Linux 4.18-rc8
[linux-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
87cbda5c 8#include <linux/scatterlist.h>
22b0ebda 9#include <linux/swap.h>
0f7d52f4 10#include <linux/radix-tree.h>
35b7e476 11#include <linux/writeback.h>
d397712b 12#include <linux/buffer_head.h>
ce9adaa5 13#include <linux/workqueue.h>
a74a4b97 14#include <linux/kthread.h>
5a0e3ad6 15#include <linux/slab.h>
784b4e29 16#include <linux/migrate.h>
7a36ddec 17#include <linux/ratelimit.h>
6463fe58 18#include <linux/uuid.h>
803b2f54 19#include <linux/semaphore.h>
540adea3 20#include <linux/error-injection.h>
9678c543 21#include <linux/crc32c.h>
7e75bf3f 22#include <asm/unaligned.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
eb60ceac 43
de0022b9
JB
44#ifdef CONFIG_X86
45#include <asm/cpufeature.h>
46#endif
47
319e4d06
QW
48#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
49 BTRFS_HEADER_FLAG_RELOC |\
50 BTRFS_SUPER_FLAG_ERROR |\
51 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
52 BTRFS_SUPER_FLAG_METADUMP |\
53 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 54
e8c9f186 55static const struct extent_io_ops btree_extent_io_ops;
8b712842 56static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 57static void free_fs_root(struct btrfs_root *root);
143bede5 58static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 59static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 60 struct btrfs_fs_info *fs_info);
143bede5 61static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 62static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *dirty_pages,
64 int mark);
2ff7e61e 65static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 66 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
67static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
68static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 69
d352ac68 70/*
97eb6b69
DS
71 * btrfs_end_io_wq structs are used to do processing in task context when an IO
72 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
73 * by writes to insert metadata for new file extents after IO is complete.
74 */
97eb6b69 75struct btrfs_end_io_wq {
ce9adaa5
CM
76 struct bio *bio;
77 bio_end_io_t *end_io;
78 void *private;
79 struct btrfs_fs_info *info;
4e4cbee9 80 blk_status_t status;
bfebd8b5 81 enum btrfs_wq_endio_type metadata;
8b712842 82 struct btrfs_work work;
ce9adaa5 83};
0da5468f 84
97eb6b69
DS
85static struct kmem_cache *btrfs_end_io_wq_cache;
86
87int __init btrfs_end_io_wq_init(void)
88{
89 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
90 sizeof(struct btrfs_end_io_wq),
91 0,
fba4b697 92 SLAB_MEM_SPREAD,
97eb6b69
DS
93 NULL);
94 if (!btrfs_end_io_wq_cache)
95 return -ENOMEM;
96 return 0;
97}
98
e67c718b 99void __cold btrfs_end_io_wq_exit(void)
97eb6b69 100{
5598e900 101 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
102}
103
d352ac68
CM
104/*
105 * async submit bios are used to offload expensive checksumming
106 * onto the worker threads. They checksum file and metadata bios
107 * just before they are sent down the IO stack.
108 */
44b8bd7e 109struct async_submit_bio {
c6100a4b
JB
110 void *private_data;
111 struct btrfs_fs_info *fs_info;
44b8bd7e 112 struct bio *bio;
a758781d
DS
113 extent_submit_bio_start_t *submit_bio_start;
114 extent_submit_bio_done_t *submit_bio_done;
44b8bd7e 115 int mirror_num;
c8b97818 116 unsigned long bio_flags;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->objectid. This ensures that all special purpose roots
135 * have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 212 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 213 int create)
7eccb903 214{
fc4f21b1
NB
215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
216 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
217 struct extent_map *em;
218 int ret;
219
890871be 220 read_lock(&em_tree->lock);
d1310b2e 221 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 222 if (em) {
0b246afa 223 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 224 read_unlock(&em_tree->lock);
5f39d397 225 goto out;
a061fc8d 226 }
890871be 227 read_unlock(&em_tree->lock);
7b13b7b1 228
172ddd60 229 em = alloc_extent_map();
5f39d397
CM
230 if (!em) {
231 em = ERR_PTR(-ENOMEM);
232 goto out;
233 }
234 em->start = 0;
0afbaf8c 235 em->len = (u64)-1;
c8b97818 236 em->block_len = (u64)-1;
5f39d397 237 em->block_start = 0;
0b246afa 238 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 239
890871be 240 write_lock(&em_tree->lock);
09a2a8f9 241 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
242 if (ret == -EEXIST) {
243 free_extent_map(em);
7b13b7b1 244 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 245 if (!em)
0433f20d 246 em = ERR_PTR(-EIO);
5f39d397 247 } else if (ret) {
7b13b7b1 248 free_extent_map(em);
0433f20d 249 em = ERR_PTR(ret);
5f39d397 250 }
890871be 251 write_unlock(&em_tree->lock);
7b13b7b1 252
5f39d397
CM
253out:
254 return em;
7eccb903
CM
255}
256
9ed57367 257u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 258{
9678c543 259 return crc32c(seed, data, len);
19c00ddc
CM
260}
261
0b5e3daf 262void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 263{
7e75bf3f 264 put_unaligned_le32(~crc, result);
19c00ddc
CM
265}
266
d352ac68
CM
267/*
268 * compute the csum for a btree block, and either verify it or write it
269 * into the csum field of the block.
270 */
01d58472
DD
271static int csum_tree_block(struct btrfs_fs_info *fs_info,
272 struct extent_buffer *buf,
19c00ddc
CM
273 int verify)
274{
01d58472 275 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
71a63551 276 char result[BTRFS_CSUM_SIZE];
19c00ddc
CM
277 unsigned long len;
278 unsigned long cur_len;
279 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
280 char *kaddr;
281 unsigned long map_start;
282 unsigned long map_len;
283 int err;
284 u32 crc = ~(u32)0;
285
286 len = buf->len - offset;
d397712b 287 while (len > 0) {
19c00ddc 288 err = map_private_extent_buffer(buf, offset, 32,
a6591715 289 &kaddr, &map_start, &map_len);
d397712b 290 if (err)
8bd98f0e 291 return err;
19c00ddc 292 cur_len = min(len, map_len - (offset - map_start));
b0496686 293 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
294 crc, cur_len);
295 len -= cur_len;
296 offset += cur_len;
19c00ddc 297 }
71a63551 298 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 299
19c00ddc
CM
300 btrfs_csum_final(crc, result);
301
302 if (verify) {
607d432d 303 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
304 u32 val;
305 u32 found = 0;
607d432d 306 memcpy(&found, result, csum_size);
e4204ded 307
607d432d 308 read_extent_buffer(buf, &val, 0, csum_size);
94647322 309 btrfs_warn_rl(fs_info,
5d163e0e 310 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 311 fs_info->sb->s_id, buf->start,
efe120a0 312 val, found, btrfs_header_level(buf));
8bd98f0e 313 return -EUCLEAN;
19c00ddc
CM
314 }
315 } else {
607d432d 316 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 317 }
71a63551 318
19c00ddc
CM
319 return 0;
320}
321
d352ac68
CM
322/*
323 * we can't consider a given block up to date unless the transid of the
324 * block matches the transid in the parent node's pointer. This is how we
325 * detect blocks that either didn't get written at all or got written
326 * in the wrong place.
327 */
1259ab75 328static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
329 struct extent_buffer *eb, u64 parent_transid,
330 int atomic)
1259ab75 331{
2ac55d41 332 struct extent_state *cached_state = NULL;
1259ab75 333 int ret;
2755a0de 334 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
335
336 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337 return 0;
338
b9fab919
CM
339 if (atomic)
340 return -EAGAIN;
341
a26e8c9f
JB
342 if (need_lock) {
343 btrfs_tree_read_lock(eb);
344 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345 }
346
2ac55d41 347 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 348 &cached_state);
0b32f4bb 349 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
350 btrfs_header_generation(eb) == parent_transid) {
351 ret = 0;
352 goto out;
353 }
94647322
DS
354 btrfs_err_rl(eb->fs_info,
355 "parent transid verify failed on %llu wanted %llu found %llu",
356 eb->start,
29549aec 357 parent_transid, btrfs_header_generation(eb));
1259ab75 358 ret = 1;
a26e8c9f
JB
359
360 /*
361 * Things reading via commit roots that don't have normal protection,
362 * like send, can have a really old block in cache that may point at a
01327610 363 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
364 * if we find an eb that is under IO (dirty/writeback) because we could
365 * end up reading in the stale data and then writing it back out and
366 * making everybody very sad.
367 */
368 if (!extent_buffer_under_io(eb))
369 clear_extent_buffer_uptodate(eb);
33958dc6 370out:
2ac55d41 371 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 372 &cached_state);
472b909f
JB
373 if (need_lock)
374 btrfs_tree_read_unlock_blocking(eb);
1259ab75 375 return ret;
1259ab75
CM
376}
377
1104a885
DS
378/*
379 * Return 0 if the superblock checksum type matches the checksum value of that
380 * algorithm. Pass the raw disk superblock data.
381 */
ab8d0fc4
JM
382static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
383 char *raw_disk_sb)
1104a885
DS
384{
385 struct btrfs_super_block *disk_sb =
386 (struct btrfs_super_block *)raw_disk_sb;
387 u16 csum_type = btrfs_super_csum_type(disk_sb);
388 int ret = 0;
389
390 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
391 u32 crc = ~(u32)0;
776c4a7c 392 char result[sizeof(crc)];
1104a885
DS
393
394 /*
395 * The super_block structure does not span the whole
396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 397 * is filled with zeros and is included in the checksum.
1104a885
DS
398 */
399 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
400 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
401 btrfs_csum_final(crc, result);
402
776c4a7c 403 if (memcmp(raw_disk_sb, result, sizeof(result)))
1104a885
DS
404 ret = 1;
405 }
406
407 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 408 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
409 csum_type);
410 ret = 1;
411 }
412
413 return ret;
414}
415
581c1760
QW
416static int verify_level_key(struct btrfs_fs_info *fs_info,
417 struct extent_buffer *eb, int level,
ff76a864 418 struct btrfs_key *first_key, u64 parent_transid)
581c1760
QW
419{
420 int found_level;
421 struct btrfs_key found_key;
422 int ret;
423
424 found_level = btrfs_header_level(eb);
425 if (found_level != level) {
426#ifdef CONFIG_BTRFS_DEBUG
427 WARN_ON(1);
428 btrfs_err(fs_info,
429"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
430 eb->start, level, found_level);
431#endif
432 return -EIO;
433 }
434
435 if (!first_key)
436 return 0;
437
5d41be6f
QW
438 /*
439 * For live tree block (new tree blocks in current transaction),
440 * we need proper lock context to avoid race, which is impossible here.
441 * So we only checks tree blocks which is read from disk, whose
442 * generation <= fs_info->last_trans_committed.
443 */
444 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
445 return 0;
581c1760
QW
446 if (found_level)
447 btrfs_node_key_to_cpu(eb, &found_key, 0);
448 else
449 btrfs_item_key_to_cpu(eb, &found_key, 0);
450 ret = btrfs_comp_cpu_keys(first_key, &found_key);
451
452#ifdef CONFIG_BTRFS_DEBUG
453 if (ret) {
454 WARN_ON(1);
455 btrfs_err(fs_info,
ff76a864
LB
456"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
457 eb->start, parent_transid, first_key->objectid,
458 first_key->type, first_key->offset,
459 found_key.objectid, found_key.type,
460 found_key.offset);
581c1760
QW
461 }
462#endif
463 return ret;
464}
465
d352ac68
CM
466/*
467 * helper to read a given tree block, doing retries as required when
468 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
469 *
470 * @parent_transid: expected transid, skip check if 0
471 * @level: expected level, mandatory check
472 * @first_key: expected key of first slot, skip check if NULL
d352ac68 473 */
2ff7e61e 474static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 475 struct extent_buffer *eb,
581c1760
QW
476 u64 parent_transid, int level,
477 struct btrfs_key *first_key)
f188591e
CM
478{
479 struct extent_io_tree *io_tree;
ea466794 480 int failed = 0;
f188591e
CM
481 int ret;
482 int num_copies = 0;
483 int mirror_num = 0;
ea466794 484 int failed_mirror = 0;
f188591e 485
a826d6dc 486 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
0b246afa 487 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 488 while (1) {
8436ea91 489 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
6af49dbd 490 mirror_num);
256dd1bb 491 if (!ret) {
581c1760 492 if (verify_parent_transid(io_tree, eb,
b9fab919 493 parent_transid, 0))
256dd1bb 494 ret = -EIO;
581c1760 495 else if (verify_level_key(fs_info, eb, level,
ff76a864 496 first_key, parent_transid))
581c1760
QW
497 ret = -EUCLEAN;
498 else
499 break;
256dd1bb 500 }
d397712b 501
a826d6dc
JB
502 /*
503 * This buffer's crc is fine, but its contents are corrupted, so
504 * there is no reason to read the other copies, they won't be
505 * any less wrong.
506 */
581c1760
QW
507 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) ||
508 ret == -EUCLEAN)
ea466794
JB
509 break;
510
0b246afa 511 num_copies = btrfs_num_copies(fs_info,
f188591e 512 eb->start, eb->len);
4235298e 513 if (num_copies == 1)
ea466794 514 break;
4235298e 515
5cf1ab56
JB
516 if (!failed_mirror) {
517 failed = 1;
518 failed_mirror = eb->read_mirror;
519 }
520
f188591e 521 mirror_num++;
ea466794
JB
522 if (mirror_num == failed_mirror)
523 mirror_num++;
524
4235298e 525 if (mirror_num > num_copies)
ea466794 526 break;
f188591e 527 }
ea466794 528
c0901581 529 if (failed && !ret && failed_mirror)
2ff7e61e 530 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
531
532 return ret;
f188591e 533}
19c00ddc 534
d352ac68 535/*
d397712b
CM
536 * checksum a dirty tree block before IO. This has extra checks to make sure
537 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 538 */
d397712b 539
01d58472 540static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 541{
4eee4fa4 542 u64 start = page_offset(page);
19c00ddc 543 u64 found_start;
19c00ddc 544 struct extent_buffer *eb;
f188591e 545
4f2de97a
JB
546 eb = (struct extent_buffer *)page->private;
547 if (page != eb->pages[0])
548 return 0;
0f805531 549
19c00ddc 550 found_start = btrfs_header_bytenr(eb);
0f805531
AL
551 /*
552 * Please do not consolidate these warnings into a single if.
553 * It is useful to know what went wrong.
554 */
555 if (WARN_ON(found_start != start))
556 return -EUCLEAN;
557 if (WARN_ON(!PageUptodate(page)))
558 return -EUCLEAN;
559
560 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
561 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
562
8bd98f0e 563 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
564}
565
01d58472 566static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
567 struct extent_buffer *eb)
568{
01d58472 569 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 570 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
571 int ret = 1;
572
0a4e5586 573 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
574 while (fs_devices) {
575 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
576 ret = 0;
577 break;
578 }
579 fs_devices = fs_devices->seed;
580 }
581 return ret;
582}
583
facc8a22
MX
584static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
ce9adaa5 587{
ce9adaa5
CM
588 u64 found_start;
589 int found_level;
ce9adaa5
CM
590 struct extent_buffer *eb;
591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 592 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 593 int ret = 0;
727011e0 594 int reads_done;
ce9adaa5 595
ce9adaa5
CM
596 if (!page->private)
597 goto out;
d397712b 598
4f2de97a 599 eb = (struct extent_buffer *)page->private;
d397712b 600
0b32f4bb
JB
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
603 */
604 extent_buffer_get(eb);
605
606 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
607 if (!reads_done)
608 goto err;
f188591e 609
5cf1ab56 610 eb->read_mirror = mirror;
656f30db 611 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
612 ret = -EIO;
613 goto err;
614 }
615
ce9adaa5 616 found_start = btrfs_header_bytenr(eb);
727011e0 617 if (found_start != eb->start) {
02873e43
ZL
618 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
619 found_start, eb->start);
f188591e 620 ret = -EIO;
ce9adaa5
CM
621 goto err;
622 }
02873e43
ZL
623 if (check_tree_block_fsid(fs_info, eb)) {
624 btrfs_err_rl(fs_info, "bad fsid on block %llu",
625 eb->start);
1259ab75
CM
626 ret = -EIO;
627 goto err;
628 }
ce9adaa5 629 found_level = btrfs_header_level(eb);
1c24c3ce 630 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
631 btrfs_err(fs_info, "bad tree block level %d",
632 (int)btrfs_header_level(eb));
1c24c3ce
JB
633 ret = -EIO;
634 goto err;
635 }
ce9adaa5 636
85d4e461
CM
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 eb, found_level);
4008c04a 639
02873e43 640 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 641 if (ret)
a826d6dc 642 goto err;
a826d6dc
JB
643
644 /*
645 * If this is a leaf block and it is corrupt, set the corrupt bit so
646 * that we don't try and read the other copies of this block, just
647 * return -EIO.
