:
2231 btrfs_free_path(path);
2232 return ret;
2233}
2234
6bccf3ab 2235static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2236{
6bccf3ab 2237 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2238 struct btrfs_root *root;
4bbcaa64
ES
2239 struct btrfs_key location;
2240 int ret;
2241
2467d0fe 2242 ASSERT(fs_info->tree_root);
6bccf3ab 2243
abed4aaa
JB
2244 ret = load_global_roots(tree_root);
2245 if (ret)
2246 return ret;
2247
4bbcaa64
ES
2248 location.type = BTRFS_ROOT_ITEM_KEY;
2249 location.offset = 0;
2250
1c56ab99 2251 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2252 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2253 root = btrfs_read_tree_root(tree_root, &location);
2254 if (IS_ERR(root)) {
2255 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2256 ret = PTR_ERR(root);
2257 goto out;
2258 }
2259 } else {
2260 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2261 fs_info->block_group_root = root;
2262 }
2263 }
2264
2265 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2266 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2267 if (IS_ERR(root)) {
42437a63
JB
2268 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2269 ret = PTR_ERR(root);
2270 goto out;
2271 }
2272 } else {
2273 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2274 fs_info->dev_root = root;
f50f4353 2275 }
820a49da 2276 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2277 ret = btrfs_init_devices_late(fs_info);
2278 if (ret)
2279 goto out;
4bbcaa64 2280
aeb935a4
QW
2281 /*
2282 * This tree can share blocks with some other fs tree during relocation
2283 * and we need a proper setup by btrfs_get_fs_root
2284 */
56e9357a
DS
2285 root = btrfs_get_fs_root(tree_root->fs_info,
2286 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2287 if (IS_ERR(root)) {
42437a63
JB
2288 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2289 ret = PTR_ERR(root);
2290 goto out;
2291 }
2292 } else {
2293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2294 fs_info->data_reloc_root = root;
aeb935a4 2295 }
aeb935a4 2296
4bbcaa64 2297 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2298 root = btrfs_read_tree_root(tree_root, &location);
2299 if (!IS_ERR(root)) {
2300 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
a4f3d2c4 2301 fs_info->quota_root = root;
4bbcaa64
ES
2302 }
2303
2304 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2305 root = btrfs_read_tree_root(tree_root, &location);
2306 if (IS_ERR(root)) {
42437a63
JB
2307 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2308 ret = PTR_ERR(root);
2309 if (ret != -ENOENT)
2310 goto out;
2311 }
4bbcaa64 2312 } else {
a4f3d2c4
DS
2313 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314 fs_info->uuid_root = root;
4bbcaa64
ES
2315 }
2316
51502090
JT
2317 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2318 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2319 root = btrfs_read_tree_root(tree_root, &location);
2320 if (IS_ERR(root)) {
2321 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2322 ret = PTR_ERR(root);
2323 goto out;
2324 }
2325 } else {
2326 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2327 fs_info->stripe_root = root;
2328 }
2329 }
2330
4bbcaa64 2331 return 0;
f50f4353
LB
2332out:
2333 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2334 location.objectid, ret);
2335 return ret;
4bbcaa64
ES
2336}
2337
069ec957
QW
2338/*
2339 * Real super block validation
2340 * NOTE: super csum type and incompat features will not be checked here.
2341 *
2342 * @sb: super block to check
2343 * @mirror_num: the super block number to check its bytenr:
2344 * 0 the primary (1st) sb
2345 * 1, 2 2nd and 3rd backup copy
2346 * -1 skip bytenr check
2347 */
a05d3c91
QW
2348int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2349 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2350{
21a852b0
QW
2351 u64 nodesize = btrfs_super_nodesize(sb);
2352 u64 sectorsize = btrfs_super_sectorsize(sb);
2353 int ret = 0;
2354
2355 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2356 btrfs_err(fs_info, "no valid FS found");
2357 ret = -EINVAL;
2358 }
2359 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2360 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2361 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2362 ret = -EINVAL;
2363 }
2364 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2365 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2366 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2367 ret = -EINVAL;
2368 }
2369 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2371 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2372 ret = -EINVAL;
2373 }
2374 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2376 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2377 ret = -EINVAL;
2378 }
2379
2380 /*
2381 * Check sectorsize and nodesize first, other check will need it.
2382 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2383 */
2384 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2385 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2386 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2387 ret = -EINVAL;
2388 }
0bb3eb3e
QW
2389
2390 /*
1a42daab
QW
2391 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2392 *
2393 * We can support 16K sectorsize with 64K page size without problem,
2394 * but such sectorsize/pagesize combination doesn't make much sense.
2395 * 4K will be our future standard, PAGE_SIZE is supported from the very
2396 * beginning.
0bb3eb3e 2397 */
1a42daab 2398 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2399 btrfs_err(fs_info,
0bb3eb3e 2400 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2401 sectorsize, PAGE_SIZE);
2402 ret = -EINVAL;
2403 }
0bb3eb3e 2404
21a852b0
QW
2405 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2406 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2408 ret = -EINVAL;
2409 }
2410 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2411 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2412 le32_to_cpu(sb->__unused_leafsize), nodesize);
2413 ret = -EINVAL;
2414 }
2415
2416 /* Root alignment check */
2417 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2418 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2419 btrfs_super_root(sb));
2420 ret = -EINVAL;
2421 }
2422 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2423 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2424 btrfs_super_chunk_root(sb));
2425 ret = -EINVAL;
2426 }
2427 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2428 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2429 btrfs_super_log_root(sb));
2430 ret = -EINVAL;
2431 }
2432
a5b8a5f9
AJ
2433 if (!fs_info->fs_devices->temp_fsid &&
2434 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2435 btrfs_err(fs_info,
2436 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
d167aa76 2437 sb->fsid, fs_info->fs_devices->fsid);
aefd7f70
NB
2438 ret = -EINVAL;
2439 }
2440
6bfe3959
AJ
2441 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2442 BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2443 btrfs_err(fs_info,
2444"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
6bfe3959 2445 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
aefd7f70
NB
2446 ret = -EINVAL;
2447 }
2448
25984a5a
AJ
2449 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2450 BTRFS_FSID_SIZE) != 0) {
2451 btrfs_err(fs_info,
2452 "dev_item UUID does not match metadata fsid: %pU != %pU",
2453 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2454 ret = -EINVAL;
2455 }
2456
1c56ab99
QW
2457 /*
2458 * Artificial requirement for block-group-tree to force newer features
2459 * (free-space-tree, no-holes) so the test matrix is smaller.
2460 */
2461 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2462 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2463 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2464 btrfs_err(fs_info,
2465 "block-group-tree feature requires fres-space-tree and no-holes");
2466 ret = -EINVAL;
2467 }
2468
21a852b0
QW
2469 /*
2470 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2471 * done later
2472 */
2473 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2474 btrfs_err(fs_info, "bytes_used is too small %llu",
2475 btrfs_super_bytes_used(sb));
2476 ret = -EINVAL;
2477 }
2478 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2479 btrfs_err(fs_info, "invalid stripesize %u",
2480 btrfs_super_stripesize(sb));
2481 ret = -EINVAL;
2482 }
2483 if (btrfs_super_num_devices(sb) > (1UL << 31))
2484 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2485 btrfs_super_num_devices(sb));
2486 if (btrfs_super_num_devices(sb) == 0) {
2487 btrfs_err(fs_info, "number of devices is 0");
2488 ret = -EINVAL;
2489 }
2490
069ec957
QW
2491 if (mirror_num >= 0 &&
2492 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2493 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2494 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2495 ret = -EINVAL;
2496 }
2497
2498 /*
2499 * Obvious sys_chunk_array corruptions, it must hold at least one key
2500 * and one chunk
2501 */
2502 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2503 btrfs_err(fs_info, "system chunk array too big %u > %u",
2504 btrfs_super_sys_array_size(sb),
2505 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2506 ret = -EINVAL;
2507 }
2508 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2509 + sizeof(struct btrfs_chunk)) {
2510 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2511 btrfs_super_sys_array_size(sb),
2512 sizeof(struct btrfs_disk_key)
2513 + sizeof(struct btrfs_chunk));
2514 ret = -EINVAL;
2515 }
2516
2517 /*
2518 * The generation is a global counter, we'll trust it more than the others
2519 * but it's still possible that it's the one that's wrong.
2520 */
2521 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2522 btrfs_warn(fs_info,
2523 "suspicious: generation < chunk_root_generation: %llu < %llu",
2524 btrfs_super_generation(sb),
2525 btrfs_super_chunk_root_generation(sb));
2526 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2527 && btrfs_super_cache_generation(sb) != (u64)-1)
2528 btrfs_warn(fs_info,
2529 "suspicious: generation < cache_generation: %llu < %llu",
2530 btrfs_super_generation(sb),
2531 btrfs_super_cache_generation(sb));
2532
2533 return ret;
2534}
2535
069ec957
QW
2536/*
2537 * Validation of super block at mount time.
2538 * Some checks already done early at mount time, like csum type and incompat
2539 * flags will be skipped.
2540 */
2541static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2542{
a05d3c91 2543 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2544}
2545
75cb857d
QW
2546/*
2547 * Validation of super block at write time.
2548 * Some checks like bytenr check will be skipped as their values will be
2549 * overwritten soon.
2550 * Extra checks like csum type and incompat flags will be done here.
