btrfs: Move btrfs_check_super_valid() to avoid forward declaration
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
87cbda5c 8#include <linux/scatterlist.h>
22b0ebda 9#include <linux/swap.h>
0f7d52f4 10#include <linux/radix-tree.h>
35b7e476 11#include <linux/writeback.h>
d397712b 12#include <linux/buffer_head.h>
ce9adaa5 13#include <linux/workqueue.h>
a74a4b97 14#include <linux/kthread.h>
5a0e3ad6 15#include <linux/slab.h>
784b4e29 16#include <linux/migrate.h>
7a36ddec 17#include <linux/ratelimit.h>
6463fe58 18#include <linux/uuid.h>
803b2f54 19#include <linux/semaphore.h>
540adea3 20#include <linux/error-injection.h>
9678c543 21#include <linux/crc32c.h>
7e75bf3f 22#include <asm/unaligned.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
eb60ceac 43
de0022b9
JB
44#ifdef CONFIG_X86
45#include <asm/cpufeature.h>
46#endif
47
319e4d06
QW
48#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
49 BTRFS_HEADER_FLAG_RELOC |\
50 BTRFS_SUPER_FLAG_ERROR |\
51 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
52 BTRFS_SUPER_FLAG_METADUMP |\
53 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 54
e8c9f186 55static const struct extent_io_ops btree_extent_io_ops;
8b712842 56static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 57static void free_fs_root(struct btrfs_root *root);
143bede5 58static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 59static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 60 struct btrfs_fs_info *fs_info);
143bede5 61static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 62static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *dirty_pages,
64 int mark);
2ff7e61e 65static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 66 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
67static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
68static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 69
d352ac68 70/*
97eb6b69
DS
71 * btrfs_end_io_wq structs are used to do processing in task context when an IO
72 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
73 * by writes to insert metadata for new file extents after IO is complete.
74 */
97eb6b69 75struct btrfs_end_io_wq {
ce9adaa5
CM
76 struct bio *bio;
77 bio_end_io_t *end_io;
78 void *private;
79 struct btrfs_fs_info *info;
4e4cbee9 80 blk_status_t status;
bfebd8b5 81 enum btrfs_wq_endio_type metadata;
8b712842 82 struct btrfs_work work;
ce9adaa5 83};
0da5468f 84
97eb6b69
DS
85static struct kmem_cache *btrfs_end_io_wq_cache;
86
87int __init btrfs_end_io_wq_init(void)
88{
89 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
90 sizeof(struct btrfs_end_io_wq),
91 0,
fba4b697 92 SLAB_MEM_SPREAD,
97eb6b69
DS
93 NULL);
94 if (!btrfs_end_io_wq_cache)
95 return -ENOMEM;
96 return 0;
97}
98
e67c718b 99void __cold btrfs_end_io_wq_exit(void)
97eb6b69 100{
5598e900 101 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
102}
103
d352ac68
CM
104/*
105 * async submit bios are used to offload expensive checksumming
106 * onto the worker threads. They checksum file and metadata bios
107 * just before they are sent down the IO stack.
108 */
44b8bd7e 109struct async_submit_bio {
c6100a4b
JB
110 void *private_data;
111 struct btrfs_fs_info *fs_info;
44b8bd7e 112 struct bio *bio;
a758781d
DS
113 extent_submit_bio_start_t *submit_bio_start;
114 extent_submit_bio_done_t *submit_bio_done;
44b8bd7e 115 int mirror_num;
c8b97818 116 unsigned long bio_flags;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->objectid. This ensures that all special purpose roots
135 * have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 212 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 213 int create)
7eccb903 214{
fc4f21b1
NB
215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
216 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
217 struct extent_map *em;
218 int ret;
219
890871be 220 read_lock(&em_tree->lock);
d1310b2e 221 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 222 if (em) {
0b246afa 223 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 224 read_unlock(&em_tree->lock);
5f39d397 225 goto out;
a061fc8d 226 }
890871be 227 read_unlock(&em_tree->lock);
7b13b7b1 228
172ddd60 229 em = alloc_extent_map();
5f39d397
CM
230 if (!em) {
231 em = ERR_PTR(-ENOMEM);
232 goto out;
233 }
234 em->start = 0;
0afbaf8c 235 em->len = (u64)-1;
c8b97818 236 em->block_len = (u64)-1;
5f39d397 237 em->block_start = 0;
0b246afa 238 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 239
890871be 240 write_lock(&em_tree->lock);
09a2a8f9 241 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
242 if (ret == -EEXIST) {
243 free_extent_map(em);
7b13b7b1 244 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 245 if (!em)
0433f20d 246 em = ERR_PTR(-EIO);
5f39d397 247 } else if (ret) {
7b13b7b1 248 free_extent_map(em);
0433f20d 249 em = ERR_PTR(ret);
5f39d397 250 }
890871be 251 write_unlock(&em_tree->lock);
7b13b7b1 252
5f39d397
CM
253out:
254 return em;
7eccb903
CM
255}
256
9ed57367 257u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 258{
9678c543 259 return crc32c(seed, data, len);
19c00ddc
CM
260}
261
0b5e3daf 262void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 263{
7e75bf3f 264 put_unaligned_le32(~crc, result);
19c00ddc
CM
265}
266
d352ac68
CM
267/*
268 * compute the csum for a btree block, and either verify it or write it
269 * into the csum field of the block.
270 */
01d58472
DD
271static int csum_tree_block(struct btrfs_fs_info *fs_info,
272 struct extent_buffer *buf,
19c00ddc
CM
273 int verify)
274{
01d58472 275 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
71a63551 276 char result[BTRFS_CSUM_SIZE];
19c00ddc
CM
277 unsigned long len;
278 unsigned long cur_len;
279 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
280 char *kaddr;
281 unsigned long map_start;
282 unsigned long map_len;
283 int err;
284 u32 crc = ~(u32)0;
285
286 len = buf->len - offset;
d397712b 287 while (len > 0) {
19c00ddc 288 err = map_private_extent_buffer(buf, offset, 32,
a6591715 289 &kaddr, &map_start, &map_len);
d397712b 290 if (err)
8bd98f0e 291 return err;
19c00ddc 292 cur_len = min(len, map_len - (offset - map_start));
b0496686 293 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
294 crc, cur_len);
295 len -= cur_len;
296 offset += cur_len;
19c00ddc 297 }
71a63551 298 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 299
19c00ddc
CM
300 btrfs_csum_final(crc, result);
301
302 if (verify) {
607d432d 303 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
304 u32 val;
305 u32 found = 0;
607d432d 306 memcpy(&found, result, csum_size);
e4204ded 307
607d432d 308 read_extent_buffer(buf, &val, 0, csum_size);
94647322 309 btrfs_warn_rl(fs_info,
5d163e0e 310 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 311 fs_info->sb->s_id, buf->start,
efe120a0 312 val, found, btrfs_header_level(buf));
8bd98f0e 313 return -EUCLEAN;
19c00ddc
CM
314 }
315 } else {
607d432d 316 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 317 }
71a63551 318
19c00ddc
CM
319 return 0;
320}
321
d352ac68
CM
322/*
323 * we can't consider a given block up to date unless the transid of the
324 * block matches the transid in the parent node's pointer. This is how we
325 * detect blocks that either didn't get written at all or got written
326 * in the wrong place.
327 */
1259ab75 328static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
329 struct extent_buffer *eb, u64 parent_transid,
330 int atomic)
1259ab75 331{
2ac55d41 332 struct extent_state *cached_state = NULL;
1259ab75 333 int ret;
2755a0de 334 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
335
336 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337 return 0;
338
b9fab919
CM
339 if (atomic)
340 return -EAGAIN;
341
a26e8c9f
JB
342 if (need_lock) {
343 btrfs_tree_read_lock(eb);
344 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345 }
346
2ac55d41 347 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 348 &cached_state);
0b32f4bb 349 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
350 btrfs_header_generation(eb) == parent_transid) {
351 ret = 0;
352 goto out;
353 }
94647322
DS
354 btrfs_err_rl(eb->fs_info,
355 "parent transid verify failed on %llu wanted %llu found %llu",
356 eb->start,
29549aec 357 parent_transid, btrfs_header_generation(eb));
1259ab75 358 ret = 1;
a26e8c9f
JB
359
360 /*
361 * Things reading via commit roots that don't have normal protection,
362 * like send, can have a really old block in cache that may point at a
01327610 363 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
364 * if we find an eb that is under IO (dirty/writeback) because we could
365 * end up reading in the stale data and then writing it back out and
366 * making everybody very sad.
367 */
368 if (!extent_buffer_under_io(eb))
369 clear_extent_buffer_uptodate(eb);
33958dc6 370out:
2ac55d41 371 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 372 &cached_state);
472b909f
JB
373 if (need_lock)
374 btrfs_tree_read_unlock_blocking(eb);
1259ab75 375 return ret;
1259ab75
CM
376}
377
1104a885
DS
378/*
379 * Return 0 if the superblock checksum type matches the checksum value of that
380 * algorithm. Pass the raw disk superblock data.
381 */
ab8d0fc4
JM
382static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
383 char *raw_disk_sb)
1104a885
DS
384{
385 struct btrfs_super_block *disk_sb =
386 (struct btrfs_super_block *)raw_disk_sb;
387 u16 csum_type = btrfs_super_csum_type(disk_sb);
388 int ret = 0;
389
390 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
391 u32 crc = ~(u32)0;
776c4a7c 392 char result[sizeof(crc)];
1104a885
DS
393
394 /*
395 * The super_block structure does not span the whole
396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 397 * is filled with zeros and is included in the checksum.
1104a885
DS
398 */
399 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
400 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
401 btrfs_csum_final(crc, result);
402
776c4a7c 403 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
404 ret = 1;
405 }
406
407 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 408 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
409 csum_type);
410 ret = 1;
411 }
412
413 return ret;
414}
415
581c1760
QW
416static int verify_level_key(struct btrfs_fs_info *fs_info,
417 struct extent_buffer *eb, int level,
418 struct btrfs_key *first_key)
419{
420 int found_level;
421 struct btrfs_key found_key;
422 int ret;
423
424 found_level = btrfs_header_level(eb);
425 if (found_level != level) {
426#ifdef CONFIG_BTRFS_DEBUG
427 WARN_ON(1);
428 btrfs_err(fs_info,
429"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430 eb->start, level, found_level);
431#endif
432 return -EIO;
433 }
434
435 if (!first_key)
436 return 0;
437
5d41be6f
QW
438 /*
439 * For live tree block (new tree blocks in current transaction),
440 * we need proper lock context to avoid race, which is impossible here.
441 * So we only checks tree blocks which is read from disk, whose
442 * generation <= fs_info->last_trans_committed.
443 */
444 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
445 return 0;
581c1760
QW
446 if (found_level)
447 btrfs_node_key_to_cpu(eb, &found_key, 0);
448 else
449 btrfs_item_key_to_cpu(eb, &found_key, 0);
450 ret = btrfs_comp_cpu_keys(first_key, &found_key);
451
452#ifdef CONFIG_BTRFS_DEBUG
453 if (ret) {
454 WARN_ON(1);
455 btrfs_err(fs_info,
456"tree first key mismatch detected, bytenr=%llu key expected=(%llu, %u, %llu) has=(%llu, %u, %llu)",
457 eb->start, first_key->objectid, first_key->type,
458 first_key->offset, found_key.objectid,
459 found_key.type, found_key.offset);
460 }
461#endif
462 return ret;
463}
464
d352ac68
CM
465/*
466 * helper to read a given tree block, doing retries as required when
467 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
468 *
469 * @parent_transid: expected transid, skip check if 0
470 * @level: expected level, mandatory check
471 * @first_key: expected key of first slot, skip check if NULL
d352ac68 472 */
2ff7e61e 473static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 474 struct extent_buffer *eb,
581c1760
QW
475 u64 parent_transid, int level,
476 struct btrfs_key *first_key)
f188591e
CM
477{
478 struct extent_io_tree *io_tree;
ea466794 479 int failed = 0;
f188591e
CM
480 int ret;
481 int num_copies = 0;
482 int mirror_num = 0;
ea466794 483 int failed_mirror = 0;
f188591e 484
a826d6dc 485 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
0b246afa 486 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 487 while (1) {
8436ea91 488 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 489 mirror_num);
256dd1bb 490 if (!ret) {
581c1760 491 if (verify_parent_transid(io_tree, eb,
b9fab919 492 parent_transid, 0))
256dd1bb 493 ret = -EIO;
581c1760
QW
494 else if (verify_level_key(fs_info, eb, level,
495 first_key))
496 ret = -EUCLEAN;
497 else
498 break;
256dd1bb 499 }
d397712b 500
a826d6dc
JB
501 /*
502 * This buffer's crc is fine, but its contents are corrupted, so
503 * there is no reason to read the other copies, they won't be
504 * any less wrong.
505 */
581c1760
QW
506 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
507 ret == -EUCLEAN)
ea466794
JB
508 break;
509
0b246afa 510 num_copies = btrfs_num_copies(fs_info,
f188591e 511 eb->start, eb->len);
4235298e 512 if (num_copies == 1)
ea466794 513 break;
4235298e 514
5cf1ab56
JB
515 if (!failed_mirror) {
516 failed = 1;
517 failed_mirror = eb->read_mirror;
518 }
519
f188591e 520 mirror_num++;
ea466794
JB
521 if (mirror_num == failed_mirror)
522 mirror_num++;
523
4235298e 524 if (mirror_num > num_copies)
ea466794 525 break;
f188591e 526 }
ea466794 527
c0901581 528 if (failed && !ret && failed_mirror)
2ff7e61e 529 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
530
531 return ret;
f188591e 532}
19c00ddc 533
d352ac68 534/*
d397712b
CM
535 * checksum a dirty tree block before IO. This has extra checks to make sure
536 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 537 */
d397712b 538
01d58472 539static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 540{
4eee4fa4 541 u64 start = page_offset(page);
19c00ddc 542 u64 found_start;
19c00ddc 543 struct extent_buffer *eb;
f188591e 544
4f2de97a
JB
545 eb = (struct extent_buffer *)page->private;
546 if (page != eb->pages[0])
547 return 0;
0f805531 548
19c00ddc 549 found_start = btrfs_header_bytenr(eb);
0f805531
AL
550 /*
551 * Please do not consolidate these warnings into a single if.
552 * It is useful to know what went wrong.
553 */
554 if (WARN_ON(found_start != start))
555 return -EUCLEAN;
556 if (WARN_ON(!PageUptodate(page)))
557 return -EUCLEAN;
558
559 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
560 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
561
8bd98f0e 562 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
563}
564
01d58472 565static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
566 struct extent_buffer *eb)
567{
01d58472 568 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 569 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
570 int ret = 1;
571
0a4e5586 572 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
573 while (fs_devices) {
574 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
575 ret = 0;
576 break;
577 }
578 fs_devices = fs_devices->seed;
579 }
580 return ret;
581}
582
facc8a22
MX
583static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
584 u64 phy_offset, struct page *page,
585 u64 start, u64 end, int mirror)
ce9adaa5 586{
ce9adaa5
CM
587 u64 found_start;
588 int found_level;
ce9adaa5
CM
589 struct extent_buffer *eb;
590 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 591 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 592 int ret = 0;
727011e0 593 int reads_done;
ce9adaa5 594
ce9adaa5
CM
595 if (!page->private)
596 goto out;
d397712b 597
4f2de97a 598 eb = (struct extent_buffer *)page->private;
d397712b 599
0b32f4bb
JB
600 /* the pending IO might have been the only thing that kept this buffer
601 * in memory. Make sure we have a ref for all this other checks
602 */
603 extent_buffer_get(eb);
604
605 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
606 if (!reads_done)
607 goto err;
f188591e 608
5cf1ab56 609 eb->read_mirror = mirror;
656f30db 610 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
611 ret = -EIO;
612 goto err;
613 }
614
ce9adaa5 615 found_start = btrfs_header_bytenr(eb);
727011e0 616 if (found_start != eb->start) {
02873e43
ZL
617 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
618 found_start, eb->start);
f188591e 619 ret = -EIO;
ce9adaa5
CM
620 goto err;
621 }
02873e43
ZL
622 if (check_tree_block_fsid(fs_info, eb)) {
623 btrfs_err_rl(fs_info, "bad fsid on block %llu",
624 eb->start);
1259ab75
CM
625 ret = -EIO;
626 goto err;
627 }
ce9adaa5 628 found_level = btrfs_header_level(eb);
1c24c3ce 629 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
630 btrfs_err(fs_info, "bad tree block level %d",
631 (int)btrfs_header_level(eb));
1c24c3ce
JB
632 ret = -EIO;
633 goto err;
634 }
ce9adaa5 635
85d4e461
CM
636 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
637 eb, found_level);
4008c04a 638
02873e43 639 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 640 if (ret)
a826d6dc 641 goto err;
a826d6dc
JB
642
643 /*
644 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 * that we don't try and read the other copies of this block, just
646 * return -EIO.