648 */
2f659546 649 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
a826d6dc
JB
650 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
651 ret = -EIO;
652 }
ce9adaa5 653
2f659546 654 if (found_level > 0 && btrfs_check_node(fs_info, eb))
053ab70f
LB
655 ret = -EIO;
656
0b32f4bb
JB
657 if (!ret)
658 set_extent_buffer_uptodate(eb);
ce9adaa5 659err:
79fb65a1
JB
660 if (reads_done &&
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 662 btree_readahead_hook(eb, ret);
4bb31e92 663
53b381b3
DW
664 if (ret) {
665 /*
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
668 * to decrement
669 */
670 atomic_inc(&eb->io_pages);
0b32f4bb 671 clear_extent_buffer_uptodate(eb);
53b381b3 672 }
0b32f4bb 673 free_extent_buffer(eb);
ce9adaa5 674out:
f188591e 675 return ret;
ce9adaa5
CM
676}
677
ea466794 678static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 679{
4bb31e92 680 struct extent_buffer *eb;
4bb31e92 681
4f2de97a 682 eb = (struct extent_buffer *)page->private;
656f30db 683 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 684 eb->read_mirror = failed_mirror;
53b381b3 685 atomic_dec(&eb->io_pages);
ea466794 686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 687 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
688 return -EIO; /* we fixed nothing */
689}
690
4246a0b6 691static void end_workqueue_bio(struct bio *bio)
ce9adaa5 692{
97eb6b69 693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 694 struct btrfs_fs_info *fs_info;
9e0af237
LB
695 struct btrfs_workqueue *wq;
696 btrfs_work_func_t func;
ce9adaa5 697
ce9adaa5 698 fs_info = end_io_wq->info;
4e4cbee9 699 end_io_wq->status = bio->bi_status;
d20f7043 700
37226b21 701 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 wq = fs_info->endio_meta_write_workers;
704 func = btrfs_endio_meta_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 wq = fs_info->endio_freespace_worker;
707 func = btrfs_freespace_write_helper;
708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 wq = fs_info->endio_raid56_workers;
710 func = btrfs_endio_raid56_helper;
711 } else {
712 wq = fs_info->endio_write_workers;
713 func = btrfs_endio_write_helper;
714 }
d20f7043 715 } else {
8b110e39
MX
716 if (unlikely(end_io_wq->metadata ==
717 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718 wq = fs_info->endio_repair_workers;
719 func = btrfs_endio_repair_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
721 wq = fs_info->endio_raid56_workers;
722 func = btrfs_endio_raid56_helper;
723 } else if (end_io_wq->metadata) {
724 wq = fs_info->endio_meta_workers;
725 func = btrfs_endio_meta_helper;
726 } else {
727 wq = fs_info->endio_workers;
728 func = btrfs_endio_helper;
729 }
d20f7043 730 }
9e0af237
LB
731
732 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
734}
735
4e4cbee9 736blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 737 enum btrfs_wq_endio_type metadata)
0b86a832 738{
97eb6b69 739 struct btrfs_end_io_wq *end_io_wq;
8b110e39 740
97eb6b69 741 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 742 if (!end_io_wq)
4e4cbee9 743 return BLK_STS_RESOURCE;
ce9adaa5
CM
744
745 end_io_wq->private = bio->bi_private;
746 end_io_wq->end_io = bio->bi_end_io;
22c59948 747 end_io_wq->info = info;
4e4cbee9 748 end_io_wq->status = 0;
ce9adaa5 749 end_io_wq->bio = bio;
22c59948 750 end_io_wq->metadata = metadata;
ce9adaa5
CM
751
752 bio->bi_private = end_io_wq;
753 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
754 return 0;
755}
756
4a69a410
CM
757static void run_one_async_start(struct btrfs_work *work)
758{
4a69a410 759 struct async_submit_bio *async;
4e4cbee9 760 blk_status_t ret;
4a69a410
CM
761
762 async = container_of(work, struct async_submit_bio, work);
c6100a4b 763 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
764 async->bio_offset);
765 if (ret)
4e4cbee9 766 async->status = ret;
4a69a410
CM
767}
768
769static void run_one_async_done(struct btrfs_work *work)
8b712842 770{
8b712842
CM
771 struct async_submit_bio *async;
772
773 async = container_of(work, struct async_submit_bio, work);
4854ddd0 774
bb7ab3b9 775 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
776 if (async->status) {
777 async->bio->bi_status = async->status;
4246a0b6 778 bio_endio(async->bio);
79787eaa
JM
779 return;
780 }
781
6c553435 782 async->submit_bio_done(async->private_data, async->bio, async->mirror_num);
4a69a410
CM
783}
784
785static void run_one_async_free(struct btrfs_work *work)
786{
787 struct async_submit_bio *async;
788
789 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
790 kfree(async);
791}
792
8c27cb35
LT
793blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
794 int mirror_num, unsigned long bio_flags,
795 u64 bio_offset, void *private_data,
a758781d
DS
796 extent_submit_bio_start_t *submit_bio_start,
797 extent_submit_bio_done_t *submit_bio_done)
44b8bd7e
CM
798{
799 struct async_submit_bio *async;
800
801 async = kmalloc(sizeof(*async), GFP_NOFS);
802 if (!async)
4e4cbee9 803 return BLK_STS_RESOURCE;
44b8bd7e 804
c6100a4b
JB
805 async->private_data = private_data;
806 async->fs_info = fs_info;
44b8bd7e
CM
807 async->bio = bio;
808 async->mirror_num = mirror_num;
4a69a410
CM
809 async->submit_bio_start = submit_bio_start;
810 async->submit_bio_done = submit_bio_done;
811
9e0af237 812 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 813 run_one_async_done, run_one_async_free);
4a69a410 814
c8b97818 815 async->bio_flags = bio_flags;
eaf25d93 816 async->bio_offset = bio_offset;
8c8bee1d 817
4e4cbee9 818 async->status = 0;
79787eaa 819
67f055c7 820 if (op_is_sync(bio->bi_opf))
5cdc7ad3 821 btrfs_set_work_high_priority(&async->work);
d313d7a3 822
5cdc7ad3 823 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
824 return 0;
825}
826
4e4cbee9 827static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 828{
2c30c71b 829 struct bio_vec *bvec;
ce3ed71a 830 struct btrfs_root *root;
2c30c71b 831 int i, ret = 0;
ce3ed71a 832
c09abff8 833 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 834 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 835 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 836 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
837 if (ret)
838 break;
ce3ed71a 839 }
2c30c71b 840
4e4cbee9 841 return errno_to_blk_status(ret);
ce3ed71a
CM
842}
843
d0ee3934 844static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 845 u64 bio_offset)
22c59948 846{
8b712842
CM
847 /*
848 * when we're called for a write, we're already in the async
5443be45 849 * submission context. Just jump into btrfs_map_bio
8b712842 850 */
79787eaa 851 return btree_csum_one_bio(bio);
4a69a410 852}
22c59948 853
d0ee3934 854static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio,
6c553435 855 int mirror_num)
4a69a410 856{
c6100a4b 857 struct inode *inode = private_data;
4e4cbee9 858 blk_status_t ret;
61891923 859
8b712842 860 /*
4a69a410
CM
861 * when we're called for a write, we're already in the async
862 * submission context. Just jump into btrfs_map_bio
8b712842 863 */
2ff7e61e 864 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
4246a0b6 865 if (ret) {
4e4cbee9 866 bio->bi_status = ret;
4246a0b6
CH
867 bio_endio(bio);
868 }
61891923 869 return ret;
0b86a832
CM
870}
871
18fdc679 872static int check_async_write(struct btrfs_inode *bi)
de0022b9 873{
6300463b
LB
874 if (atomic_read(&bi->sync_writers))
875 return 0;
de0022b9 876#ifdef CONFIG_X86
bc696ca0 877 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
878 return 0;
879#endif
880 return 1;
881}
882
8c27cb35
LT
883static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
884 int mirror_num, unsigned long bio_flags,
885 u64 bio_offset)
44b8bd7e 886{
c6100a4b 887 struct inode *inode = private_data;
0b246afa 888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 889 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 890 blk_status_t ret;
cad321ad 891
37226b21 892 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
893 /*
894 * called for a read, do the setup so that checksum validation
895 * can happen in the async kernel threads
896 */
0b246afa
JM
897 ret = btrfs_bio_wq_end_io(fs_info, bio,
898 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 899 if (ret)
61891923 900 goto out_w_error;
2ff7e61e 901 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
902 } else if (!async) {
903 ret = btree_csum_one_bio(bio);
904 if (ret)
61891923 905 goto out_w_error;
2ff7e61e 906 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
907 } else {
908 /*
909 * kthread helpers are used to submit writes so that
910 * checksumming can happen in parallel across all CPUs
911 */
c6100a4b
JB
912 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
913 bio_offset, private_data,
d0ee3934
DS
914 btree_submit_bio_start,
915 btree_submit_bio_done);
44b8bd7e 916 }
d313d7a3 917
4246a0b6
CH
918 if (ret)
919 goto out_w_error;
920 return 0;
921
61891923 922out_w_error:
4e4cbee9 923 bio->bi_status = ret;
4246a0b6 924 bio_endio(bio);
61891923 925 return ret;
44b8bd7e
CM
926}
927
3dd1462e 928#ifdef CONFIG_MIGRATION
784b4e29 929static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
930 struct page *newpage, struct page *page,
931 enum migrate_mode mode)
784b4e29
CM
932{
933 /*
934 * we can't safely write a btree page from here,
935 * we haven't done the locking hook
936 */
937 if (PageDirty(page))
938 return -EAGAIN;
939 /*
940 * Buffers may be managed in a filesystem specific way.
941 * We must have no buffers or drop them.
942 */
943 if (page_has_private(page) &&
944 !try_to_release_page(page, GFP_KERNEL))
945 return -EAGAIN;
a6bc32b8 946 return migrate_page(mapping, newpage, page, mode);
784b4e29 947}
3dd1462e 948#endif
784b4e29 949
0da5468f
CM
950
951static int btree_writepages(struct address_space *mapping,
952 struct writeback_control *wbc)
953{
e2d84521
MX
954 struct btrfs_fs_info *fs_info;
955 int ret;
956
d8d5f3e1 957 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
958
959 if (wbc->for_kupdate)
960 return 0;
961
e2d84521 962 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 963 /* this is a bit racy, but that's ok */
e2d84521
MX
964 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965 BTRFS_DIRTY_METADATA_THRESH);
966 if (ret < 0)
793955bc 967 return 0;
793955bc 968 }
0b32f4bb 969 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
970}
971
b2950863 972static int btree_readpage(struct file *file, struct page *page)
5f39d397 973{
d1310b2e
CM
974 struct extent_io_tree *tree;
975 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 976 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 977}
22b0ebda 978
70dec807 979static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 980{
98509cfc 981 if (PageWriteback(page) || PageDirty(page))
d397712b 982 return 0;
0c4e538b 983
f7a52a40 984 return try_release_extent_buffer(page);
d98237b3
CM
985}
986
d47992f8
LC
987static void btree_invalidatepage(struct page *page, unsigned int offset,
988 unsigned int length)
d98237b3 989{
d1310b2e
CM
990 struct extent_io_tree *tree;
991 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
992 extent_invalidatepage(tree, page, offset);
993 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 994 if (PagePrivate(page)) {
efe120a0
FH
995 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
996 "page private not zero on page %llu",
997 (unsigned long long)page_offset(page));
9ad6b7bc
CM
998 ClearPagePrivate(page);
999 set_page_private(page, 0);
09cbfeaf 1000 put_page(page);
9ad6b7bc 1001 }
d98237b3
CM
1002}
1003
0b32f4bb
JB
1004static int btree_set_page_dirty(struct page *page)
1005{
bb146eb2 1006#ifdef DEBUG
0b32f4bb
JB
1007 struct extent_buffer *eb;
1008
1009 BUG_ON(!PagePrivate(page));
1010 eb = (struct extent_buffer *)page->private;
1011 BUG_ON(!eb);
1012 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1013 BUG_ON(!atomic_read(&eb->refs));
1014 btrfs_assert_tree_locked(eb);
bb146eb2 1015#endif
0b32f4bb
JB
1016 return __set_page_dirty_nobuffers(page);
1017}
1018
7f09410b 1019static const struct address_space_operations btree_aops = {
d98237b3 1020 .readpage = btree_readpage,
0da5468f 1021 .writepages = btree_writepages,
5f39d397
CM
1022 .releasepage = btree_releasepage,
1023 .invalidatepage = btree_invalidatepage,
5a92bc88 1024#ifdef CONFIG_MIGRATION
784b4e29 1025 .migratepage = btree_migratepage,
5a92bc88 1026#endif
0b32f4bb 1027 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1028};
1029
2ff7e61e 1030void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1031{
5f39d397 1032 struct extent_buffer *buf = NULL;
2ff7e61e 1033 struct inode *btree_inode = fs_info->btree_inode;
090d1875 1034
2ff7e61e 1035 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1036 if (IS_ERR(buf))
6197d86e 1037 return;
d1310b2e 1038 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
6af49dbd 1039 buf, WAIT_NONE, 0);
5f39d397 1040 free_extent_buffer(buf);
090d1875
CM
1041}
1042
2ff7e61e 1043int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1044 int mirror_num, struct extent_buffer **eb)
1045{
1046 struct extent_buffer *buf = NULL;
2ff7e61e 1047 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1048 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1049 int ret;
1050
2ff7e61e 1051 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1052 if (IS_ERR(buf))
ab0fff03
AJ
1053 return 0;
1054
1055 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1056
8436ea91 1057 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
6af49dbd 1058 mirror_num);
ab0fff03
AJ
1059 if (ret) {
1060 free_extent_buffer(buf);
1061 return ret;
1062 }
1063
1064 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1065 free_extent_buffer(buf);
1066 return -EIO;
0b32f4bb 1067 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1068 *eb = buf;
1069 } else {
1070 free_extent_buffer(buf);
1071 }
1072 return 0;
1073}
1074
2ff7e61e
JM
1075struct extent_buffer *btrfs_find_create_tree_block(
1076 struct btrfs_fs_info *fs_info,
1077 u64 bytenr)
0999df54 1078{
0b246afa
JM
1079 if (btrfs_is_testing(fs_info))
1080 return alloc_test_extent_buffer(fs_info, bytenr);
1081 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1082}
1083
1084
e02119d5
CM
1085int btrfs_write_tree_block(struct extent_buffer *buf)
1086{
727011e0 1087 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1088 buf->start + buf->len - 1);
e02119d5
CM
1089}
1090
3189ff77 1091void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1092{
3189ff77
JL
1093 filemap_fdatawait_range(buf->pages[0]->mapping,
1094 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1095}
1096
581c1760
QW
1097/*
1098 * Read tree block at logical address @bytenr and do variant basic but critical
1099 * verification.
