use ->bd_mapping instead of ->bd_inode->i_mapping
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
103c1972 26#include "bio.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
8dabb742 32#include "dev-replace.h"
53b381b3 33#include "raid56.h"
5ac1d209 34#include "sysfs.h"
fcebe456 35#include "qgroup.h"
ebb8765b 36#include "compression.h"
557ea5dd 37#include "tree-checker.h"
fd708b81 38#include "ref-verify.h"
aac0023c 39#include "block-group.h"
b0643e59 40#include "discard.h"
f603bb94 41#include "space-info.h"
b70f5097 42#include "zoned.h"
139e8cd3 43#include "subpage.h"
c7f13d42 44#include "fs.h"
07e81dc9 45#include "accessors.h"
a0231804 46#include "extent-tree.h"
45c40c8f 47#include "root-tree.h"
59b818e0 48#include "defrag.h"
c7a03b52 49#include "uuid-tree.h"
67707479 50#include "relocation.h"
2fc6822c 51#include "scrub.h"
c03b2207 52#include "super.h"
eb60ceac 53
319e4d06
QW
54#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
55 BTRFS_HEADER_FLAG_RELOC |\
56 BTRFS_SUPER_FLAG_ERROR |\
57 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
58 BTRFS_SUPER_FLAG_METADUMP |\
59 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 60
2ff7e61e
JM
61static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 63
141386e1
JB
64static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65{
66 if (fs_info->csum_shash)
67 crypto_free_shash(fs_info->csum_shash);
68}
69
d352ac68 70/*
2996e1f8 71 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 72 */
c67b3892 73static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 74{
d5178578 75 struct btrfs_fs_info *fs_info = buf->fs_info;
397239ed
QW
76 int num_pages;
77 u32 first_page_part;
d5178578 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 79 char *kaddr;
e9be5a30 80 int i;
d5178578
JT
81
82 shash->tfm = fs_info->csum_shash;
83 crypto_shash_init(shash);
397239ed
QW
84
85 if (buf->addr) {
86 /* Pages are contiguous, handle them as a big one. */
87 kaddr = buf->addr;
88 first_page_part = fs_info->nodesize;
89 num_pages = 1;
90 } else {
082d5bb9 91 kaddr = folio_address(buf->folios[0]);
397239ed
QW
92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 num_pages = num_extent_pages(buf);
94 }
95
e9be5a30 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 97 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 98
13df3775
QW
99 /*
100 * Multiple single-page folios case would reach here.
101 *
102 * nodesize <= PAGE_SIZE and large folio all handled by above
103 * crypto_shash_update() already.
104 */
5ad9b471 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
082d5bb9 106 kaddr = folio_address(buf->folios[i]);
e9be5a30 107 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 108 }
71a63551 109 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 110 crypto_shash_final(shash, result);
19c00ddc
CM
111}
112
d352ac68
CM
113/*
114 * we can't consider a given block up to date unless the transid of the
115 * block matches the transid in the parent node's pointer. This is how we
116 * detect blocks that either didn't get written at all or got written
117 * in the wrong place.
118 */
d87e6575 119int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
1259ab75 120{
d87e6575 121 if (!extent_buffer_uptodate(eb))
1259ab75
CM
122 return 0;
123
d87e6575
CH
124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 return 1;
126
b9fab919
CM
127 if (atomic)
128 return -EAGAIN;
129
d87e6575
CH
130 if (!extent_buffer_uptodate(eb) ||
131 btrfs_header_generation(eb) != parent_transid) {
132 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
133"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 eb->start, eb->read_mirror,
29549aec 135 parent_transid, btrfs_header_generation(eb));
d87e6575 136 clear_extent_buffer_uptodate(eb);
9e2aff90 137 return 0;
d87e6575 138 }
9e2aff90 139 return 1;
1259ab75
CM
140}
141
e7e16f48
JT
142static bool btrfs_supported_super_csum(u16 csum_type)
143{
144 switch (csum_type) {
145 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 146 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 147 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 148 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
149 return true;
150 default:
151 return false;
152 }
153}
154
1104a885
DS
155/*
156 * Return 0 if the superblock checksum type matches the checksum value of that
157 * algorithm. Pass the raw disk superblock data.
158 */
3d17adea
QW
159int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 const struct btrfs_super_block *disk_sb)
1104a885 161{
51bce6c9 162 char result[BTRFS_CSUM_SIZE];
d5178578
JT
163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165 shash->tfm = fs_info->csum_shash;
1104a885 166
51bce6c9
JT
167 /*
168 * The super_block structure does not span the whole
169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 * filled with zeros and is included in the checksum.
171 */
3d17adea 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 174
55fc29be 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 176 return 1;
1104a885 177
e7e16f48 178 return 0;
1104a885
DS
179}
180
bacf60e5
CH
181static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 int mirror_num)
183{
184 struct btrfs_fs_info *fs_info = eb->fs_info;
96c36eaa 185 int num_folios = num_extent_folios(eb);
bacf60e5
CH
186 int ret = 0;
187
188 if (sb_rdonly(fs_info->sb))
189 return -EROFS;
190
96c36eaa
QW
191 for (int i = 0; i < num_folios; i++) {
192 struct folio *folio = eb->folios[i];
193 u64 start = max_t(u64, eb->start, folio_pos(folio));
082d5bb9 194 u64 end = min_t(u64, eb->start + eb->len,
84cda1a6 195 folio_pos(folio) + eb->folio_size);
917ac778 196 u32 len = end - start;
bacf60e5 197
917ac778 198 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
96c36eaa
QW
199 start, folio, offset_in_folio(folio, start),
200 mirror_num);
bacf60e5
CH
201 if (ret)
202 break;
bacf60e5
CH
203 }
204
205 return ret;
206}
207
d352ac68
CM
208/*
209 * helper to read a given tree block, doing retries as required when
210 * the checksums don't match and we have alternate mirrors to try.
581c1760 211 *
789d6a3a
QW
212 * @check: expected tree parentness check, see the comments of the
213 * structure for details.
d352ac68 214 */
6a2e9dc4 215int btrfs_read_extent_buffer(struct extent_buffer *eb,
789d6a3a 216 struct btrfs_tree_parent_check *check)
f188591e 217{
5ab12d1f 218 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 219 int failed = 0;
f188591e
CM
220 int ret;
221 int num_copies = 0;
222 int mirror_num = 0;
ea466794 223 int failed_mirror = 0;
f188591e 224
789d6a3a
QW
225 ASSERT(check);
226
f188591e 227 while (1) {
f8397d69 228 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
947a6299
QW
229 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230 if (!ret)
231 break;
d397712b 232
0b246afa 233 num_copies = btrfs_num_copies(fs_info,
f188591e 234 eb->start, eb->len);
4235298e 235 if (num_copies == 1)
ea466794 236 break;
4235298e 237
5cf1ab56
JB
238 if (!failed_mirror) {
239 failed = 1;
240 failed_mirror = eb->read_mirror;
241 }
242
f188591e 243 mirror_num++;
ea466794
JB
244 if (mirror_num == failed_mirror)
245 mirror_num++;
246
4235298e 247 if (mirror_num > num_copies)
ea466794 248 break;
f188591e 249 }
ea466794 250
c0901581 251 if (failed && !ret && failed_mirror)
20a1fbf9 252 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
253
254 return ret;
f188591e 255}
19c00ddc 256
31d89399
CH
257/*
258 * Checksum a dirty tree block before IO.
259 */
260blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
eca0f6f6 261{
31d89399 262 struct extent_buffer *eb = bbio->private;
eca0f6f6 263 struct btrfs_fs_info *fs_info = eb->fs_info;
31d89399 264 u64 found_start = btrfs_header_bytenr(eb);
0124855f 265 u64 last_trans;
eca0f6f6
QW
266 u8 result[BTRFS_CSUM_SIZE];
267 int ret;
268
31d89399
CH
269 /* Btree blocks are always contiguous on disk. */
270 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271 return BLK_STS_IOERR;
272 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273 return BLK_STS_IOERR;
274
aa6313e6
JT
275 /*
276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277 * checksum it but zero-out its content. This is done to preserve
278 * ordering of I/O without unnecessarily writing out data.
279 */
cbf44cd9 280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
aa6313e6 281 memzero_extent_buffer(eb, 0, eb->len);
31d89399
CH
282 return BLK_STS_OK;
283 }
284
285 if (WARN_ON_ONCE(found_start != eb->start))
286 return BLK_STS_IOERR;
55151ea9
QW
287 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288 eb->start, eb->len)))
31d89399
CH
289 return BLK_STS_IOERR;
290
eca0f6f6
QW
291 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292 offsetof(struct btrfs_header, fsid),
293 BTRFS_FSID_SIZE) == 0);
294 csum_tree_block(eb, result);
295
296 if (btrfs_header_level(eb))
297 ret = btrfs_check_node(eb);
298 else
85d8a826 299 ret = btrfs_check_leaf(eb);
eca0f6f6 300
3777369f
QW
301 if (ret < 0)
302 goto error;
303
304 /*
305 * Also check the generation, the eb reached here must be newer than
306 * last committed. Or something seriously wrong happened.
307 */
0124855f
FM
308 last_trans = btrfs_get_last_trans_committed(fs_info);
309 if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
3777369f 310 ret = -EUCLEAN;
eca0f6f6 311 btrfs_err(fs_info,
3777369f 312 "block=%llu bad generation, have %llu expect > %llu",
0124855f 313 eb->start, btrfs_header_generation(eb), last_trans);
3777369f 314 goto error;
eca0f6f6
QW
315 }
316 write_extent_buffer(eb, result, 0, fs_info->csum_size);
31d89399 317 return BLK_STS_OK;
3777369f
QW
318
319error:
320 btrfs_print_tree(eb, 0);
321 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322 eb->start);
16199ad9
FM
323 /*
324 * Be noisy if this is an extent buffer from a log tree. We don't abort
325 * a transaction in case there's a bad log tree extent buffer, we just
326 * fallback to a transaction commit. Still we want to know when there is
327 * a bad log tree extent buffer, as that may signal a bug somewhere.
328 */
329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
deb6216f
CH
331 return errno_to_blk_status(ret);
332}
333
413fb1bc 334static bool check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 335{
b0c9b3b0 336 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 338 u8 fsid[BTRFS_FSID_SIZE];
2b82032c 339
9a8658e3
DS
340 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341 BTRFS_FSID_SIZE);
67bc5ad0 342
944d3f9f 343 /*
f7361d8c
AJ
344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345 * This is then overwritten by metadata_uuid if it is present in the
346 * device_list_add(). The same true for a seed device as well. So use of
347 * fs_devices::metadata_uuid is appropriate here.
944d3f9f 348 */
67bc5ad0 349 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
413fb1bc 350 return false;
944d3f9f
NB
351
352 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
413fb1bc 354 return false;
944d3f9f 355
413fb1bc 356 return true;
2b82032c
YZ
357}
358
77bf40a2 359/* Do basic extent buffer checks at read time */
046b562b
CH
360int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361 struct btrfs_tree_parent_check *check)
ce9adaa5 362{
77bf40a2 363 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 364 u64 found_start;
77bf40a2
QW
365 const u32 csum_size = fs_info->csum_size;
366 u8 found_level;
2996e1f8 367 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 368 const u8 *header_csum;
77bf40a2 369 int ret = 0;
ea466794 370
947a6299
QW
371 ASSERT(check);
372
ce9adaa5 373 found_start = btrfs_header_bytenr(eb);
727011e0 374 if (found_start != eb->start) {
8f0ed7d4
QW
375 btrfs_err_rl(fs_info,
376 "bad tree block start, mirror %u want %llu have %llu",
377 eb->read_mirror, eb->start, found_start);
f188591e 378 ret = -EIO;
77bf40a2 379 goto out;
ce9adaa5 380 }
b0c9b3b0 381 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
382 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
383 eb->start, eb->read_mirror);
1259ab75 384 ret = -EIO;
77bf40a2 385 goto out;
1259ab75 386 }
ce9adaa5 387 found_level = btrfs_header_level(eb);
1c24c3ce 388 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
389 btrfs_err(fs_info,
390 "bad tree block level, mirror %u level %d on logical %llu",
391 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 392 ret = -EIO;
77bf40a2 393 goto out;
1c24c3ce 394 }
ce9adaa5 395
c67b3892 396 csum_tree_block(eb, result);
082d5bb9 397 header_csum = folio_address(eb->folios[0]) +
8d993618 398 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
a826d6dc 399
dfd29eed 400 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 401 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
402"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
403 eb->start, eb->read_mirror,
dfd29eed 404 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
405 CSUM_FMT_VALUE(csum_size, result),
406 btrfs_header_level(eb));
2996e1f8 407 ret = -EUCLEAN;
77bf40a2 408 goto out;
2996e1f8
JT
409 }
410
947a6299 411 if (found_level != check->level) {
77177ed1
QW
412 btrfs_err(fs_info,
413 "level verify failed on logical %llu mirror %u wanted %u found %u",
414 eb->start, eb->read_mirror, check->level, found_level);
947a6299
QW
415 ret = -EIO;
416 goto out;
417 }
418 if (unlikely(check->transid &&
419 btrfs_header_generation(eb) != check->transid)) {
420 btrfs_err_rl(eb->fs_info,
421"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
422 eb->start, eb->read_mirror, check->transid,
423 btrfs_header_generation(eb));
424 ret = -EIO;
425 goto out;
426 }
427 if (check->has_first_key) {
428 struct btrfs_key *expect_key = &check->first_key;
429 struct btrfs_key found_key;
430
431 if (found_level)
432 btrfs_node_key_to_cpu(eb, &found_key, 0);
433 else
434 btrfs_item_key_to_cpu(eb, &found_key, 0);
435 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
436 btrfs_err(fs_info,
437"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
438 eb->start, check->transid,
439 expect_key->objectid,
440 expect_key->type, expect_key->offset,
441 found_key.objectid, found_key.type,
442 found_key.offset);
443 ret = -EUCLEAN;
444 goto out;
445 }
446 }
447 if (check->owner_root) {
448 ret = btrfs_check_eb_owner(eb, check->owner_root);
449 if (ret < 0)
450 goto out;
451 }
452
a826d6dc
JB
453 /*
454 * If this is a leaf block and it is corrupt, set the corrupt bit so
455 * that we don't try and read the other copies of this block, just
456 * return -EIO.
457 */
85d8a826 458 if (found_level == 0 && btrfs_check_leaf(eb)) {
a826d6dc
JB
459 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
460 ret = -EIO;
461 }
ce9adaa5 462
813fd1dc 463 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
464 ret = -EIO;
465
aebcc159 466 if (ret)
75391f0d 467 btrfs_err(fs_info,
8f0ed7d4
QW
468 "read time tree block corruption detected on logical %llu mirror %u",
469 eb->start, eb->read_mirror);
77bf40a2
QW
470out:
471 return ret;
472}
473
3dd1462e 474#ifdef CONFIG_MIGRATION
8958b551
MWO
475static int btree_migrate_folio(struct address_space *mapping,
476 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
477{
478 /*
479 * we can't safely write a btree page from here,
480 * we haven't done the locking hook
481 */
8958b551 482 if (folio_test_dirty(src))
784b4e29
CM
483 return -EAGAIN;
484 /*
485 * Buffers may be managed in a filesystem specific way.
486 * We must have no buffers or drop them.
487 */
8958b551
MWO
488 if (folio_get_private(src) &&
489 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 490 return -EAGAIN;
54184650 491 return migrate_folio(mapping, dst, src, mode);
784b4e29 492}
8958b551
MWO
493#else
494#define btree_migrate_folio NULL
3dd1462e 495#endif
784b4e29 496
0da5468f
CM
497static int btree_writepages(struct address_space *mapping,
498 struct writeback_control *wbc)
499{
e2d84521
MX
500 int ret;
501
d8d5f3e1 502 if (wbc->sync_mode == WB_SYNC_NONE) {
41044b41 503 struct btrfs_fs_info *fs_info;
448d640b
CM
504
505 if (wbc->for_kupdate)
506 return 0;
507
41044b41 508 fs_info = inode_to_fs_info(mapping->host);
b9473439 509 /* this is a bit racy, but that's ok */
d814a491
EL
510 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
511 BTRFS_DIRTY_METADATA_THRESH,
512 fs_info->dirty_metadata_batch);
e2d84521 513 if (ret < 0)
793955bc 514 return 0;
793955bc 515 }
0b32f4bb 516 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
517}
518
f913cff3 519static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 520{
f913cff3
MWO
521 if (folio_test_writeback(folio) || folio_test_dirty(folio))
522 return false;
0c4e538b 523
f913cff3 524 return try_release_extent_buffer(&folio->page);
d98237b3
CM
525}
526
895586eb
MWO
527static void btree_invalidate_folio(struct folio *folio, size_t offset,
528 size_t length)
d98237b3 529{
d1310b2e 530 struct extent_io_tree *tree;
c8293894
DS
531
532 tree = &folio_to_inode(folio)->io_tree;
895586eb 533 extent_invalidate_folio(tree, folio, offset);
f913cff3 534 btree_release_folio(folio, GFP_NOFS);
895586eb 535 if (folio_get_private(folio)) {
b33d2e53 536 btrfs_warn(folio_to_fs_info(folio),
895586eb
MWO
537 "folio private not zero on folio %llu",
538 (unsigned long long)folio_pos(folio));
539 folio_detach_private(folio);
9ad6b7bc 540 }
d98237b3
CM
541}
542
bb146eb2 543#ifdef DEBUG
0079c3b1
MWO
544static bool btree_dirty_folio(struct address_space *mapping,
545 struct folio *folio)
546{
41044b41 547 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
5e0e8799 548 struct btrfs_subpage_info *spi = fs_info->subpage_info;
139e8cd3 549 struct btrfs_subpage *subpage;
0b32f4bb 550 struct extent_buffer *eb;
139e8cd3 551 int cur_bit = 0;
0079c3b1 552 u64 page_start = folio_pos(folio);
139e8cd3
QW
553
554 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 555 eb = folio_get_private(folio);
139e8cd3
QW
556 BUG_ON(!eb);
557 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558 BUG_ON(!atomic_read(&eb->refs));
49d0c642 559 btrfs_assert_tree_write_locked(eb);
0079c3b1 560 return filemap_dirty_folio(mapping, folio);
139e8cd3 561 }
5e0e8799
QW
562
563 ASSERT(spi);
0079c3b1 564 subpage = folio_get_private(folio);
139e8cd3 565
5e0e8799
QW
566 for (cur_bit = spi->dirty_offset;
567 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
568 cur_bit++) {
139e8cd3
QW
569 unsigned long flags;
570 u64 cur;
139e8cd3
QW
571
572 spin_lock_irqsave(&subpage->lock, flags);
5e0e8799 573 if (!test_bit(cur_bit, subpage->bitmaps)) {
139e8cd3 574 spin_unlock_irqrestore(&subpage->lock, flags);
139e8cd3
QW
575 continue;
576 }
577 spin_unlock_irqrestore(&subpage->lock, flags);
578 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 579
139e8cd3
QW
580 eb = find_extent_buffer(fs_info, cur);
581 ASSERT(eb);
582 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
583 ASSERT(atomic_read(&eb->refs));
49d0c642 584 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
585 free_extent_buffer(eb);
586
5e0e8799 587 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
139e8cd3 588 }
0079c3b1 589 return filemap_dirty_folio(mapping, folio);
0b32f4bb 590}
0079c3b1
MWO
591#else
592#define btree_dirty_folio filemap_dirty_folio
593#endif
0b32f4bb 594
7f09410b 595static const struct address_space_operations btree_aops = {
0da5468f 596 .writepages = btree_writepages,
f913cff3 597 .release_folio = btree_release_folio,
895586eb 598 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
599 .migrate_folio = btree_migrate_folio,
600 .dirty_folio = btree_dirty_folio,
d98237b3
CM
601};
602
2ff7e61e
JM
603struct extent_buffer *btrfs_find_create_tree_block(
604 struct btrfs_fs_info *fs_info,
3fbaf258
JB
605 u64 bytenr, u64 owner_root,
606 int level)
0999df54 607{
0b246afa
JM
608 if (btrfs_is_testing(fs_info))
609 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 610 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
611}
612
581c1760
QW
613/*
614 * Read tree block at logical address @bytenr and do variant basic but critical
615 * verification.
