btrfs: zoned: clone zoned device info when cloning a device
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
21adbd5c 32#include "check-integrity.h"
606686ee 33#include "rcu-string.h"
8dabb742 34#include "dev-replace.h"
53b381b3 35#include "raid56.h"
5ac1d209 36#include "sysfs.h"
fcebe456 37#include "qgroup.h"
ebb8765b 38#include "compression.h"
557ea5dd 39#include "tree-checker.h"
fd708b81 40#include "ref-verify.h"
aac0023c 41#include "block-group.h"
b0643e59 42#include "discard.h"
f603bb94 43#include "space-info.h"
b70f5097 44#include "zoned.h"
139e8cd3 45#include "subpage.h"
eb60ceac 46
319e4d06
QW
47#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 53
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
141386e1
JB
66static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67{
68 if (fs_info->csum_shash)
69 crypto_free_shash(fs_info->csum_shash);
70}
71
d352ac68
CM
72/*
73 * async submit bios are used to offload expensive checksumming
74 * onto the worker threads. They checksum file and metadata bios
75 * just before they are sent down the IO stack.
76 */
44b8bd7e 77struct async_submit_bio {
8896a08d 78 struct inode *inode;
44b8bd7e 79 struct bio *bio;
a758781d 80 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 81 int mirror_num;
1941b64b
QW
82
83 /* Optional parameter for submit_bio_start used by direct io */
84 u64 dio_file_offset;
8b712842 85 struct btrfs_work work;
4e4cbee9 86 blk_status_t status;
44b8bd7e
CM
87};
88
d352ac68 89/*
2996e1f8 90 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 91 */
c67b3892 92static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 93{
d5178578 94 struct btrfs_fs_info *fs_info = buf->fs_info;
7280305e 95 const int num_pages = num_extent_pages(buf);
a26663e7 96 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
d5178578 97 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 98 char *kaddr;
e9be5a30 99 int i;
d5178578
JT
100
101 shash->tfm = fs_info->csum_shash;
102 crypto_shash_init(shash);
a26663e7 103 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
e9be5a30 104 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 105 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 106
e9be5a30
DS
107 for (i = 1; i < num_pages; i++) {
108 kaddr = page_address(buf->pages[i]);
109 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 110 }
71a63551 111 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 112 crypto_shash_final(shash, result);
19c00ddc
CM
113}
114
d352ac68
CM
115/*
116 * we can't consider a given block up to date unless the transid of the
117 * block matches the transid in the parent node's pointer. This is how we
118 * detect blocks that either didn't get written at all or got written
119 * in the wrong place.
120 */
1259ab75 121static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
122 struct extent_buffer *eb, u64 parent_transid,
123 int atomic)
1259ab75 124{
2ac55d41 125 struct extent_state *cached_state = NULL;
1259ab75
CM
126 int ret;
127
128 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
129 return 0;
130
b9fab919
CM
131 if (atomic)
132 return -EAGAIN;
133
570eb97b 134 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
0b32f4bb 135 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
136 btrfs_header_generation(eb) == parent_transid) {
137 ret = 0;
138 goto out;
139 }
94647322 140 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
141"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
142 eb->start, eb->read_mirror,
29549aec 143 parent_transid, btrfs_header_generation(eb));
1259ab75 144 ret = 1;
35b22c19 145 clear_extent_buffer_uptodate(eb);
33958dc6 146out:
570eb97b
JB
147 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
148 &cached_state);
1259ab75 149 return ret;
1259ab75
CM
150}
151
e7e16f48
JT
152static bool btrfs_supported_super_csum(u16 csum_type)
153{
154 switch (csum_type) {
155 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 156 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 157 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 158 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
159 return true;
160 default:
161 return false;
162 }
163}
164
1104a885
DS
165/*
166 * Return 0 if the superblock checksum type matches the checksum value of that
167 * algorithm. Pass the raw disk superblock data.
168 */
3d17adea
QW
169int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
170 const struct btrfs_super_block *disk_sb)
1104a885 171{
51bce6c9 172 char result[BTRFS_CSUM_SIZE];
d5178578
JT
173 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
174
175 shash->tfm = fs_info->csum_shash;
1104a885 176
51bce6c9
JT
177 /*
178 * The super_block structure does not span the whole
179 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
180 * filled with zeros and is included in the checksum.
181 */
3d17adea 182 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 183 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 184
55fc29be 185 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 186 return 1;
1104a885 187
e7e16f48 188 return 0;
1104a885
DS
189}
190
e064d5e9 191int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 192 struct btrfs_key *first_key, u64 parent_transid)
581c1760 193{
e064d5e9 194 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
195 int found_level;
196 struct btrfs_key found_key;
197 int ret;
198
199 found_level = btrfs_header_level(eb);
200 if (found_level != level) {
63489055
QW
201 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
202 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
203 btrfs_err(fs_info,
204"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
205 eb->start, level, found_level);
581c1760
QW
206 return -EIO;
207 }
208
209 if (!first_key)
210 return 0;
211
5d41be6f
QW
212 /*
213 * For live tree block (new tree blocks in current transaction),
214 * we need proper lock context to avoid race, which is impossible here.
215 * So we only checks tree blocks which is read from disk, whose
216 * generation <= fs_info->last_trans_committed.
217 */
218 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
219 return 0;
62fdaa52
QW
220
221 /* We have @first_key, so this @eb must have at least one item */
222 if (btrfs_header_nritems(eb) == 0) {
223 btrfs_err(fs_info,
224 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
225 eb->start);
226 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
227 return -EUCLEAN;
228 }
229
581c1760
QW
230 if (found_level)
231 btrfs_node_key_to_cpu(eb, &found_key, 0);
232 else
233 btrfs_item_key_to_cpu(eb, &found_key, 0);
234 ret = btrfs_comp_cpu_keys(first_key, &found_key);
235
581c1760 236 if (ret) {
63489055
QW
237 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
238 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 239 btrfs_err(fs_info,
ff76a864
LB
240"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
241 eb->start, parent_transid, first_key->objectid,
242 first_key->type, first_key->offset,
243 found_key.objectid, found_key.type,
244 found_key.offset);
581c1760 245 }
581c1760
QW
246 return ret;
247}
248
d352ac68
CM
249/*
250 * helper to read a given tree block, doing retries as required when
251 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
252 *
253 * @parent_transid: expected transid, skip check if 0
254 * @level: expected level, mandatory check
255 * @first_key: expected key of first slot, skip check if NULL
d352ac68 256 */
6a2e9dc4
FM
257int btrfs_read_extent_buffer(struct extent_buffer *eb,
258 u64 parent_transid, int level,
259 struct btrfs_key *first_key)
f188591e 260{
5ab12d1f 261 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 262 struct extent_io_tree *io_tree;
ea466794 263 int failed = 0;
f188591e
CM
264 int ret;
265 int num_copies = 0;
266 int mirror_num = 0;
ea466794 267 int failed_mirror = 0;
f188591e 268
0b246afa 269 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 270 while (1) {
f8397d69 271 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 272 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 273 if (!ret) {
581c1760 274 if (verify_parent_transid(io_tree, eb,
b9fab919 275 parent_transid, 0))
256dd1bb 276 ret = -EIO;
e064d5e9 277 else if (btrfs_verify_level_key(eb, level,
448de471 278 first_key, parent_transid))
581c1760
QW
279 ret = -EUCLEAN;
280 else
281 break;
256dd1bb 282 }
d397712b 283
0b246afa 284 num_copies = btrfs_num_copies(fs_info,
f188591e 285 eb->start, eb->len);
4235298e 286 if (num_copies == 1)
ea466794 287 break;
4235298e 288
5cf1ab56
JB
289 if (!failed_mirror) {
290 failed = 1;
291 failed_mirror = eb->read_mirror;
292 }
293
f188591e 294 mirror_num++;
ea466794
JB
295 if (mirror_num == failed_mirror)
296 mirror_num++;
297
4235298e 298 if (mirror_num > num_copies)
ea466794 299 break;
f188591e 300 }
ea466794 301
c0901581 302 if (failed && !ret && failed_mirror)
20a1fbf9 303 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
304
305 return ret;
f188591e 306}
19c00ddc 307
eca0f6f6
QW
308static int csum_one_extent_buffer(struct extent_buffer *eb)
309{
310 struct btrfs_fs_info *fs_info = eb->fs_info;
311 u8 result[BTRFS_CSUM_SIZE];
312 int ret;
313
314 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
315 offsetof(struct btrfs_header, fsid),
316 BTRFS_FSID_SIZE) == 0);
317 csum_tree_block(eb, result);
318
319 if (btrfs_header_level(eb))
320 ret = btrfs_check_node(eb);
321 else
322 ret = btrfs_check_leaf_full(eb);
323
3777369f
QW
324 if (ret < 0)
325 goto error;
326
327 /*
328 * Also check the generation, the eb reached here must be newer than
329 * last committed. Or something seriously wrong happened.
330 */
331 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
332 ret = -EUCLEAN;
eca0f6f6 333 btrfs_err(fs_info,
3777369f
QW
334 "block=%llu bad generation, have %llu expect > %llu",
335 eb->start, btrfs_header_generation(eb),
336 fs_info->last_trans_committed);
337 goto error;
eca0f6f6
QW
338 }
339 write_extent_buffer(eb, result, 0, fs_info->csum_size);
340
341 return 0;
3777369f
QW
342
343error:
344 btrfs_print_tree(eb, 0);
345 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
346 eb->start);
347 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
348 return ret;
eca0f6f6
QW
349}
350
351/* Checksum all dirty extent buffers in one bio_vec */
352static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
353 struct bio_vec *bvec)
354{
355 struct page *page = bvec->bv_page;
356 u64 bvec_start = page_offset(page) + bvec->bv_offset;
357 u64 cur;
358 int ret = 0;
359
360 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
361 cur += fs_info->nodesize) {
362 struct extent_buffer *eb;
363 bool uptodate;
364
365 eb = find_extent_buffer(fs_info, cur);
366 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
367 fs_info->nodesize);
368
01cd3909 369 /* A dirty eb shouldn't disappear from buffer_radix */
eca0f6f6
QW
370 if (WARN_ON(!eb))
371 return -EUCLEAN;
372
373 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
374 free_extent_buffer(eb);
375 return -EUCLEAN;
376 }
377 if (WARN_ON(!uptodate)) {
378 free_extent_buffer(eb);
379 return -EUCLEAN;
380 }
381
382 ret = csum_one_extent_buffer(eb);
383 free_extent_buffer(eb);
384 if (ret < 0)
385 return ret;
386 }
387 return ret;
388}
389
d352ac68 390/*
ac303b69
QW
391 * Checksum a dirty tree block before IO. This has extra checks to make sure
392 * we only fill in the checksum field in the first page of a multi-page block.
393 * For subpage extent buffers we need bvec to also read the offset in the page.
d352ac68 394 */
ac303b69 395static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
19c00ddc 396{
ac303b69 397 struct page *page = bvec->bv_page;
4eee4fa4 398 u64 start = page_offset(page);
19c00ddc 399 u64 found_start;
19c00ddc 400 struct extent_buffer *eb;
eca0f6f6 401
fbca46eb 402 if (fs_info->nodesize < PAGE_SIZE)
eca0f6f6 403 return csum_dirty_subpage_buffers(fs_info, bvec);
f188591e 404
4f2de97a
JB
405 eb = (struct extent_buffer *)page->private;
406 if (page != eb->pages[0])
407 return 0;
0f805531 408
19c00ddc 409 found_start = btrfs_header_bytenr(eb);
d3575156
NA
410
411 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
412 WARN_ON(found_start != 0);
413 return 0;
414 }
415
0f805531
AL
416 /*
417 * Please do not consolidate these warnings into a single if.
418 * It is useful to know what went wrong.
419 */
420 if (WARN_ON(found_start != start))
421 return -EUCLEAN;
422 if (WARN_ON(!PageUptodate(page)))
423 return -EUCLEAN;
424
eca0f6f6 425 return csum_one_extent_buffer(eb);
19c00ddc
CM
426}
427
b0c9b3b0 428static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 429{
b0c9b3b0 430 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 431 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 432 u8 fsid[BTRFS_FSID_SIZE];
944d3f9f 433 u8 *metadata_uuid;
2b82032c 434
9a8658e3
DS
435 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
436 BTRFS_FSID_SIZE);
944d3f9f
NB
437 /*
438 * Checking the incompat flag is only valid for the current fs. For
439 * seed devices it's forbidden to have their uuid changed so reading
440 * ->fsid in this case is fine
441 */
442 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
443 metadata_uuid = fs_devices->metadata_uuid;
444 else
445 metadata_uuid = fs_devices->fsid;
446
447 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
448 return 0;
449
450 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
451 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
452 return 0;
453
454 return 1;
2b82032c
YZ
455}
456
77bf40a2
QW
457/* Do basic extent buffer checks at read time */
458static int validate_extent_buffer(struct extent_buffer *eb)
ce9adaa5 459{
77bf40a2 460 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 461 u64 found_start;
77bf40a2
QW
462 const u32 csum_size = fs_info->csum_size;
463 u8 found_level;
2996e1f8 464 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 465 const u8 *header_csum;
77bf40a2 466 int ret = 0;
ea466794 467
ce9adaa5 468 found_start = btrfs_header_bytenr(eb);
727011e0 469 if (found_start != eb->start) {
8f0ed7d4
QW
470 btrfs_err_rl(fs_info,
471 "bad tree block start, mirror %u want %llu have %llu",
472 eb->read_mirror, eb->start, found_start);
f188591e 473 ret = -EIO;
77bf40a2 474 goto out;
ce9adaa5 475 }
b0c9b3b0 476 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
477 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
478 eb->start, eb->read_mirror);
1259ab75 479 ret = -EIO;
77bf40a2 480 goto out;
1259ab75 481 }
ce9adaa5 482 found_level = btrfs_header_level(eb);
1c24c3ce 483 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
484 btrfs_err(fs_info,
485 "bad tree block level, mirror %u level %d on logical %llu",
486 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 487 ret = -EIO;
77bf40a2 488 goto out;
1c24c3ce 489 }
ce9adaa5 490
c67b3892 491 csum_tree_block(eb, result);
dfd29eed
DS
492 header_csum = page_address(eb->pages[0]) +
493 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
a826d6dc 494
dfd29eed 495 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 496 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
497"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
498 eb->start, eb->read_mirror,
dfd29eed 499 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
500 CSUM_FMT_VALUE(csum_size, result),
501 btrfs_header_level(eb));
2996e1f8 502 ret = -EUCLEAN;
77bf40a2 503 goto out;
2996e1f8
JT
504 }
505
a826d6dc
JB
506 /*
507 * If this is a leaf block and it is corrupt, set the corrupt bit so
508 * that we don't try and read the other copies of this block, just
509 * return -EIO.
510 */
1c4360ee 511 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
512 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
513 ret = -EIO;
514 }
ce9adaa5 515
813fd1dc 516 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
517 ret = -EIO;
518
0b32f4bb
JB
519 if (!ret)
520 set_extent_buffer_uptodate(eb);
75391f0d
QW
521 else
522 btrfs_err(fs_info,
8f0ed7d4
QW
523 "read time tree block corruption detected on logical %llu mirror %u",
524 eb->start, eb->read_mirror);
77bf40a2
QW
525out:
526 return ret;
527}
528
371cdc07
QW
529static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
530 int mirror)
531{
532 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
533 struct extent_buffer *eb;
534 bool reads_done;
535 int ret = 0;
536
537 /*
538 * We don't allow bio merge for subpage metadata read, so we should
539 * only get one eb for each endio hook.
540 */
541 ASSERT(end == start + fs_info->nodesize - 1);
542 ASSERT(PagePrivate(page));
543
544 eb = find_extent_buffer(fs_info, start);
545 /*
546 * When we are reading one tree block, eb must have been inserted into
547 * the radix tree. If not, something is wrong.
548 */
549 ASSERT(eb);
550
551 reads_done = atomic_dec_and_test(&eb->io_pages);
552 /* Subpage read must finish in page read */
553 ASSERT(reads_done);
554
555 eb->read_mirror = mirror;
556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 ret = -EIO;
558 goto err;
559 }
560 ret = validate_extent_buffer(eb);
561 if (ret < 0)
562 goto err;
563
371cdc07
QW
564 set_extent_buffer_uptodate(eb);
565
566 free_extent_buffer(eb);
567 return ret;
568err:
569 /*
570 * end_bio_extent_readpage decrements io_pages in case of error,
571 * make sure it has something to decrement.
572 */
573 atomic_inc(&eb->io_pages);
574 clear_extent_buffer_uptodate(eb);
575 free_extent_buffer(eb);
576 return ret;
577}
578
c3a3b19b 579int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
77bf40a2
QW
580 struct page *page, u64 start, u64 end,
581 int mirror)
582{
583 struct extent_buffer *eb;
584 int ret = 0;
585 int reads_done;
586
587 ASSERT(page->private);
371cdc07 588
fbca46eb 589 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
371cdc07
QW
590 return validate_subpage_buffer(page, start, end, mirror);
591
77bf40a2
QW
592 eb = (struct extent_buffer *)page->private;
593
594 /*
595 * The pending IO might have been the only thing that kept this buffer
596 * in memory. Make sure we have a ref for all this other checks
597 */
598 atomic_inc(&eb->refs);
599
600 reads_done = atomic_dec_and_test(&eb->io_pages);
601 if (!reads_done)
602 goto err;
603
604 eb->read_mirror = mirror;
605 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
606 ret = -EIO;
607 goto err;
608 }
609 ret = validate_extent_buffer(eb);
ce9adaa5 610err:
53b381b3
DW
611 if (ret) {
612 /*
613 * our io error hook is going to dec the io pages
614 * again, we have to make sure it has something
615 * to decrement
616 */
617 atomic_inc(&eb->io_pages);
0b32f4bb 618 clear_extent_buffer_uptodate(eb);
53b381b3 619 }
0b32f4bb 620 free_extent_buffer(eb);
77bf40a2 621
f188591e 622 return ret;
ce9adaa5
CM
623}
624
4a69a410
CM
625static void run_one_async_start(struct btrfs_work *work)
626{
4a69a410 627 struct async_submit_bio *async;
4e4cbee9 628 blk_status_t ret;
4a69a410
CM
629
630 async = container_of(work, struct async_submit_bio, work);
1941b64b
QW
631 ret = async->submit_bio_start(async->inode, async->bio,
632 async->dio_file_offset);
79787eaa 633 if (ret)
4e4cbee9 634 async->status = ret;
4a69a410
CM
635}
636
06ea01b1
DS
637/*
638 * In order to insert checksums into the metadata in large chunks, we wait
639 * until bio submission time. All the pages in the bio are checksummed and
640 * sums are attached onto the ordered extent record.
641 *
642 * At IO completion time the csums attached on the ordered extent record are
643 * inserted into the tree.
644 */
4a69a410 645static void run_one_async_done(struct btrfs_work *work)
8b712842 646{
917f32a2
CH
647 struct async_submit_bio *async =
648 container_of(work, struct async_submit_bio, work);
649 struct inode *inode = async->inode;
650 struct btrfs_bio *bbio = btrfs_bio(async->bio);
4854ddd0 651
bb7ab3b9 652 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9 653 if (async->status) {
917f32a2 654 btrfs_bio_end_io(bbio, async->status);
79787eaa
JM
655 return;
656 }
657
ec39f769
CM
658 /*
659 * All of the bios that pass through here are from async helpers.
660 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
661 * This changes nothing when cgroups aren't in use.
662 */
663 async->bio->bi_opf |= REQ_CGROUP_PUNT;
1a722d8f 664 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
4a69a410
CM
665}
666
667static void run_one_async_free(struct btrfs_work *work)
668{
669 struct async_submit_bio *async;
670
671 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
672 kfree(async);
673}
674
ea1f0ced
CH
675/*
676 * Submit bio to an async queue.
677 *
678 * Retrun:
679 * - true if the work has been succesfuly submitted
680 * - false in case of error
681 */
682bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
683 u64 dio_file_offset,
684 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e 685{
8896a08d 686 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44b8bd7e
CM
687 struct async_submit_bio *async;
688
689 async = kmalloc(sizeof(*async), GFP_NOFS);
690 if (!async)
ea1f0ced 691 return false;
44b8bd7e 692
8896a08d 693 async->inode = inode;
44b8bd7e
CM
694 async->bio = bio;
695 async->mirror_num = mirror_num;
4a69a410 696 async->submit_bio_start = submit_bio_start;
4a69a410 697
a0cac0ec
OS
698 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
699 run_one_async_free);
4a69a410 700
1941b64b 701 async->dio_file_offset = dio_file_offset;
8c8bee1d 702
4e4cbee9 703 async->status = 0;
79787eaa 704
67f055c7 705 if (op_is_sync(bio->bi_opf))
a31b4a43
CH
706 btrfs_queue_work(fs_info->hipri_workers, &async->work);
707 else
708 btrfs_queue_work(fs_info->workers, &async->work);
ea1f0ced 709 return true;
44b8bd7e
CM
710}
711
4e4cbee9 712static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 713{
2c30c71b 714 struct bio_vec *bvec;
ce3ed71a 715 struct btrfs_root *root;
2b070cfe 716 int ret = 0;
6dc4f100 717 struct bvec_iter_all iter_all;
ce3ed71a 718
c09abff8 719 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 720 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 721 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ac303b69 722 ret = csum_dirty_buffer(root->fs_info, bvec);
79787eaa
JM
723 if (ret)
724 break;
ce3ed71a 725 }
2c30c71b 726
4e4cbee9 727 return errno_to_blk_status(ret);
ce3ed71a
CM
728}
729
8896a08d 730static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 731 u64 dio_file_offset)
22c59948 732{
8b712842
CM
733 /*
734 * when we're called for a write, we're already in the async
1a722d8f 735 * submission context. Just jump into btrfs_submit_bio.