1100 *
1101 * @parent_transid: expected transid of this tree block, skip check if 0
1102 * @level: expected level, mandatory check
1103 * @first_key: expected key in slot 0, skip check if NULL
1104 */
2ff7e61e 1105struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1106 u64 parent_transid, int level,
1107 struct btrfs_key *first_key)
0999df54
CM
1108{
1109 struct extent_buffer *buf = NULL;
0999df54
CM
1110 int ret;
1111
2ff7e61e 1112 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1113 if (IS_ERR(buf))
1114 return buf;
0999df54 1115
581c1760
QW
1116 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1117 level, first_key);
0f0fe8f7
FDBM
1118 if (ret) {
1119 free_extent_buffer(buf);
64c043de 1120 return ERR_PTR(ret);
0f0fe8f7 1121 }
5f39d397 1122 return buf;
ce9adaa5 1123
eb60ceac
CM
1124}
1125
7c302b49 1126void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1127 struct extent_buffer *buf)
ed2ff2cb 1128{
55c69072 1129 if (btrfs_header_generation(buf) ==
e2d84521 1130 fs_info->running_transaction->transid) {
b9447ef8 1131 btrfs_assert_tree_locked(buf);
b4ce94de 1132
b9473439 1133 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1134 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1135 -buf->len,
1136 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1137 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1138 btrfs_set_lock_blocking(buf);
1139 clear_extent_buffer_dirty(buf);
1140 }
925baedd 1141 }
5f39d397
CM
1142}
1143
8257b2dc
MX
1144static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1145{
1146 struct btrfs_subvolume_writers *writers;
1147 int ret;
1148
1149 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1150 if (!writers)
1151 return ERR_PTR(-ENOMEM);
1152
8a5a916d 1153 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1154 if (ret < 0) {
1155 kfree(writers);
1156 return ERR_PTR(ret);
1157 }
1158
1159 init_waitqueue_head(&writers->wait);
1160 return writers;
1161}
1162
1163static void
1164btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1165{
1166 percpu_counter_destroy(&writers->counter);
1167 kfree(writers);
1168}
1169
da17066c 1170static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1171 u64 objectid)
d97e63b6 1172{
7c0260ee 1173 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1174 root->node = NULL;
a28ec197 1175 root->commit_root = NULL;
27cdeb70 1176 root->state = 0;
d68fc57b 1177 root->orphan_cleanup_state = 0;
0b86a832 1178
0f7d52f4
CM
1179 root->objectid = objectid;
1180 root->last_trans = 0;
13a8a7c8 1181 root->highest_objectid = 0;
eb73c1b7 1182 root->nr_delalloc_inodes = 0;
199c2a9c 1183 root->nr_ordered_extents = 0;
58176a96 1184 root->name = NULL;
6bef4d31 1185 root->inode_tree = RB_ROOT;
16cdcec7 1186 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1187 root->block_rsv = NULL;
0b86a832
CM
1188
1189 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1190 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1191 INIT_LIST_HEAD(&root->delalloc_inodes);
1192 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1193 INIT_LIST_HEAD(&root->ordered_extents);
1194 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1195 INIT_LIST_HEAD(&root->logged_list[0]);
1196 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1197 spin_lock_init(&root->inode_lock);
eb73c1b7 1198 spin_lock_init(&root->delalloc_lock);
199c2a9c 1199 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1200 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1201 spin_lock_init(&root->log_extents_lock[0]);
1202 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1203 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1204 mutex_init(&root->objectid_mutex);
e02119d5 1205 mutex_init(&root->log_mutex);
31f3d255 1206 mutex_init(&root->ordered_extent_mutex);
573bfb72 1207 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1208 init_waitqueue_head(&root->log_writer_wait);
1209 init_waitqueue_head(&root->log_commit_wait[0]);
1210 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1211 INIT_LIST_HEAD(&root->log_ctxs[0]);
1212 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1213 atomic_set(&root->log_commit[0], 0);
1214 atomic_set(&root->log_commit[1], 0);
1215 atomic_set(&root->log_writers, 0);
2ecb7923 1216 atomic_set(&root->log_batch, 0);
0700cea7 1217 refcount_set(&root->refs, 1);
ea14b57f 1218 atomic_set(&root->will_be_snapshotted, 0);
7237f183 1219 root->log_transid = 0;
d1433deb 1220 root->log_transid_committed = -1;
257c62e1 1221 root->last_log_commit = 0;
7c0260ee 1222 if (!dummy)
c6100a4b 1223 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1224
3768f368
CM
1225 memset(&root->root_key, 0, sizeof(root->root_key));
1226 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1227 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1228 if (!dummy)
06ea65a3
JB
1229 root->defrag_trans_start = fs_info->generation;
1230 else
1231 root->defrag_trans_start = 0;
4d775673 1232 root->root_key.objectid = objectid;
0ee5dc67 1233 root->anon_dev = 0;
8ea05e3a 1234
5f3ab90a 1235 spin_lock_init(&root->root_item_lock);
3768f368
CM
1236}
1237
74e4d827
DS
1238static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1239 gfp_t flags)
6f07e42e 1240{
74e4d827 1241 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1242 if (root)
1243 root->fs_info = fs_info;
1244 return root;
1245}
1246
06ea65a3
JB
1247#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1248/* Should only be used by the testing infrastructure */
da17066c 1249struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1250{
1251 struct btrfs_root *root;
1252
7c0260ee
JM
1253 if (!fs_info)
1254 return ERR_PTR(-EINVAL);
1255
1256 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1257 if (!root)
1258 return ERR_PTR(-ENOMEM);
da17066c 1259
b9ef22de 1260 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1261 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1262 root->alloc_bytenr = 0;
06ea65a3
JB
1263
1264 return root;
1265}
1266#endif
1267
20897f5c
AJ
1268struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1269 struct btrfs_fs_info *fs_info,
1270 u64 objectid)
1271{
1272 struct extent_buffer *leaf;
1273 struct btrfs_root *tree_root = fs_info->tree_root;
1274 struct btrfs_root *root;
1275 struct btrfs_key key;
1276 int ret = 0;
33d85fda 1277 uuid_le uuid = NULL_UUID_LE;
20897f5c 1278
74e4d827 1279 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1280 if (!root)
1281 return ERR_PTR(-ENOMEM);
1282
da17066c 1283 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1284 root->root_key.objectid = objectid;
1285 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1286 root->root_key.offset = 0;
1287
4d75f8a9 1288 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1289 if (IS_ERR(leaf)) {
1290 ret = PTR_ERR(leaf);
1dd05682 1291 leaf = NULL;
20897f5c
AJ
1292 goto fail;
1293 }
1294
b159fa28 1295 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1296 btrfs_set_header_bytenr(leaf, leaf->start);
1297 btrfs_set_header_generation(leaf, trans->transid);
1298 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1299 btrfs_set_header_owner(leaf, objectid);
1300 root->node = leaf;
1301
d24ee97b
DS
1302 write_extent_buffer_fsid(leaf, fs_info->fsid);
1303 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1304 btrfs_mark_buffer_dirty(leaf);
1305
1306 root->commit_root = btrfs_root_node(root);
27cdeb70 1307 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1308
1309 root->root_item.flags = 0;
1310 root->root_item.byte_limit = 0;
1311 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1312 btrfs_set_root_generation(&root->root_item, trans->transid);
1313 btrfs_set_root_level(&root->root_item, 0);
1314 btrfs_set_root_refs(&root->root_item, 1);
1315 btrfs_set_root_used(&root->root_item, leaf->len);
1316 btrfs_set_root_last_snapshot(&root->root_item, 0);
1317 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1318 if (is_fstree(objectid))
1319 uuid_le_gen(&uuid);
6463fe58 1320 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1321 root->root_item.drop_level = 0;
1322
1323 key.objectid = objectid;
1324 key.type = BTRFS_ROOT_ITEM_KEY;
1325 key.offset = 0;
1326 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1327 if (ret)
1328 goto fail;
1329
1330 btrfs_tree_unlock(leaf);
1331
1dd05682
TI
1332 return root;
1333
20897f5c 1334fail:
1dd05682
TI
1335 if (leaf) {
1336 btrfs_tree_unlock(leaf);
59885b39 1337 free_extent_buffer(root->commit_root);
1dd05682
TI
1338 free_extent_buffer(leaf);
1339 }
1340 kfree(root);
20897f5c 1341
1dd05682 1342 return ERR_PTR(ret);
20897f5c
AJ
1343}
1344
7237f183
YZ
1345static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1346 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1347{
1348 struct btrfs_root *root;
7237f183 1349 struct extent_buffer *leaf;
e02119d5 1350
74e4d827 1351 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1352 if (!root)
7237f183 1353 return ERR_PTR(-ENOMEM);
e02119d5 1354
da17066c 1355 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1356
1357 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1358 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1359 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1360
7237f183 1361 /*
27cdeb70
MX
1362 * DON'T set REF_COWS for log trees
1363 *
7237f183
YZ
1364 * log trees do not get reference counted because they go away
1365 * before a real commit is actually done. They do store pointers
1366 * to file data extents, and those reference counts still get
1367 * updated (along with back refs to the log tree).
1368 */
e02119d5 1369
4d75f8a9
DS
1370 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1371 NULL, 0, 0, 0);
7237f183
YZ
1372 if (IS_ERR(leaf)) {
1373 kfree(root);
1374 return ERR_CAST(leaf);
1375 }
e02119d5 1376
b159fa28 1377 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1378 btrfs_set_header_bytenr(leaf, leaf->start);
1379 btrfs_set_header_generation(leaf, trans->transid);
1380 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1381 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1382 root->node = leaf;
e02119d5 1383
0b246afa 1384 write_extent_buffer_fsid(root->node, fs_info->fsid);
e02119d5
CM
1385 btrfs_mark_buffer_dirty(root->node);
1386 btrfs_tree_unlock(root->node);
7237f183
YZ
1387 return root;
1388}
1389
1390int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1391 struct btrfs_fs_info *fs_info)
1392{
1393 struct btrfs_root *log_root;
1394
1395 log_root = alloc_log_tree(trans, fs_info);
1396 if (IS_ERR(log_root))
1397 return PTR_ERR(log_root);
1398 WARN_ON(fs_info->log_root_tree);
1399 fs_info->log_root_tree = log_root;
1400 return 0;
1401}
1402
1403int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1404 struct btrfs_root *root)
1405{
0b246afa 1406 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1407 struct btrfs_root *log_root;
1408 struct btrfs_inode_item *inode_item;
1409
0b246afa 1410 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1411 if (IS_ERR(log_root))
1412 return PTR_ERR(log_root);
1413
1414 log_root->last_trans = trans->transid;
1415 log_root->root_key.offset = root->root_key.objectid;
1416
1417 inode_item = &log_root->root_item.inode;
3cae210f
QW
1418 btrfs_set_stack_inode_generation(inode_item, 1);
1419 btrfs_set_stack_inode_size(inode_item, 3);
1420 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1421 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1422 fs_info->nodesize);
3cae210f 1423 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1424
5d4f98a2 1425 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1426
1427 WARN_ON(root->log_root);
1428 root->log_root = log_root;
1429 root->log_transid = 0;
d1433deb 1430 root->log_transid_committed = -1;
257c62e1 1431 root->last_log_commit = 0;
e02119d5
CM
1432 return 0;
1433}
1434
35a3621b
SB
1435static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1436 struct btrfs_key *key)
e02119d5
CM
1437{
1438 struct btrfs_root *root;
1439 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1440 struct btrfs_path *path;
84234f3a 1441 u64 generation;
cb517eab 1442 int ret;
581c1760 1443 int level;
0f7d52f4 1444
cb517eab
MX
1445 path = btrfs_alloc_path();
1446 if (!path)
0f7d52f4 1447 return ERR_PTR(-ENOMEM);
cb517eab 1448
74e4d827 1449 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1450 if (!root) {
1451 ret = -ENOMEM;
1452 goto alloc_fail;
0f7d52f4
CM
1453 }
1454
da17066c 1455 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1456
cb517eab
MX
1457 ret = btrfs_find_root(tree_root, key, path,
1458 &root->root_item, &root->root_key);
0f7d52f4 1459 if (ret) {
13a8a7c8
YZ
1460 if (ret > 0)
1461 ret = -ENOENT;
cb517eab 1462 goto find_fail;
0f7d52f4 1463 }
13a8a7c8 1464
84234f3a 1465 generation = btrfs_root_generation(&root->root_item);
581c1760 1466 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1467 root->node = read_tree_block(fs_info,
1468 btrfs_root_bytenr(&root->root_item),
581c1760 1469 generation, level, NULL);
64c043de
LB
1470 if (IS_ERR(root->node)) {
1471 ret = PTR_ERR(root->node);
cb517eab
MX
1472 goto find_fail;
1473 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1474 ret = -EIO;
64c043de
LB
1475 free_extent_buffer(root->node);
1476 goto find_fail;
416bc658 1477 }
5d4f98a2 1478 root->commit_root = btrfs_root_node(root);
13a8a7c8 1479out:
cb517eab
MX
1480 btrfs_free_path(path);
1481 return root;
1482
cb517eab
MX
1483find_fail:
1484 kfree(root);
1485alloc_fail:
1486 root = ERR_PTR(ret);
1487 goto out;
1488}
1489
1490struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1491 struct btrfs_key *location)
1492{
1493 struct btrfs_root *root;
1494
1495 root = btrfs_read_tree_root(tree_root, location);
1496 if (IS_ERR(root))
1497 return root;
1498
1499 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1500 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1501 btrfs_check_and_init_root_item(&root->root_item);
1502 }
13a8a7c8 1503
5eda7b5e
CM
1504 return root;
1505}
1506
cb517eab
MX
1507int btrfs_init_fs_root(struct btrfs_root *root)
1508{
1509 int ret;
8257b2dc 1510 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1511
1512 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1513 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1514 GFP_NOFS);
1515 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1516 ret = -ENOMEM;
1517 goto fail;
1518 }
1519
8257b2dc
MX
1520 writers = btrfs_alloc_subvolume_writers();
1521 if (IS_ERR(writers)) {
1522 ret = PTR_ERR(writers);
1523 goto fail;
1524 }
1525 root->subv_writers = writers;
1526
cb517eab 1527 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1528 spin_lock_init(&root->ino_cache_lock);
1529 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1530
1531 ret = get_anon_bdev(&root->anon_dev);
1532 if (ret)
876d2cf1 1533 goto fail;
f32e48e9
CR
1534
1535 mutex_lock(&root->objectid_mutex);
1536 ret = btrfs_find_highest_objectid(root,
1537 &root->highest_objectid);
1538 if (ret) {
1539 mutex_unlock(&root->objectid_mutex);
876d2cf1 1540 goto fail;
f32e48e9
CR
1541 }
1542
1543 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1544
1545 mutex_unlock(&root->objectid_mutex);
1546
cb517eab
MX
1547 return 0;
1548fail:
876d2cf1 1549 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1550 return ret;
1551}
1552
35bbb97f
JM
1553struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1554 u64 root_id)
cb517eab
MX
1555{
1556 struct btrfs_root *root;
1557
1558 spin_lock(&fs_info->fs_roots_radix_lock);
1559 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1560 (unsigned long)root_id);
1561 spin_unlock(&fs_info->fs_roots_radix_lock);
1562 return root;
1563}
1564
1565int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1566 struct btrfs_root *root)
1567{
1568 int ret;
1569
e1860a77 1570 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1571 if (ret)
1572 return ret;
1573
1574 spin_lock(&fs_info->fs_roots_radix_lock);
1575 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1576 (unsigned long)root->root_key.objectid,
1577 root);
1578 if (ret == 0)
27cdeb70 1579 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1580 spin_unlock(&fs_info->fs_roots_radix_lock);
1581 radix_tree_preload_end();
1582
1583 return ret;
1584}
1585
c00869f1
MX
1586struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1587 struct btrfs_key *location,
1588 bool check_ref)
5eda7b5e
CM
1589{
1590 struct btrfs_root *root;
381cf658 1591 struct btrfs_path *path;
1d4c08e0 1592 struct btrfs_key key;
5eda7b5e
CM
1593 int ret;
1594
edbd8d4e
CM
1595 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1596 return fs_info->tree_root;
1597 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1598 return fs_info->extent_root;
8f18cf13
CM
1599 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1600 return fs_info->chunk_root;
1601 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1602 return fs_info->dev_root;
0403e47e
YZ
1603 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1604 return fs_info->csum_root;
bcef60f2
AJ
1605 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1606 return fs_info->quota_root ? fs_info->quota_root :
1607 ERR_PTR(-ENOENT);
f7a81ea4
SB
1608 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1609 return fs_info->uuid_root ? fs_info->uuid_root :
1610 ERR_PTR(-ENOENT);
70f6d82e
OS
1611 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1612 return fs_info->free_space_root ? fs_info->free_space_root :
1613 ERR_PTR(-ENOENT);
4df27c4d 1614again:
cb517eab 1615 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1616 if (root) {
c00869f1 1617 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1618 return ERR_PTR(-ENOENT);
5eda7b5e 1619 return root;
48475471 1620 }
5eda7b5e 1621
cb517eab 1622 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1623 if (IS_ERR(root))
1624 return root;
3394e160 1625
c00869f1 1626 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1627 ret = -ENOENT;
581bb050 1628 goto fail;
35a30d7c 1629 }
581bb050 1630
cb517eab 1631 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1632 if (ret)
1633 goto fail;
3394e160 1634
381cf658
DS
1635 path = btrfs_alloc_path();
1636 if (!path) {
1637 ret = -ENOMEM;
1638 goto fail;
1639 }
1d4c08e0
DS
1640 key.objectid = BTRFS_ORPHAN_OBJECTID;
1641 key.type = BTRFS_ORPHAN_ITEM_KEY;
1642 key.offset = location->objectid;
1643
1644 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1645 btrfs_free_path(path);
d68fc57b
YZ
1646 if (ret < 0)
1647 goto fail;
1648 if (ret == 0)
27cdeb70 1649 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1650
cb517eab 1651 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1652 if (ret) {
4df27c4d
YZ
1653 if (ret == -EEXIST) {
1654 free_fs_root(root);
1655 goto again;
1656 }
1657 goto fail;
0f7d52f4 1658 }
edbd8d4e 1659 return root;
4df27c4d
YZ
1660fail:
1661 free_fs_root(root);
1662 return ERR_PTR(ret);
edbd8d4e
CM
1663}
1664
04160088
CM
1665static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1666{
1667 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1668 int ret = 0;
04160088
CM
1669 struct btrfs_device *device;
1670 struct backing_dev_info *bdi;
b7967db7 1671
1f78160c
XG
1672 rcu_read_lock();
1673 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1674 if (!device->bdev)
1675 continue;
efa7c9f9 1676 bdi = device->bdev->bd_bdi;
ff9ea323 1677 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1678 ret = 1;
1679 break;
1680 }
1681 }
1f78160c 1682 rcu_read_unlock();
04160088
CM
1683 return ret;
1684}
1685
8b712842
CM
1686/*
1687 * called by the kthread helper functions to finally call the bio end_io
1688 * functions. This is where read checksum verification actually happens
1689 */
1690static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1691{
ce9adaa5 1692 struct bio *bio;
97eb6b69 1693 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1694
97eb6b69 1695 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1696 bio = end_io_wq->bio;
ce9adaa5 1697
4e4cbee9 1698 bio->bi_status = end_io_wq->status;
8b712842
CM
1699 bio->bi_private = end_io_wq->private;
1700 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1701 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1702 bio_endio(bio);
44b8bd7e
CM
1703}
1704
a74a4b97
CM
1705static int cleaner_kthread(void *arg)
1706{
1707 struct btrfs_root *root = arg;
0b246afa 1708 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1709 int again;
da288d28 1710 struct btrfs_trans_handle *trans;
a74a4b97
CM
1711
1712 do {
d0278245 1713 again = 0;
a74a4b97 1714
d0278245 1715 /* Make the cleaner go to sleep early. */
2ff7e61e 1716 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1717 goto sleep;
1718
90c711ab
ZB
1719 /*
1720 * Do not do anything if we might cause open_ctree() to block
1721 * before we have finished mounting the filesystem.
1722 */
0b246afa 1723 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1724 goto sleep;
1725
0b246afa 1726 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1727 goto sleep;
1728
dc7f370c
MX
1729 /*
1730 * Avoid the problem that we change the status of the fs
1731 * during the above check and trylock.
1732 */
2ff7e61e 1733 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1734 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1735 goto sleep;
76dda93c 1736 }
a74a4b97 1737
0b246afa 1738 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1739 btrfs_run_delayed_iputs(fs_info);
0b246afa 1740 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1741
d0278245 1742 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1743 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1744
1745 /*
05323cd1
MX
1746 * The defragger has dealt with the R/O remount and umount,
1747 * needn't do anything special here.
d0278245 1748 */
0b246afa 1749 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1750
1751 /*
1752 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1753 * with relocation (btrfs_relocate_chunk) and relocation
1754 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1755 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1756 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1757 * unused block groups.
1758 */
0b246afa 1759 btrfs_delete_unused_bgs(fs_info);
d0278245 1760sleep:
838fe188 1761 if (!again) {
a74a4b97 1762 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1763 if (!kthread_should_stop())
1764 schedule();
a74a4b97
CM
1765 __set_current_state(TASK_RUNNING);
1766 }
1767 } while (!kthread_should_stop());
da288d28
FM
1768
1769 /*
1770 * Transaction kthread is stopped before us and wakes us up.
1771 * However we might have started a new transaction and COWed some
1772 * tree blocks when deleting unused block groups for example. So
1773 * make sure we commit the transaction we started to have a clean
1774 * shutdown when evicting the btree inode - if it has dirty pages
1775 * when we do the final iput() on it, eviction will trigger a
1776 * writeback for it which will fail with null pointer dereferences
1777 * since work queues and other resources were already released and
1778 * destroyed by the time the iput/eviction/writeback is made.