616 *
789d6a3a
QW
617 * @check: expected tree parentness check, see comments of the
618 * structure for details.
581c1760 619 */
2ff7e61e 620struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
789d6a3a 621 struct btrfs_tree_parent_check *check)
0999df54
CM
622{
623 struct extent_buffer *buf = NULL;
0999df54
CM
624 int ret;
625
789d6a3a
QW
626 ASSERT(check);
627
628 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
629 check->level);
c871b0f2
LB
630 if (IS_ERR(buf))
631 return buf;
0999df54 632
789d6a3a 633 ret = btrfs_read_extent_buffer(buf, check);
0f0fe8f7 634 if (ret) {
537f38f0 635 free_extent_buffer_stale(buf);
64c043de 636 return ERR_PTR(ret);
0f0fe8f7 637 }
789d6a3a 638 if (btrfs_check_eb_owner(buf, check->owner_root)) {
88c602ab
QW
639 free_extent_buffer_stale(buf);
640 return ERR_PTR(-EUCLEAN);
641 }
5f39d397 642 return buf;
ce9adaa5 643
eb60ceac
CM
644}
645
da17066c 646static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 647 u64 objectid)
d97e63b6 648{
7c0260ee 649 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
650
651 memset(&root->root_key, 0, sizeof(root->root_key));
652 memset(&root->root_item, 0, sizeof(root->root_item));
653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 654 root->fs_info = fs_info;
2e608bd1 655 root->root_key.objectid = objectid;
cfaa7295 656 root->node = NULL;
a28ec197 657 root->commit_root = NULL;
27cdeb70 658 root->state = 0;
abed4aaa 659 RB_CLEAR_NODE(&root->rb_node);
0b86a832 660
0f7d52f4 661 root->last_trans = 0;
6b8fad57 662 root->free_objectid = 0;
eb73c1b7 663 root->nr_delalloc_inodes = 0;
199c2a9c 664 root->nr_ordered_extents = 0;
6bef4d31 665 root->inode_tree = RB_ROOT;
6140ba8a
DS
666 /* GFP flags are compatible with XA_FLAGS_*. */
667 xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
2e608bd1
JB
668
669 btrfs_init_root_block_rsv(root);
0b86a832
CM
670
671 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 672 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
673 INIT_LIST_HEAD(&root->delalloc_inodes);
674 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
675 INIT_LIST_HEAD(&root->ordered_extents);
676 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 677 INIT_LIST_HEAD(&root->reloc_dirty_list);
5d4f98a2 678 spin_lock_init(&root->inode_lock);
eb73c1b7 679 spin_lock_init(&root->delalloc_lock);
199c2a9c 680 spin_lock_init(&root->ordered_extent_lock);
f0486c68 681 spin_lock_init(&root->accounting_lock);
8287475a 682 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 683 mutex_init(&root->objectid_mutex);
e02119d5 684 mutex_init(&root->log_mutex);
31f3d255 685 mutex_init(&root->ordered_extent_mutex);
573bfb72 686 mutex_init(&root->delalloc_mutex);
c53e9653 687 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
688 init_waitqueue_head(&root->log_writer_wait);
689 init_waitqueue_head(&root->log_commit_wait[0]);
690 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
691 INIT_LIST_HEAD(&root->log_ctxs[0]);
692 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
693 atomic_set(&root->log_commit[0], 0);
694 atomic_set(&root->log_commit[1], 0);
695 atomic_set(&root->log_writers, 0);
2ecb7923 696 atomic_set(&root->log_batch, 0);
0700cea7 697 refcount_set(&root->refs, 1);
8ecebf4d 698 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 699 atomic_set(&root->nr_swapfiles, 0);
6008859b 700 btrfs_set_root_log_transid(root, 0);
d1433deb 701 root->log_transid_committed = -1;
f9850787 702 btrfs_set_root_last_log_commit(root, 0);
2e608bd1 703 root->anon_dev = 0;
e289f03e 704 if (!dummy) {
43eb5f29 705 extent_io_tree_init(fs_info, &root->dirty_log_pages,
35da5a7e 706 IO_TREE_ROOT_DIRTY_LOG_PAGES);
e289f03e 707 extent_io_tree_init(fs_info, &root->log_csum_range,
35da5a7e 708 IO_TREE_LOG_CSUM_RANGE);
e289f03e 709 }
017e5369 710
5f3ab90a 711 spin_lock_init(&root->root_item_lock);
370a11b8 712 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
713#ifdef CONFIG_BTRFS_DEBUG
714 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 715 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 716 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 717 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 718#endif
3768f368
CM
719}
720
74e4d827 721static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 722 u64 objectid, gfp_t flags)
6f07e42e 723{
74e4d827 724 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 725 if (root)
96dfcb46 726 __setup_root(root, fs_info, objectid);
6f07e42e
AV
727 return root;
728}
729
06ea65a3
JB
730#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
731/* Should only be used by the testing infrastructure */
da17066c 732struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
733{
734 struct btrfs_root *root;
735
7c0260ee
JM
736 if (!fs_info)
737 return ERR_PTR(-EINVAL);
738
96dfcb46 739 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
740 if (!root)
741 return ERR_PTR(-ENOMEM);
da17066c 742
b9ef22de 743 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 744 root->alloc_bytenr = 0;
06ea65a3
JB
745
746 return root;
747}
748#endif
749
abed4aaa
JB
750static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
751{
752 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
753 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
754
755 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
756}
757
758static int global_root_key_cmp(const void *k, const struct rb_node *node)
759{
760 const struct btrfs_key *key = k;
761 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
762
763 return btrfs_comp_cpu_keys(key, &root->root_key);
764}
765
766int btrfs_global_root_insert(struct btrfs_root *root)
767{
768 struct btrfs_fs_info *fs_info = root->fs_info;
769 struct rb_node *tmp;
745806fb 770 int ret = 0;
abed4aaa
JB
771
772 write_lock(&fs_info->global_root_lock);
773 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
774 write_unlock(&fs_info->global_root_lock);
abed4aaa 775
745806fb
QW
776 if (tmp) {
777 ret = -EEXIST;
778 btrfs_warn(fs_info, "global root %llu %llu already exists",
779 root->root_key.objectid, root->root_key.offset);
780 }
781 return ret;
abed4aaa
JB
782}
783
784void btrfs_global_root_delete(struct btrfs_root *root)
785{
786 struct btrfs_fs_info *fs_info = root->fs_info;
787
788 write_lock(&fs_info->global_root_lock);
789 rb_erase(&root->rb_node, &fs_info->global_root_tree);
790 write_unlock(&fs_info->global_root_lock);
791}
792
793struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
794 struct btrfs_key *key)
795{
796 struct rb_node *node;
797 struct btrfs_root *root = NULL;
798
799 read_lock(&fs_info->global_root_lock);
800 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
801 if (node)
802 root = container_of(node, struct btrfs_root, rb_node);
803 read_unlock(&fs_info->global_root_lock);
804
805 return root;
806}
807
f7238e50
JB
808static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
809{
810 struct btrfs_block_group *block_group;
811 u64 ret;
812
813 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
814 return 0;
815
816 if (bytenr)
817 block_group = btrfs_lookup_block_group(fs_info, bytenr);
818 else
819 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
820 ASSERT(block_group);
821 if (!block_group)
822 return 0;
823 ret = block_group->global_root_id;
824 btrfs_put_block_group(block_group);
825
826 return ret;
827}
828
abed4aaa
JB
829struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
830{
831 struct btrfs_key key = {
832 .objectid = BTRFS_CSUM_TREE_OBJECTID,
833 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 834 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
835 };
836
837 return btrfs_global_root(fs_info, &key);
838}
839
840struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
841{
842 struct btrfs_key key = {
843 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
844 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 845 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
846 };
847
848 return btrfs_global_root(fs_info, &key);
849}
850
51129b33
JB
851struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
852{
853 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
854 return fs_info->block_group_root;
855 return btrfs_extent_root(fs_info, 0);
856}
857
20897f5c 858struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
859 u64 objectid)
860{
9b7a2440 861 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
862 struct extent_buffer *leaf;
863 struct btrfs_root *tree_root = fs_info->tree_root;
864 struct btrfs_root *root;
865 struct btrfs_key key;
b89f6d1f 866 unsigned int nofs_flag;
20897f5c 867 int ret = 0;
20897f5c 868
b89f6d1f
FM
869 /*
870 * We're holding a transaction handle, so use a NOFS memory allocation
871 * context to avoid deadlock if reclaim happens.
872 */
873 nofs_flag = memalloc_nofs_save();
96dfcb46 874 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 875 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
876 if (!root)
877 return ERR_PTR(-ENOMEM);
878
20897f5c
AJ
879 root->root_key.objectid = objectid;
880 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
881 root->root_key.offset = 0;
882
9631e4cc 883 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
60ea105a 884 0, BTRFS_NESTING_NORMAL);
20897f5c
AJ
885 if (IS_ERR(leaf)) {
886 ret = PTR_ERR(leaf);
1dd05682 887 leaf = NULL;
c1b07854 888 goto fail;
20897f5c
AJ
889 }
890
20897f5c 891 root->node = leaf;
50564b65 892 btrfs_mark_buffer_dirty(trans, leaf);
20897f5c
AJ
893
894 root->commit_root = btrfs_root_node(root);
27cdeb70 895 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 896
f944d2cb
DS
897 btrfs_set_root_flags(&root->root_item, 0);
898 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
899 btrfs_set_root_bytenr(&root->root_item, leaf->start);
900 btrfs_set_root_generation(&root->root_item, trans->transid);
901 btrfs_set_root_level(&root->root_item, 0);
902 btrfs_set_root_refs(&root->root_item, 1);
903 btrfs_set_root_used(&root->root_item, leaf->len);
904 btrfs_set_root_last_snapshot(&root->root_item, 0);
905 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 906 if (is_fstree(objectid))
807fc790
AS
907 generate_random_guid(root->root_item.uuid);
908 else
909 export_guid(root->root_item.uuid, &guid_null);
c8422684 910 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 911
8a6a87cd
BB
912 btrfs_tree_unlock(leaf);
913
20897f5c
AJ
914 key.objectid = objectid;
915 key.type = BTRFS_ROOT_ITEM_KEY;
916 key.offset = 0;
917 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
918 if (ret)
919 goto fail;
920
1dd05682
TI
921 return root;
922
8a6a87cd 923fail:
00246528 924 btrfs_put_root(root);
20897f5c 925
1dd05682 926 return ERR_PTR(ret);
20897f5c
AJ
927}
928
7237f183
YZ
929static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
930 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
931{
932 struct btrfs_root *root;
e02119d5 933
96dfcb46 934 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 935 if (!root)
7237f183 936 return ERR_PTR(-ENOMEM);
e02119d5 937
e02119d5
CM
938 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
939 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
940 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 941
6ab6ebb7
NA
942 return root;
943}
944
945int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
946 struct btrfs_root *root)
947{
948 struct extent_buffer *leaf;
949
7237f183 950 /*
92a7cc42 951 * DON'T set SHAREABLE bit for log trees.
27cdeb70 952 *
92a7cc42
QW
953 * Log trees are not exposed to user space thus can't be snapshotted,
954 * and they go away before a real commit is actually done.
955 *
956 * They do store pointers to file data extents, and those reference
957 * counts still get updated (along with back refs to the log tree).
7237f183 958 */
e02119d5 959
4d75f8a9 960 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
60ea105a 961 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
962 if (IS_ERR(leaf))
963 return PTR_ERR(leaf);
e02119d5 964
7237f183 965 root->node = leaf;
e02119d5 966
50564b65 967 btrfs_mark_buffer_dirty(trans, root->node);
e02119d5 968 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
969
970 return 0;
7237f183
YZ
971}
972
973int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
974 struct btrfs_fs_info *fs_info)
975{
976 struct btrfs_root *log_root;
977
978 log_root = alloc_log_tree(trans, fs_info);
979 if (IS_ERR(log_root))
980 return PTR_ERR(log_root);
6ab6ebb7 981
3ddebf27
NA
982 if (!btrfs_is_zoned(fs_info)) {
983 int ret = btrfs_alloc_log_tree_node(trans, log_root);
984
985 if (ret) {
986 btrfs_put_root(log_root);
987 return ret;
988 }
6ab6ebb7
NA
989 }
990
7237f183
YZ
991 WARN_ON(fs_info->log_root_tree);
992 fs_info->log_root_tree = log_root;
993 return 0;
994}
995
996int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
997 struct btrfs_root *root)
998{
0b246afa 999 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1000 struct btrfs_root *log_root;
1001 struct btrfs_inode_item *inode_item;
6ab6ebb7 1002 int ret;
7237f183 1003
0b246afa 1004 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1005 if (IS_ERR(log_root))
1006 return PTR_ERR(log_root);
1007
6ab6ebb7
NA
1008 ret = btrfs_alloc_log_tree_node(trans, log_root);
1009 if (ret) {
1010 btrfs_put_root(log_root);
1011 return ret;
1012 }
1013
7237f183
YZ
1014 log_root->last_trans = trans->transid;
1015 log_root->root_key.offset = root->root_key.objectid;
1016
1017 inode_item = &log_root->root_item.inode;
3cae210f
QW
1018 btrfs_set_stack_inode_generation(inode_item, 1);
1019 btrfs_set_stack_inode_size(inode_item, 3);
1020 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1021 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1022 fs_info->nodesize);
3cae210f 1023 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1024
5d4f98a2 1025 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1026
1027 WARN_ON(root->log_root);
1028 root->log_root = log_root;
6008859b 1029 btrfs_set_root_log_transid(root, 0);
d1433deb 1030 root->log_transid_committed = -1;
f9850787 1031 btrfs_set_root_last_log_commit(root, 0);
e02119d5
CM
1032 return 0;
1033}
1034
49d11bea
JB
1035static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1036 struct btrfs_path *path,
1037 struct btrfs_key *key)
e02119d5
CM
1038{
1039 struct btrfs_root *root;
789d6a3a 1040 struct btrfs_tree_parent_check check = { 0 };
e02119d5 1041 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1042 u64 generation;
cb517eab 1043 int ret;
581c1760 1044 int level;
0f7d52f4 1045
96dfcb46 1046 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1047 if (!root)
1048 return ERR_PTR(-ENOMEM);
0f7d52f4 1049
cb517eab
MX
1050 ret = btrfs_find_root(tree_root, key, path,
1051 &root->root_item, &root->root_key);
0f7d52f4 1052 if (ret) {
13a8a7c8
YZ
1053 if (ret > 0)
1054 ret = -ENOENT;
49d11bea 1055 goto fail;
0f7d52f4 1056 }
13a8a7c8 1057
84234f3a 1058 generation = btrfs_root_generation(&root->root_item);
581c1760 1059 level = btrfs_root_level(&root->root_item);
789d6a3a
QW
1060 check.level = level;
1061 check.transid = generation;
1062 check.owner_root = key->objectid;
1063 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1064 &check);
64c043de
LB
1065 if (IS_ERR(root->node)) {
1066 ret = PTR_ERR(root->node);
8c38938c 1067 root->node = NULL;
49d11bea 1068 goto fail;
4eb150d6
QW
1069 }
1070 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1071 ret = -EIO;
49d11bea 1072 goto fail;
416bc658 1073 }
88c602ab
QW
1074
1075 /*
1076 * For real fs, and not log/reloc trees, root owner must
1077 * match its root node owner
1078 */
1079 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1080 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1081 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1082 root->root_key.objectid != btrfs_header_owner(root->node)) {
1083 btrfs_crit(fs_info,
1084"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1085 root->root_key.objectid, root->node->start,
1086 btrfs_header_owner(root->node),
1087 root->root_key.objectid);
1088 ret = -EUCLEAN;
1089 goto fail;
1090 }
5d4f98a2 1091 root->commit_root = btrfs_root_node(root);
cb517eab 1092 return root;
49d11bea 1093fail:
00246528 1094 btrfs_put_root(root);
49d11bea
JB
1095 return ERR_PTR(ret);
1096}
1097
1098struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1099 struct btrfs_key *key)
1100{
1101 struct btrfs_root *root;
1102 struct btrfs_path *path;
1103
1104 path = btrfs_alloc_path();
1105 if (!path)
1106 return ERR_PTR(-ENOMEM);
1107 root = read_tree_root_path(tree_root, path, key);
1108 btrfs_free_path(path);
1109
1110 return root;
cb517eab
MX
1111}
1112
2dfb1e43
QW
1113/*
1114 * Initialize subvolume root in-memory structure
1115 *
1116 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1117 */
1118static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1119{
1120 int ret;
1121
0b548539 1122 btrfs_drew_lock_init(&root->snapshot_lock);
8257b2dc 1123
aeb935a4 1124 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
6ebcd021
QW
1125 !btrfs_is_data_reloc_root(root) &&
1126 is_fstree(root->root_key.objectid)) {
92a7cc42 1127 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1128 btrfs_check_and_init_root_item(&root->root_item);
1129 }
1130
851fd730
QW
1131 /*
1132 * Don't assign anonymous block device to roots that are not exposed to
1133 * userspace, the id pool is limited to 1M
1134 */
1135 if (is_fstree(root->root_key.objectid) &&
1136 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1137 if (!anon_dev) {
1138 ret = get_anon_bdev(&root->anon_dev);
1139 if (ret)
1140 goto fail;
1141 } else {
1142 root->anon_dev = anon_dev;
1143 }
851fd730 1144 }
f32e48e9
CR
1145
1146 mutex_lock(&root->objectid_mutex);
453e4873 1147 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1148 if (ret) {
1149 mutex_unlock(&root->objectid_mutex);
876d2cf1 1150 goto fail;
f32e48e9
CR
1151 }
1152
6b8fad57 1153 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1154
1155 mutex_unlock(&root->objectid_mutex);
1156
cb517eab
MX
1157 return 0;
1158fail:
84db5ccf 1159 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1160 return ret;
1161}
1162
a98db0f3
JB
1163static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1164 u64 root_id)
cb517eab
MX
1165{
1166 struct btrfs_root *root;
1167
fc7cbcd4
DS
1168 spin_lock(&fs_info->fs_roots_radix_lock);
1169 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170 (unsigned long)root_id);
25ac047c 1171 root = btrfs_grab_root(root);
fc7cbcd4 1172 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1173 return root;
1174}
1175
49d11bea
JB
1176static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1177 u64 objectid)
1178{
abed4aaa
JB
1179 struct btrfs_key key = {
1180 .objectid = objectid,
1181 .type = BTRFS_ROOT_ITEM_KEY,
1182 .offset = 0,
1183 };
1184
e91909aa
CH
1185 switch (objectid) {
1186 case BTRFS_ROOT_TREE_OBJECTID:
49d11bea 1187 return btrfs_grab_root(fs_info->tree_root);
e91909aa 1188 case BTRFS_EXTENT_TREE_OBJECTID:
abed4aaa 1189 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1190 case BTRFS_CHUNK_TREE_OBJECTID:
49d11bea 1191 return btrfs_grab_root(fs_info->chunk_root);
e91909aa 1192 case BTRFS_DEV_TREE_OBJECTID:
49d11bea 1193 return btrfs_grab_root(fs_info->dev_root);
e91909aa 1194 case BTRFS_CSUM_TREE_OBJECTID:
abed4aaa 1195 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1196 case BTRFS_QUOTA_TREE_OBJECTID:
85724171 1197 return btrfs_grab_root(fs_info->quota_root);
e91909aa 1198 case BTRFS_UUID_TREE_OBJECTID:
85724171 1199 return btrfs_grab_root(fs_info->uuid_root);
e91909aa 1200 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
85724171 1201 return btrfs_grab_root(fs_info->block_group_root);
e91909aa 1202 case BTRFS_FREE_SPACE_TREE_OBJECTID:
85724171 1203 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
51502090
JT
1204 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1205 return btrfs_grab_root(fs_info->stripe_root);
e91909aa
CH
1206 default:
1207 return NULL;
1208 }
49d11bea
JB
1209}
1210
cb517eab
MX
1211int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1212 struct btrfs_root *root)
1213{
1214 int ret;
1215
fc7cbcd4
DS
1216 ret = radix_tree_preload(GFP_NOFS);
1217 if (ret)
1218 return ret;
1219
1220 spin_lock(&fs_info->fs_roots_radix_lock);
1221 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1222 (unsigned long)root->root_key.objectid,
1223 root);
af01d2e5 1224 if (ret == 0) {
00246528 1225 btrfs_grab_root(root);
fc7cbcd4 1226 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1227 }
fc7cbcd4
DS
1228 spin_unlock(&fs_info->fs_roots_radix_lock);
1229 radix_tree_preload_end();
cb517eab
MX
1230
1231 return ret;
1232}
1233
bd647ce3
JB
1234void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1235{
1236#ifdef CONFIG_BTRFS_DEBUG
1237 struct btrfs_root *root;
1238
1239 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1240 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1241
bd647ce3
JB
1242 root = list_first_entry(&fs_info->allocated_roots,
1243 struct btrfs_root, leak_list);
457f1864 1244 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1245 btrfs_root_name(&root->root_key, buf),
bd647ce3 1246 refcount_read(&root->refs));
8fd2b12e 1247 WARN_ON_ONCE(1);
bd647ce3 1248 while (refcount_read(&root->refs) > 1)
00246528
JB
1249 btrfs_put_root(root);
1250 btrfs_put_root(root);
bd647ce3
JB
1251 }
1252#endif
1253}
1254
abed4aaa
JB
1255static void free_global_roots(struct btrfs_fs_info *fs_info)
1256{
1257 struct btrfs_root *root;
1258 struct rb_node *node;
1259
1260 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1261 root = rb_entry(node, struct btrfs_root, rb_node);
1262 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1263 btrfs_put_root(root);
1264 }
1265}
1266
0d4b0463
JB
1267void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1268{
141386e1
JB
1269 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1270 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1271 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1272 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1273 btrfs_free_csum_hash(fs_info);
1274 btrfs_free_stripe_hash_table(fs_info);
1275 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1276 kfree(fs_info->balance_ctl);
1277 kfree(fs_info->delayed_root);
abed4aaa 1278 free_global_roots(fs_info);
00246528
JB
1279 btrfs_put_root(fs_info->tree_root);
1280 btrfs_put_root(fs_info->chunk_root);
1281 btrfs_put_root(fs_info->dev_root);
00246528
JB
1282 btrfs_put_root(fs_info->quota_root);
1283 btrfs_put_root(fs_info->uuid_root);
00246528 1284 btrfs_put_root(fs_info->fs_root);
aeb935a4 1285 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1286 btrfs_put_root(fs_info->block_group_root);
51502090 1287 btrfs_put_root(fs_info->stripe_root);
bd647ce3 1288 btrfs_check_leaked_roots(fs_info);
3fd63727 1289 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1290 kfree(fs_info->super_copy);
1291 kfree(fs_info->super_for_commit);
8481dd80 1292 kfree(fs_info->subpage_info);
0d4b0463
JB
1293 kvfree(fs_info);
1294}
1295
1296
2dfb1e43
QW
1297/*
1298 * Get an in-memory reference of a root structure.