2551 */
2552static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2553 struct btrfs_super_block *sb)
2554{
2555 int ret;
2556
a05d3c91 2557 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2558 if (ret < 0)
2559 goto out;
e7e16f48 2560 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2561 ret = -EUCLEAN;
2562 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2563 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2564 goto out;
2565 }
2566 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2567 ret = -EUCLEAN;
2568 btrfs_err(fs_info,
2569 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2570 btrfs_super_incompat_flags(sb),
2571 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2572 goto out;
2573 }
2574out:
2575 if (ret < 0)
2576 btrfs_err(fs_info,
2577 "super block corruption detected before writing it to disk");
2578 return ret;
2579}
2580
bd676446
JB
2581static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2582{
789d6a3a
QW
2583 struct btrfs_tree_parent_check check = {
2584 .level = level,
2585 .transid = gen,
2586 .owner_root = root->root_key.objectid
2587 };
bd676446
JB
2588 int ret = 0;
2589
789d6a3a 2590 root->node = read_tree_block(root->fs_info, bytenr, &check);
bd676446
JB
2591 if (IS_ERR(root->node)) {
2592 ret = PTR_ERR(root->node);
2593 root->node = NULL;
4eb150d6
QW
2594 return ret;
2595 }
2596 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2597 free_extent_buffer(root->node);
2598 root->node = NULL;
4eb150d6 2599 return -EIO;
bd676446
JB
2600 }
2601
bd676446
JB
2602 btrfs_set_root_node(&root->root_item, root->node);
2603 root->commit_root = btrfs_root_node(root);
2604 btrfs_set_root_refs(&root->root_item, 1);
2605 return ret;
2606}
2607
2608static int load_important_roots(struct btrfs_fs_info *fs_info)
2609{
2610 struct btrfs_super_block *sb = fs_info->super_copy;
2611 u64 gen, bytenr;
2612 int level, ret;
2613
2614 bytenr = btrfs_super_root(sb);
2615 gen = btrfs_super_generation(sb);
2616 level = btrfs_super_root_level(sb);
2617 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2618 if (ret) {
bd676446 2619 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2620 return ret;
2621 }
14033b08 2622 return 0;
bd676446
JB
2623}
2624
6ef108dd 2625static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2626{
6ef108dd 2627 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2628 struct btrfs_super_block *sb = fs_info->super_copy;
2629 struct btrfs_root *tree_root = fs_info->tree_root;
2630 bool handle_error = false;
2631 int ret = 0;
2632 int i;
2633
2634 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2635 if (handle_error) {
2636 if (!IS_ERR(tree_root->node))
2637 free_extent_buffer(tree_root->node);
2638 tree_root->node = NULL;
2639
2640 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2641 break;
2642
2643 free_root_pointers(fs_info, 0);
2644
2645 /*
2646 * Don't use the log in recovery mode, it won't be
2647 * valid
2648 */
2649 btrfs_set_super_log_root(sb, 0);
2650
745806fb 2651 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
b8522a1e 2652 ret = read_backup_root(fs_info, i);
6ef108dd 2653 backup_index = ret;
b8522a1e
NB
2654 if (ret < 0)
2655 return ret;
2656 }
b8522a1e 2657
bd676446
JB
2658 ret = load_important_roots(fs_info);
2659 if (ret) {
217f5004 2660 handle_error = true;
b8522a1e
NB
2661 continue;
2662 }
2663
336a0d8d
NB
2664 /*
2665 * No need to hold btrfs_root::objectid_mutex since the fs
2666 * hasn't been fully initialised and we are the only user
2667 */
453e4873 2668 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2669 if (ret < 0) {
b8522a1e
NB
2670 handle_error = true;
2671 continue;
2672 }
2673
6b8fad57 2674 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2675
2676 ret = btrfs_read_roots(fs_info);
2677 if (ret < 0) {
2678 handle_error = true;
2679 continue;
2680 }
2681
2682 /* All successful */
bd676446 2683 fs_info->generation = btrfs_header_generation(tree_root->node);
0124855f 2684 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
d96b3424 2685 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2686
2687 /* Always begin writing backup roots after the one being used */
2688 if (backup_index < 0) {
2689 fs_info->backup_root_index = 0;
2690 } else {
2691 fs_info->backup_root_index = backup_index + 1;
2692 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2693 }
b8522a1e
NB
2694 break;
2695 }
2696
2697 return ret;
2698}
2699
8260edba 2700void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2701{
fc7cbcd4 2702 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2703 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2704 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2705 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2706 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2707 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2708 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2709 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2710 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2711 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2712 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2713 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2714 spin_lock_init(&fs_info->super_lock);
f28491e0 2715 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2716 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2717 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2718 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2719 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2720 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2721 rwlock_init(&fs_info->global_root_lock);
d7c15171 2722 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2723 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2724 mutex_init(&fs_info->reloc_mutex);
573bfb72 2725 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2726 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2727 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2728 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2729
e1489b4f 2730 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2731 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2732 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2733 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
77d20c68
JB
2734 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2735 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
3e738c53
IA
2736 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2737 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2738 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2739 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2740 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2741 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 2742
0b86a832 2743 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2744 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2745 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2746 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2747 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 2748 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
2749#ifdef CONFIG_BTRFS_DEBUG
2750 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2751 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2752 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2753#endif
7dc66abb
FM
2754 fs_info->mapping_tree = RB_ROOT_CACHED;
2755 rwlock_init(&fs_info->mapping_tree_lock);
66d8f3dd
MX
2756 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2757 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2758 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2759 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2760 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2761 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2762 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2763 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2764 BTRFS_BLOCK_RSV_DELREFS);
2765
771ed689 2766 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2767 atomic_set(&fs_info->defrag_running, 0);
034f784d 2768 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2769 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 2770 fs_info->global_root_tree = RB_ROOT;
95ac567a 2771 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2772 fs_info->metadata_ratio = 0;
4cb5300b 2773 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2774 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2775 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2776 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
fd708b81 2777 btrfs_init_ref_verify(fs_info);
c8b97818 2778
b34b086c
CM
2779 fs_info->thread_pool_size = min_t(unsigned long,
2780 num_online_cpus() + 2, 8);
0afbaf8c 2781
199c2a9c
MX
2782 INIT_LIST_HEAD(&fs_info->ordered_roots);
2783 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2784
638aa7ed 2785 btrfs_init_scrub(fs_info);
779a65a4 2786 btrfs_init_balance(fs_info);
57056740 2787 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2788
16b0c258 2789 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 2790 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 2791
fe119a6e 2792 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
35da5a7e 2793 IO_TREE_FS_EXCLUDED_EXTENTS);
39279cc3 2794
5a3f23d5 2795 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2796 mutex_init(&fs_info->tree_log_mutex);
925baedd 2797 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2798 mutex_init(&fs_info->transaction_kthread_mutex);
2799 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2800 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2801 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2802 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2803 init_rwsem(&fs_info->subvol_sem);
803b2f54 2804 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2805
ad618368 2806 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2807 btrfs_init_qgroup(fs_info);
b0643e59 2808 btrfs_discard_init(fs_info);
416ac51d 2809
fa9c0d79
CM
2810 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2811 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2812
e6dcd2dc 2813 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2814 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2815 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2816 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2817 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2818
da17066c
JM
2819 /* Usable values until the real ones are cached from the superblock */
2820 fs_info->nodesize = 4096;
2821 fs_info->sectorsize = 4096;
ab108d99 2822 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2823 fs_info->stripesize = 4096;
2824
6207c9e3
JB
2825 /* Default compress algorithm when user does -o compress */
2826 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2827
f7b12a62
NA
2828 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2829
eede2bf3
OS
2830 spin_lock_init(&fs_info->swapfile_pins_lock);
2831 fs_info->swapfile_pins = RB_ROOT;
2832
18bb8bbf
JT
2833 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2834 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
2835}
2836
2837static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2838{
2839 int ret;
2840
2841 fs_info->sb = sb;
4e00422e 2842 /* Temporary fixed values for block size until we read the superblock. */
8260edba
JB
2843 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2844 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2845
5deb17e1 2846 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 2847 if (ret)
c75e8394 2848 return ret;
ae18c37a
JB
2849
2850 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2851 if (ret)
c75e8394 2852 return ret;
ae18c37a
JB
2853
2854 fs_info->dirty_metadata_batch = PAGE_SIZE *
2855 (1 + ilog2(nr_cpu_ids));
2856
2857 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2858 if (ret)
c75e8394 2859 return ret;
ae18c37a
JB
2860
2861 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2862 GFP_KERNEL);
2863 if (ret)
c75e8394 2864 return ret;
ae18c37a
JB
2865
2866 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2867 GFP_KERNEL);
c75e8394
JB
2868 if (!fs_info->delayed_root)
2869 return -ENOMEM;
ae18c37a
JB
2870 btrfs_init_delayed_root(fs_info->delayed_root);
2871
a0a1db70
FM
2872 if (sb_rdonly(sb))
2873 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2874
c75e8394 2875 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2876}
2877
97f4dd09
NB
2878static int btrfs_uuid_rescan_kthread(void *data)
2879{
0d031dc4 2880 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
2881 int ret;
2882
2883 /*
2884 * 1st step is to iterate through the existing UUID tree and
2885 * to delete all entries that contain outdated data.
2886 * 2nd step is to add all missing entries to the UUID tree.
2887 */
2888 ret = btrfs_uuid_tree_iterate(fs_info);
2889 if (ret < 0) {
c94bec2c
JB
2890 if (ret != -EINTR)
2891 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2892 ret);
97f4dd09
NB
2893 up(&fs_info->uuid_tree_rescan_sem);
2894 return ret;
2895 }
2896 return btrfs_uuid_scan_kthread(data);
2897}
2898
2899static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2900{
2901 struct task_struct *task;
2902
2903 down(&fs_info->uuid_tree_rescan_sem);
2904 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2905 if (IS_ERR(task)) {
2906 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2907 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2908 up(&fs_info->uuid_tree_rescan_sem);
2909 return PTR_ERR(task);
2910 }
2911
2912 return 0;
2913}
2914
504b1596
FM
2915static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2916{
2917 u64 root_objectid = 0;
2918 struct btrfs_root *gang[8];
2919 int i = 0;
2920 int err = 0;
2921 unsigned int ret = 0;
2922
2923 while (1) {
2924 spin_lock(&fs_info->fs_roots_radix_lock);
2925 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2926 (void **)gang, root_objectid,
2927 ARRAY_SIZE(gang));
2928 if (!ret) {
2929 spin_unlock(&fs_info->fs_roots_radix_lock);
2930 break;
2931 }
2932 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2933
2934 for (i = 0; i < ret; i++) {
2935 /* Avoid to grab roots in dead_roots. */
2936 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2937 gang[i] = NULL;
2938 continue;
2939 }
2940 /* Grab all the search result for later use. */
2941 gang[i] = btrfs_grab_root(gang[i]);
2942 }
2943 spin_unlock(&fs_info->fs_roots_radix_lock);
2944
2945 for (i = 0; i < ret; i++) {
2946 if (!gang[i])
2947 continue;
2948 root_objectid = gang[i]->root_key.objectid;
2949 err = btrfs_orphan_cleanup(gang[i]);
2950 if (err)
2951 goto out;
2952 btrfs_put_root(gang[i]);
2953 }
2954 root_objectid++;
2955 }
2956out:
2957 /* Release the uncleaned roots due to error. */
2958 for (; i < ret; i++) {
2959 if (gang[i])
2960 btrfs_put_root(gang[i]);
2961 }
2962 return err;
2963}
2964
44c0ca21
BB
2965/*
2966 * Mounting logic specific to read-write file systems. Shared by open_ctree
2967 * and btrfs_remount when remounting from read-only to read-write.
2968 */
2969int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2970{
2971 int ret;
94846229 2972 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1d6a4fc8 2973 bool rebuild_free_space_tree = false;
8b228324
BB
2974
2975 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2976 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
272efa30
JB
2977 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2978 btrfs_warn(fs_info,
2979 "'clear_cache' option is ignored with extent tree v2");
2980 else
2981 rebuild_free_space_tree = true;
8b228324
BB
2982 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2983 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2984 btrfs_warn(fs_info, "free space tree is invalid");
1d6a4fc8 2985 rebuild_free_space_tree = true;
8b228324
BB
2986 }
2987
1d6a4fc8
QW
2988 if (rebuild_free_space_tree) {
2989 btrfs_info(fs_info, "rebuilding free space tree");
2990 ret = btrfs_rebuild_free_space_tree(fs_info);
8b228324
BB
2991 if (ret) {
2992 btrfs_warn(fs_info,
1d6a4fc8
QW
2993 "failed to rebuild free space tree: %d", ret);
2994 goto out;
2995 }
2996 }
2997
2998 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2999 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3000 btrfs_info(fs_info, "disabling free space tree");
3001 ret = btrfs_delete_free_space_tree(fs_info);
3002 if (ret) {
3003 btrfs_warn(fs_info,
3004 "failed to disable free space tree: %d", ret);
8b228324
BB
3005 goto out;
3006 }
3007 }
44c0ca21 3008
8d488a8c
FM
3009 /*
3010 * btrfs_find_orphan_roots() is responsible for finding all the dead
3011 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3012 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3013 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3014 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3015 * item before the root's tree is deleted - this means that if we unmount
3016 * or crash before the deletion completes, on the next mount we will not
3017 * delete what remains of the tree because the orphan item does not
3018 * exists anymore, which is what tells us we have a pending deletion.