8b712842 736 */
79787eaa 737 return btree_csum_one_bio(bio);
4a69a410 738}
22c59948 739
f4dcfb30 740static bool should_async_write(struct btrfs_fs_info *fs_info,
9b4e675a 741 struct btrfs_inode *bi)
de0022b9 742{
4eef29ef 743 if (btrfs_is_zoned(fs_info))
f4dcfb30 744 return false;
6300463b 745 if (atomic_read(&bi->sync_writers))
f4dcfb30 746 return false;
9b4e675a 747 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
f4dcfb30
JT
748 return false;
749 return true;
de0022b9
JB
750}
751
94d9e11b 752void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 753{
0b246afa 754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
917f32a2 755 struct btrfs_bio *bbio = btrfs_bio(bio);
4e4cbee9 756 blk_status_t ret;
cad321ad 757
08a6f464
CH
758 bio->bi_opf |= REQ_META;
759
cfe94440 760 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
1a722d8f
CH
761 btrfs_submit_bio(fs_info, bio, mirror_num);
762 return;
44b8bd7e 763 }
d313d7a3 764
ea1f0ced
CH
765 /*
766 * Kthread helpers are used to submit writes so that checksumming can
767 * happen in parallel across all CPUs.
768 */
769 if (should_async_write(fs_info, BTRFS_I(inode)) &&
770 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
771 return;
772
773 ret = btree_csum_one_bio(bio);
94d9e11b 774 if (ret) {
917f32a2 775 btrfs_bio_end_io(bbio, ret);
ea1f0ced 776 return;
94d9e11b 777 }
ea1f0ced
CH
778
779 btrfs_submit_bio(fs_info, bio, mirror_num);
44b8bd7e
CM
780}
781
3dd1462e 782#ifdef CONFIG_MIGRATION
8958b551
MWO
783static int btree_migrate_folio(struct address_space *mapping,
784 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
785{
786 /*
787 * we can't safely write a btree page from here,
788 * we haven't done the locking hook
789 */
8958b551 790 if (folio_test_dirty(src))
784b4e29
CM
791 return -EAGAIN;
792 /*
793 * Buffers may be managed in a filesystem specific way.
794 * We must have no buffers or drop them.
795 */
8958b551
MWO
796 if (folio_get_private(src) &&
797 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 798 return -EAGAIN;
54184650 799 return migrate_folio(mapping, dst, src, mode);
784b4e29 800}
8958b551
MWO
801#else
802#define btree_migrate_folio NULL
3dd1462e 803#endif
784b4e29 804
0da5468f
CM
805static int btree_writepages(struct address_space *mapping,
806 struct writeback_control *wbc)
807{
e2d84521
MX
808 struct btrfs_fs_info *fs_info;
809 int ret;
810
d8d5f3e1 811 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
812
813 if (wbc->for_kupdate)
814 return 0;
815
e2d84521 816 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 817 /* this is a bit racy, but that's ok */
d814a491
EL
818 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
819 BTRFS_DIRTY_METADATA_THRESH,
820 fs_info->dirty_metadata_batch);
e2d84521 821 if (ret < 0)
793955bc 822 return 0;
793955bc 823 }
0b32f4bb 824 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
825}
826
f913cff3 827static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 828{
f913cff3
MWO
829 if (folio_test_writeback(folio) || folio_test_dirty(folio))
830 return false;
0c4e538b 831
f913cff3 832 return try_release_extent_buffer(&folio->page);
d98237b3
CM
833}
834
895586eb
MWO
835static void btree_invalidate_folio(struct folio *folio, size_t offset,
836 size_t length)
d98237b3 837{
d1310b2e 838 struct extent_io_tree *tree;
895586eb
MWO
839 tree = &BTRFS_I(folio->mapping->host)->io_tree;
840 extent_invalidate_folio(tree, folio, offset);
f913cff3 841 btree_release_folio(folio, GFP_NOFS);
895586eb
MWO
842 if (folio_get_private(folio)) {
843 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
844 "folio private not zero on folio %llu",
845 (unsigned long long)folio_pos(folio));
846 folio_detach_private(folio);
9ad6b7bc 847 }
d98237b3
CM
848}
849
bb146eb2 850#ifdef DEBUG
0079c3b1
MWO
851static bool btree_dirty_folio(struct address_space *mapping,
852 struct folio *folio)
853{
854 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
139e8cd3 855 struct btrfs_subpage *subpage;
0b32f4bb 856 struct extent_buffer *eb;
139e8cd3 857 int cur_bit = 0;
0079c3b1 858 u64 page_start = folio_pos(folio);
139e8cd3
QW
859
860 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 861 eb = folio_get_private(folio);
139e8cd3
QW
862 BUG_ON(!eb);
863 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
864 BUG_ON(!atomic_read(&eb->refs));
49d0c642 865 btrfs_assert_tree_write_locked(eb);
0079c3b1 866 return filemap_dirty_folio(mapping, folio);
139e8cd3 867 }
0079c3b1 868 subpage = folio_get_private(folio);
139e8cd3
QW
869
870 ASSERT(subpage->dirty_bitmap);
871 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
872 unsigned long flags;
873 u64 cur;
874 u16 tmp = (1 << cur_bit);
875
876 spin_lock_irqsave(&subpage->lock, flags);
877 if (!(tmp & subpage->dirty_bitmap)) {
878 spin_unlock_irqrestore(&subpage->lock, flags);
879 cur_bit++;
880 continue;
881 }
882 spin_unlock_irqrestore(&subpage->lock, flags);
883 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 884
139e8cd3
QW
885 eb = find_extent_buffer(fs_info, cur);
886 ASSERT(eb);
887 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
888 ASSERT(atomic_read(&eb->refs));
49d0c642 889 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
890 free_extent_buffer(eb);
891
892 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
893 }
0079c3b1 894 return filemap_dirty_folio(mapping, folio);
0b32f4bb 895}
0079c3b1
MWO
896#else
897#define btree_dirty_folio filemap_dirty_folio
898#endif
0b32f4bb 899
7f09410b 900static const struct address_space_operations btree_aops = {
0da5468f 901 .writepages = btree_writepages,
f913cff3 902 .release_folio = btree_release_folio,
895586eb 903 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
904 .migrate_folio = btree_migrate_folio,
905 .dirty_folio = btree_dirty_folio,
d98237b3
CM
906};
907
2ff7e61e
JM
908struct extent_buffer *btrfs_find_create_tree_block(
909 struct btrfs_fs_info *fs_info,
3fbaf258
JB
910 u64 bytenr, u64 owner_root,
911 int level)
0999df54 912{
0b246afa
JM
913 if (btrfs_is_testing(fs_info))
914 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 915 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
916}
917
581c1760
QW
918/*
919 * Read tree block at logical address @bytenr and do variant basic but critical
920 * verification.
921 *
1b7ec85e 922 * @owner_root: the objectid of the root owner for this block.
581c1760
QW
923 * @parent_transid: expected transid of this tree block, skip check if 0
924 * @level: expected level, mandatory check
925 * @first_key: expected key in slot 0, skip check if NULL
926 */
2ff7e61e 927struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1b7ec85e
JB
928 u64 owner_root, u64 parent_transid,
929 int level, struct btrfs_key *first_key)
0999df54
CM
930{
931 struct extent_buffer *buf = NULL;
0999df54
CM
932 int ret;
933
3fbaf258 934 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
c871b0f2
LB
935 if (IS_ERR(buf))
936 return buf;
0999df54 937
6a2e9dc4 938 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
0f0fe8f7 939 if (ret) {
537f38f0 940 free_extent_buffer_stale(buf);
64c043de 941 return ERR_PTR(ret);
0f0fe8f7 942 }
88c602ab
QW
943 if (btrfs_check_eb_owner(buf, owner_root)) {
944 free_extent_buffer_stale(buf);
945 return ERR_PTR(-EUCLEAN);
946 }
5f39d397 947 return buf;
ce9adaa5 948
eb60ceac
CM
949}
950
6a884d7d 951void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 952{
6a884d7d 953 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 954 if (btrfs_header_generation(buf) ==
e2d84521 955 fs_info->running_transaction->transid) {
49d0c642 956 btrfs_assert_tree_write_locked(buf);
b4ce94de 957
b9473439 958 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
959 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
960 -buf->len,
961 fs_info->dirty_metadata_batch);
ed7b63eb
JB
962 clear_extent_buffer_dirty(buf);
963 }
925baedd 964 }
5f39d397
CM
965}
966
da17066c 967static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 968 u64 objectid)
d97e63b6 969{
7c0260ee 970 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
2e608bd1
JB
971
972 memset(&root->root_key, 0, sizeof(root->root_key));
973 memset(&root->root_item, 0, sizeof(root->root_item));
974 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 975 root->fs_info = fs_info;
2e608bd1 976 root->root_key.objectid = objectid;
cfaa7295 977 root->node = NULL;
a28ec197 978 root->commit_root = NULL;
27cdeb70 979 root->state = 0;
abed4aaa 980 RB_CLEAR_NODE(&root->rb_node);
0b86a832 981
0f7d52f4 982 root->last_trans = 0;
6b8fad57 983 root->free_objectid = 0;
eb73c1b7 984 root->nr_delalloc_inodes = 0;
199c2a9c 985 root->nr_ordered_extents = 0;
6bef4d31 986 root->inode_tree = RB_ROOT;
088aea3b 987 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
2e608bd1
JB
988
989 btrfs_init_root_block_rsv(root);
0b86a832
CM
990
991 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 992 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
993 INIT_LIST_HEAD(&root->delalloc_inodes);
994 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
995 INIT_LIST_HEAD(&root->ordered_extents);
996 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 997 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
998 INIT_LIST_HEAD(&root->logged_list[0]);
999 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1000 spin_lock_init(&root->inode_lock);
eb73c1b7 1001 spin_lock_init(&root->delalloc_lock);
199c2a9c 1002 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1003 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1004 spin_lock_init(&root->log_extents_lock[0]);
1005 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1006 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1007 mutex_init(&root->objectid_mutex);
e02119d5 1008 mutex_init(&root->log_mutex);
31f3d255 1009 mutex_init(&root->ordered_extent_mutex);
573bfb72 1010 mutex_init(&root->delalloc_mutex);
c53e9653 1011 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
1012 init_waitqueue_head(&root->log_writer_wait);
1013 init_waitqueue_head(&root->log_commit_wait[0]);
1014 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1015 INIT_LIST_HEAD(&root->log_ctxs[0]);
1016 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1017 atomic_set(&root->log_commit[0], 0);
1018 atomic_set(&root->log_commit[1], 0);
1019 atomic_set(&root->log_writers, 0);
2ecb7923 1020 atomic_set(&root->log_batch, 0);
0700cea7 1021 refcount_set(&root->refs, 1);
8ecebf4d 1022 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1023 atomic_set(&root->nr_swapfiles, 0);
7237f183 1024 root->log_transid = 0;
d1433deb 1025 root->log_transid_committed = -1;
257c62e1 1026 root->last_log_commit = 0;
2e608bd1 1027 root->anon_dev = 0;
e289f03e 1028 if (!dummy) {
43eb5f29
QW
1029 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1030 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1031 extent_io_tree_init(fs_info, &root->log_csum_range,
1032 IO_TREE_LOG_CSUM_RANGE, NULL);
1033 }
017e5369 1034
5f3ab90a 1035 spin_lock_init(&root->root_item_lock);
370a11b8 1036 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1037#ifdef CONFIG_BTRFS_DEBUG
1038 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 1039 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 1040 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 1041 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 1042#endif
3768f368
CM
1043}
1044
74e4d827 1045static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1046 u64 objectid, gfp_t flags)
6f07e42e 1047{
74e4d827 1048 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1049 if (root)
96dfcb46 1050 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1051 return root;
1052}
1053
06ea65a3
JB
1054#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1055/* Should only be used by the testing infrastructure */
da17066c 1056struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1057{
1058 struct btrfs_root *root;
1059
7c0260ee
JM
1060 if (!fs_info)
1061 return ERR_PTR(-EINVAL);
1062
96dfcb46 1063 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1064 if (!root)
1065 return ERR_PTR(-ENOMEM);
da17066c 1066
b9ef22de 1067 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1068 root->alloc_bytenr = 0;
06ea65a3
JB
1069
1070 return root;
1071}
1072#endif
1073
abed4aaa
JB
1074static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1075{
1076 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1077 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1078
1079 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1080}
1081
1082static int global_root_key_cmp(const void *k, const struct rb_node *node)
1083{
1084 const struct btrfs_key *key = k;
1085 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1086
1087 return btrfs_comp_cpu_keys(key, &root->root_key);
1088}
1089
1090int btrfs_global_root_insert(struct btrfs_root *root)
1091{
1092 struct btrfs_fs_info *fs_info = root->fs_info;
1093 struct rb_node *tmp;
1094
1095 write_lock(&fs_info->global_root_lock);
1096 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1097 write_unlock(&fs_info->global_root_lock);
1098 ASSERT(!tmp);
1099
1100 return tmp ? -EEXIST : 0;
1101}
1102
1103void btrfs_global_root_delete(struct btrfs_root *root)
1104{
1105 struct btrfs_fs_info *fs_info = root->fs_info;
1106
1107 write_lock(&fs_info->global_root_lock);
1108 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1109 write_unlock(&fs_info->global_root_lock);
1110}
1111
1112struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1113 struct btrfs_key *key)
1114{
1115 struct rb_node *node;
1116 struct btrfs_root *root = NULL;
1117
1118 read_lock(&fs_info->global_root_lock);
1119 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1120 if (node)
1121 root = container_of(node, struct btrfs_root, rb_node);
1122 read_unlock(&fs_info->global_root_lock);
1123
1124 return root;
1125}
1126
f7238e50
JB
1127static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1128{
1129 struct btrfs_block_group *block_group;
1130 u64 ret;
1131
1132 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1133 return 0;
1134
1135 if (bytenr)
1136 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1137 else
1138 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1139 ASSERT(block_group);
1140 if (!block_group)
1141 return 0;
1142 ret = block_group->global_root_id;
1143 btrfs_put_block_group(block_group);
1144
1145 return ret;
1146}
1147
abed4aaa
JB
1148struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1149{
1150 struct btrfs_key key = {
1151 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1152 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1153 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1154 };
1155
1156 return btrfs_global_root(fs_info, &key);
1157}
1158
1159struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1160{
1161 struct btrfs_key key = {
1162 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1163 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 1164 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
1165 };
1166
1167 return btrfs_global_root(fs_info, &key);
1168}
1169
20897f5c 1170struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1171 u64 objectid)
1172{
9b7a2440 1173 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1174 struct extent_buffer *leaf;
1175 struct btrfs_root *tree_root = fs_info->tree_root;
1176 struct btrfs_root *root;
1177 struct btrfs_key key;
b89f6d1f 1178 unsigned int nofs_flag;
20897f5c 1179 int ret = 0;
20897f5c 1180
b89f6d1f
FM
1181 /*
1182 * We're holding a transaction handle, so use a NOFS memory allocation
1183 * context to avoid deadlock if reclaim happens.
1184 */
1185 nofs_flag = memalloc_nofs_save();
96dfcb46 1186 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1187 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1188 if (!root)
1189 return ERR_PTR(-ENOMEM);
1190
20897f5c
AJ
1191 root->root_key.objectid = objectid;
1192 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1193 root->root_key.offset = 0;
1194
9631e4cc
JB
1195 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1196 BTRFS_NESTING_NORMAL);
20897f5c
AJ
1197 if (IS_ERR(leaf)) {
1198 ret = PTR_ERR(leaf);
1dd05682 1199 leaf = NULL;
8a6a87cd 1200 goto fail_unlock;
20897f5c
AJ
1201 }
1202
20897f5c 1203 root->node = leaf;
20897f5c
AJ
1204 btrfs_mark_buffer_dirty(leaf);
1205
1206 root->commit_root = btrfs_root_node(root);
27cdeb70 1207 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 1208
f944d2cb
DS
1209 btrfs_set_root_flags(&root->root_item, 0);
1210 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
1211 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1212 btrfs_set_root_generation(&root->root_item, trans->transid);
1213 btrfs_set_root_level(&root->root_item, 0);
1214 btrfs_set_root_refs(&root->root_item, 1);
1215 btrfs_set_root_used(&root->root_item, leaf->len);
1216 btrfs_set_root_last_snapshot(&root->root_item, 0);
1217 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1218 if (is_fstree(objectid))
807fc790
AS
1219 generate_random_guid(root->root_item.uuid);
1220 else
1221 export_guid(root->root_item.uuid, &guid_null);
c8422684 1222 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 1223
8a6a87cd
BB
1224 btrfs_tree_unlock(leaf);
1225
20897f5c
AJ
1226 key.objectid = objectid;
1227 key.type = BTRFS_ROOT_ITEM_KEY;
1228 key.offset = 0;
1229 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1230 if (ret)
1231 goto fail;
1232
1dd05682
TI
1233 return root;
1234
8a6a87cd 1235fail_unlock:
8c38938c 1236 if (leaf)
1dd05682 1237 btrfs_tree_unlock(leaf);
8a6a87cd 1238fail:
00246528 1239 btrfs_put_root(root);
20897f5c 1240
1dd05682 1241 return ERR_PTR(ret);
20897f5c
AJ
1242}
1243
7237f183
YZ
1244static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1245 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1246{
1247 struct btrfs_root *root;
e02119d5 1248
96dfcb46 1249 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1250 if (!root)
7237f183 1251 return ERR_PTR(-ENOMEM);
e02119d5 1252
e02119d5
CM
1253 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1254 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1255 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1256
6ab6ebb7
NA
1257 return root;
1258}
1259
1260int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1261 struct btrfs_root *root)
1262{
1263 struct extent_buffer *leaf;
1264
7237f183 1265 /*
92a7cc42 1266 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1267 *
92a7cc42
QW
1268 * Log trees are not exposed to user space thus can't be snapshotted,
1269 * and they go away before a real commit is actually done.
1270 *
1271 * They do store pointers to file data extents, and those reference
1272 * counts still get updated (along with back refs to the log tree).