1299 *
1300 * For essential trees like root/extent tree, we grab it from fs_info directly.
1301 * For subvolume trees, we check the cached filesystem roots first. If not
1302 * found, then read it from disk and add it to cached fs roots.
1303 *
1304 * Caller should release the root by calling btrfs_put_root() after the usage.
1305 *
1306 * NOTE: Reloc and log trees can't be read by this function as they share the
1307 * same root objectid.
1308 *
1309 * @objectid: root id
1310 * @anon_dev: preallocated anonymous block device number for new roots,
e2b54eaf 1311 * pass NULL for a new allocation.
2dfb1e43
QW
1312 * @check_ref: whether to check root item references, If true, return -ENOENT
1313 * for orphan roots
1314 */
1315static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
e2b54eaf 1316 u64 objectid, dev_t *anon_dev,
2dfb1e43 1317 bool check_ref)
5eda7b5e
CM
1318{
1319 struct btrfs_root *root;
381cf658 1320 struct btrfs_path *path;
1d4c08e0 1321 struct btrfs_key key;
5eda7b5e
CM
1322 int ret;
1323
49d11bea
JB
1324 root = btrfs_get_global_root(fs_info, objectid);
1325 if (root)
1326 return root;
773e722a
QW
1327
1328 /*
1329 * If we're called for non-subvolume trees, and above function didn't
1330 * find one, do not try to read it from disk.
1331 *
1332 * This is namely for free-space-tree and quota tree, which can change
1333 * at runtime and should only be grabbed from fs_info.
1334 */
1335 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1336 return ERR_PTR(-ENOENT);
4df27c4d 1337again:
56e9357a 1338 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1339 if (root) {
e03ee2fe
QW
1340 /*
1341 * Some other caller may have read out the newly inserted
1342 * subvolume already (for things like backref walk etc). Not
1343 * that common but still possible. In that case, we just need
1344 * to free the anon_dev.
1345 */
e2b54eaf
FM
1346 if (unlikely(anon_dev && *anon_dev)) {
1347 free_anon_bdev(*anon_dev);
1348 *anon_dev = 0;
e03ee2fe
QW
1349 }
1350
bc44d7c4 1351 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1352 btrfs_put_root(root);
48475471 1353 return ERR_PTR(-ENOENT);
bc44d7c4 1354 }
5eda7b5e 1355 return root;
48475471 1356 }
5eda7b5e 1357
56e9357a
DS
1358 key.objectid = objectid;
1359 key.type = BTRFS_ROOT_ITEM_KEY;
1360 key.offset = (u64)-1;
1361 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1362 if (IS_ERR(root))
1363 return root;
3394e160 1364
c00869f1 1365 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1366 ret = -ENOENT;
581bb050 1367 goto fail;
35a30d7c 1368 }
581bb050 1369
e2b54eaf 1370 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
ac08aedf
CM
1371 if (ret)
1372 goto fail;
3394e160 1373
381cf658
DS
1374 path = btrfs_alloc_path();
1375 if (!path) {
1376 ret = -ENOMEM;
1377 goto fail;
1378 }
1d4c08e0
DS
1379 key.objectid = BTRFS_ORPHAN_OBJECTID;
1380 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1381 key.offset = objectid;
1d4c08e0
DS
1382
1383 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1384 btrfs_free_path(path);
d68fc57b
YZ
1385 if (ret < 0)
1386 goto fail;
1387 if (ret == 0)
27cdeb70 1388 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1389
cb517eab 1390 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1391 if (ret) {
168a2f77
JJB
1392 if (ret == -EEXIST) {
1393 btrfs_put_root(root);
4df27c4d 1394 goto again;
168a2f77 1395 }
4df27c4d 1396 goto fail;
0f7d52f4 1397 }
edbd8d4e 1398 return root;
4df27c4d 1399fail:
33fab972
FM
1400 /*
1401 * If our caller provided us an anonymous device, then it's his
143823cf 1402 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1403 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1404 * and once again by our caller.
1405 */
e2b54eaf 1406 if (anon_dev && *anon_dev)
33fab972 1407 root->anon_dev = 0;
8c38938c 1408 btrfs_put_root(root);
4df27c4d 1409 return ERR_PTR(ret);
edbd8d4e
CM
1410}
1411
2dfb1e43
QW
1412/*
1413 * Get in-memory reference of a root structure
1414 *
1415 * @objectid: tree objectid
1416 * @check_ref: if set, verify that the tree exists and the item has at least
1417 * one reference
1418 */
1419struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1420 u64 objectid, bool check_ref)
1421{
e2b54eaf 1422 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
2dfb1e43
QW
1423}
1424
1425/*
1426 * Get in-memory reference of a root structure, created as new, optionally pass
1427 * the anonymous block device id
1428 *
1429 * @objectid: tree objectid
e2b54eaf
FM
1430 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1431 * parameter value if not NULL
2dfb1e43
QW
1432 */
1433struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
e2b54eaf 1434 u64 objectid, dev_t *anon_dev)
2dfb1e43
QW
1435{
1436 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1437}
1438
49d11bea 1439/*
9580503b
DS
1440 * Return a root for the given objectid.
1441 *
49d11bea
JB
1442 * @fs_info: the fs_info
1443 * @objectid: the objectid we need to lookup
1444 *
1445 * This is exclusively used for backref walking, and exists specifically because
1446 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1447 * creation time, which means we may have to read the tree_root in order to look
1448 * up a fs root that is not in memory. If the root is not in memory we will
1449 * read the tree root commit root and look up the fs root from there. This is a
1450 * temporary root, it will not be inserted into the radix tree as it doesn't
1451 * have the most uptodate information, it'll simply be discarded once the
1452 * backref code is finished using the root.
1453 */
1454struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1455 struct btrfs_path *path,
1456 u64 objectid)
1457{
1458 struct btrfs_root *root;
1459 struct btrfs_key key;
1460
1461 ASSERT(path->search_commit_root && path->skip_locking);
1462
1463 /*
1464 * This can return -ENOENT if we ask for a root that doesn't exist, but
1465 * since this is called via the backref walking code we won't be looking
1466 * up a root that doesn't exist, unless there's corruption. So if root
1467 * != NULL just return it.
1468 */
1469 root = btrfs_get_global_root(fs_info, objectid);
1470 if (root)
1471 return root;
1472
1473 root = btrfs_lookup_fs_root(fs_info, objectid);
1474 if (root)
1475 return root;
1476
1477 key.objectid = objectid;
1478 key.type = BTRFS_ROOT_ITEM_KEY;
1479 key.offset = (u64)-1;
1480 root = read_tree_root_path(fs_info->tree_root, path, &key);
1481 btrfs_release_path(path);
1482
1483 return root;
1484}
1485
a74a4b97
CM
1486static int cleaner_kthread(void *arg)
1487{
0d031dc4 1488 struct btrfs_fs_info *fs_info = arg;
d0278245 1489 int again;
a74a4b97 1490
d6fd0ae2 1491 while (1) {
d0278245 1492 again = 0;
a74a4b97 1493
fd340d0f
JB
1494 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1495
d0278245 1496 /* Make the cleaner go to sleep early. */
2ff7e61e 1497 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1498 goto sleep;
1499
90c711ab
ZB
1500 /*
1501 * Do not do anything if we might cause open_ctree() to block
1502 * before we have finished mounting the filesystem.
1503 */
0b246afa 1504 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1505 goto sleep;
1506
0b246afa 1507 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1508 goto sleep;
1509
dc7f370c
MX
1510 /*
1511 * Avoid the problem that we change the status of the fs
1512 * during the above check and trylock.
1513 */
2ff7e61e 1514 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1515 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1516 goto sleep;
76dda93c 1517 }
a74a4b97 1518
b7625f46
QW
1519 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1520 btrfs_sysfs_feature_update(fs_info);
1521
2ff7e61e 1522 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1523
33c44184 1524 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1525 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1526
1527 /*
05323cd1
MX
1528 * The defragger has dealt with the R/O remount and umount,
1529 * needn't do anything special here.
d0278245 1530 */
0b246afa 1531 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1532
1533 /*
f3372065 1534 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1535 * with relocation (btrfs_relocate_chunk) and relocation
1536 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1537 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1538 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1539 * unused block groups.
1540 */
0b246afa 1541 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1542
1543 /*
1544 * Reclaim block groups in the reclaim_bgs list after we deleted
1545 * all unused block_groups. This possibly gives us some more free
1546 * space.
1547 */
1548 btrfs_reclaim_bgs(fs_info);
d0278245 1549sleep:
a0a1db70 1550 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1551 if (kthread_should_park())
1552 kthread_parkme();
1553 if (kthread_should_stop())
1554 return 0;
838fe188 1555 if (!again) {
a74a4b97 1556 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1557 schedule();
a74a4b97
CM
1558 __set_current_state(TASK_RUNNING);
1559 }
da288d28 1560 }
a74a4b97
CM
1561}
1562
1563static int transaction_kthread(void *arg)
1564{
1565 struct btrfs_root *root = arg;
0b246afa 1566 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1567 struct btrfs_trans_handle *trans;
1568 struct btrfs_transaction *cur;
8929ecfa 1569 u64 transid;
643900be 1570 time64_t delta;
a74a4b97 1571 unsigned long delay;
914b2007 1572 bool cannot_commit;
a74a4b97
CM
1573
1574 do {
914b2007 1575 cannot_commit = false;
ba1bc00f 1576 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1577 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1578
0b246afa
JM
1579 spin_lock(&fs_info->trans_lock);
1580 cur = fs_info->running_transaction;
a74a4b97 1581 if (!cur) {
0b246afa 1582 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1583 goto sleep;
1584 }
31153d81 1585
643900be 1586 delta = ktime_get_seconds() - cur->start_time;
fdfbf020 1587 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
77d20c68 1588 cur->state < TRANS_STATE_COMMIT_PREP &&
643900be 1589 delta < fs_info->commit_interval) {
0b246afa 1590 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1591 delay -= msecs_to_jiffies((delta - 1) * 1000);
1592 delay = min(delay,
1593 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1594 goto sleep;
1595 }
8929ecfa 1596 transid = cur->transid;
0b246afa 1597 spin_unlock(&fs_info->trans_lock);
56bec294 1598
79787eaa 1599 /* If the file system is aborted, this will always fail. */
354aa0fb 1600 trans = btrfs_attach_transaction(root);
914b2007 1601 if (IS_ERR(trans)) {
354aa0fb
MX
1602 if (PTR_ERR(trans) != -ENOENT)
1603 cannot_commit = true;
79787eaa 1604 goto sleep;
914b2007 1605 }
8929ecfa 1606 if (transid == trans->transid) {
3a45bb20 1607 btrfs_commit_transaction(trans);
8929ecfa 1608 } else {
3a45bb20 1609 btrfs_end_transaction(trans);
8929ecfa 1610 }
a74a4b97 1611sleep:
0b246afa
JM
1612 wake_up_process(fs_info->cleaner_kthread);
1613 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1614
84961539 1615 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1616 btrfs_cleanup_transaction(fs_info);
ce63f891 1617 if (!kthread_should_stop() &&
0b246afa 1618 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1619 cannot_commit))
bc5511d0 1620 schedule_timeout_interruptible(delay);
a74a4b97
CM
1621 } while (!kthread_should_stop());
1622 return 0;
1623}
1624
af31f5e5 1625/*
01f0f9da
NB
1626 * This will find the highest generation in the array of root backups. The
1627 * index of the highest array is returned, or -EINVAL if we can't find
1628 * anything.
af31f5e5
CM
1629 *
1630 * We check to make sure the array is valid by comparing the
1631 * generation of the latest root in the array with the generation
1632 * in the super block. If they don't match we pitch it.
1633 */
01f0f9da 1634static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1635{
01f0f9da 1636 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1637 u64 cur;
af31f5e5
CM
1638 struct btrfs_root_backup *root_backup;
1639 int i;
1640
1641 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1642 root_backup = info->super_copy->super_roots + i;
1643 cur = btrfs_backup_tree_root_gen(root_backup);
1644 if (cur == newest_gen)
01f0f9da 1645 return i;
af31f5e5
CM
1646 }
1647
01f0f9da 1648 return -EINVAL;
af31f5e5
CM
1649}
1650
af31f5e5
CM
1651/*
1652 * copy all the root pointers into the super backup array.
1653 * this will bump the backup pointer by one when it is
1654 * done
1655 */
1656static void backup_super_roots(struct btrfs_fs_info *info)
1657{
6ef108dd 1658 const int next_backup = info->backup_root_index;
af31f5e5 1659 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1660
1661 root_backup = info->super_for_commit->super_roots + next_backup;
1662
1663 /*
1664 * make sure all of our padding and empty slots get zero filled
1665 * regardless of which ones we use today
1666 */
1667 memset(root_backup, 0, sizeof(*root_backup));
1668
1669 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1670
1671 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1672 btrfs_set_backup_tree_root_gen(root_backup,
1673 btrfs_header_generation(info->tree_root->node));
1674
1675 btrfs_set_backup_tree_root_level(root_backup,
1676 btrfs_header_level(info->tree_root->node));
1677
1678 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1679 btrfs_set_backup_chunk_root_gen(root_backup,
1680 btrfs_header_generation(info->chunk_root->node));
1681 btrfs_set_backup_chunk_root_level(root_backup,
1682 btrfs_header_level(info->chunk_root->node));
1683
1c56ab99 1684 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1685 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1686 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1687
1688 btrfs_set_backup_extent_root(root_backup,
1689 extent_root->node->start);
1690 btrfs_set_backup_extent_root_gen(root_backup,
1691 btrfs_header_generation(extent_root->node));
1692 btrfs_set_backup_extent_root_level(root_backup,
1693 btrfs_header_level(extent_root->node));
f7238e50
JB
1694
1695 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1696 btrfs_set_backup_csum_root_gen(root_backup,
1697 btrfs_header_generation(csum_root->node));
1698 btrfs_set_backup_csum_root_level(root_backup,
1699 btrfs_header_level(csum_root->node));
9c54e80d 1700 }
af31f5e5 1701
7c7e82a7
CM
1702 /*
1703 * we might commit during log recovery, which happens before we set
1704 * the fs_root. Make sure it is valid before we fill it in.
1705 */
1706 if (info->fs_root && info->fs_root->node) {
1707 btrfs_set_backup_fs_root(root_backup,
1708 info->fs_root->node->start);
1709 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1710 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1711 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1712 btrfs_header_level(info->fs_root->node));
7c7e82a7 1713 }
af31f5e5
CM
1714
1715 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1716 btrfs_set_backup_dev_root_gen(root_backup,
1717 btrfs_header_generation(info->dev_root->node));
1718 btrfs_set_backup_dev_root_level(root_backup,
1719 btrfs_header_level(info->dev_root->node));
1720
af31f5e5
CM
1721 btrfs_set_backup_total_bytes(root_backup,
1722 btrfs_super_total_bytes(info->super_copy));
1723 btrfs_set_backup_bytes_used(root_backup,
1724 btrfs_super_bytes_used(info->super_copy));
1725 btrfs_set_backup_num_devices(root_backup,
1726 btrfs_super_num_devices(info->super_copy));
1727
1728 /*
1729 * if we don't copy this out to the super_copy, it won't get remembered
1730 * for the next commit
1731 */
1732 memcpy(&info->super_copy->super_roots,
1733 &info->super_for_commit->super_roots,
1734 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1735}
1736
bd2336b2 1737/*
9580503b
DS
1738 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1739 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
bd2336b2 1740 *
9580503b
DS
1741 * @fs_info: filesystem whose backup roots need to be read
1742 * @priority: priority of backup root required
bd2336b2
NB
1743 *
1744 * Returns backup root index on success and -EINVAL otherwise.
1745 */
1746static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1747{
1748 int backup_index = find_newest_super_backup(fs_info);
1749 struct btrfs_super_block *super = fs_info->super_copy;
1750 struct btrfs_root_backup *root_backup;
1751
1752 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1753 if (priority == 0)
1754 return backup_index;
1755
1756 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1757 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1758 } else {
1759 return -EINVAL;
1760 }
1761
1762 root_backup = super->super_roots + backup_index;
1763
1764 btrfs_set_super_generation(super,
1765 btrfs_backup_tree_root_gen(root_backup));
1766 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1767 btrfs_set_super_root_level(super,
1768 btrfs_backup_tree_root_level(root_backup));
1769 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1770
1771 /*
1772 * Fixme: the total bytes and num_devices need to match or we should
1773 * need a fsck
1774 */
1775 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1776 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1777
1778 return backup_index;
1779}
1780
7abadb64
LB
1781/* helper to cleanup workers */
1782static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1783{
dc6e3209 1784 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1785 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1786 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
1787 if (fs_info->endio_workers)
1788 destroy_workqueue(fs_info->endio_workers);
385de0ef
CH
1789 if (fs_info->rmw_workers)
1790 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
1791 if (fs_info->compressed_write_workers)
1792 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
1793 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1794 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1795 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1796 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 1797 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1798 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1799 if (fs_info->discard_ctl.discard_workers)
1800 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1801 /*
1802 * Now that all other work queues are destroyed, we can safely destroy
1803 * the queues used for metadata I/O, since tasks from those other work
1804 * queues can do metadata I/O operations.