3019 */
3020 ret = btrfs_find_orphan_roots(fs_info);
3021 if (ret)
3022 goto out;
3023
44c0ca21
BB
3024 ret = btrfs_cleanup_fs_roots(fs_info);
3025 if (ret)
3026 goto out;
3027
8f1c21d7
BB
3028 down_read(&fs_info->cleanup_work_sem);
3029 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3030 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3031 up_read(&fs_info->cleanup_work_sem);
3032 goto out;
3033 }
3034 up_read(&fs_info->cleanup_work_sem);
3035
44c0ca21 3036 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3037 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3038 mutex_unlock(&fs_info->cleaner_mutex);
3039 if (ret < 0) {
3040 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3041 goto out;
3042 }
3043
5011139a
BB
3044 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3045 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3046 btrfs_info(fs_info, "creating free space tree");
3047 ret = btrfs_create_free_space_tree(fs_info);
3048 if (ret) {
3049 btrfs_warn(fs_info,
3050 "failed to create free space tree: %d", ret);
3051 goto out;
3052 }
3053 }
3054
94846229
BB
3055 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3056 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3057 if (ret)
3058 goto out;
3059 }
3060
44c0ca21
BB
3061 ret = btrfs_resume_balance_async(fs_info);
3062 if (ret)
3063 goto out;
3064
3065 ret = btrfs_resume_dev_replace_async(fs_info);
3066 if (ret) {
3067 btrfs_warn(fs_info, "failed to resume dev_replace");
3068 goto out;
3069 }
3070
3071 btrfs_qgroup_rescan_resume(fs_info);
3072
3073 if (!fs_info->uuid_root) {
3074 btrfs_info(fs_info, "creating UUID tree");
3075 ret = btrfs_create_uuid_tree(fs_info);
3076 if (ret) {
3077 btrfs_warn(fs_info,
3078 "failed to create the UUID tree %d", ret);
3079 goto out;
3080 }
3081 }
3082
3083out:
3084 return ret;
3085}
3086
d7f67ac9
QW
3087/*
3088 * Do various sanity and dependency checks of different features.
3089 *
2ba48b20
QW
3090 * @is_rw_mount: If the mount is read-write.
3091 *
d7f67ac9
QW
3092 * This is the place for less strict checks (like for subpage or artificial
3093 * feature dependencies).
3094 *
3095 * For strict checks or possible corruption detection, see
3096 * btrfs_validate_super().
3097 *
3098 * This should be called after btrfs_parse_options(), as some mount options
3099 * (space cache related) can modify on-disk format like free space tree and
3100 * screw up certain feature dependencies.
3101 */
2ba48b20 3102int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
d7f67ac9
QW
3103{
3104 struct btrfs_super_block *disk_super = fs_info->super_copy;
3105 u64 incompat = btrfs_super_incompat_flags(disk_super);
3106 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3107 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3108
3109 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3110 btrfs_err(fs_info,
3111 "cannot mount because of unknown incompat features (0x%llx)",
3112 incompat);
3113 return -EINVAL;
3114 }
3115
3116 /* Runtime limitation for mixed block groups. */
3117 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3118 (fs_info->sectorsize != fs_info->nodesize)) {
3119 btrfs_err(fs_info,
3120"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3121 fs_info->nodesize, fs_info->sectorsize);
3122 return -EINVAL;
3123 }
3124
3125 /* Mixed backref is an always-enabled feature. */
3126 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3127
3128 /* Set compression related flags just in case. */
3129 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3130 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3131 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3132 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3133
3134 /*
3135 * An ancient flag, which should really be marked deprecated.
3136 * Such runtime limitation doesn't really need a incompat flag.
3137 */
3138 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3139 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3140
2ba48b20 3141 if (compat_ro_unsupp && is_rw_mount) {
d7f67ac9
QW
3142 btrfs_err(fs_info,
3143 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3144 compat_ro);
3145 return -EINVAL;
3146 }
3147
3148 /*
3149 * We have unsupported RO compat features, although RO mounted, we
3150 * should not cause any metadata writes, including log replay.
3151 * Or we could screw up whatever the new feature requires.
3152 */
3153 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3154 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3155 btrfs_err(fs_info,
3156"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3157 compat_ro);
3158 return -EINVAL;
3159 }
3160
3161 /*
3162 * Artificial limitations for block group tree, to force
3163 * block-group-tree to rely on no-holes and free-space-tree.
3164 */
3165 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3166 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3167 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3168 btrfs_err(fs_info,
3169"block-group-tree feature requires no-holes and free-space-tree features");
3170 return -EINVAL;
3171 }
3172
3173 /*
3174 * Subpage runtime limitation on v1 cache.
3175 *
3176 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3177 * we're already defaulting to v2 cache, no need to bother v1 as it's
3178 * going to be deprecated anyway.
3179 */
3180 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3181 btrfs_warn(fs_info,
3182 "v1 space cache is not supported for page size %lu with sectorsize %u",
3183 PAGE_SIZE, fs_info->sectorsize);
3184 return -EINVAL;
3185 }
3186
3187 /* This can be called by remount, we need to protect the super block. */
3188 spin_lock(&fs_info->super_lock);
3189 btrfs_set_super_incompat_flags(disk_super, incompat);
3190 spin_unlock(&fs_info->super_lock);
3191
3192 return 0;
3193}
3194
ae18c37a
JB
3195int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3196 char *options)
3197{
3198 u32 sectorsize;
3199 u32 nodesize;
3200 u32 stripesize;
3201 u64 generation;
ae18c37a 3202 u16 csum_type;
ae18c37a
JB
3203 struct btrfs_super_block *disk_super;
3204 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3205 struct btrfs_root *tree_root;
3206 struct btrfs_root *chunk_root;
3207 int ret;
ae18c37a
JB
3208 int level;
3209
8260edba 3210 ret = init_mount_fs_info(fs_info, sb);
4871c33b 3211 if (ret)
ae18c37a 3212 goto fail;
53b381b3 3213
ae18c37a
JB
3214 /* These need to be init'ed before we start creating inodes and such. */
3215 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3216 GFP_KERNEL);
3217 fs_info->tree_root = tree_root;
3218 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3219 GFP_KERNEL);
3220 fs_info->chunk_root = chunk_root;
3221 if (!tree_root || !chunk_root) {
4871c33b 3222 ret = -ENOMEM;
c75e8394 3223 goto fail;
ae18c37a
JB
3224 }
3225
dcb2137c 3226 ret = btrfs_init_btree_inode(sb);
4871c33b 3227 if (ret)
c75e8394 3228 goto fail;
ae18c37a 3229
d24fa5c1 3230 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3231
3232 /*
3233 * Read super block and check the signature bytes only
3234 */
d24fa5c1 3235 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d 3236 if (IS_ERR(disk_super)) {
4871c33b 3237 ret = PTR_ERR(disk_super);
16cdcec7 3238 goto fail_alloc;
20b45077 3239 }
39279cc3 3240
2db31320 3241 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
8dc3f22c 3242 /*
260db43c 3243 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3244 * corrupted, we'll find out
3245 */
8f32380d 3246 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3247 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3248 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3249 csum_type);
4871c33b 3250 ret = -EINVAL;
8f32380d 3251 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3252 goto fail_alloc;
3253 }
3254
83c68bbc
SY
3255 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3256
6d97c6e3
JT
3257 ret = btrfs_init_csum_hash(fs_info, csum_type);
3258 if (ret) {
8f32380d 3259 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3260 goto fail_alloc;
3261 }
3262
1104a885
DS
3263 /*
3264 * We want to check superblock checksum, the type is stored inside.
3265 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3266 */
3d17adea 3267 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3268 btrfs_err(fs_info, "superblock checksum mismatch");
4871c33b 3269 ret = -EINVAL;
8f32380d 3270 btrfs_release_disk_super(disk_super);
141386e1 3271 goto fail_alloc;
1104a885
DS
3272 }
3273
3274 /*
3275 * super_copy is zeroed at allocation time and we never touch the
3276 * following bytes up to INFO_SIZE, the checksum is calculated from
3277 * the whole block of INFO_SIZE
3278 */
8f32380d
JT
3279 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3280 btrfs_release_disk_super(disk_super);
5f39d397 3281
fbc6feae
NB
3282 disk_super = fs_info->super_copy;
3283
fbc6feae
NB
3284 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3285 sizeof(*fs_info->super_for_commit));
de37aa51 3286
069ec957 3287 ret = btrfs_validate_mount_super(fs_info);
1104a885 3288 if (ret) {
05135f59 3289 btrfs_err(fs_info, "superblock contains fatal errors");
4871c33b 3290 ret = -EINVAL;
141386e1 3291 goto fail_alloc;
1104a885
DS
3292 }
3293
4871c33b
QW
3294 if (!btrfs_super_root(disk_super)) {
3295 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3296 ret = -EINVAL;
141386e1 3297 goto fail_alloc;
4871c33b 3298 }
0f7d52f4 3299
acce952b 3300 /* check FS state, whether FS is broken. */
87533c47 3301 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
ae3364e5 3302 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
acce952b 3303
6f93e834
AJ
3304 /* Set up fs_info before parsing mount options */
3305 nodesize = btrfs_super_nodesize(disk_super);
3306 sectorsize = btrfs_super_sectorsize(disk_super);
3307 stripesize = sectorsize;
3308 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3309 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3310
3311 fs_info->nodesize = nodesize;
3312 fs_info->sectorsize = sectorsize;
3313 fs_info->sectorsize_bits = ilog2(sectorsize);
3314 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3315 fs_info->stripesize = stripesize;
3316
a6a8f22a
JB
3317 /*
3318 * Handle the space caching options appropriately now that we have the
3319 * super block loaded and validated.
3320 */
3321 btrfs_set_free_space_cache_settings(fs_info);
3322
ad21f15b
JB
3323 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3324 ret = -EINVAL;
141386e1 3325 goto fail_alloc;
ad21f15b 3326 }
dfe25020 3327
2ba48b20 3328 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
4871c33b 3329 if (ret < 0)
dc4d3168 3330 goto fail_alloc;
dc4d3168 3331
ad21f15b
JB
3332 /*
3333 * At this point our mount options are validated, if we set ->max_inline
3334 * to something non-standard make sure we truncate it to sectorsize.