7237f183 1273 */
e02119d5 1274
4d75f8a9 1275 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
9631e4cc 1276 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
1277 if (IS_ERR(leaf))
1278 return PTR_ERR(leaf);
e02119d5 1279
7237f183 1280 root->node = leaf;
e02119d5 1281
e02119d5
CM
1282 btrfs_mark_buffer_dirty(root->node);
1283 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
1284
1285 return 0;
7237f183
YZ
1286}
1287
1288int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1289 struct btrfs_fs_info *fs_info)
1290{
1291 struct btrfs_root *log_root;
1292
1293 log_root = alloc_log_tree(trans, fs_info);
1294 if (IS_ERR(log_root))
1295 return PTR_ERR(log_root);
6ab6ebb7 1296
3ddebf27
NA
1297 if (!btrfs_is_zoned(fs_info)) {
1298 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1299
1300 if (ret) {
1301 btrfs_put_root(log_root);
1302 return ret;
1303 }
6ab6ebb7
NA
1304 }
1305
7237f183
YZ
1306 WARN_ON(fs_info->log_root_tree);
1307 fs_info->log_root_tree = log_root;
1308 return 0;
1309}
1310
1311int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1312 struct btrfs_root *root)
1313{
0b246afa 1314 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1315 struct btrfs_root *log_root;
1316 struct btrfs_inode_item *inode_item;
6ab6ebb7 1317 int ret;
7237f183 1318
0b246afa 1319 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1320 if (IS_ERR(log_root))
1321 return PTR_ERR(log_root);
1322
6ab6ebb7
NA
1323 ret = btrfs_alloc_log_tree_node(trans, log_root);
1324 if (ret) {
1325 btrfs_put_root(log_root);
1326 return ret;
1327 }
1328
7237f183
YZ
1329 log_root->last_trans = trans->transid;
1330 log_root->root_key.offset = root->root_key.objectid;
1331
1332 inode_item = &log_root->root_item.inode;
3cae210f
QW
1333 btrfs_set_stack_inode_generation(inode_item, 1);
1334 btrfs_set_stack_inode_size(inode_item, 3);
1335 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1336 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1337 fs_info->nodesize);
3cae210f 1338 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1339
5d4f98a2 1340 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1341
1342 WARN_ON(root->log_root);
1343 root->log_root = log_root;
1344 root->log_transid = 0;
d1433deb 1345 root->log_transid_committed = -1;
257c62e1 1346 root->last_log_commit = 0;
e02119d5
CM
1347 return 0;
1348}
1349
49d11bea
JB
1350static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1351 struct btrfs_path *path,
1352 struct btrfs_key *key)
e02119d5
CM
1353{
1354 struct btrfs_root *root;
1355 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1356 u64 generation;
cb517eab 1357 int ret;
581c1760 1358 int level;
0f7d52f4 1359
96dfcb46 1360 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1361 if (!root)
1362 return ERR_PTR(-ENOMEM);
0f7d52f4 1363
cb517eab
MX
1364 ret = btrfs_find_root(tree_root, key, path,
1365 &root->root_item, &root->root_key);
0f7d52f4 1366 if (ret) {
13a8a7c8
YZ
1367 if (ret > 0)
1368 ret = -ENOENT;
49d11bea 1369 goto fail;
0f7d52f4 1370 }
13a8a7c8 1371
84234f3a 1372 generation = btrfs_root_generation(&root->root_item);
581c1760 1373 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1374 root->node = read_tree_block(fs_info,
1375 btrfs_root_bytenr(&root->root_item),
1b7ec85e 1376 key->objectid, generation, level, NULL);
64c043de
LB
1377 if (IS_ERR(root->node)) {
1378 ret = PTR_ERR(root->node);
8c38938c 1379 root->node = NULL;
49d11bea 1380 goto fail;
4eb150d6
QW
1381 }
1382 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1383 ret = -EIO;
49d11bea 1384 goto fail;
416bc658 1385 }
88c602ab
QW
1386
1387 /*
1388 * For real fs, and not log/reloc trees, root owner must
1389 * match its root node owner
1390 */
1391 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1392 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1393 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1394 root->root_key.objectid != btrfs_header_owner(root->node)) {
1395 btrfs_crit(fs_info,
1396"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1397 root->root_key.objectid, root->node->start,
1398 btrfs_header_owner(root->node),
1399 root->root_key.objectid);
1400 ret = -EUCLEAN;
1401 goto fail;
1402 }
5d4f98a2 1403 root->commit_root = btrfs_root_node(root);
cb517eab 1404 return root;
49d11bea 1405fail:
00246528 1406 btrfs_put_root(root);
49d11bea
JB
1407 return ERR_PTR(ret);
1408}
1409
1410struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1411 struct btrfs_key *key)
1412{
1413 struct btrfs_root *root;
1414 struct btrfs_path *path;
1415
1416 path = btrfs_alloc_path();
1417 if (!path)
1418 return ERR_PTR(-ENOMEM);
1419 root = read_tree_root_path(tree_root, path, key);
1420 btrfs_free_path(path);
1421
1422 return root;
cb517eab
MX
1423}
1424
2dfb1e43
QW
1425/*
1426 * Initialize subvolume root in-memory structure
1427 *
1428 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1429 */
1430static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1431{
1432 int ret;
dcc3eb96 1433 unsigned int nofs_flag;
cb517eab 1434
dcc3eb96
NB
1435 /*
1436 * We might be called under a transaction (e.g. indirect backref
1437 * resolution) which could deadlock if it triggers memory reclaim
1438 */
1439 nofs_flag = memalloc_nofs_save();
1440 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1441 memalloc_nofs_restore(nofs_flag);
1442 if (ret)
8257b2dc 1443 goto fail;
8257b2dc 1444
aeb935a4 1445 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
37f00a6d 1446 !btrfs_is_data_reloc_root(root)) {
92a7cc42 1447 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1448 btrfs_check_and_init_root_item(&root->root_item);
1449 }
1450
851fd730
QW
1451 /*
1452 * Don't assign anonymous block device to roots that are not exposed to
1453 * userspace, the id pool is limited to 1M
1454 */
1455 if (is_fstree(root->root_key.objectid) &&
1456 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1457 if (!anon_dev) {
1458 ret = get_anon_bdev(&root->anon_dev);
1459 if (ret)
1460 goto fail;
1461 } else {
1462 root->anon_dev = anon_dev;
1463 }
851fd730 1464 }
f32e48e9
CR
1465
1466 mutex_lock(&root->objectid_mutex);
453e4873 1467 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1468 if (ret) {
1469 mutex_unlock(&root->objectid_mutex);
876d2cf1 1470 goto fail;
f32e48e9
CR
1471 }
1472
6b8fad57 1473 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1474
1475 mutex_unlock(&root->objectid_mutex);
1476
cb517eab
MX
1477 return 0;
1478fail:
84db5ccf 1479 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1480 return ret;
1481}
1482
a98db0f3
JB
1483static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1484 u64 root_id)
cb517eab
MX
1485{
1486 struct btrfs_root *root;
1487
fc7cbcd4
DS
1488 spin_lock(&fs_info->fs_roots_radix_lock);
1489 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1490 (unsigned long)root_id);
bc44d7c4 1491 if (root)
00246528 1492 root = btrfs_grab_root(root);
fc7cbcd4 1493 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1494 return root;
1495}
1496
49d11bea
JB
1497static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1498 u64 objectid)
1499{
abed4aaa
JB
1500 struct btrfs_key key = {
1501 .objectid = objectid,
1502 .type = BTRFS_ROOT_ITEM_KEY,
1503 .offset = 0,
1504 };
1505
49d11bea
JB
1506 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1507 return btrfs_grab_root(fs_info->tree_root);
1508 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
abed4aaa 1509 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1510 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1511 return btrfs_grab_root(fs_info->chunk_root);
1512 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1513 return btrfs_grab_root(fs_info->dev_root);
1514 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
abed4aaa 1515 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
49d11bea
JB
1516 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1517 return btrfs_grab_root(fs_info->quota_root) ?
1518 fs_info->quota_root : ERR_PTR(-ENOENT);
1519 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1520 return btrfs_grab_root(fs_info->uuid_root) ?
1521 fs_info->uuid_root : ERR_PTR(-ENOENT);
14033b08
QW
1522 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1523 return btrfs_grab_root(fs_info->block_group_root) ?
1524 fs_info->block_group_root : ERR_PTR(-ENOENT);
abed4aaa
JB
1525 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1526 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1527
1528 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1529 }
49d11bea
JB
1530 return NULL;
1531}
1532
cb517eab
MX
1533int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1534 struct btrfs_root *root)
1535{
1536 int ret;
1537
fc7cbcd4
DS
1538 ret = radix_tree_preload(GFP_NOFS);
1539 if (ret)
1540 return ret;
1541
1542 spin_lock(&fs_info->fs_roots_radix_lock);
1543 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1544 (unsigned long)root->root_key.objectid,
1545 root);
af01d2e5 1546 if (ret == 0) {
00246528 1547 btrfs_grab_root(root);
fc7cbcd4 1548 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1549 }
fc7cbcd4
DS
1550 spin_unlock(&fs_info->fs_roots_radix_lock);
1551 radix_tree_preload_end();
cb517eab
MX
1552
1553 return ret;
1554}
1555
bd647ce3
JB
1556void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1557{
1558#ifdef CONFIG_BTRFS_DEBUG
1559 struct btrfs_root *root;
1560
1561 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1562 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1563
bd647ce3
JB
1564 root = list_first_entry(&fs_info->allocated_roots,
1565 struct btrfs_root, leak_list);
457f1864 1566 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1567 btrfs_root_name(&root->root_key, buf),
bd647ce3
JB
1568 refcount_read(&root->refs));
1569 while (refcount_read(&root->refs) > 1)
00246528
JB
1570 btrfs_put_root(root);
1571 btrfs_put_root(root);
bd647ce3
JB
1572 }
1573#endif
1574}
1575
abed4aaa
JB
1576static void free_global_roots(struct btrfs_fs_info *fs_info)
1577{
1578 struct btrfs_root *root;
1579 struct rb_node *node;
1580
1581 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1582 root = rb_entry(node, struct btrfs_root, rb_node);
1583 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1584 btrfs_put_root(root);
1585 }
1586}
1587
0d4b0463
JB
1588void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1589{
141386e1
JB
1590 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1591 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1592 percpu_counter_destroy(&fs_info->ordered_bytes);
141386e1
JB
1593 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1594 btrfs_free_csum_hash(fs_info);
1595 btrfs_free_stripe_hash_table(fs_info);
1596 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1597 kfree(fs_info->balance_ctl);
1598 kfree(fs_info->delayed_root);
abed4aaa 1599 free_global_roots(fs_info);
00246528
JB
1600 btrfs_put_root(fs_info->tree_root);
1601 btrfs_put_root(fs_info->chunk_root);
1602 btrfs_put_root(fs_info->dev_root);
00246528
JB
1603 btrfs_put_root(fs_info->quota_root);
1604 btrfs_put_root(fs_info->uuid_root);
00246528 1605 btrfs_put_root(fs_info->fs_root);
aeb935a4 1606 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1607 btrfs_put_root(fs_info->block_group_root);
bd647ce3 1608 btrfs_check_leaked_roots(fs_info);
3fd63727 1609 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1610 kfree(fs_info->super_copy);
1611 kfree(fs_info->super_for_commit);
8481dd80 1612 kfree(fs_info->subpage_info);
0d4b0463
JB
1613 kvfree(fs_info);
1614}
1615
1616
2dfb1e43
QW
1617/*
1618 * Get an in-memory reference of a root structure.
1619 *
1620 * For essential trees like root/extent tree, we grab it from fs_info directly.
1621 * For subvolume trees, we check the cached filesystem roots first. If not
1622 * found, then read it from disk and add it to cached fs roots.
1623 *
1624 * Caller should release the root by calling btrfs_put_root() after the usage.
1625 *
1626 * NOTE: Reloc and log trees can't be read by this function as they share the
1627 * same root objectid.
1628 *
1629 * @objectid: root id
1630 * @anon_dev: preallocated anonymous block device number for new roots,
1631 * pass 0 for new allocation.
1632 * @check_ref: whether to check root item references, If true, return -ENOENT
1633 * for orphan roots
1634 */
1635static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1636 u64 objectid, dev_t anon_dev,
1637 bool check_ref)
5eda7b5e
CM
1638{
1639 struct btrfs_root *root;
381cf658 1640 struct btrfs_path *path;
1d4c08e0 1641 struct btrfs_key key;
5eda7b5e
CM
1642 int ret;
1643
49d11bea
JB
1644 root = btrfs_get_global_root(fs_info, objectid);
1645 if (root)
1646 return root;
4df27c4d 1647again:
56e9357a 1648 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1649 if (root) {
2dfb1e43
QW
1650 /* Shouldn't get preallocated anon_dev for cached roots */
1651 ASSERT(!anon_dev);
bc44d7c4 1652 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1653 btrfs_put_root(root);
48475471 1654 return ERR_PTR(-ENOENT);
bc44d7c4 1655 }
5eda7b5e 1656 return root;
48475471 1657 }
5eda7b5e 1658
56e9357a
DS
1659 key.objectid = objectid;
1660 key.type = BTRFS_ROOT_ITEM_KEY;
1661 key.offset = (u64)-1;
1662 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1663 if (IS_ERR(root))
1664 return root;
3394e160 1665
c00869f1 1666 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1667 ret = -ENOENT;
581bb050 1668 goto fail;
35a30d7c 1669 }
581bb050 1670
2dfb1e43 1671 ret = btrfs_init_fs_root(root, anon_dev);
ac08aedf
CM
1672 if (ret)
1673 goto fail;
3394e160 1674
381cf658
DS
1675 path = btrfs_alloc_path();
1676 if (!path) {
1677 ret = -ENOMEM;
1678 goto fail;
1679 }
1d4c08e0
DS
1680 key.objectid = BTRFS_ORPHAN_OBJECTID;
1681 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1682 key.offset = objectid;
1d4c08e0
DS
1683
1684 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1685 btrfs_free_path(path);
d68fc57b
YZ
1686 if (ret < 0)
1687 goto fail;
1688 if (ret == 0)
27cdeb70 1689 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1690
cb517eab 1691 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1692 if (ret) {
168a2f77
JJB
1693 if (ret == -EEXIST) {
1694 btrfs_put_root(root);
4df27c4d 1695 goto again;
168a2f77 1696 }
4df27c4d 1697 goto fail;
0f7d52f4 1698 }
edbd8d4e 1699 return root;
4df27c4d 1700fail:
33fab972
FM
1701 /*
1702 * If our caller provided us an anonymous device, then it's his
143823cf 1703 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1704 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1705 * and once again by our caller.
1706 */
1707 if (anon_dev)
1708 root->anon_dev = 0;
8c38938c 1709 btrfs_put_root(root);
4df27c4d 1710 return ERR_PTR(ret);
edbd8d4e
CM
1711}
1712
2dfb1e43
QW
1713/*
1714 * Get in-memory reference of a root structure
1715 *
1716 * @objectid: tree objectid
1717 * @check_ref: if set, verify that the tree exists and the item has at least
1718 * one reference
1719 */
1720struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1721 u64 objectid, bool check_ref)
1722{
1723 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1724}
1725
1726/*
1727 * Get in-memory reference of a root structure, created as new, optionally pass
1728 * the anonymous block device id
1729 *
1730 * @objectid: tree objectid
1731 * @anon_dev: if zero, allocate a new anonymous block device or use the
1732 * parameter value
1733 */
1734struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1735 u64 objectid, dev_t anon_dev)
1736{
1737 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1738}
1739
49d11bea
JB
1740/*
1741 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1742 * @fs_info: the fs_info
1743 * @objectid: the objectid we need to lookup
1744 *
1745 * This is exclusively used for backref walking, and exists specifically because
1746 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1747 * creation time, which means we may have to read the tree_root in order to look
1748 * up a fs root that is not in memory. If the root is not in memory we will
1749 * read the tree root commit root and look up the fs root from there. This is a
1750 * temporary root, it will not be inserted into the radix tree as it doesn't
1751 * have the most uptodate information, it'll simply be discarded once the
1752 * backref code is finished using the root.
1753 */
1754struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1755 struct btrfs_path *path,
1756 u64 objectid)
1757{
1758 struct btrfs_root *root;
1759 struct btrfs_key key;
1760
1761 ASSERT(path->search_commit_root && path->skip_locking);
1762
1763 /*
1764 * This can return -ENOENT if we ask for a root that doesn't exist, but
1765 * since this is called via the backref walking code we won't be looking
1766 * up a root that doesn't exist, unless there's corruption. So if root
1767 * != NULL just return it.
1768 */
1769 root = btrfs_get_global_root(fs_info, objectid);
1770 if (root)
1771 return root;
1772
1773 root = btrfs_lookup_fs_root(fs_info, objectid);
1774 if (root)
1775 return root;
1776
1777 key.objectid = objectid;
1778 key.type = BTRFS_ROOT_ITEM_KEY;
1779 key.offset = (u64)-1;
1780 root = read_tree_root_path(fs_info->tree_root, path, &key);
1781 btrfs_release_path(path);
1782
1783 return root;
1784}
1785
a74a4b97
CM
1786static int cleaner_kthread(void *arg)
1787{
0d031dc4 1788 struct btrfs_fs_info *fs_info = arg;
d0278245 1789 int again;
a74a4b97 1790
d6fd0ae2 1791 while (1) {
d0278245 1792 again = 0;
a74a4b97 1793
fd340d0f
JB
1794 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1795
d0278245 1796 /* Make the cleaner go to sleep early. */
2ff7e61e 1797 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1798 goto sleep;
1799
90c711ab
ZB
1800 /*
1801 * Do not do anything if we might cause open_ctree() to block
1802 * before we have finished mounting the filesystem.
1803 */
0b246afa 1804 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1805 goto sleep;
1806
0b246afa 1807 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1808 goto sleep;
1809
dc7f370c
MX
1810 /*
1811 * Avoid the problem that we change the status of the fs
1812 * during the above check and trylock.
1813 */
2ff7e61e 1814 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1815 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1816 goto sleep;
76dda93c 1817 }
a74a4b97 1818
2ff7e61e 1819 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1820
33c44184 1821 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1822 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1823
1824 /*
05323cd1
MX
1825 * The defragger has dealt with the R/O remount and umount,
1826 * needn't do anything special here.
d0278245 1827 */
0b246afa 1828 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1829
1830 /*
f3372065 1831 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1832 * with relocation (btrfs_relocate_chunk) and relocation
1833 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1834 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1835 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1836 * unused block groups.
1837 */
0b246afa 1838 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1839
1840 /*
1841 * Reclaim block groups in the reclaim_bgs list after we deleted
1842 * all unused block_groups. This possibly gives us some more free
1843 * space.
1844 */
1845 btrfs_reclaim_bgs(fs_info);
d0278245 1846sleep:
a0a1db70 1847 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1848 if (kthread_should_park())
1849 kthread_parkme();
1850 if (kthread_should_stop())
1851 return 0;
838fe188 1852 if (!again) {
a74a4b97 1853 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1854 schedule();
a74a4b97
CM
1855 __set_current_state(TASK_RUNNING);
1856 }
da288d28 1857 }
a74a4b97
CM
1858}
1859
1860static int transaction_kthread(void *arg)
1861{
1862 struct btrfs_root *root = arg;
0b246afa 1863 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1864 struct btrfs_trans_handle *trans;
1865 struct btrfs_transaction *cur;
8929ecfa 1866 u64 transid;
643900be 1867 time64_t delta;
a74a4b97 1868 unsigned long delay;
914b2007 1869 bool cannot_commit;
a74a4b97
CM
1870
1871 do {
914b2007 1872 cannot_commit = false;
ba1bc00f 1873 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1874 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1875
0b246afa
JM
1876 spin_lock(&fs_info->trans_lock);
1877 cur = fs_info->running_transaction;
a74a4b97 1878 if (!cur) {
0b246afa 1879 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1880 goto sleep;
1881 }
31153d81 1882
643900be 1883 delta = ktime_get_seconds() - cur->start_time;
fdfbf020
JB
1884 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1885 cur->state < TRANS_STATE_COMMIT_START &&
643900be 1886 delta < fs_info->commit_interval) {
0b246afa 1887 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1888 delay -= msecs_to_jiffies((delta - 1) * 1000);
1889 delay = min(delay,
1890 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1891 goto sleep;
1892 }
8929ecfa 1893 transid = cur->transid;
0b246afa 1894 spin_unlock(&fs_info->trans_lock);
56bec294 1895
79787eaa 1896 /* If the file system is aborted, this will always fail. */
354aa0fb 1897 trans = btrfs_attach_transaction(root);
914b2007 1898 if (IS_ERR(trans)) {
354aa0fb
MX
1899 if (PTR_ERR(trans) != -ENOENT)
1900 cannot_commit = true;
79787eaa 1901 goto sleep;
914b2007 1902 }
8929ecfa 1903 if (transid == trans->transid) {
3a45bb20 1904 btrfs_commit_transaction(trans);
8929ecfa 1905 } else {
3a45bb20 1906 btrfs_end_transaction(trans);
8929ecfa 1907 }
a74a4b97 1908sleep:
0b246afa
JM
1909 wake_up_process(fs_info->cleaner_kthread);
1910 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1911
84961539 1912 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1913 btrfs_cleanup_transaction(fs_info);
ce63f891 1914 if (!kthread_should_stop() &&
0b246afa 1915 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1916 cannot_commit))
bc5511d0 1917 schedule_timeout_interruptible(delay);
a74a4b97
CM
1918 } while (!kthread_should_stop());
1919 return 0;
1920}
1921
af31f5e5 1922/*
01f0f9da
NB
1923 * This will find the highest generation in the array of root backups. The
1924 * index of the highest array is returned, or -EINVAL if we can't find
1925 * anything.
af31f5e5
CM
1926 *
1927 * We check to make sure the array is valid by comparing the
1928 * generation of the latest root in the array with the generation
1929 * in the super block. If they don't match we pitch it.
1930 */
01f0f9da 1931static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1932{
01f0f9da 1933 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1934 u64 cur;
af31f5e5
CM
1935 struct btrfs_root_backup *root_backup;
1936 int i;
1937
1938 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1939 root_backup = info->super_copy->super_roots + i;
1940 cur = btrfs_backup_tree_root_gen(root_backup);
1941 if (cur == newest_gen)
01f0f9da 1942 return i;
af31f5e5
CM
1943 }
1944
01f0f9da 1945 return -EINVAL;
af31f5e5
CM
1946}
1947
af31f5e5
CM
1948/*
1949 * copy all the root pointers into the super backup array.