647 */
2f659546 648 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
a826d6dc
JB
649 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650 ret = -EIO;
651 }
ce9adaa5 652
2f659546 653 if (found_level > 0 && btrfs_check_node(fs_info, eb))
053ab70f
LB
654 ret = -EIO;
655
0b32f4bb
JB
656 if (!ret)
657 set_extent_buffer_uptodate(eb);
ce9adaa5 658err:
79fb65a1
JB
659 if (reads_done &&
660 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 661 btree_readahead_hook(eb, ret);
4bb31e92 662
53b381b3
DW
663 if (ret) {
664 /*
665 * our io error hook is going to dec the io pages
666 * again, we have to make sure it has something
667 * to decrement
668 */
669 atomic_inc(&eb->io_pages);
0b32f4bb 670 clear_extent_buffer_uptodate(eb);
53b381b3 671 }
0b32f4bb 672 free_extent_buffer(eb);
ce9adaa5 673out:
f188591e 674 return ret;
ce9adaa5
CM
675}
676
ea466794 677static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 678{
4bb31e92 679 struct extent_buffer *eb;
4bb31e92 680
4f2de97a 681 eb = (struct extent_buffer *)page->private;
656f30db 682 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 683 eb->read_mirror = failed_mirror;
53b381b3 684 atomic_dec(&eb->io_pages);
ea466794 685 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 686 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
687 return -EIO; /* we fixed nothing */
688}
689
4246a0b6 690static void end_workqueue_bio(struct bio *bio)
ce9adaa5 691{
97eb6b69 692 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 693 struct btrfs_fs_info *fs_info;
9e0af237
LB
694 struct btrfs_workqueue *wq;
695 btrfs_work_func_t func;
ce9adaa5 696
ce9adaa5 697 fs_info = end_io_wq->info;
4e4cbee9 698 end_io_wq->status = bio->bi_status;
d20f7043 699
37226b21 700 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
702 wq = fs_info->endio_meta_write_workers;
703 func = btrfs_endio_meta_write_helper;
704 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
705 wq = fs_info->endio_freespace_worker;
706 func = btrfs_freespace_write_helper;
707 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
708 wq = fs_info->endio_raid56_workers;
709 func = btrfs_endio_raid56_helper;
710 } else {
711 wq = fs_info->endio_write_workers;
712 func = btrfs_endio_write_helper;
713 }
d20f7043 714 } else {
8b110e39
MX
715 if (unlikely(end_io_wq->metadata ==
716 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
717 wq = fs_info->endio_repair_workers;
718 func = btrfs_endio_repair_helper;
719 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
720 wq = fs_info->endio_raid56_workers;
721 func = btrfs_endio_raid56_helper;
722 } else if (end_io_wq->metadata) {
723 wq = fs_info->endio_meta_workers;
724 func = btrfs_endio_meta_helper;
725 } else {
726 wq = fs_info->endio_workers;
727 func = btrfs_endio_helper;
728 }
d20f7043 729 }
9e0af237
LB
730
731 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
732 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
733}
734
4e4cbee9 735blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 736 enum btrfs_wq_endio_type metadata)
0b86a832 737{
97eb6b69 738 struct btrfs_end_io_wq *end_io_wq;
8b110e39 739
97eb6b69 740 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 741 if (!end_io_wq)
4e4cbee9 742 return BLK_STS_RESOURCE;
ce9adaa5
CM
743
744 end_io_wq->private = bio->bi_private;
745 end_io_wq->end_io = bio->bi_end_io;
22c59948 746 end_io_wq->info = info;
4e4cbee9 747 end_io_wq->status = 0;
ce9adaa5 748 end_io_wq->bio = bio;
22c59948 749 end_io_wq->metadata = metadata;
ce9adaa5
CM
750
751 bio->bi_private = end_io_wq;
752 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
753 return 0;
754}
755
4a69a410
CM
756static void run_one_async_start(struct btrfs_work *work)
757{
4a69a410 758 struct async_submit_bio *async;
4e4cbee9 759 blk_status_t ret;
4a69a410
CM
760
761 async = container_of(work, struct async_submit_bio, work);
c6100a4b 762 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
763 async->bio_offset);
764 if (ret)
4e4cbee9 765 async->status = ret;
4a69a410
CM
766}
767
768static void run_one_async_done(struct btrfs_work *work)
8b712842 769{
8b712842
CM
770 struct async_submit_bio *async;
771
772 async = container_of(work, struct async_submit_bio, work);
4854ddd0 773
bb7ab3b9 774 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
775 if (async->status) {
776 async->bio->bi_status = async->status;
4246a0b6 777 bio_endio(async->bio);
79787eaa
JM
778 return;
779 }
780
6c553435 781 async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
4a69a410
CM
782}
783
784static void run_one_async_free(struct btrfs_work *work)
785{
786 struct async_submit_bio *async;
787
788 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
789 kfree(async);
790}
791
8c27cb35
LT
792blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
793 int mirror_num, unsigned long bio_flags,
794 u64 bio_offset, void *private_data,
a758781d
DS
795 extent_submit_bio_start_t *submit_bio_start,
796 extent_submit_bio_done_t *submit_bio_done)
44b8bd7e
CM
797{
798 struct async_submit_bio *async;
799
800 async = kmalloc(sizeof(*async), GFP_NOFS);
801 if (!async)
4e4cbee9 802 return BLK_STS_RESOURCE;
44b8bd7e 803
c6100a4b
JB
804 async->private_data = private_data;
805 async->fs_info = fs_info;
44b8bd7e
CM
806 async->bio = bio;
807 async->mirror_num = mirror_num;
4a69a410
CM
808 async->submit_bio_start = submit_bio_start;
809 async->submit_bio_done = submit_bio_done;
810
9e0af237 811 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 812 run_one_async_done, run_one_async_free);
4a69a410 813
c8b97818 814 async->bio_flags = bio_flags;
eaf25d93 815 async->bio_offset = bio_offset;
8c8bee1d 816
4e4cbee9 817 async->status = 0;
79787eaa 818
67f055c7 819 if (op_is_sync(bio->bi_opf))
5cdc7ad3 820 btrfs_set_work_high_priority(&async->work);
d313d7a3 821
5cdc7ad3 822 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
823 return 0;
824}
825
4e4cbee9 826static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 827{
2c30c71b 828 struct bio_vec *bvec;
ce3ed71a 829 struct btrfs_root *root;
2c30c71b 830 int i, ret = 0;
ce3ed71a 831
c09abff8 832 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 833 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 834 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 835 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
836 if (ret)
837 break;
ce3ed71a 838 }
2c30c71b 839
4e4cbee9 840 return errno_to_blk_status(ret);
ce3ed71a
CM
841}
842
d0ee3934 843static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 844 u64 bio_offset)
22c59948 845{
8b712842
CM
846 /*
847 * when we're called for a write, we're already in the async
5443be45 848 * submission context. Just jump into btrfs_map_bio
8b712842 849 */
79787eaa 850 return btree_csum_one_bio(bio);
4a69a410 851}
22c59948 852
d0ee3934 853static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
6c553435 854 int mirror_num)
4a69a410 855{
c6100a4b 856 struct inode *inode = private_data;
4e4cbee9 857 blk_status_t ret;
61891923 858
8b712842 859 /*
4a69a410
CM
860 * when we're called for a write, we're already in the async
861 * submission context. Just jump into btrfs_map_bio
8b712842 862 */
2ff7e61e 863 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
4246a0b6 864 if (ret) {
4e4cbee9 865 bio->bi_status = ret;
4246a0b6
CH
866 bio_endio(bio);
867 }
61891923 868 return ret;
0b86a832
CM
869}
870
18fdc679 871static int check_async_write(struct btrfs_inode *bi)
de0022b9 872{
6300463b
LB
873 if (atomic_read(&bi->sync_writers))
874 return 0;
de0022b9 875#ifdef CONFIG_X86
bc696ca0 876 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
877 return 0;
878#endif
879 return 1;
880}
881
8c27cb35
LT
882static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
883 int mirror_num, unsigned long bio_flags,
884 u64 bio_offset)
44b8bd7e 885{
c6100a4b 886 struct inode *inode = private_data;
0b246afa 887 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 888 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 889 blk_status_t ret;
cad321ad 890
37226b21 891 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
892 /*
893 * called for a read, do the setup so that checksum validation
894 * can happen in the async kernel threads
895 */
0b246afa
JM
896 ret = btrfs_bio_wq_end_io(fs_info, bio,
897 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 898 if (ret)
61891923 899 goto out_w_error;
2ff7e61e 900 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
901 } else if (!async) {
902 ret = btree_csum_one_bio(bio);
903 if (ret)
61891923 904 goto out_w_error;
2ff7e61e 905 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
906 } else {
907 /*
908 * kthread helpers are used to submit writes so that
909 * checksumming can happen in parallel across all CPUs
910 */
c6100a4b
JB
911 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
912 bio_offset, private_data,
d0ee3934
DS
913 btree_submit_bio_start,
914 btree_submit_bio_done);
44b8bd7e 915 }
d313d7a3 916
4246a0b6
CH
917 if (ret)
918 goto out_w_error;
919 return 0;
920
61891923 921out_w_error:
4e4cbee9 922 bio->bi_status = ret;
4246a0b6 923 bio_endio(bio);
61891923 924 return ret;
44b8bd7e
CM
925}
926
3dd1462e 927#ifdef CONFIG_MIGRATION
784b4e29 928static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
929 struct page *newpage, struct page *page,
930 enum migrate_mode mode)
784b4e29
CM
931{
932 /*
933 * we can't safely write a btree page from here,
934 * we haven't done the locking hook
935 */
936 if (PageDirty(page))
937 return -EAGAIN;
938 /*
939 * Buffers may be managed in a filesystem specific way.
940 * We must have no buffers or drop them.
941 */
942 if (page_has_private(page) &&
943 !try_to_release_page(page, GFP_KERNEL))
944 return -EAGAIN;
a6bc32b8 945 return migrate_page(mapping, newpage, page, mode);
784b4e29 946}
3dd1462e 947#endif
784b4e29 948
0da5468f
CM
949
950static int btree_writepages(struct address_space *mapping,
951 struct writeback_control *wbc)
952{
e2d84521
MX
953 struct btrfs_fs_info *fs_info;
954 int ret;
955
d8d5f3e1 956 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
957
958 if (wbc->for_kupdate)
959 return 0;
960
e2d84521 961 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 962 /* this is a bit racy, but that's ok */
e2d84521
MX
963 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
964 BTRFS_DIRTY_METADATA_THRESH);
965 if (ret < 0)
793955bc 966 return 0;
793955bc 967 }
0b32f4bb 968 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
969}
970
b2950863 971static int btree_readpage(struct file *file, struct page *page)
5f39d397 972{
d1310b2e
CM
973 struct extent_io_tree *tree;
974 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 975 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 976}
22b0ebda 977
70dec807 978static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 979{
98509cfc 980 if (PageWriteback(page) || PageDirty(page))
d397712b 981 return 0;
0c4e538b 982
f7a52a40 983 return try_release_extent_buffer(page);
d98237b3
CM
984}
985
d47992f8
LC
986static void btree_invalidatepage(struct page *page, unsigned int offset,
987 unsigned int length)
d98237b3 988{
d1310b2e
CM
989 struct extent_io_tree *tree;
990 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
991 extent_invalidatepage(tree, page, offset);
992 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 993 if (PagePrivate(page)) {
efe120a0
FH
994 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
995 "page private not zero on page %llu",
996 (unsigned long long)page_offset(page));
9ad6b7bc
CM
997 ClearPagePrivate(page);
998 set_page_private(page, 0);
09cbfeaf 999 put_page(page);
9ad6b7bc 1000 }
d98237b3
CM
1001}
1002
0b32f4bb
JB
1003static int btree_set_page_dirty(struct page *page)
1004{
bb146eb2 1005#ifdef DEBUG
0b32f4bb
JB
1006 struct extent_buffer *eb;
1007
1008 BUG_ON(!PagePrivate(page));
1009 eb = (struct extent_buffer *)page->private;
1010 BUG_ON(!eb);
1011 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1012 BUG_ON(!atomic_read(&eb->refs));
1013 btrfs_assert_tree_locked(eb);
bb146eb2 1014#endif
0b32f4bb
JB
1015 return __set_page_dirty_nobuffers(page);
1016}
1017
7f09410b 1018static const struct address_space_operations btree_aops = {
d98237b3 1019 .readpage = btree_readpage,
0da5468f 1020 .writepages = btree_writepages,
5f39d397
CM
1021 .releasepage = btree_releasepage,
1022 .invalidatepage = btree_invalidatepage,
5a92bc88 1023#ifdef CONFIG_MIGRATION
784b4e29 1024 .migratepage = btree_migratepage,
5a92bc88 1025#endif
0b32f4bb 1026 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1027};
1028
2ff7e61e 1029void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1030{
5f39d397 1031 struct extent_buffer *buf = NULL;
2ff7e61e 1032 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1033
2ff7e61e 1034 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1035 if (IS_ERR(buf))
6197d86e 1036 return;
d1310b2e 1037 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
6af49dbd 1038 buf, WAIT_NONE, 0);
5f39d397 1039 free_extent_buffer(buf);
090d1875
CM
1040}
1041
2ff7e61e 1042int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1043 int mirror_num, struct extent_buffer **eb)
1044{
1045 struct extent_buffer *buf = NULL;
2ff7e61e 1046 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1047 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1048 int ret;
1049
2ff7e61e 1050 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1051 if (IS_ERR(buf))
ab0fff03
AJ
1052 return 0;
1053
1054 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1055
8436ea91 1056 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1057 mirror_num);
ab0fff03
AJ
1058 if (ret) {
1059 free_extent_buffer(buf);
1060 return ret;
1061 }
1062
1063 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1064 free_extent_buffer(buf);
1065 return -EIO;
0b32f4bb 1066 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1067 *eb = buf;
1068 } else {
1069 free_extent_buffer(buf);
1070 }
1071 return 0;
1072}
1073
2ff7e61e
JM
1074struct extent_buffer *btrfs_find_create_tree_block(
1075 struct btrfs_fs_info *fs_info,
1076 u64 bytenr)
0999df54 1077{
0b246afa
JM
1078 if (btrfs_is_testing(fs_info))
1079 return alloc_test_extent_buffer(fs_info, bytenr);
1080 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1081}
1082
1083
e02119d5
CM
1084int btrfs_write_tree_block(struct extent_buffer *buf)
1085{
727011e0 1086 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1087 buf->start + buf->len - 1);
e02119d5
CM
1088}
1089
3189ff77 1090void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1091{
3189ff77
JL
1092 filemap_fdatawait_range(buf->pages[0]->mapping,
1093 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1094}
1095
581c1760
QW
1096/*
1097 * Read tree block at logical address @bytenr and do variant basic but critical
1098 * verification.