1805 */
d7b9416f
CH
1806 if (fs_info->endio_meta_workers)
1807 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
1808}
1809
2e9f5954
R
1810static void free_root_extent_buffers(struct btrfs_root *root)
1811{
1812 if (root) {
1813 free_extent_buffer(root->node);
1814 free_extent_buffer(root->commit_root);
1815 root->node = NULL;
1816 root->commit_root = NULL;
1817 }
1818}
1819
abed4aaa
JB
1820static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1821{
1822 struct btrfs_root *root, *tmp;
1823
1824 rbtree_postorder_for_each_entry_safe(root, tmp,
1825 &fs_info->global_root_tree,
1826 rb_node)
1827 free_root_extent_buffers(root);
1828}
1829
af31f5e5 1830/* helper to cleanup tree roots */
4273eaff 1831static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1832{
2e9f5954 1833 free_root_extent_buffers(info->tree_root);
655b09fe 1834
abed4aaa 1835 free_global_root_pointers(info);
2e9f5954 1836 free_root_extent_buffers(info->dev_root);
2e9f5954
R
1837 free_root_extent_buffers(info->quota_root);
1838 free_root_extent_buffers(info->uuid_root);
8c38938c 1839 free_root_extent_buffers(info->fs_root);
aeb935a4 1840 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 1841 free_root_extent_buffers(info->block_group_root);
51502090 1842 free_root_extent_buffers(info->stripe_root);
4273eaff 1843 if (free_chunk_root)
2e9f5954 1844 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
1845}
1846
8c38938c
JB
1847void btrfs_put_root(struct btrfs_root *root)
1848{
1849 if (!root)
1850 return;
1851
1852 if (refcount_dec_and_test(&root->refs)) {
1853 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 1854 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
1855 if (root->anon_dev)
1856 free_anon_bdev(root->anon_dev);
923eb523 1857 free_root_extent_buffers(root);
8c38938c 1858#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 1859 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 1860 list_del_init(&root->leak_list);
fc7cbcd4 1861 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
1862#endif
1863 kfree(root);
1864 }
1865}
1866
faa2dbf0 1867void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 1868{
fc7cbcd4
DS
1869 int ret;
1870 struct btrfs_root *gang[8];
1871 int i;
171f6537
JB
1872
1873 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
1874 gang[0] = list_entry(fs_info->dead_roots.next,
1875 struct btrfs_root, root_list);
1876 list_del(&gang[0]->root_list);
171f6537 1877
fc7cbcd4
DS
1878 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1879 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1880 btrfs_put_root(gang[0]);
171f6537
JB
1881 }
1882
fc7cbcd4
DS
1883 while (1) {
1884 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1885 (void **)gang, 0,
1886 ARRAY_SIZE(gang));
1887 if (!ret)
1888 break;
1889 for (i = 0; i < ret; i++)
1890 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
1891 }
1892}
af31f5e5 1893
638aa7ed
ES
1894static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1895{
1896 mutex_init(&fs_info->scrub_lock);
1897 atomic_set(&fs_info->scrubs_running, 0);
1898 atomic_set(&fs_info->scrub_pause_req, 0);
1899 atomic_set(&fs_info->scrubs_paused, 0);
1900 atomic_set(&fs_info->scrub_cancel_req, 0);
1901 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 1902 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
1903}
1904
779a65a4
ES
1905static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1906{
1907 spin_lock_init(&fs_info->balance_lock);
1908 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
1909 atomic_set(&fs_info->balance_pause_req, 0);
1910 atomic_set(&fs_info->balance_cancel_req, 0);
1911 fs_info->balance_ctl = NULL;
1912 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 1913 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
1914}
1915
dcb2137c 1916static int btrfs_init_btree_inode(struct super_block *sb)
f37938e0 1917{
dcb2137c 1918 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
e256927b
JB
1919 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1920 fs_info->tree_root);
dcb2137c
CH
1921 struct inode *inode;
1922
1923 inode = new_inode(sb);
1924 if (!inode)
1925 return -ENOMEM;
2ff7e61e
JM
1926
1927 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1928 set_nlink(inode, 1);
f37938e0
ES
1929 /*
1930 * we set the i_size on the btree inode to the max possible int.
1931 * the real end of the address space is determined by all of
1932 * the devices in the system
1933 */
2ff7e61e
JM
1934 inode->i_size = OFFSET_MAX;
1935 inode->i_mapping->a_ops = &btree_aops;
dcb2137c 1936 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
f37938e0 1937
2ff7e61e 1938 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 1939 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
35da5a7e 1940 IO_TREE_BTREE_INODE_IO);
2ff7e61e 1941 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 1942
5c8fd99f 1943 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
1944 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1945 BTRFS_I(inode)->location.type = 0;
1946 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 1947 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 1948 __insert_inode_hash(inode, hash);
dcb2137c
CH
1949 fs_info->btree_inode = inode;
1950
1951 return 0;
f37938e0
ES
1952}
1953
ad618368
ES
1954static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1955{
ad618368 1956 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 1957 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 1958 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
1959}
1960
f9e92e40
ES
1961static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1962{
1963 spin_lock_init(&fs_info->qgroup_lock);
1964 mutex_init(&fs_info->qgroup_ioctl_lock);
1965 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
1966 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1967 fs_info->qgroup_seq = 1;
f9e92e40 1968 fs_info->qgroup_ulist = NULL;
d2c609b8 1969 fs_info->qgroup_rescan_running = false;
011b46c3 1970 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
1971 mutex_init(&fs_info->qgroup_rescan_lock);
1972}
1973
d21deec5 1974static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 1975{
f7b885be 1976 u32 max_active = fs_info->thread_pool_size;
6f011058 1977 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
58e814fc 1978 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
2a458198
ES
1979
1980 fs_info->workers =
a31b4a43 1981 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2a458198
ES
1982
1983 fs_info->delalloc_workers =
cb001095
JM
1984 btrfs_alloc_workqueue(fs_info, "delalloc",
1985 flags, max_active, 2);
2a458198
ES
1986
1987 fs_info->flush_workers =
cb001095
JM
1988 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1989 flags, max_active, 0);
2a458198
ES
1990
1991 fs_info->caching_workers =
cb001095 1992 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 1993
2a458198 1994 fs_info->fixup_workers =
58e814fc 1995 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
2a458198 1996
2a458198 1997 fs_info->endio_workers =
d7b9416f 1998 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 1999 fs_info->endio_meta_workers =
d7b9416f 2000 alloc_workqueue("btrfs-endio-meta", flags, max_active);
385de0ef 2001 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2002 fs_info->endio_write_workers =
cb001095
JM
2003 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2004 max_active, 2);
fed8a72d
CH
2005 fs_info->compressed_write_workers =
2006 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2007 fs_info->endio_freespace_worker =
cb001095
JM
2008 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2009 max_active, 0);
2a458198 2010 fs_info->delayed_workers =
cb001095
JM
2011 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2012 max_active, 0);
2a458198 2013 fs_info->qgroup_rescan_workers =
58e814fc
TH
2014 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2015 ordered_flags);
b0643e59 2016 fs_info->discard_ctl.discard_workers =
58e814fc 2017 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2a458198 2018
8bfec2e4 2019 if (!(fs_info->workers &&
a31b4a43 2020 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2021 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2022 fs_info->compressed_write_workers &&
1a1a2851 2023 fs_info->endio_write_workers &&
2a458198 2024 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2025 fs_info->caching_workers && fs_info->fixup_workers &&
2026 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2027 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2028 return -ENOMEM;
2029 }
2030
2031 return 0;
2032}
2033
6d97c6e3
JT
2034static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2035{
2036 struct crypto_shash *csum_shash;
b4e967be 2037 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2038
b4e967be 2039 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2040
2041 if (IS_ERR(csum_shash)) {
2042 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2043 csum_driver);
6d97c6e3
JT
2044 return PTR_ERR(csum_shash);
2045 }
2046
2047 fs_info->csum_shash = csum_shash;
2048
68d99ab0
CH
2049 /*
2050 * Check if the checksum implementation is a fast accelerated one.
2051 * As-is this is a bit of a hack and should be replaced once the csum
2052 * implementations provide that information themselves.
2053 */
2054 switch (csum_type) {
2055 case BTRFS_CSUM_TYPE_CRC32:
2056 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2057 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2058 break;
efcfcbc6
DS
2059 case BTRFS_CSUM_TYPE_XXHASH:
2060 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2061 break;
68d99ab0
CH
2062 default:
2063 break;
2064 }
2065
c8a5f8ca
DS
2066 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2067 btrfs_super_csum_name(csum_type),
2068 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2069 return 0;
2070}
2071
63443bf5
ES
2072static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2073 struct btrfs_fs_devices *fs_devices)
2074{
2075 int ret;
789d6a3a 2076 struct btrfs_tree_parent_check check = { 0 };
63443bf5
ES
2077 struct btrfs_root *log_tree_root;
2078 struct btrfs_super_block *disk_super = fs_info->super_copy;
2079 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2080 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2081
2082 if (fs_devices->rw_devices == 0) {
f14d104d 2083 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2084 return -EIO;
2085 }
2086
96dfcb46
JB
2087 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2088 GFP_KERNEL);
63443bf5
ES
2089 if (!log_tree_root)
2090 return -ENOMEM;
2091
789d6a3a
QW
2092 check.level = level;
2093 check.transid = fs_info->generation + 1;
2094 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2095 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
64c043de 2096 if (IS_ERR(log_tree_root->node)) {
f14d104d 2097 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2098 ret = PTR_ERR(log_tree_root->node);
8c38938c 2099 log_tree_root->node = NULL;
00246528 2100 btrfs_put_root(log_tree_root);
0eeff236 2101 return ret;
4eb150d6
QW
2102 }
2103 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2104 btrfs_err(fs_info, "failed to read log tree");
00246528 2105 btrfs_put_root(log_tree_root);
63443bf5
ES
2106 return -EIO;
2107 }
4eb150d6 2108
63443bf5
ES
2109 /* returns with log_tree_root freed on success */
2110 ret = btrfs_recover_log_trees(log_tree_root);
2111 if (ret) {
0b246afa
JM
2112 btrfs_handle_fs_error(fs_info, ret,
2113 "Failed to recover log tree");
00246528 2114 btrfs_put_root(log_tree_root);
63443bf5
ES
2115 return ret;
2116 }
2117
bc98a42c 2118 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2119 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2120 if (ret)
2121 return ret;
2122 }
2123
2124 return 0;
2125}
2126
abed4aaa
JB
2127static int load_global_roots_objectid(struct btrfs_root *tree_root,
2128 struct btrfs_path *path, u64 objectid,
2129 const char *name)
2130{
2131 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2132 struct btrfs_root *root;
f7238e50 2133 u64 max_global_id = 0;
abed4aaa
JB
2134 int ret;
2135 struct btrfs_key key = {
2136 .objectid = objectid,
2137 .type = BTRFS_ROOT_ITEM_KEY,
2138 .offset = 0,
2139 };
2140 bool found = false;
2141
2142 /* If we have IGNOREDATACSUMS skip loading these roots. */
2143 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2144 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2145 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2146 return 0;
2147 }
2148
2149 while (1) {
2150 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2151 if (ret < 0)
2152 break;
2153
2154 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2155 ret = btrfs_next_leaf(tree_root, path);
2156 if (ret) {
2157 if (ret > 0)
2158 ret = 0;
2159 break;
2160 }
2161 }
2162 ret = 0;
2163
2164 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2165 if (key.objectid != objectid)
2166 break;
2167 btrfs_release_path(path);
2168
f7238e50
JB
2169 /*
2170 * Just worry about this for extent tree, it'll be the same for
2171 * everybody.
2172 */
2173 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2174 max_global_id = max(max_global_id, key.offset);
2175
abed4aaa
JB
2176 found = true;
2177 root = read_tree_root_path(tree_root, path, &key);
2178 if (IS_ERR(root)) {
2179 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2180 ret = PTR_ERR(root);
2181 break;
2182 }
2183 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2184 ret = btrfs_global_root_insert(root);
2185 if (ret) {
2186 btrfs_put_root(root);
2187 break;
2188 }
2189 key.offset++;
2190 }
2191 btrfs_release_path(path);
2192
f7238e50
JB
2193 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2194 fs_info->nr_global_roots = max_global_id + 1;
2195
abed4aaa
JB
2196 if (!found || ret) {
2197 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2198 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2199
2200 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2201 ret = ret ? ret : -ENOENT;
2202 else
2203 ret = 0;
2204 btrfs_err(fs_info, "failed to load root %s", name);
2205 }
2206 return ret;
2207}
2208
2209static int load_global_roots(struct btrfs_root *tree_root)
2210{
2211 struct btrfs_path *path;
2212 int ret = 0;
2213
2214 path = btrfs_alloc_path();
2215 if (!path)
2216 return -ENOMEM;
2217
2218 ret = load_global_roots_objectid(tree_root, path,
2219 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2220 if (ret)
2221 goto out;
2222 ret = load_global_roots_objectid(tree_root, path,
2223 BTRFS_CSUM_TREE_OBJECTID, "csum");
2224 if (ret)
2225 goto out;
2226 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2227 goto out;
2228 ret = load_global_roots_objectid(tree_root, path,
2229 BTRFS_FREE_SPACE_TREE_OBJECTID,
2230 "free space");
2231out:
2232 btrfs_free_path(path);
2233 return ret;
2234}
2235
6bccf3ab 2236static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2237{
6bccf3ab 2238 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2239 struct btrfs_root *root;
4bbcaa64
ES
2240 struct btrfs_key location;
2241 int ret;
2242
2467d0fe 2243 ASSERT(fs_info->tree_root);
6bccf3ab 2244
abed4aaa
JB
2245 ret = load_global_roots(tree_root);
2246 if (ret)
2247 return ret;
2248
4bbcaa64
ES
2249 location.type = BTRFS_ROOT_ITEM_KEY;
2250 location.offset = 0;
2251
1c56ab99 2252 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2253 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2254 root = btrfs_read_tree_root(tree_root, &location);
2255 if (IS_ERR(root)) {
2256 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2257 ret = PTR_ERR(root);
2258 goto out;
2259 }
2260 } else {
2261 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2262 fs_info->block_group_root = root;
2263 }
2264 }
2265
2266 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2267 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2268 if (IS_ERR(root)) {
42437a63
JB
2269 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2270 ret = PTR_ERR(root);
2271 goto out;
2272 }
2273 } else {
2274 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2275 fs_info->dev_root = root;
f50f4353 2276 }
820a49da 2277 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2278 ret = btrfs_init_devices_late(fs_info);
2279 if (ret)
2280 goto out;
4bbcaa64 2281
aeb935a4
QW
2282 /*
2283 * This tree can share blocks with some other fs tree during relocation
2284 * and we need a proper setup by btrfs_get_fs_root
2285 */
56e9357a
DS
2286 root = btrfs_get_fs_root(tree_root->fs_info,
2287 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2288 if (IS_ERR(root)) {
42437a63
JB
2289 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2290 ret = PTR_ERR(root);
2291 goto out;
2292 }
2293 } else {
2294 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2295 fs_info->data_reloc_root = root;
aeb935a4 2296 }
aeb935a4 2297
4bbcaa64 2298 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2299 root = btrfs_read_tree_root(tree_root, &location);
2300 if (!IS_ERR(root)) {
2301 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
a4f3d2c4 2302 fs_info->quota_root = root;
4bbcaa64
ES
2303 }
2304
2305 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2306 root = btrfs_read_tree_root(tree_root, &location);
2307 if (IS_ERR(root)) {
42437a63
JB
2308 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2309 ret = PTR_ERR(root);
2310 if (ret != -ENOENT)
2311 goto out;
2312 }
4bbcaa64 2313 } else {
a4f3d2c4
DS
2314 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315 fs_info->uuid_root = root;
4bbcaa64
ES
2316 }
2317
51502090
JT
2318 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2319 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2320 root = btrfs_read_tree_root(tree_root, &location);
2321 if (IS_ERR(root)) {
2322 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2323 ret = PTR_ERR(root);
2324 goto out;
2325 }
2326 } else {
2327 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328 fs_info->stripe_root = root;
2329 }
2330 }
2331
4bbcaa64 2332 return 0;
f50f4353
LB
2333out:
2334 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2335 location.objectid, ret);
2336 return ret;
4bbcaa64
ES
2337}
2338
069ec957
QW
2339/*
2340 * Real super block validation
2341 * NOTE: super csum type and incompat features will not be checked here.
2342 *
2343 * @sb: super block to check
2344 * @mirror_num: the super block number to check its bytenr:
2345 * 0 the primary (1st) sb
2346 * 1, 2 2nd and 3rd backup copy
2347 * -1 skip bytenr check
2348 */
a05d3c91
QW
2349int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2350 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2351{
21a852b0
QW
2352 u64 nodesize = btrfs_super_nodesize(sb);
2353 u64 sectorsize = btrfs_super_sectorsize(sb);
2354 int ret = 0;
2355
2356 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2357 btrfs_err(fs_info, "no valid FS found");
2358 ret = -EINVAL;
2359 }
2360 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2361 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2362 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2363 ret = -EINVAL;
2364 }
2365 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2366 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2367 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2368 ret = -EINVAL;
2369 }
2370 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2371 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2372 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2373 ret = -EINVAL;
2374 }
2375 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2376 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2377 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2378 ret = -EINVAL;
2379 }
2380
2381 /*
2382 * Check sectorsize and nodesize first, other check will need it.
2383 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2384 */
2385 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2386 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2387 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2388 ret = -EINVAL;
2389 }
0bb3eb3e
QW
2390
2391 /*
1a42daab
QW
2392 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2393 *
2394 * We can support 16K sectorsize with 64K page size without problem,
2395 * but such sectorsize/pagesize combination doesn't make much sense.
2396 * 4K will be our future standard, PAGE_SIZE is supported from the very
2397 * beginning.
0bb3eb3e 2398 */
1a42daab 2399 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2400 btrfs_err(fs_info,
0bb3eb3e 2401 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2402 sectorsize, PAGE_SIZE);
2403 ret = -EINVAL;
2404 }
0bb3eb3e 2405
21a852b0
QW
2406 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2407 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2408 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2409 ret = -EINVAL;
2410 }
2411 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2412 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2413 le32_to_cpu(sb->__unused_leafsize), nodesize);
2414 ret = -EINVAL;
2415 }
2416
2417 /* Root alignment check */
2418 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2419 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2420 btrfs_super_root(sb));
2421 ret = -EINVAL;
2422 }
2423 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2424 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2425 btrfs_super_chunk_root(sb));
2426 ret = -EINVAL;
2427 }
2428 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2429 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2430 btrfs_super_log_root(sb));
2431 ret = -EINVAL;
2432 }
2433
a5b8a5f9
AJ
2434 if (!fs_info->fs_devices->temp_fsid &&
2435 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2436 btrfs_err(fs_info,
2437 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
d167aa76 2438 sb->fsid, fs_info->fs_devices->fsid);
aefd7f70
NB
2439 ret = -EINVAL;
2440 }
2441
6bfe3959
AJ
2442 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2443 BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2444 btrfs_err(fs_info,
2445"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
6bfe3959 2446 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
aefd7f70
NB
2447 ret = -EINVAL;
2448 }
2449
25984a5a
AJ
2450 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2451 BTRFS_FSID_SIZE) != 0) {
2452 btrfs_err(fs_info,
2453 "dev_item UUID does not match metadata fsid: %pU != %pU",
2454 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2455 ret = -EINVAL;
2456 }
2457
1c56ab99
QW
2458 /*
2459 * Artificial requirement for block-group-tree to force newer features
2460 * (free-space-tree, no-holes) so the test matrix is smaller.
2461 */
2462 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2463 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2464 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2465 btrfs_err(fs_info,
2466 "block-group-tree feature requires fres-space-tree and no-holes");
2467 ret = -EINVAL;
2468 }
2469
21a852b0
QW
2470 /*
2471 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2472 * done later
2473 */
2474 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2475 btrfs_err(fs_info, "bytes_used is too small %llu",
2476 btrfs_super_bytes_used(sb));
2477 ret = -EINVAL;
2478 }
2479 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2480 btrfs_err(fs_info, "invalid stripesize %u",
2481 btrfs_super_stripesize(sb));
2482 ret = -EINVAL;
2483 }
2484 if (btrfs_super_num_devices(sb) > (1UL << 31))
2485 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2486 btrfs_super_num_devices(sb));
2487 if (btrfs_super_num_devices(sb) == 0) {
2488 btrfs_err(fs_info, "number of devices is 0");
2489 ret = -EINVAL;
2490 }
2491
069ec957
QW
2492 if (mirror_num >= 0 &&
2493 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2494 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2495 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2496 ret = -EINVAL;
2497 }
2498
2499 /*
2500 * Obvious sys_chunk_array corruptions, it must hold at least one key
2501 * and one chunk
2502 */
2503 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2504 btrfs_err(fs_info, "system chunk array too big %u > %u",
2505 btrfs_super_sys_array_size(sb),
2506 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2507 ret = -EINVAL;
2508 }
2509 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2510 + sizeof(struct btrfs_chunk)) {
2511 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2512 btrfs_super_sys_array_size(sb),
2513 sizeof(struct btrfs_disk_key)
2514 + sizeof(struct btrfs_chunk));
2515 ret = -EINVAL;
2516 }
2517
2518 /*
2519 * The generation is a global counter, we'll trust it more than the others
2520 * but it's still possible that it's the one that's wrong.