1779 */
1780 trans = btrfs_attach_transaction(root);
1781 if (IS_ERR(trans)) {
1782 if (PTR_ERR(trans) != -ENOENT)
0b246afa 1783 btrfs_err(fs_info,
da288d28
FM
1784 "cleaner transaction attach returned %ld",
1785 PTR_ERR(trans));
1786 } else {
1787 int ret;
1788
3a45bb20 1789 ret = btrfs_commit_transaction(trans);
da288d28 1790 if (ret)
0b246afa 1791 btrfs_err(fs_info,
da288d28
FM
1792 "cleaner open transaction commit returned %d",
1793 ret);
1794 }
1795
a74a4b97
CM
1796 return 0;
1797}
1798
1799static int transaction_kthread(void *arg)
1800{
1801 struct btrfs_root *root = arg;
0b246afa 1802 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1803 struct btrfs_trans_handle *trans;
1804 struct btrfs_transaction *cur;
8929ecfa 1805 u64 transid;
a74a4b97
CM
1806 unsigned long now;
1807 unsigned long delay;
914b2007 1808 bool cannot_commit;
a74a4b97
CM
1809
1810 do {
914b2007 1811 cannot_commit = false;
0b246afa
JM
1812 delay = HZ * fs_info->commit_interval;
1813 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1814
0b246afa
JM
1815 spin_lock(&fs_info->trans_lock);
1816 cur = fs_info->running_transaction;
a74a4b97 1817 if (!cur) {
0b246afa 1818 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1819 goto sleep;
1820 }
31153d81 1821
a74a4b97 1822 now = get_seconds();
4a9d8bde 1823 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1824 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1825 (now < cur->start_time ||
0b246afa
JM
1826 now - cur->start_time < fs_info->commit_interval)) {
1827 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1828 delay = HZ * 5;
1829 goto sleep;
1830 }
8929ecfa 1831 transid = cur->transid;
0b246afa 1832 spin_unlock(&fs_info->trans_lock);
56bec294 1833
79787eaa 1834 /* If the file system is aborted, this will always fail. */
354aa0fb 1835 trans = btrfs_attach_transaction(root);
914b2007 1836 if (IS_ERR(trans)) {
354aa0fb
MX
1837 if (PTR_ERR(trans) != -ENOENT)
1838 cannot_commit = true;
79787eaa 1839 goto sleep;
914b2007 1840 }
8929ecfa 1841 if (transid == trans->transid) {
3a45bb20 1842 btrfs_commit_transaction(trans);
8929ecfa 1843 } else {
3a45bb20 1844 btrfs_end_transaction(trans);
8929ecfa 1845 }
a74a4b97 1846sleep:
0b246afa
JM
1847 wake_up_process(fs_info->cleaner_kthread);
1848 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1849
4e121c06 1850 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1851 &fs_info->fs_state)))
2ff7e61e 1852 btrfs_cleanup_transaction(fs_info);
ce63f891 1853 if (!kthread_should_stop() &&
0b246afa 1854 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1855 cannot_commit))
bc5511d0 1856 schedule_timeout_interruptible(delay);
a74a4b97
CM
1857 } while (!kthread_should_stop());
1858 return 0;
1859}
1860
af31f5e5
CM
1861/*
1862 * this will find the highest generation in the array of
1863 * root backups. The index of the highest array is returned,
1864 * or -1 if we can't find anything.
1865 *
1866 * We check to make sure the array is valid by comparing the
1867 * generation of the latest root in the array with the generation
1868 * in the super block. If they don't match we pitch it.
1869 */
1870static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1871{
1872 u64 cur;
1873 int newest_index = -1;
1874 struct btrfs_root_backup *root_backup;
1875 int i;
1876
1877 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1878 root_backup = info->super_copy->super_roots + i;
1879 cur = btrfs_backup_tree_root_gen(root_backup);
1880 if (cur == newest_gen)
1881 newest_index = i;
1882 }
1883
1884 /* check to see if we actually wrapped around */
1885 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1886 root_backup = info->super_copy->super_roots;
1887 cur = btrfs_backup_tree_root_gen(root_backup);
1888 if (cur == newest_gen)
1889 newest_index = 0;
1890 }
1891 return newest_index;
1892}
1893
1894
1895/*
1896 * find the oldest backup so we know where to store new entries
1897 * in the backup array. This will set the backup_root_index
1898 * field in the fs_info struct
1899 */
1900static void find_oldest_super_backup(struct btrfs_fs_info *info,
1901 u64 newest_gen)
1902{
1903 int newest_index = -1;
1904
1905 newest_index = find_newest_super_backup(info, newest_gen);
1906 /* if there was garbage in there, just move along */
1907 if (newest_index == -1) {
1908 info->backup_root_index = 0;
1909 } else {
1910 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1911 }
1912}
1913
1914/*
1915 * copy all the root pointers into the super backup array.
1916 * this will bump the backup pointer by one when it is
1917 * done
1918 */
1919static void backup_super_roots(struct btrfs_fs_info *info)
1920{
1921 int next_backup;
1922 struct btrfs_root_backup *root_backup;
1923 int last_backup;
1924
1925 next_backup = info->backup_root_index;
1926 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1927 BTRFS_NUM_BACKUP_ROOTS;
1928
1929 /*
1930 * just overwrite the last backup if we're at the same generation
1931 * this happens only at umount
1932 */
1933 root_backup = info->super_for_commit->super_roots + last_backup;
1934 if (btrfs_backup_tree_root_gen(root_backup) ==
1935 btrfs_header_generation(info->tree_root->node))
1936 next_backup = last_backup;
1937
1938 root_backup = info->super_for_commit->super_roots + next_backup;
1939
1940 /*
1941 * make sure all of our padding and empty slots get zero filled
1942 * regardless of which ones we use today
1943 */
1944 memset(root_backup, 0, sizeof(*root_backup));
1945
1946 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1947
1948 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1949 btrfs_set_backup_tree_root_gen(root_backup,
1950 btrfs_header_generation(info->tree_root->node));
1951
1952 btrfs_set_backup_tree_root_level(root_backup,
1953 btrfs_header_level(info->tree_root->node));
1954
1955 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1956 btrfs_set_backup_chunk_root_gen(root_backup,
1957 btrfs_header_generation(info->chunk_root->node));
1958 btrfs_set_backup_chunk_root_level(root_backup,
1959 btrfs_header_level(info->chunk_root->node));
1960
1961 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1962 btrfs_set_backup_extent_root_gen(root_backup,
1963 btrfs_header_generation(info->extent_root->node));
1964 btrfs_set_backup_extent_root_level(root_backup,
1965 btrfs_header_level(info->extent_root->node));
1966
7c7e82a7
CM
1967 /*
1968 * we might commit during log recovery, which happens before we set
1969 * the fs_root. Make sure it is valid before we fill it in.
1970 */
1971 if (info->fs_root && info->fs_root->node) {
1972 btrfs_set_backup_fs_root(root_backup,
1973 info->fs_root->node->start);
1974 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1975 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1976 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1977 btrfs_header_level(info->fs_root->node));
7c7e82a7 1978 }
af31f5e5
CM
1979
1980 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1981 btrfs_set_backup_dev_root_gen(root_backup,
1982 btrfs_header_generation(info->dev_root->node));
1983 btrfs_set_backup_dev_root_level(root_backup,
1984 btrfs_header_level(info->dev_root->node));
1985
1986 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1987 btrfs_set_backup_csum_root_gen(root_backup,
1988 btrfs_header_generation(info->csum_root->node));
1989 btrfs_set_backup_csum_root_level(root_backup,
1990 btrfs_header_level(info->csum_root->node));
1991
1992 btrfs_set_backup_total_bytes(root_backup,
1993 btrfs_super_total_bytes(info->super_copy));
1994 btrfs_set_backup_bytes_used(root_backup,
1995 btrfs_super_bytes_used(info->super_copy));
1996 btrfs_set_backup_num_devices(root_backup,
1997 btrfs_super_num_devices(info->super_copy));
1998
1999 /*
2000 * if we don't copy this out to the super_copy, it won't get remembered
2001 * for the next commit
2002 */
2003 memcpy(&info->super_copy->super_roots,
2004 &info->super_for_commit->super_roots,
2005 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2006}
2007
2008/*
2009 * this copies info out of the root backup array and back into
2010 * the in-memory super block. It is meant to help iterate through
2011 * the array, so you send it the number of backups you've already
2012 * tried and the last backup index you used.
2013 *
2014 * this returns -1 when it has tried all the backups
2015 */
2016static noinline int next_root_backup(struct btrfs_fs_info *info,
2017 struct btrfs_super_block *super,
2018 int *num_backups_tried, int *backup_index)
2019{
2020 struct btrfs_root_backup *root_backup;
2021 int newest = *backup_index;
2022
2023 if (*num_backups_tried == 0) {
2024 u64 gen = btrfs_super_generation(super);
2025
2026 newest = find_newest_super_backup(info, gen);
2027 if (newest == -1)
2028 return -1;
2029
2030 *backup_index = newest;
2031 *num_backups_tried = 1;
2032 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2033 /* we've tried all the backups, all done */
2034 return -1;
2035 } else {
2036 /* jump to the next oldest backup */
2037 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2038 BTRFS_NUM_BACKUP_ROOTS;
2039 *backup_index = newest;
2040 *num_backups_tried += 1;
2041 }
2042 root_backup = super->super_roots + newest;
2043
2044 btrfs_set_super_generation(super,
2045 btrfs_backup_tree_root_gen(root_backup));
2046 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2047 btrfs_set_super_root_level(super,
2048 btrfs_backup_tree_root_level(root_backup));
2049 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2050
2051 /*
2052 * fixme: the total bytes and num_devices need to match or we should
2053 * need a fsck
2054 */
2055 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2056 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2057 return 0;
2058}
2059
7abadb64
LB
2060/* helper to cleanup workers */
2061static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2062{
dc6e3209 2063 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2064 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2065 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2066 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2067 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2068 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2069 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2070 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2071 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2072 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2073 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2074 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2075 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2076 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2077 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2078 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2079 /*
2080 * Now that all other work queues are destroyed, we can safely destroy
2081 * the queues used for metadata I/O, since tasks from those other work
2082 * queues can do metadata I/O operations.
2083 */
2084 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2085 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2086}
2087
2e9f5954
R
2088static void free_root_extent_buffers(struct btrfs_root *root)
2089{
2090 if (root) {
2091 free_extent_buffer(root->node);
2092 free_extent_buffer(root->commit_root);
2093 root->node = NULL;
2094 root->commit_root = NULL;
2095 }
2096}
2097
af31f5e5
CM
2098/* helper to cleanup tree roots */
2099static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2100{
2e9f5954 2101 free_root_extent_buffers(info->tree_root);
655b09fe 2102
2e9f5954
R
2103 free_root_extent_buffers(info->dev_root);
2104 free_root_extent_buffers(info->extent_root);
2105 free_root_extent_buffers(info->csum_root);
2106 free_root_extent_buffers(info->quota_root);
2107 free_root_extent_buffers(info->uuid_root);
2108 if (chunk_root)
2109 free_root_extent_buffers(info->chunk_root);
70f6d82e 2110 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2111}
2112
faa2dbf0 2113void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2114{
2115 int ret;
2116 struct btrfs_root *gang[8];
2117 int i;
2118
2119 while (!list_empty(&fs_info->dead_roots)) {
2120 gang[0] = list_entry(fs_info->dead_roots.next,
2121 struct btrfs_root, root_list);
2122 list_del(&gang[0]->root_list);
2123
27cdeb70 2124 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2125 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2126 } else {
2127 free_extent_buffer(gang[0]->node);
2128 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2129 btrfs_put_fs_root(gang[0]);
171f6537
JB
2130 }
2131 }
2132
2133 while (1) {
2134 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2135 (void **)gang, 0,
2136 ARRAY_SIZE(gang));
2137 if (!ret)
2138 break;
2139 for (i = 0; i < ret; i++)
cb517eab 2140 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2141 }
1a4319cc
LB
2142
2143 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2144 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2145 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2146 }
171f6537 2147}
af31f5e5 2148
638aa7ed
ES
2149static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2150{
2151 mutex_init(&fs_info->scrub_lock);
2152 atomic_set(&fs_info->scrubs_running, 0);
2153 atomic_set(&fs_info->scrub_pause_req, 0);
2154 atomic_set(&fs_info->scrubs_paused, 0);
2155 atomic_set(&fs_info->scrub_cancel_req, 0);
2156 init_waitqueue_head(&fs_info->scrub_pause_wait);
2157 fs_info->scrub_workers_refcnt = 0;
2158}
2159
779a65a4
ES
2160static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2161{
2162 spin_lock_init(&fs_info->balance_lock);
2163 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2164 atomic_set(&fs_info->balance_pause_req, 0);
2165 atomic_set(&fs_info->balance_cancel_req, 0);
2166 fs_info->balance_ctl = NULL;
2167 init_waitqueue_head(&fs_info->balance_wait_q);
2168}
2169
6bccf3ab 2170static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2171{
2ff7e61e
JM
2172 struct inode *inode = fs_info->btree_inode;
2173
2174 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2175 set_nlink(inode, 1);
f37938e0
ES
2176 /*
2177 * we set the i_size on the btree inode to the max possible int.
2178 * the real end of the address space is determined by all of
2179 * the devices in the system
2180 */
2ff7e61e
JM
2181 inode->i_size = OFFSET_MAX;
2182 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2183
2ff7e61e 2184 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2185 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2186 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2187 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2188
2ff7e61e 2189 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2190
2ff7e61e
JM
2191 BTRFS_I(inode)->root = fs_info->tree_root;
2192 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2193 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2194 btrfs_insert_inode_hash(inode);
f37938e0
ES
2195}
2196
ad618368
ES
2197static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2198{
2199 fs_info->dev_replace.lock_owner = 0;
2200 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2201 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2202 rwlock_init(&fs_info->dev_replace.lock);
2203 atomic_set(&fs_info->dev_replace.read_locks, 0);
2204 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2205 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2206 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2207}
2208
f9e92e40
ES
2209static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2210{
2211 spin_lock_init(&fs_info->qgroup_lock);
2212 mutex_init(&fs_info->qgroup_ioctl_lock);
2213 fs_info->qgroup_tree = RB_ROOT;
2214 fs_info->qgroup_op_tree = RB_ROOT;
2215 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2216 fs_info->qgroup_seq = 1;
f9e92e40 2217 fs_info->qgroup_ulist = NULL;
d2c609b8 2218 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2219 mutex_init(&fs_info->qgroup_rescan_lock);
2220}
2221
2a458198
ES
2222static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2223 struct btrfs_fs_devices *fs_devices)
2224{
f7b885be 2225 u32 max_active = fs_info->thread_pool_size;
6f011058 2226 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2227
2228 fs_info->workers =
cb001095
JM
2229 btrfs_alloc_workqueue(fs_info, "worker",
2230 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2231
2232 fs_info->delalloc_workers =
cb001095
JM
2233 btrfs_alloc_workqueue(fs_info, "delalloc",
2234 flags, max_active, 2);
2a458198
ES
2235
2236 fs_info->flush_workers =
cb001095
JM
2237 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2238 flags, max_active, 0);
2a458198
ES
2239
2240 fs_info->caching_workers =
cb001095 2241 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2242
2243 /*
2244 * a higher idle thresh on the submit workers makes it much more
2245 * likely that bios will be send down in a sane order to the
2246 * devices
2247 */
2248 fs_info->submit_workers =
cb001095 2249 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2250 min_t(u64, fs_devices->num_devices,
2251 max_active), 64);
2252
2253 fs_info->fixup_workers =
cb001095 2254 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2255
2256 /*
2257 * endios are largely parallel and should have a very
2258 * low idle thresh
2259 */
2260 fs_info->endio_workers =
cb001095 2261 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2262 fs_info->endio_meta_workers =
cb001095
JM
2263 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2264 max_active, 4);
2a458198 2265 fs_info->endio_meta_write_workers =
cb001095
JM
2266 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2267 max_active, 2);
2a458198 2268 fs_info->endio_raid56_workers =
cb001095
JM
2269 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2270 max_active, 4);
2a458198 2271 fs_info->endio_repair_workers =
cb001095 2272 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2273 fs_info->rmw_workers =
cb001095 2274 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2275 fs_info->endio_write_workers =
cb001095
JM
2276 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2277 max_active, 2);
2a458198 2278 fs_info->endio_freespace_worker =
cb001095
JM
2279 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2280 max_active, 0);
2a458198 2281 fs_info->delayed_workers =
cb001095
JM
2282 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2283 max_active, 0);
2a458198 2284 fs_info->readahead_workers =
cb001095
JM
2285 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2286 max_active, 2);
2a458198 2287 fs_info->qgroup_rescan_workers =
cb001095 2288 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2289 fs_info->extent_workers =
cb001095 2290 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2291 min_t(u64, fs_devices->num_devices,
2292 max_active), 8);
2293
2294 if (!(fs_info->workers && fs_info->delalloc_workers &&
2295 fs_info->submit_workers && fs_info->flush_workers &&
2296 fs_info->endio_workers && fs_info->endio_meta_workers &&
2297 fs_info->endio_meta_write_workers &&
2298 fs_info->endio_repair_workers &&
2299 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2300 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2301 fs_info->caching_workers && fs_info->readahead_workers &&
2302 fs_info->fixup_workers && fs_info->delayed_workers &&
2303 fs_info->extent_workers &&
2304 fs_info->qgroup_rescan_workers)) {
2305 return -ENOMEM;
2306 }
2307
2308 return 0;
2309}
2310
63443bf5
ES
2311static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2312 struct btrfs_fs_devices *fs_devices)
2313{
2314 int ret;
63443bf5
ES
2315 struct btrfs_root *log_tree_root;
2316 struct btrfs_super_block *disk_super = fs_info->super_copy;
2317 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2318 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2319
2320 if (fs_devices->rw_devices == 0) {
f14d104d 2321 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2322 return -EIO;
2323 }
2324
74e4d827 2325 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2326 if (!log_tree_root)
2327 return -ENOMEM;
2328
da17066c 2329 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2330
2ff7e61e 2331 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2332 fs_info->generation + 1,
2333 level, NULL);
64c043de 2334 if (IS_ERR(log_tree_root->node)) {
f14d104d 2335 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2336 ret = PTR_ERR(log_tree_root->node);
64c043de 2337 kfree(log_tree_root);
0eeff236 2338 return ret;
64c043de 2339 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2340 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2341 free_extent_buffer(log_tree_root->node);
2342 kfree(log_tree_root);
2343 return -EIO;
2344 }
2345 /* returns with log_tree_root freed on success */
2346 ret = btrfs_recover_log_trees(log_tree_root);
2347 if (ret) {
0b246afa
JM
2348 btrfs_handle_fs_error(fs_info, ret,
2349 "Failed to recover log tree");
63443bf5
ES
2350 free_extent_buffer(log_tree_root->node);
2351 kfree(log_tree_root);
2352 return ret;
2353 }
2354
bc98a42c 2355 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2356 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2357 if (ret)
2358 return ret;
2359 }
2360
2361 return 0;
2362}
2363
6bccf3ab 2364static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2365{
6bccf3ab 2366 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2367 struct btrfs_root *root;
4bbcaa64
ES
2368 struct btrfs_key location;
2369 int ret;
2370
6bccf3ab
JM
2371 BUG_ON(!fs_info->tree_root);
2372
4bbcaa64
ES
2373 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2374 location.type = BTRFS_ROOT_ITEM_KEY;
2375 location.offset = 0;
2376
a4f3d2c4 2377 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2378 if (IS_ERR(root)) {
2379 ret = PTR_ERR(root);
2380 goto out;
2381 }
a4f3d2c4
DS
2382 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2383 fs_info->extent_root = root;
4bbcaa64
ES
2384
2385 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2386 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2387 if (IS_ERR(root)) {
2388 ret = PTR_ERR(root);
2389 goto out;
2390 }
a4f3d2c4
DS
2391 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2392 fs_info->dev_root = root;
4bbcaa64
ES
2393 btrfs_init_devices_late(fs_info);
2394
2395 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2396 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2397 if (IS_ERR(root)) {
2398 ret = PTR_ERR(root);
2399 goto out;
2400 }
a4f3d2c4
DS
2401 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2402 fs_info->csum_root = root;
4bbcaa64
ES
2403
2404 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2405 root = btrfs_read_tree_root(tree_root, &location);
2406 if (!IS_ERR(root)) {
2407 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2408 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2409 fs_info->quota_root = root;
4bbcaa64
ES
2410 }
2411
2412 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2413 root = btrfs_read_tree_root(tree_root, &location);
2414 if (IS_ERR(root)) {
2415 ret = PTR_ERR(root);
4bbcaa64 2416 if (ret != -ENOENT)
f50f4353 2417 goto out;
4bbcaa64 2418 } else {
a4f3d2c4
DS
2419 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2420 fs_info->uuid_root = root;
4bbcaa64
ES
2421 }
2422
70f6d82e
OS
2423 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2424 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2425 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2426 if (IS_ERR(root)) {
2427 ret = PTR_ERR(root);
2428 goto out;
2429 }
70f6d82e
OS
2430 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2431 fs_info->free_space_root = root;
2432 }
2433
4bbcaa64 2434 return 0;
f50f4353
LB
2435out:
2436 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2437 location.objectid, ret);
2438 return ret;
4bbcaa64
ES
2439}
2440
069ec957
QW
2441/*
2442 * Real super block validation
2443 * NOTE: super csum type and incompat features will not be checked here.