1099 *
1100 * @parent_transid: expected transid of this tree block, skip check if 0
1101 * @level: expected level, mandatory check
1102 * @first_key: expected key in slot 0, skip check if NULL
1103 */
2ff7e61e 1104struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1105 u64 parent_transid, int level,
1106 struct btrfs_key *first_key)
0999df54
CM
1107{
1108 struct extent_buffer *buf = NULL;
0999df54
CM
1109 int ret;
1110
2ff7e61e 1111 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1112 if (IS_ERR(buf))
1113 return buf;
0999df54 1114
581c1760
QW
1115 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1116 level, first_key);
0f0fe8f7
FDBM
1117 if (ret) {
1118 free_extent_buffer(buf);
64c043de 1119 return ERR_PTR(ret);
0f0fe8f7 1120 }
5f39d397 1121 return buf;
ce9adaa5 1122
eb60ceac
CM
1123}
1124
7c302b49 1125void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1126 struct extent_buffer *buf)
ed2ff2cb 1127{
55c69072 1128 if (btrfs_header_generation(buf) ==
e2d84521 1129 fs_info->running_transaction->transid) {
b9447ef8 1130 btrfs_assert_tree_locked(buf);
b4ce94de 1131
b9473439 1132 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1133 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1134 -buf->len,
1135 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1136 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1137 btrfs_set_lock_blocking(buf);
1138 clear_extent_buffer_dirty(buf);
1139 }
925baedd 1140 }
5f39d397
CM
1141}
1142
8257b2dc
MX
1143static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1144{
1145 struct btrfs_subvolume_writers *writers;
1146 int ret;
1147
1148 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1149 if (!writers)
1150 return ERR_PTR(-ENOMEM);
1151
8a5a916d 1152 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1153 if (ret < 0) {
1154 kfree(writers);
1155 return ERR_PTR(ret);
1156 }
1157
1158 init_waitqueue_head(&writers->wait);
1159 return writers;
1160}
1161
1162static void
1163btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1164{
1165 percpu_counter_destroy(&writers->counter);
1166 kfree(writers);
1167}
1168
da17066c 1169static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1170 u64 objectid)
d97e63b6 1171{
7c0260ee 1172 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1173 root->node = NULL;
a28ec197 1174 root->commit_root = NULL;
27cdeb70 1175 root->state = 0;
d68fc57b 1176 root->orphan_cleanup_state = 0;
0b86a832 1177
0f7d52f4
CM
1178 root->objectid = objectid;
1179 root->last_trans = 0;
13a8a7c8 1180 root->highest_objectid = 0;
eb73c1b7 1181 root->nr_delalloc_inodes = 0;
199c2a9c 1182 root->nr_ordered_extents = 0;
58176a96 1183 root->name = NULL;
6bef4d31 1184 root->inode_tree = RB_ROOT;
16cdcec7 1185 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1186 root->block_rsv = NULL;
d68fc57b 1187 root->orphan_block_rsv = NULL;
0b86a832
CM
1188
1189 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1190 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1191 INIT_LIST_HEAD(&root->delalloc_inodes);
1192 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1193 INIT_LIST_HEAD(&root->ordered_extents);
1194 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1195 INIT_LIST_HEAD(&root->logged_list[0]);
1196 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1197 spin_lock_init(&root->orphan_lock);
5d4f98a2 1198 spin_lock_init(&root->inode_lock);
eb73c1b7 1199 spin_lock_init(&root->delalloc_lock);
199c2a9c 1200 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1201 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1202 spin_lock_init(&root->log_extents_lock[0]);
1203 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1204 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1205 mutex_init(&root->objectid_mutex);
e02119d5 1206 mutex_init(&root->log_mutex);
31f3d255 1207 mutex_init(&root->ordered_extent_mutex);
573bfb72 1208 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1209 init_waitqueue_head(&root->log_writer_wait);
1210 init_waitqueue_head(&root->log_commit_wait[0]);
1211 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1212 INIT_LIST_HEAD(&root->log_ctxs[0]);
1213 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1214 atomic_set(&root->log_commit[0], 0);
1215 atomic_set(&root->log_commit[1], 0);
1216 atomic_set(&root->log_writers, 0);
2ecb7923 1217 atomic_set(&root->log_batch, 0);
8a35d95f 1218 atomic_set(&root->orphan_inodes, 0);
0700cea7 1219 refcount_set(&root->refs, 1);
ea14b57f 1220 atomic_set(&root->will_be_snapshotted, 0);
7237f183 1221 root->log_transid = 0;
d1433deb 1222 root->log_transid_committed = -1;
257c62e1 1223 root->last_log_commit = 0;
7c0260ee 1224 if (!dummy)
c6100a4b 1225 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1226
3768f368
CM
1227 memset(&root->root_key, 0, sizeof(root->root_key));
1228 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1229 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1230 if (!dummy)
06ea65a3
JB
1231 root->defrag_trans_start = fs_info->generation;
1232 else
1233 root->defrag_trans_start = 0;
4d775673 1234 root->root_key.objectid = objectid;
0ee5dc67 1235 root->anon_dev = 0;
8ea05e3a 1236
5f3ab90a 1237 spin_lock_init(&root->root_item_lock);
3768f368
CM
1238}
1239
74e4d827
DS
1240static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1241 gfp_t flags)
6f07e42e 1242{
74e4d827 1243 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1244 if (root)
1245 root->fs_info = fs_info;
1246 return root;
1247}
1248
06ea65a3
JB
1249#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1250/* Should only be used by the testing infrastructure */
da17066c 1251struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1252{
1253 struct btrfs_root *root;
1254
7c0260ee
JM
1255 if (!fs_info)
1256 return ERR_PTR(-EINVAL);
1257
1258 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1259 if (!root)
1260 return ERR_PTR(-ENOMEM);
da17066c 1261
b9ef22de 1262 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1263 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1264 root->alloc_bytenr = 0;
06ea65a3
JB
1265
1266 return root;
1267}
1268#endif
1269
20897f5c
AJ
1270struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1271 struct btrfs_fs_info *fs_info,
1272 u64 objectid)
1273{
1274 struct extent_buffer *leaf;
1275 struct btrfs_root *tree_root = fs_info->tree_root;
1276 struct btrfs_root *root;
1277 struct btrfs_key key;
1278 int ret = 0;
33d85fda 1279 uuid_le uuid = NULL_UUID_LE;
20897f5c 1280
74e4d827 1281 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1282 if (!root)
1283 return ERR_PTR(-ENOMEM);
1284
da17066c 1285 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1286 root->root_key.objectid = objectid;
1287 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288 root->root_key.offset = 0;
1289
4d75f8a9 1290 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1291 if (IS_ERR(leaf)) {
1292 ret = PTR_ERR(leaf);
1dd05682 1293 leaf = NULL;
20897f5c
AJ
1294 goto fail;
1295 }
1296
b159fa28 1297 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1298 btrfs_set_header_bytenr(leaf, leaf->start);
1299 btrfs_set_header_generation(leaf, trans->transid);
1300 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1301 btrfs_set_header_owner(leaf, objectid);
1302 root->node = leaf;
1303
d24ee97b
DS
1304 write_extent_buffer_fsid(leaf, fs_info->fsid);
1305 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1306 btrfs_mark_buffer_dirty(leaf);
1307
1308 root->commit_root = btrfs_root_node(root);
27cdeb70 1309 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1310
1311 root->root_item.flags = 0;
1312 root->root_item.byte_limit = 0;
1313 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1314 btrfs_set_root_generation(&root->root_item, trans->transid);
1315 btrfs_set_root_level(&root->root_item, 0);
1316 btrfs_set_root_refs(&root->root_item, 1);
1317 btrfs_set_root_used(&root->root_item, leaf->len);
1318 btrfs_set_root_last_snapshot(&root->root_item, 0);
1319 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1320 if (is_fstree(objectid))
1321 uuid_le_gen(&uuid);
6463fe58 1322 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1323 root->root_item.drop_level = 0;
1324
1325 key.objectid = objectid;
1326 key.type = BTRFS_ROOT_ITEM_KEY;
1327 key.offset = 0;
1328 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1329 if (ret)
1330 goto fail;
1331
1332 btrfs_tree_unlock(leaf);
1333
1dd05682
TI
1334 return root;
1335
20897f5c 1336fail:
1dd05682
TI
1337 if (leaf) {
1338 btrfs_tree_unlock(leaf);
59885b39 1339 free_extent_buffer(root->commit_root);
1dd05682
TI
1340 free_extent_buffer(leaf);
1341 }
1342 kfree(root);
20897f5c 1343
1dd05682 1344 return ERR_PTR(ret);
20897f5c
AJ
1345}
1346
7237f183
YZ
1347static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1348 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1349{
1350 struct btrfs_root *root;
7237f183 1351 struct extent_buffer *leaf;
e02119d5 1352
74e4d827 1353 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1354 if (!root)
7237f183 1355 return ERR_PTR(-ENOMEM);
e02119d5 1356
da17066c 1357 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1358
1359 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1360 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1361 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1362
7237f183 1363 /*
27cdeb70
MX
1364 * DON'T set REF_COWS for log trees
1365 *
7237f183
YZ
1366 * log trees do not get reference counted because they go away
1367 * before a real commit is actually done. They do store pointers
1368 * to file data extents, and those reference counts still get
1369 * updated (along with back refs to the log tree).
1370 */
e02119d5 1371
4d75f8a9
DS
1372 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1373 NULL, 0, 0, 0);
7237f183
YZ
1374 if (IS_ERR(leaf)) {
1375 kfree(root);
1376 return ERR_CAST(leaf);
1377 }
e02119d5 1378
b159fa28 1379 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1380 btrfs_set_header_bytenr(leaf, leaf->start);
1381 btrfs_set_header_generation(leaf, trans->transid);
1382 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1383 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1384 root->node = leaf;
e02119d5 1385
0b246afa 1386 write_extent_buffer_fsid(root->node, fs_info->fsid);
e02119d5
CM
1387 btrfs_mark_buffer_dirty(root->node);
1388 btrfs_tree_unlock(root->node);
7237f183
YZ
1389 return root;
1390}
1391
1392int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1393 struct btrfs_fs_info *fs_info)
1394{
1395 struct btrfs_root *log_root;
1396
1397 log_root = alloc_log_tree(trans, fs_info);
1398 if (IS_ERR(log_root))
1399 return PTR_ERR(log_root);
1400 WARN_ON(fs_info->log_root_tree);
1401 fs_info->log_root_tree = log_root;
1402 return 0;
1403}
1404
1405int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1406 struct btrfs_root *root)
1407{
0b246afa 1408 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1409 struct btrfs_root *log_root;
1410 struct btrfs_inode_item *inode_item;
1411
0b246afa 1412 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1413 if (IS_ERR(log_root))
1414 return PTR_ERR(log_root);
1415
1416 log_root->last_trans = trans->transid;
1417 log_root->root_key.offset = root->root_key.objectid;
1418
1419 inode_item = &log_root->root_item.inode;
3cae210f
QW
1420 btrfs_set_stack_inode_generation(inode_item, 1);
1421 btrfs_set_stack_inode_size(inode_item, 3);
1422 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1423 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1424 fs_info->nodesize);
3cae210f 1425 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1426
5d4f98a2 1427 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1428
1429 WARN_ON(root->log_root);
1430 root->log_root = log_root;
1431 root->log_transid = 0;
d1433deb 1432 root->log_transid_committed = -1;
257c62e1 1433 root->last_log_commit = 0;
e02119d5
CM
1434 return 0;
1435}
1436
35a3621b
SB
1437static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1438 struct btrfs_key *key)
e02119d5
CM
1439{
1440 struct btrfs_root *root;
1441 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1442 struct btrfs_path *path;
84234f3a 1443 u64 generation;
cb517eab 1444 int ret;
581c1760 1445 int level;
0f7d52f4 1446
cb517eab
MX
1447 path = btrfs_alloc_path();
1448 if (!path)
0f7d52f4 1449 return ERR_PTR(-ENOMEM);
cb517eab 1450
74e4d827 1451 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1452 if (!root) {
1453 ret = -ENOMEM;
1454 goto alloc_fail;
0f7d52f4
CM
1455 }
1456
da17066c 1457 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1458
cb517eab
MX
1459 ret = btrfs_find_root(tree_root, key, path,
1460 &root->root_item, &root->root_key);
0f7d52f4 1461 if (ret) {
13a8a7c8
YZ
1462 if (ret > 0)
1463 ret = -ENOENT;
cb517eab 1464 goto find_fail;
0f7d52f4 1465 }
13a8a7c8 1466
84234f3a 1467 generation = btrfs_root_generation(&root->root_item);
581c1760 1468 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1469 root->node = read_tree_block(fs_info,
1470 btrfs_root_bytenr(&root->root_item),
581c1760 1471 generation, level, NULL);
64c043de
LB
1472 if (IS_ERR(root->node)) {
1473 ret = PTR_ERR(root->node);
cb517eab
MX
1474 goto find_fail;
1475 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1476 ret = -EIO;
64c043de
LB
1477 free_extent_buffer(root->node);
1478 goto find_fail;
416bc658 1479 }
5d4f98a2 1480 root->commit_root = btrfs_root_node(root);
13a8a7c8 1481out:
cb517eab
MX
1482 btrfs_free_path(path);
1483 return root;
1484
cb517eab
MX
1485find_fail:
1486 kfree(root);
1487alloc_fail:
1488 root = ERR_PTR(ret);
1489 goto out;
1490}
1491
1492struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1493 struct btrfs_key *location)
1494{
1495 struct btrfs_root *root;
1496
1497 root = btrfs_read_tree_root(tree_root, location);
1498 if (IS_ERR(root))
1499 return root;
1500
1501 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1502 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1503 btrfs_check_and_init_root_item(&root->root_item);
1504 }
13a8a7c8 1505
5eda7b5e
CM
1506 return root;
1507}
1508
cb517eab
MX
1509int btrfs_init_fs_root(struct btrfs_root *root)
1510{
1511 int ret;
8257b2dc 1512 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1513
1514 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1515 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1516 GFP_NOFS);
1517 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1518 ret = -ENOMEM;
1519 goto fail;
1520 }
1521
8257b2dc
MX
1522 writers = btrfs_alloc_subvolume_writers();
1523 if (IS_ERR(writers)) {
1524 ret = PTR_ERR(writers);
1525 goto fail;
1526 }
1527 root->subv_writers = writers;
1528
cb517eab 1529 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1530 spin_lock_init(&root->ino_cache_lock);
1531 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1532
1533 ret = get_anon_bdev(&root->anon_dev);
1534 if (ret)
876d2cf1 1535 goto fail;
f32e48e9
CR
1536
1537 mutex_lock(&root->objectid_mutex);
1538 ret = btrfs_find_highest_objectid(root,
1539 &root->highest_objectid);
1540 if (ret) {
1541 mutex_unlock(&root->objectid_mutex);
876d2cf1 1542 goto fail;
f32e48e9
CR
1543 }
1544
1545 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1546
1547 mutex_unlock(&root->objectid_mutex);
1548
cb517eab
MX
1549 return 0;
1550fail:
876d2cf1 1551 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1552 return ret;
1553}
1554
35bbb97f
JM
1555struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1556 u64 root_id)
cb517eab
MX
1557{
1558 struct btrfs_root *root;
1559
1560 spin_lock(&fs_info->fs_roots_radix_lock);
1561 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1562 (unsigned long)root_id);
1563 spin_unlock(&fs_info->fs_roots_radix_lock);
1564 return root;
1565}
1566
1567int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1568 struct btrfs_root *root)
1569{
1570 int ret;
1571
e1860a77 1572 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1573 if (ret)
1574 return ret;
1575
1576 spin_lock(&fs_info->fs_roots_radix_lock);
1577 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1578 (unsigned long)root->root_key.objectid,
1579 root);
1580 if (ret == 0)
27cdeb70 1581 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1582 spin_unlock(&fs_info->fs_roots_radix_lock);
1583 radix_tree_preload_end();
1584
1585 return ret;
1586}
1587
c00869f1
MX
1588struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1589 struct btrfs_key *location,
1590 bool check_ref)
5eda7b5e
CM
1591{
1592 struct btrfs_root *root;
381cf658 1593 struct btrfs_path *path;
1d4c08e0 1594 struct btrfs_key key;
5eda7b5e
CM
1595 int ret;
1596
edbd8d4e
CM
1597 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1598 return fs_info->tree_root;
1599 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1600 return fs_info->extent_root;
8f18cf13
CM
1601 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1602 return fs_info->chunk_root;
1603 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1604 return fs_info->dev_root;
0403e47e
YZ
1605 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1606 return fs_info->csum_root;
bcef60f2
AJ
1607 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1608 return fs_info->quota_root ? fs_info->quota_root :
1609 ERR_PTR(-ENOENT);
f7a81ea4
SB
1610 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1611 return fs_info->uuid_root ? fs_info->uuid_root :
1612 ERR_PTR(-ENOENT);
70f6d82e
OS
1613 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1614 return fs_info->free_space_root ? fs_info->free_space_root :
1615 ERR_PTR(-ENOENT);
4df27c4d 1616again:
cb517eab 1617 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1618 if (root) {
c00869f1 1619 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1620 return ERR_PTR(-ENOENT);
5eda7b5e 1621 return root;
48475471 1622 }
5eda7b5e 1623
cb517eab 1624 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1625 if (IS_ERR(root))
1626 return root;
3394e160 1627
c00869f1 1628 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1629 ret = -ENOENT;
581bb050 1630 goto fail;
35a30d7c 1631 }
581bb050 1632
cb517eab 1633 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1634 if (ret)
1635 goto fail;
3394e160 1636
381cf658
DS
1637 path = btrfs_alloc_path();
1638 if (!path) {
1639 ret = -ENOMEM;
1640 goto fail;
1641 }
1d4c08e0
DS
1642 key.objectid = BTRFS_ORPHAN_OBJECTID;
1643 key.type = BTRFS_ORPHAN_ITEM_KEY;
1644 key.offset = location->objectid;
1645
1646 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1647 btrfs_free_path(path);
d68fc57b
YZ
1648 if (ret < 0)
1649 goto fail;
1650 if (ret == 0)
27cdeb70 1651 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1652
cb517eab 1653 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1654 if (ret) {
4df27c4d
YZ
1655 if (ret == -EEXIST) {
1656 free_fs_root(root);
1657 goto again;
1658 }
1659 goto fail;
0f7d52f4 1660 }
edbd8d4e 1661 return root;
4df27c4d
YZ
1662fail:
1663 free_fs_root(root);
1664 return ERR_PTR(ret);
edbd8d4e
CM
1665}
1666
04160088
CM
1667static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1668{
1669 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1670 int ret = 0;
04160088
CM
1671 struct btrfs_device *device;
1672 struct backing_dev_info *bdi;
b7967db7 1673
1f78160c
XG
1674 rcu_read_lock();
1675 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1676 if (!device->bdev)
1677 continue;
efa7c9f9 1678 bdi = device->bdev->bd_bdi;
ff9ea323 1679 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1680 ret = 1;
1681 break;
1682 }
1683 }
1f78160c 1684 rcu_read_unlock();
04160088
CM
1685 return ret;
1686}
1687
8b712842
CM
1688/*
1689 * called by the kthread helper functions to finally call the bio end_io
1690 * functions. This is where read checksum verification actually happens
1691 */
1692static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1693{
ce9adaa5 1694 struct bio *bio;
97eb6b69 1695 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1696
97eb6b69 1697 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1698 bio = end_io_wq->bio;
ce9adaa5 1699
4e4cbee9 1700 bio->bi_status = end_io_wq->status;
8b712842
CM
1701 bio->bi_private = end_io_wq->private;
1702 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1703 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1704 bio_endio(bio);
44b8bd7e
CM
1705}
1706
a74a4b97
CM
1707static int cleaner_kthread(void *arg)
1708{
1709 struct btrfs_root *root = arg;
0b246afa 1710 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1711 int again;
da288d28 1712 struct btrfs_trans_handle *trans;
a74a4b97
CM
1713
1714 do {
d0278245 1715 again = 0;
a74a4b97 1716
d0278245 1717 /* Make the cleaner go to sleep early. */
2ff7e61e 1718 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1719 goto sleep;
1720
90c711ab
ZB
1721 /*
1722 * Do not do anything if we might cause open_ctree() to block
1723 * before we have finished mounting the filesystem.
1724 */
0b246afa 1725 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1726 goto sleep;
1727
0b246afa 1728 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1729 goto sleep;
1730
dc7f370c
MX
1731 /*
1732 * Avoid the problem that we change the status of the fs
1733 * during the above check and trylock.
1734 */
2ff7e61e 1735 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1736 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1737 goto sleep;
76dda93c 1738 }
a74a4b97 1739
0b246afa 1740 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1741 btrfs_run_delayed_iputs(fs_info);
0b246afa 1742 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1743
d0278245 1744 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1745 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1746
1747 /*
05323cd1
MX
1748 * The defragger has dealt with the R/O remount and umount,
1749 * needn't do anything special here.
d0278245 1750 */
0b246afa 1751 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1752
1753 /*
1754 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1755 * with relocation (btrfs_relocate_chunk) and relocation
1756 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1757 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1758 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1759 * unused block groups.