2521 */
2522 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2523 btrfs_warn(fs_info,
2524 "suspicious: generation < chunk_root_generation: %llu < %llu",
2525 btrfs_super_generation(sb),
2526 btrfs_super_chunk_root_generation(sb));
2527 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2528 && btrfs_super_cache_generation(sb) != (u64)-1)
2529 btrfs_warn(fs_info,
2530 "suspicious: generation < cache_generation: %llu < %llu",
2531 btrfs_super_generation(sb),
2532 btrfs_super_cache_generation(sb));
2533
2534 return ret;
2535}
2536
069ec957
QW
2537/*
2538 * Validation of super block at mount time.
2539 * Some checks already done early at mount time, like csum type and incompat
2540 * flags will be skipped.
2541 */
2542static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2543{
a05d3c91 2544 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2545}
2546
75cb857d
QW
2547/*
2548 * Validation of super block at write time.
2549 * Some checks like bytenr check will be skipped as their values will be
2550 * overwritten soon.
2551 * Extra checks like csum type and incompat flags will be done here.
2552 */
2553static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2554 struct btrfs_super_block *sb)
2555{
2556 int ret;
2557
a05d3c91 2558 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2559 if (ret < 0)
2560 goto out;
e7e16f48 2561 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2562 ret = -EUCLEAN;
2563 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2564 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2565 goto out;
2566 }
2567 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2568 ret = -EUCLEAN;
2569 btrfs_err(fs_info,
2570 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2571 btrfs_super_incompat_flags(sb),
2572 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2573 goto out;
2574 }
2575out:
2576 if (ret < 0)
2577 btrfs_err(fs_info,
2578 "super block corruption detected before writing it to disk");
2579 return ret;
2580}
2581
bd676446
JB
2582static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2583{
789d6a3a
QW
2584 struct btrfs_tree_parent_check check = {
2585 .level = level,
2586 .transid = gen,
2587 .owner_root = root->root_key.objectid
2588 };
bd676446
JB
2589 int ret = 0;
2590
789d6a3a 2591 root->node = read_tree_block(root->fs_info, bytenr, &check);
bd676446
JB
2592 if (IS_ERR(root->node)) {
2593 ret = PTR_ERR(root->node);
2594 root->node = NULL;
4eb150d6
QW
2595 return ret;
2596 }
2597 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2598 free_extent_buffer(root->node);
2599 root->node = NULL;
4eb150d6 2600 return -EIO;
bd676446
JB
2601 }
2602
bd676446
JB
2603 btrfs_set_root_node(&root->root_item, root->node);
2604 root->commit_root = btrfs_root_node(root);
2605 btrfs_set_root_refs(&root->root_item, 1);
2606 return ret;
2607}
2608
2609static int load_important_roots(struct btrfs_fs_info *fs_info)
2610{
2611 struct btrfs_super_block *sb = fs_info->super_copy;
2612 u64 gen, bytenr;
2613 int level, ret;
2614
2615 bytenr = btrfs_super_root(sb);
2616 gen = btrfs_super_generation(sb);
2617 level = btrfs_super_root_level(sb);
2618 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2619 if (ret) {
bd676446 2620 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2621 return ret;
2622 }
14033b08 2623 return 0;
bd676446
JB
2624}
2625
6ef108dd 2626static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2627{
6ef108dd 2628 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2629 struct btrfs_super_block *sb = fs_info->super_copy;
2630 struct btrfs_root *tree_root = fs_info->tree_root;
2631 bool handle_error = false;
2632 int ret = 0;
2633 int i;
2634
2635 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2636 if (handle_error) {
2637 if (!IS_ERR(tree_root->node))
2638 free_extent_buffer(tree_root->node);
2639 tree_root->node = NULL;
2640
2641 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2642 break;
2643
2644 free_root_pointers(fs_info, 0);
2645
2646 /*
2647 * Don't use the log in recovery mode, it won't be
2648 * valid
2649 */
2650 btrfs_set_super_log_root(sb, 0);
2651
745806fb 2652 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
b8522a1e 2653 ret = read_backup_root(fs_info, i);
6ef108dd 2654 backup_index = ret;
b8522a1e
NB
2655 if (ret < 0)
2656 return ret;
2657 }
b8522a1e 2658
bd676446
JB
2659 ret = load_important_roots(fs_info);
2660 if (ret) {
217f5004 2661 handle_error = true;
b8522a1e
NB
2662 continue;
2663 }
2664
336a0d8d
NB
2665 /*
2666 * No need to hold btrfs_root::objectid_mutex since the fs
2667 * hasn't been fully initialised and we are the only user
2668 */
453e4873 2669 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2670 if (ret < 0) {
b8522a1e
NB
2671 handle_error = true;
2672 continue;
2673 }
2674
6b8fad57 2675 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2676
2677 ret = btrfs_read_roots(fs_info);
2678 if (ret < 0) {
2679 handle_error = true;
2680 continue;
2681 }
2682
2683 /* All successful */
bd676446 2684 fs_info->generation = btrfs_header_generation(tree_root->node);
0124855f 2685 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
d96b3424 2686 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2687
2688 /* Always begin writing backup roots after the one being used */
2689 if (backup_index < 0) {
2690 fs_info->backup_root_index = 0;
2691 } else {
2692 fs_info->backup_root_index = backup_index + 1;
2693 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2694 }
b8522a1e
NB
2695 break;
2696 }
2697
2698 return ret;
2699}
2700
8260edba 2701void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2702{
fc7cbcd4 2703 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2704 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2705 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2706 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2707 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2708 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2709 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2710 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2711 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2712 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2713 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2714 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2715 spin_lock_init(&fs_info->super_lock);
f28491e0 2716 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2717 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2718 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2719 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2720 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2721 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2722 rwlock_init(&fs_info->global_root_lock);
d7c15171 2723 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2724 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2725 mutex_init(&fs_info->reloc_mutex);
573bfb72 2726 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2727 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2728 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2729 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2730
e1489b4f 2731 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2732 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2733 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2734 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
77d20c68
JB
2735 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2736 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
3e738c53
IA
2737 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2738 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2739 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2740 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2741 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2742 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 2743
0b86a832 2744 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2745 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2746 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2747 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2748 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 2749 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
2750#ifdef CONFIG_BTRFS_DEBUG
2751 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2752 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2753 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2754#endif
7dc66abb
FM
2755 fs_info->mapping_tree = RB_ROOT_CACHED;
2756 rwlock_init(&fs_info->mapping_tree_lock);
66d8f3dd
MX
2757 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2758 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2759 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2760 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2761 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2762 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2763 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2764 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2765 BTRFS_BLOCK_RSV_DELREFS);
2766
771ed689 2767 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2768 atomic_set(&fs_info->defrag_running, 0);
034f784d 2769 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2770 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 2771 fs_info->global_root_tree = RB_ROOT;
95ac567a 2772 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2773 fs_info->metadata_ratio = 0;
4cb5300b 2774 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2775 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2776 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2777 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
fd708b81 2778 btrfs_init_ref_verify(fs_info);
c8b97818 2779
b34b086c
CM
2780 fs_info->thread_pool_size = min_t(unsigned long,
2781 num_online_cpus() + 2, 8);
0afbaf8c 2782
199c2a9c
MX
2783 INIT_LIST_HEAD(&fs_info->ordered_roots);
2784 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2785
638aa7ed 2786 btrfs_init_scrub(fs_info);
779a65a4 2787 btrfs_init_balance(fs_info);
57056740 2788 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2789
16b0c258 2790 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 2791 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 2792
fe119a6e 2793 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
35da5a7e 2794 IO_TREE_FS_EXCLUDED_EXTENTS);
39279cc3 2795
5a3f23d5 2796 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2797 mutex_init(&fs_info->tree_log_mutex);
925baedd 2798 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2799 mutex_init(&fs_info->transaction_kthread_mutex);
2800 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2801 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2802 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2803 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2804 init_rwsem(&fs_info->subvol_sem);
803b2f54 2805 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2806
ad618368 2807 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2808 btrfs_init_qgroup(fs_info);
b0643e59 2809 btrfs_discard_init(fs_info);
416ac51d 2810
fa9c0d79
CM
2811 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2812 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2813
e6dcd2dc 2814 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2815 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2816 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2817 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2818 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2819
da17066c
JM
2820 /* Usable values until the real ones are cached from the superblock */
2821 fs_info->nodesize = 4096;
2822 fs_info->sectorsize = 4096;
ab108d99 2823 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2824 fs_info->stripesize = 4096;
2825
6207c9e3
JB
2826 /* Default compress algorithm when user does -o compress */
2827 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2828
f7b12a62
NA
2829 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2830
eede2bf3
OS
2831 spin_lock_init(&fs_info->swapfile_pins_lock);
2832 fs_info->swapfile_pins = RB_ROOT;
2833
18bb8bbf
JT
2834 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2835 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
2836}
2837
2838static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2839{
2840 int ret;
2841
2842 fs_info->sb = sb;
4e00422e 2843 /* Temporary fixed values for block size until we read the superblock. */
8260edba
JB
2844 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2845 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2846
5deb17e1 2847 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 2848 if (ret)
c75e8394 2849 return ret;
ae18c37a
JB
2850
2851 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2852 if (ret)
c75e8394 2853 return ret;
ae18c37a
JB
2854
2855 fs_info->dirty_metadata_batch = PAGE_SIZE *
2856 (1 + ilog2(nr_cpu_ids));
2857
2858 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2859 if (ret)
c75e8394 2860 return ret;
ae18c37a
JB
2861
2862 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2863 GFP_KERNEL);
2864 if (ret)
c75e8394 2865 return ret;
ae18c37a
JB
2866
2867 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2868 GFP_KERNEL);
c75e8394
JB
2869 if (!fs_info->delayed_root)
2870 return -ENOMEM;
ae18c37a
JB
2871 btrfs_init_delayed_root(fs_info->delayed_root);
2872
a0a1db70
FM
2873 if (sb_rdonly(sb))
2874 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2875
c75e8394 2876 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2877}
2878
97f4dd09
NB
2879static int btrfs_uuid_rescan_kthread(void *data)
2880{
0d031dc4 2881 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
2882 int ret;
2883
2884 /*
2885 * 1st step is to iterate through the existing UUID tree and
2886 * to delete all entries that contain outdated data.
2887 * 2nd step is to add all missing entries to the UUID tree.
2888 */
2889 ret = btrfs_uuid_tree_iterate(fs_info);
2890 if (ret < 0) {
c94bec2c
JB
2891 if (ret != -EINTR)
2892 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2893 ret);
97f4dd09
NB
2894 up(&fs_info->uuid_tree_rescan_sem);
2895 return ret;
2896 }
2897 return btrfs_uuid_scan_kthread(data);
2898}
2899
2900static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2901{
2902 struct task_struct *task;
2903
2904 down(&fs_info->uuid_tree_rescan_sem);
2905 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2906 if (IS_ERR(task)) {
2907 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2908 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2909 up(&fs_info->uuid_tree_rescan_sem);
2910 return PTR_ERR(task);
2911 }
2912
2913 return 0;
2914}
2915
504b1596
FM
2916static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2917{
2918 u64 root_objectid = 0;
2919 struct btrfs_root *gang[8];
2920 int i = 0;
2921 int err = 0;
2922 unsigned int ret = 0;
2923
2924 while (1) {
2925 spin_lock(&fs_info->fs_roots_radix_lock);
2926 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2927 (void **)gang, root_objectid,
2928 ARRAY_SIZE(gang));
2929 if (!ret) {
2930 spin_unlock(&fs_info->fs_roots_radix_lock);
2931 break;
2932 }
2933 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2934
2935 for (i = 0; i < ret; i++) {
2936 /* Avoid to grab roots in dead_roots. */
2937 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2938 gang[i] = NULL;
2939 continue;
2940 }
2941 /* Grab all the search result for later use. */
2942 gang[i] = btrfs_grab_root(gang[i]);
2943 }
2944 spin_unlock(&fs_info->fs_roots_radix_lock);
2945
2946 for (i = 0; i < ret; i++) {
2947 if (!gang[i])
2948 continue;
2949 root_objectid = gang[i]->root_key.objectid;
2950 err = btrfs_orphan_cleanup(gang[i]);
2951 if (err)
2952 goto out;
2953 btrfs_put_root(gang[i]);
2954 }
2955 root_objectid++;
2956 }
2957out:
2958 /* Release the uncleaned roots due to error. */
2959 for (; i < ret; i++) {
2960 if (gang[i])
2961 btrfs_put_root(gang[i]);
2962 }
2963 return err;
2964}
2965
44c0ca21
BB
2966/*
2967 * Mounting logic specific to read-write file systems. Shared by open_ctree
2968 * and btrfs_remount when remounting from read-only to read-write.
2969 */
2970int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2971{
2972 int ret;
94846229 2973 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1d6a4fc8 2974 bool rebuild_free_space_tree = false;
8b228324
BB
2975
2976 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2977 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
272efa30
JB
2978 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2979 btrfs_warn(fs_info,
2980 "'clear_cache' option is ignored with extent tree v2");
2981 else
2982 rebuild_free_space_tree = true;
8b228324
BB
2983 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2984 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2985 btrfs_warn(fs_info, "free space tree is invalid");
1d6a4fc8 2986 rebuild_free_space_tree = true;
8b228324
BB
2987 }
2988
1d6a4fc8
QW
2989 if (rebuild_free_space_tree) {
2990 btrfs_info(fs_info, "rebuilding free space tree");
2991 ret = btrfs_rebuild_free_space_tree(fs_info);
8b228324
BB
2992 if (ret) {
2993 btrfs_warn(fs_info,
1d6a4fc8
QW
2994 "failed to rebuild free space tree: %d", ret);
2995 goto out;
2996 }
2997 }
2998
2999 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3000 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3001 btrfs_info(fs_info, "disabling free space tree");
3002 ret = btrfs_delete_free_space_tree(fs_info);
3003 if (ret) {
3004 btrfs_warn(fs_info,
3005 "failed to disable free space tree: %d", ret);
8b228324
BB
3006 goto out;
3007 }
3008 }
44c0ca21 3009
8d488a8c
FM
3010 /*
3011 * btrfs_find_orphan_roots() is responsible for finding all the dead
3012 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3013 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3014 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3015 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3016 * item before the root's tree is deleted - this means that if we unmount
3017 * or crash before the deletion completes, on the next mount we will not
3018 * delete what remains of the tree because the orphan item does not
3019 * exists anymore, which is what tells us we have a pending deletion.
3020 */
3021 ret = btrfs_find_orphan_roots(fs_info);
3022 if (ret)
3023 goto out;
3024
44c0ca21
BB
3025 ret = btrfs_cleanup_fs_roots(fs_info);
3026 if (ret)
3027 goto out;
3028
8f1c21d7
BB
3029 down_read(&fs_info->cleanup_work_sem);
3030 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3031 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3032 up_read(&fs_info->cleanup_work_sem);
3033 goto out;
3034 }
3035 up_read(&fs_info->cleanup_work_sem);
3036
44c0ca21 3037 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3038 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3039 mutex_unlock(&fs_info->cleaner_mutex);
3040 if (ret < 0) {
3041 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3042 goto out;
3043 }
3044
5011139a
BB
3045 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3046 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3047 btrfs_info(fs_info, "creating free space tree");
3048 ret = btrfs_create_free_space_tree(fs_info);
3049 if (ret) {
3050 btrfs_warn(fs_info,
3051 "failed to create free space tree: %d", ret);
3052 goto out;
3053 }
3054 }
3055
94846229
BB
3056 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3057 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3058 if (ret)
3059 goto out;
3060 }
3061
44c0ca21
BB
3062 ret = btrfs_resume_balance_async(fs_info);
3063 if (ret)
3064 goto out;
3065
3066 ret = btrfs_resume_dev_replace_async(fs_info);
3067 if (ret) {
3068 btrfs_warn(fs_info, "failed to resume dev_replace");
3069 goto out;
3070 }
3071
3072 btrfs_qgroup_rescan_resume(fs_info);
3073
3074 if (!fs_info->uuid_root) {
3075 btrfs_info(fs_info, "creating UUID tree");
3076 ret = btrfs_create_uuid_tree(fs_info);
3077 if (ret) {
3078 btrfs_warn(fs_info,
3079 "failed to create the UUID tree %d", ret);
3080 goto out;
3081 }
3082 }
3083
3084out:
3085 return ret;
3086}
3087
d7f67ac9
QW
3088/*
3089 * Do various sanity and dependency checks of different features.
3090 *
2ba48b20
QW
3091 * @is_rw_mount: If the mount is read-write.
3092 *
d7f67ac9
QW
3093 * This is the place for less strict checks (like for subpage or artificial
3094 * feature dependencies).
3095 *
3096 * For strict checks or possible corruption detection, see
3097 * btrfs_validate_super().
3098 *
3099 * This should be called after btrfs_parse_options(), as some mount options
3100 * (space cache related) can modify on-disk format like free space tree and
3101 * screw up certain feature dependencies.
3102 */
2ba48b20 3103int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
d7f67ac9
QW
3104{
3105 struct btrfs_super_block *disk_super = fs_info->super_copy;
3106 u64 incompat = btrfs_super_incompat_flags(disk_super);
3107 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3108 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3109
3110 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3111 btrfs_err(fs_info,
3112 "cannot mount because of unknown incompat features (0x%llx)",
3113 incompat);
3114 return -EINVAL;
3115 }
3116
3117 /* Runtime limitation for mixed block groups. */
3118 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3119 (fs_info->sectorsize != fs_info->nodesize)) {
3120 btrfs_err(fs_info,
3121"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3122 fs_info->nodesize, fs_info->sectorsize);
3123 return -EINVAL;
3124 }
3125
3126 /* Mixed backref is an always-enabled feature. */
3127 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3128
3129 /* Set compression related flags just in case. */
3130 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3131 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3132 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3133 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3134
3135 /*
3136 * An ancient flag, which should really be marked deprecated.
3137 * Such runtime limitation doesn't really need a incompat flag.
3138 */
3139 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3140 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3141
2ba48b20 3142 if (compat_ro_unsupp && is_rw_mount) {
d7f67ac9
QW
3143 btrfs_err(fs_info,
3144 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3145 compat_ro);
3146 return -EINVAL;
3147 }
3148
3149 /*
3150 * We have unsupported RO compat features, although RO mounted, we
3151 * should not cause any metadata writes, including log replay.
3152 * Or we could screw up whatever the new feature requires.
3153 */
3154 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3155 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3156 btrfs_err(fs_info,
3157"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3158 compat_ro);
3159 return -EINVAL;
3160 }
3161
3162 /*
3163 * Artificial limitations for block group tree, to force
3164 * block-group-tree to rely on no-holes and free-space-tree.
3165 */
3166 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3167 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3168 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3169 btrfs_err(fs_info,
3170"block-group-tree feature requires no-holes and free-space-tree features");
3171 return -EINVAL;
3172 }
3173
3174 /*
3175 * Subpage runtime limitation on v1 cache.
3176 *
3177 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3178 * we're already defaulting to v2 cache, no need to bother v1 as it's
3179 * going to be deprecated anyway.