1950 * this will bump the backup pointer by one when it is
1951 * done
1952 */
1953static void backup_super_roots(struct btrfs_fs_info *info)
1954{
6ef108dd 1955 const int next_backup = info->backup_root_index;
af31f5e5 1956 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1957
1958 root_backup = info->super_for_commit->super_roots + next_backup;
1959
1960 /*
1961 * make sure all of our padding and empty slots get zero filled
1962 * regardless of which ones we use today
1963 */
1964 memset(root_backup, 0, sizeof(*root_backup));
1965
1966 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1967
1968 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1969 btrfs_set_backup_tree_root_gen(root_backup,
1970 btrfs_header_generation(info->tree_root->node));
1971
1972 btrfs_set_backup_tree_root_level(root_backup,
1973 btrfs_header_level(info->tree_root->node));
1974
1975 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1976 btrfs_set_backup_chunk_root_gen(root_backup,
1977 btrfs_header_generation(info->chunk_root->node));
1978 btrfs_set_backup_chunk_root_level(root_backup,
1979 btrfs_header_level(info->chunk_root->node));
1980
1c56ab99 1981 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1982 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1983 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1984
1985 btrfs_set_backup_extent_root(root_backup,
1986 extent_root->node->start);
1987 btrfs_set_backup_extent_root_gen(root_backup,
1988 btrfs_header_generation(extent_root->node));
1989 btrfs_set_backup_extent_root_level(root_backup,
1990 btrfs_header_level(extent_root->node));
f7238e50
JB
1991
1992 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1993 btrfs_set_backup_csum_root_gen(root_backup,
1994 btrfs_header_generation(csum_root->node));
1995 btrfs_set_backup_csum_root_level(root_backup,
1996 btrfs_header_level(csum_root->node));
9c54e80d 1997 }
af31f5e5 1998
7c7e82a7
CM
1999 /*
2000 * we might commit during log recovery, which happens before we set
2001 * the fs_root. Make sure it is valid before we fill it in.
2002 */
2003 if (info->fs_root && info->fs_root->node) {
2004 btrfs_set_backup_fs_root(root_backup,
2005 info->fs_root->node->start);
2006 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2007 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2008 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2009 btrfs_header_level(info->fs_root->node));
7c7e82a7 2010 }
af31f5e5
CM
2011
2012 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2013 btrfs_set_backup_dev_root_gen(root_backup,
2014 btrfs_header_generation(info->dev_root->node));
2015 btrfs_set_backup_dev_root_level(root_backup,
2016 btrfs_header_level(info->dev_root->node));
2017
af31f5e5
CM
2018 btrfs_set_backup_total_bytes(root_backup,
2019 btrfs_super_total_bytes(info->super_copy));
2020 btrfs_set_backup_bytes_used(root_backup,
2021 btrfs_super_bytes_used(info->super_copy));
2022 btrfs_set_backup_num_devices(root_backup,
2023 btrfs_super_num_devices(info->super_copy));
2024
2025 /*
2026 * if we don't copy this out to the super_copy, it won't get remembered
2027 * for the next commit
2028 */
2029 memcpy(&info->super_copy->super_roots,
2030 &info->super_for_commit->super_roots,
2031 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2032}
2033
bd2336b2
NB
2034/*
2035 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2036 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2037 *
2038 * fs_info - filesystem whose backup roots need to be read
2039 * priority - priority of backup root required
2040 *
2041 * Returns backup root index on success and -EINVAL otherwise.
2042 */
2043static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2044{
2045 int backup_index = find_newest_super_backup(fs_info);
2046 struct btrfs_super_block *super = fs_info->super_copy;
2047 struct btrfs_root_backup *root_backup;
2048
2049 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2050 if (priority == 0)
2051 return backup_index;
2052
2053 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2054 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2055 } else {
2056 return -EINVAL;
2057 }
2058
2059 root_backup = super->super_roots + backup_index;
2060
2061 btrfs_set_super_generation(super,
2062 btrfs_backup_tree_root_gen(root_backup));
2063 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2064 btrfs_set_super_root_level(super,
2065 btrfs_backup_tree_root_level(root_backup));
2066 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2067
2068 /*
2069 * Fixme: the total bytes and num_devices need to match or we should
2070 * need a fsck
2071 */
2072 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2073 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2074
2075 return backup_index;
2076}
2077
7abadb64
LB
2078/* helper to cleanup workers */
2079static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2080{
dc6e3209 2081 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2082 btrfs_destroy_workqueue(fs_info->delalloc_workers);
a31b4a43 2083 btrfs_destroy_workqueue(fs_info->hipri_workers);
5cdc7ad3 2084 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
2085 if (fs_info->endio_workers)
2086 destroy_workqueue(fs_info->endio_workers);
d34e123d
CH
2087 if (fs_info->endio_raid56_workers)
2088 destroy_workqueue(fs_info->endio_raid56_workers);
385de0ef
CH
2089 if (fs_info->rmw_workers)
2090 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
2091 if (fs_info->compressed_write_workers)
2092 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
2093 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2094 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 2095 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2096 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 2097 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2098 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
2099 if (fs_info->discard_ctl.discard_workers)
2100 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
2101 /*
2102 * Now that all other work queues are destroyed, we can safely destroy
2103 * the queues used for metadata I/O, since tasks from those other work
2104 * queues can do metadata I/O operations.
2105 */
d7b9416f
CH
2106 if (fs_info->endio_meta_workers)
2107 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
2108}
2109
2e9f5954
R
2110static void free_root_extent_buffers(struct btrfs_root *root)
2111{
2112 if (root) {
2113 free_extent_buffer(root->node);
2114 free_extent_buffer(root->commit_root);
2115 root->node = NULL;
2116 root->commit_root = NULL;
2117 }
2118}
2119
abed4aaa
JB
2120static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2121{
2122 struct btrfs_root *root, *tmp;
2123
2124 rbtree_postorder_for_each_entry_safe(root, tmp,
2125 &fs_info->global_root_tree,
2126 rb_node)
2127 free_root_extent_buffers(root);
2128}
2129
af31f5e5 2130/* helper to cleanup tree roots */
4273eaff 2131static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 2132{
2e9f5954 2133 free_root_extent_buffers(info->tree_root);
655b09fe 2134
abed4aaa 2135 free_global_root_pointers(info);
2e9f5954 2136 free_root_extent_buffers(info->dev_root);
2e9f5954
R
2137 free_root_extent_buffers(info->quota_root);
2138 free_root_extent_buffers(info->uuid_root);
8c38938c 2139 free_root_extent_buffers(info->fs_root);
aeb935a4 2140 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 2141 free_root_extent_buffers(info->block_group_root);
4273eaff 2142 if (free_chunk_root)
2e9f5954 2143 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2144}
2145
8c38938c
JB
2146void btrfs_put_root(struct btrfs_root *root)
2147{
2148 if (!root)
2149 return;
2150
2151 if (refcount_dec_and_test(&root->refs)) {
2152 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2153 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2154 if (root->anon_dev)
2155 free_anon_bdev(root->anon_dev);
2156 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2157 free_root_extent_buffers(root);
8c38938c 2158#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 2159 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 2160 list_del_init(&root->leak_list);
fc7cbcd4 2161 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
2162#endif
2163 kfree(root);
2164 }
2165}
2166
faa2dbf0 2167void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 2168{
fc7cbcd4
DS
2169 int ret;
2170 struct btrfs_root *gang[8];
2171 int i;
171f6537
JB
2172
2173 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
2174 gang[0] = list_entry(fs_info->dead_roots.next,
2175 struct btrfs_root, root_list);
2176 list_del(&gang[0]->root_list);
171f6537 2177
fc7cbcd4
DS
2178 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2179 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2180 btrfs_put_root(gang[0]);
171f6537
JB
2181 }
2182
fc7cbcd4
DS
2183 while (1) {
2184 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2185 (void **)gang, 0,
2186 ARRAY_SIZE(gang));
2187 if (!ret)
2188 break;
2189 for (i = 0; i < ret; i++)
2190 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2191 }
2192}
af31f5e5 2193
638aa7ed
ES
2194static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2195{
2196 mutex_init(&fs_info->scrub_lock);
2197 atomic_set(&fs_info->scrubs_running, 0);
2198 atomic_set(&fs_info->scrub_pause_req, 0);
2199 atomic_set(&fs_info->scrubs_paused, 0);
2200 atomic_set(&fs_info->scrub_cancel_req, 0);
2201 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2202 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2203}
2204
779a65a4
ES
2205static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2206{
2207 spin_lock_init(&fs_info->balance_lock);
2208 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2209 atomic_set(&fs_info->balance_pause_req, 0);
2210 atomic_set(&fs_info->balance_cancel_req, 0);
2211 fs_info->balance_ctl = NULL;
2212 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 2213 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
2214}
2215
6bccf3ab 2216static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2217{
2ff7e61e 2218 struct inode *inode = fs_info->btree_inode;
e256927b
JB
2219 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2220 fs_info->tree_root);
2ff7e61e
JM
2221
2222 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2223 set_nlink(inode, 1);
f37938e0
ES
2224 /*
2225 * we set the i_size on the btree inode to the max possible int.
2226 * the real end of the address space is determined by all of
2227 * the devices in the system
2228 */
2ff7e61e
JM
2229 inode->i_size = OFFSET_MAX;
2230 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2231
2ff7e61e 2232 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 2233 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
efb0645b 2234 IO_TREE_BTREE_INODE_IO, NULL);
2ff7e61e 2235 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2236
5c8fd99f 2237 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
2238 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2239 BTRFS_I(inode)->location.type = 0;
2240 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 2241 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 2242 __insert_inode_hash(inode, hash);
f37938e0
ES
2243}
2244
ad618368
ES
2245static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2246{
ad618368 2247 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2248 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2249 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2250}
2251
f9e92e40
ES
2252static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2253{
2254 spin_lock_init(&fs_info->qgroup_lock);
2255 mutex_init(&fs_info->qgroup_ioctl_lock);
2256 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2257 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2258 fs_info->qgroup_seq = 1;
f9e92e40 2259 fs_info->qgroup_ulist = NULL;
d2c609b8 2260 fs_info->qgroup_rescan_running = false;
011b46c3 2261 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
2262 mutex_init(&fs_info->qgroup_rescan_lock);
2263}
2264
d21deec5 2265static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 2266{
f7b885be 2267 u32 max_active = fs_info->thread_pool_size;
6f011058 2268 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2269
2270 fs_info->workers =
a31b4a43
CH
2271 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2272 fs_info->hipri_workers =
2273 btrfs_alloc_workqueue(fs_info, "worker-high",
cb001095 2274 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2275
2276 fs_info->delalloc_workers =
cb001095
JM
2277 btrfs_alloc_workqueue(fs_info, "delalloc",
2278 flags, max_active, 2);
2a458198
ES
2279
2280 fs_info->flush_workers =
cb001095
JM
2281 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2282 flags, max_active, 0);
2a458198
ES
2283
2284 fs_info->caching_workers =
cb001095 2285 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2286
2a458198 2287 fs_info->fixup_workers =
cb001095 2288 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198 2289
2a458198 2290 fs_info->endio_workers =
d7b9416f 2291 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2292 fs_info->endio_meta_workers =
d7b9416f 2293 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2a458198 2294 fs_info->endio_raid56_workers =
d34e123d 2295 alloc_workqueue("btrfs-endio-raid56", flags, max_active);
385de0ef 2296 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2297 fs_info->endio_write_workers =
cb001095
JM
2298 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2299 max_active, 2);
fed8a72d
CH
2300 fs_info->compressed_write_workers =
2301 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2302 fs_info->endio_freespace_worker =
cb001095
JM
2303 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2304 max_active, 0);
2a458198 2305 fs_info->delayed_workers =
cb001095
JM
2306 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2307 max_active, 0);
2a458198 2308 fs_info->qgroup_rescan_workers =
cb001095 2309 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2310 fs_info->discard_ctl.discard_workers =
2311 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198 2312
a31b4a43
CH
2313 if (!(fs_info->workers && fs_info->hipri_workers &&
2314 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2315 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2316 fs_info->compressed_write_workers &&
2a458198
ES
2317 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2318 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2319 fs_info->caching_workers && fs_info->fixup_workers &&
2320 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2321 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2322 return -ENOMEM;
2323 }
2324
2325 return 0;
2326}
2327
6d97c6e3
JT
2328static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2329{
2330 struct crypto_shash *csum_shash;
b4e967be 2331 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2332
b4e967be 2333 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2334
2335 if (IS_ERR(csum_shash)) {
2336 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2337 csum_driver);
6d97c6e3
JT
2338 return PTR_ERR(csum_shash);
2339 }
2340
2341 fs_info->csum_shash = csum_shash;
2342
c8a5f8ca
DS
2343 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2344 btrfs_super_csum_name(csum_type),
2345 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2346 return 0;
2347}
2348
63443bf5
ES
2349static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2350 struct btrfs_fs_devices *fs_devices)
2351{
2352 int ret;
63443bf5
ES
2353 struct btrfs_root *log_tree_root;
2354 struct btrfs_super_block *disk_super = fs_info->super_copy;
2355 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2356 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2357
2358 if (fs_devices->rw_devices == 0) {
f14d104d 2359 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2360 return -EIO;
2361 }
2362
96dfcb46
JB
2363 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2364 GFP_KERNEL);
63443bf5
ES
2365 if (!log_tree_root)
2366 return -ENOMEM;
2367
2ff7e61e 2368 log_tree_root->node = read_tree_block(fs_info, bytenr,
1b7ec85e
JB
2369 BTRFS_TREE_LOG_OBJECTID,
2370 fs_info->generation + 1, level,
2371 NULL);
64c043de 2372 if (IS_ERR(log_tree_root->node)) {
f14d104d 2373 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2374 ret = PTR_ERR(log_tree_root->node);
8c38938c 2375 log_tree_root->node = NULL;
00246528 2376 btrfs_put_root(log_tree_root);
0eeff236 2377 return ret;
4eb150d6
QW
2378 }
2379 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2380 btrfs_err(fs_info, "failed to read log tree");
00246528 2381 btrfs_put_root(log_tree_root);
63443bf5
ES
2382 return -EIO;
2383 }
4eb150d6 2384
63443bf5
ES
2385 /* returns with log_tree_root freed on success */
2386 ret = btrfs_recover_log_trees(log_tree_root);
2387 if (ret) {
0b246afa
JM
2388 btrfs_handle_fs_error(fs_info, ret,
2389 "Failed to recover log tree");
00246528 2390 btrfs_put_root(log_tree_root);
63443bf5
ES
2391 return ret;
2392 }
2393
bc98a42c 2394 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2395 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2396 if (ret)
2397 return ret;
2398 }
2399
2400 return 0;
2401}
2402
abed4aaa
JB
2403static int load_global_roots_objectid(struct btrfs_root *tree_root,
2404 struct btrfs_path *path, u64 objectid,
2405 const char *name)
2406{
2407 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2408 struct btrfs_root *root;
f7238e50 2409 u64 max_global_id = 0;
abed4aaa
JB
2410 int ret;
2411 struct btrfs_key key = {
2412 .objectid = objectid,
2413 .type = BTRFS_ROOT_ITEM_KEY,
2414 .offset = 0,
2415 };
2416 bool found = false;
2417
2418 /* If we have IGNOREDATACSUMS skip loading these roots. */
2419 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2420 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2421 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2422 return 0;
2423 }
2424
2425 while (1) {
2426 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2427 if (ret < 0)
2428 break;
2429
2430 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2431 ret = btrfs_next_leaf(tree_root, path);
2432 if (ret) {
2433 if (ret > 0)
2434 ret = 0;
2435 break;
2436 }
2437 }
2438 ret = 0;
2439
2440 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2441 if (key.objectid != objectid)
2442 break;
2443 btrfs_release_path(path);
2444
f7238e50
JB
2445 /*
2446 * Just worry about this for extent tree, it'll be the same for
2447 * everybody.
2448 */
2449 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2450 max_global_id = max(max_global_id, key.offset);
2451
abed4aaa
JB
2452 found = true;
2453 root = read_tree_root_path(tree_root, path, &key);
2454 if (IS_ERR(root)) {
2455 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2456 ret = PTR_ERR(root);
2457 break;
2458 }
2459 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2460 ret = btrfs_global_root_insert(root);
2461 if (ret) {
2462 btrfs_put_root(root);
2463 break;
2464 }
2465 key.offset++;
2466 }
2467 btrfs_release_path(path);
2468
f7238e50
JB
2469 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2470 fs_info->nr_global_roots = max_global_id + 1;
2471
abed4aaa
JB
2472 if (!found || ret) {
2473 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2474 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2475
2476 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2477 ret = ret ? ret : -ENOENT;
2478 else
2479 ret = 0;
2480 btrfs_err(fs_info, "failed to load root %s", name);
2481 }
2482 return ret;
2483}
2484
2485static int load_global_roots(struct btrfs_root *tree_root)
2486{
2487 struct btrfs_path *path;
2488 int ret = 0;
2489
2490 path = btrfs_alloc_path();
2491 if (!path)
2492 return -ENOMEM;
2493
2494 ret = load_global_roots_objectid(tree_root, path,
2495 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2496 if (ret)
2497 goto out;
2498 ret = load_global_roots_objectid(tree_root, path,
2499 BTRFS_CSUM_TREE_OBJECTID, "csum");
2500 if (ret)
2501 goto out;
2502 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2503 goto out;
2504 ret = load_global_roots_objectid(tree_root, path,
2505 BTRFS_FREE_SPACE_TREE_OBJECTID,
2506 "free space");
2507out:
2508 btrfs_free_path(path);
2509 return ret;
2510}
2511
6bccf3ab 2512static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2513{
6bccf3ab 2514 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2515 struct btrfs_root *root;
4bbcaa64
ES
2516 struct btrfs_key location;
2517 int ret;
2518
6bccf3ab
JM
2519 BUG_ON(!fs_info->tree_root);
2520
abed4aaa
JB
2521 ret = load_global_roots(tree_root);
2522 if (ret)
2523 return ret;
2524
4bbcaa64
ES
2525 location.type = BTRFS_ROOT_ITEM_KEY;
2526 location.offset = 0;
2527
1c56ab99 2528 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2529 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2530 root = btrfs_read_tree_root(tree_root, &location);
2531 if (IS_ERR(root)) {
2532 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2533 ret = PTR_ERR(root);
2534 goto out;
2535 }
2536 } else {
2537 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2538 fs_info->block_group_root = root;
2539 }
2540 }
2541
2542 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2543 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2544 if (IS_ERR(root)) {
42437a63
JB
2545 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2546 ret = PTR_ERR(root);
2547 goto out;
2548 }
2549 } else {
2550 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551 fs_info->dev_root = root;
f50f4353 2552 }
820a49da
JB
2553 /* Initialize fs_info for all devices in any case */
2554 btrfs_init_devices_late(fs_info);
4bbcaa64 2555
aeb935a4
QW
2556 /*
2557 * This tree can share blocks with some other fs tree during relocation
2558 * and we need a proper setup by btrfs_get_fs_root
2559 */
56e9357a
DS
2560 root = btrfs_get_fs_root(tree_root->fs_info,
2561 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2562 if (IS_ERR(root)) {
42437a63
JB
2563 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2564 ret = PTR_ERR(root);
2565 goto out;
2566 }
2567 } else {
2568 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2569 fs_info->data_reloc_root = root;
aeb935a4 2570 }
aeb935a4 2571
4bbcaa64 2572 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2573 root = btrfs_read_tree_root(tree_root, &location);
2574 if (!IS_ERR(root)) {
2575 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2576 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2577 fs_info->quota_root = root;
4bbcaa64
ES
2578 }
2579
2580 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2581 root = btrfs_read_tree_root(tree_root, &location);
2582 if (IS_ERR(root)) {
42437a63
JB
2583 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2584 ret = PTR_ERR(root);
2585 if (ret != -ENOENT)
2586 goto out;
2587 }
4bbcaa64 2588 } else {
a4f3d2c4
DS
2589 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2590 fs_info->uuid_root = root;
4bbcaa64
ES
2591 }
2592
2593 return 0;
f50f4353
LB
2594out:
2595 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2596 location.objectid, ret);
2597 return ret;
4bbcaa64
ES
2598}
2599
069ec957
QW
2600/*
2601 * Real super block validation
2602 * NOTE: super csum type and incompat features will not be checked here.
2603 *
2604 * @sb: super block to check
2605 * @mirror_num: the super block number to check its bytenr:
2606 * 0 the primary (1st) sb
2607 * 1, 2 2nd and 3rd backup copy
2608 * -1 skip bytenr check
2609 */
a05d3c91
QW
2610int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2611 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2612{
21a852b0
QW
2613 u64 nodesize = btrfs_super_nodesize(sb);
2614 u64 sectorsize = btrfs_super_sectorsize(sb);
2615 int ret = 0;
2616
2617 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2618 btrfs_err(fs_info, "no valid FS found");
2619 ret = -EINVAL;
2620 }
2621 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2622 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2623 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2624 ret = -EINVAL;
2625 }
2626 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2627 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2628 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2629 ret = -EINVAL;
2630 }
2631 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2632 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2633 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2634 ret = -EINVAL;
2635 }
2636 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2637 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2638 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2639 ret = -EINVAL;
2640 }
2641
2642 /*
2643 * Check sectorsize and nodesize first, other check will need it.