3335 */
3336 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3337
8481dd80
QW
3338 if (sectorsize < PAGE_SIZE) {
3339 struct btrfs_subpage_info *subpage_info;
3340
95ea0486
QW
3341 btrfs_warn(fs_info,
3342 "read-write for sector size %u with page size %lu is experimental",
3343 sectorsize, PAGE_SIZE);
8481dd80 3344 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
4871c33b
QW
3345 if (!subpage_info) {
3346 ret = -ENOMEM;
8481dd80 3347 goto fail_alloc;
4871c33b 3348 }
8481dd80
QW
3349 btrfs_init_subpage_info(subpage_info, sectorsize);
3350 fs_info->subpage_info = subpage_info;
c8050b3b 3351 }
0bb3eb3e 3352
d21deec5 3353 ret = btrfs_init_workqueues(fs_info);
4871c33b 3354 if (ret)
0dc3b84a 3355 goto fail_sb_buffer;
4543df7e 3356
9e11ceee
JK
3357 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3358 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3359
4e00422e 3360 /* Update the values for the current filesystem. */
a061fc8d
CM
3361 sb->s_blocksize = sectorsize;
3362 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3363 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3364
925baedd 3365 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3366 ret = btrfs_read_sys_array(fs_info);
925baedd 3367 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3368 if (ret) {
05135f59 3369 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3370 goto fail_sb_buffer;
84eed90f 3371 }
0b86a832 3372
84234f3a 3373 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3374 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3375 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3376 generation, level);
3377 if (ret) {
05135f59 3378 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3379 goto fail_tree_roots;
83121942 3380 }
0b86a832 3381
e17cade2 3382 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3383 offsetof(struct btrfs_header, chunk_tree_uuid),
3384 BTRFS_UUID_SIZE);
e17cade2 3385
5b4aacef 3386 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3387 if (ret) {
05135f59 3388 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3389 goto fail_tree_roots;
2b82032c 3390 }
0b86a832 3391
8dabb742 3392 /*
bacce86a
AJ
3393 * At this point we know all the devices that make this filesystem,
3394 * including the seed devices but we don't know yet if the replace
3395 * target is required. So free devices that are not part of this
1a9fd417 3396 * filesystem but skip the replace target device which is checked
bacce86a 3397 * below in btrfs_init_dev_replace().
8dabb742 3398 */
bacce86a 3399 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3400 if (!fs_devices->latest_dev->bdev) {
05135f59 3401 btrfs_err(fs_info, "failed to read devices");
4871c33b 3402 ret = -EIO;
a6b0d5c8
CM
3403 goto fail_tree_roots;
3404 }
3405
b8522a1e 3406 ret = init_tree_roots(fs_info);
4bbcaa64 3407 if (ret)
b8522a1e 3408 goto fail_tree_roots;
8929ecfa 3409
73651042
NA
3410 /*
3411 * Get zone type information of zoned block devices. This will also
3412 * handle emulation of a zoned filesystem if a regular device has the
3413 * zoned incompat feature flag set.
3414 */
3415 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3416 if (ret) {
3417 btrfs_err(fs_info,
4871c33b 3418 "zoned: failed to read device zone info: %d", ret);
73651042
NA
3419 goto fail_block_groups;
3420 }
3421
75ec1db8
JB
3422 /*
3423 * If we have a uuid root and we're not being told to rescan we need to
3424 * check the generation here so we can set the
3425 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3426 * transaction during a balance or the log replay without updating the
3427 * uuid generation, and then if we crash we would rescan the uuid tree,
3428 * even though it was perfectly fine.
3429 */
3430 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3431 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3432 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3433
cf90d884
QW
3434 ret = btrfs_verify_dev_extents(fs_info);
3435 if (ret) {
3436 btrfs_err(fs_info,
3437 "failed to verify dev extents against chunks: %d",
3438 ret);
3439 goto fail_block_groups;
3440 }
68310a5e
ID
3441 ret = btrfs_recover_balance(fs_info);
3442 if (ret) {
05135f59 3443 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3444 goto fail_block_groups;
3445 }
3446
733f4fbb
SB
3447 ret = btrfs_init_dev_stats(fs_info);
3448 if (ret) {
05135f59 3449 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3450 goto fail_block_groups;
3451 }
3452
8dabb742
SB
3453 ret = btrfs_init_dev_replace(fs_info);
3454 if (ret) {
05135f59 3455 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3456 goto fail_block_groups;
3457 }
3458
b70f5097
NA
3459 ret = btrfs_check_zoned_mode(fs_info);
3460 if (ret) {
3461 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3462 ret);
3463 goto fail_block_groups;
3464 }
3465
c6761a9e 3466 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3467 if (ret) {
05135f59
DS
3468 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3469 ret);
b7c35e81
AJ
3470 goto fail_block_groups;
3471 }
3472
96f3136e 3473 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3474 if (ret) {
05135f59 3475 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3476 goto fail_fsdev_sysfs;
c59021f8 3477 }
3478
c59021f8 3479 ret = btrfs_init_space_info(fs_info);
3480 if (ret) {
05135f59 3481 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3482 goto fail_sysfs;
c59021f8 3483 }
3484
5b4aacef 3485 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3486 if (ret) {
05135f59 3487 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3488 goto fail_sysfs;
1b1d1f66 3489 }
4330e183 3490
16beac87
NA
3491 btrfs_free_zone_cache(fs_info);
3492
a7e1ac7b
NA
3493 btrfs_check_active_zone_reservation(fs_info);
3494
5c78a5e7
AJ
3495 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3496 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3497 btrfs_warn(fs_info,
52042d8e 3498 "writable mount is not allowed due to too many missing devices");
4871c33b 3499 ret = -EINVAL;
2365dd3c 3500 goto fail_sysfs;
292fd7fc 3501 }
9078a3e1 3502
33c44184 3503 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3504 "btrfs-cleaner");
4871c33b
QW
3505 if (IS_ERR(fs_info->cleaner_kthread)) {
3506 ret = PTR_ERR(fs_info->cleaner_kthread);
2365dd3c 3507 goto fail_sysfs;
4871c33b 3508 }
a74a4b97
CM
3509
3510 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3511 tree_root,
3512 "btrfs-transaction");
4871c33b
QW
3513 if (IS_ERR(fs_info->transaction_kthread)) {
3514 ret = PTR_ERR(fs_info->transaction_kthread);
3f157a2f 3515 goto fail_cleaner;
4871c33b 3516 }
a74a4b97 3517
bcef60f2
AJ
3518 ret = btrfs_read_qgroup_config(fs_info);
3519 if (ret)
3520 goto fail_trans_kthread;
21adbd5c 3521
fd708b81
JB
3522 if (btrfs_build_ref_tree(fs_info))
3523 btrfs_err(fs_info, "couldn't build ref tree");
3524
96da0919
QW
3525 /* do not make disk changes in broken FS or nologreplay is given */
3526 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3527 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3528 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3529 ret = btrfs_replay_log(fs_info, fs_devices);
4871c33b 3530 if (ret)
28c16cbb 3531 goto fail_qgroup;
e02119d5 3532 }
1a40e23b 3533
56e9357a 3534 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3 3535 if (IS_ERR(fs_info->fs_root)) {
4871c33b
QW
3536 ret = PTR_ERR(fs_info->fs_root);
3537 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
315bf8ef 3538 fs_info->fs_root = NULL;
bcef60f2 3539 goto fail_qgroup;
3140c9a3 3540 }
c289811c 3541
bc98a42c 3542 if (sb_rdonly(sb))
83e3a40a 3543 return 0;
59641015 3544
44c0ca21 3545 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3546 if (ret) {
6bccf3ab 3547 close_ctree(fs_info);
2b6ba629 3548 return ret;
e3acc2a6 3549 }
b0643e59 3550 btrfs_discard_resume(fs_info);
b382a324 3551
44c0ca21
BB
3552 if (fs_info->uuid_root &&
3553 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3554 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3555 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3556 ret = btrfs_check_uuid_tree(fs_info);
3557 if (ret) {
05135f59
DS
3558 btrfs_warn(fs_info,
3559 "failed to check the UUID tree: %d", ret);
6bccf3ab 3560 close_ctree(fs_info);
70f80175
SB
3561 return ret;
3562 }
f7a81ea4 3563 }
94846229 3564
afcdd129 3565 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3566
b4be6aef
JB
3567 /* Kick the cleaner thread so it'll start deleting snapshots. */
3568 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3569 wake_up_process(fs_info->cleaner_kthread);
3570
ad2b2c80 3571 return 0;
39279cc3 3572
bcef60f2
AJ
3573fail_qgroup:
3574 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3575fail_trans_kthread:
3576 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3577 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3578 btrfs_free_fs_roots(fs_info);
3f157a2f 3579fail_cleaner:
a74a4b97 3580 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3581
3582 /*
3583 * make sure we're done with the btree inode before we stop our
3584 * kthreads
3585 */
3586 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3587
2365dd3c 3588fail_sysfs:
6618a59b 3589 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3590
b7c35e81
AJ
3591fail_fsdev_sysfs:
3592 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3593
1b1d1f66 3594fail_block_groups:
54067ae9 3595 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3596
3597fail_tree_roots:
9e3aa805
JB
3598 if (fs_info->data_reloc_root)
3599 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3600 free_root_pointers(fs_info, true);
2b8195bb 3601 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3602
39279cc3 3603fail_sb_buffer:
7abadb64 3604 btrfs_stop_all_workers(fs_info);
5cdd7db6 3605 btrfs_free_block_groups(fs_info);
16cdcec7 3606fail_alloc:
7dc66abb 3607 btrfs_mapping_tree_free(fs_info);
586e46e2 3608
4543df7e 3609 iput(fs_info->btree_inode);
7e662854 3610fail:
586e46e2 3611 btrfs_close_devices(fs_info->fs_devices);
4871c33b
QW
3612 ASSERT(ret < 0);
3613 return ret;
eb60ceac 3614}
663faf9f 3615ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3616
314b6dd0 3617static void btrfs_end_super_write(struct bio *bio)
f2984462 3618{
314b6dd0
JT
3619 struct btrfs_device *device = bio->bi_private;
3620 struct bio_vec *bvec;
3621 struct bvec_iter_all iter_all;
3622 struct page *page;
3623
3624 bio_for_each_segment_all(bvec, bio, iter_all) {
3625 page = bvec->bv_page;
3626
3627 if (bio->bi_status) {
3628 btrfs_warn_rl_in_rcu(device->fs_info,
3629 "lost page write due to IO error on %s (%d)",
cb3e217b 3630 btrfs_dev_name(device),
314b6dd0
JT
3631 blk_status_to_errno(bio->bi_status));
3632 ClearPageUptodate(page);
3633 SetPageError(page);
3634 btrfs_dev_stat_inc_and_print(device,
3635 BTRFS_DEV_STAT_WRITE_ERRS);
3636 } else {
3637 SetPageUptodate(page);
3638 }
3639
3640 put_page(page);
3641 unlock_page(page);
f2984462 3642 }
314b6dd0
JT
3643
3644 bio_put(bio);
f2984462
CM
3645}
3646
8f32380d 3647struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3648 int copy_num, bool drop_cache)
29c36d72 3649{
29c36d72 3650 struct btrfs_super_block *super;
8f32380d 3651 struct page *page;
12659251 3652 u64 bytenr, bytenr_orig;
8f32380d 3653 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3654 int ret;
3655
3656 bytenr_orig = btrfs_sb_offset(copy_num);
3657 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3658 if (ret == -ENOENT)
3659 return ERR_PTR(-EINVAL);
3660 else if (ret)
3661 return ERR_PTR(ret);
29c36d72 3662
cda00eba 3663 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3664 return ERR_PTR(-EINVAL);
29c36d72 3665
a05d3c91
QW
3666 if (drop_cache) {
3667 /* This should only be called with the primary sb. */
3668 ASSERT(copy_num == 0);
3669
3670 /*
3671 * Drop the page of the primary superblock, so later read will
3672 * always read from the device.