2444 *
2445 * @sb: super block to check
2446 * @mirror_num: the super block number to check its bytenr:
2447 * 0 the primary (1st) sb
2448 * 1, 2 2nd and 3rd backup copy
2449 * -1 skip bytenr check
2450 */
2451static int validate_super(struct btrfs_fs_info *fs_info,
2452 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2453{
21a852b0
QW
2454 u64 nodesize = btrfs_super_nodesize(sb);
2455 u64 sectorsize = btrfs_super_sectorsize(sb);
2456 int ret = 0;
2457
2458 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2459 btrfs_err(fs_info, "no valid FS found");
2460 ret = -EINVAL;
2461 }
2462 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2463 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2464 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2465 ret = -EINVAL;
2466 }
2467 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2468 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2469 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2470 ret = -EINVAL;
2471 }
2472 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2473 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2474 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2475 ret = -EINVAL;
2476 }
2477 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2478 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2479 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2480 ret = -EINVAL;
2481 }
2482
2483 /*
2484 * Check sectorsize and nodesize first, other check will need it.
2485 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2486 */
2487 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2488 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2489 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2490 ret = -EINVAL;
2491 }
2492 /* Only PAGE SIZE is supported yet */
2493 if (sectorsize != PAGE_SIZE) {
2494 btrfs_err(fs_info,
2495 "sectorsize %llu not supported yet, only support %lu",
2496 sectorsize, PAGE_SIZE);
2497 ret = -EINVAL;
2498 }
2499 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2500 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2501 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2502 ret = -EINVAL;
2503 }
2504 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2505 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2506 le32_to_cpu(sb->__unused_leafsize), nodesize);
2507 ret = -EINVAL;
2508 }
2509
2510 /* Root alignment check */
2511 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2512 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2513 btrfs_super_root(sb));
2514 ret = -EINVAL;
2515 }
2516 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2517 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2518 btrfs_super_chunk_root(sb));
2519 ret = -EINVAL;
2520 }
2521 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2522 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2523 btrfs_super_log_root(sb));
2524 ret = -EINVAL;
2525 }
2526
2527 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2528 btrfs_err(fs_info,
2529 "dev_item UUID does not match fsid: %pU != %pU",
2530 fs_info->fsid, sb->dev_item.fsid);
2531 ret = -EINVAL;
2532 }
2533
2534 /*
2535 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2536 * done later
2537 */
2538 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2539 btrfs_err(fs_info, "bytes_used is too small %llu",
2540 btrfs_super_bytes_used(sb));
2541 ret = -EINVAL;
2542 }
2543 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2544 btrfs_err(fs_info, "invalid stripesize %u",
2545 btrfs_super_stripesize(sb));
2546 ret = -EINVAL;
2547 }
2548 if (btrfs_super_num_devices(sb) > (1UL << 31))
2549 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2550 btrfs_super_num_devices(sb));
2551 if (btrfs_super_num_devices(sb) == 0) {
2552 btrfs_err(fs_info, "number of devices is 0");
2553 ret = -EINVAL;
2554 }
2555
069ec957
QW
2556 if (mirror_num >= 0 &&
2557 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2558 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2559 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2560 ret = -EINVAL;
2561 }
2562
2563 /*
2564 * Obvious sys_chunk_array corruptions, it must hold at least one key
2565 * and one chunk
2566 */
2567 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2568 btrfs_err(fs_info, "system chunk array too big %u > %u",
2569 btrfs_super_sys_array_size(sb),
2570 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2571 ret = -EINVAL;
2572 }
2573 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2574 + sizeof(struct btrfs_chunk)) {
2575 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2576 btrfs_super_sys_array_size(sb),
2577 sizeof(struct btrfs_disk_key)
2578 + sizeof(struct btrfs_chunk));
2579 ret = -EINVAL;
2580 }
2581
2582 /*
2583 * The generation is a global counter, we'll trust it more than the others
2584 * but it's still possible that it's the one that's wrong.
2585 */
2586 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2587 btrfs_warn(fs_info,
2588 "suspicious: generation < chunk_root_generation: %llu < %llu",
2589 btrfs_super_generation(sb),
2590 btrfs_super_chunk_root_generation(sb));
2591 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2592 && btrfs_super_cache_generation(sb) != (u64)-1)
2593 btrfs_warn(fs_info,
2594 "suspicious: generation < cache_generation: %llu < %llu",
2595 btrfs_super_generation(sb),
2596 btrfs_super_cache_generation(sb));
2597
2598 return ret;
2599}
2600
069ec957
QW
2601/*
2602 * Validation of super block at mount time.
2603 * Some checks already done early at mount time, like csum type and incompat
2604 * flags will be skipped.
2605 */
2606static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2607{
2608 return validate_super(fs_info, fs_info->super_copy, 0);
2609}
2610
75cb857d
QW
2611/*
2612 * Validation of super block at write time.
2613 * Some checks like bytenr check will be skipped as their values will be
2614 * overwritten soon.
2615 * Extra checks like csum type and incompat flags will be done here.
2616 */
2617static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2618 struct btrfs_super_block *sb)
2619{
2620 int ret;
2621
2622 ret = validate_super(fs_info, sb, -1);
2623 if (ret < 0)
2624 goto out;
2625 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2626 ret = -EUCLEAN;
2627 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2628 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2629 goto out;
2630 }
2631 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2632 ret = -EUCLEAN;
2633 btrfs_err(fs_info,
2634 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2635 btrfs_super_incompat_flags(sb),
2636 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2637 goto out;
2638 }
2639out:
2640 if (ret < 0)
2641 btrfs_err(fs_info,
2642 "super block corruption detected before writing it to disk");
2643 return ret;
2644}
2645
ad2b2c80
AV
2646int open_ctree(struct super_block *sb,
2647 struct btrfs_fs_devices *fs_devices,
2648 char *options)
2e635a27 2649{
db94535d
CM
2650 u32 sectorsize;
2651 u32 nodesize;
87ee04eb 2652 u32 stripesize;
84234f3a 2653 u64 generation;
f2b636e8 2654 u64 features;
3de4586c 2655 struct btrfs_key location;
a061fc8d 2656 struct buffer_head *bh;
4d34b278 2657 struct btrfs_super_block *disk_super;
815745cf 2658 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2659 struct btrfs_root *tree_root;
4d34b278 2660 struct btrfs_root *chunk_root;
eb60ceac 2661 int ret;
e58ca020 2662 int err = -EINVAL;
af31f5e5
CM
2663 int num_backups_tried = 0;
2664 int backup_index = 0;
6675df31 2665 int clear_free_space_tree = 0;
581c1760 2666 int level;
4543df7e 2667
74e4d827
DS
2668 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2669 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2670 if (!tree_root || !chunk_root) {
39279cc3
CM
2671 err = -ENOMEM;
2672 goto fail;
2673 }
76dda93c
YZ
2674
2675 ret = init_srcu_struct(&fs_info->subvol_srcu);
2676 if (ret) {
2677 err = ret;
2678 goto fail;
2679 }
2680
908c7f19 2681 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2682 if (ret) {
2683 err = ret;
9e11ceee 2684 goto fail_srcu;
e2d84521 2685 }
09cbfeaf 2686 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2687 (1 + ilog2(nr_cpu_ids));
2688
908c7f19 2689 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2690 if (ret) {
2691 err = ret;
2692 goto fail_dirty_metadata_bytes;
2693 }
2694
908c7f19 2695 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2696 if (ret) {
2697 err = ret;
2698 goto fail_delalloc_bytes;
2699 }
2700
76dda93c 2701 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2702 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2703 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2704 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2705 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2706 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2707 INIT_LIST_HEAD(&fs_info->caching_block_groups);
75cb379d
JM
2708 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2709 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
eb73c1b7 2710 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2711 spin_lock_init(&fs_info->trans_lock);
76dda93c 2712 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2713 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2714 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2715 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2716 spin_lock_init(&fs_info->super_lock);
fcebe456 2717 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2718 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2719 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2720 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2721 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2722 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2723 mutex_init(&fs_info->reloc_mutex);
573bfb72 2724 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2725 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2726 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2727
0b86a832 2728 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2729 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2730 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2731 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2732 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2733 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2734 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2735 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2736 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2737 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2738 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2739 BTRFS_BLOCK_RSV_DELOPS);
771ed689 2740 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2741 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2742 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2743 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2744 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2745 fs_info->sb = sb;
95ac567a 2746 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2747 fs_info->metadata_ratio = 0;
4cb5300b 2748 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2749 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2750 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2751 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2752 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2753 /* readahead state */
d0164adc 2754 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2755 spin_lock_init(&fs_info->reada_lock);
fd708b81 2756 btrfs_init_ref_verify(fs_info);
c8b97818 2757
b34b086c
CM
2758 fs_info->thread_pool_size = min_t(unsigned long,
2759 num_online_cpus() + 2, 8);
0afbaf8c 2760
199c2a9c
MX
2761 INIT_LIST_HEAD(&fs_info->ordered_roots);
2762 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2763
2764 fs_info->btree_inode = new_inode(sb);
2765 if (!fs_info->btree_inode) {
2766 err = -ENOMEM;
2767 goto fail_bio_counter;
2768 }
2769 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2770
16cdcec7 2771 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2772 GFP_KERNEL);
16cdcec7
MX
2773 if (!fs_info->delayed_root) {
2774 err = -ENOMEM;
2775 goto fail_iput;
2776 }
2777 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2778
638aa7ed 2779 btrfs_init_scrub(fs_info);
21adbd5c
SB
2780#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2781 fs_info->check_integrity_print_mask = 0;
2782#endif
779a65a4 2783 btrfs_init_balance(fs_info);
21c7e756 2784 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2785
9f6d2510
DS
2786 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2787 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2788
6bccf3ab 2789 btrfs_init_btree_inode(fs_info);
76dda93c 2790
0f9dd46c 2791 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2792 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2793 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2794
c6100a4b
JB
2795 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2796 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2797 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2798 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2799
5a3f23d5 2800 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2801 mutex_init(&fs_info->tree_log_mutex);
925baedd 2802 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2803 mutex_init(&fs_info->transaction_kthread_mutex);
2804 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2805 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2806 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2807 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2808 init_rwsem(&fs_info->subvol_sem);
803b2f54 2809 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2810
ad618368 2811 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2812 btrfs_init_qgroup(fs_info);
416ac51d 2813
fa9c0d79
CM
2814 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2815 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2816
e6dcd2dc 2817 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2818 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2819 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2820 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2821
04216820
FM
2822 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2823
da17066c
JM
2824 /* Usable values until the real ones are cached from the superblock */
2825 fs_info->nodesize = 4096;
2826 fs_info->sectorsize = 4096;
2827 fs_info->stripesize = 4096;
2828
53b381b3
DW
2829 ret = btrfs_alloc_stripe_hash_table(fs_info);
2830 if (ret) {
83c8266a 2831 err = ret;
53b381b3
DW
2832 goto fail_alloc;
2833 }
2834
da17066c 2835 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2836
3c4bb26b 2837 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2838
2839 /*
2840 * Read super block and check the signature bytes only
2841 */
a512bbf8 2842 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2843 if (IS_ERR(bh)) {
2844 err = PTR_ERR(bh);
16cdcec7 2845 goto fail_alloc;
20b45077 2846 }
39279cc3 2847
1104a885
DS
2848 /*
2849 * We want to check superblock checksum, the type is stored inside.
2850 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2851 */
ab8d0fc4 2852 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2853 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2854 err = -EINVAL;
b2acdddf 2855 brelse(bh);
1104a885
DS
2856 goto fail_alloc;
2857 }
2858
2859 /*
2860 * super_copy is zeroed at allocation time and we never touch the
2861 * following bytes up to INFO_SIZE, the checksum is calculated from
2862 * the whole block of INFO_SIZE
2863 */
6c41761f
DS
2864 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2865 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2866 sizeof(*fs_info->super_for_commit));
a061fc8d 2867 brelse(bh);
5f39d397 2868
6c41761f 2869 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2870
069ec957 2871 ret = btrfs_validate_mount_super(fs_info);
1104a885 2872 if (ret) {
05135f59 2873 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2874 err = -EINVAL;
2875 goto fail_alloc;
2876 }
2877
6c41761f 2878 disk_super = fs_info->super_copy;
0f7d52f4 2879 if (!btrfs_super_root(disk_super))
16cdcec7 2880 goto fail_alloc;
0f7d52f4 2881
acce952b 2882 /* check FS state, whether FS is broken. */
87533c47
MX
2883 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2884 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2885
af31f5e5
CM
2886 /*
2887 * run through our array of backup supers and setup
2888 * our ring pointer to the oldest one
2889 */
2890 generation = btrfs_super_generation(disk_super);
2891 find_oldest_super_backup(fs_info, generation);
2892
75e7cb7f
LB
2893 /*
2894 * In the long term, we'll store the compression type in the super
2895 * block, and it'll be used for per file compression control.
2896 */
2897 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2898
2ff7e61e 2899 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2900 if (ret) {
2901 err = ret;
16cdcec7 2902 goto fail_alloc;
2b82032c 2903 }
dfe25020 2904
f2b636e8
JB
2905 features = btrfs_super_incompat_flags(disk_super) &
2906 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2907 if (features) {
05135f59
DS
2908 btrfs_err(fs_info,
2909 "cannot mount because of unsupported optional features (%llx)",
2910 features);
f2b636e8 2911 err = -EINVAL;
16cdcec7 2912 goto fail_alloc;
f2b636e8
JB
2913 }
2914
5d4f98a2 2915 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2916 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2917 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2918 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2919 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2920 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2921
3173a18f 2922 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2923 btrfs_info(fs_info, "has skinny extents");
3173a18f 2924
727011e0
CM
2925 /*
2926 * flag our filesystem as having big metadata blocks if
2927 * they are bigger than the page size
2928 */
09cbfeaf 2929 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2930 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2931 btrfs_info(fs_info,
2932 "flagging fs with big metadata feature");
727011e0
CM
2933 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2934 }
2935
bc3f116f 2936 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2937 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2938 stripesize = sectorsize;
707e8a07 2939 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2940 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2941
da17066c
JM
2942 /* Cache block sizes */
2943 fs_info->nodesize = nodesize;
2944 fs_info->sectorsize = sectorsize;
2945 fs_info->stripesize = stripesize;
2946
bc3f116f
CM
2947 /*
2948 * mixed block groups end up with duplicate but slightly offset
2949 * extent buffers for the same range. It leads to corruptions
2950 */
2951 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2952 (sectorsize != nodesize)) {
05135f59
DS
2953 btrfs_err(fs_info,
2954"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2955 nodesize, sectorsize);
bc3f116f
CM
2956 goto fail_alloc;
2957 }
2958
ceda0864
MX
2959 /*
2960 * Needn't use the lock because there is no other task which will
2961 * update the flag.