1760 */
0b246afa 1761 btrfs_delete_unused_bgs(fs_info);
d0278245 1762sleep:
838fe188 1763 if (!again) {
a74a4b97 1764 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1765 if (!kthread_should_stop())
1766 schedule();
a74a4b97
CM
1767 __set_current_state(TASK_RUNNING);
1768 }
1769 } while (!kthread_should_stop());
da288d28
FM
1770
1771 /*
1772 * Transaction kthread is stopped before us and wakes us up.
1773 * However we might have started a new transaction and COWed some
1774 * tree blocks when deleting unused block groups for example. So
1775 * make sure we commit the transaction we started to have a clean
1776 * shutdown when evicting the btree inode - if it has dirty pages
1777 * when we do the final iput() on it, eviction will trigger a
1778 * writeback for it which will fail with null pointer dereferences
1779 * since work queues and other resources were already released and
1780 * destroyed by the time the iput/eviction/writeback is made.
1781 */
1782 trans = btrfs_attach_transaction(root);
1783 if (IS_ERR(trans)) {
1784 if (PTR_ERR(trans) != -ENOENT)
0b246afa 1785 btrfs_err(fs_info,
da288d28
FM
1786 "cleaner transaction attach returned %ld",
1787 PTR_ERR(trans));
1788 } else {
1789 int ret;
1790
3a45bb20 1791 ret = btrfs_commit_transaction(trans);
da288d28 1792 if (ret)
0b246afa 1793 btrfs_err(fs_info,
da288d28
FM
1794 "cleaner open transaction commit returned %d",
1795 ret);
1796 }
1797
a74a4b97
CM
1798 return 0;
1799}
1800
1801static int transaction_kthread(void *arg)
1802{
1803 struct btrfs_root *root = arg;
0b246afa 1804 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1805 struct btrfs_trans_handle *trans;
1806 struct btrfs_transaction *cur;
8929ecfa 1807 u64 transid;
a74a4b97
CM
1808 unsigned long now;
1809 unsigned long delay;
914b2007 1810 bool cannot_commit;
a74a4b97
CM
1811
1812 do {
914b2007 1813 cannot_commit = false;
0b246afa
JM
1814 delay = HZ * fs_info->commit_interval;
1815 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1816
0b246afa
JM
1817 spin_lock(&fs_info->trans_lock);
1818 cur = fs_info->running_transaction;
a74a4b97 1819 if (!cur) {
0b246afa 1820 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1821 goto sleep;
1822 }
31153d81 1823
a74a4b97 1824 now = get_seconds();
4a9d8bde 1825 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1826 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1827 (now < cur->start_time ||
0b246afa
JM
1828 now - cur->start_time < fs_info->commit_interval)) {
1829 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1830 delay = HZ * 5;
1831 goto sleep;
1832 }
8929ecfa 1833 transid = cur->transid;
0b246afa 1834 spin_unlock(&fs_info->trans_lock);
56bec294 1835
79787eaa 1836 /* If the file system is aborted, this will always fail. */
354aa0fb 1837 trans = btrfs_attach_transaction(root);
914b2007 1838 if (IS_ERR(trans)) {
354aa0fb
MX
1839 if (PTR_ERR(trans) != -ENOENT)
1840 cannot_commit = true;
79787eaa 1841 goto sleep;
914b2007 1842 }
8929ecfa 1843 if (transid == trans->transid) {
3a45bb20 1844 btrfs_commit_transaction(trans);
8929ecfa 1845 } else {
3a45bb20 1846 btrfs_end_transaction(trans);
8929ecfa 1847 }
a74a4b97 1848sleep:
0b246afa
JM
1849 wake_up_process(fs_info->cleaner_kthread);
1850 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1851
4e121c06 1852 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1853 &fs_info->fs_state)))
2ff7e61e 1854 btrfs_cleanup_transaction(fs_info);
ce63f891 1855 if (!kthread_should_stop() &&
0b246afa 1856 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1857 cannot_commit))
bc5511d0 1858 schedule_timeout_interruptible(delay);
a74a4b97
CM
1859 } while (!kthread_should_stop());
1860 return 0;
1861}
1862
af31f5e5
CM
1863/*
1864 * this will find the highest generation in the array of
1865 * root backups. The index of the highest array is returned,
1866 * or -1 if we can't find anything.
1867 *
1868 * We check to make sure the array is valid by comparing the
1869 * generation of the latest root in the array with the generation
1870 * in the super block. If they don't match we pitch it.
1871 */
1872static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1873{
1874 u64 cur;
1875 int newest_index = -1;
1876 struct btrfs_root_backup *root_backup;
1877 int i;
1878
1879 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1880 root_backup = info->super_copy->super_roots + i;
1881 cur = btrfs_backup_tree_root_gen(root_backup);
1882 if (cur == newest_gen)
1883 newest_index = i;
1884 }
1885
1886 /* check to see if we actually wrapped around */
1887 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1888 root_backup = info->super_copy->super_roots;
1889 cur = btrfs_backup_tree_root_gen(root_backup);
1890 if (cur == newest_gen)
1891 newest_index = 0;
1892 }
1893 return newest_index;
1894}
1895
1896
1897/*
1898 * find the oldest backup so we know where to store new entries
1899 * in the backup array. This will set the backup_root_index
1900 * field in the fs_info struct
1901 */
1902static void find_oldest_super_backup(struct btrfs_fs_info *info,
1903 u64 newest_gen)
1904{
1905 int newest_index = -1;
1906
1907 newest_index = find_newest_super_backup(info, newest_gen);
1908 /* if there was garbage in there, just move along */
1909 if (newest_index == -1) {
1910 info->backup_root_index = 0;
1911 } else {
1912 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1913 }
1914}
1915
1916/*
1917 * copy all the root pointers into the super backup array.
1918 * this will bump the backup pointer by one when it is
1919 * done
1920 */
1921static void backup_super_roots(struct btrfs_fs_info *info)
1922{
1923 int next_backup;
1924 struct btrfs_root_backup *root_backup;
1925 int last_backup;
1926
1927 next_backup = info->backup_root_index;
1928 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1929 BTRFS_NUM_BACKUP_ROOTS;
1930
1931 /*
1932 * just overwrite the last backup if we're at the same generation
1933 * this happens only at umount
1934 */
1935 root_backup = info->super_for_commit->super_roots + last_backup;
1936 if (btrfs_backup_tree_root_gen(root_backup) ==
1937 btrfs_header_generation(info->tree_root->node))
1938 next_backup = last_backup;
1939
1940 root_backup = info->super_for_commit->super_roots + next_backup;
1941
1942 /*
1943 * make sure all of our padding and empty slots get zero filled
1944 * regardless of which ones we use today
1945 */
1946 memset(root_backup, 0, sizeof(*root_backup));
1947
1948 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1949
1950 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1951 btrfs_set_backup_tree_root_gen(root_backup,
1952 btrfs_header_generation(info->tree_root->node));
1953
1954 btrfs_set_backup_tree_root_level(root_backup,
1955 btrfs_header_level(info->tree_root->node));
1956
1957 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1958 btrfs_set_backup_chunk_root_gen(root_backup,
1959 btrfs_header_generation(info->chunk_root->node));
1960 btrfs_set_backup_chunk_root_level(root_backup,
1961 btrfs_header_level(info->chunk_root->node));
1962
1963 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1964 btrfs_set_backup_extent_root_gen(root_backup,
1965 btrfs_header_generation(info->extent_root->node));
1966 btrfs_set_backup_extent_root_level(root_backup,
1967 btrfs_header_level(info->extent_root->node));
1968
7c7e82a7
CM
1969 /*
1970 * we might commit during log recovery, which happens before we set
1971 * the fs_root. Make sure it is valid before we fill it in.
1972 */
1973 if (info->fs_root && info->fs_root->node) {
1974 btrfs_set_backup_fs_root(root_backup,
1975 info->fs_root->node->start);
1976 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1977 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1978 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1979 btrfs_header_level(info->fs_root->node));
7c7e82a7 1980 }
af31f5e5
CM
1981
1982 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1983 btrfs_set_backup_dev_root_gen(root_backup,
1984 btrfs_header_generation(info->dev_root->node));
1985 btrfs_set_backup_dev_root_level(root_backup,
1986 btrfs_header_level(info->dev_root->node));
1987
1988 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1989 btrfs_set_backup_csum_root_gen(root_backup,
1990 btrfs_header_generation(info->csum_root->node));
1991 btrfs_set_backup_csum_root_level(root_backup,
1992 btrfs_header_level(info->csum_root->node));
1993
1994 btrfs_set_backup_total_bytes(root_backup,
1995 btrfs_super_total_bytes(info->super_copy));
1996 btrfs_set_backup_bytes_used(root_backup,
1997 btrfs_super_bytes_used(info->super_copy));
1998 btrfs_set_backup_num_devices(root_backup,
1999 btrfs_super_num_devices(info->super_copy));
2000
2001 /*
2002 * if we don't copy this out to the super_copy, it won't get remembered
2003 * for the next commit
2004 */
2005 memcpy(&info->super_copy->super_roots,
2006 &info->super_for_commit->super_roots,
2007 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2008}
2009
2010/*
2011 * this copies info out of the root backup array and back into
2012 * the in-memory super block. It is meant to help iterate through
2013 * the array, so you send it the number of backups you've already
2014 * tried and the last backup index you used.
2015 *
2016 * this returns -1 when it has tried all the backups
2017 */
2018static noinline int next_root_backup(struct btrfs_fs_info *info,
2019 struct btrfs_super_block *super,
2020 int *num_backups_tried, int *backup_index)
2021{
2022 struct btrfs_root_backup *root_backup;
2023 int newest = *backup_index;
2024
2025 if (*num_backups_tried == 0) {
2026 u64 gen = btrfs_super_generation(super);
2027
2028 newest = find_newest_super_backup(info, gen);
2029 if (newest == -1)
2030 return -1;
2031
2032 *backup_index = newest;
2033 *num_backups_tried = 1;
2034 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2035 /* we've tried all the backups, all done */
2036 return -1;
2037 } else {
2038 /* jump to the next oldest backup */
2039 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2040 BTRFS_NUM_BACKUP_ROOTS;
2041 *backup_index = newest;
2042 *num_backups_tried += 1;
2043 }
2044 root_backup = super->super_roots + newest;
2045
2046 btrfs_set_super_generation(super,
2047 btrfs_backup_tree_root_gen(root_backup));
2048 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2049 btrfs_set_super_root_level(super,
2050 btrfs_backup_tree_root_level(root_backup));
2051 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2052
2053 /*
2054 * fixme: the total bytes and num_devices need to match or we should
2055 * need a fsck
2056 */
2057 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2058 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2059 return 0;
2060}
2061
7abadb64
LB
2062/* helper to cleanup workers */
2063static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2064{
dc6e3209 2065 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2066 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2067 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2068 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2069 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2070 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2071 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2072 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2073 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2074 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2075 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2076 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2077 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2078 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2079 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2080 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2081 /*
2082 * Now that all other work queues are destroyed, we can safely destroy
2083 * the queues used for metadata I/O, since tasks from those other work
2084 * queues can do metadata I/O operations.
2085 */
2086 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2087 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2088}
2089
2e9f5954
R
2090static void free_root_extent_buffers(struct btrfs_root *root)
2091{
2092 if (root) {
2093 free_extent_buffer(root->node);
2094 free_extent_buffer(root->commit_root);
2095 root->node = NULL;
2096 root->commit_root = NULL;
2097 }
2098}
2099
af31f5e5
CM
2100/* helper to cleanup tree roots */
2101static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2102{
2e9f5954 2103 free_root_extent_buffers(info->tree_root);
655b09fe 2104
2e9f5954
R
2105 free_root_extent_buffers(info->dev_root);
2106 free_root_extent_buffers(info->extent_root);
2107 free_root_extent_buffers(info->csum_root);
2108 free_root_extent_buffers(info->quota_root);
2109 free_root_extent_buffers(info->uuid_root);
2110 if (chunk_root)
2111 free_root_extent_buffers(info->chunk_root);
70f6d82e 2112 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2113}
2114
faa2dbf0 2115void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2116{
2117 int ret;
2118 struct btrfs_root *gang[8];
2119 int i;
2120
2121 while (!list_empty(&fs_info->dead_roots)) {
2122 gang[0] = list_entry(fs_info->dead_roots.next,
2123 struct btrfs_root, root_list);
2124 list_del(&gang[0]->root_list);
2125
27cdeb70 2126 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2127 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2128 } else {
2129 free_extent_buffer(gang[0]->node);
2130 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2131 btrfs_put_fs_root(gang[0]);
171f6537
JB
2132 }
2133 }
2134
2135 while (1) {
2136 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2137 (void **)gang, 0,
2138 ARRAY_SIZE(gang));
2139 if (!ret)
2140 break;
2141 for (i = 0; i < ret; i++)
cb517eab 2142 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2143 }
1a4319cc
LB
2144
2145 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2146 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2147 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2148 }
171f6537 2149}
af31f5e5 2150
638aa7ed
ES
2151static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2152{
2153 mutex_init(&fs_info->scrub_lock);
2154 atomic_set(&fs_info->scrubs_running, 0);
2155 atomic_set(&fs_info->scrub_pause_req, 0);
2156 atomic_set(&fs_info->scrubs_paused, 0);
2157 atomic_set(&fs_info->scrub_cancel_req, 0);
2158 init_waitqueue_head(&fs_info->scrub_pause_wait);
2159 fs_info->scrub_workers_refcnt = 0;
2160}
2161
779a65a4
ES
2162static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2163{
2164 spin_lock_init(&fs_info->balance_lock);
2165 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2166 atomic_set(&fs_info->balance_pause_req, 0);
2167 atomic_set(&fs_info->balance_cancel_req, 0);
2168 fs_info->balance_ctl = NULL;
2169 init_waitqueue_head(&fs_info->balance_wait_q);
2170}
2171
6bccf3ab 2172static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2173{
2ff7e61e
JM
2174 struct inode *inode = fs_info->btree_inode;
2175
2176 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2177 set_nlink(inode, 1);
f37938e0
ES
2178 /*
2179 * we set the i_size on the btree inode to the max possible int.