3673 */
3674 invalidate_inode_pages2_range(mapping,
3675 bytenr >> PAGE_SHIFT,
3676 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3677 }
3678
8f32380d
JT
3679 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3680 if (IS_ERR(page))
3681 return ERR_CAST(page);
29c36d72 3682
8f32380d 3683 super = page_address(page);
96c2e067
AJ
3684 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3685 btrfs_release_disk_super(super);
3686 return ERR_PTR(-ENODATA);
3687 }
3688
12659251 3689 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3690 btrfs_release_disk_super(super);
3691 return ERR_PTR(-EINVAL);
29c36d72
AJ
3692 }
3693
8f32380d 3694 return super;
29c36d72
AJ
3695}
3696
3697
8f32380d 3698struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3699{
8f32380d 3700 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3701 int i;
3702 u64 transid = 0;
a512bbf8
YZ
3703
3704 /* we would like to check all the supers, but that would make
3705 * a btrfs mount succeed after a mkfs from a different FS.
3706 * So, we need to add a special mount option to scan for
3707 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3708 */
3709 for (i = 0; i < 1; i++) {
a05d3c91 3710 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3711 if (IS_ERR(super))
a512bbf8
YZ
3712 continue;
3713
a512bbf8 3714 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3715 if (latest)
3716 btrfs_release_disk_super(super);
3717
3718 latest = super;
a512bbf8 3719 transid = btrfs_super_generation(super);
a512bbf8
YZ
3720 }
3721 }
92fc03fb 3722
8f32380d 3723 return super;
a512bbf8
YZ
3724}
3725
4eedeb75 3726/*
abbb3b8e 3727 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3728 * pages we use for writing are locked.
4eedeb75 3729 *
abbb3b8e
DS
3730 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3731 * the expected device size at commit time. Note that max_mirrors must be
3732 * same for write and wait phases.
4eedeb75 3733 *
314b6dd0 3734 * Return number of errors when page is not found or submission fails.
4eedeb75 3735 */
a512bbf8 3736static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3737 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3738{
d5178578 3739 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3740 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3741 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3742 int i;
a512bbf8 3743 int errors = 0;
12659251
NA
3744 int ret;
3745 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3746
3747 if (max_mirrors == 0)
3748 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3749
d5178578
JT
3750 shash->tfm = fs_info->csum_shash;
3751
a512bbf8 3752 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3753 struct page *page;
3754 struct bio *bio;
3755 struct btrfs_super_block *disk_super;
3756
12659251
NA
3757 bytenr_orig = btrfs_sb_offset(i);
3758 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3759 if (ret == -ENOENT) {
3760 continue;
3761 } else if (ret < 0) {
3762 btrfs_err(device->fs_info,
3763 "couldn't get super block location for mirror %d",
3764 i);
3765 errors++;
3766 continue;
3767 }
935e5cc9
MX
3768 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3769 device->commit_total_bytes)
a512bbf8
YZ
3770 break;
3771
12659251 3772 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3773
fd08001f
EB
3774 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3775 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3776 sb->csum);
4eedeb75 3777
314b6dd0
JT
3778 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3779 GFP_NOFS);
3780 if (!page) {
abbb3b8e 3781 btrfs_err(device->fs_info,
314b6dd0 3782 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3783 bytenr);
3784 errors++;
4eedeb75 3785 continue;
abbb3b8e 3786 }
634554dc 3787
314b6dd0
JT
3788 /* Bump the refcount for wait_dev_supers() */
3789 get_page(page);
a512bbf8 3790
314b6dd0
JT
3791 disk_super = page_address(page);
3792 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3793
314b6dd0
JT
3794 /*
3795 * Directly use bios here instead of relying on the page cache
3796 * to do I/O, so we don't lose the ability to do integrity
3797 * checking.
3798 */
07888c66
CH
3799 bio = bio_alloc(device->bdev, 1,
3800 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3801 GFP_NOFS);
314b6dd0
JT
3802 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3803 bio->bi_private = device;
3804 bio->bi_end_io = btrfs_end_super_write;
3805 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3806 offset_in_page(bytenr));
a512bbf8 3807
387125fc 3808 /*
314b6dd0
JT
3809 * We FUA only the first super block. The others we allow to
3810 * go down lazy and there's a short window where the on-disk
3811 * copies might still contain the older version.
387125fc 3812 */
1b9e619c 3813 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0 3814 bio->bi_opf |= REQ_FUA;
58ff51f1 3815 submit_bio(bio);
8376d9e1
NA
3816
3817 if (btrfs_advance_sb_log(device, i))
3818 errors++;
a512bbf8
YZ
3819 }
3820 return errors < i ? 0 : -1;
3821}
3822
abbb3b8e
DS
3823/*
3824 * Wait for write completion of superblocks done by write_dev_supers,
3825 * @max_mirrors same for write and wait phases.
3826 *
314b6dd0 3827 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3828 * date.
3829 */
3830static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3831{
abbb3b8e
DS
3832 int i;
3833 int errors = 0;
b6a535fa 3834 bool primary_failed = false;
12659251 3835 int ret;
abbb3b8e
DS
3836 u64 bytenr;
3837
3838 if (max_mirrors == 0)
3839 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3840
3841 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3842 struct page *page;
3843
12659251
NA
3844 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3845 if (ret == -ENOENT) {
3846 break;
3847 } else if (ret < 0) {
3848 errors++;
3849 if (i == 0)
3850 primary_failed = true;
3851 continue;
3852 }
abbb3b8e
DS
3853 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3854 device->commit_total_bytes)
3855 break;
3856
314b6dd0
JT
3857 page = find_get_page(device->bdev->bd_inode->i_mapping,
3858 bytenr >> PAGE_SHIFT);
3859 if (!page) {
abbb3b8e 3860 errors++;
b6a535fa
HM
3861 if (i == 0)
3862 primary_failed = true;
abbb3b8e
DS
3863 continue;
3864 }
314b6dd0
JT
3865 /* Page is submitted locked and unlocked once the IO completes */
3866 wait_on_page_locked(page);
3867 if (PageError(page)) {
abbb3b8e 3868 errors++;
b6a535fa
HM
3869 if (i == 0)
3870 primary_failed = true;
3871 }
abbb3b8e 3872
314b6dd0
JT
3873 /* Drop our reference */
3874 put_page(page);
abbb3b8e 3875
314b6dd0
JT
3876 /* Drop the reference from the writing run */
3877 put_page(page);
abbb3b8e
DS
3878 }
3879
b6a535fa
HM
3880 /* log error, force error return */
3881 if (primary_failed) {
3882 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3883 device->devid);
3884 return -1;
3885 }
3886
abbb3b8e
DS
3887 return errors < i ? 0 : -1;
3888}
3889
387125fc
CM
3890/*
3891 * endio for the write_dev_flush, this will wake anyone waiting
3892 * for the barrier when it is done
3893 */
4246a0b6 3894static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3895{
f9e69aa9 3896 bio_uninit(bio);
e0ae9994 3897 complete(bio->bi_private);
387125fc
CM
3898}
3899
3900/*
4fc6441a
AJ
3901 * Submit a flush request to the device if it supports it. Error handling is
3902 * done in the waiting counterpart.
387125fc 3903 */
4fc6441a 3904static void write_dev_flush(struct btrfs_device *device)
387125fc 3905{
f9e69aa9 3906 struct bio *bio = &device->flush_bio;
387125fc 3907
bfd3ea94
AJ
3908 device->last_flush_error = BLK_STS_OK;
3909
f9e69aa9
CH
3910 bio_init(bio, device->bdev, NULL, 0,
3911 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 3912 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
3913 init_completion(&device->flush_wait);
3914 bio->bi_private = &device->flush_wait;
58ff51f1 3915 submit_bio(bio);
1c3063b6 3916 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3917}
387125fc 3918
4fc6441a
AJ
3919/*
3920 * If the flush bio has been submitted by write_dev_flush, wait for it.
1b465784 3921 * Return true for any error, and false otherwise.
4fc6441a 3922 */
1b465784 3923static bool wait_dev_flush(struct btrfs_device *device)
4fc6441a 3924{
f9e69aa9 3925 struct bio *bio = &device->flush_bio;
387125fc 3926
7e812f20 3927 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
1b465784 3928 return false;
387125fc 3929
2980d574 3930 wait_for_completion_io(&device->flush_wait);
387125fc 3931
bfd3ea94
AJ
3932 if (bio->bi_status) {
3933 device->last_flush_error = bio->bi_status;
3934 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
1b465784 3935 return true;
bfd3ea94
AJ
3936 }
3937
1b465784 3938 return false;
387125fc 3939}
387125fc 3940
387125fc
CM
3941/*
3942 * send an empty flush down to each device in parallel,
3943 * then wait for them
3944 */
3945static int barrier_all_devices(struct btrfs_fs_info *info)
3946{
3947 struct list_head *head;
3948 struct btrfs_device *dev;
5af3e8cc 3949 int errors_wait = 0;
387125fc 3950
1538e6c5 3951 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3952 /* send down all the barriers */
3953 head = &info->fs_devices->devices;
1538e6c5 3954 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3955 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3956 continue;
cea7c8bf 3957 if (!dev->bdev)
387125fc 3958 continue;
e12c9621 3959 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3960 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3961 continue;
3962
4fc6441a 3963 write_dev_flush(dev);
387125fc
CM
3964 }
3965
3966 /* wait for all the barriers */
1538e6c5 3967 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3968 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3969 continue;
387125fc 3970 if (!dev->bdev) {
5af3e8cc 3971 errors_wait++;
387125fc
CM
3972 continue;
3973 }
e12c9621 3974 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3975 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3976 continue;
3977
1b465784 3978 if (wait_dev_flush(dev))
5af3e8cc 3979 errors_wait++;
401b41e5
AJ
3980 }
3981
de38a206
AJ
3982 /*
3983 * Checks last_flush_error of disks in order to determine the device
3984 * state.
3985 */
3986 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3987 return -EIO;
3988
387125fc
CM
3989 return 0;
3990}
3991
943c6e99
ZL
3992int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3993{
8789f4fe
ZL
3994 int raid_type;
3995 int min_tolerated = INT_MAX;
943c6e99 3996
8789f4fe
ZL
3997 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3998 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3999 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4000 btrfs_raid_array[BTRFS_RAID_SINGLE].
4001 tolerated_failures);
943c6e99 4002
8789f4fe
ZL
4003 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4004 if (raid_type == BTRFS_RAID_SINGLE)
4005 continue;
41a6e891 4006 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4007 continue;
8c3e3582 4008 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4009 btrfs_raid_array[raid_type].