2962 */
a6fa6fae 2963 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2964
f2b636e8
JB
2965 features = btrfs_super_compat_ro_flags(disk_super) &
2966 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2967 if (!sb_rdonly(sb) && features) {
05135f59
DS
2968 btrfs_err(fs_info,
2969 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2970 features);
f2b636e8 2971 err = -EINVAL;
16cdcec7 2972 goto fail_alloc;
f2b636e8 2973 }
61d92c32 2974
2a458198
ES
2975 ret = btrfs_init_workqueues(fs_info, fs_devices);
2976 if (ret) {
2977 err = ret;
0dc3b84a
JB
2978 goto fail_sb_buffer;
2979 }
4543df7e 2980
9e11ceee
JK
2981 sb->s_bdi->congested_fn = btrfs_congested_fn;
2982 sb->s_bdi->congested_data = fs_info;
2983 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2984 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2985 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2986 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2987
a061fc8d
CM
2988 sb->s_blocksize = sectorsize;
2989 sb->s_blocksize_bits = blksize_bits(sectorsize);
ee87cf5e 2990 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
db94535d 2991
925baedd 2992 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2993 ret = btrfs_read_sys_array(fs_info);
925baedd 2994 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2995 if (ret) {
05135f59 2996 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2997 goto fail_sb_buffer;
84eed90f 2998 }
0b86a832 2999
84234f3a 3000 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3001 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3002
da17066c 3003 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 3004
2ff7e61e 3005 chunk_root->node = read_tree_block(fs_info,
0b86a832 3006 btrfs_super_chunk_root(disk_super),
581c1760 3007 generation, level, NULL);
64c043de
LB
3008 if (IS_ERR(chunk_root->node) ||
3009 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3010 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3011 if (!IS_ERR(chunk_root->node))
3012 free_extent_buffer(chunk_root->node);
95ab1f64 3013 chunk_root->node = NULL;
af31f5e5 3014 goto fail_tree_roots;
83121942 3015 }
5d4f98a2
YZ
3016 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3017 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3018
e17cade2 3019 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3020 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3021
5b4aacef 3022 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3023 if (ret) {
05135f59 3024 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3025 goto fail_tree_roots;
2b82032c 3026 }
0b86a832 3027
8dabb742 3028 /*
9b99b115
AJ
3029 * Keep the devid that is marked to be the target device for the
3030 * device replace procedure
8dabb742 3031 */
9b99b115 3032 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3033
a6b0d5c8 3034 if (!fs_devices->latest_bdev) {
05135f59 3035 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3036 goto fail_tree_roots;
3037 }
3038
af31f5e5 3039retry_root_backup:
84234f3a 3040 generation = btrfs_super_generation(disk_super);
581c1760 3041 level = btrfs_super_root_level(disk_super);
0b86a832 3042
2ff7e61e 3043 tree_root->node = read_tree_block(fs_info,
db94535d 3044 btrfs_super_root(disk_super),
581c1760 3045 generation, level, NULL);
64c043de
LB
3046 if (IS_ERR(tree_root->node) ||
3047 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3048 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3049 if (!IS_ERR(tree_root->node))
3050 free_extent_buffer(tree_root->node);
95ab1f64 3051 tree_root->node = NULL;
af31f5e5 3052 goto recovery_tree_root;
83121942 3053 }
af31f5e5 3054
5d4f98a2
YZ
3055 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3056 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3057 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3058
f32e48e9
CR
3059 mutex_lock(&tree_root->objectid_mutex);
3060 ret = btrfs_find_highest_objectid(tree_root,
3061 &tree_root->highest_objectid);
3062 if (ret) {
3063 mutex_unlock(&tree_root->objectid_mutex);
3064 goto recovery_tree_root;
3065 }
3066
3067 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3068
3069 mutex_unlock(&tree_root->objectid_mutex);
3070
6bccf3ab 3071 ret = btrfs_read_roots(fs_info);
4bbcaa64 3072 if (ret)
af31f5e5 3073 goto recovery_tree_root;
f7a81ea4 3074
8929ecfa
YZ
3075 fs_info->generation = generation;
3076 fs_info->last_trans_committed = generation;
8929ecfa 3077
68310a5e
ID
3078 ret = btrfs_recover_balance(fs_info);
3079 if (ret) {
05135f59 3080 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3081 goto fail_block_groups;
3082 }
3083
733f4fbb
SB
3084 ret = btrfs_init_dev_stats(fs_info);
3085 if (ret) {
05135f59 3086 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3087 goto fail_block_groups;
3088 }
3089
8dabb742
SB
3090 ret = btrfs_init_dev_replace(fs_info);
3091 if (ret) {
05135f59 3092 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3093 goto fail_block_groups;
3094 }
3095
9b99b115 3096 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3097
b7c35e81
AJ
3098 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3099 if (ret) {
05135f59
DS
3100 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3101 ret);
b7c35e81
AJ
3102 goto fail_block_groups;
3103 }
3104
3105 ret = btrfs_sysfs_add_device(fs_devices);
3106 if (ret) {
05135f59
DS
3107 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3108 ret);
b7c35e81
AJ
3109 goto fail_fsdev_sysfs;
3110 }
3111
96f3136e 3112 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3113 if (ret) {
05135f59 3114 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3115 goto fail_fsdev_sysfs;
c59021f8 3116 }
3117
c59021f8 3118 ret = btrfs_init_space_info(fs_info);
3119 if (ret) {
05135f59 3120 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3121 goto fail_sysfs;
c59021f8 3122 }
3123
5b4aacef 3124 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3125 if (ret) {
05135f59 3126 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3127 goto fail_sysfs;
1b1d1f66 3128 }
4330e183 3129
6528b99d 3130 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3131 btrfs_warn(fs_info,
4330e183 3132 "writeable mount is not allowed due to too many missing devices");
2365dd3c 3133 goto fail_sysfs;
292fd7fc 3134 }
9078a3e1 3135
a74a4b97
CM
3136 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3137 "btrfs-cleaner");
57506d50 3138 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3139 goto fail_sysfs;
a74a4b97
CM
3140
3141 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3142 tree_root,
3143 "btrfs-transaction");
57506d50 3144 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3145 goto fail_cleaner;
a74a4b97 3146
583b7231 3147 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3148 !fs_info->fs_devices->rotating) {
583b7231 3149 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3150 }
3151
572d9ab7 3152 /*
01327610 3153 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3154 * not have to wait for transaction commit
3155 */
3156 btrfs_apply_pending_changes(fs_info);
3818aea2 3157
21adbd5c 3158#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3159 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3160 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3161 btrfs_test_opt(fs_info,
21adbd5c
SB
3162 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3163 1 : 0,
3164 fs_info->check_integrity_print_mask);
3165 if (ret)
05135f59
DS
3166 btrfs_warn(fs_info,
3167 "failed to initialize integrity check module: %d",
3168 ret);
21adbd5c
SB
3169 }
3170#endif
bcef60f2
AJ
3171 ret = btrfs_read_qgroup_config(fs_info);
3172 if (ret)
3173 goto fail_trans_kthread;
21adbd5c 3174
fd708b81
JB
3175 if (btrfs_build_ref_tree(fs_info))
3176 btrfs_err(fs_info, "couldn't build ref tree");
3177
96da0919
QW
3178 /* do not make disk changes in broken FS or nologreplay is given */
3179 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3180 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3181 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3182 if (ret) {
63443bf5 3183 err = ret;
28c16cbb 3184 goto fail_qgroup;
79787eaa 3185 }
e02119d5 3186 }
1a40e23b 3187
6bccf3ab 3188 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3189 if (ret)
28c16cbb 3190 goto fail_qgroup;
76dda93c 3191
bc98a42c 3192 if (!sb_rdonly(sb)) {
d68fc57b 3193 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3194 if (ret)
28c16cbb 3195 goto fail_qgroup;
90c711ab
ZB
3196
3197 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3198 ret = btrfs_recover_relocation(tree_root);
90c711ab 3199 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3200 if (ret < 0) {
05135f59
DS
3201 btrfs_warn(fs_info, "failed to recover relocation: %d",
3202 ret);
d7ce5843 3203 err = -EINVAL;
bcef60f2 3204 goto fail_qgroup;
d7ce5843 3205 }
7c2ca468 3206 }
1a40e23b 3207
3de4586c
CM
3208 location.objectid = BTRFS_FS_TREE_OBJECTID;
3209 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3210 location.offset = 0;
3de4586c 3211
3de4586c 3212 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3213 if (IS_ERR(fs_info->fs_root)) {
3214 err = PTR_ERR(fs_info->fs_root);
f50f4353 3215 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3216 goto fail_qgroup;
3140c9a3 3217 }
c289811c 3218
bc98a42c 3219 if (sb_rdonly(sb))
2b6ba629 3220 return 0;
59641015 3221
f8d468a1
OS
3222 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3223 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3224 clear_free_space_tree = 1;
3225 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3226 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3227 btrfs_warn(fs_info, "free space tree is invalid");
3228 clear_free_space_tree = 1;
3229 }
3230
3231 if (clear_free_space_tree) {
f8d468a1
OS
3232 btrfs_info(fs_info, "clearing free space tree");
3233 ret = btrfs_clear_free_space_tree(fs_info);
3234 if (ret) {
3235 btrfs_warn(fs_info,
3236 "failed to clear free space tree: %d", ret);
6bccf3ab 3237 close_ctree(fs_info);
f8d468a1
OS
3238 return ret;
3239 }
3240 }
3241
0b246afa 3242 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3243 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3244 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3245 ret = btrfs_create_free_space_tree(fs_info);
3246 if (ret) {
05135f59
DS
3247 btrfs_warn(fs_info,
3248 "failed to create free space tree: %d", ret);
6bccf3ab 3249 close_ctree(fs_info);
511711af
CM
3250 return ret;
3251 }
3252 }
3253
2b6ba629
ID
3254 down_read(&fs_info->cleanup_work_sem);
3255 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3256 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3257 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3258 close_ctree(fs_info);
2b6ba629
ID
3259 return ret;
3260 }
3261 up_read(&fs_info->cleanup_work_sem);
59641015 3262
2b6ba629
ID
3263 ret = btrfs_resume_balance_async(fs_info);
3264 if (ret) {
05135f59 3265 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3266 close_ctree(fs_info);
2b6ba629 3267 return ret;
e3acc2a6
JB
3268 }
3269
8dabb742
SB
3270 ret = btrfs_resume_dev_replace_async(fs_info);
3271 if (ret) {
05135f59 3272 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3273 close_ctree(fs_info);
8dabb742
SB
3274 return ret;
3275 }
3276
b382a324
JS
3277 btrfs_qgroup_rescan_resume(fs_info);
3278
4bbcaa64 3279 if (!fs_info->uuid_root) {
05135f59 3280 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3281 ret = btrfs_create_uuid_tree(fs_info);
3282 if (ret) {
05135f59
DS
3283 btrfs_warn(fs_info,
3284 "failed to create the UUID tree: %d", ret);
6bccf3ab 3285 close_ctree(fs_info);
f7a81ea4
SB
3286 return ret;
3287 }
0b246afa 3288 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3289 fs_info->generation !=
3290 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3291 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3292 ret = btrfs_check_uuid_tree(fs_info);
3293 if (ret) {
05135f59
DS
3294 btrfs_warn(fs_info,
3295 "failed to check the UUID tree: %d", ret);
6bccf3ab 3296 close_ctree(fs_info);
70f80175
SB
3297 return ret;
3298 }
3299 } else {
afcdd129 3300 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3301 }
afcdd129 3302 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3303
8dcddfa0
QW
3304 /*
3305 * backuproot only affect mount behavior, and if open_ctree succeeded,
3306 * no need to keep the flag
3307 */
3308 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3309
ad2b2c80 3310 return 0;
39279cc3 3311
bcef60f2
AJ
3312fail_qgroup:
3313 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3314fail_trans_kthread:
3315 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3316 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3317 btrfs_free_fs_roots(fs_info);
3f157a2f 3318fail_cleaner:
a74a4b97 3319 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3320
3321 /*
3322 * make sure we're done with the btree inode before we stop our
3323 * kthreads
3324 */
3325 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3326
2365dd3c 3327fail_sysfs:
6618a59b 3328 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3329
b7c35e81
AJ
3330fail_fsdev_sysfs:
3331 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3332
1b1d1f66 3333fail_block_groups:
54067ae9 3334 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3335
3336fail_tree_roots:
3337 free_root_pointers(fs_info, 1);
2b8195bb 3338 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3339
39279cc3 3340fail_sb_buffer:
7abadb64 3341 btrfs_stop_all_workers(fs_info);
5cdd7db6 3342 btrfs_free_block_groups(fs_info);
16cdcec7 3343fail_alloc:
4543df7e 3344fail_iput:
586e46e2
ID
3345 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3346
4543df7e 3347 iput(fs_info->btree_inode);
c404e0dc
MX
3348fail_bio_counter:
3349 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3350fail_delalloc_bytes:
3351 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3352fail_dirty_metadata_bytes:
3353 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3354fail_srcu:
3355 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3356fail:
53b381b3 3357 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3358 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3359 return err;
af31f5e5
CM
3360
3361recovery_tree_root:
0b246afa 3362 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3363 goto fail_tree_roots;
3364
3365 free_root_pointers(fs_info, 0);
3366
3367 /* don't use the log in recovery mode, it won't be valid */
3368 btrfs_set_super_log_root(disk_super, 0);
3369
3370 /* we can't trust the free space cache either */
3371 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3372
3373 ret = next_root_backup(fs_info, fs_info->super_copy,
3374 &num_backups_tried, &backup_index);
3375 if (ret == -1)
3376 goto fail_block_groups;
3377 goto retry_root_backup;
eb60ceac 3378}
663faf9f 3379ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3380
f2984462
CM
3381static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3382{
f2984462
CM
3383 if (uptodate) {
3384 set_buffer_uptodate(bh);
3385 } else {
442a4f63
SB
3386 struct btrfs_device *device = (struct btrfs_device *)
3387 bh->b_private;
3388
fb456252 3389 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3390 "lost page write due to IO error on %s",
606686ee 3391 rcu_str_deref(device->name));
01327610 3392 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3393 * our own ways of dealing with the IO errors
3394 */
f2984462 3395 clear_buffer_uptodate(bh);
442a4f63 3396 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3397 }
3398 unlock_buffer(bh);
3399 put_bh(bh);
3400}
3401
29c36d72
AJ
3402int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3403 struct buffer_head **bh_ret)
3404{
3405 struct buffer_head *bh;
3406 struct btrfs_super_block *super;
3407 u64 bytenr;
3408
3409 bytenr = btrfs_sb_offset(copy_num);
3410 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3411 return -EINVAL;
3412
9f6d2510 3413 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3414 /*
3415 * If we fail to read from the underlying devices, as of now
3416 * the best option we have is to mark it EIO.
3417 */
3418 if (!bh)
3419 return -EIO;
3420
3421 super = (struct btrfs_super_block *)bh->b_data;
3422 if (btrfs_super_bytenr(super) != bytenr ||
3423 btrfs_super_magic(super) != BTRFS_MAGIC) {
3424 brelse(bh);
3425 return -EINVAL;
3426 }
3427
3428 *bh_ret = bh;
3429 return 0;
3430}
3431
3432
a512bbf8
YZ
3433struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3434{
3435 struct buffer_head *bh;
3436 struct buffer_head *latest = NULL;
3437 struct btrfs_super_block *super;
3438 int i;
3439 u64 transid = 0;
92fc03fb 3440 int ret = -EINVAL;
a512bbf8
YZ
3441
3442 /* we would like to check all the supers, but that would make
3443 * a btrfs mount succeed after a mkfs from a different FS.
3444 * So, we need to add a special mount option to scan for
3445 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3446 */
3447 for (i = 0; i < 1; i++) {
29c36d72
AJ
3448 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3449 if (ret)
a512bbf8
YZ
3450 continue;
3451
3452 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3453
3454 if (!latest || btrfs_super_generation(super) > transid) {
3455 brelse(latest);
3456 latest = bh;
3457 transid = btrfs_super_generation(super);
3458 } else {
3459 brelse(bh);
3460 }
3461 }
92fc03fb
AJ
3462
3463 if (!latest)
3464 return ERR_PTR(ret);
3465
a512bbf8
YZ
3466 return latest;
3467}
3468
4eedeb75 3469/*
abbb3b8e
DS
3470 * Write superblock @sb to the @device. Do not wait for completion, all the
3471 * buffer heads we write are pinned.
4eedeb75 3472 *
abbb3b8e
DS
3473 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3474 * the expected device size at commit time. Note that max_mirrors must be
3475 * same for write and wait phases.