2180 * the real end of the address space is determined by all of
2181 * the devices in the system
2182 */
2ff7e61e
JM
2183 inode->i_size = OFFSET_MAX;
2184 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2185
2ff7e61e 2186 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2187 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2188 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2189 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2190
2ff7e61e 2191 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2192
2ff7e61e
JM
2193 BTRFS_I(inode)->root = fs_info->tree_root;
2194 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2195 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2196 btrfs_insert_inode_hash(inode);
f37938e0
ES
2197}
2198
ad618368
ES
2199static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2200{
2201 fs_info->dev_replace.lock_owner = 0;
2202 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2203 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2204 rwlock_init(&fs_info->dev_replace.lock);
2205 atomic_set(&fs_info->dev_replace.read_locks, 0);
2206 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2207 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2208 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2209}
2210
f9e92e40
ES
2211static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2212{
2213 spin_lock_init(&fs_info->qgroup_lock);
2214 mutex_init(&fs_info->qgroup_ioctl_lock);
2215 fs_info->qgroup_tree = RB_ROOT;
2216 fs_info->qgroup_op_tree = RB_ROOT;
2217 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2218 fs_info->qgroup_seq = 1;
f9e92e40 2219 fs_info->qgroup_ulist = NULL;
d2c609b8 2220 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2221 mutex_init(&fs_info->qgroup_rescan_lock);
2222}
2223
2a458198
ES
2224static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2225 struct btrfs_fs_devices *fs_devices)
2226{
f7b885be 2227 u32 max_active = fs_info->thread_pool_size;
6f011058 2228 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2229
2230 fs_info->workers =
cb001095
JM
2231 btrfs_alloc_workqueue(fs_info, "worker",
2232 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2233
2234 fs_info->delalloc_workers =
cb001095
JM
2235 btrfs_alloc_workqueue(fs_info, "delalloc",
2236 flags, max_active, 2);
2a458198
ES
2237
2238 fs_info->flush_workers =
cb001095
JM
2239 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2240 flags, max_active, 0);
2a458198
ES
2241
2242 fs_info->caching_workers =
cb001095 2243 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2244
2245 /*
2246 * a higher idle thresh on the submit workers makes it much more
2247 * likely that bios will be send down in a sane order to the
2248 * devices
2249 */
2250 fs_info->submit_workers =
cb001095 2251 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2252 min_t(u64, fs_devices->num_devices,
2253 max_active), 64);
2254
2255 fs_info->fixup_workers =
cb001095 2256 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2257
2258 /*
2259 * endios are largely parallel and should have a very
2260 * low idle thresh
2261 */
2262 fs_info->endio_workers =
cb001095 2263 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2264 fs_info->endio_meta_workers =
cb001095
JM
2265 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2266 max_active, 4);
2a458198 2267 fs_info->endio_meta_write_workers =
cb001095
JM
2268 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2269 max_active, 2);
2a458198 2270 fs_info->endio_raid56_workers =
cb001095
JM
2271 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2272 max_active, 4);
2a458198 2273 fs_info->endio_repair_workers =
cb001095 2274 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2275 fs_info->rmw_workers =
cb001095 2276 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2277 fs_info->endio_write_workers =
cb001095
JM
2278 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2279 max_active, 2);
2a458198 2280 fs_info->endio_freespace_worker =
cb001095
JM
2281 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2282 max_active, 0);
2a458198 2283 fs_info->delayed_workers =
cb001095
JM
2284 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2285 max_active, 0);
2a458198 2286 fs_info->readahead_workers =
cb001095
JM
2287 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2288 max_active, 2);
2a458198 2289 fs_info->qgroup_rescan_workers =
cb001095 2290 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2291 fs_info->extent_workers =
cb001095 2292 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2293 min_t(u64, fs_devices->num_devices,
2294 max_active), 8);
2295
2296 if (!(fs_info->workers && fs_info->delalloc_workers &&
2297 fs_info->submit_workers && fs_info->flush_workers &&
2298 fs_info->endio_workers && fs_info->endio_meta_workers &&
2299 fs_info->endio_meta_write_workers &&
2300 fs_info->endio_repair_workers &&
2301 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2302 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2303 fs_info->caching_workers && fs_info->readahead_workers &&
2304 fs_info->fixup_workers && fs_info->delayed_workers &&
2305 fs_info->extent_workers &&
2306 fs_info->qgroup_rescan_workers)) {
2307 return -ENOMEM;
2308 }
2309
2310 return 0;
2311}
2312
63443bf5
ES
2313static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2314 struct btrfs_fs_devices *fs_devices)
2315{
2316 int ret;
63443bf5
ES
2317 struct btrfs_root *log_tree_root;
2318 struct btrfs_super_block *disk_super = fs_info->super_copy;
2319 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2320 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2321
2322 if (fs_devices->rw_devices == 0) {
f14d104d 2323 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2324 return -EIO;
2325 }
2326
74e4d827 2327 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2328 if (!log_tree_root)
2329 return -ENOMEM;
2330
da17066c 2331 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2332
2ff7e61e 2333 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2334 fs_info->generation + 1,
2335 level, NULL);
64c043de 2336 if (IS_ERR(log_tree_root->node)) {
f14d104d 2337 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2338 ret = PTR_ERR(log_tree_root->node);
64c043de 2339 kfree(log_tree_root);
0eeff236 2340 return ret;
64c043de 2341 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2342 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2343 free_extent_buffer(log_tree_root->node);
2344 kfree(log_tree_root);
2345 return -EIO;
2346 }
2347 /* returns with log_tree_root freed on success */
2348 ret = btrfs_recover_log_trees(log_tree_root);
2349 if (ret) {
0b246afa
JM
2350 btrfs_handle_fs_error(fs_info, ret,
2351 "Failed to recover log tree");
63443bf5
ES
2352 free_extent_buffer(log_tree_root->node);
2353 kfree(log_tree_root);
2354 return ret;
2355 }
2356
bc98a42c 2357 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2358 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2359 if (ret)
2360 return ret;
2361 }
2362
2363 return 0;
2364}
2365
6bccf3ab 2366static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2367{
6bccf3ab 2368 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2369 struct btrfs_root *root;
4bbcaa64
ES
2370 struct btrfs_key location;
2371 int ret;
2372
6bccf3ab
JM
2373 BUG_ON(!fs_info->tree_root);
2374
4bbcaa64
ES
2375 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2376 location.type = BTRFS_ROOT_ITEM_KEY;
2377 location.offset = 0;
2378
a4f3d2c4 2379 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2380 if (IS_ERR(root)) {
2381 ret = PTR_ERR(root);
2382 goto out;
2383 }
a4f3d2c4
DS
2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385 fs_info->extent_root = root;
4bbcaa64
ES
2386
2387 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2388 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2389 if (IS_ERR(root)) {
2390 ret = PTR_ERR(root);
2391 goto out;
2392 }
a4f3d2c4
DS
2393 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2394 fs_info->dev_root = root;
4bbcaa64
ES
2395 btrfs_init_devices_late(fs_info);
2396
2397 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2398 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2399 if (IS_ERR(root)) {
2400 ret = PTR_ERR(root);
2401 goto out;
2402 }
a4f3d2c4
DS
2403 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2404 fs_info->csum_root = root;
4bbcaa64
ES
2405
2406 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2407 root = btrfs_read_tree_root(tree_root, &location);
2408 if (!IS_ERR(root)) {
2409 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2410 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2411 fs_info->quota_root = root;
4bbcaa64
ES
2412 }
2413
2414 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2415 root = btrfs_read_tree_root(tree_root, &location);
2416 if (IS_ERR(root)) {
2417 ret = PTR_ERR(root);
4bbcaa64 2418 if (ret != -ENOENT)
f50f4353 2419 goto out;
4bbcaa64 2420 } else {
a4f3d2c4
DS
2421 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2422 fs_info->uuid_root = root;
4bbcaa64
ES
2423 }
2424
70f6d82e
OS
2425 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2426 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2427 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2428 if (IS_ERR(root)) {
2429 ret = PTR_ERR(root);
2430 goto out;
2431 }
70f6d82e
OS
2432 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2433 fs_info->free_space_root = root;
2434 }
2435
4bbcaa64 2436 return 0;
f50f4353
LB
2437out:
2438 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2439 location.objectid, ret);
2440 return ret;
4bbcaa64
ES
2441}
2442
21a852b0
QW
2443static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
2444{
2445 struct btrfs_super_block *sb = fs_info->super_copy;
2446 u64 nodesize = btrfs_super_nodesize(sb);
2447 u64 sectorsize = btrfs_super_sectorsize(sb);
2448 int ret = 0;
2449
2450 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2451 btrfs_err(fs_info, "no valid FS found");
2452 ret = -EINVAL;
2453 }
2454 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2455 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2456 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2457 ret = -EINVAL;
2458 }
2459 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2460 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2461 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2462 ret = -EINVAL;
2463 }
2464 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2465 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2466 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2467 ret = -EINVAL;
2468 }
2469 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2470 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2471 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2472 ret = -EINVAL;
2473 }
2474
2475 /*
2476 * Check sectorsize and nodesize first, other check will need it.
2477 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2478 */
2479 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2480 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2481 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2482 ret = -EINVAL;
2483 }
2484 /* Only PAGE SIZE is supported yet */
2485 if (sectorsize != PAGE_SIZE) {
2486 btrfs_err(fs_info,
2487 "sectorsize %llu not supported yet, only support %lu",
2488 sectorsize, PAGE_SIZE);
2489 ret = -EINVAL;
2490 }
2491 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2492 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2493 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2494 ret = -EINVAL;
2495 }
2496 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2497 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2498 le32_to_cpu(sb->__unused_leafsize), nodesize);
2499 ret = -EINVAL;
2500 }
2501
2502 /* Root alignment check */
2503 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2504 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2505 btrfs_super_root(sb));
2506 ret = -EINVAL;
2507 }
2508 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2509 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2510 btrfs_super_chunk_root(sb));
2511 ret = -EINVAL;
2512 }
2513 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2514 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2515 btrfs_super_log_root(sb));
2516 ret = -EINVAL;
2517 }
2518
2519 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2520 btrfs_err(fs_info,
2521 "dev_item UUID does not match fsid: %pU != %pU",
2522 fs_info->fsid, sb->dev_item.fsid);
2523 ret = -EINVAL;
2524 }
2525
2526 /*
2527 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2528 * done later
2529 */
2530 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2531 btrfs_err(fs_info, "bytes_used is too small %llu",
2532 btrfs_super_bytes_used(sb));
2533 ret = -EINVAL;
2534 }
2535 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2536 btrfs_err(fs_info, "invalid stripesize %u",
2537 btrfs_super_stripesize(sb));
2538 ret = -EINVAL;
2539 }
2540 if (btrfs_super_num_devices(sb) > (1UL << 31))
2541 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2542 btrfs_super_num_devices(sb));
2543 if (btrfs_super_num_devices(sb) == 0) {
2544 btrfs_err(fs_info, "number of devices is 0");
2545 ret = -EINVAL;
2546 }
2547
2548 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
2549 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2550 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2551 ret = -EINVAL;
2552 }
2553
2554 /*
2555 * Obvious sys_chunk_array corruptions, it must hold at least one key
2556 * and one chunk
2557 */
2558 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2559 btrfs_err(fs_info, "system chunk array too big %u > %u",
2560 btrfs_super_sys_array_size(sb),
2561 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2562 ret = -EINVAL;
2563 }
2564 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2565 + sizeof(struct btrfs_chunk)) {
2566 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2567 btrfs_super_sys_array_size(sb),
2568 sizeof(struct btrfs_disk_key)
2569 + sizeof(struct btrfs_chunk));
2570 ret = -EINVAL;
2571 }
2572
2573 /*
2574 * The generation is a global counter, we'll trust it more than the others
2575 * but it's still possible that it's the one that's wrong.
2576 */
2577 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2578 btrfs_warn(fs_info,
2579 "suspicious: generation < chunk_root_generation: %llu < %llu",
2580 btrfs_super_generation(sb),
2581 btrfs_super_chunk_root_generation(sb));
2582 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2583 && btrfs_super_cache_generation(sb) != (u64)-1)
2584 btrfs_warn(fs_info,
2585 "suspicious: generation < cache_generation: %llu < %llu",
2586 btrfs_super_generation(sb),
2587 btrfs_super_cache_generation(sb));
2588
2589 return ret;
2590}
2591
ad2b2c80
AV
2592int open_ctree(struct super_block *sb,
2593 struct btrfs_fs_devices *fs_devices,
2594 char *options)
2e635a27 2595{
db94535d
CM
2596 u32 sectorsize;
2597 u32 nodesize;
87ee04eb 2598 u32 stripesize;
84234f3a 2599 u64 generation;
f2b636e8 2600 u64 features;
3de4586c 2601 struct btrfs_key location;
a061fc8d 2602 struct buffer_head *bh;
4d34b278 2603 struct btrfs_super_block *disk_super;
815745cf 2604 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2605 struct btrfs_root *tree_root;
4d34b278 2606 struct btrfs_root *chunk_root;
eb60ceac 2607 int ret;
e58ca020 2608 int err = -EINVAL;
af31f5e5
CM
2609 int num_backups_tried = 0;
2610 int backup_index = 0;
6675df31 2611 int clear_free_space_tree = 0;
581c1760 2612 int level;
4543df7e 2613
74e4d827
DS
2614 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2615 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2616 if (!tree_root || !chunk_root) {
39279cc3
CM
2617 err = -ENOMEM;
2618 goto fail;
2619 }
76dda93c
YZ
2620
2621 ret = init_srcu_struct(&fs_info->subvol_srcu);
2622 if (ret) {
2623 err = ret;
2624 goto fail;
2625 }
2626
908c7f19 2627 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2628 if (ret) {
2629 err = ret;
9e11ceee 2630 goto fail_srcu;
e2d84521 2631 }
09cbfeaf 2632 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2633 (1 + ilog2(nr_cpu_ids));
2634
908c7f19 2635 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2636 if (ret) {
2637 err = ret;
2638 goto fail_dirty_metadata_bytes;
2639 }
2640
908c7f19 2641 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2642 if (ret) {
2643 err = ret;
2644 goto fail_delalloc_bytes;
2645 }
2646
76dda93c 2647 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2648 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2649 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2650 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2651 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2652 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2653 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2654 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2655 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2656 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2657 spin_lock_init(&fs_info->trans_lock);
76dda93c 2658 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2659 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2660 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2661 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2662 spin_lock_init(&fs_info->super_lock);
fcebe456 2663 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2664 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2665 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2666 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2667 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2668 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2669 mutex_init(&fs_info->reloc_mutex);
573bfb72 2670 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2671 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2672 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2673
0b86a832 2674 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2675 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2676 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2677 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2678 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2679 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2680 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2681 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2682 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2683 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2684 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2685 BTRFS_BLOCK_RSV_DELOPS);
771ed689 2686 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2687 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2688 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2689 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2690 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2691 fs_info->sb = sb;
95ac567a 2692 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2693 fs_info->metadata_ratio = 0;
4cb5300b 2694 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2695 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2696 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2697 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2698 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2699 /* readahead state */
d0164adc 2700 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2701 spin_lock_init(&fs_info->reada_lock);
fd708b81 2702 btrfs_init_ref_verify(fs_info);
c8b97818 2703
b34b086c
CM
2704 fs_info->thread_pool_size = min_t(unsigned long,
2705 num_online_cpus() + 2, 8);
0afbaf8c 2706
199c2a9c
MX
2707 INIT_LIST_HEAD(&fs_info->ordered_roots);
2708 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2709
2710 fs_info->btree_inode = new_inode(sb);
2711 if (!fs_info->btree_inode) {
2712 err = -ENOMEM;
2713 goto fail_bio_counter;
2714 }
2715 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2716
16cdcec7 2717 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2718 GFP_KERNEL);
16cdcec7
MX
2719 if (!fs_info->delayed_root) {
2720 err = -ENOMEM;
2721 goto fail_iput;
2722 }
2723 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2724
638aa7ed 2725 btrfs_init_scrub(fs_info);
21adbd5c
SB
2726#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2727 fs_info->check_integrity_print_mask = 0;
2728#endif
779a65a4 2729 btrfs_init_balance(fs_info);
21c7e756 2730 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2731
9f6d2510
DS
2732 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2733 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2734
6bccf3ab 2735 btrfs_init_btree_inode(fs_info);
76dda93c 2736
0f9dd46c 2737 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2738 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2739 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2740
c6100a4b
JB
2741 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2742 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2743 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2744 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2745
5a3f23d5 2746 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2747 mutex_init(&fs_info->tree_log_mutex);
925baedd 2748 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2749 mutex_init(&fs_info->transaction_kthread_mutex);
2750 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2751 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2752 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2753 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2754 init_rwsem(&fs_info->subvol_sem);
803b2f54 2755 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2756
ad618368 2757 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2758 btrfs_init_qgroup(fs_info);
416ac51d 2759
fa9c0d79
CM
2760 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2761 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2762
e6dcd2dc 2763 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2764 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2765 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2766 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2767
04216820
FM
2768 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2769
da17066c
JM
2770 /* Usable values until the real ones are cached from the superblock */
2771 fs_info->nodesize = 4096;
2772 fs_info->sectorsize = 4096;
2773 fs_info->stripesize = 4096;
2774
53b381b3
DW
2775 ret = btrfs_alloc_stripe_hash_table(fs_info);
2776 if (ret) {
83c8266a 2777 err = ret;
53b381b3
DW
2778 goto fail_alloc;
2779 }
2780
da17066c 2781 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2782
3c4bb26b 2783 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2784
2785 /*
2786 * Read super block and check the signature bytes only
2787 */
a512bbf8 2788 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2789 if (IS_ERR(bh)) {
2790 err = PTR_ERR(bh);
16cdcec7 2791 goto fail_alloc;
20b45077 2792 }
39279cc3 2793
1104a885
DS
2794 /*
2795 * We want to check superblock checksum, the type is stored inside.
2796 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2797 */
ab8d0fc4 2798 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2799 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2800 err = -EINVAL;
b2acdddf 2801 brelse(bh);
1104a885
DS
2802 goto fail_alloc;
2803 }
2804
2805 /*
2806 * super_copy is zeroed at allocation time and we never touch the
2807 * following bytes up to INFO_SIZE, the checksum is calculated from
2808 * the whole block of INFO_SIZE
2809 */
6c41761f
DS
2810 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2811 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2812 sizeof(*fs_info->super_for_commit));
a061fc8d 2813 brelse(bh);
5f39d397 2814
6c41761f 2815 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2816
3d3a126a 2817 ret = btrfs_check_super_valid(fs_info);
1104a885 2818 if (ret) {
05135f59 2819 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2820 err = -EINVAL;
2821 goto fail_alloc;
2822 }
2823
6c41761f 2824 disk_super = fs_info->super_copy;
0f7d52f4 2825 if (!btrfs_super_root(disk_super))
16cdcec7 2826 goto fail_alloc;
0f7d52f4 2827
acce952b 2828 /* check FS state, whether FS is broken. */
87533c47
MX
2829 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2830 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2831
af31f5e5
CM
2832 /*
2833 * run through our array of backup supers and setup
2834 * our ring pointer to the oldest one
2835 */
2836 generation = btrfs_super_generation(disk_super);
2837 find_oldest_super_backup(fs_info, generation);
2838
75e7cb7f
LB
2839 /*
2840 * In the long term, we'll store the compression type in the super
2841 * block, and it'll be used for per file compression control.
2842 */
2843 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2844
2ff7e61e 2845 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2846 if (ret) {
2847 err = ret;
16cdcec7 2848 goto fail_alloc;
2b82032c 2849 }
dfe25020 2850
f2b636e8
JB
2851 features = btrfs_super_incompat_flags(disk_super) &
2852 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2853 if (features) {
05135f59
DS
2854 btrfs_err(fs_info,
2855 "cannot mount because of unsupported optional features (%llx)",
2856 features);
f2b636e8 2857 err = -EINVAL;
16cdcec7 2858 goto fail_alloc;
f2b636e8
JB
2859 }
2860
5d4f98a2 2861 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2862 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2863 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2864 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2865 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2866 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2867
3173a18f 2868 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2869 btrfs_info(fs_info, "has skinny extents");
3173a18f 2870
727011e0
CM
2871 /*
2872 * flag our filesystem as having big metadata blocks if
2873 * they are bigger than the page size
2874 */
09cbfeaf 2875 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2876 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2877 btrfs_info(fs_info,
2878 "flagging fs with big metadata feature");
727011e0
CM
2879 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2880 }
2881
bc3f116f 2882 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2883 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2884 stripesize = sectorsize;
707e8a07 2885 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2886 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2887
da17066c
JM
2888 /* Cache block sizes */
2889 fs_info->nodesize = nodesize;
2890 fs_info->sectorsize = sectorsize;
2891 fs_info->stripesize = stripesize;
2892
bc3f116f
CM
2893 /*
2894 * mixed block groups end up with duplicate but slightly offset
2895 * extent buffers for the same range. It leads to corruptions
2896 */
2897 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2898 (sectorsize != nodesize)) {
05135f59
DS
2899 btrfs_err(fs_info,
2900"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2901 nodesize, sectorsize);
bc3f116f
CM
2902 goto fail_alloc;
2903 }
2904
ceda0864
MX
2905 /*
2906 * Needn't use the lock because there is no other task which will
2907 * update the flag.