3180 */
3181 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3182 btrfs_warn(fs_info,
3183 "v1 space cache is not supported for page size %lu with sectorsize %u",
3184 PAGE_SIZE, fs_info->sectorsize);
3185 return -EINVAL;
3186 }
3187
3188 /* This can be called by remount, we need to protect the super block. */
3189 spin_lock(&fs_info->super_lock);
3190 btrfs_set_super_incompat_flags(disk_super, incompat);
3191 spin_unlock(&fs_info->super_lock);
3192
3193 return 0;
3194}
3195
ae18c37a
JB
3196int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3197 char *options)
3198{
3199 u32 sectorsize;
3200 u32 nodesize;
3201 u32 stripesize;
3202 u64 generation;
ae18c37a 3203 u16 csum_type;
ae18c37a
JB
3204 struct btrfs_super_block *disk_super;
3205 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3206 struct btrfs_root *tree_root;
3207 struct btrfs_root *chunk_root;
3208 int ret;
ae18c37a
JB
3209 int level;
3210
8260edba 3211 ret = init_mount_fs_info(fs_info, sb);
4871c33b 3212 if (ret)
ae18c37a 3213 goto fail;
53b381b3 3214
ae18c37a
JB
3215 /* These need to be init'ed before we start creating inodes and such. */
3216 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3217 GFP_KERNEL);
3218 fs_info->tree_root = tree_root;
3219 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3220 GFP_KERNEL);
3221 fs_info->chunk_root = chunk_root;
3222 if (!tree_root || !chunk_root) {
4871c33b 3223 ret = -ENOMEM;
c75e8394 3224 goto fail;
ae18c37a
JB
3225 }
3226
dcb2137c 3227 ret = btrfs_init_btree_inode(sb);
4871c33b 3228 if (ret)
c75e8394 3229 goto fail;
ae18c37a 3230
d24fa5c1 3231 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3232
3233 /*
3234 * Read super block and check the signature bytes only
3235 */
d24fa5c1 3236 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d 3237 if (IS_ERR(disk_super)) {
4871c33b 3238 ret = PTR_ERR(disk_super);
16cdcec7 3239 goto fail_alloc;
20b45077 3240 }
39279cc3 3241
2db31320 3242 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
8dc3f22c 3243 /*
260db43c 3244 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3245 * corrupted, we'll find out
3246 */
8f32380d 3247 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3248 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3249 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3250 csum_type);
4871c33b 3251 ret = -EINVAL;
8f32380d 3252 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3253 goto fail_alloc;
3254 }
3255
83c68bbc
SY
3256 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3257
6d97c6e3
JT
3258 ret = btrfs_init_csum_hash(fs_info, csum_type);
3259 if (ret) {
8f32380d 3260 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3261 goto fail_alloc;
3262 }
3263
1104a885
DS
3264 /*
3265 * We want to check superblock checksum, the type is stored inside.
3266 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3267 */
3d17adea 3268 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3269 btrfs_err(fs_info, "superblock checksum mismatch");
4871c33b 3270 ret = -EINVAL;
8f32380d 3271 btrfs_release_disk_super(disk_super);
141386e1 3272 goto fail_alloc;
1104a885
DS
3273 }
3274
3275 /*
3276 * super_copy is zeroed at allocation time and we never touch the
3277 * following bytes up to INFO_SIZE, the checksum is calculated from
3278 * the whole block of INFO_SIZE
3279 */
8f32380d
JT
3280 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3281 btrfs_release_disk_super(disk_super);
5f39d397 3282
fbc6feae
NB
3283 disk_super = fs_info->super_copy;
3284
fbc6feae
NB
3285 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3286 sizeof(*fs_info->super_for_commit));
de37aa51 3287
069ec957 3288 ret = btrfs_validate_mount_super(fs_info);
1104a885 3289 if (ret) {
05135f59 3290 btrfs_err(fs_info, "superblock contains fatal errors");
4871c33b 3291 ret = -EINVAL;
141386e1 3292 goto fail_alloc;
1104a885
DS
3293 }
3294
4871c33b
QW
3295 if (!btrfs_super_root(disk_super)) {
3296 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3297 ret = -EINVAL;
141386e1 3298 goto fail_alloc;
4871c33b 3299 }
0f7d52f4 3300
acce952b 3301 /* check FS state, whether FS is broken. */
87533c47 3302 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
ae3364e5 3303 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
acce952b 3304
6f93e834
AJ
3305 /* Set up fs_info before parsing mount options */
3306 nodesize = btrfs_super_nodesize(disk_super);
3307 sectorsize = btrfs_super_sectorsize(disk_super);
3308 stripesize = sectorsize;
3309 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3310 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3311
3312 fs_info->nodesize = nodesize;
3313 fs_info->sectorsize = sectorsize;
3314 fs_info->sectorsize_bits = ilog2(sectorsize);
3315 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3316 fs_info->stripesize = stripesize;
3317
a6a8f22a
JB
3318 /*
3319 * Handle the space caching options appropriately now that we have the
3320 * super block loaded and validated.
3321 */
3322 btrfs_set_free_space_cache_settings(fs_info);
3323
ad21f15b
JB
3324 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3325 ret = -EINVAL;
141386e1 3326 goto fail_alloc;
ad21f15b 3327 }
dfe25020 3328
2ba48b20 3329 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
4871c33b 3330 if (ret < 0)
dc4d3168 3331 goto fail_alloc;
dc4d3168 3332
ad21f15b
JB
3333 /*
3334 * At this point our mount options are validated, if we set ->max_inline
3335 * to something non-standard make sure we truncate it to sectorsize.
3336 */
3337 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3338
8481dd80
QW
3339 if (sectorsize < PAGE_SIZE) {
3340 struct btrfs_subpage_info *subpage_info;
3341
95ea0486
QW
3342 btrfs_warn(fs_info,
3343 "read-write for sector size %u with page size %lu is experimental",
3344 sectorsize, PAGE_SIZE);
8481dd80 3345 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
4871c33b
QW
3346 if (!subpage_info) {
3347 ret = -ENOMEM;
8481dd80 3348 goto fail_alloc;
4871c33b 3349 }
8481dd80
QW
3350 btrfs_init_subpage_info(subpage_info, sectorsize);
3351 fs_info->subpage_info = subpage_info;
c8050b3b 3352 }
0bb3eb3e 3353
d21deec5 3354 ret = btrfs_init_workqueues(fs_info);
4871c33b 3355 if (ret)
0dc3b84a 3356 goto fail_sb_buffer;
4543df7e 3357
9e11ceee
JK
3358 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3359 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3360
4e00422e 3361 /* Update the values for the current filesystem. */
a061fc8d
CM
3362 sb->s_blocksize = sectorsize;
3363 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3364 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3365
925baedd 3366 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3367 ret = btrfs_read_sys_array(fs_info);
925baedd 3368 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3369 if (ret) {
05135f59 3370 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3371 goto fail_sb_buffer;
84eed90f 3372 }
0b86a832 3373
84234f3a 3374 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3375 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3376 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3377 generation, level);
3378 if (ret) {
05135f59 3379 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3380 goto fail_tree_roots;
83121942 3381 }
0b86a832 3382
e17cade2 3383 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3384 offsetof(struct btrfs_header, chunk_tree_uuid),
3385 BTRFS_UUID_SIZE);
e17cade2 3386
5b4aacef 3387 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3388 if (ret) {
05135f59 3389 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3390 goto fail_tree_roots;
2b82032c 3391 }
0b86a832 3392
8dabb742 3393 /*
bacce86a
AJ
3394 * At this point we know all the devices that make this filesystem,
3395 * including the seed devices but we don't know yet if the replace
3396 * target is required. So free devices that are not part of this
1a9fd417 3397 * filesystem but skip the replace target device which is checked
bacce86a 3398 * below in btrfs_init_dev_replace().
8dabb742 3399 */
bacce86a 3400 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3401 if (!fs_devices->latest_dev->bdev) {
05135f59 3402 btrfs_err(fs_info, "failed to read devices");
4871c33b 3403 ret = -EIO;
a6b0d5c8
CM
3404 goto fail_tree_roots;
3405 }
3406
b8522a1e 3407 ret = init_tree_roots(fs_info);
4bbcaa64 3408 if (ret)
b8522a1e 3409 goto fail_tree_roots;
8929ecfa 3410
73651042
NA
3411 /*
3412 * Get zone type information of zoned block devices. This will also
3413 * handle emulation of a zoned filesystem if a regular device has the
3414 * zoned incompat feature flag set.
3415 */
3416 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3417 if (ret) {
3418 btrfs_err(fs_info,
4871c33b 3419 "zoned: failed to read device zone info: %d", ret);
73651042
NA
3420 goto fail_block_groups;
3421 }
3422
75ec1db8
JB
3423 /*
3424 * If we have a uuid root and we're not being told to rescan we need to
3425 * check the generation here so we can set the
3426 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3427 * transaction during a balance or the log replay without updating the
3428 * uuid generation, and then if we crash we would rescan the uuid tree,
3429 * even though it was perfectly fine.
3430 */
3431 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3432 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3433 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3434
cf90d884
QW
3435 ret = btrfs_verify_dev_extents(fs_info);
3436 if (ret) {
3437 btrfs_err(fs_info,
3438 "failed to verify dev extents against chunks: %d",
3439 ret);
3440 goto fail_block_groups;
3441 }
68310a5e
ID
3442 ret = btrfs_recover_balance(fs_info);
3443 if (ret) {
05135f59 3444 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3445 goto fail_block_groups;
3446 }
3447
733f4fbb
SB
3448 ret = btrfs_init_dev_stats(fs_info);
3449 if (ret) {
05135f59 3450 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3451 goto fail_block_groups;
3452 }
3453
8dabb742
SB
3454 ret = btrfs_init_dev_replace(fs_info);
3455 if (ret) {
05135f59 3456 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3457 goto fail_block_groups;
3458 }
3459
b70f5097
NA
3460 ret = btrfs_check_zoned_mode(fs_info);
3461 if (ret) {
3462 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3463 ret);
3464 goto fail_block_groups;
3465 }
3466
c6761a9e 3467 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3468 if (ret) {
05135f59
DS
3469 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3470 ret);
b7c35e81
AJ
3471 goto fail_block_groups;
3472 }
3473
96f3136e 3474 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3475 if (ret) {
05135f59 3476 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3477 goto fail_fsdev_sysfs;
c59021f8 3478 }
3479
c59021f8 3480 ret = btrfs_init_space_info(fs_info);
3481 if (ret) {
05135f59 3482 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3483 goto fail_sysfs;
c59021f8 3484 }
3485
5b4aacef 3486 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3487 if (ret) {
05135f59 3488 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3489 goto fail_sysfs;
1b1d1f66 3490 }
4330e183 3491
16beac87
NA
3492 btrfs_free_zone_cache(fs_info);
3493
a7e1ac7b
NA
3494 btrfs_check_active_zone_reservation(fs_info);
3495
5c78a5e7
AJ
3496 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3497 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3498 btrfs_warn(fs_info,
52042d8e 3499 "writable mount is not allowed due to too many missing devices");
4871c33b 3500 ret = -EINVAL;
2365dd3c 3501 goto fail_sysfs;
292fd7fc 3502 }
9078a3e1 3503
33c44184 3504 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3505 "btrfs-cleaner");
4871c33b
QW
3506 if (IS_ERR(fs_info->cleaner_kthread)) {
3507 ret = PTR_ERR(fs_info->cleaner_kthread);
2365dd3c 3508 goto fail_sysfs;
4871c33b 3509 }
a74a4b97
CM
3510
3511 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3512 tree_root,
3513 "btrfs-transaction");
4871c33b
QW
3514 if (IS_ERR(fs_info->transaction_kthread)) {
3515 ret = PTR_ERR(fs_info->transaction_kthread);
3f157a2f 3516 goto fail_cleaner;
4871c33b 3517 }
a74a4b97 3518
bcef60f2
AJ
3519 ret = btrfs_read_qgroup_config(fs_info);
3520 if (ret)
3521 goto fail_trans_kthread;
21adbd5c 3522
fd708b81
JB
3523 if (btrfs_build_ref_tree(fs_info))
3524 btrfs_err(fs_info, "couldn't build ref tree");
3525
96da0919
QW
3526 /* do not make disk changes in broken FS or nologreplay is given */
3527 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3528 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3529 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3530 ret = btrfs_replay_log(fs_info, fs_devices);
4871c33b 3531 if (ret)
28c16cbb 3532 goto fail_qgroup;
e02119d5 3533 }
1a40e23b 3534
56e9357a 3535 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3 3536 if (IS_ERR(fs_info->fs_root)) {
4871c33b
QW
3537 ret = PTR_ERR(fs_info->fs_root);
3538 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
315bf8ef 3539 fs_info->fs_root = NULL;
bcef60f2 3540 goto fail_qgroup;
3140c9a3 3541 }
c289811c 3542
bc98a42c 3543 if (sb_rdonly(sb))
83e3a40a 3544 return 0;
59641015 3545
44c0ca21 3546 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3547 if (ret) {
6bccf3ab 3548 close_ctree(fs_info);
2b6ba629 3549 return ret;
e3acc2a6 3550 }
b0643e59 3551 btrfs_discard_resume(fs_info);
b382a324 3552
44c0ca21
BB
3553 if (fs_info->uuid_root &&
3554 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3555 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3556 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3557 ret = btrfs_check_uuid_tree(fs_info);
3558 if (ret) {
05135f59
DS
3559 btrfs_warn(fs_info,
3560 "failed to check the UUID tree: %d", ret);
6bccf3ab 3561 close_ctree(fs_info);
70f80175
SB
3562 return ret;
3563 }
f7a81ea4 3564 }
94846229 3565
afcdd129 3566 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3567
b4be6aef
JB
3568 /* Kick the cleaner thread so it'll start deleting snapshots. */
3569 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3570 wake_up_process(fs_info->cleaner_kthread);
3571
ad2b2c80 3572 return 0;
39279cc3 3573
bcef60f2
AJ
3574fail_qgroup:
3575 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3576fail_trans_kthread:
3577 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3578 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3579 btrfs_free_fs_roots(fs_info);
3f157a2f 3580fail_cleaner:
a74a4b97 3581 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3582
3583 /*
3584 * make sure we're done with the btree inode before we stop our
3585 * kthreads
3586 */
3587 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3588
2365dd3c 3589fail_sysfs:
6618a59b 3590 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3591
b7c35e81
AJ
3592fail_fsdev_sysfs:
3593 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3594
1b1d1f66 3595fail_block_groups:
54067ae9 3596 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3597
3598fail_tree_roots:
9e3aa805
JB
3599 if (fs_info->data_reloc_root)
3600 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3601 free_root_pointers(fs_info, true);
2b8195bb 3602 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3603
39279cc3 3604fail_sb_buffer:
7abadb64 3605 btrfs_stop_all_workers(fs_info);
5cdd7db6 3606 btrfs_free_block_groups(fs_info);
16cdcec7 3607fail_alloc:
7dc66abb 3608 btrfs_mapping_tree_free(fs_info);
586e46e2 3609
4543df7e 3610 iput(fs_info->btree_inode);
7e662854 3611fail:
586e46e2 3612 btrfs_close_devices(fs_info->fs_devices);
4871c33b
QW
3613 ASSERT(ret < 0);
3614 return ret;
eb60ceac 3615}
663faf9f 3616ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3617
314b6dd0 3618static void btrfs_end_super_write(struct bio *bio)
f2984462 3619{
314b6dd0
JT
3620 struct btrfs_device *device = bio->bi_private;
3621 struct bio_vec *bvec;
3622 struct bvec_iter_all iter_all;
3623 struct page *page;
3624
3625 bio_for_each_segment_all(bvec, bio, iter_all) {
3626 page = bvec->bv_page;
3627
3628 if (bio->bi_status) {
3629 btrfs_warn_rl_in_rcu(device->fs_info,
3630 "lost page write due to IO error on %s (%d)",
cb3e217b 3631 btrfs_dev_name(device),
314b6dd0
JT
3632 blk_status_to_errno(bio->bi_status));
3633 ClearPageUptodate(page);
3634 SetPageError(page);
3635 btrfs_dev_stat_inc_and_print(device,
3636 BTRFS_DEV_STAT_WRITE_ERRS);
3637 } else {
3638 SetPageUptodate(page);
3639 }
3640
3641 put_page(page);
3642 unlock_page(page);
f2984462 3643 }
314b6dd0
JT
3644
3645 bio_put(bio);
f2984462
CM
3646}
3647
8f32380d 3648struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3649 int copy_num, bool drop_cache)
29c36d72 3650{
29c36d72 3651 struct btrfs_super_block *super;
8f32380d 3652 struct page *page;
12659251 3653 u64 bytenr, bytenr_orig;
224941e8 3654 struct address_space *mapping = bdev->bd_mapping;
12659251
NA
3655 int ret;
3656
3657 bytenr_orig = btrfs_sb_offset(copy_num);
3658 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3659 if (ret == -ENOENT)
3660 return ERR_PTR(-EINVAL);
3661 else if (ret)
3662 return ERR_PTR(ret);
29c36d72 3663
cda00eba 3664 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3665 return ERR_PTR(-EINVAL);
29c36d72 3666
a05d3c91
QW
3667 if (drop_cache) {
3668 /* This should only be called with the primary sb. */
3669 ASSERT(copy_num == 0);
3670
3671 /*
3672 * Drop the page of the primary superblock, so later read will
3673 * always read from the device.
3674 */
3675 invalidate_inode_pages2_range(mapping,
3676 bytenr >> PAGE_SHIFT,
3677 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3678 }
3679
8f32380d
JT
3680 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3681 if (IS_ERR(page))
3682 return ERR_CAST(page);
29c36d72 3683
8f32380d 3684 super = page_address(page);
96c2e067
AJ
3685 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3686 btrfs_release_disk_super(super);
3687 return ERR_PTR(-ENODATA);
3688 }
3689
12659251 3690 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3691 btrfs_release_disk_super(super);
3692 return ERR_PTR(-EINVAL);
29c36d72
AJ
3693 }
3694
8f32380d 3695 return super;
29c36d72
AJ
3696}
3697
3698
8f32380d 3699struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3700{
8f32380d 3701 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3702 int i;
3703 u64 transid = 0;
a512bbf8
YZ
3704
3705 /* we would like to check all the supers, but that would make
3706 * a btrfs mount succeed after a mkfs from a different FS.
3707 * So, we need to add a special mount option to scan for
3708 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3709 */
3710 for (i = 0; i < 1; i++) {
a05d3c91 3711 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3712 if (IS_ERR(super))
a512bbf8
YZ
3713 continue;
3714
a512bbf8 3715 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3716 if (latest)
3717 btrfs_release_disk_super(super);
3718
3719 latest = super;
a512bbf8 3720 transid = btrfs_super_generation(super);
a512bbf8
YZ
3721 }
3722 }
92fc03fb 3723
8f32380d 3724 return super;
a512bbf8
YZ
3725}
3726
4eedeb75 3727/*
abbb3b8e 3728 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3729 * pages we use for writing are locked.
4eedeb75 3730 *
abbb3b8e
DS
3731 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3732 * the expected device size at commit time. Note that max_mirrors must be
3733 * same for write and wait phases.
4eedeb75 3734 *
314b6dd0 3735 * Return number of errors when page is not found or submission fails.
4eedeb75 3736 */
a512bbf8 3737static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3738 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3739{
d5178578 3740 struct btrfs_fs_info *fs_info = device->fs_info;
224941e8 3741 struct address_space *mapping = device->bdev->bd_mapping;
d5178578 3742 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3743 int i;
a512bbf8 3744 int errors = 0;
12659251
NA
3745 int ret;
3746 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3747
3748 if (max_mirrors == 0)
3749 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3750
d5178578
JT
3751 shash->tfm = fs_info->csum_shash;
3752
a512bbf8 3753 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3754 struct page *page;
3755 struct bio *bio;
3756 struct btrfs_super_block *disk_super;
3757
12659251
NA
3758 bytenr_orig = btrfs_sb_offset(i);
3759 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3760 if (ret == -ENOENT) {
3761 continue;
3762 } else if (ret < 0) {
3763 btrfs_err(device->fs_info,
3764 "couldn't get super block location for mirror %d",
3765 i);
3766 errors++;
3767 continue;
3768 }
935e5cc9
MX
3769 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3770 device->commit_total_bytes)
a512bbf8
YZ
3771 break;
3772
12659251 3773 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3774
fd08001f
EB
3775 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3776 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3777 sb->csum);
4eedeb75 3778
314b6dd0
JT
3779 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3780 GFP_NOFS);
3781 if (!page) {
abbb3b8e 3782 btrfs_err(device->fs_info,
314b6dd0 3783 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3784 bytenr);
3785 errors++;
4eedeb75 3786 continue;
abbb3b8e 3787 }
634554dc 3788
314b6dd0
JT
3789 /* Bump the refcount for wait_dev_supers() */
3790 get_page(page);
a512bbf8 3791
314b6dd0
JT
3792 disk_super = page_address(page);
3793 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3794
314b6dd0
JT
3795 /*
3796 * Directly use bios here instead of relying on the page cache
3797 * to do I/O, so we don't lose the ability to do integrity
3798 * checking.