4eedeb75 3476 *
abbb3b8e 3477 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3478 */
a512bbf8 3479static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3480 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3481{
3482 struct buffer_head *bh;
3483 int i;
3484 int ret;
3485 int errors = 0;
3486 u32 crc;
3487 u64 bytenr;
1b9e619c 3488 int op_flags;
a512bbf8
YZ
3489
3490 if (max_mirrors == 0)
3491 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3492
a512bbf8
YZ
3493 for (i = 0; i < max_mirrors; i++) {
3494 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3495 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3496 device->commit_total_bytes)
a512bbf8
YZ
3497 break;
3498
abbb3b8e 3499 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3500
abbb3b8e
DS
3501 crc = ~(u32)0;
3502 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3503 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3504 btrfs_csum_final(crc, sb->csum);
4eedeb75 3505
abbb3b8e 3506 /* One reference for us, and we leave it for the caller */
9f6d2510 3507 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3508 BTRFS_SUPER_INFO_SIZE);
3509 if (!bh) {
3510 btrfs_err(device->fs_info,
3511 "couldn't get super buffer head for bytenr %llu",
3512 bytenr);
3513 errors++;
4eedeb75 3514 continue;
abbb3b8e 3515 }
634554dc 3516
abbb3b8e 3517 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3518
abbb3b8e
DS
3519 /* one reference for submit_bh */
3520 get_bh(bh);
4eedeb75 3521
abbb3b8e
DS
3522 set_buffer_uptodate(bh);
3523 lock_buffer(bh);
3524 bh->b_end_io = btrfs_end_buffer_write_sync;
3525 bh->b_private = device;
a512bbf8 3526
387125fc
CM
3527 /*
3528 * we fua the first super. The others we allow
3529 * to go down lazy.
3530 */
1b9e619c
OS
3531 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3532 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3533 op_flags |= REQ_FUA;
3534 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3535 if (ret)
a512bbf8 3536 errors++;
a512bbf8
YZ
3537 }
3538 return errors < i ? 0 : -1;
3539}
3540
abbb3b8e
DS
3541/*
3542 * Wait for write completion of superblocks done by write_dev_supers,
3543 * @max_mirrors same for write and wait phases.
3544 *
3545 * Return number of errors when buffer head is not found or not marked up to
3546 * date.
3547 */
3548static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3549{
3550 struct buffer_head *bh;
3551 int i;
3552 int errors = 0;
b6a535fa 3553 bool primary_failed = false;
abbb3b8e
DS
3554 u64 bytenr;
3555
3556 if (max_mirrors == 0)
3557 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3558
3559 for (i = 0; i < max_mirrors; i++) {
3560 bytenr = btrfs_sb_offset(i);
3561 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3562 device->commit_total_bytes)
3563 break;
3564
9f6d2510
DS
3565 bh = __find_get_block(device->bdev,
3566 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3567 BTRFS_SUPER_INFO_SIZE);
3568 if (!bh) {
3569 errors++;
b6a535fa
HM
3570 if (i == 0)
3571 primary_failed = true;
abbb3b8e
DS
3572 continue;
3573 }
3574 wait_on_buffer(bh);
b6a535fa 3575 if (!buffer_uptodate(bh)) {
abbb3b8e 3576 errors++;
b6a535fa
HM
3577 if (i == 0)
3578 primary_failed = true;
3579 }
abbb3b8e
DS
3580
3581 /* drop our reference */
3582 brelse(bh);
3583
3584 /* drop the reference from the writing run */
3585 brelse(bh);
3586 }
3587
b6a535fa
HM
3588 /* log error, force error return */
3589 if (primary_failed) {
3590 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3591 device->devid);
3592 return -1;
3593 }
3594
abbb3b8e
DS
3595 return errors < i ? 0 : -1;
3596}
3597
387125fc
CM
3598/*
3599 * endio for the write_dev_flush, this will wake anyone waiting
3600 * for the barrier when it is done
3601 */
4246a0b6 3602static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3603{
e0ae9994 3604 complete(bio->bi_private);
387125fc
CM
3605}
3606
3607/*
4fc6441a
AJ
3608 * Submit a flush request to the device if it supports it. Error handling is
3609 * done in the waiting counterpart.
387125fc 3610 */
4fc6441a 3611static void write_dev_flush(struct btrfs_device *device)
387125fc 3612{
c2a9c7ab 3613 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3614 struct bio *bio = device->flush_bio;
387125fc 3615
c2a9c7ab 3616 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3617 return;
387125fc 3618
e0ae9994 3619 bio_reset(bio);
387125fc 3620 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3621 bio_set_dev(bio, device->bdev);
8d910125 3622 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3623 init_completion(&device->flush_wait);
3624 bio->bi_private = &device->flush_wait;
387125fc 3625
43a01111 3626 btrfsic_submit_bio(bio);
1c3063b6 3627 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3628}
387125fc 3629
4fc6441a
AJ
3630/*
3631 * If the flush bio has been submitted by write_dev_flush, wait for it.
3632 */
8c27cb35 3633static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3634{
4fc6441a 3635 struct bio *bio = device->flush_bio;
387125fc 3636
1c3063b6 3637 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3638 return BLK_STS_OK;
387125fc 3639
1c3063b6 3640 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3641 wait_for_completion_io(&device->flush_wait);
387125fc 3642
8c27cb35 3643 return bio->bi_status;
387125fc 3644}
387125fc 3645
d10b82fe 3646static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3647{
6528b99d 3648 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3649 return -EIO;
387125fc
CM
3650 return 0;
3651}
3652
3653/*
3654 * send an empty flush down to each device in parallel,
3655 * then wait for them
3656 */
3657static int barrier_all_devices(struct btrfs_fs_info *info)
3658{
3659 struct list_head *head;
3660 struct btrfs_device *dev;
5af3e8cc 3661 int errors_wait = 0;
4e4cbee9 3662 blk_status_t ret;
387125fc 3663
1538e6c5 3664 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3665 /* send down all the barriers */
3666 head = &info->fs_devices->devices;
1538e6c5 3667 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3668 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3669 continue;
cea7c8bf 3670 if (!dev->bdev)
387125fc 3671 continue;
e12c9621 3672 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3673 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3674 continue;
3675
4fc6441a 3676 write_dev_flush(dev);
58efbc9f 3677 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3678 }
3679
3680 /* wait for all the barriers */
1538e6c5 3681 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3682 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3683 continue;
387125fc 3684 if (!dev->bdev) {
5af3e8cc 3685 errors_wait++;
387125fc
CM
3686 continue;
3687 }
e12c9621 3688 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3689 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3690 continue;
3691
4fc6441a 3692 ret = wait_dev_flush(dev);
401b41e5
AJ
3693 if (ret) {
3694 dev->last_flush_error = ret;
66b4993e
DS
3695 btrfs_dev_stat_inc_and_print(dev,
3696 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3697 errors_wait++;
401b41e5
AJ
3698 }
3699 }
3700
cea7c8bf 3701 if (errors_wait) {
401b41e5
AJ
3702 /*
3703 * At some point we need the status of all disks
3704 * to arrive at the volume status. So error checking
3705 * is being pushed to a separate loop.
3706 */
d10b82fe 3707 return check_barrier_error(info);
387125fc 3708 }
387125fc
CM
3709 return 0;
3710}
3711
943c6e99
ZL
3712int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3713{
8789f4fe
ZL
3714 int raid_type;
3715 int min_tolerated = INT_MAX;
943c6e99 3716
8789f4fe
ZL
3717 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3718 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3719 min_tolerated = min(min_tolerated,
3720 btrfs_raid_array[BTRFS_RAID_SINGLE].
3721 tolerated_failures);
943c6e99 3722
8789f4fe
ZL
3723 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3724 if (raid_type == BTRFS_RAID_SINGLE)
3725 continue;
41a6e891 3726 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe
ZL
3727 continue;
3728 min_tolerated = min(min_tolerated,
3729 btrfs_raid_array[raid_type].
3730 tolerated_failures);
3731 }
943c6e99 3732
8789f4fe 3733 if (min_tolerated == INT_MAX) {
ab8d0fc4 3734 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3735 min_tolerated = 0;
3736 }
3737
3738 return min_tolerated;
943c6e99
ZL
3739}
3740
eece6a9c 3741int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3742{
e5e9a520 3743 struct list_head *head;
f2984462 3744 struct btrfs_device *dev;
a061fc8d 3745 struct btrfs_super_block *sb;
f2984462 3746 struct btrfs_dev_item *dev_item;
f2984462
CM
3747 int ret;
3748 int do_barriers;
a236aed1
CM
3749 int max_errors;
3750 int total_errors = 0;
a061fc8d 3751 u64 flags;
f2984462 3752
0b246afa 3753 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3754
3755 /*
3756 * max_mirrors == 0 indicates we're from commit_transaction,
3757 * not from fsync where the tree roots in fs_info have not
3758 * been consistent on disk.
3759 */
3760 if (max_mirrors == 0)
3761 backup_super_roots(fs_info);
f2984462 3762
0b246afa 3763 sb = fs_info->super_for_commit;
a061fc8d 3764 dev_item = &sb->dev_item;
e5e9a520 3765
0b246afa
JM
3766 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3767 head = &fs_info->fs_devices->devices;
3768 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3769
5af3e8cc 3770 if (do_barriers) {
0b246afa 3771 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3772 if (ret) {
3773 mutex_unlock(
0b246afa
JM
3774 &fs_info->fs_devices->device_list_mutex);
3775 btrfs_handle_fs_error(fs_info, ret,
3776 "errors while submitting device barriers.");
5af3e8cc
SB
3777 return ret;
3778 }
3779 }
387125fc 3780
1538e6c5 3781 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3782 if (!dev->bdev) {
3783 total_errors++;
3784 continue;
3785 }
e12c9621 3786 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3787 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3788 continue;
3789
2b82032c 3790 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3791 btrfs_set_stack_device_type(dev_item, dev->type);
3792 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3793 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3794 dev->commit_total_bytes);
ce7213c7
MX
3795 btrfs_set_stack_device_bytes_used(dev_item,
3796 dev->commit_bytes_used);
a061fc8d
CM
3797 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3798 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3799 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3800 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
44880fdc 3801 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
a512bbf8 3802
a061fc8d
CM
3803 flags = btrfs_super_flags(sb);
3804 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3805
75cb857d
QW
3806 ret = btrfs_validate_write_super(fs_info, sb);
3807 if (ret < 0) {
3808 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3809 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3810 "unexpected superblock corruption detected");
3811 return -EUCLEAN;
3812 }
3813
abbb3b8e 3814 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3815 if (ret)
3816 total_errors++;
f2984462 3817 }
a236aed1 3818 if (total_errors > max_errors) {
0b246afa
JM
3819 btrfs_err(fs_info, "%d errors while writing supers",
3820 total_errors);
3821 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3822
9d565ba4 3823 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3824 btrfs_handle_fs_error(fs_info, -EIO,
3825 "%d errors while writing supers",
3826 total_errors);
9d565ba4 3827 return -EIO;
a236aed1 3828 }
f2984462 3829
a512bbf8 3830 total_errors = 0;
1538e6c5 3831 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3832 if (!dev->bdev)
3833 continue;
e12c9621 3834 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3835 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3836 continue;
3837
abbb3b8e 3838 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3839 if (ret)
3840 total_errors++;
f2984462 3841 }
0b246afa 3842 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3843 if (total_errors > max_errors) {
0b246afa
JM
3844 btrfs_handle_fs_error(fs_info, -EIO,
3845 "%d errors while writing supers",
3846 total_errors);
79787eaa 3847 return -EIO;
a236aed1 3848 }
f2984462
CM
3849 return 0;
3850}
3851
cb517eab
MX
3852/* Drop a fs root from the radix tree and free it. */
3853void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3854 struct btrfs_root *root)
2619ba1f 3855{
4df27c4d 3856 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3857 radix_tree_delete(&fs_info->fs_roots_radix,
3858 (unsigned long)root->root_key.objectid);
4df27c4d 3859 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3860
3861 if (btrfs_root_refs(&root->root_item) == 0)
3862 synchronize_srcu(&fs_info->subvol_srcu);
3863
1c1ea4f7 3864 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3865 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3866 if (root->reloc_root) {
3867 free_extent_buffer(root->reloc_root->node);
3868 free_extent_buffer(root->reloc_root->commit_root);
3869 btrfs_put_fs_root(root->reloc_root);
3870 root->reloc_root = NULL;
3871 }
3872 }
3321719e 3873
faa2dbf0
JB
3874 if (root->free_ino_pinned)
3875 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3876 if (root->free_ino_ctl)
3877 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3878 free_fs_root(root);
4df27c4d
YZ
3879}
3880
3881static void free_fs_root(struct btrfs_root *root)
3882{
57cdc8db 3883 iput(root->ino_cache_inode);
4df27c4d 3884 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3885 if (root->anon_dev)
3886 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3887 if (root->subv_writers)
3888 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3889 free_extent_buffer(root->node);
3890 free_extent_buffer(root->commit_root);
581bb050
LZ
3891 kfree(root->free_ino_ctl);
3892 kfree(root->free_ino_pinned);
d397712b 3893 kfree(root->name);
b0feb9d9 3894 btrfs_put_fs_root(root);
2619ba1f
CM
3895}
3896
cb517eab
MX
3897void btrfs_free_fs_root(struct btrfs_root *root)
3898{
3899 free_fs_root(root);
2619ba1f
CM
3900}
3901
c146afad 3902int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3903{
c146afad
YZ
3904 u64 root_objectid = 0;
3905 struct btrfs_root *gang[8];
65d33fd7
QW
3906 int i = 0;
3907 int err = 0;
3908 unsigned int ret = 0;
3909 int index;
e089f05c 3910
c146afad 3911 while (1) {
65d33fd7 3912 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3913 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3914 (void **)gang, root_objectid,
3915 ARRAY_SIZE(gang));
65d33fd7
QW
3916 if (!ret) {
3917 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3918 break;
65d33fd7 3919 }
5d4f98a2 3920 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3921
c146afad 3922 for (i = 0; i < ret; i++) {
65d33fd7
QW
3923 /* Avoid to grab roots in dead_roots */
3924 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3925 gang[i] = NULL;
3926 continue;
3927 }
3928 /* grab all the search result for later use */
3929 gang[i] = btrfs_grab_fs_root(gang[i]);
3930 }
3931 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3932
65d33fd7
QW
3933 for (i = 0; i < ret; i++) {
3934 if (!gang[i])
3935 continue;
c146afad 3936 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3937 err = btrfs_orphan_cleanup(gang[i]);
3938 if (err)
65d33fd7
QW
3939 break;
3940 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3941 }
3942 root_objectid++;
3943 }
65d33fd7
QW
3944
3945 /* release the uncleaned roots due to error */
3946 for (; i < ret; i++) {
3947 if (gang[i])
3948 btrfs_put_fs_root(gang[i]);
3949 }
3950 return err;
c146afad 3951}
a2135011 3952
6bccf3ab 3953int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3954{
6bccf3ab 3955 struct btrfs_root *root = fs_info->tree_root;
c146afad 3956 struct btrfs_trans_handle *trans;
a74a4b97 3957
0b246afa 3958 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3959 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3960 mutex_unlock(&fs_info->cleaner_mutex);
3961 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3962
3963 /* wait until ongoing cleanup work done */
0b246afa
JM
3964 down_write(&fs_info->cleanup_work_sem);
3965 up_write(&fs_info->cleanup_work_sem);
c71bf099 3966
7a7eaa40 3967 trans = btrfs_join_transaction(root);
3612b495
TI
3968 if (IS_ERR(trans))
3969 return PTR_ERR(trans);
3a45bb20 3970 return btrfs_commit_transaction(trans);
c146afad
YZ
3971}
3972
6bccf3ab 3973void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3974{
c146afad
YZ
3975 int ret;
3976
afcdd129 3977 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
c146afad 3978
7343dd61 3979 /* wait for the qgroup rescan worker to stop */
d06f23d6 3980 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3981
803b2f54
SB
3982 /* wait for the uuid_scan task to finish */
3983 down(&fs_info->uuid_tree_rescan_sem);
3984 /* avoid complains from lockdep et al., set sem back to initial state */
3985 up(&fs_info->uuid_tree_rescan_sem);
3986
837d5b6e 3987 /* pause restriper - we want to resume on mount */
aa1b8cd4 3988 btrfs_pause_balance(fs_info);
837d5b6e 3989
8dabb742
SB
3990 btrfs_dev_replace_suspend_for_unmount(fs_info);
3991
aa1b8cd4 3992 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3993
3994 /* wait for any defraggers to finish */
3995 wait_event(fs_info->transaction_wait,
3996 (atomic_read(&fs_info->defrag_running) == 0));
3997
3998 /* clear out the rbtree of defraggable inodes */
26176e7c 3999 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4000
21c7e756
MX
4001 cancel_work_sync(&fs_info->async_reclaim_work);
4002
bc98a42c 4003 if (!sb_rdonly(fs_info->sb)) {
e44163e1
JM
4004 /*
4005 * If the cleaner thread is stopped and there are
4006 * block groups queued for removal, the deletion will be
4007 * skipped when we quit the cleaner thread.
4008 */
0b246afa 4009 btrfs_delete_unused_bgs(fs_info);
e44163e1 4010
6bccf3ab 4011 ret = btrfs_commit_super(fs_info);
acce952b 4012 if (ret)
04892340 4013 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4014 }
4015
af722733
LB
4016 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4017 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4018 btrfs_error_commit_super(fs_info);
0f7d52f4 4019
e3029d9f
AV
4020 kthread_stop(fs_info->transaction_kthread);
4021 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4022
afcdd129 4023 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4024
04892340 4025 btrfs_free_qgroup_config(fs_info);
fe816d0f 4026 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4027
963d678b 4028 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4029 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4030 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4031 }
bcc63abb 4032
6618a59b 4033 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4034 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4035
faa2dbf0 4036 btrfs_free_fs_roots(fs_info);
d10c5f31 4037
1a4319cc
LB
4038 btrfs_put_block_group_cache(fs_info);
4039
de348ee0
WS
4040 /*
4041 * we must make sure there is not any read request to
4042 * submit after we stopping all workers.