2908 */
a6fa6fae 2909 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2910
f2b636e8
JB
2911 features = btrfs_super_compat_ro_flags(disk_super) &
2912 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2913 if (!sb_rdonly(sb) && features) {
05135f59
DS
2914 btrfs_err(fs_info,
2915 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2916 features);
f2b636e8 2917 err = -EINVAL;
16cdcec7 2918 goto fail_alloc;
f2b636e8 2919 }
61d92c32 2920
2a458198
ES
2921 ret = btrfs_init_workqueues(fs_info, fs_devices);
2922 if (ret) {
2923 err = ret;
0dc3b84a
JB
2924 goto fail_sb_buffer;
2925 }
4543df7e 2926
9e11ceee
JK
2927 sb->s_bdi->congested_fn = btrfs_congested_fn;
2928 sb->s_bdi->congested_data = fs_info;
2929 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2930 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2931 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2932 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2933
a061fc8d
CM
2934 sb->s_blocksize = sectorsize;
2935 sb->s_blocksize_bits = blksize_bits(sectorsize);
ee87cf5e 2936 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
db94535d 2937
925baedd 2938 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2939 ret = btrfs_read_sys_array(fs_info);
925baedd 2940 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2941 if (ret) {
05135f59 2942 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2943 goto fail_sb_buffer;
84eed90f 2944 }
0b86a832 2945
84234f3a 2946 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 2947 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 2948
da17066c 2949 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2950
2ff7e61e 2951 chunk_root->node = read_tree_block(fs_info,
0b86a832 2952 btrfs_super_chunk_root(disk_super),
581c1760 2953 generation, level, NULL);
64c043de
LB
2954 if (IS_ERR(chunk_root->node) ||
2955 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2956 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2957 if (!IS_ERR(chunk_root->node))
2958 free_extent_buffer(chunk_root->node);
95ab1f64 2959 chunk_root->node = NULL;
af31f5e5 2960 goto fail_tree_roots;
83121942 2961 }
5d4f98a2
YZ
2962 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2963 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2964
e17cade2 2965 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2966 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2967
5b4aacef 2968 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2969 if (ret) {
05135f59 2970 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2971 goto fail_tree_roots;
2b82032c 2972 }
0b86a832 2973
8dabb742 2974 /*
9b99b115
AJ
2975 * Keep the devid that is marked to be the target device for the
2976 * device replace procedure
8dabb742 2977 */
9b99b115 2978 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 2979
a6b0d5c8 2980 if (!fs_devices->latest_bdev) {
05135f59 2981 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2982 goto fail_tree_roots;
2983 }
2984
af31f5e5 2985retry_root_backup:
84234f3a 2986 generation = btrfs_super_generation(disk_super);
581c1760 2987 level = btrfs_super_root_level(disk_super);
0b86a832 2988
2ff7e61e 2989 tree_root->node = read_tree_block(fs_info,
db94535d 2990 btrfs_super_root(disk_super),
581c1760 2991 generation, level, NULL);
64c043de
LB
2992 if (IS_ERR(tree_root->node) ||
2993 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2994 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2995 if (!IS_ERR(tree_root->node))
2996 free_extent_buffer(tree_root->node);
95ab1f64 2997 tree_root->node = NULL;
af31f5e5 2998 goto recovery_tree_root;
83121942 2999 }
af31f5e5 3000
5d4f98a2
YZ
3001 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3002 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3003 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3004
f32e48e9
CR
3005 mutex_lock(&tree_root->objectid_mutex);
3006 ret = btrfs_find_highest_objectid(tree_root,
3007 &tree_root->highest_objectid);
3008 if (ret) {
3009 mutex_unlock(&tree_root->objectid_mutex);
3010 goto recovery_tree_root;
3011 }
3012
3013 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3014
3015 mutex_unlock(&tree_root->objectid_mutex);
3016
6bccf3ab 3017 ret = btrfs_read_roots(fs_info);
4bbcaa64 3018 if (ret)
af31f5e5 3019 goto recovery_tree_root;
f7a81ea4 3020
8929ecfa
YZ
3021 fs_info->generation = generation;
3022 fs_info->last_trans_committed = generation;
8929ecfa 3023
68310a5e
ID
3024 ret = btrfs_recover_balance(fs_info);
3025 if (ret) {
05135f59 3026 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3027 goto fail_block_groups;
3028 }
3029
733f4fbb
SB
3030 ret = btrfs_init_dev_stats(fs_info);
3031 if (ret) {
05135f59 3032 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3033 goto fail_block_groups;
3034 }
3035
8dabb742
SB
3036 ret = btrfs_init_dev_replace(fs_info);
3037 if (ret) {
05135f59 3038 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3039 goto fail_block_groups;
3040 }
3041
9b99b115 3042 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3043
b7c35e81
AJ
3044 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3045 if (ret) {
05135f59
DS
3046 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3047 ret);
b7c35e81
AJ
3048 goto fail_block_groups;
3049 }
3050
3051 ret = btrfs_sysfs_add_device(fs_devices);
3052 if (ret) {
05135f59
DS
3053 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3054 ret);
b7c35e81
AJ
3055 goto fail_fsdev_sysfs;
3056 }
3057
96f3136e 3058 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3059 if (ret) {
05135f59 3060 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3061 goto fail_fsdev_sysfs;
c59021f8 3062 }
3063
c59021f8 3064 ret = btrfs_init_space_info(fs_info);
3065 if (ret) {
05135f59 3066 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3067 goto fail_sysfs;
c59021f8 3068 }
3069
5b4aacef 3070 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3071 if (ret) {
05135f59 3072 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3073 goto fail_sysfs;
1b1d1f66 3074 }
4330e183 3075
6528b99d 3076 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3077 btrfs_warn(fs_info,
4330e183 3078 "writeable mount is not allowed due to too many missing devices");
2365dd3c 3079 goto fail_sysfs;
292fd7fc 3080 }
9078a3e1 3081
a74a4b97
CM
3082 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3083 "btrfs-cleaner");
57506d50 3084 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3085 goto fail_sysfs;
a74a4b97
CM
3086
3087 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3088 tree_root,
3089 "btrfs-transaction");
57506d50 3090 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3091 goto fail_cleaner;
a74a4b97 3092
583b7231 3093 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3094 !fs_info->fs_devices->rotating) {
583b7231 3095 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3096 }
3097
572d9ab7 3098 /*
01327610 3099 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3100 * not have to wait for transaction commit
3101 */
3102 btrfs_apply_pending_changes(fs_info);
3818aea2 3103
21adbd5c 3104#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3105 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3106 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3107 btrfs_test_opt(fs_info,
21adbd5c
SB
3108 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3109 1 : 0,
3110 fs_info->check_integrity_print_mask);
3111 if (ret)
05135f59
DS
3112 btrfs_warn(fs_info,
3113 "failed to initialize integrity check module: %d",
3114 ret);
21adbd5c
SB
3115 }
3116#endif
bcef60f2
AJ
3117 ret = btrfs_read_qgroup_config(fs_info);
3118 if (ret)
3119 goto fail_trans_kthread;
21adbd5c 3120
fd708b81
JB
3121 if (btrfs_build_ref_tree(fs_info))
3122 btrfs_err(fs_info, "couldn't build ref tree");
3123
96da0919
QW
3124 /* do not make disk changes in broken FS or nologreplay is given */
3125 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3126 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3127 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3128 if (ret) {
63443bf5 3129 err = ret;
28c16cbb 3130 goto fail_qgroup;
79787eaa 3131 }
e02119d5 3132 }
1a40e23b 3133
6bccf3ab 3134 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3135 if (ret)
28c16cbb 3136 goto fail_qgroup;
76dda93c 3137
bc98a42c 3138 if (!sb_rdonly(sb)) {
d68fc57b 3139 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3140 if (ret)
28c16cbb 3141 goto fail_qgroup;
90c711ab
ZB
3142
3143 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3144 ret = btrfs_recover_relocation(tree_root);
90c711ab 3145 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3146 if (ret < 0) {
05135f59
DS
3147 btrfs_warn(fs_info, "failed to recover relocation: %d",
3148 ret);
d7ce5843 3149 err = -EINVAL;
bcef60f2 3150 goto fail_qgroup;
d7ce5843 3151 }
7c2ca468 3152 }
1a40e23b 3153
3de4586c
CM
3154 location.objectid = BTRFS_FS_TREE_OBJECTID;
3155 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3156 location.offset = 0;
3de4586c 3157
3de4586c 3158 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3159 if (IS_ERR(fs_info->fs_root)) {
3160 err = PTR_ERR(fs_info->fs_root);
f50f4353 3161 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3162 goto fail_qgroup;
3140c9a3 3163 }
c289811c 3164
bc98a42c 3165 if (sb_rdonly(sb))
2b6ba629 3166 return 0;
59641015 3167
f8d468a1
OS
3168 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3169 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3170 clear_free_space_tree = 1;
3171 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3172 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3173 btrfs_warn(fs_info, "free space tree is invalid");
3174 clear_free_space_tree = 1;
3175 }
3176
3177 if (clear_free_space_tree) {
f8d468a1
OS
3178 btrfs_info(fs_info, "clearing free space tree");
3179 ret = btrfs_clear_free_space_tree(fs_info);
3180 if (ret) {
3181 btrfs_warn(fs_info,
3182 "failed to clear free space tree: %d", ret);
6bccf3ab 3183 close_ctree(fs_info);
f8d468a1
OS
3184 return ret;
3185 }
3186 }
3187
0b246afa 3188 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3189 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3190 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3191 ret = btrfs_create_free_space_tree(fs_info);
3192 if (ret) {
05135f59
DS
3193 btrfs_warn(fs_info,
3194 "failed to create free space tree: %d", ret);
6bccf3ab 3195 close_ctree(fs_info);
511711af
CM
3196 return ret;
3197 }
3198 }
3199
2b6ba629
ID
3200 down_read(&fs_info->cleanup_work_sem);
3201 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3202 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3203 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3204 close_ctree(fs_info);
2b6ba629
ID
3205 return ret;
3206 }
3207 up_read(&fs_info->cleanup_work_sem);
59641015 3208
2b6ba629
ID
3209 ret = btrfs_resume_balance_async(fs_info);
3210 if (ret) {
05135f59 3211 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3212 close_ctree(fs_info);
2b6ba629 3213 return ret;
e3acc2a6
JB
3214 }
3215
8dabb742
SB
3216 ret = btrfs_resume_dev_replace_async(fs_info);
3217 if (ret) {
05135f59 3218 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3219 close_ctree(fs_info);
8dabb742
SB
3220 return ret;
3221 }
3222
b382a324
JS
3223 btrfs_qgroup_rescan_resume(fs_info);
3224
4bbcaa64 3225 if (!fs_info->uuid_root) {
05135f59 3226 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3227 ret = btrfs_create_uuid_tree(fs_info);
3228 if (ret) {
05135f59
DS
3229 btrfs_warn(fs_info,
3230 "failed to create the UUID tree: %d", ret);
6bccf3ab 3231 close_ctree(fs_info);
f7a81ea4
SB
3232 return ret;
3233 }
0b246afa 3234 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3235 fs_info->generation !=
3236 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3237 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3238 ret = btrfs_check_uuid_tree(fs_info);
3239 if (ret) {
05135f59
DS
3240 btrfs_warn(fs_info,
3241 "failed to check the UUID tree: %d", ret);
6bccf3ab 3242 close_ctree(fs_info);
70f80175
SB
3243 return ret;
3244 }
3245 } else {
afcdd129 3246 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3247 }
afcdd129 3248 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3249
8dcddfa0
QW
3250 /*
3251 * backuproot only affect mount behavior, and if open_ctree succeeded,
3252 * no need to keep the flag
3253 */
3254 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3255
ad2b2c80 3256 return 0;
39279cc3 3257
bcef60f2
AJ
3258fail_qgroup:
3259 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3260fail_trans_kthread:
3261 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3262 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3263 btrfs_free_fs_roots(fs_info);
3f157a2f 3264fail_cleaner:
a74a4b97 3265 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3266
3267 /*
3268 * make sure we're done with the btree inode before we stop our
3269 * kthreads
3270 */
3271 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3272
2365dd3c 3273fail_sysfs:
6618a59b 3274 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3275
b7c35e81
AJ
3276fail_fsdev_sysfs:
3277 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3278
1b1d1f66 3279fail_block_groups:
54067ae9 3280 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3281
3282fail_tree_roots:
3283 free_root_pointers(fs_info, 1);
2b8195bb 3284 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3285
39279cc3 3286fail_sb_buffer:
7abadb64 3287 btrfs_stop_all_workers(fs_info);
5cdd7db6 3288 btrfs_free_block_groups(fs_info);
16cdcec7 3289fail_alloc:
4543df7e 3290fail_iput:
586e46e2
ID
3291 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3292
4543df7e 3293 iput(fs_info->btree_inode);
c404e0dc
MX
3294fail_bio_counter:
3295 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3296fail_delalloc_bytes:
3297 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3298fail_dirty_metadata_bytes:
3299 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3300fail_srcu:
3301 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3302fail:
53b381b3 3303 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3304 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3305 return err;
af31f5e5
CM
3306
3307recovery_tree_root:
0b246afa 3308 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3309 goto fail_tree_roots;
3310
3311 free_root_pointers(fs_info, 0);
3312
3313 /* don't use the log in recovery mode, it won't be valid */
3314 btrfs_set_super_log_root(disk_super, 0);
3315
3316 /* we can't trust the free space cache either */
3317 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3318
3319 ret = next_root_backup(fs_info, fs_info->super_copy,
3320 &num_backups_tried, &backup_index);
3321 if (ret == -1)
3322 goto fail_block_groups;
3323 goto retry_root_backup;
eb60ceac 3324}
663faf9f 3325ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3326
f2984462
CM
3327static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3328{
f2984462
CM
3329 if (uptodate) {
3330 set_buffer_uptodate(bh);
3331 } else {
442a4f63
SB
3332 struct btrfs_device *device = (struct btrfs_device *)
3333 bh->b_private;
3334
fb456252 3335 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3336 "lost page write due to IO error on %s",
606686ee 3337 rcu_str_deref(device->name));
01327610 3338 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3339 * our own ways of dealing with the IO errors
3340 */
f2984462 3341 clear_buffer_uptodate(bh);
442a4f63 3342 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3343 }
3344 unlock_buffer(bh);
3345 put_bh(bh);
3346}
3347
29c36d72
AJ
3348int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3349 struct buffer_head **bh_ret)
3350{
3351 struct buffer_head *bh;
3352 struct btrfs_super_block *super;
3353 u64 bytenr;
3354
3355 bytenr = btrfs_sb_offset(copy_num);
3356 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3357 return -EINVAL;
3358
9f6d2510 3359 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3360 /*
3361 * If we fail to read from the underlying devices, as of now
3362 * the best option we have is to mark it EIO.
3363 */
3364 if (!bh)
3365 return -EIO;
3366
3367 super = (struct btrfs_super_block *)bh->b_data;
3368 if (btrfs_super_bytenr(super) != bytenr ||
3369 btrfs_super_magic(super) != BTRFS_MAGIC) {
3370 brelse(bh);
3371 return -EINVAL;
3372 }
3373
3374 *bh_ret = bh;
3375 return 0;
3376}
3377
3378
a512bbf8
YZ
3379struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3380{
3381 struct buffer_head *bh;
3382 struct buffer_head *latest = NULL;
3383 struct btrfs_super_block *super;
3384 int i;
3385 u64 transid = 0;
92fc03fb 3386 int ret = -EINVAL;
a512bbf8
YZ
3387
3388 /* we would like to check all the supers, but that would make
3389 * a btrfs mount succeed after a mkfs from a different FS.
3390 * So, we need to add a special mount option to scan for
3391 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3392 */
3393 for (i = 0; i < 1; i++) {
29c36d72
AJ
3394 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3395 if (ret)
a512bbf8
YZ
3396 continue;
3397
3398 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3399
3400 if (!latest || btrfs_super_generation(super) > transid) {
3401 brelse(latest);
3402 latest = bh;
3403 transid = btrfs_super_generation(super);
3404 } else {
3405 brelse(bh);
3406 }
3407 }
92fc03fb
AJ
3408
3409 if (!latest)
3410 return ERR_PTR(ret);
3411
a512bbf8
YZ
3412 return latest;
3413}
3414
4eedeb75 3415/*
abbb3b8e
DS
3416 * Write superblock @sb to the @device. Do not wait for completion, all the
3417 * buffer heads we write are pinned.
4eedeb75 3418 *
abbb3b8e
DS
3419 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3420 * the expected device size at commit time. Note that max_mirrors must be
3421 * same for write and wait phases.
4eedeb75 3422 *
abbb3b8e 3423 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3424 */
a512bbf8 3425static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3426 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3427{
3428 struct buffer_head *bh;
3429 int i;
3430 int ret;
3431 int errors = 0;
3432 u32 crc;
3433 u64 bytenr;
1b9e619c 3434 int op_flags;
a512bbf8
YZ
3435
3436 if (max_mirrors == 0)
3437 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3438
a512bbf8
YZ
3439 for (i = 0; i < max_mirrors; i++) {
3440 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3441 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3442 device->commit_total_bytes)
a512bbf8
YZ
3443 break;
3444
abbb3b8e 3445 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3446
abbb3b8e
DS
3447 crc = ~(u32)0;
3448 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3449 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3450 btrfs_csum_final(crc, sb->csum);
4eedeb75 3451
abbb3b8e 3452 /* One reference for us, and we leave it for the caller */
9f6d2510 3453 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3454 BTRFS_SUPER_INFO_SIZE);
3455 if (!bh) {
3456 btrfs_err(device->fs_info,
3457 "couldn't get super buffer head for bytenr %llu",
3458 bytenr);
3459 errors++;
4eedeb75 3460 continue;
abbb3b8e 3461 }
634554dc 3462
abbb3b8e 3463 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3464
abbb3b8e
DS
3465 /* one reference for submit_bh */
3466 get_bh(bh);
4eedeb75 3467
abbb3b8e
DS
3468 set_buffer_uptodate(bh);
3469 lock_buffer(bh);
3470 bh->b_end_io = btrfs_end_buffer_write_sync;
3471 bh->b_private = device;
a512bbf8 3472
387125fc
CM
3473 /*
3474 * we fua the first super. The others we allow
3475 * to go down lazy.