2644 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2645 */
2646 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2647 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2648 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2649 ret = -EINVAL;
2650 }
0bb3eb3e
QW
2651
2652 /*
1a42daab
QW
2653 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2654 *
2655 * We can support 16K sectorsize with 64K page size without problem,
2656 * but such sectorsize/pagesize combination doesn't make much sense.
2657 * 4K will be our future standard, PAGE_SIZE is supported from the very
2658 * beginning.
0bb3eb3e 2659 */
1a42daab 2660 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2661 btrfs_err(fs_info,
0bb3eb3e 2662 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2663 sectorsize, PAGE_SIZE);
2664 ret = -EINVAL;
2665 }
0bb3eb3e 2666
21a852b0
QW
2667 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2668 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2669 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2670 ret = -EINVAL;
2671 }
2672 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2673 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2674 le32_to_cpu(sb->__unused_leafsize), nodesize);
2675 ret = -EINVAL;
2676 }
2677
2678 /* Root alignment check */
2679 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2680 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2681 btrfs_super_root(sb));
2682 ret = -EINVAL;
2683 }
2684 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2685 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2686 btrfs_super_chunk_root(sb));
2687 ret = -EINVAL;
2688 }
2689 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2690 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2691 btrfs_super_log_root(sb));
2692 ret = -EINVAL;
2693 }
2694
aefd7f70
NB
2695 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2696 BTRFS_FSID_SIZE)) {
2697 btrfs_err(fs_info,
2698 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2699 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2700 ret = -EINVAL;
2701 }
2702
2703 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2704 memcmp(fs_info->fs_devices->metadata_uuid,
2705 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2706 btrfs_err(fs_info,
2707"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2708 fs_info->super_copy->metadata_uuid,
2709 fs_info->fs_devices->metadata_uuid);
2710 ret = -EINVAL;
2711 }
2712
1c56ab99
QW
2713 /*
2714 * Artificial requirement for block-group-tree to force newer features
2715 * (free-space-tree, no-holes) so the test matrix is smaller.
2716 */
2717 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2718 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2719 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2720 btrfs_err(fs_info,
2721 "block-group-tree feature requires fres-space-tree and no-holes");
2722 ret = -EINVAL;
2723 }
2724
de37aa51 2725 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2726 BTRFS_FSID_SIZE) != 0) {
21a852b0 2727 btrfs_err(fs_info,
7239ff4b 2728 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2729 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2730 ret = -EINVAL;
2731 }
2732
2733 /*
2734 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2735 * done later
2736 */
2737 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2738 btrfs_err(fs_info, "bytes_used is too small %llu",
2739 btrfs_super_bytes_used(sb));
2740 ret = -EINVAL;
2741 }
2742 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2743 btrfs_err(fs_info, "invalid stripesize %u",
2744 btrfs_super_stripesize(sb));
2745 ret = -EINVAL;
2746 }
2747 if (btrfs_super_num_devices(sb) > (1UL << 31))
2748 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2749 btrfs_super_num_devices(sb));
2750 if (btrfs_super_num_devices(sb) == 0) {
2751 btrfs_err(fs_info, "number of devices is 0");
2752 ret = -EINVAL;
2753 }
2754
069ec957
QW
2755 if (mirror_num >= 0 &&
2756 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2757 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2758 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2759 ret = -EINVAL;
2760 }
2761
2762 /*
2763 * Obvious sys_chunk_array corruptions, it must hold at least one key
2764 * and one chunk
2765 */
2766 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2767 btrfs_err(fs_info, "system chunk array too big %u > %u",
2768 btrfs_super_sys_array_size(sb),
2769 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2770 ret = -EINVAL;
2771 }
2772 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2773 + sizeof(struct btrfs_chunk)) {
2774 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2775 btrfs_super_sys_array_size(sb),
2776 sizeof(struct btrfs_disk_key)
2777 + sizeof(struct btrfs_chunk));
2778 ret = -EINVAL;
2779 }
2780
2781 /*
2782 * The generation is a global counter, we'll trust it more than the others
2783 * but it's still possible that it's the one that's wrong.
2784 */
2785 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2786 btrfs_warn(fs_info,
2787 "suspicious: generation < chunk_root_generation: %llu < %llu",
2788 btrfs_super_generation(sb),
2789 btrfs_super_chunk_root_generation(sb));
2790 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2791 && btrfs_super_cache_generation(sb) != (u64)-1)
2792 btrfs_warn(fs_info,
2793 "suspicious: generation < cache_generation: %llu < %llu",
2794 btrfs_super_generation(sb),
2795 btrfs_super_cache_generation(sb));
2796
2797 return ret;
2798}
2799
069ec957
QW
2800/*
2801 * Validation of super block at mount time.
2802 * Some checks already done early at mount time, like csum type and incompat
2803 * flags will be skipped.
2804 */
2805static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2806{
a05d3c91 2807 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2808}
2809
75cb857d
QW
2810/*
2811 * Validation of super block at write time.
2812 * Some checks like bytenr check will be skipped as their values will be
2813 * overwritten soon.
2814 * Extra checks like csum type and incompat flags will be done here.
2815 */
2816static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2817 struct btrfs_super_block *sb)
2818{
2819 int ret;
2820
a05d3c91 2821 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2822 if (ret < 0)
2823 goto out;
e7e16f48 2824 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2825 ret = -EUCLEAN;
2826 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2827 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2828 goto out;
2829 }
2830 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2831 ret = -EUCLEAN;
2832 btrfs_err(fs_info,
2833 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2834 btrfs_super_incompat_flags(sb),
2835 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2836 goto out;
2837 }
2838out:
2839 if (ret < 0)
2840 btrfs_err(fs_info,
2841 "super block corruption detected before writing it to disk");
2842 return ret;
2843}
2844
bd676446
JB
2845static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2846{
2847 int ret = 0;
2848
2849 root->node = read_tree_block(root->fs_info, bytenr,
2850 root->root_key.objectid, gen, level, NULL);
2851 if (IS_ERR(root->node)) {
2852 ret = PTR_ERR(root->node);
2853 root->node = NULL;
4eb150d6
QW
2854 return ret;
2855 }
2856 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2857 free_extent_buffer(root->node);
2858 root->node = NULL;
4eb150d6 2859 return -EIO;
bd676446
JB
2860 }
2861
bd676446
JB
2862 btrfs_set_root_node(&root->root_item, root->node);
2863 root->commit_root = btrfs_root_node(root);
2864 btrfs_set_root_refs(&root->root_item, 1);
2865 return ret;
2866}
2867
2868static int load_important_roots(struct btrfs_fs_info *fs_info)
2869{
2870 struct btrfs_super_block *sb = fs_info->super_copy;
2871 u64 gen, bytenr;
2872 int level, ret;
2873
2874 bytenr = btrfs_super_root(sb);
2875 gen = btrfs_super_generation(sb);
2876 level = btrfs_super_root_level(sb);
2877 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2878 if (ret) {
bd676446 2879 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2880 return ret;
2881 }
14033b08 2882 return 0;
bd676446
JB
2883}
2884
6ef108dd 2885static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2886{
6ef108dd 2887 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2888 struct btrfs_super_block *sb = fs_info->super_copy;
2889 struct btrfs_root *tree_root = fs_info->tree_root;
2890 bool handle_error = false;
2891 int ret = 0;
2892 int i;
2893
2894 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2895 if (handle_error) {
2896 if (!IS_ERR(tree_root->node))
2897 free_extent_buffer(tree_root->node);
2898 tree_root->node = NULL;
2899
2900 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2901 break;
2902
2903 free_root_pointers(fs_info, 0);
2904
2905 /*
2906 * Don't use the log in recovery mode, it won't be
2907 * valid
2908 */
2909 btrfs_set_super_log_root(sb, 0);
2910
2911 /* We can't trust the free space cache either */
2912 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2913
2914 ret = read_backup_root(fs_info, i);
6ef108dd 2915 backup_index = ret;
b8522a1e
NB
2916 if (ret < 0)
2917 return ret;
2918 }
b8522a1e 2919
bd676446
JB
2920 ret = load_important_roots(fs_info);
2921 if (ret) {
217f5004 2922 handle_error = true;
b8522a1e
NB
2923 continue;
2924 }
2925
336a0d8d
NB
2926 /*
2927 * No need to hold btrfs_root::objectid_mutex since the fs
2928 * hasn't been fully initialised and we are the only user
2929 */
453e4873 2930 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2931 if (ret < 0) {
b8522a1e
NB
2932 handle_error = true;
2933 continue;
2934 }
2935
6b8fad57 2936 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2937
2938 ret = btrfs_read_roots(fs_info);
2939 if (ret < 0) {
2940 handle_error = true;
2941 continue;
2942 }
2943
2944 /* All successful */
bd676446
JB
2945 fs_info->generation = btrfs_header_generation(tree_root->node);
2946 fs_info->last_trans_committed = fs_info->generation;
d96b3424 2947 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2948
2949 /* Always begin writing backup roots after the one being used */
2950 if (backup_index < 0) {
2951 fs_info->backup_root_index = 0;
2952 } else {
2953 fs_info->backup_root_index = backup_index + 1;
2954 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2955 }
b8522a1e
NB
2956 break;
2957 }
2958
2959 return ret;
2960}
2961
8260edba 2962void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2963{
fc7cbcd4 2964 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2965 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2966 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2967 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2968 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2969 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2970 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2971 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2972 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2973 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2974 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2975 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2976 spin_lock_init(&fs_info->super_lock);
f28491e0 2977 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2978 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2979 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2980 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2981 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2982 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2983 rwlock_init(&fs_info->global_root_lock);
d7c15171 2984 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2985 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2986 mutex_init(&fs_info->reloc_mutex);
573bfb72 2987 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2988 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2989 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2990 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2991
e1489b4f 2992 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2993 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2994 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2995 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3e738c53
IA
2996 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2997 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2998 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2999 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3000 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3001 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3002 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3003 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 3004
0b86a832 3005 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 3006 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 3007 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 3008 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 3009 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 3010 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
3011#ifdef CONFIG_BTRFS_DEBUG
3012 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
3013 INIT_LIST_HEAD(&fs_info->allocated_ebs);
3014 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 3015#endif
c8bf1b67 3016 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
3017 btrfs_init_block_rsv(&fs_info->global_block_rsv,
3018 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
3019 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3020 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3021 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3022 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3023 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
3024 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3025 BTRFS_BLOCK_RSV_DELREFS);
3026
771ed689 3027 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 3028 atomic_set(&fs_info->defrag_running, 0);
034f784d 3029 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 3030 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 3031 fs_info->global_root_tree = RB_ROOT;
95ac567a 3032 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 3033 fs_info->metadata_ratio = 0;
4cb5300b 3034 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 3035 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 3036 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 3037 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 3038 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
fd708b81 3039 btrfs_init_ref_verify(fs_info);
c8b97818 3040
b34b086c
CM
3041 fs_info->thread_pool_size = min_t(unsigned long,
3042 num_online_cpus() + 2, 8);
0afbaf8c 3043
199c2a9c
MX
3044 INIT_LIST_HEAD(&fs_info->ordered_roots);
3045 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 3046
638aa7ed 3047 btrfs_init_scrub(fs_info);
21adbd5c
SB
3048#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3049 fs_info->check_integrity_print_mask = 0;
3050#endif
779a65a4 3051 btrfs_init_balance(fs_info);
57056740 3052 btrfs_init_async_reclaim_work(fs_info);
a2de733c 3053
16b0c258 3054 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 3055 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 3056
fe119a6e
NB
3057 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3058 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
39279cc3 3059
5a3f23d5 3060 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 3061 mutex_init(&fs_info->tree_log_mutex);
925baedd 3062 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
3063 mutex_init(&fs_info->transaction_kthread_mutex);
3064 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 3065 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 3066 init_rwsem(&fs_info->commit_root_sem);
c71bf099 3067 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 3068 init_rwsem(&fs_info->subvol_sem);
803b2f54 3069 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 3070
ad618368 3071 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 3072 btrfs_init_qgroup(fs_info);
b0643e59 3073 btrfs_discard_init(fs_info);
416ac51d 3074
fa9c0d79
CM
3075 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3076 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3077
e6dcd2dc 3078 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 3079 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 3080 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 3081 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 3082 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 3083
da17066c
JM
3084 /* Usable values until the real ones are cached from the superblock */
3085 fs_info->nodesize = 4096;
3086 fs_info->sectorsize = 4096;
ab108d99 3087 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
3088 fs_info->stripesize = 4096;
3089
f7b12a62
NA
3090 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3091
eede2bf3
OS
3092 spin_lock_init(&fs_info->swapfile_pins_lock);
3093 fs_info->swapfile_pins = RB_ROOT;
3094
18bb8bbf
JT
3095 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3096 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
3097}
3098
3099static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3100{
3101 int ret;
3102
3103 fs_info->sb = sb;
3104 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3105 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 3106
5deb17e1 3107 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 3108 if (ret)
c75e8394 3109 return ret;
ae18c37a
JB
3110
3111 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3112 if (ret)
c75e8394 3113 return ret;
ae18c37a
JB
3114
3115 fs_info->dirty_metadata_batch = PAGE_SIZE *
3116 (1 + ilog2(nr_cpu_ids));
3117
3118 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3119 if (ret)
c75e8394 3120 return ret;
ae18c37a
JB
3121
3122 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3123 GFP_KERNEL);
3124 if (ret)
c75e8394 3125 return ret;
ae18c37a
JB
3126
3127 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3128 GFP_KERNEL);
c75e8394
JB
3129 if (!fs_info->delayed_root)
3130 return -ENOMEM;
ae18c37a
JB
3131 btrfs_init_delayed_root(fs_info->delayed_root);
3132
a0a1db70
FM
3133 if (sb_rdonly(sb))
3134 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3135
c75e8394 3136 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
3137}
3138
97f4dd09
NB
3139static int btrfs_uuid_rescan_kthread(void *data)
3140{
0d031dc4 3141 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
3142 int ret;
3143
3144 /*
3145 * 1st step is to iterate through the existing UUID tree and
3146 * to delete all entries that contain outdated data.
3147 * 2nd step is to add all missing entries to the UUID tree.
3148 */
3149 ret = btrfs_uuid_tree_iterate(fs_info);
3150 if (ret < 0) {
c94bec2c
JB
3151 if (ret != -EINTR)
3152 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3153 ret);
97f4dd09
NB
3154 up(&fs_info->uuid_tree_rescan_sem);
3155 return ret;
3156 }
3157 return btrfs_uuid_scan_kthread(data);
3158}
3159
3160static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3161{
3162 struct task_struct *task;
3163
3164 down(&fs_info->uuid_tree_rescan_sem);
3165 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3166 if (IS_ERR(task)) {
3167 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3168 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3169 up(&fs_info->uuid_tree_rescan_sem);
3170 return PTR_ERR(task);
3171 }
3172
3173 return 0;
3174}
3175
8cd29088
BB
3176/*
3177 * Some options only have meaning at mount time and shouldn't persist across
3178 * remounts, or be displayed. Clear these at the end of mount and remount
3179 * code paths.
3180 */
3181void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3182{
3183 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
8b228324 3184 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
8cd29088
BB
3185}
3186
44c0ca21
BB
3187/*
3188 * Mounting logic specific to read-write file systems. Shared by open_ctree
3189 * and btrfs_remount when remounting from read-only to read-write.
3190 */
3191int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3192{
3193 int ret;
94846229 3194 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
8b228324
BB
3195 bool clear_free_space_tree = false;
3196
3197 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3198 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3199 clear_free_space_tree = true;
3200 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3201 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3202 btrfs_warn(fs_info, "free space tree is invalid");
3203 clear_free_space_tree = true;
3204 }
3205
3206 if (clear_free_space_tree) {
3207 btrfs_info(fs_info, "clearing free space tree");
3208 ret = btrfs_clear_free_space_tree(fs_info);
3209 if (ret) {
3210 btrfs_warn(fs_info,
3211 "failed to clear free space tree: %d", ret);
3212 goto out;
3213 }
3214 }
44c0ca21 3215
8d488a8c
FM
3216 /*
3217 * btrfs_find_orphan_roots() is responsible for finding all the dead
3218 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3219 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3220 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3221 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3222 * item before the root's tree is deleted - this means that if we unmount
3223 * or crash before the deletion completes, on the next mount we will not
3224 * delete what remains of the tree because the orphan item does not
3225 * exists anymore, which is what tells us we have a pending deletion.
3226 */
3227 ret = btrfs_find_orphan_roots(fs_info);
3228 if (ret)
3229 goto out;
3230
44c0ca21
BB
3231 ret = btrfs_cleanup_fs_roots(fs_info);
3232 if (ret)
3233 goto out;
3234
8f1c21d7
BB
3235 down_read(&fs_info->cleanup_work_sem);
3236 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3237 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3238 up_read(&fs_info->cleanup_work_sem);
3239 goto out;
3240 }
3241 up_read(&fs_info->cleanup_work_sem);
3242
44c0ca21 3243 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3244 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3245 mutex_unlock(&fs_info->cleaner_mutex);
3246 if (ret < 0) {
3247 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3248 goto out;
3249 }
3250
5011139a
BB
3251 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3252 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3253 btrfs_info(fs_info, "creating free space tree");
3254 ret = btrfs_create_free_space_tree(fs_info);
3255 if (ret) {
3256 btrfs_warn(fs_info,
3257 "failed to create free space tree: %d", ret);
3258 goto out;
3259 }
3260 }
3261
94846229
BB
3262 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3263 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3264 if (ret)
3265 goto out;
3266 }
3267
44c0ca21
BB
3268 ret = btrfs_resume_balance_async(fs_info);
3269 if (ret)
3270 goto out;
3271
3272 ret = btrfs_resume_dev_replace_async(fs_info);
3273 if (ret) {
3274 btrfs_warn(fs_info, "failed to resume dev_replace");
3275 goto out;
3276 }
3277
3278 btrfs_qgroup_rescan_resume(fs_info);
3279
3280 if (!fs_info->uuid_root) {
3281 btrfs_info(fs_info, "creating UUID tree");
3282 ret = btrfs_create_uuid_tree(fs_info);
3283 if (ret) {
3284 btrfs_warn(fs_info,
3285 "failed to create the UUID tree %d", ret);
3286 goto out;
3287 }
3288 }
3289
3290out:
3291 return ret;
3292}
3293
d7f67ac9
QW
3294/*
3295 * Do various sanity and dependency checks of different features.
3296 *
3297 * This is the place for less strict checks (like for subpage or artificial
3298 * feature dependencies).
3299 *
3300 * For strict checks or possible corruption detection, see
3301 * btrfs_validate_super().
3302 *
3303 * This should be called after btrfs_parse_options(), as some mount options
3304 * (space cache related) can modify on-disk format like free space tree and
3305 * screw up certain feature dependencies.
3306 */
3307int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb)
3308{
3309 struct btrfs_super_block *disk_super = fs_info->super_copy;
3310 u64 incompat = btrfs_super_incompat_flags(disk_super);
3311 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3312 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3313
3314 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3315 btrfs_err(fs_info,
3316 "cannot mount because of unknown incompat features (0x%llx)",
3317 incompat);
3318 return -EINVAL;
3319 }
3320
3321 /* Runtime limitation for mixed block groups. */
3322 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3323 (fs_info->sectorsize != fs_info->nodesize)) {
3324 btrfs_err(fs_info,
3325"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3326 fs_info->nodesize, fs_info->sectorsize);
3327 return -EINVAL;
3328 }
3329
3330 /* Mixed backref is an always-enabled feature. */
3331 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3332
3333 /* Set compression related flags just in case. */
3334 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3335 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3336 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3337 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3338
3339 /*
3340 * An ancient flag, which should really be marked deprecated.
3341 * Such runtime limitation doesn't really need a incompat flag.
3342 */
3343 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3344 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3345
3346 if (compat_ro_unsupp && !sb_rdonly(sb)) {
3347 btrfs_err(fs_info,
3348 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3349 compat_ro);
3350 return -EINVAL;
3351 }
3352
3353 /*
3354 * We have unsupported RO compat features, although RO mounted, we
3355 * should not cause any metadata writes, including log replay.
3356 * Or we could screw up whatever the new feature requires.
3357 */
3358 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3359 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3360 btrfs_err(fs_info,
3361"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3362 compat_ro);
3363 return -EINVAL;
3364 }
3365
3366 /*
3367 * Artificial limitations for block group tree, to force
3368 * block-group-tree to rely on no-holes and free-space-tree.
3369 */
3370 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3371 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3372 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3373 btrfs_err(fs_info,
3374"block-group-tree feature requires no-holes and free-space-tree features");
3375 return -EINVAL;
3376 }
3377
3378 /*
3379 * Subpage runtime limitation on v1 cache.
3380 *
3381 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3382 * we're already defaulting to v2 cache, no need to bother v1 as it's
3383 * going to be deprecated anyway.