4010 tolerated_failures);
4011 }
943c6e99 4012
8789f4fe 4013 if (min_tolerated == INT_MAX) {
ab8d0fc4 4014 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4015 min_tolerated = 0;
4016 }
4017
4018 return min_tolerated;
943c6e99
ZL
4019}
4020
eece6a9c 4021int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4022{
e5e9a520 4023 struct list_head *head;
f2984462 4024 struct btrfs_device *dev;
a061fc8d 4025 struct btrfs_super_block *sb;
f2984462 4026 struct btrfs_dev_item *dev_item;
f2984462
CM
4027 int ret;
4028 int do_barriers;
a236aed1
CM
4029 int max_errors;
4030 int total_errors = 0;
a061fc8d 4031 u64 flags;
f2984462 4032
0b246afa 4033 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4034
4035 /*
4036 * max_mirrors == 0 indicates we're from commit_transaction,
4037 * not from fsync where the tree roots in fs_info have not
4038 * been consistent on disk.
4039 */
4040 if (max_mirrors == 0)
4041 backup_super_roots(fs_info);
f2984462 4042
0b246afa 4043 sb = fs_info->super_for_commit;
a061fc8d 4044 dev_item = &sb->dev_item;
e5e9a520 4045
0b246afa
JM
4046 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4047 head = &fs_info->fs_devices->devices;
4048 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4049
5af3e8cc 4050 if (do_barriers) {
0b246afa 4051 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4052 if (ret) {
4053 mutex_unlock(
0b246afa
JM
4054 &fs_info->fs_devices->device_list_mutex);
4055 btrfs_handle_fs_error(fs_info, ret,
4056 "errors while submitting device barriers.");
5af3e8cc
SB
4057 return ret;
4058 }
4059 }
387125fc 4060
1538e6c5 4061 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4062 if (!dev->bdev) {
4063 total_errors++;
4064 continue;
4065 }
e12c9621 4066 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4067 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4068 continue;
4069
2b82032c 4070 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4071 btrfs_set_stack_device_type(dev_item, dev->type);
4072 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4073 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4074 dev->commit_total_bytes);
ce7213c7
MX
4075 btrfs_set_stack_device_bytes_used(dev_item,
4076 dev->commit_bytes_used);
a061fc8d
CM
4077 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4078 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4079 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4080 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4081 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4082 BTRFS_FSID_SIZE);
a512bbf8 4083
a061fc8d
CM
4084 flags = btrfs_super_flags(sb);
4085 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4086
75cb857d
QW
4087 ret = btrfs_validate_write_super(fs_info, sb);
4088 if (ret < 0) {
4089 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4090 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4091 "unexpected superblock corruption detected");
4092 return -EUCLEAN;
4093 }
4094
abbb3b8e 4095 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4096 if (ret)
4097 total_errors++;
f2984462 4098 }
a236aed1 4099 if (total_errors > max_errors) {
0b246afa
JM
4100 btrfs_err(fs_info, "%d errors while writing supers",
4101 total_errors);
4102 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4103
9d565ba4 4104 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4105 btrfs_handle_fs_error(fs_info, -EIO,
4106 "%d errors while writing supers",
4107 total_errors);
9d565ba4 4108 return -EIO;
a236aed1 4109 }
f2984462 4110
a512bbf8 4111 total_errors = 0;
1538e6c5 4112 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4113 if (!dev->bdev)
4114 continue;
e12c9621 4115 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4116 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4117 continue;
4118
abbb3b8e 4119 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4120 if (ret)
4121 total_errors++;
f2984462 4122 }
0b246afa 4123 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4124 if (total_errors > max_errors) {
0b246afa
JM
4125 btrfs_handle_fs_error(fs_info, -EIO,
4126 "%d errors while writing supers",
4127 total_errors);
79787eaa 4128 return -EIO;
a236aed1 4129 }
f2984462
CM
4130 return 0;
4131}
4132
cb517eab
MX
4133/* Drop a fs root from the radix tree and free it. */
4134void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4135 struct btrfs_root *root)
2619ba1f 4136{
4785e24f
JB
4137 bool drop_ref = false;
4138
fc7cbcd4
DS
4139 spin_lock(&fs_info->fs_roots_radix_lock);
4140 radix_tree_delete(&fs_info->fs_roots_radix,
4141 (unsigned long)root->root_key.objectid);
4142 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4143 drop_ref = true;
fc7cbcd4 4144 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4145
84961539 4146 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4147 ASSERT(root->log_root == NULL);
1c1ea4f7 4148 if (root->reloc_root) {
00246528 4149 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4150 root->reloc_root = NULL;
4151 }
4152 }
3321719e 4153
4785e24f
JB
4154 if (drop_ref)
4155 btrfs_put_root(root);
2619ba1f
CM
4156}
4157
6bccf3ab 4158int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4159{
6bccf3ab 4160 struct btrfs_root *root = fs_info->tree_root;
c146afad 4161 struct btrfs_trans_handle *trans;
a74a4b97 4162
0b246afa 4163 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4164 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4165 mutex_unlock(&fs_info->cleaner_mutex);
4166 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4167
4168 /* wait until ongoing cleanup work done */
0b246afa
JM
4169 down_write(&fs_info->cleanup_work_sem);
4170 up_write(&fs_info->cleanup_work_sem);
c71bf099 4171
7a7eaa40 4172 trans = btrfs_join_transaction(root);
3612b495
TI
4173 if (IS_ERR(trans))
4174 return PTR_ERR(trans);
3a45bb20 4175 return btrfs_commit_transaction(trans);
c146afad
YZ
4176}
4177
36c86a9e
QW
4178static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4179{
4180 struct btrfs_transaction *trans;
4181 struct btrfs_transaction *tmp;
4182 bool found = false;
4183
4184 if (list_empty(&fs_info->trans_list))
4185 return;
4186
4187 /*
4188 * This function is only called at the very end of close_ctree(),
4189 * thus no other running transaction, no need to take trans_lock.
4190 */
4191 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4192 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4193 struct extent_state *cached = NULL;
4194 u64 dirty_bytes = 0;
4195 u64 cur = 0;
4196 u64 found_start;
4197 u64 found_end;
4198
4199 found = true;
e5860f82 4200 while (find_first_extent_bit(&trans->dirty_pages, cur,
36c86a9e
QW
4201 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4202 dirty_bytes += found_end + 1 - found_start;
4203 cur = found_end + 1;
4204 }
4205 btrfs_warn(fs_info,
4206 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4207 trans->transid, dirty_bytes);
4208 btrfs_cleanup_one_transaction(trans, fs_info);
4209
4210 if (trans == fs_info->running_transaction)
4211 fs_info->running_transaction = NULL;
4212 list_del_init(&trans->list);
4213
4214 btrfs_put_transaction(trans);
4215 trace_btrfs_transaction_commit(fs_info);
4216 }
4217 ASSERT(!found);
4218}
4219
b105e927 4220void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4221{
c146afad
YZ
4222 int ret;
4223
afcdd129 4224 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4225
8a1f1e3d
FM
4226 /*
4227 * If we had UNFINISHED_DROPS we could still be processing them, so
4228 * clear that bit and wake up relocation so it can stop.
4229 * We must do this before stopping the block group reclaim task, because
4230 * at btrfs_relocate_block_group() we wait for this bit, and after the
4231 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4232 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4233 * return 1.
4234 */
4235 btrfs_wake_unfinished_drop(fs_info);
4236
31e70e52
FM
4237 /*
4238 * We may have the reclaim task running and relocating a data block group,
4239 * in which case it may create delayed iputs. So stop it before we park
4240 * the cleaner kthread otherwise we can get new delayed iputs after
4241 * parking the cleaner, and that can make the async reclaim task to hang
4242 * if it's waiting for delayed iputs to complete, since the cleaner is
4243 * parked and can not run delayed iputs - this will make us hang when
4244 * trying to stop the async reclaim task.
4245 */
4246 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4247 /*
4248 * We don't want the cleaner to start new transactions, add more delayed
4249 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4250 * because that frees the task_struct, and the transaction kthread might
4251 * still try to wake up the cleaner.
4252 */
4253 kthread_park(fs_info->cleaner_kthread);
c146afad 4254
7343dd61 4255 /* wait for the qgroup rescan worker to stop */
d06f23d6 4256 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4257
803b2f54
SB
4258 /* wait for the uuid_scan task to finish */
4259 down(&fs_info->uuid_tree_rescan_sem);
4260 /* avoid complains from lockdep et al., set sem back to initial state */
4261 up(&fs_info->uuid_tree_rescan_sem);
4262
837d5b6e 4263 /* pause restriper - we want to resume on mount */
aa1b8cd4 4264 btrfs_pause_balance(fs_info);
837d5b6e 4265
8dabb742
SB
4266 btrfs_dev_replace_suspend_for_unmount(fs_info);
4267
aa1b8cd4 4268 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4269
4270 /* wait for any defraggers to finish */
4271 wait_event(fs_info->transaction_wait,
4272 (atomic_read(&fs_info->defrag_running) == 0));
4273
4274 /* clear out the rbtree of defraggable inodes */
26176e7c 4275 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4276
a362bb86
FM
4277 /*
4278 * After we parked the cleaner kthread, ordered extents may have
4279 * completed and created new delayed iputs. If one of the async reclaim
4280 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4281 * can hang forever trying to stop it, because if a delayed iput is
4282 * added after it ran btrfs_run_delayed_iputs() and before it called
4283 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4284 * no one else to run iputs.
4285 *
4286 * So wait for all ongoing ordered extents to complete and then run
4287 * delayed iputs. This works because once we reach this point no one
4288 * can either create new ordered extents nor create delayed iputs
4289 * through some other means.
4290 *
4291 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4292 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4293 * but the delayed iput for the respective inode is made only when doing
4294 * the final btrfs_put_ordered_extent() (which must happen at
4295 * btrfs_finish_ordered_io() when we are unmounting).
4296 */
4297 btrfs_flush_workqueue(fs_info->endio_write_workers);
4298 /* Ordered extents for free space inodes. */
4299 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4300 btrfs_run_delayed_iputs(fs_info);
4301
21c7e756 4302 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4303 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4304 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4305
b0643e59
DZ
4306 /* Cancel or finish ongoing discard work */
4307 btrfs_discard_cleanup(fs_info);
4308
bc98a42c 4309 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4310 /*
d6fd0ae2
OS
4311 * The cleaner kthread is stopped, so do one final pass over
4312 * unused block groups.
e44163e1 4313 */
0b246afa 4314 btrfs_delete_unused_bgs(fs_info);
e44163e1 4315
f0cc2cd7
FM
4316 /*
4317 * There might be existing delayed inode workers still running
4318 * and holding an empty delayed inode item. We must wait for
4319 * them to complete first because they can create a transaction.
4320 * This happens when someone calls btrfs_balance_delayed_items()
4321 * and then a transaction commit runs the same delayed nodes
4322 * before any delayed worker has done something with the nodes.
4323 * We must wait for any worker here and not at transaction
4324 * commit time since that could cause a deadlock.
4325 * This is a very rare case.