3476 */
1b9e619c
OS
3477 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3478 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3479 op_flags |= REQ_FUA;
3480 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3481 if (ret)
a512bbf8 3482 errors++;
a512bbf8
YZ
3483 }
3484 return errors < i ? 0 : -1;
3485}
3486
abbb3b8e
DS
3487/*
3488 * Wait for write completion of superblocks done by write_dev_supers,
3489 * @max_mirrors same for write and wait phases.
3490 *
3491 * Return number of errors when buffer head is not found or not marked up to
3492 * date.
3493 */
3494static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3495{
3496 struct buffer_head *bh;
3497 int i;
3498 int errors = 0;
b6a535fa 3499 bool primary_failed = false;
abbb3b8e
DS
3500 u64 bytenr;
3501
3502 if (max_mirrors == 0)
3503 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3504
3505 for (i = 0; i < max_mirrors; i++) {
3506 bytenr = btrfs_sb_offset(i);
3507 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3508 device->commit_total_bytes)
3509 break;
3510
9f6d2510
DS
3511 bh = __find_get_block(device->bdev,
3512 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3513 BTRFS_SUPER_INFO_SIZE);
3514 if (!bh) {
3515 errors++;
b6a535fa
HM
3516 if (i == 0)
3517 primary_failed = true;
abbb3b8e
DS
3518 continue;
3519 }
3520 wait_on_buffer(bh);
b6a535fa 3521 if (!buffer_uptodate(bh)) {
abbb3b8e 3522 errors++;
b6a535fa
HM
3523 if (i == 0)
3524 primary_failed = true;
3525 }
abbb3b8e
DS
3526
3527 /* drop our reference */
3528 brelse(bh);
3529
3530 /* drop the reference from the writing run */
3531 brelse(bh);
3532 }
3533
b6a535fa
HM
3534 /* log error, force error return */
3535 if (primary_failed) {
3536 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3537 device->devid);
3538 return -1;
3539 }
3540
abbb3b8e
DS
3541 return errors < i ? 0 : -1;
3542}
3543
387125fc
CM
3544/*
3545 * endio for the write_dev_flush, this will wake anyone waiting
3546 * for the barrier when it is done
3547 */
4246a0b6 3548static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3549{
e0ae9994 3550 complete(bio->bi_private);
387125fc
CM
3551}
3552
3553/*
4fc6441a
AJ
3554 * Submit a flush request to the device if it supports it. Error handling is
3555 * done in the waiting counterpart.
387125fc 3556 */
4fc6441a 3557static void write_dev_flush(struct btrfs_device *device)
387125fc 3558{
c2a9c7ab 3559 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3560 struct bio *bio = device->flush_bio;
387125fc 3561
c2a9c7ab 3562 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3563 return;
387125fc 3564
e0ae9994 3565 bio_reset(bio);
387125fc 3566 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3567 bio_set_dev(bio, device->bdev);
8d910125 3568 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3569 init_completion(&device->flush_wait);
3570 bio->bi_private = &device->flush_wait;
387125fc 3571
43a01111 3572 btrfsic_submit_bio(bio);
1c3063b6 3573 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3574}
387125fc 3575
4fc6441a
AJ
3576/*
3577 * If the flush bio has been submitted by write_dev_flush, wait for it.
3578 */
8c27cb35 3579static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3580{
4fc6441a 3581 struct bio *bio = device->flush_bio;
387125fc 3582
1c3063b6 3583 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3584 return BLK_STS_OK;
387125fc 3585
1c3063b6 3586 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3587 wait_for_completion_io(&device->flush_wait);
387125fc 3588
8c27cb35 3589 return bio->bi_status;
387125fc 3590}
387125fc 3591
d10b82fe 3592static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3593{
6528b99d 3594 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3595 return -EIO;
387125fc
CM
3596 return 0;
3597}
3598
3599/*
3600 * send an empty flush down to each device in parallel,
3601 * then wait for them
3602 */
3603static int barrier_all_devices(struct btrfs_fs_info *info)
3604{
3605 struct list_head *head;
3606 struct btrfs_device *dev;
5af3e8cc 3607 int errors_wait = 0;
4e4cbee9 3608 blk_status_t ret;
387125fc 3609
1538e6c5 3610 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3611 /* send down all the barriers */
3612 head = &info->fs_devices->devices;
1538e6c5 3613 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3614 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3615 continue;
cea7c8bf 3616 if (!dev->bdev)
387125fc 3617 continue;
e12c9621 3618 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3619 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3620 continue;
3621
4fc6441a 3622 write_dev_flush(dev);
58efbc9f 3623 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3624 }
3625
3626 /* wait for all the barriers */
1538e6c5 3627 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3628 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3629 continue;
387125fc 3630 if (!dev->bdev) {
5af3e8cc 3631 errors_wait++;
387125fc
CM
3632 continue;
3633 }
e12c9621 3634 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3635 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3636 continue;
3637
4fc6441a 3638 ret = wait_dev_flush(dev);
401b41e5
AJ
3639 if (ret) {
3640 dev->last_flush_error = ret;
66b4993e
DS
3641 btrfs_dev_stat_inc_and_print(dev,
3642 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3643 errors_wait++;
401b41e5
AJ
3644 }
3645 }
3646
cea7c8bf 3647 if (errors_wait) {
401b41e5
AJ
3648 /*
3649 * At some point we need the status of all disks
3650 * to arrive at the volume status. So error checking
3651 * is being pushed to a separate loop.
3652 */
d10b82fe 3653 return check_barrier_error(info);
387125fc 3654 }
387125fc
CM
3655 return 0;
3656}
3657
943c6e99
ZL
3658int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3659{
8789f4fe
ZL
3660 int raid_type;
3661 int min_tolerated = INT_MAX;
943c6e99 3662
8789f4fe
ZL
3663 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3664 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3665 min_tolerated = min(min_tolerated,
3666 btrfs_raid_array[BTRFS_RAID_SINGLE].
3667 tolerated_failures);
943c6e99 3668
8789f4fe
ZL
3669 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3670 if (raid_type == BTRFS_RAID_SINGLE)
3671 continue;
41a6e891 3672 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3673 continue;
3674 min_tolerated = min(min_tolerated,
3675 btrfs_raid_array[raid_type].
3676 tolerated_failures);
3677 }
943c6e99 3678
8789f4fe 3679 if (min_tolerated == INT_MAX) {
ab8d0fc4 3680 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3681 min_tolerated = 0;
3682 }
3683
3684 return min_tolerated;
943c6e99
ZL
3685}
3686
eece6a9c 3687int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3688{
e5e9a520 3689 struct list_head *head;
f2984462 3690 struct btrfs_device *dev;
a061fc8d 3691 struct btrfs_super_block *sb;
f2984462 3692 struct btrfs_dev_item *dev_item;
f2984462
CM
3693 int ret;
3694 int do_barriers;
a236aed1
CM
3695 int max_errors;
3696 int total_errors = 0;
a061fc8d 3697 u64 flags;
f2984462 3698
0b246afa 3699 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3700
3701 /*
3702 * max_mirrors == 0 indicates we're from commit_transaction,
3703 * not from fsync where the tree roots in fs_info have not
3704 * been consistent on disk.
3705 */
3706 if (max_mirrors == 0)
3707 backup_super_roots(fs_info);
f2984462 3708
0b246afa 3709 sb = fs_info->super_for_commit;
a061fc8d 3710 dev_item = &sb->dev_item;
e5e9a520 3711
0b246afa
JM
3712 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3713 head = &fs_info->fs_devices->devices;
3714 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3715
5af3e8cc 3716 if (do_barriers) {
0b246afa 3717 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3718 if (ret) {
3719 mutex_unlock(
0b246afa
JM
3720 &fs_info->fs_devices->device_list_mutex);
3721 btrfs_handle_fs_error(fs_info, ret,
3722 "errors while submitting device barriers.");
5af3e8cc
SB
3723 return ret;
3724 }
3725 }
387125fc 3726
1538e6c5 3727 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3728 if (!dev->bdev) {
3729 total_errors++;
3730 continue;
3731 }
e12c9621 3732 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3733 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3734 continue;
3735
2b82032c 3736 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3737 btrfs_set_stack_device_type(dev_item, dev->type);
3738 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3739 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3740 dev->commit_total_bytes);
ce7213c7
MX
3741 btrfs_set_stack_device_bytes_used(dev_item,
3742 dev->commit_bytes_used);
a061fc8d
CM
3743 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3744 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3745 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3746 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
44880fdc 3747 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
a512bbf8 3748
a061fc8d
CM
3749 flags = btrfs_super_flags(sb);
3750 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3751
abbb3b8e 3752 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3753 if (ret)
3754 total_errors++;
f2984462 3755 }
a236aed1 3756 if (total_errors > max_errors) {
0b246afa
JM
3757 btrfs_err(fs_info, "%d errors while writing supers",
3758 total_errors);
3759 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3760
9d565ba4 3761 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3762 btrfs_handle_fs_error(fs_info, -EIO,
3763 "%d errors while writing supers",
3764 total_errors);
9d565ba4 3765 return -EIO;
a236aed1 3766 }
f2984462 3767
a512bbf8 3768 total_errors = 0;
1538e6c5 3769 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3770 if (!dev->bdev)
3771 continue;
e12c9621 3772 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3773 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3774 continue;
3775
abbb3b8e 3776 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3777 if (ret)
3778 total_errors++;
f2984462 3779 }
0b246afa 3780 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3781 if (total_errors > max_errors) {
0b246afa
JM
3782 btrfs_handle_fs_error(fs_info, -EIO,
3783 "%d errors while writing supers",
3784 total_errors);
79787eaa 3785 return -EIO;
a236aed1 3786 }
f2984462
CM
3787 return 0;
3788}
3789
cb517eab
MX
3790/* Drop a fs root from the radix tree and free it. */
3791void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3792 struct btrfs_root *root)
2619ba1f 3793{
4df27c4d 3794 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3795 radix_tree_delete(&fs_info->fs_roots_radix,
3796 (unsigned long)root->root_key.objectid);
4df27c4d 3797 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3798
3799 if (btrfs_root_refs(&root->root_item) == 0)
3800 synchronize_srcu(&fs_info->subvol_srcu);
3801
1c1ea4f7 3802 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3803 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3804 if (root->reloc_root) {
3805 free_extent_buffer(root->reloc_root->node);
3806 free_extent_buffer(root->reloc_root->commit_root);
3807 btrfs_put_fs_root(root->reloc_root);
3808 root->reloc_root = NULL;
3809 }
3810 }
3321719e 3811
faa2dbf0
JB
3812 if (root->free_ino_pinned)
3813 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3814 if (root->free_ino_ctl)
3815 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3816 free_fs_root(root);
4df27c4d
YZ
3817}
3818
3819static void free_fs_root(struct btrfs_root *root)
3820{
57cdc8db 3821 iput(root->ino_cache_inode);
4df27c4d 3822 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2ff7e61e 3823 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
1cb048f5 3824 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3825 if (root->anon_dev)
3826 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3827 if (root->subv_writers)
3828 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3829 free_extent_buffer(root->node);
3830 free_extent_buffer(root->commit_root);
581bb050
LZ
3831 kfree(root->free_ino_ctl);
3832 kfree(root->free_ino_pinned);
d397712b 3833 kfree(root->name);
b0feb9d9 3834 btrfs_put_fs_root(root);
2619ba1f
CM
3835}
3836
cb517eab
MX
3837void btrfs_free_fs_root(struct btrfs_root *root)
3838{
3839 free_fs_root(root);
2619ba1f
CM
3840}
3841
c146afad 3842int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3843{
c146afad
YZ
3844 u64 root_objectid = 0;
3845 struct btrfs_root *gang[8];
65d33fd7
QW
3846 int i = 0;
3847 int err = 0;
3848 unsigned int ret = 0;
3849 int index;
e089f05c 3850
c146afad 3851 while (1) {
65d33fd7 3852 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3853 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3854 (void **)gang, root_objectid,
3855 ARRAY_SIZE(gang));
65d33fd7
QW
3856 if (!ret) {
3857 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3858 break;
65d33fd7 3859 }
5d4f98a2 3860 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3861
c146afad 3862 for (i = 0; i < ret; i++) {
65d33fd7
QW
3863 /* Avoid to grab roots in dead_roots */
3864 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3865 gang[i] = NULL;
3866 continue;
3867 }
3868 /* grab all the search result for later use */
3869 gang[i] = btrfs_grab_fs_root(gang[i]);
3870 }
3871 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3872
65d33fd7
QW
3873 for (i = 0; i < ret; i++) {
3874 if (!gang[i])
3875 continue;
c146afad 3876 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3877 err = btrfs_orphan_cleanup(gang[i]);
3878 if (err)
65d33fd7
QW
3879 break;
3880 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3881 }
3882 root_objectid++;
3883 }
65d33fd7
QW
3884
3885 /* release the uncleaned roots due to error */
3886 for (; i < ret; i++) {
3887 if (gang[i])
3888 btrfs_put_fs_root(gang[i]);
3889 }
3890 return err;
c146afad 3891}
a2135011 3892
6bccf3ab 3893int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3894{
6bccf3ab 3895 struct btrfs_root *root = fs_info->tree_root;
c146afad 3896 struct btrfs_trans_handle *trans;
a74a4b97 3897
0b246afa 3898 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3899 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3900 mutex_unlock(&fs_info->cleaner_mutex);
3901 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3902
3903 /* wait until ongoing cleanup work done */
0b246afa
JM
3904 down_write(&fs_info->cleanup_work_sem);
3905 up_write(&fs_info->cleanup_work_sem);
c71bf099 3906
7a7eaa40 3907 trans = btrfs_join_transaction(root);
3612b495
TI
3908 if (IS_ERR(trans))
3909 return PTR_ERR(trans);
3a45bb20 3910 return btrfs_commit_transaction(trans);
c146afad
YZ
3911}
3912
6bccf3ab 3913void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3914{
6bccf3ab 3915 struct btrfs_root *root = fs_info->tree_root;
c146afad
YZ
3916 int ret;
3917
afcdd129 3918 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
c146afad 3919
7343dd61 3920 /* wait for the qgroup rescan worker to stop */
d06f23d6 3921 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3922
803b2f54
SB
3923 /* wait for the uuid_scan task to finish */
3924 down(&fs_info->uuid_tree_rescan_sem);
3925 /* avoid complains from lockdep et al., set sem back to initial state */
3926 up(&fs_info->uuid_tree_rescan_sem);
3927
837d5b6e 3928 /* pause restriper - we want to resume on mount */
aa1b8cd4 3929 btrfs_pause_balance(fs_info);
837d5b6e 3930
8dabb742
SB
3931 btrfs_dev_replace_suspend_for_unmount(fs_info);
3932
aa1b8cd4 3933 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3934
3935 /* wait for any defraggers to finish */
3936 wait_event(fs_info->transaction_wait,
3937 (atomic_read(&fs_info->defrag_running) == 0));
3938
3939 /* clear out the rbtree of defraggable inodes */
26176e7c 3940 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3941
21c7e756
MX
3942 cancel_work_sync(&fs_info->async_reclaim_work);
3943
bc98a42c 3944 if (!sb_rdonly(fs_info->sb)) {
e44163e1
JM
3945 /*
3946 * If the cleaner thread is stopped and there are
3947 * block groups queued for removal, the deletion will be
3948 * skipped when we quit the cleaner thread.
3949 */
0b246afa 3950 btrfs_delete_unused_bgs(fs_info);
e44163e1 3951
6bccf3ab 3952 ret = btrfs_commit_super(fs_info);
acce952b 3953 if (ret)
04892340 3954 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3955 }
3956
af722733
LB
3957 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3958 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 3959 btrfs_error_commit_super(fs_info);
0f7d52f4 3960
e3029d9f
AV
3961 kthread_stop(fs_info->transaction_kthread);
3962 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3963
afcdd129 3964 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3965
04892340 3966 btrfs_free_qgroup_config(fs_info);
fe816d0f 3967 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 3968
963d678b 3969 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3970 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3971 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3972 }
bcc63abb 3973
6618a59b 3974 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3975 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3976
faa2dbf0 3977 btrfs_free_fs_roots(fs_info);
d10c5f31 3978
1a4319cc
LB
3979 btrfs_put_block_group_cache(fs_info);
3980
de348ee0
WS
3981 /*
3982 * we must make sure there is not any read request to
3983 * submit after we stopping all workers.