3799 */
07888c66
CH
3800 bio = bio_alloc(device->bdev, 1,
3801 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3802 GFP_NOFS);
314b6dd0
JT
3803 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3804 bio->bi_private = device;
3805 bio->bi_end_io = btrfs_end_super_write;
3806 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3807 offset_in_page(bytenr));
a512bbf8 3808
387125fc 3809 /*
314b6dd0
JT
3810 * We FUA only the first super block. The others we allow to
3811 * go down lazy and there's a short window where the on-disk
3812 * copies might still contain the older version.
387125fc 3813 */
1b9e619c 3814 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0 3815 bio->bi_opf |= REQ_FUA;
58ff51f1 3816 submit_bio(bio);
8376d9e1
NA
3817
3818 if (btrfs_advance_sb_log(device, i))
3819 errors++;
a512bbf8
YZ
3820 }
3821 return errors < i ? 0 : -1;
3822}
3823
abbb3b8e
DS
3824/*
3825 * Wait for write completion of superblocks done by write_dev_supers,
3826 * @max_mirrors same for write and wait phases.
3827 *
314b6dd0 3828 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3829 * date.
3830 */
3831static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3832{
abbb3b8e
DS
3833 int i;
3834 int errors = 0;
b6a535fa 3835 bool primary_failed = false;
12659251 3836 int ret;
abbb3b8e
DS
3837 u64 bytenr;
3838
3839 if (max_mirrors == 0)
3840 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3841
3842 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3843 struct page *page;
3844
12659251
NA
3845 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3846 if (ret == -ENOENT) {
3847 break;
3848 } else if (ret < 0) {
3849 errors++;
3850 if (i == 0)
3851 primary_failed = true;
3852 continue;
3853 }
abbb3b8e
DS
3854 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3855 device->commit_total_bytes)
3856 break;
3857
224941e8 3858 page = find_get_page(device->bdev->bd_mapping,
314b6dd0
JT
3859 bytenr >> PAGE_SHIFT);
3860 if (!page) {
abbb3b8e 3861 errors++;
b6a535fa
HM
3862 if (i == 0)
3863 primary_failed = true;
abbb3b8e
DS
3864 continue;
3865 }
314b6dd0
JT
3866 /* Page is submitted locked and unlocked once the IO completes */
3867 wait_on_page_locked(page);
3868 if (PageError(page)) {
abbb3b8e 3869 errors++;
b6a535fa
HM
3870 if (i == 0)
3871 primary_failed = true;
3872 }
abbb3b8e 3873
314b6dd0
JT
3874 /* Drop our reference */
3875 put_page(page);
abbb3b8e 3876
314b6dd0
JT
3877 /* Drop the reference from the writing run */
3878 put_page(page);
abbb3b8e
DS
3879 }
3880
b6a535fa
HM
3881 /* log error, force error return */
3882 if (primary_failed) {
3883 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3884 device->devid);
3885 return -1;
3886 }
3887
abbb3b8e
DS
3888 return errors < i ? 0 : -1;
3889}
3890
387125fc
CM
3891/*
3892 * endio for the write_dev_flush, this will wake anyone waiting
3893 * for the barrier when it is done
3894 */
4246a0b6 3895static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3896{
f9e69aa9 3897 bio_uninit(bio);
e0ae9994 3898 complete(bio->bi_private);
387125fc
CM
3899}
3900
3901/*
4fc6441a
AJ
3902 * Submit a flush request to the device if it supports it. Error handling is
3903 * done in the waiting counterpart.
387125fc 3904 */
4fc6441a 3905static void write_dev_flush(struct btrfs_device *device)
387125fc 3906{
f9e69aa9 3907 struct bio *bio = &device->flush_bio;
387125fc 3908
bfd3ea94
AJ
3909 device->last_flush_error = BLK_STS_OK;
3910
f9e69aa9
CH
3911 bio_init(bio, device->bdev, NULL, 0,
3912 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 3913 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
3914 init_completion(&device->flush_wait);
3915 bio->bi_private = &device->flush_wait;
58ff51f1 3916 submit_bio(bio);
1c3063b6 3917 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3918}
387125fc 3919
4fc6441a
AJ
3920/*
3921 * If the flush bio has been submitted by write_dev_flush, wait for it.
1b465784 3922 * Return true for any error, and false otherwise.
4fc6441a 3923 */
1b465784 3924static bool wait_dev_flush(struct btrfs_device *device)
4fc6441a 3925{
f9e69aa9 3926 struct bio *bio = &device->flush_bio;
387125fc 3927
7e812f20 3928 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
1b465784 3929 return false;
387125fc 3930
2980d574 3931 wait_for_completion_io(&device->flush_wait);
387125fc 3932
bfd3ea94
AJ
3933 if (bio->bi_status) {
3934 device->last_flush_error = bio->bi_status;
3935 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
1b465784 3936 return true;
bfd3ea94
AJ
3937 }
3938
1b465784 3939 return false;
387125fc 3940}
387125fc 3941
387125fc
CM
3942/*
3943 * send an empty flush down to each device in parallel,
3944 * then wait for them
3945 */
3946static int barrier_all_devices(struct btrfs_fs_info *info)
3947{
3948 struct list_head *head;
3949 struct btrfs_device *dev;
5af3e8cc 3950 int errors_wait = 0;
387125fc 3951
1538e6c5 3952 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3953 /* send down all the barriers */
3954 head = &info->fs_devices->devices;
1538e6c5 3955 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3956 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3957 continue;
cea7c8bf 3958 if (!dev->bdev)
387125fc 3959 continue;
e12c9621 3960 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3961 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3962 continue;
3963
4fc6441a 3964 write_dev_flush(dev);
387125fc
CM
3965 }
3966
3967 /* wait for all the barriers */
1538e6c5 3968 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3969 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3970 continue;
387125fc 3971 if (!dev->bdev) {
5af3e8cc 3972 errors_wait++;
387125fc
CM
3973 continue;
3974 }
e12c9621 3975 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3976 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3977 continue;
3978
1b465784 3979 if (wait_dev_flush(dev))
5af3e8cc 3980 errors_wait++;
401b41e5
AJ
3981 }
3982
de38a206
AJ
3983 /*
3984 * Checks last_flush_error of disks in order to determine the device
3985 * state.
3986 */
3987 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3988 return -EIO;
3989
387125fc
CM
3990 return 0;
3991}
3992
943c6e99
ZL
3993int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3994{
8789f4fe
ZL
3995 int raid_type;
3996 int min_tolerated = INT_MAX;
943c6e99 3997
8789f4fe
ZL
3998 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3999 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4000 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4001 btrfs_raid_array[BTRFS_RAID_SINGLE].
4002 tolerated_failures);
943c6e99 4003
8789f4fe
ZL
4004 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4005 if (raid_type == BTRFS_RAID_SINGLE)
4006 continue;
41a6e891 4007 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4008 continue;
8c3e3582 4009 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4010 btrfs_raid_array[raid_type].
4011 tolerated_failures);
4012 }
943c6e99 4013
8789f4fe 4014 if (min_tolerated == INT_MAX) {
ab8d0fc4 4015 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4016 min_tolerated = 0;
4017 }
4018
4019 return min_tolerated;
943c6e99
ZL
4020}
4021
eece6a9c 4022int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4023{
e5e9a520 4024 struct list_head *head;
f2984462 4025 struct btrfs_device *dev;
a061fc8d 4026 struct btrfs_super_block *sb;
f2984462 4027 struct btrfs_dev_item *dev_item;
f2984462
CM
4028 int ret;
4029 int do_barriers;
a236aed1
CM
4030 int max_errors;
4031 int total_errors = 0;
a061fc8d 4032 u64 flags;
f2984462 4033
0b246afa 4034 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4035
4036 /*
4037 * max_mirrors == 0 indicates we're from commit_transaction,
4038 * not from fsync where the tree roots in fs_info have not
4039 * been consistent on disk.
4040 */
4041 if (max_mirrors == 0)
4042 backup_super_roots(fs_info);
f2984462 4043
0b246afa 4044 sb = fs_info->super_for_commit;
a061fc8d 4045 dev_item = &sb->dev_item;
e5e9a520 4046
0b246afa
JM
4047 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4048 head = &fs_info->fs_devices->devices;
4049 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4050
5af3e8cc 4051 if (do_barriers) {
0b246afa 4052 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4053 if (ret) {
4054 mutex_unlock(
0b246afa
JM
4055 &fs_info->fs_devices->device_list_mutex);
4056 btrfs_handle_fs_error(fs_info, ret,
4057 "errors while submitting device barriers.");
5af3e8cc
SB
4058 return ret;
4059 }
4060 }
387125fc 4061
1538e6c5 4062 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4063 if (!dev->bdev) {
4064 total_errors++;
4065 continue;
4066 }
e12c9621 4067 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4068 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4069 continue;
4070
2b82032c 4071 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4072 btrfs_set_stack_device_type(dev_item, dev->type);
4073 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4074 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4075 dev->commit_total_bytes);
ce7213c7
MX
4076 btrfs_set_stack_device_bytes_used(dev_item,
4077 dev->commit_bytes_used);
a061fc8d
CM
4078 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4079 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4080 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4081 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4082 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4083 BTRFS_FSID_SIZE);
a512bbf8 4084
a061fc8d
CM
4085 flags = btrfs_super_flags(sb);
4086 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4087
75cb857d
QW
4088 ret = btrfs_validate_write_super(fs_info, sb);
4089 if (ret < 0) {
4090 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4091 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4092 "unexpected superblock corruption detected");
4093 return -EUCLEAN;
4094 }
4095
abbb3b8e 4096 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4097 if (ret)
4098 total_errors++;
f2984462 4099 }
a236aed1 4100 if (total_errors > max_errors) {
0b246afa
JM
4101 btrfs_err(fs_info, "%d errors while writing supers",
4102 total_errors);
4103 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4104
9d565ba4 4105 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4106 btrfs_handle_fs_error(fs_info, -EIO,
4107 "%d errors while writing supers",
4108 total_errors);
9d565ba4 4109 return -EIO;
a236aed1 4110 }
f2984462 4111
a512bbf8 4112 total_errors = 0;
1538e6c5 4113 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4114 if (!dev->bdev)
4115 continue;
e12c9621 4116 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4117 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4118 continue;
4119
abbb3b8e 4120 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4121 if (ret)
4122 total_errors++;
f2984462 4123 }
0b246afa 4124 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4125 if (total_errors > max_errors) {
0b246afa
JM
4126 btrfs_handle_fs_error(fs_info, -EIO,
4127 "%d errors while writing supers",
4128 total_errors);
79787eaa 4129 return -EIO;
a236aed1 4130 }
f2984462
CM
4131 return 0;
4132}
4133
cb517eab
MX
4134/* Drop a fs root from the radix tree and free it. */
4135void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4136 struct btrfs_root *root)
2619ba1f 4137{
4785e24f
JB
4138 bool drop_ref = false;
4139
fc7cbcd4
DS
4140 spin_lock(&fs_info->fs_roots_radix_lock);
4141 radix_tree_delete(&fs_info->fs_roots_radix,
4142 (unsigned long)root->root_key.objectid);
4143 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4144 drop_ref = true;
fc7cbcd4 4145 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4146
84961539 4147 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4148 ASSERT(root->log_root == NULL);
1c1ea4f7 4149 if (root->reloc_root) {
00246528 4150 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4151 root->reloc_root = NULL;
4152 }
4153 }
3321719e 4154
4785e24f
JB
4155 if (drop_ref)
4156 btrfs_put_root(root);
2619ba1f
CM
4157}
4158
6bccf3ab 4159int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4160{
6bccf3ab 4161 struct btrfs_root *root = fs_info->tree_root;
c146afad 4162 struct btrfs_trans_handle *trans;
a74a4b97 4163
0b246afa 4164 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4165 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4166 mutex_unlock(&fs_info->cleaner_mutex);
4167 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4168
4169 /* wait until ongoing cleanup work done */
0b246afa
JM
4170 down_write(&fs_info->cleanup_work_sem);
4171 up_write(&fs_info->cleanup_work_sem);
c71bf099 4172
7a7eaa40 4173 trans = btrfs_join_transaction(root);
3612b495
TI
4174 if (IS_ERR(trans))
4175 return PTR_ERR(trans);
3a45bb20 4176 return btrfs_commit_transaction(trans);
c146afad
YZ
4177}
4178
36c86a9e
QW
4179static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4180{
4181 struct btrfs_transaction *trans;
4182 struct btrfs_transaction *tmp;
4183 bool found = false;
4184
4185 if (list_empty(&fs_info->trans_list))
4186 return;
4187
4188 /*
4189 * This function is only called at the very end of close_ctree(),
4190 * thus no other running transaction, no need to take trans_lock.
4191 */
4192 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4193 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4194 struct extent_state *cached = NULL;
4195 u64 dirty_bytes = 0;
4196 u64 cur = 0;
4197 u64 found_start;
4198 u64 found_end;
4199
4200 found = true;
e5860f82 4201 while (find_first_extent_bit(&trans->dirty_pages, cur,
36c86a9e
QW
4202 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4203 dirty_bytes += found_end + 1 - found_start;
4204 cur = found_end + 1;
4205 }
4206 btrfs_warn(fs_info,
4207 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4208 trans->transid, dirty_bytes);
4209 btrfs_cleanup_one_transaction(trans, fs_info);
4210
4211 if (trans == fs_info->running_transaction)
4212 fs_info->running_transaction = NULL;
4213 list_del_init(&trans->list);
4214
4215 btrfs_put_transaction(trans);
4216 trace_btrfs_transaction_commit(fs_info);
4217 }
4218 ASSERT(!found);
4219}
4220
b105e927 4221void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4222{
c146afad
YZ
4223 int ret;
4224
afcdd129 4225 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4226
8a1f1e3d
FM
4227 /*
4228 * If we had UNFINISHED_DROPS we could still be processing them, so
4229 * clear that bit and wake up relocation so it can stop.
4230 * We must do this before stopping the block group reclaim task, because
4231 * at btrfs_relocate_block_group() we wait for this bit, and after the
4232 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4233 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4234 * return 1.
4235 */
4236 btrfs_wake_unfinished_drop(fs_info);
4237
31e70e52
FM
4238 /*
4239 * We may have the reclaim task running and relocating a data block group,
4240 * in which case it may create delayed iputs. So stop it before we park
4241 * the cleaner kthread otherwise we can get new delayed iputs after
4242 * parking the cleaner, and that can make the async reclaim task to hang
4243 * if it's waiting for delayed iputs to complete, since the cleaner is
4244 * parked and can not run delayed iputs - this will make us hang when
4245 * trying to stop the async reclaim task.
4246 */
4247 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4248 /*
4249 * We don't want the cleaner to start new transactions, add more delayed
4250 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4251 * because that frees the task_struct, and the transaction kthread might
4252 * still try to wake up the cleaner.
4253 */
4254 kthread_park(fs_info->cleaner_kthread);
c146afad 4255
7343dd61 4256 /* wait for the qgroup rescan worker to stop */
d06f23d6 4257 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4258
803b2f54
SB
4259 /* wait for the uuid_scan task to finish */
4260 down(&fs_info->uuid_tree_rescan_sem);
4261 /* avoid complains from lockdep et al., set sem back to initial state */
4262 up(&fs_info->uuid_tree_rescan_sem);
4263
837d5b6e 4264 /* pause restriper - we want to resume on mount */
aa1b8cd4 4265 btrfs_pause_balance(fs_info);
837d5b6e 4266
8dabb742
SB
4267 btrfs_dev_replace_suspend_for_unmount(fs_info);
4268
aa1b8cd4 4269 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4270
4271 /* wait for any defraggers to finish */
4272 wait_event(fs_info->transaction_wait,
4273 (atomic_read(&fs_info->defrag_running) == 0));
4274
4275 /* clear out the rbtree of defraggable inodes */
26176e7c 4276 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4277
a362bb86
FM
4278 /*
4279 * After we parked the cleaner kthread, ordered extents may have
4280 * completed and created new delayed iputs. If one of the async reclaim
4281 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4282 * can hang forever trying to stop it, because if a delayed iput is
4283 * added after it ran btrfs_run_delayed_iputs() and before it called
4284 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4285 * no one else to run iputs.
4286 *
4287 * So wait for all ongoing ordered extents to complete and then run
4288 * delayed iputs. This works because once we reach this point no one
4289 * can either create new ordered extents nor create delayed iputs
4290 * through some other means.
4291 *
4292 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4293 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4294 * but the delayed iput for the respective inode is made only when doing
4295 * the final btrfs_put_ordered_extent() (which must happen at
4296 * btrfs_finish_ordered_io() when we are unmounting).
4297 */
4298 btrfs_flush_workqueue(fs_info->endio_write_workers);
4299 /* Ordered extents for free space inodes. */
4300 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4301 btrfs_run_delayed_iputs(fs_info);
4302
21c7e756 4303 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4304 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4305 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4306
b0643e59
DZ
4307 /* Cancel or finish ongoing discard work */
4308 btrfs_discard_cleanup(fs_info);
4309
bc98a42c 4310 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4311 /*
d6fd0ae2
OS
4312 * The cleaner kthread is stopped, so do one final pass over
4313 * unused block groups.
e44163e1 4314 */
0b246afa 4315 btrfs_delete_unused_bgs(fs_info);
e44163e1 4316
f0cc2cd7
FM
4317 /*
4318 * There might be existing delayed inode workers still running
4319 * and holding an empty delayed inode item. We must wait for
4320 * them to complete first because they can create a transaction.
4321 * This happens when someone calls btrfs_balance_delayed_items()
4322 * and then a transaction commit runs the same delayed nodes
4323 * before any delayed worker has done something with the nodes.
4324 * We must wait for any worker here and not at transaction
4325 * commit time since that could cause a deadlock.
4326 * This is a very rare case.
4327 */
4328 btrfs_flush_workqueue(fs_info->delayed_workers);
4329
6bccf3ab 4330 ret = btrfs_commit_super(fs_info);
acce952b 4331 if (ret)
04892340 4332 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4333 }
4334
84961539 4335 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4336 btrfs_error_commit_super(fs_info);
0f7d52f4 4337
e3029d9f
AV
4338 kthread_stop(fs_info->transaction_kthread);
4339 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4340
e187831e 4341 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4342 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4343
5958253c
QW
4344 if (btrfs_check_quota_leak(fs_info)) {
4345 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4346 btrfs_err(fs_info, "qgroup reserved space leaked");
4347 }
4348
04892340 4349 btrfs_free_qgroup_config(fs_info);
fe816d0f 4350 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4351
963d678b 4352 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4353 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4354 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4355 }
bcc63abb 4356
5deb17e1 4357 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4358 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4359 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4360
6618a59b 4361 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4362 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4363
1a4319cc
LB
4364 btrfs_put_block_group_cache(fs_info);
4365
de348ee0
WS
4366 /*
4367 * we must make sure there is not any read request to
4368 * submit after we stopping all workers.
4369 */
4370 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4371 btrfs_stop_all_workers(fs_info);
4372
0a31daa4 4373 /* We shouldn't have any transaction open at this point */
36c86a9e 4374 warn_about_uncommitted_trans(fs_info);
0a31daa4 4375
afcdd129 4376 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4377 free_root_pointers(fs_info, true);
8c38938c 4378 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4379
4e19443d
JB
4380 /*
4381 * We must free the block groups after dropping the fs_roots as we could
4382 * have had an IO error and have left over tree log blocks that aren't
4383 * cleaned up until the fs roots are freed. This makes the block group
4384 * accounting appear to be wrong because there's pending reserved bytes,
4385 * so make sure we do the block group cleanup afterwards.