4326 */
4327 btrfs_flush_workqueue(fs_info->delayed_workers);
4328
6bccf3ab 4329 ret = btrfs_commit_super(fs_info);
acce952b 4330 if (ret)
04892340 4331 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4332 }
4333
84961539 4334 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4335 btrfs_error_commit_super(fs_info);
0f7d52f4 4336
e3029d9f
AV
4337 kthread_stop(fs_info->transaction_kthread);
4338 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4339
e187831e 4340 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4341 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4342
5958253c
QW
4343 if (btrfs_check_quota_leak(fs_info)) {
4344 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4345 btrfs_err(fs_info, "qgroup reserved space leaked");
4346 }
4347
04892340 4348 btrfs_free_qgroup_config(fs_info);
fe816d0f 4349 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4350
963d678b 4351 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4352 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4353 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4354 }
bcc63abb 4355
5deb17e1 4356 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4357 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4358 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4359
6618a59b 4360 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4361 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4362
1a4319cc
LB
4363 btrfs_put_block_group_cache(fs_info);
4364
de348ee0
WS
4365 /*
4366 * we must make sure there is not any read request to
4367 * submit after we stopping all workers.
4368 */
4369 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4370 btrfs_stop_all_workers(fs_info);
4371
0a31daa4 4372 /* We shouldn't have any transaction open at this point */
36c86a9e 4373 warn_about_uncommitted_trans(fs_info);
0a31daa4 4374
afcdd129 4375 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4376 free_root_pointers(fs_info, true);
8c38938c 4377 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4378
4e19443d
JB
4379 /*
4380 * We must free the block groups after dropping the fs_roots as we could
4381 * have had an IO error and have left over tree log blocks that aren't
4382 * cleaned up until the fs roots are freed. This makes the block group
4383 * accounting appear to be wrong because there's pending reserved bytes,
4384 * so make sure we do the block group cleanup afterwards.
4385 */
4386 btrfs_free_block_groups(fs_info);
4387
13e6c37b 4388 iput(fs_info->btree_inode);
d6bfde87 4389
7dc66abb 4390 btrfs_mapping_tree_free(fs_info);
68c94e55 4391 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4392}
4393
50564b65
FM
4394void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4395 struct extent_buffer *buf)
5f39d397 4396{
2f4d60df 4397 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4398 u64 transid = btrfs_header_generation(buf);
b4ce94de 4399
06ea65a3
JB
4400#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4401 /*
4402 * This is a fast path so only do this check if we have sanity tests
52042d8e 4403 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4404 * outside of the sanity tests.
4405 */
b0132a3b 4406 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4407 return;
4408#endif
50564b65
FM
4409 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4410 ASSERT(trans->transid == fs_info->generation);
49d0c642 4411 btrfs_assert_tree_write_locked(buf);
4ebe8d47 4412 if (unlikely(transid != fs_info->generation)) {
50564b65 4413 btrfs_abort_transaction(trans, -EUCLEAN);
20cbe460
FM
4414 btrfs_crit(fs_info,
4415"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4416 buf->start, transid, fs_info->generation);
50564b65 4417 }
f18cc978 4418 set_extent_buffer_dirty(buf);
eb60ceac
CM
4419}
4420
2ff7e61e 4421static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4422 int flush_delayed)
16cdcec7
MX
4423{
4424 /*
4425 * looks as though older kernels can get into trouble with
4426 * this code, they end up stuck in balance_dirty_pages forever
4427 */
e2d84521 4428 int ret;
16cdcec7
MX
4429
4430 if (current->flags & PF_MEMALLOC)
4431 return;
4432
b53d3f5d 4433 if (flush_delayed)
2ff7e61e 4434 btrfs_balance_delayed_items(fs_info);
16cdcec7 4435
d814a491
EL
4436 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4437 BTRFS_DIRTY_METADATA_THRESH,
4438 fs_info->dirty_metadata_batch);
e2d84521 4439 if (ret > 0) {
0b246afa 4440 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4441 }
16cdcec7
MX
4442}
4443
2ff7e61e 4444void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4445{
2ff7e61e 4446 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4447}
585ad2c3 4448
2ff7e61e 4449void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4450{
2ff7e61e 4451 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4452}
6b80053d 4453
2ff7e61e 4454static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4455{
fe816d0f
NB
4456 /* cleanup FS via transaction */
4457 btrfs_cleanup_transaction(fs_info);
4458
0b246afa 4459 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4460 btrfs_run_delayed_iputs(fs_info);
0b246afa 4461 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4462
0b246afa
JM
4463 down_write(&fs_info->cleanup_work_sem);
4464 up_write(&fs_info->cleanup_work_sem);
acce952b 4465}
4466
ef67963d
JB
4467static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4468{
fc7cbcd4
DS
4469 struct btrfs_root *gang[8];
4470 u64 root_objectid = 0;
4471 int ret;
4472
4473 spin_lock(&fs_info->fs_roots_radix_lock);
4474 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4475 (void **)gang, root_objectid,
4476 ARRAY_SIZE(gang))) != 0) {
4477 int i;
4478
4479 for (i = 0; i < ret; i++)
4480 gang[i] = btrfs_grab_root(gang[i]);
4481 spin_unlock(&fs_info->fs_roots_radix_lock);
4482
4483 for (i = 0; i < ret; i++) {
4484 if (!gang[i])
ef67963d 4485 continue;
fc7cbcd4
DS
4486 root_objectid = gang[i]->root_key.objectid;
4487 btrfs_free_log(NULL, gang[i]);
4488 btrfs_put_root(gang[i]);
ef67963d 4489 }
fc7cbcd4
DS
4490 root_objectid++;
4491 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4492 }
fc7cbcd4 4493 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4494 btrfs_free_log_root_tree(NULL, fs_info);
4495}
4496
143bede5 4497static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4498{
acce952b 4499 struct btrfs_ordered_extent *ordered;
acce952b 4500
199c2a9c 4501 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4502 /*
4503 * This will just short circuit the ordered completion stuff which will
4504 * make sure the ordered extent gets properly cleaned up.
4505 */
199c2a9c 4506 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4507 root_extent_list)
4508 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4509 spin_unlock(&root->ordered_extent_lock);
4510}
4511
4512static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4513{
4514 struct btrfs_root *root;
84af994b 4515 LIST_HEAD(splice);
199c2a9c
MX
4516
4517 spin_lock(&fs_info->ordered_root_lock);
4518 list_splice_init(&fs_info->ordered_roots, &splice);
4519 while (!list_empty(&splice)) {
4520 root = list_first_entry(&splice, struct btrfs_root,
4521 ordered_root);
1de2cfde
JB
4522 list_move_tail(&root->ordered_root,
4523 &fs_info->ordered_roots);
199c2a9c 4524
2a85d9ca 4525 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4526 btrfs_destroy_ordered_extents(root);
4527
2a85d9ca
LB
4528 cond_resched();
4529 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4530 }
4531 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4532
4533 /*
4534 * We need this here because if we've been flipped read-only we won't
4535 * get sync() from the umount, so we need to make sure any ordered
4536 * extents that haven't had their dirty pages IO start writeout yet
4537 * actually get run and error out properly.
4538 */
4539 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4540}
4541
99f09ce3
FM
4542static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4543 struct btrfs_fs_info *fs_info)
acce952b 4544{
4545 struct rb_node *node;
4546 struct btrfs_delayed_ref_root *delayed_refs;
4547 struct btrfs_delayed_ref_node *ref;
acce952b 4548
4549 delayed_refs = &trans->delayed_refs;
4550
4551 spin_lock(&delayed_refs->lock);
d7df2c79 4552 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4553 spin_unlock(&delayed_refs->lock);
b79ce3dd 4554 btrfs_debug(fs_info, "delayed_refs has NO entry");
99f09ce3 4555 return;
acce952b 4556 }
4557
5c9d028b 4558 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4559 struct btrfs_delayed_ref_head *head;
0e0adbcf 4560 struct rb_node *n;
e78417d1 4561 bool pin_bytes = false;
acce952b 4562
d7df2c79
JB
4563 head = rb_entry(node, struct btrfs_delayed_ref_head,
4564 href_node);
3069bd26 4565 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4566 continue;
3069bd26 4567
d7df2c79 4568 spin_lock(&head->lock);
e3d03965 4569 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4570 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4571 ref_node);
e3d03965 4572 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4573 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4574 if (!list_empty(&ref->add_list))
4575 list_del(&ref->add_list);
d7df2c79
JB
4576 atomic_dec(&delayed_refs->num_entries);
4577 btrfs_put_delayed_ref(ref);
adb86dbe 4578 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
e78417d1 4579 }
d7df2c79
JB
4580 if (head->must_insert_reserved)
4581 pin_bytes = true;
4582 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4583 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4584 spin_unlock(&head->lock);
4585 spin_unlock(&delayed_refs->lock);
4586 mutex_unlock(&head->mutex);
acce952b 4587
f603bb94
NB
4588 if (pin_bytes) {
4589 struct btrfs_block_group *cache;
4590
4591 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4592 BUG_ON(!cache);
4593
4594 spin_lock(&cache->space_info->lock);
4595 spin_lock(&cache->lock);
4596 cache->pinned += head->num_bytes;
4597 btrfs_space_info_update_bytes_pinned(fs_info,
4598 cache->space_info, head->num_bytes);
4599 cache->reserved -= head->num_bytes;
4600 cache->space_info->bytes_reserved -= head->num_bytes;
4601 spin_unlock(&cache->lock);
4602 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4603
4604 btrfs_put_block_group(cache);
4605
4606 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4607 head->bytenr + head->num_bytes - 1);
4608 }
31890da0 4609 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4610 btrfs_put_delayed_ref_head(head);
acce952b 4611 cond_resched();
4612 spin_lock(&delayed_refs->lock);
4613 }
81f7eb00 4614 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4615
4616 spin_unlock(&delayed_refs->lock);
acce952b 4617}
4618
143bede5 4619static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4620{
4621 struct btrfs_inode *btrfs_inode;
84af994b 4622 LIST_HEAD(splice);
acce952b 4623
eb73c1b7
MX
4624 spin_lock(&root->delalloc_lock);
4625 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4626
4627 while (!list_empty(&splice)) {
fe816d0f 4628 struct inode *inode = NULL;
eb73c1b7
MX
4629 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4630 delalloc_inodes);
fe816d0f 4631 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4632 spin_unlock(&root->delalloc_lock);
acce952b 4633
fe816d0f
NB
4634 /*
4635 * Make sure we get a live inode and that it'll not disappear
4636 * meanwhile.