3984 */
3985 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3986 btrfs_stop_all_workers(fs_info);
3987
5cdd7db6
FM
3988 btrfs_free_block_groups(fs_info);
3989
afcdd129 3990 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3991 free_root_pointers(fs_info, 1);
9ad6b7bc 3992
13e6c37b 3993 iput(fs_info->btree_inode);
d6bfde87 3994
21adbd5c 3995#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3996 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 3997 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
3998#endif
3999
dfe25020 4000 btrfs_close_devices(fs_info->fs_devices);
0b86a832 4001 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 4002
e2d84521 4003 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4004 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 4005 percpu_counter_destroy(&fs_info->bio_counter);
76dda93c 4006 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4007
53b381b3 4008 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4009 btrfs_free_ref_cache(fs_info);
53b381b3 4010
cdfb080e 4011 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 4012 root->orphan_block_rsv = NULL;
04216820 4013
04216820
FM
4014 while (!list_empty(&fs_info->pinned_chunks)) {
4015 struct extent_map *em;
4016
4017 em = list_first_entry(&fs_info->pinned_chunks,
4018 struct extent_map, list);
4019 list_del_init(&em->list);
4020 free_extent_map(em);
4021 }
eb60ceac
CM
4022}
4023
b9fab919
CM
4024int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4025 int atomic)
5f39d397 4026{
1259ab75 4027 int ret;
727011e0 4028 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4029
0b32f4bb 4030 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4031 if (!ret)
4032 return ret;
4033
4034 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4035 parent_transid, atomic);
4036 if (ret == -EAGAIN)
4037 return ret;
1259ab75 4038 return !ret;
5f39d397
CM
4039}
4040
5f39d397
CM
4041void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4042{
0b246afa 4043 struct btrfs_fs_info *fs_info;
06ea65a3 4044 struct btrfs_root *root;
5f39d397 4045 u64 transid = btrfs_header_generation(buf);
b9473439 4046 int was_dirty;
b4ce94de 4047
06ea65a3
JB
4048#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4049 /*
4050 * This is a fast path so only do this check if we have sanity tests
4051 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4052 * outside of the sanity tests.
4053 */
4054 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4055 return;
4056#endif
4057 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4058 fs_info = root->fs_info;
b9447ef8 4059 btrfs_assert_tree_locked(buf);
0b246afa 4060 if (transid != fs_info->generation)
5d163e0e 4061 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4062 buf->start, transid, fs_info->generation);
0b32f4bb 4063 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4064 if (!was_dirty)
104b4e51
NB
4065 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4066 buf->len,
4067 fs_info->dirty_metadata_batch);
1f21ef0a 4068#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4069 /*
4070 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4071 * but item data not updated.
4072 * So here we should only check item pointers, not item data.
4073 */
4074 if (btrfs_header_level(buf) == 0 &&
2f659546 4075 btrfs_check_leaf_relaxed(fs_info, buf)) {
a4f78750 4076 btrfs_print_leaf(buf);
1f21ef0a
FM
4077 ASSERT(0);
4078 }
4079#endif
eb60ceac
CM
4080}
4081
2ff7e61e 4082static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4083 int flush_delayed)
16cdcec7
MX
4084{
4085 /*
4086 * looks as though older kernels can get into trouble with
4087 * this code, they end up stuck in balance_dirty_pages forever
4088 */
e2d84521 4089 int ret;
16cdcec7
MX
4090
4091 if (current->flags & PF_MEMALLOC)
4092 return;
4093
b53d3f5d 4094 if (flush_delayed)
2ff7e61e 4095 btrfs_balance_delayed_items(fs_info);
16cdcec7 4096
0b246afa 4097 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
e2d84521
MX
4098 BTRFS_DIRTY_METADATA_THRESH);
4099 if (ret > 0) {
0b246afa 4100 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4101 }
16cdcec7
MX
4102}
4103
2ff7e61e 4104void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4105{
2ff7e61e 4106 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4107}
585ad2c3 4108
2ff7e61e 4109void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4110{
2ff7e61e 4111 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4112}
6b80053d 4113
581c1760
QW
4114int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4115 struct btrfs_key *first_key)
6b80053d 4116{
727011e0 4117 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4118 struct btrfs_fs_info *fs_info = root->fs_info;
4119
581c1760
QW
4120 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4121 level, first_key);
6b80053d 4122}
0da5468f 4123
2ff7e61e 4124static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4125{
fe816d0f
NB
4126 /* cleanup FS via transaction */
4127 btrfs_cleanup_transaction(fs_info);
4128
0b246afa 4129 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4130 btrfs_run_delayed_iputs(fs_info);
0b246afa 4131 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4132
0b246afa
JM
4133 down_write(&fs_info->cleanup_work_sem);
4134 up_write(&fs_info->cleanup_work_sem);
acce952b 4135}
4136
143bede5 4137static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4138{
acce952b 4139 struct btrfs_ordered_extent *ordered;
acce952b 4140
199c2a9c 4141 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4142 /*
4143 * This will just short circuit the ordered completion stuff which will
4144 * make sure the ordered extent gets properly cleaned up.
4145 */
199c2a9c 4146 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4147 root_extent_list)
4148 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4149 spin_unlock(&root->ordered_extent_lock);
4150}
4151
4152static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4153{
4154 struct btrfs_root *root;
4155 struct list_head splice;
4156
4157 INIT_LIST_HEAD(&splice);
4158
4159 spin_lock(&fs_info->ordered_root_lock);
4160 list_splice_init(&fs_info->ordered_roots, &splice);
4161 while (!list_empty(&splice)) {
4162 root = list_first_entry(&splice, struct btrfs_root,
4163 ordered_root);
1de2cfde
JB
4164 list_move_tail(&root->ordered_root,
4165 &fs_info->ordered_roots);
199c2a9c 4166
2a85d9ca 4167 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4168 btrfs_destroy_ordered_extents(root);
4169
2a85d9ca
LB
4170 cond_resched();
4171 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4172 }
4173 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4174}
4175
35a3621b 4176static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4177 struct btrfs_fs_info *fs_info)
acce952b 4178{
4179 struct rb_node *node;
4180 struct btrfs_delayed_ref_root *delayed_refs;
4181 struct btrfs_delayed_ref_node *ref;
4182 int ret = 0;
4183
4184 delayed_refs = &trans->delayed_refs;
4185
4186 spin_lock(&delayed_refs->lock);
d7df2c79 4187 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4188 spin_unlock(&delayed_refs->lock);
0b246afa 4189 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4190 return ret;
4191 }
4192
d7df2c79
JB
4193 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4194 struct btrfs_delayed_ref_head *head;
0e0adbcf 4195 struct rb_node *n;
e78417d1 4196 bool pin_bytes = false;
acce952b 4197
d7df2c79
JB
4198 head = rb_entry(node, struct btrfs_delayed_ref_head,
4199 href_node);
4200 if (!mutex_trylock(&head->mutex)) {
d278850e 4201 refcount_inc(&head->refs);
d7df2c79 4202 spin_unlock(&delayed_refs->lock);
eb12db69 4203
d7df2c79 4204 mutex_lock(&head->mutex);
e78417d1 4205 mutex_unlock(&head->mutex);
d278850e 4206 btrfs_put_delayed_ref_head(head);
d7df2c79
JB
4207 spin_lock(&delayed_refs->lock);
4208 continue;
4209 }
4210 spin_lock(&head->lock);
0e0adbcf
JB
4211 while ((n = rb_first(&head->ref_tree)) != NULL) {
4212 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4213 ref_node);
d7df2c79 4214 ref->in_tree = 0;
0e0adbcf
JB
4215 rb_erase(&ref->ref_node, &head->ref_tree);
4216 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4217 if (!list_empty(&ref->add_list))
4218 list_del(&ref->add_list);
d7df2c79
JB
4219 atomic_dec(&delayed_refs->num_entries);
4220 btrfs_put_delayed_ref(ref);
e78417d1 4221 }
d7df2c79
JB
4222 if (head->must_insert_reserved)
4223 pin_bytes = true;
4224 btrfs_free_delayed_extent_op(head->extent_op);
4225 delayed_refs->num_heads--;
4226 if (head->processing == 0)
4227 delayed_refs->num_heads_ready--;
4228 atomic_dec(&delayed_refs->num_entries);
d7df2c79 4229 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 4230 RB_CLEAR_NODE(&head->href_node);
d7df2c79
JB
4231 spin_unlock(&head->lock);
4232 spin_unlock(&delayed_refs->lock);
4233 mutex_unlock(&head->mutex);
acce952b 4234
d7df2c79 4235 if (pin_bytes)
d278850e
JB
4236 btrfs_pin_extent(fs_info, head->bytenr,
4237 head->num_bytes, 1);
4238 btrfs_put_delayed_ref_head(head);
acce952b 4239 cond_resched();
4240 spin_lock(&delayed_refs->lock);
4241 }
4242
4243 spin_unlock(&delayed_refs->lock);
4244
4245 return ret;
4246}
4247
143bede5 4248static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4249{
4250 struct btrfs_inode *btrfs_inode;
4251 struct list_head splice;
4252
4253 INIT_LIST_HEAD(&splice);
4254
eb73c1b7
MX
4255 spin_lock(&root->delalloc_lock);
4256 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4257
4258 while (!list_empty(&splice)) {
fe816d0f 4259 struct inode *inode = NULL;
eb73c1b7
MX
4260 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4261 delalloc_inodes);
fe816d0f 4262 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4263 spin_unlock(&root->delalloc_lock);
acce952b 4264
fe816d0f
NB
4265 /*
4266 * Make sure we get a live inode and that it'll not disappear
4267 * meanwhile.
4268 */
4269 inode = igrab(&btrfs_inode->vfs_inode);
4270 if (inode) {
4271 invalidate_inode_pages2(inode->i_mapping);
4272 iput(inode);
4273 }
eb73c1b7 4274 spin_lock(&root->delalloc_lock);
acce952b 4275 }
eb73c1b7
MX
4276 spin_unlock(&root->delalloc_lock);
4277}
4278
4279static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4280{
4281 struct btrfs_root *root;
4282 struct list_head splice;
4283
4284 INIT_LIST_HEAD(&splice);
4285
4286 spin_lock(&fs_info->delalloc_root_lock);
4287 list_splice_init(&fs_info->delalloc_roots, &splice);
4288 while (!list_empty(&splice)) {
4289 root = list_first_entry(&splice, struct btrfs_root,
4290 delalloc_root);
eb73c1b7
MX
4291 root = btrfs_grab_fs_root(root);
4292 BUG_ON(!root);
4293 spin_unlock(&fs_info->delalloc_root_lock);
4294
4295 btrfs_destroy_delalloc_inodes(root);
4296 btrfs_put_fs_root(root);
4297
4298 spin_lock(&fs_info->delalloc_root_lock);
4299 }
4300 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4301}
4302
2ff7e61e 4303static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4304 struct extent_io_tree *dirty_pages,
4305 int mark)
4306{
4307 int ret;
acce952b 4308 struct extent_buffer *eb;
4309 u64 start = 0;
4310 u64 end;
acce952b 4311
4312 while (1) {
4313 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4314 mark, NULL);
acce952b 4315 if (ret)
4316 break;
4317
91166212 4318 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4319 while (start <= end) {
0b246afa
JM
4320 eb = find_extent_buffer(fs_info, start);
4321 start += fs_info->nodesize;
fd8b2b61 4322 if (!eb)
acce952b 4323 continue;
fd8b2b61 4324 wait_on_extent_buffer_writeback(eb);
acce952b 4325
fd8b2b61
JB
4326 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4327 &eb->bflags))
4328 clear_extent_buffer_dirty(eb);
4329 free_extent_buffer_stale(eb);
acce952b 4330 }
4331 }
4332
4333 return ret;
4334}
4335
2ff7e61e 4336static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4337 struct extent_io_tree *pinned_extents)
4338{
4339 struct extent_io_tree *unpin;
4340 u64 start;
4341 u64 end;
4342 int ret;
ed0eaa14 4343 bool loop = true;
acce952b 4344
4345 unpin = pinned_extents;
ed0eaa14 4346again:
acce952b 4347 while (1) {
4348 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4349 EXTENT_DIRTY, NULL);
acce952b 4350 if (ret)
4351 break;
4352
af6f8f60 4353 clear_extent_dirty(unpin, start, end);
2ff7e61e 4354 btrfs_error_unpin_extent_range(fs_info, start, end);
acce952b 4355 cond_resched();
4356 }
4357
ed0eaa14 4358 if (loop) {
0b246afa
JM
4359 if (unpin == &fs_info->freed_extents[0])
4360 unpin = &fs_info->freed_extents[1];
ed0eaa14 4361 else
0b246afa 4362 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4363 loop = false;
4364 goto again;
4365 }
4366
acce952b 4367 return 0;
4368}
4369
c79a1751
LB
4370static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4371{
4372 struct inode *inode;
4373
4374 inode = cache->io_ctl.inode;
4375 if (inode) {
4376 invalidate_inode_pages2(inode->i_mapping);
4377 BTRFS_I(inode)->generation = 0;
4378 cache->io_ctl.inode = NULL;
4379 iput(inode);
4380 }
4381 btrfs_put_block_group(cache);
4382}
4383
4384void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4385 struct btrfs_fs_info *fs_info)
c79a1751
LB
4386{
4387 struct btrfs_block_group_cache *cache;
4388
4389 spin_lock(&cur_trans->dirty_bgs_lock);
4390 while (!list_empty(&cur_trans->dirty_bgs)) {
4391 cache = list_first_entry(&cur_trans->dirty_bgs,
4392 struct btrfs_block_group_cache,
4393 dirty_list);
c79a1751
LB
4394
4395 if (!list_empty(&cache->io_list)) {
4396 spin_unlock(&cur_trans->dirty_bgs_lock);
4397 list_del_init(&cache->io_list);
4398 btrfs_cleanup_bg_io(cache);
4399 spin_lock(&cur_trans->dirty_bgs_lock);
4400 }
4401
4402 list_del_init(&cache->dirty_list);
4403 spin_lock(&cache->lock);
4404 cache->disk_cache_state = BTRFS_DC_ERROR;
4405 spin_unlock(&cache->lock);
4406
4407 spin_unlock(&cur_trans->dirty_bgs_lock);
4408 btrfs_put_block_group(cache);
4409 spin_lock(&cur_trans->dirty_bgs_lock);
4410 }
4411 spin_unlock(&cur_trans->dirty_bgs_lock);
4412
45ae2c18
NB
4413 /*
4414 * Refer to the definition of io_bgs member for details why it's safe
4415 * to use it without any locking
4416 */
c79a1751
LB
4417 while (!list_empty(&cur_trans->io_bgs)) {
4418 cache = list_first_entry(&cur_trans->io_bgs,
4419 struct btrfs_block_group_cache,
4420 io_list);
c79a1751
LB
4421
4422 list_del_init(&cache->io_list);
4423 spin_lock(&cache->lock);
4424 cache->disk_cache_state = BTRFS_DC_ERROR;
4425 spin_unlock(&cache->lock);
4426 btrfs_cleanup_bg_io(cache);
4427 }
4428}
4429
49b25e05 4430void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4431 struct btrfs_fs_info *fs_info)
49b25e05 4432{
2ff7e61e 4433 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4434 ASSERT(list_empty(&cur_trans->dirty_bgs));
4435 ASSERT(list_empty(&cur_trans->io_bgs));
4436
2ff7e61e 4437 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4438
4a9d8bde 4439 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4440 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4441
4a9d8bde 4442 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4443 wake_up(&fs_info->transaction_wait);
49b25e05 4444
ccdf9b30
JM
4445 btrfs_destroy_delayed_inodes(fs_info);
4446 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4447
2ff7e61e 4448 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4449 EXTENT_DIRTY);
2ff7e61e 4450 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4451 fs_info->pinned_extents);
49b25e05 4452
4a9d8bde
MX
4453 cur_trans->state =TRANS_STATE_COMPLETED;
4454 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4455}
4456
2ff7e61e 4457static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4458{
4459 struct btrfs_transaction *t;
acce952b 4460
0b246afa 4461 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4462
0b246afa
JM
4463 spin_lock(&fs_info->trans_lock);
4464 while (!list_empty(&fs_info->trans_list)) {
4465 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4466 struct btrfs_transaction, list);
4467 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4468 refcount_inc(&t->use_count);
0b246afa 4469 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4470 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4471 btrfs_put_transaction(t);
0b246afa 4472 spin_lock(&fs_info->trans_lock);
724e2315
JB
4473 continue;
4474 }
0b246afa 4475 if (t == fs_info->running_transaction) {
724e2315 4476 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4477 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4478 /*
4479 * We wait for 0 num_writers since we don't hold a trans
4480 * handle open currently for this transaction.
4481 */
4482 wait_event(t->writer_wait,
4483 atomic_read(&t->num_writers) == 0);
4484 } else {
0b246afa 4485 spin_unlock(&fs_info->trans_lock);
724e2315 4486 }
2ff7e61e 4487 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4488
0b246afa
JM
4489 spin_lock(&fs_info->trans_lock);
4490 if (t == fs_info->running_transaction)
4491 fs_info->running_transaction = NULL;
acce952b 4492 list_del_init(&t->list);
0b246afa 4493 spin_unlock(&fs_info->trans_lock);
acce952b 4494
724e2315 4495 btrfs_put_transaction(t);
2ff7e61e 4496 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4497 spin_lock(&fs_info->trans_lock);
724e2315 4498 }
0b246afa
JM
4499 spin_unlock(&fs_info->trans_lock);
4500 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4501 btrfs_destroy_delayed_inodes(fs_info);
4502 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4503 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4504 btrfs_destroy_all_delalloc_inodes(fs_info);
4505 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4506
4507 return 0;
4508}
4509
c6100a4b
JB
4510static struct btrfs_fs_info *btree_fs_info(void *private_data)
4511{
4512 struct inode *inode = private_data;
4513 return btrfs_sb(inode->i_sb);
4514}
4515
e8c9f186 4516static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4517 /* mandatory callbacks */
0b86a832 4518 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4519 .readpage_end_io_hook = btree_readpage_end_io_hook,
239b14b3
CM
4520 /* note we're sharing with inode.c for the merge bio hook */
4521 .merge_bio_hook = btrfs_merge_bio_hook,
20a7db8a 4522 .readpage_io_failed_hook = btree_io_failed_hook,
c6100a4b
JB
4523 .set_range_writeback = btrfs_set_range_writeback,
4524 .tree_fs_info = btree_fs_info,
4d53dddb
DS
4525
4526 /* optional callbacks */
0da5468f 4527};