4043 */
4044 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4045 btrfs_stop_all_workers(fs_info);
4046
5cdd7db6
FM
4047 btrfs_free_block_groups(fs_info);
4048
afcdd129 4049 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4050 free_root_pointers(fs_info, 1);
9ad6b7bc 4051
13e6c37b 4052 iput(fs_info->btree_inode);
d6bfde87 4053
21adbd5c 4054#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4055 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4056 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4057#endif
4058
dfe25020 4059 btrfs_close_devices(fs_info->fs_devices);
0b86a832 4060 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 4061
e2d84521 4062 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4063 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 4064 percpu_counter_destroy(&fs_info->bio_counter);
76dda93c 4065 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4066
53b381b3 4067 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4068 btrfs_free_ref_cache(fs_info);
53b381b3 4069
04216820
FM
4070 while (!list_empty(&fs_info->pinned_chunks)) {
4071 struct extent_map *em;
4072
4073 em = list_first_entry(&fs_info->pinned_chunks,
4074 struct extent_map, list);
4075 list_del_init(&em->list);
4076 free_extent_map(em);
4077 }
eb60ceac
CM
4078}
4079
b9fab919
CM
4080int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4081 int atomic)
5f39d397 4082{
1259ab75 4083 int ret;
727011e0 4084 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4085
0b32f4bb 4086 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4087 if (!ret)
4088 return ret;
4089
4090 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4091 parent_transid, atomic);
4092 if (ret == -EAGAIN)
4093 return ret;
1259ab75 4094 return !ret;
5f39d397
CM
4095}
4096
5f39d397
CM
4097void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4098{
0b246afa 4099 struct btrfs_fs_info *fs_info;
06ea65a3 4100 struct btrfs_root *root;
5f39d397 4101 u64 transid = btrfs_header_generation(buf);
b9473439 4102 int was_dirty;
b4ce94de 4103
06ea65a3
JB
4104#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4105 /*
4106 * This is a fast path so only do this check if we have sanity tests
4107 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4108 * outside of the sanity tests.
4109 */
4110 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4111 return;
4112#endif
4113 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4114 fs_info = root->fs_info;
b9447ef8 4115 btrfs_assert_tree_locked(buf);
0b246afa 4116 if (transid != fs_info->generation)
5d163e0e 4117 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4118 buf->start, transid, fs_info->generation);
0b32f4bb 4119 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4120 if (!was_dirty)
104b4e51
NB
4121 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4122 buf->len,
4123 fs_info->dirty_metadata_batch);
1f21ef0a 4124#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4125 /*
4126 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4127 * but item data not updated.
4128 * So here we should only check item pointers, not item data.
4129 */
4130 if (btrfs_header_level(buf) == 0 &&
2f659546 4131 btrfs_check_leaf_relaxed(fs_info, buf)) {
a4f78750 4132 btrfs_print_leaf(buf);
1f21ef0a
FM
4133 ASSERT(0);
4134 }
4135#endif
eb60ceac
CM
4136}
4137
2ff7e61e 4138static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4139 int flush_delayed)
16cdcec7
MX
4140{
4141 /*
4142 * looks as though older kernels can get into trouble with
4143 * this code, they end up stuck in balance_dirty_pages forever
4144 */
e2d84521 4145 int ret;
16cdcec7
MX
4146
4147 if (current->flags & PF_MEMALLOC)
4148 return;
4149
b53d3f5d 4150 if (flush_delayed)
2ff7e61e 4151 btrfs_balance_delayed_items(fs_info);
16cdcec7 4152
0b246afa 4153 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
e2d84521
MX
4154 BTRFS_DIRTY_METADATA_THRESH);
4155 if (ret > 0) {
0b246afa 4156 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4157 }
16cdcec7
MX
4158}
4159
2ff7e61e 4160void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4161{
2ff7e61e 4162 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4163}
585ad2c3 4164
2ff7e61e 4165void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4166{
2ff7e61e 4167 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4168}
6b80053d 4169
581c1760
QW
4170int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4171 struct btrfs_key *first_key)
6b80053d 4172{
727011e0 4173 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
4174 struct btrfs_fs_info *fs_info = root->fs_info;
4175
581c1760
QW
4176 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4177 level, first_key);
6b80053d 4178}
0da5468f 4179
2ff7e61e 4180static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4181{
fe816d0f
NB
4182 /* cleanup FS via transaction */
4183 btrfs_cleanup_transaction(fs_info);
4184
0b246afa 4185 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4186 btrfs_run_delayed_iputs(fs_info);
0b246afa 4187 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4188
0b246afa
JM
4189 down_write(&fs_info->cleanup_work_sem);
4190 up_write(&fs_info->cleanup_work_sem);
acce952b 4191}
4192
143bede5 4193static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4194{
acce952b 4195 struct btrfs_ordered_extent *ordered;
acce952b 4196
199c2a9c 4197 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4198 /*
4199 * This will just short circuit the ordered completion stuff which will
4200 * make sure the ordered extent gets properly cleaned up.
4201 */
199c2a9c 4202 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4203 root_extent_list)
4204 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4205 spin_unlock(&root->ordered_extent_lock);
4206}
4207
4208static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4209{
4210 struct btrfs_root *root;
4211 struct list_head splice;
4212
4213 INIT_LIST_HEAD(&splice);
4214
4215 spin_lock(&fs_info->ordered_root_lock);
4216 list_splice_init(&fs_info->ordered_roots, &splice);
4217 while (!list_empty(&splice)) {
4218 root = list_first_entry(&splice, struct btrfs_root,
4219 ordered_root);
1de2cfde
JB
4220 list_move_tail(&root->ordered_root,
4221 &fs_info->ordered_roots);
199c2a9c 4222
2a85d9ca 4223 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4224 btrfs_destroy_ordered_extents(root);
4225
2a85d9ca
LB
4226 cond_resched();
4227 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4228 }
4229 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4230}
4231
35a3621b 4232static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4233 struct btrfs_fs_info *fs_info)
acce952b 4234{
4235 struct rb_node *node;
4236 struct btrfs_delayed_ref_root *delayed_refs;
4237 struct btrfs_delayed_ref_node *ref;
4238 int ret = 0;
4239
4240 delayed_refs = &trans->delayed_refs;
4241
4242 spin_lock(&delayed_refs->lock);
d7df2c79 4243 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4244 spin_unlock(&delayed_refs->lock);
0b246afa 4245 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4246 return ret;
4247 }
4248
d7df2c79
JB
4249 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4250 struct btrfs_delayed_ref_head *head;
0e0adbcf 4251 struct rb_node *n;
e78417d1 4252 bool pin_bytes = false;
acce952b 4253
d7df2c79
JB
4254 head = rb_entry(node, struct btrfs_delayed_ref_head,
4255 href_node);
4256 if (!mutex_trylock(&head->mutex)) {
d278850e 4257 refcount_inc(&head->refs);
d7df2c79 4258 spin_unlock(&delayed_refs->lock);
eb12db69 4259
d7df2c79 4260 mutex_lock(&head->mutex);
e78417d1 4261 mutex_unlock(&head->mutex);
d278850e 4262 btrfs_put_delayed_ref_head(head);
d7df2c79
JB
4263 spin_lock(&delayed_refs->lock);
4264 continue;
4265 }
4266 spin_lock(&head->lock);
0e0adbcf
JB
4267 while ((n = rb_first(&head->ref_tree)) != NULL) {
4268 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4269 ref_node);
d7df2c79 4270 ref->in_tree = 0;
0e0adbcf
JB
4271 rb_erase(&ref->ref_node, &head->ref_tree);
4272 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4273 if (!list_empty(&ref->add_list))
4274 list_del(&ref->add_list);
d7df2c79
JB
4275 atomic_dec(&delayed_refs->num_entries);
4276 btrfs_put_delayed_ref(ref);
e78417d1 4277 }
d7df2c79
JB
4278 if (head->must_insert_reserved)
4279 pin_bytes = true;
4280 btrfs_free_delayed_extent_op(head->extent_op);
4281 delayed_refs->num_heads--;
4282 if (head->processing == 0)
4283 delayed_refs->num_heads_ready--;
4284 atomic_dec(&delayed_refs->num_entries);
d7df2c79 4285 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 4286 RB_CLEAR_NODE(&head->href_node);
d7df2c79
JB
4287 spin_unlock(&head->lock);
4288 spin_unlock(&delayed_refs->lock);
4289 mutex_unlock(&head->mutex);
acce952b 4290
d7df2c79 4291 if (pin_bytes)
d278850e
JB
4292 btrfs_pin_extent(fs_info, head->bytenr,
4293 head->num_bytes, 1);
4294 btrfs_put_delayed_ref_head(head);
acce952b 4295 cond_resched();
4296 spin_lock(&delayed_refs->lock);
4297 }
4298
4299 spin_unlock(&delayed_refs->lock);
4300
4301 return ret;
4302}
4303
143bede5 4304static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4305{
4306 struct btrfs_inode *btrfs_inode;
4307 struct list_head splice;
4308
4309 INIT_LIST_HEAD(&splice);
4310
eb73c1b7
MX
4311 spin_lock(&root->delalloc_lock);
4312 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4313
4314 while (!list_empty(&splice)) {
fe816d0f 4315 struct inode *inode = NULL;
eb73c1b7
MX
4316 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4317 delalloc_inodes);
fe816d0f 4318 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4319 spin_unlock(&root->delalloc_lock);
acce952b 4320
fe816d0f
NB
4321 /*
4322 * Make sure we get a live inode and that it'll not disappear
4323 * meanwhile.
4324 */
4325 inode = igrab(&btrfs_inode->vfs_inode);
4326 if (inode) {
4327 invalidate_inode_pages2(inode->i_mapping);
4328 iput(inode);
4329 }
eb73c1b7 4330 spin_lock(&root->delalloc_lock);
acce952b 4331 }
eb73c1b7
MX
4332 spin_unlock(&root->delalloc_lock);
4333}
4334
4335static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4336{
4337 struct btrfs_root *root;
4338 struct list_head splice;
4339
4340 INIT_LIST_HEAD(&splice);
4341
4342 spin_lock(&fs_info->delalloc_root_lock);
4343 list_splice_init(&fs_info->delalloc_roots, &splice);
4344 while (!list_empty(&splice)) {
4345 root = list_first_entry(&splice, struct btrfs_root,
4346 delalloc_root);
eb73c1b7
MX
4347 root = btrfs_grab_fs_root(root);
4348 BUG_ON(!root);
4349 spin_unlock(&fs_info->delalloc_root_lock);
4350
4351 btrfs_destroy_delalloc_inodes(root);
4352 btrfs_put_fs_root(root);
4353
4354 spin_lock(&fs_info->delalloc_root_lock);
4355 }
4356 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4357}
4358
2ff7e61e 4359static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4360 struct extent_io_tree *dirty_pages,
4361 int mark)
4362{
4363 int ret;
acce952b 4364 struct extent_buffer *eb;
4365 u64 start = 0;
4366 u64 end;
acce952b 4367
4368 while (1) {
4369 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4370 mark, NULL);
acce952b 4371 if (ret)
4372 break;
4373
91166212 4374 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4375 while (start <= end) {
0b246afa
JM
4376 eb = find_extent_buffer(fs_info, start);
4377 start += fs_info->nodesize;
fd8b2b61 4378 if (!eb)
acce952b 4379 continue;
fd8b2b61 4380 wait_on_extent_buffer_writeback(eb);
acce952b 4381
fd8b2b61
JB
4382 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4383 &eb->bflags))
4384 clear_extent_buffer_dirty(eb);
4385 free_extent_buffer_stale(eb);
acce952b 4386 }
4387 }
4388
4389 return ret;
4390}
4391
2ff7e61e 4392static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4393 struct extent_io_tree *pinned_extents)
4394{
4395 struct extent_io_tree *unpin;
4396 u64 start;
4397 u64 end;
4398 int ret;
ed0eaa14 4399 bool loop = true;
acce952b 4400
4401 unpin = pinned_extents;
ed0eaa14 4402again:
acce952b 4403 while (1) {
4404 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4405 EXTENT_DIRTY, NULL);
acce952b 4406 if (ret)
4407 break;
4408
af6f8f60 4409 clear_extent_dirty(unpin, start, end);
2ff7e61e 4410 btrfs_error_unpin_extent_range(fs_info, start, end);
acce952b 4411 cond_resched();
4412 }
4413
ed0eaa14 4414 if (loop) {
0b246afa
JM
4415 if (unpin == &fs_info->freed_extents[0])
4416 unpin = &fs_info->freed_extents[1];
ed0eaa14 4417 else
0b246afa 4418 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4419 loop = false;
4420 goto again;
4421 }
4422
acce952b 4423 return 0;
4424}
4425
c79a1751
LB
4426static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4427{
4428 struct inode *inode;
4429
4430 inode = cache->io_ctl.inode;
4431 if (inode) {
4432 invalidate_inode_pages2(inode->i_mapping);
4433 BTRFS_I(inode)->generation = 0;
4434 cache->io_ctl.inode = NULL;
4435 iput(inode);
4436 }
4437 btrfs_put_block_group(cache);
4438}
4439
4440void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4441 struct btrfs_fs_info *fs_info)
c79a1751
LB
4442{
4443 struct btrfs_block_group_cache *cache;
4444
4445 spin_lock(&cur_trans->dirty_bgs_lock);
4446 while (!list_empty(&cur_trans->dirty_bgs)) {
4447 cache = list_first_entry(&cur_trans->dirty_bgs,
4448 struct btrfs_block_group_cache,
4449 dirty_list);
c79a1751
LB
4450
4451 if (!list_empty(&cache->io_list)) {
4452 spin_unlock(&cur_trans->dirty_bgs_lock);
4453 list_del_init(&cache->io_list);
4454 btrfs_cleanup_bg_io(cache);
4455 spin_lock(&cur_trans->dirty_bgs_lock);
4456 }
4457
4458 list_del_init(&cache->dirty_list);
4459 spin_lock(&cache->lock);
4460 cache->disk_cache_state = BTRFS_DC_ERROR;
4461 spin_unlock(&cache->lock);
4462
4463 spin_unlock(&cur_trans->dirty_bgs_lock);
4464 btrfs_put_block_group(cache);
4465 spin_lock(&cur_trans->dirty_bgs_lock);
4466 }
4467 spin_unlock(&cur_trans->dirty_bgs_lock);
4468
45ae2c18
NB
4469 /*
4470 * Refer to the definition of io_bgs member for details why it's safe
4471 * to use it without any locking
4472 */
c79a1751
LB
4473 while (!list_empty(&cur_trans->io_bgs)) {
4474 cache = list_first_entry(&cur_trans->io_bgs,
4475 struct btrfs_block_group_cache,
4476 io_list);
c79a1751
LB
4477
4478 list_del_init(&cache->io_list);
4479 spin_lock(&cache->lock);
4480 cache->disk_cache_state = BTRFS_DC_ERROR;
4481 spin_unlock(&cache->lock);
4482 btrfs_cleanup_bg_io(cache);
4483 }
4484}
4485
49b25e05 4486void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4487 struct btrfs_fs_info *fs_info)
49b25e05 4488{
2ff7e61e 4489 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4490 ASSERT(list_empty(&cur_trans->dirty_bgs));
4491 ASSERT(list_empty(&cur_trans->io_bgs));
4492
2ff7e61e 4493 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4494
4a9d8bde 4495 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4496 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4497
4a9d8bde 4498 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4499 wake_up(&fs_info->transaction_wait);
49b25e05 4500
ccdf9b30
JM
4501 btrfs_destroy_delayed_inodes(fs_info);
4502 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4503
2ff7e61e 4504 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4505 EXTENT_DIRTY);
2ff7e61e 4506 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4507 fs_info->pinned_extents);
49b25e05 4508
4a9d8bde
MX
4509 cur_trans->state =TRANS_STATE_COMPLETED;
4510 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4511}
4512
2ff7e61e 4513static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4514{
4515 struct btrfs_transaction *t;
acce952b 4516
0b246afa 4517 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4518
0b246afa
JM
4519 spin_lock(&fs_info->trans_lock);
4520 while (!list_empty(&fs_info->trans_list)) {
4521 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4522 struct btrfs_transaction, list);
4523 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4524 refcount_inc(&t->use_count);
0b246afa 4525 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4526 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4527 btrfs_put_transaction(t);
0b246afa 4528 spin_lock(&fs_info->trans_lock);
724e2315
JB
4529 continue;
4530 }
0b246afa 4531 if (t == fs_info->running_transaction) {
724e2315 4532 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4533 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4534 /*
4535 * We wait for 0 num_writers since we don't hold a trans
4536 * handle open currently for this transaction.
4537 */
4538 wait_event(t->writer_wait,
4539 atomic_read(&t->num_writers) == 0);
4540 } else {
0b246afa 4541 spin_unlock(&fs_info->trans_lock);
724e2315 4542 }
2ff7e61e 4543 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4544
0b246afa
JM
4545 spin_lock(&fs_info->trans_lock);
4546 if (t == fs_info->running_transaction)
4547 fs_info->running_transaction = NULL;
acce952b 4548 list_del_init(&t->list);
0b246afa 4549 spin_unlock(&fs_info->trans_lock);
acce952b 4550
724e2315 4551 btrfs_put_transaction(t);
2ff7e61e 4552 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4553 spin_lock(&fs_info->trans_lock);
724e2315 4554 }
0b246afa
JM
4555 spin_unlock(&fs_info->trans_lock);
4556 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4557 btrfs_destroy_delayed_inodes(fs_info);
4558 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4559 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4560 btrfs_destroy_all_delalloc_inodes(fs_info);
4561 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4562
4563 return 0;
4564}
4565
c6100a4b
JB
4566static struct btrfs_fs_info *btree_fs_info(void *private_data)
4567{
4568 struct inode *inode = private_data;
4569 return btrfs_sb(inode->i_sb);
4570}
4571
e8c9f186 4572static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4573 /* mandatory callbacks */
0b86a832 4574 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4575 .readpage_end_io_hook = btree_readpage_end_io_hook,
239b14b3
CM
4576 /* note we're sharing with inode.c for the merge bio hook */
4577 .merge_bio_hook = btrfs_merge_bio_hook,
20a7db8a 4578 .readpage_io_failed_hook = btree_io_failed_hook,
c6100a4b
JB
4579 .set_range_writeback = btrfs_set_range_writeback,
4580 .tree_fs_info = btree_fs_info,
4d53dddb
DS
4581
4582 /* optional callbacks */
0da5468f 4583};