3384 */
3385 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3386 btrfs_warn(fs_info,
3387 "v1 space cache is not supported for page size %lu with sectorsize %u",
3388 PAGE_SIZE, fs_info->sectorsize);
3389 return -EINVAL;
3390 }
3391
3392 /* This can be called by remount, we need to protect the super block. */
3393 spin_lock(&fs_info->super_lock);
3394 btrfs_set_super_incompat_flags(disk_super, incompat);
3395 spin_unlock(&fs_info->super_lock);
3396
3397 return 0;
3398}
3399
ae18c37a
JB
3400int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3401 char *options)
3402{
3403 u32 sectorsize;
3404 u32 nodesize;
3405 u32 stripesize;
3406 u64 generation;
3407 u64 features;
3408 u16 csum_type;
ae18c37a
JB
3409 struct btrfs_super_block *disk_super;
3410 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3411 struct btrfs_root *tree_root;
3412 struct btrfs_root *chunk_root;
3413 int ret;
3414 int err = -EINVAL;
ae18c37a
JB
3415 int level;
3416
8260edba 3417 ret = init_mount_fs_info(fs_info, sb);
53b381b3 3418 if (ret) {
83c8266a 3419 err = ret;
ae18c37a 3420 goto fail;
53b381b3
DW
3421 }
3422
ae18c37a
JB
3423 /* These need to be init'ed before we start creating inodes and such. */
3424 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3425 GFP_KERNEL);
3426 fs_info->tree_root = tree_root;
3427 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3428 GFP_KERNEL);
3429 fs_info->chunk_root = chunk_root;
3430 if (!tree_root || !chunk_root) {
3431 err = -ENOMEM;
c75e8394 3432 goto fail;
ae18c37a
JB
3433 }
3434
3435 fs_info->btree_inode = new_inode(sb);
3436 if (!fs_info->btree_inode) {
3437 err = -ENOMEM;
c75e8394 3438 goto fail;
ae18c37a
JB
3439 }
3440 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3441 btrfs_init_btree_inode(fs_info);
3442
d24fa5c1 3443 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3444
3445 /*
3446 * Read super block and check the signature bytes only
3447 */
d24fa5c1 3448 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d
JT
3449 if (IS_ERR(disk_super)) {
3450 err = PTR_ERR(disk_super);
16cdcec7 3451 goto fail_alloc;
20b45077 3452 }
39279cc3 3453
8dc3f22c 3454 /*
260db43c 3455 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3456 * corrupted, we'll find out
3457 */
8f32380d 3458 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3459 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3460 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3461 csum_type);
8dc3f22c 3462 err = -EINVAL;
8f32380d 3463 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3464 goto fail_alloc;
3465 }
3466
83c68bbc
SY
3467 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3468
6d97c6e3
JT
3469 ret = btrfs_init_csum_hash(fs_info, csum_type);
3470 if (ret) {
3471 err = ret;
8f32380d 3472 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3473 goto fail_alloc;
3474 }
3475
1104a885
DS
3476 /*
3477 * We want to check superblock checksum, the type is stored inside.
3478 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3479 */
3d17adea 3480 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3481 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 3482 err = -EINVAL;
8f32380d 3483 btrfs_release_disk_super(disk_super);
141386e1 3484 goto fail_alloc;
1104a885
DS
3485 }
3486
3487 /*
3488 * super_copy is zeroed at allocation time and we never touch the
3489 * following bytes up to INFO_SIZE, the checksum is calculated from
3490 * the whole block of INFO_SIZE
3491 */
8f32380d
JT
3492 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3493 btrfs_release_disk_super(disk_super);
5f39d397 3494
fbc6feae
NB
3495 disk_super = fs_info->super_copy;
3496
0b86a832 3497
fbc6feae
NB
3498 features = btrfs_super_flags(disk_super);
3499 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3500 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3501 btrfs_set_super_flags(disk_super, features);
3502 btrfs_info(fs_info,
3503 "found metadata UUID change in progress flag, clearing");
3504 }
3505
3506 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3507 sizeof(*fs_info->super_for_commit));
de37aa51 3508
069ec957 3509 ret = btrfs_validate_mount_super(fs_info);
1104a885 3510 if (ret) {
05135f59 3511 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 3512 err = -EINVAL;
141386e1 3513 goto fail_alloc;
1104a885
DS
3514 }
3515
0f7d52f4 3516 if (!btrfs_super_root(disk_super))
141386e1 3517 goto fail_alloc;
0f7d52f4 3518
acce952b 3519 /* check FS state, whether FS is broken. */
87533c47
MX
3520 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3521 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 3522
75e7cb7f
LB
3523 /*
3524 * In the long term, we'll store the compression type in the super
3525 * block, and it'll be used for per file compression control.
3526 */
3527 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3528
6f93e834
AJ
3529
3530 /* Set up fs_info before parsing mount options */
3531 nodesize = btrfs_super_nodesize(disk_super);
3532 sectorsize = btrfs_super_sectorsize(disk_super);
3533 stripesize = sectorsize;
3534 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3535 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3536
3537 fs_info->nodesize = nodesize;
3538 fs_info->sectorsize = sectorsize;
3539 fs_info->sectorsize_bits = ilog2(sectorsize);
3540 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3541 fs_info->stripesize = stripesize;
3542
2ff7e61e 3543 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
3544 if (ret) {
3545 err = ret;
141386e1 3546 goto fail_alloc;
2b82032c 3547 }
dfe25020 3548
d7f67ac9
QW
3549 ret = btrfs_check_features(fs_info, sb);
3550 if (ret < 0) {
3551 err = ret;
dc4d3168
QW
3552 goto fail_alloc;
3553 }
3554
8481dd80
QW
3555 if (sectorsize < PAGE_SIZE) {
3556 struct btrfs_subpage_info *subpage_info;
3557
9f73f1ae
QW
3558 /*
3559 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3560 * going to be deprecated.
3561 *
3562 * Force to use v2 cache for subpage case.
3563 */
3564 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3565 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3566 "forcing free space tree for sector size %u with page size %lu",
3567 sectorsize, PAGE_SIZE);
3568
95ea0486
QW
3569 btrfs_warn(fs_info,
3570 "read-write for sector size %u with page size %lu is experimental",
3571 sectorsize, PAGE_SIZE);
8481dd80
QW
3572 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3573 if (!subpage_info)
3574 goto fail_alloc;
3575 btrfs_init_subpage_info(subpage_info, sectorsize);
3576 fs_info->subpage_info = subpage_info;
c8050b3b 3577 }
0bb3eb3e 3578
d21deec5 3579 ret = btrfs_init_workqueues(fs_info);
2a458198
ES
3580 if (ret) {
3581 err = ret;
0dc3b84a
JB
3582 goto fail_sb_buffer;
3583 }
4543df7e 3584
9e11ceee
JK
3585 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3586 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3587
a061fc8d
CM
3588 sb->s_blocksize = sectorsize;
3589 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3590 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3591
925baedd 3592 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3593 ret = btrfs_read_sys_array(fs_info);
925baedd 3594 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3595 if (ret) {
05135f59 3596 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3597 goto fail_sb_buffer;
84eed90f 3598 }
0b86a832 3599
84234f3a 3600 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3601 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3602 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3603 generation, level);
3604 if (ret) {
05135f59 3605 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3606 goto fail_tree_roots;
83121942 3607 }
0b86a832 3608
e17cade2 3609 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3610 offsetof(struct btrfs_header, chunk_tree_uuid),
3611 BTRFS_UUID_SIZE);
e17cade2 3612
5b4aacef 3613 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3614 if (ret) {
05135f59 3615 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3616 goto fail_tree_roots;
2b82032c 3617 }
0b86a832 3618
8dabb742 3619 /*
bacce86a
AJ
3620 * At this point we know all the devices that make this filesystem,
3621 * including the seed devices but we don't know yet if the replace
3622 * target is required. So free devices that are not part of this
1a9fd417 3623 * filesystem but skip the replace target device which is checked
bacce86a 3624 * below in btrfs_init_dev_replace().
8dabb742 3625 */
bacce86a 3626 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3627 if (!fs_devices->latest_dev->bdev) {
05135f59 3628 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3629 goto fail_tree_roots;
3630 }
3631
b8522a1e 3632 ret = init_tree_roots(fs_info);
4bbcaa64 3633 if (ret)
b8522a1e 3634 goto fail_tree_roots;
8929ecfa 3635
73651042
NA
3636 /*
3637 * Get zone type information of zoned block devices. This will also
3638 * handle emulation of a zoned filesystem if a regular device has the
3639 * zoned incompat feature flag set.
3640 */
3641 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3642 if (ret) {
3643 btrfs_err(fs_info,
3644 "zoned: failed to read device zone info: %d",
3645 ret);
3646 goto fail_block_groups;
3647 }
3648
75ec1db8
JB
3649 /*
3650 * If we have a uuid root and we're not being told to rescan we need to
3651 * check the generation here so we can set the
3652 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3653 * transaction during a balance or the log replay without updating the
3654 * uuid generation, and then if we crash we would rescan the uuid tree,
3655 * even though it was perfectly fine.
3656 */
3657 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3658 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3659 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3660
cf90d884
QW
3661 ret = btrfs_verify_dev_extents(fs_info);
3662 if (ret) {
3663 btrfs_err(fs_info,
3664 "failed to verify dev extents against chunks: %d",
3665 ret);
3666 goto fail_block_groups;
3667 }
68310a5e
ID
3668 ret = btrfs_recover_balance(fs_info);
3669 if (ret) {
05135f59 3670 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3671 goto fail_block_groups;
3672 }
3673
733f4fbb
SB
3674 ret = btrfs_init_dev_stats(fs_info);
3675 if (ret) {
05135f59 3676 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3677 goto fail_block_groups;
3678 }
3679
8dabb742
SB
3680 ret = btrfs_init_dev_replace(fs_info);
3681 if (ret) {
05135f59 3682 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3683 goto fail_block_groups;
3684 }
3685
b70f5097
NA
3686 ret = btrfs_check_zoned_mode(fs_info);
3687 if (ret) {
3688 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3689 ret);
3690 goto fail_block_groups;
3691 }
3692
c6761a9e 3693 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3694 if (ret) {
05135f59
DS
3695 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3696 ret);
b7c35e81
AJ
3697 goto fail_block_groups;
3698 }
3699
96f3136e 3700 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3701 if (ret) {
05135f59 3702 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3703 goto fail_fsdev_sysfs;
c59021f8 3704 }
3705
c59021f8 3706 ret = btrfs_init_space_info(fs_info);
3707 if (ret) {
05135f59 3708 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3709 goto fail_sysfs;
c59021f8 3710 }
3711
5b4aacef 3712 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3713 if (ret) {
05135f59 3714 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3715 goto fail_sysfs;
1b1d1f66 3716 }
4330e183 3717
16beac87
NA
3718 btrfs_free_zone_cache(fs_info);
3719
5c78a5e7
AJ
3720 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3721 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3722 btrfs_warn(fs_info,
52042d8e 3723 "writable mount is not allowed due to too many missing devices");
2365dd3c 3724 goto fail_sysfs;
292fd7fc 3725 }
9078a3e1 3726
33c44184 3727 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3728 "btrfs-cleaner");
57506d50 3729 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3730 goto fail_sysfs;
a74a4b97
CM
3731
3732 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3733 tree_root,
3734 "btrfs-transaction");
57506d50 3735 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3736 goto fail_cleaner;
a74a4b97 3737
583b7231 3738 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3739 !fs_info->fs_devices->rotating) {
583b7231 3740 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3741 }
3742
572d9ab7 3743 /*
01327610 3744 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3745 * not have to wait for transaction commit
3746 */
3747 btrfs_apply_pending_changes(fs_info);
3818aea2 3748
21adbd5c 3749#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3750 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3751 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3752 btrfs_test_opt(fs_info,
cbeaae4f 3753 CHECK_INTEGRITY_DATA) ? 1 : 0,
21adbd5c
SB
3754 fs_info->check_integrity_print_mask);
3755 if (ret)
05135f59
DS
3756 btrfs_warn(fs_info,
3757 "failed to initialize integrity check module: %d",
3758 ret);
21adbd5c
SB
3759 }
3760#endif
bcef60f2
AJ
3761 ret = btrfs_read_qgroup_config(fs_info);
3762 if (ret)
3763 goto fail_trans_kthread;
21adbd5c 3764
fd708b81
JB
3765 if (btrfs_build_ref_tree(fs_info))
3766 btrfs_err(fs_info, "couldn't build ref tree");
3767
96da0919
QW
3768 /* do not make disk changes in broken FS or nologreplay is given */
3769 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3770 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3771 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3772 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3773 if (ret) {
63443bf5 3774 err = ret;
28c16cbb 3775 goto fail_qgroup;
79787eaa 3776 }
e02119d5 3777 }
1a40e23b 3778
56e9357a 3779 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3780 if (IS_ERR(fs_info->fs_root)) {
3781 err = PTR_ERR(fs_info->fs_root);
f50f4353 3782 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3783 fs_info->fs_root = NULL;
bcef60f2 3784 goto fail_qgroup;
3140c9a3 3785 }
c289811c 3786
bc98a42c 3787 if (sb_rdonly(sb))
8cd29088 3788 goto clear_oneshot;
59641015 3789
44c0ca21 3790 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3791 if (ret) {
6bccf3ab 3792 close_ctree(fs_info);
2b6ba629 3793 return ret;
e3acc2a6 3794 }
b0643e59 3795 btrfs_discard_resume(fs_info);
b382a324 3796
44c0ca21
BB
3797 if (fs_info->uuid_root &&
3798 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3799 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3800 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3801 ret = btrfs_check_uuid_tree(fs_info);
3802 if (ret) {
05135f59
DS
3803 btrfs_warn(fs_info,
3804 "failed to check the UUID tree: %d", ret);
6bccf3ab 3805 close_ctree(fs_info);
70f80175
SB
3806 return ret;
3807 }
f7a81ea4 3808 }
94846229 3809
afcdd129 3810 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3811
b4be6aef
JB
3812 /* Kick the cleaner thread so it'll start deleting snapshots. */
3813 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3814 wake_up_process(fs_info->cleaner_kthread);
3815
8cd29088
BB
3816clear_oneshot:
3817 btrfs_clear_oneshot_options(fs_info);
ad2b2c80 3818 return 0;
39279cc3 3819
bcef60f2
AJ
3820fail_qgroup:
3821 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3822fail_trans_kthread:
3823 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3824 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3825 btrfs_free_fs_roots(fs_info);
3f157a2f 3826fail_cleaner:
a74a4b97 3827 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3828
3829 /*
3830 * make sure we're done with the btree inode before we stop our
3831 * kthreads
3832 */
3833 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3834
2365dd3c 3835fail_sysfs:
6618a59b 3836 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3837
b7c35e81
AJ
3838fail_fsdev_sysfs:
3839 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3840
1b1d1f66 3841fail_block_groups:
54067ae9 3842 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3843
3844fail_tree_roots:
9e3aa805
JB
3845 if (fs_info->data_reloc_root)
3846 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3847 free_root_pointers(fs_info, true);
2b8195bb 3848 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3849
39279cc3 3850fail_sb_buffer:
7abadb64 3851 btrfs_stop_all_workers(fs_info);
5cdd7db6 3852 btrfs_free_block_groups(fs_info);
16cdcec7 3853fail_alloc:
586e46e2
ID
3854 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3855
4543df7e 3856 iput(fs_info->btree_inode);
7e662854 3857fail:
586e46e2 3858 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3859 return err;
eb60ceac 3860}
663faf9f 3861ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3862
314b6dd0 3863static void btrfs_end_super_write(struct bio *bio)
f2984462 3864{
314b6dd0
JT
3865 struct btrfs_device *device = bio->bi_private;
3866 struct bio_vec *bvec;
3867 struct bvec_iter_all iter_all;
3868 struct page *page;
3869
3870 bio_for_each_segment_all(bvec, bio, iter_all) {
3871 page = bvec->bv_page;
3872
3873 if (bio->bi_status) {
3874 btrfs_warn_rl_in_rcu(device->fs_info,
3875 "lost page write due to IO error on %s (%d)",
3876 rcu_str_deref(device->name),
3877 blk_status_to_errno(bio->bi_status));
3878 ClearPageUptodate(page);
3879 SetPageError(page);
3880 btrfs_dev_stat_inc_and_print(device,
3881 BTRFS_DEV_STAT_WRITE_ERRS);
3882 } else {
3883 SetPageUptodate(page);
3884 }
3885
3886 put_page(page);
3887 unlock_page(page);
f2984462 3888 }
314b6dd0
JT
3889
3890 bio_put(bio);
f2984462
CM
3891}
3892
8f32380d 3893struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3894 int copy_num, bool drop_cache)
29c36d72 3895{
29c36d72 3896 struct btrfs_super_block *super;
8f32380d 3897 struct page *page;
12659251 3898 u64 bytenr, bytenr_orig;
8f32380d 3899 struct address_space *mapping = bdev->bd_inode->i_mapping;
12659251
NA
3900 int ret;
3901
3902 bytenr_orig = btrfs_sb_offset(copy_num);
3903 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3904 if (ret == -ENOENT)
3905 return ERR_PTR(-EINVAL);
3906 else if (ret)
3907 return ERR_PTR(ret);
29c36d72 3908
cda00eba 3909 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3910 return ERR_PTR(-EINVAL);
29c36d72 3911
a05d3c91
QW
3912 if (drop_cache) {
3913 /* This should only be called with the primary sb. */
3914 ASSERT(copy_num == 0);
3915
3916 /*
3917 * Drop the page of the primary superblock, so later read will
3918 * always read from the device.
3919 */
3920 invalidate_inode_pages2_range(mapping,
3921 bytenr >> PAGE_SHIFT,
3922 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3923 }
3924
8f32380d
JT
3925 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3926 if (IS_ERR(page))
3927 return ERR_CAST(page);
29c36d72 3928
8f32380d 3929 super = page_address(page);
96c2e067
AJ
3930 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3931 btrfs_release_disk_super(super);
3932 return ERR_PTR(-ENODATA);
3933 }
3934
12659251 3935 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3936 btrfs_release_disk_super(super);
3937 return ERR_PTR(-EINVAL);
29c36d72
AJ
3938 }
3939
8f32380d 3940 return super;
29c36d72
AJ
3941}
3942
3943
8f32380d 3944struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3945{
8f32380d 3946 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3947 int i;
3948 u64 transid = 0;
a512bbf8
YZ
3949
3950 /* we would like to check all the supers, but that would make
3951 * a btrfs mount succeed after a mkfs from a different FS.
3952 * So, we need to add a special mount option to scan for
3953 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3954 */
3955 for (i = 0; i < 1; i++) {
a05d3c91 3956 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3957 if (IS_ERR(super))
a512bbf8
YZ
3958 continue;
3959
a512bbf8 3960 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3961 if (latest)
3962 btrfs_release_disk_super(super);
3963
3964 latest = super;
a512bbf8 3965 transid = btrfs_super_generation(super);
a512bbf8
YZ
3966 }
3967 }
92fc03fb 3968
8f32380d 3969 return super;
a512bbf8
YZ
3970}
3971
4eedeb75 3972/*
abbb3b8e 3973 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3974 * pages we use for writing are locked.
4eedeb75 3975 *
abbb3b8e
DS
3976 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3977 * the expected device size at commit time. Note that max_mirrors must be
3978 * same for write and wait phases.
4eedeb75 3979 *
314b6dd0 3980 * Return number of errors when page is not found or submission fails.
4eedeb75 3981 */
a512bbf8 3982static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3983 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3984{
d5178578 3985 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3986 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3987 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3988 int i;
a512bbf8 3989 int errors = 0;
12659251
NA
3990 int ret;
3991 u64 bytenr, bytenr_orig;
a512bbf8
YZ
3992
3993 if (max_mirrors == 0)
3994 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3995
d5178578
JT
3996 shash->tfm = fs_info->csum_shash;
3997
a512bbf8 3998 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3999 struct page *page;
4000 struct bio *bio;
4001 struct btrfs_super_block *disk_super;
4002
12659251
NA
4003 bytenr_orig = btrfs_sb_offset(i);
4004 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4005 if (ret == -ENOENT) {
4006 continue;
4007 } else if (ret < 0) {
4008 btrfs_err(device->fs_info,
4009 "couldn't get super block location for mirror %d",
4010 i);
4011 errors++;
4012 continue;
4013 }
935e5cc9
MX
4014 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4015 device->commit_total_bytes)
a512bbf8
YZ
4016 break;
4017
12659251 4018 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 4019
fd08001f
EB
4020 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4021 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4022 sb->csum);
4eedeb75 4023
314b6dd0
JT
4024 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4025 GFP_NOFS);
4026 if (!page) {
abbb3b8e 4027 btrfs_err(device->fs_info,
314b6dd0 4028 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
4029 bytenr);
4030 errors++;
4eedeb75 4031 continue;
abbb3b8e 4032 }
634554dc 4033
314b6dd0
JT
4034 /* Bump the refcount for wait_dev_supers() */
4035 get_page(page);
a512bbf8 4036
314b6dd0
JT
4037 disk_super = page_address(page);
4038 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 4039
314b6dd0
JT
4040 /*
4041 * Directly use bios here instead of relying on the page cache
4042 * to do I/O, so we don't lose the ability to do integrity
4043 * checking.