4386 */
4387 btrfs_free_block_groups(fs_info);
4388
13e6c37b 4389 iput(fs_info->btree_inode);
d6bfde87 4390
7dc66abb 4391 btrfs_mapping_tree_free(fs_info);
68c94e55 4392 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4393}
4394
50564b65
FM
4395void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4396 struct extent_buffer *buf)
5f39d397 4397{
2f4d60df 4398 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4399 u64 transid = btrfs_header_generation(buf);
b4ce94de 4400
06ea65a3
JB
4401#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4402 /*
4403 * This is a fast path so only do this check if we have sanity tests
52042d8e 4404 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4405 * outside of the sanity tests.
4406 */
b0132a3b 4407 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4408 return;
4409#endif
50564b65
FM
4410 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4411 ASSERT(trans->transid == fs_info->generation);
49d0c642 4412 btrfs_assert_tree_write_locked(buf);
4ebe8d47 4413 if (unlikely(transid != fs_info->generation)) {
50564b65 4414 btrfs_abort_transaction(trans, -EUCLEAN);
20cbe460
FM
4415 btrfs_crit(fs_info,
4416"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4417 buf->start, transid, fs_info->generation);
50564b65 4418 }
f18cc978 4419 set_extent_buffer_dirty(buf);
eb60ceac
CM
4420}
4421
2ff7e61e 4422static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4423 int flush_delayed)
16cdcec7
MX
4424{
4425 /*
4426 * looks as though older kernels can get into trouble with
4427 * this code, they end up stuck in balance_dirty_pages forever
4428 */
e2d84521 4429 int ret;
16cdcec7
MX
4430
4431 if (current->flags & PF_MEMALLOC)
4432 return;
4433
b53d3f5d 4434 if (flush_delayed)
2ff7e61e 4435 btrfs_balance_delayed_items(fs_info);
16cdcec7 4436
d814a491
EL
4437 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4438 BTRFS_DIRTY_METADATA_THRESH,
4439 fs_info->dirty_metadata_batch);
e2d84521 4440 if (ret > 0) {
0b246afa 4441 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4442 }
16cdcec7
MX
4443}
4444
2ff7e61e 4445void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4446{
2ff7e61e 4447 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4448}
585ad2c3 4449
2ff7e61e 4450void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4451{
2ff7e61e 4452 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4453}
6b80053d 4454
2ff7e61e 4455static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4456{
fe816d0f
NB
4457 /* cleanup FS via transaction */
4458 btrfs_cleanup_transaction(fs_info);
4459
0b246afa 4460 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4461 btrfs_run_delayed_iputs(fs_info);
0b246afa 4462 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4463
0b246afa
JM
4464 down_write(&fs_info->cleanup_work_sem);
4465 up_write(&fs_info->cleanup_work_sem);
acce952b 4466}
4467
ef67963d
JB
4468static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4469{
fc7cbcd4
DS
4470 struct btrfs_root *gang[8];
4471 u64 root_objectid = 0;
4472 int ret;
4473
4474 spin_lock(&fs_info->fs_roots_radix_lock);
4475 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4476 (void **)gang, root_objectid,
4477 ARRAY_SIZE(gang))) != 0) {
4478 int i;
4479
4480 for (i = 0; i < ret; i++)
4481 gang[i] = btrfs_grab_root(gang[i]);
4482 spin_unlock(&fs_info->fs_roots_radix_lock);
4483
4484 for (i = 0; i < ret; i++) {
4485 if (!gang[i])
ef67963d 4486 continue;
fc7cbcd4
DS
4487 root_objectid = gang[i]->root_key.objectid;
4488 btrfs_free_log(NULL, gang[i]);
4489 btrfs_put_root(gang[i]);
ef67963d 4490 }
fc7cbcd4
DS
4491 root_objectid++;
4492 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4493 }
fc7cbcd4 4494 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4495 btrfs_free_log_root_tree(NULL, fs_info);
4496}
4497
143bede5 4498static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4499{
acce952b 4500 struct btrfs_ordered_extent *ordered;
acce952b 4501
199c2a9c 4502 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4503 /*
4504 * This will just short circuit the ordered completion stuff which will
4505 * make sure the ordered extent gets properly cleaned up.
4506 */
199c2a9c 4507 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4508 root_extent_list)
4509 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4510 spin_unlock(&root->ordered_extent_lock);
4511}
4512
4513static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4514{
4515 struct btrfs_root *root;
84af994b 4516 LIST_HEAD(splice);
199c2a9c
MX
4517
4518 spin_lock(&fs_info->ordered_root_lock);
4519 list_splice_init(&fs_info->ordered_roots, &splice);
4520 while (!list_empty(&splice)) {
4521 root = list_first_entry(&splice, struct btrfs_root,
4522 ordered_root);
1de2cfde
JB
4523 list_move_tail(&root->ordered_root,
4524 &fs_info->ordered_roots);
199c2a9c 4525
2a85d9ca 4526 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4527 btrfs_destroy_ordered_extents(root);
4528
2a85d9ca
LB
4529 cond_resched();
4530 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4531 }
4532 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4533
4534 /*
4535 * We need this here because if we've been flipped read-only we won't
4536 * get sync() from the umount, so we need to make sure any ordered
4537 * extents that haven't had their dirty pages IO start writeout yet
4538 * actually get run and error out properly.
4539 */
4540 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4541}
4542
99f09ce3
FM
4543static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4544 struct btrfs_fs_info *fs_info)
acce952b 4545{
4546 struct rb_node *node;
4547 struct btrfs_delayed_ref_root *delayed_refs;
4548 struct btrfs_delayed_ref_node *ref;
acce952b 4549
4550 delayed_refs = &trans->delayed_refs;
4551
4552 spin_lock(&delayed_refs->lock);
d7df2c79 4553 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4554 spin_unlock(&delayed_refs->lock);
b79ce3dd 4555 btrfs_debug(fs_info, "delayed_refs has NO entry");
99f09ce3 4556 return;
acce952b 4557 }
4558
5c9d028b 4559 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4560 struct btrfs_delayed_ref_head *head;
0e0adbcf 4561 struct rb_node *n;
e78417d1 4562 bool pin_bytes = false;
acce952b 4563
d7df2c79
JB
4564 head = rb_entry(node, struct btrfs_delayed_ref_head,
4565 href_node);
3069bd26 4566 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4567 continue;
3069bd26 4568
d7df2c79 4569 spin_lock(&head->lock);
e3d03965 4570 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4571 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4572 ref_node);
e3d03965 4573 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4574 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4575 if (!list_empty(&ref->add_list))
4576 list_del(&ref->add_list);
d7df2c79
JB
4577 atomic_dec(&delayed_refs->num_entries);
4578 btrfs_put_delayed_ref(ref);
adb86dbe 4579 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
e78417d1 4580 }
d7df2c79
JB
4581 if (head->must_insert_reserved)
4582 pin_bytes = true;
4583 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4584 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4585 spin_unlock(&head->lock);
4586 spin_unlock(&delayed_refs->lock);
4587 mutex_unlock(&head->mutex);
acce952b 4588
f603bb94
NB
4589 if (pin_bytes) {
4590 struct btrfs_block_group *cache;
4591
4592 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4593 BUG_ON(!cache);
4594
4595 spin_lock(&cache->space_info->lock);
4596 spin_lock(&cache->lock);
4597 cache->pinned += head->num_bytes;
4598 btrfs_space_info_update_bytes_pinned(fs_info,
4599 cache->space_info, head->num_bytes);
4600 cache->reserved -= head->num_bytes;
4601 cache->space_info->bytes_reserved -= head->num_bytes;
4602 spin_unlock(&cache->lock);
4603 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4604
4605 btrfs_put_block_group(cache);
4606
4607 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4608 head->bytenr + head->num_bytes - 1);
4609 }
31890da0 4610 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4611 btrfs_put_delayed_ref_head(head);
acce952b 4612 cond_resched();
4613 spin_lock(&delayed_refs->lock);
4614 }
81f7eb00 4615 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4616
4617 spin_unlock(&delayed_refs->lock);
acce952b 4618}
4619
143bede5 4620static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4621{
4622 struct btrfs_inode *btrfs_inode;
84af994b 4623 LIST_HEAD(splice);
acce952b 4624
eb73c1b7
MX
4625 spin_lock(&root->delalloc_lock);
4626 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4627
4628 while (!list_empty(&splice)) {
fe816d0f 4629 struct inode *inode = NULL;
eb73c1b7
MX
4630 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4631 delalloc_inodes);
5a8a57f9 4632 btrfs_del_delalloc_inode(btrfs_inode);
eb73c1b7 4633 spin_unlock(&root->delalloc_lock);
acce952b 4634
fe816d0f
NB
4635 /*
4636 * Make sure we get a live inode and that it'll not disappear
4637 * meanwhile.
4638 */
4639 inode = igrab(&btrfs_inode->vfs_inode);
4640 if (inode) {
597441b3
JB
4641 unsigned int nofs_flag;
4642
4643 nofs_flag = memalloc_nofs_save();
fe816d0f 4644 invalidate_inode_pages2(inode->i_mapping);
597441b3 4645 memalloc_nofs_restore(nofs_flag);
fe816d0f
NB
4646 iput(inode);
4647 }
eb73c1b7 4648 spin_lock(&root->delalloc_lock);
acce952b 4649 }
eb73c1b7
MX
4650 spin_unlock(&root->delalloc_lock);
4651}
4652
4653static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4654{
4655 struct btrfs_root *root;
84af994b 4656 LIST_HEAD(splice);
eb73c1b7
MX
4657
4658 spin_lock(&fs_info->delalloc_root_lock);
4659 list_splice_init(&fs_info->delalloc_roots, &splice);
4660 while (!list_empty(&splice)) {
4661 root = list_first_entry(&splice, struct btrfs_root,
4662 delalloc_root);
00246528 4663 root = btrfs_grab_root(root);
eb73c1b7
MX
4664 BUG_ON(!root);
4665 spin_unlock(&fs_info->delalloc_root_lock);
4666
4667 btrfs_destroy_delalloc_inodes(root);
00246528 4668 btrfs_put_root(root);
eb73c1b7
MX
4669
4670 spin_lock(&fs_info->delalloc_root_lock);
4671 }
4672 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4673}
4674
aec5716c
FM
4675static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4676 struct extent_io_tree *dirty_pages,
4677 int mark)
acce952b 4678{
acce952b 4679 struct extent_buffer *eb;
4680 u64 start = 0;
4681 u64 end;
acce952b 4682
e5860f82
FM
4683 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4684 mark, NULL)) {
91166212 4685 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4686 while (start <= end) {
0b246afa
JM
4687 eb = find_extent_buffer(fs_info, start);
4688 start += fs_info->nodesize;
fd8b2b61 4689 if (!eb)
acce952b 4690 continue;
c4e54a65
JB
4691
4692 btrfs_tree_lock(eb);
fd8b2b61 4693 wait_on_extent_buffer_writeback(eb);
190a8339 4694 btrfs_clear_buffer_dirty(NULL, eb);
c4e54a65 4695 btrfs_tree_unlock(eb);
acce952b 4696
fd8b2b61 4697 free_extent_buffer_stale(eb);
acce952b 4698 }
4699 }
acce952b 4700}
4701
46d81ebd
FM
4702static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4703 struct extent_io_tree *unpin)
acce952b 4704{
acce952b 4705 u64 start;
4706 u64 end;
acce952b 4707
acce952b 4708 while (1) {
0e6ec385
FM
4709 struct extent_state *cached_state = NULL;
4710
fcd5e742
LF
4711 /*
4712 * The btrfs_finish_extent_commit() may get the same range as
4713 * ours between find_first_extent_bit and clear_extent_dirty.
4714 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4715 * the same extent range.
4716 */
4717 mutex_lock(&fs_info->unused_bg_unpin_mutex);
e5860f82
FM
4718 if (!find_first_extent_bit(unpin, 0, &start, &end,
4719 EXTENT_DIRTY, &cached_state)) {
fcd5e742 4720 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4721 break;
fcd5e742 4722 }
acce952b 4723
0e6ec385
FM
4724 clear_extent_dirty(unpin, start, end, &cached_state);
4725 free_extent_state(cached_state);
2ff7e61e 4726 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4727 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4728 cond_resched();
4729 }
acce952b 4730}
4731
32da5386 4732static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4733{
4734 struct inode *inode;
4735
4736 inode = cache->io_ctl.inode;
4737 if (inode) {
597441b3
JB
4738 unsigned int nofs_flag;
4739
4740 nofs_flag = memalloc_nofs_save();
c79a1751 4741 invalidate_inode_pages2(inode->i_mapping);
597441b3
JB
4742 memalloc_nofs_restore(nofs_flag);
4743
c79a1751
LB
4744 BTRFS_I(inode)->generation = 0;
4745 cache->io_ctl.inode = NULL;
4746 iput(inode);
4747 }
bbc37d6e 4748 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4749 btrfs_put_block_group(cache);
4750}
4751
4752void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4753 struct btrfs_fs_info *fs_info)
c79a1751 4754{
32da5386 4755 struct btrfs_block_group *cache;
c79a1751
LB
4756
4757 spin_lock(&cur_trans->dirty_bgs_lock);
4758 while (!list_empty(&cur_trans->dirty_bgs)) {
4759 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4760 struct btrfs_block_group,
c79a1751 4761 dirty_list);
c79a1751
LB
4762
4763 if (!list_empty(&cache->io_list)) {
4764 spin_unlock(&cur_trans->dirty_bgs_lock);
4765 list_del_init(&cache->io_list);
4766 btrfs_cleanup_bg_io(cache);
4767 spin_lock(&cur_trans->dirty_bgs_lock);
4768 }
4769
4770 list_del_init(&cache->dirty_list);
4771 spin_lock(&cache->lock);
4772 cache->disk_cache_state = BTRFS_DC_ERROR;
4773 spin_unlock(&cache->lock);
4774
4775 spin_unlock(&cur_trans->dirty_bgs_lock);
4776 btrfs_put_block_group(cache);
f66e0209 4777 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
c79a1751
LB
4778 spin_lock(&cur_trans->dirty_bgs_lock);
4779 }
4780 spin_unlock(&cur_trans->dirty_bgs_lock);
4781
45ae2c18
NB
4782 /*
4783 * Refer to the definition of io_bgs member for details why it's safe
4784 * to use it without any locking
4785 */
c79a1751
LB
4786 while (!list_empty(&cur_trans->io_bgs)) {
4787 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4788 struct btrfs_block_group,
c79a1751 4789 io_list);
c79a1751
LB
4790
4791 list_del_init(&cache->io_list);
4792 spin_lock(&cache->lock);
4793 cache->disk_cache_state = BTRFS_DC_ERROR;
4794 spin_unlock(&cache->lock);
4795 btrfs_cleanup_bg_io(cache);
4796 }
4797}
4798
b321a52c
BB
4799static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4800{
4801 struct btrfs_root *gang[8];
4802 int i;
4803 int ret;
4804
4805 spin_lock(&fs_info->fs_roots_radix_lock);
4806 while (1) {
4807 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4808 (void **)gang, 0,
4809 ARRAY_SIZE(gang),
4810 BTRFS_ROOT_TRANS_TAG);
4811 if (ret == 0)
4812 break;
4813 for (i = 0; i < ret; i++) {
4814 struct btrfs_root *root = gang[i];
4815
4816 btrfs_qgroup_free_meta_all_pertrans(root);
4817 radix_tree_tag_clear(&fs_info->fs_roots_radix,
4818 (unsigned long)root->root_key.objectid,
4819 BTRFS_ROOT_TRANS_TAG);
4820 }
4821 }
4822 spin_unlock(&fs_info->fs_roots_radix_lock);
4823}
4824
49b25e05 4825void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4826 struct btrfs_fs_info *fs_info)
49b25e05 4827{
bbbf7243
NB
4828 struct btrfs_device *dev, *tmp;
4829
2ff7e61e 4830 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4831 ASSERT(list_empty(&cur_trans->dirty_bgs));
4832 ASSERT(list_empty(&cur_trans->io_bgs));
4833
bbbf7243
NB
4834 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4835 post_commit_list) {
4836 list_del_init(&dev->post_commit_list);
4837 }
4838
2ff7e61e 4839 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4840
4a9d8bde 4841 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4842 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4843
4a9d8bde 4844 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4845 wake_up(&fs_info->transaction_wait);
49b25e05 4846
ccdf9b30 4847 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4848
2ff7e61e 4849 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4850 EXTENT_DIRTY);
fe119a6e 4851 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4852
b321a52c
BB
4853 btrfs_free_all_qgroup_pertrans(fs_info);
4854
4a9d8bde
MX
4855 cur_trans->state =TRANS_STATE_COMPLETED;
4856 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4857}
4858
2ff7e61e 4859static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4860{
4861 struct btrfs_transaction *t;
acce952b 4862
0b246afa 4863 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4864
0b246afa
JM
4865 spin_lock(&fs_info->trans_lock);
4866 while (!list_empty(&fs_info->trans_list)) {
4867 t = list_first_entry(&fs_info->trans_list,
724e2315 4868 struct btrfs_transaction, list);
77d20c68 4869 if (t->state >= TRANS_STATE_COMMIT_PREP) {
9b64f57d 4870 refcount_inc(&t->use_count);
0b246afa 4871 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4872 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4873 btrfs_put_transaction(t);
0b246afa 4874 spin_lock(&fs_info->trans_lock);
724e2315
JB
4875 continue;
4876 }
0b246afa 4877 if (t == fs_info->running_transaction) {
724e2315 4878 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4879 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4880 /*
4881 * We wait for 0 num_writers since we don't hold a trans
4882 * handle open currently for this transaction.
4883 */
4884 wait_event(t->writer_wait,
4885 atomic_read(&t->num_writers) == 0);
4886 } else {
0b246afa 4887 spin_unlock(&fs_info->trans_lock);
724e2315 4888 }
2ff7e61e 4889 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4890
0b246afa
JM
4891 spin_lock(&fs_info->trans_lock);
4892 if (t == fs_info->running_transaction)
4893 fs_info->running_transaction = NULL;
acce952b 4894 list_del_init(&t->list);
0b246afa 4895 spin_unlock(&fs_info->trans_lock);
acce952b 4896
724e2315 4897 btrfs_put_transaction(t);
2e4e97ab 4898 trace_btrfs_transaction_commit(fs_info);
0b246afa 4899 spin_lock(&fs_info->trans_lock);
724e2315 4900 }
0b246afa
JM
4901 spin_unlock(&fs_info->trans_lock);
4902 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4903 btrfs_destroy_delayed_inodes(fs_info);
4904 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4905 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4906 btrfs_drop_all_logs(fs_info);
0b246afa 4907 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4908
4909 return 0;
4910}
ec7d6dfd 4911
453e4873 4912int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4913{
4914 struct btrfs_path *path;
4915 int ret;
4916 struct extent_buffer *l;
4917 struct btrfs_key search_key;
4918 struct btrfs_key found_key;
4919 int slot;
4920
4921 path = btrfs_alloc_path();
4922 if (!path)
4923 return -ENOMEM;
4924
4925 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4926 search_key.type = -1;
4927 search_key.offset = (u64)-1;
4928 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4929 if (ret < 0)
4930 goto error;
a6724290
DS
4931 if (ret == 0) {
4932 /*
4933 * Key with offset -1 found, there would have to exist a root
4934 * with such id, but this is out of valid range.
4935 */
4936 ret = -EUCLEAN;
4937 goto error;
4938 }
ec7d6dfd
NB
4939 if (path->slots[0] > 0) {
4940 slot = path->slots[0] - 1;
4941 l = path->nodes[0];
4942 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
4943 root->free_objectid = max_t(u64, found_key.objectid + 1,
4944 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 4945 } else {
23125104 4946 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
4947 }
4948 ret = 0;
4949error:
4950 btrfs_free_path(path);
4951 return ret;
4952}
4953
543068a2 4954int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
4955{
4956 int ret;
4957 mutex_lock(&root->objectid_mutex);
4958
6b8fad57 4959 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
4960 btrfs_warn(root->fs_info,
4961 "the objectid of root %llu reaches its highest value",
4962 root->root_key.objectid);
4963 ret = -ENOSPC;
4964 goto out;
4965 }
4966
23125104 4967 *objectid = root->free_objectid++;
ec7d6dfd
NB
4968 ret = 0;
4969out:
4970 mutex_unlock(&root->objectid_mutex);
4971 return ret;
4972}