4637 */
4638 inode = igrab(&btrfs_inode->vfs_inode);
4639 if (inode) {
597441b3
JB
4640 unsigned int nofs_flag;
4641
4642 nofs_flag = memalloc_nofs_save();
fe816d0f 4643 invalidate_inode_pages2(inode->i_mapping);
597441b3 4644 memalloc_nofs_restore(nofs_flag);
fe816d0f
NB
4645 iput(inode);
4646 }
eb73c1b7 4647 spin_lock(&root->delalloc_lock);
acce952b 4648 }
eb73c1b7
MX
4649 spin_unlock(&root->delalloc_lock);
4650}
4651
4652static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4653{
4654 struct btrfs_root *root;
84af994b 4655 LIST_HEAD(splice);
eb73c1b7
MX
4656
4657 spin_lock(&fs_info->delalloc_root_lock);
4658 list_splice_init(&fs_info->delalloc_roots, &splice);
4659 while (!list_empty(&splice)) {
4660 root = list_first_entry(&splice, struct btrfs_root,
4661 delalloc_root);
00246528 4662 root = btrfs_grab_root(root);
eb73c1b7
MX
4663 BUG_ON(!root);
4664 spin_unlock(&fs_info->delalloc_root_lock);
4665
4666 btrfs_destroy_delalloc_inodes(root);
00246528 4667 btrfs_put_root(root);
eb73c1b7
MX
4668
4669 spin_lock(&fs_info->delalloc_root_lock);
4670 }
4671 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4672}
4673
aec5716c
FM
4674static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4675 struct extent_io_tree *dirty_pages,
4676 int mark)
acce952b 4677{
acce952b 4678 struct extent_buffer *eb;
4679 u64 start = 0;
4680 u64 end;
acce952b 4681
e5860f82
FM
4682 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4683 mark, NULL)) {
91166212 4684 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4685 while (start <= end) {
0b246afa
JM
4686 eb = find_extent_buffer(fs_info, start);
4687 start += fs_info->nodesize;
fd8b2b61 4688 if (!eb)
acce952b 4689 continue;
c4e54a65
JB
4690
4691 btrfs_tree_lock(eb);
fd8b2b61 4692 wait_on_extent_buffer_writeback(eb);
190a8339 4693 btrfs_clear_buffer_dirty(NULL, eb);
c4e54a65 4694 btrfs_tree_unlock(eb);
acce952b 4695
fd8b2b61 4696 free_extent_buffer_stale(eb);
acce952b 4697 }
4698 }
acce952b 4699}
4700
46d81ebd
FM
4701static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4702 struct extent_io_tree *unpin)
acce952b 4703{
acce952b 4704 u64 start;
4705 u64 end;
acce952b 4706
acce952b 4707 while (1) {
0e6ec385
FM
4708 struct extent_state *cached_state = NULL;
4709
fcd5e742
LF
4710 /*
4711 * The btrfs_finish_extent_commit() may get the same range as
4712 * ours between find_first_extent_bit and clear_extent_dirty.
4713 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4714 * the same extent range.
4715 */
4716 mutex_lock(&fs_info->unused_bg_unpin_mutex);
e5860f82
FM
4717 if (!find_first_extent_bit(unpin, 0, &start, &end,
4718 EXTENT_DIRTY, &cached_state)) {
fcd5e742 4719 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4720 break;
fcd5e742 4721 }
acce952b 4722
0e6ec385
FM
4723 clear_extent_dirty(unpin, start, end, &cached_state);
4724 free_extent_state(cached_state);
2ff7e61e 4725 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4726 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4727 cond_resched();
4728 }
acce952b 4729}
4730
32da5386 4731static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4732{
4733 struct inode *inode;
4734
4735 inode = cache->io_ctl.inode;
4736 if (inode) {
597441b3
JB
4737 unsigned int nofs_flag;
4738
4739 nofs_flag = memalloc_nofs_save();
c79a1751 4740 invalidate_inode_pages2(inode->i_mapping);
597441b3
JB
4741 memalloc_nofs_restore(nofs_flag);
4742
c79a1751
LB
4743 BTRFS_I(inode)->generation = 0;
4744 cache->io_ctl.inode = NULL;
4745 iput(inode);
4746 }
bbc37d6e 4747 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4748 btrfs_put_block_group(cache);
4749}
4750
4751void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4752 struct btrfs_fs_info *fs_info)
c79a1751 4753{
32da5386 4754 struct btrfs_block_group *cache;
c79a1751
LB
4755
4756 spin_lock(&cur_trans->dirty_bgs_lock);
4757 while (!list_empty(&cur_trans->dirty_bgs)) {
4758 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4759 struct btrfs_block_group,
c79a1751 4760 dirty_list);
c79a1751
LB
4761
4762 if (!list_empty(&cache->io_list)) {
4763 spin_unlock(&cur_trans->dirty_bgs_lock);
4764 list_del_init(&cache->io_list);
4765 btrfs_cleanup_bg_io(cache);
4766 spin_lock(&cur_trans->dirty_bgs_lock);
4767 }
4768
4769 list_del_init(&cache->dirty_list);
4770 spin_lock(&cache->lock);
4771 cache->disk_cache_state = BTRFS_DC_ERROR;
4772 spin_unlock(&cache->lock);
4773
4774 spin_unlock(&cur_trans->dirty_bgs_lock);
4775 btrfs_put_block_group(cache);
f66e0209 4776 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
c79a1751
LB
4777 spin_lock(&cur_trans->dirty_bgs_lock);
4778 }
4779 spin_unlock(&cur_trans->dirty_bgs_lock);
4780
45ae2c18
NB
4781 /*
4782 * Refer to the definition of io_bgs member for details why it's safe
4783 * to use it without any locking
4784 */
c79a1751
LB
4785 while (!list_empty(&cur_trans->io_bgs)) {
4786 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4787 struct btrfs_block_group,
c79a1751 4788 io_list);
c79a1751
LB
4789
4790 list_del_init(&cache->io_list);
4791 spin_lock(&cache->lock);
4792 cache->disk_cache_state = BTRFS_DC_ERROR;
4793 spin_unlock(&cache->lock);
4794 btrfs_cleanup_bg_io(cache);
4795 }
4796}
4797
b321a52c
BB
4798static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4799{
4800 struct btrfs_root *gang[8];
4801 int i;
4802 int ret;
4803
4804 spin_lock(&fs_info->fs_roots_radix_lock);
4805 while (1) {
4806 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4807 (void **)gang, 0,
4808 ARRAY_SIZE(gang),
4809 BTRFS_ROOT_TRANS_TAG);
4810 if (ret == 0)
4811 break;
4812 for (i = 0; i < ret; i++) {
4813 struct btrfs_root *root = gang[i];
4814
4815 btrfs_qgroup_free_meta_all_pertrans(root);
4816 radix_tree_tag_clear(&fs_info->fs_roots_radix,
4817 (unsigned long)root->root_key.objectid,
4818 BTRFS_ROOT_TRANS_TAG);
4819 }
4820 }
4821 spin_unlock(&fs_info->fs_roots_radix_lock);
4822}
4823
49b25e05 4824void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4825 struct btrfs_fs_info *fs_info)
49b25e05 4826{
bbbf7243
NB
4827 struct btrfs_device *dev, *tmp;
4828
2ff7e61e 4829 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4830 ASSERT(list_empty(&cur_trans->dirty_bgs));
4831 ASSERT(list_empty(&cur_trans->io_bgs));
4832
bbbf7243
NB
4833 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4834 post_commit_list) {
4835 list_del_init(&dev->post_commit_list);
4836 }
4837
2ff7e61e 4838 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4839
4a9d8bde 4840 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4841 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4842
4a9d8bde 4843 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4844 wake_up(&fs_info->transaction_wait);
49b25e05 4845
ccdf9b30 4846 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4847
2ff7e61e 4848 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4849 EXTENT_DIRTY);
fe119a6e 4850 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4851
b321a52c
BB
4852 btrfs_free_all_qgroup_pertrans(fs_info);
4853
4a9d8bde
MX
4854 cur_trans->state =TRANS_STATE_COMPLETED;
4855 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4856}
4857
2ff7e61e 4858static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4859{
4860 struct btrfs_transaction *t;
acce952b 4861
0b246afa 4862 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4863
0b246afa
JM
4864 spin_lock(&fs_info->trans_lock);
4865 while (!list_empty(&fs_info->trans_list)) {
4866 t = list_first_entry(&fs_info->trans_list,
724e2315 4867 struct btrfs_transaction, list);
77d20c68 4868 if (t->state >= TRANS_STATE_COMMIT_PREP) {
9b64f57d 4869 refcount_inc(&t->use_count);
0b246afa 4870 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4871 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4872 btrfs_put_transaction(t);
0b246afa 4873 spin_lock(&fs_info->trans_lock);
724e2315
JB
4874 continue;
4875 }
0b246afa 4876 if (t == fs_info->running_transaction) {
724e2315 4877 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4878 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4879 /*
4880 * We wait for 0 num_writers since we don't hold a trans
4881 * handle open currently for this transaction.
4882 */
4883 wait_event(t->writer_wait,
4884 atomic_read(&t->num_writers) == 0);
4885 } else {
0b246afa 4886 spin_unlock(&fs_info->trans_lock);
724e2315 4887 }
2ff7e61e 4888 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4889
0b246afa
JM
4890 spin_lock(&fs_info->trans_lock);
4891 if (t == fs_info->running_transaction)
4892 fs_info->running_transaction = NULL;
acce952b 4893 list_del_init(&t->list);
0b246afa 4894 spin_unlock(&fs_info->trans_lock);
acce952b 4895
724e2315 4896 btrfs_put_transaction(t);
2e4e97ab 4897 trace_btrfs_transaction_commit(fs_info);
0b246afa 4898 spin_lock(&fs_info->trans_lock);
724e2315 4899 }
0b246afa
JM
4900 spin_unlock(&fs_info->trans_lock);
4901 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4902 btrfs_destroy_delayed_inodes(fs_info);
4903 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4904 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4905 btrfs_drop_all_logs(fs_info);
0b246afa 4906 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4907
4908 return 0;
4909}
ec7d6dfd 4910
453e4873 4911int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4912{
4913 struct btrfs_path *path;
4914 int ret;
4915 struct extent_buffer *l;
4916 struct btrfs_key search_key;
4917 struct btrfs_key found_key;
4918 int slot;
4919
4920 path = btrfs_alloc_path();
4921 if (!path)
4922 return -ENOMEM;
4923
4924 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4925 search_key.type = -1;
4926 search_key.offset = (u64)-1;
4927 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4928 if (ret < 0)
4929 goto error;
a6724290
DS
4930 if (ret == 0) {
4931 /*
4932 * Key with offset -1 found, there would have to exist a root
4933 * with such id, but this is out of valid range.
4934 */
4935 ret = -EUCLEAN;
4936 goto error;
4937 }
ec7d6dfd
NB
4938 if (path->slots[0] > 0) {
4939 slot = path->slots[0] - 1;
4940 l = path->nodes[0];
4941 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
4942 root->free_objectid = max_t(u64, found_key.objectid + 1,
4943 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 4944 } else {
23125104 4945 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
4946 }
4947 ret = 0;
4948error:
4949 btrfs_free_path(path);
4950 return ret;
4951}
4952
543068a2 4953int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
4954{
4955 int ret;
4956 mutex_lock(&root->objectid_mutex);
4957
6b8fad57 4958 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
4959 btrfs_warn(root->fs_info,
4960 "the objectid of root %llu reaches its highest value",
4961 root->root_key.objectid);
4962 ret = -ENOSPC;
4963 goto out;
4964 }
4965
23125104 4966 *objectid = root->free_objectid++;
ec7d6dfd
NB
4967 ret = 0;
4968out:
4969 mutex_unlock(&root->objectid_mutex);
4970 return ret;
4971}