4044 */
07888c66
CH
4045 bio = bio_alloc(device->bdev, 1,
4046 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4047 GFP_NOFS);
314b6dd0
JT
4048 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4049 bio->bi_private = device;
4050 bio->bi_end_io = btrfs_end_super_write;
4051 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4052 offset_in_page(bytenr));
a512bbf8 4053
387125fc 4054 /*
314b6dd0
JT
4055 * We FUA only the first super block. The others we allow to
4056 * go down lazy and there's a short window where the on-disk
4057 * copies might still contain the older version.
387125fc 4058 */
1b9e619c 4059 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
4060 bio->bi_opf |= REQ_FUA;
4061
58ff51f1
CH
4062 btrfsic_check_bio(bio);
4063 submit_bio(bio);
8376d9e1
NA
4064
4065 if (btrfs_advance_sb_log(device, i))
4066 errors++;
a512bbf8
YZ
4067 }
4068 return errors < i ? 0 : -1;
4069}
4070
abbb3b8e
DS
4071/*
4072 * Wait for write completion of superblocks done by write_dev_supers,
4073 * @max_mirrors same for write and wait phases.
4074 *
314b6dd0 4075 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
4076 * date.
4077 */
4078static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4079{
abbb3b8e
DS
4080 int i;
4081 int errors = 0;
b6a535fa 4082 bool primary_failed = false;
12659251 4083 int ret;
abbb3b8e
DS
4084 u64 bytenr;
4085
4086 if (max_mirrors == 0)
4087 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4088
4089 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
4090 struct page *page;
4091
12659251
NA
4092 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4093 if (ret == -ENOENT) {
4094 break;
4095 } else if (ret < 0) {
4096 errors++;
4097 if (i == 0)
4098 primary_failed = true;
4099 continue;
4100 }
abbb3b8e
DS
4101 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4102 device->commit_total_bytes)
4103 break;
4104
314b6dd0
JT
4105 page = find_get_page(device->bdev->bd_inode->i_mapping,
4106 bytenr >> PAGE_SHIFT);
4107 if (!page) {
abbb3b8e 4108 errors++;
b6a535fa
HM
4109 if (i == 0)
4110 primary_failed = true;
abbb3b8e
DS
4111 continue;
4112 }
314b6dd0
JT
4113 /* Page is submitted locked and unlocked once the IO completes */
4114 wait_on_page_locked(page);
4115 if (PageError(page)) {
abbb3b8e 4116 errors++;
b6a535fa
HM
4117 if (i == 0)
4118 primary_failed = true;
4119 }
abbb3b8e 4120
314b6dd0
JT
4121 /* Drop our reference */
4122 put_page(page);
abbb3b8e 4123
314b6dd0
JT
4124 /* Drop the reference from the writing run */
4125 put_page(page);
abbb3b8e
DS
4126 }
4127
b6a535fa
HM
4128 /* log error, force error return */
4129 if (primary_failed) {
4130 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4131 device->devid);
4132 return -1;
4133 }
4134
abbb3b8e
DS
4135 return errors < i ? 0 : -1;
4136}
4137
387125fc
CM
4138/*
4139 * endio for the write_dev_flush, this will wake anyone waiting
4140 * for the barrier when it is done
4141 */
4246a0b6 4142static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 4143{
f9e69aa9 4144 bio_uninit(bio);
e0ae9994 4145 complete(bio->bi_private);
387125fc
CM
4146}
4147
4148/*
4fc6441a
AJ
4149 * Submit a flush request to the device if it supports it. Error handling is
4150 * done in the waiting counterpart.
387125fc 4151 */
4fc6441a 4152static void write_dev_flush(struct btrfs_device *device)
387125fc 4153{
f9e69aa9 4154 struct bio *bio = &device->flush_bio;
387125fc 4155
a91cf0ff
WY
4156#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4157 /*
4158 * When a disk has write caching disabled, we skip submission of a bio
4159 * with flush and sync requests before writing the superblock, since
4160 * it's not needed. However when the integrity checker is enabled, this
4161 * results in reports that there are metadata blocks referred by a
4162 * superblock that were not properly flushed. So don't skip the bio
4163 * submission only when the integrity checker is enabled for the sake
4164 * of simplicity, since this is a debug tool and not meant for use in
4165 * non-debug builds.
4166 */
08e688fd 4167 if (!bdev_write_cache(device->bdev))
4fc6441a 4168 return;
a91cf0ff 4169#endif
387125fc 4170
f9e69aa9
CH
4171 bio_init(bio, device->bdev, NULL, 0,
4172 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 4173 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
4174 init_completion(&device->flush_wait);
4175 bio->bi_private = &device->flush_wait;
387125fc 4176
58ff51f1
CH
4177 btrfsic_check_bio(bio);
4178 submit_bio(bio);
1c3063b6 4179 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 4180}
387125fc 4181
4fc6441a
AJ
4182/*
4183 * If the flush bio has been submitted by write_dev_flush, wait for it.
4184 */
8c27cb35 4185static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 4186{
f9e69aa9 4187 struct bio *bio = &device->flush_bio;
387125fc 4188
1c3063b6 4189 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 4190 return BLK_STS_OK;
387125fc 4191
1c3063b6 4192 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 4193 wait_for_completion_io(&device->flush_wait);
387125fc 4194
8c27cb35 4195 return bio->bi_status;
387125fc 4196}
387125fc 4197
d10b82fe 4198static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 4199{
6528b99d 4200 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 4201 return -EIO;
387125fc
CM
4202 return 0;
4203}
4204
4205/*
4206 * send an empty flush down to each device in parallel,
4207 * then wait for them
4208 */
4209static int barrier_all_devices(struct btrfs_fs_info *info)
4210{
4211 struct list_head *head;
4212 struct btrfs_device *dev;
5af3e8cc 4213 int errors_wait = 0;
4e4cbee9 4214 blk_status_t ret;
387125fc 4215
1538e6c5 4216 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
4217 /* send down all the barriers */
4218 head = &info->fs_devices->devices;
1538e6c5 4219 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4220 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4221 continue;
cea7c8bf 4222 if (!dev->bdev)
387125fc 4223 continue;
e12c9621 4224 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4225 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4226 continue;
4227
4fc6441a 4228 write_dev_flush(dev);
58efbc9f 4229 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
4230 }
4231
4232 /* wait for all the barriers */
1538e6c5 4233 list_for_each_entry(dev, head, dev_list) {
e6e674bd 4234 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 4235 continue;
387125fc 4236 if (!dev->bdev) {
5af3e8cc 4237 errors_wait++;
387125fc
CM
4238 continue;
4239 }
e12c9621 4240 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4241 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
4242 continue;
4243
4fc6441a 4244 ret = wait_dev_flush(dev);
401b41e5
AJ
4245 if (ret) {
4246 dev->last_flush_error = ret;
66b4993e
DS
4247 btrfs_dev_stat_inc_and_print(dev,
4248 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 4249 errors_wait++;
401b41e5
AJ
4250 }
4251 }
4252
cea7c8bf 4253 if (errors_wait) {
401b41e5
AJ
4254 /*
4255 * At some point we need the status of all disks
4256 * to arrive at the volume status. So error checking
4257 * is being pushed to a separate loop.
4258 */
d10b82fe 4259 return check_barrier_error(info);
387125fc 4260 }
387125fc
CM
4261 return 0;
4262}
4263
943c6e99
ZL
4264int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4265{
8789f4fe
ZL
4266 int raid_type;
4267 int min_tolerated = INT_MAX;
943c6e99 4268
8789f4fe
ZL
4269 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4270 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 4271 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4272 btrfs_raid_array[BTRFS_RAID_SINGLE].
4273 tolerated_failures);
943c6e99 4274
8789f4fe
ZL
4275 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4276 if (raid_type == BTRFS_RAID_SINGLE)
4277 continue;
41a6e891 4278 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4279 continue;
8c3e3582 4280 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4281 btrfs_raid_array[raid_type].
4282 tolerated_failures);
4283 }
943c6e99 4284
8789f4fe 4285 if (min_tolerated == INT_MAX) {
ab8d0fc4 4286 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4287 min_tolerated = 0;
4288 }
4289
4290 return min_tolerated;
943c6e99
ZL
4291}
4292
eece6a9c 4293int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4294{
e5e9a520 4295 struct list_head *head;
f2984462 4296 struct btrfs_device *dev;
a061fc8d 4297 struct btrfs_super_block *sb;
f2984462 4298 struct btrfs_dev_item *dev_item;
f2984462
CM
4299 int ret;
4300 int do_barriers;
a236aed1
CM
4301 int max_errors;
4302 int total_errors = 0;
a061fc8d 4303 u64 flags;
f2984462 4304
0b246afa 4305 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4306
4307 /*
4308 * max_mirrors == 0 indicates we're from commit_transaction,
4309 * not from fsync where the tree roots in fs_info have not
4310 * been consistent on disk.
4311 */
4312 if (max_mirrors == 0)
4313 backup_super_roots(fs_info);
f2984462 4314
0b246afa 4315 sb = fs_info->super_for_commit;
a061fc8d 4316 dev_item = &sb->dev_item;
e5e9a520 4317
0b246afa
JM
4318 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4319 head = &fs_info->fs_devices->devices;
4320 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4321
5af3e8cc 4322 if (do_barriers) {
0b246afa 4323 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4324 if (ret) {
4325 mutex_unlock(
0b246afa
JM
4326 &fs_info->fs_devices->device_list_mutex);
4327 btrfs_handle_fs_error(fs_info, ret,
4328 "errors while submitting device barriers.");
5af3e8cc
SB
4329 return ret;
4330 }
4331 }
387125fc 4332
1538e6c5 4333 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4334 if (!dev->bdev) {
4335 total_errors++;
4336 continue;
4337 }
e12c9621 4338 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4339 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4340 continue;
4341
2b82032c 4342 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4343 btrfs_set_stack_device_type(dev_item, dev->type);
4344 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4345 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4346 dev->commit_total_bytes);
ce7213c7
MX
4347 btrfs_set_stack_device_bytes_used(dev_item,
4348 dev->commit_bytes_used);
a061fc8d
CM
4349 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4350 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4351 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4352 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4353 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4354 BTRFS_FSID_SIZE);
a512bbf8 4355
a061fc8d
CM
4356 flags = btrfs_super_flags(sb);
4357 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4358
75cb857d
QW
4359 ret = btrfs_validate_write_super(fs_info, sb);
4360 if (ret < 0) {
4361 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4362 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4363 "unexpected superblock corruption detected");
4364 return -EUCLEAN;
4365 }
4366
abbb3b8e 4367 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4368 if (ret)
4369 total_errors++;
f2984462 4370 }
a236aed1 4371 if (total_errors > max_errors) {
0b246afa
JM
4372 btrfs_err(fs_info, "%d errors while writing supers",
4373 total_errors);
4374 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4375
9d565ba4 4376 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4377 btrfs_handle_fs_error(fs_info, -EIO,
4378 "%d errors while writing supers",
4379 total_errors);
9d565ba4 4380 return -EIO;
a236aed1 4381 }
f2984462 4382
a512bbf8 4383 total_errors = 0;
1538e6c5 4384 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4385 if (!dev->bdev)
4386 continue;
e12c9621 4387 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4388 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4389 continue;
4390
abbb3b8e 4391 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4392 if (ret)
4393 total_errors++;
f2984462 4394 }
0b246afa 4395 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4396 if (total_errors > max_errors) {
0b246afa
JM
4397 btrfs_handle_fs_error(fs_info, -EIO,
4398 "%d errors while writing supers",
4399 total_errors);
79787eaa 4400 return -EIO;
a236aed1 4401 }
f2984462
CM
4402 return 0;
4403}
4404
cb517eab
MX
4405/* Drop a fs root from the radix tree and free it. */
4406void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4407 struct btrfs_root *root)
2619ba1f 4408{
4785e24f
JB
4409 bool drop_ref = false;
4410
fc7cbcd4
DS
4411 spin_lock(&fs_info->fs_roots_radix_lock);
4412 radix_tree_delete(&fs_info->fs_roots_radix,
4413 (unsigned long)root->root_key.objectid);
4414 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4415 drop_ref = true;
fc7cbcd4 4416 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4417
84961539 4418 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4419 ASSERT(root->log_root == NULL);
1c1ea4f7 4420 if (root->reloc_root) {
00246528 4421 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4422 root->reloc_root = NULL;
4423 }
4424 }
3321719e 4425
4785e24f
JB
4426 if (drop_ref)
4427 btrfs_put_root(root);
2619ba1f
CM
4428}
4429
c146afad 4430int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 4431{
fc7cbcd4
DS
4432 u64 root_objectid = 0;
4433 struct btrfs_root *gang[8];
4434 int i = 0;
65d33fd7 4435 int err = 0;
fc7cbcd4 4436 unsigned int ret = 0;
e089f05c 4437
c146afad 4438 while (1) {
fc7cbcd4
DS
4439 spin_lock(&fs_info->fs_roots_radix_lock);
4440 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4441 (void **)gang, root_objectid,
4442 ARRAY_SIZE(gang));
4443 if (!ret) {
4444 spin_unlock(&fs_info->fs_roots_radix_lock);
4445 break;
65d33fd7 4446 }
fc7cbcd4 4447 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 4448
fc7cbcd4
DS
4449 for (i = 0; i < ret; i++) {
4450 /* Avoid to grab roots in dead_roots */
4451 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4452 gang[i] = NULL;
4453 continue;
4454 }
4455 /* grab all the search result for later use */
4456 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 4457 }
fc7cbcd4 4458 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 4459
fc7cbcd4
DS
4460 for (i = 0; i < ret; i++) {
4461 if (!gang[i])
65d33fd7 4462 continue;
fc7cbcd4
DS
4463 root_objectid = gang[i]->root_key.objectid;
4464 err = btrfs_orphan_cleanup(gang[i]);
66b4ffd1 4465 if (err)
fc7cbcd4
DS
4466 break;
4467 btrfs_put_root(gang[i]);
c146afad 4468 }
fc7cbcd4 4469 root_objectid++;
c146afad 4470 }
65d33fd7 4471
fc7cbcd4
DS
4472 /* release the uncleaned roots due to error */
4473 for (; i < ret; i++) {
4474 if (gang[i])
4475 btrfs_put_root(gang[i]);
65d33fd7
QW
4476 }
4477 return err;
c146afad 4478}
a2135011 4479
6bccf3ab 4480int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4481{
6bccf3ab 4482 struct btrfs_root *root = fs_info->tree_root;
c146afad 4483 struct btrfs_trans_handle *trans;
a74a4b97 4484
0b246afa 4485 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4486 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4487 mutex_unlock(&fs_info->cleaner_mutex);
4488 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4489
4490 /* wait until ongoing cleanup work done */
0b246afa
JM
4491 down_write(&fs_info->cleanup_work_sem);
4492 up_write(&fs_info->cleanup_work_sem);
c71bf099 4493
7a7eaa40 4494 trans = btrfs_join_transaction(root);
3612b495
TI
4495 if (IS_ERR(trans))
4496 return PTR_ERR(trans);
3a45bb20 4497 return btrfs_commit_transaction(trans);
c146afad
YZ
4498}
4499
36c86a9e
QW
4500static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4501{
4502 struct btrfs_transaction *trans;
4503 struct btrfs_transaction *tmp;
4504 bool found = false;
4505
4506 if (list_empty(&fs_info->trans_list))
4507 return;
4508
4509 /*
4510 * This function is only called at the very end of close_ctree(),
4511 * thus no other running transaction, no need to take trans_lock.
4512 */
4513 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4514 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4515 struct extent_state *cached = NULL;
4516 u64 dirty_bytes = 0;
4517 u64 cur = 0;
4518 u64 found_start;
4519 u64 found_end;
4520
4521 found = true;
4522 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4523 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4524 dirty_bytes += found_end + 1 - found_start;
4525 cur = found_end + 1;
4526 }
4527 btrfs_warn(fs_info,
4528 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4529 trans->transid, dirty_bytes);
4530 btrfs_cleanup_one_transaction(trans, fs_info);
4531
4532 if (trans == fs_info->running_transaction)
4533 fs_info->running_transaction = NULL;
4534 list_del_init(&trans->list);
4535
4536 btrfs_put_transaction(trans);
4537 trace_btrfs_transaction_commit(fs_info);
4538 }
4539 ASSERT(!found);
4540}
4541
b105e927 4542void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4543{
c146afad
YZ
4544 int ret;
4545
afcdd129 4546 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4547
8a1f1e3d
FM
4548 /*
4549 * If we had UNFINISHED_DROPS we could still be processing them, so
4550 * clear that bit and wake up relocation so it can stop.
4551 * We must do this before stopping the block group reclaim task, because
4552 * at btrfs_relocate_block_group() we wait for this bit, and after the
4553 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4554 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4555 * return 1.
4556 */
4557 btrfs_wake_unfinished_drop(fs_info);
4558
31e70e52
FM
4559 /*
4560 * We may have the reclaim task running and relocating a data block group,
4561 * in which case it may create delayed iputs. So stop it before we park
4562 * the cleaner kthread otherwise we can get new delayed iputs after
4563 * parking the cleaner, and that can make the async reclaim task to hang
4564 * if it's waiting for delayed iputs to complete, since the cleaner is
4565 * parked and can not run delayed iputs - this will make us hang when
4566 * trying to stop the async reclaim task.
4567 */
4568 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4569 /*
4570 * We don't want the cleaner to start new transactions, add more delayed
4571 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4572 * because that frees the task_struct, and the transaction kthread might
4573 * still try to wake up the cleaner.
4574 */
4575 kthread_park(fs_info->cleaner_kthread);
c146afad 4576
7343dd61 4577 /* wait for the qgroup rescan worker to stop */
d06f23d6 4578 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4579
803b2f54
SB
4580 /* wait for the uuid_scan task to finish */
4581 down(&fs_info->uuid_tree_rescan_sem);
4582 /* avoid complains from lockdep et al., set sem back to initial state */
4583 up(&fs_info->uuid_tree_rescan_sem);
4584
837d5b6e 4585 /* pause restriper - we want to resume on mount */
aa1b8cd4 4586 btrfs_pause_balance(fs_info);
837d5b6e 4587
8dabb742
SB
4588 btrfs_dev_replace_suspend_for_unmount(fs_info);
4589
aa1b8cd4 4590 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4591
4592 /* wait for any defraggers to finish */
4593 wait_event(fs_info->transaction_wait,
4594 (atomic_read(&fs_info->defrag_running) == 0));
4595
4596 /* clear out the rbtree of defraggable inodes */
26176e7c 4597 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4598
a362bb86
FM
4599 /*
4600 * After we parked the cleaner kthread, ordered extents may have
4601 * completed and created new delayed iputs. If one of the async reclaim
4602 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4603 * can hang forever trying to stop it, because if a delayed iput is
4604 * added after it ran btrfs_run_delayed_iputs() and before it called
4605 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4606 * no one else to run iputs.
4607 *
4608 * So wait for all ongoing ordered extents to complete and then run
4609 * delayed iputs. This works because once we reach this point no one
4610 * can either create new ordered extents nor create delayed iputs
4611 * through some other means.
4612 *
4613 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4614 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4615 * but the delayed iput for the respective inode is made only when doing
4616 * the final btrfs_put_ordered_extent() (which must happen at
4617 * btrfs_finish_ordered_io() when we are unmounting).
4618 */
4619 btrfs_flush_workqueue(fs_info->endio_write_workers);
4620 /* Ordered extents for free space inodes. */
4621 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4622 btrfs_run_delayed_iputs(fs_info);
4623
21c7e756 4624 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4625 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4626 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4627
b0643e59
DZ
4628 /* Cancel or finish ongoing discard work */
4629 btrfs_discard_cleanup(fs_info);
4630
bc98a42c 4631 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4632 /*
d6fd0ae2
OS
4633 * The cleaner kthread is stopped, so do one final pass over
4634 * unused block groups.
e44163e1 4635 */
0b246afa 4636 btrfs_delete_unused_bgs(fs_info);
e44163e1 4637
f0cc2cd7
FM
4638 /*
4639 * There might be existing delayed inode workers still running
4640 * and holding an empty delayed inode item. We must wait for
4641 * them to complete first because they can create a transaction.
4642 * This happens when someone calls btrfs_balance_delayed_items()
4643 * and then a transaction commit runs the same delayed nodes
4644 * before any delayed worker has done something with the nodes.
4645 * We must wait for any worker here and not at transaction
4646 * commit time since that could cause a deadlock.
4647 * This is a very rare case.
4648 */
4649 btrfs_flush_workqueue(fs_info->delayed_workers);
4650
6bccf3ab 4651 ret = btrfs_commit_super(fs_info);
acce952b 4652 if (ret)
04892340 4653 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4654 }
4655
84961539 4656 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4657 btrfs_error_commit_super(fs_info);
0f7d52f4 4658
e3029d9f
AV
4659 kthread_stop(fs_info->transaction_kthread);
4660 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4661
e187831e 4662 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4663 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4664
5958253c
QW
4665 if (btrfs_check_quota_leak(fs_info)) {
4666 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4667 btrfs_err(fs_info, "qgroup reserved space leaked");
4668 }
4669
04892340 4670 btrfs_free_qgroup_config(fs_info);
fe816d0f 4671 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4672
963d678b 4673 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4674 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4675 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4676 }
bcc63abb 4677
5deb17e1 4678 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4679 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4680 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4681
6618a59b 4682 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4683 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4684
1a4319cc
LB
4685 btrfs_put_block_group_cache(fs_info);
4686
de348ee0
WS
4687 /*
4688 * we must make sure there is not any read request to
4689 * submit after we stopping all workers.
4690 */
4691 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4692 btrfs_stop_all_workers(fs_info);
4693
0a31daa4 4694 /* We shouldn't have any transaction open at this point */
36c86a9e 4695 warn_about_uncommitted_trans(fs_info);
0a31daa4 4696
afcdd129 4697 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4698 free_root_pointers(fs_info, true);
8c38938c 4699 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4700
4e19443d
JB
4701 /*
4702 * We must free the block groups after dropping the fs_roots as we could
4703 * have had an IO error and have left over tree log blocks that aren't
4704 * cleaned up until the fs roots are freed. This makes the block group
4705 * accounting appear to be wrong because there's pending reserved bytes,
4706 * so make sure we do the block group cleanup afterwards.
4707 */
4708 btrfs_free_block_groups(fs_info);
4709
13e6c37b 4710 iput(fs_info->btree_inode);
d6bfde87 4711
21adbd5c 4712#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4713 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4714 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4715#endif
4716
0b86a832 4717 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4718 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4719}
4720
b9fab919
CM
4721int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4722 int atomic)
5f39d397 4723{
1259ab75 4724 int ret;
727011e0 4725 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4726
0b32f4bb 4727 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4728 if (!ret)
4729 return ret;
4730
4731 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4732 parent_transid, atomic);
4733 if (ret == -EAGAIN)
4734 return ret;
1259ab75 4735 return !ret;
5f39d397
CM
4736}
4737
5f39d397
CM
4738void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4739{
2f4d60df 4740 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4741 u64 transid = btrfs_header_generation(buf);
b9473439 4742 int was_dirty;
b4ce94de 4743
06ea65a3
JB
4744#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4745 /*
4746 * This is a fast path so only do this check if we have sanity tests
52042d8e 4747 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4748 * outside of the sanity tests.
4749 */
b0132a3b 4750 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4751 return;
4752#endif
49d0c642 4753 btrfs_assert_tree_write_locked(buf);
0b246afa 4754 if (transid != fs_info->generation)
5d163e0e 4755 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4756 buf->start, transid, fs_info->generation);
0b32f4bb 4757 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4758 if (!was_dirty)
104b4e51
NB
4759 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4760 buf->len,
4761 fs_info->dirty_metadata_batch);
1f21ef0a 4762#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4763 /*
4764 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4765 * but item data not updated.
4766 * So here we should only check item pointers, not item data.
4767 */
4768 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4769 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4770 btrfs_print_leaf(buf);
1f21ef0a
FM
4771 ASSERT(0);
4772 }
4773#endif
eb60ceac
CM
4774}
4775
2ff7e61e 4776static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4777 int flush_delayed)
16cdcec7
MX
4778{
4779 /*
4780 * looks as though older kernels can get into trouble with
4781 * this code, they end up stuck in balance_dirty_pages forever
4782 */
e2d84521 4783 int ret;
16cdcec7
MX
4784
4785 if (current->flags & PF_MEMALLOC)
4786 return;
4787
b53d3f5d 4788 if (flush_delayed)
2ff7e61e 4789 btrfs_balance_delayed_items(fs_info);
16cdcec7 4790
d814a491
EL
4791 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4792 BTRFS_DIRTY_METADATA_THRESH,
4793 fs_info->dirty_metadata_batch);
e2d84521 4794 if (ret > 0) {
0b246afa 4795 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4796 }
16cdcec7
MX
4797}
4798
2ff7e61e 4799void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4800{
2ff7e61e 4801 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4802}
585ad2c3 4803
2ff7e61e 4804void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4805{
2ff7e61e 4806 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4807}
6b80053d 4808
2ff7e61e 4809static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4810{
fe816d0f
NB
4811 /* cleanup FS via transaction */
4812 btrfs_cleanup_transaction(fs_info);
4813
0b246afa 4814 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4815 btrfs_run_delayed_iputs(fs_info);
0b246afa 4816 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4817
0b246afa
JM
4818 down_write(&fs_info->cleanup_work_sem);
4819 up_write(&fs_info->cleanup_work_sem);
acce952b 4820}
4821
ef67963d
JB
4822static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4823{
fc7cbcd4
DS
4824 struct btrfs_root *gang[8];
4825 u64 root_objectid = 0;
4826 int ret;
4827
4828 spin_lock(&fs_info->fs_roots_radix_lock);
4829 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4830 (void **)gang, root_objectid,
4831 ARRAY_SIZE(gang))) != 0) {
4832 int i;
4833
4834 for (i = 0; i < ret; i++)
4835 gang[i] = btrfs_grab_root(gang[i]);
4836 spin_unlock(&fs_info->fs_roots_radix_lock);
4837
4838 for (i = 0; i < ret; i++) {
4839 if (!gang[i])
ef67963d 4840 continue;
fc7cbcd4
DS
4841 root_objectid = gang[i]->root_key.objectid;
4842 btrfs_free_log(NULL, gang[i]);
4843 btrfs_put_root(gang[i]);
ef67963d 4844 }
fc7cbcd4
DS
4845 root_objectid++;
4846 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4847 }
fc7cbcd4 4848 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4849 btrfs_free_log_root_tree(NULL, fs_info);
4850}
4851
143bede5 4852static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4853{
acce952b 4854 struct btrfs_ordered_extent *ordered;
acce952b 4855
199c2a9c 4856 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4857 /*
4858 * This will just short circuit the ordered completion stuff which will
4859 * make sure the ordered extent gets properly cleaned up.
4860 */
199c2a9c 4861 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4862 root_extent_list)
4863 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4864 spin_unlock(&root->ordered_extent_lock);
4865}
4866
4867static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4868{
4869 struct btrfs_root *root;
4870 struct list_head splice;
4871
4872 INIT_LIST_HEAD(&splice);
4873
4874 spin_lock(&fs_info->ordered_root_lock);
4875 list_splice_init(&fs_info->ordered_roots, &splice);
4876 while (!list_empty(&splice)) {
4877 root = list_first_entry(&splice, struct btrfs_root,
4878 ordered_root);
1de2cfde
JB
4879 list_move_tail(&root->ordered_root,
4880 &fs_info->ordered_roots);
199c2a9c 4881
2a85d9ca 4882 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4883 btrfs_destroy_ordered_extents(root);
4884
2a85d9ca
LB
4885 cond_resched();
4886 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4887 }
4888 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4889
4890 /*
4891 * We need this here because if we've been flipped read-only we won't
4892 * get sync() from the umount, so we need to make sure any ordered
4893 * extents that haven't had their dirty pages IO start writeout yet
4894 * actually get run and error out properly.
4895 */
4896 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4897}
4898
35a3621b 4899static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4900 struct btrfs_fs_info *fs_info)
acce952b 4901{
4902 struct rb_node *node;
4903 struct btrfs_delayed_ref_root *delayed_refs;
4904 struct btrfs_delayed_ref_node *ref;
4905 int ret = 0;
4906
4907 delayed_refs = &trans->delayed_refs;
4908
4909 spin_lock(&delayed_refs->lock);
d7df2c79 4910 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4911 spin_unlock(&delayed_refs->lock);
b79ce3dd 4912 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4913 return ret;
4914 }
4915
5c9d028b 4916 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4917 struct btrfs_delayed_ref_head *head;
0e0adbcf 4918 struct rb_node *n;
e78417d1 4919 bool pin_bytes = false;
acce952b 4920
d7df2c79
JB
4921 head = rb_entry(node, struct btrfs_delayed_ref_head,
4922 href_node);
3069bd26 4923 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4924 continue;
3069bd26 4925
d7df2c79 4926 spin_lock(&head->lock);
e3d03965 4927 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4928 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4929 ref_node);
d7df2c79 4930 ref->in_tree = 0;
e3d03965 4931 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4932 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4933 if (!list_empty(&ref->add_list))
4934 list_del(&ref->add_list);
d7df2c79
JB
4935 atomic_dec(&delayed_refs->num_entries);
4936 btrfs_put_delayed_ref(ref);
e78417d1 4937 }
d7df2c79
JB
4938 if (head->must_insert_reserved)
4939 pin_bytes = true;
4940 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4941 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4942 spin_unlock(&head->lock);
4943 spin_unlock(&delayed_refs->lock);
4944 mutex_unlock(&head->mutex);
acce952b 4945
f603bb94
NB
4946 if (pin_bytes) {
4947 struct btrfs_block_group *cache;
4948
4949 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4950 BUG_ON(!cache);
4951
4952 spin_lock(&cache->space_info->lock);
4953 spin_lock(&cache->lock);
4954 cache->pinned += head->num_bytes;
4955 btrfs_space_info_update_bytes_pinned(fs_info,
4956 cache->space_info, head->num_bytes);
4957 cache->reserved -= head->num_bytes;
4958 cache->space_info->bytes_reserved -= head->num_bytes;
4959 spin_unlock(&cache->lock);
4960 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4961
4962 btrfs_put_block_group(cache);
4963
4964 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4965 head->bytenr + head->num_bytes - 1);
4966 }
31890da0 4967 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4968 btrfs_put_delayed_ref_head(head);
acce952b 4969 cond_resched();
4970 spin_lock(&delayed_refs->lock);
4971 }
81f7eb00 4972 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4973
4974 spin_unlock(&delayed_refs->lock);
4975
4976 return ret;
4977}
4978
143bede5 4979static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4980{
4981 struct btrfs_inode *btrfs_inode;
4982 struct list_head splice;
4983
4984 INIT_LIST_HEAD(&splice);
4985
eb73c1b7
MX
4986 spin_lock(&root->delalloc_lock);
4987 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4988
4989 while (!list_empty(&splice)) {
fe816d0f 4990 struct inode *inode = NULL;
eb73c1b7
MX
4991 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4992 delalloc_inodes);
fe816d0f 4993 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4994 spin_unlock(&root->delalloc_lock);
acce952b 4995
fe816d0f
NB
4996 /*
4997 * Make sure we get a live inode and that it'll not disappear
4998 * meanwhile.
4999 */
5000 inode = igrab(&btrfs_inode->vfs_inode);
5001 if (inode) {
5002 invalidate_inode_pages2(inode->i_mapping);
5003 iput(inode);
5004 }
eb73c1b7 5005 spin_lock(&root->delalloc_lock);
acce952b 5006 }
eb73c1b7
MX
5007 spin_unlock(&root->delalloc_lock);
5008}
5009
5010static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5011{
5012 struct btrfs_root *root;
5013 struct list_head splice;
5014
5015 INIT_LIST_HEAD(&splice);
5016
5017 spin_lock(&fs_info->delalloc_root_lock);
5018 list_splice_init(&fs_info->delalloc_roots, &splice);
5019 while (!list_empty(&splice)) {
5020 root = list_first_entry(&splice, struct btrfs_root,
5021 delalloc_root);
00246528 5022 root = btrfs_grab_root(root);
eb73c1b7
MX
5023 BUG_ON(!root);
5024 spin_unlock(&fs_info->delalloc_root_lock);
5025
5026 btrfs_destroy_delalloc_inodes(root);
00246528 5027 btrfs_put_root(root);
eb73c1b7
MX
5028
5029 spin_lock(&fs_info->delalloc_root_lock);
5030 }
5031 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 5032}
5033
2ff7e61e 5034static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 5035 struct extent_io_tree *dirty_pages,
5036 int mark)
5037{
5038 int ret;
acce952b 5039 struct extent_buffer *eb;
5040 u64 start = 0;
5041 u64 end;
acce952b 5042
5043 while (1) {
5044 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 5045 mark, NULL);
acce952b 5046 if (ret)
5047 break;
5048
91166212 5049 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 5050 while (start <= end) {
0b246afa
JM
5051 eb = find_extent_buffer(fs_info, start);
5052 start += fs_info->nodesize;
fd8b2b61 5053 if (!eb)
acce952b 5054 continue;
fd8b2b61 5055 wait_on_extent_buffer_writeback(eb);
acce952b 5056
fd8b2b61
JB
5057 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5058 &eb->bflags))
5059 clear_extent_buffer_dirty(eb);
5060 free_extent_buffer_stale(eb);
acce952b 5061 }
5062 }
5063
5064 return ret;
5065}
5066
2ff7e61e 5067static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 5068 struct extent_io_tree *unpin)
acce952b 5069{
acce952b 5070 u64 start;
5071 u64 end;
5072 int ret;
5073
acce952b 5074 while (1) {
0e6ec385
FM
5075 struct extent_state *cached_state = NULL;
5076
fcd5e742
LF
5077 /*
5078 * The btrfs_finish_extent_commit() may get the same range as
5079 * ours between find_first_extent_bit and clear_extent_dirty.
5080 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5081 * the same extent range.
5082 */
5083 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 5084 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 5085 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
5086 if (ret) {
5087 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5088 break;
fcd5e742 5089 }
acce952b 5090
0e6ec385
FM
5091 clear_extent_dirty(unpin, start, end, &cached_state);
5092 free_extent_state(cached_state);
2ff7e61e 5093 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 5094 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 5095 cond_resched();
5096 }
5097
5098 return 0;
5099}
5100
32da5386 5101static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
5102{
5103 struct inode *inode;
5104
5105 inode = cache->io_ctl.inode;
5106 if (inode) {
5107 invalidate_inode_pages2(inode->i_mapping);
5108 BTRFS_I(inode)->generation = 0;
5109 cache->io_ctl.inode = NULL;
5110 iput(inode);
5111 }
bbc37d6e 5112 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
5113 btrfs_put_block_group(cache);
5114}
5115
5116void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 5117 struct btrfs_fs_info *fs_info)
c79a1751 5118{
32da5386 5119 struct btrfs_block_group *cache;
c79a1751
LB
5120
5121 spin_lock(&cur_trans->dirty_bgs_lock);
5122 while (!list_empty(&cur_trans->dirty_bgs)) {
5123 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 5124 struct btrfs_block_group,
c79a1751 5125 dirty_list);
c79a1751
LB
5126
5127 if (!list_empty(&cache->io_list)) {
5128 spin_unlock(&cur_trans->dirty_bgs_lock);
5129 list_del_init(&cache->io_list);
5130 btrfs_cleanup_bg_io(cache);
5131 spin_lock(&cur_trans->dirty_bgs_lock);
5132 }
5133
5134 list_del_init(&cache->dirty_list);
5135 spin_lock(&cache->lock);
5136 cache->disk_cache_state = BTRFS_DC_ERROR;
5137 spin_unlock(&cache->lock);
5138
5139 spin_unlock(&cur_trans->dirty_bgs_lock);
5140 btrfs_put_block_group(cache);
ba2c4d4e 5141 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
5142 spin_lock(&cur_trans->dirty_bgs_lock);
5143 }
5144 spin_unlock(&cur_trans->dirty_bgs_lock);
5145
45ae2c18
NB
5146 /*
5147 * Refer to the definition of io_bgs member for details why it's safe
5148 * to use it without any locking
5149 */
c79a1751
LB
5150 while (!list_empty(&cur_trans->io_bgs)) {
5151 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 5152 struct btrfs_block_group,
c79a1751 5153 io_list);
c79a1751
LB
5154
5155 list_del_init(&cache->io_list);
5156 spin_lock(&cache->lock);
5157 cache->disk_cache_state = BTRFS_DC_ERROR;
5158 spin_unlock(&cache->lock);
5159 btrfs_cleanup_bg_io(cache);
5160 }
5161}
5162
49b25e05 5163void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 5164 struct btrfs_fs_info *fs_info)
49b25e05 5165{
bbbf7243
NB
5166 struct btrfs_device *dev, *tmp;
5167
2ff7e61e 5168 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
5169 ASSERT(list_empty(&cur_trans->dirty_bgs));
5170 ASSERT(list_empty(&cur_trans->io_bgs));
5171
bbbf7243
NB
5172 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5173 post_commit_list) {
5174 list_del_init(&dev->post_commit_list);
5175 }
5176
2ff7e61e 5177 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 5178
4a9d8bde 5179 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 5180 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 5181
4a9d8bde 5182 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 5183 wake_up(&fs_info->transaction_wait);
49b25e05 5184
ccdf9b30 5185 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 5186
2ff7e61e 5187 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 5188 EXTENT_DIRTY);
fe119a6e 5189 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 5190
d3575156
NA
5191 btrfs_free_redirty_list(cur_trans);
5192
4a9d8bde
MX
5193 cur_trans->state =TRANS_STATE_COMPLETED;
5194 wake_up(&cur_trans->commit_wait);
49b25e05
JM
5195}
5196
2ff7e61e 5197static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 5198{
5199 struct btrfs_transaction *t;
acce952b 5200
0b246afa 5201 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 5202
0b246afa
JM
5203 spin_lock(&fs_info->trans_lock);
5204 while (!list_empty(&fs_info->trans_list)) {
5205 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
5206 struct btrfs_transaction, list);
5207 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 5208 refcount_inc(&t->use_count);
0b246afa 5209 spin_unlock(&fs_info->trans_lock);
2ff7e61e 5210 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 5211 btrfs_put_transaction(t);
0b246afa 5212 spin_lock(&fs_info->trans_lock);
724e2315
JB
5213 continue;
5214 }
0b246afa 5215 if (t == fs_info->running_transaction) {
724e2315 5216 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 5217 spin_unlock(&fs_info->trans_lock);
724e2315
JB
5218 /*
5219 * We wait for 0 num_writers since we don't hold a trans
5220 * handle open currently for this transaction.
5221 */
5222 wait_event(t->writer_wait,
5223 atomic_read(&t->num_writers) == 0);
5224 } else {
0b246afa 5225 spin_unlock(&fs_info->trans_lock);
724e2315 5226 }
2ff7e61e 5227 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 5228
0b246afa
JM
5229 spin_lock(&fs_info->trans_lock);
5230 if (t == fs_info->running_transaction)
5231 fs_info->running_transaction = NULL;
acce952b 5232 list_del_init(&t->list);
0b246afa 5233 spin_unlock(&fs_info->trans_lock);
acce952b 5234
724e2315 5235 btrfs_put_transaction(t);
2e4e97ab 5236 trace_btrfs_transaction_commit(fs_info);
0b246afa 5237 spin_lock(&fs_info->trans_lock);
724e2315 5238 }
0b246afa
JM
5239 spin_unlock(&fs_info->trans_lock);
5240 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
5241 btrfs_destroy_delayed_inodes(fs_info);
5242 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 5243 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 5244 btrfs_drop_all_logs(fs_info);
0b246afa 5245 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 5246
5247 return 0;
5248}
ec7d6dfd 5249
453e4873 5250int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
5251{
5252 struct btrfs_path *path;
5253 int ret;
5254 struct extent_buffer *l;
5255 struct btrfs_key search_key;
5256 struct btrfs_key found_key;
5257 int slot;
5258
5259 path = btrfs_alloc_path();
5260 if (!path)
5261 return -ENOMEM;
5262
5263 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5264 search_key.type = -1;
5265 search_key.offset = (u64)-1;
5266 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5267 if (ret < 0)
5268 goto error;
5269 BUG_ON(ret == 0); /* Corruption */
5270 if (path->slots[0] > 0) {
5271 slot = path->slots[0] - 1;
5272 l = path->nodes[0];
5273 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
5274 root->free_objectid = max_t(u64, found_key.objectid + 1,
5275 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 5276 } else {
23125104 5277 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
5278 }
5279 ret = 0;
5280error:
5281 btrfs_free_path(path);
5282 return ret;
5283}
5284
543068a2 5285int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
5286{
5287 int ret;
5288 mutex_lock(&root->objectid_mutex);
5289
6b8fad57 5290 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
5291 btrfs_warn(root->fs_info,
5292 "the objectid of root %llu reaches its highest value",
5293 root->root_key.objectid);
5294 ret = -ENOSPC;
5295 goto out;
5296 }
5297
23125104 5298 *objectid = root->free_objectid++;
ec7d6dfd
NB
5299 ret = 0;
5300out:
5301 mutex_unlock(&root->objectid_mutex);
5302 return ret;
5303}